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Preface

In the past decades, much progress has been made in the field of walking
robots. The current state of technology makes it possible to create humanoid
robots that nearly walk like a human being, climb stairs, or avoid small ob-
stacles. However, the dream of a robot running as fast and as elegantly as
a human is still far from becoming reality. Control of such fast motions is
still a big technological issue in robotics, and the maximum running speed of
contemporary robots is still much smaller than that of human track runners.
The conventional control approach that most of these robots are based on
does not seem to be suitable to increase the running speeds up to a biological
level.

In order to address this challenge, we invited an interdisciplinary commu-
nity of researchers from robotics, biomechanics, control engineering and ap-
plied mathematics to come together in Heidelberg at the first Ruperto-Carola-
Symposium “Fast Motions in Biomechanics and Robotics — Optimization &
Feedback Control” which was held at the International Science Forum (IWH)
on September 7-9, 2005. The number of participants in this symposium was
kept small in order to promote discussions and enable a fruitful exchange of
ideas.

This volume contains a selection of papers from this symposium. Thus,
one aim of the volume is to study the control and stabilization principles
of biological motions and to determine which aspects can be exploited for
the control of fast walking and running robots. In addition, the applicability
of recent advances in control engineering, in particular in nonlinear model
predictive control, to the field of walking robots is discussed. Another focus
is on model based simulation and optimization methods that can be used for
analysis and optimal design of motions and feedback control systems.

We would like to thank all authors for their interesting contributions, and
all reviewers for their careful reading and their helpful comments which made
it possible to assure a high quality of this book. In this context we would
particularly like to thank Prof. Jim Bobrow for handling the editorial process
of the papers in which we were involved.



VI Preface

Both the symposium and the work leading to this volume were financially
supported by the Hengstberger-Prize donated by Dr. Klaus Georg and Sigrid
Hengstberger, for which are very grateful. We also thank the members of the
IWH team for their hospitality and friendly help with the organization of the
symposium, in the beautiful surroundings of IWH.

Special thanks are due to Tanja Binder for doing the technical compila-
tion of this book. We also thank Dr. Thomas Ditzinger and Heather King of
Springer Verlag for their support with publishing this volume.

Heidelberg Moritz Diehl
June 2006 Katja Mombaur
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Re-injecting the Structure in NMPC Schemes

Application to the Constrained Stabilization
of a Snakeboard

M. Alamir! and F. Boyer?

! Laboratoire d’Automatique de Grenoble, CNRS-INPG-UJF, BP 46, Domaine
Universitaire, 38400 Saint Martin d’Heres, France

mazen.alamir@inpg.fr
2 IRCCyN, 1, rue de la Noé BP 92 101, 44321 Nantes Cedex 3, France
Frederic.Boyer@emn.fr

Summary. In this paper, a constrained nonlinear predictive control scheme is pro-
posed for a class of under-actuated nonholonomic systems. The scheme is based on
fast generation of steering trajectories that inherently fulfill the contraints while
showing a “translatability” property which is generally needed to derive stability re-
sults in receding-horizon schemes. The corresponding open-loop optimization prob-
lem can be solved very efficiently making possible a real-time implementation on fast
systems (The resulting optimization problem is roughly scalar). The whole frame-
work is shown to hold for the well known challenging problem of a snakeboard con-
strained stabilization. Illustrative simulations are proposed to assess the efficiency
of the proposed solution under saturation constraints and model uncertainties.

1 Introduction

One of the most attractive features of Nonlinear Model Predictive Control
(NMPC) schemes [1, 2] is their complete independence of the mathematical
structure of the system’s model. Indeed, from a conceptual point of view, given
any system satisfying a rather intuitive set of assumptions, one may write
down a concrete state feedback algorithm that theoretically asymptotically
stabilizes a target equilibrium state.

Unfortunately, such generically defined formulations may lead to optimiza-
tion problems that cannot be solved in the available computation time when
rather fast dynamics are involved. This can be formulated in a kind of “no
free Iunch” statement:

Genericity reduces efficiency

Therefore, to overcome the consequences of the above unavoidable truth, spe-
cific features of each system under study have to be explicitly taken into
account as far as possible.
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In a series of papers [3, 4, 5, 6, 7, 8, 9], it has been shown that when the
constrained stabilization is the main issue, that is, when the optimality is not
rigorously required, efficient stabilizing NMPC schemes can be obtained as
soon as open-loop “steering trajectories’ can be generated by some systematic
and efficient algorithm.

Now, the way these trajectories are generated is system dependent and the
associated efficiency may be greatly increased if the specific structure of the
system is explicitly exploited. This is what reduces the genericity to increase
efficiency. By allowing low dimensional parametrization of these trajectories,
corresponding low dimensional NMPC schemes can be defined in which, the
decision variable is the parameter vector of the steering trajectory.

In this paper, it is shown that for a particular class of mechanical systems
including the snakeboard, it is possible to use the particular structure of the
system equations in order to derive efficient computation of parameterized
steering trajectories. Moreover, these trajectories have the nice property of
being structurally compatible with the saturation constraints on the actuators.
Since in addition, they have the “translatability property’, they can be used
to implement a stable closed loop receding horizon feedback.

The paper is organized as follows: First, the particular class of mechan-
ical systems under study is defined in Sect. 2 together with the associated
assumptions. In Sect. 3, the proposed state feedback algorithm is explained
and the associated convergence results are derived. The fact that the snake-
board falls into the particular class depicted in Sect. 2 is discussed in Sect. 4.
Finally, illustrative simulations are proposed in Sect. 5 in order to assess the
performance of the proposed solution.

2 The Class of Systems Considered

We consider nonlinear systems that may be described by the following set of
ODE’s

7= fi(x)g1(n)n (1)
= f2(x)92(§) 5 92(0)=0 (2)
3(5 XaX7u1) (3)
X = fa(&x X, uz) (4)

where equations (1)—(2) stands for a KINEMATIC stage while equations (3)—(4)
represent the DYNAMIC stage. 7 € R™" is a kind of generalized position; n €
R™ is an orientation variable; £ € R™¢ is a generalized velocity while x € R
stands for an internal configuration variable. f; : R — R, g1 : R"7 — R *"n,
All the maps invoked in (1)—(4) are assumed to be continuously differentiable.

Note that equation (1) generally describes a nonholonomic constraint,
namely, a constraint on the velocities that is not derived from a position
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related constraints. The control inputs u; and us have to meet the following
saturation constraints

Vo w(t) € [—ueT, +umeT) s e {1,2) (5)

(2 K2

max max

for some given upper bounds u}*** and uj

The aim of the present paper is to derive a state feedback algorithm that
steers the sub-state (r,7,£) of the system (1)-(4) to the origin under the
saturation constraint (5). Note that since g2(0) = 0, the origin (r,n,£) = 0
is an equilibrium position for the dynamics (1)—(3) provided that £ can be
maintained at 0 by convenient use of the control input w; as it is suggested by
Assumption 1 hereafter. Note also that x is an internal configuration variable
whose value is irrelevant for the control objective. This is for instance the
angular position of the wheels in the snakeboard example (see Sect. 4).

Beside the structure depicted in equations (1)—(4), the class of systems of
interest has to satisfy the following assumptions:

Assumption 1

1. For all x', there exists a feedback law

u = (ug,uz) = Kl(&aX?XaXf)

under which, the closed loop behavior respects the constraints (5) and such
that
(€=0,x=0x=x)
s a globally asymptotically stable equilibrium for the closed loop dynamics
defined by (3)-(4) and K;. Furthermore, the subset {£ = 0} is invariant
under the closed loop behavior.
2. For all x¥ # 0 and all ', there exists a feedback law

u = (Ul,UQ) = KQ(nafaX7>.<7nfaXf)

such that the closed loop behavior respects the constraints (5) and such that
(n=n’,6=0)

18 a globally asymptotically stable equilibrium for the closed loop dynam-
ics defined by (2)-(3) and Ko. Furthermore, the set {x = x/,x = 0} is
tmvariant under this dynamics.

3. For alln®, there exists a parameterized sequence (n*(p,n°))k>0 (defined for
some parameter vector p € P where P is a compact set) that is continuous
in (p,n°) such that n°(p,n°) = n°, limp oo n*(p,n°) = 0 (exponentially)
and the following rank condition is satisfied for all p € P:

Rank[A(p, 1) = (Au(pn°) ... A;(p0°) )] = s (6)
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where

79 (p,n°)
Aj(p,n°) = g1(n)dn (7)

n3=1(p,n°)

with Gpmin(A(p,1n°)) > Smin > 0. Furthermore, for all p € P, there exists
pT € P such that

T 0t (p,n%) = 1" (p,1°) Yk >0 (translatability) (8)

. The function go in (2) is such that for any pair (n®,n®), there exists a

sequence
a,b)\n,. a,b b
R e

such that the matriz

néa,b) ngg:b)

M("?ay nb) = / g1 (n)dn e / g1 (n)dn € R Xnr (9)
(a,b) (o)
G np—1

has full rank.

. The function f; maps some domain D C R onto R—{0} so that an inverse

map f; ' R—{0} — D may be defined by firing some selection rule (when
needed).

In the following sequel, the state of the system is denoted by z, namely

T = (rn{x}‘()TER"; n =N+ Ny +ne + 2

3 The Proposed Feedback Algorithm

The basic idea of the control algorithm is to decompose the behavior of the
controller into basically 2 modes

1.

In the first mode, £ ~ 0 and the feedback K is used to steer the state x
from some initial value x;_; to some final desired one x;. This is possible
thanks to assumption 1.1. Note that under this mode the position r as well
as the orientation variable 7 are maintained almost constant (since £ ~ 0
and ¢2(0) = 0 by assumption 1.5).

In the second mode, x ~ x; is maintained almost constant while the feed-
back K> is used to steer the variable 1 from some initial value 77 ~! to some
final value 7. Note again that this is possible thanks to assumption 1.2.
Note moreover that under this mode, £ asymptotically goes to 0 enabling
the first mode to be fired again.
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Note that from equations (1) and (7), it comes that under constant x = xj,
when the mode 2 is used with 7 changing from 77~1(p,7") to n?(p,n°), the
corresponding variation in r is given by:

Ajr= [Aj (p, 170)} fi(x;) under constant x = x; (mode 2) (10)

Therefore, the condition
O+ Apn®) | 1| =05 v A0 forallj; x;=fr () (11)

characterizes the family of sequences (x;);>o0 such that when the two-modes
procedure defined above is applied in an open-loop way, the vector (r,n,§) is
steered to 0.

The state feedback proposed in the present paper amounts to use the open-
loop strategy defined above in a receding horizon way. This is because the
sequences (n7) ;>0 and (x;);>0 may become irrelevant because of unavoidable
disturbances and because of the simple fact that during mode 1 [resp. mode
2], € = 0 [resp. x = X;| cannot be rigorously satisfied making necessary to
re-compute the steering strategy.

In order to properly define the proposed receding horizon formulation, the
following definitions are needed:

Definition 1. Given any (p,7°,1n°), let ¢ € N be a sufficiently high integer
for A;(p,n°) to be negligible for j > q and define the vector d(p,r%,n°) € RY
to be the solution of the following Linear Programming (LP) problem:

q
~ 0 0 . ~
s Ty =A |:_ i|
O(p,r",n") = Arg min § 1%
iz

under 70 + [Al_n](p, 770)]17 =0 and [|9]loo < Vmaa (12)

where Ay_.;(p,n°) is the matriz built with the j first matriz terms of A(p,n°)
[see (6)] while Vmaq is a sufficiently high value making the above constrained
problem feasible for any initial value v° of interest.

Note that for each candidate value of p € P, the LP problem (12) may be solved
almost instantaneously using LP solvers. Note also that the cost function
to be minimized suggests solutions that avoid vanishing components of 2.
However, if in spite of this 94 (p, 7", 1n°) = 0 for some k, intermediate values
have to be introduced in the sequence (1’(p,n°));>0 between 7*(p,n°) and
n**t1(p,n°) in order to remove this vanishing components without altering
the remaining solution, namely o;(p,7°,n°) for i > k + 1. This is possible
thanks to assumption 1.4. Indeed:
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e Assume that for some k, one has 9, = 0, this means that the positions r
at the sampling instants k£ and k + 1 are the same.
e Consider the following matrices defined according to (9):

k+1

E o k+l B+l k41 k41 n* +n
M(n®,n""2); M(n*™"2,n""") where 7 Pim

together with the corresponding sequences

kk+3\"" k+1,k+1\"r
Uk j:l’ Uk j=1

e Our aim is to prove that there exists a sequence of controls

2N,
(%)
j=1
with no zero elements and such that the net variation on r vanishes. But

this amounts to find a vector v € Cp := [~Vmaz; Vmaz) 2™ with v; # 0 for
all ¢ such that the vector

(MO )] Mt ] o (13)

A

has no zero elements. But this is clearly always possible since the matrix
A is regular according to assumption 1.4. (See lemma 1 in the appendix
for a brief proof of this evident fact).

Repetitive application of this technique enables all vanishing (or too small)
components of ¥ to be removed.

Definition 2. Given any (r°,n°), the optimal parameter vector p(r®,n°) is
defined by

p(r%n°) == Argmin J(p, 7%, n°)
peP

q
= Z [HTO + A1 (p, ") o1 (OO + - | (p.n0) | (14)
j=0
namely, p(r°,n°) minimizes a quadratic cost on the excursion of the configu-
ration vector (r,n).

Note that definition 2 assumes that the admissible parameter set P is such that
(14) admits a solution. This is typically guaranteed because of the continuity
of the cost function J w.r.t. p and the compactness of the admissible set of
parameters P.

Putting together definitions 1 and 2 enables us to define for any initial
configuration (r°,1°) the optimal sequence given by
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P (0 %) == o(p(r°, n°), 70, %) = (vfpt(ro,no) vfl’pt(ro,no)) € R?(15)

and since according to the discussion that follows definition 1, one can assume
without loss of generality that v;’p t(ro, nY) # 0, the following may be defined
for a given pair (7°,1°) thanks to assumption 1.5:

A0 ) = 0 00, s 600 = g7 (060 n%) (1)

which is nothing but the first part of the OPTIMAL open loop trajectory on
(1, x) mentioned above when used in a receding horizon way. Finally, in order
to monitor the selection of the controller’s mode, the following functions are
needed:

Vi, ) = max{ [y = 71, XL, €1} 5 Ve nf) o= max{p — 7|, ¢} (17)

More precisely, when V;(x, X¥) approaches 0, this means that the controller
task at mode 1 is likely to be achieved. Similarly, when Va(z,n/) approaches
0, this means that the controller task in mode 2 is not far from being achieved.
Now, it goes without saying that one cannot wait for V7 or V5 to be exactly
equal to zero since this never happens rigorously. That is the reason why a
finite threshold € > 0 is used in the definition of the switching rules given
hereafter.

Using the above notations, the proposed state feedback algorithm can be
expressed as follows

FEEDBACK ALGORITHM

parameters ¢ > 0 a small threshold. v,,,, > 0 sufficiently large value to
be used in (12)

1) Compute x/ = x(r(t),n(t)) and nf = 7j(r(t),n(t)) according to (16)

2) mode 1

Use the feedback K with x/ as computed in step 1) until V;(z, x/) < e.
3) mode 2

Use the feedback K, with n/ and x/ as computed in step 1) until Va(z,7;) <
€

4) go to step 1)

As a matter of fact, the feedback algorithm presented above describes a Finite
State Machine that is depicted in Fig. 1. Associated to the proposed feedback
algorithm, the following convergence result can be proved

Proposition 1. Let (t;)r>0 be the infinite sequence of instants at which the
algorithm wvisits the updating state of Step 1 (see Fig. 1). We have the fol-
lowing asymptotic property

tx

r(tr)
lim | lim ||| n(tx) =0 (18)
e—=0 | k—oo g(tk) H
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Vi(z,x') <e

Step 2) Step 3)
Alode 1 ﬁ Tode 2
q Use the feedback | Use the feedback
K4 with x/ K» with \/“
and 7'
—
Updating done Step 1)

W2

l Update (X‘f~'fl'f) |

\ using the entry
. value of @
W = ilr. N .
!

x' = x(r,n)

~

Fig. 1. The Finite State Machine describing the proposed feedback algorithm

namely, by taking € sufficiently small, the sequence (r(tx),n(tx),&(tx)) may be
steered as close as desired to 0.

SKETCH OF THE PROOF The regularity assumption on the functions appearing
in (1)-(4) together with the rank condition and the uniform regularity of the
matrix A(p,n") used in (12) enables to prove the continuity of the optlmal
value function J(r%,7°) = J(p(r°,1°),r%, n°) w.r.t its arguments 70 and 7°.
Using this property with the translatablhty assumption (8) on the parameter-
ization being used enables to write a classical inequality in receding horizon
analysis, namely

J(r(tr1)sn(tien)) = J(r(t), n(tn) < =l |1 = alln(ti)l” + O(e) (19)

where the final term regroups all the second order effects due to the use of
finite stay time in each mode (¢ > 0) and the use of finite horizon ¢ in the
equality constraint of (12). Finally, since by definition of the exit condition of
Step 3, one necessarily has

HOEE (20)

the result clearly follows from (19)—(20).

4 Application to the Constrained Stabilization
of a Snakeboard

The snakeboard we are interested in is the mechanical system depicted in
Figs. 3 and 2. It consists of two wheel-based platforms upon which a rider



Re-injecting the Structure in NMPC Schemes 9

Er

Fig. 2. The snakeboard “without the rider”

2

T

Fig. 3. Schematic view of the snakeboard’s variables definition. Note that the front
and the back steering angles are coupled to be the same

is to place each of his feet. These platforms are connected by a rigid coupler
with hinges at each platform to allow rotation about the vertical axis. The
snakeboard allows the rider to propel himself forward without having to make
contact with the ground. This motion is obtained by using the conservation of
angular momentum effect together with the nonholonomic constraints defined
by the no-slipping condition at the wheels level.

This system was first outlined by [10] to be a particularly interesting non-
holonomic system example that has no straightforward direct biological coun-
terpart. In [10], a first dynamical model for the system was given and used
to check some standard behaviors that correspond to some given oscillatory
gaits. Furthermore, controllability analysis has been proposed showing that
this system is locally controllable except at some singular configurations. The
complete proof of controllability has been achieved in [11]. Since then, many
works have been done to construct steering trajectories and control design. In
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[12], a strategy leading to the design of steering trajectories has been proposed
based on small amplitude, short duration and cyclic inputs. Based on such
sinusoidal inputs, a controller based on average theory has also been proposed
recently [13].

Much closer to our approach that does not invoke cyclic open loop para-
metrization is the work proposed in [14]. Indeed, in [14] the generation of path
steering trajectories is based upon switching between two vector fields in order
to obtain sub-curves starting from the initial configuration and ending at the
desired one. The system is at rest at the switching instants. The constraints
handling is obtained by means of time scaling. As long as the snakeboard is
concerned, the difference between the approach proposed in [14] and the one
proposed in the present paper lies in the following differences:

v" The way the sub-curves defined above are derived in [14] deeply depends on
the 2D nature of the snakeboard example (intersections of circles and/or
straight lines, etc. are extensively used). In our approach, this is basically
done, even in the general case by solving linear systems. In that sense, the
approach proposed here seems to be more easily generalizable, as long as
the assumed structure of the system holds.

v" The choice of the steering trajectories in [14] is based on minimizing the
corresponding number of switches whatever is the resulting transient spa-
cial excursion. The reason behind this is that the system has to be at rest
at switching instants. Therefore, having a high number of switches may
lead to a slow motion. In our case, monitoring the number of switches
can be directly and explicitly obtained by the number (gq) of intermediate
values in the parameterized sequence:

(n'“ (p, 770))

while the additional d.o.f p are used to minimize the corresponding spacial
excursion in the z — y plane.

v The work in [14] concentrates basically on the open-loop steering strategy.
It is not completely clear whether the resulting steering strategy can be
used in a receding horizon manner in order to yield an effective feedback in
presence of uncertainties or modelling errors. In other words, the “trans-
latability” of the open-loop trajectories proposed in [14] has to be checked.
If some other feedback strategy is to be used, this is still to be designed.

q

k=1

The model of the snakeboard used in the forthcoming developments is given
by:
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8.

cosf —sinf 0 21 cos? ¢
J| =|sinf cosh 0 0 £ (21)
6 0 0 1/ \sin(29)
. Jo o
€= (—g5t+9€) - tang (22)
Uz = 2Jw¢ (23)
up = J, {(1 - TT{;Q sin? ¢)1p + 26€ cos? ¢ (24)

Note that the third line of equation (21) writes:
6 4
 sin(2¢)  2sin(¢) cos(¢)
Using this in the equations enables us to show that te snakeboard equations

(21)—(24) are of the standard form (1)—(4) provided that the following corre-
spondances are used

2
 tang

r:(;); ne=2; n=0; ny=1; x=¢; filx)

cos 6 .
nm = (Gng) + R0 =sn20) s () =¢
with straightforward definitions of f3 and f, that may be obtained by re-
moving the auxiliary variable 1. Note that in the classically used models
[10, 14, 12], the configuration is given by q = (Z, 7,0, ¢, ). Indeed, the vari-
able £ used in the above equations is an intermediate variable that can be

removed since from (21), it comes that

B z
~ 2lcosfcos? ¢

3 (25)
which is clearly a function of (¢, ¢). However, in the derivation of the control
law, writing the equation in the form (21)—(24) is mandatory in order to fit
the standard form (1)—(4). This is a classical feature: when using partially
structural approach, the coordinate system plays a key role.

In order to use the feedback scheme defined in Sect. 3, the feedbacks K7,
K5 and the parameterized sequence 1*(p,n°) are successively introduced.

4.1 Definition of the Feedback Laws K; and K-

In both modes, the definition of us is the same and is given by

up = ~20, [ 24 (6 - o] (26)
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where ¢, is a time scaling, namely, for ¢,, = 1, a pole placement (with identical
double poles = —1) is assigned by imposing

¢=-20—(¢—¢7)
The parameter ¢, is then used to meet the saturation requirement by taking:

= i h th 2Jy N < ymox 2
t, TE[IOI.l(%?IO]T such that ~ 2.J,, |2 ¢+ z(p— )| < uf (27)

As for uq, it is mode dependent, namely

JIr
wlmode i = Jr [( iz sin ¢)?/1pp|m0de it 20€ cos ¢)] :

x i€ {12} (28)
pp — PEL . (9.0,6) :
¥ lnode 1 5= Satyi e (10sign(o)¢) (29)

2ml?

P node 2= 77 (miqs[—O-llsin%I&ﬁL(é—&«(u))}+¢3§> (30)

where

e &.(u) is a varying reference value for £ that is given by
& = —0.1u- sign(sin 2¢) (0 — 67) (31)
e 4 is an adaptive gain computed according to

= max v such that
v€e[0 100]

the r.h.s of (30) with (p=v) isin [¢'". (¢, b, €),vree (o, b, 8] (32)

. @[Jmm(q’) $,€) and PP (b, ¢, €) are the variable lower and upper bound on
v in (22) that are compatible with the saturation constraint on u; in (24),
namely

(0.0, = min [r/J, —29¢cos | /(1 ) (33)

Te{iu;nam ,Jru;nam}

maz(¢ (rb 5) max |:7_/JT’ - 2¢€ COS2 ¢] /(1 -

Te{—ur* fur**}

) (34)

In order to understand how (28) (with ¢ = 1) asymptotically stabilizes &
while meeting the saturation constraint, one may analyse what happens when
¢ converges to 0 under the action of us. Indeed, this asymptotically leads
to an admissible region for v that contains an open neighborhood of 0 [see
equations (33)—(34)]. This with (22) in which ¢ = 0 is injected clearly shows
that implementing (28) yields an asymptotically stable behavior for &.
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As for the design of w1,y 4e 2, it is based on a sliding mode like approach
in which the manifold S = £ — &, is stabilized where &, is the control that
stabilizes § around its desired value 67 [see (31)]. Since &, asymptotically tends
to 0 with the error §—67, ¢ does the same. Again, variable adaptive gain p [see
equation (32)] is used in order to meet the saturation constraints on wu;. To
end this presentation of the feedback laws K7 and Ks, it is worth noting that
the constants 0.01, 10 and 0.1 that appear in equations (27), (29), (30) and
(31) are used in order to avoid very high gains near the desired targets and
to obtain compatible response times in the back-stepping design approach.
They might have been left as design parameters. The choice fixed here aims
to avoid having too many parameters to tune.

4.2 Definition of the Parameterized Sequences (n*(p,n°))k>0

Recall that for the snakeboard example, n = 6. Consider the following para-
meterized trajectory

O(t,p,0°) := 2p1m + (0° — 2pym)e Aot 4 poe= ot (1 - e_’\et) i Ao >0 (35)

where p = (py1, p2) belongs to the compact subset P C R? defined by
P:= {_1707 +1} X [_pgmmv +p72mw] ) p;nax >0 (36)

Note that for all p € P, ©(0, p, 6°) = 6° while lim;_.. O(¢, p,0°) = 0 (mod 27).
Note also that the use of ps # 0 and p; = 0 enables non constant trajectories
with identical boundary conditions #° = #/ to be generated. This is crucial to
obtain “good’ solutions in some singular situations like for instance the one
given by 2° = 0, 0 # 3° ~ 0 and #° = 0. Indeed, without the parameter ps,
whatever small is §° # 0, an entire rotation would be necessary to steer the
snakeboard to the desired position.

Given an initial value §° and some parameter vector p € P, the generation
of the parameterized trajectory is done using the following three steps:

1
1. Choose some sampling period § > 0, take an integer q > Ve Generate
0

the sequence
(0", 09)ig where 6"(p,0°) := O(jé,p,0°)
2. Solve the corresponding LP problem (12) to get the optimal sequence
o(p,z°,5°,6°)

Remove all vanishing (or too small) components, if any, by introducing
intermediate terms in the sequence 0% (p,6°) as explained above (In fact,
this has never been necessary in our experimentation).
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3. Reduce the size of the resulting sequence 6% (p, §°) by keeping only the last
value of all sequences corresponding to the same value of (p,z°, 7", °).
As an example, if the sequence ©(p, z°, 7°, 8°) takes the following form:

0 - T
o(p, 3«"0790790) = ('Ul V1 V1 V2 V2 U3 U3 US)

then the reduced sequence 6% (p, #°) which is finally retained is the following
one

(0°(p,0°) 0°(p, 0°) 0°(p, 0°))

this enables useless waste of time asking successive values of 6% (p,8°) to
be successively approached with almost zero-velocity with the same value

of ¢.

4.3 Checking the Remaining Assumptions

The rank condition (6) is obviously satisfied provided that the sampling period
0 > 0 invoked in Sect. 4.2 is taken sufficiently small thanks to the properties
of the trigonometric functions. The same can be said about the condition
expressed in assumption 1.4. The translatability property naturally follows
from the properties of the exponential functions used in the definition of the
parameterized trajectory (35). Finally, the conditions of assumption 1.5 are
clearly satisfied with D =] — 7 /2, +7/2].

5 Simulation Results

In this section, some simulations are proposed in order to show the efficiency of
the proposed feedback algorithm. The numerical values used in the simulations
as well as a recall on where each of them appears in the preceding sections is
depicted in Table 1. The proposed simulations aim to underline the following
features

1. The ability to explicitly handle the saturation constraints on the control
input. This may be observed by comparing Figs. 4 and 5 where the same
initial conditions are simulated for two different saturation levels, namely

u** = w5 = 8 (Fig. 4) and u*** = u5*** = 4 (Fig. 5).

Table 1. Numerical values of the system’s and the controller’s parameters

Parameter | Appearing in | Value | Parameter | Appearing in | Value
] (21) 05 Jr (22) 0.72
ml? (28) 0.24 Jw (23) 0.13

Ao (35) 0.1 Umaz (12) 2

€ Fig. 1 0.01 Py (36) 10
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T 7 (z — 7§ — plane)
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Fig. 4. Closed loop behavior. Initial condition Z(0) = g(0) = 1, §(0) = —7/4 and
£(0) = 0. Saturation levels u7**® = u3**® = 8. This figure is to be compared with
Fig. 5 in order to appreciate the saturation constraints handling

(Z — § — plane)
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Fig. 5. Closed loop behavior. Initial condition z(0) = §(0) = 1, (0) = —n/4 and
£(0) = 0. Saturation levels u7**® = u3'*® = 4. This figure is to be compared with
Fig. 4 in order to appreciate the saturation constraints handling
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Fig. 6. Closed loop behavior. Initial condition Z(0) = 0, (0) = 0.05, 8(0) = 0

and £(0) = 0. Saturation levels ui**®

— u’énaz

= 4. Note how the parametrization

of the trajectories avoids the need for a whole rotation even in this rather singular

situation
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Fig. 7. Closed loop behavior. Initial condition Z(0) = 0, 5(0) = 0.1, 6(0) = w/2 and

£(0) = 0. Saturation levels ui**®

= uper =4
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Fig. 8. Closed loop behavior. Initial condition Z(0) = —1, §(0) = 1, 6(0) = 3n/4
and £(0) = 1. Saturation levels u7**® = u5"*® = 8. This simulation is done under
nominal model without uncertainties. The result is to be compared to that of Fig. 9

where model uncertainties are introduced

2. The ability to realize rather “economic” trajectories when starting from
some almost singular situations (like the ones shown on Figs. 6 and 7)
avoiding whole rotations to be used.

3. Finally, Figs. 8 and 9 show the behavior of the closed loop under the
nominal model (Fig. 8) and under model uncertainties (Fig. 9). The un-
certainties are introduced in equations (22) and (23) as follows

. J, .
§ = (~ 5oz (L4 00) 4 €) - tang + 62
Uy = 2Jy(1+03)¢; 6, =—0.1 ; & =0.05; &5=—0.1

(37)
(38)

Namely, d; and d3 stand for relative error on the values of the physical
parameters while do stands for persistant external disturbance such as wind
related drift term.
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i
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Fig. 9. Closed loop behavior. Initial condition Z(0) = —1, §(0) = 1, #(0) = 37 /4 and
£(0) = 1. Saturation levels u7"*® = u5'*® = 8. The uncertainties given by (37)—(38)
are used to test the robustness of the proposed feedback algorithm

6 Conclusion & Discussion

It has been shown that by exploiting the particular structure of a class of
nonholonomic system, it is possible to derive an efficient steering procedure
that can be used in a receding-horizon scheme to yield a stabilizing state
feedback. By doing so, a complex dynamic problem is transformed into a
rather simple discrete problem that can be solved by linear programming tools.
The solution is successfully applied to the snakeboard constrained stabilization
problem.

The main drawback of the proposed approach is the constraint of almost
stopping motion in-between each of the two control modes being used. This
constraint can be practically avoided by using a state dependent switching
parameter &, namely £(z) that would be large when z is far from the desired
state and small in its neighborhood.

A Appendix

Lemma 1. Let A € R™ be a reqular matriz. Define a compact subset C C R™
that contains a neighborhood of the origin. Let C, C C be the subset defined by

cp;:{uec | v #£0 Vie{l,...,n}} (39)

then there always exist v € C, such that Av € C, )
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Proof Let O C C be a sufficiently small neighborhood of the origin such that
A~710 is also a neighborhood of the origin that is contained in C. The set

Afl

(ONC,p) is clearly an open neighborhood of the origin that contains an

element in Cp,. Let v be such an element, v clearly satisfies the requirements

of the lemma. O
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Summary. An important technique for computing motions for robot systems is to
conduct a numerical search for a trajectory that minimizes a physical criteria like en-
ergy, control effort, jerk, or time. In this paper, we provide example solutions of these
types of optimal control problems, and develop a framework to solve these problems
reliably. Our approach uses an efficient solver for both inverse and forward dynamics
along with the sensitivity of these quantities used to compute gradients, and a reli-
able optimal control solver. We give an overview of our algorithms for these elements
in this paper. The optimal control solver has been the primary focus of our recent
work. This algorithm creates optimal motions in a numerically stable and efficient
manner. Similar to sequential quadratic programming for solving finite-dimensional
optimization problems, our approach solves the infinite-dimensional problem using
a sequence of linear-quadratic optimal control subproblems. Each subproblem is
solved efficiently and reliably using the Riccati differential equation.

1 Introduction

For many biological systems, it has long been observed that motion genera-
tion can likely be the result of a minimization process. The objective function
used has been characterized by a physical criteria like energy, control effort,
jerk, or time. Unfortunately, to date the algorithms that generate such opti-
mal motions have been successfully used on only the simplest of robots. The
need for such an algorithm is increasing dramatically since many new walk-
ing, crawling, hopping machines, rehabilitation devices, and free-flying air and
space systems are currently under development. All of these devices will ben-
efit from a numerically stable and efficient algorithm that produces optimal
movements for them.

We are interested in obtaining solutions to optimal control problems for
systems of the form

T = f(x(t)7u<t)) ) (1)

where f : R" x R™ — R™ € C'! (continuously differentiable) and z(0) = z,.
We assume that the optimal control cost functional has the form



22 J.E. Bobrow et al.

Fig. 1. The left-hand system was used for Case 1, a fully actuated robot. Case 2 is
the same system, but with the base joint unactuated. The center system represents
Case 3, which is an application to human step rehabilitation. The right system is a
hopping machine for Case 4

Minimize t)) = 4 th t t),t) dt 2
) <u<>>¢<z<f>>+0/ (a(t), u(t).) dt )

subject to (1) with ¢ : R* 5 R € C' and L: R" x R™ x R — R € C!. Al-
though the Maximum Principle [3] provides the optimality conditions for the
solution to (2), it is not suitable for numerical computation. Because of the
importance of solving these problems, many numerical algorithms and com-
mercial software packages have been developed to solve them since the 1960’s
[1]. Most of the existing algorithms do not have adequate numerical stability
properties and are too slow computationally to solve optimal control problems
for current multibody systems. As a means to discuss the numerical features of
algorithms, we provide example solutions in four case studies. These examples
demonstrate the strength and limitations of current numerical algorithms.
Figure 1 shows model systems used for four case studies in this paper.
Case 1 is a minimum effort control of a fully actuated robot. We have found
that with care in the choice of basis functions, a parameterization of the joint
motion can be used along with a static optimization method to adequately
solve this problem. In addition, this approach easily allows one to handle the
case when some of the initial states are free to vary, as was done in [10]. Case 2
is an underactuated robot. We have found that even with exact gradients of the
dynamics, our parameterization of the motion had numerical problems from
round-off errors during the simulations. Case 3 is an application to human leg
step rehabilitation [21]. We experienced even more numerical problems for this
problem due to the added ground constraint. Finally, Case 4 is a simplified gas
actuated hopping machine. We found it difficult to achieve stable convergence
with existing methods for this case. The cause was numerical integration errors
introduced at the sudden change in the dynamics between the stance phase
and the flight phase, and the fact that the times for the switch from stance
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to flight were not known apriori. The approach developed in this paper (see
also [14] ) efficiently solves Case 4 , and we feel that it has great potential for
application to general optimal control problems for robot systems.

1.1 First Order Necessary Conditions for the Solution
of the Optimal Control Problem

In order to discuss the solution to Cases 1-4, we first briefly summarize the
first order necessary conditions for the optimal control of a general nonlinear
system (see [3] for more details). First define the Hamiltonian as

H(z,u,\t) = L(z,u,t) + AT f(z,u) , (3)

where L and f were defined in (1) and (2). Then in (3), A(t) is chosen to
satisfy the costate or adjoint equations

>.\ =-H, (xo(t)a uo(t)a )‘(t)v t) ) (4)

where H, and H, (used below) denote partial derivatives of H with respect
to x and u respectively, and the boundary conditions are

Ats) = 0z (wo(ty))-

Let u,(t) be a nominal control, z,(t) and A,(t) be the corresponding solutions
to (1) and (4), respectively. For general problems, the first order necessary
conditions for a local minimum of J require that H(x,(t), u,(t), A(t),t) be
minimized with respect to u,(t) subject to any constraints on it. For uncon-
strained controls u, the condition on H is

Hu(xo(t)a uo(t)’ )‘(t)’ t) =0.

Note that both H, and H, require differentiation of the state equations (1)
with respect to « and u and evaluation of these derivatives along the solution
(26(t),uo(t)). For multibody dynamic systems with more than a few degrees
of freedom, the derivatives are generally not available due to the complexity
of the equations of motion. However, in [15], the sensitivity algorithms based
on matrix exponentials are developed specifically for this purpose. A brief
introduction to that work is presented next.

1.2 Geometric Tools for Multibody Systems Analysis

To represent robot systems and their dynamics, we use a set of analytical
tools for multibody systems analysis based on the mathematics of Lie groups
and Lie algebras [11, 13]. In the traditional formulation, a rigid motion can be
represented with the Denavit-Hartenberg parameters as a 4 x 4 homogeneous
transformation T'(6,d) € SE(3), where 6 is the rotation about the z-axis and
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d is the translation along it. For a prismatic joint, d varies while 6 is held
constant. For a revolute joint, # varies while d is held constant. With the
geometric formulation, for either type of joint the transformation has the
form

T(9,d) = e**M ,

where x = 0 for a revolute joint or x = d for a prismatic joint, A contains the
joint axis or direction, and M is a constant (M = T(0,d) for a revolute joint,
M =1T(6,0) for a prismatic joint.) This exponential mapping and its inverse
have explicit formulas: exp : se(3) — SE(3) and its inverse log : SE(3) —
se(3) [13]; here se(3) denotes the Lie algebra of SE(3). Although SE(3) is not
a vector space, se(3) is: the log formula provides a set of canonical coordinates
for representing neighborhoods of SE(3) as open sets in a vector space.

The derivative of the exponential map with respect to the joint displace-
ment z is just ‘% = Ae* M. In the coding of multibody dynamics algorithms,
the exponential is the lowest level primitive required for all computations. One
never needs to deal with sine and cosine terms or with making a distinction
for each joint type.

The use of matrix exponentials to represent the link to link transformations
for robot systems allows one to clarify the kinematic and dynamic equations.
In the case of open chains containing prismatic or revolute joints, the forward
kinematics can be written as a product of matrix exponentials [2]. Specifically,
given a choice of inertial and tool reference frames, and a zero position for the
mechanism, the forward kinematics can be written uniquely as

A A,
Ton(qrs---sqn) = 10 efinn

where ¢, ..., ¢, are joint variables, and Ay, ..., A, € se(3). The kinematics of
closed chains can be obtained by further adding a set of algebraic constraints.

In order to determine optimal motions for the multibody systems of in-
terest, a complete dynamic model is needed. In [13] a Lie group formulation
of the dynamics has been developed, in which closed-form expressions for the
inertia matrix and Coriolis terms are available. Using this representation, the
forward and inverse dynamics can also be computed efficiently with O(n) re-
cursive algorithms. The inverse dynamics algorithm is shown in Fig. 2. In this
algorithm, V; € se(3) is the linear and angular velocity of link ¢, W is the ap-
plied force and moment, J is a 6 x 6 matrix of mass and inertia, .S; is the joint
screw, and Ad and ad are standard operators from differential geometry [11].
A useful computational feature of this algorithm is that no distinction needs
to be made for revolute or prismatic joints. In [15], this algorithm was ex-
tended to forward and inverse dynamics of partially actuated systems, and to
produce the derivatives needed for many optimal control solvers, as discussed
in the previous section.

Given the ability to compute the dynamics and derivatives of relatively
complex systems, we now discuss some representative examples. The following
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e Initialization ]
Vo=Vo=Wnt1 =0

e Forward recursion: for i =1 to n do

T' 1,0 — M‘@Siqi
Vi=Ad,-1 (Vi-1) + Sigi

z—L

Vi = Sigi + AdTZ:ll’i(Vifl) + [AdT;lu(Vifl% Siqz}
e Backward recursion: for i =n to 1 do
Wi = Ad;ﬁ+ Win) + JiVi — ady, (JiVh)
= ST Wi

Fig. 2. The POE recursive Newton-Euler inverse dynamics algorithm

case studies demonstrate both successes and difficulties that we have encoun-
tered in applying the optimality conditions of Sect. 1.1 to multibody systems
problems.

2 Some Representative Case Studies

2.1 Case 1: Fully Actuated Robot

Consider the case of finding the minimum effort control which moves the two
link planar robot shown in Fig. 1 from an outstretched horizontal position to
a vertical position. Assume that both joints of the arm be actuated, and let
the cost function be:

J = cillg(ty) — aall® + c2lla(ts)|* + /IIUH dt, (5)

where ¢ € R? are the joint angles, ¢4 = [g,O]T, are the desired final joint
positions in radians, u € R? are the corresponding joint torques, and ¢; =
co = 100 reflects the desire to reach the final vertical configuration with little
error.

We used several approaches to solve this optimal control problem. The
most straight forward approach, called the “shooting method,” is to cleverly
find the initial costate, A\(0), such that when the state and costate equations
are integrated forward from ¢ = 0 to ¢t = ¢y with H, = 0, the proper final
condition on the costate is satisfied (A(tf) = ¢Z (w,(ts)). Unfortunately, be-
cause the costate equations are not stable and highly sensitive to the initial
conditions [3], the shooting method failed when applied to this problem. A
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second, more successful, approach used by several researchers [5, 4, 10, 12] in
robotics is to approximate the motion of the joints using basis functions such
as splines or a truncated Fourier Series. For instance, we used quintic B-spline
polynomials with 12 uniformly spaced knot intervals to parameterize our solu-
tion as ¢ = q(t, P) with P € R? x R'2 being the amplitude of the spline basis
functions. For any choice of P, we can compute the required control u(t) by
differentiating ¢(¢, P) with respect to time to obtain ¢ and § and, evaluating
the equations of motion

M(q)§+ h(d,q) = u . (6)

In order to use this “direct approach,” we guessed an initial motion that kept
the second link aligned with the first with ¢o(t) = 0, and moved the first
link smoothly from ¢;(0) = 0 to qi(ty) = 7/2, with t; = 2 seconds. We
then computed J(u(P)) in (5) and its gradient V.Jp using adaptive Simpson
quadrature. In this case, the integrand is known explicitly throughout the
integral since all the terms in (6) are known explicitly in terms of P from the
joint angles ¢ = ¢(t, P). Given J(P) and its gradient, we could easily minimize
it over P using Matlab’s BFGS [9] algorithm in the function “fminunc.”

Figure 3 shows the locally optimal solution found to this problem using the
parameter optimization approach mentioned above. The frames are spaced at
equal intervals in time, with ¢y = 2 seconds. At first the robot allows gravity
to take over and it swings down while folding up the second link. It then
swings the first joint into the upward posture. A small pumping motion is
applied to the second link in order to move it into the vertical posture. The
initial value of the effort term in the cost function was 73.6 and the final value
was 9.9. The computation time for this problem was about 2 minutes on a
PIIT-800 PC.

We have used this basic approach with our dynamics tools to solve a
weight-lifting problem for a much more complex Puma 762 robot in [20], where
we tripled the payload above the manufacturers specifications. Even though

Fig. 3. Final path for fully-actuated planar 2R problem
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the solution to the above problem was fairly stable numerically, we still needed
to choose an appropriate set of basis functions in order to approximate the
numerical solution. In this paper, we develop an approach that does not use
any basis functions to approximate the solution.

2.2 Case 2: Underactuated Robot

The optimal control problem becomes less numerically stable and more dif-
ficult to solve when the system is underactuated. For instance, suppose the
motor attached to the first joint of the above 2R robot is disconnected. The
system then only has a motor at its elbow and is often called the Acrobot,
which has been studied by Spong [17] and others. Consider the swing-up mo-
tion problem where the system starts from a hanging downward posture and
the optimal control problem is to find an open-loop control torque for the el-
bow, if one exists, that drives the system to the upward posture of the previous
example. This case is much more challenging than the previous one because we
can no longer use (6) to compute u(P) because the system is underactuated.

Choose the same objective function as (5), except the control u is now a
scalar. One way to approach the problem is approximate the control with a
set of basis functions and integrate the 4 state equations in order to evaluate
(5). Any gradient-based numerical optimization will need both the value of
J(P) and its gradient V,J. Assuming that the state, costate, and boundary
conditions are satisfied, the required derivative is

dJ
dp;

— [ Hula®)u0) A1) - e (7)
0

dp;

This derivative is valid for any (x,(t), u,(t)) even if they are not optimal [3].
Then, in order to evaluate the objective function and its gradient for use in
any gradient-based nonlinear optimization algorithm, the following steps must
be performed:

Select a set of basis functions and parameters to define u, (¢, P).
Integrate the differential equations (1) of motion from 0 to ¢; to obtain
xo(t) and J(P).

e Evaluate the costate (4) boundary conditions A(t;) = ¢I (z,(tf)) and in-
tegrate the costate equations backwards in time from ¢y to 0 to obtain
At).

e Evaluate the gradient of J using (7).

We used this method to solve the Acrobot swing-up problem with one
modification. That is, instead of viewing the control us as the torque at joint
2, we defined the motion of joint o with our spline functions and considered
that to be the control in (1). In doing so, the actual joint torque us(t) can
be computed algebraically from (6) assuming that (g, ) are known. The ad-
vantage of doing this is that the state reduces to 2 dimensions in this case
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f < - { N\ > > l

Fig. 4. Optimal swing up motion for an Acrobot with ¢1(0) = —1.0

x = [q1,¢1]T since the motion of the second joint is known from the parame-
terization.

Note that it is not apparent what, if any, elbow motion will drive the sys-
tem to the desired final configuration. Our initial guess for the elbow motion
was very poor. We did not move the elbow joint at all during the motion,
and let the system move like a rigid pendulum would with an initial con-
dition ¢1(0) = —1.0,¢4(0) = ¢2(0) = ¢2(0) = 0.0. Figure 4 shows the final
motion obtained using Matlab’s nonlinear parameter optimization with gra-
dients computed as described above. The motion produced is similar to those
proposed by Spong [17], in which the lower link pumps energy into the sys-
tem and this energy causes the first link to move into the vertical position. In
addition to this example, we have used this basic approach to solve for much
more complex optimal high-dive motions for a human-like diver in [16].

When we computed the above solution to the underactuated Acrobot, we
did not expect numerical difficulties, since we had the exact gradient of the
objective function and the optimization algorithm has well-established conver-
gence properties for this case [9]. However, we did encounter some numerical
problems and had to adjust some of the tolerances in the optimizer in order
to achieve convergence, and the computation time, even in the best of cases
(about 5 minutes on a PIII-800 PC), was much longer than in the previous
example. The problem was that the round-off errors encountered during the
numerical solution of (1), (4), and (7) lead to large relative errors in the gradi-
ent when the algorithm is near convergence. The algorithm developed in this
paper alleviates these difficulties.

2.3 Case 3: Underactuated Systems with Contact
Constraints-Human Step Training Example

One important application of our proposed algorithm is the generation of
optimal inputs for the robotic rehabilitation of paralyzed individuals [22]. In
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[21] we examined a method to control the stepping motion of a paralyzed
person suspended over a treadmill (see Fig. 1) using a robot attached to the
pelvis. Leg swing motion was created by moving the pelvis without contact
with the legs. The problem is formulated as an optimal control problem for an
underactuated articulated chain. Similar to the underactuated Acrobot, the
optimal control problem is converted into a discrete parameter optimization
and a gradient-based algorithm is used to solve it.

To simulate a paralyzed person, a dynamic model for a branched kinematic
chain was used to approximate the kinematics and dynamics of a human
subject. For the dynamic analysis, four rigid bodies were used, with the head
arms and torso lumped together as a single body, and the upper leg, lower leg,
and foot modeled as single rigid bodies. The torso had five degrees of freedom
with three translations and two rotations. Rotation about an axis through the
upper leg joints was ignored. The upper leg was connected to the torso with a
three degree of freedom ball joint. The lower leg was connected to the upper
leg by a one dof rotation. Similarly, the foot was connected to the lower leg
by a one dof rotation. Thus the entire system had ten degrees of freedom. For
the swing hip, knee and ankle joints, a torque was applied to simulate the
stiffness of passive tissue, but no torque from the muscles since the person is
assumed to be paralyzed. A total of 32 B-spline parameters were used in the
optimization to specify the motion of the swing hip. This problem differed
from the Acrobot because we had to constrain the motion of the foot to avoid
contact with the ground, and the motion of the legs to avoid contact with
each other. We used penalty functions to enforce these collision avoidance
constraints.

In the optimization results shown in Fig. 5, we found the motion of the
swing hip that produced a step for the swing leg that was as close as possible

z (cm)

3 Rty
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-100 -50 0 50 100 2010 0-10
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Fig. 5. Motion of the pelvis can be used to create motion for a paralyzed swing leg.
The solid lines show gait which results from optimal motion of the pelvis, and the
dashed lines are the gait recorded from the motion capture system
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to a normal human gait. The optimal control found from our algorithm lifted
the swing hip to avoid collision between the swing leg and the ground. At the
same time, it twisted the pelvis to pump energy into the paralyzed leg and
moved the leg close to the desired final configuration, while avoiding collision
between the legs. Thus we found a strategy that could achieve repetitive
stepping by shifting the pelvis alone. The optimized, pelvic motion strategies
are comparable to “hip-hiking” gait strategies used by people with lower limb
prostheses or hemiparesis.

Even though there were relatively few parameters (32) in the optimization,
it was not numerically stable and took approximately 4 hours to converge,
with approximately five minutes used for every major iteration of the opti-
mization. The problems were again due to round-off errors introduced by the
computation of the gradient in (7). The penalty functions for obstacle avoid-
ance exacerbated the problem since they effectively created a “stift” system
of differential equations. The above results only considered the swing phase
of the gait cycle. In our initial attempts to combine the stance phase with the
swing phase in the optimal control solution were numerically unstable and did
not converge to a solution.

Based on our initial results from the simple hopping machine considered in
Case 4, we believe that with our new algorithm it will be possible to combine
the stance and swing phases and reliably compute an optimal motion for Case
3 in just a few minutes of computation time. This would make it possible to
compute an optimal motion for each patient in a clinical setting.

2.4 Case 4: Minimum Fuel Hopping

In order to explore the difficulties associated with the change in dynamics
between the stance phase and swing phase of motion mentioned in Case 3,
we considered a simple one-dimensional hopping system shown in Fig. 1. This
system is driven by a pneumatic actuator, with the location of the piston
relative to the mass under no external loading defined as y,. After contact
occurs with the ground with y < y,, the upward force on the mass from
actuator can be approximated by a linear spring with F' = k(y, —y), where k
is the spring constant. The position y, can be viewed as the unstretched spring
length and it can be easily changed by pumping air into or out of either side
of the cylinder. The equations of motion for the mass are mij = F(y, y,) —mg,

where myg is the force due to gravity, and F(y,y,) = g(y ) g;lzf;wise. Note
P <

that in this case F'(y,y,) is not differentiable at y = y,, and gradient-based
methods will have difficulties with this. However, the discontinuity in the
derivative can easily be smoothed. For instance, let the spring compression be
e = yp — y and choose an o > 0, then
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0 0>e
Fle) = £¢? 0<e<a

ke — ’%O‘ otherwise

is C1. The final equation of motion for this system relates the air flow into
the cylinder, which is the control u(t), to the equilibrium position y, of the
piston. Assume for the following that the equation g, = u approximates this
relationship.

When the hopping machine begins its operation, we are interested in start-
ing from rest, and reaching a desired hop height %, at time ¢;. If we minimize

T0) = L) 8 490V + Y fa ) 4 ()] (®)
n=0

the terms outside the summation reflect the desire to reach the height at time
t; with zero velocity, and the terms inside the summation reflect the desire
to minimize the gas used to achieve this. The weighting on y,, is used to keep
the piston motion within its bounds. We first attempted to solve this problem
by parameterizing the control u(¢) with B-splines and using the basic steps
used in Cases 2 and 3. Even after considerable tweaking of tolerances, the
gradient-based algorithm would not converge. This drove us to develop the
algorithm described in the next section.

3 Problem Formulation and Background Results

We assume that the dynamic system defined by (1) and the performance
measure (2) have been descretized by a suitable numerical integration scheme.
To simplify the notation, we use the same function and variable names for
the discrete-time versions of the continuous-time variables. A more detailed
discussion of this material can be found in [14].

Minimize N-1
u(n), zmy” = PEED+ ZO L(xz(n), u(n), n) ()
subject to z(n+1) = f(x(n),u(n)); =(0)=xg (10)

We further assume a quadratic performance index, namely:

L(z(n),u(n),n) = %[w(n) —2°()]" Q(n)[x(n) — z°(n)]

+[u(n) — u”(n)]" R(n)[u(n) — u® (n)] (11)

and

$(z) = Sz — 2°(N)]"Q(N)[z — 2°(N)] (12)
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In (11) and (12), u®(n), z°(n), n = 1,... N are given control input and state
offset sequences. In standard optimal regulator control problem formulations,
u®(n), x°(n) are usually taken to be zero with the exception perhaps of 2:°(N),
the desired final value for the state. The formulation considered here addresses
the more general optimal tracking control problem and is required for the
linear quadratic step in the proposed algorithm presented in Sect. 3.2.

3.1 First Order Optimality Conditions

We next briefly review the first order optimality conditions for the optimal
control problem of (9) and (10), in a manner that brings out certain important
interpretations of the adjoint dynamical equations encountered in a control
theoretic approach and Lagrange Multipliers found in a pure optimization
theory approach such as that mentioned in Sect. 1.1.

Let us consider the cost-to-go:

N-1
J(n) =Y L(w(k),u(k), k) + ¢((N)) (13)
n=k
with L and ¢ as defined in (11) and (12) respectively. We remark that J(n)
is a function of z(n), and u(k), k =n,..., N —1 and introduce the sensitivity
of the cost to go with respect to the current state:
0J(n)
A(n) = 14
") = G (14)
Since
J(n) = L(z(n),u(n),n) + J(n +1), (15)

we have the recursion:
A (n) = Lo(z(n), u(n),n) + AT (n + 1) fo(z(n), u(n))
= [z(n) — 2°(n)]"Q(n) + AT (n + 1) fu(x(n), u(n)) (16)

by using (11) and where L, and f, denote the partials of L and f respectively
with respect to the state variables. The previous recursion can be solved back-

ward in time (n = N — 1,...,0) given the control and state trajectories and
it can be started with the final value:
OL(N)
M(N) = = [z(N) — z°(N)|TQ(N 17
(V) = G = ) = (D) Q() (1)

derived from (12). We now compute the sensitivity of J(n) with respect to
the current control u(n). Clearly from (15),

aJ(n)
du(n)

= Lu(z(n),u(n),n) + X" (n + 1) fu(z(n), u(n))

_ [u(n) _ uo(n)]TR(n) (18)
+ X (n+ 1) fu(z(n), u(n))
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. 0J(n oJ(n ox(n
since gi(:)l) = aignﬂ; . ai(:)l) = AT (n+1)fu(x(n),u(n)). In (19) L, and

fu denote the partials of L and f respectively with respect to the control

variables and (11) is used.

Next note that % = gig:g since the first n terms in J do not depend

on u(n). We have then obtained the gradient of the cost with respect to the
control variables, namely:

aJ(0) 9J(1)  AJ(N —1)

Vol =\ 500) au(l) " duN =1

(19)

Assuming u is unconstrained, the first order optimality conditions require that
Vud = 0. (20)

We remark that by considering the Hamiltonian
H(z,u,\,n) = L(z,u,n) + AT f(z,u) , (21)

we have that H,(z(n),u(n), \(n+1),n) = %(Jn), i.e. we uncover the generally
known but frequently overlooked fact that the partial of the Hamiltonian
with respect to the control variables u is the gradient of the cost function
with respect to u. We emphasize here that in our approach for solving the
optimal control problem, we take the viewpoint of the control variables u(n)
being the independent variables of the problem since the dynamical equations
express (recursively) the state variables in terms of the controls and thus can
be eliminated from the cost function. Thus in taking the partials of J with
respect to u, J is considered as a function u(n), n = 0,...,N — 1 alone,
assuming that x(0) is given. With this perspective, the problem becomes one
of unconstrained minimization, and having computed V,J, Steepest Descent,
Quasi-Newton, and other first derivative methods can be brought to bear to
solve it.

Note that we are limiting the problem to the case of unconstrained controls,
but for many problems in robotics, control constraints are not the limiting
factor. In addition, soft constraints on actuation bounds can often be enforced
with penalty functions with good fidelity since these constraints are usually
not known precisely. With the control unconstrained, and with the large-scale
character of the problem, methods that take advantage of the special structure
of the problem become viable. The Linear Quadratic Regulator algorithm is
such an approach in case of linear dynamics. We review it next and we remark
that it corresponds to taking a Newton step in view of the previous discussion.

3.2 Linear Quadratic Tracking Problem

We next consider the case of linear dynamics in the optimal control problem of
(9) and (10). In the following, we distinguish all variables corresponding to the
linear optimal control problem that may have different values in the nonlinear
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optimal control problem by using an over-bar. When the cost is quadratic
as in (11) we have the well-known Linear Quadratic Tracking problem. The
control theoretic approach to this problem is based on solving the first order
necessary optimality conditions (also sufficient in this case) in an efficient
manner by introducing the Riccati equation. We briefly elaborate on this
derivation next, for completeness and also since most references assume that
the offset sequences x°(n) and u®(n) are zero. First, we summarize the first
order necessary optimality conditions for this problem.

Z(n+1) = A(n)z(n) + B(n)u(n) (22)
X(n) = [2(n) - 2°(0))" Q(n) (23)
+AT(n+1)A(n)
dJ(n)/0u(n) = [a(n) — a°(n)]" R(n) (24)
+X'(n+1)B(n) = 0

Note that the system dynamical equations (22) run forward in time n =
0,...,N — 1 with initial conditions z(0) = Zo given, while the adjoint dy-
namical equations (24) run backward in time, n = N — 1,...,0 with final
conditions AT(N) = [z(N) — z°(N)]TQ(N). From (25), we obtain

a(n) = @ (n) — R(n)"'B(n)"X(n + 1) (25)
and by substituting in (22) and (24), we obtain the classical two-point bound-

ary system but with additional forcing terms due to the z°(n) and @°(n)
sequences.

Z(n+1) = A(n)Z(n) — B(n)R(n) 'B(n)" A(n +1) (26)
+B(n)a’(n)
A (n) = Q(n)z(n) + AT (n)A(n + 1) — Q(n)z°(n) (27)

The system of (26) and (27) can be solved by the sweep method [3], based
on the postulated relation

A(n) = P(n)z(n) + s(n) (28)

where P(n) and s(n) are appropriate matrices that can be found as follows.
For n = N, (28) holds with

P(N)=Q(N), s(N)=-Q(N)z°(N). (29)
We now substitute (28) in (26) and after some algebra we obtain
F(n+1) = M(n) A(n)#(n) + v(n) (30)
where we defined
M(n) = [T+ B)R) ™ Bn) P(n + 1)] o (31)
v(n) = M(n)B(n)[a(n) — R(n)~*B(n)Ts(n + 1)] (32)
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By replacing A(n) and A(n + 1) in (27) in terms of Z(n) and Z(n + 1) from
(28), we obtain
P(n)z(n) + s(n) = Q(n)z(n) + A" (n) [P(n + 1)Z(n + 1)
+s(n+ 1] = Q(n)z°(n),

and by expressing Z(n + 1) from (30) and (32) above, we get

P(n)z(n) + s(n) =
Q(n)z(n) + A" (n) P(
—AT(n)P(n+1)M(n)
+A" (n)P(n+ 1) M (n) B(n)u’(n)
+A" (n)s(n +1) = Q(n)z°(n)

3
+
=
g
2
3

5\\
2

The above equation is satisfied by taking

P(n) = Q(n) + AT (n)P(n+ 1)M(n)A(n) (33)
s(n) = AT(n)[I — P(n+1)M(n)B(n)R(n) 'B(n)"]s(n + 1)
+A" (n)P(n+ 1)M (n)B(n)u’(n) — Q(n)z°(n) (34)

Equation (33) is the well-known Riccati difference equation and together with
the auxiliary equation (34), which is unnecessary if Z°(n) and @°(n) are zero,
are solved backward in time (n = N — 1,...,1), with final values given by
(29) and together with (31) and (32). The resulting values P(n) and s(n) are
stored and used to solve forward in time (n = 0,..., N —1), (30) and (25) for
the optimal control and state trajectories. These equations are summarized
in Table 1.

3.3 Formulation of the SLQ Algorithm

In the proposed SLQ algorithm, the control at stage k& + 1 is found by per-
forming a one-dimensional search from the control at stage k£ and along a
search direction that is found by solving an Linear Quadratic (LQ) optimal
control problem. Specifically, let Uy, = [u(0) u(1)...u(N —1)] be the optimal
solution candidate at step k, and Xy = [z(1) z(2)...2z(N)] the corresponding
state trajectory obtained by solving the dynamical equations (10) using Uy
and with the initial conditions 2(0). We next linearize the state equations (10)
about the nominal trajectory of U, and Xj. The linearized equations are

T(n+1) = fo(z(n), u(n))z(n)+ fulz(n), u(n))a(n) (35)

with initial conditions Z(0) = 0. We then minimize the cost index (9) with re-
spect to #(n). The solution of this LQ problem gives Uy, = [a(0) @(1) ... a(N —
1)], the proposed search direction. Thus, the control variables at stage k + 1
of the algorithm are obtained from
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Table 1. Algorithm to solve the Discrete-Time Finite-Horizon Linear Quadratic
Tracking optimal control problem

1. Solve backward (n=N —1,...,0) with Py = Qn and sy = —QnZ3:

M(n) = [I + B(n)R(n) " B(n)"P(n + 1)}

P(n) = Q(n) + A(n)" P(n + 1)M(n)A(n)

s(n) = A(n)T [1 — P(n+ 1)M(n)B(n)R(n)-1B(n)T] s(n+1)
+A(n)" P(n + 1)M (n)B(n)u’(n) — Q(n)z°(n)

2. Solve forward (n =0,...,N — 1) with (0) = Zo
v(n) = M(n)B(n)[@’(n) — R(n)~" B(n)" s(n +1)]
Z(n+1) = M(n)A(n)z(n) + v(n)
An+1)=Pn+1Z(n+1)+s(n+1)
)

Uk+1 = U + oy - Uk (36)

where o, € RT is appropriate stepsize the selection of which is discussed later
in the paper. Note again our perspective of considering the optimal control
problem as an unconstrained finite-dimensional optimization problem in U.
We emphasize that Uy, as computed above is not the steepest descent direc-
tion. It is the solution to a linear quadratic tracking problem for a nonlinear
system that has been linearized about Ug. Note that the objective function is
not linearized for this solution. Our algorithm is different than standard Qua-
silinearization [3] and Neighboring Extremal [18] methods where the adjoint
equations are also linearized and two-point boundary problems are solved.

3.4 Properties of the SQL Algorithm

In this section, we prove two important properties of the proposed algorithm.
First, we show that search direction U is a descent direction.

Theorem 1 Consider the discrete-time nonlinear optimal control problem of
(9) and (10), and assume a quadratic cost function as in (11) and (12) with
Qn) = QT(n) >0, Q(N) = QT(N) > 0 and R(n) = RT(n) > 0, n =
0,1,...,N — 1. Also consider a control sequence U = [u(0)T ... T (N — 1)]T
and the corresponding state trajectory X = [x(1)T ... 2T (N)]T. Nexzt, linearize
system (10) about U and X and solve the following linear quadratic problem:
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Minimize — 1 =T _ o = 70
e T = ST (N) = 2 (N)QUN) () + (V)]
5 3 {#) — 2] Q)lz(n) — 3°(n)]
n=0
+ [a(n) — a°(0)] " R(n) () — ()]} (37
subj. to
Fn+ 1) = Lula(n), u(n))2(n) (39)

+ fu(z(n),u(n))u(n);  #(0) =0,

where 7°(n) = 2°(n) — x(n), @°(n) = u°(n) —u(n). Then if U = [a(0)T ... aT
(N —1)]T is not zero, it is a descent direction for the cost function (9), i.e.

JU +a-U) < JU) for some a > 0.

Proof: We establish that U is a descent direction by showing that:

o)
Vud U= 2 a11J(n)1L(7L) <0, (39)

since V,,J in (19) is the gradient of the cost function with respect to the
control variables. Now, the components of V,J are expressed in (19) in
terms of the adjoint variables A(n) that satisfy recursion (16) with final
values given by (17). On the other hand, Z(n) and @(n) together with ad-
joint variables A(n) satisfy the first order optimality conditions for the linear
quadratic problem given in (22), (24) and (25), where A(n) = fz(z(n),u(n))
and B(n) = f,(z(n),u(n)). Let us define

A(n) = A(n) = A(n) (40)
and note from (16) and (24) that
An)" =2(n)"Q(n) + A(n +1)TA(n); A(N) = Q(N)Z(N).  (41)
Next through the indicated algebra, we can establish the following relation:
aJ(n) La(n) —
du(n) ()
= ([u(n) = u ()] R(n) + A(n +1)" B(n) ) (n)
(using (19))
= —A(n+ 1)"Bn)a(n) — a(n)" R(n)i(n)
(using (25)) )
= An+1D"Z2n+1)+ An+1)TA)z(n) — a(n)" R(n)a(n)
(using (39)) )
= —AMn+1)"2(n+1) + A(n)"2(n) - 2(n)" Q(n)z(n)
—a(n)"R(n)u(n). (using (41))
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Finally, summing up the above equation from n = 0 to n = N — 1 and noting
that £(0) = 0 and from (29) that A(N) = Q(N)Z(N), gives:

_ L aJ(n

Q

~a(n) (42)

- i [#(n)"Q(n)z(n) + @(n)" R(n)u(n)]

T(NQRN)Z(N) < 0

83

and the proof of the theorem is complete. [ |

We remark that the search direction U can be found by the LQR algorithm
of Table 1 with A(n) = fz(z(n),u(n)) and B(n) = f.(z(n),u(n)).

The next result shows that the proposed SLQ algorithm does in fact con-
verge to a control locally minimizing the cost function (9).

Theorem 2 Starting with an arbitrary control sequence Uy, compute recur-
sively new controls: B
Uk+1 =Up +oar-Ug (43)

where the direction Uy, is obtained as in Theorem 1 by solving the LQR problem
of (37) and the linearized system (39) about the solution Uy and corresponding
state trajectory Xy.; also oy, is obtained by minimizing J[Uy,+aUy] over a > 0.
Then Uy converges (in the Euclidean norm sense) to a control that locally
minimizes the cost function (9) subject to the system equations (10).

Proof: See [14], or note that given the result of the previous theorem, stan-
dard convergence proofs (see [7]) apply with either an exact or an inexact
linesearch such as the Armijo, Goldstein, or Wolfe search rules [9].

4 Numerical Example

We conducted numerical experiments the hopping system discussed in Case
4, above. We minimized (8) with the following parameters: k/m = 100,
g = 386.4, a = 0.1. We assumed that all states were initially zero, and that
the initial control sequence was zero. The cost function parameters were se-
lected as: ty = 1, ¢ = 1000, = 1.0. As in the last example, a simple Euler
approximation was used to discretize the equations, with N = 50.

As shown in Fig. 6, the algorithm produced an alternating sequence of
stance phases and flight phases for the hopping system and it naturally iden-
tified the times to switch between these phases. If one were to use collocation
methods to solve this problem with explicit consideration of the different dy-
namics in the different phases, one would have to guess the number of switches
between phases and would need to treat the times at which the switch occurs
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Fig. 6. Maximum height hopping motion and minimum fuel control

as variables in the optimization. We note that our algorithm converged much
faster when the weighting on the control r is increased; also the number of
iterations required for convergence in this problem increases for larger y%;,
ranging from 3 for y§, = 1, to 166 for y§ = 50. In addition, the algorithm
failed to converge for @ < 1 x 107°, which demonstrates the need for the
dynamics to be continuously differentiable.

5 Conclusion

We discussed the formulation and solution of several important optimal con-
trol problems for robotic systems. The most challenging case by far is an
underactuated system with contact constraints. We developed an algorithm
for solving such nonlinear optimal control problems for systems with quadratic
performance measures and unconstrained controls. Contact constraints were
accounted for with penalty functions. Each subproblem in the course of the
algorithm is a linear quadratic optimal control problem that can be efficiently
solved by Riccati difference equations. We show that each search direction
generated in the linear quadratic subproblem is a descent direction, and that
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the algorithm is convergent. Computational experience has demonstrated that
the algorithm converges quickly to the optimal solution.
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Summary. A dynamic model of running—the spring-loaded inverted pendulum
(SLIP)-has proven effective in describing the force patterns found in a wide va-
riety of animals and in designing and constructing a number of terrestrial running
robots. Climbing or vertical locomotion has, on the other hand, lacked such a sim-
ple and powerful model. Climbing robots to date have all been quasi-static in their
operation. This paper introduces a one degree of freedom model of a climbing robot
used to investigate the power constraints involved with climbing in a dynamic man-
ner. Particular attention is paid to understanding how springs and body dynamics
can be exploited to help relieve a limited power/weight ratio and achieve dynamic
running and climbing.

1 Introduction

We seek a fast and agile robot that can traverse both vertical and horizontal
real world terrain. Dynamic locomotion over unstructured and natural terrain
has proven to be a difficult task. A large number of walking robots have been
built, but only recently have running robots been developed that can move
at speeds of bodylengths/second over rough terrain [6, 21, 15]. The Rhez [6]
and Sprawl [15] families of dynamic machines are based on a Spring-loaded
Inverted Pendulum (SLIP) model of running developed from biomechanical
research [13, 20]. They have simple morphologies with only one actuator per
leg, are polypedal, run mostly open-loop, and rely on springs in the legs to
passively self-stabilize.

On the other hand, there have only been a few legged robots that can climb
vertical surfaces, and they have generally been limited to quasi-static climb-
ing regimes. Their reliance on vacuum or magnetics to achieve the adhesive
forces necessary for vertical climbing has limited them to select man-made
surfaces such as glass and metal [19, 10, 23]. Recently foot-hold based [11, 12]
and vectored thrust based climbers [1] have been developed, but they only
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slightly extend the range of traversable surfaces and do not address the role
of dynamics in climbing.

The motivation for this work is the ongoing development of the RiSE
robot—a bio-inspired hexapedal platform that is intended to both run and
climb vertical surfaces [8]. Currently under development are micro-spine [7, 16]
and dry-adhesive feet [22] to allow attachment to a wide range of natural verti-
cal environments. The current instantiation of the robot, however, is otherwise
like the remainder of climbing robots in that it moves slowly and its control
is based on quasi-static assumptions. The purpose of this work is to explore
how to achieve dynamic climbing and how that can be used to improve the
performance of the RiSE climbing robot.

To this end we discuss some of the fundamental differences between dy-
namic running and climbing and introduce a simple one-dimensional dynamic
climbing model to investigate approaches to mitigate some of the difficulties
in achieving dynamic climbing.

1.1 Dynamic Climbing

We reserve the term dynamic for robots that manage their kinetic as well
as their potential energy. For example, dynamic level ground running can
be distinguished from quasi-static locomotion by the phasing of kinetic and
gravitational potential energy during a stride. Generally, dynamic runners are
distinguished in physical structure by their essential use of springs in the legs.
These leg springs act as reservoirs that can store and return energy at whatever
required rate. In a typical dynamic gait, the spring energy is collected during
the initial phase of a stride (“compression”) and returned during the second
phase (“decompression”) as work done against gravity needed to raise again
the center of mass back close to its height lost in the initial phase. Dynamic
runners can (but need not) adopt an aerial phase gait to buy time for leg
recirculation, thereby affording speeds that surpass the inevitable frequency
limits of their leg swing actuators. In such situations, springs can recover and
return the kinetic energy otherwise lost in body deceleration.

Properly arranging these exchanges of kinetic and spring and gravitational
energy requires control schemes designed to do more than simply track the
joint reference trajectories typically used by walkers. The resulting dynamic
stability confers a degree of agility and maneuverability impossible to achieve
in quasi-static walking gaits. The question arises whether spring assistance
can be introduced in climbing that yields analogous benefits.

The major difference between climbing and running is in the alignment
of the gravity vector with respect to the direction of travel. We suggest that
this has three primary impacts on legged climbers. The first is that travel
aligned with the gravity vector implies that any forward progression increases
the gravitational potential of the robot, resulting in a net drain on the rest
of the system’s energy. As a consequence the SLIP model, which relies on
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the interchange of kinetic and gravitational potential energy from hopping or
bouncing to regulate the energy during a stride, no longer applies.

In addition to necessarily changing the way in which kinetic and spring
potential energy are exchanged with gravitational potential energy, a vertical
heading also implies that ground impacts are not induced by gravity. Es-
pecially for the front feet ground contact must be actively generated. This
changes, and to some degree reduces, the role of springs in mitigating ground
contact forces. Successful running robots have required springs to regulate the
impact at ground contact, and this is not necessarily the case for climbers.

A third major difference for climbing robots is the necessity of bi-lateral
or “adhesive” foot constraints. The development of feet that create an in-
pulling force to the wall is one of the major design requirements in a climbing
robot. Having to create feet that grasp the wall to deal with the inherent pitch
instability serendipitously reduces the chance of tipping in the roll direction—
which is a major source of instability in level ground runners. Once attached,
tipping becomes less of a problem, but motions such as repositioning the feet
on the ground via sliding, as is often done in turning, become more difficult.

In some sense these differences make climbing easier than running since
severe foot impacts and lateral tipping are less likely to occur. On the other
hand getting good foot attachment and regulating the system’s energy become
much more difficult. The problem of attachment has and continues to receive
a fair amount of attention. The second problem, more effectively using the
system’s power resources, motivates our investigation with a simple dynamic
climbing model.

A dynamic robot may lend scansorial machines advantages relative to to-
day’s quasi-static climbers analogous to the superiority of level ground runners
over their quasi-static walking counterparts: simplified control; improved effi-
ciency; access to and mobility through otherwise impassible terrain obstacles;
and, of course, faster speeds.

1.2 Power and Speed Constraints

We propose a simple one-dimensional climbing model to investigate the power
requirements and constraints associated with dynamic behavior. As a target
for dynamic motion we set a stride frequency of 3.5 Hz for our 3 kg robot.
Specifically, this figure is associated with the natural frequency of the linear
mass spring model associated with purely vertical SLIP hopping.

At lower frequencies, back-of-the-envelope calculations developed in Ap-
pendix A1l suggest that spring-extension requirements for SLIP-like running
(i.e., resonant bouncing in the sagittal plane over level ground) would incur
impracticably long leg compression.

Another method that has been used to characterize the onset of running is
the Froude number, (v2/gl), where v is the average fore-aft running speed, [ is
the leg length and g is the constant of gravitational acceleration. The Froude
number is a dimensionless constant that has been used in biomechanics to
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predict the dynamic similarity in legged animals that is manifest over a wide
range of sizes. It has been shown that many animals prefer to switch from a
walk to a run at speeds where their Froude number is about 0.5 [4, 18].

RiSE climbing at the target frequency of 3.5 Hz would travel at 0.55 m/s
which corresponds to a Froude number of 0.2. While it is not clear that the
Froude number is as applicable to climbing as it is to terrestrial locomotion,
it does give some indication of when velocity begins to significantly affect
the energetics of motion. The relatively low value of our target frequency’s
Froude number with respect to observed animal gait transitions suggests that
the target frequency we have chosen for dynamic climbing is probably not too
high.

With the current trajectory-tracking, quasi-static control scheme the robot
can climb with a stride frequency of 0.5 Hz. Is it theoretically possible to
achieve the required 7x increase in speed without changing the motors or
decreasing the robot’s mass?

The current robot, weighing 3 kg and equipped with two 4.5 W rated servo
motors for each of its six legs, has an input electrical power-to-mass ratio of
18:1. In order to climb vertically at our dynamic threshold (0.53 m/s with a
stride length of 0.15m) requires a mechanical output power of 16 W just to
deliver the energy expended to increase the system’s gravitational potential.

Experiments on Geckos running up vertical walls has shown that the me-
chanical power that they expend to run at speeds up to 10 bodylengths/second
is about 5 W per kilogram of animal [9]-about the same ratio as for RiSE were
it to run at 3.5 Hz. What is remarkable is that for the gecko the mechanical
power expended when climbing is only about 10% greater than the amount
of energy lost to gravitational potential.

The 16 W power requirement for RiSE running at this speed represents
30% of the maximum continuous electrical input power that the robot motor’s
can consume without thermal damage. In reality only a small percentage of
the motors’ 54 W rating will be converted into useful mechanical work. The
two major reasons for this are (1) the motors are run at maximum power
for only a small segment of the stride and (2) motor inefficiencies (e.g. ther-
mal losses in the windings and mechanical losses in the bearings) and system
“drag” (e.g., transmission losses, generation of internal forces and negative
work associated with securing footholds) significantly diminish the mechani-
cally useful component of the power the motors consume.

In this paper we address the first of these two problems. Specifically we
consider how to use dynamic gaits and body/leg springs to better utilize
the available motor power. We show that in the ideal case these approaches
significantly reduce the peak power demanded from the motors permitting a
smaller gear reduction, which in turn allows a higher stride frequency.

With ideal motors the changing demands for torque and speed during the
leg cycle could be met by implementing a torque control law and allowing the
motor to operate at different points along the speed-torque curve. As shown
in Fig. 2 for the current motors, only 20% of the torque range is available for
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continuous use. This dramatically reduces the flexibility of any such motor
control law. Instead we investigate how to use passive springs and the body’s
inertia to maximize the application of the available electrical power.

The remainder of this paper is organized as follows. Section 2 describes the
one-dimensional model of climbing that we use to evaluate the efficacy of the
proposed schemes. The simplifying assumptions and equations of motion are
given. Section 3 details the numerical studies undertaken and compares the
various cases considered. Section 4 reviews the results and gives some areas
of future work.

2 Model Description

2.1 Assumptions

The RiSE robot (see Fig. 1a) is a six limbed climber with two controlled
degrees of freedom per leg. Each leg can rotate about an axis parallel to the
direction of motion, lifting the foot away from the ground (wing DOF). The
second actuated degree of freedom controls the rotation of the crank segment
of a four bar mechanism connecting the foot to the body. The foot is attached
to the follower link of the mechanism and traces a roughly elliptical path (see
Fig. 3) in a plane passing through the line of action of the wing DOF.

With the assumption that the wing DOF is primarily used to specify the
point of touchdown and lift-off in the cycle, the motion of the legs and body
can be modeled as planar. This abstraction neglects, among other things,
body pitch away from the wall-which is known to be a significant issue.

The further assumptions that the robot uses an alternating tripod gait
and that lateral motions of the robot are of secondary importance allow the

lg

n

Fig. 1. (A) Picture of RiSE climbing and (B) schematic of the simple climbing
model
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construction of a single degree of freedom model of climbing, shown in Fig. 1b.
The model consists of a point mass body with two virtual, massless legs. The
extension of the foot (Xr) during stance is fixed by the leg kinematics. In
this very simple model, we are ignoring friction from the legs, foot slipping,
etc. Although this oversimplification of the system ignores many real and
important effects, it is hopefully sufficient to examine some basic power and
stability issues and provide a basis for future examinations.

2.2 Stance Dynamics
The sum of the forces in the vertical direction is given by:
mi = F —mg (1)

where m is the mass of the body, F is the force generated by the motor, and
g is the gravitational constant opposing the motion.

The force generated by the leg actuator is based on a very simple motor
model. Due to thermal concerns arising from the nearly continuous use of
the motors when climbing, we assume that the motors operate within their
recommended operating range, shown in Fig. 2. Although the stall torque
of the motor is 28.8 mNm, the continuous operational limit (7pz4,) is only
4.98 mNm. The represents about 20% of the speed/torque curve given by:

W — Wnl
T = ee—
—kum,
Velocity (rpm)
. Recommended operating range
[ ] Short term operation
4.5 Watt
@ 12V

13,900
(No-load
Speed)

|
4.98 28.8
(Maximum Continuous Torque) (Stall Torque)

Torque (mNm)

Fig. 2. Model and specifications for the motors used on the RiSE robot. Data from
Maxon Precision Motors Inc. RE-16 motor (16 mm diameter, graphite brushes, 4.5
Watt, part number 118730) [2]
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Fig. 3. Nominal RiSE foot trajectory and simplification used in the model. The
RiSE leg kinematics result in a swing phase that is almost twice as long as the
stance phase. (Leg trajectory from RISE [8])

where w is the angular velocity of the motor, wy,; is the no-load velocity limit,
and k,, is the slope of the speed/torque curve. Thus the maximum continu-
ously available torque is given by:

. W — Wnl
T=mm\| ———TMazx
_k-m

In order to adapt to a one DOF linear model the trajectory of the four-bar
traveler is approximated with a circle of radius R, as shown in Fig. 3.

Linear Coordinates

With the following conversions:

TMax

R

FMaac:

Ty = R Wnl
. 2
Tnl R Wni

= =—"" = R’
Fyrax TMax

ke

the motor torque law becomes:

F=min (1‘ _kxnl 5 F]\/[az>

where (k) is the slope of the force/velocity curve. With the addition of a
gear reduction (G), the force from the motor (F') becomes:
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. G 2 .
F =nun (SCGQE, GFMaa:) = min (kaGxnl, GFMa,:) (2)

Combining (1) and (2) yields:

1 2 . _ on
i=— (min (M, GFM,H) - mg) (3)
m —k,

Gait transitions occur when (X —x) = 0, i.e. when the leg has reached the
end of the vertical section of travel. Since the four-bar mechanism fixes the gait
trajectory, Xp is fixed at 2R. Whether the leg is capable of resetting within
the duration of the last stance phase is a function of the swing dynamics,
described below.

2.3 Massless Swing Dynamics

Of course in the physical system the mass of the legs is non-zero, and the
leg’s trajectory during the swing phase is a function of its dynamics. Initially,
however, these dynamics are ignored and the swing phases is considered as a
binary state: either the leg can return to the touchdown position in time, or
it cannot.

The time that it will take the leg to retract, ts.wing, is bounded by no-load,
Zn1, and max continuous velocity, &,,.., of the foot, as given below:

G 2R G 2R
s Z tSwing Z

Trran Tnl

(4)

The left side of 4 represents an upper bound on the duration of the swing
phase.

3 Numerical Simulation

3.1 Trajectory vs. Force Based Gaits

In the current control philosophy a gait is generated by specifying a desired
trajectory for the path of the feet. Typically four phases are specified: swing,
attachment, stance, and detachment. Using the motor encoder readings and
PD control the legs attempt to track this trajectory throughout the stride.
Forces are generated when errors in the tracking occur. These generally corre-
spond to contact with the ground during attachment, lifting the robot in the
face of gravity during stance, and the inertial resistance to the rapid accelera-
tion during swing. Figure 4 shows an idealized trajectory and the correspond-
ing torques generated by the motors. The figure on the left is a projection of
foot trajectory in the wing plane. A trace of the wing angle with respect to
time is shown on the bottom right. In the plot on the right the solid horizontal
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line represents the maximum continuous torque as specified by the motor’s
manufacturer. The dotted line is the motor’s mean torque over a stride. The
motor torque curve itself is an abstraction of reality where the large spike
in the torque graph corresponds to the body acceleration of the foot during
stance, and the smaller spike to the acceleration of the foot during swing.

It should be noted that current gaits are designed for effective attachment
and detachment rather than optimizing speed or utilization of available mo-
tor power. Significant improvements in terms of speed can (and are being)
made by refining the shape of the target trajectory—especially during stance
and swing—such that the torque demands more closely match the abstraction
shown in Fig. 4.

Due to the large gear reduction employed, the ability to shape the torque
trajectory is limited. If the peak load on the motors was decreased or distrib-
uted more efficiently throughout the stride then the gearing could be reduced
and the top speed dramatically increased.

nr Maximum Continuous Torque

;’9 10k /
@, oF Body Acceleration

g ~ —

Sample Motor Torque

Foot Acceleration
— Mean Torque

Torque (MNm)

m ‘Wing’ Angle

0
Swing ( Stance Time (S)

Fig. 4. Sample leg trajectory projected onto the “wing” plane (left) and in terms
of the wing angle (right, bottom). These are used to contextualize the idealized force
pattern (right, top). The leg trajectory and mean torque plots are based on RiSE
robot data [3]
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Simulation Results

Figure 5 shows how the theoretical minimum stride frequency for the sim-
ple model described in Sect. 2.2 varies as a function of gear ratio, G. Since
each leg has a kinematically fixed stride length, the stride period is inversely
proportional to velocity. The dashed curved line represents the stance phase
speed limit for each gear ratio, G. The sloping starred line represents the swing
phase reset threshold. Point (A) shows the theoretical maximum speed with
the RiSE v1.0 gear ratio. At this gear ratio any higher speeds would require
the leg to complete the swing phase faster than the motor can handle. Below
a certain gear ratio (point (C) in Fig. 5) the robot no longer has enough force
to overcome gravity and cannot climb. Increasing the gear ratio reduces the
overall available speed and above a threshold, point (B), the duration of the
swing phase becomes the limiting factor.

0.9r

--=- Stance Phase
—+— Swing Reset Threshold

0.8+

0.7+

0.6

[

[
Stride Period

0.5

0.4-

0.3 H

0.2

i ol \\ : : ;
80 70

20 30 40 50 80 90 100 110 120

Gear Ratio (G)

Fig. 5. Simulation results for the base model, showing the minimum possible stride
period (maximum speed) for various gear ratios (G). The shaded areas under the
curves represent regions that are inadmissible as they invalidate either swing or
stance phase constraints
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Point (B) is therefore the theoretical upper bounds on the velocity of
the robot using the current trajectory-based gait formulation. This stride
frequency (and speed) will, of course, never actually be reached due to the
non-instantaneous, and non-trivial, attachment and detachment requirements.
Nevertheless it is clear that without some change to the energetics and actu-

ation scheme of the robot it will never be able to reach our target dynamic
threshold.

Momentum

If, however, non-zero attachment speeds and the momentum of the body of the
robot is explicitly considered in the control scheme the robot could accelerate
from one stride to another and higher “steady-state” velocities are possible.
This requires either allowing the foot trajectories to change as a function of
body velocity or the adoption of some sort of force-based control scheme as
is done in our simple model. In either case the new maximum speed will be
limited by the swing phase reset time. In this case the fastest configuration
corresponds to the lowest gear ratio that will actually lift the robot, as shown
by point (C) in Fig. 5.

A potential difficulty with this approach is ensuring that the foot attach-
ment trajectory remains viable as the body velocity increases. This problem
is being considered in ongoing work on foot attachment dynamics.

3.2 Spring-Assisted Climbing

An alternative method for increasing speeds with a limited power budget is
by the intelligent use of springs to redistribute the cyclic loading and level
out the demands on the motors. By lowering the peak force requirements the
drive-train gear ratio can be reduced to speed up the overall motion of the
robot. This also brings the mean loading on the motors closer to the maximum
continuous operation level. Since these motors get the most power at 1/2 of
stall, and they are limited to 20% stall by the thermal constraints, maximum
achievable power coincides with the maximum continuous operation point.

In this section we consider two approaches to using springs to assist the
motion of the body in climbing. The first approach stores energy from the
end of the stance phase when the body is decelerating in preparation for
attachment and then releases it at the beginning of the next stance phase
to help re-accelerate the body. The second approach uses the motor to store
energy in a spring during the swing phase, which is then released to assist
lifting the body during stance.

3.3 Stance-Stance Transfer

The inspiration and physical motivation for this approach came from observ-
ing fast climbing animals such as the gecko which swing their tails and flex
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their backs as they run. One advantage of these motions may be that they
shift the phasing of the power distribution to the beginning of a stride when
it is needed most to accelerate a body after slowing for foot contact. A proper
model for this behavior would include multiple bodies and degrees of freedom.
Here we hypothesize that at least part of the effect of these motions can be
captured by the linear body spring as shown in Fig. 6. The spring is loaded
during the end of the stance phase as the robot slows for attachment and then
is released at the beginning of the next stride to assist with the re-acceleration
of the body.

The net effect of this body/tail spring is to lower the peak torque spike
during stance. This in turn allows us to further change the gear ratio, reducing
the maximum continuous torque limit and increasing the stride frequency.
With the addition of this spring the equation of motion for the body during
stance becomes:

1 2- _ .
= E (mm (CJ:EkCanlvGFMaz) + k(XF - JJ) - mg> (5)

where X, the rest length of the spring, is located at the midpoint of stance.

nre Maximum Continuous Torgue

N

Sample Moter Terque

Mean Torque

Torque (mNm)

Spring Force
F = k(X —x)

I I L !

Time (s)

Swing Stance

Fig. 6. Schematic of model with body spring and the effect of the spring on the
nominal torque profile. The “+” region represents when the spring is assisting the
motor, and the “—” region represents when the motor is stretching the spring. (As
before, the leg trajectory and mean torque plots are based on RiSE robot data [3])
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The maximum stiffness of the virtual leg is limited by the force available
from the motors (Fisqq), as given by (6) where (p) is the number of motors.

GlMa:L’p
< 777 -

Magnitudes ranging from 0-80% of the maximum force were evaluated.
The simulation results with this spring are shown in Fig. 7.

As in Fig. 5 the areas under the curved lines represent speeds for which
the stance phase displacement requirement is not satisfied, and the starred
diagonal line represents the swing phase requirement. Points (A) and (B)
are the same as in Fig. 5. Point (C) represents the maximum speed with the
body spring which yields a 16% improvement over trajectory refinement alone,
case (B).

It appears that the use of such a body spring increases the maximum pos-
sible speed for a given G, but does not lower the gear ratio which is necessary
to overcome gravity and lift the robot. Thus the use of a body spring to some

0.9
=©- Body Spring k = 80%
-}~ Body Spring k = 40%
0.8 =-=- No Spring
—¥+— Swing Reset Threshold
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Gear Ratio (G)

Fig. 7. Simulation results for the model with the body spring. Minimum possible
stride periods for various gear ratios (G) and spring constants (k)
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degree duplicates the benefit from implementing a stride-to-stride velocity
adaptation scheme.

3.4 Swing-Stance Transfer

A second approach to using springs to more effectively and evenly apply the
torque from the motors is to use a spring connecting the foot to the body. As
shown on the left in Fig. 8, this is modeled as a spring acting in parallel to the
actuator in each virtual leg. This spring is loaded during swing phase as the
leg resets to a position relative to the body ready for touch down. The spring
is then released at the beginning of stance to assist with the acceleration of the
body. As shown on the right in Fig. 8, this adds a load to the motors during
swing (when their torque output capabilities are currently underutilized) and
mitigates the force requirements at the beginning of stance.

The addition of this spring results in the same body equation of motion
as in Sect. 3.3, but the spring is now fully loaded at the beginning of stance,
and is fully unloaded at the end. The spring constant, k, is chosen in the same
manner as in the previous section.

Figure 9 shows the effect of changing the gear ratio G on the stride period
for a range of spring constants from 0-80% of the maximum spring constant
for each G as given by (6). For each value of G and k, the resulting minimum

nr Maximum Continuous Torque

gL

Sample Motor Torque
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Torque (mNm)

Spring Force o
- -y ot
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| i L S |
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Fig. 8. Schematic of model with leg spring and the effect of the spring on the
nominal torque profile. The “4” region represents when the spring is assisting the
motor, and the “—” region represents when the motor is stretching the spring. (As
before, the leg trajectory and mean torque plots are based on RiSE robot data [3])
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Fig. 9. Simulation results for the model with the leg spring. Minimum possible
stride periods for various gear ratios (G) and spring constants (k)

stride period is shown. As before, the line corresponding to the stride period
limit for retraction of the leg during swing is indicated with a starred line.

Points (A) and (B) are the same as in Fig. 5 and represent the maximum
possible speed without springs. Point (C) indicates the maximum speed con-
figuration for a model with a linear spring with & = 80% of maximum. The
use of a linear spring increases the maximum speed by 36% to 0.62m/s.

Softening Spring

While advantageous for their simplicity, linear springs are not optimal in terms
of energy storage for a limited stretching force. If the linear spring were re-
placed by a softening spring the spring potential energy at maximum deflection
would increase. In the limit, with a constant force spring, the energy storage
would double. A constant force spring, however, would add a large load to the
beginning of the swing phase when the motors may already be saturated at-
tempting to accelerate the leg. The leg spring analysis in the previous section
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was repeated with the linear spring replaced by one with a spring equation
of: F = ka2. This significantly increases the energy storage for the spring
with minimal interference with the acceleration of the leg in swing. Point (D)
in Fig. 9 represents the fastest configuration that can be achieved with this
softening spring, resulting in a speed increase to 0.84 m/s.

Retraction Dynamics

In this swing-to-stance spring approach the load during the swing phase is sig-
nificantly increased, therefore it becomes important to determine what hap-
pens when the leg dynamics are explicitly considered. In other words, at what
point will the inertia of the legs and the frictional losses in the springs erode
any benefit from running dynamically or adding leg springs.

To this end the dynamics of the swing legs were modeled with (7).

. 1 . (G*; — G ,
iy = — <mm <ff”l,G’FM,w> + k(Xpoay — x5) — ba:fmgg> (7)
mo —k‘e
Where my is the effective inertia of the robot’s leg and b is the damping
term, as given by (8).

b=2(Vmk (8)

While both adding inertia to the legs and increasing the losses in the
spring detract from the gains suggested by the simulation, the model can still
climb with a spring constant, ¥ = 80% of maximum, at speeds equivalent to
what the simple swing phase model predicts with leg inertias of 30% of the
bodymass and a damping coefficient ¢ = 0.3.

3.5 Results of Numerical Study

Table 1 summarizes the cases considered thus far and gives the maximum
frequency, speed, and percent improvement for each case. With a force-
optimization series of trajectory refinements the robot’s speed can (theoreti-
cally) be significantly improved. Obviously real-world issues associated with
mechanical losses and foot attachment/detachment will prevent the actual
achievement of the 3.05 Hz theoretical speed predicted from implementing
trajectory refinements.

The last row in the table (Combination) shows the effect of combining the
body and softening foot springs and allowing the body velocity to increase
from stride to stride (momentum), which results in a 2.9x improvement over
the trajectory refinement case alone. Even if drag and attachment losses only
permitted achieving 40% of the theoretical speed limit, with these changes we
get near the 3.5 Hz dynamic threshold that we established previously. Of the
various elements, the non-linear foot spring contributes the most.

Another option to improve the speed of the robot climbing is to alter its
power /weight ratio. As a point of comparison the motor specs for larger motors
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Table 1. Frequency, velocity, and percent improvement for cases (B) to (G)

Case Frequency Velocity (m/s) % Impr.
(A) Trajectory Refinement 3.05 0.46 0
(B) Body Momentum 3.66 0.55 20
(C) Body Spring 3.55 0.53 16
(D) Foot Spring-Linear 4.15 0.62 36
(E) Foot Spring-Softening 5.59 0.84 83
(F) Body + Foot Springs 5.78 0.87 89
(G) Combination 8.85 1.33 190

from the same vendor and product line were used in the model to see how
much the power needed to be increased to match the effect of adding springs
and dynamic gaits. In this case the 4.5 W motors for RiSE were replaced
with 20 W versions. The total mass of the robot was left unchanged and the
simulations repeated. This 4.4x increase in power resulted in a 2.3x increase
in speed. A net increase slightly less than with springs/dynamics.

In reality the use of larger motors brings with it a significant increase in
mass and complexity. The addition of these larger motors would add addi-
tional 1.5 kg to the robot’s mass, not including the necessary changes to the
body, battery, and electronics design. Fundamentally, increasing the size of
the motors does not substantially increase their power to weight ratio. Other
motors do have higher power /weight ratios than the ones chosen for our robot,
but these suffer from other draw backs such as controllability.

Of course reducing the weight of the robot, were we able to find a way to
do it without loosing performance, would help as well. The simulations with
the simple model described here suggest that gains in speed comparable to
the use of springs or the addition of (magically) more powerful motors can be
achieved by reducing the robot’s weight by about 50%.

In the absence of further improvements to the power/weight ratio of our
robots, the simulations suggest that with our current design it is not possible
to reach our target speed. Simply refining the gait and reducing the inefficien-
cies in the system will, by themselves, be insufficient. With an appropriate
use of springs and body dynamics, however, our target speed of 3.5 Hz be-
comes theoretically possible. The actual realization of these speeds, however,
depends on how well these concepts can be incorporated with the ongoing
work in improving trajectory refinement and foot attachment.

4 Conclusion
One of the significant problems in achieving fast climbing is the power demand

associated with delivering the required work against gravity at higher speeds.
Having sufficient on-board power for fast locomotion on the level ground has
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proven challenging, and motion against gravity, obviously, only exacerbates
the problem. One approach to increasing the use of a robot’s onboard power
is switch from a position-based control scheme to forced-based approach. By
explicitly regulating the motors’ output rather than relying on position track-
ing errors, the actuators can be much more effectively utilized during a stride.
This adoption of this control framework also enables the robot to build up
speed over a number of strides, further increasing the performance gains.

Even if the switching the fundamental control scheme from a position-
based approach proves infeasible (e.g., perhaps because our limited degrees of
freedom require intricately planned approaches and departures from stance to
guaranteed adequate wall adhesion and limited perturbation during detach-
ment), much of the advantage of a force-based system could be duplicated by
very careful trajectory tuning and adaptation.

In either case the refinement of the force trajectory can bring substantial
performance benefits to the robot. The simple model employed here suggests
that as a theoretical upper limit they could allow the robot to climb at 3Hz
or at 0.46 m/s, which is near our dynamic threshold. Of course attachment,
detachment and other physical constraints will necessarily reduce the actual
gains.

However, in this respect the remainder of the numerical results from the
simplified model are encouraging. They suggest that the appropriate addition
of body and leg springs could double the robot’s speed over this value. The
further incorporation of a variable stride period could almost triple the speed
over trajectory refinement alone. This is more than the effect of increasing the
motor’s power 4.4x! (that is of course without acknowledging and accounting
for the weight of the larger motors). While the advantages of these approaches
are not entirely “free”, they do represent a significant gain. When the various
refinements are combined, the model results suggest that locomotion at our
dynamic threshold of 3.5 Hz (or 2 bodylengths/second) should be achievable.

4.1 Future Work

In order to implement body dynamic dependent gait trajectories some sort of
control system to measure body velocity and alter the leg trajectory may be
necessary to ensure good attachment of the feet. More detailed foot /substrate
interaction tests may provide the empirical data necessary to develop such a
controller.

Although we have assumed that foot contact once made will only be bro-
ken at the desired detachment point, this clearly does not reflect the reality.
Reducing the demands on the foot attachment mechanism could be one of the
major advantages of dynamic climbing. It seems possible that an appropri-
ate use of springs and the robot’s body’s dynamics could significantly reduce
the required foot reaction forces. If force threshold limits were added to the
feet the effectiveness of the various schemes proposed in this paper could be
evaluated in this regard.
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Although not addressed here, the stability of dynamic climbers is a topic
of interest. Besides the fundamental issues of insuring that the front feet stay
attached to the wall, there are a number of other possible ways to consider
stability. Many of these arise with the shift from a position-based control to
a force-based system. The numeric simulation results suggest that when the
velocity is allowed to vary from stride to stride that the simple climber tends
to quickly converge to a steady period-1 gait. Have we been fortuitous in our
parameter selection, or are these limit cycles almost inevitable? Are they local
in nature hence hard to achieve in practice or do they have large basins (e.g.,
are they globally asymptotic stable)? The model we have used may be simple
enough to permit a careful mathematical analysis of the system dynamics.

A second interesting question that arises from decoupling multiple limbs
from a trajectory-tracking control scheme is the question of synchronization.
A related climbing study with an open-loop climbing model [17] indicates
that legs tend to synchronize rather than staying 180 degrees out of phase.
Is this also true for this model, and if so what sort of controller needs to be
established to maintain a regular alternating gait?

Looking further ahead, we wonder if with the addition of a lateral degree
of freedom to the model we can begin to duplicate the motions and ground
reaction forces seen in dynamic climbing animals such as geckos and cock-
roaches.

We believe that enabling a robot with the ability to both dynamicly run
and climb is an compelling goal. The achievement of both with an (inherently)
constrained power/weight ratio is a difficult task. The creative use of springs
and system dynamics to modify the climbing motion of the robot may enable
the construction of such robots. While we are not there yet, we at least have
some simple models that suggest that it may be possible.
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Appendix A1l: Rise Robot Constants

Table 2. RiSE specific model parameter values

Variable Value Description

Tstall 0.0288 Nm Stall torque

Trras 0.00498 Nm Maximum continuous torque
Wni 13,900 rpm  No-load speed

R 0.0762 m Radius of foot trajectory

G 126 Base Gear ration

P 6 Number of motors per tripod
m 3 kg Mass of the robot

Appendix A2: Minimum Leg Frequency

In order to achieve resonant hopping as described by the spring-loaded in-
verted pendulum (SLIP) model, the motor activation frequency—whether used
primarily for recirculating vertical leg springs as in RHex [6] or for powering
vertical leg strokes in phase with passive recirculating springs as in Sprawl
[14]-should match the natural frequency of the body’s oscillation. For a SLIP-
type hopper the natural frequency, w,,, during stance is a function of the body
mass, M, and stiffness of the legs, k, that varies in a rather subtle manner
with the particular steady state gait for even the simplest two degree of free-
dom models [5]. Empirically, we find this function is effectively approximated
by that characterizing a one degree of freedom spring-mass system:

k
wn =137 (9)
The lower limit on the spring stiffness is constrained by its maximum
displacement, Ax, which in turn is fixed by the leg kinematics. Although
the force-extension profile of a spring can vary significantly depending upon
whether it is “hardening” or “softening”, it will suffice for our present order-of-
magnitude analysis to consider the simplest relationship of constant stiffness
arising from a Hooke’s law spring. For this model, a lower bound on the
excursion of the leg spring corresponds to when the force on the spring is
equal to gravity, giving:
My
Az
Combining equations (9) and (10) gives:

k (10)
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_ Sk _ Mg _ g
Wn = M NVAz MV Az

For RiSE with a kinematically achievable Ax = 0.02 m:

wn =22 rad/s = 3.5 cycles/s

If large airborne phases are allowed the body oscillation frequency would

become slower than the body spring-mass frequency, w,. Any gains from this,
however, would be set off by the increased required deflection of the spring,

Az

, during stance.
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Summary. In this overview paper, we first survey numerical approaches to solve
nonlinear optimal control problems, and second, we present our most recent algorith-
mic developments for real-time optimization in nonlinear model predictive control.

In the survey part, we discuss three direct optimal control approaches in detail:
(i) single shooting, (ii) collocation, and (iii) multiple shooting, and we specify why we
believe the direct multiple shooting method to be the method of choice for nonlinear
optimal control problems in robotics. We couple it with an efficient robot model
generator and show the performance of the algorithm at the example of a five link
robot arm. In the real-time optimization part, we outline the idea of nonlinear model
predictive control and the real-time challenge it poses to numerical optimization. As
one solution approach, we discuss the real-time iteration scheme.

1 Introduction

In this paper, we treat the numerical solution of optimal control problems.
We consider the following simplified optimal control problem in ordinary dif-
ferential equations (ODE).

T

winimize [ L) u(t) dt + E (7)) 1)

x( ’ )7 u( ’ )’ T 0

subject to
z(0) —z9 =0, (fixed initial value)
z(t)—f(z(t),u(t)= 0, t€[0,7], (ODE model)
h(xz(t),u(t)) > 0, t€1[0,T], (path constraints)

r(z(T))=0 (terminal constraints).

The problem is visualized in Fig. 1. We may or may not leave the horizon
length T free for optimization. As an example we may think of a robot that
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path constraints Az, u) = 0

states x(t) e
¢ constraint r(z(T)) =0
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Fig. 1. Simplified Optimal Control Problem

shall move in minimal time from its current state to some desired terminal po-
sition, and must respect limits on torques and joint angles. We point out that
the above formulation is by far not the most general, but that we try to avoid
unneccessary notational overhead by omitting e.g. differential algebraic equa-
tions (DAE), multi-phase motions, or coupled multipoint constraints, which
are, however, all treatable by the direct optimal control methods to be pre-
sented in this paper.

1.1 Approaches to Optimal Control

Generally speaking, there are three basic approaches to address optimal con-
trol problems, (a) dynamic programming, (b) indirect, and (c) direct ap-
proaches, cf. the top row of Fig. 2.

(a) Dynamic Programming [5, 6] uses the principle of optimality of subarcs
to compute recursively a feedback control for all times ¢ and all xg. In the
continuous time case, as here, this leads to the Hamilton-Jacobi-Bellman
(HJB) equation, a partial differential equation (PDE) in state space. Meth-
ods to numerically compute solution approximations exist, e.g. [34] but the
approach severely suffers from Bellman’s “curse of dimensionality” and is
restricted to small state dimensions.

(b) Indirect Methods use the necessary conditions of optimality of the infinite
problem to derive a boundary value problem (BVP) in ordinary differen-
tial equations (ODE), as e.g. described in [13]. This BVP must numerically
be solved, and the approach is often sketched as “first optimize, then dis-
cretize”. The class of indirect methods encompasses also the well known
calculus of variations and the Euler-Lagrange differential equations, and
the Pontryagin Maximum Principle [40]. The numerical solution of the
BVP is mostly performed by shooting techniques or by collocation. The
two major drawbacks are that the underlying differential equations are
often difficult to solve due to strong nonlinearity and instability, and that
changes in the control structure, i.e. the sequence of arcs where different
constraints are active, are difficult to handle: they usually require a com-
pletely new problem setup. Moreover, on so called singular arcs, higher
index DAE arise which necessitate specialized solution techniques.
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(c) Direct methods transform the original infinite optimal control problem into

a finite dimensional nonlinear programming problem (NLP). This NLP is
then solved by variants of state-of-the-art numerical optimization meth-
ods, and the approach is therefore often sketched as “first discretize, then
optimize”. One of the most important advantages of direct compared to in-
direct methods is that they can easily treat inequality constraints, like the
inequality path constraints in the formulation above. This is because struc-
tural changes in the active constraints during the optimization procedure
are treated by well developed NLP methods that can deal with inequal-
ity constraints and active set changes. All direct methods are based on a
finite dimensional parameterization of the control trajectory, but differ in
the way the state trajectory is handled, cf. the bottom row of Fig. 2.

For solution of constrained optimal control problems in real world applica-
tions, direct methods are nowadays by far the most widespread and success-
fully used techniques, and we will focus on them in the first part of this paper.

1.2 Nonlinear Model Predictive Control

The optimization based feedback control technique “Nonlinear Model Predic-
tive Control (NMPC)” has attracted much attention in recent years [1, 36],

/

Optimal Control

Dynamic Programming
{Hamilton-Jacobi-
Bellman Equation):
Tabulation in
State Space

Indirect Methods
(Pontryagin Maximum
Principle):

Solve Boundary Value
Problem

Direct. Methods:
Transform into
Nonlinear Program
{NLP)

)/

Single Shooting:
Only discretized controls
in NLP
{sequenlial)

Collocation:
Discretized conirols and
states in NLP
(simullaneous)

Multiple Shooting:
Controls and node start
values in NLP
(simultaneous)

Fig. 2. Overview of numerical methods for optimal control
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in particular in the proceess industries. Its idea is, simply speaking, to use
an open-loop optimal control formulation to generate a feedback control for
a closed-loop system. The current system state is continuously observed, and
NMPC solves repeatedly an optimal control problem of the form (1), each
time with the most current state observation as initial value xy. Assuming
that the optimal control trajectory can be computed in negligible time, we
can apply the first bit of our optimal plan to the real world system, for some
short duration §. Then, the state is observed again, a new optimization prob-
lem is solved, the control again applied to the real system, and so on. In this
way, feedback is generated that can reject unforeseen disturbances and errors
due to model-plant-mismatch.

Among the advantages of NMPC when compared to other feedback con-
trol techniques are the flexibility provided in formulating the control objective,
the capability to directly handle equality and inequality constraints, and the
possibility to treat unforeseen disturbances fast. Most important, NMPC al-
lows to make use of reliable nonlinear process models & = f(z,u) so that
the control performance can profit from this important knowledge, which is
particularly important for transient, or periodic processes. It is this last point
that makes it particularly appealing for use in robotics.

One essential problem, however, is the high on-line computational load
that is often associated with NMPC, since at each sampling instant a nonlinear
optimal control problem of the form (1) must be solved. The algorithm must
predict and optimize again and again, in a high frequency, while the real
process advances in time. Therefore, the question of fast real-time optimization
has been intensively investigated [4, 28, 51, 44, 9]. We refer to Binder et al. [10]
for an overview of existing methods. One reason why most applications of
NMPC have so far been in the process industries [42] is that there, time
scales are typically in the range of minutes so that the real-time requirements
are less severe than in mechanics. However, we believe that it is only a matter
of time until NMPC becomes an important feedback technique in robotics,
too. The second scope of this paper is therefore to present some of our latest
ideas regarding the fast real-time optimization for NMPC, which are based
on direct optimal control methods.

1.3 Paper Outline

The paper is organized as follows. In the next section we will describe three
popular direct optimal control methods, single shooting, collocation, and mul-
tiple shooting. We will argue why we believe the last method to be the method
of choice for nonlinear optimal control problems in robotics, and in Sect. 3 we
will present its coupling to an efficient robot model generator and show its
application to the time optimal point to point maneuver of a five link robot
arm. In Sect. 4 we will discuss nonlinear model predictive control (NMPC)
and show how the challenge of fast online optimization can be addressed by
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the so called real-time iteration scheme, in order to make NMPC of fast ro-
bot motions possible. Finally, in Sect. 5, we conclude the paper with a short
summary and an outlook.

2 Direct Optimal Control Methods

Direct methods reformulate the infinite optimal control problem (1) into a
finite dimensional nonlinear programming problem (NLP) of the form

mina(w) subject to b(w) =0, c(w)>0, (2)
w

with a finite dimensional vector w representing the optimization degrees of
freedom, and with differentiable functions a (scalar), b, and ¢ (both vector
valued). As said above, all direct methods start by a parameterization of
the control trajectory, but they differ in the way how the state trajectory
is handled. Generally, they can be divided into sequential and simultaneous
approaches.

In sequential approaches, the state trajectory z(t) is regarded as an implicit
function of the controls u(t) (and of the initial value xg), e.g. by a forward
simulation with the help of an ODE solver in direct single shooting [31, 45].
Thus, simulation and optimization iterations proceed sequentially, one after
the other, and the NLP has only the discretized control as optimization degrees
of freedom.

In contrast to this, simultaneous approaches keep a parameterization of
the state trajectory as optimization variables within the NLP, and add suit-
able equality constraints representing the ODE model. Thus, simulation and
optimization proceed simultaneously, and only at the solution of the NLP do
the states actually represent a valid ODE solution corresponding to the con-
trol trajectory. The two most popular variants of the simultaneous approach
are direct collocation [8] and direct multiple shooting [12].

We will present in detail the mentioned three direct approaches. As all
direct methods make use of advanced NLP solvers, we also very briefly sketch
one of the most widespread NLP solution methods, Sequential Quadratic Pro-
gramming (SQP), which is also at the core of the real-time iteration scheme
to be presented in the second part.

A Tutorial Example

For illustration of the different behaviour of sequential and simultaenous ap-
proaches, we will use the following tutorial example with only one state and
one control dimension. The ODE & = f(x,u) is slightly unstable and nonlin-
ear.

3
minimize / z(t)? +u(t)? dt
0

z(-),ul-)
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Fig. 3. Solution of the tutorial example

subject to

z(0) = g, (initial value)
t=(142xz)z+u, te€]l0,3], (ODE model)

— x(t)
1+ 2(t 0
#(?) > , t €10, 3], (bounds)
1 —u(t) 0
1+ w(t) 0
z(3) = 0. (zero terminal constraint).

We remark that due to the bounds |u| < 1, we have uncontrollable growth for
any x > 0.618 because then (1+z)x > 1. We set the inital value to z¢ = 0.05.
For the control discretization we will choose N = 30 control intervals of equal
length. The solution of this problem is shown in Fig. 3.

2.1 Sequential Quadratic Programming (SQP)

To solve any NLP of the form (2), we will work within an iterative Sequen-
tial Quadratic Programming (SQP), or Newton-type framework. We omit all
details here, and refer to excellent numerical optimization textbooks instead,
e.g. [39]. We need to introduce, however, the Lagrangian function

L(w, A, p) = a(w) = ATb(w) — p"e(w) |

with so called Lagrange multipliers A\ and u, that plays a preeminent role in
optimization. The necessary conditions for a point w* to be a local optimum
of the NLP (2) are that there exist multipliers A* and p*, such that

VL X, 1) =0, (3)
b(w*) =0, (4)
c(w*) >0, p* >0, clw) 'y =0. (5)
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In order to approximately find such a triple (w*, A*, u*) we proceed iteratively.
Starting with an initial guess (wo, Ao, o), a standard full step SQP iteration
for the NLP is

Wht1 = Wi + Awy, | (6)
Met1 = AFs s = (7)

where (Awg, )\SP, ,u(,gp) is the solution of a quadratic program (QP). In the
classical Newton-type or SQP approaches, this QP has the form

1
min — AwT Ay Aw + Vwa(wk)TAw
Aw € R™ 2

. { b(wy,) + Vipb(wy) T Aw = 0 (8)
subject to

c(wy,) + Vipe(wy)T Aw > 0
where Ay is an approximation of the Hessian of the Lagrangian,
Ap ~ V2 L(wk,s Mg, k)

and V,,b(wy)? and V,c(wy)? are the constraint Jacobians. Depending on the
quality of the Hessian approximation we may expect linear, super-linear or
even quadratic convergence. Practical SQP methods differ e.g. in the type of
globalisation strategy, in the type of QP solver used, or in the way the Hessian
is approximated — e.g. by BFGS updates or by a Gauss-Newton Hessian. This
last approach is favourable for least squares problems, as e.g in tracking or
estimation problems. When the objective is given as a(w) = ||r(w)|3, the
Gauss-Newton Hessian is given by Ay = 2V, r(wi)Vr(wy)T. Tt is a good
approximation of the exact Hessian V2 L(wg, Ak, pix) if the residual ||r(w)]|3
is small or if the problem is only mildly nonlinear.

2.2 Direct Single Shooting

The single shooting approach starts by discretizing the controls. We might for
example choose grid points on the unit interval, 0 =79 <7 < ... <7y =1,
and then rescale these gridpoints to the possibly variable time horizon of
the optimal control problem, [0,T], by defining ¢; = T'7; for i = 0,1,...,N.
On this grid we discretize the controls u(t), for example piecewise constant,
u(t) = ¢; for t € [t;, t;41], so that u(t) only depends on the the finitely many
control parameters ¢ = (qo,q1,--.,qn—1,1) and can be denoted by u(t; q). If
the problem has a fixed horizon length T, the last component of ¢ disappears
as it is no optimization variable. Using a numerical simulation routine for
solving the initial value problem

.’L‘(O) = Zo, -T(t) = f(l‘(t)7u(t;q)>7 te [OvT] )

we can now regard the states z(t) on [0,T] as dependent variables, cf. Fig. 4.
We denote them by x(t; q). The question which simulation routine should be
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constraint

Fig. 4. Illustration of single shooting

chosen is crucial to the success of any shooting method and depends on the
type of ODE model. It is essential to use an ODE solver that also delivers
sensitivities, as they are needed within the optimization. We also discretize
the path constraints to avoid a semi-infinite problem, for example by requiring
h(z(t),u(t)) > 0 only at the grid points ¢;, but we point out that also a finer
grid could be chosen without any problem. Thus, we obtain the following finite
dimensional nonlinear programming problem (NLP):

winpize [ HeG ) de - BETg) 0
0

subject to

, 1 =0,..., N, (discretized path constraints)

. (terminal constraints)

This problem is solved by a finite dimensional optimization solver, e.g. Se-
quential Quadratic Programming (SQP), as described above.

The behaviour of single shooting (with full step SQP and Gauss-Newton
Hessian) applied to the tutorial example is illustrated in Fig. 5. The initial-
ization — at the zero control trajectory, u(t) = 0 — and the first iteration are
shown. Note that the state path and terminal constraints are not yet satisfied
in the first iteration, due to their strong nonlinearity. The solution (up to an
accuracy of 107°) is obtained after seven iterations. The strong points of single
shooting are (i) that it can use fully adaptive, error controlled state-of-the-art
ODE or DAE solvers, (ii) that it has only few optimization degrees of freedom
even for large ODE or DAE systems, and (iii) that only initial guesses for the
control degrees of freedom are needed. The weak points are (i) that we cannot
use knowledge of the state trajectory z in the initialization (e.g. in tracking
problems), (ii) that the ODE solution z(t; ¢) can depend very nonlinearly on
g, as in the example, and (iii) that unstable systems are difficult to treat.

However, due to its simplicity, the single shooting approach is very often
used in engineering applications e.g. in the commercial package gOPT [41].
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Fig. 5. Single shooting applied to the tutorial example: Initialization and first iter-
ation

2.3 Collocation

We only very briefly sketch here the idea of the second direct approach, col-
location. We start by discretizing both, the controls and the states on a fine
grid. Typically, the controls are chosen to be piecewise constant, with values
g; on each interval [t;,t;11]. The value of the states at the grid points will be
denoted by s; ~ x(t;). In order to avoid notational overhead, we will in the
remainder of this section assume that the length of the time horizon, T, is con-
stant, but point out that the generalization to variable horizon problems by
the above mentioned time transformation is straightforward. In collocation,
the infinite ODE

o(t) — f(z(t), u(t) =0, te[0,T]
is replaced by finitely many equality constraints
ci(gi, 56,85, 8i41) =0, i=0,...,N—1,

where the additional variables s might represent the state trajectory on inter-
mediate “collocation points” within the interval [¢;,¢,11]. By a suitable choice
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of the location of these points a high approximation order can be achieved,
and typically they are chosen to be the zeros of orthogonal polynomials. But
we sketch here only a simplified tutorial case, where no intermediate variables
s} are present, to give a flavour of the idea of collocation. Here, the additional
equalities are given by

ci(is Sis Sip1) = — Ll ——=q )
tiv1 — 2

Then, we will also approximate the integrals on the collocation intervals, e.g.
by

tiv1

7(12') (tiy1 — i) = / L(z(t),u(t))dt

ti

Si + Sit1

1i(qi, iy 8i41) = L < 2

After discretization we obtain a large scale, but sparse NLP:

N-1
minimize Z li(gi, sirsi41) + E(sn)
$,q i=0
subject to
so —xzo = 0, (fixed initial value)
¢i(qi, Siy Siv1) = 0, i=0,...,N—1, (discretized ODE model)
h(si,q;) > 0, 1=20,...,N, (discretized path constraints)
r(sn)=0. (terminal constraints)

This problem is then solved e.g. by a reduced SQP method for sparse prob-
lems [8, 48], or by an interior-point method [7]. Efficient NLP methods typi-
cally do not keep the iterates feasible, so the discretized ODE model equations
are only satisfied at the NLP solution, i.e., simulation and optimization pro-
ceed simultaneously. The advantages of collocation methods are (i) that a very
sparse NLP is obtained (ii) that we can use knowledge of the state trajectory
2 in the initialization (iii) that it shows fast local convergence (iv) that it can
treat unstable systems well, and (v) that it can easily cope with state and
terminal constraints. Its major disadvantage is that adaptive discretization
error control needs regridding and thus changes the NLP dimensions. There-
fore, applications of collocation do often not address the question of proper
discretization error control. Nevertheless, it is successfully used for many prac-
tical optimal control problems [3, 50, 47, 14, 54].
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2.4 Direct Multiple Shooting

The direct multiple shooting method (that is due to Bock and Plitt [12])
tries to combine the advantages of a simultaneous method like collocation
with the major advantage of single shooting, namely the possibility to use
adaptive, error controlled ODE solvers. In direct multiple shooting, we proceed
as follows. First, we again discretize the controls piecewise on a coarse grid

u(t)=¢q; for t€ [titit1],

where the intervals can be as large as in single shooting. But second, we solve
the ODE on each interval [t;,¢,11] independently, starting with an artificial
initial value s;:

@i(t) = f(wi(t), i), tE [titiva],

By numerical solution of these initial value problems, we obtain trajectory
pieces z;(t; si,q;), where the extra arguments after the semicolon are intro-
duced to denote the dependence on the interval’s initial values and controls.
Simultaneously with the decoupled ODE solution, we also numerically com-
pute the integrals

tit1

li(si,q:) := /L(xi(tiQSian’)y%)dt-

t;

In order to constrain the artificial degrees of freedom s; to physically mean-
ingful values, we impose continuity conditions s;+1 = x;(t;+1; si, ¢;). Thus, we
arrive at the following NLP formulation that is completely equivalent to the
single shooting NLP, but contains the extra variables s;, and has a block
sparse structure.
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N-1
minimize li(sivqi) + E(sn) (10)
5,4 i=0
subject to
so—xo =0, (initial value)
Six1 — @i (tiv1; s, qi) =0, +=0,....,N—1, (continuity)
h(si,q) >0, i=0,...,N, (discretized path constraints)
r(sy)=0. (terminal constraints)
If we summarize all variables as w := (so, qo, S1,¢1, - - - , S§) We obtain an NLP

in the form (2). The block sparse Jacobian Vb(w*)T contains the linearized
dynamic model equations, and the Hessian V2 L(wg, Ak, ix) is block diago-
nal, which can both be exploited in the tailored SQP solution procedure [12].
Because direct multiple shooting only delivers a valid (numerical) ODE solu-
tion when also the optimization iterations terminate, it is usually considered
a simultaneous method, as collocation. But sometimes it is also called a hy-
brid method, as it combines features from both, a pure sequential, and a pure
simultaneous method. Its advantages are mostly the same as for collocation,
namely that knowledge of the state trajectory can be used in the initialization,
and that it robustly handles unstable systems and path state and terminal
constraints.

The performance of direct multiple shooting — and of any other simultane-
ous method — is for the tutorial example illustrated in Fig. 7. The figure shows
first the initialization by a forward simulation, using zero controls. This is one
particularly intuitive, but by far not the best possibility for initialization of a
simultaneous method: it is important to note that the state trajectory is by no
means constrained to match the controls, but can be chosen point for point if
desired. In this example, the forward simulation is at least reset to the nearest
bound whenever the state bounds are violated at the end of an interval, in
order to avoid simulating the system in areas where we know it will never
be at the optimal solution. This leads to the discontinuous state trajectory
shown in the top row of Fig. 7. The result of the first iteration is shown in the
bottom row, and it can be seen that it is already much closer to the solution
than single shooting, cf. Fig. 5. The solution, cf. Fig. 3, is obtained after two
more iterations. It is interesting to note that the terminal constraint is al-
ready satisfied in the first iteration, due to its linearity. The nonlinear effects
of the continuity conditions are distributed over the whole horizon, which is
seen in the discontinuities. This is in contrast to single shooting, where the
nonlinearity of the system is accumulated until the end of the horizon, and
the terminal constraint becomes much more nonlinear than necessary. Any
simultaneous method, e.g. collocation, would show the same favourable per-
formance as direct multiple shooting here.

As said above, in contrast to collocation, direct multiple shooting can com-
bine adaptivity with fixed NLP dimensions, by the use of adaptive ODE/DAE
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Fig. 7. Multiple shooting applied to the tutorial example: Initialization and first
iteration

solvers. Within each SQP iteration, the ODE solution is often the most costly
part, that is easy to parallelize. Compared to collocation the NLP is of smaller
dimension but less sparse. This loss of sparsity, together with the cost of the
underlying ODE solution leads to theoretically higher costs per SQP itera-
tion than in collocation. On the other hand, the possibility to use efficient
state-of-the-art ODE/DAE solvers and their inbuilt adaptivity makes direct
multiple shooting a strong competitor to direct collocation in terms of CPU
time per iteration. From a practical point of view it offers the advantage that
the user does not have to decide on the grid of the ODE discretization, but
only on the control grid. Direct multiple shooting was used to solve practical
offline optimal control problems e.g. in [24, 33], and it is also used for the
calculations in this paper. It is also widely used in online optimization and
NMPC applications e.g. in [44, 43, 52, 53, 18, 25].

3 Time Optimal Control of a Five Link Robot Arm

We consider the time optimal point to point motion of a robot arm with five
degrees of freedom. Figure 8 shows the robot and its possible movements. To
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Fig. 8. Robot appearance with simplified last link and manipulator

provide a better visualization the last link and the manipulator in the images
are shorter and simplified compared to the assumed model parameters.

The robot is modelled as a kinematic chain of rigid bodies, i.e., the robot
is assumed to just consist of joints and links between them. The robot has a
rotational base joint with two degrees of freedom, followed by two links with
rotary joints, and finally one rotational joint at the “hand” of the arm. Each
of the five joints contains a motor to apply a torque u;(t). The geometric
description of the robot uses the notation of Denavit and Hartenberg [16]. To
provide the data for the dynamic calculation each link is associated with an
inertia tensor, the mass and the position of the center of mass. This approach
leads to a set of five generalized coordinates (¢1(¢),...,q5(t)) each represent-
ing a rotation in the corresponding joint. We have chosen parameters that
correspond to a small toy robot arm, and which are listed in Table 1 using
the conventional Denavit-Hartenberg notation. The corresponding equations
of motion can then be generated automatically by a script from the HuMAnS
Toolbox [29].

3.1 Fast Computations of the Dynamics of Robots

The dynamics of a robot is most usually presented in its Lagrangian form

Table 1. Dynamic data of the example robot, and Denavit-Hartenberg parameters

Joint 7| Mass m; |c.o.m. r; Inertia tensor I; o |a; 0; d;
1]0.1 (0,0,0)T diag(23, 23,20)-10~° 0 [0 |q(®) 0
210.02 (0.06,0,0)" |diag(7,118,113)-107% |-Z|0 |-Z+q2(t)|0
3]0.1 (0.06,0,0)" |diag(20,616,602)-107% [0 |0.12|Z+gs(t) |0
410.03 (0,—0.04,0)" |diag(—51,—7,—46)-107°|0 |0.12| Z+qa(t) |O
5(0.06 (0,0,0.)"  |diag(650,640,26)-10°° |Z |0 |gs(t) 0
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M(q(t)) 4(t) + N(q(t),4(t)) = u(t) ,

which gives a compact description of all the nonlinear phenomena and can be
manipulated easily in various ways. Since the mass matrix M (g(t)) is Sym-
metric Definite Positive, it is invertible and the acceleration of the system can
be related with the controls u(t) either in the way

u(t) = M(q(t)) G(t) + N(q(t),4(t)) (11)

or in the way
G(t) = M(q(t) ™" (u(t) — N(q(t),d(1))) (12)

corresponding respectively to the inverse and direct dynamics of the system.
Very helpful from the point of view of analytical manipulations [56], this way
of describing the dynamics of a robot is far from being efficient from the
point of view of numerical computations, neither in the form (11) nor (12).
Especially the presence of a matrix-vector multiplication of O(N?) complexity
in both (11) and(12), and of a matrix inversion of O(N?3) complexity in (12)
can be avoided: recursive algorithms for computing both (11) and (12) with
only an O(N) complexity are well known today.

The first algorithm that has been investigated historically for the fast com-
putation of the dynamics of robots is the Recursive Newton-Euler Algorithm
that allows computing directly the controls related to given accelerations ex-
actly as in (11). Extensions have been devised also for cases when not all
of the acceleration vector ¢ is known, in the case of underactuated systems
such as robots executing aerial maneuvers [49]. This recursive algorithm is the
fastest way to compute the complete dynamics of a robotic system and should
be preferred therefore as long as one is not strictly bound to using the direct
dynamics (12). This is the case for collocation methods but unfortunately not
for shooting methods.

The Recursive Newton-Euler Algorithm has been adapted then in the form
of the Composite Rigid Body Algorithm in order to compute quickly the
mass matrix that needs to be inverted in the direct dynamics (12), but we
still have to face then a matrix inversion which can be highly inefficient for
“large” systems. The computation of this mass matrix and its inversion can
be necessary though for systems with unilateral contacts, when some internal
forces are defined through implicit laws [55].

The Articulated Body Algorithm has been designed then to propose a
recursive method of O(N) complexity for computing directly the accelerations
related to given torques as in (12) but without resorting to a matrix inversion.
Even though generating a slightly higher overhead, this algorithm has been
proved to be more efficient than the Composite Rigid Body Algorithm for
robots with as few as 6 degrees of freedom [26]. Moreover, avoiding the matrix
inversion allows producing a less noisy numerical result, what can greatly
enhance the efficiency of any adaptive ODE solver to which it is connected [2].
For these reasons, this recursive algorithm should be preferred as soon as one
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needs to compute the direct dynamics (12), what is the case for shooting
methods.

Now, one important detail when designing fast methods to compute nu-
merically the dynamics of a robot is to generate offline the computer code
corresponding to the previous algorithms. Doing so, not only is it possible to
get rid of constants such as 0 and 1 with all their consequences on subsequent
computations, but it is also possible to get rid of whole series of computations
which may appear to be completely unnecessary, depending on the specific
structure of the robot. Such an offline optimization leads to computations
which can be as much as twice faster than the strict execution of the same
original algorithms.

The HuMAnS toolbox [29], used to compute the dynamics of the robot for
the numerical experiment in the next section, proposes only the Composite
Rigid Body Algorithm, so far, so even faster computations should be expected
when using an Articulated Body Algorithm. Still, this toolbox produces faster
computations than other generally available robotics toolboxes thanks to its
offline optimization of the generated computer code (a feature also present in
the SYMORO software [30]).

3.2 Optimization Problem Formulation

In order to solve the problem to minimize a point to point motion of the robot
arm, we consider the following example maneuver: the robot shall pick up an
object at the ground and put it as fast as possible into a shelf, requiring a
base rotation of ninety degrees. We formulate an optimal control problem of
the form (1), with the following definitions:

(ql(t), e ,Q5(t) ql(t), ey Q5(t))T
= (w(t),...,us(t)"

)
)
) =1
)=0
( ~-~,q'5(t))T >
M(x ~(u(t) = N(z(1)))
To = (0780780078000000)

r(z(T)) = z(T) — (0.78,0,—0.78,0.78,0,0,0,0,0,0)"

Tmax — L

t
t

)
)

T

(
(

e

>
I

L — Tmin
Umax — U
U — Umin
(z(t))-(0,0,1,1)T — 0.05
(z(t))-(0,0,1,1)" +0.15

(170707 1) 'T
(0,0,1,1)- T,

as as
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The controls u(t) are the torques acting in the joints. The cost functional
fOT L(z,u)dt + E(x(T)) is the overall maneuver time, 7. Within the dynamic
model & = f(z,u), the matrix M (x(t)) is the mass matrix which is calculated
in each evaluation of f(x(t), u(t)) and inverted using a cholesky algorithm. The
vector N (x(t)) describes the combined centrifugal, Coriolis and gravitational
force. The initial and terminal constraints x(0) = x¢ and r(z(T")) = 0 describe
the desired point to point maneuver. As the states and controls have lower
and upper bounds, and as the robot hand shall avoid hitting the the ground
as well as its own base, we add the path constraints h(z,u) > 0. Here, the
matrix T3 (z(t) describes the transformation that leads from the local end
effector position (0,0,7,1)T in the last frame to the absolute coordinates in
the base frame.

3.3 Numerical Solution by Direct Multiple Shooting

We have coupled the automatic robot model generator HuMAnS [29] with an
efficient implementation of the direct multiple shooting method, the optimal
control package MUSCOD-II [32, 33]. This coupling allows us to use the highly
optimized C-code delivered by HuMAnS within the model equations & =
f(x,u) required by MUSCOD-II in an automated fashion. In the following
computations, we choose an error controlled Runge-Kutta-Fehlberg integrator
of order four/five. We use 30 multiple shooting nodes with piecewise constant
controls. Within the SQP method, a BFGS Hessian update and watchdog line
search globalisation is used.

For initialization, the differential states on the multiple shooting nodes
are interpolated linearly between desired initial and terminal state, as shown
in Fig. 9. The maneuver time for initialization was set to 0.3 seconds, and
the controls to zero. Starting with this infeasible initialization, the overall
optimization with MUSCOD-II took about 130 SQP iterations, altogether
requiring about 20 CPU seconds on a standard LINUX machine with a 3
GHz Pentium IV processor. The solution is shown in Fig. 10. The calculated
time optimal robot movement of 0.15 seconds duration is illustrated in Fig. 11
with screenshots from an OpenGL visualization.

4 Nonlinear Model Predictive Control

As mentioned in the introduction, Nonlinear Model Predictive Control
(NMPC) is a feedback control technique based on the online solution of open-
loop optimal control problems of the form (1). The optimization is repeated
again and again, at intervals of length 4, each sampling time t; = kd for
the most currently observed system state Z(t), which serves as initial value
xo := Z(tg) in (1). We have introduced the bar to distinguish the observed
system states Z(t) from the predicted states x(t) within the optimal control
problem. Note that the time ¢; from now on is the physical time, and no
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longer the time at a discretization point within the optimal control problem,
as in Sect. 2. We stress that for autonomous systems, as treated in this paper,
the NMPC optimization problems differ by the varying initial values only,
and that the time coordinate used within the optimal control problem (1) can
be assumed to always start with ¢ = 0 even though this does not reflect the
physical time. From now on, we will denote the time coordinate within the
optimal control problem with 7 in this section to avoid confusion.

To be specific, we denote the optimal solution of the optimal control prob-
lem (1) by w*(7;Z(tx)), 7 € [0,T*(Z(tx))], to express its parametric depen-
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Fig. 10. Solution of the optimization problem, obtained after 130 SQP iterations
and 20 CPU seconds

dence on the initial value Z(tx). The feedback control implemented during
the following sampling interval, i.e. for ¢t € [tg,tx+1], is simply given by
u(Z(tg)) = u*(0;Z(tx)).! Thus, NMPC is a sampled data feedback con-

! Sometimes, instead of the optimal initial control value u* (0; Z(¢x)), the whole first
control interval of length 4, i.e., u*(7;Z(tx)), 7 € [0,0], is applied to the real
process. This is more appealing in theory, and stability proofs are based on such
an NMPC formulation. When a control discretization with interval lengths not
smaller than the sampling time is used, however, both formulations coincide.
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Fig. 11. Visualization of the time optimal point to point motion from Fig. 10

trol technique. It is closely related to optimal feedback control which would
apply the continuous, non-sampled feedback law wug(Z(¢)) for all ¢, which can
be called the limit of NMPC for infinitely small sampling times 6. Note that
the optimal predicted maneuver time T*(xj) would typically be shrinking
for an optimal point to motion. In this case we speak of shrinking horizon
NMPC [10]. If a large disturbance occurs, the horizon might also be enlarged
as the future plan is changed. In the other case, when the horizon length is
fixed to T' = T}, where the constant T}, is the prediction horizon length, we
speak of mowving, or receding horizon control (RHC) [37]. The moving horizon
approach is applicable to continuous processes and so widely employed that
the term NMPC is often used as synonymous to RHC. When a given trajec-
tory shall be tracked, this is often expressed by the choice of the cost function
in form of an integrated least squares deviation on a fixed prediction horizon.
In fast robot motions, however, we believe that a variable time horizon for
point to point maneuvers will be a crucial ingredient to successful NMPC im-
plementations. A shrinking horizon NMPC approach for robot point to point
motions that avoids that T (z) shrinks below a certain positive threshold was
presented by Zhao et al. [57]. For setpoint tracking problems, extensive litera-
ture exists on the stability of the closed loop system. Given suitable choices of
the objective functional defined via L and F and a terminal constraint of the
form r(z(T)) = 0 or r(x(T)) > 0, stability of the nominal NMPC dynamics
can be proven even for strongly nonlinear systems [37, 15, 38, 35].

One important precondition for successful NMPC applications, however, is
the availability of reliable and efficient numerical optimal control algorithms.
Given an efficient offline optimization algorithm — e.g. one of the three SQP
based direct methods described in Sect. 2 — we might be tempted to restart
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it again and again for each new problem and to solve each problem until a
prespecified convergence criterion is satisfied. If we are lucky, the computa-
tion time is negligible; if we are not, we have to enter the field of real-time
optimization.

The Online Dilemma

Assuming that the computational time for one SQP iteration is more or less
constant, we have to address the following dilemma: If we want to obtain a
sufficiently exact solution for a given initial value Z(tx), we have to perform
several SQP iterations until a prespecified convergence criterion is satisfied.
We can suppose that for achieving this we have to perform n iterations, and
that each iteration takes a time e. This means that we obtain the optimal
feedback control u(Z(t)) only at a time ¢ +ne, i.e., with a considerable delay.
However at time t;, + ne the system state has already moved to some system
state Z(tx + ne) # T(ty), and uf(z(ty)) is not the exact NMPC feedback,
ug(Z(ty + nd)). In the best case the system state has not changed much in
the meantime and it is a good approximation of the exact NMPC feedback.
Also, one might think of predicting the most probable system state Z(ty, + ne)
and starting to work on this problem already at time ¢;. The question of
which controls have to be applied in the meantime is still unsolved: a possible
choice would be to use previously optimized controls in an open-loop manner.
Note that with this approach we can realize an NMPC recalculation rate with
intervals of length § = ne, under the assumption that each problem needs at
most n iterations and that each SQP iteration requires at most a CPU time
of €. Note also that feedback to a disturbance comes with a delay d4 of one
full sampling time. Summarizing, we would have 64 = § = ne.

4.1 Real-Time Iteration Scheme

We will now present a specific answer to the online dilemma, the real-time
iteration scheme [17, 20]. The approach is based on two observations.

e Due to the online dilemma, we will never be able to compute the exact
NMPC feedback control u(Z(tr)) without delay. Therefore, it might be
better to compute only an approzimation to(Z(tx)) of uf(Z(ty)), if this
approximation can be computed much faster.

e Second, we can divide the computation time of each cycle into a a short
feedback phase (FP) and a possibly much longer preparation phase (PP).
While the feedback phase is only used to evaluate the approximation
1o (Z(tg)), the following preparation phase is used to prepare the next feed-
back, i.e., to compute o(Z(tx+1)) as much as possible without knowledge
of .’Z‘(tk+1).

This division of the computation time within each sampling interval allows to
achieve delays d4 that are smaller than the sampling interval J, see Fig. 12.
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Fig. 12. Division of the computation time in the real-time iteration scheme; real
system state and control trajectory, for sampling time 0 and feedback delay §4 <

The crucial question is, of course, which approximation g (Z(tx)) should be
used, and how it can be made similar to the exact NMPC feedback ug(Z(tx)).

In its current realization, the real-time iteration scheme is based on the
direct multiple shooting method. The online optimization task is to solve
a sequence of nonlinear programming problems of the form (10), but with
varying initial value constraint so—Z(¢x) = 0. Similar to the NLP notation (2),
in the online context we have to solve, as fast as possible, an NLP

P(z(ty)) : mui}n a(w) subject to bz (w) =0, c(w)>0, (13)
where the index takes account of the fact that the first equality constraint sg—
Z(t) = 0 from bz, )(w) = 0 depends on the initial value Z(tx ), and where w =
(s0,90,51,q1,---,Sn). Ideally, we would like to have the solution w*(Z(ty)) of
each problem P(Z(t;)) as quick as possible, and to take the NMPC feedback
law to be the first control within w*(Z(tx)), i.e., to set ul(Z(tx)) = ¢ (T(t)).
The exact solution manifold w*(-) in dependence of the initial value Z(ty) is
sketched as the solid line in Fig. 13 — nondifferentiable points on this manifold
are due to active set changes in the NLP. The exact solution, however, is not
computable in finite time.

Initial Value Embedding

The major idea underlying the real-time iteration scheme is to initialize each
new problem P(Z(ty)) with the most current solution guess from the last
problem, i.e. with the solution of P(Z(tx—1)). In a simultaneous method like
direct multiple shooting, it is no problem that the initial value constraint
so— Z(tr) = 0 is violated. On the contrary, because this constraint is linear, it
can be shown that the first SQP iteration after this “initial value embedding”
is a first order predictor for the correct new solution, even in the presence of
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active set changes [17]. This observation is visualized in Fig. 13, where the
predictor delivered by the first SQP iteration is depicted as dashed line.

In the real-time iteration scheme, we use the result of the first SQP itera-
tion directly for the approximation g (Z(t)). This would already reduce the
feedback delay d4 to the time of one SQP iteration, e. Afterwards, we would
need to solve the old problem to convergence in order to prepare the next
feedback. In Fig. 13 also the second iterate and solution for problem P(Z(tx))
are sketched. But two more considerations make the algorithm even faster.

e First, the computations for the first iteration can be largely performed
before the initial value Z(¢;) is known. Therefore, we can reduce the delay
time further, if we perform all these computations before time ¢, and at
time t; we can quickly compute the feedback response wo(Z(tr)) to the
current state. Thus, the feedback delay d4 becomes even smaller than the
cost of one SQP iteration, 6y < e.

e Second, taking into account that we already use an approximate solution of
the optimal control problem we can ask if it is really necessary to iterate the
SQP until convergence requiring a time ne for n SQP iterations. Instead,
we will considerably reduce the preparation time by performing just one
iteration per sampling interval. This allows shorter sampling intervals that
only have the duration of one single SQP iteration, i.e., § = €. A positive
side-effect is that this shorter recalculation time most probably leads to
smaller differences in subsequent initial states Z(tx) and Z(tg41), so that
the initial value embedding delivers better predictors.

These two ideas are the basis of the real-time iteration scheme. It allows to
realize feedback delays d4 that are much shorter than a sampling time, and
sampling times ¢ that are only as long as a single SQP iteration, i.e. we have
04 < 6 = €. Compared with the conventional approach with 4 = § = ne, the
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Fig. 14. Sketch of the real-time iterations that stay close to the exact solution
manifold (solid line)

focus is now shifted from a sequence of optimization problems to a sequence
of SQP iterates: we may regard the SQP procedure iterating uninterrupted,
with the only particularity that the initial value Z(tx) is modified during
the iterations. The generation of the feedback controls can then be regarded
as a by-product of the SQP iterations. Due to the initial value embedding
property, it can be expected that the iterates remain close to the exact solution
manifold for each new problem. In Fig. 14 four consecutive real-time iterates
are sketched, where the dashed lines show the respective tangential predictors.

Applications

The real-time iteration scheme has successfully been used in both simulated
and experimental NMPC applications, among them the experimental NMPC
of a high purity distillation column [23] described by a 200 state DAE model
with sampling times § of 20 seconds, or simulated NMPC of a combustion
engine described by 5 ODE, with sampling times of 10 milliseconds [27]. De-
pending on the application, the feedback delay d4 was between 0.5 and 5
percent of the sampling time. Within the studies, the approximation errors
of the real-time iteration scheme compared to exact NMPC are often negli-
gible. The scheme’s theoretical contraction properties have been investigated
in [21] for the variant described in this paper, and in [22, 19] for other vari-
ants. Recently, several novel variants of the real-time iteration scheme have
been proposed that can either work with inexact jacobians within the SQP
procedure [11], or that only evaluate the jacobians on a subspace [46]. These
variants offer advantages for large scale systems where they promise to allow
sampling times that are one or two orders of magnitude smaller than in the
standard implementation. A numerical application of the standard real-time
iteration scheme to the time optimal point to point motion of a robot arm
described by 8 ODE was presented in [57], with CPU times still in the order
of 100 milliseconds per sampling time. We expect that the development of
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real-time iteration variants that are specially tailored to robotics applications
will make NMPC of fast robot motions possible within the next five years.

5 Summary and Outlook

In this tutorial paper, we have tried to give a (personal) overview over the most
widely used methods for numerical optimal control, and to assess the possi-
bility of real-time optimization of fast robot motions. We discussed in detail
direct optimal control methods that are based on a problem discretization and
on the subsequent use of a nonlinear programming algorithm like sequential
quadratic programming (SQP). We compared three direct methods, (i) direct
single shooting as a sequential approach, together with (ii) direct collocation
and (iii) direct multiple shooting as simultaneous approaches. At hand of a
tutorial example we have illustrated the better nonlinear convergence proper-
ties of the simultaneous over the sequential approaches that can be observed
in many other applications, too. The direct multiple shooting method allows
to use state-of-the-art ODE/DAE integrators with inbuilt adaptivity and er-
ror control which often shows to be an advantage in practice. At the example
of the time optimal motion of a robot arm we have demonstrated the ability
of direct multiple shooting to cope even with strongly nonlinear two point
boundary value optimization problems. Using the coupling of an efficient tool
for generation of optimized robot model equations, HuMAnS, and a state-of-
the-art implementation of the direct multiple shooting method, MUSCOD-II,
computation times for a five link robot are in the order of 200 milliseconds
per SQP iteration. Finally, we discussed the possibility to generate optimiza-
tion based feedback by the technique of nonlinear model predictive control
(NMPC), and pointed out the necessity of fast online optimization. We have
presented the real-time iteration scheme — that is based on direct multiple
shooting and SQP — as a particularly promising approach to achieve this aim.
The scheme uses an initial value embedding for the transition from one opti-
mization problem to the next, and performs exactly one SQP-type iteration
per optimization problem to allow short sampling times. Furthermore, each
iteration is divided into a preparation and a much shorter feedback phase, to
allow an even shorter feedback delay. Based on the ongoing development of
the presented approaches, we expect NMPC — that performs an online opti-
mization of nonlinear first principle robot models within a few milliseconds
— to become a viable technique for control of fast robot motions within the
following five years.
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Summary. The objective of this study is to analyze the stability of two control
strategies for a planar biped robot. The unexpected rotation of the supporting foot
is avoided via the control of the center of pressure or CoP. For the simultaneous
control of the joints and of the CoP, the system is under-actuated in the sense that
the number of inputs is less than the number of outputs. Thus a control strategy
developed for planar robot without actuated ankles can be used in this context.
The control law is defined in such a way that only the geometric evolution of the
biped configuration is controlled, but not the temporal evolution. The temporal
evolution during the geometric tracking is completely defined and can be analyzed
through the study of a model with one degree of freedom. Simple conditions, which
guarantee the existence of a cyclic motion and the convergence toward this motion,
are deduced. These results are illustrated with some simulation results. In the first
control strategy, the position of the CoP is tracked precisely, in the second one, only
the limits on the CoP position are used to speed-up the convergence to the cyclic
motion.

1 Introduction

The control of many walking robots is based on the notion of center of pressure
CoP [11, 12] also called ZMP by Vukobratovic and his co-workers [14, 13].
As long as the CoP remains inside the convex hull of the foot-support, the
supporting foot does not rotate and the contact with the ground is guaranteed.
Control strategies are often decomposed into a low level and a high level. The
low level ensures the tracking of the reference motion, and the high level
modifies the reference motion in order to ensure that the CoP remains inside
the convex hull of the foot-support.

Since the respect of the expected condition of contact with the ground is
more important than a tracking error, this kind of control strategy is interest-
ing. In many experimental works, how to modify the reference motion is not
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detailed [11], and it seems that this point has not been studied theoretically.
The modification of the reference motion has obviously an important effect
on the stability of the walking (in the sense of the convergence toward a cyclic
motion) and its robustness (in the sense of the reaction of the robot in the
presence of perturbation).

Our control strategy is based on simultaneous control of the joint and on
the evolution of the CoP position. The unexpected rotation of the supporting
foot is avoided via the control of the position of the center of pressure. Since the
joints and the position of the CoP are controlled simultaneously, the system
becomes under-actuated in the sense that the number of inputs is less than
the number of outputs. Thus a control strategy developed for planar robots
without actuated ankles can be used in this context [9, 2, 4]. An extension of
the work of Westervelt et al. [15], for the completely actuated robot based on
a prescribed evolution of the ankle torque was proposed [5]. In the proposed
study, the position of the CoP is prescribed, not the ankle torque.

The control law is defined in such a way that only the geometric evolution
of the biped configuration is controlled, but not the temporal evolution. This
strategy can be seen as an on-line modification of the joint reference motion
with respect to time in order to ensure that the position of the center of pres-
sure will be satisfying. The modification of the reference motion corresponds
to determine the acceleration along a given path! in the joint space. This
modification is interesting in the presence of impact, because for all the pos-
sible reference motions, the configuration of the robot at impact is the same,
and the set of all the reference motions is invariant with respect to impact.
As a consequence the impact phase, and the possible variation of the instant
of impact have no disturbing effect [3].

Assuming a perfect robot model, and without perturbation, the temporal
evolution during the geometric tracking is completely defined and can be ana-
lyzed through the study of a model with one degree of freedom. The Poincaré
return map can be used to study the stability of the proposed control law.

The practical constraints on the position of the CoP do not imply that
this point follows exactly a desired path, but that the position of the CoP
evolves between some limits. Thus a second control law is proposed to speed
up the convergence to the cyclic motion. The position of the CoP is no longer
controlled but only monitored to avoid the rotation of the supporting foot [3].
In this case the control strategy is based on a heuristics proposed by Wieber
[16]. In this paper a stability study of this control law is proposed.

Section 2 presents the dynamic model of the biped. A planar biped model
with massless feet is considered. Section 3 is devoted to the formulation of
the first control strategy and to the existence of a cyclic motion. In Sect. 4
we present the second control strategy. Some simulation results are presented
in Sect. 5 in the case of a precise modeling of the robot and in Sect. 6 in the

! The time evolution is not specified for a path.
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case of an imprecise modeling. Some properties of the two control strategies
are given in Sect. 7. Section 8 concludes the paper.

2 Bipedal Model

2.1 The Biped

The biped under study walks in a vertical sagittal xz plane. It is composed of a
torso and two identical legs. Each leg consists of two segments and a massless
foot. The ankles, the knees and the hips are one-degree-of-freedom rotational
frictionless joints. The walk is considered as single support phases separated
by impacts (instantaneous double support) with a full contact between the
sole of the feet and the ground. The angle of the supporting knee is denoted
q1- The angle of the supporting hip is denoted go. The angle of the swing hip is
denoted ¢3. The angle of the swing knee is denoted g4. During swing phase the
foot is aligned horizontally thus the angle of the swing ankle can be calculated.
The supporting ankle angle allows to choose the orientation of the supporting
shank with respect to the vertical gs. Vector ¢ = [q1, 2, g3, q4, 5] of variables
(Fig. 1) describes the shape of the biped during single support. Since the free
foot is massless no torque is required at the swing ankle. The torque at the
supporting ankle will be treated in a special way thus it is denoted I, = I5.
The torques are grouped into a torque vector I' = [I', Iy, I3, Iy, I'5]T

Fig. 1. The studied biped: generalized coordinates
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In the simulation, we use the following biped parameters [2]. The lengths
of the thighs and of the shanks are 0.4 m. However, their masses are different:
6.8 kg for each thigh and 3.2 kg for each shank. The length of the torso
is 0.625m and its mass is 17.05 kg. The center of mass are placed on the
line representing the link in Fig. 1. The distance between the joint actuator
and the center of mass is 0.1434 m for the torso, 0.163m for the shanks, and
0.123m for the thigh. The moments of inertia of the segments are also taken
into account, there values are defined around the joint axis, and there value
are 1.8694kgm? for the torso, 0.10kgm? for the shanks, and 0.25kgm? for
the thigh. The inertia of the motor of the hip and of the knee are 0.83 kgm?.
The feet is massless and have no inertia. The size of the feet are h, = 0.08 m,
lmin = 0.06 m, 10, = 0.2m (Fig. 2).

2.2 Dynamic Modeling

The walking gait is composed of stance phases. A passive impact separates
the stance phases. The legs swap their roles from one step to the next one.
Thus the study of a step allows us to deduce the complete behavior of the
robot. Only a single support phase and an impact model are derived.

The Single Support Phase Model

Using Lagrange’s formalism, the i line of the dynamic model fori =1,...,5
(g; is the i element of vector q) is:

d (6K> oK OP 0

a\og ) " oq “oq

l??l&‘}

l min

Fig. 2. The equilibrium of the supporting foot
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where K is the kinetic energy and P is the potential energy. The virtual work
OW of the external torques and forces, given by expression W = > Q;0q; =
QT 8¢, defines the vector @ of the generalized forces.

The kinetic energy K is independent of the coordinate frame chosen. Since
coordinate g5 defines the orientation of the biped as a rigid body, the inertia
matrix is independent of this variable, it depends only of “internal” variables
represented by vector q. = [q1,q2, g3, qa]”

The dynamic model can be written:

M(q.)i+h(q,q) =T (2)

where M(q.) is a (5 x 5) inertia matrix and vector h(g,¢) contains the cen-
trifugal, Coriolis and gravity forces.
The fifth equation of system (1) is:

2 (5e) - Q

dqs Jgs

For our planar biped and our choice of the coordinates in the single support,
the term g—f; is the angular momentum of the biped about the stance ankle

A (Fig. 2). We denote this term by 4. Thus we have:

o = oa = Nlai (4)
where N(q.) is the fifth line of the inertia matrix M (q.).

The expression gTP is equal to —mgz, if the abscissa of the stance ankle
is 0, m is the mass of the biped, g is the gravity acceleration. Thus the fifth
equation of the dynamic model of the biped in the single support can be
written in the following simple form:

é'A_mgxg :Fa (5)

The Reaction Force During the Single Support Phase

The position of the mass center of the biped can be expressed as function of
the angular coordinates vector q:

Lg _ fxz (Q) (6)
Zg fzi <Q)
The vector-function f;(q) = [fzi(q) f.i(q)]T depends on vector ¢ and on the
biped parameters (lengths of the links, masses, positions of the centers of
mass). The index i denotes the stance leg, for support on leg 1, f1(g) is used.

When leg 1 is on the ground, a ground reaction force, R, exists. The
global equilibrium of the robot makes it possible to calculate this force:
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0
1

5

m +mg =R (7)

9
Equation (7) can also be written:

9fa1(q) . 707 fale) .
m 94 q + mgq 7&12 q

dq

2 2
where 2 ]E;ZL(Q) and 2 ]5212(‘1) are (5 x 5) matrices.

Equilibrium of the Supporting Foot

The supporting foot is exposed to the ground reaction force and the ankle
torque —I,. The equilibrium law gives:

—I, — IR, — hyRyy =0 (9)

Thus if the horizontal CoP position is [ then the torque at the supporting
ankle is, using (7):

I'y = —l(mZy + mg) — hy(mi,) (10)

The horizontal CoP position [ is directly defined by the robot dynamics
as it can be seen in the following equation obtained by combining equations
(4), (5), (6), (8) and (10):

(No(q) +IN1(9))G + ho(g, 4) + 1hi(g,4) =0 (11)
with
No = N(ge) +mhy 2L gq(q)
N, = mafzalq(Q)
ON(q.) . 170 fs .
ho = qT a(qq )q - mgfxl(‘]) + mhqu ‘gqg(q)

70%f, .
h = qu gq12(q) q-+mg

The Impact Model

When the swing leg 2 touches the ground with a flat foot at the end of the
single support of leg 1, an inelastic impact takes place. We assume that the
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ground reaction force at the instant of impact is described by a Dirac delta-
function with intensity /g, . The velocity of foot 2 becomes zero just after
the impact. Two kinds of impact can occur depending on whether the stance
leg takes off or not. Here, for simplicity, we study walking with instantaneous
double support. Thus at impact the stance leg 1 takes off and there is no im-
pulsive ground reaction force on leg 1. The robot configuration ¢ is assumed
to be constant at the instant of impact, and there are jumps in the velocities.
The velocity vectors just before and just after impact, are denoted ¢~ and ¢+
respectively. The torques are limited, thus they do not influence the instanta-
neous double support. It can be shown that the impact model can be written
as [4]:

i = B(A@)i) (12)

where A(qg) is a 5 x 5 matrix, and F is a permutation function describing the
legs exchange. For the following single support phase the joints are relabelled
in order to study only one dynamic model for single support (SS) and to take
into account the change on the supporting ankle.

Intensity Ir, of the impulsive reaction force is:

Iy = (220 gy - 2B 4 (13)

3 The First Control Law

In this study, walking is considered as single support phases with a full foot
contact. While this is not a necessary condition for walking, and animals and
humans do not enforce this constraint during walking, many control algo-
rithms for bipedal robots enforce this constraint during walking in order to
prevent difficulties associated with the loss of actuation authority when the
foot rotates. To avoid foot rotation, the CoP must be inside the supporting
area [13]. In order to ensure this behavior, the CoP position is controlled to
follow a desired path ¢ [11], but as shown in the previous section, the posi-
tion of the CoP is directly connected to the dynamics of the motion. It is not
possible to prescribe independently a desired evolution of the joints ¢¢ (t) and
of the position of the CoP [%(t). With respect to such a task, the biped can
be seen as an under-actuated system, and the control strategy developed for
such a system can be used. Thus, the objective of the control law presented in
this section is only to track a reference path for ¢ and [ rather than a reference
motion [4]. A motion differs from a path by the fact that a motion is a tem-
poral evolution along a path. A joint path is the projection of a joint motion
in the joint space. The difference between motion and path are illustrated on
Fig. 3 for a two joint-robot.

Only a geometrical tracking is desired and a time scaling control [6] is used.
A reference joint path is assumed to be known. Thus the desired configuration
of ¢ and [ for the biped are not expressed as a function of time. But they are
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ql

Fig. 3. The dotted lines are two motions (g1 (t), ¢2(t)) corresponding to the same
path represented by the solid line. A path is a line in the joint space, this line can be
graduated as a function of a new variable denoted s, and then can be expressed by
(g1(s),gz2(s)). This function s is defined such that the initial configuration correspond
to s = 0, the final configuration corresponds to s = 1. Any monotonic function s(t)
defines a motion corresponding to the path ¢(s). For example s = ¢/T defines a
motion of duration T'. If a joint variable, for example g2, has a monotonic evolution
along the path, the path can also be parametrized by g2, in this case it can be
expressed as q1(qz)

function of the scalar path parameter s, a normalized virtual time: ¢%(s), 1%(s).
The desired walking of the robot corresponds to an increasing function s(¢).
This function. s(t) is not known a priori, the set of all the motions that
correspond to the desired path is considered.

The proposed strategy can be extended without difficulty to walking in-
cluding a rotation about the toe of the supporting foot, since this phase corre-
sponds to a motion such that the position of the center of pressure is imposed.
The main difficulty is that a sub-phase must be added [5].

3.1 Choice of a Reference Path

The reference path ¢?(s),1%(s) is designed in order to obtain cyclic motion of
the biped. The walk is composed of single supports separated by instantaneous
passive impacts. The legs swap their roles from one step to the next one, so
the reference path needs only to be defined for a single step. The evolution
of the path parameter s along the step k is denoted si(t), the scalar path
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parameter s; must increase strictly monotonically with respect to time from
0 to 1.

For 0 < s(t) < 1, the robot configuration ¢?(sz) is such that the swing leg
is above the ground. The swing leg touches the ground at s = 0, 1 exactly. In
consequence for any increasing function s (¢) from 0 to 1, the configuration of
the biped at impact is the expected one. The control inputs are the torques.
The torque acts on the second derivative of ¢ and directly on [ via the dynamic
model. Thus the reference trajectory ¢¢(sx) must be twice differentiable, but
no continuity condition exists for [%(sz). Vectors ¢?(0) and ¢%(1) describe the
initial and final biped configurations of the biped during a single support. As
the legs swap their roles from one step to the following one the desired con-
figurations are such that ¢¢(1) = E(¢%(0)) where E is a permutation function
describing the leg exchange.

The reference path is defined such that if the reference path is exactly
tracked before the impact then the reference path is exactly tracked after the
impact. If the reference path is perfectly tracked, before the impact k + 1,
the vector of joint velocities is ¢~ = dqd(l)ék(l) and after the impact, ¢7 =

ds
dqzs(o) $k+1(0). The velocity at the end and at the beginning of the step are

connected by the impact model and the legs exchange (12). Thus we have:

d d
0 5100) = B ) L (1) (19

ds
We choose:
WO _ piaa) L) (15)

sk(1)
.

With this choice we have the following equality: $;4+1(0) =

d
For configuration ¢%(1), and vector qus(l) the amplitude of the vector

d
qus(o) can be modified by the choice the values of a (but not its direction).

This point will be commented in Sect. 5.1.

Some hypotheses (no sliding, no rotation of the feet, take-off of the previous
supporting leg) are made on the behavior of the robot at the impact, the
corresponding constraints on the joint trajectory can be deduced [4, 7].

3.2 Definition of the Control Law

The control law must ensure that the joint coordinates follow the joint refer-
ence path ¢%(s) and that the position of the CoP is I4(s). It follows from the
definition of the joints reference path that the desired velocity and acceleration
of the joint variables are:

Ay dqd(S(t))S
q“(t) = I 1)
a(t) = dq®(s(t)) N d*q*(s(t)) .o
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The increasing function s(¢) defines the desired motion, but since the con-
trol objective is only to track a reference path, the evolution s(t) is free and
the second derivative § will be treated as a “supplementary control input”.
Thus, the control law will be designed for a system with equal number of in-
puts and outputs. The control inputs are the five torques I, j = 1,...,5, plus
5. The chosen outputs are the five angular variables of vector q(t) — q%(s(t))
and [(t) — 1%(s(t)).

The control law is a non-linear control law classically used in robotics. But
in order to obtain a finite-time stabilization of one of the desired trajectories,
the feedback function proposed by Bhat and Berstein is used [1, 9]. The joint
tracking errors are defined with respect to the trajectories satisfying (16):

eq(t) = ¢*(s(1)) — a(t)

17)
) dg?(s(t)) . . (
éq(t) = s 0T q(t)
The desired behavior in closed loop is:

I A |

§=q"+ 5 (18)
where 1 is a vector of five components ¢;,l = 1,...,5 with:

U = —sign(eéq,)|eéq [” — sign(¢n)|dil” (19)

and 0 < v < 1,e>0, ¢ = eq, + 5 sign(eéq, )|eéq, |*~, v and € are parameters
to adjust the settling time of the controller. Taking into account the expression
of the reference motion, (18) can be rewritten as:

d d
d=2C8) 51 0s,5.0,0) (20)
ds
with ) d( )
. . d°q*(s) .o 1
U(SaSaQ7q) = d82 sT+ :2¢

For the position of the CoP, the desired closed loop behavior is:

1(t) = 1%(s(1))

The dynamic model of the robot is described by eq. (2). The position of
the CoP is defined via (11). Thus the control law must be such that:
dq”(s)

M(g)(—;—38+v) +h(¢,q) =T

dq?(s)
ds

(21)

(No(q) + 1*(s)Ni(q))( §+v) + holg, @) + 14(s)hi(q,4) =0
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We can deduce that, in order to obtain the desired closed loop behavior,
it is necessary and sufficient to choose:

—(No(a) +1*()Ne(@))v — ho(g, 4) — 1%(s)hu(q, d)

T a 22
(No(q) + 14(s) Ny (q)) 2452 (22)
I'=M(q) <dqd§ )5+v) + h(q,q) (23)

If (No(q) + (s ) (q))dq (s) £ 0, the control law (22)—(23) ensures that
q(t) converges to q?(s(t)) in a finite time, which can be chosen as less than
the duration of one step [1, 9], and that I(t) = [4(s(¢)). Without initial errors,
a perfect tracking of ¢?(s(t)) and [4(s) is obtained.

3.3 Stability Study

Our main goal is to design a control strategy that ensures a stable periodic
motion of the biped. The control law (22)—(23) ensures that the motion of the
biped converges in a finite time toward a reference path. The settling time
can be chosen to be less than the duration of the first step. Since the impact
is a geometric condition and due to the characteristics of the joints reference
path (Sect. 3.1), any step k begins with s, = 0 and finishes with s, = 1.
Since the control law is designed to converge before the end of the first step
and since the reference path is such that if the tracking is perfect before the
impact, it will be perfect afterward, after the first step a perfect tracking is
obtained. The biped with control law (22)—(23) follows perfectly the reference
path, starting from the second step. Thus:

a(t) = ¢*(s(1))

dq(s
() dq(s 5(1) d qd2s '(t)2

These equations define the zero dynamics corresponding to the proposed con-
trol law. To know whether a cyclic motion will be obtained, the behavior of
the evolution of $(¢) is studied for k = 2...00. The dynamics of s is deduced
from the dynamic model (11) with the condition (24). The acceleration § is:

(Ngo(s) +1%(5)Ngy(5))5 + heo(s, ) + 1%(s)hg(s,5) =0 (25)

with
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Neo = (N(q%(s)) +mhy, 8%1;‘1))6561;25)

R T

hao = [dqdis) (az;éq) s o, g;g(q)) dqjis)] p
[0+, 20) T o
— mgfu1(q?(s))

“(s)

b = m [dq%s)%?le(q)dq L) PO | o

q
ds 0¢%2 ds q ds

This equation along with the constraints (24) describe completely the behavior
of the system.

One single support phase begins with s = 0 and finishes with s = 1. The
evolution of $x11 during the step k + 1 is uniquely defined by initial value
$k+1(0). The integration of (25) along one step, starting with $;41(0), defines
the final value $;41(1).

The single support phases are separated by impact phases; the evolution
of the zero dynamics is such that s restarts with s = 0 and $511(0) = é’“(l)
(due to the definition of the reference joint path (15)). Thus the final value
of $x4+1(1) can be easily defined numerically as a function of $(1), we define
function ¢ by: $p4+1(1) = ¢($x(1)). The existence of a cyclic motion and the
convergence to it can be studied via function ¢ as it is classically done using
the method introduced by H. Poincaré [9, 10]. The fixed point of this function
defines the cyclic velocity $.(1), it corresponds to the intersection between
the function ¢ and the identity function. If the norm A of the slope of the
function ¢ at $.(1) is less than 1, then for an initial state close to the cyclic
motion, the biped motion will converge toward the cyclic motion.

If the desired evolution of the position of the CoP is piecewise constant,
the stability analysis can be conducted mostly analytically [7]. If the desired
evolution of the position of the CoP is arbitrary, the stability analysis is
conducted numerically in this chapter.

4 The Second Control Law

The physical constraint on the position of the CoP is that the position of
the CoP is between I, and l,q, but it is not necessary that I(s) follows
exactly 19(s). If a cyclic motion corresponding to ¢%(s), [%(s) exists, it can be
interesting to converge quickly toward this cyclic motion defined by 5(t) =
$¢(t). The corresponding cyclic motion can be defined by the stability study
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of the first control law. Now we assume that the corresponding cyclic motion
is given as a function $.(s) for 0 < s < 1. To achieve this objective, the
constraint [(s) = [%(s) can be relaxed to: Lyin < 1(8) < lnaz-

To converge toward the cyclic orbit in the phase plane s, $, we define an
error between the current state and the orbit:

ey = 5(8) — 5.(9) (27)

and to nullify this error the desired acceleration §¢ is chosen such that: é, +
Kyse, = 0 where K, defines the convergence rate to the cyclic motion. Thus
the desired acceleration is:

5(s)? = d(sgiis))s + Kps(8c(s) — 3(s)) (28)

But the position [ of the CoP, and the acceleration § are linked by the

dynamic model. And even if the constraint on [ is relaxed, the condition of

non-rotation of the feet holds, and [ is monitored to be within the domain

S =|lmin, lmaz| in all the control process. If the same closed loop behavior is
desired for the joint variables (22), gives:

i —No(q)v — ho(g,§) + U(Ni(q)v — hu(g; 4)) (29)

N()(Q)dq (s) +ZN( )dqd(s)

where [ must be chosen such that | € S. Differentiating (29) with respect to [
shows that § is monotonic with respect to [. Thus the limits L < I < lnaz
can be easily transformed with limits on §. For this purpose, the extreme
values for § are defined as follows:

_ _NO(q)'U - hO(q, (1) + lmzn(Nl(q)v - hl(qv q))
No(@) 25 4 1,0, Ny (g) 247()

_NO(q)U B h(](Qa ) + lmax(Nl( )’U - hl(q7 q))
d(s d(s
NO(Q)dq (o) + lnazNi(q) qu(v :

(30)

U =

For given values of s, §, two cases occur depending on whether the de-
nominator can be zero or not for [ € <. The denominator is zero for

(s)
I(s) = —]\[0()735 If for any ! such that | € &, the denominator of
Ni(q) dq ( )

eq. (29) is not zero then § is bounded for any acceptable value ! and
min(uy,uz) < § < max(ul,uQ). If for one value ! such that [ € <, the de-
nominator of eq. (29) is zero, then § is unbounded and § cannot be in the
interval | min(uy, us), max(uy, ug)[ with acceptable values of I.

Thus the proposed control law is the following: like the previous control
law, the reference path ¢¢(s) is tracked using eq. (23) but eq. (22), which
corresponds to the constraint I(s) = [4(s), is replaced by the following:
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d. do.

.» No(q)%a (s No(q) 2a (8]
ff— & g or — —MZe 5 then

Ny(q) 222 Ny(q) 22

min(ug, ug), if ¢ < min(uy,us)

§ = { max(ui,ug), if § > max(uy, us)

od

§ otherwise

’ (31)

g,
NO(Q)qugl)

if lin < — <
Nz(‘l)dqdiis)

< lmae then

min(u, ug), if min(uy,us) < 54 < ugy
§ = { max(uy,uz), if ujo < §¢ < max(u1, us)

g4, otherwise

where 19 = mm(ul’“z);max(“l’uz). This control law ensures a convergence to

the cyclic motion with a convergence rate defined by K, under the constraint
les.

The control law (31), (23) ensures that g(t) converges to ¢%(s(t)) in a
finite time, which can be chosen less than the duration of one step [1, 9], and
ensures that [ € . The biped with control law (31), (23) follows perfectly the
reference path after this first step. To know if a cyclic motion will be obtained,
the behavior of the evolution of $x(t) is studied for k = 2...00 and for an
initial velocity $2(0). The stability analysis is done numerically like for the
first control law.

The convergence rate to the cyclic motion depends on the choice of the
value K. Higher values of K, speed up convergence toward the cyclic motion
if there is no saturation due to the limits on [.

5 Walking Simulation using Correct Model Parameters

5.1 A Reference Path

The proposed control law was tested on the reference path corresponding to
the stick-diagram presented in Fig. 4, for the biped presented in Fig. 1. The
joint path ¢%(s) is defined by a fourth order polynomial evolution with respect
to s.

This reference path has been defined to produce an optimal cyclic motion
for the robot Rabbit [2], this robot has the same physical property that the
robot described in Sect. 2 but Rabbit has no feet (h, = 0, I = 0). As the
studied robot has feet, and a linear evolution of the position of the CoP is
considered, the existence of a cyclic motion is not ensured and if it exists it is
of course not optimal.

For the robot without feet, the optimization process is described in [8]. The
reference path is described by an instantaneous double support configuration
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Fig. 4. The stick diagram of the desired trajectory. The configuration of the robot
are drawn for s = 0,0.05,0.1,0.15...,0.95,1. Thus a sequence of pictures of the
robot are given. The desired motions of the robot are such that the configuration of
the robot coincides at some instant to each picture, but it is not imposed that these
instants are equally distributed in the period of one step

q%(1), the final direction of the joint velocity q(;(sl) , an intermediate single sup-
port configuration ¢¢(0.5), and a. The initial double support configuration is
defined by permutation: ¢?(0) = Eq?(1). The direction of the initial velocity
is defined by equation (15). Then the desired path is determined by a poly-
nomial 4th order function of s connecting these configurations and velocities.
The integral of the norm of the torque for the cyclic motion is minimized for
a given advance velocity. The free leg tip must be above a sinusoidal function
with a maximum of 5 cm. The limit of the actuator are taken into account
(maximal torque less than 150 Nm). The reference path corresponding to the
Fig. (4) is obtained for given advance velocity vel = 1.41ms~!. The opti-
mal solution is such that: ¢?(1) = [5.73° 185.08° 40.43° 133.33° 25.81°]T,
% = [3.57°s7! 32.60°s7! — 61.60°s7! 0.09°s~! 29.50°s71]7, ¢%(0.5) =
[19.97° 161.22° 42.51° 154.93° 17.72°}T and o = 1.98

5.2 The First Control Law

For this joints path, a linear evolution of the CoP position is chosen. When s
varies from 0 to 1, [¢ varies from —0.06 m to 0.18 m.

The control law imposes that ¢(s) = ¢%(s), [(s) = 1%(s) after the first step.
The stability of the complete system is determined by the evolution of s(t). It
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Fig. 5. The phase plane for the zero dynamics (25) on single support: $ against s

can be described in a phase plane s, $ for 0 < s < 1 initialized with different
values for $. For example, the phase plane is shown in Fig. 5.

For a sufficiently high initial velocity $(0), successful stepping pattern
can be achieved. At low initial velocity $(0), the robot falls back. Taking
the impact phase into account (here o = 1.98), the Poincaré return map
$p+1(1) = @(8x(1)) is drawn in Fig. 6. For the example the cyclic motion
is such that $.(1) = 3.9s7!. The corresponding average motion velocity is
vel = 1.5 m/s. The slope of function ¢ is estimated numerically: A = 0.68; it
is less than 1, thus the proposed control law is stable. The minimal value and
the maximal value of the velocity $x(1) such that the step can be achieved
are defined numerically. For smaller initial velocities the biped falls back, for
higher velocities the biped takes off since the normal ground reaction vanishes.

Assuming no modeling error and initializing the state of the biped out of
the periodic orbit (with an initial velocity 60% higher than the cyclic value),
the results of one simulation for 20 walking steps are illustrated in Fig. 7.
The convergence toward a cyclic motion can be shown for the five joints via
their evolution in their phase plane. For example the evolution of the trunk
is shown in Fig. 7-a. This convergence is also illustrated via the evolution of
the position of the CoP with respect to time in Fig. 7-b. For each step, this
evolution is linear from —0.06 m to 0.18 m, but the duration of the step varies.
At the beginning;, the steps are faster and then a cyclic behavior is obtained.
Figure 7-c presents the time-history of s, it clearly converges toward a cyclic
motion, the final value of s before each impact is the cyclic value obtained on
the Poincaré map.
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Fig. 7. The convergence toward a cyclic motion is observed in simulation with the
proposed control law, without modeling error. (a) The trunk evolution is drawn
in its phase phase (the absolute trunk velocity with respect to the absolute trunk
orientation), at impact the velocity changes but not the orientation. It tends toward
a limit cycle. (b) During each step, the horizontal position of the CoP with respect
to time I(t) evolves from —0.06 m to 0.18 m. The duration of the step tends toward
a constant value. (¢) $(t) tends toward a cyclic motion



112 D. Djoudi and C. Chevallereau

L=

-1

0 0.2 0.4 0.6 0.8 1

Fig. 8. The phase plane for the zero dynamics on single support, (31), for the second
control law with K,s = 20

5.3 The Second Control Law

The second control law was tested on the same reference trajectory ¢%(s). The
desired evolution of $(s) is the cyclic motion corresponding to the previous
control law.

The control law imposes some constraints ¢(s) = ¢%(s) that are assumed
to be perfectly respected. The free dynamics that results from imposing these
constraints on the system configuration are described by s, $ and eq. (31) can
be represented in the phase plane. The phase plane is shown in Fig. 8 for
K,s = 20.

The convergence toward the cyclic motion is clear when Figs. 5 and 8 are
compared. When K, = 20, for initial velocities varying from 1.4 to 2.8, the
cyclic motion is reached in one step. This feature gives a horizontal behavior
of the Poincaré map about the fixed point. The motion can be initiated with
a lower velocity $(0) than for the first control law because when the current
motion converges toward the cyclic motion, it helps prevent the biped from
falling back.

The control strategy is properly illustrated by the evolution of I(s) cor-
responding to the evolution of the biped for various initial velocities $(0) in
Fig. 9. When the real motion of the biped is slower than the cyclic one, the
position of the CoP is moved backwards to increase the motion velocity until
the limit [,,,;,, is reached. When the real motion of the biped is faster than the
cyclic one, the position of the CoP is moved forwards to decrease the motion
velocity until the limit l,,,4, is reached. With a high gain, the position of the
CoP is on the limit almost all the time

The single support phases are separated by impact phases. The Poincaré
return maps can be deduced and are presented in the Fig. 10, for K,, = 2
and K, = 20.
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Fig. 9. The evolution of the position of the CoP [(s), for various initial velocities
5(0), for the second control law with K,s = 20
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Fig. 10. The Poincaré return map for the second control law with K,s = 2 (solid
line) and K,s = 20 (dotted line), $x+1(1) is shown against $;(1))

Since this control law is defined to obtain convergence toward the cyclic
motion corresponding to the first control law, the fixed point of the Poincaré
maps is the same (see Figs. 6, 10). The minimal and maximal values of the
velocity $x(1) such that the step can be achieved are defined numerically. It
can be noted that the minimal initial velocity is lower for the second control
strategy than for the first one. With K,; = 2, at the fixed point the slope is
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Trunk evolution in its phase plane
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Fig. 11. The convergence toward a cyclic motion is observed in simulation with the
second control law, with K, = 20, without modeling error. (a) The trunk evolution
is drawn in its phase phase (the absolute trunk velocity with respect to the absolute
trunk orientation), it tends toward a limit cycle. (b) The horizontal position of the
CoP with respect to time [(¢) is bounded. It tends toward the same cyclic evolution
as in Fig. 7(b). (c) s(s) tends toward to the same cyclic motion as in Fig. 7(c)

about A = 0.23; it is less than the value obtained for the first control law thus
the convergence is faster. For K,s; = 20 the convergence is so fast that the
slope is close to horizontal at the fixed point, in one step the cyclic motion
is almost joined. When the initial velocity is far beyond the cyclic one, the
constraint on [ produces a saturation on § almost all the time, thus almost
the same behavior is obtained with K,; = 2 or K,s = 20.

Assuming no modeling error and initializing the state of the robot out of
the periodic orbit (with an initial velocity 60% higher than the cyclic value),
the results of one simulation for 20 walking steps of the robot are illustrated
in Fig. 11. The convergence toward a cyclic motion can be shown for the trunk
via its evolution in its phase plane (Fig. 11-a). In one step the cyclic motion is
reached. This convergence is also illustrated via the evolution of the position
of the CoP with respect to time (Fig. 11-b). To slow down the motion, for
the first step, the position of the CoP stays on the front limit (I,,4,). After
the evolution of the CoP corresponds to the desired cyclic one, it is linear
from —0.06 m to 0.18 m. Figure 11-c presents the evolution of § with respect
to time, it clearly converges toward the desired cyclic motion.
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6 Control of Walking with Imprecise Model Data

In practice the robot parameters are not perfectly known. We assume that we
have some errors on the masses and consequently on the inertia moments of
the robot links. We simulate the following case of errors:

e the mass errors are: +10% for the thighs, +30% for the shanks and +50%
for the trunk. The error on the inertia moment of the trunk is +30%;

e since the reference path is designed with a false model, the velocity after
the impact is not the expected one;

e as the position [ of the CoP is calculated via the dynamic model, I(s) will
not be exactly 14(s).

This choice of errors is arbitrary. We choose that the real robot is heavier
than the model used in the control law, this point is commented.

6.1 The First Control Law

Initializing the state of the robot in the same conditions as in 5.2; the behavior
obtained for 20 walking steps is presented in Fig. 12. Some tracking errors exist
particularly at the beginning of each step due to the effect of impact, thus
the path followed is not exactly the expected one (but the tracking errors

Trunk evolution in its phase plane
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Fig. 12. The convergence toward a cyclic motion is observed in simulation with
the proposed control law, with modeling error. (a) The trunk evolution is drawn
in its phase phase (the absolute trunk velocity with respect to the absolute trunk
orientation), it tends toward a limit cycle. (b) The horizontal position of the CoP
with respect to time [(t) tends toward a cyclic evolution different from Fig. 11(b).
(c) $(s) tends toward a cyclic motion different from the motion in Fig. 7(c)
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are cyclic). The convergence toward a cyclic motion is shown for the trunk
evolution via its phase plane in Fig. 12-a. This convergence is also illustrated
via the evolution of § with respect to s in Fig. 12-c, it clearly converges toward
a stable cyclic motion. The cyclic motion is close to the expected one but not
exactly the same, because it is the result of the motion of the CoP and of
the dynamic model. Since the real robot is heavier than the robot’s model
used, we have greater ground reaction forces; consequently the real evolution
l of the CoP in Fig. 12-b varies between extreme values smaller in absolute
value than the desired values. The difference between [(s) and 19(s) is higher
for large value of $. In this case there is no problem because constraints of
equilibrium of the supporting foot are always satisfied. Otherwise if the real
robot was lighter than the modeled one, the CoP could be outside the sole
and the constraints of equilibrium of the supporting foot could be violated. So
a security margin is necessary when the minimum and the maximum values
for the CoP evolution are defined. The best way is to define l,,;, and lqz
with some margins with respect to real size of the foot (see Fig. 2).

6.2 The Second Control Law

In order to illustrate some robustness properties of the second control law
proposed in (Sect. 4), we test the same modeling error as in Sect. 6.

e Since the reference path is designed with a false model, the velocity after
the impact is not the expected one;

o In the case of perfect modeling the control law (31) assumes that the
limits on § corresponds to lin < I < ljee. But this relation is based on
the dynamic model, since the dynamic model is not perfectly known, this
transformation will induce some errors.

A simulation of 20 walking steps is presented in Fig. 13. The biped state is
initialized out of the periodic orbit (with an initial velocity 60% higher than
the cyclic value). The convergence toward a cyclic motion can be shown via the
trunk evolution in its phase plane in Fig. 13-a; some errors can be observed at
the impact times. The convergence toward the cyclic motion can be also shown
in Fig. 13-b via the evolution of the CoP with respect to time. The evolution
of the CoP is not the expected one even if the evolution of $§ converges clearly
toward the expected cyclic motion with the end of the second step (Fig. 13-c
and 12-c).

In the presence of modeling errors, the two control laws will not give the
same cyclic behavior. Due to the second control law, § will converge toward
$¢, and the average velocity of the robot does not change, which is not the
case for the first control law.
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Trunk evolution in its phase plane
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Fig. 13. The convergence toward a cyclic motion is observed in simulation with the
second control law, with K,,=20, with modeling errors. (a) The trunk evolution is
drawn in its phase phase (the absolute trunk velocity with respect to the absolute
trunk orientation), it tends toward a limit cycle. (b) The horizontal position of the
CoP with respect to time [(t) is bounded. It tends toward a cyclic evolution different
from Fig. 11(b). (c) $(s) tends toward to the same cyclic motion as in Fig. 7(c)

7 Discussion Section

Even if the stability studies for the two proposed control laws are conducted
numerically for the examples, based on the analytical study of the robot with-
out feet [4] and on the case of a desired piecewise evolution of the position
of the center of pressure [7], and also based on numerous simulations, some
general conclusions can be given:

e For the first control law, the choice of [%(s) has a large effect on the ex-
istence of a cyclic motion and on the average velocity of the robot. If the
position of the CoP is moved forward, the average velocity of the cyclic
motion is slowed down. This property is limited: if the position of the
CoP is too much forward, no cyclic motion exists. In order that the robot
walks faster, a simple solution is to move the desired evolution of the CoP
backward.

e The stability property of the first control strategy is essentially due to the
fact that the vertical velocity of the center of mass is directed downward
just before the impact [4], [7]. Thus this property depends essentially on
the choice of ¢%(s).
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e A larger variation of 1%(s) during one step has two effects, the basin of
attraction of the control law is slightly increased, the convergence rate is
slightly decreased.

e For the first control law, the control speed § is not directly controlled, as
shown in Fig. 5, but only stabilizes step by step. The impact phase has a
key role in this stabilization. For the example, if the single support phase
can be achieved, $ increases non linearly during the single support and
decreases linearly during the impact phase, thus a stable speed is reached
as in a passive walking.

e When the desired joint references and the desired position of the center
of pressure are defined, since they are not function of time, we do not
have to worry about the dynamic consistency. The joints reference need
only to be twice differentiable and to satisfy the start and stop conditions
corresponding to the impact model. The second derivative of s is calculated
to satisfy the dynamic consistency.

e In the development of the control, a finite time controller is defined in
eq. (18), to insure a fast convergence to the zero dynamic manifold. Such a
controller is not required for the simulation and experiments. The dynamic
model is used to calculate the position of the CoP and the admissible limits,
for the experiments because it implies that the dynamic model must be
“correctly” known. The robustness tests (Sect. 6) have demonstrated that
an acceptable behavior can be obtained in the presence of an imprecise
model.

e For the second control law, an arbitrary function $.(s) can be chosen even

if ‘zzgég # «a. If this function $.(s) is not consistent with the constraint
on the dynamic model (I,nin < I(8) < ljnaz), the closed loop system will
converge to an evolution “close” to $.(s) but consistent with the constraint
on the dynamic model. This can be used to choose faster or slower motion.
For the proposed example, if we choose $. = 1, we obtain a cyclic motion
with an average velocity of 0.51 ms™', the CoP position is in the forward
part of the feet and often on the toe limit. If we choose §. = 4 we obtain
a cyclic motion with an average velocity of 1.5ms™!, the CoP position is
often in the limit of the foot.

e The proposed control laws can be extended to walking including rotation
of the foot about the toe [5].

e We hope that the second control strategy can be directly used for robot
walking in 3D, even if the position of the CoP is limited in the sagittal
and frontal plane.

8 Conclusion

For a planar biped, the proposed control strategy consists in the tracking of a
reference path instead of a reference motion for the joints and for the position
of the CoP. The biped adapts its temporal evolution according to the dynamic
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constraint that relies the position of the CoP and the joint acceleration. In
this context a complete study has been presented.

The conditions of stability are inequalities. Thus a certain robustness is
naturally contained in the proposed control strategy. In spite of tracking errors
and/or modeling errors, the behavior of the biped converges to a cyclic motion.
In the presence of modeling errors, the obtained cycle is slightly modified with
respect to the predicted cycle, but stable walking is obtained as it has been
observed in simulation.

Two control strategies have been proposed. In the first case, the CoP is
constrained to be a function of the robot configuration and the geometric
evolution of the joints are controlled, but the temporal evolution is free; the
natural convergence toward a cyclic motion is used. In the second case, the
convergence to the cyclic motion is forced by using the CoP as a control input
to correct for errors in the configuration speed, s, and the limits on the CoP
position are used l,nin < < lnaz-
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Summary. This paper first introduces a multi-locomotion robot with high mobil-
ity and then proposes Passive Dynamic Autonomous Control (PDAC) for the com-
prehensive control method of multiple types of locomotion. PDAC is the method
to take advantage of the robot inherent dynamics and to realize natural dynamic
motion. We apply PDAC to a biped walk control. On the assumption that the sagit-
tal and lateral motion can be separated and controlled individually, each motion
is designed based on the given desired step-length and period. In order to stabilize
walking, the landing position control according to the status is designed. In addition,
a coupling method between these motions, which makes the period of each motion
identical, is proposed. Finally, we show that the multi-locomotion robot realizes the
3-dimensional dynamic walking using the PDAC control.

1 Introduction

In recent years there have been many successful researches that focus on dy-
namic and skillful motions inspired by animal dexterity [13, 15, 16, 21, 27].
However, in general, they were mainly focused on a single type of motion, such
as biped or quadruped locomotion. On the other hand, many animals, such as
primates, use a primary form of locomotion but switch to other types depend-
ing on their surroundings, situation and purpose. For instance, a gorilla has
high mobility in a forest by selecting a bipedal walking in a narrow space, a
quadrupedal walking on rough terrain and a brachiation in the forest canopy.
Inspired by high mobility of an animal, we have developed a anthropoid-like
“Multi-locomotion robot” that can perform several types of locomotion and
choose the proper one on an as-need basis (Fig. 1) [12]. A development of a
bio-inspired robot which has multiple types of locomotion for high mobility
is challenging, because other problems arise in addition to research topics on
humanoid robot study. One is a comprehensive control architecture that is
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Fig. 1. Concept of the multi-locomotion robot

capable to achieve multiple types of locomotion. A common control architec-
ture should be designed when the robot achieves a seamless transient motion
connecting one locomotion to another such as a transient from trot to gallop,
because a transient motion between typical types of locomotion can not be
realized by fusing control signals from the corresponding controllers. Based
on this notion, we have proposed a novel method named Passive Dynamic
Autonomous Control (PDAC) [2, 3] that achieves not only a bipedal walk
but also a quadrupedal walk. This paper focuses on the PDAC algorithm and
control method for the bipedal walk.

A lot of research of ZMP-based control [31] has been presented [19, 28].
However, ZMP-based control could not realize an efficient locomotion since it
does not take advantage of the robot inherent dynamics. To solve this prob-
lem, it is necessary to develop a dynamics-based method. Some researchers
proposed a method to use the robot dynamics directly by making the point-
contact between a robot and the ground [7, 14, 21, 33]. Miura and Shimoyama
[17] presented a stilt-like biped and control method to stabilize the gaits by
changing the robot posture at foot-contact. Kajita et al. [13] proposed a con-
trol method based on the conserved quantity introduced due to a horizon-
tal COG (Center Of Gravity) trajectory. Goswami et al. [6, 29] reported a
method to realize quasi-passive walking on the horizontal ground. Grizzle and
Westervelt et al. [8, 20, 32] proposed a control method of an underactuated
planar robot with a trunk and proved its stability. Although some of these
point-contact methods actually realized smooth dynamic walking, their walk-
ing was 2-dimensional or that of a robot without trunk. Thus, the main goal
of a biped walk is to propose the new control method based on point-contact
and realize 3-dimensional dynamic walking of a multiple link robot with a
trunk.
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In this paper, we introduce the novel control method named Passive
Dynamic Autonomous Control (PDAC). PDAC assumes the two following
premises: 1) point-contact 2) interlocking. The second premise means that the
angles of the robot joints are connected with the angle around contact point.
Although this concept was proposed first by Grizzle et al. [8], we propose
another new method to control the robot dynamics by means of PDAC. The
approach of PDAC is to describe the robot dynamics as a 1-DOF autonomous
system, which is the dynamics around the contact point. This approach makes
it possible to calculate the period from foot-contact to next foot-contact (we
term this foot-contact period hereinafter), hence the foot-contact period of the
lateral motion and that of the sagittal one can be made identical. Each mo-
tion is designed by means of PDAC based on the assumption that the sagittal
and lateral motions can be separated. After that, by keeping the conservative
quantity of the autonomous system, the walking motion is stabilized. In addi-
tion, we propose a coupling method of each motion to make each foot-contact
period identical. Finally, by means of the proposed method, 3-dimensional
natural dynamic walking based on the robot inherent dynamics is achieved.

In the following section, the multi-locomotion robot is introduced and then
PDAC is explained in detail in Sect. 3. The 3-dimensional walking is designed
by means of PDAC in Sect. 4. Section 5 describes the experimental results.
Finally, Sect. 6 is conclusion.

2 Multi—Locomotion Robot

The dimensions of the multi-locomotion robot we developed is designed based
on those of a gorilla, and therefore the robot is called “Gorilla Robot III”.
Figure 2 shows the overview of Gorilla Robot III and its link structure. This
robot is about 1.0 [m] tall, weighs about 22.0 [kg], and consists of 25 links
and 26 AC motors including two grippers. The real-time operating system
VxWorks (Wind River Systems Inc) runs on a Pentium III PC for processing
sensory data and generating its behaviors. The rate gyroscope and force sensor
attached at each wrist measures the angular velocity around the grasping bar
to calculate the pendulum angle during the brachiation, and reaction forces
from grasping bars in order to judge whether the robot successfully grasps the
bar or not, respectively. Some photo sensors are attached on the sole in order
to perceive foot-contact.

This robot has been designed to perform biped locomotion, quadruped lo-
comotion and brachiation. We also consider the intermediate motion between
a bipedal and quadrupedal walk in order to realize seamless transfer from a
bipedal walk to a quadrupedal walk and from a quadrupedal walk to a bipedal
walk without pause. As the first step, we designed the controller for both loco-
motion using the same algorithm “PDAC”. The snapshot of the quadrupedal
walk is shown in Fig. 3, and a bipedal walk is shown in Sect. 5. Brachiation
is an interesting form of locomotion performed by long-armed apes by using
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Fig. 2. Gorilla Robot III

their arms to swing from branch to branch. This motion is a dynamic and
dexterous action routinely performed by some kinds of apes [26, 30]. Fukuda
et al. developed a six-link brachiation robot [4] as a pioneering research ana-
lyzing dynamics of brachiation, “Brachiator 11”7 [5, 9, 18, 22, 23] that is 2-link
underactuated system like “Acrobot” [1, 27], and “Brachiator III” [10, 24]
that achieves three-dimensional brachiation with redundant mechanisms.

Based on these studies, we designed over-hand and side-hand motions of
“Gorilla Robot IT” [12], using a motion learning algorithm, and “Gorilla Robot
IIT” achieves a continuous brachiation shown in Fig. 4 by implicitly using the
PDAC method in locomotion action control.

3 Passive Dynamic Autonomous Control

3.1 Target Dynamics

The concept of PDAC is the same as what Grizzle et al. [8] has proposed.
We begin with the two following premises. First, the contact state between
a robot and the ground is point-contact. Second, robot joints are interlocked
with the angle around the contact point. The first premise means that the first
joint of a robot, i.e. the ankle joint of the stance leg, is passive. The second
means that the angles of active joints are described as a function of the angle
around the contact point. Assuming that PDAC is applied to the serial n-link
rigid robot shown in Fig. 5, these two premises are expressed as follows:

7 =0 (1)
O = 101,02, ,0,]" = [f1(0), f2(0),- -, fa(O)]" = f(0) , (2)
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(10) t=4.5[sec] ' (11) t=5.0[sec] (12) t=5.5[sec|

Fig. 3. Snapshots of the quadrupedal walking of PDAC. The step length is about
0.09 [m] and velocity is about 0.176 [m/s]

where 6 is the angle around the contact point in the absolute coodinate system.
Since it has no effect on the robot dynamics due to point-contact, level ground
is assumed, therefore 6 = f1(0) = 6.

The dynamic equations of this model are given by

d . 10 /. .

5 (M©8) — - (6TM©)8) ~c@©) =7, @)
where M(0) = [M1(0), M2(0), -+ , M, (O)]", © = [01,05,--- ,0,]", G(O) =
[G1(8),Ga(8), -+ GO, T =[r1, 72, 7], 55 = [0 59 9T

Since in this model the dynamic equation around the contact point has no
term of the Coriolis force, it is given as

d .
= (Mi(©)8) —Gr(©) = . (4)
By differentiating Eq. (2) with respect to time, the following equation is ac-

quired,
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(7) t=5.95[s]

(13) t=1 1‘40[] (14) t=12.39[s] (15) t=13.21]s] (16) t=14.70[s]

Fig. 4. Snapshots of continuous brachiation. All bars are set at regular intervals of
0.4 m and at the same height of 2.7 m

y

Fig. 5. Mechanical model of the serial n-link rigid robot. 8; and 7; are the angle
and the torque of the ith joint respectively. m; and J; are the mass and the moment
of inertia of the ith link respectively
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. _0f(0), _[0£(0) 2f2(0)  Ofal0)]"
© =5 9_[ 00 7 90 00 0. (5)

Substituting Egs. (1), (2) and (5) into Eq. (3) yields the following dynamic
equation,

where

M) = (10)) 7 (7)
G(0) = G1(1(9)) - (8)

By multiplying both sides of Eq. (6) by M(6)0 and integrating with respect
to time, the dynamics around the contact point is obtained as follows:

/ (M(e)é) d dt / M(0)G(0)0 dt 9)
\/ / 26G(0 (10)

Assuming that the integration in right side of Eq. (10) is calculated as
J GO)M(9) d = D(0) + C, Eq. (10) is described as the following 1-DOF
autonomous system,

1
= 30 2(D(0) + C) (11)
= F(0) . (12)

In this paper, we term Eqs. (11) and (12) the target dynamics.

3.2 Dynamics Interlocking

As mentioned previously, PDAC is based on the two premises: passivity and
interlocking. These premises make it possible to describe the whole robot dy-
namics as a 1-DOF autonomous system, owing to which the simple and valid
controller based on the robot dynamics can be composed. However, inter-
locking of joint angles has the possibility to create a problem that the robot
vibrates and the controller loses its stability during locomotion, especially at
foot-contact, since if the passive joint vibrates, all of other active joints also
do. In order to solve this problem, all of the robot joints are controlled ac-
cording to the desired dynamics of each joint derived from the interlocking
function Eq. (2) and the target dynamics Eq. (12) as follows:

Ofi

b = B

F(f71(0:) (i=1,2,3,---). (13)
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These desired dynamics are independent from each other, thus it is necessary
to connect the desired dynamics of the active joints with the target dynamics
in order to prevent the whole walking motion being broken in case of error be-
tween the target dynamics and the actual dynamics of 8. Hence, we define the
connection between the target dynamics and the active joints. The controller
decides the desired angular velocities of each joint as described below,

04 = F(f71(60)) (14)
= (0 A k(0 -0) =28 ()
— 0= F ), (16)

where k; is the strength of connection determined experimentally since its
value has little effect on the robot dynamics. As for humanoid robots, the
ground slope at the contact point is deduced from the angle of the ankle joint
of the swing leg at foot-contact, and € is calculated from 6; and the ground
slope. The remarkable point is that if there is no error such as model error
or disturbance, the second term of Eq. (15) is constantly zero and the actual
dynamics of 6 is identical with the target dynamics.

Figure 6 shows the block diagram of PDAC of bipedal locomotion. The
control loop including a robot (enclosed by the dotted line in Fig. 6) has
no input, thus it can be considered that the control system is autonomous.
This autonomy makes it possible to realize natural dynamic motion based on
the inherent dynamics of a robot. The loop described by the broken line is
executed only at the moment of foot-contact. In this loop, the target dynamics
of the next step is determined according to both the desired parameters such as
walking velocity and the robot status, then F' is updated. Since this updating
compensates the error between the previous target dynamics and the actual
ones around the contact point, it is possible to realize stable walking.

3.3 PDAC Constant

Since as mentioned previously, the target dynamics is autonomous, in addi-
tion, independent of time, it is considered as a kind of conservative system.
Therefore, it is conceivable that the target dynamics has a conserved quantity.
As for PDAC, it is the constant of integration in right side of Eq. (10). That
is, C' in Eq. (11) is the conserved quantity of the target dynamics, which is
named PDAC Constant. It is clear that PDAC Constant is decided in accor-
dance with initial condition and that the robot motion is generated as it is
kept constant. In order to stabilize walking, the controller updates the target
dynamics according to PDAC Constant. This method to update is presented
later.
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Fig. 6. Block diagram of PDAC of bipedal locomotion. 6. and éc are the angle and
the angular velocity of 01 at foot-contact respectively

4 Bipedal Walking Control

In this paper, it is assumed that lateral motion and sagittal one can be sepa-
rated and controlled independently since lateral side-to-side rocking motion is
quite small and step-length in the sagittal plane is relatively short. Although
both motions are composed independently, the period from foot-contact to
next foot-contact (foot-contact period) in both planes are necessarily identi-
cal. We design each motion by means of PDAC by giving both the desired
step-length, \¢, and desired foot-contact period, T'¢, and propose a coupling
method of both motions. In addition, the landing position control is designed
based on PDAC. At first the sagittal motion control is presented that is fol-
lowed by the lateral motion control satisfying the condition of the foot-contact
period is explained.

4.1 Sagittal Motion Control
3-Link Model

For the sake of simplicity, the 3-link model as shown in Fig. 7 is used, i.e. the
upper body of the robot is not moved. The dynamic equation of this model
is described as Eq. (3) and that of the ankle joint of the stance leg is Eq. (4)
where n = 3. The left side of Eq. (4) is described as follows:



130 T. Fukuda et al.

Fig. 7. 3-link model in the sagittal plane. m;, J;, l; and a; are the mass, the moment
of inertia, the length of link and the distance from the joint to the link COG of link
i respectively. 7y is the angle of forward tilting. In the right figure, 61, 62 and 03 are
the ankle angle of the stance leg, the angle from the stance leg to the the swing leg,
the angle to swing the trunk up respectively

MH(@) =i+ o+ J3+ mla% + ’ITLQZ% + mgag — 2maasly cos B

+ msl? + msa3 + 2msasly cos(y — 03) (17)

Mi3(0) = —Jy — mQag + maasly cos b (18)

My3(0) = —J3 — mza3 — maasly cos(y — 03) (19)
G1(0) = (m1ay + maly + msly)gsin by + magas sin(62 — 60;)

+ magagsin(6y +v — 63) , (20)

where M;(0) = [M11(©), M12(6), M13(0)].

Interlocking of Sagittal Joints

Grizzle et al. [8] used the following interlocking in their previous paper to
maintain the angle of the torso at some constant value and to command the
swing leg to behave as the mirror image of the stance leg. In this paper, we
use the same interlocking, that is,

0= fi1(0) =0—-p (21)
0y = f2(0) = 20 (22)
03 = f3(0) =0, (23)

where (8 is the ground slope at the contact point (ascent is positive). From
Egs. (21)—(23) and (1), Eq. (6) is

M,(0) = (Jy — Jo +mia? + mol? — moa3 4+ msl?) + maasly cos(y — 0]24)

= Ey + Eycos(y — 0) (25)

Gs(0) = (myag +maly + moag + msly)gsin @ + magas sin~y (26)

= E3+ E,sin6 . (27)
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Fig. 8. Parameters at foot-contact. [~ and £~ are the length and inclination of the
inverted pendulum which connects the supporting foot and the COG of the whole
robot before impact, while ¥ and £ are those after impact. ;6= and ;0" are the
angles around the contact point before and after impact of the ith step

Thus,

/ M. (0)G.(6)d6 = / (Ey + Excos(y — 0)) (Es + Egsin6)dd  (28)

B sin(v6)  cos(26 — )
= B2l ( 2 4

+E2E3 sin(9 — ’)/) - E1E4 cos 6 + E1E39 + Cs (29)
= D, () + C, (30)

where C is the integral constant, which is PDAC Constant of the sagittal
motion. From Eq. (11), the target dynamics in the sagittal plane is

. 1
0 = YAC) 2(Ds(0) + Cs) (31)
= Fi(6) . (32)

From Egs. (21)-(23), fi '(61) = 61 + 8, f3'(62) = 362, f5'(63) = 05 are
obtained, thus the desired angular velocities of sagittal joints are described as
follows:

0¢ = F, (0, + f3) (33)
03 = 2F, (922) + k2 (20 — 65) (34)
04 = Fy(05) + ks (0 — 03) . (35)

Foot Contact Model

In this paper, it is assumed that foot-contact occurs instantaneously and the
angular momentum around the contact point is varied instantly. The angular
momentum is described as
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P = M,(6)6. (36)

Figure 8 depicts some parameters at foot-contact. Assuming that the trans-
lational velocity along the pendulum at foot-contact is zero since it is quite
small, the angular velocity around the contact point is acquired as follows:

ITPT =1"P cos(¢™ +¢&1) (37)
1T M(;07) _ .
— 0t =H, 0" (39)

From this value, and the PDAC Constant at the ith step, ;Cs, is obtained as

iCs = %(Me (;:67) z’é+>2 — D, (;67) . (40)

Desired PDAC Constant

Since the target dynamics is the 1-DOF autonomous system, it is possible
to calculate the foot-contact period by integrating Eq. (12) with respect to
time. The foot-contact period satisfying the desired step-length is calculated
as below:

6= F.(6) (41)
1
— ——df = dt 42
) ()
i+1é7
1 N
— a9 =T, , 4
F.0) ()
0+
where ;0% = 10~ = sin™! % are the desired value of ;6T and ;4 10~ that can

be calculated from the desired step-length. This period is necessarily identical
with the desired foot-contact period, thus

T,=T7. (44)

In order to generate the stable cyclic walking, the angular velocity around the
contact point after impact must be kept constant, that is,

ié+ = 1’+1é+ . (45)

By solving two conditions, Eqs. (44) and (45), by means of two dimensional
approximation of ;07 and ;16~, the desired PDAC Constant is determined,

C=ciTi N\ . (46)
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Stabilization of Sagittal Motion

Since the target dynamics is a conservative system, if the PDAC Constant is
kept constant, the stability of the motion is guaranteed. In order to stabilize
walking, step-length is varied according to the PDAC Constant. This method
takes advantage of the loss of angular momentum at foot-contact, that is, if
the step-length is long, the loss is high, while if short, it is low. The control
strategy is to adjust the step-length of the next step after every foot-contact
in accordance with the desired PDAC Constant and the actual one as follows:

Cﬁ + D (;4107) Dy (;4107) + :Cs HSQ (47)

M (i+10+)2 M (i+107)2
At z’+197 = i+107 (Osd, ch) . (48)

Note, however, that since in this paper level ground is assumed, ;4107 =
107

This stabilizing control makes it possible to keep PDAC Constant in the
vicinity of the desired value. Therefore, sagittal motion is kept stable.

Here, the point to notice is that the foot-contact period differs from the
desired foot-contact period due to stabilization. Hence, it is necessary to con-
trol the lateral motion so that the period of lateral motion is identical with
the following period of sagittal motion,

i+10"

T, = / do . (49)

4.2 Lateral Motion Control
Lateral Motion

Many reserchers investigated and proposed lateral motion control [11, 14, 25].
In this paper, we design the lateral motion by means of PDAC as depicted in
Fig. 9. In order to continue the side-to-side rocking motion, a robot lifts its
pelvis in phases (A) and (B). The inverted pendulum whose length is variable
is used as the model of the lateral plane since the motion to lift the pelvis is
quite small, in addition, the robot posture is varied little thus the motion to
lift the pelvis can be considered as lengtherning the pendulum. The lateral
motion can be continued in spite of the loss of angular momentum at foot-
contact by changing the pendulum length at impact.

Collision Inverted Pendulum Model

The following model shown in Fig. 10 is used as the model of the lateral
motion: two inverted pendulums which are opposite each other continue to
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Fig. 9. The lateral motion of lateral-based walk (front view). The inverted pendulum
falls off in phase(A) and swings up in phase(B)
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Fig. 10. Motion of CIPM. The collision between the foot and the ground is regarded
as that between two pendulums. (A) and (B) correspond to those in Fig. 9
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w

Fig. 11. (a) Trajectory of COG and polar coordinate systems X7, X% | and ¢
denote the length and the angle of an inverted pendulum. (lo, ¢0) and (lo + Al, ¢1)
are the coordinates in % at the beginning and ending of phase (A), (lo— Al, ¢2) and
(lo, ¢3) is that of X of phase (B) respectively. ¢1, ¢o denotes the angular velocity
at the end of phase (A) and at the beginning of phase (B). (b) Phase portraits of
T and ¢ (c) Phase portrait of CIPM. The gray tetragon surrounded by the pair
of separatrixes is named CIP-Area

rock, iterating the collision between them, which is named Collision Inverted
Pendulum Model (CIPM). This CIPM is intuitively like the Newton’s Pen-
dulum inverted. Figure 11 shows the trajectory of COG and two coordinate
systems X and X that correspond to the right- and left-leg-support period
respectively, and Fig. 11(b) depicts the phase portraits of ¢© and ¢”. These
two phase portrait’s coalescing yields the phase portrait of CIPM (see Fig.
11(c)). In the phase portrait of CIPM, there is the area in which one has the
circular nature between the coordinate systems X% and X¥. In this area, the
periodic motion can be realized due to the circular nature.

Interlocking of Lateral Joints

The interlocking in the lateral plane is defined as below,

Phase(A) : 1= fa(¢) =a10+ by (50)
Phase(B) : | = fp(¢) = as¢® + bap + o , (51)
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where
o= ! A (52)
by = lo— ¢1¢j A (53)
as = mm (54)
by — —ﬁm (55)
ey = lo— QMAZ . (56)

[ is the monotoneally increasing function of ¢ meeting the following conditions
in phase (A): fa(do) = lp and fa(¢1) = lp + Al, while in phase (B): f5(¢2) =
lo— Al f'(¢2) =0 and f(¢3) = lo.

The dynamic equation of the angle of an inverted pendulum is described
as follows:

d .
T ((ml2 + J)d)) =mglsing . (57)
From the interlocking, Eq. (6) is described as follows:
M (¢) = mfn () +J (58)
Giy(9) = mgfn(¢)sing, (59)

where the suffix N means phase (N) (N=A, B). From Eq. (11), the target
dynamics in the lateral plane is

. 1
b = W\/ [ 24, ()G (0) do (60)
1
= m¢2wm<¢> +Ciy) (61)
= Fi\(9) (62)

where C}, is the integral constant, which is PDAC Constant of the lateral
dynamics.

Assuming that the collision between the swing leg and the ground is per-
fectly non-elastic, the angular velocity of the inverted pendulum after impact
is

b2 = gy cos (9162 = Q) (63)
T+ (1+ A2 .
= VAEUEED s (91— 02 - Q) (64)

= H, ¢y , (65)
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where

vy = \/(1§)2 + 12 = /a2 + (1 + Al)2¢ (66)

p=¢1
¢ = tan™! <1ib> = tan* (l lel) . (67)

o=¢1
Al is the control value of the lateral motion. It is calculated from the condition
of the beginning of phase(A) and the end of phase(B): Fj,(¢9) = 0 and
F;,(¢3) = 0. That is,

Dy, (¢1) — Dy, (o) Dy (¢3) — Dig (62)
MZA(¢1)2 MlB (¢2)2 '

Al is so small that it can be obtained from this equation by means of the
linear approximation of Al,

H} = (68)

Al = Al(¢o, ¢3) - (69)

Finally, it is necessary to determine the desired amplitude of the rocking
motion, ¢¢, so that the foot-contact period in the lateral plane matches with
the desired foot-contact period. This condition is described as below,

é1 o8
1 e
l @t ¢/ Ry =T (70)

By means of two dimensional approximation of ¢, it is possible to calculate
#3 from Eq. (70),

6 = op(T7) . (71)

By setting ¢3 at —¢d at the beginning of phase (A) of every step, the lateral
motion can be stabilized.

Coupling with the Sagittal Motion

As mentioned previously, it is necessary that the foot-contact period of the
sagittal motion and that of the lateral motion are made identical. In case of
the adjustment of step-length, the sagittal foot-contact period differs from
the desired foot-contact period, thus the lateral motion needs to be varied
according to the period of Eq. (49).

In order to control the lateral foot-contact period, the foot width is ad-
justed as shown in Fig. 12. | — Al + 6l and ¢2 + d¢o are acquired from e
geometrically. It is assumed that this adjustment is so small that its effect on
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Fig. 12. Adjustment of foot width. € is the angle to open the swing leg to adjust
the foot width. I — Al 4§l and ¢2 + d¢2 are the pendulum length and angle at the
beginning of phase (B) after adjustment

the target dynamics in phase (A) can be neglected. By the adjustment, the
parameters of the target dynamics in phase (B) are varied as follows:

a5 = ! (Al - 81) (72)

(6 — (6o + 662))

209
by = — Al — 6l 73
T (bs— (62 +5¢2>)2< ) (79)
63— 20 + 602)s

(63 — (62 + 06))°

The condition that the pendulum pauses at the end of phase (B) is F;, (¢3) =
0, hence

Coy = ZO (Al - (51) . (74)

N
Diy(¢3) — Dy (d2 + 662) + (M(¢2 + 5¢2)¢2) =0. (75)
In addition, the condition that the foot-contact period must satisfy is
@3 1
/ ! do + / L dp =T, (76)
Fi(9) Fi,(9) .
P2+0¢2 @3

The first term of the left side in Eq. (76) is the period of phase (B) and
the second term is that of the subsequent phase (A). The two conditions of
Eq. (75) and (76) have two unknowns, i.e. the adjustment value, €, and the
pendulum angle at the end of phase (B), ¢3. By solving these two conditions
by means of linear approximation of ¢ and two dimensional approximation of
¢s, the adjustment value, €, can be calculated

e=e(0,0,T,) . (77)
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Fig. 13. Block diagram of the coupling between the sagittal and lateral motions

Figure 13 depicts the block diagram of the algorithm described in the pre-
vious sections. At foot-contact, the sagittal controller decides the step-length,
i.e. the value of 8 at the next foot-contact in order to stabilize the sagittal
motion. Next, the foot-contact period of the sagittal motion is calculated by
integration. Finally, the lateral controller determines the adjustment value of
foot width according to both the sagittal foot-contact period and the present
status in the lateral plane. This series of controls can be considered as the
landing position control of three dimensional walking since the step-length is
adjusted in the sagittal plane and the foot width is adjusted in the lateral
plane.

The box enclosed by a gray dashed line is the algorithm to decide the
desired foot-contact period and step-length so that the energy consumption
is minimized. However, this has not been solved and is future work, hence we
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Fig. 14. Snapshots of the walking of PDAC. Each figure shows the snapshots at
(a)lst (b)7th (c)12th (d)16th (e)19th (f)22nd step

give the desired foot-contact period and step-length to the controller directly
in this paper.

5 Experiment

The experiment of the walking proposed in the previous section on flat and
level ground was conducted. Since, in order to start the walking, the robot
needs potential energy, we lifted up the lateral pendulum to the position at
the beginning of phase (A) and released. In experiment, the robot bends its
knee joint of the swing leg so as to prevent the foot being in friction with the
ground immediately after foot-contact on the assumption that the effect of
knee bending on the robot dynamics can be neglected. The foot of the swing
leg is actuated so as to be kept parallel to the ground.

The desired step-length is given to be gradually increased within the initial
5 steps up to 0.15[m] and the desired foot-contact period is given at 0.7[s]. In
consequence, dynamic and natural walking is realized over 25 steps. The step-
length is about 0.15[m] and the walking velocity is about 0.23[m/s]. Figure 14
shows the snapshots of the PDAC walking at the 1st, 7th, 12th, 16th, 19th,
22nd step respectively. The angle and angular velocity of the lower body
joints are depicted in Fig. 15 and Fig. 16. As shown in these figures, smooth
dynamics motion is realized periodically.
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6 Conclusion

This paper first introduced a multi-locomotion robot with high mobility and
then proposed Passive Dynamic Autonomous Control (PDAC) for the compre-
hensive control method of multiple types of locomotion. PDAC is the method
to take advantage of the robot inherent dynamics and realize natural dynamic
motion. We applied PDAC to the biped walk control. On the assumption that
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the sagittal and lateral motion can be separated and controlled individually,
each motion was designed based on the given desired step-length and period.
In order to stabilize walking, the landing position control according to the
status was designed. In addition, a coupling method between these motions,
which makes the period of each motion identical, was proposed. Finally, the 3-
dimensional dynamic walking whose step-length is about 0.15[m] and velocity
is about 0.23[m/s] was realized.
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Movements of humans are achieved by muscle contractions. Humans are able
to perform coordinated movements even in the presence of perturbations from
the environment or of the muscles themselves. But which properties of the
muscles and the geometry of the joints are responsible for the stability? Does
the stability depend on the joint angle? How large are the perturbations,
the muscle-skeletal system can cope with before reflexes or controls by the
brain are necessary? To answer these questions, we will derive a mathemati-
cal model of the muscle-skeletal system without reflexes. We present different
mathematical methods to analyze these systems with respect to the stability
of movements and thus provide the mathematical tools to answer the above
questions. This paper is a companion paper to [13] where the biological ap-
plications of the mathematical methods presented in this paper are discussed
in more detail.

Stationary and periodic movements are modelled by autonomous and time-
periodic differential equations. If small perturbations to these movements are
corrected by the system, the movement is called stable and the set of these
perturbations is called the basin of attraction of the movement. The basin of
attraction is the appropriate quantity to describe how stable a movement is,
since it measures, how large perturbations to the movement may be, which still
are led back to the desired movement. The basin of attraction thus describes
the self-stabilizing properties of the muscle-skeletal system without control
mechanisms. If a human runs, it is important how uneven the ground may be
before he either falls down or has to adjust his muscle activations to the new
situation.

Let us describe how the paper is organized: In Sect. 1 we present a math-
ematical model of a single human joint including antagonistic muscles. More
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precisely, we introduce models of a human elbow joint and a human knee
including muscular and outer forces as well as the geometry of the joint. In
Sects. 2 and 3 we present different mathematical methods to analyze the sta-
bility and the basin of attraction of a stationary or periodic movement, i.e.
for autonomous and periodic systems, respectively. Some examples of these
methods in biomechanical applications are given in this paper, and many more
are presented in [13] within this volume.

1 Biomechanical Models

In Sect. 1.1 we present a mathematical model of the human elbow joint, for
more details cf. [7] and [9]. In Sect. 1.2 we describe the model of the human
knee joint. Note that the models of other joints and other positions of the
arms and legs can be derived in a very similar way.

1.1 A Model of the Elbow Joint

Consider the following situation: the upper arm of a person is attached to the
body, the elbow pointing downwards. The lower arm (ulna) is free to move
in the sagittal plane so that the system is totally described by the angle §
between upper and lower arm at the elbow joint. The person holds a load
in the hand. Denoting the angular velocity w = 3 we obtain the following
equation of motion:

{ﬂ” 1)
W= %T(t,ﬁ,w) =: f(t,6,w)

where J = (%mu + ml) 12 denotes the moment of inertia, m, and m; denote
the mass of the ulna and of the load, respectively, and [ is the length of the
ulna. The torque T'(t,8,w) = To(t, B,w) + Tin(t, B,w) consists of two parts
corresponding to the outer forces and the muscle forces.

The outer forces include the gravitational forces acting on the arm and
on the load in the hand. In the periodic case we assume that the person
is walking which gives an additional term corresponding to the periodic
vertical acceleration a(t) applied to the system. Altogether, T,(¢,3,w) =
(3mu 4+ my) (g +a(t))lsin 3, cf. [2].

In our model we consider only the three most important muscles at the
elbow joint, namely the extensor muscle triceps brachii and the two flexor
muscles biceps and brachioradialis. For each muscle the torque is given by
T(t,B,w) = E(t)- fi(8)- H(B,w) h(B), where E(t) € [0,1] denotes the acti-
vation level of the muscle which is assumed to be constant or periodic with
respect to ¢, f; denotes the dependency of the muscle on its length, H denotes
the Hill-function modelling the dependency of the muscle on its velocity and
h denotes the effective moment arm, reflecting the geometry of the joint. We
will discuss the force-length function f; and the Hill-function H in more detail.
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Force-Length Function

We model the force-length functions fj,,. of the biceps by (2), cf. [9],

flbii(ﬁ) (wa(lbw( ) 3 (2)
fi(z) = aarctan[b(z — &) + d , (3)
2pic(T) = =0 [ — lpic (87/9)] + 1, (4)

lbic(87r/9) - lbvc(ﬁ/g)

where a = %, b=15¢=0.6,d=049. f; of (3) models the function de-
scribed in [11], 3 denotes the joint angle, lp;c(3) = /K2 + k% — 2kpky cos 3
the length of the muscle depending on personal data such as the distances be-
tween the elbow joint and the point where the tendon is attached to the upper
and lower arm kg, ki, respectively. zp;. denotes a normalized muscle length,
cf. [7]. zo is a muscle-dependent parameter, often zo = 0.55. The formulas for
M. brachioradialis are similar.

The extensor muscle of the elbow joint is approximately working around
the optimum muscle length. Therefore, the influence of the force-length rela-
tion can be neglected, i.e. we set f_,(8) = 1.

Hill-Function

Hill [10] introduced the following force-velocity relation

H(v) =

c
v+b

—aforv>0 (5)

where v > 0 denotes the velocity of the contraction of the muscle and a, b, ¢
are person-dependent constants. The excentric part, i.e. v < 0 is modelled
such that H is a C2-function, cf. [7]

B C
H(U)_A+1)7D+(v7D)2forv<O (6)

where A, B,C, D are chosen such that H € C?(R? R) and lim, ., H(v) =
1.5- H(0), i.e. the muscle can generate 1.5 times the isometric force H(0) for
very large negative velocities, cf. [7].

The Formula for T

Note that the velocity of the muscle v is connected to the angular velocity w
by v = h(f) - w, where h denotes the effective moment arm, cf. [7]. Altogether,
T, is given by

Tm (t; /6; (,U) - Eezt (t) Hext[hemt (ﬁ) . w] hezt (ﬂ)

+Ef1ea(t) fi..(8) Hyic[hvic(B) - w] hiic(B)
+Eflew (t) flbrach (ﬁ) Hbrach [hbrach (ﬁ) . w] hbrach (ﬁ) (7)
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Recall that E denotes the (periodic or constant) muscle activation, H the
Hill-function, h the effective moment arm and f; the force-length relation.
The index denotes the flexor muscles biceps and brachioradialis as well as the
extensor muscle. Note that the activation levels of both flexor muscles are
assumed to be equal and are denoted by Efie, (t).

Plugging the formulas for T, and T),, cf. (7), in (1) we obtain the following
system.

8 =uw
w = L[ (Amy+m) (g+a(t) ! sin B+ Eepi(t) Heat[heat(B) - 0] heat(B)
+Ef1ex(t) fiy,. (B) Hyiclhvic(B) - w] huic(B) (8)
+Efica(t) fiyraen (B3) Hyrach [Porach (B) - @] hiracn (B))
= f(t, B,w)

Special Features

For the mathematical analysis we hence study a system of differential equation
of the following form
f=w
{ : (9)

w = f(t,B,w)
where f(t,3,w) is either (i) independent of ¢ (autonomous system) or (ii)
periodic with respect to t, i.e. there is a minimal period 7" > 0 such that
f+T,8,w) = f(t,5,w) for all (¢,3,w). Note that the partial derivative of

the Hill-function with respect to w is strictly negative, i.e. H, (5, w) < 0 holds
for all (3,w) € R2. Hence, this also holds for f, i.e.

fult Bw) <0 (10)
for all (t,3,w).

Ezxamples

In this paper we study the following two examples:

1. Standing. We assume that the person is not moving (7}, is independent of
t), and holds the weight at constant activation levels E.,; and Eyjep (Th,
is independent of ) at angle By. Thus, f = f(8,w) is independent of ¢ and
Eeyt and Efjeq are chosen such that f(5p,0) = 0 holds, i.e. 5(t) = Gy and
w(t) =0 is a solution.

2. Walking. We assume that the person is walking in a periodic way (T, is
periodic with respect to t), and holds the weight at a constant level for a
person watching from outside. An example for such a situation is a waiter
carrying a tray while walking. The tray is supposed not to move, so that
the elbow angle must compensate the movement the walking imposes on
the shoulder and the arm. This is achieved by suitable periodic activation
levels Ecy(t) and Efeq(t). In this case, f = f(t, §,w) is a periodic function
of t, cf. Sect. 3.
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1.2 A Model of the Knee Joint

We assume that the foot is fixed to the ground, the upper and lower legs are
connected by the knee joint, the body mass is concentrated in the hip and the
hip can only move on a line perpendicular to the ground. The height of the
hip is denoted by =z, its velocity by v = &. In this case, our model includes
one extensor and one flexor muscle, and we set fi ., (z) = fi;..(x) = 1.
We neglect the mass of the leg, and we set the Hill-function of the flexor
Hyiez (V) = fisos.,- We consider the following equations of motion, cf. [12]

T =0
v = Eemt(t)Hemt[hert(z) : U] hemt(x) + Eflem(t)fisquem hflez(z) —mg (11)
= f(t7x7/u)7

where the effective moment arms and the Hill-function of the extensor are
modelled by

Cext
Pegt(2) = Gege + —2—
ea:t( ) ext bext —r
Cflex
h Tr) = —a _———_—
fleac( ) flex bfle:z: s

Hyt(u) = tanh[—(5.6 + 4.5 tanh(—u — 0.4))u] -
fisoewt(0.25 tanh(10u) + 0.75) + fiso..,

where ezt = 0.08, begt = 0.88, ezt = 0.035, afie, = 0.01, b, = 0.87,
Cflez = 0.04, fisoon, = ﬁsoﬂez = 21012. Note that this model approximates
the effective moment arms of [12], Fig. 6. These moment arms include a model
of Menschik with moving center of rotation in the knee. The length are 44 cm
of the thigh and 43 cm for the lower leg. We use this model in Sect. 3.6.

2 Autonomous Systems

In this section we study equilibria and their stability of the autonomous system
(12), which is (9) being independent of t.

.
{w ~ 1(6,0) 12

Whereas the stability of equilibria can often be checked by the eigenvalues,
for the basin of attraction we use Lyapunov functions (Sect. 2.1). The follow-
ing methods for their construction are discussed: via linearization (Sect. 2.2),
using special properties of the equation (Sect. 2.3) and with radial basis func-
tions (Sect. 2.4). Note that for the sake of simplicity the Theorems and De-
finitions in this paper are only stated for the two-dimensional phase space
xr = (B,w) € R2, but they hold in most cases also for arbitrary dimensions,
ie.x € R™
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2.1 Basin of Attraction, Stability and Lyapunov Functions

The equilibria of (12), i.e. solutions which are constant in time, are the zeros
(8,w) of the right-hand side vector field of (12), i.e. w = 0 and f(8,w) = 0.
Hence, equilibria are points (g, 0) which satisfy f(8g,0) = 0. For the muscle
model this is achieved by suitable activations Fe,; and Eyeq.

We also use the notation

i=F(z), (13)

where z = (8,w) and F(z)=( ) for the equation (12).

x
f (Ilfrz)
The stability of such an equilibrium (/3p,0) in the hyperbolic case can by
studied by the eigenvalues of the Jacobian matrix of first derivatives

0 1
DF(y,0) = <fg(50a0) fw(ﬁovo)) 7

which are

Ao =

| —

(fw(ﬂo, 0) £ 1/ fu(Bo, 0)2 + 4f6(5070)>

if f,(Bo,0)% +4f5(50,0) > 0 (real eigenvalues) and

M= <fw(5070) & i/~ (B0, 0)2 - 4fﬁ(5070)>

2
otherwise (complex eigenvalues). In both cases, the real parts of both eigen-
values are strictly negative, if and only if f3(8,0) < 0, since f,(80,0) <0
holds by (10). Hence, if f3(5o,0) < 0, then the equilibrium is asymptotically
stable.
From now on we will assume f(5p,0) = 0 and f3(8p,0) < 0. We seek
to determine the basin of attraction of the asymptotically stable equilibrium

(6o, 0) =: xp.

Definition 1. The basin of attraction A(xq) of an asymptotically stable equi-
librium xq for the ordinary differential equation & = F(x) is defined by

Awo) = {€ € R | 2(t) = 0}
where x(t) denotes the solution of & = F(x) with initial value x(0) = &.

A powerful method to determine the basin of attraction is the method of
a Lyapunov function v: R? — R. The main property of a Lyapunov function
is that it is decreasing along solutions. v is decreasing along solutions, if and
only if the orbital derivative v, i.e. the derivative of v along solutions of the
differential equation, is negative. The formula for the orbital derivative follows
from the chain rule
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So@®)| = (Vo),i@)|  E (o), Fe) =v'(©) .

t=0 t=0

Theorem 1 (Lyapunov function). Let xg be an equilibrium of © = F(x).
Let v € CY(R2,R) be a function and K C R? be a compact set with neighbor-
hood B such that

1.x9 € [O(,
2.V (z) = (Vou(z), F(z)) < 0 holds for all x € K \ {zo},
3. K ={x € B|v(x) < R} with a constant R € R.

Then K C A(xo).

We sketch the proof of Theorem 1: If we start at x(0) with v(z(0)) < R,
then the solution satisfies v(z(t)) < R for all ¢ > 0 since v is decreasing along
solutions, i.e. solutions stay in the set K of Theorem 1. Since the function v
is bounded from below, v(x(t)) will tend to a constant value and the orbital
derivative v'(x(t)) will tend to 0. Thus, the solution tends to the only point
where v'(z) = 0 holds, namely to the equilibrium z¢, and x(0) belongs to the
basin of attraction A(zg).

Thus, level sets of v provide a tool to determine a subset of the basin of at-
traction. Although there are many existence theorems for Lyapunov functions,
their explicit construction without knowledge of the solutions of © = F(z) is a
difficult problem. Several methods for the calculation of Lyapunov functions
are presented in the next sections.

2.2 Linearization

We consider the linearized system at the equilibrium point xy, namely & =
DF (zg)(x — o). This is a linear system and, thus, one can easily calculate a
Lyapunov function of the form v(z) = (z —x¢)T C(z — x¢), where the positive
definite matrix C is the unique solution of the matrix equation DF (z0)TC +
CDF(x9) = —I. Note that the orbital derivative is given by v'(z) = (x —
20)T[DF (20)TC + CDF (z0)](x — x9) = —||# — x0||?>. The function v is not
only a Lyapunov function for the linearized system, but also for the nonlinear
system in a neighborhood of xg, cf. Lemma 1. We call such a function a local
Lyapunov function, since this neighborhood can be very small and thus the
set K of Lemma 1 may be a very small subset of the basin of attraction A(z).
Thus, other methods will be discussed in the following sections.

Lemma 1. Under the above assumptions on the Lyapunov function v(zx) =
(x — 20)TC(x — x0) of the linearized system, there is a compact set K with

neighborhood B such that xg € Io(, v'(x) = (Vo(z), F(z)) < 0 holds for all
x € K\ {zo} and K = {x € B | v(z) < R} with R > 0.
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2.3 Special Lyapunov Function

In many applications, a Lyapunov function is calculated using special prop-
erties or physical insight into the system of differential equation considered.
Also in our case one can use the special structure (12) and the information
on the negative sign of f,, cf. (10), to obtain a Lyapunov function, cf. [9].

Theorem 2. Let f € CY(R?,R) satisfy f.(3,w) < 0 for all (3,w). Moreover,
assume that (8o,0) is an equilibrium point of (12) with fz(5o,0) < 0. Then

B
V(B.w) =~ [ 5.0 5+ 5 (14)
0

is a Lyapunov function such that

1. V'(B,w) <0 for all (B,w) with w # 0,
2.V attains a local minimum at (By,0).

The integral in (14) can be calculated explicitly in the case of our model (8),
cf. [9]. Using the Lyapunov function V' we obtain again a subset .S of the basin
of attraction by Theorem 1 through level sets of V.

Corollary 1. Let the assumptions of Theorem 2 hold. Let (8o, 0) be an equi-
librium with By € (0, 7). Moreover, let By < B1 < 7 be such that (£1,0) is an
equilibrium. Set

S = {(8,w) | V(B,w) < V(41,0)} N (0,7) x R

If S is connected and compact, and f(3,0) # 0 holds for all (3,0) € S\
{(Bo,0)}, then S C A(By,0).

The set S is in general larger than the set K of Lemma 1. In particular, it
covers the whole [-axis up to the next unstable equilibrium (/51,0). A similar
Corollary holds also for an equilibrium (33,0) with 8 < 5.

2.4 Approximation via Radial Basis Functions

A Lyapunov function is characterized by its negative orbital derivative. In this
general approach to construct Lyapunov functions via radial basis functions
we consider Lyapunov functions V; and V5 with certain negative orbital deriv-
atives, namely V{(z) = —||x — x¢]|? defined for x € A(zg) and V4 (z) = —c < 0
defined for z € A(xo) \ {zo}. These equations for the orbital derivatives are
linear first-order partial differential equations.

The method seeks to find an approximate solution v;, i = 1,2 of the
partial differential equation which is close enough to the solution V; such that
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the orbital derivative v} is negative. Then v; is itself a Lyapunov function and
can be used to determine a subset of the basin of attraction by Theorem 1.

The approximation is achieved using radial basis functions [8], which is a
meshfree approximation method using a certain ansatz for the approximating
function v. More precisely, for =,y € R? we set

N
(@) =)o (Vy¥(z —y), Fla;) (15)
j=1 y=a;
where ¥(z) = ¢(||z||) denotes a fixed radial basis function and Xy =
{x1,...,2n} C R? a grid. The coefficients «; are chosen such that v sat-
isfies the equation on the grid, ie. vi(z;) = V{(z;) = —|lz; — xol* or
vh(z;) = Vy(z;) = —c for all j = 1,...,N. The explicit calculation of «;

is easily achieved solving a system of linear equations.

The density of the grid points used for the approximation determines the
error of the approximation. The following error estimates are obtained, using
Wendland’s functions as radial basis functions, cf. [14] and [8]. Theorem 3
shows that if the grid is dense enough, then v}(z) < 0 holds. Finally, by level
sets of the function v; and Theorem 1, we can find a subset of the basin of
attraction.

Note that we can modify the method by not only prescribing the values of
v; on the grid Xy but, additionally, the values of v; on another grid =y, e.g.
on a level set of the local Lyapunov function. Thus, one can find subsets of the
basin of attraction which cover each compact set in the basin of attraction,

cf. [8].

Theorem 3 (Error estimate). Consider @ = F(z), and let f € C°(R? R)
where o > o* = % + k and k € N denotes the parameter of the Wendland
function. Let K be a compact set with K C A(xo) \ {z0}.

There is a constant c¢* such that for all grids Xy := {z1,...,2ny} C K
with fill distance h in K (i.e. h:=sup,cx inf, cxy [z — z4]|)

| () — V'(z)| < ¢*h" holds for all x € K , (16)

where k = L for k =1 and k = 1 for k > 2. v € C**"1(R%,R) is the
approzimation of Vsatisfying V'(z) = —||x — zo||* or V'(z) = —c with respect
to the grid Xy using Wendland’s function as radial basis function, i.e. ¥(x) =
Yie(pllz)]), £ >0 and l:=k+2.

The estimate (16) in Theorem 3 implies v/(z) < V'(x) +c*h" < —|jx — z0||* +
c*h* for V'(z) = —||x — xol|?. If the grid is dense enough (i.e. the fill distance
h is small enough), then v/(x) < 0 holds except for a small neighborhood of
xo. The same is true for the approximation of the function V'(x) = —c¢ since
this function is not defined at x = xg. This means, that we have to solve the
problem differently near xg: here we consider some local Lyapunov function,
e.g. the Lyapunov function of Sect. 2.2, in a neighborhood of z(. Details of
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the method can be found in [8] and [4]. An application of the method to the
elbow joint is given in [3].

Note that the error estimate of this method requires a certain smoothness
of the function F. In particular, the minimal requirement is F' € C3(R?,R)
with the parameter of Wendland’s function & = 1. However, the Hill-function
is in general not C? at zero, the turning point from concentric to excentric
behaviour. The Hill-function is assumed to be of the form H(v) = ;%5 —a for
v > 0 (concentric part, cf. (5)). It can be modelled in a smooth way for v < 0:
for H € C? cf. (6), and for H € C? cf. [3]. Even if one uses a Hill-function
model which is only C! or C? at zero, the method works in examples, but the
error estimates cannot be proved, cf. [3] for examples and further discussion.

3 Periodic Systems

In this section we study periodic movements which lead to time-periodic
differential equations. We define the basin of attraction for periodic orbits
(Sect. 3.1). In order to check their stability one can use Floquet theory
(Sect. 3.2). To find a subset of their basin of attraction one seeks to find
a Lyapunov function, e.g. one of the above Lyapunov functions of an adja-
cent autonomous system (Sect. 3.3), which can be extended by radial basis
functions (Sect. 3.4). An alternative method to the use of Lyapunov functions
is Borg’s criterion, where the exact position of the periodic movement is not
required (Sect. 3.5), cf. [6]. Finally, Borg’s method and Floquet theory are
applied to periodic movements of the human knee (Sect. 3.6).

3.1 Basin of Attraction and Lyapunov Functions
We consider the time-periodic system
&= F(tz), (17)

where F(t + T,z) = F(t,z) for all ¢t > 0 and T > 0 is minimal with this
property. The simplest solution of (17) is a periodic orbit 2 = {(¢,Z(¢t)) €
St x R?}, where Z(t) is a solution of (17) with Z(¢t +T) = Z(t) for all t > 0
and S} denotes the circle of radius 7. The phase space is now the cylinder
Sk x R2.

Definition 2. The basin of attraction A(£2) of the periodic orbit 2 = {%(t) €
Sk x R%}, where #(t) is a solution of the time-periodic ordinary differential
equation & = F(t,x) is defined by

A(Q) ={(r,€) € Sp x R* | |Ja(t) — 2(1)]| == 0},

where x(t) denotes the solution of & = F(t,x) with initial value x(7) = &.
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The basin of attraction can again be calculated using a Lyapunov function
v € C1(S}-xR?, R). A Lyapunov function is still a function which is decreasing
along solutions, i.e. a function with negative orbital derivative. Note, however,
that the orbital derivative v'(7, &) has now the following expression:

V(r€) = Solt,a(t)

t=1

= (Voo z(t),£())|  +vi(T, )

t=1

O (V,0(r, ), F(r,€)) + (7, €) .

If v’ (7, &) < 0, then level sets of v provide a tool to determine a subset of the
basin of attraction. Note that the following theorem, similarly to the corre-
sponding Theorem 1 in the autonomous case, does not make any assumptions
about the stability of Z(t).

Theorem 4 (Lyapunov function, periodic case). Let 2 = {(¢,%(t)) €
St x R?} be a periodic orbit of & = F(t,x). Let v € C*(Sk x R%,R) be a
function and K C S% x R? be a compact set with neighborhood B such that

1. OCK,
2.0 (t,x) = (Vyu(t,x), F(t,x)) + ve(t,x) <0 holds for all z € K \ 12,
3. K ={(t,z) € B | v(t,x) < R} with a constant R € R.

Then K C A(£2).

3.2 Stability and Floquet Theory

We perform a transformation of the system (17) which transforms the periodic
solution Z(t) to the zero solution, i.e. (¢,y) := (t,x — &(t)), and consider the
transformed system

y=G(ty), (18)

where G(t,y) = F(t,y+Z(t)) — Z(t). y(t) = 0 is the (periodic) solution of (18)
which corresponds to the periodic solution Z(t) of (17), and its stability is the
same as the stability of Z(¢) with respect to (17).

In order to study the stability, we consider again the linearization of (18)
near the periodic solution. However, the stability cannot be checked as easily
as in the autonomous case; one has to use Floquet theory.

Let us first consider a linear system of the form

y=G(t)y, (19)

where G(t+T) = G(t) is a (2 x 2)-matrix for each ¢.
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Theorem 5 (Floquet). Fach fundamental matriz X (t) of (19) has a repre-

sentation of the form
X (t) = P(t)eP!

where P(t+T) = P(t) is a t-periodic, (2 X 2)-matriz-valued function and B
is a (2 x 2)-matriz. The eigenvalues of B are called Flogquet exponents.

If the real part of all Floquet exponents is negative, then the zero solution
of (19) is asymptotically stable.

Hence, the Floquet exponents play a similar role for the determination of
the asymptotic stability as the eigenvalues of the Jacobian matrix evaluated
at the equilibrium in the autonomous case. Now we return to the nonlinear
problem y = G(t,y).

Theorem 6 (Stability, periodic case). Consider (18) and assume that

G(t,y) = Gt)y + H(t,y), where lim,_,g % = 0 for all t € S}. If the
real part of all Floquet exponents of the linearized equation y = G(t)y is neg-

ative, then the zero solution of (18) is asymptotically stable.

Hence, in order to determine the stability one has to find the linearization
of the system, i.e. G(t), and in the next step one has to calculate the matrix
B and its eigenvalues for the linearized system y = G(¢)y. This is done nu-
merically for the example of two periodic knee movements, cf. Sect. 3.6 and
Table 1.

3.3 Linearization of an Adjacent Autonomous System

We seek to construct a Lyapunov function for the time-periodic system ¢ =
G(t,y). In most examples the determination of the linearized system y = G(t)y
and thus also the local Lyapunov function can only be obtained numerically. In
this section, however, we consider the special situation that the time-periodic
system is ‘“near” to an autonomous system and we use the local Lyapunov
function of the autonomous function as local Lyapunov function of the periodic
system. More precisely, we assume in this section that there is a parameter
A € R such that

y = G(t,y) = G(t,y, ), where G(t,y,0) is autonomous (independent of t)

and |A| is small; the precise conditions are summarized in Proposition 1.

In Sect. 2.2 we have used a Lyapunov function of the linearized system
which turned out to be a local Lyapunov function also for the nonlinear sys-
tem. The idea for time-periodic systems in this section is to consider the ad-
jacent autonomous system and then to use the Lyapunov function V for the
linearized autonomous system. The following proposition, cf. e.g. [2], shows
that this local Lyapunov function V' is a Lyapunov function for the original
time-periodic system in a neighborhood of the zero solution, provided that ||
is small enough.
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Proposition 1. Consider the system
y=aly) +b(t,y, A) (20)

where a € CY(R%R?), b € C*(SL x R? x R,R?) and the following properties
hold:

1. a(0) =0,
2.b(t,0,\) =0 for all t € St and X € R,
3. b(t,y,0) =0 for all t € St and y € R%.

Then y =0 is a solution of (20) for all A € R.

Let V(t,y) = V(y) = yTCy be the local Lyapunov function of the au-
tonomous linearized system § = Dya(0)y according to Lemma 1. If |A| is small
enough, then V'(t,y) < 0 holds for all (t,y) € Sk x R* with 0 < |y|| < 4,
where 6 = §(N).

Conditions 1 and 2 ensure that 0 is a solution for all A € R and Condition
3 shows that for A = 0 the system is autonomous. Note that this Lyapunov
function is independent of ¢ and thus level sets of V' are cylinders in the
space Sk x R2. Since this function is only a local Lyapunov function, i.e. the
orbital derivative is negative only in a small neighborhood ||y|| < ¢ of the zero
solution, we seek to find a Lyapunov function for a larger set using radial basis
functions.

3.4 Approximation via Radial Basis Functions

As in Sect. 2.4 we seek to construct a Lyapunov function for the zero solution
2 := {(t,0) | t € Sk} by approximation via radial basis functions, cf. [2].
In order to use a similar approach as in Sect. 2.4 we add a differential equa-
tion, namely ¢ = 1, and study the following (autonomous) three-dimensional

problem
=1
y=G(ty).

Note that the periodicity is reflected by (t,y) € Sk x R?.

Similarly to Sect. 2.4 we consider Lyapunov functions with certain negative
orbital derivatives, namely V'(¢,y) = —||y||? defined for (¢,y) € A(£2), which
is a linear partial differential equation.

The method seeks to find an approximate solution v of this partial differ-
ential equation which is close enough to the solution V' such that the orbital
derivative v’ is negative. Then v is itself a Lyapunov function and can be used
to determine a subset of the basin of attraction.

Fix a radial basis function ¥(t,y) where (t,7) € R? with compact support,
e.g. Wendland’s function cf. [14], and a grid Xy = {m,...,nny} with n; =
(tiyy;) € [0,T) x R?. The ansatz for the approximating function v(t, y) is then
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N 1
Z Zaj <V(772)W(t -7,y —2), <G(tj +mT, yj)> >

mez j=1

(7,2)=(t;+mT,y;)

Note that the summation over m is zero except for finitely many m due to
the compact support of ¥ and reflects the fact that ¢t € Sk. In particular, by
this ansatz v(t + T, y) = v(t,y) holds for all £ > 0.

The coefficients «; are chosen such that v satisfies the equation on the
grid Xy, i.e. v'(t;,y;) = V'(t;,y;) = —|ly;||* holds for all j =1,...,N. The
explicit calculation of oy is achieved solving a system of linear equations.

Again, we have to solve the problem differently near y = 0: here we consider
some local Lyapunov function, e.g. the Lyapunov function of Sect. 3.3, in a
neighborhood of 0. Details of the method and an application to the elbow
joint are given in [2].

Note that also in the time-periodic case a modification of the method such
that also the function values of v are prescribed on a level set of the local
Lyapunov function or on (¢,y) = (¢,0) improve the results. The ansatz is then
altered to a mixed ansatz, cf. [2].

An application to biomechanics is also found in [2]. We consider a person
who walks and assume that the walking induces a displacement of the shoulder
and the upper arm of the form Asin vt. Hence, the acceleration acting on the

system corresponding to an outer force is given by a(t) = —Av?sin vt. Hence
the equation of motion reads, cf. (8)
B=w

w=2[(Gm,+m) (g— \?sinvt)-1-sinj
+Eet(t)Hegt[hewt (B) - w] heat(B)
+E 165 (t) fiy.. (B)H frea[hbic(B) - w] hiic(B)
+Ef1ex(t) fioaen (B)H prex[horacn (B) - w] horach (8)]

We are interested in a solution where the position of the hand is con-
stant relatively to the ground. This periodic solution is given by G*(t) =
arccos(f% sinvt). The example studied in [2] assumes a constant flexor ac-
tivation E.;y = 0.7. The activation Eyj;(t) is chosen such that 5*(t) is a
solution of the system. In this example only a small amplitude A = 0.5 cm
is considered, so that the construction of the local Lyapunov function as in

Sect. 3.3 succeeds. The other parameters are v = 27 and m; = 5 kg.

3.5 Borg’s method

In this section we apply a generalization of Borg’s method, cf. [1], to the
problem of the determination of the basin of attraction of a periodic orbit
of a general time-periodic system (17), cf. [6]. In contrast to the method of
Lyapunov functions, the knowledge of the position of the periodic orbit Z(t) is
not required. However, we will see, that it can be helpful also for this method.
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Borg’s condition means that two adjacent solutions approach each other
with respect to a Riemannian metric. This can easily be checked by the sign
of a certain function Lys(t, ), cf. (21) of Theorem 7.

Definition 3. The matriz-valued function M € C'(S3. x R* R**2) will be
called a Riemannian metric, if M (¢, x) is a symmetric and positive definite
matriz for each (t,z) € Sk x R2.

The Riemannian metric M (¢,x) defines a point-dependent scalar product
through (v, w)(,.) = vI'M(t,2)w. The usual Euclidean metric is obtained
by M(t,z) = I.

A set is called positively invariant, if solutions starting in this set, remain
in the set for all positive times.

Definition 4. A set K C S+ x R? is called positively invariant if for all
(1,€) € K, we have (t,z(t)) € K for allt > 0, where x(t) denotes the solution
of the initial value problem & = F(t,x), (1) =&.

Theorem 7. (c¢f. [6]) Consider the equation @ = F(t,z), where F € C*(Sk x
R% R?). Let @ # K C St x R? be a connected, compact and positively invari-
ant set. Let M be a Riemannian metric in the sense of Definition 3. Moreover,
assume L (t,z) < 0 for all (t,x) € K, where

Ly(t,x) := Ly (t, x; 21
M( -'15) MGRZ,MI}]\%)((t,z)wzl M( -'L"LU) ( )

Ly (t, z;w) = w? {M(t,x)DxF(t,x) + %M'(t,x) w, (22)

and M'(t,x) denotes the matriz with entries

2

_ OMy;(t, ) OM;;(t, x)
o 8t + Z (%ck

mi; Fk(t7$)

k=1
which is also the orbital derivative of M (t,x).
Then there exists one and only one periodic orbit {2 C K, which is expo-

nentially asymptotically stable. Moreover, for its basin of attraction K C A({2)
holds, and the largest real part —vg of all Floquet exponents of {2 satisfies

—vp < —v:= max Ly(t,x).
(t,x)eK

For the proof one considers two solutions z(t) and y(t) with adjacent
initial values and defines their time-dependent distance with respect to the
Riemannian metric A(t) := [(y(t) — 2(£))T M (t, 2(t))(y(t) — ()] >, Since
Ly (t,z) < 0, the solutions approach each other and the distance A(t) de-
creases exponentially. Thus, all solutions in K have the same w-limit set
characterizing the long-time behaviour, since K is connected. The study of a
Poincaré-map shows that this w-limit set is a periodic orbit.
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The application of the method poses similar problems as in the case of
Lyapunov functions: it is known that for each exponentially asymptotically
stable periodic orbit there exists a Riemannian metric such that (21) holds,
cf. [6], but there is no general construction method available. Moreover, we
have to find a positively invariant set K.

Assume now again that the periodic orbit is known, which is the case in
many biomechanical applications. There are two cases, where [6] gives sug-
gestions for a Riemannian metric: (i) if F(¢,z) is “near” to an autonomous
system — then one can use the metric of the autonomous system; this is sim-
ilar to the approach of Sect. 3.3. (ii) if the eigenvalues of D, F(t,Z(t)) are
real, distinct and negative for all ¢ € Sk. In this case, denote by S(t) a
smooth matrix-valued function on S, such that its columns are eigenvectors
of D, F(t,z(t)) for each t. Note that multiplication with S(¢) corresponds to a
transformation such that the eigenvectors are the new coordinate axes. Then
M(t) = (S71(t))TS~1(¢) is Riemannian metric. In this case (21) and (22)
turn out to have the following form, cf. [6]

Lytz)= max w’ [STHODF(t2)SE) + (S (H)SH)] w, (23)

weR?, ||lw||=1
where (S71)(¢) denotes the orbital derivative of S(¢). Formulas for the eval-
uation of the maximum in (23) are available, cf. [6]. Moreover, since the Rie-
mannian metric only depends on ¢, we can easily determine a positively in-
variant set.

Proposition 2. Let 2 = {(t,Z(t)) € St x R?} be a periodic orbit and let
M(t) be a Riemannian metric which only depends on t. Moreover assume
Ly (t,z) <0 for all (t,xz) € K™ where r > 0 and

K" :={(t,x) € S x R? | [z — 2(t)]" M (t)[z — &(t)] < r?} .
Then §2 is exponentially asymptotically stable, and K™ C A(£2) holds.

If Ly is negative for all points of the periodic orbit, then Theorem 7 implies
that the periodic orbit is exponentially asymptotically stable and we obtain
an upper bound for the largest real part of all Floquet exponents. Since then
Ly, is negative also in a neighborhood of the periodic orbit, we can determine
a subset of its basin of attraction using Proposition 2.

3.6 Example: Periodic Movements of the Knee

For the example of a human knee-joint, cf. Sect. 1.2, we consider the periodic
solution
Z(t) := xo + Ay sin(t) ,

where xq := 0.77 and A, := 0.07. With #(t) := &(t) and a(t) := Z(t) we have
the following formula for the extensor activation Fe,:(t) as a function of the
(given) flexor activation E e, (t)
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Fig. 1. (i) Uniform activation. Left: the activation functions Eje,(t) (prescribed
sine-function, black) and Fe,:(t) (calculated using (24), grey). Right: the function
Ly (¢, Z(t)). The maximum value is —0.95

mg + d(t) - EflEI (t)fiSO‘flcz h_fle:c ('%(t))
H [heat (2(1))0(t) ] heat (Z(t))

to ensure that Z(¢) is a solution of (11).
We consider a flexor activation of the following form:

Eewt (t) = (24)

Efles(t) := —dq sin(t + do cos(t)) + d3, where

e Example (i): d; = 0.35, do = 0 and d3 = 0.6 (cf. Fig. 1 — uniform activa-
tion)

e Example (ii): d; = 0.3, d2 = 1.2 and d3 = 0.6 (cf. Fig. 2 — non-uniform
activation).

The Jacobian of the right-hand side at time ¢ is given by

~ ~ 0 1
Do F (1, 2(1), 9(¢)) = ( Fult, E(1), 5(1)) ﬁ(t@(tm(t»)

and its eigenvalues at time t are

1
Ma(t) = 5 (£o0) & VRO +4500)
The eigenvalues are real, distinct and negative, if and only if

fo(t) <0
fz(t) <0
fo@)?+4f:(t) >0
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Fig. 2. (ii) Non-uniform activation. Left: the activation functions Ej,(t) (pre-
scribed, black) and FEey:(t) (calculated using (24), grey). Right: the function
L (t,Z(t)). The maximum value is —0.12

holds for all t. Note that f,(¢t) < 0 holds for all ¢ because of the property
H,(u) <0 of the Hill-function.

For both examples (i) and (ii) these conditions are satisfied for all t. Fig-
ures 1 and 2 show the activation functions and the functions Lys(t, Z(t)),
which turn out to be negative for all times. Hence, the periodic orbit is as-
ymptotically stable for both examples by Theorem 7. The uniform activation,
example (i), gives an upper bound of —0.95 for the largest real part of the
Floquet exponents, whereas the example (ii) gives an upper bound of —0.12.

We also calculate the Floquet exponents numerically, cf. Sect. 3.2, which
takes a considerably longer time, but gives a sharper result on the largest
real part of the Floquet exponents: again, the uniform activation (i) leads
to a more negative Floquet exponent than the activation in example (ii),
cf. Table 1. Thus, a uniform activation seems to be favourable concerning the
stability.

Table 1. The largest real part of the Floquet exponents for the two examples.
Borg’s method A. provides an upper bound for the largest real part of the Floquet
exponents. The numerical calculation B. gives an approximation of the exact value of
the largest real part of all Floquet exponents. However, it requires a large number of
time-steps corresponding to a division of the interval [0, 27] to calculate the matrix
P(t) and B, cf. Sect. 3.2

Example A. Borg’s method B. numerical calculation steps

(i) Uniform —0.95 —3.43 37670
(ii) Non-uniform —0.12 —1.60 55972
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Fig. 3. A subset of the basin of attraction for example (i), uniform activation. Left:
(t,z,v)-space. Right: projection on the (z,v)-plane

Using Proposition 2 we calculate subsets of the basin of attraction for the
uniform activation, example (i), shown in Fig. 3 in the (¢, x, v)-space and pro-
jected to the (x,v)-space. The subset obtained with this method, however, is
very small. A numerical calculation of solutions with different initial conditions
shows that the real basin of attraction is much larger and contains the whole
part of the phase space shown in Fig. 3. The advantage of Borg’s method,
however, is that the conditions can be checked easily and fast, whereas the
calculation of many solutions with different initial conditions requires much
more time.

4 Conclusion

In this paper we presented mathematical models of the human elbow and knee
joint. We discussed different methods to analyze the stability and the basin of
attraction of stationary and periodic movements. These mathematical meth-
ods serve as tools to answer biological questions as posed in the introduction.
The properties of the muscles and the geometry of the joints which are re-
sponsible for the stability are the positive slope of the force-length function
(elbow joint, cf. [7]) and the moving center of rotation (knee joint, cf. [12]).
A high co-activation also stabilizes the system, cf. [7] and [5]. The stability of
stationary movements depends on the position of the joint angle: for the elbow
small angles are stable, whereas large angles are unstable. The dependency on
the angle and the co-activation is also reflected in the size of the basin of at-
traction, cf. [13]. For periodic movements, general answers to these questions
are more difficult to obtain, but we hope that the methods presented in this
paper serve to analyze periodic movements in more detail in the future. For an
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analysis of the self-stabilizing properties of biological systems with emphasis
on the biological reasons and implications, cf. also [13].
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Summary. The Lateral Leg Spring model (LLS) was developed by Schmitt and
Holmes to model the horizontal-plane dynamics of a running cockroach. The model
captures several salient features of real insect locomotion, and demonstrates that
horizontal plane locomotion can be passively stabilized by a well-tuned mechanical
system, thus requiring minimal neural reflexes. We propose two enhancements to the
LLS model. First, we derive the dynamical equations for a more flexible placement
of the center of pressure (COP), which enables the model to capture the phase
relationship between the body orientation and center-of-mass (COM) heading in a
simpler manner than previously possible. Second, we propose a reduced LLS “plant
model” and biologically inspired control law that enables the model to follow along
a virtual wall, much like antenna-based wall following in cockroaches.

1 Introduction

For decades, researchers have posited low-dimensional spring-mass models to
describe the COM dynamics and ground reaction forces in a broad variety of
running animals [2, 4, 9, 11, 12, 19]. In order to understand the complex body
mechanics of running animals, they have simplified the problem by decoupling
the mechanics into the sagittal and horizontal planes. For animals whose loco-
motion occurs primarily in the sagittal plane, the locomotion dynamics have
been modeled as a spring-loaded inverted pendulum (SLIP) [2, 16, 26, 27].
Insects, whose motion occurs primarily in the horizontal plane, have dynam-
ics that have been approximated by a lateral leg spring (LLS) model [23, 24].
Results of the LLS suggest that the mechanical structure of an insect may
be used to produce stable periodic gaits when running at high speeds, with-
out relying solely on proprioceptive reflexes and detailed neural feedback for
stability.
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The LLS models insect locomotion, specifically that of the cockroach
Blaberus discoidalis. Cockroaches run using an alternating tripod gait [4].
Experiments have shown that the forces produced by this tripod of legs can
be well represented by a single effective leg [10, 15]. Since the total mass of
the legs of the insect is less than 6% of the total mass, the LLS model ap-
proximates each alternating tripod as a single massless, spring-loaded virtual
leg that attaches to the midline of the body at a point called the center of
pressure (COP). As illustrated in Fig. 1, the COP is offset from the center
of mass (COM) by a displacement, d, where d may lie in front of the COM
(d > 0) or behind the COM (d < 0). The model assumes that the foot pivots
freely without slipping about its attachment to the ground, rgt, and that
the leg can rotate freely about the COP. This implies that no moments about
the foot or COP can be generated, and forces will be applied to the body
along the length of the leg. A full stride for the model consists of a left and
right step phase. A step phase begins with the relaxed spring extended at
an angle =0y with respect to the body centerline. The body moves forward,
compressing and extending the elastic spring, until the spring returns to its
original length, at which point the leg is lifted, the next leg is placed down,
and the cycle repeats.

Changes in the foot placements between left and right step phases result
in a hybrid dynamical system. Systems with piecewise-holonomic constraints
such as these can display asymptotic stability [21]. For gaits encountered in
the LLS model, periodic motions exhibit neutral eigendirections due to energy
conservation and SE(2) invariance. Therefore, stability is partially asymptotic
in the sense that perturbations to periodic orbits in the direction of the eigen-
vectors of conserved quantities and symmetries do not grow or decay, but
simply result in movement to a different, stable gait. Gaits in the LLS model
display partial asymptotic stability in the heading direction and angular ve-
locity as a result of angular momentum trading between left and right step
phases. The mechanical structure of the model therefore self-stabilizes the
locomotion system [23]. If d < 0 then the gaits are asymptotically stable in
heading and angular velocity, i.e. the body approaches straight trajectories if
the trajectory begins in the basin of attraction for the stable periodic orbit. If
d = 0, the periodic orbits exhibit neutral stability in angular velocity and as-
ymptotic stability in heading. If d > 0, periodic orbits are unstable. To show
stability, one takes Poincaré sections at the beginning of a full stride, and
numerically approximates the fixed points and eigenvalues of the linearized
return map.

While the energetically conservative fixed and moving center of pressure
models of [23, 24] reproduce many salient features of the kinematics and forces
exhibited experimentally by Blaberus discoidalis, detailed comparisons illumi-
nate limitations of the LLS. In particular, the fixed COP models previously
investigated consider only COPs on the fore-aft body axis, and consequently
only produce sinusoidal variations in #; in contrast, the animal produces cos-
inusoidal variations [28]. This is due to the fact that a fixed COP located
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behind the center of mass along the fore-aft body axis is only capable of pro-
ducing a positive or negative moment, rather than a moment that changes sign
during each step phase. Additionally, fore-aft and lateral force profile magni-
tudes are typically reversed in comparison to those observed experimentally.
Allowing the leg attachment point to vary from fore to aft in the moving COP
model serves to address the qualitative discrepancies in the moment and yaw-
ing profiles. However, while qualitatively correct yaw and moment profiles are
produced by the model, quantitative comparisons reveal that the variations
in each remain an order of magnitude smaller than those observed experi-
mentally. An activated muscle model introduced by Schmitt and Holmes [25]
attempts to correct the moment and yawing oscillations by introducing hip
torques and muscle activation. While these authors obtained correct moment
profiles in this manner, they are obtained at the expense of increased model
complexity and inverted fore-aft force profiles.

The goal of this paper is to modify the LLS model to better match the
actual cockroach, with as few parameters as possible, and to extend it to serve
as a plant model for control. To compare our model to the previous LLS, we
consider features salient to cockroach locomotion, such as stability, body mo-
tion kinematics, forces and moments, stride frequency, etc. For control, we
use a biologically inspired antenna-like measurement [6, 7, 8], and show nu-
merically that the closed-loop system dynamics asymptotically track a virtual
wall in the environment. In addition, the controller maintains the LLS model’s
energy conserving nature.

2 Dynamics and Simulation of an Enhanced LLS Model

The goal of this research is to control the LLS model from step-to-step to
achieve a locomotion objective such as following along a wall and avoiding
obstacles in a planar environment. Using a controlled form of the LLS as a
“plant model” may provide insights into our longer term objective of control-
ling a legged robot such as RHex [1], Sprawl [5], or Whegs [20]. It is known, for
example, that RHex exhibits a dynamically similar gait in both the sagittal
and horizontal planes to a cockroach. Toward that end, this section explores
the effects of COP placement and movement on the steady-state dynamics of
the LLS model. The goal is to uncover the simplest possible mechanism to
match biological data, while still providing the possibility for control.

2.1 LLS Dynamics with 2-D COP Placement for a Left Step

We propose an alternative (or a simpler) solution to the moving COP; laterally
offset the fixed COP (i.e. position the COP in the positive x-direction of the
body frame {B}). This has a similar effect as the moving COP scheme; the
leg generates a clockwise torque during the first half of a step, and an opposite
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Fig. 1. Left: A schematic model of the LLS model, showing the coordinates used
for expressing Hamilton’s equations. Right: Illustration of multi-step dynamics. The
dynamics of each left step phase are given by (4). A right step can be achieved by
first flipping the states about the y-axis, integrating the left step map, and then
flipping back. Breaking this chain in the correct place leads to a single “integrate
and flip” return map, f(q) := M f1(q), that will simplify controller design

torque during the last half, assuming the body angle, 0, is greater than zero
at the start of a left-leg step.

In order to validate our alternative solution, we represent the position of
the COP during the left-leg step as:

dy B b1+61(w—9)
dy|  |batea(p—0)|

where d; and ds are along the 2 and y-axis of the LLS body frame {B}, and ¢
and 0 are shown in Fig. 1. In this representation, we allow the COP to be either
fixed (¢1 = ¢2 = 0) or moving (¢ # 0 or ¢z # 0) from any offset (b; and bs) in
the body frame {B}. This freedom allows us to test different COP placement
protocols, including the case where the COP moves backwards while offset
to the side [28]. This representation implicitly assumes that during the next
right-leg step, the COP position will be mirrored about the y-axis about the
body frame {B}. If d; = 0, then we have the equation introduced in [23].

Consider the generalized coordinates » = ({,,6), as depicted in Fig. 1.
For the left step phase, the Hamiltonian of the LLS system implemented with
a linear spring is

(1)

2 2 2 2
p p D, k n— l

C2m o 2m(? 21 2

where (, ¥, k, lg, I, and m denote the distance from the foot placement to the
COM, the angle from the foot placement to the COM, the linear spring stiff-
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ness, the relaxed leg length, the moment of inertia, and the mass, respectively.
The length of the leg is given in terms of the COP location by

n= [b% + b3+ ¢+ ¢(2b1¢1 + 2baca + (¢] + ¢3)9)

+2¢((b1 + 1) cos @ + (by + c269) sin ¢)

REE

Hamilton’s equations of motion with our new COP and the linear leg
spring model are given by

C’_ZE : _ﬁ_w(g_;_(b +c1p)cos g+ (by + ¢ ¢)Sin¢)
—ma pC_mC?) ! 1 2 ? 7
i= 22 by =~ ) (4 by 1 (3 + B

+<(b2 +c + CQ¢) cos ¢ — C(bl — C2 —|—Cl(]5) Sind)),

9- = 2ﬁ7 p@ = _p’kb )
1

(4)

where ¢ £ 1) — #. We assume when a step commences, the spring is uncom-

pressed, n = lp. Because the spring starts at and returns to rest length at

step transitions, no step-to-step impacts dissipate energy, and thus energy is

conserved in the LLS model.

2.2 Hybrid Step-to-Step Dynamics

The generalized coordinates r = ((,,0) and their conjugate momenta, p,.,
provide a convenient set of local coordinates for expressing the within-step
Hamiltonian dynamics (4) of the LLS. However, they provide an inconvenient
representation when considering the step-to-step dynamics because they de-
pend on the frame {F} that moves every step. As a remedy, we follow [23],
and use ¢ = (s,9) € S x SE(2), where s = (v,0,0) € S C R? are the “inter-
nal” states, and g € SE(2) is the pose. The speed, v, is the magnitude of the
COM velocity, and the relative heading, 4, is the angular difference between
the orientation, €, and the angle of the COM velocity vector (see Fig. 1). The
local coordinates (6,x,y) parameterize SE(2) without singularities through
the usual relationship,
cosf —sinf x

g= |sinf cosfh y (5)
0 0 1

(written as a homogeneous transformation matrix) so we conflate the two
when convenient and often write ¢ = (6,x,y) in an abuse of notation. The
dynamical equations can be recast using the state variables ¢, which we omit
for simplicity of presentation. Instead, we consider the state ¢;, i = 0,1,2...
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as the discrete state, where qx = (sk,gr) corresponds to the state at the
beginning of the k*" step. If h € SE(2) and ¢ = (s,9) € S x SE(2) then we
define the left action of SE(2) on S x SE(2) by hq = (s, hg), where hg is the
group product on SE(2).

At the beginning of the k*" step (for k even), the leg is at rest length, n = Iy,
and the leg touch-down angle starts at 3y relative to the y-axis of the body
frame {B}, 8 = fp. This information, together with the state ¢, = (s, gx),
uniquely determines the initial conditions for integration of Hamilton’s equa-
tions. When 7 again reaches the spring rest length [y, the hybrid system
transitions to the right step, as described below. The final values of (r,p,) at
the end of the &*" step uniquely determine the states qp i = (Sk+1, Gk+1),
used to start the subsequent step. Thus, the left step dynamics map the
state fr : qx — qr+1 according to a simple change of variables into coor-
dinates (r, p,.), followed by integration of Hamilton’s equations. By inspection
of Hamilton’s equations (4), note that the left-step mapping is left invariant
under rigid transformations of the initial condition, since the equations are
not functions of (z,y), and 6 never shows up without —, both of which are
with respect to the world frame. Hence, f1.(s,hg) = hfL(s, g). Note that this
implies that gr+1 = (Sk+1,9k+1) = fL(8,9k) = gr.fL(s,€), where e € SE(2) is
the identity.

Let {Ai} denote the location of the body frame at the beginning of the
k'™ step. In other words, g, is the transformation from {A;} to the world
frame {U}. For k odd, the right leg is down, and Hamilton’s equations (4)
are identical, so long as we express them in terms of a left-handed frame. We
do this by taking a mirror image around the y-axis of frame {Ax} at the
beginning and end of the k" step (k odd), to write down the right step map
in terms of the left one. This can be expressed in terms of local coordinates
q=(v,0,0,0,2,y)7 as first “fipping” (6,6, 0, x), integrating the left step map,
and then flipping back, namely

fr(q) = M fr(Mq), where M = diag{1,—1,-1,-1,-1,1} . (6)

Note that MM = I. We chose to flip about the y-axis for notational simplicity,
but in principle any left-handed frame would work. This mapping leaves the
right step map left-invariant under SE(2).

For finding symmetric steady-state gaits, it will be convenient to define a
special step-to-step return map that amounts to an “integrate and flip” (see
Fig. 1, Right). For a complete stride that includes a left step and then a right
step, the stride-to-stride mapping is given by f;,_r = fr o fr, namely

fo-r:iq—=MfL(MfL(q)) = (fof)(q), where f(q):=Mfi(q). (7)

This approach eliminates the need to distinguish between left and right steps
for control purposes. Note, however, that f is not left-invariant, even though
both f7, and fr are left-invariant. The resulting state evolution is given simply
by
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a1 = flar) , (8)

keeping in mind that for odd steps, the value for ¢ in this step-to-step for-
mulation has already been “flipped”.

2.3 Simulation Methods

We simulated the LLS model using Matlab and the convention discussed in
Sect. 2.2; for every right-step, convert it to a left-leg step, simulate the within
step dynamics, and then convert it back to a right-leg step. This enabled us to
specify the COP position using (1) and integrate the equation of motion (4)
without the explicit representations of a left or right step in the equations. We
used Matlab’s ode45 with time varying step size to integrate the equations of
motion. The integration terminated as soon as the compressed leg returned
back to its relaxed length ly. To specify a moving COP, we selected b; and
d;(kT), i = 1,2 where d;(kT) denotes the COP position at the start of k-th
step. To meet this restriction, ¢; is allowed to vary at each step, although it
shouldn’t vary at an equilibrium point.* )

We found the equilibrium point gy = (v, 6,6, 6, z)7 using the Levenberg-
Marquardt method in Matlab’s £solve function. While fixing the state v to a
desired value, the function minimized the error difference of a step, f(q) — g.
We also found the stride-to-stride Jacobian, Agride, and step-to-step Jacobian,
Astep, about the equilibrium point using a central difference approximation.
The " columns are given by [Aguide)i = (f—r(q + ei€) — f_r(q — ei€))/2¢
and [Astepli = (f(q + ei€) — f(q — es€))/2¢, where e = 1 x 107% and e; is the
i-th column of 5 x 5 identity matrix. In Sect. 3.2, we discuss the LLS stability
from the eigenvalues of Agiride, While in Sect. 4, we use Agiep to control the
LLS model.

Unless otherwise noted, we used the following parameters and measure-
ments of death-head cockroaches, Blaberus discoidalis, used in [19, 22, 24]:
m = 0.0025kg, I = 2.04 x 10~ " kgm?. The choices for ly, k, v, and 3y were
chosen to satisfy constraints on the stride length (L; = 0.02 — 0.025m) and
stride frequency (fs = 10Hz), and generally fell in the ranges k = 2.25 —
3.5Nm™!, lp = 0.008 — 0.015m, fy = 0.8 — 1.2rad, d; = 0.002m, and v =
0.2 —0.25m/s.

3 Analysis of COP Placements

3.1 Effects of Various COP Placements

In order to match the LLS system with an actual cockroach data (Fig. 2), we
need to understand the effects of b; and ¢; (or d;(kT')) on the overall system.

4 Instead, the values for b; and ¢; can be specified directly [24]. This causes d;(kT')
to change depending on the quantity (¥(kT") — 6(kT)).
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Fig. 2. Left: A stride of the original LLS model (di = 0) with a fixed COP
(solid) and a moving COP (dashed). The used parameters for the fixed COP are:
v = 0226 cm/s, k = 24N/m, By = lrad, lp = 0.0102m, d» = —0.0025 m;
for the moving COP are: v = 0.2235m/s, k = 3.52 N/m, (o = 1.125rad, lop =
0.0082m, d2 = 0.0025 m — —0.0025 m. Right: Experimental measurements of
Blaberus discoidalis from several sources, [14, 15, 18]; figure from [22]. (Notice, since
the right figure doesn’t start from ¢ = 0, the stride period is roughly the same
between the two figures)

To do so, our initial attempt is to consider various protocols for the COP
placements:

(a) Increment d; while ds = 0;

(b) Increment do while d; = 0;

(c) Increment the amplitude of a moving dy while d; = 0;
(d) Increment the offset of a moving ds while d; = 0;

(e) Increment dy while dg is moving;

Figure 3 illustrates these protocols schematically for a left step; for a right
step, the COP path is mirrored about the body y-axis. For each protocol and
their parameter increments, we found the corresponding equilibrium points
and simulated a full stride (starting with a left step) from the equilibrium
points. The results from the simulations are shown in Figs. 4, 5, and 6. For
each incrementing parameter, we plotted the result using different shades of

NI Jﬁ 1]

(2) ) © (d) (e

Fig. 3. COP placement protocols for a left step with respect to the body frame
{B}. The solid dots indicate fixed COP positions; the arrows indicate the direction,
magnitude, and offset of moving COPs
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gray. The first two columns of a subfigure shows the COM velocity and leg-
spring forces in lateral and forward directions (i.e.  and y directions in the
inertial frame {U}), the body angle, and the moment. The last column shows
dy (solid line) and/or ds (dashed line) as a function of time, COM path, and
the eigenvalues as a function of the incrementing parameter. The rest of the
parameters (i.e. k, v, By, and ly) were chosen to closely match the stride
length and frequency of cockroach data [22].

Protocol (a): Fized COP on lateral axis. Figure 4(a) shows results of a
simulated LLS model in which we fixed the COP at various positions along
the z-axis of the body frame {B}. As desired, when d; > 0, the profiles of
the body angle, 6, and the moment waveforms resemble actual cockroach data
(Fig. 2), as well as that of the moving COP proposed by Schmitt and Holmes
[24] (reproduced in Fig. 2, Left). Note that the positive cosinusoidal waveforms
of the body angle (which agrees with the biological data) for a fixed COP only
occur when d is on the positive z-axis of {B}. Figure 4(a) indicates that the
increase in |dq| amplifies the body angle and the moment waveforms while
the other measurements, including the stride length and frequency, remain
relatively constant. This isolated effect of d; will be useful later on when we
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fit the data to another waveform. In addition, the eigenvalue plot shows that
the system becomes unstable when d; < 0 and stable when d; > 0.

Protocol (b): Fized COP on fore-aft axis. As a comparison to the previous
result, Fig. 4(b) shows the effects of different locations dy for a fixed COP.
Although the body angle is sinusoidal (not cosinusoidal, like the cockroach),
the location of ds does have a larger impact on the magnitude of body angle
and the stability of the system (steeper slope for the moving eigenvalue) than
d; in the previous protocol. We speculate that one cause of this differences
in impact level is due to the large value of fy; since By = 1.12 > w/4, the
leg force is oriented primarily in the lateral direction rather than the fore-aft
direction. Thus, changes in do cause greater moment arm changes than the
equal changes in dy. We will utilize this effect in Sect. 4 by using ds as our
control input. We also note that the body velocity (and position) and foot
forces of this figure matches the previous figure. Although not shown, as the
fixed COP position traverses in this neighborhood, without the restriction
of di = 0 or dy = 0, the body velocity and foot force waveforms remain
relatively constant. On the other hand, the waveforms for the body angle and
the moment go through phase and amplitude changes.

Protocol (c): Incrementing magnitude of a moving COP on the fore-aft
azis. For fore-aft COP motion along the body frame y-axis, Fig. 5(c) shows
the effects of changing the magnitude of COP motion. Unlike the previous
protocols, varying the magnitude of a moving COP causes large changes to
all the kinematics, step length, and step frequency. Although it is not shown
here, further increase in magnitude (also observed in [22]) or reversing the
direction (i.e. aft to fore) of the moving COP drives the system unstable.

Protocol (d): Forward Shifting of a Moving COP. Figure 5(d) shows the
effects of shifting a moving COP in y direction in {B}. It shows that, as
the offset by increases (or decreases, although not shown), the body loses its
cosinusoidal waveform and eventually becomes unstable. We emphasize that
the system does not go unstable as soon as the offset bo > 0 nor by < 0.
Also the instability does not necessarily occur even though the moving COP
remains in front of the COM most of the time. Along with Protocol (c), we
introduce one possible explanation of these results in Sect. 3.3.

Protocol (e): Lateral Shifting of a Moving COP. Lastly, we look at the
result of incrementing the lateral offset to a moving COP, as shown in Fig. 6(e).
The result resembles that of Protocol (a) in Fig. 4(a); the changes in d;
mostly affect the magnitude of body angle and moments, but the waveforms
all remain qualitatively the same shape. Also, the increase in d; has amplified
the waveforms, and the moving COP has stabilized the system even with
dy < 0, in contrast to the results of Fig. 4(a).

From the results from these protocols, we conclude that we can achieve the
desired cosinusoidal waveforms by laterally offsetting a fixed COP or moving
COP. However, both cases produce body angle and moment variations that
remain an order of magnitude smaller than those of a cockroach. This can
be remedied with a very large — possibly non-physical — COP offset of d; =
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-0.02 -0.01 0 0.01 0.02

di (m)
Fig. 7. Maximum eigenvalue (neglecting two invariant unity eigenvalues for energy
and direction) of the linearized return map as a function of our new, two dimensional
COP locations. The dark gray indicates the parameter regime of maximum stability
and the neutral stability occurs when the contour reads 1. Eigenvalues greater that 3
are empty. The parameter values used are: v = 0.25m/s, k = 2.4Nm™', lp = 0.01 m,
Bo = 1rad, and —0.02 m < di,d2 < 0.02 m

0.025 m = 2ly and ds = 0, which means that the virtual foot touchdown
position will be far off to the positive z-axis in {B} along with the COP.
The resulting magnitude of the body angle was about 2° (or 0.035 rad) with
the moment of 0.3 x 10~% N m. This is within an order of magnitude of the
cockroach variations 5.7° (or 0.1 rad) and 1 x 10™% N m in Fig. 2.

3.2 Stability as a Function of Fixed COP Position

Figures 4(a) and 4(b) showed the stability plot of the LLS with a fixed COP
along the  and y-axis of { B}, respectively. Figure 7 shows a contour plot of the
maximum non-unity eigenvalues as a function of more general 2D fixed COP
positions. Note that the neutrally stable (i.e. max A = 1) gait corresponding
to (di,d2) = (0,0) found by Schmitt and Holmes [23] lies along a neutral
stability contour through the origin of the d-plane. There is a large stable
region (max A < 1) “inside” the neutral stability contour and an abrupt area
of instability in the lower-right corner of the plot. Notice that the stable region
(max A < 1) extends to a part of da > 0 region for d; > 0. This indicates that
we can achieve stability for the fixed COP that is in front of COM, as long
as it is sufficiently offset to the right (d; > 0). We also notice that around
the origin, the gradient of the eigenvalues is greater in the direction of y-axis
than z-axis of {B}. This hints that a small displacement of the fixed COP in
ds should give us a greater control than that of d;. We utilize this notion in
Sect. 4.
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Our long-term goal is to match the LLS to biological or robotic locomotion
performance, possibly using the LLS as a plant model for control. Therefore,
we examined the equilibrium state values, §*, 6*, and 9*, in Fig. 8, as a recipe
for future comparisons to biological and robotic systems. As expected, the two
contours #* = 0 and 6* = 0 indicate purely oddly symmetric (sinusoidal) and
evenly symmetric (cosinusoidal) yaw motions, respectively, and these symme-
tries only occur on those contours.

3.3 Comparing Fixed vs. Moving COP Models

From the observations above, we consider the relationship between a fore-aft
moving COP and a fixed, laterally offset COP. These two scenarios generate
similar waveforms; in fact, using very similar parameters, we can nearly match
the body motions and forces using these two strategies, as shown in Fig. 9.
To find a good match, we relied on trial and error, using Figs. 4(a) and 5(c)
as a guide to adjust d; and dy and we referred to [22] to adjust ly, B, and k.
As shown, the body angle (yaw) motions match nearly exactly, while for the
other measurements, the fixed COP exceeded the moving COP somewhat in
magnitude, although the results are qualitatively similar.

We compare the moving COP model to a model with a fixed COP on the
positive z-axis of {B}, as follows. As the LLS moves through a left step, the
leg intersects the body centerline at a point that moves fore-aft, as depicted
in Fig. 10(a). Suppose there is another LLS system with a moving COP that
traces out the same path, and has the same foot touchdown position as the
fixed COP case. With appropriate parameters (and possibly a nonlinear leg
spring), the fixed COP LLS model might approximate the moving COP model.
By approximating the moving COP with the fixed COP in this way, we can
predict which moving COP protocols might be stable on the basis of the
stability contour map (Fig. 7, Sect. 3.2). Using this approach, we address
below (without formal proofs) unanswered questions from Sect. 3.1.

In Protocol (c), we considered increasing the magnitude of a moving COP.
We approximate this case using the effective fixed COP and effective 3y shown
in Fig. 10(b) and (c); a larger magnitude can be created by moving the effective
fixed COP in the z direction and/or decreasing the value of leg touchdown
angle By. From Fig. 4(a), we saw that the increase in d; for a fixed COP
improved stability and amplified the body angle and moment, which agrees
with increasing the magnitude of fore-aft motion in the moving COP, as shown
in Fig. 5(c). Similarly, a moving COP that is shifted forward, as in Protocol
(d), can be approximated by shifting the effective fixed COP forward, as
shown in Fig. 10(d). Figure 8(a) shows that the effective fixed COP will first
be stable, but eventually it will be unstable as the offset increases further.

Earlier, we indicated that the system became unstable when the moving
COP moved from back to front (i.e. aft to fore) along the body centerline.
As Fig. 10(e) shows, the effective fixed COP would then be placed on the
left side of the body centerline which, according to Fig. 8(a), would probably
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(a) (b) () (d) ()

Fig. 10. Comparison between a moving COP and an effective fixed COP during a
left step under different protocols. Fixed COP is denoted by a filled dot, and the
moving COP is denoted by a gray arrow

make the system unstable. This also suggests we can achieve stability for a
forward moving COP if we choose our offsets carefully.

In Protocol (e), we increased the lateral offset of a moving COP. We can
represent this simply by laterally shifting the effective fixed COP which is
similar to Protocol (a), Fig. 4(a). Indeed that is what we observed in Fig. 6(e).
This explains why the system remained stable when d; < 0; the effective fixed
COP position was to the right of the COM (d; > 0). This implies that for
cockroaches, if their mechanics limit the magnitude of ds, i.e. they cannot
have a large co, then an increase d; will achieve the desired stability, or vice
versa; this would explain the shift in the moving COP observed in cockroaches
[28].

In summary, the moving COP model is more complex than the fixed COP,
but they have similar performance in matching biological data. Thus, in the
next section, we assume the COP is fixed to the right of the COM within each
step, but let the controller adjust the location of the COP between steps.

4 LLS Control: Wall Following

In addition to their remarkable stability, cockroaches also exhibit extraor-
dinary maneuverability. For example the American cockroach, Periplaneta
americana, follows walls using tactile feedback from their antenna, making up
to 25 turns per second in response to jagged walls in the environment [3, 6].

Despite its simplicity, the LLS model captures many salient features of
the dynamics and stability of steady-state cockroach locomotion. Building on
these strengths, we explored using the LLS as a “plant model” for control.
Schmitt and Holmes [24] tested the idea of moving the COP to steer locomo-
tion. They noted that briefly moving the COP in front of the COM generates
large turns of 20-70°. Other possible control parameters, such as the spring
stiffness, leg length, and step-length can also be used for steering, but Full
et al. [13] contend that moving the COP is the most effective, and least frag-
ile. Moreover, moving the COP for steering seems to be consistent with animal
turning behavior [17].
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4.1 LLS Plant Model

In Sect. 3, we compared the effects of moving the COP within a step, ver-
sus keeping the COP fixed. Both models can, with appropriate parameters,
demonstrate asymptotic stability in the relative heading, §, and angular ve-
locity, 6, but neutral stability in running speed, v € R, orientation 6, and z
(if we’re running in the y direction of {U}). As discussed above, the moving
COP adds complexity but provides very little advantage over the laterally off-
set but fixed COP model when it comes to matching steady-state cockroach
data. Therefore, we explored using step-to-step adjustments of the COP as
an input to control the overall body location in g € SE(2). Because there are
no energy losses between steps due to impacts, the controlled LLS remains
piecewise Hamiltonian and energy conserving.

Initially, we explored control laws that varied dy, d2, By, and combinations
thereof. We found that a highly effective control scheme was to fix Sy and place
the nominal COP to the right of the COM (for left steps), varying only the
fore-aft COP location (dz) from step-to-step. This is consistent with biological
observations that rapid maneuvering in cockroaches occurs with large changes
in the fore-aft COP [17]. Specifically, we used the step-to-step control input

dy = aey + equp, where e; =[1,0]7, ea =10, 1]", (9)

k is the stride number, uy € R is the control input, and « is a scalar. As
shown in Sect. 2, selecting o > 0 ensures that for u; = 0, the system is
asymptotically stable in § and 0, and neutrally stable in v and g. The result
is a step-to-step return map,

Qo+1 = fqr, uk) , (10)

that is no different from the step-to-step uncontrolled LLS in (8), except that
between steps the COP location can be adjusted according to (9).

4.2 Antenna-Based Output Function

We assume that the LLS controller will have at its disposal proprioceptive
measurements at each step, such as its angular velocity, 0y, and relative head-
ing, dx, but not necessarily its position and orientation relative to our arbi-
trarily assigned world reference frame, {U}. Therefore, in order for the LLS
to achieve some task level goal in SE(2), it needs exteroceptive feedback. For
this, we derive inspiration from nature, and assume the LLS has a simpli-
fied antenna that measures its distance from a surface in the environment as
depicted in Fig. 11.

Our antenna model follows [6, 7, 8] and assumes the antenna estimates
the distance, 7, from the body centerline to a “wall” — in this case the y-
axis — ahead of the COM a known, fixed preview distance, £. Under these
assumptions
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Fig. 11. Left: Multiple exposures of the cockroach P. americana negotiating a set
of obstacles at high speed, using feedback from its antennae [6]. Right: A simplified
model of an antenna as a distance-to-wall sensor

v=/ltanf — xsech . (11)

The above equation (11) relates the LLS pose to the antenna measurement, .
We make no attempt to avoid collisions of the LLS with the virtual wall and
for simplicity, our controller will drive the LLS to align itself directly on top of
the y-axis, though this can easily be extended to drive the LLS to follow at an
offset distance from the wall. Together, the proprioceptive and exteroceptive
measurements yields the measurement function:

hig):=1[5,6,7]" . (12)

4.3 Reduced Return Map

To simplify controller analysis and design, we reduced the model, by using
translational symmetry and energy conservation, as follows. Recall that the
left- and right-step mappings, f, and fr, are invariant to SE(3), but the step-
to-step return map, f = M fr, is not. However, that mapping is invariant to
pure y motions (had we chosen a different left-handed frame, translational
invariance would have been in the direction of the axis of symmetry of the
reflection to that frame). This was by design: our goal for control is wall
following, and for simplicity, we have chosen to follow the y-axis. In addition,
the output mapping, h, is y-translation invariant. Thus we removed the y
equation by setting y = 0 at the beginning of each step. Naturally, we ignored
the final value of y when finding an equilibrium as we did in Sect. 2. To remove
v note that

1 1_. 1
H= imv2 + 5192 + ik(n —1p)* = Hy = constant . (13)
So, at each step
2 1 ., 1 1/2
= | = (Ho— =16% — —k(n—1p)? . 14
o= |2 (Ho- 3102 - Jrr- 107 (14)

Thus we defined a transformation
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Ty : (5,9,9,3&) — (v,é,é,@,x,O) (15)

that assigns y = 0 and computes v from (14). Note that Ty is invertible and
Ty s the transformation that simply removes the v and y coordinates. Then,
we define the reduced variables and mapping

qr = (67 éa 03 SU) and fr(q]27uk) = Tf}l(f(TH(qZ)7uk)) . (16)

4.4 Linearized Return Map, Controllability and Observability

As a preliminary control task, we chose to have the LLS follow a virtual “wall”
coincident with the y-axis. To find an equilibrium, we used similar techniques
to those described in Sect. 2 to find equilibrium trajectories, ensuring that
x = 0 at the beginning and end of each step, corresponding to exact wall
following. The result was an equilibrium ¢*, such that ¢* = f"(¢*,0). To
address controllability, we numerically linearized the return map around a
nominal equilibrium trajectory, to obtain the local return map

Ckt+1 = Aey, + Buy,

17
where ofr af"
A = B = , 18
aqr q"=q* ,u=0 8U q"=q*,u=0 ( )
and er = ¢, — ¢*. The linearized output matrix can be derived analytically,
o 100 0
C= |:ar] =010 0 (19)
Ta=a g1

but to date we only have numerical approximations to A and B. The re-
duced system (A, B,C) is stabilizable and observable for the parameters
m = 0.0025kg, I = 2.04x10""kgm? Il = 0.0lm, k = 2.25N/m,
Bo = 0.8 rad, and a nominal COP offset of o = 0.0025 m.

4.5 Antenna-Based Control Strategy

Because the system is completely observable, state feedback is possible; how-
ever, we found that the following simple output feedback to be quite effective:

ug = Kz, (20)

where z;, is the system output from (17). The closed loop system dynamics are
governed by the e = (A + BKC)ey, so to find a good choice for the gain,
K, we evaluated the eigenvalues of the system matrix (A + BKC). Amidst a
variety of possible feedback gains, we selected K = [0, 0.001, 0.5 ], which lead
to complex conjugate pairs of closed loop eigenvalues at —0.4643 + j0.2607
and 0.3478 + j0.4827. A demonstration of this controller, executed on the full
nonlinear LLS dynamics, is shown in Fig. 12.
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Fig. 12. Simulation of the controlled LLS following the y-axis using the feedback
control law (20). In this control law, COP lies nominally along the body x, namely
d = [0.25cm, 0]7 (for the left step). The output feedback controller (20) varies
the COP in the dy direction. In the simulation, the LLS starts out rotated 30°
counterclockwise from the y-axis, and 2 cm to the right. The figure on the right
shows COM (o), COP (%), and foot (x) positions at the start of each step

5 Conclusion

In this paper, we revised the LLS model to achieve the same phase relation-
ship between the 6 and § as a real cockroach, using a fixed and laterally offset
COP. Also we investigated how the COP location governed the overall sys-
tem stability, and related the fixed COP model to the moving COP model
presented by Schmitt and Holmes [23].

For control purposes, we reduced the system state to four dimensions, using
translation symmetry and energy conservation. We then applied a very simple
output-based feedback strategy to update the COP location between strides
based on an antenna-like measurement. Using this controller, the reduced
system dynamics were linearly stable. In the future, we will explore using the
LLS model as a control template [12] for horizontal-plane control of running
robots.
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Summary. In the next few years considerable effort will be expended to make
humanoid robots that can do true dynamic walking, or even running. One may
numerically compute a desired gait, e.g. one that has been optimized to be asymp-
totically stable without feedback. One would normally give the gait as commands to
the controllers for the robot joints. However, control system outputs generally differ
from the command given, and the faster the command changes with time, the more
deviation there is. Iterative learning control (ILC) and repetitive control (RC) aim
to fix this problem in situations where a command is repeating or periodic. Since
gaits are periodic motions, it is natural to ask whether ILC/RC can be of use in im-
plementing gaits in hardware. These control concepts are no substitutes for feedback
control but work in combination with them by adjusting the commands to the feed-
back controllers from a higher level perspective. It is shown that the gait problem
does not precisely fit either the ILC or the RC problem statements. Gait problems
are necessarily divided into phases defined by foot strike times, and furthermore the
durations of the phases are not the same from cycle to cycle during the learning
process. Several methods are suggested to address these issues, and four repetitive
control laws are studied numerically. The laws that include both position and ve-
locity error in the updates are seen to be the most effective. It appears that with
appropriate refinement, such generalized RC laws could be very helpful in getting
hardware to execute desired gaits.

1 Introduction

In the last few years, many humanoid and biped walking robots have been
built executing periodic or quasi-periodic gaits [1, 2]. So far such robots
are rather slow moving compared to their biological counterparts, and the
traditional control approach keeps them as close as possible to a quasi-
static equilibrium during the motion, e.g. [5, 25]. As research progresses into
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making robots that do true dynamic walking or running, in addition to dealing
with the dynamic behavior of the nonlinear multibody robot system, it will
become necessary to address the imperfect dynamics of any feedback control
system that is used to attempt to execute the chosen periodic gait.

In recent years, the fields of iterative learning control (ILC) and repeti-
tive control (RC) have appeared [3, 19], the goal of which is to improve the
performance of feedback control systems by adjusting the commands given
to them. In principle, these techniques could be combined with any chosen
feedback control concept. ILC and RC have now developed to the point that
commercial use of the methods has started to appear. Recently, robots have
been delivered to Daimler-Chrysler in Detroit using ILC to improve perfor-
mance. And RC is now being used at the factory to learn a command for each
track of computer disk drives. The improved performance allows the tracks to
be closer together, and hence the disks can store more data. Similar methods
are being used to speed up chip manufacturing, allowing the manufacturing
hardware to operate faster while maintaining the needed precision, and hence
increase productivity.

ILC suddenly began to develop quickly in 1984 motivated by robots per-
forming repetitive operations in a manufacturing environment. Each time the
task is performed, the robot restarts from the same initial conditions. When a
feedback control system is given a tracking command, the response is not the
same as the command, even under ideal circumstances with perfect measure-
ments and no plant noise disturbances. Generally, the faster the requested
motion in the tracking command, the larger the discrepancy between what
is asked for and what is produced. The purpose of ILC is to use the error
observed in the previous run (or repetition) to adjust the command in the
current run, aiming to converge to that command that actually produces the
desired trajectory. ILC asks the control system to execute commands that are
not what you want the controllers to do, so that they actually do what you
want them to do.

RC is a closely related type of control. Instead of making repeated runs
of a desired finite time trajectory, each time starting from the same initial
condition, RC aims to perfectly execute a periodic command, or to perfectly
execute a constant command in the presence of a periodic disturbance (or
to execute a periodic command with a periodic disturbance, each having the
same period). The RC law learns from the measured error in the previous
period (or cycle) instead of the previous run, adjusting the command in the
current period, aiming to get to zero tracking error. Transients can propagate
from one period to the next in RC, but cannot go from one run to the next
in ILC, and this results in the two problems having different conditions for
stability, i.e. for convergence to zero tracking error.

As gait research progresses from relatively slow robot walking motions to
full dynamic walking, and then to running, the issues of imperfect execution
of high speed commands by feedback control systems will become a serious
issue. The desired periodic gaits are commands to the feedback controllers for
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each robot joint. If the discrepancy between the commanded trajectory and
the trajectory executed by the feedback controllers is large enough, the robot
will fall. Since ILC and RC are new fields of control theory that address how to
make feedback control systems actually perform desired repeating or periodic
motions, it is natural to ask whether ILC or RC can be used to implement
high speed gaits. It is the purpose of this paper to make an initial evaluation
of what ILC/RC can do for this problem, and to put forward some concepts
that might address the issues that are raised.

2 Feedback Control System Errors
that ILC/RC can Fix

Consider the performance of typical feedback control systems executing a time
varying command. Suppose one wishes to control the output y(¢) of a first
order system (the plant) dy/dt + ay = w + v where w(t) is a variable we can
manipulate to change y, e.g. we can apply a torque to a robot link to make the
output angle change. Typically, whatever variable we can manipulate, nature
can also influence with various disturbances, e.g. in the case of a robot link,
gravity can supply a torque history as the link follows the desired path, and
v denotes such disturbances. Now consider applying a proportional controller
to make the output follow a command. Then w(t) = Ke(t) = K(yc(t) —y(t))
and the manipulated variable w is proportional to the measured error e(t),
the command y¢ (t) minus the measured output y(t). The performance is then
predicted by the closed loop differential equation

d%t) + (K +a)y(t) = Kyc(t) + v(t) (1)

whose solution is

t t
y(t) = €*(K+“)ty(0)+/e’(KJf“)(t*T)KyC(T)dT—k/e*(KJF“)(t*T)v(T)dT (2)
0 0

The middle term on the right is the part of the solution that is responding the
command we give the system. But it is not equal to the command. Instead it
is a convolution integral of the command, creating a form of weighted average
of all the commands we have given the system in the past. The weighting
factor decays going backward in time, so that more recent commands are
more important in the weighted average. Therefore, for any command that is
changing with time, the feedback control system does this convolution integral
of what we asked it to do, not what we asked it to do. And the faster the
command changes with time, the more effect the averaging has on the result.
The first term on the right represents transients and is the response to initial
conditions. The last term on the right gives the effect of disturbances on the
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performance of the control system. If the system has the same disturbance
every time we give the command, then this disturbance is also a source of
repeating error.

It is the purpose of ILC and RC to converge to a command yc(t) that is
no longer equal to the desired output yp(t), but one which has the property
that the system output given by the right hand side of (2) is in fact equal to
yp(t). In the case of ILC the command has the property that over a finite time
interval starting at time zero, the right side of (2) converges to the desired
trajectory as the repetitions progress. In the case of RC, the command has the
property that as time increases, the right hand side converges to the desired
trajectory. Both fix deterministic errors in following a command, and also
cancel any disturbances that repeat. ILC also learns to handle the first term
on the right, since it is present in every run, while RC learns to get zero error
as time goes to infinity, and for an asymptotically stable system the first term
disappears with time.

The iterations solve an inverse problem of finding the input that produces
the desired output. In the simple example above, one can directly solve this
inverse problem, e.g. using the desired output yp(¢) for the output in (1) the
command needed is:

velt) = = (— dyjt(t)

- ~ (K + aun(t) +o(0)) Q

There are usually difficulties with this in practice. First, when done in discrete
time, the inverse problem is usually ill-conditioned [11]. Second, if the external
disturbance v(t) is an important aspect of the problem, one needs to know this
function which may be difficult. And third, the solution is only as good as the
model is. ILC and RC find an inverse solution iterating with the real world
behavior, instead of the model, without needing to know v(t), and without
totally relying on a model.

3 ILC/RC Background

The most effective ILC/RC design methods are based on linear systems the-
ory, and the discussion presented here is limited to this approach. Results
have been generated for doing nonlinear ILC on equations having the form of
multibody dynamic systems. These results are likely to be not as practical as
the linear design methods. First, they rely on all of the dynamics in the phys-
ical system having the multibody dynamics form, which is often not the case
when actuators and sensors and effective feedback controllers are included.
Second, they create very complex control laws that are more complicated
to implement. And third, linear methods as in [4] can converge to tracking
errors that approach the minimum possible error, the repeatability level of
the system, and do so relatively quickly without requiring the complicated
modeling of the nonlinear system. Figure 1 shows the robot used in [4], and
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Fig. 1. Robotics Research Corporation robot, and RMS error vs. repetitions using
an ILC law

also the tracking error for each ILC repetition for each robot link following a
high speed trajectory versus repetitions. The error is decreased by a factor of
roughly 1000 in about 12 runs. Note that the final error level is actually below
the repeatability level of the robot when measured on a day to day basis, so
the ILC is fixing errors of the size of how different the robot behaves from
one day to the next. No amount of modeling could predict such errors. The
fact that ILC does not rely heavily on a model allows it to fix such errors.
Nevertheless, in gait problems one might want to revisit the question of the
usefulness of using fully nonlinear methods, or at least using some form of
feedback linearization.

There is a related issue for robot applications. One may consider creating
an ILC or RC law that has multiple inputs and outputs, one for each of the
joints variables. On the other hand, it is much simpler to use a decentralized
ILC or RC approach, that applies a separate independent law to each of the
separate feedback control systems for each robot joint as if there were no
coupling between joints in the nonlinear dynamics. Again, the results in [4]
are obtained using decentralized ILC, suggesting that the simple decentralized
approach can be very effective in robot applications.

Both ILC and RC must necessarily be implemented by digital control
methods, because the control updates are based on data from a previous
repetition or a previous period, and therefore must be measured and stored
in a computer or microprocessor. One will normally use a zero order hold on
the input signal that the ILC or RC adjusts. Consider ILC. The objective is
to perform a finite time trajectory, and get zero error at the sample times,
i.e. we want the output y(kT) to converge to the desired output yp(kT) for
k=1,2,3,...,N. Here T is the sample time interval of the digital control
system, and the desired trajectory is N steps long. The error is e(kT) =
yp(kT) — y(kT). The simplest form of ILC is based on pure integral control
concepts being applied in repetitions to each of the time steps of the problem.
Stated in words for a robot link, if the robot link were 2 degrees too low at a
certain time step in the last run or repetition, then add 2 degrees, or 2 degrees
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times a learning gain 1, to the command this repetition. Mathematically, this
is written as
u;j(KT) = uj 1 (KT) + thej 1 ((k +1)T) (4)

where j is the current repetition number, j — 1 is the previous repetition.
Based on the ILC description above, u represents the command to the feed-
back control system, but we note that some of the ILC literature accomplishes
the learning by modifying the error signal going into the controller or the ma-
nipulated variable coming out of the controller instead, and then the w in (4)
either represents the error signal from the comparator or the w output of the
controller as discussed above (1) [20]. The 41 in the argument of the error is
introduced to account for the one time step delay going through the feedback
control system (or the plant equations), i.e. there is usually a one time step
delay from the time step in which one changes the command (or the manipu-
lated variable) to the first time step in the output where a resulting change is
observed. The computations of the command (or manipulated variable) his-
tory to use in the next run can be made between runs, computed in a batch
mode.

The RC equivalent of this learning law is used when one wants to execute
a periodic command, and this time the period is N time steps long. The
mathematical expression of the corresponding RC law becomes

w(kT) = u((k — N)T) + ve((k — N + 1)T) (5)

Instead of looking back to a previous repetition, one looks back one period.
Note that unlike ILC which makes a batch update of the command history
for the next repetition, RC normally runs with updates made every time step,
in real time.

ILC law (4) is almost always stable for sufficiently small gains 1, but
the learning transients are very likely to be impractical [8]. However, there
is an important exception to this that occurs when the sample time of the
ILC updates is sufficiently long that the system comes close to a steady state
response before the next update arrives. RC law (5) is usually unstable. In
both cases the error may decrease very substantially in the first few iterations
or periods, and then the error starts to grow [9, 10]. It can be that one is
satisfied with this level of improvement and simply stops the process when the
error is a minimum. To improve performance and obtain stability robustness
one normally generalizes the above laws to include a dynamic compensator in
place of the gain v, and introduces a zero-phase low-pass filter cutoff of the
learning [4, 24, 22, 21, 8]. Equations (4) and (5) can take the form

u; = F o+ Lej ] (6)
U(z) = F(2)z~ N [U(2) + L(2) E(2)] (7)

In (6) the underbar indicates a column matrix of the history of the associated
variable in a repetition, and F' and L are matrices representing the low pass
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filter and the compensator, respectively. Equation (7) for RC converts to the
z-transform domain with F(z) and L(z) being the transfer functions of the
cutoff filter and the compensator.

4 Dynamic Models for Walking Motions

The purpose of this section is to present the mathematical models of walking
to which the concepts of ILC/RC will be applied. We start by giving the
general form of dynamic walking models, and then present the specific stiff-
legged biped walker used for the numerical tests later in this paper.

Mathematical models of gaits involve distinct model phases with possibly
different degrees of freedom, each described, in the general form, by a differ-
ent set of differential equations. These can be ordinary differential equations
(ODEs)

(t) (8)
(t) = M~ (q(t),p) - fla(t), v(t), w(t), p) (9)

In these equations, the vector ¢ contains the position variables of the system,
and v the corresponding velocities; together they form the vector of state
variables 7 = (q7,vT). The vector y used in the context of ILC and RC
is typically equal to ¢g. The scalar t is the physical time, a the vector of
accelerations, w(t) are the input torques or forces of the robot, and p is the
vector of model parameters (like geometric or inertial data). M denotes the
mass matrix, and f the vector of forces.

Alternatively, depending on the choice of coordinates, one may obtain a
system of differential-algebraic equations (DAE) of index 3 for some or all
phases

[
a

M(q(t),p)-a = f(q(t),v(t),u(t),p) — GT(q(t), p)A (10)

9pos(q(t),p) =0 (11)

with the Lagrange multipliers A, the constraint equations gp.s, and their par-
Bypm

tial derivatives G =
form with invariants

. We formulate the DAEs in the equivalent index 1

with the abbreviation
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L dGl.p)

v(q(t),v(t),p) = 14 (17)

Phase boundaries are implicitly defined by the roots of switching functions

Si(t’ q(t)7’l)(t),p) =0. (18)

At these switching points, there may be discontinuities in the right hand side
of the linear system, i.e. Af(q,v,w,p), Ay(q,v,p) (which translates into dis-
continuities in the accelerations Aa), or even in the velocities, Av(t, ¢, v, w, p),
i.e. in the state variables themselves. Walking problems also involve a number
of complex linear and nonlinear, coupled and decoupled equality and inequal-
ity constraints; e.g. the periodicity constraints on the state variables (or a
subset thereof) (T,ycie) = Z(0). The cycle time Ty is generally a priori
unknown. In this paper, we investigate the simple example of a planar stiff-
legged biped walker with two degrees of freedom. The state variables of this
robot are the stance leg angle ¢; and the swing leg angle ¢2, and the corre-
sponding velocities 27" = (¢1, ¢, b1, ¢2) The robot has two torque actuators
- one corresponding to each degree of freedom - the first one wy (¢) at the hip,
and the second one wq(t) at the ankle to replace the action of a foot with
an actuated ankle joint. For repetitive control problems it is convenient to
introduce a second set of state variables corresponding to the torques with
zT = (917 0o, 91, 92), where

01 = o1 — p2 (19)
0y = ¢1 (20)
This model can be considered as an extension of the classical passive-dynamic

stiff-legged bipeds of McGeer [12]. The robot is shown in Fig. 2. It is charac-
terized by three free parameters p = (m,[,c)” with

cl

Swing Leg Hip Torque

Stance Leg

(—
Torque actuator

Ankle Torque

Fig. 2. Sketch of stiff-legged biped investigated in this paper
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Fig. 3. Two steps of periodic reference solution of stiff-legged biped

e the mass of each leg, denoted by m
e the leg length [
e the relative location of the leg’s center of mass measured from the hip, ¢

Using these three parameters, the moment of inertia @ of a leg is defined as
L o 2
O = gml (142¢* —2c¢). (21)

One cycle of the gait model includes one step of the robot followed by a leg
switch, and not a full physical gait cycle consisting of two steps (as presented in
Fig. 3). Applying periodicity constraints to this model assures the generation
of equal right and left steps, which would not necessarily be the case otherwise.
One cycle of this model consists of one continuous phase describing the forward
swing and a discrete phase including the sudden change of velocities at foot
contact and the leg switch.
The dynamic equations of this robot model are

&)
e (3)-s .

with mass matrix
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M — (mu m12> (23)
m21 Ma2
with mq; = 2mi? + 6 — 2mi%c + mi?c? (24)
mia = mi%e sin ¢ sin g1 — mi%c cos do cos Py (25)
ma1 = ml?c sin ¢y sin ¢ — ml2c cos po cos ¢y (26)
Moo = mi*c® + O (27)

and force term

—m@312c sin ¢y cos ¢ + md3l2e cos ¢y sin ¢y

+2mgl sin ¢p1 — mgl sin ¢1c + w1 + we

—m@31? sin ic cos ¢a + m3l? cos ¢y

¢ sin ¢po — mglc sin g — wy
The end of the step is determined by the equation

S(t,ﬂ],p) = ¢1 + ¢2 =0 (29)

The torques at hip and ankle are produced by feedback control systems using
proportional control and rate feedback following a commanded trajectory 6; c:

wl(t) = Kl(gi,C - 91) - KQHZ (30)

More details about this robot model as well as a description of possible ex-
tensions using springs and dampers in parallel with the torque actuators are
given in [18].

5 Open Loop Stable Gaits

Previous research by the authors established that it is possible to have running
gaits that are open-loop stable, meaning that they will return to the stable gait
after small enough disturbances to position and velocity. This is accomplished
without any feedback adjustment of the torque histories being applied to
each joint. In the motions of ballet dancers and athletes, one suspects that
there is often some inherent stability of the motions used, and we see that in
running, hopping and somersaults this is also possible for robots [14, 17, 16].
In is generally preferable to create systems that are open loop stable and use
feedback to augment the stability, than to rely totally on feedback to stabilize
the motion. Pilots prefer to fly airplanes that do not immediately go unstable
if there is a failure in the attitude control system.

With this in mind, we consider implementing an open loop stable gait
to test the principles of ILC and RC. Numerically solving for such gaits for
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actuated robots is not trivial and requires an appropriate selection of model
parameters p and driving torques w(t). We have developed special numerical
optimization techniques [17, 18] that can produce self-stabilizing solutions for
walking robots. They have been applied to stabilize a series of different mono-
pod and biped robots [15], one new example is given in another paper in this
proceedings volume [13]. As a stability measure, we use the spectral radius of
the Jacobian of the Poincaré map which is associated with the periodic solu-
tion. If the spectral radius is smaller than one, the solution is asymptotically
stable, and if it is larger than one, the solution is unstable. For the stiff-legged
biped described above, we have determined an open loop stable solution that
is characterized by a spectral radius of 0.7, well below one, but which is also
very efficient and requires only small torque inputs. The parameters p of this
solution are m = 1 kg, I = 0.1m, and ¢ = 0.25; the cycle time is 0.4586 s.
The initial values are 2l = (0.25, —0.25, —1.943, —2.688)T". The corresponding
torque inputs as well as the trajectories of the angles and rates are shown in
Fig. 4. More information about the solution, as well as the objective functions
used to create it, are given in [18].

6 Learning to Execute Open Loop vs. Closed Loop
Stable Gaits

6.1 Problem Statement

One can pose a couple of different kinds of gait problems that might benefit
from use of ILC or RC:

e Problem 1. As discussed above, one expects that there are benefits to
using gaits that are open loop stable, so that there is already some inherent
stability to the motion. An open loop stable solution obtained numerically
gives a torque input history for each joint, the resulting output history
or gait, and its derivative. The next step is to design a feedback control
system for each link, since ILC and RC normally adjust the command to
feedback control systems. The objective of the ILC/RC is to succeed in
making the control system in hardware execute the chosen gait, i.e. the
chosen time histories for each joint angle.

e Problem 2. If one were not concerned with open loop stable solutions,
one could include the feedback control system equations with the robot dy-
namic equations, and design the gait using as inputs the position command
histories given to the feedback control system instead of the torques applied
to the robot dynamics. One can include the controller gains as parameters
to be optimized (as well as the original model parameters p above) while
finding the gait based on a chosen optimality criterion. Of course, the so-
lution is most likely not open loop stable. Because the feedback controller
equations have been used in the design of the gait, the hardware would
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Fig. 4. Torques and states for open-loop stable solution

actually perform the gait desired if the model used for both the robot dy-
namics and the control system dynamics perfectly represent the behavior
of the hardware. The ILC/RC might be used to perfect the execution of
the gait by fixing errors caused by inaccurate or incomplete modeling of
the robot dynamics, actuators, and control system components.

6.2 Implementation Issues

For both problems the ILC/RC result serve as the basis for implementing the
desired motion on level ground. With sufficient stability perhaps this is all
that one needs for reasonably level ground. For more uneven terrain, one may
next try to design an outer loop that adjusts the commands to the feedback
control systems to handle such things as uneven ground. The outer loop is
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analogous to the upper level trajectory generator in industrial robots and
might use additional sensor information such as vision feedback to modify the
gait mode to adapt to the terrain.

This paper will consider issues in addressing Problem 1. ILC/RC are meth-
ods of solving inverse problems: given a desired output of some dynamic sys-
tem or component, find the input that would produce that output. It is nor-
mally done with the physical robot hardware, but of course one can also use a
mathematical model. This gives rise to three possible levels of implementing

ILC/RC:

(1) Do the iterations on the hardware.
(ii) Do the iterations on a computer using a model. If the model is good
enough, this can work when the solution is applied to the hardware.
(iii) Do (ii) to get an initial command to give in hardware, and then continue
the ILC/RC iterations in hardware to correct for any deficiencies in the
model.

The numerical studies reported below, directly illustrate (i) where one
presumes the computer model is functioning as the real world model. They
also automatically illustrate the process one goes through in performing (ii).
And then by introducing some changed parameter, i.e. inaccurately modeled
parameter, and continuing the learning process one can illustrate (iii).

There are two short cuts for accomplishing (ii), one of which simply elim-
inates the need for (ii) altogether. These are: use of torque feedforward in
the control system design, and do an inverse problem on the controller alone,
instead of the complete system.

6.3 Torque Feedforward

Perhaps the most logical implementation of the open loop stable gait solution
is to use torque feedforward as in Fig. 5. The solution is a torque history
w(t), a desired output history or gait, yp(t), and its derivative yp(t). Since we
consider a decentralized implementation, there is a separate controller for each
joint angle with its own desired output history yp(t). If the actuator actually
applies this torque to the robot links, and we give yp(t) as the command
yc(t), and if the robot model was perfect, then the error signal e(t) would be
zero in the block diagram. Then the feedback only starts to function if there
is some deviation from the desired trajectory. Several comments apply:

(1) The actuator may not apply the torque we want. If it is a DC motor
with voltage input being adjusted by the controller (and the feedforward
signal) it will not apply the intended torque, but if one can use current
as the input it will accomplish the goal if one knows the motor constants
correctly. In order to try to do this, one often uses a current feedback
loop around the motor. In addition, the back electro motive force (emf)
introduces a rate feedback inherent in the motor. Hence, the actuator has
dynamics of its own and will not exactly apply the intended torque.
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Fig. 5. Feedback control system using torque feedforward
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(2) In positioning systems it is often desirable to use rate feedback, meaning
the feedback loop takes a measurement of the output, makes a separate
measurement of the output rate, which is multiplied by a constant and
then the two are added together to produce the signal subtracted from
the command to get the “error”, e(t). If this is being done, then one must
compute what this signal would be when the output is the desired output,
and use it as the command given the control system.

(3) The approach totally avoids solving any inverse problem. But it does
not fix any errors related to use of an imperfect model or an imperfect
actuator, although the feedback loop may make partial adjustments. Then
one can apply ILC/RC in hardware to fix remaining errors.

6.4 Inverting Controller Equations

Consider the feedback control block diagram of Fig. 6 including the rate feed-
back that is typically used in robotics. The usual ILC/RC application solves
the inverse problem, given the desired output y(t) = yp(t), find input yo(t)
to produce it. In the process of having solved for the desired periodic gait,
we know more than just the desired output, we also know its derivative, and
the torque w(t). Therefore, we can instead solve the inverse problem for the
blocks introduced for control: given output w(t), desired position history yp(¢)
and its velocity (which together determine the feedback signal) find yo(t). In
the examples below, we use an idealized proportional control system with
rate feedback, and in this simple case doing the suggested inverse problem
is simple and immediate. Suppose that the actuator can be represented by
a simple gain, and this gain can be combined with the proportional control
gain in the controller block, and the product called K;. The feedback signal
is yp(t) + Kayp(t), where Ks is the rate feedback gain. Then

Yo +  er) wit 7
(—DO—D controller P actuator ( )~ robot y(t) »
T position and rate |
y()+ K, 3(1) feedback

Fig. 6. Feedback control system using rate feedback
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w(t) = K (ye(t) — lyp(t) + Kaypl) (31)

Substituting the computed open loop stable time histories, one can solve for
the needed command yc(t) to produce the gait. In simple situations one can
do this. In the real world the control system design is likely to be more com-
plicated, requiring inversion of dynamic equations, which is the domain of
ILC/RC. Classical control system designers are likely to introduce a low pass
filter, possibly as a noise filter, possibly as a way to control the bandwidth of
the system to avoid exciting vibrations. They are likely to introduce compen-
sators to modulate the frequency response behavior, which introduces extra
dynamics with both poles and zeros. And, as discussed above, the actuator
can have some dynamics. Just introducing the back emf of a motor puts in a
rate feedback loop feeding the motor, which is missing in the block diagram.
If one has a full computer model of all of this, one can aim to solve this inverse
problem, and ILC/RC might again be an appropriate method to use.

7 Some Non-Standard ILC/RC Problems

The gait problem does not immediately fit the ILC or RC descriptions. The
following two non-standard ILC/RC problems address some of the issues re-
lated to gait problems.

Timing Belt Drive Problem. Figure 7 shows a double reduction timing
belt drive system that might be used in a copy machine when one needs to
have a very uniform velocity of the output shaft. Using a well designed ve-
locity feedback control system, the frequency content of the velocity error is
given in Fig. 8 (left) [6, 7]. All of the peaks are related to inaccuracies in
the gearing, and include errors that have the periods of one rotation for each
shaft, and each belt, including fundamental and harmonics. In addition, the
large peaks at 80 Hz and 240 Hz are at the frequencies for tooth meshing of
each timing belt. Because gearing is involved, all of these frequencies have a
common period which can be used by a repetitive control system to eliminate
the peaks. The best experimental result is shown in Fig. 8 (right) where all of
the peaks have been eliminated. However, this problem does not completely

Output
Shaft

Fig. 7. Double reduction timing belt drive system
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Fig. 8. Frequency spectrum of velocity error of timing belt system using feedback
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fit the standard repetitive control assumptions, because as the velocity varies,
so does the period. The error to be corrected is actually periodic with the
output shaft rotation angle, not with time. To address this issue, these exper-
iments used an index pulse on the output shaft to know when the next period
started. The data from the previous period was taken at evenly spaced time
steps, and sometimes had more steps than the correct number, and sometimes
had less. Some ad hock rule was used to decide what to do when there was
missing data for the update. If the period had varied more, one might have
made some adjustments to match the time scales for each period. If one has
measurements of the angle at each time step, one could do interpolation in the
data to explicitly make updates related to each angle instead of each time.
There are in fact many repetitive control applications that have this same
modeling difficulty.

Cam Problem. Figure 9 (top) shows a cam follower system driven by a DC
motor, nominally at a constant speed. The cam is normally designed with its
lift curve, the following dwell, the return curve, and the subsequent dwell, all
assumed to be made with a prescribed constant cam rotation rate. Of course,
as the cam rotates the lever arm to the contact point lengthens and shortens
making the resistance to rotation vary with cam angle. The change in resis-
tance to motion is a disturbance to any speed control system. This means that
the resulting lift displacement history, dwell durations, and return history as
a function of time are not the intended histories or durations. In addition,
there are imperfections in the machining of the cam. Suppose we would like
to fix these errors by using the velocity control system for the shaft rotation
rate to speed up and slow down the cam in such a way as to have the lift and
return curves be the intended functions of time, and have the dwell parts be
the desired time durations.
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Fig. 9. Cam follower system, and comparison of desired cam displacement (solid
line) and displacement after 50 repetitions

This problem has several unusual aspects. First, there are four phases,
the rise, the dwell, the return, and the following dwell. Second, during the
dwell phases presumably the cam has a constant radius so that there is no
change in lift, but even if this is not true one is not able to fix the problem
by changing the speed. So the only objective to be accomplished in the dwell
phases is to make sure they have the right time durations, so that the next
phase starts at the right time. Reference [23] reports both simulations and
experiments in learning to get the desired output curves. What was done was
to learn the lift phase first. Once it converged to a satisfactory error level,
the iterations to learn the next phase started. The dwell phases computed the
average velocity of the dwell from the end minus start angles, divided by the
end minus start times. The error in this average velocity was multiplied by
a gain such as 9 and added to the command given in the previous learning
cycle to produce the command during the dwell this cycle. Figure 9 (bottom)
shows an example of learning iterations after the lift part of the curve has
been learned, and iterations are being made to get the top dwell right. Errors
in the return are being ignored until the learning of the top dwell is complete.
It is fortunate in this problem that the initial conditions for the phase being
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learning are not heavily dependent on whether the previous phase has been
learned already, because the dwell phases allow time for decay of transients.
Hence, this problem was treated as a sequence of ILC problems for each phase
learning one at a time. The simple learning law of equation (4) was used, but
with a chosen time step lead in the error term, creating a linear phase lead
compensation [8]. No attempt was made to use a zero-phase low-pass filter to
stabilize the process. This was done partly for simplicity, and partly because of
nonlinearities in the system. A relatively long sample time for the ILC updates
was used to slow the growth of the instability, and the learning process was
stopped before the instability started to become evident in the behavior.

8 Approaches to Handling the Non-Standard Nature
of Gait Problems

Applying ILC or RC to the gait problem has some of the same issues as the
above problems, but introduces additional difficulties as well. The equations
are highly nonlinear, and include jump discontinuities. It could be a challeng-
ing problem to deal with the nonlinear nature in some direct way, and one
would prefer to try to approach the problem as in the nonlinear cam problem,
using a simple learning law that might improve the error substantially before
an instability sets in, and then stop the learning when the error is a minimum.
Note however, that such methods are more successful in ILC than RC, and the
gait problem seems to have more relationship to RC problems. We comment
that learning high frequency components can be slow and can create stability
problems, and discontinuities even in the derivative of variables being con-
trolled introduce some high frequency components. The problem has distinct
phases with ground impacts denoting the start of a new phase. As in the tim-
ing belt problem, the period or duration of a phase varies with each cycle, the
index pulse or impact indicating when the next cycle or phase starts. As in
the cam problem the duration of each phase is important. The phases in the
cam problem used different learning laws and started with reasonably repeat-
ing initial conditions when learned in sequence, so treatment as a sequence of
ILC problems worked. But like RC the initial conditions for each period or
phase in the gait problem do not repeat until convergence, indicating use of
an RC formulation. The RC control laws from phase to phase need not be par-
ticularly different, but the fact that the phases have different duration may
introduce jumps in the learning process across phase boundaries, the same
points where there can be jump discontinuities in velocities. It is not clear
how these jumps will affect the learning process. In the next section several
different learning laws will be studied. One immediate issue to consider is the
question of how to look back at the current phase in the previous cycle to
pick which data point is most relevant to the current update. The standard
RC looks back at the corresponding time step (modified by the usual one
step time delay). But since the duration is different from one run to the next,
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perhaps it would be better if one looked at data corresponding to the same
percentage of time in the cycle.

9 Numerical Investigation of Possible Learning Schemes

In this section we present four different approaches to the repetitive control
of walking motion and discuss their effects on the example of the stiff-legged
biped described in Sect. 4 with the simple feedback controller (30). Each
law describes an algorithm to compute the inputs yc ;(kT') to the feedback
controller at sample times &k (k = 1,....N;) of cycle j, depending on the inputs
of the previous cycle yc, j—1, errors of the previous cycle etc. All these laws
have in common that they rely on a synchronization of the phase with a
significant event occurring once per cycle — in this case the touchdown of the
swing foot, which is also very easy to detect in practice. This event is starting
a new phase with relative time in the phase equal to zero. Therefore — even
though the problem is closer to RC - we prefer to use a notation which is
more of ILC type with the sampling time index k reset to 0 in every cycle.
Note that this is purely by mathematical convenience and does not influence
results.

All RC laws presented depend on one or more gains that can be tuned
and typically have a large impact on the performance. We have investigated
some sets of constants for each law (without doing a real optimization); and
we present for each law the best constants we have found so far. No proof
of convergence is given for these learning laws. Given the nonlinear nature of
the problem with multiple phases and jump discontinuities it might be very
difficult to establish such proofs. However, as noted in [8], good learning tran-
sients can be more important than stability (i.e convergence of the learning
scheme). Furthermore [9] demonstrates that unstable learning laws can be
very useful in applications.

In order to allow a comparison of the different laws, we display the follow-
ing result plots:

e for each law, the error histories of angles #; and 6y over time (shifted by
the duration of the first cycle), see Figs. 10, 12, 14, and 16.

e for each law, a comparison of the outputs for angle 67, the corresponding
reference trajectories, and the commanded trajectory at the beginning
(t = 0s...2s) and at the end (¢ = 18s...20s) of the investigated learning
process, see Figs. 11, 13, 15, and 17
the RMS errors for each cycle of all four laws, in overview Fig. 18
the development of cycle times «; over a number of cycles for all four laws,
in Fig. 19.
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Fig. 10. Error histories of angles 61 and 62 using RC law 1

9.1 RC Law 1

yCJ(kT) = yc,j_l(kT) + 1/116]‘_1((]{3 =+ I)T) (32)
with ej_l(kT) = yD(k‘T) — yj_1(k‘T) (33)

This first law is the most simple and straightforward one: The error term
ej—1 that is used to correct the input of the system only compares the actual
trajectory of the previous cycle and the reference trajectory at identical time
points. The knowledge about the duration of the previous cycle is not used.
The constant 17 is chosen as 0.1.

As shown in Fig. 10, the law works quite well — despite its simplicity — to
reduce the position variable errors (especially the RMS error of the relative hip
angle 6 is reduced, while the error of the absolute stance leg angle 65 goes
up a little again). However, this law does a poor job correcting the wrong
initial cycle times (Fig. 19). Figure 11 gives some more details about the
learning process, since it shows a comparison of the actual output angle 6,
the desired angle 61 p, and the commanded angle 6, ¢ at 2 different intervals
of the learning process. The upper picture shows the first few cycles: as in all
other cases we start by commanding the desired trajectory, with the result
that the output trajectory is far off. The lower picture shows cycles between
18 and 20 s (after roughly 36-40 cycles modified by law 1), with the desired
and actual trajectory being quite close, and the commanded trajectory being
quite different. These pictures also show the adjustment of phase times (the
reference trajectory does a step change to zero after termination of the step,
while the actual output step is still not finished) with a large error (18%) in
the beginning, and a smaller, but still a significant difference (8%) at the end.
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9.2 RC Law 2

with

In this law, the constant 1, is again 0.1. This second law uses the factor o;_;
to introduce information about the previous cycle time and by computing
the error between corresponding (and not identical) points of the current and
reference cycle. For the evaluation of the right hand side of eqn. (35), linear

yo,i(kT) = c1(aj-1) - (yo,j—1(ej—1kT) + threj_1((k + 1)T) (34)
ej—1(kT) = yp(kT) —

Tcycle,ref

time

Fig. 11. Comparison of output trajectory (solid line), reference trajectory (dashed

lines) and commanded trajectory (crosses) for angle 61 using RC law 1, at beginning
(top figure) and end (bottom figure) of learning process

yj—1(a;—1kT)
aj_y = Tcycle,j 1

interpolation is used between sample points. But it is important to note that
while this error computation may be the more logical one, it does not punish
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Fig. 14. Error histories of angles 6; and 62 using RC law 3

any errors of the cycle time; in fact a linearly scaled slower or faster cycle
would actually lead to an error of zero. So it is important to introduce some
correcting factor for wrong a;_; which we do in the form of ¢;, which is a
function of a;_; that has to satisfy ¢;(1) = 1. Again, there are obviously
many possible choices, and in this case we have set it to

1

Qg1

ci(aj1) = (37)
As shown in Fig. 19, this law does a better job than the first one in correcting
the cycle duration. The reduction of position errors is roughly the same as
for the first law with the inverse effect on the two degrees of freedom: this
time errors of the stance leg angle are corrected better than errors of the
relative hip angle (see Fig. 18). However, as in the case of law 1, there is
no continuous reduction in one of the position errors, and the development
beyond the investigated time frame is unclear. But we expect that it would
be possible to improve the performance of this law with a tuned factor ¢; ().

There is however another possibility to improve the adjustment of cycle
times (instead of using factor c¢;) which is the inclusion of error terms on
velocity level. The performance of this approach is investigated in the following
two RC laws, numbers 3 and 4.

9.3 RC Law 3

Yo, (kT) = yc,j—1(aj—1kT) + Prepos j—1((k + 1)T)
+2eperj—1((k +1)T)
with  epos,j—1(kT) = €;_1(kT) = yp(kT) — yj—1(aj—1kT)
evet,j—1(KT) = yp (kT) — §j-1(aj—1kT))
and «;_1 as above.
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Fig. 17. Comparison of output trajectory (solid line), reference trajectory (dashed
lines) and commanded trajectory (crosses) for angle 61 using RC law 4, at beginning
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This law stems from the above RC law 2 skipping the leading factor ¢y, but
adding another correcting term which is proportional to the velocity errors.
The constants are chosen as 1y = 0.1, and ¥y = 0.01. As the Figs. 14, 15,
18 and 19 show, this law works extremely well both in correcting state errors
and cycle duration. The cycle duration «; is correct to 3 digits after only 3

cycles. The difference between the desired and actual output angle 6, is barely
visible after 18 s (in the lower part of Fig. 15).

9.4 RC Law 4

yo,; (KT) = yc,j-1(aj—1kT) + Y1€pos,j—1((k + 1)T)
+ha(1 — 1) everj1 ((k + 1)T) (42)
with a1, €pos,j—1;€pos,j—1 as above.

(43)
RC law 4 is a modified version of law 3 with an additional factor in front of
the velocity error term. The motivation behind this was to avoid asking too
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much from the RC controller, namely to correct errors in 2n state variables
(the positions and velocities) while only modifying n input variables (the
commanded position histories). The constants chosen in this case are ¢¥; = 0.1
and 1o = 8.0. As Figs. 16, 17, 18 and 19 show, the performance of this law is
also very good, comparable to that of law 3. In the particular case investigated
here, law 4 seems to do slightly better on the absolute stance angle, and law 3
does better on the realtive hip angle corrections. While the start of the learning
process according to law 4 (Fig. 17) clearly shows a different behavior than in
the case of law 3, there is a clear resemblance of the commanded trajectories
after 20s of the learning processes following laws 3 and 4.

9.5 Discussion of Simulation Results

Four different methods of RC for gaits have been studied here. One can either
learn from the error in the previous cycle for the corresponding time step
(as implemeted in law 1), or for the corresponding percent of the time used
for that phase in that cycle (laws 2—4). The second approach is expected to
significantly improve the size of deviations tolerated by the algorithm before
the process goes unstable. However, since (without any other correcting terms)
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it does not penalize the error in the duration of the phase, one would like to
introduce some extra aspect to the learning process to do so, e.g. introduce a
factor depending on the relative cycle change (as in law 2).

The two most promising of the four RC approaches for gait problems that
we investigated seemed to be the two laws that were based on both position
and velocity errors in the previous cycle (laws 3 and 4). For the computation
of errors and new commands the duration of the previous cycle (relative to
the desired reference cycle time) was explicitely taken into account in both
cases. In digital control one would not normally include both terms (position
and velocity errors) because the number of input variables, i.e. the commands
given for each time step, are not enough to independently control both the
position and the velocity of the output at each time step. Hence in law 4 we
included (in contrast to law 3) a cancellation of the velocity error term in the
case of correct cycle time adjustment. After these first results for a specific
walker and a specific feedback control law, it is hard to judge which of the two
approaches might perform better in general. We think that both laws deserve
further investigation on more test examples, also including more extensive
studies of the most suitable choices of gains in the laws.

10 Conclusions

The concepts of ILC and RC aim at improving the performance of feedback
control systems by adjusting the commands given to them for the execution of
a repetitive or cyclic maneuver. The purpose of this paper is twofold: first, to
discuss the general issues of transferring the ideas of ILC/RC to gait problems;
and second, to present particular implementations in the form of four RC laws
applied to a simple robot model with simple feedback control laws.

It has been shown that the problem of fixing errors in hardware execution
of periodic gaits does not perfectly fit the problem formulations for either ILC
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or RC, but is closest to that of RC. The gait problem differs in that it must
be separated into phases that start at foot strike, and that the durations of
the phases can vary each cycle until reaching convergence to the desired gait.

Four different methods of addressing these extra issues have been pre-
sented. The results are summarized in Sect. 9.5 above. The two most promis-
ing RC approaches investigated included both an update on the command
based on the error of the previous cycle, and a second update term based
on the velocity error, where we also studied including a cancellation of the
velocity term in the case of correct cycle time adjustment. Both laws deliver
excellent results of adjusting cycle time and eliminating tracking errors. We
intend to perform further investigations along these lines, involving other ro-
bot models and combining the concept of RC with other underlying feedback
control systems used in contemporary walking robots.

We note that ILC and RC are notorious for exhibiting substantial decay
in the error followed eventually by growth of the error, and much of the
literature seeks ways to address this problem. No attempt has been made
here to determine whether the RC laws result in asymptotical convergence to
the desired solution when applied to the nonlinear robot dynamic equations.
However, even if the laws are unstable, they may be very useful in practice.
One simply uses the RC law to decrease the error, and turns it off when the
error starts to grow — an approach that is used in the computer disk drive
industry to good effect.

Our results suggest that with appropriate modifications it will be possible
to use repetitive control concepts to significantly improve the execution of
chosen periodic gaits by real walking robots.
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Summary. Dynamic walking with two-legged robots is still an unsolved problem
of todays robotics research. Beside finding mathematical models for the walking
process, suitable mechanical designs and control methods must be found. This pa-
per presents concepts for the latter two points. As biological walking makes use
of the elastic properties of e.g. tendons and muscles, a joint design using a pneu-
matic rotational spring with adjustable stiffness is proposed. Equations to model
the spring’s dynamics as well as the supporting sensor systems and electronics are
presented. For controlling the robot a behaviour-based approach is suggested.

1 Introduction

Looking at todays two-legged robots and their way of walking, one might get
the impression that there is still a long way to go before human-like running
will be achieved. Sereval reasons for this can be found: most bipeds walk in a
static manner shifting their weight carefully to always maintain a stable posi-
tion; no dynamic effects are taken advantage of. Energy consumption is much
higher compared to natural movements as no energy from the dynamics of the
system is reused. More often than not classical robot mechanics known from
industrial applications are used for construction whereas more exotic concepts
like elastic elements are rarely involved. The control algorithms applied are of-
ten based on a complete physical model of the robot and its environment and
do seldom allow the freedom of unknown ground conditions or other external
disturbances. Fast running motion is impossible for most of these machines
not only because the occurring impacts could destroy the mechanics but also
because the problem of controlling fast dynamical biped locomotion in un-
structured environment is still unsolved.

This paper presents the first steps of the development of a two-legged
walking robot addressing some of the above topics, namely the actuation
system, the system architecture and a behaviour-based control concept. As
some of the ideas in the design originate from natural human walking, some
aspects of what biology has come up with should be mentioned.
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It has been shown that mammals use the elastic components in their legs
(tendons, ligaments and muscles) to run economically, while maintaining con-
sistent support mechanics across various surfaces. Representations of the run-
ning leg as a simple spring have described the mechanics of a running leg
remarkably well. McMahon and Cheng describe the spring leg having two
stiffnesses: kiy as the actual leg stiffness and k,e,+ as the effective vertical
stiffness of the runner [12]. Kerdok et al. examine the effect of different ground
stiffnesses on the energetics and mechanics of human running [8]. Elastic ele-
ments seem to play a crucial role in natural fast locomotion concerning energy
consumption, robustness and simpleness of control.

This paper is structured as follows: Section 2 discusses some of the more
biologically motivated research efforts found in the literature. Mechanical as-
pects as well as control architectures are looked at. The following section will
introduce the concepts of a leg design for fast locomotion. Several aspects
like actuation, elastic elements or electronics will be mentioned with the focus
on the knee construction as one of the most important joints. Section 4 will
address the control problem. A behaviour-based architecture is proposed and
first results of periodic movement control in simulation are presented. The
paper concludes with a summary and outlook.

2 State-of-the-Art

Several projects can be found in the literature trying to apply more ideas from
nature than most other walking robot efforts. This section will introduce some
of these research projects, highlighting first the mechanical aspects, followed
by control designs for fast or dynamically walking robots.

2.1 Mechanics

Most contributions to constructing walking machines that are able to move
energy efficiently, run or even jump include elastic element to store energy,
absorb impacts or support actuators in producing high torques. This follows
the concepts found in nature as mentioned in the previous section.

The Robotics and Multibody Mechanics Group of D. Lefeber in Brussels
is building the biped robot Lucy (Fig. 1(c)) featuring artificial pneumatic
muscles [17], [5]. Recent efforts in the field of actuated passive walking have
produced an actuator called MACCEPA (The Mechanically Adjustable Com-
pliance and Controllable Equilibrium Position Actuator, Fig. 1(a)). This low
cost design is able to set a desired angle with an adjustable compliance or
stiffness. The low weight, easy control and low stiffness make it an appropri-
ate choice for actuated passive walking, but will not allow precise or highly
dynamical movement. The passive dynamic walker Veronica (Fig. 1(b)) fea-
turing these actuators is currently under development.
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Fig. 2. (a) PANTER leg — (b) Series Elastic Actuator — (c¢) Spring Flamingo

Another project using fluidic pneumatic muscles is running at FZI in Karls-
ruhe. A prototype leg called Panter (Fig. 2(a)) for fast running locomotion
has been constructed [1]. Further research is done on the dynamics of the
artificial muscles and their behaviour using a quick release mechanism [9].
Among the advantages of these actuators are implicit compliance, behaviour
close to the biological muscle and high forces. On the other side they need
compressed air supply and are not easy to control.

Already in the 1980s researchers at MIT developed the Series Flastic Ac-
tuator [18] (Fig. 2(b)). This linear electric actuator is coupled with a spring-
damper system. Walking robot prototypes constructed with these actuators
include the Spring Flamingo (Fig. 2(c)) and the biped walker M2 [14]. The
Series Elastic Actuator is now distributed by Yobotics, Inc!.

A few four-legged walking machines with elastic elements are developed by
F. Iida at R. Pfeifer’s institute in Zurich. The main research interest lies in the

! www.yobotics.com
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self-stabilisation process. Experiments are carried out using robots equipped
with servomotors in combination with springs controlled by synchronized os-
cillators [7].

2.2 Control

In Japan many research projects on biped walking exist which mostly follow
the traditional concepts of robot construction and control. Honda is develop-
ing the robot Asimo and recently managed a running-like locomotion mode.
But these motions and trajectories are completely pre-calculated and easily
disturbed by small unknown obstacles. Similar projects outside Japan have
been done by e.g. F. Pleiffer (Johnnie, [13]) or the Kaist company (KHR-1,
[10)).

Another group working on the dynamical pre-calculation of joint trajec-
tories is D. Lefeber’s group in Brussels. Walking and running trajectories for
biped robots have been calculated [16]. The running cycle has been divided
into three phases including a flight phase without foot contact. The resulting
force trajectories for each joint are to be combined with the output of stability
reflexes.

The implicit control of passive dynamic walkers is emerging from their so-
phisticated mechanics. Limb lengths and weights are chosen in a way that the
robot can walk down a slop without any actuators. First in-depth experiments
and theoretical examinations on this topic have been done by T. McGeer [11].
Recent work includes the research projects at TU Delft by M. Wisse et al.
[19]. Some machines of this group are equipped with additional actuators like
fluidic muscles to substitute the potential energy gained from the slope, e.g.
the robot Denise as shown in Fig. 3(a). Another example is the machine by
A. Ruina et al. at Cornell University (Fig. 3(b)) using springs and DC motors
[4]. The control algorithms involved are straight forward as they only have to

¥
wiennla, J"ﬂbﬂkj

Fig. 3. (a) Denise from TU Delft — (b) Cornell Biped — (c) BioLeg2 from Jena
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support the implicit control of the mechanics and have even been shown to be
managed by a computational unit as simple as the LEGO Mindstorms RCX
computer.

The walking laboratory of A. Seyfarth at Jena is examining the physics
of human walking, running and jumping [15] as well as the control of legged
robots. It has been shown that a rather simple control strategy can suffice to
create walking or running behaviour if the mechanics implicitly supports it.
Several small single leg prototypes have been build (e.g. Fig. 3(c)) including
only one actuator driving the hip movement and a spring generating the knee
motions [6].

The research cited above as well as contributions by biologists, e.g. [20],
seem to suggest that the control of walking robots can drastically be simpli-
fied by clever mechanics (Embodiment). Especially including elastic elements
could result in a more natural and faster walking behaviour. The following sec-
tions introduce considerations on building and controlling such a two-legged
walking machine.

3 Leg Prototype for Fast Locomotion

This section introduces a possible mechatronical construction for a two-legged
walking machine. After discussing preconditions and the resulting design de-
cisions, special attention is given to the knee layout focusing on a pneumatic
spring unit. Some considerations on the necessary electronics and sensor sys-
tems follow.

3.1 Design of an Elastic Joint Actuation System

The long term and admittingly ambitious goal of this research project is to
build a walking robot that can stand, walk, run and jump. A first prototype
will consist only of a single leg with an actuated joint in the hip and the knee.
As the knee is the most demanding joint in a biped locomotion system, the
design of an elastic knee joint is the initial task to solve. The limb lengths are
assumed to be 50 cm, the body mass to be 20 kg. As jumping will put the
most stress on the mechanics this task will serve as calculation basis.

Knee Design

The knee design has to meet several requirements:

e The construction should allow the lower leg to freely swing back without
using any additional energy. To achieve this either a direct DC motor
without gear (Fig. 4(b)) or a motor with gear, a clutch and additional
loop control (Fig. 4(c)) could be used. As a design decision is to put as
much implicit control in the mechanics as possible the first variant would
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Fig. 4. (a) serial spring — (b) par. spring, direct drive — (c) par. spring, gearbox.
(with M: DC motor, G: gearbox, S: adjustable spring, S’: stiff spring, B: bearing)

be preferable. But as there are not DC motors on the market producing
the high torques needed, a compromise will probably be implemented in
the first testbed.

e The system should be able to deal with hard impacts. Again a gear box
would be the second choice as it would have to be decoupled with e.g. a
spring of high stiffness and a clutch (S’ in Fig. 4(c)).

e To support the motor in producing enough torque an elastic element is
to be included to store energy. Such a spring could be mounted serial
(Fig. 4(a)) or parallel (Fig. 4(b), (c)) to the motor. In the first case the
motor would have to counter-act to the spring energy. The second variant
has the disadvantage of a fixed equilibrium position. But as the system is
to be energy efficient, the second variant is chosen.

The spring mounted parallel to the drive should possess a variable stiffness
to adapt to the current situation. In the case of normal walking the spring
should be soft to allow the leg to swing forward and harder before ground
impact and support phase. In the case of jumping the spring should be stiff
for the whole cycle. These precondition and the goal to achieve a compact
actuator unit mainly located in the joint itself led to the development of a
pneumatic rotatory spring with variable volume.

Pneumatic Spring

The schematic design of the pneumatic spring can be seen in Fig. 5(b). The
piston is attached to the shaft in the middle of the spring and compresses the
volume V5 with inceasing rotation ¢. Variable separations can be added to
decrease the initial volume V(¢ = 0). The separations are inserted at angles
k where a smaller k results in higher stiffness of the spring. Each variable
separation can be switched open by an outlet valve. This way the working
volume can be changed and the spring’s stiffness can be adapted.



Actuation System and Control Concept for a Running Biped 225

piston
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separation

fixed
separation

Fig. 5. (a) first prototype — (b) schematic drawing of pneumatic spring

The following calculation are based on several assumptions: the testbed
robot (Fig. 5(a)) will consist of only one leg; the body mass m of the robot is
20 kg; the limb length [ is 500 mm; the robot should be able to jump 20 cm
high; the spring should be able to store the impact energy of a 70 cm fall.

The torque M,,(¢) on the knee joint created by the body mass given a
knee angle ¢ can be given as

M,, = mgsin(%gb)l (1)

resulting in a maximum torque of 85 Nm at a defined maximum angle of 120
degree. The aim of the pneumatic spring is to compensate this static torque.
Starting from the ideal gas equation

pV = MRT

we assume the adiabatic case, i.e. there is no energy transferred as heat to the
environment. This leads to the adiabatic state equation following the Poisson
Law:

V K
pV"™ = const = p1 V¥ = paVy' = pa =1 <V1)
2

with k being the adiabatic exponent (x = 1.67 for one atom gases like argon,
k = 1.4 for two atom gases and k = 1 for non-adiabatic processes). To calcu-
late the pressure ps we have to know the start volume V; = ‘2/—: and the start

pressure pj:
K
(2:V)

P2 =p1 3
k—¢
(V)

with V' being the volume of the complete spring. The resulting torque only
depends on this pressure ps and the radius r and the applying lever h:
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Fig. 6. (a) static torque M,, and spring torque Mspring — (b) optimal values of k

Mgpring = 0.110 2 parr?h

From this torque and the static torque M,, an optimal placement k of
the variable separation can be calculated at which the torque M, is compen-
sated. Figure 6(a) visualizes the two torques. The resulting intersection curve
representing the optimal choices for k can be calculated as

¢
kopt ((b) = _ 1
1 0.11010mgsin( 220y |~
- pi7rZh

and is plotted in Fig. 6(b). This nearly linear correlation can be approximated
with multiple switchable variable separations. Further calculations have been
done for the dimensioning of the shaft and sealing. The resulting design is
shown in Fig. 7.

Present development focuses on the integration of the motor and the pneu-
matic spring following Fig. 4(c). A brushless DC motor by Macon serves as
actuator combined with a low gear transmission ratio. This unit is coupled
with the driving axis by a clutch and an additional spring of high stiffness.
Position encoders are placed at the motor axis and the driving joint axis. The
pneumatic spring is coupled parallel to the motor.

Fig. 7. Prototypical design of the pneumatic spring
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Fig. 8. (a) DSP board with power electronics — (b) pressure measurement sensor

3.2 Sensor Systems and Electronics

Fast locomotion does not only challenge the mechanics but also the electronic
and computational subsystems. To successfully move at high speed several
sensor systems have to be processed by controlling electronics and software.

Sensor Systems

To measure the pressure in the pneumatic spring as described in Sect. 3.1 a
pressure sensor system has been developed capable of handling the occurring
pressures (Fig. 8(b)). A programmable microchip for temperature dependent
calibration as well as an A/D converter are directly integrated on the sensor
board. High definition optical position encoders are used to measure the joint
and shaft angles.

Power Electronics

To drive the DC motors power electronics have been developed and modified
for high currents. The board shown as plugable module in Fig. 8(a) is capable
of supplying 10 Ampere at 24 Volt and can drive brushed or brushless motors.
For short periods it can even deliver higher currents. The circuit is further
able to measure motor currents, this way providing a statement about the
produced motor torque.

DSP/CPLD Board for Fast Closed-Loop Control

All sensor and actuator subsystems are connected to a DSP/CPLD board that
was already designed for previous projects. Multiple boards can be connected
via CAN-Bus to a embedded main computer. The DSP is able to manage the
low-level control algorithms at high speed as the Motorola DSP 564803 is well
suited for complex control and filtering tasks. Higher level control algorithms
are computed on the embedded PC. The next section will provide information
on these control algorithms.
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4 Behaviour Control for a Running Biped

This section will introduce a concept for the control of a fast moving biped.
A behaviour-based architecture is proposed for the levels above the basic
torque or position control and will be briefly described in the following section.
To support the inherent periodic movement of the mechanics, basic periodic
motion units are introduced. Some first results from the periodic movements
are presented and further steps for the implementation are discussed.

4.1 Basic Behaviour Units

The proposed architecture as introduced in [2] has been successfully applied
on a four-legged walking machine as well as to wheel-driven mobile indoor
and outdoor platforms. The basic computational unit is a behaviour module
as shown in Fig. 9. Each module processes sensor inputs e to calculate a
resulting action u. This output can be influenced by two values, the activation
or motivation ¢ coming from higher level behaviours, and the inhibition 7 used
by lower level behaviours. In addition each behaviour features two special meta
information signals, the activity a € [0, 1] stating the current amount of action
produced by the behaviour; and the target rating r € [0,1] corresponding
to the current evaluation of the situation relative to the behaviour’s goal.
The actual functionality of the behaviour is defined by the transfer function
F(e,t,i) = u.

All behaviours are arranged in a hierarchical network. The coordination
of competing behaviours is solved by fusion nodes. These nodes calculate
a resulting action based on the behaviours meta signals. Either arbitration
or fusion of the values is possible. Further details on the behaviour-based
architecture can be found in e.g. [2] or [3]. This behaviour architecture is to be
used as reactive control layer fusioned with the basic periodic leg movement.
Possible reflexes include posture stabilisation or reactions to disturbances.

\ﬁ‘l
~
—_
uﬂ.
\5:,1

Fig. 9. The basic behaviour module
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Fig. 10. (a) sample kinematic of human-like leg — (b) disturbed oscillation

4.2 Periodic Motion Units

In order to support the periodic movement of the legs while walking, running
or jumping, an oscillator-like unit can be used. Such a periodic behaviour or
action unit should supply the actuator with additional torque on top of the
natural movement to maintain the locomotion. A tool has been developed to
test different oscillator strategies on different leg kinematics. The description
of the legs can be given in an extended Denavit-Hartenberg format. The direct
kinematic problem is automatically solved to be able to investigate foot point
trajectories.

Coupled periodic action units can be attached to the individual joints to
generate walking movements in a simulation environment. These movements
can be disturbed to observe how the control units can snap back to their
oscillating behaviour. Figure 10 shows the generated 3D model of a sample
kinematic with 6 degrees of freedom and the oscillator behaviour during a
disturbed joint movement. It can be observed how the current joint angle
movement (thick line) is accelerated (first disturbance) or slowed down (second
disturbance) depending on the current deviation to fall back to the reference
oscillation (thin line).

5 Summary and Outlook

This paper presented the mechanical design and first control concepts for a
running biped. For fast running or jumping locomotion that is still energy
efficient it is crucial to exploit the natural leg movement as done by passive
walkers and to store energy during motion. For this task a rotatory pneumatic
spring has been developed to be integrated into the actuation unit. It has an
adjustable stiffness while being able to generate high torques and to withstand
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the high stress emerging during jumping. The actuation unit should be able
to meet the demands of a knee joint and with only slight modifications be
used as a hip joint.

The next research steps will be to build the proposed prototype with ac-
tuated hip and knee and to compare its performance with the results from
dynamic simulation. Control algorithms following the described oscillation
principles combined with a reactive control based on the behaviour-based ar-
chitecture of Sect. 4.1 will be tested on the prototype leg. Future work will
include the design of an elastic foot with two degrees of freedom and following
that a two legged 8 DOF prototype.
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Summary. This paper deals with a methodology to design optimal reference tra-
jectories for walking gaits. This methodology consists of two steps: (i) design a
parameterized family of motions, and (ii) determine the optimal parameters giving
the motion that minimizes a criterion and satisfies some constraints within this fam-
ily. This approach is applied to a five link biped, the prototype Rabbit. It has point
feet and four actuators which are located in each knee and haunch. Rabbit is under-
actuated in single support since it has no actuated feet and is overactuated in double
support. To take into account this under-actuation, a characteristic of the family of
motions considered is that the four actuated joints are prescribed as polynomials
in function of the absolute orientation of the stance ankle. There is no impact. The
chosen criterion is the integral of the square of torques. Different technological and
physical constraints are taken into account to obtain a walking motion. Optimal
process is solved considering an order of treatment of constraints, according to their
importance on the feasibility of the walking gait. Numerical simulations of walking
gaits are presented to illustrate this methodology.

1 Introduction

For more than thirty years walking robots and particularly the bipeds have
been the objects of research. For example Vukobratovic and his co-author [1]
have proposed in 1968 their famous Zero-Moment Point (ZMP), for the analy-
sis of a biped gait with feet. In 1977, optimal trajectories [2] were designed for
a bipedal locomotion using a parametric optimization. Formal’sky completely
characterized the locomotion of anthropomorphic mechanisms in [3] in 1982.
Sutherland and Raibert proposed their principle about virtual legs for walking
robots in the paper [4] in 1983. Currently Humanoids such as Honda biped in
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[5] and HRP2 biped in [6] (Humanoid Robotics Project 2), which are probably
on the technological point-of-view the most advanced biped robots, lead to
many popular demonstrations of locomotion and interaction with their envi-
ronment. In parallel, some research is done on legged robots with less degrees
of freedom. Here it is worked with the control, the model and the reference
trajectories to design walking bipedal gaits more fluid. See for example [7]
where a biped with telescopic legs is studied, [8] where the famous dog Aibo
from Sony is used to design biped gaits, [9] where an intuitive approach is
developed for a biped locomotion or [10] where an accurate analysis of the
gravity effects is made to give necessary and sufficient conditions to ensure a
cyclic walking gait for a biped without feet.

In this paper, the efforts are focused on the design by a parametric opti-
mization of a walking gait. This approach necessitates two steps: (i) design a
parameterized family of motions, and (ii) determine the optimal parameters
giving the motion that minimizes a criterion and satisfies some constraints
within this family. The motion obtained is later used as a reference motion.
This approach is applied to a planar five-link biped without feet and with
four actuators only. The family of motions considered is composed of a single-
support phase and a double-support phase, with no impact. The minimization
criterion is the integral over the motion of the square of torques. Therefore it
is a criterion of torque minimization. The originality of the present work is
double:

e To overcome the underactuated characteristic of the biped, the four vari-
ables defined as polynomials in single support are function of another gen-
eralized coordinate, the absolute orientation at the stance leg ankle. This
allows to define the configurations of the biped during the single support
phase, while the dynamics of the not controlled degree of freedom are still
unknown. In double support, two actuated joints are also prescribed as
functions of the absolute orientation at the stance leg ankle, which is a
polynomial function in time.

e There is a classification and a treatment of constraints according to their
importance on the feasibility of the walking gait.

This paper does not address the stability of the motion obtained. The
reader may refer to [11] which gives conditions of stability of the non controlled
degree of freedom during the single support phase, and additionally a measure
of this stability. It has been proved that the presence of the double support
phase practically guarantees the stability.

This article is organized as follows: the dynamical model of the biped under
interest is presented in Sect. 2 for the single and the double-support phase.
Section 3 is devoted to the definition of the family of reference trajectories,
their constraints and their parameters. The calculation of the criterion in
torque during the single support and the double support, and the optimization
process to determine the optimal parameters are presented in Sect. 4. Some
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simulation results are shown Sect. 5. Section 6 contains our conclusion and
perspectives.

2 Dynamic Model

2.1 Presentation of the Biped and Notations

A planar five-link biped is considered and is composed by a torso and two
identical legs with knee and point feet (see Fig. 1 for a diagram of the stud-

ied biped). There are four identical motors, which drive the haunches and the

knees. We note I" = [I'1, I, I3, ['4]T the torque vector, ¢ = [a, dT]T=[a, 61, 82, 03, 64]T
the vector composed of the orientation of the stance leg and the actuated joint
variables, and X = [¢7, x¢,1:]7 the vector of generalized coordinates. The
components (x¢,y:) define the position of the center of gravity of the trunk.

2.2 A Reduced Model

The optimization process to determined reference trajectories, which will be
presented in the next sections leads to many CPU operations. Therefore the
strategy was to use a reduced model that needs less computations. To obtain
this reduced model, we consider that the contact between the leg tip 1 and

Fig. 1. Biped in the sagittal plane



236 S. Miossec and Y. Aoustin

the ground is acting as a pivot: there is no take off and no slipping. Then the
biped configuration is described with vector g only. This model is reduced by
comparison to a more general model that would be written with vector X.
We obtain the reduced model by using Lagrange’s equations:

A(6)+ H(q,q) + Q(q) = DrI" + Da(q) Ry (1)

where A(J)(5x5) is the symmetric positive inertia matrix of the biped. As the
kinetic energy of the biped is invariant under a rotation of the world frame [12],
and viewed that « defines the orientation of the biped, the 5 x 5-symmetric
positive inertia matrix is independent of this variable, i.e. A = A(J). Vector
H(q,4)(5 x 1) represents the centrifugal, Coriolis effects, and Q(q)(5 x 1) is
the gravity effects vector. Dp(5 x 4) is a constant matrix composed of ones
and zeros. Dy(q) is the 5 x 2-Jacobian matrix converting the ground reaction
in the leg tip 2 into the corresponding joint torques.

Taking into account Coulomb dry and viscous frictions, I" has the following
form

=TI, = Isign(D¢rd) = FyD¢rd (2)
where I's(4 x 4) and F, (4 x 4) are diagonal matrices representing respectively
the dry friction and the viscous friction. I, is the motors torque vector when
considering the joint friction.

In the case of double support, the point foot 2 is in contact with the ground.
Then the position variables ¢, the velocity variables ¢, and the acceleration
variables ¢ are constrained. In order to write these relations, we define the
position, velocity and acceleration of the point foot 2 in an absolute frame.
The position of the point foot 2 is noted dy(X). By differentiation of do(X)
we obtain the relation between the velocity Vo = (Va, ng)T of the point foot
2 and ¢,

Va = Dea(a)74 (3)
By another differentiation we obtain the relation between the acceleration
Vo = (ng ng)T of the point foot 2 and ¢,

Vo = Dea(q)"G + De2(9)Td = Dea(q)"d + Cea(q, q) - (4)

Then the contact constraints for the point foot 2 with the ground are given
by the three vector-matrix equations:

do(X) = const
V=0, (5)

Va=0.

These vector-matrix equations (5) mean that the position of the point foot 2
remains constant, and then the velocity and acceleration of the point foot 2
are zero.
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During the double-support phase, both legs are in contact with the ground.
Then the dynamic model is formed of both vector-matrix equations (1) and
(5). During the single-support phase on leg 1, the dynamic model is simply
written as (1) with the ground reaction for foot 2 in the air is Ry = (00)%.

Model (1) allows us to compute the torques and the dynamic model of «
easier (10). However, it is not possible to take into account a single-support
on the leg 2 with (1). Furthermore we cannot calculate the ground reaction
with model (1) only. We add the two following equations, obtained from the
Newton’s second law at the center of mass G of the biped

Mic = Riy + Ry — Mg

where M is the mass of the biped and (z¢,ya) are the coordinates of G.

3 Definition of the Walk and Its Constraints

Our objective is to design a cyclic bipedal gait. There are two aspects for this
problem. The definition of a parameterized family of reference trajectories and
the method to determine a particular solution in this restricted space. This
section is devoted to the definition of the parameterized family of reference
trajectories. The optimal process to choose the best solution of parameters
from the point of view of a given criterion will be described in the next section.
The parameterized family of reference motions is such that one degree of
freedom, which changes monotonically during a step composed of a single-
support phases and a double-support phases, will be used as a variable to
define the other degrees of freedom. These special solutions lead to a particular
simple dynamical model of the biped in single support which can be calculated
from (1). An impactless bipedal gait is considered because in [13] numerical
results proved that the insertion of an impact with this walking gait for the
studied biped is a very difficult challenge. The condition found to obtain
no impact was simply that the velocity of free foot must reach the ground
with zero velocity. After the choice of parameters, the constraints will be
determined. In the following, indices “ss” and “ds” respectively indicate the
single-support phase and the double-support phase.

3.1 Restrictions of Motion Considered in Single Support

During the single support, the biped has five degrees of freedom. With the
four actuators for the biped, only four output variables can be prescribed.
Then the biped is underactuated in single support. In previous experiments,
see for example, [7, 14, 15], researchers observed that for most of walking
gaits of biped robots the ankle angle « of the stance leg changes absolutely
monotonically during the single-support phase. Therefore, it is possible to use



238 S. Miossec and Y. Aoustin

the angle variable a instead of time ¢ as an independent variable during the
single-support phase of the bipedal gait. As a consequence « like time will
have to be monotonic. But this choice will not eliminate potentially optimal
motions in the space in which we seek for solutions, since so far all motions
observed were satisfying this property. Thus the four joint variables §; are
prescribed as polynomial functions of the ankle angle «, §; ss() ( = 1,...,4).
The behavior of « is governed by the dynamic model (1). To deal with the
underactuation the advantage of this approach is that the complete set of
configurations is defined during the motion of the biped and it is not necessary
to anticipate a duration for the single-support phase, which is the result of
the integration of (1). The order of these polynomial functions (7) is chosen at
four to specify initial, final and intermediate configurations, plus initial and
final joint velocity variables,

6]',85 (Oé) = ajo + a1 + aj2a2 + aj3a3 + CLj4Oé4 . (7)

Let us note that it would be possible to prescribe other variables as Cartesian
variables. But to avoid the problems of singularity of the inverse geometric
model in the single-support phase, we prefer to work with angular variables
only. However some authors, for example [2, 16], use Cartesian coordinates
of the hip for the definition of the bipedal gait. The joint variables are then
prescribed. However since the biped is underactuated the evolution of the
angle a must be such that the biped motion satisfies the dynamic model.
Considering the relations (7) we introduce for the variables of the reference
motion ¢ = g(a) the following temporal derivatives

q'(O(, O() =q"&
(8)

g(a, v, &) = ¢*a + ¢ a2

where the notation ()* means partial derivative with respect to a, and the ()
represent derivation with respect to time. Then we have ¢* = [14; 65 05 6;]7
and ¢** = [007* 05* 05* 05*]7. By calculating the angular momentum of the
biped at the fixed point S (see Fig. 1), we obtain the general form

*

4
o= fi(01,02,03,04)d; + f5(01,02, 05, 64)cv . 9)

i=1
We can obtain two first order differential equations on o and « (see [15])
6 =—-Mg(zc(a) —xg)
(10)
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M is the biped mass, g the acceleration of gravity, z¢(«) and zg are respec-
tively the horizontal component of the positions of the biped’s mass center
and of the foot of the stance leg. The first equation of (10) comes from the
dynamic momentum equation at S when eliminating ¢ from (7). The second
equation of (10) follows from (9) when eliminating ¢ and ¢ using (7) and (8).
This differential system (10) is equivalent to the first line of (1). By identifi-
cation, it is possible to determine f(«) and zg(«) from (1). The simple model
(10) completely defines the dynamic behavior of the biped in single support
for the reference motion. From (10) we can deduce that (see [17])
do, do o 1 do? 1

o= = do @) 2da fla) =-—Mg(zg(a) —zg).

Finally this calculation leads to the relation due to [17]

do?
o = My (zc(a) —as) fla) . (11)

el

If o is strictly monotone, the integration of (11) gives
7 ot = 2Myg [ (wa(s) - s) (5)ds (12
Qiss

where ;55 is the angular momentum at the beginning of single support char-
acterized by the initial value a;ss. Then the dynamic of the biped is completely

defined from (10) as function of (o) = 02 — 02, = & f3(a) — AZg5f*(iss)
such as 5
&= — \/@(a) + f(aiSS)QaiSS ) (13)
fla)

¢ is obtained from the second equation of (10)

. _ 0f(a) —of(a) __Mg(agla) — xs) + G
&= =— . (14)
[ (@) f(e)
From the solution of the differential equation in a (11) and using relations
(13) and (14) the numerical simulation to find the optimal motion and the
calculation of constraints will be easier.

The authors of [17] showed that system (10) behaves like an inverted pen-
dulum. Therefore the only possible non-monotone behavior would be that
the biped fall back if the initial velocity of single support is not sufficient.
The condition to ensure the monotony of o has been added as a constraint
in the optimization process, see (18).

3.2 Restrictions of Motion Considered in Double Support

In double support, the biped has three degrees of freedom. With its four actu-
ators, the biped is over actuated. Hence the motion of the biped is completely
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defined with three prescribed degrees of freedom. For a question of conve-
nience for the use of the inverse geometric model, the ankle angle o and both
joint variables, §; (j = 1,2) are prescribed. A polynomial function in time of
third-order (15) is chosen to define a.. In a concern to be homogeneous with
the single support phase we define both joint angular variables ¢;, as polyno-
mial functions of third-order in «. Then initial and final configurations, and
initial and final velocities can be defined for these three prescribed variables.
The duration of the double-support phase is a parameter. Hence we get

a(t) = ag + ait + ast® + ast?

(15)
3

(5j(a) = a;0 + Qi1 + ajgaz + a;3ac.
It should be noted that there is no differential equations needed for the
definition of the motion, since the biped is over-actuated in double support.

3.3 Optimization Parameters

A boundary value problem has to be solved to design this cyclic bipedal
gait with successive single and double-support phases. This boundary value
problem depends on parameters to prescribe the initial and final conditions
for each phase. Taking into account the conditions of continuity between the
phases and the conditions of cyclic motion we will enumerate now in detail
the minimal number of parameters which are necessary to solve this boundary
value problem on a half step &k (a half step is considered as a single support
and a double support).

1. Seven parameters are needed to define the initial and final configurations in
double support. The parameters aqs, 01.ids, Gids, Xfds, 01,fds, O7ds and d,
the distance between both tips of stance legs in double support are chosen.
The use of the absolute orientation of the trunk, 6 (see Fig. 2) instead of
02,745 is easier and does not change the problem.

2. Time T,4s of the double support is given as a parameter.

3. The initial velocity of the biped in single support is prescribed by only three

parameters (iss, 07 ;455 03 ;55- Lhe velocities 03 ;.. and 0} ;.. are deduced
taking into account the null velocity of the leg tip which takes off.

4. The final velocity of the biped in single support is prescribed by only three
parameters dfss, 07 ygqs 05 fo5- The velocities 03 ;.o and 47 ., are deduced
taking into account the absence of impact of the swing leg tip on the
ground, which is equivalent to a null velocity of this tip.

5. With the chosen order for the polynomial functions (7) (fourth order) it
is necessary to specify five conditions for each function d; s, 7 =1,...,4.
Then the fifth coefficient is calculated by defining an intermediate config-
uration. Let intermediate configuration in single support be determined
with the five following parameters cnt, 01,int, 0int and the coordinates
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B RZx RI x

Fig. 2. Biped in the sagittal plane (the point G is the center of mass of the biped)

(xp,int and yp ine) of the swing leg tip. The angle ;y, is fixed equal to
Qiss + Qfss
— 5

Then finally the vector of parameters has eighteen coordinates

P = [Tas, Qids, O1,ids, Oids, O fds, 01, fds, O pds, ds Qiss, 07 jgg5 -+

* * *
03 isss Cfsss 07 fss 05 pssr Ol ints Oints Tp ints Yp,int] -

3.4 Constraints

Constraints have to be considered to design nominal gait. We will present
them according to their importance on the feasibility of the walking gait.

e First, no motion is possible if the distance d(A, B) between the tip of leg 2
and the hip joint, for initial and final configurations of the double support
and the intermediate configuration of the single support, is such that

d(A,B) >2x1 (16)
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where [ is the common length of the femur and the tibia. In other words,
there is no solution with the geometrical model to compute d3 and dy.
Constraint (16) is also taken into account during the motion of the biped
in double support. The maximum value of d(A, B) in function of « is
considered.

The mechanical stops of joints for initial, intermediate and final configu-
rations of each phase and during the motion are

—260° < (8),.,  (82),,.. < —110°
—260° < (62 — 53)min’ (52 — 63)ma:r < —110°

—230° < (81, » (81),., < —127°

—230° < (64)min’ (64)maa: < —127°

The notation ()maz and ()min stands respectively for the maximum and
minimum value over one step.
In double support the monotony condition for variable « is imposed

max &(t) <O0. 17
e (t) (17)
In single support, the monotony condition for variable « is imposed by the

inequality
émin + f(azss)Qo%zsq > 0 (18)
where @in = MiNge(a,,, 0/, D).

In single support it is fundamental to avoid the singularity f(«) = 0 to
simulate one step. Then we define the following constraint

min  f(a) >0. (19)

ae[aissvafss]

Now the following constraints can be violated during the optimization process
to simulate a half step. However they are important for experimental objec-
tives. The optimization process will ensure their verification.

Each actuator has physical limits such that

(172 (@) = TnaaB1) <0

(15(@) = Tnas(li2)) <0
(I15(0)| = Tuos (2 = 6a) <0 2

(173(@) = Toas (1)) <0
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Function I,q. (%) can be deduced from a template, torque actuator/velocity,
given by the actuator manufacturer.
e We must take into account constraints on the ground reaction R; =

(Rjz Rjy)T in the tip of the stance leg j, j = 1 in single support and
j = 1,2 in double support. The ground reaction must be inside a friction
cone defined by the friction coefficient . This is equivalent to write both
inequalities
Rjz — pRjy <0
—ij — ,uRjy < 0.
By summing these two inequalities, the condition of no take off is deduced

= Rjy >0. (21)

e There is also a constraint on the swing leg tip to avoid an impact with
the ground during its transfer. This constraint is defined by a parabola

function 2(0)
I«

i - -1 max

O‘E[alirsliflafss] |:y(a) ( d2 ) Y :|

where (z,y) are the coordinates of the swing leg tip and yy,q, is the max-
imum height of the parabola.
e Optimal motions are defined for different velocities with the constraint

d= U(Tss + Tds) (22)

where d is the distance between the tips of stance legs (see Fig. 2), v is
the desired average velocity of the biped, and T is the time of the single-

support phase. The calculation of time Tz of the single-support phase is
afSS 1

given by Tss = / —da
&

(03

iss

4 Optimal Walk

Many values of parameters presented in Sect. 3 can give a periodic bipedal
gait satisfying constraints (16)—(22).

Then a parametric optimization process, minimizing a criterion under non-
linear constraints, is possible to find a particular nominal motion. Let us define
this optimization process

min C(p) (23)
p
gi(p)SO 1=1,2,....,n

where p is the vector of parameters, C(p) is the criterion to minimize with n
constraints g;(p) < 0 to satisfy. We give now some details about the way to
calculate the criterion during the single-support phase and the double-support
phase, and about the optimization process.
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4.1 Criterion

To find the nominal motion criterion C, which is a torque minimizing crite-
rion, is considered

Tss+Tas

T ds
Cr = r'rdat = / £d + / r'radt (24)

1
d

0
where T, and Tys are the times of single support and double support. For
electrical motors such as DC motors the torque is usually proportional to the
induced current. Then the criterion C represents the losses by Joule effects
to cover distance d, see [18, 19]. To consider an energy minimizing criterion,
it would only be necessary to add the losses by friction in the joints.

4.2 Single-Support Phase

From calculation of the integral term (12) using the polynomial functions (7),
we obtain ®(a) = 0% — oZ,. Velocity & and acceleration ¢ can be obtained
with relations (13) and (14). We then have determined the dynamics of the
under actuated biped in single support for a reference trajectory. The torques

are determined from the four last equations of (1)

Ao5(8)d + Has(q, q) + Qa5(q) = DrasI’ (25)

where Ags(4 x 5), Has(4 x 5) and Dpos(4 x 4) are the submatrices of A, H
and Dp, Q25(4 x 1) is the subvector of . The invertible matrix D25 allows
to determine the torque vector I'. The ground reaction R; = (Riz, Riy) at the
tip of the stance leg i are calculated using the equations (6).

4.3 Double-Support Phase

From relations (15) «(t), &(t) and a(t) are calculated as polynomial functions
of time first at each time step, then d;(a), d;(c) and §;(a) (j = 1,2) are
determined. There is an infinit set of solutions for the torques to realize the
double support, because the biped is overactuated. Only three generalized
coordinates, for example «(t), 01 and 02, are necessary to describe the motion
completely. Then, we can parameterize the solution of torques as function of
one variable. To find this variable we consider equation (6) and the equation
of the angular momentum theorem applied at the leg tip 1. The equation of
the angular momentum theorem in double support is equivalent to equation
(10) but with the effect of ground reaction force of foot 2. It is also equivalent
to the first line of model (1). This additional equation reads

A1(0)G + Hi(g, 4) + Q1(q) = —dRay (26)
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where A;(1 x 5) and H;(1 x 5) are the first line of A and H, Q1(1 x 1) is
the first element of Q). Term d is the distance between the two leg tips on the
ground. Component Ry, does not appear in equation (26) because the ground
is assumed to be horizontal and plane. From the second line of (6) and (26),
for a given acceleration of the biped there is only one solution for R, and
Ry, independent of the torques. The torques only influence R, and Ry,. For
this reason, a solution for the torques can be found as function of Ry, or R,
as parameter. Let us choose Ry, and define the minimization problem with
the associated constraint on component R,

min *T
2x

_//LRly - Rl:}; S 0
_MRly + le < 0

_/JRZy - R2z é 0
—pRoy + Rop < 0.

(27)

The choice of the particular solution of this optimization problem is because
it is also the solution that minimizes the criteria (24). With the four last lines
of the vector-matrix equations (1) and (2) a relation between torques I'* and
Rs, can be written

I'*=J— KRy, (28)

with K = Djys Doy 25 and
J = Dras (AosG + Hos(q,4) + Qa5(q) — Doy 25Roy) + I'ssign(DEg) + F,DEq.

The solution Rag optr which minimizes the square of the torques without
constraints is given when F*TE?RL; = 0. Considering equation (28) Roy optr
is given by

KTJ
KTK *
Defining a minimum value Rg;iny and a maximum value Roysyp, the con-
straints on Ry, can be written under the simple form,

Ry, optl" — (29)

R2:L’inf < R, < R2a:sup (30)

Then a solution for the minimization problem (27) is given by three cases

o if RQ:E inf S RQI optI” S R2z sup then R2x = RQI optI’ »
o if Ra, optI’ < Ry, inf then Rop = Ray inf
o if R2$ sup < RQw optI” then R2x = RZm sup-

In the case where there is no solution, i.e Rozins > Rogsup, we choose Ry, to
minimize the violation of constraints such as
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_ R2a: inf + RQQJ sup

= 5 )

In this last situation, the constraints are not satisfied. However, the optimiza-
tion process will tend to satisfy the constraints of the motion, and the final
solution will always satisfy Roziny < Rozsup. This violation will only occur
during the optimization process.

RQI

4.4 Optimization Algorithm

The algorithm NPSOL, see [20] is used to solve this optimization problem with
its nonlinear constraints. The sequence of treatment of constraints according
to their importance is described Fig. 3. From level 0 to level 4, the constraints
must be satisfied to simulate one step. Other constraints as the maximum
velocity of the biped, the torques limits are considered in level 5.

Sometimes, while solving the problem (23), the optimization process can
ask a value of the criterion or the constraints in a point pg where they are
not defined. Therefore an intermediate optimization process is started to find
another point pys, the closest from pg. For example if constraints g;(po) < 0,
i = 1,2,...,mg are not satisfied, pys is determined as the solution of the
problem

min [[po — pl|
(31)
9i(p) <0 i=1,2,...,mg .

Then the constraints not defined at the point py will be computed at the
point pas. And using gradient information at pjys, an interpolated value will be
determined at pg. This interpolation ensures that constraints and criteria are
continuous and differentiable functions, even at the boundary of their space
of definition. This is a necessary condition for the optimization program to
solve this modified problem.

During the optimization process the constraints can be violated. But it
tends to satisfy the constraints at the end of the optimization. Since we add
in the problem the constraints specifying the sub-space where all constraints
and criterion are defined, at the end of the optimization the walking motion
will be defined and satisfy all the constraints. The only situation where the
algorithm will not find a solution that satisfies constraints is if there is no such
solution (if we ask for a walk too fast and the actuators are not sufficient to
do it, for example) or if the problem is not convex. Indeed the algorithm used
is a local optimization algorithm. For a non convex problem, it will probably
find only a local non feasible solution, whereas other feasible solution exists.
However, we have tried many random initial conditions for the optimization
process and always found the same optimal solution that satisfied constraints.
We can therefore assume that our problem is convex.

To solve the intermediate optimization problem (31) and the general opti-
mization problem (23), the gradient in function of the vector of parameters p
of the criterion and constraints is necessary. To obtain an efficient algorithm,
these gradients were calculated analytically.
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Fig. 3. Sequence of constraints to satisfy before the step can be defined
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5 Simulation Results

Figures 4-7 are devoted to a chosen motion velocity for a biped which equals
0.3 m/s. Figure 4 shows that the needed torques for this trajectory are inside
the template, motor torque/velocity, given by the manufacturer. The normal
components of the ground reactions as functions of time, during one step are
presented in Fig. 5. The constraint of unilateral contact on the leg tip 2 is
active because the fixed limit 20 N is reached in the tip of leg 2 during the
double-support phase. The double-support phase begins after time 0.93 s.

Figure 6 shows as functions of time the evolutions of joint variables 1, 2,
03 and d4 in single-support phase and double-support phase. Let us remark
that the discontinuities in the graphes mark the limit between the single-
support phase and the double-support phase. These discontinuities are not due
to an impact (only an impactless motion is considered). These discontinuities
appear in the graphes of Figs. 5—7 because the role of both legs are exchanged
at the beginning of the double-support phase. Figure 7 shows the behavior of
the variable «, which is monotone as expected. The discontinuity at the end
of the single-support phase (time 0.93 s) is due to the exchange of the role of
both legs.

140 T T T T T T

— Knee 1

— - Haunch 1
- Haunch2

-— Knee2 ||

100

80H
1

Couples [N.m)]

1 ! 1 ! !
4 6 8 10 12 14

Joint Velocity D¢ [rad/s)

Fig. 4. Velocity versus torque for knee ¢ and haunch 4, (i = 1,2) are inside the
template, motor torque/velocity, defined by the limit values 140 N.m and 12 rad/s
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In conclusion, for the velocity 0.3 m/s of the biped an optimal motion is
feasible according to the constraints. Other velocities of walk for the biped
have been tested with success. In Fig. 8 discrete values of criterion Cr are
presented versus the velocity of motion. The evolution of discrete criterion Cp
versus velocity of motion is more regular if the optimal walks are obtained
without taking into account Coulomb friction. This is due to the fact that the
convergence for the case with friction is not very good, since torques are not
smooth. For superior velocities a running gait is more appropriate, (see for
example numerical experiments in the paper [18]).

6 Conclusion

An optimization process is proposed to design optimal bipedal gaits for a
five-link biped. The walking gaits are composed of single-support phases and
double-support phases, but with no impact. The criterion minimized is the
integral of the square of the torques. A sequential procedure is done, taking
into account the constraints according to their importance realizing a walk
step. Coulomb frictions, which are nonlinear and discontinuous functions, are
taken into account because their contribution cannot be neglected. A pos-
sible improvement would be to do a piecewise linear approximation of the
Coulomb friction around the discontinuity point of the friction force for a null
joint velocity. Currently the main drawback of the optimization method we
used is that it is not exactly adapted to our problem. Our problem is a semi-
infinite problem, that is an optimization problem with constraints that must
be satisfied over an interval. We have then adapted our problem by consid-
ering the constraints over an interval only at their most constraining point.
The optimization problem we then solve is with non-smooth constraints. But
we obtained convergence even if NPSOL was not designed to cope with such
non-smooth problems. To solve our problem, we would like to consider an
optimization algorithm that can take into account a variable number of con-
straints in the future. Indeed, the number of maximum and minimum where
we considered the semi-infinite constraints can change during the optimiza-
tion process. We hope also to experiment on prototype Rabbit these reference
trajectories and to extend also this work to a walking biped with more degrees
of freedom.
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Summary. For fast motions in biomechanics and robotics, stability and robustness
against perturbations are critical issues. The faster a motion the more important it
is to exploit the system’s natural stability properties for control. The stability of a
periodic motion can be measured in terms of the spectral radius of the monodromy
matrix. We optimize this stability criterion for a given robot topology, using special
purpose optimization methods and leaving the model parameters, actuator inputs,
trajectory start values and cycle time free to be determined by the optimization.
This approach allows us to create simulations of robots that can move stably without
any feedback. In order to analyze the robustness of a resulting periodic motion, we
propose two methods, the first of which relies on forward simulations using perturbed
start data and parameters while the second is based on the pseudospectra of the
matrix. As a new example for a fast open-loop stable motion that has been produced
by stability optimization, we present a biped gymnastics robot performing repetitive
flip-flops (i.e. back handsprings). A similar model has previously been shown capable
of performing open-loop stable running motions and repetitive somersaults.

1 The Role of Open-Loop Stability in Fast Motions

For fast walking and running motions, stability is a crucial property. Main-
taining static stability throughout the motion is obviously not possibly for
fast walking and running robots with just one or two legs. In contrast, those
robots need to be allowed to tip and fall and swing, but the resulting motions
have to be overall dynamically stable. Dynamically stable motions are char-
acterized by the fact that they persist even in the presence of perturbations
which always exist in a real world environment. The more complex the sys-
tem becomes and the faster a motion gets, the more difficult is the task of
stabilizing the motion by means of appropriate feedback control systems.

A comparison of the speed of running motions in biology and robotics still
shows a huge gap: despite all technological process in recent years, the world’s
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Fig. 1. A flip-flop (back handspring) motion in gymnastics (taken from [9], with
permission)

fastest robots are still far behind the world’s fastest track runners which run
the 100 meters at average speed of nearly 37 km/h. One explanation for this
is that biological feedback and signal processing of a running person based on
senses and neurons is still far more sophisticated than any technical feedback
system implemented on a robot. However, it seems even more important, that
fast biological motions exploit the natural stability properties of the system
much better than robots which typically rely on the traditional approach of
trajectory playback. In biology, fast motions seem to be to some extent inher-
ently stable, or self-stabilizing, which significantly reduces the online feedback
effort.

In robotics, the idea of exploiting natural stability properties has been
introduced mainly through the field of passive-dynamic walking (compare
e.g. the work of McGeer [12, 13] or Ruina and coworkers [8]). Passive-dynamic
robots walk down inclined slopes in an amazingly natural looking manner,
without any motors, powered only by gravity, and are fully open-loop stable
without any feedback.

There are different approaches to transfer the ideas of passive-dynamics
to actuated walking and running motions (e.g. Collins et al. [6]). There only
exist very few entirely open-loop stable actuated robots today, e.g. the one-
legged hopping robots of Ringrose [21] and Wei et al. [24], and they rely mainly
on simple stabilization measures like a large curved foot in combination with
a low center of mass. There are also more complex robots that combine an
exploitation of self-stabilizing effects and feedback control, see e.g. the works
of Buehler [4] or Pratt [20]. Very fast open-loop stable multi-legged robots
have been built inspired by cockroaches (Cham et al. [5]).

The idea of open-loop stability or exploitation of natural stability has been
addressed by different authors of this symposium, e.g.:

e Martijn Wisse presented his robot Denise which is a quasi-passive walking
robot with a very natural gait based on very little actuation and feedback

e Heiko Wagner and Peter Giesl explore the open-loop stability present in
biological systems especially in the muscle actuators

e John Schmitt describes the SLIP model which can be passively stable and
for which the basin of stability can be enlarged by very simple feedback.
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We approach the issue of producing fast open-loop stable motions from an
optimal control perspective. The objective of this paper is twofold:

e to summarize a systematic procedure based on numerical optimization
that we developed [14, 15], to produce robot configuration and fast peri-
odic motions that are fully open-loop stable, and to analyze their robust-
ness. These numerical methods are meant to be used already in the design
phase of the robots because they help to determine adequate geometric
and inertial properties;

e to present one new specific example optimized with these methods: a two-
legged robot performing repetitive flip-flops i.e. back handsprings.

This paper presents an extension of the work done in cooperation with Bock,
Schléder and Longman [17, 16]. Altogether this research shows that very differ-
ent types of open-loop stable motions can be produced using these numerical
techniques.

Since robustness is another crucial characteristic of a motion — besides
stability — we also present different methods that allow one to numerically
asses the robustness of a solution, i.e. to quantitatively determine the size of
the tolerated perturbations.

In detail, the following steps are necessary in order to produce such a
purely open-loop stable robot configuration and motion:

Step 1: Choose the basic robot configuration and motion
Step 2: Establish a mathematical model of the robot motion
Step 3: Determine open-loop stable solutions by means of optimization of
all model parameters and free input variables
e Step 4: Analyze robustness of solution.

The individual steps will be described in the following sections of this paper
for the specific example of the biped robot performing repetitive flip-flops.
A special focus is on the stability optimization in step 3, where the underly-
ing numerical methods and the results of these methods for the robot under
investigation will be presented.

2 First Step: Choosing the Robot Configuration and
Motion — The Flip-Flop Example

In a first step the basic characteristics of the robot configuration and the
motion to be stabilized need to be picked. In detail, that means that one has
to select

1. the robot topology:
i.e. determine the number of bodies, their basic shapes, the types of con-
nections (or joints) between those bodies, the types of passive elements
(like springs or dampers), the number and types of actuators etc.
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2. the motion of the robot:
i.e. describe the gait to be performed (like walking, running, trot, gallop
etc.) or any other type of periodic motion (like jumping with flip etc.);
this also includes a determination of the logical order of phases and of the
natural phase-separating conditions etc.

3. the free quantities in the model:
i.e. choose those model parameters, actuator inputs and characteristics of
the trajectory that qualify for a modification by the optimization proce-
dures.

In the present paper, we investigate a periodic flip-flop — or back handspring
motion of a planer robot trying to mimic sequences of the human gymnastics
movement (Fig. 1). Going along the items listed above, the following selections
have been made:

1. The robot consists of a large trunk (in a bird-like horizontal orientation),
two thin telescopic legs with point feet and two arms which are assumed
to be identical to the legs in shape and size (compare Fig. 2). Since both
arms and both legs act exactly in parallel for the planar motion consid-
ered, this original model can be substituted by a model with just one leg
(pointing down from the trunk) and just one arm (pointing up, see Fig. 4).
This model is in fact almost identical to the biped robot model that we
have investigated in earlier publications and that we have proven capable
of open-loop stable periodic running motions [17] and open-loop stable pe-
riodic somersaults with alternating single leg contacts [16] (also compare
Fig. 3). The only difference is that one leg now has to be pointed upwards
in order to be interpreted as an arm. Each leg/arm is connected to the
trunk by a hinge driven by a torque and a parallel torsional spring-damper
element. The lower part of the leg/arm is assumed to be massless, and the
two parts of each leg/arm are connected by an actuated spring-damper
element (series elastic actuator).

Fig. 2. A robot model performing flip-flop motions
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Fig. 3. Two-legged robot capable of periodic running and somersault motions

TRUNK

4

Fig. 4. Robot model used for flip-flop computations with one arm and one leg

2. As shown in Fig. 1, for the human flip-flop motion the following phases
can be identified: foot contact phase — flight phase — hand contact phase —
flight phase. Since our robot model is characterized by several symmetries
not present in the human gymnast (legs and arms are identical, as well as
the associated actuators, and the trunk is symmetric with respect to its
horizontal plane), we can assume that foot and arm contacts have identical
effects and reduce the model to half a physical cycle, i.e. just consider two
phases: a contact phase followed by a flight phase. The natural condition
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ending flight and starting the contact phase is satisfied if the respective foot
or hand reaches zero height with a negative vertical velocity. The contact
phase ends if the spring in the telescoping leg/arm regains its normal length
after compression.

In order to optimize the open-loop stability of the flip-flip robot motion
the following quantities are left free to be modified by the optimization
procedures:

Most of the model parameters i.e. of the design variables that can be
a priori chosen for a robot at design time and are fixed throughout
the motion. Model parameters for this robot model are trunk mass
and inertia mp and Oy, leg/arm mass and inertia m; and ©;, distance
between centers of mass of trunk and leg d, leg rest length /y, torsional
spring and damper constants ks and b5, rest location of torsional
spring A¢, and translational spring and damper constants k and b.
For the computations presented here m; and [ are fixed for scaling
reasons, the rest is left free. Note that all quantities correspond to the
substitute model (Fig. 4).

All time-varying system inputs, i.e. the time histories of the forces and
torques produced by motors and other types of actuators and acting
on the model are also left free to be determined by optimization. Out
of the four actuators described above — two torques usors between the
hip and the leg and arm, respectively, and two series elastic actuators
usga in the telescopic part of the leg/arm — only three are active in
the half cycle considered.

There are a few remaining free quantities describing the trajectory of
the robot, like the initial values (at the beginning of a cycle) of all
positions and velocities and the period time. The rest of the trajectory
is implicitly determined by the dynamics and free quantities described
above, like the parameters and the input histories.

Even though all these quantities are free in optimization, they are subject
to physically reasonable bounds.

3 Second Step: Establishing a Mathematical Model
of the Robot Motion

After the general selections described in the previous section have been made,
a detailed mathematical model of the robot and the motion has to be set up.
From a mathematical perspective, gait models result in hybrid systems which
include continuous motion phases with highly complex nonlinear differential
equations and discrete “phases” (of duration zero) with sudden — discontinu-
ous — changes in the state variables of the system'. The number of degrees of
freedom, the number of state variables, as well as the number of free control

1 State variables x for a mechanical system are all position and velocity variables
used for description
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variables u(t) (i.e. actuator inputs in physical terms) can be different in each
phase. Typically, the points of phase change do not take place at given times
but only depend implicitly on time via the states of the system.

In order to fully describe the motion of the flip-flop robot, we have to
establish the following sets of equations:

e differential equations for the leg contact phase
e differential equations for the flight phase
e discrete equations for discontinuity “phase” after touchdown.

We use the same set of state variables for the description of all phases, namely
q = (b, Y», db, 1, ¢a) T, and the corresponding velocities ¢, where x;, and y;,
are the position coordinates of the trunk center of mass in the vertical plane,
and ¢y, ¢; and ¢, are the orientations of trunk, leg and arm. During the flight
phase, these position variables correspond to the five degrees of freedom; and
the reduction during contact phase is handled by additional constraints.

The coordinates of the centers of mass of the leg and arm (z;,y;) and
(Za,Ya) can be eliminated using the distance parameter d and the respective
angle by ¢; or ¢g.

The motion in the flight phase is described by the following set of ordinary
differential equations:

m 0 0 mydcos ¢; myd cos ¢q Ty

0 m 0 mydsin ¢; mydsin ¢, b

0 0 6 0 0 o | =
mydcos ¢ mydsing; 0 0; +myd? 0 él

myd cos ¢, mydsin ¢, 0 0 0; + myd? ba
myd(sin (;Slgz'blz + sin gbaq'ﬁ)

—myd(cos gzﬁlq-ﬁf + cos ¢a¢§) —mg
Zle (utors,i - ktors(¢b - ¢li - A¢) - btors (¢b - QSL.)) (1)
—Utors,1 — mlgd sin ¢l + ktars(¢b - ¢)l - A¢) + thT‘S((rbb - ¢l)
—Utors,2 — mlgd sin ¢a + ktors(¢b - (yba - A(b) + btors(¢b - ¢a)
where m is the total mass m = my + 2my; and Uiors,1 and Ugors 2 are the
torques between trunk and leg or arm, respectively. For compactness of nota-

tion, we use ¢;, = ¢; and ¢, = ¢, in the third line of eqn. (1).
The leg length [ is fixed to Iy during the major part of the flight phase

(since the foot is massless) and depends on the other coordinates during the
contact phase (with the leg) as follows:

Yo
= 2
! Cos ¢y = )
T sing;
li=— a T o b1 - (3)

(equivalently for arm contact).
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The series elastic actuator (compare Pratt et al. [19]) active in the contact
leg usgpa,; > 0 actively changes the spring’s length

ar=%_"

— —1 4
cos 1 +r—usgpa, — to (4)

usga, is equal to zero at touchdown and must be positive at liftoff to com-
pensate for the energy loss in the damper.

In order to model foot contact, we use a constraint-based approach instead
of contact forces: friction is assumed to be large enough to guarantee instan-
taneous stopping of the contact point without sliding. This would reduce the
degrees of freedom of the system by two, but at the same time the previously
fixed leg length becomes variable and changes under the influence of the SEA
spring-damper forces. In sum, this leads to reduction of degrees of freedom
by one which is described by the additional kinematic constraint in velocity
space )

@y + (yo -+ yp tan® ¢y ) ¢ + tandy g, =0 . (5)

The corresponding equation on the acceleration level is used to establish the
differential-algebraic equations of index 1 describing the contact phase:

m 0 0 mydcosg; mydcos o, 1 Ty

0 m 0 mydsing; mydsin ¢, tang; b

0 0 6 0 0 0 b
mydcos ¢y mydsing; 0 6; +myd? 0 yp(1 + tan? ¢;) él -
myd cos ¢po midsin ¢g 0 0 0; + myd? 0 ba

1 tangy 0 yp(1+ tan? ¢;) 0 0 A

myd(sin (blqﬁf + sin qbagz'ﬁ) + (Fy + Fy) sin ¢y
—myd(cos ¢lq512 + cos ¢ $2) — mg — (Fj, + Fy) cos ¢
S22 (ttorssi = Kuors(60 = &1, = AG) = biors (b — 1))
~Utors,1 — MuGASIn@p + kiors(dp — &1 — AB) + biors (¢ — ¢1)
~Utors,2 = TGS Gq + Kiors (90 — da — AG) + brors (95 — da)
—2 cos 2 dyhu (i + yb tan ¢y )

with spring and damper forces Fj, and Fjy

Yo
Fr. =k — o — 7
s (COS¢Z 0— USEA1) (7)
Ub tan ¢; -
. 8
cos &y Yo 05 &1 1) (8)

Fy=b(

The solution of these equations must lie on the invariant described by the
velocity equation (5); this is guaranteed by including this equation in the
computations of the discrete phase (see below).



Stability Optimization and Robustness Analysis for a Flip-Flop Robot 261

Before addressing this discrete phase, we briefly state all phase switching
conditions:

e Phase change from contact phase to flight pase, i.e. liftoff, occurs when
the spring length in the leg is equal to the (modified) rest length

Yo
Stiftoff = lo +usgpa1 — Y =0 9)

and, at the same time, the trunk has a positive vertical speed

Cliftoff = Yo > 0. (10)

e Touchdown, i.e. phase change from flight phase to the following contact
phase (arm contact) occurs when the height of the prospective contact
point is equal to zero

Stouchdown = Yb — lg cos (ba =0. (11)

The vertical speed of the contact point at touchdown must be negative:

Ctouchdown = yb + lO sin Qsaéa <0. (12)

Discrete phases are used to describe sudden changes of the state variables due
to collisions etc.; in the model the time of such an event is assumed to be zero.
The lift-off phase transition is assumed to be smooth, so no discrete phase is
inserted at this point. However, touchdown is generally non-smooth. The ve-
locity of the contact point is instantaneously set to zero, and the discontinuity
propagates to all other parts of the system. A set of five algebraic equations
is used to determine the five unknown velocities after impact with the arm:

e non-sliding ground contact combined with spring-damper action:
Zeontact = Tp + lo cos (ba(ba + yb tan (ba + ybéa tan2 (ba =0 (13)
e conservation of angular momentum of trunk about hip:

Htrunk,hip = Qb(i)b = const . (]_4)

e conservation of angular momentum of the leg (remaining in free swing
phase) about the hip

stingleg,hip = (@l + mldz)ci)l = const .

e conservation of angular momentum of full robot about prospective contact
point
Hrobot,contact = qu.sb - mb(yb - yc)i'b + mb(xb - Ic)yb
+O191 — mu(yr — ye ) + mu(wr — )i
+Ql¢a - ml(ya - yc)i‘a + ml(xa - xc)ya = const . (15)
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with

ZTe = Xp + Lo sin ¢q (16)
Yo = Yp — lo cOS @y . (17)

e conservation of translational momentum in direction of prospective stance
arm (considering spring-damper-force)

m(Zp sin ¢g — Yp COS Py ) — Frq = const . (18)

The model presented so far is identical (except for notational details) for all
robots of the same family, the running robot, the somersault robot and the
flip-flop robot.

However, using additional inequality constraints, it is possible to distin-
guish one type of motion from the other and impose the desired type. For
flip-flops these constraints are e.g.

e at foot contact, the foot is pointing down and forward while the arm is
pointing up and backwards

e leg and arm are always on different sides of the trunk which must be
assured by appropriate collision avoidance constraints

e leg and arm have a negative rate during the whole cycle (i.e. are continu-
ously rotating backwards)

Also the periodicity constraints (i.e. coupled equality constraints) applied to
the model are different for each type of motion. In order to obtain the desired
periodic flip-flop with symmetric leg and arm contact half-cycles, the following
modified periodicity constraints have to be imposed:

¥u(0) = yu(T)

(0) = ¢u(T) — 7

#1(0) = ¢ (T) — 27

$a(0) = ¢u(T)

iy(0) = @4(T) (19)
U6(0) = y(T)

$6(0) = ¢y (T)

$1(0) = ¢a(T)

$a(0) = du(T)

Additionally, the following inequality constraints need to be satisfied for any
type of motion:

e clearance of swing leg and arm (height of lowest point larger than zero)
e contact avoidance of all bodies.
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4 Numerical Stability Optimization Methods for Step 3

We address the task of step 3 to determine open-loop stable solutions by
means of numerical optimization. A problem like this can not be solved by
standard optimization or optimal control methods due to

e the complexity of the robot gait models described above, namely the non-
smoothness in the dynamics (i.e. the hybrid system property)

e the difficulties produced by the choice of the optimization criterion stabil-
ity (which is another source of non-smoothness of an even more compli-
cated type, see below).

In our previous research we therefore have developed numerical methods for
the optimization of open-loop stability of general hybrid periodic systems. The
method described here depends on a two-level approach splitting the problem
into periodic gait generation and stabilization of the periodic system (for
details see [14, 15]). This approach has already been applied to many types
of problems and robot examples and has always delivered stable solutions
14, 17, 16].

Figure 5 gives an overview of the two-level procedure. The tasks to be
performed in each level will be presented in the next two paragraphs.

4.1 Solution of Periodic Optimal Control Problem

The task of the lower level — or inner optimization loop is to find actuator pat-
terns, initial values and cycle time leading to a periodic trajectory while the
set of parameters is fixed by the outer loop for each inner loop computation.
The choice of those variables is governed by energy consumption considera-
tions (in terms of actuator inputs u). We also have imposed a lower bound on

Outer optimization loop

\ 4

Inner optimization loop
R ——
Stability optimization Solution of periodic

° i optimal control problem
min ¢stab

° modify model parameters
(mass, inertia, geometry ...)

© minimize energy
o for given parameters

o modify initial values,
actuator inputs, cycle time

Fig. 5. Sketch of two-level stability optimization procedure
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the trunk forward speed at all points, and bounds on the leg inclination an-
gle at touchdown and liftoff instants. Together with the equations of motion,
the periodicity constraints and phase switching conditions, box constraints on
all variables etc., this leads to a multi-phase optimal control problem of the
following form:

mln /Hu||2dt (20)

s. t. z(t) = fj t,x(t),u(t),p) or DAE (21)
a(7;") = h(x(r;)) (22)
g5(t, 2(8), u(t),p) > 0 (23)
for te[rj_1,7],
J=1 ... npn, 70=0,Tn,, =T
Teq(2(0), .., 2(T),p) = 0 (24)
Tineq(€(0), -, 2(T),p) 2 0. (25)

We solve this problem using a variant of the optimal control code MUSCOD
(Bock & Plitt [3], Leineweber [10]) suited for periodic gait problems. It is
based on

e a direct method for the solution of the optimal control problem (also
termed a “first discretize then optimize method”:
instead of using arbitrary (i.e. infinite dimensional) control functions u(t),
we restrict the controls to a discretized space described by a finite set of
parameters. For numerical efficiency, we use functions with local support,
in this case piecewise constant functions on a grid with m intervals.

e a multiple shooting state parameterization:
the basic idea of this technique is to split the long integration interval
[0, T] into many smaller ones and to introduce the values of the state vari-
ables x at all those grid points as new variables s;; (compare Fig. 6). The
original boundary value problem is thus transformed into a set of initial
value problems with corresponding continuity conditions between the in-
tegration intervals. For numerical reasons the multiple shooting grid is
chosen identical to the control grid described above. The multiple shoot-
ing approach is very favorable for a number of reasons. The phase order
and switching structure, which is generally known for walking problems,
can be easily prescribed in this context. The rough knowledge that one
usually has about the trajectory in the case of walking and running can
be exploited in the generation of starting data for the multiple shooting
points. Since the integration intervals are much shorter than in the origi-
nal problem, the chances for finding a solution of the initial value problem
obtaining sufficiently accurate derivatives increase significantly, even if all
values are still far from the final solution.
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X

Fig. 6. Multiple Shooting state parameterization

Using these discretization techniques, the original infinite dimensional optimal
control problem is transformed into a finite dimensional nonlinear program-
ming problem which is of large dimension but very structured and can there-
fore be solved efficiently by a tailored SQP algorithm exploiting the structure
of the problem (also compare Leineweber et al. [10] [11]).

The treatment of the dynamical model equations is not part of the dis-
cretized optimal control problem; this task must however be handled in paral-
lel in order to provide the required information for the evaluation of objective
functions, continuity constraints and the derivatives thereof. For this task, fast
and reliable integrators are used that also include a computation of sensitiv-
ities based on the techniques of internal numerical differentiation (for details
see Bock [2]).

4.2 Stability Optimization of Periodic Solution

In the outer loop of the optimization procedure the open-loop stability of
the periodic optimal problem solution is optimized by adjusting the model
parameters. Stability is defined in terms of the spectral radius of the Jacobian
C of the Poincaré map — also termed the monodromy matrix — associated with
the periodic solution (see e.g. [22]). If the spectral radius is smaller than one,
the solution is asymptotically stable, and if it is larger than one, the solution
is unstable. We have proven that this criterion based on linear theory and
typically applied to simple smooth systems can also be used to demonstrate
the stability of solutions of a nonlinear multiphase system with discontinuities
(Mombaur et al. [15]).

The computation of the monodromy matrix corresponding to a periodic
solution of the hybrid system can be performed efficiently by reusing sensitiv-
ity information computed during the optimal control problem solution. The
following steps are required:
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a)

For continuous model phases, a simple chain rule multiplication of the
sensitivity matrices on the individual multiple shooting intervals must be
performed:

Coo(tostm) = Cqu(tm—1,tm) ... - Cqo(t1,t2) - Cqu(to, t1) - (26)

At the points of discontinuity ¢ — like the touch-down or lift-off of the robot
— an “update” of the sensitivity information has to be performed. This
update term has to take into account that these discontinuity points are not
fixed in time, but implicitly depend on the states and parameters and will
therefore experience a time shift under the influence of a perturbation of
these variables. It is computed according to the following formula (compare
Bock [2], von Schwerin et al. [23]):

1
Uq,v = (Af —Ji - Jq,vflEft(ts)) : g(sq, Sv)T +1+ Jq,v : (27)

f, q, and v are defined as in Sect. 2, and s is the relevant switching function
with partial derivatives s, and s, and total derivative with respect to time
$. Subscripts left and right always denote quantities before and after the
switching point, respectively. I is the identity matrix. J is the state variable
jump function with the partial derivatives J; and J, ,,. Af is the right hand
side change. The full monodromy matrix including the update becomes

Cz = Cq,v(tm tm) = Cq,v (tsv tm)Uq,qu,v (th ts) (28)

If the models include non-periodic variables, a subsequent reduction to
the periodic subspace is necessary to compute the matrix to be used in
optimization.

The eigenvalues of this matrix which is quadratic and nonsymmetric can be
computed using a standard QR algorithm as available in Lapack (Anderson
et al. [1]); these eigenvalues may be real or complex.

We use the spectral radius as objective function of our optimization

mgn IAMC(P))|maz> (29)

with the intention to decrease it below one.

This is a difficult optimization criterion for different reasons:

The maximum eigenvalue function of the non-symmetric matrix C' is non-
differentiable and possibly even non-Lipschitz at points where multiple
eigenvalues coalesce.

The determination of the matrix C involves the computation of first order
sensitivities of the discontinuous trajectories (see above).

The function is non-convex and typically has several local minima.
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Any gradient-based optimization method would thus require second order
derivatives of the trajectory which are extremely hard to compute, especially
due to the discontinuities in the dynamics. For all reasons mentioned, a di-
rect search method has proven to be a very good choice for the solution of
this outer loop optimization problem. Direct search methods are optimization
methods that solely use function information and neither compute nor ex-
plicitly approximate derivatives. We have implemented a modification of the
Nelder-Mead algorithm [18] which is based on a polytope with n + 1 vertices
for optimization in n-dimensional space. According to the function informa-
tion collected at its vertices the polytope expands in directions promising
descent and contracts in bad directions. In contrast to the original method,
we allow for multiple expansions in a promising direction, we use a differ-
ent direction of contraction, and we only apply full polytope shrinking after
multiple one-dimensional contractions. In addition, we consider the different
nature of optimization variables by appropriate scaling of the initial polytope,
we use a modified termination criterion, and we rely on a restart procedure as
globalization strategy. In contrast to the original Nelder-Mead method, our
algorithm can directly handle box constraints on the optimization variables
not requiring a penalty function. Although there is no theoretical convergence
proof for this direct search method in the case of non-smooth systems, it has
delivered excellent results with spectral radii below one in all the computa-
tional examples that we have applied it to so far.

5 Results of Step 3: Open-Loop Stable Repetitive
Flip-Flops

Applying these stability optimization methods to the model of the periodic
flip-flop established in step 2, leads to the open-loop stable motion visualized
in Fig. 7. It is characterized by a maximum eigenvalue of magnitude 0.807.

The robot is characterized by the following model parameters: m; = 2.0,
O, = 1.0, my = 0848, O; = 0.0174, d = 0.24, Iy = 0.5, kiors = 10.07,
Ap = 0.969, biors = 7.41, k = 701.1, and b = 23.16 (all in ISO units). Note
that all parameter values are given for the substitute model; going back to
the original model with two legs and two arms requires cutting in half m;, ©;,
and all spring and damper constants.

Figures 8 and 9 show the state variable histories and actuator inputs for
this open-loop stable solution. The initial values of the trajectory are x;(0) =
0.0, ,(0) = 0.439, ¢(0) = 0.2, ¢;(0) = 0.5, ¢o(0) = 4.273, #,(0) = 5.745,
U5(0) = —1.549, ¢,(0) = —9.659, ¢;(0) = —8.598, ¢4 (0) = —8.804.

The cycle time is 7' = 0.3 s with phase times Tj;gn¢ = 0.15s and Teontact =
0.15s (implicating that both phase times reach their lower limits as specified).

The direction associated with the non-periodic variable xp is eliminated
from the monodromy matrix, such that the matrix considered for stability
computations has dimension nine. The periodic mapping described by this
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Fig. 7. Open-loop stable flip-flops produced by optimization

matrix also includes the shift of arm and leg and of trunk orientation expressed
in the modified periodicity constraints (19). The computations resulted in the
nine eigenvalues, by magnitude:

|A1] = 0.807
[A2| = 0.389
A3 = 0.225
|A4] = 0.797
|As| = 0.644
|X¢| = 0.665
A\7| =2-107°
[As| =0

[Ao| =0
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Fig. 8. State variable trajectories of open-loop stable flip-flop solution

The two eigenvalues of zero come from the fact that the degrees of freedom
of the robot are reduced from five to four during the contact phase (i.e. from
ten to eight independent directions in state space). This also implies that
perturbations associated with this lost degree of freedom are naturally damped
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Fig. 9. Actuator inputs producing flip-flop motion in Fig. 8

out which is represented by a rank reduction by two of the monodromy matrix,
and thus by two zero eigenvalues. Another eigenvalue happens to be very small
for this particular solution, but it is not analytically or numerically zero in
the general case.

6 Fourth Step: Robustness Analysis of Solution

A maximum eigenvalue with a magnitude below one guarantees stability of
the solution against small perturbations in the initial value. But how small
is small? The absolute size of the maximum eigenvalue only gives some in-
formation about the speed of decay over time of the perturbations applied,
not about the absolute size of the perturbations that are possible before the
robot falls down. An analysis of the stability margins of a solution, i.e. of its
robustness, is also very important in order to asses the quality of a solution.
Stability of a solution is a prerequisite for robustness, but stability does not
necessarily imply robustness.

There is no straightforward way to numerically compute the robustness of
a solution including all nonlinear effects in terms of a single function, but we
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present two quick numerical tests that can help to evaluate the robustness of
a given solution.

6.1 Test 1: Simulation of Perturbed Solutions

We can determine stability margins numerically by applying one-dimensional
perturbations to the initial values of the trajectory and simulating the re-
sulting behavior of the system checking if it stumbles or if it returns to the
periodic motion. This test includes all nonlinear effects associated with the
system and the motion including:

e nonlinearities of the model equations
e closeness to constraints, especially to phase-switching constraints (pertur-
bations may cause new phase switching structures to appear)

As an example, we investigate here the effect of perturbations of the initial
vertical velocity ¢(0). The boundary of the basin of attraction of the stable
solution is above +30% of the reference value. Figure 10 shows the recovery
process after a perturbations of +30%.

6.2 Test 2: Pseudospectra of Monodromy Matrix

Another completely different way of assessing the robustness of a solution
is to look at the pseudospectra of the computed monodromy matrix. The
pseudospectra can be defined in terms of the spectra of all nearby, i.e. per-
turbed matrices:

A (C)={z€ C: 2z € A(C + E)for some E with||E|| < €} (30)

where A denotes the spectrum of a matrix. For more information on pseudospec-
tra, including other, equivalent definitions and useful tools, see the Pseudospec-
tra Gaitway by Embree and Trefethen [7]. Pseudospectra capture the fact that
nonsymmetric matrices, i.e. matrices without an orthogonal basis of eigenvec-
tors may exhibit transients or other types of effects which are different from
the asymptotic behavior predicted by the eigenvalues. The pseudospectrum is
used to define measures of robust stability and can help to qualitatively com-
pare different solutions. However, one has to keep in mind that this analysis
only includes information about the sensitivity of the spectral radius with
respect to matrix entries and not about the sensitivities of the matrix entries
with respect to the free optimization variables.

The pseudospectrum associated with the most stable solution of the flip-
flop robot is given in Fig. 11.



272 K. Mombaur
16 6.5
14
12
10 _
e} [s}
< 8 N
6
4
2
0
0
t
.o‘ _g
> >
0.5
0
0.5
_c‘ -1 -8‘
= o
5 15 )
o
2
25
3
0
t t
1 3
0.5 #
. 5
0 -6
5 7
[s]
- -0.5 5 -8
s 4 £ 9
S 10
1.5 -11
2 -2
-13 b
25 14
0 0
t t
45
4
35
3 -
3
S 25 5
| 2 =
1.5 o
1
0.5
0
0

t

t

Fig. 10. Effect of a pertu