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Summary. Mechanical properties of complex biological systems are non-linear, e.g.
the force-velocity-length relation of muscles, activation dynamics, and the geometric
arrangement of antagonistic pair of muscles. The control of such systems is a highly
demanding task. Therefore, the question arises whether these mechanical properties
of a muscle-skeletal system itself are able to support or guarantee for the stability of
a desired movement, indicating self-stability. Self-stability of single joint biological
systems were studied based on eigenvalues of the equation of motions and the basins
of attraction were analysed using Lyapunov functions. In general, we found self-
stability in single muscle contractions (e.g. frog, rat, cui), in human arm and leg
movements, the human spine and even in the co-ordination of complex movements
such as tennis or basketball. It seems that self-stability may be a general design
criterion not only for the mechanical properties of biological systems but also for
motor control.

1 Introduction

The basis for human and animal motion and locomotion are co-ordinated mus-
cle contractions. Even for very simple movements, a huge number of muscles
must be controlled. Therefore, we may ask how humans and animals are able
to control such complex neuromusculoskeletal systems. Especially for humans,
the easiest way to get an answer is to ask somebody. But we would not expect
a meaningful answer because the motor control system acts almost without
conscious control. The muscles must generate sufficient forces and moments
at the joints. However, these forces and moments must be fine tuned in such
a way that they can react upon sudden perturbations. This fine tuning may
be guaranteed by mono- and poly-synaptic reflexes with negative and pos-
itive feedback-loops [5]. On the other hand, the mechanical properties of a
musculoskeletal system itself may support or even guarantee for sufficient sta-
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bility [7, 4]; in these cases motion or locomotion is self-stabilized [10, 2, 1].
Simple biomechanical models, e.g. single muscle contractions or one degree of
freedom joint models, can be self-stabilized. But even if these subsystems are
self-stabilized the global motion of the multi-body system may still be un-
stable. However, the global control of a locally self-stabilized system is easier
compared to a locally unstable system. The purpose of this paper is to analyze
and summarize the self-stabilizing properties of biological systems, i.e. single
muscle contractions, single joint movements, and more complex arrangements
like the human spine. This paper is a companion paper to Giesl and Wagner
(this issue) where the mathematical details to analyse stability and basins of
attraction of biomechanical models are given.

2 Single Muscle Quick Release Contractions

The first step in analyzing self-stability of musculoskeletal systems was to
study whether mechanical properties of muscles themselves may provide self-
stability. A simple method to investigate the self-stabilizing properties of dis-
sected muscles is a quick-release experiment. In quick-release experiments dis-
sected muscles are loaded with an external weight or force, which will be
released suddenly [8]. Typically, after the release the muscles contracted and
found a new equilibrium at shorter muscle lengths, indicating that the systems
were stable (Fig. 1).

As a next step, the quick-release experiments were described and simulated
by an equation of motion of a biomechanical model. Based on the equation of
motion the stability could be analysed by the eigenvalues of the system. For
the given experiments the eigenvalues were negative indicating self-stability.
Furthermore, because of the simplicity of the model, the system could be
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Fig. 1. Schematical representation of a quick-release experiment. At time t0 the
external load was released (upper row) and the muscle contracted until a new equi-
librium was found between the external force and the muscle force
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analysed analytically. From this it could be shown that the classical muscle
properties, i.e. the force-velocity relation, force-length relation, are sufficient
to provide self-stability. As the mechanical properties of dissected muscles
support self-stability, the question arise whether muscles within a geometrical
arrangement of joints are still able to achieve self-stability.

3 One Degree of Freedom Joint Models

In models consisting of a muscle and a simple one-degree of freedom rota-
tional joint the interactions between the muscle and joint properties influence
the stability of the system. In general, the inner muscle moment arm as well
as the moment arm according to the external force vector depended on the
flexion angle of joints. The individual shapes of these dependencies were in-
fluencing the mechanical stability of the system. We performed quick-release
experiments with the elbow-joints of rats and cuis, while the extensor muscles
were stimulated [8]. Here again, the systems found new equilibriums after the
release of the external loads, indicating stability. A stability analysis based on
a biomechanical model resulted in negative eigenvalues, indicating asymptotic
stability likewise. For flexor muscles of an elbow joint the moment arms can be
calculated from simple trigonometric assumptions, whereas the moment-arms
of extensor muscles depends on individual geometrical arrangements. Based
on an analytical analysis of the eigenvalues (Giesl and Wagner, this issue) it
can be estimated that the derivative ∂hext

∂β of the geometric function hext with
respect to the flexion angle β must be positive to support stability. This is
guaranteed around elbow flexion angles below ca. 90◦ (Fig. 2).
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Fig. 2. Representation of the flexor moment arm at an elbow joint (length humerus
= 0.27 m, length ulna = 0.26 m, insertion of the muscle at the ulna = 0.048 m).
The slope of the curve indicates that stability is supported for flexion angles below
ca. 90◦
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Fig. 3. The basins of attraction of equilibrium points in the phase-plane were cal-
culated with Lyapunov-functions of the systems (Giesl and Wagner this issue).
The basins of attraction (black lines – extensor activation 50% of maximum vol-
untary contraction) were reduced with increasing elbow angles (left: equilibrium at
β0 = 70◦; middle: β0 = 80◦; right: β0 = 90◦). Furthermore, the basins of attrac-
tion were reduced with decreasing level of co-activation (thin gray lines – extensor
activation 25% of maximum voluntary contraction)

Experiments with humans supported this result [6]. Here, we determined
individual muscle properties of the flexor and extensor muscles. Then the
subjects performed quick-release contractions [12]. As a result, the subjects
found new equilibriums at lower elbow flexion angles, which was in accor-
dance with the animal experiments. The stability analysis of the experiments
resulted in negative eigenvalues for flexion angles below ca. 90◦, indicating
stability. Furthermore, basins of attraction were calculated based on the the-
ory of Lyapunov functions. We found considerable large basins of attraction
at low elbow flexion angles and unstable situations for more extended elbows
(Fig. 3). Furthermore, the areas of the basins of attraction depended on the
co-activation level of the antagonistic muscles.

Finally, we analysed simple vertical oscillations of a human leg model
[10, 11]. Here additionally, the self-stability was supported by a moving center
of rotation at the knee joint, as well as a co-activation of bi-articular muscles,
i.e. rectus and biceps femoris muscles.

While introducing a joint it is much more complicated to achieve self-
stability. Therefore, several solutions to support the stability could be found
in biological systems, e.g. co-activation of bi-articular muscles, moving center
of rotations.

4 Varying Center of Rotation Model

In the previous section we have discussed the stabilizing behaviour of simple
biomechanical models of extremities, i.e. elbow joint and knee joint. These
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models have a well defined location of the instantaneous center of rotation. In
the following we will discuss models with simple one-degree of freedom rota-
tional joints and varying center of rotations. As an example, we may think of
lateral flexions of the human lumbar spine. Here we can not define one single
center of rotation but depending on the intermuscular co-ordination of local
inter-vertebral muscles the center of rotation will vary between the lowest (L5-
S1) and the highest functional unit (L1-L2). As a simplification we analyzed
rotations at one functional unit, e.g. L1-L2, while the other units were assumed
to be stiff. How interactions between different joints of models with more than
one degree of freedom may influence the stability of the system cannot be an-
swered with the present simplified model. Is it still possible to self-stabilize
such a model with a single pair of antagonistic muscles? First, we described
the antagonistic muscles with a Hill-type model including a force-velocity re-
lation, but excluding a force-length relation [9]. As a result two stable areas
existed; one around L5-S1 with negative attachment angles of the muscles, e.g.
obliquus internus muscle, and another one more cranially for positive attach-
ing angles of the muscles, e.g. obliquus externus or multifidus muscles. But it
was impossible to stabilize every center of rotation with only one antagonis-
tic muscular arrangement. Therefore, we improved the model and included a
force-length relation such that the muscle was acting on the ascending limb.
Now, it was possible to self-stabilize the system at every location of the center
of rotation (Fig. 4). We calculated the minimum physiological cross-sectional
area (PCSA) of the acting muscles that still can stabilize the system. The
physiological cross-sectional area is nearly proportional to the maximum iso-
metric force of a muscle, therefore, a low minimum value of PCSA indicates
that only low muscular force is necessary to stabilize the system. For oblique
muscle arrangements a minimum physiological cross-sectional area (PCSA)
between 50 and 80 cm2 was found, whereas, muscles acting in parallel to the
spine were able to stabilize the system with only 7 cm2. Introducing additional
antagonistic muscles could not reduce this minimum value of the PCSA.

5 Discussion

The purpose of this paper was to analyze and summarize the self-stabilizing
properties of biological systems. We tried to draw a line from single muscle
contractions, single joint movements, to more complex arrangements like the
human spine. Single muscle contractions could be stabilized based on typical
shapes of bio-mechanical properties, i.e. the force-velocity relation and the
force-length relation of skeletal muscles. It could be shown analytically, that
the typical shape of the force-velocity relation was essential for the stabilisa-
tion of single muscle contractions [8].

Furthermore, if acting on the ascending limb of the force-length relation,
the typical shape of the active and passive force-length relation supports the
self-stability of muscles. Especially for muscle lengths above the optimum
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Fig. 4. Lyapunov-functions for different antagonistic muscle arrangements describ-
ing the lumbar spine. The centers of rotations were located at L1-L2, L2-L3, L3-L4,
L4-L5, and L5-S1 [3]. For all situations a minimum PCSA for self-stability was cal-
culated. The x-axis shows the flexion angle of the segment, while 180◦ represented
the vertical position. The small icons represent the muscular arrangements of the
different models and the minimum PCSA for each model is given at the top

length the passive properties were important. In sub-maximal contractions,
the activation level of the muscle changes the slope of the force-velocity and
force-length relation and thus changes the stability of the system. Therefore,
sub-maximal co-ordination patterns in physiological motions and locomotion
influences the self-stability of the system [11].

If the muscle was not dissected the geometrical arrangement of joints influ-
enced the self-stability behaviour. The flexion angle of an elbow joint effected
the stability of the system. Extending the elbow more than about 90◦ results
in an unstable situation [6]. This simple geometrical dependency may influence
simple movement tasks, e.g. imagine a waiter who should not spill the water
in the glass while moving. But also throwing tasks are influenced by these
geometric relations. Compare throwing a basketball with juggling. Whereas
in the first case the basketball will be released with a nearly extended elbow
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joint, in the second case the juggling-ball leaves the hand with a more flexed
elbow joint.

Especially the stabilisation of the human spine is a challenging task. Here
the location of the center of rotation may vary depending on the activation
pattern of intervertebral muscles. They are influencing the stiffness around
the spine and therefore the location of the instantaneous center of rotation.
However, the simulations support the assumption that even for this compli-
cated situation the muscles can guarantee for the self-stabilizing function of
the spine. Without changing the activation patterns of the trunk muscles, it
seems to be possible to stabilize lateral flexions at different centers of rota-
tions [9]. This analysis of the self-stabilizing behaviour of biological systems
may influence different scientific areas, e.g. robotics and prosthetics, and it
may hopefully have an effect for the medicine and physiotherapy. A profound
understanding of the self-stabilizing properties of biological systems is impor-
tant while investigating the motor control of complex movements of the whole
body. Although the models analyzed here were very simple, we may assume
that self-stability seems to be an important criterion for the evolution of hu-
mans and animals. If the basin of attraction of an equilibrium point or an
envisioned trajectory is considerably large this may offer a great advantage
for motor control systems. A self-stable system can be controlled much easier
with simple reflexes compared to an unstable system. If the system is risking
to move out off the basin of attraction a simple reflex may be sufficient to
push it back into the stable basin. Especially for fast movements, which do
not require a high precision, the neuronal system can be unburdened. Con-
sidering the control of legged robots this may reduce the requirements on the
precision of the sensors and the controller systems.
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