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Summary. The objective of this study is to analyze the stability of two control
strategies for a planar biped robot. The unexpected rotation of the supporting foot
is avoided via the control of the center of pressure or CoP. For the simultaneous
control of the joints and of the CoP, the system is under-actuated in the sense that
the number of inputs is less than the number of outputs. Thus a control strategy
developed for planar robot without actuated ankles can be used in this context.
The control law is defined in such a way that only the geometric evolution of the
biped configuration is controlled, but not the temporal evolution. The temporal
evolution during the geometric tracking is completely defined and can be analyzed
through the study of a model with one degree of freedom. Simple conditions, which
guarantee the existence of a cyclic motion and the convergence toward this motion,
are deduced. These results are illustrated with some simulation results. In the first
control strategy, the position of the CoP is tracked precisely, in the second one, only
the limits on the CoP position are used to speed-up the convergence to the cyclic
motion.

1 Introduction

The control of many walking robots is based on the notion of center of pressure
CoP [11, 12] also called ZMP by Vukobratovic and his co-workers [14, 13].
As long as the CoP remains inside the convex hull of the foot-support, the
supporting foot does not rotate and the contact with the ground is guaranteed.
Control strategies are often decomposed into a low level and a high level. The
low level ensures the tracking of the reference motion, and the high level
modifies the reference motion in order to ensure that the CoP remains inside
the convex hull of the foot-support.

Since the respect of the expected condition of contact with the ground is
more important than a tracking error, this kind of control strategy is interest-
ing. In many experimental works, how to modify the reference motion is not
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detailed [11], and it seems that this point has not been studied theoretically.
The modification of the reference motion has obviously an important effect
on the stability of the walking (in the sense of the convergence toward a cyclic
motion) and its robustness (in the sense of the reaction of the robot in the
presence of perturbation).

Our control strategy is based on simultaneous control of the joint and on
the evolution of the CoP position. The unexpected rotation of the supporting
foot is avoided via the control of the position of the center of pressure. Since the
joints and the position of the CoP are controlled simultaneously, the system
becomes under-actuated in the sense that the number of inputs is less than
the number of outputs. Thus a control strategy developed for planar robots
without actuated ankles can be used in this context [9, 2, 4]. An extension of
the work of Westervelt et al. [15], for the completely actuated robot based on
a prescribed evolution of the ankle torque was proposed [5]. In the proposed
study, the position of the CoP is prescribed, not the ankle torque.

The control law is defined in such a way that only the geometric evolution
of the biped configuration is controlled, but not the temporal evolution. This
strategy can be seen as an on-line modification of the joint reference motion
with respect to time in order to ensure that the position of the center of pres-
sure will be satisfying. The modification of the reference motion corresponds
to determine the acceleration along a given path1 in the joint space. This
modification is interesting in the presence of impact, because for all the pos-
sible reference motions, the configuration of the robot at impact is the same,
and the set of all the reference motions is invariant with respect to impact.
As a consequence the impact phase, and the possible variation of the instant
of impact have no disturbing effect [3].

Assuming a perfect robot model, and without perturbation, the temporal
evolution during the geometric tracking is completely defined and can be ana-
lyzed through the study of a model with one degree of freedom. The Poincaré
return map can be used to study the stability of the proposed control law.

The practical constraints on the position of the CoP do not imply that
this point follows exactly a desired path, but that the position of the CoP
evolves between some limits. Thus a second control law is proposed to speed
up the convergence to the cyclic motion. The position of the CoP is no longer
controlled but only monitored to avoid the rotation of the supporting foot [3].
In this case the control strategy is based on a heuristics proposed by Wieber
[16]. In this paper a stability study of this control law is proposed.

Section 2 presents the dynamic model of the biped. A planar biped model
with massless feet is considered. Section 3 is devoted to the formulation of
the first control strategy and to the existence of a cyclic motion. In Sect. 4
we present the second control strategy. Some simulation results are presented
in Sect. 5 in the case of a precise modeling of the robot and in Sect. 6 in the

1 The time evolution is not specified for a path.
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case of an imprecise modeling. Some properties of the two control strategies
are given in Sect. 7. Section 8 concludes the paper.

2 Bipedal Model

2.1 The Biped

The biped under study walks in a vertical sagittal xz plane. It is composed of a
torso and two identical legs. Each leg consists of two segments and a massless
foot. The ankles, the knees and the hips are one-degree-of-freedom rotational
frictionless joints. The walk is considered as single support phases separated
by impacts (instantaneous double support) with a full contact between the
sole of the feet and the ground. The angle of the supporting knee is denoted
q1. The angle of the supporting hip is denoted q2. The angle of the swing hip is
denoted q3. The angle of the swing knee is denoted q4. During swing phase the
foot is aligned horizontally thus the angle of the swing ankle can be calculated.
The supporting ankle angle allows to choose the orientation of the supporting
shank with respect to the vertical q5. Vector q = [q1, q2, q3, q4, q5]T of variables
(Fig. 1) describes the shape of the biped during single support. Since the free
foot is massless no torque is required at the swing ankle. The torque at the
supporting ankle will be treated in a special way thus it is denoted Γa = Γ5.
The torques are grouped into a torque vector Γ = [Γ1, Γ2, Γ3, Γ4, Γ5]T .
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Fig. 1. The studied biped: generalized coordinates
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In the simulation, we use the following biped parameters [2]. The lengths
of the thighs and of the shanks are 0.4 m. However, their masses are different:
6.8 kg for each thigh and 3.2 kg for each shank. The length of the torso
is 0.625 m and its mass is 17.05 kg. The center of mass are placed on the
line representing the link in Fig. 1. The distance between the joint actuator
and the center of mass is 0.1434 m for the torso, 0.163 m for the shanks, and
0.123 m for the thigh. The moments of inertia of the segments are also taken
into account, there values are defined around the joint axis, and there value
are 1.8694 kgm2 for the torso, 0.10 kgm2 for the shanks, and 0.25 kgm2 for
the thigh. The inertia of the motor of the hip and of the knee are 0.83 kgm2.
The feet is massless and have no inertia. The size of the feet are hp = 0.08 m,
lmin = 0.06 m, lmax = 0.2 m (Fig. 2).

2.2 Dynamic Modeling

The walking gait is composed of stance phases. A passive impact separates
the stance phases. The legs swap their roles from one step to the next one.
Thus the study of a step allows us to deduce the complete behavior of the
robot. Only a single support phase and an impact model are derived.

The Single Support Phase Model

Using Lagrange’s formalism, the ith line of the dynamic model for i = 1, . . . , 5
(qi is the ith element of vector q) is:

d

dt

(
∂K

∂q̇i

)
− ∂K

∂qi
+
∂P

∂qi
= Qi (1)

Fig. 2. The equilibrium of the supporting foot
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where K is the kinetic energy and P is the potential energy. The virtual work
δW of the external torques and forces, given by expression δW =

∑
Qiδqi =

QT δq, defines the vector Q of the generalized forces.
The kinetic energy K is independent of the coordinate frame chosen. Since

coordinate q5 defines the orientation of the biped as a rigid body, the inertia
matrix is independent of this variable, it depends only of “internal” variables
represented by vector qc = [q1, q2, q3, q4]T .

The dynamic model can be written:

M(qc)q̈ + h(q, q̇) = Γ (2)

where M(qc) is a (5 × 5) inertia matrix and vector h(q, q̇) contains the cen-
trifugal, Coriolis and gravity forces.

The fifth equation of system (1) is:

d

dt

(
∂K

∂q̇5

)
+
∂P

∂q5
= Γa (3)

For our planar biped and our choice of the coordinates in the single support,
the term ∂K

∂q̇5
is the angular momentum of the biped about the stance ankle

A (Fig. 2). We denote this term by σA. Thus we have:

∂K

∂q̇5
= σA = N(qc)q̇ (4)

where N(qc) is the fifth line of the inertia matrix M(qc).
The expression ∂P

∂q5
is equal to −mgxg if the abscissa of the stance ankle

is 0, m is the mass of the biped, g is the gravity acceleration. Thus the fifth
equation of the dynamic model of the biped in the single support can be
written in the following simple form:

σ̇A −mgxg = Γa (5)

The Reaction Force During the Single Support Phase

The position of the mass center of the biped can be expressed as function of
the angular coordinates vector q:

[
xg

zg

]
=

[
fxi(q)
fzi(q)

]
(6)

The vector-function fi(q) = [fxi(q) fzi(q)]T depends on vector q and on the
biped parameters (lengths of the links, masses, positions of the centers of
mass). The index i denotes the stance leg, for support on leg 1, f1(q) is used.

When leg 1 is on the ground, a ground reaction force, R1, exists. The
global equilibrium of the robot makes it possible to calculate this force:
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m

[
ẍg

z̈g

]
+mg

[
0
1

]
= R1 (7)

Equation (7) can also be written:

m
∂fx1(q)
∂q

q̈ +mq̇T ∂
2fx1(q)
∂q2

q̇ = Rx1

m
∂fz1(q)
∂q

q̈ +mq̇T ∂
2fz1(q)
∂q2

q̇ +mg = Rz1

(8)

where ∂2fx1(q)
∂q2 and ∂2fz1(q)

∂q2 are (5 × 5) matrices.

Equilibrium of the Supporting Foot

The supporting foot is exposed to the ground reaction force and the ankle
torque −Γa. The equilibrium law gives:

−Γa − lRz1 − hpRx1 = 0 (9)

Thus if the horizontal CoP position is l then the torque at the supporting
ankle is, using (7):

Γa = −l(mz̈g +mg) − hp(mẍg) (10)

The horizontal CoP position l is directly defined by the robot dynamics
as it can be seen in the following equation obtained by combining equations
(4), (5), (6), (8) and (10):

(N0(q) + lNl(q))q̈ + h0(q, q̇) + lhl(q, q̇) = 0 (11)

with

N0 = N(qc) +mhp
∂fx1(q)
∂q

Nl = m
∂fz1(q)
∂q

h0 = q̇T ∂N(qc)
∂q

q̇ −mgfx1(q) +mhpq̇
T ∂

2fx1(q)
∂q2

q̇

hl = mq̇T ∂
2fz1(q)
∂q2

q̇ +mg

The Impact Model

When the swing leg 2 touches the ground with a flat foot at the end of the
single support of leg 1, an inelastic impact takes place. We assume that the
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ground reaction force at the instant of impact is described by a Dirac delta-
function with intensity IR2

. The velocity of foot 2 becomes zero just after
the impact. Two kinds of impact can occur depending on whether the stance
leg takes off or not. Here, for simplicity, we study walking with instantaneous
double support. Thus at impact the stance leg 1 takes off and there is no im-
pulsive ground reaction force on leg 1. The robot configuration q is assumed
to be constant at the instant of impact, and there are jumps in the velocities.
The velocity vectors just before and just after impact, are denoted q̇− and q̇+

respectively. The torques are limited, thus they do not influence the instanta-
neous double support. It can be shown that the impact model can be written
as [4]:

q̇+ = E(�(q)q̇−) (12)

where �(q) is a 5× 5 matrix, and E is a permutation function describing the
legs exchange. For the following single support phase the joints are relabelled
in order to study only one dynamic model for single support (SS) and to take
into account the change on the supporting ankle.

Intensity IR2 of the impulsive reaction force is:

IR2 = m

(
∂f2(q)
∂q

�(q) − ∂f1(q)
∂q

)
q̇− (13)

3 The First Control Law

In this study, walking is considered as single support phases with a full foot
contact. While this is not a necessary condition for walking, and animals and
humans do not enforce this constraint during walking, many control algo-
rithms for bipedal robots enforce this constraint during walking in order to
prevent difficulties associated with the loss of actuation authority when the
foot rotates. To avoid foot rotation, the CoP must be inside the supporting
area [13]. In order to ensure this behavior, the CoP position is controlled to
follow a desired path ld [11], but as shown in the previous section, the posi-
tion of the CoP is directly connected to the dynamics of the motion. It is not
possible to prescribe independently a desired evolution of the joints qd(t) and
of the position of the CoP ld(t). With respect to such a task, the biped can
be seen as an under-actuated system, and the control strategy developed for
such a system can be used. Thus, the objective of the control law presented in
this section is only to track a reference path for q and l rather than a reference
motion [4]. A motion differs from a path by the fact that a motion is a tem-
poral evolution along a path. A joint path is the projection of a joint motion
in the joint space. The difference between motion and path are illustrated on
Fig. 3 for a two joint-robot.

Only a geometrical tracking is desired and a time scaling control [6] is used.
A reference joint path is assumed to be known. Thus the desired configuration
of q and l for the biped are not expressed as a function of time. But they are
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Fig. 3. The dotted lines are two motions (q1(t), q2(t)) corresponding to the same
path represented by the solid line. A path is a line in the joint space, this line can be
graduated as a function of a new variable denoted s, and then can be expressed by
(q1(s), q2(s)). This function s is defined such that the initial configuration correspond
to s = 0, the final configuration corresponds to s = 1. Any monotonic function s(t)
defines a motion corresponding to the path q(s). For example s = t/T defines a
motion of duration T . If a joint variable, for example q2, has a monotonic evolution
along the path, the path can also be parametrized by q2, in this case it can be
expressed as q1(q2)

function of the scalar path parameter s, a normalized virtual time: qd(s), ld(s).
The desired walking of the robot corresponds to an increasing function s(t).
This function. s(t) is not known a priori, the set of all the motions that
correspond to the desired path is considered.

The proposed strategy can be extended without difficulty to walking in-
cluding a rotation about the toe of the supporting foot, since this phase corre-
sponds to a motion such that the position of the center of pressure is imposed.
The main difficulty is that a sub-phase must be added [5].

3.1 Choice of a Reference Path

The reference path qd(s), ld(s) is designed in order to obtain cyclic motion of
the biped. The walk is composed of single supports separated by instantaneous
passive impacts. The legs swap their roles from one step to the next one, so
the reference path needs only to be defined for a single step. The evolution
of the path parameter s along the step k is denoted sk(t), the scalar path
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parameter sk must increase strictly monotonically with respect to time from
0 to 1.

For 0 < sk(t) < 1, the robot configuration qd(sk) is such that the swing leg
is above the ground. The swing leg touches the ground at sk = 0, 1 exactly. In
consequence for any increasing function sk(t) from 0 to 1, the configuration of
the biped at impact is the expected one. The control inputs are the torques.
The torque acts on the second derivative of q and directly on l via the dynamic
model. Thus the reference trajectory qd(sk) must be twice differentiable, but
no continuity condition exists for ld(sk). Vectors qd(0) and qd(1) describe the
initial and final biped configurations of the biped during a single support. As
the legs swap their roles from one step to the following one the desired con-
figurations are such that qd(1) = E(qd(0)) where E is a permutation function
describing the leg exchange.

The reference path is defined such that if the reference path is exactly
tracked before the impact then the reference path is exactly tracked after the
impact. If the reference path is perfectly tracked, before the impact k + 1,
the vector of joint velocities is q̇− = dqd(1)

ds ṡk(1) and after the impact, q̇+ =
dqd(0)

ds ṡk+1(0). The velocity at the end and at the beginning of the step are
connected by the impact model and the legs exchange (12). Thus we have:

dqd(0)
ds

ṡk+1(0) = E(�(qd(1))
dqd(1)
ds

ṡk(1)) (14)

We choose:
dqd(0)
ds

= E(�(qd(1))
dqd(1)
ds

α) (15)

With this choice we have the following equality: ṡk+1(0) = ṡk(1)
α .

For configuration qd(1), and vector dqd(1)
ds the amplitude of the vector

dqd(0)
ds can be modified by the choice the values of α (but not its direction).

This point will be commented in Sect. 5.1.
Some hypotheses (no sliding, no rotation of the feet, take-off of the previous

supporting leg) are made on the behavior of the robot at the impact, the
corresponding constraints on the joint trajectory can be deduced [4, 7].

3.2 Definition of the Control Law

The control law must ensure that the joint coordinates follow the joint refer-
ence path qd(s) and that the position of the CoP is ld(s). It follows from the
definition of the joints reference path that the desired velocity and acceleration
of the joint variables are:

q̇d(t) =
dqd(s(t))

ds
ṡ

q̈d(t) =
dqd(s(t))

ds
s̈+

d2qd(s(t))
ds2

ṡ2
(16)
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The increasing function s(t) defines the desired motion, but since the con-
trol objective is only to track a reference path, the evolution s(t) is free and
the second derivative s̈ will be treated as a “supplementary control input”.
Thus, the control law will be designed for a system with equal number of in-
puts and outputs. The control inputs are the five torques Γj , j = 1, . . . , 5, plus
s̈. The chosen outputs are the five angular variables of vector q(t) − qd(s(t))
and l(t) − ld(s(t)).

The control law is a non-linear control law classically used in robotics. But
in order to obtain a finite-time stabilization of one of the desired trajectories,
the feedback function proposed by Bhat and Berstein is used [1, 9]. The joint
tracking errors are defined with respect to the trajectories satisfying (16):

eq(t) = qd(s(t)) − q(t)

ėq(t) =
dqd(s(t))

ds
ṡ− q̇(t)

(17)

The desired behavior in closed loop is:

q̈ = q̈d +
1
ε2
ψ (18)

where ψ is a vector of five components ψl, l = 1, . . . , 5 with:

ψl = −sign(εėql
)|εėql

|ν − sign(φl)|φl|ν (19)

and 0 < ν < 1, ε > 0, φl = eql
+ 1

2−ν sign(εėql
)|εėql

|2−ν , ν and ε are parameters
to adjust the settling time of the controller. Taking into account the expression
of the reference motion, (18) can be rewritten as:

q̈ =
dqd(s)
ds

s̈+ v(s, ṡ, q, q̇) (20)

with

v(s, ṡ, q, q̇) =
d2qd(s)
ds2

ṡ2 +
1
ε2
ψ

For the position of the CoP, the desired closed loop behavior is:

l(t) = ld(s(t))

The dynamic model of the robot is described by eq. (2). The position of
the CoP is defined via (11). Thus the control law must be such that:

M(q)(
dqd(s)
ds

s̈+ v) + h(q, q̇) = Γ

(N0(q) + ld(s)Nl(q))(
dqd(s)
ds

s̈+ v) + h0(q, q̇) + ld(s)hl(q, q̇) = 0

(21)
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We can deduce that, in order to obtain the desired closed loop behavior,
it is necessary and sufficient to choose:

s̈ =
−(N0(q) + ld(s)Nl(q))v − h0(q, q̇) − ld(s)hl(q, q̇)

(N0(q) + ld(s)Nl(q))
dqd(s)

ds

(22)

Γ = M(q)
(
dqd(s)
ds

s̈+ v

)
+ h(q, q̇) (23)

If (N0(q) + ld(s)Nl(q))
dqd(s)

ds �= 0, the control law (22)–(23) ensures that
q(t) converges to qd(s(t)) in a finite time, which can be chosen as less than
the duration of one step [1, 9], and that l(t) = ld(s(t)). Without initial errors,
a perfect tracking of qd(s(t)) and ld(s) is obtained.

3.3 Stability Study

Our main goal is to design a control strategy that ensures a stable periodic
motion of the biped. The control law (22)–(23) ensures that the motion of the
biped converges in a finite time toward a reference path. The settling time
can be chosen to be less than the duration of the first step. Since the impact
is a geometric condition and due to the characteristics of the joints reference
path (Sect. 3.1), any step k begins with sk = 0 and finishes with sk = 1.
Since the control law is designed to converge before the end of the first step
and since the reference path is such that if the tracking is perfect before the
impact, it will be perfect afterward, after the first step a perfect tracking is
obtained. The biped with control law (22)–(23) follows perfectly the reference
path, starting from the second step. Thus:

q(t) = qd(s(t))

q̇(t) =
dqd(s)
ds

ṡ(t)

q̈(t) =
dqd(s)
ds

s̈(t) +
d2qd(s)
ds2

ṡ(t)2

l(t) = ld(s(t))

(24)

These equations define the zero dynamics corresponding to the proposed con-
trol law. To know whether a cyclic motion will be obtained, the behavior of
the evolution of ṡk(t) is studied for k = 2 . . .∞. The dynamics of s is deduced
from the dynamic model (11) with the condition (24). The acceleration s̈ is:

(Ns0(s) + ld(s)Nsl(s))s̈+ hs0(s, ṡ) + ld(s)hsl(s, ṡ) = 0 (25)

with
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Ns0 = (N(qd(s)) +mhp
∂fx1(q)
∂q

)
dqd(s)
ds

Nsl = m
∂fz1(q)
∂q

dqd(s)
ds

hs0 =

[
dqd(s)
ds

T (
∂N(q)
∂q

+mhp
∂2fx1(q)
∂q2

)
dqd(s)
ds

]
ṡ2

+
[(
N(qd(s)) +mhp

∂fx1(q)
∂q

)
d2qd(s)
ds2

]
ṡ2 (26)

− mgfx1(qd(s))

hsl = m

[
dqd(s)
ds

T
∂2fz1(q)
∂q2

dq

ds
+
∂fz1(q)
∂q

d2qd(s)
ds2

]
ṡ2 +mg

This equation along with the constraints (24) describe completely the behavior
of the system.

One single support phase begins with s = 0 and finishes with s = 1. The
evolution of ṡk+1 during the step k + 1 is uniquely defined by initial value
ṡk+1(0). The integration of (25) along one step, starting with ṡk+1(0), defines
the final value ṡk+1(1).

The single support phases are separated by impact phases; the evolution
of the zero dynamics is such that s restarts with s = 0 and ṡk+1(0) = ṡk(1)

α
(due to the definition of the reference joint path (15)). Thus the final value
of ṡk+1(1) can be easily defined numerically as a function of ṡk(1), we define
function ϕ by: ṡk+1(1) = ϕ(ṡk(1)). The existence of a cyclic motion and the
convergence to it can be studied via function ϕ as it is classically done using
the method introduced by H. Poincaré [9, 10]. The fixed point of this function
defines the cyclic velocity ṡc(1), it corresponds to the intersection between
the function ϕ and the identity function. If the norm ∆ of the slope of the
function ϕ at ṡc(1) is less than 1, then for an initial state close to the cyclic
motion, the biped motion will converge toward the cyclic motion.

If the desired evolution of the position of the CoP is piecewise constant,
the stability analysis can be conducted mostly analytically [7]. If the desired
evolution of the position of the CoP is arbitrary, the stability analysis is
conducted numerically in this chapter.

4 The Second Control Law

The physical constraint on the position of the CoP is that the position of
the CoP is between lmin and lmax but it is not necessary that l(s) follows
exactly ld(s). If a cyclic motion corresponding to qd(s), ld(s) exists, it can be
interesting to converge quickly toward this cyclic motion defined by ṡ(t) =
ṡc(t). The corresponding cyclic motion can be defined by the stability study
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of the first control law. Now we assume that the corresponding cyclic motion
is given as a function ṡc(s) for 0 ≤ s ≤ 1. To achieve this objective, the
constraint l(s) = ld(s) can be relaxed to: lmin < l(s) < lmax.

To converge toward the cyclic orbit in the phase plane s, ṡ, we define an
error between the current state and the orbit:

ev = ṡ(s) − ṡc(s) (27)

and to nullify this error the desired acceleration s̈d is chosen such that: ėv +
Kvsev = 0 where Kvs defines the convergence rate to the cyclic motion. Thus
the desired acceleration is:

s̈(s)d =
d(ṡc(s))
ds

ṡ+Kvs(ṡc(s) − ṡ(s)) (28)

But the position l of the CoP, and the acceleration s̈ are linked by the
dynamic model. And even if the constraint on l is relaxed, the condition of
non-rotation of the feet holds, and l is monitored to be within the domain
� =]lmin, lmax[ in all the control process. If the same closed loop behavior is
desired for the joint variables (22), gives:

s̈ =
−N0(q)v − h0(q, q̇) + l(Nl(q)v − hl(q, q̇))

N0(q)
dqd(s)

ds + lNl(q)
dqd(s)

ds

(29)

where l must be chosen such that l ∈ �. Differentiating (29) with respect to l
shows that s̈ is monotonic with respect to l. Thus the limits lmin < l < lmax

can be easily transformed with limits on s̈. For this purpose, the extreme
values for s̈ are defined as follows:

u1 =
−N0(q)v − h0(q, q̇) + lmin(Nl(q)v − hl(q, q̇))

N0(q)
dqd(s)

ds + lminNl(q)
dqd(s)

ds

u2 =
−N0(q)v − h0(q, q̇) + lmax(Nl(q)v − hl(q, q̇))

N0(q)
dqd(s)

ds + lmaxNl(q)
dqd(s)

ds

(30)

For given values of s, ṡ, two cases occur depending on whether the de-
nominator can be zero or not for l ∈ �. The denominator is zero for

l(s) = −N0(q)
dqd(s)

ds

Nl(q)
dqd(s)

ds

. If for any l such that l ∈ �, the denominator of

eq. (29) is not zero, then s̈ is bounded for any acceptable value l and
min(u1, u2) < s̈ < max(u1, u2). If for one value l such that l ∈ �, the de-
nominator of eq. (29) is zero, then s̈ is unbounded and s̈ cannot be in the
interval ]min(u1, u2),max(u1, u2)[ with acceptable values of l.

Thus the proposed control law is the following: like the previous control
law, the reference path qd(s) is tracked using eq. (23) but eq. (22), which
corresponds to the constraint l(s) = ld(s), is replaced by the following:
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if −N0(q)
dqd(s)

ds

Nl(q)
dqd(s)

ds

< lmin or − N0(q)
dqd(s)

ds

Nl(q)
dqd(s)

ds

> lmax then

s̈ =





min(u1, u2), if s̈d < min(u1, u2)
max(u1, u2), if s̈d > max(u1, u2)
s̈d, otherwise

if lmin < −N0(q)
dqd(s)

ds

Nl(q)
dqd(s)

ds

< lmax then

s̈ =





min(u1, u2), if min(u1, u2) < s̈d ≤ u12

max(u1, u2), if u12 < s̈d < max(u1, u2)
s̈d, otherwise

(31)

where u12 = min(u1,u2)+max(u1,u2)
2 . This control law ensures a convergence to

the cyclic motion with a convergence rate defined by Kvs under the constraint
l ∈ �.

The control law (31), (23) ensures that q(t) converges to qd(s(t)) in a
finite time, which can be chosen less than the duration of one step [1, 9], and
ensures that l ∈ �. The biped with control law (31), (23) follows perfectly the
reference path after this first step. To know if a cyclic motion will be obtained,
the behavior of the evolution of ṡk(t) is studied for k = 2 . . .∞ and for an
initial velocity ṡ2(0). The stability analysis is done numerically like for the
first control law.

The convergence rate to the cyclic motion depends on the choice of the
valueKvs. Higher values ofKvs speed up convergence toward the cyclic motion
if there is no saturation due to the limits on l.

5 Walking Simulation using Correct Model Parameters

5.1 A Reference Path

The proposed control law was tested on the reference path corresponding to
the stick-diagram presented in Fig. 4, for the biped presented in Fig. 1. The
joint path qd(s) is defined by a fourth order polynomial evolution with respect
to s.

This reference path has been defined to produce an optimal cyclic motion
for the robot Rabbit [2], this robot has the same physical property that the
robot described in Sect. 2 but Rabbit has no feet (hp = 0, l = 0). As the
studied robot has feet, and a linear evolution of the position of the CoP is
considered, the existence of a cyclic motion is not ensured and if it exists it is
of course not optimal.

For the robot without feet, the optimization process is described in [8]. The
reference path is described by an instantaneous double support configuration
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Fig. 4. The stick diagram of the desired trajectory. The configuration of the robot
are drawn for s = 0, 0.05, 0.1, 0.15 . . . , 0.95, 1. Thus a sequence of pictures of the
robot are given. The desired motions of the robot are such that the configuration of
the robot coincides at some instant to each picture, but it is not imposed that these
instants are equally distributed in the period of one step

qd(1), the final direction of the joint velocity qd(1)
ds , an intermediate single sup-

port configuration qd(0.5), and α. The initial double support configuration is
defined by permutation: qd(0) = Eqd(1). The direction of the initial velocity
is defined by equation (15). Then the desired path is determined by a poly-
nomial 4th order function of s connecting these configurations and velocities.
The integral of the norm of the torque for the cyclic motion is minimized for
a given advance velocity. The free leg tip must be above a sinusoidal function
with a maximum of 5 cm. The limit of the actuator are taken into account
(maximal torque less than 150 Nm). The reference path corresponding to the
Fig. (4) is obtained for given advance velocity vel = 1.41 ms−1. The opti-
mal solution is such that: qd(1) = [5.73◦ 185.08◦ 40.43◦ 133.33◦ 25.81◦]T ,
qd(1)

ds = [3.57◦s−1 32.60◦s−1 − 61.60◦s−1 0.09◦s−1 29.50◦s−1]T , qd(0.5) =
[19.97◦ 161.22◦ 42.51◦ 154.93◦ 17.72◦]T and α = 1.98

5.2 The First Control Law

For this joints path, a linear evolution of the CoP position is chosen. When s
varies from 0 to 1, ld varies from −0.06 m to 0.18 m.

The control law imposes that q(s) = qd(s), l(s) = ld(s) after the first step.
The stability of the complete system is determined by the evolution of s(t). It
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Fig. 5. The phase plane for the zero dynamics (25) on single support: ṡ against s

can be described in a phase plane s, ṡ for 0 ≤ s ≤ 1 initialized with different
values for ṡ. For example, the phase plane is shown in Fig. 5.

For a sufficiently high initial velocity ṡ(0), successful stepping pattern
can be achieved. At low initial velocity ṡ(0), the robot falls back. Taking
the impact phase into account (here α = 1.98), the Poincaré return map
ṡk+1(1) = ϕ(ṡk(1)) is drawn in Fig. 6. For the example the cyclic motion
is such that ṡc(1) = 3.9 s−1. The corresponding average motion velocity is
vel = 1.5 m/s. The slope of function ϕ is estimated numerically: ∆ = 0.68; it
is less than 1, thus the proposed control law is stable. The minimal value and
the maximal value of the velocity ṡk(1) such that the step can be achieved
are defined numerically. For smaller initial velocities the biped falls back, for
higher velocities the biped takes off since the normal ground reaction vanishes.

Assuming no modeling error and initializing the state of the biped out of
the periodic orbit (with an initial velocity 60% higher than the cyclic value),
the results of one simulation for 20 walking steps are illustrated in Fig. 7.
The convergence toward a cyclic motion can be shown for the five joints via
their evolution in their phase plane. For example the evolution of the trunk
is shown in Fig. 7-a. This convergence is also illustrated via the evolution of
the position of the CoP with respect to time in Fig. 7-b. For each step, this
evolution is linear from −0.06 m to 0.18 m, but the duration of the step varies.
At the beginning;, the steps are faster and then a cyclic behavior is obtained.
Figure 7-c presents the time-history of ṡ, it clearly converges toward a cyclic
motion, the final value of ṡ before each impact is the cyclic value obtained on
the Poincaré map.
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Fig. 6. The Poincaré map: ṡk+1(1) = ϕ(ṡk(1))
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Fig. 7. The convergence toward a cyclic motion is observed in simulation with the
proposed control law, without modeling error. (a) The trunk evolution is drawn
in its phase phase (the absolute trunk velocity with respect to the absolute trunk
orientation), at impact the velocity changes but not the orientation. It tends toward
a limit cycle. (b) During each step, the horizontal position of the CoP with respect
to time l(t) evolves from −0.06 m to 0.18 m. The duration of the step tends toward
a constant value. (c) ṡ(t) tends toward a cyclic motion
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Fig. 8. The phase plane for the zero dynamics on single support, (31), for the second
control law with Kvs = 20

5.3 The Second Control Law

The second control law was tested on the same reference trajectory qd(s). The
desired evolution of ṡ(s) is the cyclic motion corresponding to the previous
control law.

The control law imposes some constraints q(s) = qd(s) that are assumed
to be perfectly respected. The free dynamics that results from imposing these
constraints on the system configuration are described by s, ṡ and eq. (31) can
be represented in the phase plane. The phase plane is shown in Fig. 8 for
Kvs = 20.

The convergence toward the cyclic motion is clear when Figs. 5 and 8 are
compared. When Kvs = 20, for initial velocities varying from 1.4 to 2.8, the
cyclic motion is reached in one step. This feature gives a horizontal behavior
of the Poincaré map about the fixed point. The motion can be initiated with
a lower velocity ṡ(0) than for the first control law because when the current
motion converges toward the cyclic motion, it helps prevent the biped from
falling back.

The control strategy is properly illustrated by the evolution of l(s) cor-
responding to the evolution of the biped for various initial velocities ṡ(0) in
Fig. 9. When the real motion of the biped is slower than the cyclic one, the
position of the CoP is moved backwards to increase the motion velocity until
the limit lmin is reached. When the real motion of the biped is faster than the
cyclic one, the position of the CoP is moved forwards to decrease the motion
velocity until the limit lmax is reached. With a high gain, the position of the
CoP is on the limit almost all the time

The single support phases are separated by impact phases. The Poincaré
return maps can be deduced and are presented in the Fig. 10, for Kvs = 2
and Kvs = 20.
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Fig. 9. The evolution of the position of the CoP l(s), for various initial velocities
ṡ(0), for the second control law with Kvs = 20

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

K
vs

=20

K
vs

=2
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Fig. 10. The Poincaré return map for the second control law with Kvs = 2 (solid
line) and Kvs = 20 (dotted line), ṡk+1(1) is shown against ṡk(1))

Since this control law is defined to obtain convergence toward the cyclic
motion corresponding to the first control law, the fixed point of the Poincaré
maps is the same (see Figs. 6, 10). The minimal and maximal values of the
velocity ṡk(1) such that the step can be achieved are defined numerically. It
can be noted that the minimal initial velocity is lower for the second control
strategy than for the first one. With Kvs = 2, at the fixed point the slope is
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Fig. 11. The convergence toward a cyclic motion is observed in simulation with the
second control law, with Kvs = 20, without modeling error. (a) The trunk evolution
is drawn in its phase phase (the absolute trunk velocity with respect to the absolute
trunk orientation), it tends toward a limit cycle. (b) The horizontal position of the
CoP with respect to time l(t) is bounded. It tends toward the same cyclic evolution
as in Fig. 7(b). (c) ṡ(s) tends toward to the same cyclic motion as in Fig. 7(c)

about ∆ = 0.23; it is less than the value obtained for the first control law thus
the convergence is faster. For Kvs = 20 the convergence is so fast that the
slope is close to horizontal at the fixed point, in one step the cyclic motion
is almost joined. When the initial velocity is far beyond the cyclic one, the
constraint on l produces a saturation on s̈ almost all the time, thus almost
the same behavior is obtained with Kvs = 2 or Kvs = 20.

Assuming no modeling error and initializing the state of the robot out of
the periodic orbit (with an initial velocity 60% higher than the cyclic value),
the results of one simulation for 20 walking steps of the robot are illustrated
in Fig. 11. The convergence toward a cyclic motion can be shown for the trunk
via its evolution in its phase plane (Fig. 11-a). In one step the cyclic motion is
reached. This convergence is also illustrated via the evolution of the position
of the CoP with respect to time (Fig. 11-b). To slow down the motion, for
the first step, the position of the CoP stays on the front limit (lmax). After
the evolution of the CoP corresponds to the desired cyclic one, it is linear
from −0.06 m to 0.18 m. Figure 11-c presents the evolution of ṡ with respect
to time, it clearly converges toward the desired cyclic motion.
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6 Control of Walking with Imprecise Model Data

In practice the robot parameters are not perfectly known. We assume that we
have some errors on the masses and consequently on the inertia moments of
the robot links. We simulate the following case of errors:

• the mass errors are: +10% for the thighs, +30% for the shanks and +50%
for the trunk. The error on the inertia moment of the trunk is +30%;

• since the reference path is designed with a false model, the velocity after
the impact is not the expected one;

• as the position l of the CoP is calculated via the dynamic model, l(s) will
not be exactly ld(s).

This choice of errors is arbitrary. We choose that the real robot is heavier
than the model used in the control law, this point is commented.

6.1 The First Control Law

Initializing the state of the robot in the same conditions as in 5.2; the behavior
obtained for 20 walking steps is presented in Fig. 12. Some tracking errors exist
particularly at the beginning of each step due to the effect of impact, thus
the path followed is not exactly the expected one (but the tracking errors
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Fig. 12. The convergence toward a cyclic motion is observed in simulation with
the proposed control law, with modeling error. (a) The trunk evolution is drawn
in its phase phase (the absolute trunk velocity with respect to the absolute trunk
orientation), it tends toward a limit cycle. (b) The horizontal position of the CoP
with respect to time l(t) tends toward a cyclic evolution different from Fig. 11(b).
(c) ṡ(s) tends toward a cyclic motion different from the motion in Fig. 7(c)
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are cyclic). The convergence toward a cyclic motion is shown for the trunk
evolution via its phase plane in Fig. 12-a. This convergence is also illustrated
via the evolution of ṡ with respect to s in Fig. 12-c, it clearly converges toward
a stable cyclic motion. The cyclic motion is close to the expected one but not
exactly the same, because it is the result of the motion of the CoP and of
the dynamic model. Since the real robot is heavier than the robot’s model
used, we have greater ground reaction forces; consequently the real evolution
l of the CoP in Fig. 12-b varies between extreme values smaller in absolute
value than the desired values. The difference between l(s) and ld(s) is higher
for large value of ṡ. In this case there is no problem because constraints of
equilibrium of the supporting foot are always satisfied. Otherwise if the real
robot was lighter than the modeled one, the CoP could be outside the sole
and the constraints of equilibrium of the supporting foot could be violated. So
a security margin is necessary when the minimum and the maximum values
for the CoP evolution are defined. The best way is to define lmin and lmax

with some margins with respect to real size of the foot (see Fig. 2).

6.2 The Second Control Law

In order to illustrate some robustness properties of the second control law
proposed in (Sect. 4), we test the same modeling error as in Sect. 6.

• Since the reference path is designed with a false model, the velocity after
the impact is not the expected one;

• In the case of perfect modeling the control law (31) assumes that the
limits on s̈ corresponds to lmin < l < lmax. But this relation is based on
the dynamic model, since the dynamic model is not perfectly known, this
transformation will induce some errors.

A simulation of 20 walking steps is presented in Fig. 13. The biped state is
initialized out of the periodic orbit (with an initial velocity 60% higher than
the cyclic value). The convergence toward a cyclic motion can be shown via the
trunk evolution in its phase plane in Fig. 13-a; some errors can be observed at
the impact times. The convergence toward the cyclic motion can be also shown
in Fig. 13-b via the evolution of the CoP with respect to time. The evolution
of the CoP is not the expected one even if the evolution of ṡ converges clearly
toward the expected cyclic motion with the end of the second step (Fig. 13-c
and 12-c).

In the presence of modeling errors, the two control laws will not give the
same cyclic behavior. Due to the second control law, ṡ will converge toward
ṡc, and the average velocity of the robot does not change, which is not the
case for the first control law.



Stability Analysis of Bipedal Walking with Control of the CoP 117

0.26 0.265 0.27 0.275 0.28 0.285 0.29 0.295 0.3

−0.5

0

0.5

Trunk evolution in its phase plane

0 2 4 6
−0.1

0

0.1

0.2

t [s]

0 5 10 15
1

2

3

4

5

6

s

(a)

(b) (c)

q5 − q1 − q2 + π

q̇ 5
−

q̇ 1
−

q̇ 2
l ṡ

Fig. 13. The convergence toward a cyclic motion is observed in simulation with the
second control law, with Kvs=20, with modeling errors. (a) The trunk evolution is
drawn in its phase phase (the absolute trunk velocity with respect to the absolute
trunk orientation), it tends toward a limit cycle. (b) The horizontal position of the
CoP with respect to time l(t) is bounded. It tends toward a cyclic evolution different
from Fig. 11(b). (c) ṡ(s) tends toward to the same cyclic motion as in Fig. 7(c)

7 Discussion Section

Even if the stability studies for the two proposed control laws are conducted
numerically for the examples, based on the analytical study of the robot with-
out feet [4] and on the case of a desired piecewise evolution of the position
of the center of pressure [7], and also based on numerous simulations, some
general conclusions can be given:

• For the first control law, the choice of ld(s) has a large effect on the ex-
istence of a cyclic motion and on the average velocity of the robot. If the
position of the CoP is moved forward, the average velocity of the cyclic
motion is slowed down. This property is limited: if the position of the
CoP is too much forward, no cyclic motion exists. In order that the robot
walks faster, a simple solution is to move the desired evolution of the CoP
backward.

• The stability property of the first control strategy is essentially due to the
fact that the vertical velocity of the center of mass is directed downward
just before the impact [4], [7]. Thus this property depends essentially on
the choice of qd(s).
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• A larger variation of ld(s) during one step has two effects, the basin of
attraction of the control law is slightly increased, the convergence rate is
slightly decreased.

• For the first control law, the control speed ṡ is not directly controlled, as
shown in Fig. 5, but only stabilizes step by step. The impact phase has a
key role in this stabilization. For the example, if the single support phase
can be achieved, ṡ increases non linearly during the single support and
decreases linearly during the impact phase, thus a stable speed is reached
as in a passive walking.

• When the desired joint references and the desired position of the center
of pressure are defined, since they are not function of time, we do not
have to worry about the dynamic consistency. The joints reference need
only to be twice differentiable and to satisfy the start and stop conditions
corresponding to the impact model. The second derivative of s is calculated
to satisfy the dynamic consistency.

• In the development of the control, a finite time controller is defined in
eq. (18), to insure a fast convergence to the zero dynamic manifold. Such a
controller is not required for the simulation and experiments. The dynamic
model is used to calculate the position of the CoP and the admissible limits,
for the experiments because it implies that the dynamic model must be
“correctly” known. The robustness tests (Sect. 6) have demonstrated that
an acceptable behavior can be obtained in the presence of an imprecise
model.

• For the second control law, an arbitrary function ṡc(s) can be chosen even
if ṡc(1)

ṡc(0)
�= α. If this function ṡc(s) is not consistent with the constraint

on the dynamic model (lmin < l(s) < lmax), the closed loop system will
converge to an evolution “close” to ṡc(s) but consistent with the constraint
on the dynamic model. This can be used to choose faster or slower motion.
For the proposed example, if we choose ṡc = 1, we obtain a cyclic motion
with an average velocity of 0.51 ms−1, the CoP position is in the forward
part of the feet and often on the toe limit. If we choose ṡc = 4 we obtain
a cyclic motion with an average velocity of 1.5 ms−1, the CoP position is
often in the limit of the foot.

• The proposed control laws can be extended to walking including rotation
of the foot about the toe [5].

• We hope that the second control strategy can be directly used for robot
walking in 3D, even if the position of the CoP is limited in the sagittal
and frontal plane.

8 Conclusion

For a planar biped, the proposed control strategy consists in the tracking of a
reference path instead of a reference motion for the joints and for the position
of the CoP. The biped adapts its temporal evolution according to the dynamic
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constraint that relies the position of the CoP and the joint acceleration. In
this context a complete study has been presented.

The conditions of stability are inequalities. Thus a certain robustness is
naturally contained in the proposed control strategy. In spite of tracking errors
and/or modeling errors, the behavior of the biped converges to a cyclic motion.
In the presence of modeling errors, the obtained cycle is slightly modified with
respect to the predicted cycle, but stable walking is obtained as it has been
observed in simulation.

Two control strategies have been proposed. In the first case, the CoP is
constrained to be a function of the robot configuration and the geometric
evolution of the joints are controlled, but the temporal evolution is free; the
natural convergence toward a cyclic motion is used. In the second case, the
convergence to the cyclic motion is forced by using the CoP as a control input
to correct for errors in the configuration speed, ṡ, and the limits on the CoP
position are used lmin < l < lmax.
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