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Summary. This paper deals with a methodology to design optimal reference tra-
jectories for walking gaits. This methodology consists of two steps: (i) design a
parameterized family of motions, and (ii) determine the optimal parameters giving
the motion that minimizes a criterion and satisfies some constraints within this fam-
ily. This approach is applied to a five link biped, the prototype Rabbit. It has point
feet and four actuators which are located in each knee and haunch. Rabbit is under-
actuated in single support since it has no actuated feet and is overactuated in double
support. To take into account this under-actuation, a characteristic of the family of
motions considered is that the four actuated joints are prescribed as polynomials
in function of the absolute orientation of the stance ankle. There is no impact. The
chosen criterion is the integral of the square of torques. Different technological and
physical constraints are taken into account to obtain a walking motion. Optimal
process is solved considering an order of treatment of constraints, according to their
importance on the feasibility of the walking gait. Numerical simulations of walking
gaits are presented to illustrate this methodology.

1 Introduction

For more than thirty years walking robots and particularly the bipeds have
been the objects of research. For example Vukobratovic and his co-author [1]
have proposed in 1968 their famous Zero-Moment Point (ZMP), for the analy-
sis of a biped gait with feet. In 1977, optimal trajectories [2] were designed for
a bipedal locomotion using a parametric optimization. Formal’sky completely
characterized the locomotion of anthropomorphic mechanisms in [3] in 1982.
Sutherland and Raibert proposed their principle about virtual legs for walking
robots in the paper [4] in 1983. Currently Humanoids such as Honda biped in
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[5] and HRP2 biped in [6] (Humanoid Robotics Project 2), which are probably
on the technological point-of-view the most advanced biped robots, lead to
many popular demonstrations of locomotion and interaction with their envi-
ronment. In parallel, some research is done on legged robots with less degrees
of freedom. Here it is worked with the control, the model and the reference
trajectories to design walking bipedal gaits more fluid. See for example [7]
where a biped with telescopic legs is studied, [8] where the famous dog Aibo
from Sony is used to design biped gaits, [9] where an intuitive approach is
developed for a biped locomotion or [10] where an accurate analysis of the
gravity effects is made to give necessary and sufficient conditions to ensure a
cyclic walking gait for a biped without feet.

In this paper, the efforts are focused on the design by a parametric opti-
mization of a walking gait. This approach necessitates two steps: (i) design a
parameterized family of motions, and (ii) determine the optimal parameters
giving the motion that minimizes a criterion and satisfies some constraints
within this family. The motion obtained is later used as a reference motion.
This approach is applied to a planar five-link biped without feet and with
four actuators only. The family of motions considered is composed of a single-
support phase and a double-support phase, with no impact. The minimization
criterion is the integral over the motion of the square of torques. Therefore it
is a criterion of torque minimization. The originality of the present work is
double:

e To overcome the underactuated characteristic of the biped, the four vari-
ables defined as polynomials in single support are function of another gen-
eralized coordinate, the absolute orientation at the stance leg ankle. This
allows to define the configurations of the biped during the single support
phase, while the dynamics of the not controlled degree of freedom are still
unknown. In double support, two actuated joints are also prescribed as
functions of the absolute orientation at the stance leg ankle, which is a
polynomial function in time.

e There is a classification and a treatment of constraints according to their
importance on the feasibility of the walking gait.

This paper does not address the stability of the motion obtained. The
reader may refer to [11] which gives conditions of stability of the non controlled
degree of freedom during the single support phase, and additionally a measure
of this stability. It has been proved that the presence of the double support
phase practically guarantees the stability.

This article is organized as follows: the dynamical model of the biped under
interest is presented in Sect. 2 for the single and the double-support phase.
Section 3 is devoted to the definition of the family of reference trajectories,
their constraints and their parameters. The calculation of the criterion in
torque during the single support and the double support, and the optimization
process to determine the optimal parameters are presented in Sect. 4. Some
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simulation results are shown Sect. 5. Section 6 contains our conclusion and
perspectives.

2 Dynamic Model

2.1 Presentation of the Biped and Notations

A planar five-link biped is considered and is composed by a torso and two
identical legs with knee and point feet (see Fig. 1 for a diagram of the stud-

ied biped). There are four identical motors, which drive the haunches and the

knees. We note I" = [I'1, I, I3, ['4]T the torque vector, ¢ = [a, dT]T=[a, 61, 82, 03, 64]T
the vector composed of the orientation of the stance leg and the actuated joint
variables, and X = [¢7, x¢,1:]7 the vector of generalized coordinates. The
components (x¢,y:) define the position of the center of gravity of the trunk.

2.2 A Reduced Model

The optimization process to determined reference trajectories, which will be
presented in the next sections leads to many CPU operations. Therefore the
strategy was to use a reduced model that needs less computations. To obtain
this reduced model, we consider that the contact between the leg tip 1 and

Fig. 1. Biped in the sagittal plane
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the ground is acting as a pivot: there is no take off and no slipping. Then the
biped configuration is described with vector g only. This model is reduced by
comparison to a more general model that would be written with vector X.
We obtain the reduced model by using Lagrange’s equations:

A(6)+ H(q,q) + Q(q) = DrI" + Da(q) Ry (1)

where A(J)(5x5) is the symmetric positive inertia matrix of the biped. As the
kinetic energy of the biped is invariant under a rotation of the world frame [12],
and viewed that « defines the orientation of the biped, the 5 x 5-symmetric
positive inertia matrix is independent of this variable, i.e. A = A(J). Vector
H(q,4)(5 x 1) represents the centrifugal, Coriolis effects, and Q(q)(5 x 1) is
the gravity effects vector. Dp(5 x 4) is a constant matrix composed of ones
and zeros. Dy(q) is the 5 x 2-Jacobian matrix converting the ground reaction
in the leg tip 2 into the corresponding joint torques.

Taking into account Coulomb dry and viscous frictions, I" has the following
form

=TI, = Isign(D¢rd) = FyD¢rd (2)
where I's(4 x 4) and F, (4 x 4) are diagonal matrices representing respectively
the dry friction and the viscous friction. I, is the motors torque vector when
considering the joint friction.

In the case of double support, the point foot 2 is in contact with the ground.
Then the position variables ¢, the velocity variables ¢, and the acceleration
variables ¢ are constrained. In order to write these relations, we define the
position, velocity and acceleration of the point foot 2 in an absolute frame.
The position of the point foot 2 is noted dy(X). By differentiation of do(X)
we obtain the relation between the velocity Vo = (Va, ng)T of the point foot
2 and ¢,

Va = Dea(a)74 (3)
By another differentiation we obtain the relation between the acceleration
Vo = (ng ng)T of the point foot 2 and ¢,

Vo = Dea(q)"G + De2(9)Td = Dea(q)"d + Cea(q, q) - (4)

Then the contact constraints for the point foot 2 with the ground are given
by the three vector-matrix equations:

do(X) = const
V=0, (5)

Va=0.

These vector-matrix equations (5) mean that the position of the point foot 2
remains constant, and then the velocity and acceleration of the point foot 2
are zero.
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During the double-support phase, both legs are in contact with the ground.
Then the dynamic model is formed of both vector-matrix equations (1) and
(5). During the single-support phase on leg 1, the dynamic model is simply
written as (1) with the ground reaction for foot 2 in the air is Ry = (00)%.

Model (1) allows us to compute the torques and the dynamic model of «
easier (10). However, it is not possible to take into account a single-support
on the leg 2 with (1). Furthermore we cannot calculate the ground reaction
with model (1) only. We add the two following equations, obtained from the
Newton’s second law at the center of mass G of the biped

Mic = Riy + Ry — Mg

where M is the mass of the biped and (z¢,ya) are the coordinates of G.

3 Definition of the Walk and Its Constraints

Our objective is to design a cyclic bipedal gait. There are two aspects for this
problem. The definition of a parameterized family of reference trajectories and
the method to determine a particular solution in this restricted space. This
section is devoted to the definition of the parameterized family of reference
trajectories. The optimal process to choose the best solution of parameters
from the point of view of a given criterion will be described in the next section.
The parameterized family of reference motions is such that one degree of
freedom, which changes monotonically during a step composed of a single-
support phases and a double-support phases, will be used as a variable to
define the other degrees of freedom. These special solutions lead to a particular
simple dynamical model of the biped in single support which can be calculated
from (1). An impactless bipedal gait is considered because in [13] numerical
results proved that the insertion of an impact with this walking gait for the
studied biped is a very difficult challenge. The condition found to obtain
no impact was simply that the velocity of free foot must reach the ground
with zero velocity. After the choice of parameters, the constraints will be
determined. In the following, indices “ss” and “ds” respectively indicate the
single-support phase and the double-support phase.

3.1 Restrictions of Motion Considered in Single Support

During the single support, the biped has five degrees of freedom. With the
four actuators for the biped, only four output variables can be prescribed.
Then the biped is underactuated in single support. In previous experiments,
see for example, [7, 14, 15], researchers observed that for most of walking
gaits of biped robots the ankle angle « of the stance leg changes absolutely
monotonically during the single-support phase. Therefore, it is possible to use
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the angle variable a instead of time ¢ as an independent variable during the
single-support phase of the bipedal gait. As a consequence « like time will
have to be monotonic. But this choice will not eliminate potentially optimal
motions in the space in which we seek for solutions, since so far all motions
observed were satisfying this property. Thus the four joint variables §; are
prescribed as polynomial functions of the ankle angle «, §; ss() ( = 1,...,4).
The behavior of « is governed by the dynamic model (1). To deal with the
underactuation the advantage of this approach is that the complete set of
configurations is defined during the motion of the biped and it is not necessary
to anticipate a duration for the single-support phase, which is the result of
the integration of (1). The order of these polynomial functions (7) is chosen at
four to specify initial, final and intermediate configurations, plus initial and
final joint velocity variables,

6]',85 (Oé) = ajo + a1 + aj2a2 + aj3a3 + CLj4Oé4 . (7)

Let us note that it would be possible to prescribe other variables as Cartesian
variables. But to avoid the problems of singularity of the inverse geometric
model in the single-support phase, we prefer to work with angular variables
only. However some authors, for example [2, 16], use Cartesian coordinates
of the hip for the definition of the bipedal gait. The joint variables are then
prescribed. However since the biped is underactuated the evolution of the
angle a must be such that the biped motion satisfies the dynamic model.
Considering the relations (7) we introduce for the variables of the reference
motion ¢ = g(a) the following temporal derivatives

q'(O(, O() =q"&
(8)

g(a, v, &) = ¢*a + ¢ a2

where the notation ()* means partial derivative with respect to a, and the ()
represent derivation with respect to time. Then we have ¢* = [14; 65 05 6;]7
and ¢** = [007* 05* 05* 05*]7. By calculating the angular momentum of the
biped at the fixed point S (see Fig. 1), we obtain the general form

*

4
o= fi(01,02,03,04)d; + f5(01,02, 05, 64)cv . 9)

i=1
We can obtain two first order differential equations on o and « (see [15])
6 =—-Mg(zc(a) —xg)
(10)
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M is the biped mass, g the acceleration of gravity, z¢(«) and zg are respec-
tively the horizontal component of the positions of the biped’s mass center
and of the foot of the stance leg. The first equation of (10) comes from the
dynamic momentum equation at S when eliminating ¢ from (7). The second
equation of (10) follows from (9) when eliminating ¢ and ¢ using (7) and (8).
This differential system (10) is equivalent to the first line of (1). By identifi-
cation, it is possible to determine f(«) and zg(«) from (1). The simple model
(10) completely defines the dynamic behavior of the biped in single support
for the reference motion. From (10) we can deduce that (see [17])
do, do o 1 do? 1

o= = do @) 2da fla) =-—Mg(zg(a) —zg).

Finally this calculation leads to the relation due to [17]

do?
o = My (zc(a) —as) fla) . (11)

el

If o is strictly monotone, the integration of (11) gives
7 ot = 2Myg [ (wa(s) - s) (5)ds (12
Qiss

where ;55 is the angular momentum at the beginning of single support char-
acterized by the initial value a;ss. Then the dynamic of the biped is completely

defined from (10) as function of (o) = 02 — 02, = & f3(a) — AZg5f*(iss)
such as 5
&= — \/@(a) + f(aiSS)QaiSS ) (13)
fla)

¢ is obtained from the second equation of (10)

. _ 0f(a) —of(a) __Mg(agla) — xs) + G
&= =— . (14)
[ (@) f(e)
From the solution of the differential equation in a (11) and using relations
(13) and (14) the numerical simulation to find the optimal motion and the
calculation of constraints will be easier.

The authors of [17] showed that system (10) behaves like an inverted pen-
dulum. Therefore the only possible non-monotone behavior would be that
the biped fall back if the initial velocity of single support is not sufficient.
The condition to ensure the monotony of o has been added as a constraint
in the optimization process, see (18).

3.2 Restrictions of Motion Considered in Double Support

In double support, the biped has three degrees of freedom. With its four actu-
ators, the biped is over actuated. Hence the motion of the biped is completely
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defined with three prescribed degrees of freedom. For a question of conve-
nience for the use of the inverse geometric model, the ankle angle o and both
joint variables, §; (j = 1,2) are prescribed. A polynomial function in time of
third-order (15) is chosen to define a.. In a concern to be homogeneous with
the single support phase we define both joint angular variables ¢;, as polyno-
mial functions of third-order in «. Then initial and final configurations, and
initial and final velocities can be defined for these three prescribed variables.
The duration of the double-support phase is a parameter. Hence we get

a(t) = ag + ait + ast® + ast?

(15)
3

(5j(a) = a;0 + Qi1 + ajgaz + a;3ac.
It should be noted that there is no differential equations needed for the
definition of the motion, since the biped is over-actuated in double support.

3.3 Optimization Parameters

A boundary value problem has to be solved to design this cyclic bipedal
gait with successive single and double-support phases. This boundary value
problem depends on parameters to prescribe the initial and final conditions
for each phase. Taking into account the conditions of continuity between the
phases and the conditions of cyclic motion we will enumerate now in detail
the minimal number of parameters which are necessary to solve this boundary
value problem on a half step &k (a half step is considered as a single support
and a double support).

1. Seven parameters are needed to define the initial and final configurations in
double support. The parameters aqs, 01.ids, Gids, Xfds, 01,fds, O7ds and d,
the distance between both tips of stance legs in double support are chosen.
The use of the absolute orientation of the trunk, 6 (see Fig. 2) instead of
02,745 is easier and does not change the problem.

2. Time T,4s of the double support is given as a parameter.

3. The initial velocity of the biped in single support is prescribed by only three

parameters (iss, 07 ;455 03 ;55- Lhe velocities 03 ;.. and 0} ;.. are deduced
taking into account the null velocity of the leg tip which takes off.

4. The final velocity of the biped in single support is prescribed by only three
parameters dfss, 07 ygqs 05 fo5- The velocities 03 ;.o and 47 ., are deduced
taking into account the absence of impact of the swing leg tip on the
ground, which is equivalent to a null velocity of this tip.

5. With the chosen order for the polynomial functions (7) (fourth order) it
is necessary to specify five conditions for each function d; s, 7 =1,...,4.
Then the fifth coefficient is calculated by defining an intermediate config-
uration. Let intermediate configuration in single support be determined
with the five following parameters cnt, 01,int, 0int and the coordinates
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B RZx RI x

Fig. 2. Biped in the sagittal plane (the point G is the center of mass of the biped)

(xp,int and yp ine) of the swing leg tip. The angle ;y, is fixed equal to
Qiss + Qfss
— 5

Then finally the vector of parameters has eighteen coordinates

P = [Tas, Qids, O1,ids, Oids, O fds, 01, fds, O pds, ds Qiss, 07 jgg5 -+

* * *
03 isss Cfsss 07 fss 05 pssr Ol ints Oints Tp ints Yp,int] -

3.4 Constraints

Constraints have to be considered to design nominal gait. We will present
them according to their importance on the feasibility of the walking gait.

e First, no motion is possible if the distance d(A, B) between the tip of leg 2
and the hip joint, for initial and final configurations of the double support
and the intermediate configuration of the single support, is such that

d(A,B) >2x1 (16)
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where [ is the common length of the femur and the tibia. In other words,
there is no solution with the geometrical model to compute d3 and dy.
Constraint (16) is also taken into account during the motion of the biped
in double support. The maximum value of d(A, B) in function of « is
considered.

The mechanical stops of joints for initial, intermediate and final configu-
rations of each phase and during the motion are

—260° < (8),.,  (82),,.. < —110°
—260° < (62 — 53)min’ (52 — 63)ma:r < —110°

—230° < (81, » (81),., < —127°

—230° < (64)min’ (64)maa: < —127°

The notation ()maz and ()min stands respectively for the maximum and
minimum value over one step.
In double support the monotony condition for variable « is imposed

max &(t) <O0. 17
e (t) (17)
In single support, the monotony condition for variable « is imposed by the

inequality
émin + f(azss)Qo%zsq > 0 (18)
where @in = MiNge(a,,, 0/, D).

In single support it is fundamental to avoid the singularity f(«) = 0 to
simulate one step. Then we define the following constraint

min  f(a) >0. (19)

ae[aissvafss]

Now the following constraints can be violated during the optimization process
to simulate a half step. However they are important for experimental objec-
tives. The optimization process will ensure their verification.

Each actuator has physical limits such that

(172 (@) = TnaaB1) <0

(15(@) = Tnas(li2)) <0
(I15(0)| = Tuos (2 = 6a) <0 2

(173(@) = Toas (1)) <0
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Function I,q. (%) can be deduced from a template, torque actuator/velocity,
given by the actuator manufacturer.
e We must take into account constraints on the ground reaction R; =

(Rjz Rjy)T in the tip of the stance leg j, j = 1 in single support and
j = 1,2 in double support. The ground reaction must be inside a friction
cone defined by the friction coefficient . This is equivalent to write both
inequalities
Rjz — pRjy <0
—ij — ,uRjy < 0.
By summing these two inequalities, the condition of no take off is deduced

= Rjy >0. (21)

e There is also a constraint on the swing leg tip to avoid an impact with
the ground during its transfer. This constraint is defined by a parabola

function 2(0)
I«

i - -1 max

O‘E[alirsliflafss] |:y(a) ( d2 ) Y :|

where (z,y) are the coordinates of the swing leg tip and yy,q, is the max-
imum height of the parabola.
e Optimal motions are defined for different velocities with the constraint

d= U(Tss + Tds) (22)

where d is the distance between the tips of stance legs (see Fig. 2), v is
the desired average velocity of the biped, and T is the time of the single-

support phase. The calculation of time Tz of the single-support phase is
afSS 1

given by Tss = / —da
&

(03

iss

4 Optimal Walk

Many values of parameters presented in Sect. 3 can give a periodic bipedal
gait satisfying constraints (16)—(22).

Then a parametric optimization process, minimizing a criterion under non-
linear constraints, is possible to find a particular nominal motion. Let us define
this optimization process

min C(p) (23)
p
gi(p)SO 1=1,2,....,n

where p is the vector of parameters, C(p) is the criterion to minimize with n
constraints g;(p) < 0 to satisfy. We give now some details about the way to
calculate the criterion during the single-support phase and the double-support
phase, and about the optimization process.
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4.1 Criterion

To find the nominal motion criterion C, which is a torque minimizing crite-
rion, is considered

Tss+Tas

T ds
Cr = r'rdat = / £d + / r'radt (24)

1
d

0
where T, and Tys are the times of single support and double support. For
electrical motors such as DC motors the torque is usually proportional to the
induced current. Then the criterion C represents the losses by Joule effects
to cover distance d, see [18, 19]. To consider an energy minimizing criterion,
it would only be necessary to add the losses by friction in the joints.

4.2 Single-Support Phase

From calculation of the integral term (12) using the polynomial functions (7),
we obtain ®(a) = 0% — oZ,. Velocity & and acceleration ¢ can be obtained
with relations (13) and (14). We then have determined the dynamics of the
under actuated biped in single support for a reference trajectory. The torques

are determined from the four last equations of (1)

Ao5(8)d + Has(q, q) + Qa5(q) = DrasI’ (25)

where Ags(4 x 5), Has(4 x 5) and Dpos(4 x 4) are the submatrices of A, H
and Dp, Q25(4 x 1) is the subvector of . The invertible matrix D25 allows
to determine the torque vector I'. The ground reaction R; = (Riz, Riy) at the
tip of the stance leg i are calculated using the equations (6).

4.3 Double-Support Phase

From relations (15) «(t), &(t) and a(t) are calculated as polynomial functions
of time first at each time step, then d;(a), d;(c) and §;(a) (j = 1,2) are
determined. There is an infinit set of solutions for the torques to realize the
double support, because the biped is overactuated. Only three generalized
coordinates, for example «(t), 01 and 02, are necessary to describe the motion
completely. Then, we can parameterize the solution of torques as function of
one variable. To find this variable we consider equation (6) and the equation
of the angular momentum theorem applied at the leg tip 1. The equation of
the angular momentum theorem in double support is equivalent to equation
(10) but with the effect of ground reaction force of foot 2. It is also equivalent
to the first line of model (1). This additional equation reads

A1(0)G + Hi(g, 4) + Q1(q) = —dRay (26)
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where A;(1 x 5) and H;(1 x 5) are the first line of A and H, Q1(1 x 1) is
the first element of Q). Term d is the distance between the two leg tips on the
ground. Component Ry, does not appear in equation (26) because the ground
is assumed to be horizontal and plane. From the second line of (6) and (26),
for a given acceleration of the biped there is only one solution for R, and
Ry, independent of the torques. The torques only influence R, and Ry,. For
this reason, a solution for the torques can be found as function of Ry, or R,
as parameter. Let us choose Ry, and define the minimization problem with
the associated constraint on component R,

min *T
2x

_//LRly - Rl:}; S 0
_MRly + le < 0

_/JRZy - R2z é 0
—pRoy + Rop < 0.

(27)

The choice of the particular solution of this optimization problem is because
it is also the solution that minimizes the criteria (24). With the four last lines
of the vector-matrix equations (1) and (2) a relation between torques I'* and
Rs, can be written

I'*=J— KRy, (28)

with K = Djys Doy 25 and
J = Dras (AosG + Hos(q,4) + Qa5(q) — Doy 25Roy) + I'ssign(DEg) + F,DEq.

The solution Rag optr which minimizes the square of the torques without
constraints is given when F*TE?RL; = 0. Considering equation (28) Roy optr
is given by

KTJ
KTK *
Defining a minimum value Rg;iny and a maximum value Roysyp, the con-
straints on Ry, can be written under the simple form,

Ry, optl" — (29)

R2:L’inf < R, < R2a:sup (30)

Then a solution for the minimization problem (27) is given by three cases

o if RQ:E inf S RQI optI” S R2z sup then R2x = RQI optI’ »
o if Ra, optI’ < Ry, inf then Rop = Ray inf
o if R2$ sup < RQw optI” then R2x = RZm sup-

In the case where there is no solution, i.e Rozins > Rogsup, we choose Ry, to
minimize the violation of constraints such as
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_ R2a: inf + RQQJ sup

= 5 )

In this last situation, the constraints are not satisfied. However, the optimiza-
tion process will tend to satisfy the constraints of the motion, and the final
solution will always satisfy Roziny < Rozsup. This violation will only occur
during the optimization process.

RQI

4.4 Optimization Algorithm

The algorithm NPSOL, see [20] is used to solve this optimization problem with
its nonlinear constraints. The sequence of treatment of constraints according
to their importance is described Fig. 3. From level 0 to level 4, the constraints
must be satisfied to simulate one step. Other constraints as the maximum
velocity of the biped, the torques limits are considered in level 5.

Sometimes, while solving the problem (23), the optimization process can
ask a value of the criterion or the constraints in a point pg where they are
not defined. Therefore an intermediate optimization process is started to find
another point pys, the closest from pg. For example if constraints g;(po) < 0,
i = 1,2,...,mg are not satisfied, pys is determined as the solution of the
problem

min [[po — pl|
(31)
9i(p) <0 i=1,2,...,mg .

Then the constraints not defined at the point py will be computed at the
point pas. And using gradient information at pjys, an interpolated value will be
determined at pg. This interpolation ensures that constraints and criteria are
continuous and differentiable functions, even at the boundary of their space
of definition. This is a necessary condition for the optimization program to
solve this modified problem.

During the optimization process the constraints can be violated. But it
tends to satisfy the constraints at the end of the optimization. Since we add
in the problem the constraints specifying the sub-space where all constraints
and criterion are defined, at the end of the optimization the walking motion
will be defined and satisfy all the constraints. The only situation where the
algorithm will not find a solution that satisfies constraints is if there is no such
solution (if we ask for a walk too fast and the actuators are not sufficient to
do it, for example) or if the problem is not convex. Indeed the algorithm used
is a local optimization algorithm. For a non convex problem, it will probably
find only a local non feasible solution, whereas other feasible solution exists.
However, we have tried many random initial conditions for the optimization
process and always found the same optimal solution that satisfied constraints.
We can therefore assume that our problem is convex.

To solve the intermediate optimization problem (31) and the general opti-
mization problem (23), the gradient in function of the vector of parameters p
of the criterion and constraints is necessary. To obtain an efficient algorithm,
these gradients were calculated analytically.
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Fig. 3. Sequence of constraints to satisfy before the step can be defined
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5 Simulation Results

Figures 4-7 are devoted to a chosen motion velocity for a biped which equals
0.3 m/s. Figure 4 shows that the needed torques for this trajectory are inside
the template, motor torque/velocity, given by the manufacturer. The normal
components of the ground reactions as functions of time, during one step are
presented in Fig. 5. The constraint of unilateral contact on the leg tip 2 is
active because the fixed limit 20 N is reached in the tip of leg 2 during the
double-support phase. The double-support phase begins after time 0.93 s.

Figure 6 shows as functions of time the evolutions of joint variables 1, 2,
03 and d4 in single-support phase and double-support phase. Let us remark
that the discontinuities in the graphes mark the limit between the single-
support phase and the double-support phase. These discontinuities are not due
to an impact (only an impactless motion is considered). These discontinuities
appear in the graphes of Figs. 5—7 because the role of both legs are exchanged
at the beginning of the double-support phase. Figure 7 shows the behavior of
the variable «, which is monotone as expected. The discontinuity at the end
of the single-support phase (time 0.93 s) is due to the exchange of the role of
both legs.

140 T T T T T T

— Knee 1

— - Haunch 1
- Haunch2

-— Knee2 ||

100

80H
1

Couples [N.m)]

1 ! 1 ! !
4 6 8 10 12 14

Joint Velocity D¢ [rad/s)

Fig. 4. Velocity versus torque for knee ¢ and haunch 4, (i = 1,2) are inside the
template, motor torque/velocity, defined by the limit values 140 N.m and 12 rad/s
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In conclusion, for the velocity 0.3 m/s of the biped an optimal motion is
feasible according to the constraints. Other velocities of walk for the biped
have been tested with success. In Fig. 8 discrete values of criterion Cr are
presented versus the velocity of motion. The evolution of discrete criterion Cp
versus velocity of motion is more regular if the optimal walks are obtained
without taking into account Coulomb friction. This is due to the fact that the
convergence for the case with friction is not very good, since torques are not
smooth. For superior velocities a running gait is more appropriate, (see for
example numerical experiments in the paper [18]).

6 Conclusion

An optimization process is proposed to design optimal bipedal gaits for a
five-link biped. The walking gaits are composed of single-support phases and
double-support phases, but with no impact. The criterion minimized is the
integral of the square of the torques. A sequential procedure is done, taking
into account the constraints according to their importance realizing a walk
step. Coulomb frictions, which are nonlinear and discontinuous functions, are
taken into account because their contribution cannot be neglected. A pos-
sible improvement would be to do a piecewise linear approximation of the
Coulomb friction around the discontinuity point of the friction force for a null
joint velocity. Currently the main drawback of the optimization method we
used is that it is not exactly adapted to our problem. Our problem is a semi-
infinite problem, that is an optimization problem with constraints that must
be satisfied over an interval. We have then adapted our problem by consid-
ering the constraints over an interval only at their most constraining point.
The optimization problem we then solve is with non-smooth constraints. But
we obtained convergence even if NPSOL was not designed to cope with such
non-smooth problems. To solve our problem, we would like to consider an
optimization algorithm that can take into account a variable number of con-
straints in the future. Indeed, the number of maximum and minimum where
we considered the semi-infinite constraints can change during the optimiza-
tion process. We hope also to experiment on prototype Rabbit these reference
trajectories and to extend also this work to a walking biped with more degrees
of freedom.
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