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Preface

In the past decades, much progress has been made in the field of walking
robots. The current state of technology makes it possible to create humanoid
robots that nearly walk like a human being, climb stairs, or avoid small ob-
stacles. However, the dream of a robot running as fast and as elegantly as
a human is still far from becoming reality. Control of such fast motions is
still a big technological issue in robotics, and the maximum running speed of
contemporary robots is still much smaller than that of human track runners.
The conventional control approach that most of these robots are based on
does not seem to be suitable to increase the running speeds up to a biological
level.

In order to address this challenge, we invited an interdisciplinary commu-
nity of researchers from robotics, biomechanics, control engineering and ap-
plied mathematics to come together in Heidelberg at the first Ruperto-Carola-
Symposium “Fast Motions in Biomechanics and Robotics – Optimization &
Feedback Control” which was held at the International Science Forum (IWH)
on September 7–9, 2005. The number of participants in this symposium was
kept small in order to promote discussions and enable a fruitful exchange of
ideas.

This volume contains a selection of papers from this symposium. Thus,
one aim of the volume is to study the control and stabilization principles
of biological motions and to determine which aspects can be exploited for
the control of fast walking and running robots. In addition, the applicability
of recent advances in control engineering, in particular in nonlinear model
predictive control, to the field of walking robots is discussed. Another focus
is on model based simulation and optimization methods that can be used for
analysis and optimal design of motions and feedback control systems.

We would like to thank all authors for their interesting contributions, and
all reviewers for their careful reading and their helpful comments which made
it possible to assure a high quality of this book. In this context we would
particularly like to thank Prof. Jim Bobrow for handling the editorial process
of the papers in which we were involved.
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Both the symposium and the work leading to this volume were financially
supported by the Hengstberger-Prize donated by Dr. Klaus Georg and Sigrid
Hengstberger, for which are very grateful. We also thank the members of the
IWH team for their hospitality and friendly help with the organization of the
symposium, in the beautiful surroundings of IWH.

Special thanks are due to Tanja Binder for doing the technical compila-
tion of this book. We also thank Dr. Thomas Ditzinger and Heather King of
Springer Verlag for their support with publishing this volume.

Heidelberg Moritz Diehl
June 2006 Katja Mombaur
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BP 92 101
44321 Nantes Cedex 03 – France
Frederic.Boyer@irccyn.
ec-nantes.fr

Buche, Gabriel
LAG
Ecole Nationale d’Ingénieurs
Electriciens de Grenoble
BP 46
38402 St Martin d’Hères – France
Gabriel.Buche@inpg.fr

Chevallereau, Christine∗

IRCCyN
Ecole Centrale de Nantes
Université de Nantes
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Re-injecting the Structure in NMPC Schemes

Application to the Constrained Stabilization
of a Snakeboard

M. Alamir1 and F. Boyer2

1 Laboratoire d’Automatique de Grenoble, CNRS-INPG-UJF, BP 46, Domaine
Universitaire, 38400 Saint Martin d’Hères, France
mazen.alamir@inpg.fr

2 IRCCyN, 1, rue de la Noë BP 92 101, 44321 Nantes Cedex 3, France
Frederic.Boyer@emn.fr

Summary. In this paper, a constrained nonlinear predictive control scheme is pro-
posed for a class of under-actuated nonholonomic systems. The scheme is based on
fast generation of steering trajectories that inherently fulfill the contraints while
showing a “translatability” property which is generally needed to derive stability re-
sults in receding-horizon schemes. The corresponding open-loop optimization prob-
lem can be solved very efficiently making possible a real-time implementation on fast
systems (The resulting optimization problem is roughly scalar). The whole frame-
work is shown to hold for the well known challenging problem of a snakeboard con-
strained stabilization. Illustrative simulations are proposed to assess the efficiency
of the proposed solution under saturation constraints and model uncertainties.

1 Introduction

One of the most attractive features of Nonlinear Model Predictive Control
(NMPC) schemes [1, 2] is their complete independence of the mathematical
structure of the system’s model. Indeed, from a conceptual point of view, given
any system satisfying a rather intuitive set of assumptions, one may write
down a concrete state feedback algorithm that theoretically asymptotically
stabilizes a target equilibrium state.

Unfortunately, such generically defined formulations may lead to optimiza-
tion problems that cannot be solved in the available computation time when
rather fast dynamics are involved. This can be formulated in a kind of “no
free lunch” statement:

Genericity reduces efficiency

Therefore, to overcome the consequences of the above unavoidable truth, spe-
cific features of each system under study have to be explicitly taken into
account as far as possible.
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In a series of papers [3, 4, 5, 6, 7, 8, 9], it has been shown that when the
constrained stabilization is the main issue, that is, when the optimality is not
rigorously required, efficient stabilizing NMPC schemes can be obtained as
soon as open-loop “steering trajectories” can be generated by some systematic
and efficient algorithm.

Now, the way these trajectories are generated is system dependent and the
associated efficiency may be greatly increased if the specific structure of the
system is explicitly exploited. This is what reduces the genericity to increase
efficiency. By allowing low dimensional parametrization of these trajectories,
corresponding low dimensional NMPC schemes can be defined in which, the
decision variable is the parameter vector of the steering trajectory.

In this paper, it is shown that for a particular class of mechanical systems
including the snakeboard, it is possible to use the particular structure of the
system equations in order to derive efficient computation of parameterized
steering trajectories. Moreover, these trajectories have the nice property of
being structurally compatible with the saturation constraints on the actuators.
Since in addition, they have the “translatability property”, they can be used
to implement a stable closed loop receding horizon feedback.

The paper is organized as follows: First, the particular class of mechan-
ical systems under study is defined in Sect. 2 together with the associated
assumptions. In Sect. 3, the proposed state feedback algorithm is explained
and the associated convergence results are derived. The fact that the snake-
board falls into the particular class depicted in Sect. 2 is discussed in Sect. 4.
Finally, illustrative simulations are proposed in Sect. 5 in order to assess the
performance of the proposed solution.

2 The Class of Systems Considered

We consider nonlinear systems that may be described by the following set of
ODE’s

ṙ = f1(χ)g1(η)η̇ (1)
η̇ = f2(χ)g2(ξ) ; g2(0) = 0 (2)
ξ̇ = f3(ξ, χ, χ̇, u1) (3)
χ̈ = f4(ξ, χ, χ̇, u2) (4)

where equations (1)–(2) stands for a kinematic stage while equations (3)–(4)
represent the dynamic stage. r ∈ R

nr is a kind of generalized position; η ∈
R

nη is an orientation variable; ξ ∈ R
nξ is a generalized velocity while χ ∈ R

stands for an internal configuration variable. f1 : R → R, g1 : R
nη → R

nr×nη .
All the maps invoked in (1)–(4) are assumed to be continuously differentiable.

Note that equation (1) generally describes a nonholonomic constraint,
namely, a constraint on the velocities that is not derived from a position
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related constraints. The control inputs u1 and u2 have to meet the following
saturation constraints

∀t , ui(t) ∈ [−umax
i ,+umax

i ] ; i ∈ {1, 2} (5)

for some given upper bounds umax
1 and umax

2 .
The aim of the present paper is to derive a state feedback algorithm that

steers the sub-state (r, η, ξ) of the system (1)–(4) to the origin under the
saturation constraint (5). Note that since g2(0) = 0, the origin (r, η, ξ) = 0
is an equilibrium position for the dynamics (1)–(3) provided that ξ can be
maintained at 0 by convenient use of the control input u1 as it is suggested by
Assumption 1 hereafter. Note also that χ is an internal configuration variable
whose value is irrelevant for the control objective. This is for instance the
angular position of the wheels in the snakeboard example (see Sect. 4).

Beside the structure depicted in equations (1)–(4), the class of systems of
interest has to satisfy the following assumptions:

Assumption 1

1. For all χf , there exists a feedback law

u := (u1, u2) = K1(ξ, χ, χ̇, χf )

under which, the closed loop behavior respects the constraints (5) and such
that

(ξ = 0, χ̇ = 0, χ = χf )

is a globally asymptotically stable equilibrium for the closed loop dynamics
defined by (3)–(4) and K1. Furthermore, the subset {ξ = 0} is invariant
under the closed loop behavior.

2. For all χf �= 0 and all ηf , there exists a feedback law

u = (u1, u2) = K2(η, ξ, χ, χ̇, ηf , χf )

such that the closed loop behavior respects the constraints (5) and such that

(η = ηf , ξ = 0)

is a globally asymptotically stable equilibrium for the closed loop dynam-
ics defined by (2)–(3) and K2. Furthermore, the set {χ = χf , χ̇ = 0} is
invariant under this dynamics.

3. For all η0, there exists a parameterized sequence (ηk(p, η0))k≥0 (defined for
some parameter vector p ∈ P where P is a compact set) that is continuous
in (p, η0) such that η0(p, η0) = η0, limk→∞ ηk(p, η0) = 0 (exponentially)
and the following rank condition is satisfied for all p ∈ P:

Rank
[
A(p, η0) =

(
A1(p, η0) . . . Aj(p, η0) . . .

)]
= nr (6)
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where

Aj(p, η0) =

ηj(p,η0)∫

ηj−1(p,η0)

g1(η)dη (7)

with σmin(A(p, η0)) > smin > 0. Furthermore, for all p ∈ P, there exists
p+ ∈ P such that

ηk(p+, η1(p, η0)) = ηk+1(p, η0) ∀k ≥ 0 (translatability) (8)

4. The function g2 in (2) is such that for any pair (ηa, ηb), there exists a
sequence

(η(a,b)
j )nr

j=1 ; η
(a,b)
1 = ηa ; η(a,b)

nr
= ηb

such that the matrix

M(ηa, ηb) :=




η
(a,b)
2∫

η
(a,b)
1

g1(η)dη . . .

η(a,b)
nr∫

η
(a,b)
nr−1

g1(η)dη


 ∈ R

nr×nr (9)

has full rank.
5. The function f1 maps some domain D ⊂ R onto R−{0} so that an inverse

map f−1
1 : R−{0} → D may be defined by fixing some selection rule (when

needed).

In the following sequel, the state of the system is denoted by x, namely

x :=
(
r η ξ χ χ̇

)T ∈ R
n ; n = nr + nη + nξ + 2

3 The Proposed Feedback Algorithm

The basic idea of the control algorithm is to decompose the behavior of the
controller into basically 2 modes

1. In the first mode, ξ ≈ 0 and the feedback K1 is used to steer the state χ
from some initial value χj−1 to some final desired one χj . This is possible
thanks to assumption 1.1. Note that under this mode the position r as well
as the orientation variable η are maintained almost constant (since ξ ≈ 0
and g2(0) = 0 by assumption 1.5).

2. In the second mode, χ ≈ χj is maintained almost constant while the feed-
back K2 is used to steer the variable η from some initial value ηj−1 to some
final value ηj . Note again that this is possible thanks to assumption 1.2.
Note moreover that under this mode, ξ asymptotically goes to 0 enabling
the first mode to be fired again.
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Note that from equations (1) and (7), it comes that under constant χ ≡ χj ,
when the mode 2 is used with η changing from ηj−1(p, η0) to ηj(p, η0), the
corresponding variation in r is given by:

∆jr :=
[
Aj(p, η0)

]
f1(χj) under constant χ ≡ χj (mode 2) (10)

Therefore, the condition

r0 +A(p, η0)




v0
v1
...
vj

...




= 0 ; vj �= 0 for all j ; χj = f−1
1 (vj) (11)

characterizes the family of sequences (χj)j≥0 such that when the two-modes
procedure defined above is applied in an open-loop way, the vector (r, η, ξ) is
steered to 0.

The state feedback proposed in the present paper amounts to use the open-
loop strategy defined above in a receding horizon way. This is because the
sequences (ηj)j≥0 and (χj)j≥0 may become irrelevant because of unavoidable
disturbances and because of the simple fact that during mode 1 [resp. mode
2], ξ = 0 [resp. χ = χj ] cannot be rigorously satisfied making necessary to
re-compute the steering strategy.

In order to properly define the proposed receding horizon formulation, the
following definitions are needed:

Definition 1. Given any (p, r0, η0), let q ∈ N be a sufficiently high integer
for Aj(p, η0) to be negligible for j > q and define the vector v̂(p, r0, η0) ∈ R

q

to be the solution of the following Linear Programming (LP) problem:

v̂(p, r0, η0) := Arg min
ṽ∈Rq

[
−

q∑
j=1

ṽj

]

under r0 +
[
A1→q(p, η0)

]
ṽ = 0 and ‖ṽ‖∞ ≤ vmax (12)

where A1→j(p, η0) is the matrix built with the j first matrix terms of A(p, η0)
[see (6)] while vmax is a sufficiently high value making the above constrained
problem feasible for any initial value r0 of interest.

Note that for each candidate value of p ∈ P, the LP problem (12) may be solved
almost instantaneously using LP solvers. Note also that the cost function
to be minimized suggests solutions that avoid vanishing components of v̂.
However, if in spite of this v̂k(p, r0, η0) = 0 for some k, intermediate values
have to be introduced in the sequence (ηj(p, η0))j≥0 between ηk(p, η0) and
ηk+1(p, η0) in order to remove this vanishing components without altering
the remaining solution, namely v̂i(p, r0, η0) for i ≥ k + 1. This is possible
thanks to assumption 1.4. Indeed:
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• Assume that for some k, one has v̂k = 0, this means that the positions r
at the sampling instants k and k + 1 are the same.

• Consider the following matrices defined according to (9):

M(ηk, ηk+ 1
2 ) ; M(ηk+ 1

2 , ηk+1) where ηk+ 1
2 :=

ηk + ηk+1

2

together with the corresponding sequences
(
η

k,k+ 1
2

j

)nr

j=1
,
(
η

k+ 1
2 ,k+1

j

)nr

j=1

• Our aim is to prove that there exists a sequence of controls

(
v̂k

j

)2nr

j=1

with no zero elements and such that the net variation on r vanishes. But
this amounts to find a vector v ∈ Cp := [−vmax, vmax]2nr with vi �= 0 for
all i such that the vector

[
M(ηk+ 1

2 , ηk+1)
]−1[

M(ηk, ηk+ 1
2 )
]

︸ ︷︷ ︸
A

v (13)

has no zero elements. But this is clearly always possible since the matrix
A is regular according to assumption 1.4. (See lemma 1 in the appendix
for a brief proof of this evident fact).

Repetitive application of this technique enables all vanishing (or too small)
components of v̂ to be removed.

Definition 2. Given any (r0, η0), the optimal parameter vector p̂(r0, η0) is
defined by

p̂(r0, η0) := Argmin
p∈P

J(p, r0, η0)

:=
q∑

j=0

[
‖r0 +A1→j(p, η0)v̂1→j(r0, η0)‖2 + α · |ηj(p, η0)|2

]
(14)

namely, p̂(r0, η0) minimizes a quadratic cost on the excursion of the configu-
ration vector (r, η).

Note that definition 2 assumes that the admissible parameter set P is such that
(14) admits a solution. This is typically guaranteed because of the continuity
of the cost function J w.r.t. p and the compactness of the admissible set of
parameters P.

Putting together definitions 1 and 2 enables us to define for any initial
configuration (r0, η0) the optimal sequence given by
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vopt(r0, η0) := v̂(p̂(r0, η0), r0, η0) =
(
vopt
1 (r0, η0) . . . vopt

q (r0, η0)
)
∈ R

q (15)

and since according to the discussion that follows definition 1, one can assume
without loss of generality that vopt

j (r0, η0) �= 0, the following may be defined
for a given pair (r0, η0) thanks to assumption 1.5:

η̂(r0, η0) := η1(p̂(r0, η0), η0) ; χ̂(r0, η0) := f−1
1

(
vopt
1 (r0, η0)

)
(16)

which is nothing but the first part of the optimal open loop trajectory on
(η, χ) mentioned above when used in a receding horizon way. Finally, in order
to monitor the selection of the controller’s mode, the following functions are
needed:

V1(x, χf ) = max
{
|χ− χf |, |χ̇|, |ξ|

}
; V2(x, ηf ) := max

{
|η − ηf |, |ξ|

}
(17)

More precisely, when V1(x,X f ) approaches 0, this means that the controller
task at mode 1 is likely to be achieved. Similarly, when V2(x, ηf ) approaches
0, this means that the controller task in mode 2 is not far from being achieved.
Now, it goes without saying that one cannot wait for V1 or V2 to be exactly
equal to zero since this never happens rigorously. That is the reason why a
finite threshold ε > 0 is used in the definition of the switching rules given
hereafter.

Using the above notations, the proposed state feedback algorithm can be
expressed as follows

Feedback algorithm

parameters ε > 0 a small threshold. vmax > 0 sufficiently large value to
be used in (12)
1) Compute χf = χ̂(r(t), η(t)) and ηf = η̂(r(t), η(t)) according to (16)
2) mode 1
Use the feedback K1 with χf as computed in step 1) until V1(x, χf ) ≤ ε.
3) mode 2
Use the feedback K2 with ηf and χf as computed in step 1) until V2(x, ηf ) ≤
ε
4) go to step 1)

As a matter of fact, the feedback algorithm presented above describes a Finite
State Machine that is depicted in Fig. 1. Associated to the proposed feedback
algorithm, the following convergence result can be proved

Proposition 1. Let (tk)k≥0 be the infinite sequence of instants at which the
algorithm visits the updating state of Step 1 (see Fig. 1). We have the fol-
lowing asymptotic property

lim
ε→0


 lim

k→∞

∥∥∥∥∥∥



r(tk)
η(tk)
ξ(tk)



∥∥∥∥∥∥


 = 0 (18)
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Fig. 1. The Finite State Machine describing the proposed feedback algorithm

namely, by taking ε sufficiently small, the sequence (r(tk), η(tk), ξ(tk)) may be
steered as close as desired to 0.

sketch of the proof The regularity assumption on the functions appearing
in (1)–(4) together with the rank condition and the uniform regularity of the
matrix A(p, η0) used in (12) enables to prove the continuity of the optimal
value function Ĵ(r0, η0) = J(p̂(r0, η0), r0, η0) w.r.t its arguments r0 and η0.
Using this property with the translatability assumption (8) on the parameter-
ization being used enables to write a classical inequality in receding horizon
analysis, namely

Ĵ(r(tk+1), η(tk+1)) − Ĵ(r(tk), η(tk)) ≤ −‖r(tk)‖2 − α‖η(tk)‖2 +O(ε) (19)

where the final term regroups all the second order effects due to the use of
finite stay time in each mode (ε > 0) and the use of finite horizon q in the
equality constraint of (12). Finally, since by definition of the exit condition of
Step 3, one necessarily has

|ξ(tk)| ≤ ε (20)

the result clearly follows from (19)–(20).

4 Application to the Constrained Stabilization
of a Snakeboard

The snakeboard we are interested in is the mechanical system depicted in
Figs. 3 and 2. It consists of two wheel-based platforms upon which a rider
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Fig. 2. The snakeboard “without the rider”

Fig. 3. Schematic view of the snakeboard’s variables definition. Note that the front
and the back steering angles are coupled to be the same

is to place each of his feet. These platforms are connected by a rigid coupler
with hinges at each platform to allow rotation about the vertical axis. The
snakeboard allows the rider to propel himself forward without having to make
contact with the ground. This motion is obtained by using the conservation of
angular momentum effect together with the nonholonomic constraints defined
by the no-slipping condition at the wheels level.

This system was first outlined by [10] to be a particularly interesting non-
holonomic system example that has no straightforward direct biological coun-
terpart. In [10], a first dynamical model for the system was given and used
to check some standard behaviors that correspond to some given oscillatory
gaits. Furthermore, controllability analysis has been proposed showing that
this system is locally controllable except at some singular configurations. The
complete proof of controllability has been achieved in [11]. Since then, many
works have been done to construct steering trajectories and control design. In
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[12], a strategy leading to the design of steering trajectories has been proposed
based on small amplitude, short duration and cyclic inputs. Based on such
sinusoidal inputs, a controller based on average theory has also been proposed
recently [13].

Much closer to our approach that does not invoke cyclic open loop para-
metrization is the work proposed in [14]. Indeed, in [14] the generation of path
steering trajectories is based upon switching between two vector fields in order
to obtain sub-curves starting from the initial configuration and ending at the
desired one. The system is at rest at the switching instants. The constraints
handling is obtained by means of time scaling. As long as the snakeboard is
concerned, the difference between the approach proposed in [14] and the one
proposed in the present paper lies in the following differences:

� The way the sub-curves defined above are derived in [14] deeply depends on
the 2D nature of the snakeboard example (intersections of circles and/or
straight lines, etc. are extensively used). In our approach, this is basically
done, even in the general case by solving linear systems. In that sense, the
approach proposed here seems to be more easily generalizable, as long as
the assumed structure of the system holds.

� The choice of the steering trajectories in [14] is based on minimizing the
corresponding number of switches whatever is the resulting transient spa-
cial excursion. The reason behind this is that the system has to be at rest
at switching instants. Therefore, having a high number of switches may
lead to a slow motion. In our case, monitoring the number of switches
can be directly and explicitly obtained by the number (q) of intermediate
values in the parameterized sequence:

(
ηk(p, η0)

)q

k=1

while the additional d.o.f p are used to minimize the corresponding spacial
excursion in the x− y plane.

� The work in [14] concentrates basically on the open-loop steering strategy.
It is not completely clear whether the resulting steering strategy can be
used in a receding horizon manner in order to yield an effective feedback in
presence of uncertainties or modelling errors. In other words, the “trans-
latability” of the open-loop trajectories proposed in [14] has to be checked.
If some other feedback strategy is to be used, this is still to be designed.

The model of the snakeboard used in the forthcoming developments is given
by:
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˙̄x
˙̄y
θ̇


 =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1






2l cos2 φ
0

sin(2φ)


 ξ (21)

ξ̇ =
(
− Jr

2ml2
ψ̈ + φ̇ξ

)
· tanφ (22)

u2 = 2Jwφ̈ (23)

u1 = Jr

[
(1 − Jr

ml2
sin2 φ)ψ̈ + 2φ̇ξ cos2 φ

]
(24)

Note that the third line of equation (21) writes:

ξ =
θ̇

sin(2φ)
=

θ̇

2 sin(φ) cos(φ)

Using this in the equations enables us to show that te snakeboard equations
(21)–(24) are of the standard form (1)–(4) provided that the following corre-
spondances are used

r =
(
x̄
ȳ

)
; nr = 2 ; η = θ ; nη = 1 ; χ = φ ; f1(χ) =

2l
tanφ

g1(η) =
(

cos θ
sin θ

)
; f2(χ) = sin(2φ) ; g2(ξ) = ξ

with straightforward definitions of f3 and f4 that may be obtained by re-
moving the auxiliary variable ψ̈. Note that in the classically used models
[10, 14, 12], the configuration is given by q = (x̄, ȳ, θ, φ, ψ). Indeed, the vari-
able ξ used in the above equations is an intermediate variable that can be
removed since from (21), it comes that

ξ =
˙̄x

2l cos θ cos2 φ
(25)

which is clearly a function of (q, q̇). However, in the derivation of the control
law, writing the equation in the form (21)–(24) is mandatory in order to fit
the standard form (1)–(4). This is a classical feature: when using partially
structural approach, the coordinate system plays a key role.

In order to use the feedback scheme defined in Sect. 3, the feedbacks K1,
K2 and the parameterized sequence ηk(p, η0) are successively introduced.

4.1 Definition of the Feedback Laws K1 and K2

In both modes, the definition of u2 is the same and is given by

u2 := −2Jw

[ 2
tr
φ̇+

1
t2r

(φ− φf )
]

(26)
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where tr is a time scaling, namely, for tr = 1, a pole placement (with identical
double poles = −1) is assigned by imposing

φ̈ = −2φ̇− (φ− φf )

The parameter tr is then used to meet the saturation requirement by taking:

tr = min
τ∈[0.01 10]

τ such that 2Jw · | 2τ φ̇+ 1
τ2 (φ− φf )| ≤ umax

2 (27)

As for u1, it is mode dependent, namely

u1|mode i := Jr

[
(1 − Jr

2ml2
sin2 φ)ψpp|mode i + 2φ̇ξ cos2 φ

]
;

× i ∈ {1, 2} (28)

ψpp|mode 1 := Sat
ψpp

max(φ,φ̇,ξ)

ψpp
min(φ,φ̇,ξ)

(
10sign(φ)ξ

)
(29)

ψpp|mode 2 :=
2ml2

Jr

(
µ

tanφ

[
−0.1|sin2φ|ξ + (ξ − ξr(µ))

]
+ φ̇ξ

)
(30)

where

• ξr(µ) is a varying reference value for ξ that is given by

ξr := −0.1µ · sign(sin 2φ)(θ − θf ) (31)

• µ is an adaptive gain computed according to

µ = max
ν∈[0 100]

ν such that

the r.h.s of (30) with (µ = ν) is in [ψpp
min(φ, φ̇, ξ), ψpp

max(φ, φ̇, ξ)] (32)

• ψpp
min(φ, φ̇, ξ) and ψpp

max(φ, φ̇, ξ) are the variable lower and upper bound on
ψ̈ in (22) that are compatible with the saturation constraint on u1 in (24),
namely

ψpp
min(φ, φ̇, ξ) := min

τ∈{−umax
1 ,+umax

1 }

[
τ/Jr − 2φ̇ξ cos2 φ

]
/(1 − Jr

ml2
sin2 φ) (33)

ψpp
max(φ, φ̇, ξ) := max

τ∈{−umax
1 ,+umax

1 }

[
τ/Jr − 2φ̇ξ cos2 φ

]
/(1 − Jr

ml2
sin2 φ) (34)

In order to understand how (28) (with i = 1) asymptotically stabilizes ξ
while meeting the saturation constraint, one may analyse what happens when
φ converges to 0 under the action of u2. Indeed, this asymptotically leads
to an admissible region for ψ̈ that contains an open neighborhood of 0 [see
equations (33)–(34)]. This with (22) in which φ̇ = 0 is injected clearly shows
that implementing (28) yields an asymptotically stable behavior for ξ.
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As for the design of u1|mode 2, it is based on a sliding mode like approach
in which the manifold S = ξ − ξr is stabilized where ξr is the control that
stabilizes θ around its desired value θf [see (31)]. Since ξr asymptotically tends
to 0 with the error θ−θf , ξ does the same. Again, variable adaptive gain µ [see
equation (32)] is used in order to meet the saturation constraints on u1. To
end this presentation of the feedback laws K1 and K2, it is worth noting that
the constants 0.01, 10 and 0.1 that appear in equations (27), (29), (30) and
(31) are used in order to avoid very high gains near the desired targets and
to obtain compatible response times in the back-stepping design approach.
They might have been left as design parameters. The choice fixed here aims
to avoid having too many parameters to tune.

4.2 Definition of the Parameterized Sequences (ηk(p, η0))k≥0

Recall that for the snakeboard example, η = θ. Consider the following para-
meterized trajectory

Θ(t, p, θ0) := 2p1π + (θ0 − 2p1π)e−λθt + p2e
−λθt

(
1 − e−λθt

)
; λθ > 0 (35)

where p = (p1, p2) belongs to the compact subset P ⊂ R
2 defined by

P := {−1, 0,+1} × [−pmax
2 ,+pmax

2 ] ; pmax
2 > 0 (36)

Note that for all p ∈ P, Θ(0, p, θ0) = θ0 while limt→∞Θ(t, p, θ0) = 0 (mod 2π).
Note also that the use of p2 �= 0 and p1 = 0 enables non constant trajectories
with identical boundary conditions θ0 = θf to be generated. This is crucial to
obtain “good” solutions in some singular situations like for instance the one
given by x̄0 = 0, 0 �= ȳ0 ≈ 0 and θ0 = 0. Indeed, without the parameter p2,
whatever small is ȳ0 �= 0, an entire rotation would be necessary to steer the
snakeboard to the desired position.

Given an initial value θ0 and some parameter vector p ∈ P, the generation
of the parameterized trajectory is done using the following three steps:

1. Choose some sampling period δ > 0, take an integer q � 1
δλθ

. Generate

the sequence

(θk(p, θ0))q
k=0 where θk(p, θ0) := Θ(jδ, p, θ0)

2. Solve the corresponding LP problem (12) to get the optimal sequence

v̂(p, x̄0, ȳ0, θ0)

Remove all vanishing (or too small) components, if any, by introducing
intermediate terms in the sequence θk(p, θ0) as explained above (In fact,
this has never been necessary in our experimentation).
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3. Reduce the size of the resulting sequence θk(p, θ0) by keeping only the last
value of all sequences corresponding to the same value of v̂(p, x̄0, ȳ0, θ0).
As an example, if the sequence v̂(p, x̄0, ȳ0, θ0) takes the following form:

v̂(p, x̄0, ȳ0, θ0) =
(
v1 v1 v1 v2 v2 v3 v3 v3

)T

then the reduced sequence θk(p, θ0) which is finally retained is the following
one

(
θ3(p, θ0) θ5(p, θ0) θ8(p, θ0)

)

this enables useless waste of time asking successive values of θk(p, θ0) to
be successively approached with almost zero-velocity with the same value
of φ.

4.3 Checking the Remaining Assumptions

The rank condition (6) is obviously satisfied provided that the sampling period
δ > 0 invoked in Sect. 4.2 is taken sufficiently small thanks to the properties
of the trigonometric functions. The same can be said about the condition
expressed in assumption 1.4. The translatability property naturally follows
from the properties of the exponential functions used in the definition of the
parameterized trajectory (35). Finally, the conditions of assumption 1.5 are
clearly satisfied with D =] − π/2,+π/2[.

5 Simulation Results

In this section, some simulations are proposed in order to show the efficiency of
the proposed feedback algorithm. The numerical values used in the simulations
as well as a recall on where each of them appears in the preceding sections is
depicted in Table 1. The proposed simulations aim to underline the following
features

1. The ability to explicitly handle the saturation constraints on the control
input. This may be observed by comparing Figs. 4 and 5 where the same
initial conditions are simulated for two different saturation levels, namely
umax

1 = umax
2 = 8 (Fig. 4) and umax

1 = umax
2 = 4 (Fig. 5).

Table 1. Numerical values of the system’s and the controller’s parameters

Parameter Appearing in Value Parameter Appearing in Value
l (21) 0.5 Jr (22) 0.72

ml2 (28) 0.24 Jw (23) 0.13
λθ (35) 0.1 vmax (12) 2
ε Fig. 1 0.01 pmax

2 (36) 10
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Fig. 4. Closed loop behavior. Initial condition x̄(0) = ȳ(0) = 1, θ(0) = −π/4 and
ξ(0) = 0. Saturation levels umax

1 = umax
2 = 8. This figure is to be compared with

Fig. 5 in order to appreciate the saturation constraints handling

Fig. 5. Closed loop behavior. Initial condition x̄(0) = ȳ(0) = 1, θ(0) = −π/4 and
ξ(0) = 0. Saturation levels umax

1 = umax
2 = 4. This figure is to be compared with

Fig. 4 in order to appreciate the saturation constraints handling
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Fig. 6. Closed loop behavior. Initial condition x̄(0) = 0, ȳ(0) = 0.05, θ(0) = 0
and ξ(0) = 0. Saturation levels umax

1 = umax
2 = 4. Note how the parametrization

of the trajectories avoids the need for a whole rotation even in this rather singular
situation

Fig. 7. Closed loop behavior. Initial condition x̄(0) = 0, ȳ(0) = 0.1, θ(0) = π/2 and
ξ(0) = 0. Saturation levels umax

1 = umax
2 = 4
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Fig. 8. Closed loop behavior. Initial condition x̄(0) = −1, ȳ(0) = 1, θ(0) = 3π/4
and ξ(0) = 1. Saturation levels umax

1 = umax
2 = 8. This simulation is done under

nominal model without uncertainties. The result is to be compared to that of Fig. 9
where model uncertainties are introduced

2. The ability to realize rather “economic” trajectories when starting from
some almost singular situations (like the ones shown on Figs. 6 and 7)
avoiding whole rotations to be used.

3. Finally, Figs. 8 and 9 show the behavior of the closed loop under the
nominal model (Fig. 8) and under model uncertainties (Fig. 9). The un-
certainties are introduced in equations (22) and (23) as follows

ξ̇ =
(
− Jr

2ml2
(1 + δ1)ψ̈ + φ̇ξ

)
· tanφ+ δ2 (37)

u2 = 2Jw(1 + δ3)φ̈ ; δ1 = −0.1 ; δ2 = 0.05; δ3 = −0.1 (38)

Namely, δ1 and δ3 stand for relative error on the values of the physical
parameters while δ2 stands for persistant external disturbance such as wind
related drift term.
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Fig. 9. Closed loop behavior. Initial condition x̄(0) = −1, ȳ(0) = 1, θ(0) = 3π/4 and
ξ(0) = 1. Saturation levels umax

1 = umax
2 = 8. The uncertainties given by (37)–(38)

are used to test the robustness of the proposed feedback algorithm

6 Conclusion & Discussion

It has been shown that by exploiting the particular structure of a class of
nonholonomic system, it is possible to derive an efficient steering procedure
that can be used in a receding-horizon scheme to yield a stabilizing state
feedback. By doing so, a complex dynamic problem is transformed into a
rather simple discrete problem that can be solved by linear programming tools.
The solution is successfully applied to the snakeboard constrained stabilization
problem.

The main drawback of the proposed approach is the constraint of almost
stopping motion in-between each of the two control modes being used. This
constraint can be practically avoided by using a state dependent switching
parameter ε, namely ε(x) that would be large when x is far from the desired
state and small in its neighborhood.

A Appendix

Lemma 1. Let A ∈ R
n be a regular matrix. Define a compact subset C ⊂ R

n

that contains a neighborhood of the origin. Let Cp ⊂ C be the subset defined by

Cp :=
{
v ∈ C | vi �= 0 ∀i ∈ {1, . . . , n}

}
(39)

then there always exist v ∈ Cp such that Av ∈ Cp ♠
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Proof Let O ⊂ C be a sufficiently small neighborhood of the origin such that
A−1O is also a neighborhood of the origin that is contained in C. The set
A−1(O ∩ Cp) is clearly an open neighborhood of the origin that contains an
element in Cp. Let v be such an element, v clearly satisfies the requirements
of the lemma. �
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Summary. An important technique for computing motions for robot systems is to
conduct a numerical search for a trajectory that minimizes a physical criteria like en-
ergy, control effort, jerk, or time. In this paper, we provide example solutions of these
types of optimal control problems, and develop a framework to solve these problems
reliably. Our approach uses an efficient solver for both inverse and forward dynamics
along with the sensitivity of these quantities used to compute gradients, and a reli-
able optimal control solver. We give an overview of our algorithms for these elements
in this paper. The optimal control solver has been the primary focus of our recent
work. This algorithm creates optimal motions in a numerically stable and efficient
manner. Similar to sequential quadratic programming for solving finite-dimensional
optimization problems, our approach solves the infinite-dimensional problem using
a sequence of linear-quadratic optimal control subproblems. Each subproblem is
solved efficiently and reliably using the Riccati differential equation.

1 Introduction

For many biological systems, it has long been observed that motion genera-
tion can likely be the result of a minimization process. The objective function
used has been characterized by a physical criteria like energy, control effort,
jerk, or time. Unfortunately, to date the algorithms that generate such opti-
mal motions have been successfully used on only the simplest of robots. The
need for such an algorithm is increasing dramatically since many new walk-
ing, crawling, hopping machines, rehabilitation devices, and free-flying air and
space systems are currently under development. All of these devices will ben-
efit from a numerically stable and efficient algorithm that produces optimal
movements for them.

We are interested in obtaining solutions to optimal control problems for
systems of the form

ẋ = f(x(t), u(t)) , (1)

where f : R
n × R

m → R
n ∈ C1 (continuously differentiable) and x(0) = xo.

We assume that the optimal control cost functional has the form
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Fig. 1. The left-hand system was used for Case 1, a fully actuated robot. Case 2 is
the same system, but with the base joint unactuated. The center system represents
Case 3, which is an application to human step rehabilitation. The right system is a
hopping machine for Case 4

Minimize
u(t)

J(u(t)) = φ(x(tf )) +

tf∫

0

L(x(t), u(t), t) dt , (2)

subject to (1) with φ : R
n → R ∈ C1 and L : R

n × R
m × R → R ∈ C1. Al-

though the Maximum Principle [3] provides the optimality conditions for the
solution to (2), it is not suitable for numerical computation. Because of the
importance of solving these problems, many numerical algorithms and com-
mercial software packages have been developed to solve them since the 1960’s
[1]. Most of the existing algorithms do not have adequate numerical stability
properties and are too slow computationally to solve optimal control problems
for current multibody systems. As a means to discuss the numerical features of
algorithms, we provide example solutions in four case studies. These examples
demonstrate the strength and limitations of current numerical algorithms.

Figure 1 shows model systems used for four case studies in this paper.
Case 1 is a minimum effort control of a fully actuated robot. We have found
that with care in the choice of basis functions, a parameterization of the joint
motion can be used along with a static optimization method to adequately
solve this problem. In addition, this approach easily allows one to handle the
case when some of the initial states are free to vary, as was done in [10]. Case 2
is an underactuated robot. We have found that even with exact gradients of the
dynamics, our parameterization of the motion had numerical problems from
round-off errors during the simulations. Case 3 is an application to human leg
step rehabilitation [21]. We experienced even more numerical problems for this
problem due to the added ground constraint. Finally, Case 4 is a simplified gas
actuated hopping machine. We found it difficult to achieve stable convergence
with existing methods for this case. The cause was numerical integration errors
introduced at the sudden change in the dynamics between the stance phase
and the flight phase, and the fact that the times for the switch from stance
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to flight were not known apriori. The approach developed in this paper (see
also [14] ) efficiently solves Case 4 , and we feel that it has great potential for
application to general optimal control problems for robot systems.

1.1 First Order Necessary Conditions for the Solution
of the Optimal Control Problem

In order to discuss the solution to Cases 1–4, we first briefly summarize the
first order necessary conditions for the optimal control of a general nonlinear
system (see [3] for more details). First define the Hamiltonian as

H(x, u, λ, t) ≡ L(x, u, t) + λT f(x, u) , (3)

where L and f were defined in (1) and (2). Then in (3), λ(t) is chosen to
satisfy the costate or adjoint equations

λ̇ = −Hx(xo(t), uo(t), λ(t), t) , (4)

where Hx and Hu (used below) denote partial derivatives of H with respect
to x and u respectively, and the boundary conditions are

λ(tf ) = φT
x (xo(tf )).

Let uo(t) be a nominal control, xo(t) and λo(t) be the corresponding solutions
to (1) and (4), respectively. For general problems, the first order necessary
conditions for a local minimum of J require that H(xo(t), uo(t), λ(t), t) be
minimized with respect to uo(t) subject to any constraints on it. For uncon-
strained controls u, the condition on H is

Hu(xo(t), uo(t), λ(t), t) = 0.

Note that bothHx andHu require differentiation of the state equations (1)
with respect to x and u and evaluation of these derivatives along the solution
(xo(t), uo(t)). For multibody dynamic systems with more than a few degrees
of freedom, the derivatives are generally not available due to the complexity
of the equations of motion. However, in [15], the sensitivity algorithms based
on matrix exponentials are developed specifically for this purpose. A brief
introduction to that work is presented next.

1.2 Geometric Tools for Multibody Systems Analysis

To represent robot systems and their dynamics, we use a set of analytical
tools for multibody systems analysis based on the mathematics of Lie groups
and Lie algebras [11, 13]. In the traditional formulation, a rigid motion can be
represented with the Denavit-Hartenberg parameters as a 4× 4 homogeneous
transformation T (θ, d) ∈ SE(3), where θ is the rotation about the z-axis and
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d is the translation along it. For a prismatic joint, d varies while θ is held
constant. For a revolute joint, θ varies while d is held constant. With the
geometric formulation, for either type of joint the transformation has the
form

T (θ, d) = eAxM ,

where x = θ for a revolute joint or x = d for a prismatic joint, A contains the
joint axis or direction, and M is a constant (M = T (0, d) for a revolute joint,
M = T (θ, 0) for a prismatic joint.) This exponential mapping and its inverse
have explicit formulas: exp : se(3) → SE(3) and its inverse log : SE(3) →
se(3) [13]; here se(3) denotes the Lie algebra of SE(3). Although SE(3) is not
a vector space, se(3) is: the log formula provides a set of canonical coordinates
for representing neighborhoods of SE(3) as open sets in a vector space.

The derivative of the exponential map with respect to the joint displace-
ment x is just dT

dx = AeAxM. In the coding of multibody dynamics algorithms,
the exponential is the lowest level primitive required for all computations. One
never needs to deal with sine and cosine terms or with making a distinction
for each joint type.

The use of matrix exponentials to represent the link to link transformations
for robot systems allows one to clarify the kinematic and dynamic equations.
In the case of open chains containing prismatic or revolute joints, the forward
kinematics can be written as a product of matrix exponentials [2]. Specifically,
given a choice of inertial and tool reference frames, and a zero position for the
mechanism, the forward kinematics can be written uniquely as

T0n(q1, . . . , qn) = eA1q1 · · · eAnqn

where q1, . . . , qn are joint variables, and A1, . . . , An ∈ se(3). The kinematics of
closed chains can be obtained by further adding a set of algebraic constraints.

In order to determine optimal motions for the multibody systems of in-
terest, a complete dynamic model is needed. In [13] a Lie group formulation
of the dynamics has been developed, in which closed-form expressions for the
inertia matrix and Coriolis terms are available. Using this representation, the
forward and inverse dynamics can also be computed efficiently with O(n) re-
cursive algorithms. The inverse dynamics algorithm is shown in Fig. 2. In this
algorithm, Vi ∈ se(3) is the linear and angular velocity of link i, W is the ap-
plied force and moment, J is a 6×6 matrix of mass and inertia, Si is the joint
screw, and Ad and ad are standard operators from differential geometry [11].
A useful computational feature of this algorithm is that no distinction needs
to be made for revolute or prismatic joints. In [15], this algorithm was ex-
tended to forward and inverse dynamics of partially actuated systems, and to
produce the derivatives needed for many optimal control solvers, as discussed
in the previous section.

Given the ability to compute the dynamics and derivatives of relatively
complex systems, we now discuss some representative examples. The following
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• Initialization
V0 = V̇0 = Wn+1 = 0

• Forward recursion: for i = 1 to n do

Ti−1,i = Mie
Siqi

Vi = Ad
T−1

i−1,i
(Vi−1) + Siq̇i

V̇i = Siq̈i + Ad
T−1

i−1,i
(V̇i−1) +

[
Ad

T−1
i−1,i

(Vi−1), Siq̇i

]

• Backward recursion: for i = n to 1 do

Wi = Ad∗
T−1

i,i+1
(Wi+1) + JiV̇i − ad∗

Vi
(JiVi)

τi = ST
i Wi

Fig. 2. The POE recursive Newton-Euler inverse dynamics algorithm

case studies demonstrate both successes and difficulties that we have encoun-
tered in applying the optimality conditions of Sect. 1.1 to multibody systems
problems.

2 Some Representative Case Studies

2.1 Case 1: Fully Actuated Robot

Consider the case of finding the minimum effort control which moves the two
link planar robot shown in Fig. 1 from an outstretched horizontal position to
a vertical position. Assume that both joints of the arm be actuated, and let
the cost function be:

J = c1||q(tf ) − qd||2 + c2||q̇(tf )||2 +
1
2

tf∫

0

||u||2dt , (5)

where q ∈ R
2 are the joint angles, qd = [π

2 , 0]T , are the desired final joint
positions in radians, u ∈ R

2 are the corresponding joint torques, and c1 =
c2 = 100 reflects the desire to reach the final vertical configuration with little
error.

We used several approaches to solve this optimal control problem. The
most straight forward approach, called the “shooting method,” is to cleverly
find the initial costate, λ(0), such that when the state and costate equations
are integrated forward from t = 0 to t = tf with Hu = 0, the proper final
condition on the costate is satisfied (λ(tf ) = φT

x (xo(tf )). Unfortunately, be-
cause the costate equations are not stable and highly sensitive to the initial
conditions [3], the shooting method failed when applied to this problem. A
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second, more successful, approach used by several researchers [5, 4, 10, 12] in
robotics is to approximate the motion of the joints using basis functions such
as splines or a truncated Fourier Series. For instance, we used quintic B-spline
polynomials with 12 uniformly spaced knot intervals to parameterize our solu-
tion as q = q(t, P ) with P ∈ R

2 ×R
12 being the amplitude of the spline basis

functions. For any choice of P, we can compute the required control u(t) by
differentiating q(t, P ) with respect to time to obtain q̇ and q̈ and, evaluating
the equations of motion

M(q)q̈ + h(q̇, q) = u . (6)

In order to use this “direct approach,” we guessed an initial motion that kept
the second link aligned with the first with q2(t) = 0, and moved the first
link smoothly from q1(0) = 0 to q1(tf ) = π/2, with tf = 2 seconds. We
then computed J(u(P )) in (5) and its gradient ∇JP using adaptive Simpson
quadrature. In this case, the integrand is known explicitly throughout the
integral since all the terms in (6) are known explicitly in terms of P from the
joint angles q = q(t, P ). Given J(P ) and its gradient, we could easily minimize
it over P using Matlab’s BFGS [9] algorithm in the function “fminunc.”

Figure 3 shows the locally optimal solution found to this problem using the
parameter optimization approach mentioned above. The frames are spaced at
equal intervals in time, with tf = 2 seconds. At first the robot allows gravity
to take over and it swings down while folding up the second link. It then
swings the first joint into the upward posture. A small pumping motion is
applied to the second link in order to move it into the vertical posture. The
initial value of the effort term in the cost function was 73.6 and the final value
was 9.9. The computation time for this problem was about 2 minutes on a
PIII-800 PC.

We have used this basic approach with our dynamics tools to solve a
weight-lifting problem for a much more complex Puma 762 robot in [20], where
we tripled the payload above the manufacturers specifications. Even though

Fig. 3. Final path for fully-actuated planar 2R problem
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the solution to the above problem was fairly stable numerically, we still needed
to choose an appropriate set of basis functions in order to approximate the
numerical solution. In this paper, we develop an approach that does not use
any basis functions to approximate the solution.

2.2 Case 2: Underactuated Robot

The optimal control problem becomes less numerically stable and more dif-
ficult to solve when the system is underactuated. For instance, suppose the
motor attached to the first joint of the above 2R robot is disconnected. The
system then only has a motor at its elbow and is often called the Acrobot,
which has been studied by Spong [17] and others. Consider the swing-up mo-
tion problem where the system starts from a hanging downward posture and
the optimal control problem is to find an open-loop control torque for the el-
bow, if one exists, that drives the system to the upward posture of the previous
example. This case is much more challenging than the previous one because we
can no longer use (6) to compute u(P ) because the system is underactuated.

Choose the same objective function as (5), except the control u is now a
scalar. One way to approach the problem is approximate the control with a
set of basis functions and integrate the 4 state equations in order to evaluate
(5). Any gradient-based numerical optimization will need both the value of
J(P ) and its gradient ∇pJ . Assuming that the state, costate, and boundary
conditions are satisfied, the required derivative is

dJ

dpi
=

tf∫

0

Hu(xo(t), uo(t), λ(t), t)
du

dpi
dt . (7)

This derivative is valid for any (xo(t), uo(t)) even if they are not optimal [3].
Then, in order to evaluate the objective function and its gradient for use in
any gradient-based nonlinear optimization algorithm, the following steps must
be performed:

• Select a set of basis functions and parameters to define uo(t, P ).
• Integrate the differential equations (1) of motion from 0 to tf to obtain

xo(t) and J(P ).
• Evaluate the costate (4) boundary conditions λ(tf ) = φT

x (xo(tf )) and in-
tegrate the costate equations backwards in time from tf to 0 to obtain
λ(t).

• Evaluate the gradient of J using (7).

We used this method to solve the Acrobot swing-up problem with one
modification. That is, instead of viewing the control u2 as the torque at joint
2, we defined the motion of joint q2 with our spline functions and considered
that to be the control in (1). In doing so, the actual joint torque u2(t) can
be computed algebraically from (6) assuming that (q, q̇) are known. The ad-
vantage of doing this is that the state reduces to 2 dimensions in this case
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Fig. 4. Optimal swing up motion for an Acrobot with q1(0) = −1.0

x = [q1, q̇1]T since the motion of the second joint is known from the parame-
terization.

Note that it is not apparent what, if any, elbow motion will drive the sys-
tem to the desired final configuration. Our initial guess for the elbow motion
was very poor. We did not move the elbow joint at all during the motion,
and let the system move like a rigid pendulum would with an initial con-
dition q1(0) = −1.0, q̇(0) = q2(0) = q̇2(0) = 0.0. Figure 4 shows the final
motion obtained using Matlab’s nonlinear parameter optimization with gra-
dients computed as described above. The motion produced is similar to those
proposed by Spong [17], in which the lower link pumps energy into the sys-
tem and this energy causes the first link to move into the vertical position. In
addition to this example, we have used this basic approach to solve for much
more complex optimal high-dive motions for a human-like diver in [16].

When we computed the above solution to the underactuated Acrobot, we
did not expect numerical difficulties, since we had the exact gradient of the
objective function and the optimization algorithm has well-established conver-
gence properties for this case [9]. However, we did encounter some numerical
problems and had to adjust some of the tolerances in the optimizer in order
to achieve convergence, and the computation time, even in the best of cases
(about 5 minutes on a PIII-800 PC), was much longer than in the previous
example. The problem was that the round-off errors encountered during the
numerical solution of (1), (4), and (7) lead to large relative errors in the gradi-
ent when the algorithm is near convergence. The algorithm developed in this
paper alleviates these difficulties.

2.3 Case 3: Underactuated Systems with Contact
Constraints-Human Step Training Example

One important application of our proposed algorithm is the generation of
optimal inputs for the robotic rehabilitation of paralyzed individuals [22]. In
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[21] we examined a method to control the stepping motion of a paralyzed
person suspended over a treadmill (see Fig. 1) using a robot attached to the
pelvis. Leg swing motion was created by moving the pelvis without contact
with the legs. The problem is formulated as an optimal control problem for an
underactuated articulated chain. Similar to the underactuated Acrobot, the
optimal control problem is converted into a discrete parameter optimization
and a gradient-based algorithm is used to solve it.

To simulate a paralyzed person, a dynamic model for a branched kinematic
chain was used to approximate the kinematics and dynamics of a human
subject. For the dynamic analysis, four rigid bodies were used, with the head
arms and torso lumped together as a single body, and the upper leg, lower leg,
and foot modeled as single rigid bodies. The torso had five degrees of freedom
with three translations and two rotations. Rotation about an axis through the
upper leg joints was ignored. The upper leg was connected to the torso with a
three degree of freedom ball joint. The lower leg was connected to the upper
leg by a one dof rotation. Similarly, the foot was connected to the lower leg
by a one dof rotation. Thus the entire system had ten degrees of freedom. For
the swing hip, knee and ankle joints, a torque was applied to simulate the
stiffness of passive tissue, but no torque from the muscles since the person is
assumed to be paralyzed. A total of 32 B-spline parameters were used in the
optimization to specify the motion of the swing hip. This problem differed
from the Acrobot because we had to constrain the motion of the foot to avoid
contact with the ground, and the motion of the legs to avoid contact with
each other. We used penalty functions to enforce these collision avoidance
constraints.

In the optimization results shown in Fig. 5, we found the motion of the
swing hip that produced a step for the swing leg that was as close as possible
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Fig. 5. Motion of the pelvis can be used to create motion for a paralyzed swing leg.
The solid lines show gait which results from optimal motion of the pelvis, and the
dashed lines are the gait recorded from the motion capture system
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to a normal human gait. The optimal control found from our algorithm lifted
the swing hip to avoid collision between the swing leg and the ground. At the
same time, it twisted the pelvis to pump energy into the paralyzed leg and
moved the leg close to the desired final configuration, while avoiding collision
between the legs. Thus we found a strategy that could achieve repetitive
stepping by shifting the pelvis alone. The optimized, pelvic motion strategies
are comparable to “hip-hiking” gait strategies used by people with lower limb
prostheses or hemiparesis.

Even though there were relatively few parameters (32) in the optimization,
it was not numerically stable and took approximately 4 hours to converge,
with approximately five minutes used for every major iteration of the opti-
mization. The problems were again due to round-off errors introduced by the
computation of the gradient in (7). The penalty functions for obstacle avoid-
ance exacerbated the problem since they effectively created a “stiff” system
of differential equations. The above results only considered the swing phase
of the gait cycle. In our initial attempts to combine the stance phase with the
swing phase in the optimal control solution were numerically unstable and did
not converge to a solution.

Based on our initial results from the simple hopping machine considered in
Case 4, we believe that with our new algorithm it will be possible to combine
the stance and swing phases and reliably compute an optimal motion for Case
3 in just a few minutes of computation time. This would make it possible to
compute an optimal motion for each patient in a clinical setting.

2.4 Case 4: Minimum Fuel Hopping

In order to explore the difficulties associated with the change in dynamics
between the stance phase and swing phase of motion mentioned in Case 3,
we considered a simple one-dimensional hopping system shown in Fig. 1. This
system is driven by a pneumatic actuator, with the location of the piston
relative to the mass under no external loading defined as yp. After contact
occurs with the ground with y ≤ yp, the upward force on the mass from
actuator can be approximated by a linear spring with F = k(yp − y), where k
is the spring constant. The position yp can be viewed as the unstretched spring
length and it can be easily changed by pumping air into or out of either side
of the cylinder. The equations of motion for the mass are mÿ = F (y, yp)−mg,
where mg is the force due to gravity, and F (y, yp) =

{
0 y>yp

k(yp−y) otherwise
. Note

that in this case F (y, yp) is not differentiable at y = yp, and gradient-based
methods will have difficulties with this. However, the discontinuity in the
derivative can easily be smoothed. For instance, let the spring compression be
e = yp − y and choose an α > 0, then
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F (e) =





0 0 > e
k
2αe

2 0 ≤ e < α

ke− kα
2 otherwise

is C1. The final equation of motion for this system relates the air flow into
the cylinder, which is the control u(t), to the equilibrium position yp of the
piston. Assume for the following that the equation ẏp = u approximates this
relationship.

When the hopping machine begins its operation, we are interested in start-
ing from rest, and reaching a desired hop height yo

N at time tf . If we minimize

J(u) =
1
2
qfin(y(N) − yo

N )2 + ẏ(N)2 +
tf
2N

N−1∑
n=0

[
q yp(n)2 + r u(n)2

]
, (8)

the terms outside the summation reflect the desire to reach the height at time
tf with zero velocity, and the terms inside the summation reflect the desire
to minimize the gas used to achieve this. The weighting on yp is used to keep
the piston motion within its bounds. We first attempted to solve this problem
by parameterizing the control u(t) with B-splines and using the basic steps
used in Cases 2 and 3. Even after considerable tweaking of tolerances, the
gradient-based algorithm would not converge. This drove us to develop the
algorithm described in the next section.

3 Problem Formulation and Background Results

We assume that the dynamic system defined by (1) and the performance
measure (2) have been descretized by a suitable numerical integration scheme.
To simplify the notation, we use the same function and variable names for
the discrete-time versions of the continuous-time variables. A more detailed
discussion of this material can be found in [14].

Minimize
u(n), x(n)

J = φ(x(N)) +
N−1∑
n=0

L(x(n), u(n), n) (9)

subject to x(n+ 1) = f(x(n), u(n)); x(0) = x0 (10)

We further assume a quadratic performance index, namely:

L(x(n), u(n), n) =
1

2
[x(n) − xo(n)]T Q(n)[x(n) − xo(n)]

+ [u(n) − uo(n)]T R(n)[u(n) − uo(n)] (11)

and

φ(x) =
1

2
[x − xo(N)]T Q(N)[x − xo(N)] (12)
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In (11) and (12), uo(n), xo(n), n = 1, . . . N are given control input and state
offset sequences. In standard optimal regulator control problem formulations,
uo(n), xo(n) are usually taken to be zero with the exception perhaps of xo(N),
the desired final value for the state. The formulation considered here addresses
the more general optimal tracking control problem and is required for the
linear quadratic step in the proposed algorithm presented in Sect. 3.2.

3.1 First Order Optimality Conditions

We next briefly review the first order optimality conditions for the optimal
control problem of (9) and (10), in a manner that brings out certain important
interpretations of the adjoint dynamical equations encountered in a control
theoretic approach and Lagrange Multipliers found in a pure optimization
theory approach such as that mentioned in Sect. 1.1.

Let us consider the cost-to-go:

J(n) ≡
N−1∑
n=k

L(x(k), u(k), k) + φ(x(N)) (13)

with L and φ as defined in (11) and (12) respectively. We remark that J(n)
is a function of x(n), and u(k), k = n, . . . , N − 1 and introduce the sensitivity
of the cost to go with respect to the current state:

λT (n) =
∂J(n)
∂x(n)

(14)

Since
J(n) = L(x(n), u(n), n) + J(n+ 1) , (15)

we have the recursion:

λT (n) = Lx(x(n), u(n), n) + λT (n + 1)fx(x(n), u(n))

= [x(n) − xo(n)]T Q(n) + λT (n + 1)fx(x(n), u(n)) (16)

by using (11) and where Lx and fx denote the partials of L and f respectively
with respect to the state variables. The previous recursion can be solved back-
ward in time (n = N − 1, . . . , 0) given the control and state trajectories and
it can be started with the final value:

λT (N) =
∂L(N)
∂x(N)

= [x(N) − xo(N)]TQ(N) (17)

derived from (12). We now compute the sensitivity of J(n) with respect to
the current control u(n). Clearly from (15),

∂J(n)

∂u(n)
= Lu(x(n), u(n), n) + λT (n + 1)fu(x(n), u(n))

= [u(n) − uo(n)]T R(n) (18)

+ λT (n + 1)fu(x(n), u(n))
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since ∂J(n+1)
∂u(n) = ∂J(n+1)

∂x(n+1) ·
∂x(n+1)

∂u(n) = λT (n + 1)fu(x(n), u(n)). In (19) Lu and
fu denote the partials of L and f respectively with respect to the control
variables and (11) is used.

Next note that ∂J
∂u(n) = ∂J(n)

∂u(n) since the first n terms in J do not depend
on u(n). We have then obtained the gradient of the cost with respect to the
control variables, namely:

∇uJ =
[
∂J(0)
∂u(0)

∂J(1)
∂u(1)

. . .
∂J(N − 1)
∂u(N − 1)

]
. (19)

Assuming u is unconstrained, the first order optimality conditions require that

∇uJ = 0. (20)

We remark that by considering the Hamiltonian

H(x, u, λ, n) ≡ L(x, u, n) + λT f(x, u) , (21)

we have that Hu(x(n), u(n), λ(n+1), n) ≡ ∂J
∂u(n) , i.e. we uncover the generally

known but frequently overlooked fact that the partial of the Hamiltonian
with respect to the control variables u is the gradient of the cost function
with respect to u. We emphasize here that in our approach for solving the
optimal control problem, we take the viewpoint of the control variables u(n)
being the independent variables of the problem since the dynamical equations
express (recursively) the state variables in terms of the controls and thus can
be eliminated from the cost function. Thus in taking the partials of J with
respect to u, J is considered as a function u(n), n = 0, . . . , N − 1 alone,
assuming that x(0) is given. With this perspective, the problem becomes one
of unconstrained minimization, and having computed ∇uJ , Steepest Descent,
Quasi-Newton, and other first derivative methods can be brought to bear to
solve it.

Note that we are limiting the problem to the case of unconstrained controls,
but for many problems in robotics, control constraints are not the limiting
factor. In addition, soft constraints on actuation bounds can often be enforced
with penalty functions with good fidelity since these constraints are usually
not known precisely. With the control unconstrained, and with the large-scale
character of the problem, methods that take advantage of the special structure
of the problem become viable. The Linear Quadratic Regulator algorithm is
such an approach in case of linear dynamics. We review it next and we remark
that it corresponds to taking a Newton step in view of the previous discussion.

3.2 Linear Quadratic Tracking Problem

We next consider the case of linear dynamics in the optimal control problem of
(9) and (10). In the following, we distinguish all variables corresponding to the
linear optimal control problem that may have different values in the nonlinear
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optimal control problem by using an over-bar. When the cost is quadratic
as in (11) we have the well-known Linear Quadratic Tracking problem. The
control theoretic approach to this problem is based on solving the first order
necessary optimality conditions (also sufficient in this case) in an efficient
manner by introducing the Riccati equation. We briefly elaborate on this
derivation next, for completeness and also since most references assume that
the offset sequences xo(n) and uo(n) are zero. First, we summarize the first
order necessary optimality conditions for this problem.

x̄(n + 1) = A(n)x̄(n) + B(n)ū(n) (22)

λ̄T (n) = [x̄(n) − x̄o(n)]T Q(n) (23)

+ λ̄T (n + 1)A(n)

∂J̄(n)/∂ū(n) = [ū(n) − ūo(n)]T R(n) (24)

+ λ̄T (n + 1)B(n) = 0

Note that the system dynamical equations (22) run forward in time n =
0, . . . , N − 1 with initial conditions x̄(0) = x̄0 given, while the adjoint dy-
namical equations (24) run backward in time, n = N − 1, . . . , 0 with final
conditions λ̄T (N) = [x̄(N) − x̄o(N)]TQ(N). From (25), we obtain

ū(n) = ūo(n) −R(n)−1B(n)T λ̄(n+ 1) (25)

and by substituting in (22) and (24), we obtain the classical two-point bound-
ary system but with additional forcing terms due to the x̄o(n) and ūo(n)
sequences.

x̄(n + 1) = A(n)x̄(n) − B(n)R(n)−1B(n)T λ̄(n + 1) (26)

+B(n)ūo(n)

λ̄T (n) = Q(n)x̄(n) + AT (n)λ̄(n + 1) − Q(n)x̄o(n) (27)

The system of (26) and (27) can be solved by the sweep method [3], based
on the postulated relation

λ̄(n) = P (n)x̄(n) + s(n) (28)

where P (n) and s(n) are appropriate matrices that can be found as follows.
For n = N , (28) holds with

P (N) = Q(N), s(N) = −Q(N)x̄o(N). (29)

We now substitute (28) in (26) and after some algebra we obtain

x̄(n+ 1) = M(n)A(n)x̄(n) + v(n) (30)

where we defined

M(n) =
[
I + B(n)R(n)−1B(n)T P (n + 1)

]−1

(31)

v(n) = M(n)B(n)[ūo(n) − R(n)−1B(n)T s(n + 1)] (32)
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By replacing λ̄(n) and λ̄(n + 1) in (27) in terms of x̄(n) and x̄(n + 1) from
(28), we obtain

P (n)x̄(n) + s(n) = Q(n)x̄(n) + AT (n) [P (n + 1)x̄(n + 1)

+s(n + 1)] − Q(n)x̄o(n),

and by expressing x̄(n+ 1) from (30) and (32) above, we get

P (n)x̄(n) + s(n) =

Q(n)x̄(n) + AT (n)P (n + 1)M(n)A(n)x̄(n)

−AT (n)P (n + 1)M(n)B(n)R(n)−1B(n)T s(n + 1)

+AT (n)P (n + 1)M(n)B(n)ūo(n)

+AT (n)s(n + 1) − Q(n)x̄o(n)

The above equation is satisfied by taking

P (n) = Q(n) + AT (n)P (n + 1)M(n)A(n) (33)

s(n) = AT (n)[I − P (n + 1)M(n)B(n)R(n)−1B(n)T ]s(n + 1)

+AT (n)P (n + 1)M(n)B(n)ūo(n) − Q(n)x̄o(n) (34)

Equation (33) is the well-known Riccati difference equation and together with
the auxiliary equation (34), which is unnecessary if x̄o(n) and ūo(n) are zero,
are solved backward in time (n = N − 1, . . . , 1), with final values given by
(29) and together with (31) and (32). The resulting values P (n) and s(n) are
stored and used to solve forward in time (n = 0, . . . , N − 1), (30) and (25) for
the optimal control and state trajectories. These equations are summarized
in Table 1.

3.3 Formulation of the SLQ Algorithm

In the proposed SLQ algorithm, the control at stage k + 1 is found by per-
forming a one-dimensional search from the control at stage k and along a
search direction that is found by solving an Linear Quadratic (LQ) optimal
control problem. Specifically, let Uk = [u(0) u(1) . . . u(N − 1)] be the optimal
solution candidate at step k, and Xk = [x(1) x(2) . . . x(N)] the corresponding
state trajectory obtained by solving the dynamical equations (10) using Uk

and with the initial conditions x(0). We next linearize the state equations (10)
about the nominal trajectory of Uk and Xk. The linearized equations are

x̄(n+ 1) = fx(x(n), u(n))x̄(n) + fu(x(n), u(n))ū(n) (35)

with initial conditions x̄(0) = 0. We then minimize the cost index (9) with re-
spect to ū(n). The solution of this LQ problem gives Ūk = [ū(0) ū(1) . . . ū(N−
1)], the proposed search direction. Thus, the control variables at stage k + 1
of the algorithm are obtained from
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Table 1. Algorithm to solve the Discrete-Time Finite-Horizon Linear Quadratic
Tracking optimal control problem

1. Solve backward (n = N − 1, . . . , 0) with PN ≡ QN and sN ≡ −QN x̄o
N :

M(n) =
[
I + B(n)R(n)−1B(n)T P (n + 1)

]−1

P (n) = Q(n) + A(n)T P (n + 1)M(n)A(n)

s(n) = A(n)T
[
I − P (n + 1)M(n)B(n)R(n)−1B(n)T

]
s(n + 1)

+A(n)T P (n + 1)M(n)B(n)ūo(n) − Q(n)x̄o(n)

2. Solve forward (n = 0, . . . , N − 1) with x̄(0) = x̄0:

v(n) = M(n)B(n)[ūo(n) − R(n)−1B(n)T s(n + 1)]

x̄(n + 1) = M(n)A(n)x̄(n) + v(n)

λ̄(n + 1) = P (n + 1)x̄(n + 1) + s(n + 1)

ū(n) = ūo(n) − R(n)−1B(n)T λ̄(n + 1)

Uk+1 = Uk + αk · Ūk (36)

where αk ∈ R
+ is appropriate stepsize the selection of which is discussed later

in the paper. Note again our perspective of considering the optimal control
problem as an unconstrained finite-dimensional optimization problem in U .

We emphasize that Ūk as computed above is not the steepest descent direc-
tion. It is the solution to a linear quadratic tracking problem for a nonlinear
system that has been linearized about Uk. Note that the objective function is
not linearized for this solution. Our algorithm is different than standard Qua-
silinearization [3] and Neighboring Extremal [18] methods where the adjoint
equations are also linearized and two-point boundary problems are solved.

3.4 Properties of the SQL Algorithm

In this section, we prove two important properties of the proposed algorithm.
First, we show that search direction Ū is a descent direction.

Theorem 1 Consider the discrete-time nonlinear optimal control problem of
(9) and (10), and assume a quadratic cost function as in (11) and (12) with
Q(n) = QT (n) ≥ 0, Q(N) = QT (N) ≥ 0 and R(n) = RT (n) > 0, n =
0, 1, . . . , N − 1. Also consider a control sequence U ≡ [u(0)T . . . uT (N − 1)]T

and the corresponding state trajectory X ≡ [x(1)T . . . xT (N)]T . Next, linearize
system (10) about U and X and solve the following linear quadratic problem:
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Minimize
ū(n), x̄(n)

J̄ =
1
2
[x̄T (N) − x̄o(N)]Q(N)[x̄(N) + x̄o(N)]

+
1
2

N−1∑
n=0

{
[x̄(n) − x̄o(n)]TQ(n)[x̄(n) − x̄o(n)]

+ [ū(n) − ūo(n)]TR(n)[ū(n) − ūo(n)]
}

(37)
subj. to

x̄(n+ 1) = fx(x(n), u(n))x̄(n) (38)
+ fu(x(n), u(n))ū(n); x̄(0) = 0 ,

where x̄o(n) ≡ xo(n)− x(n), ūo(n) ≡ uo(n)− u(n). Then if Ū ≡ [ū(0)T . . . ūT

(N − 1)]T is not zero, it is a descent direction for the cost function (9), i.e.
J(U + α · Ū) < J(U) for some α > 0.

Proof: We establish that Ū is a descent direction by showing that:

∇uJ · Ū =
N−1∑
n=0

∂J(n)
∂u(n)

ū(n) < 0 , (39)

since ∇uJ in (19) is the gradient of the cost function with respect to the
control variables. Now, the components of ∇uJ are expressed in (19) in
terms of the adjoint variables λ(n) that satisfy recursion (16) with final
values given by (17). On the other hand, x̄(n) and ū(n) together with ad-
joint variables λ̄(n) satisfy the first order optimality conditions for the linear
quadratic problem given in (22), (24) and (25), where A(n) = fx(x(n), u(n))
and B(n) = fu(x(n), u(n)). Let us define

λ̃(n) = λ̄(n) − λ(n) (40)

and note from (16) and (24) that

λ̃(n)T = x̄(n)TQ(n) + λ̃(n+ 1)TA(n); λ̃(N) = Q(N)x̄(N) . (41)

Next through the indicated algebra, we can establish the following relation:

∂J(n)

∂u(n)
· ū(n) =

=
(
[u(n) − uo(n)]T R(n) + λ(n + 1)T B(n)

)
ū(n)

(using (19))

= −λ̃(n + 1)T B(n)ū(n) − ū(n)T R(n)ū(n)

(using (25))

= −λ̃(n + 1)T x̄(n + 1) + λ̃(n + 1)T A(n)x̄(n) − ū(n)T R(n)ū(n)

(using (39))

= −λ̃(n + 1)T x̄(n + 1) + λ̃(n)T x̄(n) − x̄(n)T Q(n)x̄(n)

− ū(n)T R(n)ū(n). (using (41))
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Finally, summing up the above equation from n = 0 to n = N − 1 and noting
that x̄(0) = 0 and from (29) that λ̄(N) = Q(N)x̄(N), gives:

∇uJ · Ū =

N−1∑
n=0

∂J(n)

∂u(n)
· ū(n) (42)

= −
N−1∑
n=0

[x̄(n)T Q(n)x̄(n) + ū(n)T R(n)ū(n)]

− x̄T (N)Q(N)x̄(N) < 0

and the proof of the theorem is complete.

We remark that the search direction Ū can be found by the LQR algorithm
of Table 1 with A(n) = fx(x(n), u(n)) and B(n) = fu(x(n), u(n)).

The next result shows that the proposed SLQ algorithm does in fact con-
verge to a control locally minimizing the cost function (9).

Theorem 2 Starting with an arbitrary control sequence U0, compute recur-
sively new controls:

Uk+1 = Uk + αk · Ūk (43)

where the direction Uk is obtained as in Theorem 1 by solving the LQR problem
of (37) and the linearized system (39) about the solution Uk and corresponding
state trajectory Xk; also αk is obtained by minimizing J [Uk+αŪk] over α > 0.
Then Uk converges (in the Euclidean norm sense) to a control that locally
minimizes the cost function (9) subject to the system equations (10).

Proof: See [14], or note that given the result of the previous theorem, stan-
dard convergence proofs (see [7]) apply with either an exact or an inexact
linesearch such as the Armijo, Goldstein, or Wolfe search rules [9].

4 Numerical Example

We conducted numerical experiments the hopping system discussed in Case
4, above. We minimized (8) with the following parameters: k/m = 100,
g = 386.4, α = 0.1. We assumed that all states were initially zero, and that
the initial control sequence was zero. The cost function parameters were se-
lected as: tf = 1, q = 1000, r = 1.0. As in the last example, a simple Euler
approximation was used to discretize the equations, with N = 50.

As shown in Fig. 6, the algorithm produced an alternating sequence of
stance phases and flight phases for the hopping system and it naturally iden-
tified the times to switch between these phases. If one were to use collocation
methods to solve this problem with explicit consideration of the different dy-
namics in the different phases, one would have to guess the number of switches
between phases and would need to treat the times at which the switch occurs



Recent Advances on the Algorithmic Optimization of Robot Motion 39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

20
M

as
s 

an
d 

P
is

to
n 

po
si

tio
n,

 in
ch

es

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−40

−20

0

20

40

Time, seconds

M
in

im
um

 fu
el

 c
on

tr
ol

, u

Stance Phase Flight Phase Stance Phase Flight Phase 

y(t) y
p
(t) 

Fig. 6. Maximum height hopping motion and minimum fuel control

as variables in the optimization. We note that our algorithm converged much
faster when the weighting on the control r is increased; also the number of
iterations required for convergence in this problem increases for larger yo

N ,
ranging from 3 for yo

N = 1, to 166 for yo
N = 50. In addition, the algorithm

failed to converge for α < 1 × 10−5, which demonstrates the need for the
dynamics to be continuously differentiable.

5 Conclusion

We discussed the formulation and solution of several important optimal con-
trol problems for robotic systems. The most challenging case by far is an
underactuated system with contact constraints. We developed an algorithm
for solving such nonlinear optimal control problems for systems with quadratic
performance measures and unconstrained controls. Contact constraints were
accounted for with penalty functions. Each subproblem in the course of the
algorithm is a linear quadratic optimal control problem that can be efficiently
solved by Riccati difference equations. We show that each search direction
generated in the linear quadratic subproblem is a descent direction, and that
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the algorithm is convergent. Computational experience has demonstrated that
the algorithm converges quickly to the optimal solution.
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Summary. A dynamic model of running–the spring-loaded inverted pendulum
(SLIP)–has proven effective in describing the force patterns found in a wide va-
riety of animals and in designing and constructing a number of terrestrial running
robots. Climbing or vertical locomotion has, on the other hand, lacked such a sim-
ple and powerful model. Climbing robots to date have all been quasi-static in their
operation. This paper introduces a one degree of freedom model of a climbing robot
used to investigate the power constraints involved with climbing in a dynamic man-
ner. Particular attention is paid to understanding how springs and body dynamics
can be exploited to help relieve a limited power/weight ratio and achieve dynamic
running and climbing.

1 Introduction

We seek a fast and agile robot that can traverse both vertical and horizontal
real world terrain. Dynamic locomotion over unstructured and natural terrain
has proven to be a difficult task. A large number of walking robots have been
built, but only recently have running robots been developed that can move
at speeds of bodylengths/second over rough terrain [6, 21, 15]. The Rhex [6]
and Sprawl [15] families of dynamic machines are based on a Spring-loaded
Inverted Pendulum (SLIP) model of running developed from biomechanical
research [13, 20]. They have simple morphologies with only one actuator per
leg, are polypedal, run mostly open-loop, and rely on springs in the legs to
passively self-stabilize.

On the other hand, there have only been a few legged robots that can climb
vertical surfaces, and they have generally been limited to quasi-static climb-
ing regimes. Their reliance on vacuum or magnetics to achieve the adhesive
forces necessary for vertical climbing has limited them to select man-made
surfaces such as glass and metal [19, 10, 23]. Recently foot-hold based [11, 12]
and vectored thrust based climbers [1] have been developed, but they only
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slightly extend the range of traversable surfaces and do not address the role
of dynamics in climbing.

The motivation for this work is the ongoing development of the RiSE
robot–a bio-inspired hexapedal platform that is intended to both run and
climb vertical surfaces [8]. Currently under development are micro-spine [7, 16]
and dry-adhesive feet [22] to allow attachment to a wide range of natural verti-
cal environments. The current instantiation of the robot, however, is otherwise
like the remainder of climbing robots in that it moves slowly and its control
is based on quasi-static assumptions. The purpose of this work is to explore
how to achieve dynamic climbing and how that can be used to improve the
performance of the RiSE climbing robot.

To this end we discuss some of the fundamental differences between dy-
namic running and climbing and introduce a simple one-dimensional dynamic
climbing model to investigate approaches to mitigate some of the difficulties
in achieving dynamic climbing.

1.1 Dynamic Climbing

We reserve the term dynamic for robots that manage their kinetic as well
as their potential energy. For example, dynamic level ground running can
be distinguished from quasi-static locomotion by the phasing of kinetic and
gravitational potential energy during a stride. Generally, dynamic runners are
distinguished in physical structure by their essential use of springs in the legs.
These leg springs act as reservoirs that can store and return energy at whatever
required rate. In a typical dynamic gait, the spring energy is collected during
the initial phase of a stride (“compression”) and returned during the second
phase (“decompression”) as work done against gravity needed to raise again
the center of mass back close to its height lost in the initial phase. Dynamic
runners can (but need not) adopt an aerial phase gait to buy time for leg
recirculation, thereby affording speeds that surpass the inevitable frequency
limits of their leg swing actuators. In such situations, springs can recover and
return the kinetic energy otherwise lost in body deceleration.

Properly arranging these exchanges of kinetic and spring and gravitational
energy requires control schemes designed to do more than simply track the
joint reference trajectories typically used by walkers. The resulting dynamic
stability confers a degree of agility and maneuverability impossible to achieve
in quasi-static walking gaits. The question arises whether spring assistance
can be introduced in climbing that yields analogous benefits.

The major difference between climbing and running is in the alignment
of the gravity vector with respect to the direction of travel. We suggest that
this has three primary impacts on legged climbers. The first is that travel
aligned with the gravity vector implies that any forward progression increases
the gravitational potential of the robot, resulting in a net drain on the rest
of the system’s energy. As a consequence the SLIP model, which relies on
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the interchange of kinetic and gravitational potential energy from hopping or
bouncing to regulate the energy during a stride, no longer applies.

In addition to necessarily changing the way in which kinetic and spring
potential energy are exchanged with gravitational potential energy, a vertical
heading also implies that ground impacts are not induced by gravity. Es-
pecially for the front feet ground contact must be actively generated. This
changes, and to some degree reduces, the role of springs in mitigating ground
contact forces. Successful running robots have required springs to regulate the
impact at ground contact, and this is not necessarily the case for climbers.

A third major difference for climbing robots is the necessity of bi-lateral
or “adhesive” foot constraints. The development of feet that create an in-
pulling force to the wall is one of the major design requirements in a climbing
robot. Having to create feet that grasp the wall to deal with the inherent pitch
instability serendipitously reduces the chance of tipping in the roll direction–
which is a major source of instability in level ground runners. Once attached,
tipping becomes less of a problem, but motions such as repositioning the feet
on the ground via sliding, as is often done in turning, become more difficult.

In some sense these differences make climbing easier than running since
severe foot impacts and lateral tipping are less likely to occur. On the other
hand getting good foot attachment and regulating the system’s energy become
much more difficult. The problem of attachment has and continues to receive
a fair amount of attention. The second problem, more effectively using the
system’s power resources, motivates our investigation with a simple dynamic
climbing model.

A dynamic robot may lend scansorial machines advantages relative to to-
day’s quasi-static climbers analogous to the superiority of level ground runners
over their quasi-static walking counterparts: simplified control; improved effi-
ciency; access to and mobility through otherwise impassible terrain obstacles;
and, of course, faster speeds.

1.2 Power and Speed Constraints

We propose a simple one-dimensional climbing model to investigate the power
requirements and constraints associated with dynamic behavior. As a target
for dynamic motion we set a stride frequency of 3.5 Hz for our 3 kg robot.
Specifically, this figure is associated with the natural frequency of the linear
mass spring model associated with purely vertical SLIP hopping.

At lower frequencies, back-of-the-envelope calculations developed in Ap-
pendix A1 suggest that spring-extension requirements for SLIP-like running
(i.e., resonant bouncing in the sagittal plane over level ground) would incur
impracticably long leg compression.

Another method that has been used to characterize the onset of running is
the Froude number, (v2/gl), where v is the average fore-aft running speed, l is
the leg length and g is the constant of gravitational acceleration. The Froude
number is a dimensionless constant that has been used in biomechanics to
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predict the dynamic similarity in legged animals that is manifest over a wide
range of sizes. It has been shown that many animals prefer to switch from a
walk to a run at speeds where their Froude number is about 0.5 [4, 18].

RiSE climbing at the target frequency of 3.5 Hz would travel at 0.55 m/s
which corresponds to a Froude number of 0.2. While it is not clear that the
Froude number is as applicable to climbing as it is to terrestrial locomotion,
it does give some indication of when velocity begins to significantly affect
the energetics of motion. The relatively low value of our target frequency’s
Froude number with respect to observed animal gait transitions suggests that
the target frequency we have chosen for dynamic climbing is probably not too
high.

With the current trajectory-tracking, quasi-static control scheme the robot
can climb with a stride frequency of 0.5 Hz. Is it theoretically possible to
achieve the required 7x increase in speed without changing the motors or
decreasing the robot’s mass?

The current robot, weighing 3 kg and equipped with two 4.5 W rated servo
motors for each of its six legs, has an input electrical power-to-mass ratio of
18:1. In order to climb vertically at our dynamic threshold (0.53 m/s with a
stride length of 0.15 m) requires a mechanical output power of 16 W just to
deliver the energy expended to increase the system’s gravitational potential.

Experiments on Geckos running up vertical walls has shown that the me-
chanical power that they expend to run at speeds up to 10 bodylengths/second
is about 5 W per kilogram of animal [9]–about the same ratio as for RiSE were
it to run at 3.5 Hz. What is remarkable is that for the gecko the mechanical
power expended when climbing is only about 10% greater than the amount
of energy lost to gravitational potential.

The 16 W power requirement for RiSE running at this speed represents
30% of the maximum continuous electrical input power that the robot motor’s
can consume without thermal damage. In reality only a small percentage of
the motors’ 54 W rating will be converted into useful mechanical work. The
two major reasons for this are (1) the motors are run at maximum power
for only a small segment of the stride and (2) motor inefficiencies (e.g. ther-
mal losses in the windings and mechanical losses in the bearings) and system
“drag” (e.g., transmission losses, generation of internal forces and negative
work associated with securing footholds) significantly diminish the mechani-
cally useful component of the power the motors consume.

In this paper we address the first of these two problems. Specifically we
consider how to use dynamic gaits and body/leg springs to better utilize
the available motor power. We show that in the ideal case these approaches
significantly reduce the peak power demanded from the motors permitting a
smaller gear reduction, which in turn allows a higher stride frequency.

With ideal motors the changing demands for torque and speed during the
leg cycle could be met by implementing a torque control law and allowing the
motor to operate at different points along the speed-torque curve. As shown
in Fig. 2 for the current motors, only 20% of the torque range is available for
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continuous use. This dramatically reduces the flexibility of any such motor
control law. Instead we investigate how to use passive springs and the body’s
inertia to maximize the application of the available electrical power.

The remainder of this paper is organized as follows. Section 2 describes the
one-dimensional model of climbing that we use to evaluate the efficacy of the
proposed schemes. The simplifying assumptions and equations of motion are
given. Section 3 details the numerical studies undertaken and compares the
various cases considered. Section 4 reviews the results and gives some areas
of future work.

2 Model Description

2.1 Assumptions

The RiSE robot (see Fig. 1a) is a six limbed climber with two controlled
degrees of freedom per leg. Each leg can rotate about an axis parallel to the
direction of motion, lifting the foot away from the ground (wing DOF). The
second actuated degree of freedom controls the rotation of the crank segment
of a four bar mechanism connecting the foot to the body. The foot is attached
to the follower link of the mechanism and traces a roughly elliptical path (see
Fig. 3) in a plane passing through the line of action of the wing DOF.

With the assumption that the wing DOF is primarily used to specify the
point of touchdown and lift-off in the cycle, the motion of the legs and body
can be modeled as planar. This abstraction neglects, among other things,
body pitch away from the wall–which is known to be a significant issue.

The further assumptions that the robot uses an alternating tripod gait
and that lateral motions of the robot are of secondary importance allow the

m

F

x

xF

g

Fig. 1. (A) Picture of RiSE climbing and (B) schematic of the simple climbing
model
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construction of a single degree of freedom model of climbing, shown in Fig. 1b.
The model consists of a point mass body with two virtual, massless legs. The
extension of the foot (XF ) during stance is fixed by the leg kinematics. In
this very simple model, we are ignoring friction from the legs, foot slipping,
etc. Although this oversimplification of the system ignores many real and
important effects, it is hopefully sufficient to examine some basic power and
stability issues and provide a basis for future examinations.

2.2 Stance Dynamics

The sum of the forces in the vertical direction is given by:

mẍ = F −mg (1)

where m is the mass of the body, F is the force generated by the motor, and
g is the gravitational constant opposing the motion.

The force generated by the leg actuator is based on a very simple motor
model. Due to thermal concerns arising from the nearly continuous use of
the motors when climbing, we assume that the motors operate within their
recommended operating range, shown in Fig. 2. Although the stall torque
of the motor is 28.8 mNm, the continuous operational limit (τMax) is only
4.98 mNm. The represents about 20% of the speed/torque curve given by:

τ =
ω − ωnl

−km

Velocity (rpm)

Torque (mNm)

4.5 Watt 
@ 12V

13,900
(No-load
Speed)

4.98
(Maximum Continuous Torque)

28.8
(Stall Torque)

Recommended operating range

Short term operation

Fig. 2. Model and specifications for the motors used on the RiSE robot. Data from
Maxon Precision Motors Inc. RE-16 motor (16 mm diameter, graphite brushes, 4.5
Watt, part number 118730) [2]
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R

Stance
(2R)

Swing
(4R)

Stance

Swing

Fig. 3. Nominal RiSE foot trajectory and simplification used in the model. The
RiSE leg kinematics result in a swing phase that is almost twice as long as the
stance phase. (Leg trajectory from RISE [8])

where ω is the angular velocity of the motor, ωnl is the no-load velocity limit,
and km is the slope of the speed/torque curve. Thus the maximum continu-
ously available torque is given by:

τ = min

(
ω − ωnl

−km
, τMax

)

In order to adapt to a one DOF linear model the trajectory of the four-bar
traveler is approximated with a circle of radius R, as shown in Fig. 3.

Linear Coordinates

With the following conversions:

FMax =
τMax

R

ẋnl = R ωnl

ke =
ẋnl

FMax
=
R2ωnl

τMax
= R2km

the motor torque law becomes:

F = min

(
ẋ− ẋnl

−ke
, FMax

)

where (km) is the slope of the force/velocity curve. With the addition of a
gear reduction (G), the force from the motor (F ) becomes:
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F = min

(
ẋ− ẋnl

G

−G2ke
, GFMax

)
= min

(
G2ẋ−Gẋnl

−ke
, GFMax

)
(2)

Combining (1) and (2) yields:

ẍ =
1
m

(
min

(
G2ẋ−Gẋnl

−ke
, GFMax

)
−mg

)
(3)

Gait transitions occur when (XF −x) = 0, i.e. when the leg has reached the
end of the vertical section of travel. Since the four-bar mechanism fixes the gait
trajectory, XF is fixed at 2R. Whether the leg is capable of resetting within
the duration of the last stance phase is a function of the swing dynamics,
described below.

2.3 Massless Swing Dynamics

Of course in the physical system the mass of the legs is non-zero, and the
leg’s trajectory during the swing phase is a function of its dynamics. Initially,
however, these dynamics are ignored and the swing phases is considered as a
binary state: either the leg can return to the touchdown position in time, or
it cannot.

The time that it will take the leg to retract, tSwing, is bounded by no-load,
ẋnl, and max continuous velocity, ẋτMax

, of the foot, as given below:

G 2R
ẋτMax

≥ tSwing ≥ G 2R
ẋnl

(4)

The left side of 4 represents an upper bound on the duration of the swing
phase.

3 Numerical Simulation

3.1 Trajectory vs. Force Based Gaits

In the current control philosophy a gait is generated by specifying a desired
trajectory for the path of the feet. Typically four phases are specified: swing,
attachment, stance, and detachment. Using the motor encoder readings and
PD control the legs attempt to track this trajectory throughout the stride.
Forces are generated when errors in the tracking occur. These generally corre-
spond to contact with the ground during attachment, lifting the robot in the
face of gravity during stance, and the inertial resistance to the rapid accelera-
tion during swing. Figure 4 shows an idealized trajectory and the correspond-
ing torques generated by the motors. The figure on the left is a projection of
foot trajectory in the wing plane. A trace of the wing angle with respect to
time is shown on the bottom right. In the plot on the right the solid horizontal
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line represents the maximum continuous torque as specified by the motor’s
manufacturer. The dotted line is the motor’s mean torque over a stride. The
motor torque curve itself is an abstraction of reality where the large spike
in the torque graph corresponds to the body acceleration of the foot during
stance, and the smaller spike to the acceleration of the foot during swing.

It should be noted that current gaits are designed for effective attachment
and detachment rather than optimizing speed or utilization of available mo-
tor power. Significant improvements in terms of speed can (and are being)
made by refining the shape of the target trajectory–especially during stance
and swing–such that the torque demands more closely match the abstraction
shown in Fig. 4.

Due to the large gear reduction employed, the ability to shape the torque
trajectory is limited. If the peak load on the motors was decreased or distrib-
uted more efficiently throughout the stride then the gearing could be reduced
and the top speed dramatically increased.
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Fig. 4. Sample leg trajectory projected onto the “wing” plane (left) and in terms
of the wing angle (right, bottom). These are used to contextualize the idealized force
pattern (right, top). The leg trajectory and mean torque plots are based on RiSE
robot data [3]
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Simulation Results

Figure 5 shows how the theoretical minimum stride frequency for the sim-
ple model described in Sect. 2.2 varies as a function of gear ratio, G. Since
each leg has a kinematically fixed stride length, the stride period is inversely
proportional to velocity. The dashed curved line represents the stance phase
speed limit for each gear ratio, G. The sloping starred line represents the swing
phase reset threshold. Point (A) shows the theoretical maximum speed with
the RiSE v1.0 gear ratio. At this gear ratio any higher speeds would require
the leg to complete the swing phase faster than the motor can handle. Below
a certain gear ratio (point (C) in Fig. 5) the robot no longer has enough force
to overcome gravity and cannot climb. Increasing the gear ratio reduces the
overall available speed and above a threshold, point (B), the duration of the
swing phase becomes the limiting factor.

Fig. 5. Simulation results for the base model, showing the minimum possible stride
period (maximum speed) for various gear ratios (G). The shaded areas under the
curves represent regions that are inadmissible as they invalidate either swing or
stance phase constraints
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Point (B) is therefore the theoretical upper bounds on the velocity of
the robot using the current trajectory-based gait formulation. This stride
frequency (and speed) will, of course, never actually be reached due to the
non-instantaneous, and non-trivial, attachment and detachment requirements.
Nevertheless it is clear that without some change to the energetics and actu-
ation scheme of the robot it will never be able to reach our target dynamic
threshold.

Momentum

If, however, non-zero attachment speeds and the momentum of the body of the
robot is explicitly considered in the control scheme the robot could accelerate
from one stride to another and higher “steady-state” velocities are possible.
This requires either allowing the foot trajectories to change as a function of
body velocity or the adoption of some sort of force-based control scheme as
is done in our simple model. In either case the new maximum speed will be
limited by the swing phase reset time. In this case the fastest configuration
corresponds to the lowest gear ratio that will actually lift the robot, as shown
by point (C) in Fig. 5.

A potential difficulty with this approach is ensuring that the foot attach-
ment trajectory remains viable as the body velocity increases. This problem
is being considered in ongoing work on foot attachment dynamics.

3.2 Spring-Assisted Climbing

An alternative method for increasing speeds with a limited power budget is
by the intelligent use of springs to redistribute the cyclic loading and level
out the demands on the motors. By lowering the peak force requirements the
drive-train gear ratio can be reduced to speed up the overall motion of the
robot. This also brings the mean loading on the motors closer to the maximum
continuous operation level. Since these motors get the most power at 1/2 of
stall, and they are limited to 20% stall by the thermal constraints, maximum
achievable power coincides with the maximum continuous operation point.

In this section we consider two approaches to using springs to assist the
motion of the body in climbing. The first approach stores energy from the
end of the stance phase when the body is decelerating in preparation for
attachment and then releases it at the beginning of the next stance phase
to help re-accelerate the body. The second approach uses the motor to store
energy in a spring during the swing phase, which is then released to assist
lifting the body during stance.

3.3 Stance-Stance Transfer

The inspiration and physical motivation for this approach came from observ-
ing fast climbing animals such as the gecko which swing their tails and flex
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their backs as they run. One advantage of these motions may be that they
shift the phasing of the power distribution to the beginning of a stride when
it is needed most to accelerate a body after slowing for foot contact. A proper
model for this behavior would include multiple bodies and degrees of freedom.
Here we hypothesize that at least part of the effect of these motions can be
captured by the linear body spring as shown in Fig. 6. The spring is loaded
during the end of the stance phase as the robot slows for attachment and then
is released at the beginning of the next stride to assist with the re-acceleration
of the body.

The net effect of this body/tail spring is to lower the peak torque spike
during stance. This in turn allows us to further change the gear ratio, reducing
the maximum continuous torque limit and increasing the stride frequency.
With the addition of this spring the equation of motion for the body during
stance becomes:

ẍ =
1
m

(
min

(
G2ẋ−Gẋnl

−ke
, GFMax

)
+ k(XF − x) −mg

)
(5)

where XF , the rest length of the spring, is located at the midpoint of stance.

Fig. 6. Schematic of model with body spring and the effect of the spring on the
nominal torque profile. The “+” region represents when the spring is assisting the
motor, and the “−” region represents when the motor is stretching the spring. (As
before, the leg trajectory and mean torque plots are based on RiSE robot data [3])
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The maximum stiffness of the virtual leg is limited by the force available
from the motors (FMax), as given by (6) where (p) is the number of motors.

k ≤ G FMax p

2R
(6)

Magnitudes ranging from 0-80% of the maximum force were evaluated.
The simulation results with this spring are shown in Fig. 7.

As in Fig. 5 the areas under the curved lines represent speeds for which
the stance phase displacement requirement is not satisfied, and the starred
diagonal line represents the swing phase requirement. Points (A) and (B)
are the same as in Fig. 5. Point (C) represents the maximum speed with the
body spring which yields a 16% improvement over trajectory refinement alone,
case (B).

It appears that the use of such a body spring increases the maximum pos-
sible speed for a given G, but does not lower the gear ratio which is necessary
to overcome gravity and lift the robot. Thus the use of a body spring to some
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Fig. 7. Simulation results for the model with the body spring. Minimum possible
stride periods for various gear ratios (G) and spring constants (k)



56 J.E. Clark and D.E. Koditschek

degree duplicates the benefit from implementing a stride-to-stride velocity
adaptation scheme.

3.4 Swing-Stance Transfer

A second approach to using springs to more effectively and evenly apply the
torque from the motors is to use a spring connecting the foot to the body. As
shown on the left in Fig. 8, this is modeled as a spring acting in parallel to the
actuator in each virtual leg. This spring is loaded during swing phase as the
leg resets to a position relative to the body ready for touch down. The spring
is then released at the beginning of stance to assist with the acceleration of the
body. As shown on the right in Fig. 8, this adds a load to the motors during
swing (when their torque output capabilities are currently underutilized) and
mitigates the force requirements at the beginning of stance.

The addition of this spring results in the same body equation of motion
as in Sect. 3.3, but the spring is now fully loaded at the beginning of stance,
and is fully unloaded at the end. The spring constant, k, is chosen in the same
manner as in the previous section.

Figure 9 shows the effect of changing the gear ratio G on the stride period
for a range of spring constants from 0–80% of the maximum spring constant
for each G as given by (6). For each value of G and k, the resulting minimum

Fig. 8. Schematic of model with leg spring and the effect of the spring on the
nominal torque profile. The “+” region represents when the spring is assisting the
motor, and the “−” region represents when the motor is stretching the spring. (As
before, the leg trajectory and mean torque plots are based on RiSE robot data [3])



Dynamic Climbing 57

20 30 40 50 60 70 80 90 100 110 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Gear Ratio (G)

S
tr

id
e 

P
er

io
d

A

B

C

No Spring
Swing Reset Threshold

F
as

te
r

D

Non-linear Spring
Linear Spring

Fig. 9. Simulation results for the model with the leg spring. Minimum possible
stride periods for various gear ratios (G) and spring constants (k)

stride period is shown. As before, the line corresponding to the stride period
limit for retraction of the leg during swing is indicated with a starred line.

Points (A) and (B) are the same as in Fig. 5 and represent the maximum
possible speed without springs. Point (C) indicates the maximum speed con-
figuration for a model with a linear spring with k = 80% of maximum. The
use of a linear spring increases the maximum speed by 36% to 0.62 m/s.

Softening Spring

While advantageous for their simplicity, linear springs are not optimal in terms
of energy storage for a limited stretching force. If the linear spring were re-
placed by a softening spring the spring potential energy at maximum deflection
would increase. In the limit, with a constant force spring, the energy storage
would double. A constant force spring, however, would add a large load to the
beginning of the swing phase when the motors may already be saturated at-
tempting to accelerate the leg. The leg spring analysis in the previous section
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was repeated with the linear spring replaced by one with a spring equation
of: F = kx

1
2 . This significantly increases the energy storage for the spring

with minimal interference with the acceleration of the leg in swing. Point (D)
in Fig. 9 represents the fastest configuration that can be achieved with this
softening spring, resulting in a speed increase to 0.84 m/s.

Retraction Dynamics

In this swing-to-stance spring approach the load during the swing phase is sig-
nificantly increased, therefore it becomes important to determine what hap-
pens when the leg dynamics are explicitly considered. In other words, at what
point will the inertia of the legs and the frictional losses in the springs erode
any benefit from running dynamically or adding leg springs.

To this end the dynamics of the swing legs were modeled with (7).

ẍf =
1
m2

(
min

(
G2ẋf −Gẋf nl

−ke
, GFMax

)
+ k(Xbody − xf ) − bẋfm2g

)
(7)

Where m2 is the effective inertia of the robot’s leg and b is the damping
term, as given by (8).

b = 2ζ
√
mk (8)

While both adding inertia to the legs and increasing the losses in the
spring detract from the gains suggested by the simulation, the model can still
climb with a spring constant, k = 80% of maximum, at speeds equivalent to
what the simple swing phase model predicts with leg inertias of 30% of the
bodymass and a damping coefficient ζ = 0.3.

3.5 Results of Numerical Study

Table 1 summarizes the cases considered thus far and gives the maximum
frequency, speed, and percent improvement for each case. With a force-
optimization series of trajectory refinements the robot’s speed can (theoreti-
cally) be significantly improved. Obviously real-world issues associated with
mechanical losses and foot attachment/detachment will prevent the actual
achievement of the 3.05 Hz theoretical speed predicted from implementing
trajectory refinements.

The last row in the table (Combination) shows the effect of combining the
body and softening foot springs and allowing the body velocity to increase
from stride to stride (momentum), which results in a 2.9x improvement over
the trajectory refinement case alone. Even if drag and attachment losses only
permitted achieving 40% of the theoretical speed limit, with these changes we
get near the 3.5 Hz dynamic threshold that we established previously. Of the
various elements, the non-linear foot spring contributes the most.

Another option to improve the speed of the robot climbing is to alter its
power/weight ratio. As a point of comparison the motor specs for larger motors
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Table 1. Frequency, velocity, and percent improvement for cases (B) to (G)

Case Frequency Velocity (m/s) % Impr.

(A) Trajectory Refinement 3.05 0.46 0
(B) Body Momentum 3.66 0.55 20
(C) Body Spring 3.55 0.53 16
(D) Foot Spring-Linear 4.15 0.62 36
(E) Foot Spring-Softening 5.59 0.84 83
(F) Body + Foot Springs 5.78 0.87 89
(G) Combination 8.85 1.33 190

from the same vendor and product line were used in the model to see how
much the power needed to be increased to match the effect of adding springs
and dynamic gaits. In this case the 4.5 W motors for RiSE were replaced
with 20 W versions. The total mass of the robot was left unchanged and the
simulations repeated. This 4.4x increase in power resulted in a 2.3x increase
in speed. A net increase slightly less than with springs/dynamics.

In reality the use of larger motors brings with it a significant increase in
mass and complexity. The addition of these larger motors would add addi-
tional 1.5 kg to the robot’s mass, not including the necessary changes to the
body, battery, and electronics design. Fundamentally, increasing the size of
the motors does not substantially increase their power to weight ratio. Other
motors do have higher power/weight ratios than the ones chosen for our robot,
but these suffer from other draw backs such as controllability.

Of course reducing the weight of the robot, were we able to find a way to
do it without loosing performance, would help as well. The simulations with
the simple model described here suggest that gains in speed comparable to
the use of springs or the addition of (magically) more powerful motors can be
achieved by reducing the robot’s weight by about 50%.

In the absence of further improvements to the power/weight ratio of our
robots, the simulations suggest that with our current design it is not possible
to reach our target speed. Simply refining the gait and reducing the inefficien-
cies in the system will, by themselves, be insufficient. With an appropriate
use of springs and body dynamics, however, our target speed of 3.5 Hz be-
comes theoretically possible. The actual realization of these speeds, however,
depends on how well these concepts can be incorporated with the ongoing
work in improving trajectory refinement and foot attachment.

4 Conclusion

One of the significant problems in achieving fast climbing is the power demand
associated with delivering the required work against gravity at higher speeds.
Having sufficient on-board power for fast locomotion on the level ground has
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proven challenging, and motion against gravity, obviously, only exacerbates
the problem. One approach to increasing the use of a robot’s onboard power
is switch from a position-based control scheme to forced-based approach. By
explicitly regulating the motors’ output rather than relying on position track-
ing errors, the actuators can be much more effectively utilized during a stride.
This adoption of this control framework also enables the robot to build up
speed over a number of strides, further increasing the performance gains.

Even if the switching the fundamental control scheme from a position-
based approach proves infeasible (e.g., perhaps because our limited degrees of
freedom require intricately planned approaches and departures from stance to
guaranteed adequate wall adhesion and limited perturbation during detach-
ment), much of the advantage of a force-based system could be duplicated by
very careful trajectory tuning and adaptation.

In either case the refinement of the force trajectory can bring substantial
performance benefits to the robot. The simple model employed here suggests
that as a theoretical upper limit they could allow the robot to climb at 3Hz
or at 0.46 m/s, which is near our dynamic threshold. Of course attachment,
detachment and other physical constraints will necessarily reduce the actual
gains.

However, in this respect the remainder of the numerical results from the
simplified model are encouraging. They suggest that the appropriate addition
of body and leg springs could double the robot’s speed over this value. The
further incorporation of a variable stride period could almost triple the speed
over trajectory refinement alone. This is more than the effect of increasing the
motor’s power 4.4x! (that is of course without acknowledging and accounting
for the weight of the larger motors). While the advantages of these approaches
are not entirely “free”, they do represent a significant gain. When the various
refinements are combined, the model results suggest that locomotion at our
dynamic threshold of 3.5 Hz (or 2 bodylengths/second) should be achievable.

4.1 Future Work

In order to implement body dynamic dependent gait trajectories some sort of
control system to measure body velocity and alter the leg trajectory may be
necessary to ensure good attachment of the feet. More detailed foot/substrate
interaction tests may provide the empirical data necessary to develop such a
controller.

Although we have assumed that foot contact once made will only be bro-
ken at the desired detachment point, this clearly does not reflect the reality.
Reducing the demands on the foot attachment mechanism could be one of the
major advantages of dynamic climbing. It seems possible that an appropri-
ate use of springs and the robot’s body’s dynamics could significantly reduce
the required foot reaction forces. If force threshold limits were added to the
feet the effectiveness of the various schemes proposed in this paper could be
evaluated in this regard.
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Although not addressed here, the stability of dynamic climbers is a topic
of interest. Besides the fundamental issues of insuring that the front feet stay
attached to the wall, there are a number of other possible ways to consider
stability. Many of these arise with the shift from a position-based control to
a force-based system. The numeric simulation results suggest that when the
velocity is allowed to vary from stride to stride that the simple climber tends
to quickly converge to a steady period-1 gait. Have we been fortuitous in our
parameter selection, or are these limit cycles almost inevitable? Are they local
in nature hence hard to achieve in practice or do they have large basins (e.g.,
are they globally asymptotic stable)? The model we have used may be simple
enough to permit a careful mathematical analysis of the system dynamics.

A second interesting question that arises from decoupling multiple limbs
from a trajectory-tracking control scheme is the question of synchronization.
A related climbing study with an open-loop climbing model [17] indicates
that legs tend to synchronize rather than staying 180 degrees out of phase.
Is this also true for this model, and if so what sort of controller needs to be
established to maintain a regular alternating gait?

Looking further ahead, we wonder if with the addition of a lateral degree
of freedom to the model we can begin to duplicate the motions and ground
reaction forces seen in dynamic climbing animals such as geckos and cock-
roaches.

We believe that enabling a robot with the ability to both dynamicly run
and climb is an compelling goal. The achievement of both with an (inherently)
constrained power/weight ratio is a difficult task. The creative use of springs
and system dynamics to modify the climbing motion of the robot may enable
the construction of such robots. While we are not there yet, we at least have
some simple models that suggest that it may be possible.
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Appendix A1: Rise Robot Constants

Table 2. RiSE specific model parameter values

Variable Value Description

TStall 0.0288 Nm Stall torque
TMax 0.00498 Nm Maximum continuous torque
ωnl 13, 900 rpm No-load speed
R 0.0762 m Radius of foot trajectory
G 126 Base Gear ration
p 6 Number of motors per tripod
m 3 kg Mass of the robot

Appendix A2: Minimum Leg Frequency

In order to achieve resonant hopping as described by the spring-loaded in-
verted pendulum (SLIP) model, the motor activation frequency–whether used
primarily for recirculating vertical leg springs as in RHex [6] or for powering
vertical leg strokes in phase with passive recirculating springs as in Sprawl
[14]–should match the natural frequency of the body’s oscillation. For a SLIP-
type hopper the natural frequency, ωn, during stance is a function of the body
mass, M , and stiffness of the legs, k, that varies in a rather subtle manner
with the particular steady state gait for even the simplest two degree of free-
dom models [5]. Empirically, we find this function is effectively approximated
by that characterizing a one degree of freedom spring-mass system:

ωn =

√
k

M
(9)

The lower limit on the spring stiffness is constrained by its maximum
displacement, ∆x, which in turn is fixed by the leg kinematics. Although
the force-extension profile of a spring can vary significantly depending upon
whether it is “hardening” or “softening”, it will suffice for our present order-of-
magnitude analysis to consider the simplest relationship of constant stiffness
arising from a Hooke’s law spring. For this model, a lower bound on the
excursion of the leg spring corresponds to when the force on the spring is
equal to gravity, giving:

k =
Mg

∆x
(10)

Combining equations (9) and (10) gives:
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ωn =

√
k

M
=

√
Mg

∆x M
=
√

g

∆x

For RiSE with a kinematically achievable ∆x = 0.02 m:

ωn = 22 rad/s = 3.5 cycles/s

If large airborne phases are allowed the body oscillation frequency would
become slower than the body spring-mass frequency, ωn. Any gains from this,
however, would be set off by the increased required deflection of the spring,
∆x, during stance.
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Summary. In this overview paper, we first survey numerical approaches to solve
nonlinear optimal control problems, and second, we present our most recent algorith-
mic developments for real-time optimization in nonlinear model predictive control.

In the survey part, we discuss three direct optimal control approaches in detail:
(i) single shooting, (ii) collocation, and (iii) multiple shooting, and we specify why we
believe the direct multiple shooting method to be the method of choice for nonlinear
optimal control problems in robotics. We couple it with an efficient robot model
generator and show the performance of the algorithm at the example of a five link
robot arm. In the real-time optimization part, we outline the idea of nonlinear model
predictive control and the real-time challenge it poses to numerical optimization. As
one solution approach, we discuss the real-time iteration scheme.

1 Introduction

In this paper, we treat the numerical solution of optimal control problems.
We consider the following simplified optimal control problem in ordinary dif-
ferential equations (ODE).

minimize
x( · ), u( · ), T

T∫

0

L(x(t), u(t)) dt + E (x(T )) (1)

subject to

x(0) − x0 = 0, (fixed initial value)
ẋ(t)−f(x(t), u(t))= 0, t ∈ [0, T ], (ODE model)

h(x(t), u(t)) ≥ 0, t ∈ [0, T ], (path constraints)
r (x(T )) = 0 (terminal constraints).

The problem is visualized in Fig. 1. We may or may not leave the horizon
length T free for optimization. As an example we may think of a robot that
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Fig. 1. Simplified Optimal Control Problem

shall move in minimal time from its current state to some desired terminal po-
sition, and must respect limits on torques and joint angles. We point out that
the above formulation is by far not the most general, but that we try to avoid
unneccessary notational overhead by omitting e.g. differential algebraic equa-
tions (DAE), multi-phase motions, or coupled multipoint constraints, which
are, however, all treatable by the direct optimal control methods to be pre-
sented in this paper.

1.1 Approaches to Optimal Control

Generally speaking, there are three basic approaches to address optimal con-
trol problems, (a) dynamic programming, (b) indirect, and (c) direct ap-
proaches, cf. the top row of Fig. 2.

(a) Dynamic Programming [5, 6] uses the principle of optimality of subarcs
to compute recursively a feedback control for all times t and all x0. In the
continuous time case, as here, this leads to the Hamilton-Jacobi-Bellman
(HJB) equation, a partial differential equation (PDE) in state space. Meth-
ods to numerically compute solution approximations exist, e.g. [34] but the
approach severely suffers from Bellman’s “curse of dimensionality” and is
restricted to small state dimensions.

(b) Indirect Methods use the necessary conditions of optimality of the infinite
problem to derive a boundary value problem (BVP) in ordinary differen-
tial equations (ODE), as e.g. described in [13]. This BVP must numerically
be solved, and the approach is often sketched as “first optimize, then dis-
cretize”. The class of indirect methods encompasses also the well known
calculus of variations and the Euler-Lagrange differential equations, and
the Pontryagin Maximum Principle [40]. The numerical solution of the
BVP is mostly performed by shooting techniques or by collocation. The
two major drawbacks are that the underlying differential equations are
often difficult to solve due to strong nonlinearity and instability, and that
changes in the control structure, i.e. the sequence of arcs where different
constraints are active, are difficult to handle: they usually require a com-
pletely new problem setup. Moreover, on so called singular arcs, higher
index DAE arise which necessitate specialized solution techniques.
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(c) Direct methods transform the original infinite optimal control problem into
a finite dimensional nonlinear programming problem (NLP). This NLP is
then solved by variants of state-of-the-art numerical optimization meth-
ods, and the approach is therefore often sketched as “first discretize, then
optimize”. One of the most important advantages of direct compared to in-
direct methods is that they can easily treat inequality constraints, like the
inequality path constraints in the formulation above. This is because struc-
tural changes in the active constraints during the optimization procedure
are treated by well developed NLP methods that can deal with inequal-
ity constraints and active set changes. All direct methods are based on a
finite dimensional parameterization of the control trajectory, but differ in
the way the state trajectory is handled, cf. the bottom row of Fig. 2.

For solution of constrained optimal control problems in real world applica-
tions, direct methods are nowadays by far the most widespread and success-
fully used techniques, and we will focus on them in the first part of this paper.

1.2 Nonlinear Model Predictive Control

The optimization based feedback control technique “Nonlinear Model Predic-
tive Control (NMPC)” has attracted much attention in recent years [1, 36],

Fig. 2. Overview of numerical methods for optimal control
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in particular in the proceess industries. Its idea is, simply speaking, to use
an open-loop optimal control formulation to generate a feedback control for
a closed-loop system. The current system state is continuously observed, and
NMPC solves repeatedly an optimal control problem of the form (1), each
time with the most current state observation as initial value x0. Assuming
that the optimal control trajectory can be computed in negligible time, we
can apply the first bit of our optimal plan to the real world system, for some
short duration δ. Then, the state is observed again, a new optimization prob-
lem is solved, the control again applied to the real system, and so on. In this
way, feedback is generated that can reject unforeseen disturbances and errors
due to model-plant-mismatch.

Among the advantages of NMPC when compared to other feedback con-
trol techniques are the flexibility provided in formulating the control objective,
the capability to directly handle equality and inequality constraints, and the
possibility to treat unforeseen disturbances fast. Most important, NMPC al-
lows to make use of reliable nonlinear process models ẋ = f(x, u) so that
the control performance can profit from this important knowledge, which is
particularly important for transient, or periodic processes. It is this last point
that makes it particularly appealing for use in robotics.

One essential problem, however, is the high on-line computational load
that is often associated with NMPC, since at each sampling instant a nonlinear
optimal control problem of the form (1) must be solved. The algorithm must
predict and optimize again and again, in a high frequency, while the real
process advances in time. Therefore, the question of fast real-time optimization
has been intensively investigated [4, 28, 51, 44, 9]. We refer to Binder et al. [10]
for an overview of existing methods. One reason why most applications of
NMPC have so far been in the process industries [42] is that there, time
scales are typically in the range of minutes so that the real-time requirements
are less severe than in mechanics. However, we believe that it is only a matter
of time until NMPC becomes an important feedback technique in robotics,
too. The second scope of this paper is therefore to present some of our latest
ideas regarding the fast real-time optimization for NMPC, which are based
on direct optimal control methods.

1.3 Paper Outline

The paper is organized as follows. In the next section we will describe three
popular direct optimal control methods, single shooting, collocation, and mul-
tiple shooting. We will argue why we believe the last method to be the method
of choice for nonlinear optimal control problems in robotics, and in Sect. 3 we
will present its coupling to an efficient robot model generator and show its
application to the time optimal point to point maneuver of a five link robot
arm. In Sect. 4 we will discuss nonlinear model predictive control (NMPC)
and show how the challenge of fast online optimization can be addressed by
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the so called real-time iteration scheme, in order to make NMPC of fast ro-
bot motions possible. Finally, in Sect. 5, we conclude the paper with a short
summary and an outlook.

2 Direct Optimal Control Methods

Direct methods reformulate the infinite optimal control problem (1) into a
finite dimensional nonlinear programming problem (NLP) of the form

min
w
a(w) subject to b(w) = 0, c(w) ≥ 0 , (2)

with a finite dimensional vector w representing the optimization degrees of
freedom, and with differentiable functions a (scalar), b, and c (both vector
valued). As said above, all direct methods start by a parameterization of
the control trajectory, but they differ in the way how the state trajectory
is handled. Generally, they can be divided into sequential and simultaneous
approaches.

In sequential approaches, the state trajectory x(t) is regarded as an implicit
function of the controls u(t) (and of the initial value x0), e.g. by a forward
simulation with the help of an ODE solver in direct single shooting [31, 45].
Thus, simulation and optimization iterations proceed sequentially, one after
the other, and the NLP has only the discretized control as optimization degrees
of freedom.

In contrast to this, simultaneous approaches keep a parameterization of
the state trajectory as optimization variables within the NLP, and add suit-
able equality constraints representing the ODE model. Thus, simulation and
optimization proceed simultaneously, and only at the solution of the NLP do
the states actually represent a valid ODE solution corresponding to the con-
trol trajectory. The two most popular variants of the simultaneous approach
are direct collocation [8] and direct multiple shooting [12].

We will present in detail the mentioned three direct approaches. As all
direct methods make use of advanced NLP solvers, we also very briefly sketch
one of the most widespread NLP solution methods, Sequential Quadratic Pro-
gramming (SQP), which is also at the core of the real-time iteration scheme
to be presented in the second part.

A Tutorial Example

For illustration of the different behaviour of sequential and simultaenous ap-
proaches, we will use the following tutorial example with only one state and
one control dimension. The ODE ẋ = f(x, u) is slightly unstable and nonlin-
ear.

minimize
x( · ), u( · )

3∫

0

x(t)2 + u(t)2 dt
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Fig. 3. Solution of the tutorial example

subject to

x(0) = x0, (initial value)
ẋ =(1 + x)x+ u, t ∈ [0, 3], (ODE model)



1 − x(t)
1 + x(t)
1 − u(t)
1 + u(t)


 ≥




0
0
0
0


 , t ∈ [0, 3], (bounds)

x(3) = 0. (zero terminal constraint).

We remark that due to the bounds |u| ≤ 1, we have uncontrollable growth for
any x ≥ 0.618 because then (1+x)x ≥ 1. We set the inital value to x0 = 0.05.
For the control discretization we will choose N = 30 control intervals of equal
length. The solution of this problem is shown in Fig. 3.

2.1 Sequential Quadratic Programming (SQP)

To solve any NLP of the form (2), we will work within an iterative Sequen-
tial Quadratic Programming (SQP), or Newton-type framework. We omit all
details here, and refer to excellent numerical optimization textbooks instead,
e.g. [39]. We need to introduce, however, the Lagrangian function

L(w, λ, µ) = a(w) − λT b(w) − µT c(w) ,

with so called Lagrange multipliers λ and µ, that plays a preeminent role in
optimization. The necessary conditions for a point w∗ to be a local optimum
of the NLP (2) are that there exist multipliers λ∗ and µ∗, such that

∇wL(w∗, λ∗, µ∗) = 0 , (3)
b(w∗) = 0 , (4)
c(w∗) ≥ 0, µ∗ ≥ 0, c(w∗)Tµ∗ = 0 . (5)
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In order to approximately find such a triple (w∗, λ∗, µ∗) we proceed iteratively.
Starting with an initial guess (w0, λ0, µ0), a standard full step SQP iteration
for the NLP is

wk+1 = wk +∆wk , (6)

λk+1 = λQP
k , µk+1 = µQP

k , (7)

where (∆wk, λ
QP
k , µQP

k ) is the solution of a quadratic program (QP). In the
classical Newton-type or SQP approaches, this QP has the form

min
∆w ∈ R

nw

1
2
∆wT Ak ∆w + ∇wa(wk)T∆w

subject to

{
b(wk) + ∇wb(wk)T∆w = 0

c(wk) + ∇wc(wk)T∆w ≥ 0

(8)

where Ak is an approximation of the Hessian of the Lagrangian,

Ak ≈ ∇2
wL(wk, λk, µk) ,

and ∇wb(wk)T and ∇wc(wk)T are the constraint Jacobians. Depending on the
quality of the Hessian approximation we may expect linear, super-linear or
even quadratic convergence. Practical SQP methods differ e.g. in the type of
globalisation strategy, in the type of QP solver used, or in the way the Hessian
is approximated – e.g. by BFGS updates or by a Gauss-Newton Hessian. This
last approach is favourable for least squares problems, as e.g in tracking or
estimation problems. When the objective is given as a(w) = ‖r(w)‖2

2, the
Gauss-Newton Hessian is given by Ak = 2∇wr(wk)∇wr(wk)T . It is a good
approximation of the exact Hessian ∇2

wL(wk, λk, µk) if the residual ‖r(w)‖2
2

is small or if the problem is only mildly nonlinear.

2.2 Direct Single Shooting

The single shooting approach starts by discretizing the controls. We might for
example choose grid points on the unit interval, 0 = τ0 < τ1 < . . . < τN = 1,
and then rescale these gridpoints to the possibly variable time horizon of
the optimal control problem, [0, T ], by defining ti = Tτi for i = 0, 1, . . . , N .
On this grid we discretize the controls u(t), for example piecewise constant,
u(t) = qi for t ∈ [ti, ti+1], so that u(t) only depends on the the finitely many
control parameters q = (q0, q1, . . . , qN−1, T ) and can be denoted by u(t; q). If
the problem has a fixed horizon length T , the last component of q disappears
as it is no optimization variable. Using a numerical simulation routine for
solving the initial value problem

x(0) = x0, ẋ(t) = f(x(t), u(t; q)), t ∈ [0, T ] ,

we can now regard the states x(t) on [0, T ] as dependent variables, cf. Fig. 4.
We denote them by x(t; q). The question which simulation routine should be



72 M. Diehl et al.

Fig. 4. Illustration of single shooting

chosen is crucial to the success of any shooting method and depends on the
type of ODE model. It is essential to use an ODE solver that also delivers
sensitivities, as they are needed within the optimization. We also discretize
the path constraints to avoid a semi-infinite problem, for example by requiring
h(x(t), u(t)) ≥ 0 only at the grid points ti, but we point out that also a finer
grid could be chosen without any problem. Thus, we obtain the following finite
dimensional nonlinear programming problem (NLP):

minimize
q

T∫

0

L(x(t; q), u(t; q)) dt + E (x(T ; q)) (9)

subject to

h(x(ti; q), u(ti; q)) ≥ 0, i = 0, . . . , N, (discretized path constraints)
r (x(T ; q)) = 0. (terminal constraints)

This problem is solved by a finite dimensional optimization solver, e.g. Se-
quential Quadratic Programming (SQP), as described above.

The behaviour of single shooting (with full step SQP and Gauss-Newton
Hessian) applied to the tutorial example is illustrated in Fig. 5. The initial-
ization – at the zero control trajectory, u(t) = 0 – and the first iteration are
shown. Note that the state path and terminal constraints are not yet satisfied
in the first iteration, due to their strong nonlinearity. The solution (up to an
accuracy of 10−5) is obtained after seven iterations. The strong points of single
shooting are (i) that it can use fully adaptive, error controlled state-of-the-art
ODE or DAE solvers, (ii) that it has only few optimization degrees of freedom
even for large ODE or DAE systems, and (iii) that only initial guesses for the
control degrees of freedom are needed. The weak points are (i) that we cannot
use knowledge of the state trajectory x in the initialization (e.g. in tracking
problems), (ii) that the ODE solution x(t; q) can depend very nonlinearly on
q, as in the example, and (iii) that unstable systems are difficult to treat.

However, due to its simplicity, the single shooting approach is very often
used in engineering applications e.g. in the commercial package gOPT [41].
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Fig. 5. Single shooting applied to the tutorial example: Initialization and first iter-
ation

2.3 Collocation

We only very briefly sketch here the idea of the second direct approach, col-
location. We start by discretizing both, the controls and the states on a fine
grid. Typically, the controls are chosen to be piecewise constant, with values
qi on each interval [ti, ti+1]. The value of the states at the grid points will be
denoted by si ≈ x(ti). In order to avoid notational overhead, we will in the
remainder of this section assume that the length of the time horizon, T , is con-
stant, but point out that the generalization to variable horizon problems by
the above mentioned time transformation is straightforward. In collocation,
the infinite ODE

ẋ(t) − f(x(t), u(t)) = 0, t ∈ [0, T ]

is replaced by finitely many equality constraints

ci(qi, si, s
′
i, si+1) = 0, i = 0, . . . , N − 1 ,

where the additional variables s′i might represent the state trajectory on inter-
mediate “collocation points” within the interval [ti, ti+1]. By a suitable choice
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of the location of these points a high approximation order can be achieved,
and typically they are chosen to be the zeros of orthogonal polynomials. But
we sketch here only a simplified tutorial case, where no intermediate variables
s′i are present, to give a flavour of the idea of collocation. Here, the additional
equalities are given by

ci(qi, si, si+1) :=
si+1 − si

ti+1 − ti
− f

(
si + si+1

2
, qi

)
.

Then, we will also approximate the integrals on the collocation intervals, e.g.
by

li(qi, si, si+1) := L

(
si + si+1

2
, qi

)
(ti+1 − ti) ≈

ti+1∫

ti

L(x(t), u(t))dt

After discretization we obtain a large scale, but sparse NLP:

minimize
s, q

N−1∑
i=0

li(qi, si, si+1) + E (sN )

subject to

s0 − x0 = 0, (fixed initial value)
ci(qi, si, si+1) = 0, i = 0, . . . , N − 1, (discretized ODE model)

h(si, qi) ≥ 0, i = 0, . . . , N, (discretized path constraints)
r (sN ) = 0. (terminal constraints)

This problem is then solved e.g. by a reduced SQP method for sparse prob-
lems [8, 48], or by an interior-point method [7]. Efficient NLP methods typi-
cally do not keep the iterates feasible, so the discretized ODE model equations
are only satisfied at the NLP solution, i.e., simulation and optimization pro-
ceed simultaneously. The advantages of collocation methods are (i) that a very
sparse NLP is obtained (ii) that we can use knowledge of the state trajectory
x in the initialization (iii) that it shows fast local convergence (iv) that it can
treat unstable systems well, and (v) that it can easily cope with state and
terminal constraints. Its major disadvantage is that adaptive discretization
error control needs regridding and thus changes the NLP dimensions. There-
fore, applications of collocation do often not address the question of proper
discretization error control. Nevertheless, it is successfully used for many prac-
tical optimal control problems [3, 50, 47, 14, 54].



Fast Optimal Robot Control 75

Fig. 6. Illustration of multiple shooting

2.4 Direct Multiple Shooting

The direct multiple shooting method (that is due to Bock and Plitt [12])
tries to combine the advantages of a simultaneous method like collocation
with the major advantage of single shooting, namely the possibility to use
adaptive, error controlled ODE solvers. In direct multiple shooting, we proceed
as follows. First, we again discretize the controls piecewise on a coarse grid

u(t) = qi for t ∈ [ti, ti+1] ,

where the intervals can be as large as in single shooting. But second, we solve
the ODE on each interval [ti, ti+1] independently, starting with an artificial
initial value si:

ẋi(t) = f(xi(t), qi), t ∈ [ti, ti+1] ,
xi(ti) = si.

By numerical solution of these initial value problems, we obtain trajectory
pieces xi(t; si, qi), where the extra arguments after the semicolon are intro-
duced to denote the dependence on the interval’s initial values and controls.
Simultaneously with the decoupled ODE solution, we also numerically com-
pute the integrals

li(si, qi) :=

ti+1∫

ti

L(xi(ti; si, qi), qi)dt .

In order to constrain the artificial degrees of freedom si to physically mean-
ingful values, we impose continuity conditions si+1 = xi(ti+1; si, qi). Thus, we
arrive at the following NLP formulation that is completely equivalent to the
single shooting NLP, but contains the extra variables si, and has a block
sparse structure.
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minimize
s, q

N−1∑
i=0

li(si, qi) + E (sN ) (10)

subject to

s0 − x0 = 0, (initial value)
si+1 − xi(ti+1; si, qi) = 0, i = 0, . . . , N − 1, (continuity)

h(si, qi) ≥ 0, i = 0, . . . , N, (discretized path constraints)
r (sN ) = 0. (terminal constraints)

If we summarize all variables as w := (s0, q0, s1, q1, . . . , sN ) we obtain an NLP
in the form (2). The block sparse Jacobian ∇b(wk)T contains the linearized
dynamic model equations, and the Hessian ∇2

wL(wk, λk, µk) is block diago-
nal, which can both be exploited in the tailored SQP solution procedure [12].
Because direct multiple shooting only delivers a valid (numerical) ODE solu-
tion when also the optimization iterations terminate, it is usually considered
a simultaneous method, as collocation. But sometimes it is also called a hy-
brid method, as it combines features from both, a pure sequential, and a pure
simultaneous method. Its advantages are mostly the same as for collocation,
namely that knowledge of the state trajectory can be used in the initialization,
and that it robustly handles unstable systems and path state and terminal
constraints.

The performance of direct multiple shooting – and of any other simultane-
ous method – is for the tutorial example illustrated in Fig. 7. The figure shows
first the initialization by a forward simulation, using zero controls. This is one
particularly intuitive, but by far not the best possibility for initialization of a
simultaneous method: it is important to note that the state trajectory is by no
means constrained to match the controls, but can be chosen point for point if
desired. In this example, the forward simulation is at least reset to the nearest
bound whenever the state bounds are violated at the end of an interval, in
order to avoid simulating the system in areas where we know it will never
be at the optimal solution. This leads to the discontinuous state trajectory
shown in the top row of Fig. 7. The result of the first iteration is shown in the
bottom row, and it can be seen that it is already much closer to the solution
than single shooting, cf. Fig. 5. The solution, cf. Fig. 3, is obtained after two
more iterations. It is interesting to note that the terminal constraint is al-
ready satisfied in the first iteration, due to its linearity. The nonlinear effects
of the continuity conditions are distributed over the whole horizon, which is
seen in the discontinuities. This is in contrast to single shooting, where the
nonlinearity of the system is accumulated until the end of the horizon, and
the terminal constraint becomes much more nonlinear than necessary. Any
simultaneous method, e.g. collocation, would show the same favourable per-
formance as direct multiple shooting here.

As said above, in contrast to collocation, direct multiple shooting can com-
bine adaptivity with fixed NLP dimensions, by the use of adaptive ODE/DAE
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Fig. 7. Multiple shooting applied to the tutorial example: Initialization and first
iteration

solvers. Within each SQP iteration, the ODE solution is often the most costly
part, that is easy to parallelize. Compared to collocation the NLP is of smaller
dimension but less sparse. This loss of sparsity, together with the cost of the
underlying ODE solution leads to theoretically higher costs per SQP itera-
tion than in collocation. On the other hand, the possibility to use efficient
state-of-the-art ODE/DAE solvers and their inbuilt adaptivity makes direct
multiple shooting a strong competitor to direct collocation in terms of CPU
time per iteration. From a practical point of view it offers the advantage that
the user does not have to decide on the grid of the ODE discretization, but
only on the control grid. Direct multiple shooting was used to solve practical
offline optimal control problems e.g. in [24, 33], and it is also used for the
calculations in this paper. It is also widely used in online optimization and
NMPC applications e.g. in [44, 43, 52, 53, 18, 25].

3 Time Optimal Control of a Five Link Robot Arm

We consider the time optimal point to point motion of a robot arm with five
degrees of freedom. Figure 8 shows the robot and its possible movements. To
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Fig. 8. Robot appearance with simplified last link and manipulator

provide a better visualization the last link and the manipulator in the images
are shorter and simplified compared to the assumed model parameters.

The robot is modelled as a kinematic chain of rigid bodies, i.e., the robot
is assumed to just consist of joints and links between them. The robot has a
rotational base joint with two degrees of freedom, followed by two links with
rotary joints, and finally one rotational joint at the “hand” of the arm. Each
of the five joints contains a motor to apply a torque ui(t). The geometric
description of the robot uses the notation of Denavit and Hartenberg [16]. To
provide the data for the dynamic calculation each link is associated with an
inertia tensor, the mass and the position of the center of mass. This approach
leads to a set of five generalized coordinates (q1(t), . . . , q5(t)) each represent-
ing a rotation in the corresponding joint. We have chosen parameters that
correspond to a small toy robot arm, and which are listed in Table 1 using
the conventional Denavit-Hartenberg notation. The corresponding equations
of motion can then be generated automatically by a script from the HuMAnS
Toolbox [29].

3.1 Fast Computations of the Dynamics of Robots

The dynamics of a robot is most usually presented in its Lagrangian form

Table 1. Dynamic data of the example robot, and Denavit-Hartenberg parameters

Joint i Mass mi c.o.m. ri Inertia tensor Ii αi ai θi di

1 0.1 (0, 0, 0)T diag(23, 23, 20) · 10−6 0 0 q1(t) 0
2 0.02 (0.06, 0, 0)T diag(7, 118, 113) · 10−6 −π

2
0 −π

2
+q2(t) 0

3 0.1 (0.06, 0, 0)T diag(20, 616, 602) · 10−6 0 0.12 π
2
+q3(t) 0

4 0.03 (0,−0.04, 0)T diag(−51,−7,−46) · 10−6 0 0.12 π
2
+q4(t) 0

5 0.06 (0, 0, 0.1)T diag(650, 640, 26) · 10−6 π
2

0 q5(t) 0
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M(q(t)) q̈(t) +N(q(t), q̇(t)) = u(t) ,

which gives a compact description of all the nonlinear phenomena and can be
manipulated easily in various ways. Since the mass matrix M(q(t)) is Sym-
metric Definite Positive, it is invertible and the acceleration of the system can
be related with the controls u(t) either in the way

u(t) = M(q(t)) q̈(t) +N(q(t), q̇(t)) (11)

or in the way
q̈(t) = M(q(t))−1

(
u(t) −N(q(t), q̇(t))

)
, (12)

corresponding respectively to the inverse and direct dynamics of the system.
Very helpful from the point of view of analytical manipulations [56], this way
of describing the dynamics of a robot is far from being efficient from the
point of view of numerical computations, neither in the form (11) nor (12).
Especially the presence of a matrix-vector multiplication of O(N2) complexity
in both (11) and(12), and of a matrix inversion of O(N3) complexity in (12)
can be avoided: recursive algorithms for computing both (11) and (12) with
only an O(N) complexity are well known today.

The first algorithm that has been investigated historically for the fast com-
putation of the dynamics of robots is the Recursive Newton-Euler Algorithm
that allows computing directly the controls related to given accelerations ex-
actly as in (11). Extensions have been devised also for cases when not all
of the acceleration vector q̈ is known, in the case of underactuated systems
such as robots executing aerial maneuvers [49]. This recursive algorithm is the
fastest way to compute the complete dynamics of a robotic system and should
be preferred therefore as long as one is not strictly bound to using the direct
dynamics (12). This is the case for collocation methods but unfortunately not
for shooting methods.

The Recursive Newton-Euler Algorithm has been adapted then in the form
of the Composite Rigid Body Algorithm in order to compute quickly the
mass matrix that needs to be inverted in the direct dynamics (12), but we
still have to face then a matrix inversion which can be highly inefficient for
“large” systems. The computation of this mass matrix and its inversion can
be necessary though for systems with unilateral contacts, when some internal
forces are defined through implicit laws [55].

The Articulated Body Algorithm has been designed then to propose a
recursive method of O(N) complexity for computing directly the accelerations
related to given torques as in (12) but without resorting to a matrix inversion.
Even though generating a slightly higher overhead, this algorithm has been
proved to be more efficient than the Composite Rigid Body Algorithm for
robots with as few as 6 degrees of freedom [26]. Moreover, avoiding the matrix
inversion allows producing a less noisy numerical result, what can greatly
enhance the efficiency of any adaptive ODE solver to which it is connected [2].
For these reasons, this recursive algorithm should be preferred as soon as one
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needs to compute the direct dynamics (12), what is the case for shooting
methods.

Now, one important detail when designing fast methods to compute nu-
merically the dynamics of a robot is to generate offline the computer code
corresponding to the previous algorithms. Doing so, not only is it possible to
get rid of constants such as 0 and 1 with all their consequences on subsequent
computations, but it is also possible to get rid of whole series of computations
which may appear to be completely unnecessary, depending on the specific
structure of the robot. Such an offline optimization leads to computations
which can be as much as twice faster than the strict execution of the same
original algorithms.

The HuMAnS toolbox [29], used to compute the dynamics of the robot for
the numerical experiment in the next section, proposes only the Composite
Rigid Body Algorithm, so far, so even faster computations should be expected
when using an Articulated Body Algorithm. Still, this toolbox produces faster
computations than other generally available robotics toolboxes thanks to its
offline optimization of the generated computer code (a feature also present in
the SYMORO software [30]).

3.2 Optimization Problem Formulation

In order to solve the problem to minimize a point to point motion of the robot
arm, we consider the following example maneuver: the robot shall pick up an
object at the ground and put it as fast as possible into a shelf, requiring a
base rotation of ninety degrees. We formulate an optimal control problem of
the form (1), with the following definitions:

x(t) = (q1(t), . . . , q5(t), q̇1(t), . . . , q̇5(t))T

u(t) = (u1(t), . . . , u5(t))T

L(x(t), u(t)) = 1
E(x(T )) = 0

f(x(t), u(t)) =

(
(q̇1(t), . . . , q̇5(t))T

M(x(t))−1 · (u(t) −N(x(t)))

)

x0 = (−0.78, 0.78, 0, 0.78, 0, 0, 0, 0, 0, 0)T

r(x(T )) = x(T ) − (0.78, 0,−0.78, 0.78, 0, 0, 0, 0, 0, 0)T

h(x(t), u(t)) =




xmax − x

x− xmin

umax − u

u− umin

(1, 0, 0, 1) ·T 0
5 (x(t)) · (0, 0, l, 1)T − 0.05

(0, 0, 1, 1) ·T 0
5 (x(t)) · (0, 0, l, 1)T + 0.15
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The controls u(t) are the torques acting in the joints. The cost functional∫ T

0
L(x, u)dt+E(x(T )) is the overall maneuver time, T . Within the dynamic

model ẋ = f(x, u), the matrix M(x(t)) is the mass matrix which is calculated
in each evaluation of f(x(t), u(t)) and inverted using a cholesky algorithm. The
vector N(x(t)) describes the combined centrifugal, Coriolis and gravitational
force. The initial and terminal constraints x(0) = x0 and r(x(T )) = 0 describe
the desired point to point maneuver. As the states and controls have lower
and upper bounds, and as the robot hand shall avoid hitting the the ground
as well as its own base, we add the path constraints h(x, u) ≥ 0. Here, the
matrix T 0

5 (x(t) describes the transformation that leads from the local end
effector position (0, 0, l, 1)T in the last frame to the absolute coordinates in
the base frame.

3.3 Numerical Solution by Direct Multiple Shooting

We have coupled the automatic robot model generator HuMAnS [29] with an
efficient implementation of the direct multiple shooting method, the optimal
control package MUSCOD-II [32, 33]. This coupling allows us to use the highly
optimized C-code delivered by HuMAnS within the model equations ẋ =
f(x, u) required by MUSCOD-II in an automated fashion. In the following
computations, we choose an error controlled Runge-Kutta-Fehlberg integrator
of order four/five. We use 30 multiple shooting nodes with piecewise constant
controls. Within the SQP method, a BFGS Hessian update and watchdog line
search globalisation is used.

For initialization, the differential states on the multiple shooting nodes
are interpolated linearly between desired initial and terminal state, as shown
in Fig. 9. The maneuver time for initialization was set to 0.3 seconds, and
the controls to zero. Starting with this infeasible initialization, the overall
optimization with MUSCOD-II took about 130 SQP iterations, altogether
requiring about 20 CPU seconds on a standard LINUX machine with a 3
GHz Pentium IV processor. The solution is shown in Fig. 10. The calculated
time optimal robot movement of 0.15 seconds duration is illustrated in Fig. 11
with screenshots from an OpenGL visualization.

4 Nonlinear Model Predictive Control

As mentioned in the introduction, Nonlinear Model Predictive Control
(NMPC) is a feedback control technique based on the online solution of open-
loop optimal control problems of the form (1). The optimization is repeated
again and again, at intervals of length δ, each sampling time tk = kδ for
the most currently observed system state x̄(tk), which serves as initial value
x0 := x̄(tk) in (1). We have introduced the bar to distinguish the observed
system states x̄(t) from the predicted states x(t) within the optimal control
problem. Note that the time tk from now on is the physical time, and no
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Fig. 9. Initalization of the optimization problem by linear interpolation

longer the time at a discretization point within the optimal control problem,
as in Sect. 2. We stress that for autonomous systems, as treated in this paper,
the NMPC optimization problems differ by the varying initial values only,
and that the time coordinate used within the optimal control problem (1) can
be assumed to always start with t = 0 even though this does not reflect the
physical time. From now on, we will denote the time coordinate within the
optimal control problem with τ in this section to avoid confusion.

To be specific, we denote the optimal solution of the optimal control prob-
lem (1) by u∗(τ ; x̄(tk)), τ ∈ [0, T ∗(x̄(tk))], to express its parametric depen-



Fast Optimal Robot Control 83

Fig. 10. Solution of the optimization problem, obtained after 130 SQP iterations
and 20 CPU seconds

dence on the initial value x̄(tk). The feedback control implemented during
the following sampling interval, i.e. for t ∈ [tk, tk+1], is simply given by
u∗0(x̄(tk)) := u∗(0; x̄(tk)).1 Thus, NMPC is a sampled data feedback con-

1 Sometimes, instead of the optimal initial control value u∗(0; x̄(tk)), the whole first
control interval of length δ, i.e., u∗(τ ; x̄(tk)), τ ∈ [0, δ], is applied to the real
process. This is more appealing in theory, and stability proofs are based on such
an NMPC formulation. When a control discretization with interval lengths not
smaller than the sampling time is used, however, both formulations coincide.
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Fig. 11. Visualization of the time optimal point to point motion from Fig. 10

trol technique. It is closely related to optimal feedback control which would
apply the continuous, non-sampled feedback law u∗0(x̄(t)) for all t, which can
be called the limit of NMPC for infinitely small sampling times δ. Note that
the optimal predicted maneuver time T ∗(xk) would typically be shrinking
for an optimal point to motion. In this case we speak of shrinking horizon
NMPC [10]. If a large disturbance occurs, the horizon might also be enlarged
as the future plan is changed. In the other case, when the horizon length is
fixed to T = Tp, where the constant Tp is the prediction horizon length, we
speak of moving, or receding horizon control (RHC) [37]. The moving horizon
approach is applicable to continuous processes and so widely employed that
the term NMPC is often used as synonymous to RHC. When a given trajec-
tory shall be tracked, this is often expressed by the choice of the cost function
in form of an integrated least squares deviation on a fixed prediction horizon.
In fast robot motions, however, we believe that a variable time horizon for
point to point maneuvers will be a crucial ingredient to successful NMPC im-
plementations. A shrinking horizon NMPC approach for robot point to point
motions that avoids that T ∗(x) shrinks below a certain positive threshold was
presented by Zhao et al. [57]. For setpoint tracking problems, extensive litera-
ture exists on the stability of the closed loop system. Given suitable choices of
the objective functional defined via L and E and a terminal constraint of the
form r(x(T )) = 0 or r(x(T )) ≥ 0, stability of the nominal NMPC dynamics
can be proven even for strongly nonlinear systems [37, 15, 38, 35].

One important precondition for successful NMPC applications, however, is
the availability of reliable and efficient numerical optimal control algorithms.
Given an efficient offline optimization algorithm – e.g. one of the three SQP
based direct methods described in Sect. 2 – we might be tempted to restart
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it again and again for each new problem and to solve each problem until a
prespecified convergence criterion is satisfied. If we are lucky, the computa-
tion time is negligible; if we are not, we have to enter the field of real-time
optimization.

The Online Dilemma

Assuming that the computational time for one SQP iteration is more or less
constant, we have to address the following dilemma: If we want to obtain a
sufficiently exact solution for a given initial value x̄(tk), we have to perform
several SQP iterations until a prespecified convergence criterion is satisfied.
We can suppose that for achieving this we have to perform n iterations, and
that each iteration takes a time ε. This means that we obtain the optimal
feedback control u∗0(x̄(tk)) only at a time tk+nε, i.e., with a considerable delay.
However at time tk + nε the system state has already moved to some system
state x̄(tk + nε) �= x̄(tk), and u∗0(x(tk)) is not the exact NMPC feedback,
u∗0(x̄(tk + nδ)). In the best case the system state has not changed much in
the meantime and it is a good approximation of the exact NMPC feedback.
Also, one might think of predicting the most probable system state x̄(tk +nε)
and starting to work on this problem already at time tk. The question of
which controls have to be applied in the meantime is still unsolved: a possible
choice would be to use previously optimized controls in an open-loop manner.
Note that with this approach we can realize an NMPC recalculation rate with
intervals of length δ = nε, under the assumption that each problem needs at
most n iterations and that each SQP iteration requires at most a CPU time
of ε. Note also that feedback to a disturbance comes with a delay δd of one
full sampling time. Summarizing, we would have δd = δ = nε.

4.1 Real-Time Iteration Scheme

We will now present a specific answer to the online dilemma, the real-time
iteration scheme [17, 20]. The approach is based on two observations.

• Due to the online dilemma, we will never be able to compute the exact
NMPC feedback control u∗0(x̄(tk)) without delay. Therefore, it might be
better to compute only an approximation ũ0(x̄(tk)) of u∗0(x̄(tk)), if this
approximation can be computed much faster.

• Second, we can divide the computation time of each cycle into a a short
feedback phase (FP) and a possibly much longer preparation phase (PP).
While the feedback phase is only used to evaluate the approximation
ũ0(x̄(tk)), the following preparation phase is used to prepare the next feed-
back, i.e., to compute ũ0(x̄(tk+1)) as much as possible without knowledge
of x̄(tk+1).

This division of the computation time within each sampling interval allows to
achieve delays δd that are smaller than the sampling interval δ, see Fig. 12.
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Fig. 12. Division of the computation time in the real-time iteration scheme; real
system state and control trajectory, for sampling time δ and feedback delay δd � δ

The crucial question is, of course, which approximation ũ0(x̄(tk)) should be
used, and how it can be made similar to the exact NMPC feedback u∗0(x̄(tk)).

In its current realization, the real-time iteration scheme is based on the
direct multiple shooting method. The online optimization task is to solve
a sequence of nonlinear programming problems of the form (10), but with
varying initial value constraint s0−x̄(tk) = 0. Similar to the NLP notation (2),
in the online context we have to solve, as fast as possible, an NLP

P (x̄(tk)) : min
w
a(w) subject to bx̄(tk)(w) = 0, c(w) ≥ 0 , (13)

where the index takes account of the fact that the first equality constraint s0−
x̄(tk) = 0 from bx̄(tk)(w) = 0 depends on the initial value x̄(tk), and where w =
(s0, q0, s1, q1, . . . , sN ). Ideally, we would like to have the solution w∗(x̄(tk)) of
each problem P (x̄(tk)) as quick as possible, and to take the NMPC feedback
law to be the first control within w∗(x̄(tk)), i.e., to set u∗0(x̄(tk)) := q∗0(x̄(tk)).
The exact solution manifold w∗( · ) in dependence of the initial value x̄(tk) is
sketched as the solid line in Fig. 13 – nondifferentiable points on this manifold
are due to active set changes in the NLP. The exact solution, however, is not
computable in finite time.

Initial Value Embedding

The major idea underlying the real-time iteration scheme is to initialize each
new problem P (x̄(tk)) with the most current solution guess from the last
problem, i.e. with the solution of P (x̄(tk−1)). In a simultaneous method like
direct multiple shooting, it is no problem that the initial value constraint
s0− x̄(tk) = 0 is violated. On the contrary, because this constraint is linear, it
can be shown that the first SQP iteration after this “initial value embedding”
is a first order predictor for the correct new solution, even in the presence of
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w 1st iteration

solution of P (x̄(tk−1))

of P (x̄(tk))
solution

2nd iteration

x̄(tk−1) x̄(tk)

Fig. 13. Exact solution manifold (solid line) and tangential predictor after initial
value embedding (dashed line), when initialized with the solution of P (x̄(tk−1)). The
first iteration delivers already a good predictor for the exact solution of P (x̄(tk))

active set changes [17]. This observation is visualized in Fig. 13, where the
predictor delivered by the first SQP iteration is depicted as dashed line.

In the real-time iteration scheme, we use the result of the first SQP itera-
tion directly for the approximation ũ0(x̄(tk)). This would already reduce the
feedback delay δd to the time of one SQP iteration, ε. Afterwards, we would
need to solve the old problem to convergence in order to prepare the next
feedback. In Fig. 13 also the second iterate and solution for problem P (x̄(tk))
are sketched. But two more considerations make the algorithm even faster.

• First, the computations for the first iteration can be largely performed
before the initial value x̄(tk) is known. Therefore, we can reduce the delay
time further, if we perform all these computations before time tk, and at
time tk we can quickly compute the feedback response ũ0(x̄(tk)) to the
current state. Thus, the feedback delay δd becomes even smaller than the
cost of one SQP iteration, δd � ε.

• Second, taking into account that we already use an approximate solution of
the optimal control problem we can ask if it is really necessary to iterate the
SQP until convergence requiring a time nε for n SQP iterations. Instead,
we will considerably reduce the preparation time by performing just one
iteration per sampling interval. This allows shorter sampling intervals that
only have the duration of one single SQP iteration, i.e., δ = ε. A positive
side-effect is that this shorter recalculation time most probably leads to
smaller differences in subsequent initial states x̄(tk) and x̄(tk+1), so that
the initial value embedding delivers better predictors.

These two ideas are the basis of the real-time iteration scheme. It allows to
realize feedback delays δd that are much shorter than a sampling time, and
sampling times δ that are only as long as a single SQP iteration, i.e. we have
δd � δ = ε. Compared with the conventional approach with δd = δ = nε, the
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3rd iteration

2nd iteration

1st iteration

w

0th iteration

x̄(tk) x̄(tk+1) x̄(tk+2) x̄(tk+3)

Fig. 14. Sketch of the real-time iterations that stay close to the exact solution
manifold (solid line)

focus is now shifted from a sequence of optimization problems to a sequence
of SQP iterates: we may regard the SQP procedure iterating uninterrupted,
with the only particularity that the initial value x̄(tk) is modified during
the iterations. The generation of the feedback controls can then be regarded
as a by-product of the SQP iterations. Due to the initial value embedding
property, it can be expected that the iterates remain close to the exact solution
manifold for each new problem. In Fig. 14 four consecutive real-time iterates
are sketched, where the dashed lines show the respective tangential predictors.

Applications

The real-time iteration scheme has successfully been used in both simulated
and experimental NMPC applications, among them the experimental NMPC
of a high purity distillation column [23] described by a 200 state DAE model
with sampling times δ of 20 seconds, or simulated NMPC of a combustion
engine described by 5 ODE, with sampling times of 10 milliseconds [27]. De-
pending on the application, the feedback delay δd was between 0.5 and 5
percent of the sampling time. Within the studies, the approximation errors
of the real-time iteration scheme compared to exact NMPC are often negli-
gible. The scheme’s theoretical contraction properties have been investigated
in [21] for the variant described in this paper, and in [22, 19] for other vari-
ants. Recently, several novel variants of the real-time iteration scheme have
been proposed that can either work with inexact jacobians within the SQP
procedure [11], or that only evaluate the jacobians on a subspace [46]. These
variants offer advantages for large scale systems where they promise to allow
sampling times that are one or two orders of magnitude smaller than in the
standard implementation. A numerical application of the standard real-time
iteration scheme to the time optimal point to point motion of a robot arm
described by 8 ODE was presented in [57], with CPU times still in the order
of 100 milliseconds per sampling time. We expect that the development of
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real-time iteration variants that are specially tailored to robotics applications
will make NMPC of fast robot motions possible within the next five years.

5 Summary and Outlook

In this tutorial paper, we have tried to give a (personal) overview over the most
widely used methods for numerical optimal control, and to assess the possi-
bility of real-time optimization of fast robot motions. We discussed in detail
direct optimal control methods that are based on a problem discretization and
on the subsequent use of a nonlinear programming algorithm like sequential
quadratic programming (SQP). We compared three direct methods, (i) direct
single shooting as a sequential approach, together with (ii) direct collocation
and (iii) direct multiple shooting as simultaneous approaches. At hand of a
tutorial example we have illustrated the better nonlinear convergence proper-
ties of the simultaneous over the sequential approaches that can be observed
in many other applications, too. The direct multiple shooting method allows
to use state-of-the-art ODE/DAE integrators with inbuilt adaptivity and er-
ror control which often shows to be an advantage in practice. At the example
of the time optimal motion of a robot arm we have demonstrated the ability
of direct multiple shooting to cope even with strongly nonlinear two point
boundary value optimization problems. Using the coupling of an efficient tool
for generation of optimized robot model equations, HuMAnS, and a state-of-
the-art implementation of the direct multiple shooting method, MUSCOD-II,
computation times for a five link robot are in the order of 200 milliseconds
per SQP iteration. Finally, we discussed the possibility to generate optimiza-
tion based feedback by the technique of nonlinear model predictive control
(NMPC), and pointed out the necessity of fast online optimization. We have
presented the real-time iteration scheme – that is based on direct multiple
shooting and SQP – as a particularly promising approach to achieve this aim.
The scheme uses an initial value embedding for the transition from one opti-
mization problem to the next, and performs exactly one SQP-type iteration
per optimization problem to allow short sampling times. Furthermore, each
iteration is divided into a preparation and a much shorter feedback phase, to
allow an even shorter feedback delay. Based on the ongoing development of
the presented approaches, we expect NMPC – that performs an online opti-
mization of nonlinear first principle robot models within a few milliseconds
– to become a viable technique for control of fast robot motions within the
following five years.
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Summary. The objective of this study is to analyze the stability of two control
strategies for a planar biped robot. The unexpected rotation of the supporting foot
is avoided via the control of the center of pressure or CoP. For the simultaneous
control of the joints and of the CoP, the system is under-actuated in the sense that
the number of inputs is less than the number of outputs. Thus a control strategy
developed for planar robot without actuated ankles can be used in this context.
The control law is defined in such a way that only the geometric evolution of the
biped configuration is controlled, but not the temporal evolution. The temporal
evolution during the geometric tracking is completely defined and can be analyzed
through the study of a model with one degree of freedom. Simple conditions, which
guarantee the existence of a cyclic motion and the convergence toward this motion,
are deduced. These results are illustrated with some simulation results. In the first
control strategy, the position of the CoP is tracked precisely, in the second one, only
the limits on the CoP position are used to speed-up the convergence to the cyclic
motion.

1 Introduction

The control of many walking robots is based on the notion of center of pressure
CoP [11, 12] also called ZMP by Vukobratovic and his co-workers [14, 13].
As long as the CoP remains inside the convex hull of the foot-support, the
supporting foot does not rotate and the contact with the ground is guaranteed.
Control strategies are often decomposed into a low level and a high level. The
low level ensures the tracking of the reference motion, and the high level
modifies the reference motion in order to ensure that the CoP remains inside
the convex hull of the foot-support.

Since the respect of the expected condition of contact with the ground is
more important than a tracking error, this kind of control strategy is interest-
ing. In many experimental works, how to modify the reference motion is not
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detailed [11], and it seems that this point has not been studied theoretically.
The modification of the reference motion has obviously an important effect
on the stability of the walking (in the sense of the convergence toward a cyclic
motion) and its robustness (in the sense of the reaction of the robot in the
presence of perturbation).

Our control strategy is based on simultaneous control of the joint and on
the evolution of the CoP position. The unexpected rotation of the supporting
foot is avoided via the control of the position of the center of pressure. Since the
joints and the position of the CoP are controlled simultaneously, the system
becomes under-actuated in the sense that the number of inputs is less than
the number of outputs. Thus a control strategy developed for planar robots
without actuated ankles can be used in this context [9, 2, 4]. An extension of
the work of Westervelt et al. [15], for the completely actuated robot based on
a prescribed evolution of the ankle torque was proposed [5]. In the proposed
study, the position of the CoP is prescribed, not the ankle torque.

The control law is defined in such a way that only the geometric evolution
of the biped configuration is controlled, but not the temporal evolution. This
strategy can be seen as an on-line modification of the joint reference motion
with respect to time in order to ensure that the position of the center of pres-
sure will be satisfying. The modification of the reference motion corresponds
to determine the acceleration along a given path1 in the joint space. This
modification is interesting in the presence of impact, because for all the pos-
sible reference motions, the configuration of the robot at impact is the same,
and the set of all the reference motions is invariant with respect to impact.
As a consequence the impact phase, and the possible variation of the instant
of impact have no disturbing effect [3].

Assuming a perfect robot model, and without perturbation, the temporal
evolution during the geometric tracking is completely defined and can be ana-
lyzed through the study of a model with one degree of freedom. The Poincaré
return map can be used to study the stability of the proposed control law.

The practical constraints on the position of the CoP do not imply that
this point follows exactly a desired path, but that the position of the CoP
evolves between some limits. Thus a second control law is proposed to speed
up the convergence to the cyclic motion. The position of the CoP is no longer
controlled but only monitored to avoid the rotation of the supporting foot [3].
In this case the control strategy is based on a heuristics proposed by Wieber
[16]. In this paper a stability study of this control law is proposed.

Section 2 presents the dynamic model of the biped. A planar biped model
with massless feet is considered. Section 3 is devoted to the formulation of
the first control strategy and to the existence of a cyclic motion. In Sect. 4
we present the second control strategy. Some simulation results are presented
in Sect. 5 in the case of a precise modeling of the robot and in Sect. 6 in the

1 The time evolution is not specified for a path.
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case of an imprecise modeling. Some properties of the two control strategies
are given in Sect. 7. Section 8 concludes the paper.

2 Bipedal Model

2.1 The Biped

The biped under study walks in a vertical sagittal xz plane. It is composed of a
torso and two identical legs. Each leg consists of two segments and a massless
foot. The ankles, the knees and the hips are one-degree-of-freedom rotational
frictionless joints. The walk is considered as single support phases separated
by impacts (instantaneous double support) with a full contact between the
sole of the feet and the ground. The angle of the supporting knee is denoted
q1. The angle of the supporting hip is denoted q2. The angle of the swing hip is
denoted q3. The angle of the swing knee is denoted q4. During swing phase the
foot is aligned horizontally thus the angle of the swing ankle can be calculated.
The supporting ankle angle allows to choose the orientation of the supporting
shank with respect to the vertical q5. Vector q = [q1, q2, q3, q4, q5]T of variables
(Fig. 1) describes the shape of the biped during single support. Since the free
foot is massless no torque is required at the swing ankle. The torque at the
supporting ankle will be treated in a special way thus it is denoted Γa = Γ5.
The torques are grouped into a torque vector Γ = [Γ1, Γ2, Γ3, Γ4, Γ5]T .
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Fig. 1. The studied biped: generalized coordinates
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In the simulation, we use the following biped parameters [2]. The lengths
of the thighs and of the shanks are 0.4 m. However, their masses are different:
6.8 kg for each thigh and 3.2 kg for each shank. The length of the torso
is 0.625 m and its mass is 17.05 kg. The center of mass are placed on the
line representing the link in Fig. 1. The distance between the joint actuator
and the center of mass is 0.1434 m for the torso, 0.163 m for the shanks, and
0.123 m for the thigh. The moments of inertia of the segments are also taken
into account, there values are defined around the joint axis, and there value
are 1.8694 kgm2 for the torso, 0.10 kgm2 for the shanks, and 0.25 kgm2 for
the thigh. The inertia of the motor of the hip and of the knee are 0.83 kgm2.
The feet is massless and have no inertia. The size of the feet are hp = 0.08 m,
lmin = 0.06 m, lmax = 0.2 m (Fig. 2).

2.2 Dynamic Modeling

The walking gait is composed of stance phases. A passive impact separates
the stance phases. The legs swap their roles from one step to the next one.
Thus the study of a step allows us to deduce the complete behavior of the
robot. Only a single support phase and an impact model are derived.

The Single Support Phase Model

Using Lagrange’s formalism, the ith line of the dynamic model for i = 1, . . . , 5
(qi is the ith element of vector q) is:

d

dt

(
∂K

∂q̇i

)
− ∂K

∂qi
+
∂P

∂qi
= Qi (1)

Fig. 2. The equilibrium of the supporting foot
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where K is the kinetic energy and P is the potential energy. The virtual work
δW of the external torques and forces, given by expression δW =

∑
Qiδqi =

QT δq, defines the vector Q of the generalized forces.
The kinetic energy K is independent of the coordinate frame chosen. Since

coordinate q5 defines the orientation of the biped as a rigid body, the inertia
matrix is independent of this variable, it depends only of “internal” variables
represented by vector qc = [q1, q2, q3, q4]T .

The dynamic model can be written:

M(qc)q̈ + h(q, q̇) = Γ (2)

where M(qc) is a (5 × 5) inertia matrix and vector h(q, q̇) contains the cen-
trifugal, Coriolis and gravity forces.

The fifth equation of system (1) is:

d

dt

(
∂K

∂q̇5

)
+
∂P

∂q5
= Γa (3)

For our planar biped and our choice of the coordinates in the single support,
the term ∂K

∂q̇5
is the angular momentum of the biped about the stance ankle

A (Fig. 2). We denote this term by σA. Thus we have:

∂K

∂q̇5
= σA = N(qc)q̇ (4)

where N(qc) is the fifth line of the inertia matrix M(qc).
The expression ∂P

∂q5
is equal to −mgxg if the abscissa of the stance ankle

is 0, m is the mass of the biped, g is the gravity acceleration. Thus the fifth
equation of the dynamic model of the biped in the single support can be
written in the following simple form:

σ̇A −mgxg = Γa (5)

The Reaction Force During the Single Support Phase

The position of the mass center of the biped can be expressed as function of
the angular coordinates vector q:

[
xg

zg

]
=

[
fxi(q)
fzi(q)

]
(6)

The vector-function fi(q) = [fxi(q) fzi(q)]T depends on vector q and on the
biped parameters (lengths of the links, masses, positions of the centers of
mass). The index i denotes the stance leg, for support on leg 1, f1(q) is used.

When leg 1 is on the ground, a ground reaction force, R1, exists. The
global equilibrium of the robot makes it possible to calculate this force:
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m

[
ẍg

z̈g

]
+mg

[
0
1

]
= R1 (7)

Equation (7) can also be written:

m
∂fx1(q)
∂q

q̈ +mq̇T ∂
2fx1(q)
∂q2

q̇ = Rx1

m
∂fz1(q)
∂q

q̈ +mq̇T ∂
2fz1(q)
∂q2

q̇ +mg = Rz1

(8)

where ∂2fx1(q)
∂q2 and ∂2fz1(q)

∂q2 are (5 × 5) matrices.

Equilibrium of the Supporting Foot

The supporting foot is exposed to the ground reaction force and the ankle
torque −Γa. The equilibrium law gives:

−Γa − lRz1 − hpRx1 = 0 (9)

Thus if the horizontal CoP position is l then the torque at the supporting
ankle is, using (7):

Γa = −l(mz̈g +mg) − hp(mẍg) (10)

The horizontal CoP position l is directly defined by the robot dynamics
as it can be seen in the following equation obtained by combining equations
(4), (5), (6), (8) and (10):

(N0(q) + lNl(q))q̈ + h0(q, q̇) + lhl(q, q̇) = 0 (11)

with

N0 = N(qc) +mhp
∂fx1(q)
∂q

Nl = m
∂fz1(q)
∂q

h0 = q̇T ∂N(qc)
∂q

q̇ −mgfx1(q) +mhpq̇
T ∂

2fx1(q)
∂q2

q̇

hl = mq̇T ∂
2fz1(q)
∂q2

q̇ +mg

The Impact Model

When the swing leg 2 touches the ground with a flat foot at the end of the
single support of leg 1, an inelastic impact takes place. We assume that the
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ground reaction force at the instant of impact is described by a Dirac delta-
function with intensity IR2

. The velocity of foot 2 becomes zero just after
the impact. Two kinds of impact can occur depending on whether the stance
leg takes off or not. Here, for simplicity, we study walking with instantaneous
double support. Thus at impact the stance leg 1 takes off and there is no im-
pulsive ground reaction force on leg 1. The robot configuration q is assumed
to be constant at the instant of impact, and there are jumps in the velocities.
The velocity vectors just before and just after impact, are denoted q̇− and q̇+

respectively. The torques are limited, thus they do not influence the instanta-
neous double support. It can be shown that the impact model can be written
as [4]:

q̇+ = E(�(q)q̇−) (12)

where �(q) is a 5× 5 matrix, and E is a permutation function describing the
legs exchange. For the following single support phase the joints are relabelled
in order to study only one dynamic model for single support (SS) and to take
into account the change on the supporting ankle.

Intensity IR2 of the impulsive reaction force is:

IR2 = m

(
∂f2(q)
∂q

�(q) − ∂f1(q)
∂q

)
q̇− (13)

3 The First Control Law

In this study, walking is considered as single support phases with a full foot
contact. While this is not a necessary condition for walking, and animals and
humans do not enforce this constraint during walking, many control algo-
rithms for bipedal robots enforce this constraint during walking in order to
prevent difficulties associated with the loss of actuation authority when the
foot rotates. To avoid foot rotation, the CoP must be inside the supporting
area [13]. In order to ensure this behavior, the CoP position is controlled to
follow a desired path ld [11], but as shown in the previous section, the posi-
tion of the CoP is directly connected to the dynamics of the motion. It is not
possible to prescribe independently a desired evolution of the joints qd(t) and
of the position of the CoP ld(t). With respect to such a task, the biped can
be seen as an under-actuated system, and the control strategy developed for
such a system can be used. Thus, the objective of the control law presented in
this section is only to track a reference path for q and l rather than a reference
motion [4]. A motion differs from a path by the fact that a motion is a tem-
poral evolution along a path. A joint path is the projection of a joint motion
in the joint space. The difference between motion and path are illustrated on
Fig. 3 for a two joint-robot.

Only a geometrical tracking is desired and a time scaling control [6] is used.
A reference joint path is assumed to be known. Thus the desired configuration
of q and l for the biped are not expressed as a function of time. But they are
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Fig. 3. The dotted lines are two motions (q1(t), q2(t)) corresponding to the same
path represented by the solid line. A path is a line in the joint space, this line can be
graduated as a function of a new variable denoted s, and then can be expressed by
(q1(s), q2(s)). This function s is defined such that the initial configuration correspond
to s = 0, the final configuration corresponds to s = 1. Any monotonic function s(t)
defines a motion corresponding to the path q(s). For example s = t/T defines a
motion of duration T . If a joint variable, for example q2, has a monotonic evolution
along the path, the path can also be parametrized by q2, in this case it can be
expressed as q1(q2)

function of the scalar path parameter s, a normalized virtual time: qd(s), ld(s).
The desired walking of the robot corresponds to an increasing function s(t).
This function. s(t) is not known a priori, the set of all the motions that
correspond to the desired path is considered.

The proposed strategy can be extended without difficulty to walking in-
cluding a rotation about the toe of the supporting foot, since this phase corre-
sponds to a motion such that the position of the center of pressure is imposed.
The main difficulty is that a sub-phase must be added [5].

3.1 Choice of a Reference Path

The reference path qd(s), ld(s) is designed in order to obtain cyclic motion of
the biped. The walk is composed of single supports separated by instantaneous
passive impacts. The legs swap their roles from one step to the next one, so
the reference path needs only to be defined for a single step. The evolution
of the path parameter s along the step k is denoted sk(t), the scalar path
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parameter sk must increase strictly monotonically with respect to time from
0 to 1.

For 0 < sk(t) < 1, the robot configuration qd(sk) is such that the swing leg
is above the ground. The swing leg touches the ground at sk = 0, 1 exactly. In
consequence for any increasing function sk(t) from 0 to 1, the configuration of
the biped at impact is the expected one. The control inputs are the torques.
The torque acts on the second derivative of q and directly on l via the dynamic
model. Thus the reference trajectory qd(sk) must be twice differentiable, but
no continuity condition exists for ld(sk). Vectors qd(0) and qd(1) describe the
initial and final biped configurations of the biped during a single support. As
the legs swap their roles from one step to the following one the desired con-
figurations are such that qd(1) = E(qd(0)) where E is a permutation function
describing the leg exchange.

The reference path is defined such that if the reference path is exactly
tracked before the impact then the reference path is exactly tracked after the
impact. If the reference path is perfectly tracked, before the impact k + 1,
the vector of joint velocities is q̇− = dqd(1)

ds ṡk(1) and after the impact, q̇+ =
dqd(0)

ds ṡk+1(0). The velocity at the end and at the beginning of the step are
connected by the impact model and the legs exchange (12). Thus we have:

dqd(0)
ds

ṡk+1(0) = E(�(qd(1))
dqd(1)
ds

ṡk(1)) (14)

We choose:
dqd(0)
ds

= E(�(qd(1))
dqd(1)
ds

α) (15)

With this choice we have the following equality: ṡk+1(0) = ṡk(1)
α .

For configuration qd(1), and vector dqd(1)
ds the amplitude of the vector

dqd(0)
ds can be modified by the choice the values of α (but not its direction).

This point will be commented in Sect. 5.1.
Some hypotheses (no sliding, no rotation of the feet, take-off of the previous

supporting leg) are made on the behavior of the robot at the impact, the
corresponding constraints on the joint trajectory can be deduced [4, 7].

3.2 Definition of the Control Law

The control law must ensure that the joint coordinates follow the joint refer-
ence path qd(s) and that the position of the CoP is ld(s). It follows from the
definition of the joints reference path that the desired velocity and acceleration
of the joint variables are:

q̇d(t) =
dqd(s(t))

ds
ṡ

q̈d(t) =
dqd(s(t))

ds
s̈+

d2qd(s(t))
ds2

ṡ2
(16)
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The increasing function s(t) defines the desired motion, but since the con-
trol objective is only to track a reference path, the evolution s(t) is free and
the second derivative s̈ will be treated as a “supplementary control input”.
Thus, the control law will be designed for a system with equal number of in-
puts and outputs. The control inputs are the five torques Γj , j = 1, . . . , 5, plus
s̈. The chosen outputs are the five angular variables of vector q(t) − qd(s(t))
and l(t) − ld(s(t)).

The control law is a non-linear control law classically used in robotics. But
in order to obtain a finite-time stabilization of one of the desired trajectories,
the feedback function proposed by Bhat and Berstein is used [1, 9]. The joint
tracking errors are defined with respect to the trajectories satisfying (16):

eq(t) = qd(s(t)) − q(t)

ėq(t) =
dqd(s(t))

ds
ṡ− q̇(t)

(17)

The desired behavior in closed loop is:

q̈ = q̈d +
1
ε2
ψ (18)

where ψ is a vector of five components ψl, l = 1, . . . , 5 with:

ψl = −sign(εėql
)|εėql

|ν − sign(φl)|φl|ν (19)

and 0 < ν < 1, ε > 0, φl = eql
+ 1

2−ν sign(εėql
)|εėql

|2−ν , ν and ε are parameters
to adjust the settling time of the controller. Taking into account the expression
of the reference motion, (18) can be rewritten as:

q̈ =
dqd(s)
ds

s̈+ v(s, ṡ, q, q̇) (20)

with

v(s, ṡ, q, q̇) =
d2qd(s)
ds2

ṡ2 +
1
ε2
ψ

For the position of the CoP, the desired closed loop behavior is:

l(t) = ld(s(t))

The dynamic model of the robot is described by eq. (2). The position of
the CoP is defined via (11). Thus the control law must be such that:

M(q)(
dqd(s)
ds

s̈+ v) + h(q, q̇) = Γ

(N0(q) + ld(s)Nl(q))(
dqd(s)
ds

s̈+ v) + h0(q, q̇) + ld(s)hl(q, q̇) = 0

(21)
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We can deduce that, in order to obtain the desired closed loop behavior,
it is necessary and sufficient to choose:

s̈ =
−(N0(q) + ld(s)Nl(q))v − h0(q, q̇) − ld(s)hl(q, q̇)

(N0(q) + ld(s)Nl(q))
dqd(s)

ds

(22)

Γ = M(q)
(
dqd(s)
ds

s̈+ v

)
+ h(q, q̇) (23)

If (N0(q) + ld(s)Nl(q))
dqd(s)

ds �= 0, the control law (22)–(23) ensures that
q(t) converges to qd(s(t)) in a finite time, which can be chosen as less than
the duration of one step [1, 9], and that l(t) = ld(s(t)). Without initial errors,
a perfect tracking of qd(s(t)) and ld(s) is obtained.

3.3 Stability Study

Our main goal is to design a control strategy that ensures a stable periodic
motion of the biped. The control law (22)–(23) ensures that the motion of the
biped converges in a finite time toward a reference path. The settling time
can be chosen to be less than the duration of the first step. Since the impact
is a geometric condition and due to the characteristics of the joints reference
path (Sect. 3.1), any step k begins with sk = 0 and finishes with sk = 1.
Since the control law is designed to converge before the end of the first step
and since the reference path is such that if the tracking is perfect before the
impact, it will be perfect afterward, after the first step a perfect tracking is
obtained. The biped with control law (22)–(23) follows perfectly the reference
path, starting from the second step. Thus:

q(t) = qd(s(t))

q̇(t) =
dqd(s)
ds

ṡ(t)

q̈(t) =
dqd(s)
ds

s̈(t) +
d2qd(s)
ds2

ṡ(t)2

l(t) = ld(s(t))

(24)

These equations define the zero dynamics corresponding to the proposed con-
trol law. To know whether a cyclic motion will be obtained, the behavior of
the evolution of ṡk(t) is studied for k = 2 . . .∞. The dynamics of s is deduced
from the dynamic model (11) with the condition (24). The acceleration s̈ is:

(Ns0(s) + ld(s)Nsl(s))s̈+ hs0(s, ṡ) + ld(s)hsl(s, ṡ) = 0 (25)

with
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Ns0 = (N(qd(s)) +mhp
∂fx1(q)
∂q

)
dqd(s)
ds

Nsl = m
∂fz1(q)
∂q

dqd(s)
ds

hs0 =

[
dqd(s)
ds

T (
∂N(q)
∂q

+mhp
∂2fx1(q)
∂q2

)
dqd(s)
ds

]
ṡ2

+
[(
N(qd(s)) +mhp

∂fx1(q)
∂q

)
d2qd(s)
ds2

]
ṡ2 (26)

− mgfx1(qd(s))

hsl = m

[
dqd(s)
ds

T
∂2fz1(q)
∂q2

dq

ds
+
∂fz1(q)
∂q

d2qd(s)
ds2

]
ṡ2 +mg

This equation along with the constraints (24) describe completely the behavior
of the system.

One single support phase begins with s = 0 and finishes with s = 1. The
evolution of ṡk+1 during the step k + 1 is uniquely defined by initial value
ṡk+1(0). The integration of (25) along one step, starting with ṡk+1(0), defines
the final value ṡk+1(1).

The single support phases are separated by impact phases; the evolution
of the zero dynamics is such that s restarts with s = 0 and ṡk+1(0) = ṡk(1)

α
(due to the definition of the reference joint path (15)). Thus the final value
of ṡk+1(1) can be easily defined numerically as a function of ṡk(1), we define
function ϕ by: ṡk+1(1) = ϕ(ṡk(1)). The existence of a cyclic motion and the
convergence to it can be studied via function ϕ as it is classically done using
the method introduced by H. Poincaré [9, 10]. The fixed point of this function
defines the cyclic velocity ṡc(1), it corresponds to the intersection between
the function ϕ and the identity function. If the norm ∆ of the slope of the
function ϕ at ṡc(1) is less than 1, then for an initial state close to the cyclic
motion, the biped motion will converge toward the cyclic motion.

If the desired evolution of the position of the CoP is piecewise constant,
the stability analysis can be conducted mostly analytically [7]. If the desired
evolution of the position of the CoP is arbitrary, the stability analysis is
conducted numerically in this chapter.

4 The Second Control Law

The physical constraint on the position of the CoP is that the position of
the CoP is between lmin and lmax but it is not necessary that l(s) follows
exactly ld(s). If a cyclic motion corresponding to qd(s), ld(s) exists, it can be
interesting to converge quickly toward this cyclic motion defined by ṡ(t) =
ṡc(t). The corresponding cyclic motion can be defined by the stability study
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of the first control law. Now we assume that the corresponding cyclic motion
is given as a function ṡc(s) for 0 ≤ s ≤ 1. To achieve this objective, the
constraint l(s) = ld(s) can be relaxed to: lmin < l(s) < lmax.

To converge toward the cyclic orbit in the phase plane s, ṡ, we define an
error between the current state and the orbit:

ev = ṡ(s) − ṡc(s) (27)

and to nullify this error the desired acceleration s̈d is chosen such that: ėv +
Kvsev = 0 where Kvs defines the convergence rate to the cyclic motion. Thus
the desired acceleration is:

s̈(s)d =
d(ṡc(s))
ds

ṡ+Kvs(ṡc(s) − ṡ(s)) (28)

But the position l of the CoP, and the acceleration s̈ are linked by the
dynamic model. And even if the constraint on l is relaxed, the condition of
non-rotation of the feet holds, and l is monitored to be within the domain
� =]lmin, lmax[ in all the control process. If the same closed loop behavior is
desired for the joint variables (22), gives:

s̈ =
−N0(q)v − h0(q, q̇) + l(Nl(q)v − hl(q, q̇))

N0(q)
dqd(s)

ds + lNl(q)
dqd(s)

ds

(29)

where l must be chosen such that l ∈ �. Differentiating (29) with respect to l
shows that s̈ is monotonic with respect to l. Thus the limits lmin < l < lmax

can be easily transformed with limits on s̈. For this purpose, the extreme
values for s̈ are defined as follows:

u1 =
−N0(q)v − h0(q, q̇) + lmin(Nl(q)v − hl(q, q̇))

N0(q)
dqd(s)

ds + lminNl(q)
dqd(s)

ds

u2 =
−N0(q)v − h0(q, q̇) + lmax(Nl(q)v − hl(q, q̇))

N0(q)
dqd(s)

ds + lmaxNl(q)
dqd(s)

ds

(30)

For given values of s, ṡ, two cases occur depending on whether the de-
nominator can be zero or not for l ∈ �. The denominator is zero for

l(s) = −N0(q)
dqd(s)

ds

Nl(q)
dqd(s)

ds

. If for any l such that l ∈ �, the denominator of

eq. (29) is not zero, then s̈ is bounded for any acceptable value l and
min(u1, u2) < s̈ < max(u1, u2). If for one value l such that l ∈ �, the de-
nominator of eq. (29) is zero, then s̈ is unbounded and s̈ cannot be in the
interval ]min(u1, u2),max(u1, u2)[ with acceptable values of l.

Thus the proposed control law is the following: like the previous control
law, the reference path qd(s) is tracked using eq. (23) but eq. (22), which
corresponds to the constraint l(s) = ld(s), is replaced by the following:
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if −N0(q)
dqd(s)

ds

Nl(q)
dqd(s)

ds

< lmin or − N0(q)
dqd(s)

ds

Nl(q)
dqd(s)

ds

> lmax then

s̈ =





min(u1, u2), if s̈d < min(u1, u2)
max(u1, u2), if s̈d > max(u1, u2)
s̈d, otherwise

if lmin < −N0(q)
dqd(s)

ds

Nl(q)
dqd(s)

ds

< lmax then

s̈ =





min(u1, u2), if min(u1, u2) < s̈d ≤ u12

max(u1, u2), if u12 < s̈d < max(u1, u2)
s̈d, otherwise

(31)

where u12 = min(u1,u2)+max(u1,u2)
2 . This control law ensures a convergence to

the cyclic motion with a convergence rate defined by Kvs under the constraint
l ∈ �.

The control law (31), (23) ensures that q(t) converges to qd(s(t)) in a
finite time, which can be chosen less than the duration of one step [1, 9], and
ensures that l ∈ �. The biped with control law (31), (23) follows perfectly the
reference path after this first step. To know if a cyclic motion will be obtained,
the behavior of the evolution of ṡk(t) is studied for k = 2 . . .∞ and for an
initial velocity ṡ2(0). The stability analysis is done numerically like for the
first control law.

The convergence rate to the cyclic motion depends on the choice of the
valueKvs. Higher values ofKvs speed up convergence toward the cyclic motion
if there is no saturation due to the limits on l.

5 Walking Simulation using Correct Model Parameters

5.1 A Reference Path

The proposed control law was tested on the reference path corresponding to
the stick-diagram presented in Fig. 4, for the biped presented in Fig. 1. The
joint path qd(s) is defined by a fourth order polynomial evolution with respect
to s.

This reference path has been defined to produce an optimal cyclic motion
for the robot Rabbit [2], this robot has the same physical property that the
robot described in Sect. 2 but Rabbit has no feet (hp = 0, l = 0). As the
studied robot has feet, and a linear evolution of the position of the CoP is
considered, the existence of a cyclic motion is not ensured and if it exists it is
of course not optimal.

For the robot without feet, the optimization process is described in [8]. The
reference path is described by an instantaneous double support configuration
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Fig. 4. The stick diagram of the desired trajectory. The configuration of the robot
are drawn for s = 0, 0.05, 0.1, 0.15 . . . , 0.95, 1. Thus a sequence of pictures of the
robot are given. The desired motions of the robot are such that the configuration of
the robot coincides at some instant to each picture, but it is not imposed that these
instants are equally distributed in the period of one step

qd(1), the final direction of the joint velocity qd(1)
ds , an intermediate single sup-

port configuration qd(0.5), and α. The initial double support configuration is
defined by permutation: qd(0) = Eqd(1). The direction of the initial velocity
is defined by equation (15). Then the desired path is determined by a poly-
nomial 4th order function of s connecting these configurations and velocities.
The integral of the norm of the torque for the cyclic motion is minimized for
a given advance velocity. The free leg tip must be above a sinusoidal function
with a maximum of 5 cm. The limit of the actuator are taken into account
(maximal torque less than 150 Nm). The reference path corresponding to the
Fig. (4) is obtained for given advance velocity vel = 1.41 ms−1. The opti-
mal solution is such that: qd(1) = [5.73◦ 185.08◦ 40.43◦ 133.33◦ 25.81◦]T ,
qd(1)

ds = [3.57◦s−1 32.60◦s−1 − 61.60◦s−1 0.09◦s−1 29.50◦s−1]T , qd(0.5) =
[19.97◦ 161.22◦ 42.51◦ 154.93◦ 17.72◦]T and α = 1.98

5.2 The First Control Law

For this joints path, a linear evolution of the CoP position is chosen. When s
varies from 0 to 1, ld varies from −0.06 m to 0.18 m.

The control law imposes that q(s) = qd(s), l(s) = ld(s) after the first step.
The stability of the complete system is determined by the evolution of s(t). It
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Fig. 5. The phase plane for the zero dynamics (25) on single support: ṡ against s

can be described in a phase plane s, ṡ for 0 ≤ s ≤ 1 initialized with different
values for ṡ. For example, the phase plane is shown in Fig. 5.

For a sufficiently high initial velocity ṡ(0), successful stepping pattern
can be achieved. At low initial velocity ṡ(0), the robot falls back. Taking
the impact phase into account (here α = 1.98), the Poincaré return map
ṡk+1(1) = ϕ(ṡk(1)) is drawn in Fig. 6. For the example the cyclic motion
is such that ṡc(1) = 3.9 s−1. The corresponding average motion velocity is
vel = 1.5 m/s. The slope of function ϕ is estimated numerically: ∆ = 0.68; it
is less than 1, thus the proposed control law is stable. The minimal value and
the maximal value of the velocity ṡk(1) such that the step can be achieved
are defined numerically. For smaller initial velocities the biped falls back, for
higher velocities the biped takes off since the normal ground reaction vanishes.

Assuming no modeling error and initializing the state of the biped out of
the periodic orbit (with an initial velocity 60% higher than the cyclic value),
the results of one simulation for 20 walking steps are illustrated in Fig. 7.
The convergence toward a cyclic motion can be shown for the five joints via
their evolution in their phase plane. For example the evolution of the trunk
is shown in Fig. 7-a. This convergence is also illustrated via the evolution of
the position of the CoP with respect to time in Fig. 7-b. For each step, this
evolution is linear from −0.06 m to 0.18 m, but the duration of the step varies.
At the beginning;, the steps are faster and then a cyclic behavior is obtained.
Figure 7-c presents the time-history of ṡ, it clearly converges toward a cyclic
motion, the final value of ṡ before each impact is the cyclic value obtained on
the Poincaré map.
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Fig. 6. The Poincaré map: ṡk+1(1) = ϕ(ṡk(1))
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Fig. 7. The convergence toward a cyclic motion is observed in simulation with the
proposed control law, without modeling error. (a) The trunk evolution is drawn
in its phase phase (the absolute trunk velocity with respect to the absolute trunk
orientation), at impact the velocity changes but not the orientation. It tends toward
a limit cycle. (b) During each step, the horizontal position of the CoP with respect
to time l(t) evolves from −0.06 m to 0.18 m. The duration of the step tends toward
a constant value. (c) ṡ(t) tends toward a cyclic motion
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Fig. 8. The phase plane for the zero dynamics on single support, (31), for the second
control law with Kvs = 20

5.3 The Second Control Law

The second control law was tested on the same reference trajectory qd(s). The
desired evolution of ṡ(s) is the cyclic motion corresponding to the previous
control law.

The control law imposes some constraints q(s) = qd(s) that are assumed
to be perfectly respected. The free dynamics that results from imposing these
constraints on the system configuration are described by s, ṡ and eq. (31) can
be represented in the phase plane. The phase plane is shown in Fig. 8 for
Kvs = 20.

The convergence toward the cyclic motion is clear when Figs. 5 and 8 are
compared. When Kvs = 20, for initial velocities varying from 1.4 to 2.8, the
cyclic motion is reached in one step. This feature gives a horizontal behavior
of the Poincaré map about the fixed point. The motion can be initiated with
a lower velocity ṡ(0) than for the first control law because when the current
motion converges toward the cyclic motion, it helps prevent the biped from
falling back.

The control strategy is properly illustrated by the evolution of l(s) cor-
responding to the evolution of the biped for various initial velocities ṡ(0) in
Fig. 9. When the real motion of the biped is slower than the cyclic one, the
position of the CoP is moved backwards to increase the motion velocity until
the limit lmin is reached. When the real motion of the biped is faster than the
cyclic one, the position of the CoP is moved forwards to decrease the motion
velocity until the limit lmax is reached. With a high gain, the position of the
CoP is on the limit almost all the time

The single support phases are separated by impact phases. The Poincaré
return maps can be deduced and are presented in the Fig. 10, for Kvs = 2
and Kvs = 20.
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Fig. 9. The evolution of the position of the CoP l(s), for various initial velocities
ṡ(0), for the second control law with Kvs = 20
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Fig. 10. The Poincaré return map for the second control law with Kvs = 2 (solid
line) and Kvs = 20 (dotted line), ṡk+1(1) is shown against ṡk(1))

Since this control law is defined to obtain convergence toward the cyclic
motion corresponding to the first control law, the fixed point of the Poincaré
maps is the same (see Figs. 6, 10). The minimal and maximal values of the
velocity ṡk(1) such that the step can be achieved are defined numerically. It
can be noted that the minimal initial velocity is lower for the second control
strategy than for the first one. With Kvs = 2, at the fixed point the slope is
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Fig. 11. The convergence toward a cyclic motion is observed in simulation with the
second control law, with Kvs = 20, without modeling error. (a) The trunk evolution
is drawn in its phase phase (the absolute trunk velocity with respect to the absolute
trunk orientation), it tends toward a limit cycle. (b) The horizontal position of the
CoP with respect to time l(t) is bounded. It tends toward the same cyclic evolution
as in Fig. 7(b). (c) ṡ(s) tends toward to the same cyclic motion as in Fig. 7(c)

about ∆ = 0.23; it is less than the value obtained for the first control law thus
the convergence is faster. For Kvs = 20 the convergence is so fast that the
slope is close to horizontal at the fixed point, in one step the cyclic motion
is almost joined. When the initial velocity is far beyond the cyclic one, the
constraint on l produces a saturation on s̈ almost all the time, thus almost
the same behavior is obtained with Kvs = 2 or Kvs = 20.

Assuming no modeling error and initializing the state of the robot out of
the periodic orbit (with an initial velocity 60% higher than the cyclic value),
the results of one simulation for 20 walking steps of the robot are illustrated
in Fig. 11. The convergence toward a cyclic motion can be shown for the trunk
via its evolution in its phase plane (Fig. 11-a). In one step the cyclic motion is
reached. This convergence is also illustrated via the evolution of the position
of the CoP with respect to time (Fig. 11-b). To slow down the motion, for
the first step, the position of the CoP stays on the front limit (lmax). After
the evolution of the CoP corresponds to the desired cyclic one, it is linear
from −0.06 m to 0.18 m. Figure 11-c presents the evolution of ṡ with respect
to time, it clearly converges toward the desired cyclic motion.
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6 Control of Walking with Imprecise Model Data

In practice the robot parameters are not perfectly known. We assume that we
have some errors on the masses and consequently on the inertia moments of
the robot links. We simulate the following case of errors:

• the mass errors are: +10% for the thighs, +30% for the shanks and +50%
for the trunk. The error on the inertia moment of the trunk is +30%;

• since the reference path is designed with a false model, the velocity after
the impact is not the expected one;

• as the position l of the CoP is calculated via the dynamic model, l(s) will
not be exactly ld(s).

This choice of errors is arbitrary. We choose that the real robot is heavier
than the model used in the control law, this point is commented.

6.1 The First Control Law

Initializing the state of the robot in the same conditions as in 5.2; the behavior
obtained for 20 walking steps is presented in Fig. 12. Some tracking errors exist
particularly at the beginning of each step due to the effect of impact, thus
the path followed is not exactly the expected one (but the tracking errors
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Fig. 12. The convergence toward a cyclic motion is observed in simulation with
the proposed control law, with modeling error. (a) The trunk evolution is drawn
in its phase phase (the absolute trunk velocity with respect to the absolute trunk
orientation), it tends toward a limit cycle. (b) The horizontal position of the CoP
with respect to time l(t) tends toward a cyclic evolution different from Fig. 11(b).
(c) ṡ(s) tends toward a cyclic motion different from the motion in Fig. 7(c)
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are cyclic). The convergence toward a cyclic motion is shown for the trunk
evolution via its phase plane in Fig. 12-a. This convergence is also illustrated
via the evolution of ṡ with respect to s in Fig. 12-c, it clearly converges toward
a stable cyclic motion. The cyclic motion is close to the expected one but not
exactly the same, because it is the result of the motion of the CoP and of
the dynamic model. Since the real robot is heavier than the robot’s model
used, we have greater ground reaction forces; consequently the real evolution
l of the CoP in Fig. 12-b varies between extreme values smaller in absolute
value than the desired values. The difference between l(s) and ld(s) is higher
for large value of ṡ. In this case there is no problem because constraints of
equilibrium of the supporting foot are always satisfied. Otherwise if the real
robot was lighter than the modeled one, the CoP could be outside the sole
and the constraints of equilibrium of the supporting foot could be violated. So
a security margin is necessary when the minimum and the maximum values
for the CoP evolution are defined. The best way is to define lmin and lmax

with some margins with respect to real size of the foot (see Fig. 2).

6.2 The Second Control Law

In order to illustrate some robustness properties of the second control law
proposed in (Sect. 4), we test the same modeling error as in Sect. 6.

• Since the reference path is designed with a false model, the velocity after
the impact is not the expected one;

• In the case of perfect modeling the control law (31) assumes that the
limits on s̈ corresponds to lmin < l < lmax. But this relation is based on
the dynamic model, since the dynamic model is not perfectly known, this
transformation will induce some errors.

A simulation of 20 walking steps is presented in Fig. 13. The biped state is
initialized out of the periodic orbit (with an initial velocity 60% higher than
the cyclic value). The convergence toward a cyclic motion can be shown via the
trunk evolution in its phase plane in Fig. 13-a; some errors can be observed at
the impact times. The convergence toward the cyclic motion can be also shown
in Fig. 13-b via the evolution of the CoP with respect to time. The evolution
of the CoP is not the expected one even if the evolution of ṡ converges clearly
toward the expected cyclic motion with the end of the second step (Fig. 13-c
and 12-c).

In the presence of modeling errors, the two control laws will not give the
same cyclic behavior. Due to the second control law, ṡ will converge toward
ṡc, and the average velocity of the robot does not change, which is not the
case for the first control law.
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Fig. 13. The convergence toward a cyclic motion is observed in simulation with the
second control law, with Kvs=20, with modeling errors. (a) The trunk evolution is
drawn in its phase phase (the absolute trunk velocity with respect to the absolute
trunk orientation), it tends toward a limit cycle. (b) The horizontal position of the
CoP with respect to time l(t) is bounded. It tends toward a cyclic evolution different
from Fig. 11(b). (c) ṡ(s) tends toward to the same cyclic motion as in Fig. 7(c)

7 Discussion Section

Even if the stability studies for the two proposed control laws are conducted
numerically for the examples, based on the analytical study of the robot with-
out feet [4] and on the case of a desired piecewise evolution of the position
of the center of pressure [7], and also based on numerous simulations, some
general conclusions can be given:

• For the first control law, the choice of ld(s) has a large effect on the ex-
istence of a cyclic motion and on the average velocity of the robot. If the
position of the CoP is moved forward, the average velocity of the cyclic
motion is slowed down. This property is limited: if the position of the
CoP is too much forward, no cyclic motion exists. In order that the robot
walks faster, a simple solution is to move the desired evolution of the CoP
backward.

• The stability property of the first control strategy is essentially due to the
fact that the vertical velocity of the center of mass is directed downward
just before the impact [4], [7]. Thus this property depends essentially on
the choice of qd(s).
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• A larger variation of ld(s) during one step has two effects, the basin of
attraction of the control law is slightly increased, the convergence rate is
slightly decreased.

• For the first control law, the control speed ṡ is not directly controlled, as
shown in Fig. 5, but only stabilizes step by step. The impact phase has a
key role in this stabilization. For the example, if the single support phase
can be achieved, ṡ increases non linearly during the single support and
decreases linearly during the impact phase, thus a stable speed is reached
as in a passive walking.

• When the desired joint references and the desired position of the center
of pressure are defined, since they are not function of time, we do not
have to worry about the dynamic consistency. The joints reference need
only to be twice differentiable and to satisfy the start and stop conditions
corresponding to the impact model. The second derivative of s is calculated
to satisfy the dynamic consistency.

• In the development of the control, a finite time controller is defined in
eq. (18), to insure a fast convergence to the zero dynamic manifold. Such a
controller is not required for the simulation and experiments. The dynamic
model is used to calculate the position of the CoP and the admissible limits,
for the experiments because it implies that the dynamic model must be
“correctly” known. The robustness tests (Sect. 6) have demonstrated that
an acceptable behavior can be obtained in the presence of an imprecise
model.

• For the second control law, an arbitrary function ṡc(s) can be chosen even
if ṡc(1)

ṡc(0)
�= α. If this function ṡc(s) is not consistent with the constraint

on the dynamic model (lmin < l(s) < lmax), the closed loop system will
converge to an evolution “close” to ṡc(s) but consistent with the constraint
on the dynamic model. This can be used to choose faster or slower motion.
For the proposed example, if we choose ṡc = 1, we obtain a cyclic motion
with an average velocity of 0.51 ms−1, the CoP position is in the forward
part of the feet and often on the toe limit. If we choose ṡc = 4 we obtain
a cyclic motion with an average velocity of 1.5 ms−1, the CoP position is
often in the limit of the foot.

• The proposed control laws can be extended to walking including rotation
of the foot about the toe [5].

• We hope that the second control strategy can be directly used for robot
walking in 3D, even if the position of the CoP is limited in the sagittal
and frontal plane.

8 Conclusion

For a planar biped, the proposed control strategy consists in the tracking of a
reference path instead of a reference motion for the joints and for the position
of the CoP. The biped adapts its temporal evolution according to the dynamic
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constraint that relies the position of the CoP and the joint acceleration. In
this context a complete study has been presented.

The conditions of stability are inequalities. Thus a certain robustness is
naturally contained in the proposed control strategy. In spite of tracking errors
and/or modeling errors, the behavior of the biped converges to a cyclic motion.
In the presence of modeling errors, the obtained cycle is slightly modified with
respect to the predicted cycle, but stable walking is obtained as it has been
observed in simulation.

Two control strategies have been proposed. In the first case, the CoP is
constrained to be a function of the robot configuration and the geometric
evolution of the joints are controlled, but the temporal evolution is free; the
natural convergence toward a cyclic motion is used. In the second case, the
convergence to the cyclic motion is forced by using the CoP as a control input
to correct for errors in the configuration speed, ṡ, and the limits on the CoP
position are used lmin < l < lmax.
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Summary. This paper first introduces a multi-locomotion robot with high mobil-
ity and then proposes Passive Dynamic Autonomous Control (PDAC) for the com-
prehensive control method of multiple types of locomotion. PDAC is the method
to take advantage of the robot inherent dynamics and to realize natural dynamic
motion. We apply PDAC to a biped walk control. On the assumption that the sagit-
tal and lateral motion can be separated and controlled individually, each motion
is designed based on the given desired step-length and period. In order to stabilize
walking, the landing position control according to the status is designed. In addition,
a coupling method between these motions, which makes the period of each motion
identical, is proposed. Finally, we show that the multi-locomotion robot realizes the
3-dimensional dynamic walking using the PDAC control.

1 Introduction

In recent years there have been many successful researches that focus on dy-
namic and skillful motions inspired by animal dexterity [13, 15, 16, 21, 27].
However, in general, they were mainly focused on a single type of motion, such
as biped or quadruped locomotion. On the other hand, many animals, such as
primates, use a primary form of locomotion but switch to other types depend-
ing on their surroundings, situation and purpose. For instance, a gorilla has
high mobility in a forest by selecting a bipedal walking in a narrow space, a
quadrupedal walking on rough terrain and a brachiation in the forest canopy.
Inspired by high mobility of an animal, we have developed a anthropoid-like
“Multi-locomotion robot” that can perform several types of locomotion and
choose the proper one on an as-need basis (Fig. 1) [12]. A development of a
bio-inspired robot which has multiple types of locomotion for high mobility
is challenging, because other problems arise in addition to research topics on
humanoid robot study. One is a comprehensive control architecture that is
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Brachiation

Quadruped LocomotionBiped Locomotion

Fig. 1. Concept of the multi-locomotion robot

capable to achieve multiple types of locomotion. A common control architec-
ture should be designed when the robot achieves a seamless transient motion
connecting one locomotion to another such as a transient from trot to gallop,
because a transient motion between typical types of locomotion can not be
realized by fusing control signals from the corresponding controllers. Based
on this notion, we have proposed a novel method named Passive Dynamic
Autonomous Control (PDAC) [2, 3] that achieves not only a bipedal walk
but also a quadrupedal walk. This paper focuses on the PDAC algorithm and
control method for the bipedal walk.

A lot of research of ZMP-based control [31] has been presented [19, 28].
However, ZMP-based control could not realize an efficient locomotion since it
does not take advantage of the robot inherent dynamics. To solve this prob-
lem, it is necessary to develop a dynamics-based method. Some researchers
proposed a method to use the robot dynamics directly by making the point-
contact between a robot and the ground [7, 14, 21, 33]. Miura and Shimoyama
[17] presented a stilt-like biped and control method to stabilize the gaits by
changing the robot posture at foot-contact. Kajita et al. [13] proposed a con-
trol method based on the conserved quantity introduced due to a horizon-
tal COG (Center Of Gravity) trajectory. Goswami et al. [6, 29] reported a
method to realize quasi-passive walking on the horizontal ground. Grizzle and
Westervelt et al. [8, 20, 32] proposed a control method of an underactuated
planar robot with a trunk and proved its stability. Although some of these
point-contact methods actually realized smooth dynamic walking, their walk-
ing was 2-dimensional or that of a robot without trunk. Thus, the main goal
of a biped walk is to propose the new control method based on point-contact
and realize 3-dimensional dynamic walking of a multiple link robot with a
trunk.
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In this paper, we introduce the novel control method named Passive
Dynamic Autonomous Control (PDAC). PDAC assumes the two following
premises: 1) point-contact 2) interlocking. The second premise means that the
angles of the robot joints are connected with the angle around contact point.
Although this concept was proposed first by Grizzle et al. [8], we propose
another new method to control the robot dynamics by means of PDAC. The
approach of PDAC is to describe the robot dynamics as a 1-DOF autonomous
system, which is the dynamics around the contact point. This approach makes
it possible to calculate the period from foot-contact to next foot-contact (we
term this foot-contact period hereinafter), hence the foot-contact period of the
lateral motion and that of the sagittal one can be made identical. Each mo-
tion is designed by means of PDAC based on the assumption that the sagittal
and lateral motions can be separated. After that, by keeping the conservative
quantity of the autonomous system, the walking motion is stabilized. In addi-
tion, we propose a coupling method of each motion to make each foot-contact
period identical. Finally, by means of the proposed method, 3-dimensional
natural dynamic walking based on the robot inherent dynamics is achieved.

In the following section, the multi-locomotion robot is introduced and then
PDAC is explained in detail in Sect. 3. The 3-dimensional walking is designed
by means of PDAC in Sect. 4. Section 5 describes the experimental results.
Finally, Sect. 6 is conclusion.

2 Multi–Locomotion Robot

The dimensions of the multi-locomotion robot we developed is designed based
on those of a gorilla, and therefore the robot is called “Gorilla Robot III”.
Figure 2 shows the overview of Gorilla Robot III and its link structure. This
robot is about 1.0 [m] tall, weighs about 22.0 [kg], and consists of 25 links
and 26 AC motors including two grippers. The real-time operating system
VxWorks (Wind River Systems Inc) runs on a Pentium III PC for processing
sensory data and generating its behaviors. The rate gyroscope and force sensor
attached at each wrist measures the angular velocity around the grasping bar
to calculate the pendulum angle during the brachiation, and reaction forces
from grasping bars in order to judge whether the robot successfully grasps the
bar or not, respectively. Some photo sensors are attached on the sole in order
to perceive foot-contact.

This robot has been designed to perform biped locomotion, quadruped lo-
comotion and brachiation. We also consider the intermediate motion between
a bipedal and quadrupedal walk in order to realize seamless transfer from a
bipedal walk to a quadrupedal walk and from a quadrupedal walk to a bipedal
walk without pause. As the first step, we designed the controller for both loco-
motion using the same algorithm “PDAC”. The snapshot of the quadrupedal
walk is shown in Fig. 3, and a bipedal walk is shown in Sect. 5. Brachiation
is an interesting form of locomotion performed by long-armed apes by using
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Fig. 2. Gorilla Robot III

their arms to swing from branch to branch. This motion is a dynamic and
dexterous action routinely performed by some kinds of apes [26, 30]. Fukuda
et al. developed a six-link brachiation robot [4] as a pioneering research ana-
lyzing dynamics of brachiation, “Brachiator II” [5, 9, 18, 22, 23] that is 2-link
underactuated system like “Acrobot” [1, 27], and “Brachiator III” [10, 24]
that achieves three-dimensional brachiation with redundant mechanisms.

Based on these studies, we designed over-hand and side-hand motions of
“Gorilla Robot II” [12], using a motion learning algorithm, and “Gorilla Robot
III” achieves a continuous brachiation shown in Fig. 4 by implicitly using the
PDAC method in locomotion action control.

3 Passive Dynamic Autonomous Control

3.1 Target Dynamics

The concept of PDAC is the same as what Grizzle et al. [8] has proposed.
We begin with the two following premises. First, the contact state between
a robot and the ground is point-contact. Second, robot joints are interlocked
with the angle around the contact point. The first premise means that the first
joint of a robot, i.e. the ankle joint of the stance leg, is passive. The second
means that the angles of active joints are described as a function of the angle
around the contact point. Assuming that PDAC is applied to the serial n-link
rigid robot shown in Fig. 5, these two premises are expressed as follows:

τ1 = 0 (1)
Θ = [θ1, θ2, · · · , θn]T = [f1(θ), f2(θ), · · · , fn(θ)]T = f(θ) , (2)
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Fig. 3. Snapshots of the quadrupedal walking of PDAC. The step length is about
0.09 [m] and velocity is about 0.176 [m/s]

where θ is the angle around the contact point in the absolute coodinate system.
Since it has no effect on the robot dynamics due to point-contact, level ground
is assumed, therefore θ1 = f1(θ) = θ.

The dynamic equations of this model are given by

d

dt

(
M(Θ)Θ̇

)
−

1

2

∂

∂Θ

(
Θ̇T M(Θ)Θ̇

)
− G(Θ) = τ , (3)

where M(Θ) = [M1(Θ),M2(Θ), · · · ,Mn(Θ)]T , Θ = [θ1, θ2, · · · , θn]T , G(Θ) =
[G1(Θ), G2(Θ), · · · , Gn(Θ)]T , τ = [τ1, τ2, · · · , τn]T , ∂

∂Θ = [ ∂
∂θ1

, ∂
∂θ2

, · · · , ∂
∂θn

]T .
Since in this model the dynamic equation around the contact point has no
term of the Coriolis force, it is given as

d

dt

(
M1(Θ)Θ̇

)
− G1(Θ) = τ1 . (4)

By differentiating Eq. (2) with respect to time, the following equation is ac-
quired,
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(1) t=1.00[s] (2) t=1.49[s] (3) t=2.16[s] (4) t=3.31[s]

(5) t=3.97[s] (6) t=5.13[s] (7) t=5.95[s] (8) t=6.94[s]

(9) t=7.77[s] (10) t=8.76[s] (11) t=9.74[s] (12) t=10.57[s]

(13) t=11.40[s] (14) t=12.39[s] (15) t=13.21[s] (16) t=14.70[s]

Fig. 4. Snapshots of continuous brachiation. All bars are set at regular intervals of
0.4 m and at the same height of 2.7 m
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Fig. 5. Mechanical model of the serial n-link rigid robot. θi and τi are the angle
and the torque of the ith joint respectively. mi and Ji are the mass and the moment
of inertia of the ith link respectively
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Θ̇ =
∂f(θ)
∂θ

θ̇ =
[
∂f1(θ)
∂θ

,
∂f2(θ)
∂θ

, · · · , ∂fn(θ)
∂θ

]T

θ̇ . (5)

Substituting Eqs. (1), (2) and (5) into Eq. (3) yields the following dynamic
equation,

d

dt

(
M(θ)θ̇

)
= G(θ) , (6)

where

M(θ) := M1

(
f(θ)

)df(θ)
dθ

(7)

G(θ) := G1

(
f(θ)

)
. (8)

By multiplying both sides of Eq. (6) by M(θ)θ̇ and integrating with respect
to time, the dynamics around the contact point is obtained as follows:

∫ (
M(θ)θ̇

) d
dt

(
M(θ)θ̇

)
dt =

∫
M(θ)G(θ)θ̇ dt (9)

⇐⇒ θ̇ =
1

M(θ)

√∫
2G(θ)M(θ) dθ . (10)

Assuming that the integration in right side of Eq. (10) is calculated as∫
G(θ)M(θ) dθ = D(θ) + C, Eq. (10) is described as the following 1-DOF

autonomous system,

θ̇ =
1

M(θ)

√
2
(
D(θ) + C

)
(11)

:= F (θ) . (12)

In this paper, we term Eqs. (11) and (12) the target dynamics.

3.2 Dynamics Interlocking

As mentioned previously, PDAC is based on the two premises: passivity and
interlocking. These premises make it possible to describe the whole robot dy-
namics as a 1-DOF autonomous system, owing to which the simple and valid
controller based on the robot dynamics can be composed. However, inter-
locking of joint angles has the possibility to create a problem that the robot
vibrates and the controller loses its stability during locomotion, especially at
foot-contact, since if the passive joint vibrates, all of other active joints also
do. In order to solve this problem, all of the robot joints are controlled ac-
cording to the desired dynamics of each joint derived from the interlocking
function Eq. (2) and the target dynamics Eq. (12) as follows:

θ̇i =
∂fi

∂θ
F
(
f−1

i (θi)
)

(i = 1, 2, 3, · · · ) . (13)
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These desired dynamics are independent from each other, thus it is necessary
to connect the desired dynamics of the active joints with the target dynamics
in order to prevent the whole walking motion being broken in case of error be-
tween the target dynamics and the actual dynamics of θ. Hence, we define the
connection between the target dynamics and the active joints. The controller
decides the desired angular velocities of each joint as described below,

θ̇d
1 = F

(
f−1
1 (θ1)

)
(14)

θ̇d
i =

∂fi

∂θ
F
(
f−1

i (θi)
)

+ ki

(
fi(θ) − θi

)
(i = 2, 3, · · · ) (15)

⇐⇒ Θ̇d := F (Θ) , (16)

where ki is the strength of connection determined experimentally since its
value has little effect on the robot dynamics. As for humanoid robots, the
ground slope at the contact point is deduced from the angle of the ankle joint
of the swing leg at foot-contact, and θ is calculated from θ1 and the ground
slope. The remarkable point is that if there is no error such as model error
or disturbance, the second term of Eq. (15) is constantly zero and the actual
dynamics of θ is identical with the target dynamics.

Figure 6 shows the block diagram of PDAC of bipedal locomotion. The
control loop including a robot (enclosed by the dotted line in Fig. 6) has
no input, thus it can be considered that the control system is autonomous.
This autonomy makes it possible to realize natural dynamic motion based on
the inherent dynamics of a robot. The loop described by the broken line is
executed only at the moment of foot-contact. In this loop, the target dynamics
of the next step is determined according to both the desired parameters such as
walking velocity and the robot status, then F is updated. Since this updating
compensates the error between the previous target dynamics and the actual
ones around the contact point, it is possible to realize stable walking.

3.3 PDAC Constant

Since as mentioned previously, the target dynamics is autonomous, in addi-
tion, independent of time, it is considered as a kind of conservative system.
Therefore, it is conceivable that the target dynamics has a conserved quantity.
As for PDAC, it is the constant of integration in right side of Eq. (10). That
is, C in Eq. (11) is the conserved quantity of the target dynamics, which is
named PDAC Constant. It is clear that PDAC Constant is decided in accor-
dance with initial condition and that the robot motion is generated as it is
kept constant. In order to stabilize walking, the controller updates the target
dynamics according to PDAC Constant. This method to update is presented
later.
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Θ

Θ ,ΘΘ = F F (Θ) Θ
Angular velocity
                 control

Robot
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Desired Velocity
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at foot contact
updating F

d

θc,θc

Fig. 6. Block diagram of PDAC of bipedal locomotion. θc and θ̇c are the angle and
the angular velocity of θ1 at foot-contact respectively

4 Bipedal Walking Control

In this paper, it is assumed that lateral motion and sagittal one can be sepa-
rated and controlled independently since lateral side-to-side rocking motion is
quite small and step-length in the sagittal plane is relatively short. Although
both motions are composed independently, the period from foot-contact to
next foot-contact (foot-contact period) in both planes are necessarily identi-
cal. We design each motion by means of PDAC by giving both the desired
step-length, λd, and desired foot-contact period, T d, and propose a coupling
method of both motions. In addition, the landing position control is designed
based on PDAC. At first the sagittal motion control is presented that is fol-
lowed by the lateral motion control satisfying the condition of the foot-contact
period is explained.

4.1 Sagittal Motion Control

3-Link Model

For the sake of simplicity, the 3-link model as shown in Fig. 7 is used, i.e. the
upper body of the robot is not moved. The dynamic equation of this model
is described as Eq. (3) and that of the ankle joint of the stance leg is Eq. (4)
where n = 3. The left side of Eq. (4) is described as follows:
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m1
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m2

J2

J3
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l1

a3

a2

γ γ

θ3

θ2

θ1

θ1

Fig. 7. 3-link model in the sagittal plane. mi, Ji, li and ai are the mass, the moment
of inertia, the length of link and the distance from the joint to the link COG of link
i respectively. γ is the angle of forward tilting. In the right figure, θ1, θ2 and θ3 are
the ankle angle of the stance leg, the angle from the stance leg to the the swing leg,
the angle to swing the trunk up respectively

M11(Θ) = J1 + J2 + J3 +m1a
2
1 +m2l

2
1 +m2a

2
2 − 2m2a2l1 cos θ2

+ m3l
2
1 +m3a

2
3 + 2m3a3l1 cos(γ − θ3) (17)

M12(Θ) = −J2 −m2a
2
2 +m2a2l1 cos θ2 (18)

M13(Θ) = −J3 −m3a
2
3 −m3a3l1 cos(γ − θ3) (19)

G1(Θ) = (m1a1 +m2l1 +m3l1)g sin θ1 +m2ga2 sin(θ2 − θ1)
+ m3ga3 sin(θ1 + γ − θ3) , (20)

where M1(Θ) = [M11(Θ),M12(Θ),M13(Θ)].

Interlocking of Sagittal Joints

Grizzle et al. [8] used the following interlocking in their previous paper to
maintain the angle of the torso at some constant value and to command the
swing leg to behave as the mirror image of the stance leg. In this paper, we
use the same interlocking, that is,

θ1 = f1(θ) = θ − β (21)
θ2 = f2(θ) = 2θ (22)
θ3 = f3(θ) = θ , (23)

where β is the ground slope at the contact point (ascent is positive). From
Eqs. (21)–(23) and (1), Eq. (6) is

Ms(θ) = (J1 − J2 +m1a
2
1 +m2l

2
1 −m2a

2
2 +m3l

2
1) +m3a3l1 cos(γ − θ)(24)

:= E1 + E2 cos(γ − θ) (25)
Gs(θ) = (m1a1 +m2l1 +m2a2 +m3l1)g sin θ +m3ga3 sin γ (26)

:= E3 + E4 sin θ . (27)
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l++l - ξ+ξ- θi +
i-1θ+- -θ-

i

Fig. 8. Parameters at foot-contact. l− and ξ− are the length and inclination of the
inverted pendulum which connects the supporting foot and the COG of the whole
robot before impact, while l+ and ξ+ are those after impact. iθ

− and iθ
+ are the

angles around the contact point before and after impact of the ith step

Thus,
∫
Ms(θ)Gs(θ)dθ =

∫ (
E1 + E2 cos(γ − θ)

)(
E3 + E4 sin θ

)
dθ (28)

= E2E4

(
sin(γθ)

2
− cos(2θ − γ)

4

)

+E2E3 sin(θ − γ) − E1E4 cos θ + E1E3θ + Cs (29)
:= Ds(θ) + Cs (30)

where Cs is the integral constant, which is PDAC Constant of the sagittal
motion. From Eq. (11), the target dynamics in the sagittal plane is

θ̇ =
1

Ms(θ)

√
2
(
Ds(θ) + Cs

)
(31)

:= Fs(θ) . (32)

From Eqs. (21)–(23), f−1
1 (θ1) = θ1 + β, f−1

2 (θ2) = 1
2θ2, f

−1
3 (θ3) = θ3 are

obtained, thus the desired angular velocities of sagittal joints are described as
follows:

θ̇d
1 = Fs(θ1 + β) (33)

θ̇d
2 = 2Fs

(
θ2
2

)
+ k2(2θ − θ2) (34)

θ̇d
3 = Fs(θ3) + k3(θ − θ3) . (35)

Foot Contact Model

In this paper, it is assumed that foot-contact occurs instantaneously and the
angular momentum around the contact point is varied instantly. The angular
momentum is described as
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P = Ms(θ)θ̇ . (36)

Figure 8 depicts some parameters at foot-contact. Assuming that the trans-
lational velocity along the pendulum at foot-contact is zero since it is quite
small, the angular velocity around the contact point is acquired as follows:

l+P+ = l−P− cos(ξ− + ξ+) (37)

⇐⇒ iθ̇
+ =

l−Ms(iθ
−)−

l+Ms(iθ+)+
cos(ξ− + ξ+) iθ̇

− (38)

⇐⇒ iθ̇
+ := Hs iθ̇

− (39)

From this value, and the PDAC Constant at the ith step, iCs, is obtained as

iCs =
1
2

(
Ms

(
iθ

+
)

iθ̇
+
)2

−Ds

(
iθ

+
)
. (40)

Desired PDAC Constant

Since the target dynamics is the 1-DOF autonomous system, it is possible
to calculate the foot-contact period by integrating Eq. (12) with respect to
time. The foot-contact period satisfying the desired step-length is calculated
as below:

θ̇ = Fs(θ) (41)

⇐⇒ 1
Fs(θ)

dθ = dt (42)

⇐⇒
i+1θ̂−∫

iθ̂+

1
Fs(θ)

dθ = T̂s , (43)

where iθ̂
+ = i+1θ̂

− = sin−1 λd

2l1
are the desired value of iθ

+ and i+1θ
− that can

be calculated from the desired step-length. This period is necessarily identical
with the desired foot-contact period, thus

T̂s = T d . (44)

In order to generate the stable cyclic walking, the angular velocity around the
contact point after impact must be kept constant, that is,

iθ̇
+ = i+1θ̇

+ . (45)

By solving two conditions, Eqs. (44) and (45), by means of two dimensional
approximation of iθ̂

+ and i+1θ̂
−, the desired PDAC Constant is determined,

Cd
s = Cd

s (T d, λd) . (46)
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Stabilization of Sagittal Motion

Since the target dynamics is a conservative system, if the PDAC Constant is
kept constant, the stability of the motion is guaranteed. In order to stabilize
walking, step-length is varied according to the PDAC Constant. This method
takes advantage of the loss of angular momentum at foot-contact, that is, if
the step-length is long, the loss is high, while if short, it is low. The control
strategy is to adjust the step-length of the next step after every foot-contact
in accordance with the desired PDAC Constant and the actual one as follows:

Cd
s +Ds (i+1θ

+)
Ms (i+1θ+)2

=
Ds (i+1θ

−) + iCs

Ms (i+1θ−)2
H2

s (47)

⇐⇒ i+1θ
− = i+1θ

− (
Cd

s , iCs

)
. (48)

Note, however, that since in this paper level ground is assumed, i+1θ
− =

i+1θ
+.

This stabilizing control makes it possible to keep PDAC Constant in the
vicinity of the desired value. Therefore, sagittal motion is kept stable.

Here, the point to notice is that the foot-contact period differs from the
desired foot-contact period due to stabilization. Hence, it is necessary to con-
trol the lateral motion so that the period of lateral motion is identical with
the following period of sagittal motion,

Ts =

i+1θ−∫

iθ+

1
Fs(θ)

dθ . (49)

4.2 Lateral Motion Control

Lateral Motion

Many reserchers investigated and proposed lateral motion control [11, 14, 25].
In this paper, we design the lateral motion by means of PDAC as depicted in
Fig. 9. In order to continue the side-to-side rocking motion, a robot lifts its
pelvis in phases (A) and (B). The inverted pendulum whose length is variable
is used as the model of the lateral plane since the motion to lift the pelvis is
quite small, in addition, the robot posture is varied little thus the motion to
lift the pelvis can be considered as lengtherning the pendulum. The lateral
motion can be continued in spite of the loss of angular momentum at foot-
contact by changing the pendulum length at impact.

Collision Inverted Pendulum Model

The following model shown in Fig. 10 is used as the model of the lateral
motion: two inverted pendulums which are opposite each other continue to



134 T. Fukuda et al.

(A) (B)

Front View

(A)(B)

:: Passive joint

Left Foot Contact

Swing Up

Swing Up

Fall
 Down

Fall 
Down

Right Foot Contact

Transition

Transition

Left-Leg-SupportRight-Leg-Support

)

Fig. 9. The lateral motion of lateral-based walk (front view). The inverted pendulum
falls off in phase(A) and swings up in phase(B)

(A) (B)

(A)(B)

collision

collision

Fig. 10. Motion of CIPM. The collision between the foot and the ground is regarded
as that between two pendulums. (A) and (B) correspond to those in Fig. 9
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Fig. 11. (a) Trajectory of COG and polar coordinate systems ΣR, ΣL. l and φ
denote the length and the angle of an inverted pendulum. (l0, φ0) and (l0 + ∆l, φ1)
are the coordinates in ΣR at the beginning and ending of phase (A), (l0−∆l, φ2) and
(l0, φ3) is that of ΣL of phase (B) respectively. φ̇1, φ̇2 denotes the angular velocity
at the end of phase (A) and at the beginning of phase (B). (b) Phase portraits of
φR and φL (c) Phase portrait of CIPM. The gray tetragon surrounded by the pair
of separatrixes is named CIP-Area

rock, iterating the collision between them, which is named Collision Inverted
Pendulum Model (CIPM). This CIPM is intuitively like the Newton’s Pen-
dulum inverted. Figure 11 shows the trajectory of COG and two coordinate
systems ΣR and ΣL that correspond to the right- and left-leg-support period
respectively, and Fig. 11(b) depicts the phase portraits of φR and φL. These
two phase portrait’s coalescing yields the phase portrait of CIPM (see Fig.
11(c)). In the phase portrait of CIPM, there is the area in which one has the
circular nature between the coordinate systems ΣR and ΣL. In this area, the
periodic motion can be realized due to the circular nature.

Interlocking of Lateral Joints

The interlocking in the lateral plane is defined as below,

Phase(A) : l = fA(φ) = a1φ+ b1 (50)
Phase(B) : l = fB(φ) = a2φ

2 + b2φ+ c2 , (51)
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where

a1 =
1

φ1 − φ0
∆l (52)

b1 = l0 −
φ0

φ1 − φ0
∆l (53)

a2 =
1

(φ3 − φ2)2
∆l (54)

b2 = − 2φ2

(φ3 − φ2)2
∆l (55)

c2 = l0 −
φ2

3 − 2φ2φ3

(φ3 − φ2)2
∆l . (56)

l is the monotoneally increasing function of φ meeting the following conditions
in phase (A): fA(φ0) = l0 and fA(φ1) = l0 +∆l, while in phase (B): fB(φ2) =
l0 −∆l, f ′(φ2) = 0 and f(φ3) = l0.

The dynamic equation of the angle of an inverted pendulum is described
as follows:

d

dt

((
ml2 + J

)
φ̇
)

= mgl sinφ . (57)

From the interlocking, Eq. (6) is described as follows:

MlN (φ) = mfN (φ)2 + J (58)
GlN (φ) = mgfN (φ) sinφ , (59)

where the suffix N means phase (N) (N=A, B). From Eq. (11), the target
dynamics in the lateral plane is

φ̇ =
1

MlN (φ)

√∫
2MlN (φ)GlN (φ) dφ (60)

:=
1

MlN (φ)

√
2
(
DlN (φ) + ClN

)
(61)

:= FlN (φ) , (62)

where ClN is the integral constant, which is PDAC Constant of the lateral
dynamics.

Assuming that the collision between the swing leg and the ground is per-
fectly non-elastic, the angular velocity of the inverted pendulum after impact
is

φ̇2 =
v1

l0 −∆l
cos (φ1 − φ2 − ζ) (63)

=

√
a2
1 + (l +∆l)2

l0 −∆l
cos (φ1 − φ2 − ζ) φ̇1 (64)

:= Hl φ̇1 , (65)
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where

v1 =
√

(lφ̇)2 + l̇2
∣∣∣∣
φ=φ1

=
√
a2
1 + (l +∆l)2φ̇ (66)

ζ = tan−1

(
l̇

lφ̇

)∣∣∣∣∣
φ=φ1

= tan−1

(
a1

l +∆l

)
. (67)

∆l is the control value of the lateral motion. It is calculated from the condition
of the beginning of phase(A) and the end of phase(B): FlA(φ0) = 0 and
FlB (φ3) = 0. That is,

DlA(φ1) −DlA(φ0)
MlA(φ1)2

H2
l =

DlB (φ3) −DlB (φ2)
MlB (φ2)2

. (68)

∆l is so small that it can be obtained from this equation by means of the
linear approximation of ∆l,

∆l = ∆l(φ0, φ3) . (69)

Finally, it is necessary to determine the desired amplitude of the rocking
motion, φd

0, so that the foot-contact period in the lateral plane matches with
the desired foot-contact period. This condition is described as below,

φ1∫

φd
0

1
FlA(φ)

dφ+

φd
0∫

φ2

1
FlB (φ)

dφ = T d . (70)

By means of two dimensional approximation of φ, it is possible to calculate
φd

0 from Eq. (70),

φd
0 = φd

0(T
d) . (71)

By setting φ3 at −φd
0 at the beginning of phase (A) of every step, the lateral

motion can be stabilized.

Coupling with the Sagittal Motion

As mentioned previously, it is necessary that the foot-contact period of the
sagittal motion and that of the lateral motion are made identical. In case of
the adjustment of step-length, the sagittal foot-contact period differs from
the desired foot-contact period, thus the lateral motion needs to be varied
according to the period of Eq. (49).

In order to control the lateral foot-contact period, the foot width is ad-
justed as shown in Fig. 12. l − ∆l + δl and φ2 + δφ2 are acquired from ε
geometrically. It is assumed that this adjustment is so small that its effect on
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ε

l+∆l
l-∆l

l-∆l+δl

φ +φ
2

-(

Fig. 12. Adjustment of foot width. ε is the angle to open the swing leg to adjust
the foot width. l − ∆l + δl and φ2 + δφ2 are the pendulum length and angle at the
beginning of phase (B) after adjustment

the target dynamics in phase (A) can be neglected. By the adjustment, the
parameters of the target dynamics in phase (B) are varied as follows:

a2 =
1(

φ3 − (φ2 + δφ2)
)2 (∆l − δl) (72)

b2 = − 2φ2(
φ3 − (φ2 + δφ2)

)2 (∆l − δl) (73)

c2 = l0 −
φ2

3 − 2(φ2 + δφ2)φ3(
φ3 − (φ2 + δφ2)

)2 (∆l − δl) . (74)

The condition that the pendulum pauses at the end of phase (B) is FlB (φ3) =
0, hence

DlB (φ3) −DlB (φ2 + δφ2) +
(
M(φ2 + δφ2)φ̇2

)2

= 0 . (75)

In addition, the condition that the foot-contact period must satisfy is

φ3∫

φ2+δφ2

1
FlB (φ)

dφ+

φ1∫

φ3

1
FlA(φ)

dφ = Ts . (76)

The first term of the left side in Eq. (76) is the period of phase (B) and
the second term is that of the subsequent phase (A). The two conditions of
Eq. (75) and (76) have two unknowns, i.e. the adjustment value, ε, and the
pendulum angle at the end of phase (B), φ3. By solving these two conditions
by means of linear approximation of ε and two dimensional approximation of
φ3, the adjustment value, ε, can be calculated

ε = ε(φ, φ̇, Ts) . (77)
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Fig. 13. Block diagram of the coupling between the sagittal and lateral motions

Figure 13 depicts the block diagram of the algorithm described in the pre-
vious sections. At foot-contact, the sagittal controller decides the step-length,
i.e. the value of θ at the next foot-contact in order to stabilize the sagittal
motion. Next, the foot-contact period of the sagittal motion is calculated by
integration. Finally, the lateral controller determines the adjustment value of
foot width according to both the sagittal foot-contact period and the present
status in the lateral plane. This series of controls can be considered as the
landing position control of three dimensional walking since the step-length is
adjusted in the sagittal plane and the foot width is adjusted in the lateral
plane.

The box enclosed by a gray dashed line is the algorithm to decide the
desired foot-contact period and step-length so that the energy consumption
is minimized. However, this has not been solved and is future work, hence we
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(a) (b) (c)

(d) (e) (f)

Fig. 14. Snapshots of the walking of PDAC. Each figure shows the snapshots at
(a)1st (b)7th (c)12th (d)16th (e)19th (f)22nd step

give the desired foot-contact period and step-length to the controller directly
in this paper.

5 Experiment

The experiment of the walking proposed in the previous section on flat and
level ground was conducted. Since, in order to start the walking, the robot
needs potential energy, we lifted up the lateral pendulum to the position at
the beginning of phase (A) and released. In experiment, the robot bends its
knee joint of the swing leg so as to prevent the foot being in friction with the
ground immediately after foot-contact on the assumption that the effect of
knee bending on the robot dynamics can be neglected. The foot of the swing
leg is actuated so as to be kept parallel to the ground.

The desired step-length is given to be gradually increased within the initial
5 steps up to 0.15[m] and the desired foot-contact period is given at 0.7[s]. In
consequence, dynamic and natural walking is realized over 25 steps. The step-
length is about 0.15[m] and the walking velocity is about 0.23[m/s]. Figure 14
shows the snapshots of the PDAC walking at the 1st, 7th, 12th, 16th, 19th,
22nd step respectively. The angle and angular velocity of the lower body
joints are depicted in Fig. 15 and Fig. 16. As shown in these figures, smooth
dynamics motion is realized periodically.
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6 Conclusion

This paper first introduced a multi-locomotion robot with high mobility and
then proposed Passive Dynamic Autonomous Control (PDAC) for the compre-
hensive control method of multiple types of locomotion. PDAC is the method
to take advantage of the robot inherent dynamics and realize natural dynamic
motion. We applied PDAC to the biped walk control. On the assumption that
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the sagittal and lateral motion can be separated and controlled individually,
each motion was designed based on the given desired step-length and period.
In order to stabilize walking, the landing position control according to the
status was designed. In addition, a coupling method between these motions,
which makes the period of each motion identical, was proposed. Finally, the 3-
dimensional dynamic walking whose step-length is about 0.15[m] and velocity
is about 0.23[m/s] was realized.
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Movements of humans are achieved by muscle contractions. Humans are able
to perform coordinated movements even in the presence of perturbations from
the environment or of the muscles themselves. But which properties of the
muscles and the geometry of the joints are responsible for the stability? Does
the stability depend on the joint angle? How large are the perturbations,
the muscle-skeletal system can cope with before reflexes or controls by the
brain are necessary? To answer these questions, we will derive a mathemati-
cal model of the muscle-skeletal system without reflexes. We present different
mathematical methods to analyze these systems with respect to the stability
of movements and thus provide the mathematical tools to answer the above
questions. This paper is a companion paper to [13] where the biological ap-
plications of the mathematical methods presented in this paper are discussed
in more detail.

Stationary and periodic movements are modelled by autonomous and time-
periodic differential equations. If small perturbations to these movements are
corrected by the system, the movement is called stable and the set of these
perturbations is called the basin of attraction of the movement. The basin of
attraction is the appropriate quantity to describe how stable a movement is,
since it measures, how large perturbations to the movement may be, which still
are led back to the desired movement. The basin of attraction thus describes
the self-stabilizing properties of the muscle-skeletal system without control
mechanisms. If a human runs, it is important how uneven the ground may be
before he either falls down or has to adjust his muscle activations to the new
situation.

Let us describe how the paper is organized: In Sect. 1 we present a math-
ematical model of a single human joint including antagonistic muscles. More
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precisely, we introduce models of a human elbow joint and a human knee
including muscular and outer forces as well as the geometry of the joint. In
Sects. 2 and 3 we present different mathematical methods to analyze the sta-
bility and the basin of attraction of a stationary or periodic movement, i.e.
for autonomous and periodic systems, respectively. Some examples of these
methods in biomechanical applications are given in this paper, and many more
are presented in [13] within this volume.

1 Biomechanical Models

In Sect. 1.1 we present a mathematical model of the human elbow joint, for
more details cf. [7] and [9]. In Sect. 1.2 we describe the model of the human
knee joint. Note that the models of other joints and other positions of the
arms and legs can be derived in a very similar way.

1.1 A Model of the Elbow Joint

Consider the following situation: the upper arm of a person is attached to the
body, the elbow pointing downwards. The lower arm (ulna) is free to move
in the sagittal plane so that the system is totally described by the angle β
between upper and lower arm at the elbow joint. The person holds a load
in the hand. Denoting the angular velocity ω = β̇ we obtain the following
equation of motion:

{
β̇ = ω

ω̇ = 1
J T (t, β, ω) =: f(t, β, ω)

(1)

where J =
(

1
3mu +ml

)
l2 denotes the moment of inertia, mu and ml denote

the mass of the ulna and of the load, respectively, and l is the length of the
ulna. The torque T (t, β, ω) = To(t, β, ω) + Tm(t, β, ω) consists of two parts
corresponding to the outer forces and the muscle forces.

The outer forces include the gravitational forces acting on the arm and
on the load in the hand. In the periodic case we assume that the person
is walking which gives an additional term corresponding to the periodic
vertical acceleration a(t) applied to the system. Altogether, To(t, β, ω) =(

1
2mu +ml

)
(g + a(t)) l sinβ, cf. [2].

In our model we consider only the three most important muscles at the
elbow joint, namely the extensor muscle triceps brachii and the two flexor
muscles biceps and brachioradialis. For each muscle the torque is given by
T (t, β, ω) = E(t) · fl(β) ·H(β, ω) ·h(β), where E(t) ∈ [0, 1] denotes the acti-
vation level of the muscle which is assumed to be constant or periodic with
respect to t, fl denotes the dependency of the muscle on its length, H denotes
the Hill-function modelling the dependency of the muscle on its velocity and
h denotes the effective moment arm, reflecting the geometry of the joint. We
will discuss the force-length function fl and the Hill-functionH in more detail.
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Force-Length Function

We model the force-length functions flbic
of the biceps by (2), cf. [9],

flbic
(β) = f̃l(zbic(lbic(β))) , (2)

f̃l(z) = ã arctan[b̃(z − c̃)] + d̃ , (3)

zbic(x) =
z0

lbic(8π/9) − lbic(π/3)
[x− lbic (8π/9)] + 1 , (4)

where ã = 1.09
π , b̃ = 15, c̃ = 0.6, d̃ = 0.49. f̃l of (3) models the function de-

scribed in [11], β denotes the joint angle, lbic(β) =
√
k2

H + k2
U − 2kHkU cosβ

the length of the muscle depending on personal data such as the distances be-
tween the elbow joint and the point where the tendon is attached to the upper
and lower arm kH , kU , respectively. zbic denotes a normalized muscle length,
cf. [7]. z0 is a muscle-dependent parameter, often z0 = 0.55. The formulas for
M. brachioradialis are similar.

The extensor muscle of the elbow joint is approximately working around
the optimum muscle length. Therefore, the influence of the force-length rela-
tion can be neglected, i.e. we set flext

(β) = 1.

Hill-Function

Hill [10] introduced the following force-velocity relation

H(v) =
c

v + b
− a for v ≥ 0 (5)

where v ≥ 0 denotes the velocity of the contraction of the muscle and a, b, c
are person-dependent constants. The excentric part, i.e. v < 0 is modelled
such that H is a C2-function, cf. [7]

H(v) = A+
B

v −D
+

C

(v −D)2
for v < 0 (6)

where A,B,C,D are chosen such that H ∈ C2(R2,R) and limv→−∞H(v) =
1.5 ·H(0), i.e. the muscle can generate 1.5 times the isometric force H(0) for
very large negative velocities, cf. [7].

The Formula for T

Note that the velocity of the muscle v is connected to the angular velocity ω
by v = h(β) ·ω, where h denotes the effective moment arm, cf. [7]. Altogether,
Tm is given by

Tm(t, β, ω) = Eext(t)Hext[hext(β) ·ω]hext(β)
+Eflex(t) flbic

(β)Hbic[hbic(β) ·ω]hbic(β)
+Eflex(t) flbrach

(β)Hbrach[hbrach(β) ·ω]hbrach(β) (7)
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Recall that E denotes the (periodic or constant) muscle activation, H the
Hill-function, h the effective moment arm and fl the force-length relation.
The index denotes the flexor muscles biceps and brachioradialis as well as the
extensor muscle. Note that the activation levels of both flexor muscles are
assumed to be equal and are denoted by Eflex(t).

Plugging the formulas for To and Tm, cf. (7), in (1) we obtain the following
system.




β̇ = ω

ω̇ = 1
J

[ (
1
2mu +ml

)
(g + a(t)) l sinβ + Eext(t)Hext[hext(β) ·ω]hext(β)

+Eflex(t) flbic
(β)Hbic[hbic(β) ·ω]hbic(β)

+Eflex(t) flbrach
(β)Hbrach[hbrach(β) ·ω]hbrach(β)

]

=: f(t, β, ω)

(8)

Special Features

For the mathematical analysis we hence study a system of differential equation
of the following form {

β̇ = ω

ω̇ = f(t, β, ω)
(9)

where f(t, β, ω) is either (i) independent of t (autonomous system) or (ii)
periodic with respect to t, i.e. there is a minimal period T > 0 such that
f(t + T, β, ω) = f(t, β, ω) for all (t, β, ω). Note that the partial derivative of
the Hill-function with respect to ω is strictly negative, i.e. Hω(β, ω) < 0 holds
for all (β, ω) ∈ R

2. Hence, this also holds for f , i.e.

fω(t, β, ω) < 0 (10)

for all (t, β, ω).

Examples

In this paper we study the following two examples:

1. Standing. We assume that the person is not moving (To is independent of
t), and holds the weight at constant activation levels Eext and Eflex (Tm

is independent of t) at angle β0. Thus, f = f(β, ω) is independent of t and
Eext and Eflex are chosen such that f(β0, 0) = 0 holds, i.e. β(t) = β0 and
ω(t) = 0 is a solution.

2. Walking. We assume that the person is walking in a periodic way (To is
periodic with respect to t), and holds the weight at a constant level for a
person watching from outside. An example for such a situation is a waiter
carrying a tray while walking. The tray is supposed not to move, so that
the elbow angle must compensate the movement the walking imposes on
the shoulder and the arm. This is achieved by suitable periodic activation
levels Eext(t) and Eflex(t). In this case, f = f(t, β, ω) is a periodic function
of t, cf. Sect. 3.
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1.2 A Model of the Knee Joint

We assume that the foot is fixed to the ground, the upper and lower legs are
connected by the knee joint, the body mass is concentrated in the hip and the
hip can only move on a line perpendicular to the ground. The height of the
hip is denoted by x, its velocity by v = ẋ. In this case, our model includes
one extensor and one flexor muscle, and we set flext

(x) = flflex
(x) = 1.

We neglect the mass of the leg, and we set the Hill-function of the flexor
Hflex(v) = fisoflex

. We consider the following equations of motion, cf. [12]




ẋ = v

v̇ = Eext(t)Hext[hext(x) · v]hext(x) + Eflex(t)fisoflex
hflex(x) −mg

=: f(t, x, v),
(11)

where the effective moment arms and the Hill-function of the extensor are
modelled by

hext(x) = aext +
cext

bext − x

hflex(x) = −aflex − cflex

bflex − x

Hext(u) = tanh[−(5.6 + 4.5 tanh(−u− 0.4))u] ·
fisoext(0.25 tanh(10u) + 0.75) + fisoext

,

where aext = 0.08, bext = 0.88, cext = 0.035, aflex = 0.01, bflex = 0.87,
cflex = 0.04, fisoext

= fisoflex
= 21012. Note that this model approximates

the effective moment arms of [12], Fig. 6. These moment arms include a model
of Menschik with moving center of rotation in the knee. The length are 44 cm
of the thigh and 43 cm for the lower leg. We use this model in Sect. 3.6.

2 Autonomous Systems

In this section we study equilibria and their stability of the autonomous system
(12), which is (9) being independent of t.

{
β̇ = ω

ω̇ = f(β, ω)
(12)

Whereas the stability of equilibria can often be checked by the eigenvalues,
for the basin of attraction we use Lyapunov functions (Sect. 2.1). The follow-
ing methods for their construction are discussed: via linearization (Sect. 2.2),
using special properties of the equation (Sect. 2.3) and with radial basis func-
tions (Sect. 2.4). Note that for the sake of simplicity the Theorems and De-
finitions in this paper are only stated for the two-dimensional phase space
x = (β, ω) ∈ R

2, but they hold in most cases also for arbitrary dimensions,
i.e. x ∈ R

n.
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2.1 Basin of Attraction, Stability and Lyapunov Functions

The equilibria of (12), i.e. solutions which are constant in time, are the zeros
(β, ω) of the right-hand side vector field of (12), i.e. ω = 0 and f(β, ω) = 0.
Hence, equilibria are points (β0, 0) which satisfy f(β0, 0) = 0. For the muscle
model this is achieved by suitable activations Eext and Eflex.

We also use the notation

ẋ = F (x) , (13)

where x = (β, ω) and F (x)=( x2
f(x1,x2)

) for the equation (12).

The stability of such an equilibrium (β0, 0) in the hyperbolic case can by
studied by the eigenvalues of the Jacobian matrix of first derivatives

DF (β0, 0) =

(
0 1

fβ(β0, 0) fω(β0, 0)

)
,

which are

λ1,2 =
1
2

(
fω(β0, 0) ±

√
fω(β0, 0)2 + 4fβ(β0, 0)

)

if fω(β0, 0)2 + 4fβ(β0, 0) ≥ 0 (real eigenvalues) and

λ1,2 =
1
2

(
fω(β0, 0) ± i

√
−fω(β0, 0)2 − 4fβ(β0, 0)

)

otherwise (complex eigenvalues). In both cases, the real parts of both eigen-
values are strictly negative, if and only if fβ(β0, 0) < 0, since fω(β0, 0) < 0
holds by (10). Hence, if fβ(β0, 0) < 0, then the equilibrium is asymptotically
stable.

From now on we will assume f(β0, 0) = 0 and fβ(β0, 0) < 0. We seek
to determine the basin of attraction of the asymptotically stable equilibrium
(β0, 0) =: x0.

Definition 1. The basin of attraction A(x0) of an asymptotically stable equi-
librium x0 for the ordinary differential equation ẋ = F (x) is defined by

A(x0) = {ξ ∈ R
2 | x(t) t→∞−→ 0}

where x(t) denotes the solution of ẋ = F (x) with initial value x(0) = ξ.

A powerful method to determine the basin of attraction is the method of
a Lyapunov function v : R

2 → R. The main property of a Lyapunov function
is that it is decreasing along solutions. v is decreasing along solutions, if and
only if the orbital derivative v′, i.e. the derivative of v along solutions of the
differential equation, is negative. The formula for the orbital derivative follows
from the chain rule
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d

dt
v(x(t))

∣∣∣∣
t=0

= 〈∇v(x(t)), ẋ(t)〉
∣∣∣∣
t=0

(13)
= 〈∇v(ξ), F (ξ)〉 = v′(ξ) .

Theorem 1 (Lyapunov function). Let x0 be an equilibrium of ẋ = F (x).
Let v ∈ C1(R2,R) be a function and K ⊂ R

2 be a compact set with neighbor-
hood B such that

1. x0 ∈
◦
K,

2. v′(x) = 〈∇v(x), F (x)〉 < 0 holds for all x ∈ K \ {x0},
3. K = {x ∈ B | v(x) ≤ R} with a constant R ∈ R.

Then K ⊂ A(x0).

We sketch the proof of Theorem 1: If we start at x(0) with v(x(0)) ≤ R,
then the solution satisfies v(x(t)) ≤ R for all t ≥ 0 since v is decreasing along
solutions, i.e. solutions stay in the set K of Theorem 1. Since the function v
is bounded from below, v(x(t)) will tend to a constant value and the orbital
derivative v′(x(t)) will tend to 0. Thus, the solution tends to the only point
where v′(x) = 0 holds, namely to the equilibrium x0, and x(0) belongs to the
basin of attraction A(x0).

Thus, level sets of v provide a tool to determine a subset of the basin of at-
traction. Although there are many existence theorems for Lyapunov functions,
their explicit construction without knowledge of the solutions of ẋ = F (x) is a
difficult problem. Several methods for the calculation of Lyapunov functions
are presented in the next sections.

2.2 Linearization

We consider the linearized system at the equilibrium point x0, namely ẋ =
DF (x0)(x− x0). This is a linear system and, thus, one can easily calculate a
Lyapunov function of the form v(x) = (x−x0)TC(x−x0), where the positive
definite matrix C is the unique solution of the matrix equation DF (x0)TC +
CDF (x0) = −I. Note that the orbital derivative is given by v′(x) = (x −
x0)T [DF (x0)TC + CDF (x0)](x − x0) = −‖x − x0‖2. The function v is not
only a Lyapunov function for the linearized system, but also for the nonlinear
system in a neighborhood of x0, cf. Lemma 1. We call such a function a local
Lyapunov function, since this neighborhood can be very small and thus the
set K of Lemma 1 may be a very small subset of the basin of attraction A(x0).
Thus, other methods will be discussed in the following sections.

Lemma 1. Under the above assumptions on the Lyapunov function v(x) =
(x − x0)TC(x − x0) of the linearized system, there is a compact set K with

neighborhood B such that x0 ∈
◦
K, v′(x) = 〈∇v(x), F (x)〉 < 0 holds for all

x ∈ K \ {x0} and K = {x ∈ B | v(x) ≤ R} with R > 0.
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2.3 Special Lyapunov Function

In many applications, a Lyapunov function is calculated using special prop-
erties or physical insight into the system of differential equation considered.
Also in our case one can use the special structure (12) and the information
on the negative sign of fω, cf. (10), to obtain a Lyapunov function, cf. [9].

Theorem 2. Let f ∈ C1(R2,R) satisfy fω(β, ω) < 0 for all (β, ω). Moreover,
assume that (β0, 0) is an equilibrium point of (12) with fβ(β0, 0) < 0. Then

V (β, ω) = −
β∫

0

f(β̃, 0) dβ̃ +
1
2
ω2 (14)

is a Lyapunov function such that

1. V ′(β, ω) < 0 for all (β, ω) with ω �= 0,
2. V attains a local minimum at (β0, 0).

The integral in (14) can be calculated explicitly in the case of our model (8),
cf. [9]. Using the Lyapunov function V we obtain again a subset S of the basin
of attraction by Theorem 1 through level sets of V .

Corollary 1. Let the assumptions of Theorem 2 hold. Let (β0, 0) be an equi-
librium with β0 ∈ (0, π). Moreover, let β0 < β1 < π be such that (β1, 0) is an
equilibrium. Set

S := {(β, ω) | V (β, ω) < V (β1, 0)} ∩ (0, π) × R

If S is connected and compact, and f(β, 0) �= 0 holds for all (β, 0) ∈ S \
{(β0, 0)}, then S ⊂ A(β0, 0).

The set S is in general larger than the set K of Lemma 1. In particular, it
covers the whole β-axis up to the next unstable equilibrium (β1, 0). A similar
Corollary holds also for an equilibrium (β2, 0) with β2 < β0.

2.4 Approximation via Radial Basis Functions

A Lyapunov function is characterized by its negative orbital derivative. In this
general approach to construct Lyapunov functions via radial basis functions
we consider Lyapunov functions V1 and V2 with certain negative orbital deriv-
atives, namely V ′

1(x) = −‖x−x0‖2 defined for x ∈ A(x0) and V ′
2(x) = −c < 0

defined for x ∈ A(x0) \ {x0}. These equations for the orbital derivatives are
linear first-order partial differential equations.

The method seeks to find an approximate solution vi, i = 1, 2 of the
partial differential equation which is close enough to the solution Vi such that
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the orbital derivative v′i is negative. Then vi is itself a Lyapunov function and
can be used to determine a subset of the basin of attraction by Theorem 1.

The approximation is achieved using radial basis functions [8], which is a
meshfree approximation method using a certain ansatz for the approximating
function v. More precisely, for x, y ∈ R

2 we set

v(x) =
N∑

j=1

αj〈∇yΨ(x− y), F (xj)〉
∣∣∣∣
y=xj

(15)

where Ψ(x) = ψ(‖x‖) denotes a fixed radial basis function and XN =
{x1, . . . , xN} ⊂ R

2 a grid. The coefficients αj are chosen such that v sat-
isfies the equation on the grid, i.e. v′1(xj) = V ′

1(xj) = −‖xj − x0‖2 or
v′2(xj) = V ′

2(xj) = −c for all j = 1, . . . , N . The explicit calculation of αj

is easily achieved solving a system of linear equations.
The density of the grid points used for the approximation determines the

error of the approximation. The following error estimates are obtained, using
Wendland’s functions as radial basis functions, cf. [14] and [8]. Theorem 3
shows that if the grid is dense enough, then v′i(x) < 0 holds. Finally, by level
sets of the function vi and Theorem 1, we can find a subset of the basin of
attraction.

Note that we can modify the method by not only prescribing the values of
v′i on the grid XN but, additionally, the values of vi on another grid ΞM , e.g.
on a level set of the local Lyapunov function. Thus, one can find subsets of the
basin of attraction which cover each compact set in the basin of attraction,
cf. [8].

Theorem 3 (Error estimate). Consider ẋ = F (x), and let f ∈ Cσ(R2,R)
where σ ≥ σ∗ := 3

2 + k and k ∈ N denotes the parameter of the Wendland
function. Let K be a compact set with K ⊂ A(x0) \ {x0}.

There is a constant c∗ such that for all grids XN := {x1, . . . , xN} ⊂ K
with fill distance h in K (i.e. h := supx∈K infxj∈XN

‖x− xj‖)

|v′(x) − V ′(x)| ≤ c∗hκ holds for all x ∈ K , (16)

where κ = 1
2 for k = 1 and κ = 1 for k ≥ 2. v ∈ C2k−1(R2,R) is the

approximation of V satisfying V ′(x) = −‖x−x0‖2 or V ′(x) = −c with respect
to the grid XN using Wendland’s function as radial basis function, i.e. Ψ(x) =
ψl,k(µ‖x‖), µ > 0 and l := k + 2.

The estimate (16) in Theorem 3 implies v′(x) ≤ V ′(x)+ c∗hκ ≤ −‖x−x0‖2 +
c∗hκ for V ′(x) = −‖x− x0‖2. If the grid is dense enough (i.e. the fill distance
h is small enough), then v′(x) < 0 holds except for a small neighborhood of
x0. The same is true for the approximation of the function V ′(x) = −c since
this function is not defined at x = x0. This means, that we have to solve the
problem differently near x0: here we consider some local Lyapunov function,
e.g. the Lyapunov function of Sect. 2.2, in a neighborhood of x0. Details of
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the method can be found in [8] and [4]. An application of the method to the
elbow joint is given in [3].

Note that the error estimate of this method requires a certain smoothness
of the function F . In particular, the minimal requirement is F ∈ C3(R2,R)
with the parameter of Wendland’s function k = 1. However, the Hill-function
is in general not C3 at zero, the turning point from concentric to excentric
behaviour. The Hill-function is assumed to be of the form H(v) = c

v+b −a for
v ≥ 0 (concentric part, cf. (5)). It can be modelled in a smooth way for v < 0:
for H ∈ C2 cf. (6), and for H ∈ C3 cf. [3]. Even if one uses a Hill-function
model which is only C1 or C2 at zero, the method works in examples, but the
error estimates cannot be proved, cf. [3] for examples and further discussion.

3 Periodic Systems

In this section we study periodic movements which lead to time-periodic
differential equations. We define the basin of attraction for periodic orbits
(Sect. 3.1). In order to check their stability one can use Floquet theory
(Sect. 3.2). To find a subset of their basin of attraction one seeks to find
a Lyapunov function, e.g. one of the above Lyapunov functions of an adja-
cent autonomous system (Sect. 3.3), which can be extended by radial basis
functions (Sect. 3.4). An alternative method to the use of Lyapunov functions
is Borg’s criterion, where the exact position of the periodic movement is not
required (Sect. 3.5), cf. [6]. Finally, Borg’s method and Floquet theory are
applied to periodic movements of the human knee (Sect. 3.6).

3.1 Basin of Attraction and Lyapunov Functions

We consider the time-periodic system

ẋ = F (t, x) , (17)

where F (t + T, x) = F (t, x) for all t ≥ 0 and T > 0 is minimal with this
property. The simplest solution of (17) is a periodic orbit Ω = {(t, x̃(t)) ∈
S1

T × R
2}, where x̃(t) is a solution of (17) with x̃(t + T ) = x̃(t) for all t ≥ 0

and S1
T denotes the circle of radius T . The phase space is now the cylinder

S1
T × R

2.

Definition 2. The basin of attraction A(Ω) of the periodic orbit Ω = {x̃(t) ∈
S1

T × R
2}, where x̃(t) is a solution of the time-periodic ordinary differential

equation ẋ = F (t, x) is defined by

A(Ω) = {(τ, ξ) ∈ S1
T × R

2 | ‖x(t) − x̃(t)‖ t→∞−→ 0} ,

where x(t) denotes the solution of ẋ = F (t, x) with initial value x(τ) = ξ.
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The basin of attraction can again be calculated using a Lyapunov function
v ∈ C1(S1

T ×R
2,R). A Lyapunov function is still a function which is decreasing

along solutions, i.e. a function with negative orbital derivative. Note, however,
that the orbital derivative v′(τ, ξ) has now the following expression:

v′(τ, ξ) =
d

dt
v(t, x(t))

∣∣∣∣
t=τ

= 〈∇xv(t, x(t)), ẋ(t)〉
∣∣∣∣
t=τ

+ vt(τ, ξ)

(17)
= 〈∇xv(τ, ξ), F (τ, ξ)〉 + vt(τ, ξ) .

If v′(τ, ξ) < 0, then level sets of v provide a tool to determine a subset of the
basin of attraction. Note that the following theorem, similarly to the corre-
sponding Theorem 1 in the autonomous case, does not make any assumptions
about the stability of x̃(t).

Theorem 4 (Lyapunov function, periodic case). Let Ω = {(t, x̃(t)) ∈
S1

T × R
2} be a periodic orbit of ẋ = F (t, x). Let v ∈ C1(S1

T × R
2,R) be a

function and K ⊂ S1
T × R

2 be a compact set with neighborhood B such that

1. Ω ⊂
◦
K,

2. v′(t, x) = 〈∇xv(t, x), F (t, x)〉 + vt(t, x) < 0 holds for all x ∈ K \Ω,
3. K = {(t, x) ∈ B | v(t, x) ≤ R} with a constant R ∈ R.

Then K ⊂ A(Ω).

3.2 Stability and Floquet Theory

We perform a transformation of the system (17) which transforms the periodic
solution x̃(t) to the zero solution, i.e. (t, y) := (t, x − x̃(t)), and consider the
transformed system

ẏ = G(t, y) , (18)

where G(t, y) = F (t, y+ x̃(t))− ˙̃x(t). y(t) = 0 is the (periodic) solution of (18)
which corresponds to the periodic solution x̃(t) of (17), and its stability is the
same as the stability of x̃(t) with respect to (17).

In order to study the stability, we consider again the linearization of (18)
near the periodic solution. However, the stability cannot be checked as easily
as in the autonomous case; one has to use Floquet theory.

Let us first consider a linear system of the form

ẏ = G(t)y , (19)

where G(t+ T ) = G(t) is a (2 × 2)-matrix for each t.
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Theorem 5 (Floquet). Each fundamental matrix X(t) of (19) has a repre-
sentation of the form

X(t) = P (t)eBt

where P (t + T ) = P (t) is a t-periodic, (2 × 2)-matrix-valued function and B
is a (2 × 2)-matrix. The eigenvalues of B are called Floquet exponents.

If the real part of all Floquet exponents is negative, then the zero solution
of (19) is asymptotically stable.

Hence, the Floquet exponents play a similar role for the determination of
the asymptotic stability as the eigenvalues of the Jacobian matrix evaluated
at the equilibrium in the autonomous case. Now we return to the nonlinear
problem ẏ = G(t, y).

Theorem 6 (Stability, periodic case). Consider (18) and assume that
G(t, y) = G(t)y + H(t, y), where limy→0

‖H(t,y)‖
‖y‖ = 0 for all t ∈ S1

T . If the
real part of all Floquet exponents of the linearized equation ẏ = G(t)y is neg-
ative, then the zero solution of (18) is asymptotically stable.

Hence, in order to determine the stability one has to find the linearization
of the system, i.e. G(t), and in the next step one has to calculate the matrix
B and its eigenvalues for the linearized system ẏ = G(t)y. This is done nu-
merically for the example of two periodic knee movements, cf. Sect. 3.6 and
Table 1.

3.3 Linearization of an Adjacent Autonomous System

We seek to construct a Lyapunov function for the time-periodic system ẏ =
G(t, y). In most examples the determination of the linearized system ẏ = G(t)y
and thus also the local Lyapunov function can only be obtained numerically. In
this section, however, we consider the special situation that the time-periodic
system is “near” to an autonomous system and we use the local Lyapunov
function of the autonomous function as local Lyapunov function of the periodic
system. More precisely, we assume in this section that there is a parameter
λ ∈ R such that

ẏ = G(t, y) = G̃(t, y, λ), where G̃(t, y, 0) is autonomous (independent of t)

and |λ| is small; the precise conditions are summarized in Proposition 1.
In Sect. 2.2 we have used a Lyapunov function of the linearized system

which turned out to be a local Lyapunov function also for the nonlinear sys-
tem. The idea for time-periodic systems in this section is to consider the ad-
jacent autonomous system and then to use the Lyapunov function V for the
linearized autonomous system. The following proposition, cf. e.g. [2], shows
that this local Lyapunov function V is a Lyapunov function for the original
time-periodic system in a neighborhood of the zero solution, provided that |λ|
is small enough.
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Proposition 1. Consider the system

ẏ = a(y) + b(t, y, λ) (20)

where a ∈ C1(R2,R2), b ∈ C1(S1
T × R

2 × R,R2) and the following properties
hold:

1. a(0) = 0,
2. b(t, 0, λ) = 0 for all t ∈ S1

T and λ ∈ R,
3. b(t, y, 0) = 0 for all t ∈ S1

T and y ∈ R
2.

Then y = 0 is a solution of (20) for all λ ∈ R.
Let V (t, y) = V (y) = yTCy be the local Lyapunov function of the au-

tonomous linearized system ẏ = Dya(0)y according to Lemma 1. If |λ| is small
enough, then V ′(t, y) < 0 holds for all (t, y) ∈ S1

T × R
2 with 0 < ‖y‖ ≤ δ,

where δ = δ(λ).

Conditions 1 and 2 ensure that 0 is a solution for all λ ∈ R and Condition
3 shows that for λ = 0 the system is autonomous. Note that this Lyapunov
function is independent of t and thus level sets of V are cylinders in the
space S1

T × R
2. Since this function is only a local Lyapunov function, i.e. the

orbital derivative is negative only in a small neighborhood ‖y‖ ≤ δ of the zero
solution, we seek to find a Lyapunov function for a larger set using radial basis
functions.

3.4 Approximation via Radial Basis Functions

As in Sect. 2.4 we seek to construct a Lyapunov function for the zero solution
Ω := {(t, 0) | t ∈ S1

T } by approximation via radial basis functions, cf. [2].
In order to use a similar approach as in Sect. 2.4 we add a differential equa-
tion, namely ṫ = 1, and study the following (autonomous) three-dimensional
problem

{
ṫ = 1
ẏ = G(t, y).

Note that the periodicity is reflected by (t, y) ∈ S1
T × R

2.
Similarly to Sect. 2.4 we consider Lyapunov functions with certain negative

orbital derivatives, namely V ′(t, y) = −‖y‖2 defined for (t, y) ∈ A(Ω), which
is a linear partial differential equation.

The method seeks to find an approximate solution v of this partial differ-
ential equation which is close enough to the solution V such that the orbital
derivative v′ is negative. Then v is itself a Lyapunov function and can be used
to determine a subset of the basin of attraction.

Fix a radial basis function Ψ(t, y) where (t, y) ∈ R
3 with compact support,

e.g. Wendland’s function cf. [14], and a grid XN = {η1, . . . , ηN} with ηi =
(ti, yi) ∈ [0, T )×R

2. The ansatz for the approximating function v(t, y) is then
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∑
m∈Z

N∑
j=1

αj

〈
∇(τ,z)Ψ(t− τ, y − z),

(
1

G(tj +mT, yj)

)〉∣∣∣∣
(τ,z)=(tj+mT,yj)

Note that the summation over m is zero except for finitely many m due to
the compact support of Ψ and reflects the fact that t ∈ S1

T . In particular, by
this ansatz v(t+ T, y) = v(t, y) holds for all t ≥ 0.

The coefficients αj are chosen such that v satisfies the equation on the
grid XN , i.e. v′(tj , yj) = V ′(tj , yj) = −‖yj‖2 holds for all j = 1, . . . , N . The
explicit calculation of αj is achieved solving a system of linear equations.

Again, we have to solve the problem differently near y = 0: here we consider
some local Lyapunov function, e.g. the Lyapunov function of Sect. 3.3, in a
neighborhood of 0. Details of the method and an application to the elbow
joint are given in [2].

Note that also in the time-periodic case a modification of the method such
that also the function values of v are prescribed on a level set of the local
Lyapunov function or on (t, y) = (t, 0) improve the results. The ansatz is then
altered to a mixed ansatz, cf. [2].

An application to biomechanics is also found in [2]. We consider a person
who walks and assume that the walking induces a displacement of the shoulder
and the upper arm of the form λ sin νt. Hence, the acceleration acting on the
system corresponding to an outer force is given by a(t) = −λν2 sin νt. Hence
the equation of motion reads, cf. (8)





β̇ = ω

ω̇ = 1
J

[
( 1
2mu +ml) · (g − λν2 sin νt) · l · sinβ
+Eext(t)Hext[hext(β) ·ω]hext(β)
+Eflex(t)flbic

(β)Hflex[hbic(β) ·ω]hbic(β)
+Eflex(t)flbrach

(β)Hflex[hbrach(β) ·ω]hbrach(β)
]

We are interested in a solution where the position of the hand is con-
stant relatively to the ground. This periodic solution is given by β∗(t) =
arccos(−λ

l sin νt). The example studied in [2] assumes a constant flexor ac-
tivation Eext = 0.7. The activation Eflex(t) is chosen such that β∗(t) is a
solution of the system. In this example only a small amplitude λ = 0.5 cm
is considered, so that the construction of the local Lyapunov function as in
Sect. 3.3 succeeds. The other parameters are ν = 2π and ml = 5 kg.

3.5 Borg’s method

In this section we apply a generalization of Borg’s method, cf. [1], to the
problem of the determination of the basin of attraction of a periodic orbit
of a general time-periodic system (17), cf. [6]. In contrast to the method of
Lyapunov functions, the knowledge of the position of the periodic orbit x̃(t) is
not required. However, we will see, that it can be helpful also for this method.
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Borg’s condition means that two adjacent solutions approach each other
with respect to a Riemannian metric. This can easily be checked by the sign
of a certain function LM (t, x), cf. (21) of Theorem 7.

Definition 3. The matrix-valued function M ∈ C1(S1
T × R

2,R2×2) will be
called a Riemannian metric, if M(t, x) is a symmetric and positive definite
matrix for each (t, x) ∈ S1

T × R
2.

The Riemannian metric M(t, x) defines a point-dependent scalar product
through 〈v, w〉(t,x) = vTM(t, x)w. The usual Euclidean metric is obtained
by M(t, x) = I.

A set is called positively invariant, if solutions starting in this set, remain
in the set for all positive times.

Definition 4. A set K ⊂ S1
T × R

2 is called positively invariant if for all
(τ, ξ) ∈ K, we have (t, x(t)) ∈ K for all t ≥ 0, where x(t) denotes the solution
of the initial value problem ẋ = F (t, x), x(τ) = ξ.

Theorem 7. (cf. [6]) Consider the equation ẋ = F (t, x), where F ∈ C1(S1
T ×

R
2,R2). Let ∅ �= K ⊂ S1

T ×R
2 be a connected, compact and positively invari-

ant set. Let M be a Riemannian metric in the sense of Definition 3. Moreover,
assume LM (t, x) < 0 for all (t, x) ∈ K, where

LM (t, x) := max
w∈R2,wT M(t,x)w=1

LM (t, x;w) (21)

LM (t, x;w) := wT

[
M(t, x)DxF (t, x) +

1
2
M ′(t, x)

]
w, (22)

and M ′(t, x) denotes the matrix with entries

mij =
∂Mij(t, x)

∂t
+

2∑
k=1

∂Mij(t, x)
∂xk

Fk(t, x)

which is also the orbital derivative of M(t, x).
Then there exists one and only one periodic orbit Ω ⊂ K, which is expo-

nentially asymptotically stable. Moreover, for its basin of attraction K ⊂ A(Ω)
holds, and the largest real part −ν0 of all Floquet exponents of Ω satisfies

−ν0 ≤ −ν := max
(t,x)∈K

LM (t, x) .

For the proof one considers two solutions x(t) and y(t) with adjacent
initial values and defines their time-dependent distance with respect to the
Riemannian metric A(t) :=

[
(y(t) − x(t))TM(t, x(t))(y(t) − x(t))

]1/2. Since
LM (t, x) < 0, the solutions approach each other and the distance A(t) de-
creases exponentially. Thus, all solutions in K have the same ω-limit set
characterizing the long-time behaviour, since K is connected. The study of a
Poincaré-map shows that this ω-limit set is a periodic orbit.
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The application of the method poses similar problems as in the case of
Lyapunov functions: it is known that for each exponentially asymptotically
stable periodic orbit there exists a Riemannian metric such that (21) holds,
cf. [6], but there is no general construction method available. Moreover, we
have to find a positively invariant set K.

Assume now again that the periodic orbit is known, which is the case in
many biomechanical applications. There are two cases, where [6] gives sug-
gestions for a Riemannian metric: (i) if F (t, x) is “near” to an autonomous
system – then one can use the metric of the autonomous system; this is sim-
ilar to the approach of Sect. 3.3. (ii) if the eigenvalues of DxF (t, x̃(t)) are
real, distinct and negative for all t ∈ S1

T . In this case, denote by S(t) a
smooth matrix-valued function on S1

T , such that its columns are eigenvectors
of DxF (t, x̃(t)) for each t. Note that multiplication with S(t) corresponds to a
transformation such that the eigenvectors are the new coordinate axes. Then
M(t) = (S−1(t))TS−1(t) is Riemannian metric. In this case (21) and (22)
turn out to have the following form, cf. [6]

LM (t, x) = max
w∈R2,‖w‖=1

wT
[
S−1(t)DxF (t, x)S(t) + (S−1)′(t)S(t)

]
w , (23)

where (S−1)′(t) denotes the orbital derivative of S(t). Formulas for the eval-
uation of the maximum in (23) are available, cf. [6]. Moreover, since the Rie-
mannian metric only depends on t, we can easily determine a positively in-
variant set.

Proposition 2. Let Ω = {(t, x̃(t)) ∈ S1
T × R

2} be a periodic orbit and let
M(t) be a Riemannian metric which only depends on t. Moreover assume
LM (t, x) < 0 for all (t, x) ∈ Kr where r > 0 and

Kr := {(t, x) ∈ S1
T × R

2 | [x− x̃(t)]TM(t)[x− x̃(t)] ≤ r2} .

Then Ω is exponentially asymptotically stable, and Kr ⊂ A(Ω) holds.

If LM is negative for all points of the periodic orbit, then Theorem 7 implies
that the periodic orbit is exponentially asymptotically stable and we obtain
an upper bound for the largest real part of all Floquet exponents. Since then
LM is negative also in a neighborhood of the periodic orbit, we can determine
a subset of its basin of attraction using Proposition 2.

3.6 Example: Periodic Movements of the Knee

For the example of a human knee-joint, cf. Sect. 1.2, we consider the periodic
solution

x̃(t) := x0 +∆x sin(t) ,

where x0 := 0.77 and ∆x := 0.07. With ṽ(t) := ˙̃x(t) and ã(t) := ¨̃x(t) we have
the following formula for the extensor activation Eext(t) as a function of the
(given) flexor activation Eflex(t)
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Fig. 1. (i) Uniform activation. Left: the activation functions Eflex(t) (prescribed
sine-function, black) and Eext(t) (calculated using (24), grey). Right: the function
LM (t, x̃(t)). The maximum value is −0.95

Eext(t) =
mg + ã(t) − Eflex(t)fisoflex

hflex(x̃(t))
H[hext(x̃(t))ṽ(t)]hext(x̃(t))

(24)

to ensure that x̃(t) is a solution of (11).
We consider a flexor activation of the following form:

Eflex(t) := −d1 sin(t+ d2 cos(t)) + d3, where

• Example (i): d1 = 0.35, d2 = 0 and d3 = 0.6 (cf. Fig. 1 – uniform activa-
tion)

• Example (ii): d1 = 0.3, d2 = 1.2 and d3 = 0.6 (cf. Fig. 2 – non-uniform
activation).

The Jacobian of the right-hand side at time t is given by

D(x,v)F (t, x̃(t), ṽ(t)) =

(
0 1

fx(t, x̃(t), ṽ(t)) fv(t, x̃(t), ṽ(t))

)

=:

(
0 1

fx(t) fv(t)

)

and its eigenvalues at time t are

λ1,2(t) =
1
2

(
fv(t) ±

√
fv(t)2 + 4fx(t)

)
.

The eigenvalues are real, distinct and negative, if and only if




fv(t) < 0
fx(t) < 0

fv(t)2 + 4fx(t) > 0
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Fig. 2. (ii) Non-uniform activation. Left: the activation functions Eflex(t) (pre-
scribed, black) and Eext(t) (calculated using (24), grey). Right: the function
LM (t, x̃(t)). The maximum value is −0.12

holds for all t. Note that fv(t) < 0 holds for all t because of the property
Hu(u) < 0 of the Hill-function.

For both examples (i) and (ii) these conditions are satisfied for all t. Fig-
ures 1 and 2 show the activation functions and the functions LM (t, x̃(t)),
which turn out to be negative for all times. Hence, the periodic orbit is as-
ymptotically stable for both examples by Theorem 7. The uniform activation,
example (i), gives an upper bound of −0.95 for the largest real part of the
Floquet exponents, whereas the example (ii) gives an upper bound of −0.12.

We also calculate the Floquet exponents numerically, cf. Sect. 3.2, which
takes a considerably longer time, but gives a sharper result on the largest
real part of the Floquet exponents: again, the uniform activation (i) leads
to a more negative Floquet exponent than the activation in example (ii),
cf. Table 1. Thus, a uniform activation seems to be favourable concerning the
stability.

Table 1. The largest real part of the Floquet exponents for the two examples.
Borg’s method A. provides an upper bound for the largest real part of the Floquet
exponents. The numerical calculation B. gives an approximation of the exact value of
the largest real part of all Floquet exponents. However, it requires a large number of
time-steps corresponding to a division of the interval [0, 2π] to calculate the matrix
P (t) and B, cf. Sect. 3.2

Example A. Borg’s method B. numerical calculation steps

(i) Uniform −0.95 −3.43 37670
(ii) Non-uniform −0.12 −1.60 55972
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Fig. 3. A subset of the basin of attraction for example (i), uniform activation. Left:
(t, x, v)-space. Right: projection on the (x, v)-plane

Using Proposition 2 we calculate subsets of the basin of attraction for the
uniform activation, example (i), shown in Fig. 3 in the (t, x, v)-space and pro-
jected to the (x, v)-space. The subset obtained with this method, however, is
very small. A numerical calculation of solutions with different initial conditions
shows that the real basin of attraction is much larger and contains the whole
part of the phase space shown in Fig. 3. The advantage of Borg’s method,
however, is that the conditions can be checked easily and fast, whereas the
calculation of many solutions with different initial conditions requires much
more time.

4 Conclusion

In this paper we presented mathematical models of the human elbow and knee
joint. We discussed different methods to analyze the stability and the basin of
attraction of stationary and periodic movements. These mathematical meth-
ods serve as tools to answer biological questions as posed in the introduction.
The properties of the muscles and the geometry of the joints which are re-
sponsible for the stability are the positive slope of the force-length function
(elbow joint, cf. [7]) and the moving center of rotation (knee joint, cf. [12]).
A high co-activation also stabilizes the system, cf. [7] and [5]. The stability of
stationary movements depends on the position of the joint angle: for the elbow
small angles are stable, whereas large angles are unstable. The dependency on
the angle and the co-activation is also reflected in the size of the basin of at-
traction, cf. [13]. For periodic movements, general answers to these questions
are more difficult to obtain, but we hope that the methods presented in this
paper serve to analyze periodic movements in more detail in the future. For an
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analysis of the self-stabilizing properties of biological systems with emphasis
on the biological reasons and implications, cf. also [13].
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Summary. The Lateral Leg Spring model (LLS) was developed by Schmitt and
Holmes to model the horizontal-plane dynamics of a running cockroach. The model
captures several salient features of real insect locomotion, and demonstrates that
horizontal plane locomotion can be passively stabilized by a well-tuned mechanical
system, thus requiring minimal neural reflexes. We propose two enhancements to the
LLS model. First, we derive the dynamical equations for a more flexible placement
of the center of pressure (COP), which enables the model to capture the phase
relationship between the body orientation and center-of-mass (COM) heading in a
simpler manner than previously possible. Second, we propose a reduced LLS “plant
model” and biologically inspired control law that enables the model to follow along
a virtual wall, much like antenna-based wall following in cockroaches.

1 Introduction

For decades, researchers have posited low-dimensional spring-mass models to
describe the COM dynamics and ground reaction forces in a broad variety of
running animals [2, 4, 9, 11, 12, 19]. In order to understand the complex body
mechanics of running animals, they have simplified the problem by decoupling
the mechanics into the sagittal and horizontal planes. For animals whose loco-
motion occurs primarily in the sagittal plane, the locomotion dynamics have
been modeled as a spring-loaded inverted pendulum (SLIP) [2, 16, 26, 27].
Insects, whose motion occurs primarily in the horizontal plane, have dynam-
ics that have been approximated by a lateral leg spring (LLS) model [23, 24].
Results of the LLS suggest that the mechanical structure of an insect may
be used to produce stable periodic gaits when running at high speeds, with-
out relying solely on proprioceptive reflexes and detailed neural feedback for
stability.
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The LLS models insect locomotion, specifically that of the cockroach
Blaberus discoidalis. Cockroaches run using an alternating tripod gait [4].
Experiments have shown that the forces produced by this tripod of legs can
be well represented by a single effective leg [10, 15]. Since the total mass of
the legs of the insect is less than 6% of the total mass, the LLS model ap-
proximates each alternating tripod as a single massless, spring-loaded virtual
leg that attaches to the midline of the body at a point called the center of
pressure (COP). As illustrated in Fig. 1, the COP is offset from the center
of mass (COM) by a displacement, d, where d may lie in front of the COM
(d > 0) or behind the COM (d < 0). The model assumes that the foot pivots
freely without slipping about its attachment to the ground, rfoot, and that
the leg can rotate freely about the COP. This implies that no moments about
the foot or COP can be generated, and forces will be applied to the body
along the length of the leg. A full stride for the model consists of a left and
right step phase. A step phase begins with the relaxed spring extended at
an angle ±β0 with respect to the body centerline. The body moves forward,
compressing and extending the elastic spring, until the spring returns to its
original length, at which point the leg is lifted, the next leg is placed down,
and the cycle repeats.

Changes in the foot placements between left and right step phases result
in a hybrid dynamical system. Systems with piecewise-holonomic constraints
such as these can display asymptotic stability [21]. For gaits encountered in
the LLS model, periodic motions exhibit neutral eigendirections due to energy
conservation and SE(2) invariance. Therefore, stability is partially asymptotic
in the sense that perturbations to periodic orbits in the direction of the eigen-
vectors of conserved quantities and symmetries do not grow or decay, but
simply result in movement to a different, stable gait. Gaits in the LLS model
display partial asymptotic stability in the heading direction and angular ve-
locity as a result of angular momentum trading between left and right step
phases. The mechanical structure of the model therefore self-stabilizes the
locomotion system [23]. If d < 0 then the gaits are asymptotically stable in
heading and angular velocity, i.e. the body approaches straight trajectories if
the trajectory begins in the basin of attraction for the stable periodic orbit. If
d = 0, the periodic orbits exhibit neutral stability in angular velocity and as-
ymptotic stability in heading. If d > 0, periodic orbits are unstable. To show
stability, one takes Poincaré sections at the beginning of a full stride, and
numerically approximates the fixed points and eigenvalues of the linearized
return map.

While the energetically conservative fixed and moving center of pressure
models of [23, 24] reproduce many salient features of the kinematics and forces
exhibited experimentally by Blaberus discoidalis, detailed comparisons illumi-
nate limitations of the LLS. In particular, the fixed COP models previously
investigated consider only COPs on the fore-aft body axis, and consequently
only produce sinusoidal variations in θ; in contrast, the animal produces cos-
inusoidal variations [28]. This is due to the fact that a fixed COP located
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behind the center of mass along the fore-aft body axis is only capable of pro-
ducing a positive or negative moment, rather than a moment that changes sign
during each step phase. Additionally, fore-aft and lateral force profile magni-
tudes are typically reversed in comparison to those observed experimentally.
Allowing the leg attachment point to vary from fore to aft in the moving COP
model serves to address the qualitative discrepancies in the moment and yaw-
ing profiles. However, while qualitatively correct yaw and moment profiles are
produced by the model, quantitative comparisons reveal that the variations
in each remain an order of magnitude smaller than those observed experi-
mentally. An activated muscle model introduced by Schmitt and Holmes [25]
attempts to correct the moment and yawing oscillations by introducing hip
torques and muscle activation. While these authors obtained correct moment
profiles in this manner, they are obtained at the expense of increased model
complexity and inverted fore-aft force profiles.

The goal of this paper is to modify the LLS model to better match the
actual cockroach, with as few parameters as possible, and to extend it to serve
as a plant model for control. To compare our model to the previous LLS, we
consider features salient to cockroach locomotion, such as stability, body mo-
tion kinematics, forces and moments, stride frequency, etc. For control, we
use a biologically inspired antenna-like measurement [6, 7, 8], and show nu-
merically that the closed-loop system dynamics asymptotically track a virtual
wall in the environment. In addition, the controller maintains the LLS model’s
energy conserving nature.

2 Dynamics and Simulation of an Enhanced LLS Model

The goal of this research is to control the LLS model from step-to-step to
achieve a locomotion objective such as following along a wall and avoiding
obstacles in a planar environment. Using a controlled form of the LLS as a
“plant model” may provide insights into our longer term objective of control-
ling a legged robot such as RHex [1], Sprawl [5], or Whegs [20]. It is known, for
example, that RHex exhibits a dynamically similar gait in both the sagittal
and horizontal planes to a cockroach. Toward that end, this section explores
the effects of COP placement and movement on the steady-state dynamics of
the LLS model. The goal is to uncover the simplest possible mechanism to
match biological data, while still providing the possibility for control.

2.1 LLS Dynamics with 2-D COP Placement for a Left Step

We propose an alternative (or a simpler) solution to the moving COP; laterally
offset the fixed COP (i.e. position the COP in the positive x-direction of the
body frame {B}). This has a similar effect as the moving COP scheme; the
leg generates a clockwise torque during the first half of a step, and an opposite
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Fig. 1. Left: A schematic model of the LLS model, showing the coordinates used
for expressing Hamilton’s equations. Right: Illustration of multi-step dynamics. The
dynamics of each left step phase are given by (4). A right step can be achieved by
first flipping the states about the y-axis, integrating the left step map, and then
flipping back. Breaking this chain in the correct place leads to a single “integrate
and flip” return map, f(q) := MfL(q), that will simplify controller design

torque during the last half, assuming the body angle, θ, is greater than zero
at the start of a left-leg step.

In order to validate our alternative solution, we represent the position of
the COP during the left-leg step as:

[
d1

d2

]
=

[
b1 + c1(ψ − θ)
b2 + c2(ψ − θ)

]
, (1)

where d1 and d2 are along the x and y-axis of the LLS body frame {B}, and ψ
and θ are shown in Fig. 1. In this representation, we allow the COP to be either
fixed (c1 = c2 = 0) or moving (c1 �= 0 or c2 �= 0) from any offset (b1 and b2) in
the body frame {B}. This freedom allows us to test different COP placement
protocols, including the case where the COP moves backwards while offset
to the side [28]. This representation implicitly assumes that during the next
right-leg step, the COP position will be mirrored about the y-axis about the
body frame {B}. If d1 = 0, then we have the equation introduced in [23].

Consider the generalized coordinates r = (ζ, ψ, θ), as depicted in Fig. 1.
For the left step phase, the Hamiltonian of the LLS system implemented with
a linear spring is

H =
p2

ζ

2m
+

p2
ψ

2mζ2
+
p2

θ

2I
+
k(η − l0)2

2
(2)

where ζ, ψ, k, l0, I, and m denote the distance from the foot placement to the
COM, the angle from the foot placement to the COM, the linear spring stiff-
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ness, the relaxed leg length, the moment of inertia, and the mass, respectively.
The length of the leg is given in terms of the COP location by

η =
[
b21 + b22 + ζ2 + φ

(
2b1c1 + 2b2c2 + (c21 + c22)φ

)

+ 2ζ
(
(b1 + c1φ) cosφ+ (b2 + c2φ) sinφ

)]1/2

. (3)

Hamilton’s equations of motion with our new COP and the linear leg
spring model are given by

ζ̇ =
pζ

m
, ṗζ =

p2
ψ

mζ3
− k(η − l0)

η

(
ζ + (b1 + c1φ) cosφ+ (b2 + c2φ) sinφ

)
,

ψ̇ =
pψ

mζ2
, ṗψ = −k(η − l0)

η

(
b1c1 + b2c2 + (c21 + c22)φ

+ ζ(b2 + c1 + c2φ) cosφ− ζ(b1 − c2 + c1φ) sinφ
)
,

θ̇ =
pθ

I
, ṗθ = −ṗψ ,

(4)
where φ � ψ − θ. We assume when a step commences, the spring is uncom-
pressed, η = l0. Because the spring starts at and returns to rest length at
step transitions, no step-to-step impacts dissipate energy, and thus energy is
conserved in the LLS model.

2.2 Hybrid Step-to-Step Dynamics

The generalized coordinates r = (ζ, ψ, θ) and their conjugate momenta, pr,
provide a convenient set of local coordinates for expressing the within-step
Hamiltonian dynamics (4) of the LLS. However, they provide an inconvenient
representation when considering the step-to-step dynamics because they de-
pend on the frame {F} that moves every step. As a remedy, we follow [23],
and use q = (s, g) ∈ S × SE(2), where s = (v, δ, θ̇) ∈ S ⊂ R

3 are the “inter-
nal” states, and g ∈ SE(2) is the pose. The speed, v, is the magnitude of the
COM velocity, and the relative heading, δ, is the angular difference between
the orientation, θ, and the angle of the COM velocity vector (see Fig. 1). The
local coordinates (θ, x, y) parameterize SE(2) without singularities through
the usual relationship,

g =




cos θ − sin θ x
sin θ cos θ y

0 0 1


 (5)

(written as a homogeneous transformation matrix) so we conflate the two
when convenient and often write g = (θ, x, y) in an abuse of notation. The
dynamical equations can be recast using the state variables q, which we omit
for simplicity of presentation. Instead, we consider the state qi, i = 0, 1, 2 . . .
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as the discrete state, where qk = (sk, gk) corresponds to the state at the
beginning of the kth step. If h ∈ SE(2) and q = (s, g) ∈ S × SE(2) then we
define the left action of SE(2) on S × SE(2) by hq = (s, hg), where hg is the
group product on SE(2).

At the beginning of the kth step (for k even), the leg is at rest length, η = l0,
and the leg touch-down angle starts at β0 relative to the y-axis of the body
frame {B}, β = β0. This information, together with the state qk = (sk, gk),
uniquely determines the initial conditions for integration of Hamilton’s equa-
tions. When η again reaches the spring rest length l0, the hybrid system
transitions to the right step, as described below. The final values of (r, pr) at
the end of the kth step uniquely determine the states qk+1 = (sk+1, gk+1),
used to start the subsequent step. Thus, the left step dynamics map the
state fL : qk �→ qk+1 according to a simple change of variables into coor-
dinates (r, pr), followed by integration of Hamilton’s equations. By inspection
of Hamilton’s equations (4), note that the left-step mapping is left invariant
under rigid transformations of the initial condition, since the equations are
not functions of (x, y), and θ never shows up without −ψ, both of which are
with respect to the world frame. Hence, fL(s, hg) = hfL(s, g). Note that this
implies that qk+1 = (sk+1, gk+1) = fL(s, gk) = gkfL(s, e), where e ∈ SE(2) is
the identity.

Let {Ak} denote the location of the body frame at the beginning of the
kth step. In other words, gk is the transformation from {Ak} to the world
frame {U}. For k odd, the right leg is down, and Hamilton’s equations (4)
are identical, so long as we express them in terms of a left-handed frame. We
do this by taking a mirror image around the y-axis of frame {Ak} at the
beginning and end of the kth step (k odd), to write down the right step map
in terms of the left one. This can be expressed in terms of local coordinates
q = (v, δ, θ̇, θ, x, y)T as first “flipping” (δ, θ̇, θ, x), integrating the left step map,
and then flipping back, namely

fR(q) = MfL

(
Mq), where M = diag {1,−1,−1,−1,−1, 1} . (6)

Note thatMM = I. We chose to flip about the y-axis for notational simplicity,
but in principle any left-handed frame would work. This mapping leaves the
right step map left-invariant under SE(2).

For finding symmetric steady-state gaits, it will be convenient to define a
special step-to-step return map that amounts to an “integrate and flip” (see
Fig. 1, Right). For a complete stride that includes a left step and then a right
step, the stride-to-stride mapping is given by fL−R = fR ◦ fL, namely

fL−R : q �→MfL(MfL(q)) = (f ◦ f)(q), where f(q) := MfL(q) . (7)

This approach eliminates the need to distinguish between left and right steps
for control purposes. Note, however, that f is not left-invariant, even though
both fL and fR are left-invariant. The resulting state evolution is given simply
by
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qk+1 = f(qk) , (8)

keeping in mind that for odd steps, the value for qk in this step-to-step for-
mulation has already been “flipped”.

2.3 Simulation Methods

We simulated the LLS model using Matlab and the convention discussed in
Sect. 2.2; for every right-step, convert it to a left-leg step, simulate the within
step dynamics, and then convert it back to a right-leg step. This enabled us to
specify the COP position using (1) and integrate the equation of motion (4)
without the explicit representations of a left or right step in the equations. We
used Matlab’s ode45 with time varying step size to integrate the equations of
motion. The integration terminated as soon as the compressed leg returned
back to its relaxed length l0. To specify a moving COP, we selected bi and
di(kT ), i = 1, 2 where di(kT ) denotes the COP position at the start of k-th
step. To meet this restriction, ci is allowed to vary at each step, although it
shouldn’t vary at an equilibrium point.4

We found the equilibrium point q0 = (v, δ, θ, θ̇, x)T using the Levenberg-
Marquardt method in Matlab’s fsolve function. While fixing the state v to a
desired value, the function minimized the error difference of a step, f(q) − q.
We also found the stride-to-stride Jacobian, Astride, and step-to-step Jacobian,
Astep, about the equilibrium point using a central difference approximation.
The ith columns are given by [Astride]i = (fL−R(q + eiε) − fL−R(q − eiε))/2ε
and [Astep]i = (f(q + eiε) − f(q − eiε))/2ε, where ε = 1 × 10−6 and ei is the
i-th column of 5× 5 identity matrix. In Sect. 3.2, we discuss the LLS stability
from the eigenvalues of Astride, while in Sect. 4, we use Astep to control the
LLS model.

Unless otherwise noted, we used the following parameters and measure-
ments of death-head cockroaches, Blaberus discoidalis, used in [19, 22, 24]:
m = 0.0025 kg, I = 2.04 × 10−7 kg m2. The choices for l0, k, v, and β0 were
chosen to satisfy constraints on the stride length (Ls = 0.02 − 0.025m) and
stride frequency (fs = 10Hz), and generally fell in the ranges k = 2.25 −
3.5Nm−1, l0 = 0.008 − 0.015m, β0 = 0.8 − 1.2 rad, di = 0.002m, and v =
0.2 − 0.25m/s.

3 Analysis of COP Placements

3.1 Effects of Various COP Placements

In order to match the LLS system with an actual cockroach data (Fig. 2), we
need to understand the effects of bi and ci (or di(kT )) on the overall system.

4 Instead, the values for bi and ci can be specified directly [24]. This causes di(kT )
to change depending on the quantity (ψ(kT ) − θ(kT )).
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Fig. 2. Left: A stride of the original LLS model (d1 ≡ 0) with a fixed COP
(solid) and a moving COP (dashed). The used parameters for the fixed COP are:
v = 0.226 cm/s, k = 2.4 N/m, β0 = 1 rad, l0 = 0.0102 m, d2 = −0.0025 m;
for the moving COP are: v = 0.2235 m/s, k = 3.52 N/m, β0 = 1.125 rad, l0 =
0.0082 m, d2 = 0.0025 m → −0.0025 m. Right: Experimental measurements of
Blaberus discoidalis from several sources, [14, 15, 18]; figure from [22]. (Notice, since
the right figure doesn’t start from t = 0, the stride period is roughly the same
between the two figures)

To do so, our initial attempt is to consider various protocols for the COP
placements:

(a) Increment d1 while d2 = 0;
(b) Increment d2 while d1 = 0;
(c) Increment the amplitude of a moving d2 while d1 = 0;
(d) Increment the offset of a moving d2 while d1 = 0;
(e) Increment d1 while d2 is moving;

Figure 3 illustrates these protocols schematically for a left step; for a right
step, the COP path is mirrored about the body y-axis. For each protocol and
their parameter increments, we found the corresponding equilibrium points
and simulated a full stride (starting with a left step) from the equilibrium
points. The results from the simulations are shown in Figs. 4, 5, and 6. For
each incrementing parameter, we plotted the result using different shades of

y

x

(a) (b) (e)(d)(c)

{B}

Fig. 3. COP placement protocols for a left step with respect to the body frame
{B}. The solid dots indicate fixed COP positions; the arrows indicate the direction,
magnitude, and offset of moving COPs
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(a) Increment d1 = {−0.2, . . . , 0.2 cm} while d2 = 0.

(b) Increment d2 = {−0.2, . . . , 0.2 cm} while d1 = 0.

Fig. 4. See text for description of each COP protocol. The parameters used in
this figure are: m = 0.0025 kg, I = 2.04 × 10−7 kg m2, k = 3.52 Nm−1, v =
0.2275 m/s, l0 = 0.0127 m, β0 = 1.12 rad (or 64.2 ◦). Note, unlike Fig. 2, these
figures have scaled units (e.g. cm and mN) for clarity
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(c) Increment the amplitude of moving d2 from 0 to 0.2 cm while d1 = 0.

(d) Increment the offset of moving d2 from 0 to 0.2 cm while d1 = 0.

Fig. 5. The parameters used here are: m = 0.0025 kg, I = 2.04× 10−7 kg m2, k =
3.52 Nm−1, v = 0.2235 m/s, l0 = 0.0082 m, β0 = 1.125 rad
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(e) Increment d1 = {−0.2, . . . , 0.2 cm} (solid) while d2 (dashed) is mov-
ing from 0.2 to −0.2 cm.

Fig. 6. The parameters used here are: m = 0.0025 kg, I = 2.04× 10−7 kg m2, k =
3.52 Nm−1, v = 0.2235 m/s, l0 = 0.0082 m, β0 = 1.125 rad

gray. The first two columns of a subfigure shows the COM velocity and leg-
spring forces in lateral and forward directions (i.e. x and y directions in the
inertial frame {U}), the body angle, and the moment. The last column shows
d1 (solid line) and/or d2 (dashed line) as a function of time, COM path, and
the eigenvalues as a function of the incrementing parameter. The rest of the
parameters (i.e. k, v, β0, and l0) were chosen to closely match the stride
length and frequency of cockroach data [22].

Protocol (a): Fixed COP on lateral axis. Figure 4(a) shows results of a
simulated LLS model in which we fixed the COP at various positions along
the x-axis of the body frame {B}. As desired, when d1 > 0, the profiles of
the body angle, θ, and the moment waveforms resemble actual cockroach data
(Fig. 2), as well as that of the moving COP proposed by Schmitt and Holmes
[24] (reproduced in Fig. 2, Left). Note that the positive cosinusoidal waveforms
of the body angle (which agrees with the biological data) for a fixed COP only
occur when d is on the positive x-axis of {B}. Figure 4(a) indicates that the
increase in |d1| amplifies the body angle and the moment waveforms while
the other measurements, including the stride length and frequency, remain
relatively constant. This isolated effect of d1 will be useful later on when we
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fit the data to another waveform. In addition, the eigenvalue plot shows that
the system becomes unstable when d1 < 0 and stable when d1 > 0.

Protocol (b): Fixed COP on fore-aft axis. As a comparison to the previous
result, Fig. 4(b) shows the effects of different locations d2 for a fixed COP.
Although the body angle is sinusoidal (not cosinusoidal, like the cockroach),
the location of d2 does have a larger impact on the magnitude of body angle
and the stability of the system (steeper slope for the moving eigenvalue) than
d1 in the previous protocol. We speculate that one cause of this differences
in impact level is due to the large value of β0; since β0 = 1.12 > π/4, the
leg force is oriented primarily in the lateral direction rather than the fore-aft
direction. Thus, changes in d2 cause greater moment arm changes than the
equal changes in d1. We will utilize this effect in Sect. 4 by using d2 as our
control input. We also note that the body velocity (and position) and foot
forces of this figure matches the previous figure. Although not shown, as the
fixed COP position traverses in this neighborhood, without the restriction
of d1 = 0 or d2 = 0, the body velocity and foot force waveforms remain
relatively constant. On the other hand, the waveforms for the body angle and
the moment go through phase and amplitude changes.

Protocol (c): Incrementing magnitude of a moving COP on the fore-aft
axis. For fore-aft COP motion along the body frame y-axis, Fig. 5(c) shows
the effects of changing the magnitude of COP motion. Unlike the previous
protocols, varying the magnitude of a moving COP causes large changes to
all the kinematics, step length, and step frequency. Although it is not shown
here, further increase in magnitude (also observed in [22]) or reversing the
direction (i.e. aft to fore) of the moving COP drives the system unstable.

Protocol (d): Forward Shifting of a Moving COP. Figure 5(d) shows the
effects of shifting a moving COP in y direction in {B}. It shows that, as
the offset b2 increases (or decreases, although not shown), the body loses its
cosinusoidal waveform and eventually becomes unstable. We emphasize that
the system does not go unstable as soon as the offset b2 > 0 nor b2 < 0.
Also the instability does not necessarily occur even though the moving COP
remains in front of the COM most of the time. Along with Protocol (c), we
introduce one possible explanation of these results in Sect. 3.3.

Protocol (e): Lateral Shifting of a Moving COP. Lastly, we look at the
result of incrementing the lateral offset to a moving COP, as shown in Fig. 6(e).
The result resembles that of Protocol (a) in Fig. 4(a); the changes in d1

mostly affect the magnitude of body angle and moments, but the waveforms
all remain qualitatively the same shape. Also, the increase in d1 has amplified
the waveforms, and the moving COP has stabilized the system even with
d1 < 0, in contrast to the results of Fig. 4(a).

From the results from these protocols, we conclude that we can achieve the
desired cosinusoidal waveforms by laterally offsetting a fixed COP or moving
COP. However, both cases produce body angle and moment variations that
remain an order of magnitude smaller than those of a cockroach. This can
be remedied with a very large – possibly non-physical – COP offset of d1 =
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Fig. 7. Maximum eigenvalue (neglecting two invariant unity eigenvalues for energy
and direction) of the linearized return map as a function of our new, two dimensional
COP locations. The dark gray indicates the parameter regime of maximum stability
and the neutral stability occurs when the contour reads 1. Eigenvalues greater that 3
are empty. The parameter values used are: v = 0.25 m/s, k = 2.4 Nm−1, l0 = 0.01 m,
β0 = 1 rad, and −0.02 m < d1, d2 < 0.02 m

0.025 m ≈ 2l0 and d2 = 0, which means that the virtual foot touchdown
position will be far off to the positive x-axis in {B} along with the COP.
The resulting magnitude of the body angle was about 2 ◦ (or 0.035 rad) with
the moment of 0.3 × 10−4 N m. This is within an order of magnitude of the
cockroach variations 5.7◦ (or 0.1 rad) and 1 × 10−4 N m in Fig. 2.

3.2 Stability as a Function of Fixed COP Position

Figures 4(a) and 4(b) showed the stability plot of the LLS with a fixed COP
along the x and y-axis of {B}, respectively. Figure 7 shows a contour plot of the
maximum non-unity eigenvalues as a function of more general 2D fixed COP
positions. Note that the neutrally stable (i.e. maxλ = 1) gait corresponding
to (d1, d2) = (0, 0) found by Schmitt and Holmes [23] lies along a neutral
stability contour through the origin of the d-plane. There is a large stable
region (maxλ < 1) “inside” the neutral stability contour and an abrupt area
of instability in the lower-right corner of the plot. Notice that the stable region
(maxλ < 1) extends to a part of d2 > 0 region for d1 > 0. This indicates that
we can achieve stability for the fixed COP that is in front of COM, as long
as it is sufficiently offset to the right (d1 > 0). We also notice that around
the origin, the gradient of the eigenvalues is greater in the direction of y-axis
than x-axis of {B}. This hints that a small displacement of the fixed COP in
d2 should give us a greater control than that of d1. We utilize this notion in
Sect. 4.
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Our long-term goal is to match the LLS to biological or robotic locomotion
performance, possibly using the LLS as a plant model for control. Therefore,
we examined the equilibrium state values, δ∗, θ∗, and θ̇∗, in Fig. 8, as a recipe
for future comparisons to biological and robotic systems. As expected, the two
contours θ∗ = 0 and θ̇∗ = 0 indicate purely oddly symmetric (sinusoidal) and
evenly symmetric (cosinusoidal) yaw motions, respectively, and these symme-
tries only occur on those contours.

3.3 Comparing Fixed vs. Moving COP Models

From the observations above, we consider the relationship between a fore-aft
moving COP and a fixed, laterally offset COP. These two scenarios generate
similar waveforms; in fact, using very similar parameters, we can nearly match
the body motions and forces using these two strategies, as shown in Fig. 9.
To find a good match, we relied on trial and error, using Figs. 4(a) and 5(c)
as a guide to adjust d1 and d2 and we referred to [22] to adjust l0, β0, and k.
As shown, the body angle (yaw) motions match nearly exactly, while for the
other measurements, the fixed COP exceeded the moving COP somewhat in
magnitude, although the results are qualitatively similar.

We compare the moving COP model to a model with a fixed COP on the
positive x-axis of {B}, as follows. As the LLS moves through a left step, the
leg intersects the body centerline at a point that moves fore-aft, as depicted
in Fig. 10(a). Suppose there is another LLS system with a moving COP that
traces out the same path, and has the same foot touchdown position as the
fixed COP case. With appropriate parameters (and possibly a nonlinear leg
spring), the fixed COP LLS model might approximate the moving COP model.
By approximating the moving COP with the fixed COP in this way, we can
predict which moving COP protocols might be stable on the basis of the
stability contour map (Fig. 7, Sect. 3.2). Using this approach, we address
below (without formal proofs) unanswered questions from Sect. 3.1.

In Protocol (c), we considered increasing the magnitude of a moving COP.
We approximate this case using the effective fixed COP and effective β0 shown
in Fig. 10(b) and (c); a larger magnitude can be created by moving the effective
fixed COP in the x direction and/or decreasing the value of leg touchdown
angle β0. From Fig. 4(a), we saw that the increase in d1 for a fixed COP
improved stability and amplified the body angle and moment, which agrees
with increasing the magnitude of fore-aft motion in the moving COP, as shown
in Fig. 5(c). Similarly, a moving COP that is shifted forward, as in Protocol
(d), can be approximated by shifting the effective fixed COP forward, as
shown in Fig. 10(d). Figure 8(a) shows that the effective fixed COP will first
be stable, but eventually it will be unstable as the offset increases further.

Earlier, we indicated that the system became unstable when the moving
COP moved from back to front (i.e. aft to fore) along the body centerline.
As Fig. 10(e) shows, the effective fixed COP would then be placed on the
left side of the body centerline which, according to Fig. 8(a), would probably
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Fig. 8. Contour map of the maximum non-unity eigenvalue and the equilibrium
points δ∗, θ∗, and θ̇∗. The parameter values are the same as Fig. 7

Fig. 9. Comparison between moving and fixed COP. m = 0.0025 kg, I =
2.04 × 10−7 kg m2, k = 3.52 N m−1, β0 = 1.125 rad. Moving COP (dashed) v =
0.2235 m/s, l0 = 0.0082 m, d1 = 0 m, d2 = 0.002 → −0.002 m. Fixed COP (solid)
v = 0.2275 m/s, l0 = 0.0128m, d1 = 0.005 m, d2 = 0m
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(a) (b) (e)(d)(c)

Fig. 10. Comparison between a moving COP and an effective fixed COP during a
left step under different protocols. Fixed COP is denoted by a filled dot, and the
moving COP is denoted by a gray arrow

make the system unstable. This also suggests we can achieve stability for a
forward moving COP if we choose our offsets carefully.

In Protocol (e), we increased the lateral offset of a moving COP. We can
represent this simply by laterally shifting the effective fixed COP which is
similar to Protocol (a), Fig. 4(a). Indeed that is what we observed in Fig. 6(e).
This explains why the system remained stable when d1 < 0; the effective fixed
COP position was to the right of the COM (d1 > 0). This implies that for
cockroaches, if their mechanics limit the magnitude of d2, i.e. they cannot
have a large c2, then an increase d1 will achieve the desired stability, or vice
versa; this would explain the shift in the moving COP observed in cockroaches
[28].

In summary, the moving COP model is more complex than the fixed COP,
but they have similar performance in matching biological data. Thus, in the
next section, we assume the COP is fixed to the right of the COM within each
step, but let the controller adjust the location of the COP between steps.

4 LLS Control: Wall Following

In addition to their remarkable stability, cockroaches also exhibit extraor-
dinary maneuverability. For example the American cockroach, Periplaneta
americana, follows walls using tactile feedback from their antenna, making up
to 25 turns per second in response to jagged walls in the environment [3, 6].

Despite its simplicity, the LLS model captures many salient features of
the dynamics and stability of steady-state cockroach locomotion. Building on
these strengths, we explored using the LLS as a “plant model” for control.
Schmitt and Holmes [24] tested the idea of moving the COP to steer locomo-
tion. They noted that briefly moving the COP in front of the COM generates
large turns of 20–70◦. Other possible control parameters, such as the spring
stiffness, leg length, and step-length can also be used for steering, but Full
et al. [13] contend that moving the COP is the most effective, and least frag-
ile. Moreover, moving the COP for steering seems to be consistent with animal
turning behavior [17].
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4.1 LLS Plant Model

In Sect. 3, we compared the effects of moving the COP within a step, ver-
sus keeping the COP fixed. Both models can, with appropriate parameters,
demonstrate asymptotic stability in the relative heading, δ, and angular ve-
locity, θ̇, but neutral stability in running speed, v ∈ R

+, orientation θ, and x
(if we’re running in the y direction of {U}). As discussed above, the moving
COP adds complexity but provides very little advantage over the laterally off-
set but fixed COP model when it comes to matching steady-state cockroach
data. Therefore, we explored using step-to-step adjustments of the COP as
an input to control the overall body location in g ∈ SE(2). Because there are
no energy losses between steps due to impacts, the controlled LLS remains
piecewise Hamiltonian and energy conserving.

Initially, we explored control laws that varied d1, d2, β0, and combinations
thereof. We found that a highly effective control scheme was to fix β0 and place
the nominal COP to the right of the COM (for left steps), varying only the
fore-aft COP location (d2) from step-to-step. This is consistent with biological
observations that rapid maneuvering in cockroaches occurs with large changes
in the fore-aft COP [17]. Specifically, we used the step-to-step control input

dk = αe1 + e2uk, where e1 = [ 1, 0 ]T , e2 = [ 0, 1 ]T , (9)

k is the stride number, uk ∈ R is the control input, and α is a scalar. As
shown in Sect. 2, selecting α > 0 ensures that for uk ≡ 0, the system is
asymptotically stable in δ and θ̇, and neutrally stable in v and g. The result
is a step-to-step return map,

qk+1 = f(qk, uk) , (10)

that is no different from the step-to-step uncontrolled LLS in (8), except that
between steps the COP location can be adjusted according to (9).

4.2 Antenna-Based Output Function

We assume that the LLS controller will have at its disposal proprioceptive
measurements at each step, such as its angular velocity, θ̇k, and relative head-
ing, δk, but not necessarily its position and orientation relative to our arbi-
trarily assigned world reference frame, {U}. Therefore, in order for the LLS
to achieve some task level goal in SE(2), it needs exteroceptive feedback. For
this, we derive inspiration from nature, and assume the LLS has a simpli-
fied antenna that measures its distance from a surface in the environment as
depicted in Fig. 11.

Our antenna model follows [6, 7, 8] and assumes the antenna estimates
the distance, γ, from the body centerline to a “wall” – in this case the y-
axis – ahead of the COM a known, fixed preview distance, �. Under these
assumptions
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{U} x
y

Fig. 11. Left: Multiple exposures of the cockroach P. americana negotiating a set
of obstacles at high speed, using feedback from its antennae [6]. Right: A simplified
model of an antenna as a distance-to-wall sensor

γ = � tan θ − x sec θ . (11)

The above equation (11) relates the LLS pose to the antenna measurement, γ.
We make no attempt to avoid collisions of the LLS with the virtual wall and
for simplicity, our controller will drive the LLS to align itself directly on top of
the y-axis, though this can easily be extended to drive the LLS to follow at an
offset distance from the wall. Together, the proprioceptive and exteroceptive
measurements yields the measurement function:

h(q) :=
[
δ, θ̇, γ

]T
. (12)

4.3 Reduced Return Map

To simplify controller analysis and design, we reduced the model, by using
translational symmetry and energy conservation, as follows. Recall that the
left- and right-step mappings, fL and fR, are invariant to SE(3), but the step-
to-step return map, f = MfL, is not. However, that mapping is invariant to
pure y motions (had we chosen a different left-handed frame, translational
invariance would have been in the direction of the axis of symmetry of the
reflection to that frame). This was by design: our goal for control is wall
following, and for simplicity, we have chosen to follow the y-axis. In addition,
the output mapping, h, is y-translation invariant. Thus we removed the y
equation by setting y = 0 at the beginning of each step. Naturally, we ignored
the final value of y when finding an equilibrium as we did in Sect. 2. To remove
v note that

H =
1
2
mv2 +

1
2
Iθ̇2 +

1
2
k(η − l0)2 = H0 ≡ constant . (13)

So, at each step

v =
[

2
m

(
H0 −

1
2
Iθ̇2 − 1

2
k(η − l0)2

)]1/2

. (14)

Thus we defined a transformation
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TH : (δ, θ̇, θ, x) �→ (v, δ, θ̇, θ, x, 0) (15)

that assigns y = 0 and computes v from (14). Note that TH is invertible and
T−1

H is the transformation that simply removes the v and y coordinates. Then,
we define the reduced variables and mapping

qr = (δ, θ̇, θ, x) and fr(qr
k, uk) = T−1

H

(
f(TH(qr

k), uk)
)
. (16)

4.4 Linearized Return Map, Controllability and Observability

As a preliminary control task, we chose to have the LLS follow a virtual “wall”
coincident with the y-axis. To find an equilibrium, we used similar techniques
to those described in Sect. 2 to find equilibrium trajectories, ensuring that
x = 0 at the beginning and end of each step, corresponding to exact wall
following. The result was an equilibrium q∗, such that q∗ = fr(q∗, 0). To
address controllability, we numerically linearized the return map around a
nominal equilibrium trajectory, to obtain the local return map

ek+1 = Aek +Buk

zk = Cek

(17)

where
A =

∂fr

∂qr

∣∣∣
qr=q∗,u=0

B =
∂fr

∂u

∣∣∣
qr=q∗,u=0

, (18)

and ek = qr
k − q∗. The linearized output matrix can be derived analytically,

C =
[
∂h

∂qr

]

qr=q∗
=




1 0 0 0
0 1 0 0
0 0 � −1


 (19)

but to date we only have numerical approximations to A and B. The re-
duced system (A,B,C) is stabilizable and observable for the parameters
m = 0.0025 kg, I = 2.04 × 10−7 kg m2, l0 = 0.01 m, k = 2.25 N/m,
β0 = 0.8 rad, and a nominal COP offset of α = 0.0025 m.

4.5 Antenna-Based Control Strategy

Because the system is completely observable, state feedback is possible; how-
ever, we found that the following simple output feedback to be quite effective:

uk = Kzk , (20)

where zk is the system output from (17). The closed loop system dynamics are
governed by the ek+1 = (A+BKC)ek, so to find a good choice for the gain,
K, we evaluated the eigenvalues of the system matrix (A+BKC). Amidst a
variety of possible feedback gains, we selectedK = [ 0, 0.001, 0.5 ], which lead
to complex conjugate pairs of closed loop eigenvalues at −0.4643 ± j0.2607
and 0.3478± j0.4827. A demonstration of this controller, executed on the full
nonlinear LLS dynamics, is shown in Fig. 12.
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Fig. 12. Simulation of the controlled LLS following the y-axis using the feedback
control law (20). In this control law, COP lies nominally along the body x, namely
d = [ 0.25cm, 0 ]T (for the left step). The output feedback controller (20) varies
the COP in the d2 direction. In the simulation, the LLS starts out rotated 30◦

counterclockwise from the y-axis, and 2 cm to the right. The figure on the right
shows COM (◦), COP (∗), and foot (×) positions at the start of each step

5 Conclusion

In this paper, we revised the LLS model to achieve the same phase relation-
ship between the θ and δ as a real cockroach, using a fixed and laterally offset
COP. Also we investigated how the COP location governed the overall sys-
tem stability, and related the fixed COP model to the moving COP model
presented by Schmitt and Holmes [23].

For control purposes, we reduced the system state to four dimensions, using
translation symmetry and energy conservation. We then applied a very simple
output-based feedback strategy to update the COP location between strides
based on an antenna-like measurement. Using this controller, the reduced
system dynamics were linearly stable. In the future, we will explore using the
LLS model as a control template [12] for horizontal-plane control of running
robots.
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Summary. In the next few years considerable effort will be expended to make
humanoid robots that can do true dynamic walking, or even running. One may
numerically compute a desired gait, e.g. one that has been optimized to be asymp-
totically stable without feedback. One would normally give the gait as commands to
the controllers for the robot joints. However, control system outputs generally differ
from the command given, and the faster the command changes with time, the more
deviation there is. Iterative learning control (ILC) and repetitive control (RC) aim
to fix this problem in situations where a command is repeating or periodic. Since
gaits are periodic motions, it is natural to ask whether ILC/RC can be of use in im-
plementing gaits in hardware. These control concepts are no substitutes for feedback
control but work in combination with them by adjusting the commands to the feed-
back controllers from a higher level perspective. It is shown that the gait problem
does not precisely fit either the ILC or the RC problem statements. Gait problems
are necessarily divided into phases defined by foot strike times, and furthermore the
durations of the phases are not the same from cycle to cycle during the learning
process. Several methods are suggested to address these issues, and four repetitive
control laws are studied numerically. The laws that include both position and ve-
locity error in the updates are seen to be the most effective. It appears that with
appropriate refinement, such generalized RC laws could be very helpful in getting
hardware to execute desired gaits.

1 Introduction

In the last few years, many humanoid and biped walking robots have been
built executing periodic or quasi-periodic gaits [1, 2]. So far such robots
are rather slow moving compared to their biological counterparts, and the
traditional control approach keeps them as close as possible to a quasi-
static equilibrium during the motion, e.g. [5, 25]. As research progresses into
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making robots that do true dynamic walking or running, in addition to dealing
with the dynamic behavior of the nonlinear multibody robot system, it will
become necessary to address the imperfect dynamics of any feedback control
system that is used to attempt to execute the chosen periodic gait.

In recent years, the fields of iterative learning control (ILC) and repeti-
tive control (RC) have appeared [3, 19], the goal of which is to improve the
performance of feedback control systems by adjusting the commands given
to them. In principle, these techniques could be combined with any chosen
feedback control concept. ILC and RC have now developed to the point that
commercial use of the methods has started to appear. Recently, robots have
been delivered to Daimler-Chrysler in Detroit using ILC to improve perfor-
mance. And RC is now being used at the factory to learn a command for each
track of computer disk drives. The improved performance allows the tracks to
be closer together, and hence the disks can store more data. Similar methods
are being used to speed up chip manufacturing, allowing the manufacturing
hardware to operate faster while maintaining the needed precision, and hence
increase productivity.

ILC suddenly began to develop quickly in 1984 motivated by robots per-
forming repetitive operations in a manufacturing environment. Each time the
task is performed, the robot restarts from the same initial conditions. When a
feedback control system is given a tracking command, the response is not the
same as the command, even under ideal circumstances with perfect measure-
ments and no plant noise disturbances. Generally, the faster the requested
motion in the tracking command, the larger the discrepancy between what
is asked for and what is produced. The purpose of ILC is to use the error
observed in the previous run (or repetition) to adjust the command in the
current run, aiming to converge to that command that actually produces the
desired trajectory. ILC asks the control system to execute commands that are
not what you want the controllers to do, so that they actually do what you
want them to do.

RC is a closely related type of control. Instead of making repeated runs
of a desired finite time trajectory, each time starting from the same initial
condition, RC aims to perfectly execute a periodic command, or to perfectly
execute a constant command in the presence of a periodic disturbance (or
to execute a periodic command with a periodic disturbance, each having the
same period). The RC law learns from the measured error in the previous
period (or cycle) instead of the previous run, adjusting the command in the
current period, aiming to get to zero tracking error. Transients can propagate
from one period to the next in RC, but cannot go from one run to the next
in ILC, and this results in the two problems having different conditions for
stability, i.e. for convergence to zero tracking error.

As gait research progresses from relatively slow robot walking motions to
full dynamic walking, and then to running, the issues of imperfect execution
of high speed commands by feedback control systems will become a serious
issue. The desired periodic gaits are commands to the feedback controllers for



ILC and RC for Periodic Gaits 191

each robot joint. If the discrepancy between the commanded trajectory and
the trajectory executed by the feedback controllers is large enough, the robot
will fall. Since ILC and RC are new fields of control theory that address how to
make feedback control systems actually perform desired repeating or periodic
motions, it is natural to ask whether ILC or RC can be used to implement
high speed gaits. It is the purpose of this paper to make an initial evaluation
of what ILC/RC can do for this problem, and to put forward some concepts
that might address the issues that are raised.

2 Feedback Control System Errors
that ILC/RC can Fix

Consider the performance of typical feedback control systems executing a time
varying command. Suppose one wishes to control the output y(t) of a first
order system (the plant) dy/dt+ ay = w + v where w(t) is a variable we can
manipulate to change y, e.g. we can apply a torque to a robot link to make the
output angle change. Typically, whatever variable we can manipulate, nature
can also influence with various disturbances, e.g. in the case of a robot link,
gravity can supply a torque history as the link follows the desired path, and
v denotes such disturbances. Now consider applying a proportional controller
to make the output follow a command. Then w(t) = Ke(t) = K(yC(t)− y(t))
and the manipulated variable w is proportional to the measured error e(t),
the command yC(t) minus the measured output y(t). The performance is then
predicted by the closed loop differential equation

dy(t)
dt

+ (K + a)y(t) = KyC(t) + v(t) (1)

whose solution is

y(t) = e−(K+a)ty(0)+

t∫

0

e−(K+a)(t−τ)KyC(τ)dτ+

t∫

0

e−(K+a)(t−τ)v(τ)dτ (2)

The middle term on the right is the part of the solution that is responding the
command we give the system. But it is not equal to the command. Instead it
is a convolution integral of the command, creating a form of weighted average
of all the commands we have given the system in the past. The weighting
factor decays going backward in time, so that more recent commands are
more important in the weighted average. Therefore, for any command that is
changing with time, the feedback control system does this convolution integral
of what we asked it to do, not what we asked it to do. And the faster the
command changes with time, the more effect the averaging has on the result.
The first term on the right represents transients and is the response to initial
conditions. The last term on the right gives the effect of disturbances on the
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performance of the control system. If the system has the same disturbance
every time we give the command, then this disturbance is also a source of
repeating error.

It is the purpose of ILC and RC to converge to a command yC(t) that is
no longer equal to the desired output yD(t), but one which has the property
that the system output given by the right hand side of (2) is in fact equal to
yD(t). In the case of ILC the command has the property that over a finite time
interval starting at time zero, the right side of (2) converges to the desired
trajectory as the repetitions progress. In the case of RC, the command has the
property that as time increases, the right hand side converges to the desired
trajectory. Both fix deterministic errors in following a command, and also
cancel any disturbances that repeat. ILC also learns to handle the first term
on the right, since it is present in every run, while RC learns to get zero error
as time goes to infinity, and for an asymptotically stable system the first term
disappears with time.

The iterations solve an inverse problem of finding the input that produces
the desired output. In the simple example above, one can directly solve this
inverse problem, e.g. using the desired output yD(t) for the output in (1) the
command needed is:

yC(t) =
1
K

(
−dyD(t)

dt
− (K + a)yD(t) + v(t)

)
(3)

There are usually difficulties with this in practice. First, when done in discrete
time, the inverse problem is usually ill-conditioned [11]. Second, if the external
disturbance v(t) is an important aspect of the problem, one needs to know this
function which may be difficult. And third, the solution is only as good as the
model is. ILC and RC find an inverse solution iterating with the real world
behavior, instead of the model, without needing to know v(t), and without
totally relying on a model.

3 ILC/RC Background

The most effective ILC/RC design methods are based on linear systems the-
ory, and the discussion presented here is limited to this approach. Results
have been generated for doing nonlinear ILC on equations having the form of
multibody dynamic systems. These results are likely to be not as practical as
the linear design methods. First, they rely on all of the dynamics in the phys-
ical system having the multibody dynamics form, which is often not the case
when actuators and sensors and effective feedback controllers are included.
Second, they create very complex control laws that are more complicated
to implement. And third, linear methods as in [4] can converge to tracking
errors that approach the minimum possible error, the repeatability level of
the system, and do so relatively quickly without requiring the complicated
modeling of the nonlinear system. Figure 1 shows the robot used in [4], and
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Fig. 1. Robotics Research Corporation robot, and RMS error vs. repetitions using
an ILC law

also the tracking error for each ILC repetition for each robot link following a
high speed trajectory versus repetitions. The error is decreased by a factor of
roughly 1000 in about 12 runs. Note that the final error level is actually below
the repeatability level of the robot when measured on a day to day basis, so
the ILC is fixing errors of the size of how different the robot behaves from
one day to the next. No amount of modeling could predict such errors. The
fact that ILC does not rely heavily on a model allows it to fix such errors.
Nevertheless, in gait problems one might want to revisit the question of the
usefulness of using fully nonlinear methods, or at least using some form of
feedback linearization.

There is a related issue for robot applications. One may consider creating
an ILC or RC law that has multiple inputs and outputs, one for each of the
joints variables. On the other hand, it is much simpler to use a decentralized
ILC or RC approach, that applies a separate independent law to each of the
separate feedback control systems for each robot joint as if there were no
coupling between joints in the nonlinear dynamics. Again, the results in [4]
are obtained using decentralized ILC, suggesting that the simple decentralized
approach can be very effective in robot applications.

Both ILC and RC must necessarily be implemented by digital control
methods, because the control updates are based on data from a previous
repetition or a previous period, and therefore must be measured and stored
in a computer or microprocessor. One will normally use a zero order hold on
the input signal that the ILC or RC adjusts. Consider ILC. The objective is
to perform a finite time trajectory, and get zero error at the sample times,
i.e. we want the output y(kT ) to converge to the desired output yD(kT ) for
k = 1, 2, 3, . . . , N . Here T is the sample time interval of the digital control
system, and the desired trajectory is N steps long. The error is e(kT ) =
yD(kT ) − y(kT ). The simplest form of ILC is based on pure integral control
concepts being applied in repetitions to each of the time steps of the problem.
Stated in words for a robot link, if the robot link were 2 degrees too low at a
certain time step in the last run or repetition, then add 2 degrees, or 2 degrees
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times a learning gain ψ, to the command this repetition. Mathematically, this
is written as

uj(kT ) = uj−1(kT ) + ψej−1((k + 1)T ) (4)

where j is the current repetition number, j − 1 is the previous repetition.
Based on the ILC description above, u represents the command to the feed-
back control system, but we note that some of the ILC literature accomplishes
the learning by modifying the error signal going into the controller or the ma-
nipulated variable coming out of the controller instead, and then the u in (4)
either represents the error signal from the comparator or the w output of the
controller as discussed above (1) [20]. The +1 in the argument of the error is
introduced to account for the one time step delay going through the feedback
control system (or the plant equations), i.e. there is usually a one time step
delay from the time step in which one changes the command (or the manipu-
lated variable) to the first time step in the output where a resulting change is
observed. The computations of the command (or manipulated variable) his-
tory to use in the next run can be made between runs, computed in a batch
mode.

The RC equivalent of this learning law is used when one wants to execute
a periodic command, and this time the period is N time steps long. The
mathematical expression of the corresponding RC law becomes

u(kT ) = u((k −N)T ) + ψe((k −N + 1)T ) (5)

Instead of looking back to a previous repetition, one looks back one period.
Note that unlike ILC which makes a batch update of the command history
for the next repetition, RC normally runs with updates made every time step,
in real time.

ILC law (4) is almost always stable for sufficiently small gains ψ, but
the learning transients are very likely to be impractical [8]. However, there
is an important exception to this that occurs when the sample time of the
ILC updates is sufficiently long that the system comes close to a steady state
response before the next update arrives. RC law (5) is usually unstable. In
both cases the error may decrease very substantially in the first few iterations
or periods, and then the error starts to grow [9, 10]. It can be that one is
satisfied with this level of improvement and simply stops the process when the
error is a minimum. To improve performance and obtain stability robustness
one normally generalizes the above laws to include a dynamic compensator in
place of the gain ψ, and introduces a zero-phase low-pass filter cutoff of the
learning [4, 24, 22, 21, 8]. Equations (4) and (5) can take the form

uj = F
[
uj−1 + Lej−1

]
(6)

U(z) = F (z)z−N [U(z) + L(z)E(z)] (7)

In (6) the underbar indicates a column matrix of the history of the associated
variable in a repetition, and F and L are matrices representing the low pass
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filter and the compensator, respectively. Equation (7) for RC converts to the
z-transform domain with F (z) and L(z) being the transfer functions of the
cutoff filter and the compensator.

4 Dynamic Models for Walking Motions

The purpose of this section is to present the mathematical models of walking
to which the concepts of ILC/RC will be applied. We start by giving the
general form of dynamic walking models, and then present the specific stiff-
legged biped walker used for the numerical tests later in this paper.

Mathematical models of gaits involve distinct model phases with possibly
different degrees of freedom, each described, in the general form, by a differ-
ent set of differential equations. These can be ordinary differential equations
(ODEs)

q̇(t) = v(t) (8)
v̇(t) = a(t) = M−1(q(t), p) · f(q(t), v(t), w(t), p) (9)

In these equations, the vector q contains the position variables of the system,
and v the corresponding velocities; together they form the vector of state
variables xT = (qT , vT ). The vector y used in the context of ILC and RC
is typically equal to q. The scalar t is the physical time, a the vector of
accelerations, w(t) are the input torques or forces of the robot, and p is the
vector of model parameters (like geometric or inertial data). M denotes the
mass matrix, and f the vector of forces.

Alternatively, depending on the choice of coordinates, one may obtain a
system of differential-algebraic equations (DAE) of index 3 for some or all
phases

M(q(t), p) · a = f(q(t), v(t), u(t), p) −GT (q(t), p)λ (10)
gpos(q(t), p) = 0 (11)

with the Lagrange multipliers λ, the constraint equations gpos, and their par-
tial derivatives G = ∂gpos

∂q . We formulate the DAEs in the equivalent index 1
form with invariants

q̇(t) = v(t) (12)
v̇(t) = a(t) (13)(

M(q(t), p) GT (q(t), p)
G(q(t), p) 0

)(
a

λ

)
=

(
f(q(t), v(t), w(t), p)
γ(q(t), v(t), p)

)
(14)

gpos = g(q(t), p) = 0 (15)
gvel = G(q(t), p) · q̇(t) = 0 . (16)

with the abbreviation
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γ(q(t), v(t), p) = −vT d G(q(t), p)
d q

v . (17)

Phase boundaries are implicitly defined by the roots of switching functions

si(t, q(t), v(t), p) = 0 . (18)

At these switching points, there may be discontinuities in the right hand side
of the linear system, i.e. ∆f(q, v, w, p),∆γ(q, v, p) (which translates into dis-
continuities in the accelerations ∆a), or even in the velocities, ∆v(t, q, v, w, p),
i.e. in the state variables themselves. Walking problems also involve a number
of complex linear and nonlinear, coupled and decoupled equality and inequal-
ity constraints; e.g. the periodicity constraints on the state variables (or a
subset thereof) x̃(Tcycle) = x̃(0). The cycle time Tcycle is generally a priori
unknown. In this paper, we investigate the simple example of a planar stiff-
legged biped walker with two degrees of freedom. The state variables of this
robot are the stance leg angle φ1 and the swing leg angle φ2, and the corre-
sponding velocities xT = (φ1, φ2, φ̇1, φ̇2). The robot has two torque actuators
- one corresponding to each degree of freedom - the first one w1(t) at the hip,
and the second one w2(t) at the ankle to replace the action of a foot with
an actuated ankle joint. For repetitive control problems it is convenient to
introduce a second set of state variables corresponding to the torques with
x̄T = (θ1, θ2, θ̇1, θ̇2), where

θ1 = φ1 − φ2 (19)
θ2 = φ1 (20)

This model can be considered as an extension of the classical passive-dynamic
stiff-legged bipeds of McGeer [12]. The robot is shown in Fig. 2. It is charac-
terized by three free parameters p = (m, l, c)T with

Fig. 2. Sketch of stiff-legged biped investigated in this paper



ILC and RC for Periodic Gaits 197

Fig. 3. Two steps of periodic reference solution of stiff-legged biped

• the mass of each leg, denoted by m
• the leg length l
• the relative location of the leg’s center of mass measured from the hip, c.

Using these three parameters, the moment of inertia Θ of a leg is defined as

Θ =
1
6
ml2(1 + 2c2 − 2c) . (21)

One cycle of the gait model includes one step of the robot followed by a leg
switch, and not a full physical gait cycle consisting of two steps (as presented in
Fig. 3). Applying periodicity constraints to this model assures the generation
of equal right and left steps, which would not necessarily be the case otherwise.
One cycle of this model consists of one continuous phase describing the forward
swing and a discrete phase including the sudden change of velocities at foot
contact and the leg switch.

The dynamic equations of this robot model are

M ·
(
φ̈1

φ̈2

)
= F (22)

with mass matrix
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M =

(
m11 m12

m21 m22

)
(23)

with m11 = 2ml2 +Θ − 2ml2c+ml2c2 (24)
m12 = ml2c sinφ2 sinφ1 −ml2c cosφ2 cosφ1 (25)
m21 = ml2c sinφ2 sinφ1 −ml2c cosφ2 cosφ1 (26)
m22 = ml2c2 +Θ (27)

and force term

F =




−mφ̇2
2l

2c sinφ2 cosφ1 +mφ̇2
2l

2c cosφ2 sinφ1

+2mgl sinφ1 −mgl sinφ1c+ w1 + w2

−mφ̇2
1l

2 sinφ1c cosφ2 +mφ̇2
1l

2 cosφ1

c sinφ2 −mglc sinφ2 − w1




(28)

The end of the step is determined by the equation

s(t, x, p) = φ1 + φ2 = 0 (29)

The torques at hip and ankle are produced by feedback control systems using
proportional control and rate feedback following a commanded trajectory θi,C :

wi(t) = K1(θi,C − θi) −K2θ̇i (30)

More details about this robot model as well as a description of possible ex-
tensions using springs and dampers in parallel with the torque actuators are
given in [18].

5 Open Loop Stable Gaits

Previous research by the authors established that it is possible to have running
gaits that are open-loop stable, meaning that they will return to the stable gait
after small enough disturbances to position and velocity. This is accomplished
without any feedback adjustment of the torque histories being applied to
each joint. In the motions of ballet dancers and athletes, one suspects that
there is often some inherent stability of the motions used, and we see that in
running, hopping and somersaults this is also possible for robots [14, 17, 16].
In is generally preferable to create systems that are open loop stable and use
feedback to augment the stability, than to rely totally on feedback to stabilize
the motion. Pilots prefer to fly airplanes that do not immediately go unstable
if there is a failure in the attitude control system.

With this in mind, we consider implementing an open loop stable gait
to test the principles of ILC and RC. Numerically solving for such gaits for
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actuated robots is not trivial and requires an appropriate selection of model
parameters p and driving torques w(t). We have developed special numerical
optimization techniques [17, 18] that can produce self-stabilizing solutions for
walking robots. They have been applied to stabilize a series of different mono-
pod and biped robots [15], one new example is given in another paper in this
proceedings volume [13]. As a stability measure, we use the spectral radius of
the Jacobian of the Poincaré map which is associated with the periodic solu-
tion. If the spectral radius is smaller than one, the solution is asymptotically
stable, and if it is larger than one, the solution is unstable. For the stiff-legged
biped described above, we have determined an open loop stable solution that
is characterized by a spectral radius of 0.7, well below one, but which is also
very efficient and requires only small torque inputs. The parameters p of this
solution are m = 1 kg, l = 0.1 m, and c = 0.25; the cycle time is 0.4586 s.
The initial values are xT

0 = (0.25,−0.25,−1.943,−2.688)T . The corresponding
torque inputs as well as the trajectories of the angles and rates are shown in
Fig. 4. More information about the solution, as well as the objective functions
used to create it, are given in [18].

6 Learning to Execute Open Loop vs. Closed Loop
Stable Gaits

6.1 Problem Statement

One can pose a couple of different kinds of gait problems that might benefit
from use of ILC or RC:

• Problem 1. As discussed above, one expects that there are benefits to
using gaits that are open loop stable, so that there is already some inherent
stability to the motion. An open loop stable solution obtained numerically
gives a torque input history for each joint, the resulting output history
or gait, and its derivative. The next step is to design a feedback control
system for each link, since ILC and RC normally adjust the command to
feedback control systems. The objective of the ILC/RC is to succeed in
making the control system in hardware execute the chosen gait, i.e. the
chosen time histories for each joint angle.

• Problem 2. If one were not concerned with open loop stable solutions,
one could include the feedback control system equations with the robot dy-
namic equations, and design the gait using as inputs the position command
histories given to the feedback control system instead of the torques applied
to the robot dynamics. One can include the controller gains as parameters
to be optimized (as well as the original model parameters p above) while
finding the gait based on a chosen optimality criterion. Of course, the so-
lution is most likely not open loop stable. Because the feedback controller
equations have been used in the design of the gait, the hardware would
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Fig. 4. Torques and states for open-loop stable solution

actually perform the gait desired if the model used for both the robot dy-
namics and the control system dynamics perfectly represent the behavior
of the hardware. The ILC/RC might be used to perfect the execution of
the gait by fixing errors caused by inaccurate or incomplete modeling of
the robot dynamics, actuators, and control system components.

6.2 Implementation Issues

For both problems the ILC/RC result serve as the basis for implementing the
desired motion on level ground. With sufficient stability perhaps this is all
that one needs for reasonably level ground. For more uneven terrain, one may
next try to design an outer loop that adjusts the commands to the feedback
control systems to handle such things as uneven ground. The outer loop is



ILC and RC for Periodic Gaits 201

analogous to the upper level trajectory generator in industrial robots and
might use additional sensor information such as vision feedback to modify the
gait mode to adapt to the terrain.

This paper will consider issues in addressing Problem 1. ILC/RC are meth-
ods of solving inverse problems: given a desired output of some dynamic sys-
tem or component, find the input that would produce that output. It is nor-
mally done with the physical robot hardware, but of course one can also use a
mathematical model. This gives rise to three possible levels of implementing
ILC/RC:

(i) Do the iterations on the hardware.
(ii) Do the iterations on a computer using a model. If the model is good

enough, this can work when the solution is applied to the hardware.
(iii) Do (ii) to get an initial command to give in hardware, and then continue

the ILC/RC iterations in hardware to correct for any deficiencies in the
model.

The numerical studies reported below, directly illustrate (i) where one
presumes the computer model is functioning as the real world model. They
also automatically illustrate the process one goes through in performing (ii).
And then by introducing some changed parameter, i.e. inaccurately modeled
parameter, and continuing the learning process one can illustrate (iii).

There are two short cuts for accomplishing (ii), one of which simply elim-
inates the need for (ii) altogether. These are: use of torque feedforward in
the control system design, and do an inverse problem on the controller alone,
instead of the complete system.

6.3 Torque Feedforward

Perhaps the most logical implementation of the open loop stable gait solution
is to use torque feedforward as in Fig. 5. The solution is a torque history
w(t), a desired output history or gait, yD(t), and its derivative ẏD(t). Since we
consider a decentralized implementation, there is a separate controller for each
joint angle with its own desired output history yD(t). If the actuator actually
applies this torque to the robot links, and we give yD(t) as the command
yC(t), and if the robot model was perfect, then the error signal e(t) would be
zero in the block diagram. Then the feedback only starts to function if there
is some deviation from the desired trajectory. Several comments apply:

(1) The actuator may not apply the torque we want. If it is a DC motor
with voltage input being adjusted by the controller (and the feedforward
signal) it will not apply the intended torque, but if one can use current
as the input it will accomplish the goal if one knows the motor constants
correctly. In order to try to do this, one often uses a current feedback
loop around the motor. In addition, the back electro motive force (emf)
introduces a rate feedback inherent in the motor. Hence, the actuator has
dynamics of its own and will not exactly apply the intended torque.



202 R.W. Longman and K.D. Mombaur

Fig. 5. Feedback control system using torque feedforward

(2) In positioning systems it is often desirable to use rate feedback, meaning
the feedback loop takes a measurement of the output, makes a separate
measurement of the output rate, which is multiplied by a constant and
then the two are added together to produce the signal subtracted from
the command to get the “error”, e(t). If this is being done, then one must
compute what this signal would be when the output is the desired output,
and use it as the command given the control system.

(3) The approach totally avoids solving any inverse problem. But it does
not fix any errors related to use of an imperfect model or an imperfect
actuator, although the feedback loop may make partial adjustments. Then
one can apply ILC/RC in hardware to fix remaining errors.

6.4 Inverting Controller Equations

Consider the feedback control block diagram of Fig. 6 including the rate feed-
back that is typically used in robotics. The usual ILC/RC application solves
the inverse problem, given the desired output y(t) = yD(t), find input yC(t)
to produce it. In the process of having solved for the desired periodic gait,
we know more than just the desired output, we also know its derivative, and
the torque w(t). Therefore, we can instead solve the inverse problem for the
blocks introduced for control: given output w(t), desired position history yD(t)
and its velocity (which together determine the feedback signal) find yC(t). In
the examples below, we use an idealized proportional control system with
rate feedback, and in this simple case doing the suggested inverse problem
is simple and immediate. Suppose that the actuator can be represented by
a simple gain, and this gain can be combined with the proportional control
gain in the controller block, and the product called K1. The feedback signal
is yD(t) +K2ẏD(t), where K2 is the rate feedback gain. Then

Fig. 6. Feedback control system using rate feedback
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w(t) = K1 (yC(t) − [yD(t) +K2ẏD]) (31)

Substituting the computed open loop stable time histories, one can solve for
the needed command yC(t) to produce the gait. In simple situations one can
do this. In the real world the control system design is likely to be more com-
plicated, requiring inversion of dynamic equations, which is the domain of
ILC/RC. Classical control system designers are likely to introduce a low pass
filter, possibly as a noise filter, possibly as a way to control the bandwidth of
the system to avoid exciting vibrations. They are likely to introduce compen-
sators to modulate the frequency response behavior, which introduces extra
dynamics with both poles and zeros. And, as discussed above, the actuator
can have some dynamics. Just introducing the back emf of a motor puts in a
rate feedback loop feeding the motor, which is missing in the block diagram.
If one has a full computer model of all of this, one can aim to solve this inverse
problem, and ILC/RC might again be an appropriate method to use.

7 Some Non-Standard ILC/RC Problems

The gait problem does not immediately fit the ILC or RC descriptions. The
following two non-standard ILC/RC problems address some of the issues re-
lated to gait problems.

Timing Belt Drive Problem. Figure 7 shows a double reduction timing
belt drive system that might be used in a copy machine when one needs to
have a very uniform velocity of the output shaft. Using a well designed ve-
locity feedback control system, the frequency content of the velocity error is
given in Fig. 8 (left) [6, 7]. All of the peaks are related to inaccuracies in
the gearing, and include errors that have the periods of one rotation for each
shaft, and each belt, including fundamental and harmonics. In addition, the
large peaks at 80 Hz and 240 Hz are at the frequencies for tooth meshing of
each timing belt. Because gearing is involved, all of these frequencies have a
common period which can be used by a repetitive control system to eliminate
the peaks. The best experimental result is shown in Fig. 8 (right) where all of
the peaks have been eliminated. However, this problem does not completely

Fig. 7. Double reduction timing belt drive system
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Fig. 8. Frequency spectrum of velocity error of timing belt system using feedback
only (left) and at repetition 50 using batch phase cancellation RC (right)

fit the standard repetitive control assumptions, because as the velocity varies,
so does the period. The error to be corrected is actually periodic with the
output shaft rotation angle, not with time. To address this issue, these exper-
iments used an index pulse on the output shaft to know when the next period
started. The data from the previous period was taken at evenly spaced time
steps, and sometimes had more steps than the correct number, and sometimes
had less. Some ad hock rule was used to decide what to do when there was
missing data for the update. If the period had varied more, one might have
made some adjustments to match the time scales for each period. If one has
measurements of the angle at each time step, one could do interpolation in the
data to explicitly make updates related to each angle instead of each time.
There are in fact many repetitive control applications that have this same
modeling difficulty.

Cam Problem. Figure 9 (top) shows a cam follower system driven by a DC
motor, nominally at a constant speed. The cam is normally designed with its
lift curve, the following dwell, the return curve, and the subsequent dwell, all
assumed to be made with a prescribed constant cam rotation rate. Of course,
as the cam rotates the lever arm to the contact point lengthens and shortens
making the resistance to rotation vary with cam angle. The change in resis-
tance to motion is a disturbance to any speed control system. This means that
the resulting lift displacement history, dwell durations, and return history as
a function of time are not the intended histories or durations. In addition,
there are imperfections in the machining of the cam. Suppose we would like
to fix these errors by using the velocity control system for the shaft rotation
rate to speed up and slow down the cam in such a way as to have the lift and
return curves be the intended functions of time, and have the dwell parts be
the desired time durations.
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Fig. 9. Cam follower system, and comparison of desired cam displacement (solid
line) and displacement after 50 repetitions

This problem has several unusual aspects. First, there are four phases,
the rise, the dwell, the return, and the following dwell. Second, during the
dwell phases presumably the cam has a constant radius so that there is no
change in lift, but even if this is not true one is not able to fix the problem
by changing the speed. So the only objective to be accomplished in the dwell
phases is to make sure they have the right time durations, so that the next
phase starts at the right time. Reference [23] reports both simulations and
experiments in learning to get the desired output curves. What was done was
to learn the lift phase first. Once it converged to a satisfactory error level,
the iterations to learn the next phase started. The dwell phases computed the
average velocity of the dwell from the end minus start angles, divided by the
end minus start times. The error in this average velocity was multiplied by
a gain such as ψ and added to the command given in the previous learning
cycle to produce the command during the dwell this cycle. Figure 9 (bottom)
shows an example of learning iterations after the lift part of the curve has
been learned, and iterations are being made to get the top dwell right. Errors
in the return are being ignored until the learning of the top dwell is complete.
It is fortunate in this problem that the initial conditions for the phase being
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learning are not heavily dependent on whether the previous phase has been
learned already, because the dwell phases allow time for decay of transients.
Hence, this problem was treated as a sequence of ILC problems for each phase
learning one at a time. The simple learning law of equation (4) was used, but
with a chosen time step lead in the error term, creating a linear phase lead
compensation [8]. No attempt was made to use a zero-phase low-pass filter to
stabilize the process. This was done partly for simplicity, and partly because of
nonlinearities in the system. A relatively long sample time for the ILC updates
was used to slow the growth of the instability, and the learning process was
stopped before the instability started to become evident in the behavior.

8 Approaches to Handling the Non-Standard Nature
of Gait Problems

Applying ILC or RC to the gait problem has some of the same issues as the
above problems, but introduces additional difficulties as well. The equations
are highly nonlinear, and include jump discontinuities. It could be a challeng-
ing problem to deal with the nonlinear nature in some direct way, and one
would prefer to try to approach the problem as in the nonlinear cam problem,
using a simple learning law that might improve the error substantially before
an instability sets in, and then stop the learning when the error is a minimum.
Note however, that such methods are more successful in ILC than RC, and the
gait problem seems to have more relationship to RC problems. We comment
that learning high frequency components can be slow and can create stability
problems, and discontinuities even in the derivative of variables being con-
trolled introduce some high frequency components. The problem has distinct
phases with ground impacts denoting the start of a new phase. As in the tim-
ing belt problem, the period or duration of a phase varies with each cycle, the
index pulse or impact indicating when the next cycle or phase starts. As in
the cam problem the duration of each phase is important. The phases in the
cam problem used different learning laws and started with reasonably repeat-
ing initial conditions when learned in sequence, so treatment as a sequence of
ILC problems worked. But like RC the initial conditions for each period or
phase in the gait problem do not repeat until convergence, indicating use of
an RC formulation. The RC control laws from phase to phase need not be par-
ticularly different, but the fact that the phases have different duration may
introduce jumps in the learning process across phase boundaries, the same
points where there can be jump discontinuities in velocities. It is not clear
how these jumps will affect the learning process. In the next section several
different learning laws will be studied. One immediate issue to consider is the
question of how to look back at the current phase in the previous cycle to
pick which data point is most relevant to the current update. The standard
RC looks back at the corresponding time step (modified by the usual one
step time delay). But since the duration is different from one run to the next,
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perhaps it would be better if one looked at data corresponding to the same
percentage of time in the cycle.

9 Numerical Investigation of Possible Learning Schemes

In this section we present four different approaches to the repetitive control
of walking motion and discuss their effects on the example of the stiff-legged
biped described in Sect. 4 with the simple feedback controller (30). Each
law describes an algorithm to compute the inputs yC,j(kT ) to the feedback
controller at sample times k (k = 1, ....Nj) of cycle j, depending on the inputs
of the previous cycle yC,j−1, errors of the previous cycle etc. All these laws
have in common that they rely on a synchronization of the phase with a
significant event occurring once per cycle – in this case the touchdown of the
swing foot, which is also very easy to detect in practice. This event is starting
a new phase with relative time in the phase equal to zero. Therefore – even
though the problem is closer to RC - we prefer to use a notation which is
more of ILC type with the sampling time index k reset to 0 in every cycle.
Note that this is purely by mathematical convenience and does not influence
results.

All RC laws presented depend on one or more gains that can be tuned
and typically have a large impact on the performance. We have investigated
some sets of constants for each law (without doing a real optimization); and
we present for each law the best constants we have found so far. No proof
of convergence is given for these learning laws. Given the nonlinear nature of
the problem with multiple phases and jump discontinuities it might be very
difficult to establish such proofs. However, as noted in [8], good learning tran-
sients can be more important than stability (i.e convergence of the learning
scheme). Furthermore [9] demonstrates that unstable learning laws can be
very useful in applications.

In order to allow a comparison of the different laws, we display the follow-
ing result plots:

• for each law, the error histories of angles θ1 and θ2 over time (shifted by
the duration of the first cycle), see Figs. 10, 12, 14, and 16.

• for each law, a comparison of the outputs for angle θ1, the corresponding
reference trajectories, and the commanded trajectory at the beginning
(t = 0 s...2 s) and at the end (t = 18 s...20 s) of the investigated learning
process, see Figs. 11, 13, 15, and 17

• the RMS errors for each cycle of all four laws, in overview Fig. 18
• the development of cycle times αj over a number of cycles for all four laws,

in Fig. 19.
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Fig. 10. Error histories of angles θ1 and θ2 using RC law 1

9.1 RC Law 1

yC,j(kT ) = yC,j−1(kT ) + ψ1ej−1((k + 1)T ) (32)
with ej−1(kT ) = yD(kT ) − yj−1(kT ) (33)

This first law is the most simple and straightforward one: The error term
ej−1 that is used to correct the input of the system only compares the actual
trajectory of the previous cycle and the reference trajectory at identical time
points. The knowledge about the duration of the previous cycle is not used.
The constant ψ1 is chosen as 0.1.

As shown in Fig. 10, the law works quite well – despite its simplicity – to
reduce the position variable errors (especially the RMS error of the relative hip
angle θ1 is reduced, while the error of the absolute stance leg angle θ2 goes
up a little again). However, this law does a poor job correcting the wrong
initial cycle times (Fig. 19). Figure 11 gives some more details about the
learning process, since it shows a comparison of the actual output angle θ1,
the desired angle θ1,D, and the commanded angle θ1,C at 2 different intervals
of the learning process. The upper picture shows the first few cycles: as in all
other cases we start by commanding the desired trajectory, with the result
that the output trajectory is far off. The lower picture shows cycles between
18 and 20 s (after roughly 36–40 cycles modified by law 1), with the desired
and actual trajectory being quite close, and the commanded trajectory being
quite different. These pictures also show the adjustment of phase times (the
reference trajectory does a step change to zero after termination of the step,
while the actual output step is still not finished) with a large error (18%) in
the beginning, and a smaller, but still a significant difference (8%) at the end.
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Fig. 11. Comparison of output trajectory (solid line), reference trajectory (dashed
lines) and commanded trajectory (crosses) for angle θ1 using RC law 1, at beginning
(top figure) and end (bottom figure) of learning process

9.2 RC Law 2

yC,j(kT ) = c1(αj−1) · (yC,j−1(αj−1kT ) + ψ1ej−1((k + 1)T ) (34)
with ej−1(kT ) = yD(kT ) − yj−1(αj−1kT ) (35)

αj−1 =
Tcycle,j−1

Tcycle,ref
. (36)

In this law, the constant ψ1 is again 0.1. This second law uses the factor αj−1

to introduce information about the previous cycle time and by computing
the error between corresponding (and not identical) points of the current and
reference cycle. For the evaluation of the right hand side of eqn. (35), linear
interpolation is used between sample points. But it is important to note that
while this error computation may be the more logical one, it does not punish
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Fig. 12. Error histories of angles θ1 and θ2 using RC law 2
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Fig. 14. Error histories of angles θ1 and θ2 using RC law 3

any errors of the cycle time; in fact a linearly scaled slower or faster cycle
would actually lead to an error of zero. So it is important to introduce some
correcting factor for wrong αj−1 which we do in the form of c1, which is a
function of αj−1 that has to satisfy c1(1) = 1. Again, there are obviously
many possible choices, and in this case we have set it to

c1(αj−1) =
1

√
αj−1

. (37)

As shown in Fig. 19, this law does a better job than the first one in correcting
the cycle duration. The reduction of position errors is roughly the same as
for the first law with the inverse effect on the two degrees of freedom: this
time errors of the stance leg angle are corrected better than errors of the
relative hip angle (see Fig. 18). However, as in the case of law 1, there is
no continuous reduction in one of the position errors, and the development
beyond the investigated time frame is unclear. But we expect that it would
be possible to improve the performance of this law with a tuned factor c1(α).

There is however another possibility to improve the adjustment of cycle
times (instead of using factor c1) which is the inclusion of error terms on
velocity level. The performance of this approach is investigated in the following
two RC laws, numbers 3 and 4.

9.3 RC Law 3

yC,j(kT ) = yC,j−1(αj−1kT ) + ψ1epos,j−1((k + 1)T )
+ψ2evel,j−1((k + 1)T ) (38)

with epos,j−1(kT ) = ej−1(kT ) = yD(kT ) − yj−1(αj−1kT ) (39)
evel,j−1(kT ) = ẏD(kT ) − ẏj−1(αj−1kT )) (40)

and αj−1 as above. (41)
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Fig. 15. Comparison of output trajectory (solid line), reference trajectory (dashed
lines) and commanded trajectory (crosses) for angle θ1 using RC law 3, at beginning
(top) and end (bottom) of learning process
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Fig. 16. Error histories of angles θ1 and θ2 using RC law 4
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Fig. 17. Comparison of output trajectory (solid line), reference trajectory (dashed
lines) and commanded trajectory (crosses) for angle θ1 using RC law 4, at beginning
(top) and end (bottom) of learning process

This law stems from the above RC law 2 skipping the leading factor c1, but
adding another correcting term which is proportional to the velocity errors.
The constants are chosen as ψ1 = 0.1, and ψ2 = 0.01. As the Figs. 14, 15,
18 and 19 show, this law works extremely well both in correcting state errors
and cycle duration. The cycle duration αj is correct to 3 digits after only 3
cycles. The difference between the desired and actual output angle θ1 is barely
visible after 18 s (in the lower part of Fig. 15).

9.4 RC Law 4

yC,j(kT ) = yC,j−1(αj−1kT ) + ψ1epos,j−1((k + 1)T )
+ψ2(1 − αj−1)2evel,j−1((k + 1)T ) (42)

with αj−1, epos,j−1, epos,j−1 as above. (43)

RC law 4 is a modified version of law 3 with an additional factor in front of
the velocity error term. The motivation behind this was to avoid asking too
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Fig. 18. RMS errors of θ1 and θ2 for RC laws 1–4

much from the RC controller, namely to correct errors in 2n state variables
(the positions and velocities) while only modifying n input variables (the
commanded position histories). The constants chosen in this case are ψ1 = 0.1
and ψ2 = 8.0. As Figs. 16, 17, 18 and 19 show, the performance of this law is
also very good, comparable to that of law 3. In the particular case investigated
here, law 4 seems to do slightly better on the absolute stance angle, and law 3
does better on the realtive hip angle corrections. While the start of the learning
process according to law 4 (Fig. 17) clearly shows a different behavior than in
the case of law 3, there is a clear resemblance of the commanded trajectories
after 20s of the learning processes following laws 3 and 4.

9.5 Discussion of Simulation Results

Four different methods of RC for gaits have been studied here. One can either
learn from the error in the previous cycle for the corresponding time step
(as implemeted in law 1), or for the corresponding percent of the time used
for that phase in that cycle (laws 2–4). The second approach is expected to
significantly improve the size of deviations tolerated by the algorithm before
the process goes unstable. However, since (without any other correcting terms)
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Fig. 19. Development of cycle times for RC laws 1–4

it does not penalize the error in the duration of the phase, one would like to
introduce some extra aspect to the learning process to do so, e.g. introduce a
factor depending on the relative cycle change (as in law 2).

The two most promising of the four RC approaches for gait problems that
we investigated seemed to be the two laws that were based on both position
and velocity errors in the previous cycle (laws 3 and 4). For the computation
of errors and new commands the duration of the previous cycle (relative to
the desired reference cycle time) was explicitely taken into account in both
cases. In digital control one would not normally include both terms (position
and velocity errors) because the number of input variables, i.e. the commands
given for each time step, are not enough to independently control both the
position and the velocity of the output at each time step. Hence in law 4 we
included (in contrast to law 3) a cancellation of the velocity error term in the
case of correct cycle time adjustment. After these first results for a specific
walker and a specific feedback control law, it is hard to judge which of the two
approaches might perform better in general. We think that both laws deserve
further investigation on more test examples, also including more extensive
studies of the most suitable choices of gains in the laws.

10 Conclusions

The concepts of ILC and RC aim at improving the performance of feedback
control systems by adjusting the commands given to them for the execution of
a repetitive or cyclic maneuver. The purpose of this paper is twofold: first, to
discuss the general issues of transferring the ideas of ILC/RC to gait problems;
and second, to present particular implementations in the form of four RC laws
applied to a simple robot model with simple feedback control laws.

It has been shown that the problem of fixing errors in hardware execution
of periodic gaits does not perfectly fit the problem formulations for either ILC
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or RC, but is closest to that of RC. The gait problem differs in that it must
be separated into phases that start at foot strike, and that the durations of
the phases can vary each cycle until reaching convergence to the desired gait.

Four different methods of addressing these extra issues have been pre-
sented. The results are summarized in Sect. 9.5 above. The two most promis-
ing RC approaches investigated included both an update on the command
based on the error of the previous cycle, and a second update term based
on the velocity error, where we also studied including a cancellation of the
velocity term in the case of correct cycle time adjustment. Both laws deliver
excellent results of adjusting cycle time and eliminating tracking errors. We
intend to perform further investigations along these lines, involving other ro-
bot models and combining the concept of RC with other underlying feedback
control systems used in contemporary walking robots.

We note that ILC and RC are notorious for exhibiting substantial decay
in the error followed eventually by growth of the error, and much of the
literature seeks ways to address this problem. No attempt has been made
here to determine whether the RC laws result in asymptotical convergence to
the desired solution when applied to the nonlinear robot dynamic equations.
However, even if the laws are unstable, they may be very useful in practice.
One simply uses the RC law to decrease the error, and turns it off when the
error starts to grow – an approach that is used in the computer disk drive
industry to good effect.

Our results suggest that with appropriate modifications it will be possible
to use repetitive control concepts to significantly improve the execution of
chosen periodic gaits by real walking robots.
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Summary. Dynamic walking with two-legged robots is still an unsolved problem
of todays robotics research. Beside finding mathematical models for the walking
process, suitable mechanical designs and control methods must be found. This pa-
per presents concepts for the latter two points. As biological walking makes use
of the elastic properties of e.g. tendons and muscles, a joint design using a pneu-
matic rotational spring with adjustable stiffness is proposed. Equations to model
the spring’s dynamics as well as the supporting sensor systems and electronics are
presented. For controlling the robot a behaviour-based approach is suggested.

1 Introduction

Looking at todays two-legged robots and their way of walking, one might get
the impression that there is still a long way to go before human-like running
will be achieved. Sereval reasons for this can be found: most bipeds walk in a
static manner shifting their weight carefully to always maintain a stable posi-
tion; no dynamic effects are taken advantage of. Energy consumption is much
higher compared to natural movements as no energy from the dynamics of the
system is reused. More often than not classical robot mechanics known from
industrial applications are used for construction whereas more exotic concepts
like elastic elements are rarely involved. The control algorithms applied are of-
ten based on a complete physical model of the robot and its environment and
do seldom allow the freedom of unknown ground conditions or other external
disturbances. Fast running motion is impossible for most of these machines
not only because the occurring impacts could destroy the mechanics but also
because the problem of controlling fast dynamical biped locomotion in un-
structured environment is still unsolved.

This paper presents the first steps of the development of a two-legged
walking robot addressing some of the above topics, namely the actuation
system, the system architecture and a behaviour-based control concept. As
some of the ideas in the design originate from natural human walking, some
aspects of what biology has come up with should be mentioned.
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It has been shown that mammals use the elastic components in their legs
(tendons, ligaments and muscles) to run economically, while maintaining con-
sistent support mechanics across various surfaces. Representations of the run-
ning leg as a simple spring have described the mechanics of a running leg
remarkably well. McMahon and Cheng describe the spring leg having two
stiffnesses: kleg as the actual leg stiffness and kvert as the effective vertical
stiffness of the runner [12]. Kerdok et al. examine the effect of different ground
stiffnesses on the energetics and mechanics of human running [8]. Elastic ele-
ments seem to play a crucial role in natural fast locomotion concerning energy
consumption, robustness and simpleness of control.

This paper is structured as follows: Section 2 discusses some of the more
biologically motivated research efforts found in the literature. Mechanical as-
pects as well as control architectures are looked at. The following section will
introduce the concepts of a leg design for fast locomotion. Several aspects
like actuation, elastic elements or electronics will be mentioned with the focus
on the knee construction as one of the most important joints. Section 4 will
address the control problem. A behaviour-based architecture is proposed and
first results of periodic movement control in simulation are presented. The
paper concludes with a summary and outlook.

2 State-of-the-Art

Several projects can be found in the literature trying to apply more ideas from
nature than most other walking robot efforts. This section will introduce some
of these research projects, highlighting first the mechanical aspects, followed
by control designs for fast or dynamically walking robots.

2.1 Mechanics

Most contributions to constructing walking machines that are able to move
energy efficiently, run or even jump include elastic element to store energy,
absorb impacts or support actuators in producing high torques. This follows
the concepts found in nature as mentioned in the previous section.

The Robotics and Multibody Mechanics Group of D. Lefeber in Brussels
is building the biped robot Lucy (Fig. 1(c)) featuring artificial pneumatic
muscles [17], [5]. Recent efforts in the field of actuated passive walking have
produced an actuator called MACCEPA (The Mechanically Adjustable Com-
pliance and Controllable Equilibrium Position Actuator, Fig. 1(a)). This low
cost design is able to set a desired angle with an adjustable compliance or
stiffness. The low weight, easy control and low stiffness make it an appropri-
ate choice for actuated passive walking, but will not allow precise or highly
dynamical movement. The passive dynamic walker Veronica (Fig. 1(b)) fea-
turing these actuators is currently under development.
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Fig. 1. (a) The MACCEPA actuator – (b) Veronica – (c) Lucy

Fig. 2. (a) PANTER leg – (b) Series Elastic Actuator – (c) Spring Flamingo

Another project using fluidic pneumatic muscles is running at FZI in Karls-
ruhe. A prototype leg called Panter (Fig. 2(a)) for fast running locomotion
has been constructed [1]. Further research is done on the dynamics of the
artificial muscles and their behaviour using a quick release mechanism [9].
Among the advantages of these actuators are implicit compliance, behaviour
close to the biological muscle and high forces. On the other side they need
compressed air supply and are not easy to control.

Already in the 1980s researchers at MIT developed the Series Elastic Ac-
tuator [18] (Fig. 2(b)). This linear electric actuator is coupled with a spring-
damper system. Walking robot prototypes constructed with these actuators
include the Spring Flamingo (Fig. 2(c)) and the biped walker M2 [14]. The
Series Elastic Actuator is now distributed by Yobotics, Inc1.

A few four-legged walking machines with elastic elements are developed by
F. Iida at R. Pfeifer’s institute in Zurich. The main research interest lies in the

1 www.yobotics.com
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self-stabilisation process. Experiments are carried out using robots equipped
with servomotors in combination with springs controlled by synchronized os-
cillators [7].

2.2 Control

In Japan many research projects on biped walking exist which mostly follow
the traditional concepts of robot construction and control. Honda is develop-
ing the robot Asimo and recently managed a running-like locomotion mode.
But these motions and trajectories are completely pre-calculated and easily
disturbed by small unknown obstacles. Similar projects outside Japan have
been done by e.g. F. Pfeiffer (Johnnie, [13]) or the Kaist company (KHR-1,
[10]).

Another group working on the dynamical pre-calculation of joint trajec-
tories is D. Lefeber’s group in Brussels. Walking and running trajectories for
biped robots have been calculated [16]. The running cycle has been divided
into three phases including a flight phase without foot contact. The resulting
force trajectories for each joint are to be combined with the output of stability
reflexes.

The implicit control of passive dynamic walkers is emerging from their so-
phisticated mechanics. Limb lengths and weights are chosen in a way that the
robot can walk down a slop without any actuators. First in-depth experiments
and theoretical examinations on this topic have been done by T. McGeer [11].
Recent work includes the research projects at TU Delft by M. Wisse et al.
[19]. Some machines of this group are equipped with additional actuators like
fluidic muscles to substitute the potential energy gained from the slope, e.g.
the robot Denise as shown in Fig. 3(a). Another example is the machine by
A. Ruina et al. at Cornell University (Fig. 3(b)) using springs and DC motors
[4]. The control algorithms involved are straight forward as they only have to

Fig. 3. (a) Denise from TU Delft – (b) Cornell Biped – (c) BioLeg2 from Jena
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support the implicit control of the mechanics and have even been shown to be
managed by a computational unit as simple as the LEGO Mindstorms RCX
computer.

The walking laboratory of A. Seyfarth at Jena is examining the physics
of human walking, running and jumping [15] as well as the control of legged
robots. It has been shown that a rather simple control strategy can suffice to
create walking or running behaviour if the mechanics implicitly supports it.
Several small single leg prototypes have been build (e.g. Fig. 3(c)) including
only one actuator driving the hip movement and a spring generating the knee
motions [6].

The research cited above as well as contributions by biologists, e.g. [20],
seem to suggest that the control of walking robots can drastically be simpli-
fied by clever mechanics (Embodiment). Especially including elastic elements
could result in a more natural and faster walking behaviour. The following sec-
tions introduce considerations on building and controlling such a two-legged
walking machine.

3 Leg Prototype for Fast Locomotion

This section introduces a possible mechatronical construction for a two-legged
walking machine. After discussing preconditions and the resulting design de-
cisions, special attention is given to the knee layout focusing on a pneumatic
spring unit. Some considerations on the necessary electronics and sensor sys-
tems follow.

3.1 Design of an Elastic Joint Actuation System

The long term and admittingly ambitious goal of this research project is to
build a walking robot that can stand, walk, run and jump. A first prototype
will consist only of a single leg with an actuated joint in the hip and the knee.
As the knee is the most demanding joint in a biped locomotion system, the
design of an elastic knee joint is the initial task to solve. The limb lengths are
assumed to be 50 cm, the body mass to be 20 kg. As jumping will put the
most stress on the mechanics this task will serve as calculation basis.

Knee Design

The knee design has to meet several requirements:

• The construction should allow the lower leg to freely swing back without
using any additional energy. To achieve this either a direct DC motor
without gear (Fig. 4(b)) or a motor with gear, a clutch and additional
loop control (Fig. 4(c)) could be used. As a design decision is to put as
much implicit control in the mechanics as possible the first variant would
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Fig. 4. (a) serial spring – (b) par. spring, direct drive – (c) par. spring, gearbox.
(with M: DC motor, G: gearbox, S: adjustable spring, S’: stiff spring, B: bearing)

be preferable. But as there are not DC motors on the market producing
the high torques needed, a compromise will probably be implemented in
the first testbed.

• The system should be able to deal with hard impacts. Again a gear box
would be the second choice as it would have to be decoupled with e.g. a
spring of high stiffness and a clutch (S’ in Fig. 4(c)).

• To support the motor in producing enough torque an elastic element is
to be included to store energy. Such a spring could be mounted serial
(Fig. 4(a)) or parallel (Fig. 4(b), (c)) to the motor. In the first case the
motor would have to counter-act to the spring energy. The second variant
has the disadvantage of a fixed equilibrium position. But as the system is
to be energy efficient, the second variant is chosen.

The spring mounted parallel to the drive should possess a variable stiffness
to adapt to the current situation. In the case of normal walking the spring
should be soft to allow the leg to swing forward and harder before ground
impact and support phase. In the case of jumping the spring should be stiff
for the whole cycle. These precondition and the goal to achieve a compact
actuator unit mainly located in the joint itself led to the development of a
pneumatic rotatory spring with variable volume.

Pneumatic Spring

The schematic design of the pneumatic spring can be seen in Fig. 5(b). The
piston is attached to the shaft in the middle of the spring and compresses the
volume V2 with inceasing rotation φ. Variable separations can be added to
decrease the initial volume V1(φ = 0). The separations are inserted at angles
k where a smaller k results in higher stiffness of the spring. Each variable
separation can be switched open by an outlet valve. This way the working
volume can be changed and the spring’s stiffness can be adapted.
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Fig. 5. (a) first prototype – (b) schematic drawing of pneumatic spring

The following calculation are based on several assumptions: the testbed
robot (Fig. 5(a)) will consist of only one leg; the body mass m of the robot is
20 kg; the limb length l is 500 mm; the robot should be able to jump 20 cm
high; the spring should be able to store the impact energy of a 70 cm fall.

The torque Mm(φ) on the knee joint created by the body mass given a
knee angle φ can be given as

Mm = mg sin(
1
2
φ)l (1)

resulting in a maximum torque of 85 Nm at a defined maximum angle of 120
degree. The aim of the pneumatic spring is to compensate this static torque.

Starting from the ideal gas equation

pV = MRT

we assume the adiabatic case, i.e. there is no energy transferred as heat to the
environment. This leads to the adiabatic state equation following the Poisson
Law:

pV κ = const⇒ p1V
κ
1 = p2V

κ
2 ⇒ p2 = p1

(
V1

V2

)κ

with κ being the adiabatic exponent (κ = 1.67 for one atom gases like argon,
κ = 1.4 for two atom gases and κ = 1 for non-adiabatic processes). To calcu-
late the pressure p2 we have to know the start volume V1 = V k

2π and the start
pressure p1:

p2 = p1

(
k
2πV

)κ

(
k−φ
2π V

)κ

with V being the volume of the complete spring. The resulting torque only
depends on this pressure p2 and the radius r and the applying lever h:
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Fig. 6. (a) static torque Mm and spring torque Mspring – (b) optimal values of k

Mspring = 0.110−8p2πr
2h

From this torque and the static torque Mm an optimal placement k of
the variable separation can be calculated at which the torque Mm is compen-
sated. Figure 6(a) visualizes the two torques. The resulting intersection curve
representing the optimal choices for k can be calculated as

kopt(φ) =
φ

1 −
(

0.11010mg sin(
φ+φ0

π )l

p1πr2h

)− 1
κ

and is plotted in Fig. 6(b). This nearly linear correlation can be approximated
with multiple switchable variable separations. Further calculations have been
done for the dimensioning of the shaft and sealing. The resulting design is
shown in Fig. 7.

Present development focuses on the integration of the motor and the pneu-
matic spring following Fig. 4(c). A brushless DC motor by Macon serves as
actuator combined with a low gear transmission ratio. This unit is coupled
with the driving axis by a clutch and an additional spring of high stiffness.
Position encoders are placed at the motor axis and the driving joint axis. The
pneumatic spring is coupled parallel to the motor.

Fig. 7. Prototypical design of the pneumatic spring
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Fig. 8. (a) DSP board with power electronics – (b) pressure measurement sensor

3.2 Sensor Systems and Electronics

Fast locomotion does not only challenge the mechanics but also the electronic
and computational subsystems. To successfully move at high speed several
sensor systems have to be processed by controlling electronics and software.

Sensor Systems

To measure the pressure in the pneumatic spring as described in Sect. 3.1 a
pressure sensor system has been developed capable of handling the occurring
pressures (Fig. 8(b)). A programmable microchip for temperature dependent
calibration as well as an A/D converter are directly integrated on the sensor
board. High definition optical position encoders are used to measure the joint
and shaft angles.

Power Electronics

To drive the DC motors power electronics have been developed and modified
for high currents. The board shown as plugable module in Fig. 8(a) is capable
of supplying 10 Ampere at 24 Volt and can drive brushed or brushless motors.
For short periods it can even deliver higher currents. The circuit is further
able to measure motor currents, this way providing a statement about the
produced motor torque.

DSP/CPLD Board for Fast Closed-Loop Control

All sensor and actuator subsystems are connected to a DSP/CPLD board that
was already designed for previous projects. Multiple boards can be connected
via CAN-Bus to a embedded main computer. The DSP is able to manage the
low-level control algorithms at high speed as the Motorola DSP 564803 is well
suited for complex control and filtering tasks. Higher level control algorithms
are computed on the embedded PC. The next section will provide information
on these control algorithms.
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4 Behaviour Control for a Running Biped

This section will introduce a concept for the control of a fast moving biped.
A behaviour-based architecture is proposed for the levels above the basic
torque or position control and will be briefly described in the following section.
To support the inherent periodic movement of the mechanics, basic periodic
motion units are introduced. Some first results from the periodic movements
are presented and further steps for the implementation are discussed.

4.1 Basic Behaviour Units

The proposed architecture as introduced in [2] has been successfully applied
on a four-legged walking machine as well as to wheel-driven mobile indoor
and outdoor platforms. The basic computational unit is a behaviour module
as shown in Fig. 9. Each module processes sensor inputs e to calculate a
resulting action u. This output can be influenced by two values, the activation
or motivation ι coming from higher level behaviours, and the inhibition i used
by lower level behaviours. In addition each behaviour features two special meta
information signals, the activity a ∈ [0, 1] stating the current amount of action
produced by the behaviour; and the target rating r ∈ [0, 1] corresponding
to the current evaluation of the situation relative to the behaviour’s goal.
The actual functionality of the behaviour is defined by the transfer function
F (e, ι, i) = u.

All behaviours are arranged in a hierarchical network. The coordination
of competing behaviours is solved by fusion nodes. These nodes calculate
a resulting action based on the behaviours meta signals. Either arbitration
or fusion of the values is possible. Further details on the behaviour-based
architecture can be found in e.g. [2] or [3]. This behaviour architecture is to be
used as reactive control layer fusioned with the basic periodic leg movement.
Possible reflexes include posture stabilisation or reactions to disturbances.

Fig. 9. The basic behaviour module
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Fig. 10. (a) sample kinematic of human-like leg – (b) disturbed oscillation

4.2 Periodic Motion Units

In order to support the periodic movement of the legs while walking, running
or jumping, an oscillator-like unit can be used. Such a periodic behaviour or
action unit should supply the actuator with additional torque on top of the
natural movement to maintain the locomotion. A tool has been developed to
test different oscillator strategies on different leg kinematics. The description
of the legs can be given in an extended Denavit-Hartenberg format. The direct
kinematic problem is automatically solved to be able to investigate foot point
trajectories.

Coupled periodic action units can be attached to the individual joints to
generate walking movements in a simulation environment. These movements
can be disturbed to observe how the control units can snap back to their
oscillating behaviour. Figure 10 shows the generated 3D model of a sample
kinematic with 6 degrees of freedom and the oscillator behaviour during a
disturbed joint movement. It can be observed how the current joint angle
movement (thick line) is accelerated (first disturbance) or slowed down (second
disturbance) depending on the current deviation to fall back to the reference
oscillation (thin line).

5 Summary and Outlook

This paper presented the mechanical design and first control concepts for a
running biped. For fast running or jumping locomotion that is still energy
efficient it is crucial to exploit the natural leg movement as done by passive
walkers and to store energy during motion. For this task a rotatory pneumatic
spring has been developed to be integrated into the actuation unit. It has an
adjustable stiffness while being able to generate high torques and to withstand
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the high stress emerging during jumping. The actuation unit should be able
to meet the demands of a knee joint and with only slight modifications be
used as a hip joint.

The next research steps will be to build the proposed prototype with ac-
tuated hip and knee and to compare its performance with the results from
dynamic simulation. Control algorithms following the described oscillation
principles combined with a reactive control based on the behaviour-based ar-
chitecture of Sect. 4.1 will be tested on the prototype leg. Future work will
include the design of an elastic foot with two degrees of freedom and following
that a two legged 8 DOF prototype.
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Summary. This paper deals with a methodology to design optimal reference tra-
jectories for walking gaits. This methodology consists of two steps: (i) design a
parameterized family of motions, and (ii) determine the optimal parameters giving
the motion that minimizes a criterion and satisfies some constraints within this fam-
ily. This approach is applied to a five link biped, the prototype Rabbit. It has point
feet and four actuators which are located in each knee and haunch. Rabbit is under-
actuated in single support since it has no actuated feet and is overactuated in double
support. To take into account this under-actuation, a characteristic of the family of
motions considered is that the four actuated joints are prescribed as polynomials
in function of the absolute orientation of the stance ankle. There is no impact. The
chosen criterion is the integral of the square of torques. Different technological and
physical constraints are taken into account to obtain a walking motion. Optimal
process is solved considering an order of treatment of constraints, according to their
importance on the feasibility of the walking gait. Numerical simulations of walking
gaits are presented to illustrate this methodology.

1 Introduction

For more than thirty years walking robots and particularly the bipeds have
been the objects of research. For example Vukobratovic and his co-author [1]
have proposed in 1968 their famous Zero-Moment Point (ZMP), for the analy-
sis of a biped gait with feet. In 1977, optimal trajectories [2] were designed for
a bipedal locomotion using a parametric optimization. Formal’sky completely
characterized the locomotion of anthropomorphic mechanisms in [3] in 1982.
Sutherland and Raibert proposed their principle about virtual legs for walking
robots in the paper [4] in 1983. Currently Humanöıds such as Honda biped in
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[5] and HRP2 biped in [6] (Humanöıd Robotics Project 2), which are probably
on the technological point-of-view the most advanced biped robots, lead to
many popular demonstrations of locomotion and interaction with their envi-
ronment. In parallel, some research is done on legged robots with less degrees
of freedom. Here it is worked with the control, the model and the reference
trajectories to design walking bipedal gaits more fluid. See for example [7]
where a biped with telescopic legs is studied, [8] where the famous dog Aibo
from Sony is used to design biped gaits, [9] where an intuitive approach is
developed for a biped locomotion or [10] where an accurate analysis of the
gravity effects is made to give necessary and sufficient conditions to ensure a
cyclic walking gait for a biped without feet.

In this paper, the efforts are focused on the design by a parametric opti-
mization of a walking gait. This approach necessitates two steps: (i) design a
parameterized family of motions, and (ii) determine the optimal parameters
giving the motion that minimizes a criterion and satisfies some constraints
within this family. The motion obtained is later used as a reference motion.
This approach is applied to a planar five-link biped without feet and with
four actuators only. The family of motions considered is composed of a single-
support phase and a double-support phase, with no impact. The minimization
criterion is the integral over the motion of the square of torques. Therefore it
is a criterion of torque minimization. The originality of the present work is
double:

• To overcome the underactuated characteristic of the biped, the four vari-
ables defined as polynomials in single support are function of another gen-
eralized coordinate, the absolute orientation at the stance leg ankle. This
allows to define the configurations of the biped during the single support
phase, while the dynamics of the not controlled degree of freedom are still
unknown. In double support, two actuated joints are also prescribed as
functions of the absolute orientation at the stance leg ankle, which is a
polynomial function in time.

• There is a classification and a treatment of constraints according to their
importance on the feasibility of the walking gait.

This paper does not address the stability of the motion obtained. The
reader may refer to [11] which gives conditions of stability of the non controlled
degree of freedom during the single support phase, and additionally a measure
of this stability. It has been proved that the presence of the double support
phase practically guarantees the stability.

This article is organized as follows: the dynamical model of the biped under
interest is presented in Sect. 2 for the single and the double-support phase.
Section 3 is devoted to the definition of the family of reference trajectories,
their constraints and their parameters. The calculation of the criterion in
torque during the single support and the double support, and the optimization
process to determine the optimal parameters are presented in Sect. 4. Some
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simulation results are shown Sect. 5. Section 6 contains our conclusion and
perspectives.

2 Dynamic Model

2.1 Presentation of the Biped and Notations

A planar five-link biped is considered and is composed by a torso and two
identical legs with knee and point feet (see Fig. 1 for a diagram of the stud-
ied biped). There are four identical motors, which drive the haunches and the
knees. We note Γ = [Γ1, Γ2, Γ3, Γ4]T the torque vector, q = [α, δT ]T =[α, δ1, δ2, δ3, δ4]T

the vector composed of the orientation of the stance leg and the actuated joint
variables, and X = [qT , xt, yt]T the vector of generalized coordinates. The
components (xt, yt) define the position of the center of gravity of the trunk.

2.2 A Reduced Model

The optimization process to determined reference trajectories, which will be
presented in the next sections leads to many CPU operations. Therefore the
strategy was to use a reduced model that needs less computations. To obtain
this reduced model, we consider that the contact between the leg tip 1 and
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the ground is acting as a pivot: there is no take off and no slipping. Then the
biped configuration is described with vector q only. This model is reduced by
comparison to a more general model that would be written with vector X.
We obtain the reduced model by using Lagrange’s equations:

A(δ)q̈ +H(q, q̇) +Q(q) = DΓΓ +D2(q)R2 (1)

where A(δ)(5×5) is the symmetric positive inertia matrix of the biped. As the
kinetic energy of the biped is invariant under a rotation of the world frame [12],
and viewed that α defines the orientation of the biped, the 5 × 5-symmetric
positive inertia matrix is independent of this variable, i.e. A = A(δ). Vector
H(q, q̇)(5 × 1) represents the centrifugal, Coriolis effects, and Q(q)(5 × 1) is
the gravity effects vector. DΓ (5 × 4) is a constant matrix composed of ones
and zeros. D2(q) is the 5× 2-Jacobian matrix converting the ground reaction
in the leg tip 2 into the corresponding joint torques.

Taking into account Coulomb dry and viscous frictions, Γ has the following
form

Γ = Γu − Γssign(DT
eΓ q̇) − FvD

T
eΓ q̇ (2)

where Γs(4× 4) and Fv(4× 4) are diagonal matrices representing respectively
the dry friction and the viscous friction. Γu is the motors torque vector when
considering the joint friction.

In the case of double support, the point foot 2 is in contact with the ground.
Then the position variables q, the velocity variables q̇, and the acceleration
variables q̈ are constrained. In order to write these relations, we define the
position, velocity and acceleration of the point foot 2 in an absolute frame.
The position of the point foot 2 is noted d2(X). By differentiation of d2(X)
we obtain the relation between the velocity V2 = (V2x V2y)T of the point foot
2 and q̇,

V2 = De2(q)T q̇ . (3)

By another differentiation we obtain the relation between the acceleration
V̇2 = (V̇2x V̇2y)T of the point foot 2 and q̈,

V̇2 = De2(q)T q̈ + Ḋe2(q)T q̇ = De2(q)T q̈ + Ce2(q, q̇) . (4)

Then the contact constraints for the point foot 2 with the ground are given
by the three vector-matrix equations:





d2(X) = const ,

V2 = 0 ,

V̇2 = 0 .

(5)

These vector-matrix equations (5) mean that the position of the point foot 2
remains constant, and then the velocity and acceleration of the point foot 2
are zero.
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During the double-support phase, both legs are in contact with the ground.
Then the dynamic model is formed of both vector-matrix equations (1) and
(5). During the single-support phase on leg 1, the dynamic model is simply
written as (1) with the ground reaction for foot 2 in the air is R2 = (0 0)T .

Model (1) allows us to compute the torques and the dynamic model of α
easier (10). However, it is not possible to take into account a single-support
on the leg 2 with (1). Furthermore we cannot calculate the ground reaction
with model (1) only. We add the two following equations, obtained from the
Newton’s second law at the center of mass G of the biped

{
MẍG = R1x +R2x

MÿG = R1y +R2y −Mg
(6)

where M is the mass of the biped and (xG, yG) are the coordinates of G.

3 Definition of the Walk and Its Constraints

Our objective is to design a cyclic bipedal gait. There are two aspects for this
problem. The definition of a parameterized family of reference trajectories and
the method to determine a particular solution in this restricted space. This
section is devoted to the definition of the parameterized family of reference
trajectories. The optimal process to choose the best solution of parameters
from the point of view of a given criterion will be described in the next section.
The parameterized family of reference motions is such that one degree of
freedom, which changes monotonically during a step composed of a single-
support phases and a double-support phases, will be used as a variable to
define the other degrees of freedom. These special solutions lead to a particular
simple dynamical model of the biped in single support which can be calculated
from (1). An impactless bipedal gait is considered because in [13] numerical
results proved that the insertion of an impact with this walking gait for the
studied biped is a very difficult challenge. The condition found to obtain
no impact was simply that the velocity of free foot must reach the ground
with zero velocity. After the choice of parameters, the constraints will be
determined. In the following, indices “ss” and “ds” respectively indicate the
single-support phase and the double-support phase.

3.1 Restrictions of Motion Considered in Single Support

During the single support, the biped has five degrees of freedom. With the
four actuators for the biped, only four output variables can be prescribed.
Then the biped is underactuated in single support. In previous experiments,
see for example, [7, 14, 15], researchers observed that for most of walking
gaits of biped robots the ankle angle α of the stance leg changes absolutely
monotonically during the single-support phase. Therefore, it is possible to use
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the angle variable α instead of time t as an independent variable during the
single-support phase of the bipedal gait. As a consequence α like time will
have to be monotonic. But this choice will not eliminate potentially optimal
motions in the space in which we seek for solutions, since so far all motions
observed were satisfying this property. Thus the four joint variables δj are
prescribed as polynomial functions of the ankle angle α, δj,ss(α) (j = 1, . . . , 4).
The behavior of α is governed by the dynamic model (1). To deal with the
underactuation the advantage of this approach is that the complete set of
configurations is defined during the motion of the biped and it is not necessary
to anticipate a duration for the single-support phase, which is the result of
the integration of (1). The order of these polynomial functions (7) is chosen at
four to specify initial, final and intermediate configurations, plus initial and
final joint velocity variables,

δj,ss(α) = aj0 + aj1α+ aj2α
2 + aj3α

3 + aj4α
4 . (7)

Let us note that it would be possible to prescribe other variables as Cartesian
variables. But to avoid the problems of singularity of the inverse geometric
model in the single-support phase, we prefer to work with angular variables
only. However some authors, for example [2, 16], use Cartesian coordinates
of the hip for the definition of the bipedal gait. The joint variables are then
prescribed. However since the biped is underactuated the evolution of the
angle α must be such that the biped motion satisfies the dynamic model.
Considering the relations (7) we introduce for the variables of the reference
motion q = q(α) the following temporal derivatives

q̇(α, α̇) = q∗α̇

q̈(α, α̇, α̈) = q∗α̈+ q∗∗α̇2

(8)

where the notation ()∗ means partial derivative with respect to α, and the (̇)
represent derivation with respect to time. Then we have q∗ = [1 δ∗1 δ

∗
2 δ

∗
3 δ

∗
4 ]T

and q∗∗ = [0 δ∗∗1 δ∗∗2 δ∗∗3 δ∗∗4 ]T . By calculating the angular momentum of the
biped at the fixed point S (see Fig. 1), we obtain the general form

σ =
4∑

i=1

fi(δ1, δ2, δ3, δ4)δ̇i + f5(δ1, δ2, δ3, δ4)α̇ . (9)

We can obtain two first order differential equations on σ and α (see [15])




σ̇ = −Mg (xG(α) − xS)

α̇ =
σ

f(α)
.

(10)
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M is the biped mass, g the acceleration of gravity, xG(α) and xS are respec-
tively the horizontal component of the positions of the biped’s mass center
and of the foot of the stance leg. The first equation of (10) comes from the
dynamic momentum equation at S when eliminating q from (7). The second
equation of (10) follows from (9) when eliminating q and q̇ using (7) and (8).
This differential system (10) is equivalent to the first line of (1). By identifi-
cation, it is possible to determine f(α) and xG(α) from (1). The simple model
(10) completely defines the dynamic behavior of the biped in single support
for the reference motion. From (10) we can deduce that (see [17])

σ̇ =
dσ

dα
α̇ =

dσ

dα

σ

f(α)
=

1
2
dσ2

dα

1
f(α)

= −Mg (xG(α) − xS) .

Finally this calculation leads to the relation due to [17]

dσ2

dα
= −2Mg (xG(α) − xS) f(α) . (11)

If α is strictly monotone, the integration of (11) gives

σ2 − σ2
iss = −2Mg

α∫

αiss

(xG(s) − xS) f(s)ds (12)

where σiss is the angular momentum at the beginning of single support char-
acterized by the initial value αiss. Then the dynamic of the biped is completely
defined from (10) as function of Φ(α) = σ2 − σ2

iss = α̇2f2(α) − α̇2
iSSf

2(αiSS)
such as

α̇ = −
√
Φ(α) + f(αiSS)2α̇2

iSS

f(α)
. (13)

α̈ is obtained from the second equation of (10)

α̈ =
σ̇f(α) − σḟ(α)

f2(α)
= −

Mg (xG(α) − xS) + df(α)
dα α̇2

f(α)
. (14)

From the solution of the differential equation in α (11) and using relations
(13) and (14) the numerical simulation to find the optimal motion and the
calculation of constraints will be easier.

The authors of [17] showed that system (10) behaves like an inverted pen-
dulum. Therefore the only possible non-monotone behavior would be that
the biped fall back if the initial velocity of single support is not sufficient.
The condition to ensure the monotony of α has been added as a constraint
in the optimization process, see (18).

3.2 Restrictions of Motion Considered in Double Support

In double support, the biped has three degrees of freedom. With its four actu-
ators, the biped is over actuated. Hence the motion of the biped is completely



240 S. Miossec and Y. Aoustin

defined with three prescribed degrees of freedom. For a question of conve-
nience for the use of the inverse geometric model, the ankle angle α and both
joint variables, δj (j = 1, 2) are prescribed. A polynomial function in time of
third-order (15) is chosen to define α. In a concern to be homogeneous with
the single support phase we define both joint angular variables δj , as polyno-
mial functions of third-order in α. Then initial and final configurations, and
initial and final velocities can be defined for these three prescribed variables.
The duration of the double-support phase is a parameter. Hence we get





α(t) = a0 + a1t+ a2t
2 + a3t

3 ,

δj(α) = aj0 + aj1α+ aj2α
2 + aj3α

3.

(15)

It should be noted that there is no differential equations needed for the
definition of the motion, since the biped is over-actuated in double support.

3.3 Optimization Parameters

A boundary value problem has to be solved to design this cyclic bipedal
gait with successive single and double-support phases. This boundary value
problem depends on parameters to prescribe the initial and final conditions
for each phase. Taking into account the conditions of continuity between the
phases and the conditions of cyclic motion we will enumerate now in detail
the minimal number of parameters which are necessary to solve this boundary
value problem on a half step k (a half step is considered as a single support
and a double support).

1. Seven parameters are needed to define the initial and final configurations in
double support. The parameters αids, δ1,ids, θids, αfds, δ1,fds, θfds and d,
the distance between both tips of stance legs in double support are chosen.
The use of the absolute orientation of the trunk, θ (see Fig. 2) instead of
δ2,fds is easier and does not change the problem.

2. Time Tds of the double support is given as a parameter.
3. The initial velocity of the biped in single support is prescribed by only three

parameters α̇iss, δ∗1,iss, δ
∗
2,iss. The velocities δ∗3,iss and δ∗4,iss are deduced

taking into account the null velocity of the leg tip which takes off.
4. The final velocity of the biped in single support is prescribed by only three

parameters α̇fss, δ∗1,fss, δ
∗
2,fss. The velocities δ∗3,fss and δ∗4,fss are deduced

taking into account the absence of impact of the swing leg tip on the
ground, which is equivalent to a null velocity of this tip.

5. With the chosen order for the polynomial functions (7) (fourth order) it
is necessary to specify five conditions for each function δj,ss, j = 1, . . . , 4.
Then the fifth coefficient is calculated by defining an intermediate config-
uration. Let intermediate configuration in single support be determined
with the five following parameters αint, δ1,int, θint and the coordinates
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R2x
R1x

R1y

R2y

R2xR2x

G

B

A

d

�

Fig. 2. Biped in the sagittal plane (the point G is the center of mass of the biped)

(xp,int and yp,int) of the swing leg tip. The angle αint is fixed equal to
αiss + αfss

2
.

Then finally the vector of parameters has eighteen coordinates

p = [Tds, αids, δ1,ids, θids, αfds, δ1,fds, θfds, d, α̇iss, δ
∗
1,iss, ...

δ∗2,iss, αfss, δ
∗
1,fss, δ

∗
2,fss, δ1,int, θint, xp,int, yp,int] .

3.4 Constraints

Constraints have to be considered to design nominal gait. We will present
them according to their importance on the feasibility of the walking gait.

• First, no motion is possible if the distance d(A,B) between the tip of leg 2
and the hip joint, for initial and final configurations of the double support
and the intermediate configuration of the single support, is such that

d(A,B) > 2 × l (16)
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where l is the common length of the femur and the tibia. In other words,
there is no solution with the geometrical model to compute δ3 and δ4.

• Constraint (16) is also taken into account during the motion of the biped
in double support. The maximum value of d(A,B) in function of α is
considered.

• The mechanical stops of joints for initial, intermediate and final configu-
rations of each phase and during the motion are





−260◦ < (δ2)min , (δ2)max < −110◦

−260◦ < (δ2 − δ3)min , (δ2 − δ3)max < −110◦

−230◦ < (δ1)min , (δ1)max < −127◦

−230◦ < (δ4)min , (δ4)max < −127◦

The notation ()max and ()min stands respectively for the maximum and
minimum value over one step.

• In double support the monotony condition for variable α is imposed

max
t∈[0,Tds]

α̇(t) < 0 . (17)

• In single support, the monotony condition for variable α is imposed by the
inequality

Φmin + f(αiss)2α̇2
iss > 0 (18)

where Φmin = minα∈[αiss,αfss] Φ(α).
• In single support it is fundamental to avoid the singularity f(α) = 0 to

simulate one step. Then we define the following constraint

min
α∈[αiss,αfss]

f(α) > 0 . (19)

Now the following constraints can be violated during the optimization process
to simulate a half step. However they are important for experimental objec-
tives. The optimization process will ensure their verification.

• Each actuator has physical limits such that




(
|Γ ∗

1 (α)| − Γmax(|δ̇1|)
)

max
< 0

(
|Γ ∗

2 (α)| − Γmax(|δ̇2|)
)

max
< 0

(
|Γ ∗

3 (α)| − Γmax(|δ̇2 − δ̇3|)
)

max
< 0

(
|Γ ∗

4 (α)| − Γmax(|δ̇4|)
)

max
< 0

(20)
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Function Γmax(∗) can be deduced from a template, torque actuator/velocity,
given by the actuator manufacturer.

• We must take into account constraints on the ground reaction Rj =
(Rjx Rjy )T in the tip of the stance leg j, j = 1 in single support and
j = 1, 2 in double support. The ground reaction must be inside a friction
cone defined by the friction coefficient µ. This is equivalent to write both
inequalities

Rjx − µRjy < 0
−Rjx − µRjy < 0.

By summing these two inequalities, the condition of no take off is deduced

⇒ Rjy > 0 . (21)

• There is also a constraint on the swing leg tip to avoid an impact with
the ground during its transfer. This constraint is defined by a parabola
function

min
α∈[αiss,αfss]

[
y(α) −

(
x2(α)
d2

− 1
)
ymax

]

where (x, y) are the coordinates of the swing leg tip and ymax is the max-
imum height of the parabola.

• Optimal motions are defined for different velocities with the constraint

d = v(Tss + Tds) (22)

where d is the distance between the tips of stance legs (see Fig. 2), v is
the desired average velocity of the biped, and Tss is the time of the single-
support phase. The calculation of time Tss of the single-support phase is

given by Tss =
∫ αfss

αiss

1
α̇
dα

4 Optimal Walk

Many values of parameters presented in Sect. 3 can give a periodic bipedal
gait satisfying constraints (16)–(22).

Then a parametric optimization process, minimizing a criterion under non-
linear constraints, is possible to find a particular nominal motion. Let us define
this optimization process

min
p
C(p) (23)

gi(p) ≤ 0 i = 1, 2, . . . , n

where p is the vector of parameters, C(p) is the criterion to minimize with n
constraints gi(p) ≤ 0 to satisfy. We give now some details about the way to
calculate the criterion during the single-support phase and the double-support
phase, and about the optimization process.
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4.1 Criterion

To find the nominal motion criterion CΓ , which is a torque minimizing crite-
rion, is considered

CΓ =
1
d

Tss+Tds∫

0

ΓTΓdt =
1
d




αfss∫

αiss

ΓTΓ

α̇
dµ+

Tds∫

0

ΓTΓdt


 (24)

where Tss and Tds are the times of single support and double support. For
electrical motors such as DC motors the torque is usually proportional to the
induced current. Then the criterion CΓ represents the losses by Joule effects
to cover distance d, see [18, 19]. To consider an energy minimizing criterion,
it would only be necessary to add the losses by friction in the joints.

4.2 Single-Support Phase

From calculation of the integral term (12) using the polynomial functions (7),
we obtain Φ(α) = σ2 − σ2

iss. Velocity α̇ and acceleration α̈ can be obtained
with relations (13) and (14). We then have determined the dynamics of the
under actuated biped in single support for a reference trajectory. The torques
are determined from the four last equations of (1)

A25(δ)q̈ +H25(q, q̇) +Q25(q) = DΓ25Γ (25)

where A25(4 × 5), H25(4 × 5) and DΓ25(4 × 4) are the submatrices of A, H
and DΓ , Q25(4× 1) is the subvector of Q. The invertible matrix DΓ25 allows
to determine the torque vector Γ . The ground reaction Ri = (Rix, Riy) at the
tip of the stance leg i are calculated using the equations (6).

4.3 Double-Support Phase

From relations (15) α(t), α̇(t) and α̈(t) are calculated as polynomial functions
of time first at each time step, then δj(α), δ̇j(α) and δ̈j(α) (j = 1, 2) are
determined. There is an infinit set of solutions for the torques to realize the
double support, because the biped is overactuated. Only three generalized
coordinates, for example α(t), δ1 and δ2, are necessary to describe the motion
completely. Then, we can parameterize the solution of torques as function of
one variable. To find this variable we consider equation (6) and the equation
of the angular momentum theorem applied at the leg tip 1. The equation of
the angular momentum theorem in double support is equivalent to equation
(10) but with the effect of ground reaction force of foot 2. It is also equivalent
to the first line of model (1). This additional equation reads

A1(δ)q̈ +H1(q, q̇) +Q1(q) = −dR2y (26)
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where A1(1 × 5) and H1(1 × 5) are the first line of A and H, Q1(1 × 1) is
the first element of Q. Term d is the distance between the two leg tips on the
ground. Component R2x does not appear in equation (26) because the ground
is assumed to be horizontal and plane. From the second line of (6) and (26),
for a given acceleration of the biped there is only one solution for R1y and
R2y, independent of the torques. The torques only influence R1x and R2x. For
this reason, a solution for the torques can be found as function of R1x or R2x

as parameter. Let us choose R2x and define the minimization problem with
the associated constraint on component R2x

min
R2x

Γ ∗TΓ ∗





−µR1y −R1x ≤ 0
−µR1y +R1x ≤ 0
−µR2y −R2x ≤ 0
−µR2y +R2x ≤ 0 .

(27)

The choice of the particular solution of this optimization problem is because
it is also the solution that minimizes the criteria (24). With the four last lines
of the vector-matrix equations (1) and (2) a relation between torques Γ ∗ and
R2x can be written

Γ ∗ = J −KR2x (28)

with K = D−1
Γ25D2x 25 and

J = D−1
Γ25 (A25q̈ +H25(q, q̇) +Q25(q) −D2y 25R2y) + Γssign(DT

Γ q̇) + FvD
T
Γ q̇.

The solution R2x optΓ which minimizes the square of the torques without
constraints is given when Γ ∗T ∂Γ∗

∂R2x
= 0. Considering equation (28) R2x optΓ

is given by

R2x optΓ =
KTJ

KTK
. (29)

Defining a minimum value R2xinf and a maximum value R2xsup, the con-
straints on R2x can be written under the simple form,

R2xinf ≤ R2x ≤ R2xsup (30)

Then a solution for the minimization problem (27) is given by three cases

• if R2x inf ≤ R2x optΓ ≤ R2x sup then R2x = R2x optΓ ,
• if R2x optΓ ≤ R2x inf then R2x = R2x inf ,
• if R2x sup ≤ R2x optΓ then R2x = R2x sup.

In the case where there is no solution, i.e R2xinf ≥ R2xsup, we choose R2x to
minimize the violation of constraints such as
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R2x =
R2x inf +R2x sup

2
.

In this last situation, the constraints are not satisfied. However, the optimiza-
tion process will tend to satisfy the constraints of the motion, and the final
solution will always satisfy R2xinf ≤ R2xsup. This violation will only occur
during the optimization process.

4.4 Optimization Algorithm

The algorithm NPSOL, see [20] is used to solve this optimization problem with
its nonlinear constraints. The sequence of treatment of constraints according
to their importance is described Fig. 3. From level 0 to level 4, the constraints
must be satisfied to simulate one step. Other constraints as the maximum
velocity of the biped, the torques limits are considered in level 5.

Sometimes, while solving the problem (23), the optimization process can
ask a value of the criterion or the constraints in a point p0 where they are
not defined. Therefore an intermediate optimization process is started to find
another point pM , the closest from p0. For example if constraints gi(p0) ≤ 0,
i = 1, 2, . . . ,m0 are not satisfied, pM is determined as the solution of the
problem

min
p

‖p0 − p‖

gi(p) ≤ 0 i = 1, 2, . . . ,m0 .

(31)

Then the constraints not defined at the point p0 will be computed at the
point pM . And using gradient information at pM , an interpolated value will be
determined at p0. This interpolation ensures that constraints and criteria are
continuous and differentiable functions, even at the boundary of their space
of definition. This is a necessary condition for the optimization program to
solve this modified problem.

During the optimization process the constraints can be violated. But it
tends to satisfy the constraints at the end of the optimization. Since we add
in the problem the constraints specifying the sub-space where all constraints
and criterion are defined, at the end of the optimization the walking motion
will be defined and satisfy all the constraints. The only situation where the
algorithm will not find a solution that satisfies constraints is if there is no such
solution (if we ask for a walk too fast and the actuators are not sufficient to
do it, for example) or if the problem is not convex. Indeed the algorithm used
is a local optimization algorithm. For a non convex problem, it will probably
find only a local non feasible solution, whereas other feasible solution exists.
However, we have tried many random initial conditions for the optimization
process and always found the same optimal solution that satisfied constraints.
We can therefore assume that our problem is convex.

To solve the intermediate optimization problem (31) and the general opti-
mization problem (23), the gradient in function of the vector of parameters p
of the criterion and constraints is necessary. To obtain an efficient algorithm,
these gradients were calculated analytically.
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Fig. 3. Sequence of constraints to satisfy before the step can be defined



248 S. Miossec and Y. Aoustin

5 Simulation Results

Figures 4–7 are devoted to a chosen motion velocity for a biped which equals
0.3 m/s. Figure 4 shows that the needed torques for this trajectory are inside
the template, motor torque/velocity, given by the manufacturer. The normal
components of the ground reactions as functions of time, during one step are
presented in Fig. 5. The constraint of unilateral contact on the leg tip 2 is
active because the fixed limit 20 N is reached in the tip of leg 2 during the
double-support phase. The double-support phase begins after time 0.93 s.

Figure 6 shows as functions of time the evolutions of joint variables δ1, δ2,
δ3 and δ4 in single-support phase and double-support phase. Let us remark
that the discontinuities in the graphes mark the limit between the single-
support phase and the double-support phase. These discontinuities are not due
to an impact (only an impactless motion is considered). These discontinuities
appear in the graphes of Figs. 5–7 because the role of both legs are exchanged
at the beginning of the double-support phase. Figure 7 shows the behavior of
the variable α, which is monotone as expected. The discontinuity at the end
of the single-support phase (time 0.93 s) is due to the exchange of the role of
both legs.
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Fig. 4. Velocity versus torque for knee i and haunch i, (i = 1, 2) are inside the
template, motor torque/velocity, defined by the limit values 140 N.m and 12 rad/s
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In conclusion, for the velocity 0.3 m/s of the biped an optimal motion is
feasible according to the constraints. Other velocities of walk for the biped
have been tested with success. In Fig. 8 discrete values of criterion CΓ are
presented versus the velocity of motion. The evolution of discrete criterion CΓ

versus velocity of motion is more regular if the optimal walks are obtained
without taking into account Coulomb friction. This is due to the fact that the
convergence for the case with friction is not very good, since torques are not
smooth. For superior velocities a running gait is more appropriate, (see for
example numerical experiments in the paper [18]).

6 Conclusion

An optimization process is proposed to design optimal bipedal gaits for a
five-link biped. The walking gaits are composed of single-support phases and
double-support phases, but with no impact. The criterion minimized is the
integral of the square of the torques. A sequential procedure is done, taking
into account the constraints according to their importance realizing a walk
step. Coulomb frictions, which are nonlinear and discontinuous functions, are
taken into account because their contribution cannot be neglected. A pos-
sible improvement would be to do a piecewise linear approximation of the
Coulomb friction around the discontinuity point of the friction force for a null
joint velocity. Currently the main drawback of the optimization method we
used is that it is not exactly adapted to our problem. Our problem is a semi-
infinite problem, that is an optimization problem with constraints that must
be satisfied over an interval. We have then adapted our problem by consid-
ering the constraints over an interval only at their most constraining point.
The optimization problem we then solve is with non-smooth constraints. But
we obtained convergence even if NPSOL was not designed to cope with such
non-smooth problems. To solve our problem, we would like to consider an
optimization algorithm that can take into account a variable number of con-
straints in the future. Indeed, the number of maximum and minimum where
we considered the semi-infinite constraints can change during the optimiza-
tion process. We hope also to experiment on prototype Rabbit these reference
trajectories and to extend also this work to a walking biped with more degrees
of freedom.
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Summary. For fast motions in biomechanics and robotics, stability and robustness
against perturbations are critical issues. The faster a motion the more important it
is to exploit the system’s natural stability properties for control. The stability of a
periodic motion can be measured in terms of the spectral radius of the monodromy
matrix. We optimize this stability criterion for a given robot topology, using special
purpose optimization methods and leaving the model parameters, actuator inputs,
trajectory start values and cycle time free to be determined by the optimization.
This approach allows us to create simulations of robots that can move stably without
any feedback. In order to analyze the robustness of a resulting periodic motion, we
propose two methods, the first of which relies on forward simulations using perturbed
start data and parameters while the second is based on the pseudospectra of the
matrix. As a new example for a fast open-loop stable motion that has been produced
by stability optimization, we present a biped gymnastics robot performing repetitive
flip-flops (i.e. back handsprings). A similar model has previously been shown capable
of performing open-loop stable running motions and repetitive somersaults.

1 The Role of Open-Loop Stability in Fast Motions

For fast walking and running motions, stability is a crucial property. Main-
taining static stability throughout the motion is obviously not possibly for
fast walking and running robots with just one or two legs. In contrast, those
robots need to be allowed to tip and fall and swing, but the resulting motions
have to be overall dynamically stable. Dynamically stable motions are char-
acterized by the fact that they persist even in the presence of perturbations
which always exist in a real world environment. The more complex the sys-
tem becomes and the faster a motion gets, the more difficult is the task of
stabilizing the motion by means of appropriate feedback control systems.

A comparison of the speed of running motions in biology and robotics still
shows a huge gap: despite all technological process in recent years, the world’s
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Fig. 1. A flip-flop (back handspring) motion in gymnastics (taken from [9], with
permission)

fastest robots are still far behind the world’s fastest track runners which run
the 100 meters at average speed of nearly 37 km/h. One explanation for this
is that biological feedback and signal processing of a running person based on
senses and neurons is still far more sophisticated than any technical feedback
system implemented on a robot. However, it seems even more important, that
fast biological motions exploit the natural stability properties of the system
much better than robots which typically rely on the traditional approach of
trajectory playback. In biology, fast motions seem to be to some extent inher-
ently stable, or self-stabilizing, which significantly reduces the online feedback
effort.

In robotics, the idea of exploiting natural stability properties has been
introduced mainly through the field of passive-dynamic walking (compare
e.g. the work of McGeer [12, 13] or Ruina and coworkers [8]). Passive-dynamic
robots walk down inclined slopes in an amazingly natural looking manner,
without any motors, powered only by gravity, and are fully open-loop stable
without any feedback.

There are different approaches to transfer the ideas of passive-dynamics
to actuated walking and running motions (e.g. Collins et al. [6]). There only
exist very few entirely open-loop stable actuated robots today, e.g. the one-
legged hopping robots of Ringrose [21] and Wei et al. [24], and they rely mainly
on simple stabilization measures like a large curved foot in combination with
a low center of mass. There are also more complex robots that combine an
exploitation of self-stabilizing effects and feedback control, see e.g. the works
of Buehler [4] or Pratt [20]. Very fast open-loop stable multi-legged robots
have been built inspired by cockroaches (Cham et al. [5]).

The idea of open-loop stability or exploitation of natural stability has been
addressed by different authors of this symposium, e.g.:

• Martijn Wisse presented his robot Denise which is a quasi-passive walking
robot with a very natural gait based on very little actuation and feedback

• Heiko Wagner and Peter Giesl explore the open-loop stability present in
biological systems especially in the muscle actuators

• John Schmitt describes the SLIP model which can be passively stable and
for which the basin of stability can be enlarged by very simple feedback.
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We approach the issue of producing fast open-loop stable motions from an
optimal control perspective. The objective of this paper is twofold:

• to summarize a systematic procedure based on numerical optimization
that we developed [14, 15], to produce robot configuration and fast peri-
odic motions that are fully open-loop stable, and to analyze their robust-
ness. These numerical methods are meant to be used already in the design
phase of the robots because they help to determine adequate geometric
and inertial properties;

• to present one new specific example optimized with these methods: a two-
legged robot performing repetitive flip-flops i.e. back handsprings.

This paper presents an extension of the work done in cooperation with Bock,
Schlöder and Longman [17, 16]. Altogether this research shows that very differ-
ent types of open-loop stable motions can be produced using these numerical
techniques.

Since robustness is another crucial characteristic of a motion – besides
stability – we also present different methods that allow one to numerically
asses the robustness of a solution, i.e. to quantitatively determine the size of
the tolerated perturbations.

In detail, the following steps are necessary in order to produce such a
purely open-loop stable robot configuration and motion:

• Step 1: Choose the basic robot configuration and motion
• Step 2: Establish a mathematical model of the robot motion
• Step 3: Determine open-loop stable solutions by means of optimization of

all model parameters and free input variables
• Step 4: Analyze robustness of solution.

The individual steps will be described in the following sections of this paper
for the specific example of the biped robot performing repetitive flip-flops.
A special focus is on the stability optimization in step 3, where the underly-
ing numerical methods and the results of these methods for the robot under
investigation will be presented.

2 First Step: Choosing the Robot Configuration and
Motion – The Flip-Flop Example

In a first step the basic characteristics of the robot configuration and the
motion to be stabilized need to be picked. In detail, that means that one has
to select

1. the robot topology:
i.e. determine the number of bodies, their basic shapes, the types of con-
nections (or joints) between those bodies, the types of passive elements
(like springs or dampers), the number and types of actuators etc.
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2. the motion of the robot:
i.e. describe the gait to be performed (like walking, running, trot, gallop
etc.) or any other type of periodic motion (like jumping with flip etc.);
this also includes a determination of the logical order of phases and of the
natural phase-separating conditions etc.

3. the free quantities in the model:
i.e. choose those model parameters, actuator inputs and characteristics of
the trajectory that qualify for a modification by the optimization proce-
dures.

In the present paper, we investigate a periodic flip-flop – or back handspring
motion of a planer robot trying to mimic sequences of the human gymnastics
movement (Fig. 1). Going along the items listed above, the following selections
have been made:

1. The robot consists of a large trunk (in a bird-like horizontal orientation),
two thin telescopic legs with point feet and two arms which are assumed
to be identical to the legs in shape and size (compare Fig. 2). Since both
arms and both legs act exactly in parallel for the planar motion consid-
ered, this original model can be substituted by a model with just one leg
(pointing down from the trunk) and just one arm (pointing up, see Fig. 4).
This model is in fact almost identical to the biped robot model that we
have investigated in earlier publications and that we have proven capable
of open-loop stable periodic running motions [17] and open-loop stable pe-
riodic somersaults with alternating single leg contacts [16] (also compare
Fig. 3). The only difference is that one leg now has to be pointed upwards
in order to be interpreted as an arm. Each leg/arm is connected to the
trunk by a hinge driven by a torque and a parallel torsional spring-damper
element. The lower part of the leg/arm is assumed to be massless, and the
two parts of each leg/arm are connected by an actuated spring-damper
element (series elastic actuator).

Fig. 2. A robot model performing flip-flop motions
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Fig. 3. Two-legged robot capable of periodic running and somersault motions

Fig. 4. Robot model used for flip-flop computations with one arm and one leg

2. As shown in Fig. 1, for the human flip-flop motion the following phases
can be identified: foot contact phase – flight phase – hand contact phase –
flight phase. Since our robot model is characterized by several symmetries
not present in the human gymnast (legs and arms are identical, as well as
the associated actuators, and the trunk is symmetric with respect to its
horizontal plane), we can assume that foot and arm contacts have identical
effects and reduce the model to half a physical cycle, i.e. just consider two
phases: a contact phase followed by a flight phase. The natural condition
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ending flight and starting the contact phase is satisfied if the respective foot
or hand reaches zero height with a negative vertical velocity. The contact
phase ends if the spring in the telescoping leg/arm regains its normal length
after compression.

3. In order to optimize the open-loop stability of the flip-flip robot motion
the following quantities are left free to be modified by the optimization
procedures:
• Most of the model parameters i.e. of the design variables that can be

a priori chosen for a robot at design time and are fixed throughout
the motion. Model parameters for this robot model are trunk mass
and inertia mb and Θb, leg/arm mass and inertia ml and Θl, distance
between centers of mass of trunk and leg d, leg rest length l0, torsional
spring and damper constants ktors and btors, rest location of torsional
spring ∆φ, and translational spring and damper constants k and b.
For the computations presented here mb and l are fixed for scaling
reasons, the rest is left free. Note that all quantities correspond to the
substitute model (Fig. 4).

• All time-varying system inputs, i.e. the time histories of the forces and
torques produced by motors and other types of actuators and acting
on the model are also left free to be determined by optimization. Out
of the four actuators described above – two torques utors between the
hip and the leg and arm, respectively, and two series elastic actuators
uSEA in the telescopic part of the leg/arm – only three are active in
the half cycle considered.

• There are a few remaining free quantities describing the trajectory of
the robot, like the initial values (at the beginning of a cycle) of all
positions and velocities and the period time. The rest of the trajectory
is implicitly determined by the dynamics and free quantities described
above, like the parameters and the input histories.

Even though all these quantities are free in optimization, they are subject
to physically reasonable bounds.

3 Second Step: Establishing a Mathematical Model
of the Robot Motion

After the general selections described in the previous section have been made,
a detailed mathematical model of the robot and the motion has to be set up.
From a mathematical perspective, gait models result in hybrid systems which
include continuous motion phases with highly complex nonlinear differential
equations and discrete “phases” (of duration zero) with sudden – discontinu-
ous – changes in the state variables of the system1. The number of degrees of
freedom, the number of state variables, as well as the number of free control

1 State variables x for a mechanical system are all position and velocity variables
used for description
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variables u(t) (i.e. actuator inputs in physical terms) can be different in each
phase. Typically, the points of phase change do not take place at given times
but only depend implicitly on time via the states of the system.

In order to fully describe the motion of the flip-flop robot, we have to
establish the following sets of equations:

• differential equations for the leg contact phase
• differential equations for the flight phase
• discrete equations for discontinuity “phase” after touchdown.

We use the same set of state variables for the description of all phases, namely
q = (xb, yb, φb, φl, φa)T , and the corresponding velocities q̇, where xb and yb

are the position coordinates of the trunk center of mass in the vertical plane,
and φb, φl and φa are the orientations of trunk, leg and arm. During the flight
phase, these position variables correspond to the five degrees of freedom; and
the reduction during contact phase is handled by additional constraints.

The coordinates of the centers of mass of the leg and arm (xl, yl) and
(xa, ya) can be eliminated using the distance parameter d and the respective
angle by φl or φa.

The motion in the flight phase is described by the following set of ordinary
differential equations:




m 0 0 mld cosφl mld cosφa

0 m 0 mld sinφl mld sinφa

0 0 θb 0 0
mld cosφl mld sinφl 0 θl +mld

2 0
mld cosφa mld sinφa 0 0 θl +mld

2







ẍb

ÿb

φ̈b

φ̈l

φ̈a




=




mld(sinφlφ̇
2
l + sinφaφ̇

2
a)

−mld(cosφlφ̇
2
l + cosφaφ̇

2
a) −mg

∑2
i=1

(
utors,i − ktors(φb − φli −∆φ) − btors(φ̇b − φ̇li)

)

−utors,1 −mlgd sinφl + ktors(φb − φl −∆φ) + btors(φ̇b − φ̇l)

−utors,2 −mlgd sinφa + ktors(φb − φa −∆φ) + btors(φ̇b − φ̇a)




(1)

where m is the total mass m = mb + 2ml and utors,1 and utors,2 are the
torques between trunk and leg or arm, respectively. For compactness of nota-
tion, we use φl1 = φl and φl2 = φa in the third line of eqn. (1).

The leg length l is fixed to l0 during the major part of the flight phase
(since the foot is massless) and depends on the other coordinates during the
contact phase (with the leg) as follows:

l =
yb

cosφl
⇒ (2)

l̇i =
ẏb

cosφl
+ yb

sinφl

cos2 φl
φ̇l . (3)

(equivalently for arm contact).
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The series elastic actuator (compare Pratt et al. [19]) active in the contact
leg uSEA,l ≥ 0 actively changes the spring’s length

∆l =
yb − r

cosφl
+ r − uSEA,l − l0 (4)

uSEA,l is equal to zero at touchdown and must be positive at liftoff to com-
pensate for the energy loss in the damper.

In order to model foot contact, we use a constraint-based approach instead
of contact forces: friction is assumed to be large enough to guarantee instan-
taneous stopping of the contact point without sliding. This would reduce the
degrees of freedom of the system by two, but at the same time the previously
fixed leg length becomes variable and changes under the influence of the SEA
spring-damper forces. In sum, this leads to reduction of degrees of freedom
by one which is described by the additional kinematic constraint in velocity
space

ẋb + (yb + yb tan2 φl ) φ̇l + tanφl ẏb = 0 . (5)

The corresponding equation on the acceleration level is used to establish the
differential-algebraic equations of index 1 describing the contact phase:




m 0 0 mld cosφl mld cosφa 1
0 m 0 mld sinφl mld sinφa tanφl

0 0 θb 0 0 0
mld cosφl mld sinφl 0 θl +mld

2 0 yb(1 + tan2 φl)
mld cosφa mld sinφa 0 0 θl +mld

2 0
1 tanφl 0 yb(1 + tan2 φl) 0 0







ẍb

ÿb

φ̈b

φ̈l

φ̈a

λ




=




mld(sinφlφ̇
2
l + sinφaφ̇

2
a) + (Fk + Fd) sinφl

−mld(cosφlφ̇
2
l + cosφaφ̇

2
a) −mg − (Fk + Fd) cosφl

∑2
i=1

(
utors,i − ktors(φb − φli −∆φ) − btors(φ̇b − φ̇li)

)

−utors,1 −mlgd sinφl + ktors(φb − φl −∆φ) + btors(φ̇b − φ̇l)

−utors,2 −mlgd sinφa + ktors(φb − φa −∆φ) + btors(φ̇b − φ̇a)

−2 · cos−2 φlφ̇l(ẏb + yb tanφlφ̇l)




(6)

with spring and damper forces Fk and Fd

Fk = k (
yb

cosφl
− l0 − uSEA,1) (7)

Fd = b (
ẏb

cosφl
+ yb

tanφl

cosφl
φ̇l) . (8)

The solution of these equations must lie on the invariant described by the
velocity equation (5); this is guaranteed by including this equation in the
computations of the discrete phase (see below).
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Before addressing this discrete phase, we briefly state all phase switching
conditions:

• Phase change from contact phase to flight pase, i.e. liftoff, occurs when
the spring length in the leg is equal to the (modified) rest length

sliftoff = l0 + uSEA,1 −
yb

cosφl
= 0 (9)

and, at the same time, the trunk has a positive vertical speed

cliftoff = ẏb > 0 . (10)

• Touchdown, i.e. phase change from flight phase to the following contact
phase (arm contact) occurs when the height of the prospective contact
point is equal to zero

stouchdown = yb − l0 cosφa = 0 . (11)

The vertical speed of the contact point at touchdown must be negative:

ctouchdown = ẏb + l0 sinφaφ̇a < 0 . (12)

Discrete phases are used to describe sudden changes of the state variables due
to collisions etc.; in the model the time of such an event is assumed to be zero.
The lift-off phase transition is assumed to be smooth, so no discrete phase is
inserted at this point. However, touchdown is generally non-smooth. The ve-
locity of the contact point is instantaneously set to zero, and the discontinuity
propagates to all other parts of the system. A set of five algebraic equations
is used to determine the five unknown velocities after impact with the arm:

• non-sliding ground contact combined with spring-damper action:

ẋcontact = ẋb + l0 cosφaφ̇a + ẏb tanφa + ybφ̇a tan2 φa = 0 (13)

• conservation of angular momentum of trunk about hip:

Htrunk,hip = Θbφ̇b = const . (14)

• conservation of angular momentum of the leg (remaining in free swing
phase) about the hip

Hswingleg,hip = (Θl +mld
2)φ̇l = const .

• conservation of angular momentum of full robot about prospective contact
point

Hrobot,contact = Θbφ̇b −mb(yb − yc)ẋb +mb(xb − xc)ẏb

+Θlφ̇l −ml(yl − yc)ẋl +ml(xl − xc)ẏl

+Θlφ̇a −ml(ya − yc)ẋa +ml(xa − xc)ẏa = const . (15)
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with

xc = xb + l0 sinφa (16)
yc = yb − l0 cosφa . (17)

• conservation of translational momentum in direction of prospective stance
arm (considering spring-damper-force)

m(ẋb sinφa − ẏb cosφa) − Fkd = const . (18)

The model presented so far is identical (except for notational details) for all
robots of the same family, the running robot, the somersault robot and the
flip-flop robot.

However, using additional inequality constraints, it is possible to distin-
guish one type of motion from the other and impose the desired type. For
flip-flops these constraints are e.g.

• at foot contact, the foot is pointing down and forward while the arm is
pointing up and backwards

• leg and arm are always on different sides of the trunk which must be
assured by appropriate collision avoidance constraints

• leg and arm have a negative rate during the whole cycle (i.e. are continu-
ously rotating backwards)

Also the periodicity constraints (i.e. coupled equality constraints) applied to
the model are different for each type of motion. In order to obtain the desired
periodic flip-flop with symmetric leg and arm contact half-cycles, the following
modified periodicity constraints have to be imposed:

yb(0) = yb(T )
φb(0) = φb(T ) − π

φl(0) = φa(T ) − 2π
φa(0) = φl(T )
ẋb(0) = ẋb(T ) (19)
ẏb(0) = ẏb(T )
φ̇b(0) = φ̇b(T )
φ̇l(0) = φ̇a(T )
φ̇a(0) = φ̇l(T )

Additionally, the following inequality constraints need to be satisfied for any
type of motion:

• clearance of swing leg and arm (height of lowest point larger than zero)
• contact avoidance of all bodies.
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4 Numerical Stability Optimization Methods for Step 3

We address the task of step 3 to determine open-loop stable solutions by
means of numerical optimization. A problem like this can not be solved by
standard optimization or optimal control methods due to

• the complexity of the robot gait models described above, namely the non-
smoothness in the dynamics (i.e. the hybrid system property)

• the difficulties produced by the choice of the optimization criterion stabil-
ity (which is another source of non-smoothness of an even more compli-
cated type, see below).

In our previous research we therefore have developed numerical methods for
the optimization of open-loop stability of general hybrid periodic systems. The
method described here depends on a two-level approach splitting the problem
into periodic gait generation and stabilization of the periodic system (for
details see [14, 15]). This approach has already been applied to many types
of problems and robot examples and has always delivered stable solutions
[14, 17, 16].

Figure 5 gives an overview of the two-level procedure. The tasks to be
performed in each level will be presented in the next two paragraphs.

4.1 Solution of Periodic Optimal Control Problem

The task of the lower level – or inner optimization loop is to find actuator pat-
terns, initial values and cycle time leading to a periodic trajectory while the
set of parameters is fixed by the outer loop for each inner loop computation.
The choice of those variables is governed by energy consumption considera-
tions (in terms of actuator inputs u). We also have imposed a lower bound on

Stability optimization                   

  
    modify model parameters 
    (mass, inertia, geometry ...)

Outer optimization loop

Inner optimization loop

min  φstab

Solution of periodic 
optimal control problem

for given parameters

modify initial values, 
actuator inputs, cycle time

minimize energy

Fig. 5. Sketch of two-level stability optimization procedure



264 K. Mombaur

the trunk forward speed at all points, and bounds on the leg inclination an-
gle at touchdown and liftoff instants. Together with the equations of motion,
the periodicity constraints and phase switching conditions, box constraints on
all variables etc., this leads to a multi-phase optimal control problem of the
following form:

min
x,u,T

T∫

0

||u||22dt (20)

s. t. ẋ(t) = fj(t, x(t), u(t), p) or DAE (21)
x(τ+

j ) = h(x(τ−j )) (22)
gj(t, x(t), u(t), p) ≥ 0 (23)

for t ∈ [τj−1, τj ] ,
j = 1, . . . , nph, τ0 = 0, τnph

= T

req(x(0), .., x(T ), p) = 0 (24)
rineq(x(0), .., x(T ), p) ≥ 0 . (25)

We solve this problem using a variant of the optimal control code MUSCOD
(Bock & Plitt [3], Leineweber [10]) suited for periodic gait problems. It is
based on

• a direct method for the solution of the optimal control problem (also
termed a “first discretize then optimize method”:
instead of using arbitrary (i.e. infinite dimensional) control functions u(t),
we restrict the controls to a discretized space described by a finite set of
parameters. For numerical efficiency, we use functions with local support,
in this case piecewise constant functions on a grid with m intervals.

• a multiple shooting state parameterization:
the basic idea of this technique is to split the long integration interval
[0, T ] into many smaller ones and to introduce the values of the state vari-
ables x at all those grid points as new variables sij (compare Fig. 6). The
original boundary value problem is thus transformed into a set of initial
value problems with corresponding continuity conditions between the in-
tegration intervals. For numerical reasons the multiple shooting grid is
chosen identical to the control grid described above. The multiple shoot-
ing approach is very favorable for a number of reasons. The phase order
and switching structure, which is generally known for walking problems,
can be easily prescribed in this context. The rough knowledge that one
usually has about the trajectory in the case of walking and running can
be exploited in the generation of starting data for the multiple shooting
points. Since the integration intervals are much shorter than in the origi-
nal problem, the chances for finding a solution of the initial value problem
obtaining sufficiently accurate derivatives increase significantly, even if all
values are still far from the final solution.
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Fig. 6. Multiple Shooting state parameterization

Using these discretization techniques, the original infinite dimensional optimal
control problem is transformed into a finite dimensional nonlinear program-
ming problem which is of large dimension but very structured and can there-
fore be solved efficiently by a tailored SQP algorithm exploiting the structure
of the problem (also compare Leineweber et al. [10] [11]).

The treatment of the dynamical model equations is not part of the dis-
cretized optimal control problem; this task must however be handled in paral-
lel in order to provide the required information for the evaluation of objective
functions, continuity constraints and the derivatives thereof. For this task, fast
and reliable integrators are used that also include a computation of sensitiv-
ities based on the techniques of internal numerical differentiation (for details
see Bock [2]).

4.2 Stability Optimization of Periodic Solution

In the outer loop of the optimization procedure the open-loop stability of
the periodic optimal problem solution is optimized by adjusting the model
parameters. Stability is defined in terms of the spectral radius of the Jacobian
C of the Poincaré map – also termed the monodromy matrix – associated with
the periodic solution (see e.g. [22]). If the spectral radius is smaller than one,
the solution is asymptotically stable, and if it is larger than one, the solution
is unstable. We have proven that this criterion based on linear theory and
typically applied to simple smooth systems can also be used to demonstrate
the stability of solutions of a nonlinear multiphase system with discontinuities
(Mombaur et al. [15]).

The computation of the monodromy matrix corresponding to a periodic
solution of the hybrid system can be performed efficiently by reusing sensitiv-
ity information computed during the optimal control problem solution. The
following steps are required:
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a) For continuous model phases, a simple chain rule multiplication of the
sensitivity matrices on the individual multiple shooting intervals must be
performed:

Cq,v(t0, tm) = Cq,v(tm−1, tm) · ... ·Cq,v(t1, t2) ·Cq,v(t0, t1) . (26)

b) At the points of discontinuity ts – like the touch-down or lift-off of the robot
– an “update” of the sensitivity information has to be performed. This
update term has to take into account that these discontinuity points are not
fixed in time, but implicitly depend on the states and parameters and will
therefore experience a time shift under the influence of a perturbation of
these variables. It is computed according to the following formula (compare
Bock [2], von Schwerin et al. [23]):

Uq,v = (∆f − Jt − Jq,vfleft(ts)) · 1
ṡ
(sq, sv)T + I + Jq,v . (27)

f , q, and v are defined as in Sect. 2, and s is the relevant switching function
with partial derivatives sq and sv and total derivative with respect to time
ṡ. Subscripts left and right always denote quantities before and after the
switching point, respectively. I is the identity matrix. J is the state variable
jump function with the partial derivatives Jt and Jq,v. ∆f is the right hand
side change. The full monodromy matrix including the update becomes

Cx := Cq,v(t0, tm) = Cq,v(ts, tm)Uq,vCq,v(t0, ts) (28)

c) If the models include non-periodic variables, a subsequent reduction to
the periodic subspace is necessary to compute the matrix to be used in
optimization.

The eigenvalues of this matrix which is quadratic and nonsymmetric can be
computed using a standard QR algorithm as available in Lapack (Anderson
et al. [1]); these eigenvalues may be real or complex.

We use the spectral radius as objective function of our optimization

min
p

|λ(C(p))|max, (29)

with the intention to decrease it below one.
This is a difficult optimization criterion for different reasons:

• The maximum eigenvalue function of the non-symmetric matrix C is non-
differentiable and possibly even non-Lipschitz at points where multiple
eigenvalues coalesce.

• The determination of the matrix C involves the computation of first order
sensitivities of the discontinuous trajectories (see above).

• The function is non-convex and typically has several local minima.
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Any gradient-based optimization method would thus require second order
derivatives of the trajectory which are extremely hard to compute, especially
due to the discontinuities in the dynamics. For all reasons mentioned, a di-
rect search method has proven to be a very good choice for the solution of
this outer loop optimization problem. Direct search methods are optimization
methods that solely use function information and neither compute nor ex-
plicitly approximate derivatives. We have implemented a modification of the
Nelder-Mead algorithm [18] which is based on a polytope with n+ 1 vertices
for optimization in n-dimensional space. According to the function informa-
tion collected at its vertices the polytope expands in directions promising
descent and contracts in bad directions. In contrast to the original method,
we allow for multiple expansions in a promising direction, we use a differ-
ent direction of contraction, and we only apply full polytope shrinking after
multiple one-dimensional contractions. In addition, we consider the different
nature of optimization variables by appropriate scaling of the initial polytope,
we use a modified termination criterion, and we rely on a restart procedure as
globalization strategy. In contrast to the original Nelder-Mead method, our
algorithm can directly handle box constraints on the optimization variables
not requiring a penalty function. Although there is no theoretical convergence
proof for this direct search method in the case of non-smooth systems, it has
delivered excellent results with spectral radii below one in all the computa-
tional examples that we have applied it to so far.

5 Results of Step 3: Open-Loop Stable Repetitive
Flip-Flops

Applying these stability optimization methods to the model of the periodic
flip-flop established in step 2, leads to the open-loop stable motion visualized
in Fig. 7. It is characterized by a maximum eigenvalue of magnitude 0.807.

The robot is characterized by the following model parameters: mb = 2.0,
Θb = 1.0, ml = 0.848, Θl = 0.0174, d = 0.24, l0 = 0.5, ktors = 10.07,
∆φ = 0.969, btors = 7.41, k = 701.1, and b = 23.16 (all in ISO units). Note
that all parameter values are given for the substitute model; going back to
the original model with two legs and two arms requires cutting in half ml, Θl,
and all spring and damper constants.

Figures 8 and 9 show the state variable histories and actuator inputs for
this open-loop stable solution. The initial values of the trajectory are xb(0) =
0.0, yb(0) = 0.439, φb(0) = 0.2, φl(0) = 0.5, φa(0) = 4.273, ẋb(0) = 5.745,
ẏb(0) = −1.549, φ̇b(0) = −9.659, φ̇l(0) = −8.598, φ̇a(0) = −8.804.

The cycle time is T = 0.3 s with phase times Tflight = 0.15 s and Tcontact =
0.15 s (implicating that both phase times reach their lower limits as specified).

The direction associated with the non-periodic variable xb is eliminated
from the monodromy matrix, such that the matrix considered for stability
computations has dimension nine. The periodic mapping described by this
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Fig. 7. Open-loop stable flip-flops produced by optimization

matrix also includes the shift of arm and leg and of trunk orientation expressed
in the modified periodicity constraints (19). The computations resulted in the
nine eigenvalues, by magnitude:

|λ1| = 0.807
|λ2| = 0.389
|λ3| = 0.225
|λ4| = 0.797
|λ5| = 0.644
|λ6| = 0.665
|λ7| = 2 · 10−6

|λ8| = 0
|λ9| = 0
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Fig. 8. State variable trajectories of open-loop stable flip-flop solution

The two eigenvalues of zero come from the fact that the degrees of freedom
of the robot are reduced from five to four during the contact phase (i.e. from
ten to eight independent directions in state space). This also implies that
perturbations associated with this lost degree of freedom are naturally damped
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Fig. 9. Actuator inputs producing flip-flop motion in Fig. 8

out which is represented by a rank reduction by two of the monodromy matrix,
and thus by two zero eigenvalues. Another eigenvalue happens to be very small
for this particular solution, but it is not analytically or numerically zero in
the general case.

6 Fourth Step: Robustness Analysis of Solution

A maximum eigenvalue with a magnitude below one guarantees stability of
the solution against small perturbations in the initial value. But how small
is small? The absolute size of the maximum eigenvalue only gives some in-
formation about the speed of decay over time of the perturbations applied,
not about the absolute size of the perturbations that are possible before the
robot falls down. An analysis of the stability margins of a solution, i.e. of its
robustness, is also very important in order to asses the quality of a solution.
Stability of a solution is a prerequisite for robustness, but stability does not
necessarily imply robustness.

There is no straightforward way to numerically compute the robustness of
a solution including all nonlinear effects in terms of a single function, but we
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present two quick numerical tests that can help to evaluate the robustness of
a given solution.

6.1 Test 1: Simulation of Perturbed Solutions

We can determine stability margins numerically by applying one-dimensional
perturbations to the initial values of the trajectory and simulating the re-
sulting behavior of the system checking if it stumbles or if it returns to the
periodic motion. This test includes all nonlinear effects associated with the
system and the motion including:

• nonlinearities of the model equations
• closeness to constraints, especially to phase-switching constraints (pertur-

bations may cause new phase switching structures to appear)

As an example, we investigate here the effect of perturbations of the initial
vertical velocity ẏ(0). The boundary of the basin of attraction of the stable
solution is above +30% of the reference value. Figure 10 shows the recovery
process after a perturbations of +30%.

6.2 Test 2: Pseudospectra of Monodromy Matrix

Another completely different way of assessing the robustness of a solution
is to look at the pseudospectra of the computed monodromy matrix. The
pseudospectra can be defined in terms of the spectra of all nearby, i.e. per-
turbed matrices:

Λε(C) = {z ∈ C : z ∈ Λ(C + E)for some E with||E|| < ε} (30)

where Λ denotes the spectrum of a matrix. For more information on pseudospec-
tra, including other, equivalent definitions and useful tools, see the Pseudospec-
tra Gaitway by Embree and Trefethen [7]. Pseudospectra capture the fact that
nonsymmetric matrices, i.e. matrices without an orthogonal basis of eigenvec-
tors may exhibit transients or other types of effects which are different from
the asymptotic behavior predicted by the eigenvalues. The pseudospectrum is
used to define measures of robust stability and can help to qualitatively com-
pare different solutions. However, one has to keep in mind that this analysis
only includes information about the sensitivity of the spectral radius with
respect to matrix entries and not about the sensitivities of the matrix entries
with respect to the free optimization variables.

The pseudospectrum associated with the most stable solution of the flip-
flop robot is given in Fig. 11.
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Fig. 11. Pseudospectra of monodromy matrix corresponding to most stable flip-flop
solution computed with Eigtool [7]

7 Conclusions

We have presented an animated biped robot that is capable of performing
repetitive open-loop stable flip-flop motions. This adds a new type of mo-
tion to the range of periodic motions that are possible without any feedback.
Producing these simulations was only possible by means of special purpose nu-
merical stability optimization methods that also have been briefly described in
this paper. In addition, two numerical tests for the robustness of the solution
have been presented.
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Summary. This paper develops a class of bipedal running controllers based on
the hybrid zero dynamics (HZD) framework and discusses related experiments con-
ducted in September 2004 in Grenoble, France. In these experiments, RABBIT, a
five-link, four-actuator, planar bipedal robot, executed six consecutive running steps.
The observed gait was remarkably human-like, having long stride lengths (approx.
50 cm or 36% of body length), flight phases of significant duration (approx. 100 ms
or 25% of step duration), an upright posture, and an average forward rate of 0.6 m/s.
A video is available at [7, 17]. In the time allotted for experiments, stability of the
gait could not be validated. To put the results into context, background informa-
tion on hybrid robot modeling, control philosophy, and gait optimization techniques
accompany final experimental observations. An additional discussion about some
unmodeled dynamic and geometric effects that contributed to implementation diffi-
culties is given.

1 Introduction

Designed and built as a platform to explore legged locomotion, RABBIT, a
five-link, four-actuator, planar, bipedal robot [3, 2] (see Fig. 1(a)), has pro-
vided a means to test conceptually new approaches to underactuated, active,
dynamic walking and running. Since March 2003, RABBIT has been used to
experimentally verify a mathematical framework for the systematic design,
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(a) RABBIT

q1

q2

q3

q4

q5

(i) (ii) (iii)

xcm

ycm

y1

x1

y2

x2θs(q)

(b) Phases of running and coordinate conventions.

Fig. 1. RABBIT and the different phases of running with coordinate conventions
labeled. In (b), the robot is shown (i) at the end of the stance phase; (ii) during flight;
and (iii) at the beginning of the stance phase just after landing. To avoid clutter,
the coordinate conventions have been spread out over the stance and flight phases.
Angles are positive in the counter clockwise direction. The stance leg is indicated in
bold

analysis, and optimization of controllers that induce stable walking gaits in
N -link planar bipedal robots with one degree of underactuation [8, 20]. The
next challenge for RABBIT is to achieve stable running.

In previous experiments, walking controllers for RABBIT acted by enforc-
ing virtual constraints, which are holonomic constraints used to coordinate link
movements throughout a gait. The stability of such walking motions were an-
alyzed on the basis of the hybrid zero dynamics (HZD) of walking, with the
conclusions of theory supported by experimental results [18]. Recent work in
[5] extends the method of virtual constraints and the notion of an HZD to
encompass the analysis of running in robots such as RABBIT. The developed
control strategy is hybrid with both continuous and event-based actions and
leads to the deliberate creation of an HZD of running and an accompanying
stability test.

This paper summarizes a first attempt to use RABBIT to experimentally
validate the theory of stable running presented in [5]. To facilitate implemen-
tation, the controller hypotheses of [5] are slightly relaxed, leading to con-
trollers that are easier to design but which still lend the closed-loop system to
a reduced-dimensionality stability test. Both discrete and continuous actions
of the modified hybrid control law are discussed in detail. To put the re-
sults into context, background information on hybrid robot modeling, control
philosophy, and gait optimization techniques accompany final experimental
observations. An additional discussion about some unmodeled dynamic and
geometric effects that contributed to implementation difficulties is given.
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1.1 Related Work on Running Machines

Nearly twenty years ago, Raibert developed a series of 2D and 3D running ma-
chines that are more commonly called hoppers [16]. These hoppers employed
a three part controller regulating hopping height, foot touchdown angle, and
body attitude correction. The successful use of such a controller is tied to the
morphology of the hopper: a massive body with significant inertia at the end
of an actuated, compliant, prismatic leg.

Recently, there have been a number of successful demonstrations of run-
ning in robots with a different morphology: bipeds with revolute knees. A
variety of control approaches were used. In late 2003, both Iguana Robot-
ics and Sony announced (separate) experimental demonstrations of running
in robots with revolute knees. Iguana Robotics’ controller was based on cen-
tral pattern generators (CPGs) and Sony’s was based on the zero moment
point (ZMP). In early 2004, running was announced for HRP-2LR [13] using
a controller based on a technique of resolved momentum. In December 2004,
Honda’s robot, ASIMO, achieved running at 3 km/h (0.8 m/s) with a 50 ms
flight phase using a controller based on posture control. A year later, ASIMO
ran at a new top speed of 6 km/h.

1.2 Outline

The remainder of the paper is a self-contained description of the theoretical
development and hardware modifications leading up to one example of an
experiment in which RABBIT took six consecutive running steps.5 Echoing
[5, Sects. III and IV], Sect. 2 develops an open-loop model for RABBIT.6

Section 3 discusses a modification of the control law given in [5] that is based
on relaxed hypotheses. Philosophy and motivation of the modified control law
are given in Sect. 3.1 with a detailed development of the hybrid controller in
Sects. 3.2 to 3.6. The resulting closed-loop model of RABBIT and its stability
properties are discussed in Sects. 3.7 and 3.8. Beyond this, Sect. 4 outlines a
method for the design of stable gaits using constrained nonlinear optimiza-
tion and includes a numerical example. Section 5 presents results from the
first experimental implementation of running on RABBIT and a discussion
outlining a number of possible reasons why stable running was not observed.
Conclusions are drawn in Sect. 6.

5 In a number of experiments, RABBIT achieved five or six running steps before
tracking errors exceeded software bounds. One example is examined in detail.

6 The content of Sect. 2 is based entirely on [5, Sects. III and IV] and is included
for completeness.
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2 Modeling

2.1 Assumptions and Terminology

RABBIT is modeled as a planar robot with five rigid massive links connected
by (four) actuated, frictionless, revolute joints. The model is subdivided into
two legs with identical physical properties, and a torso. The legs each consist
of two links, a thigh and a shank, and are connected to each other and the
single-link torso at the hips. Let qb := (q1, q2, q3, q4)′ be the vector of actuated
body coordinates, q5 be the unactuated coordinate of the robot’s absolute
orientation, and xcm and ycm be the cartesian coordinates that give the hori-
zontal and vertical positions of the robot’s center of mass. See Fig. 1(b) for a
depiction of the robot’s morphology and coordinate convention.

The robot is said to be in flight phase when neither leg is in contact with
the ground, and in stance phase when one leg is in stationary contact with
the ground. During stance, the leg contacting the ground is called the stance
leg and the other is called the swing leg. The transition from stance to flight
is called takeoff and the transition from flight to stance is called landing. In
this context, (steady-state) running is defined as a sequence of alternating
stance and flight phases that is symmetric with respect to the left and right
legs stride-to-stride.7

2.2 Dynamics of Flight and Stance

In the flight phase, the robot has 7 DOF with generalized coordinates
qf := (q′b, q5, xcm, ycm)′. The equations of motion for this phase may be de-
rived using the method of Lagrange and written in the following form:

Df(qb)q̈f + Cf(qb, q̇f)q̇f +Gf(qf) = Bfu , (1)

where Df is the inertia matrix, the matrix Cf contains Coriolis and centrifugal
terms, and Gf is the gravity vector. Introducing the state vector xf := (q′f , q̇

′
f)

′,
the model (1) is expressed as

ẋf = ff(xf) + gf(xf)u . (2)

The state space is taken as Xf = TQf = {xf = (q′f , q̇
′
f)

′ | qf ∈ Qf , q̇f ∈ IR7},
where the configuration space Qf is a simply-connected, open subset of IR7

corresponding to physically reasonable configurations of the robot.
In the stance phase, the stance leg end is fixed and, therefore, xcm and

ycm are no longer independent coordinates. Accordingly, the robot in stance

7 The chosen definition of running is fundamental to the following model and con-
troller development. Other authors have defined running based on the motion of
the center of mass or the reaction force profile on the stance leg, for example see
[14].
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phase has 5 DOF with generalized coordinates q := (q′b, q5)
′. Similar to the

flight phase, the equations of motion may be written as

Ds(qb)q̈ + Cs(qb, q̇)q̇ +Gs(q) = Bsu . (3)

Note that (3) may be obtained by subjecting (1) to the constraint that one
leg end is in contact with the ground. Choosing the state vector xs := (q′, q̇′)′,
the model (3) may be expressed as

ẋs = fs(xs) + gs(xs)u . (4)

The state space is taken as Xs = TQs = {xs = (q′, q̇′)′ | q ∈ Qs, q̇ ∈ IR5},
where the configuration space Qs is a simply-connected, open subset of IR5

corresponding to physically reasonable configurations of the robot.

2.3 Transitions

Landing, the transition from the flight phase to the stance phase, is modeled as
a rigid impact. During this instantaneous event impulsive reaction forces from
the ground bring the velocity of the tip of the advancing leg to zero without
causing it to rebound or slip. In addition, at the moment of landing, the robot’s
configuration remains unchanged, but joint velocities change instantaneously
[11]. The post-impact joint velocities8 are given by a function [5, Eq. (21)],

q̇+ = ∆̃(q−f , q̇
−
f ) . (5)

Since the gait is assumed to be symmetric from stride to stride (with re-
spect to the left and right legs) a state relabeling matrix R is used to swap leg
definitions (redefine the coordinates) at landing. The flight-to-stance transi-
tion operator, including state relabeling, is therefore defined as

x+
s = ∆s

f (x
−
f ) :=

[
Rq−

R∆̃(q−f , q̇
−
f )

]
. (6)

This transition operator is applied when the end of the advancing leg touches
the ground, that is, when y2 = 0 (see Fig. 1(b)). Define the function,
Hs

f : TQf → IR by Hs
f (xf) = y2, so that Hs

f (xf) = 0 characterizes the tran-
sition hypersurface surface Ss

f within TQf .
The transition from stance to flight is also modeled as an instantaneous

event, but one on which positions and velocities are unchanged,

8 The terms x−
f := (q−

′
f , q̇−

′
f )′ and x+

s := (q+′
, q̇+′

)′ refer to the system state

just before and just after the landing event. The terms x−
s := (q−

′
, q̇−

′
)′ and

x+
f := (q+′

f , q̇+′
f )′ refer to the system state just before and just after the takeoff

event. The addition of the superscript “ ∗” (such as x+∗
f ) indicates reference to

the value at steady-state, i.e., on the periodic orbit.
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x+
f = ∆f

s(x
−
s ) :=




[
q−

fcm(q−)

]

[
q̇−

∂
∂qfcm(q−) q̇−

]



. (7)

where fcm(q) := (xcm(q), ycm(q))′ gives the location of the center of mass. The
transition from stance into flight is treated as a control decision because the
flight phase is initiated (at will) by accelerating the stance leg off the ground.
The transition hypersurface, Sf

s , is a level set of a function H f
s (xs) : TQs → IR

that is chosen by the control designer.

2.4 A Hybrid, Open-Loop Model of Running

The stance and flight dynamic models may be represented compactly, along
with their transition models, as a discrete-event system with two charts (ter-
minology taken from [9]). This open-loop hybrid model is specified by charts
Σf and Σs where for (i, j) ∈ {(f, s), (s, f)}, Σi = {Xi,Fi,Sj

i , T
j

i },
1. Xi is a state manifold, which is 10 dimensional in stance and 14 dimensional

in flight;
2. Fi is a flow on the state manifold, a differential equation describing the

in-phase motion on Xi;
3. Sj

i is a switching hypersurface, a hypersurface of Xi corresponding to a
transition from one state manifold to another; and

4. T j
i is a transition map giving initial conditions for the next continuous

phase.

In this notation, the open-loop hybrid model is

Σf :





Xf = TQf

Ff : (ẋf) = ff(xf) + gf(xf)u

Ss
f = {xf ∈ TQf | Hs

f (xf) = 0}
T s

f : x+
s = ∆s

f (x
−
f )

(8a)

Σs :





Xs = TQs

Fs : (ẋs) = fs(xs) + gs(xs)u

Sf
s = {xs ∈ TQs | H f

s (xs) = 0}
T f

s : x+
f = ∆f

s(x
−
s ).

(8b)
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3 Control Methodology

3.1 Summary and Philosophy

The overall philosophy of HZD control is to use the freedom available in feed-
back design to achieve a parameterized family of closed-loop systems whose
stability analysis is analytically tractable. This allows the use of numerical
optimization to search among the family of closed-loop systems to find those
that yield a desired behavior, such as stable running at a pre-determined
speed with upper bounds on peak actuator power and the coefficient of static
friction between the leg end and the ground.

Parameterization is achieved through the use of virtual constraints in both
the stance and flight phases. Perfect enforcement of virtual constraints results
in low-dimensional surfaces that are invariant under the differential equa-
tions of the closed-loop model9 and are also invariant under the transition
maps.10 To achieve invariance at landing, a deadbeat action is incorporated
in the flight phase controller that steers the robot to land in a pre-determined
configuration, while respecting conservation of angular momentum about the
robot’s center of mass. This hybrid controller creates a one DOF HZD that
allows the stability of a running motion to be analyzed in closed form on the
basis of a one-dimensional Poincaré map.

In the first running experiment attempted on RABBIT, there was not suf-
ficient time11 to implement completely the controller of [5]. The controller
that was implemented used virtual constraints in both the stance and flight
phases, but the deadbeat action of the flight phase controller was not imple-
mented to regulate the final configuration of the robot at touchdown. Instead,
to account for the changing configuration of the robot at touchdown, the tran-
sition controller of [19] was adopted12. Key points of the related analysis are
highlighted in Sect. 3.8.

3.2 Preliminaries on Virtual Constraints

Since RABBIT has four independent actuators (two at the hips and two at
the knees), four virtual constraints may be imposed in both the stance and
9 “Invariant” in this sense means that if the differential equation is initialized on

the constraint surface, then its solution remains on the constraint surface until a
transition occurs.

10 “Invariant” in this sense means that if the solution is on the flight phase
(resp. stance phase) constraint surface at touchdown (resp. takeoff), then after
transition the solution will be contained in the stance phase (resp. flight phase)
constraint surface.

11 A total of two weeks were available to perform the experiments.
12 The transition controller of this paper takes into account the joint angles of the

robot at touchdown but not the joint angular velocities. As a result a true HZD
of running is not created, and the resulting analysis of Sect. 3.8 (based on [8]) is
modified accordingly.
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flight phases. To define them, consider a function pair {θ(q), hd(θ)}, where
θ : Q → IR is a scalar function of the configuration variables, and hd : IR→ IR4

is a function giving the desired configuration of the actuated joints as a func-
tion of θ. The virtual constraints are expressed as outputs of (8),

y = h(q) := qb − hd ◦ θ(q) , (9)

which are zeroed by the action of a state feedback controller. The design of
such a controller is a well-understood, standard problem of nonlinear control
[12].

For purposes of design, the virtual constraints are parameterized [5]. For
notational convenience, the stance phase and flight phase virtual constraints
will be parameterized separately by as and af , respectively. These parameter
sets, which lie in the parameter spaces As := IRns and Af := IRnf , may be
updated at takeoff and landing events but are otherwise constant. With this
notation, the virtual constraints for stance and flight are, respectively,13

y = qb − hd,s[as](θs(q)) (10a)
y = qb − hd,f [af ](θf [af ](qf)) . (10b)

3.3 Stance Phase Control

The controller for the stance phase acts by updating the parameters as and
by enforcing the virtual constraints (10a). As a result of enforcing the vir-
tual constraints, in stance phase, the robot behaves as an unactuated 1 DOF
system whose properties may be tuned by choosing different constraint para-
meters. Apart from different boundary conditions on the virtual constraints,
this control is identical to the walking controllers developed in [18, 20]. The
stance phase parameter vector, as, may be expressed as

as := (a′s,0, a
′
s,1, . . . , a

′
s,ms−1, a

′
s,ms

, θ−s , θ
+
s )′ , (11)

where ms ≥ 3, as,i ∈ IR4 for i ∈ {0, 1, . . . ,ms − 1,ms}, and θ−s , θ
+
s ∈ IR. Note

that ns = 4 (ms + 1) + 2. The terms θ−s and θ+s are the values of the function
θs(q) evaluated at the end and the beginning of the stance phase. In [18, 20],
hd is expressed in terms of Bézier polynomials. Here, a slightly different class
of polynomials14 is used that satisfy the following:

hd,s[as](θ+s ) = as,0
d

dθs
hd,s[as](θ−s ) = as,ms−1

d
dθs
hd,s[as](θ+s ) = as,1 hd,s[as](θ−s ) = as,ms .

(12)

13 Terms that are constant during the continuous phases of motion, and potentially
updated at phase transitions, will be considered parameters and enclosed in square
brackets.

14 Any class of smooth functions satisfying these properties may be used to define
virtual constraints.
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The stance phase virtual constraints are imposed on the dynamics by using a
control us : Xs×As → IR4 that drives (10a) to zero in finite time. The specific
assumptions are as in [8, 20].

3.4 Flight Phase Control

The development of the flight phase controller is similar to that of the stance
phase controller. The key difference is the choice of θf in (10b) to be a function
of the position of the center of mass. The flight phase parameter vector, af , is
defined as

af := (a′f,0, a
′
f,1, . . . , a

′
f,mf−1, a

′
f,mf

, x+
cm,f , ẋ

+
cm,f , Tf)′ , (13)

wheremf ≥ 3, af,i ∈ IR4 for i ∈ {0, 1, . . . ,mf−1,mf}, and x+
cm,f , ẋ

+
cm,f , Tf ∈ IR.

Note that nf = 4 (mf +1)+3. The terms x+
cm,f , ẋ

+
cm,f , and Tf are, respectively,

the horizontal position of the center of mass at the beginning of the flight
phase, the horizontal velocity of the center of mass at the beginning of the
flight phase, and the estimated15 duration of the flight phase. The flight phase
virtual constraints (10b) are given by

θf [af ](qf) :=
1
Tf

(
xcm − x+

cm,f

ẋ+
cm,f

)
, (14)

and hd,f [af ], which, as in the stance phase, is a smooth, vector-valued function
that satisfies

hd,f [af ](0) = af,0
d

dθf
hd,f [af ](1) = af,mf−1

d
dθf
hd,f [af ](0) = af,1 hd,f [af ](1) = af,mf .

(15)

For a given stride, let tf denote the elapsed time within the flight phase.
By conservation of linear momentum, ẋ+

cm,f is constant during flight, which
implies tf = (xcm − x+

cm,f)/ẋ
+
cm,f . As a result, θf = tf/Tf is a valid substitute

for (14), and for this reason, the given flight phase virtual constraints are
said to be time scaled. Flight phase virtual constraints are enforced using any
smooth state feedback controller uf : Xf ×Af → IR4 that drives (10b) to zero
exponentially quickly.

Note that finite-time convergence is not used in the flight phase. A finite-
time controller is used in the stance phase to render the stance phase con-
straint surface finite-time attractive so that the analysis of running will be
similar to that of walking [8]. For further discussion of this point, refer to
Sect. 3.8.
15 Calculation of Tf requires the height of the center of mass at landing, y−

cm,f , to
be known a priori, which is only possible if the virtual constraints are exactly
enforced throughout the flight phase.
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3.5 Transition Control: Landing

In the event that landing occurs with the state of the robot not satisfy-
ing the virtual constraints, the control parameters of the subsequent stance
phase, as, are updated to ensure that the configuration of the robot satisfies
qb − hd,s[as](θ+s ) = 0. The parameter updates are governed by the differen-
tiable function ws

f : Ss
f → As, such that for as = ws

f (x
−
f ),

as,0 = q+b
as,1 = a∗s,1

...
as,ms−1 = a∗s,ms−1

as,ms = a∗s,ms
.

θ+s = θs(q+)

θ−s = θ−∗
s

(16)

In the above, q+ is calculated using ∆s
f (x

−
f ), and the terms θ−∗

s and a∗s,i ∈ IR4,
i ∈ {1, . . . ,ms − 1,ms} are constant parameters chosen during design.

If the stance phase finite-time controller can satisfy the virtual constraints
(10a) before the liftoff event occurs, and the parameter updates obey (16),
then the stance phase will terminate with qb − hd,s[as](θ−s ) = 0, or equiva-
lently, with q− = q−∗.

3.6 Transition Control: Takeoff

At takeoff, the parameters of the flight phase virtual constraints, af , are up-
dated so that the duration of the planned motion of the robot is equal to
the estimated flight time. Parameter updates are governed by a continuously
differentiable function wf

s : Sf
s → Af , such that for af = wf

s(x
−
s ),

af,0 = a∗f,0
af,1 = a∗f,1

...
af,mf−1 = a∗f,mf−1

af,mf = a∗f,mf

x+
cm,f = (fcm(q−))1

ẋ+
cm,f =

(
∂fcm
∂q

(q−) q̇−
)

1

Tf =
ẏ+
cm,f

g
+

√
(ẏ+

cm,f)2 − 2g(y−∗
cm,f − y+

cm,f)

g
.

(17)

where g is the magnitude of the acceleration of gravity and y−∗
cm,f is the height

of the center of mass at the end of the flight phase, on the limit cycle. The
terms a∗f,i ∈ IR4, i ∈ {0, 1, . . . ,mf − 1,mf} are parameters chosen during de-
sign. Initiation of the takeoff event is a control decision, designated to occur
when θs(q) = θ−s . In the closed-loop model the switching hypersurface is
Sf

s = {(xs, as) ∈ Xs ×As | H f
s (xs, as) = 0} where H f

s (xs, as) := θs(q) − θ−s .
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3.7 Resulting Closed-Loop Model of Running

To form the closed-loop model of running, the state space of the open-loop
model, (8), is enlarged to include the parameters of the flight and stance
phases. Define the augmented state spaces X̄f := TQf×Af and X̄s := TQs×As

with elements given by x̄f := (q′f , q̇
′
f , a

′
f)

′ and x̄s := (q′, q̇′, a′s)
′. The closed-loop

dynamics may then be written as

f̄f(x̄f) :=

[
ff(xf) + gf(xf)uf(xf , af)

0nf×1

]
(18a)

f̄s(x̄s) :=

[
fs(xs) + gs(xs)us(xs, as)

0ns×1

]
. (18b)

The zero vectors reflect that the virtual constraint parameters do not change
during the continuous phases of running. The impact maps, in which the
parameters are updated, are modified to include the parameter update laws,
ws

f and wf
s:

∆̄s
f (x̄

−
f ) :=

[
∆s

f (x
−
f )

ws
f (x

−
f )

]
(19a)

∆̄f
s(x̄

−
s ) :=

[
∆f

s(x
−
s )

wf
s(x

−
s )

]
. (19b)

The closed-loop hybrid model is then

Σcl,f :





X̄f = TQf ×Af

F̄f : ( ˙̄xf) = f̄f(x̄f)

S̄s
f = {(xf , af) ∈ X̄f | Hs

f (xf) = 0}
T̄ s

f : x̄+
s = ∆̄s

f (x̄
−
f )

(20a)

Σcl,s :





X̄s = TQs ×As

F̄s : ( ˙̄xs) = f̄s(x̄s)

S̄f
s = {(xs, as) ∈ X̄s | H f

s (xs, as) = 0}
T̄ f

s : x̄+
f = ∆̄f

s(x̄
−
s ).

(20b)

3.8 Existence and Stability of Periodic Orbits

The Poincaré return map is a well-known tool for determining the existence of
periodic orbits and their stability properties (see Fig. 2). For its use in hybrid
systems, see for example [6, 8, 10, 15]. Its application to periodic orbits of
(20) can be carried out using the results in [8] and a construction presented in
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x∗

P (x)

x

S φ(t, x∗)

φ(t, x)

(a) Poincaré return map for
ODE systems

∆(x−)

x−

S∆(S)

x+

φ(t, ∆(x−))

P (x−)

(b) Poincaré return map for systems
with impulse effects

Fig. 2. Illustration (a) shows the geometric interpretation of a Poincaré return map
P : S → S for an ordinary differential equation (non-hybrid) system as event-based
sampling of the solution near a periodic orbit. The Poincaré section, S, may be
any co-dimension one (hyper) C1-surface that is transversal to the periodic orbit.
Illustration (b) shows the geometric interpretation of a Poincaré return map for a
system with impulse effects. A periodic orbit exists when P (x−) = x−

[5, Thm. 1]. Since thorough development of these ideas would consume more
space than is available, the main ideas are only sketched.

The first step is to construct a system with impulse effects (that is, a
single-chart hybrid model) that has the same Poincaré map as (20). Following
[5, Eq. (62)], define

Σcl :

{
˙̄x(t) = f̄s(x̄(t)) x−(t) �∈ S̄

x̄+(t) = ∆̄(x̄−(t)) x̄−(t) ∈ S̄,
(21)

where S̄ := S̄f
s , ∆ := ∆̄s

f ◦Pf , and Pf is the flow of the closed-loop flight phase
model (see [5, Eq. (59)]). In words, this system consists of the differential
equation of the closed-loop stance phase model of (20) and a generalized
impact map ∆̄ that includes the transition map from stance to flight, the flight
phase dynamics, and the impact map from flight to stance. The generalized
impact map is the result of event-based sampling of the solution of (20) at
takeoff events.

Because the virtual constraints in the stance phase are achieved with a
continuous finite-time controller [1], the reduction technique of [8, Thm. 2] is
applicable. Because the parameter updates in the stance phase can be com-
puted in terms of the state of the robot at takeoff, the analysis of periodic
orbits can be reduced to the computation of a one-dimensional restricted
Poincaré map, ρ, having Sf

s as a Poincaré section.
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4 Design of Running Motions with Optimization

4.1 Optimization Parameters

To design a running motion, a numerical routine is used to search the para-
meter spaces As and Af for a set of parameters that results in a desirable gait
(periodic orbit of (20)). Common requirements on the gait are achieved by
incorporating constraints into the numerical search. Such constraints address
actuator limits, allowable joint space, and unilateral ground-contact forces.
The constraints also ensure steady-state running at a certain speed and overall
efficiency of the gait. For the experiments reported here, the gait was designed
using an optimization approach that combined the ideas of [4] and [20]; the
optimization was performed directly on the parameters of the virtual con-
straints in order to simultaneously determine a periodic running motion and
a controller that achieves it. This is in contrast with the approach of [5] where
virtual constraints are designed by regression against optimal, pre-computed,
periodic trajectories.

Virtual constraints are assumed to be identically satisfied on the periodic
orbit, which has two consequences: first, the integration of the closed-loop
system dynamics can be performed using the stance and flight phase zero dy-
namics (see [5] for details), resulting in short computation times; and second,
the virtual constraint parameters, as and af , are not independent. Once the
independent parameters have been identified, standard numerical optimiza-
tion routines may be used to search for desirable gaits. The implementation
of such a procedure is outlined in the following subsections.

4.2 Boundary Conditions of the Virtual Constraints

The transition maps of takeoff and landing can be used to identify re-
dundancies between the virtual constraint parameter vectors as and af .
Given the state corresponding to the end of the limit-cycle stance phase,
x−∗

s = (q−∗, q̇−∗), the state at the beginning of the subsequent flight phase
may be computed as x+∗

f = (q+∗
f , q̇+∗

f ) = ∆f
s(x

−∗
s ). For both x−∗

s and x+∗
f to

satisfy the virtual constraints of their respective phases, the following relations
must hold,

a∗s,ms−1 = q̇−∗
b,s /θ̇

−∗
s a∗f,0 = q+∗

b,f

a∗s,ms
= q−∗

b,s a∗f,1 = q̇+∗
b,f T

∗
f ,

(22)

which are derived by applying (12), (14), (15), and (17) to (10). These are the
boundary conditions associated with the liftoff event of the periodic orbit. The
state of the robot at the beginning of the stance phase, x+∗

s = (q+∗, q̇+∗), can
be related to the state at the end of the previous flight phase, x−∗

f = (q−∗
f , q̇−∗

f ),
by the landing map, x+∗

s = ∆s
f (x

−∗
f ), to yield the following additional design

constraints,
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Table 1. Independent and dependent terms used in optimization. The choice of
the independent terms is non-unique and depends on the specific optimization pro-
cedure. The parameters below correspond to the algorithm in Sect. 4.3, which is one
straightforward method to ensure the boundary conditions of the virtual constraints
are met

Terms of Optimization

Independent Dependent

x−∗
f ∈ IR14 θ+∗

s ∈ IR
a∗
s,2, . . . , a

∗
s,ms ∈ IR4 a∗

s,0, a∗
s,1 ∈ IR4

θ−∗
s ∈ IR x+∗

s ∈ IR10

a∗
f,2, . . . , a

∗
f,mf−2 ∈ IR4 a∗

f,0, a∗
f,1 ∈ IR4

a∗
f,mf−1, a∗

f,mf
∈ IR4

x+∗
cm,f , ẋ+∗

cm,f , T ∗
f ∈ IR

x−
f ∈ IR14

a∗s,0 = q+∗
b,s a∗f,mf−1 = q̇−∗

b,f T
∗
f

a∗s,1 = q̇+∗
b,s /θ̇

+∗
s a∗f,mf

= q−∗
b,f .

(23)

The update law presented here enforces fewer boundary conditions than
the update law of [5]. The extra boundary conditions associated with takeoff
are already satisfied by (22), but those of landing are not met by (23); they
are more difficult to satisfy due to conservation of angular momentum in the
flight phase. The main theoretical result of this paper is that invariance of
the flight and stance phase constraint surfaces over the landing event is not
a necessary condition for achieving provably stable running. As noted earlier,
relaxing this condition makes running motions significantly easier to design.

4.3 Optimization Algorithm Details

Trial gaits for the running experiments were generated using the constrained
nonlinear optimization routine fmincon of MATLAB’s Optimization Toolbox.
Three quantities are involved in optimization: J, a scalar cost function to be
minimized on the periodic orbit, EQ, a vector of equality constraints, and
INEQ, a vector of inequality constraints. The following is a description of
the optimization procedure that was implemented. The independent and de-
pendent terms16 of optimization are given in Table 1. Note that when the
optimizer terminates with the constraints satisfied, x+∗

s will be a point lo-
cated on a closed-loop periodic orbit and the virtual constraints will be given
by (11) and (13).

16 “Terms” is used to describe those variables used in optimization; these are differ-
ent from the parameters of the virtual constraints.
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Algorithm

1. Select x−∗
f = (q−∗

f , q̇−∗
f ), the state corresponding to the end of the flight

phase.
2. Using the flight-to-stance transition function, ∆s

f , calculate x+∗
s =

(q+∗, q̇+∗), the state corresponding to the beginning of the subsequent
stance phase.

3. Calculate θ+∗
s by (16) and a∗s,0, a

∗
s,1 by (23).

4. Select a∗s,2, . . . , a
∗
s,ms

, and θ−∗
s to complete the stance phase parameter

vector as.
5. Using parameters as and the initial condition x+∗

s , integrate the equations
of motion of stance and apply the stance-to-flight transition operator, ∆f

s,
to obtain x+∗

f = (q+∗
f , q̇+∗

f ).
6. Calculate a∗f,0, a

∗
f,1 by (22); a∗f,mf−1, a

∗
f,mf

by (23); and x+∗
cm,f , ẋ

+∗
cm,f , and

T ∗
f by (17).

7. Select a∗f,2, . . . , a
∗
f,mf−2 to complete the flight phase parameter vector af .

8. Using parameters af , and initial condition x+∗
f , integrate the equations of

motion of flight to obtain x−f .
9. Evaluate J, EQ, and INEQ.

10. Iterate Steps 1 to 8 until J is (approximately) minimized, each entry of
EQ is zero, and each entry of INEQ is less than zero.

4.4 An Example Running Motion

A sample running gait designed by the above algorithm is now presented.
A stick diagram of this motion is given in Fig. 3(a). The stability analysis
outlined in Sect. 3.8 was applied to the resulting running motion. Figure 3(b)
gives the restricted Poincaré map, which indicates that the motion is locally
exponentially stable. The gait was designed to minimize the integral of torque
squared per distance traveled, with the following constraints:

Equality Constraints, EQ

• error associated with finding a fixed point ||x−f − x−∗
f ||

• deviation from the desired running rate
• required frictional forces at the leg ends are zero just before takeoff and

just after landing (to prevent slipping at these transitions)

Inequality Constraints, INEQ

• magnitude of the required torque at each joint less than 100 Nm
• knee angles to lie in (0◦,−70◦) and hip angles to lie in (130◦, 250◦) (see

Fig. 1(b) for measurement conventions)
• minimum height of the swing foot during stance greater than 7 cm
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Fig. 3. Stick diagram and Poincaré map for the example running motion (rate
0.58 m/s). Poincaré map constructed by evaluating ζ := (σ−

s,1)
2/2 at the end of

successive stance phases, where σ−
s,1 is the angular momentum about the stance leg

end just before liftoff. The fixed point, ζ∗ = 303, is located at the intersection of
ρ and the identity map ζi = ζi+1, and corresponds to an equilibrium running rate
of 0.58 m/s. The slope of the graph at ζ∗ is dρ/dζ ≈ 0.67, indicating exponential
stability

• required coefficient of friction of the stance phase less than 0.7
• flight time greater than or equal to 25% of total gait duration
• landing foot impacts the ground at an angle of approach less than 45◦

from vertical
• joint angular velocities less than 5 rad/s

5 Experiment

5.1 Hardware Modifications to RABBIT

Prior to the experiment reported here, only walking experiments had been
performed with RABBIT. To prepare for the task of running, four hardware
modifications were made.

The first modification was the inclusion of prosthetic shock absorbers in the
shanks. It was speculated that with shock absorbers the landing would cause
less wear and tear on the harmonic drive gear reducers that form RABBIT’s
hip and knee joints. The inclusion of shock absorbers added approximately
5 cm to each shank.

The second modification was the installation of force sensitive resistors into
RABBIT’s point feet. These devices allowed for more accurate measurement
of the touchdown time than did the previously installed mechanical contact
switches. Since these sensors suffer from significant drift, their signals were
numerically differentiated to make easier the detection of impact events.
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The last two modifications were the bolting of aluminum u-channel stock
along each thigh and the widening of the hips. Both of these changes were
made to help prevent flexing of the legs in the frontal plane. Significant flexing
was witnessed during the first several experimental trials of running. This
problem was more pronounced in running than in walking because of the
greater impact forces associated with landing. On several occasions RABBIT
“tripped itself” during a stance phase of running when the swing leg passed by
the stance leg (the legs knocked against each other). This came about because
RABBIT was designed to have its legs close together to better approximate
a planar biped.

5.2 Result: Six Running Steps

After completing hardware modifications and successfully reproducing previ-
ous walking experiments, running experiments were conducted. A number of
experimental trials resulted in RABBIT taking several human-like17 running
steps. One such trial, which was an implementation of the example running
motion of Sect. 4.4, will be discussed here.

For this experiment, motion was initiated by an experimenter who pushed
the robot forward, into the basin of attraction of a walking controller that
induced walking with an average forward walking rate of 0.8 m/s. RABBIT
then achieved stable walking, followed by a transition to running in a single
step, followed by 6 running steps. After the sixth step, the experiment was
terminated by the control software when the tracking error limit of 0.3 radians
was exceeded for the stance knee angle. Examination of collected data suggests
that tracking error resulted from actuator saturation18. Data also show the
swing leg extremely close to the ground at the moment the experiment was
terminated, suggesting the swing leg may have, in fact, struck the ground
contributing additional tracking error.

A plot of estimated19 foot height is given in Fig. 4. Average stride duration
for the steps was 431 ms. Flight times, observed as those portions of Fig. 4
where neither leg is at zero height, lasted an average of 107 ms (25% of the
stride). Videos of the experiment and many additional data plots are available
at [7, 17].

17 A human-like gait is considered to be characterized by an upright posture, a torso
leaning slightly forward, and a long step length.

18 See [18] for a description of the PD controllers used to enforce the virtual con-
straints.

19 When RABBIT is in flight, there is no accurate way to determine hip height. A
sensor was mounted to record boom pitch angle, but due to flexing of the boom,
these data were inaccurate. During the stance phase this lack of sensing is not a
problem because the end of the stance leg is always at zero height.
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Fig. 4. Estimated height of the point feet with RABBIT’s left foot indicated in
bold. Flight phases occur when neither foot is at zero height

5.3 Discussion

Several problematic issues related to RABBIT’s hardware did not appear un-
til running was attempted. (For a discussion of general implementation issues
of walking including unmodeled effects of the boom, gear reducers, and an un-
even walking surface see [18].) Future running experiments–whether on RAB-
BIT or another, similar mechanism–should take into account the following
issues.

Boom Dynamics

The perturbing effects of the boom were found to be much more significant
during flight phases than during stance phases. When RABBIT is modeled as
a planar system, an analysis of the three-dimensional mechanics shows that
the contribution of the boom to the center of mass dynamics is significant.
Specifically, q5 is no longer, in general, a cyclic variable during flight. However,
if boom masses are appropriately distributed, the parabolic motion of the
center of mass, as modeled in a planar system, is recovered. Unfortunately,
this special mass distribution was impossible because RABBIT does not have
a counterweight system.

Walking Surface

The walking surface was also a source of problems. This surface–consisting
of rubber over elevated plywood supported on the edges by a wood frame–
was originally built to provide a uniform, level surface. Although the surface
appears uniform, walking experiments demonstrated otherwise. It was found
that the surface has “fast” and “slow” areas corresponding to varying floor
stiffness and coefficient of friction.
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Limited Joint Space

For safety, RABBIT’s joints have hard stops that limit its joint space, which,
for example, prevent the shank from contacting the thigh. Although the avail-
able joint space was sufficient for walking, it became a significantly limiting
factor in the design of running gaits. These hard stops prevented the swing
leg from being folded close to the hip, which is a natural and desirable motion
that minimizes the leg’s rotational inertia.

6 Conclusion

A novel approach to the control of running in planar bipeds and its first
experimental implementation on RABBIT have been presented. The control
law is hybrid, consisting of continuous actions in the stance and flight phases,
and discrete actions at the transitions between these phases. In the stance and
flight phases, the controller coordinates the relative motions of the robot’s
links by imposing virtual constraints at the actuated joints. At the transition
from stance to flight, the controller adjusts the virtual constraints for the
flight phase as a function of estimated flight duration to ensure that the former
swing leg is advanced properly to take up its role as the next stance leg. At the
transition from flight to stance, the controller updates the virtual constraints
of the stance phase to account for the orientation of the robot at landing. For
the nominal periodic running motion, the parameters of the virtual constraints
are determined by numerical optimization in order to meet actuator power
limits, friction bounds, joint limits, etc. For running experiments, RABBIT’s
mechanical and electrical systems were modified: shock absorbers were added
to the shanks; the ground contact sensors were improved; the stiffnesses of
legs in the frontal plane were increased; and the hips were widened.

The main theoretical result of this paper was the development of a running
controller that is based on the HZD methodology, but easier to design and
implement while still resulting in a reduced-dimensionality stability test. The
main experimental result of this paper was the physical realization of six con-
secutive running steps with a human-like gait and identification of hardware
difficulties of running with RABBIT that were not present in walking.
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Summary. We present velocity-based stability margins for fast bipedal walking
that are sufficient conditions for stability, allow comparison between different walk-
ing algorithms, are measurable and computable, and are meaningful. While not
completely necessary conditions, they are tighter necessary conditions than several
previously proposed stability margins. The stability margins we present take into
consideration a biped’s Center of Mass position and velocity, the reachable region
of its swing leg, the time required to swing its swing leg, and the amount of internal
angular momentum available for capturing balance. They predict the opportunity
for the biped to place its swing leg in such a way that it can continue walking
without falling down. We present methods for estimating these stability margins by
using simple models of walking such as an inverted pendulum model and the Linear
Inverted Pendulum model. We show that by considering the Center of Mass location
with respect to the Center of Pressure on the foot, these estimates are easily com-
putable. Finally, we show through simulation experiments on a 12 degree-of-freedom
distributed-mass lower-body biped that these estimates are useful for analyzing and
controlling bipedal walking.

1 Introduction

“How stable is your robot?” is a fundamental yet challenging question to
answer, particularly with fast moving legged robots, such as dynamically bal-
anced bipedal walkers. With many traditional control systems, questions of
stability and robustness can be answered by eigenvalues, phase margins, loop
gain margins, and other stability margins. However, legged robots are nonlin-
ear, under-actuated, combine continuous and discrete dynamics, and do not
necessarily have periodic motions. These features make applying traditional
stability margins difficult.

In this paper we define stability for a biped simply as whether or not the
biped will fall down. We focus on velocity-based stability since we believe
that regulating the velocity of the Center of Mass is the most challenging
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subtask for human-like bipedal walking. Regulating velocity is a challenging
subtask due to the extended period during a natural gait that the Center of
Mass velocity is underactuated (the actuators cannot produce an arbitrary
acceleration on the Center of Mass). For example, once the body has traveled
far enough away from the foot, the only course of action that can stabilize the
Center of Mass velocity is to take a step. Other requirements such as regulating
virtual leg length and body orientation, and swinging the swing leg, can be
met through traditional control system techniques since these subtasks are
fully actuated during the majority of the gait.

We argue that the most crucial thing for regulating velocity in bipedal
walking is the ability to place the foot of the swing leg in a proper location
that allows for maintaining or reducing velocity on subsequent steps. A suffi-
cient condition for being able to maintain or reduce velocity is the ability to
eventually come to a stop. Thus we define stability margins that estimate the
likelihood that a biped can “Capture” its kinetic energy and stop over a given
number of steps. We define a Capture Point as a point that can be stepped
to in order to stop. We propose the “N-Step Capture Stability Margin” which
gives an indication of the degree to which a biped can stop in N steps. For
most practical purposes if a walking biped cannot stop within several steps, it
is probably close enough to falling to consider it unstable. Hence being, say,
10-Step Capturable is a sufficient, and close to necessary, stability condition.

Exact computation of these stability margins is difficult since the dynam-
ics of bipedal walking is complex. However, we can compute these margins
for simplified walking models. These simplified walking models give useful ap-
proximations to the real values of the margins, which we demonstrate through
control experiments on a simulated 12 degree-of-freedom lower-body biped
with distributed mass. The robot can recover from being pushed by stepping
to a Capture Point computed from the simplified walking models. It can step
to desired foothold locations by guiding the Capture Point to the desired
stepping point and stepping once the Capture Point reaches it.

2 Stability Definition

In this paper, we define stability for a biped in terms of whether or not the
biped will fall down. However, the concept of falling down is difficult to pre-
cisely define. For example, sitting down on the floor and slipping down onto
the floor might result in the exact same trajectories and end state but one is
considered falling and the other is considered sitting, with the only difference
being intent.

For the purposes of this paper, to eliminate complications rising from such
concepts as intent, let us define a fall as follows.

Definition 1 (Fall). When a point on the biped, other than a point on the
feet of the biped, touches the ground.
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This definition allows for such things as holding a hand railing to not be
considered a fall, by pushing the burden onto a precise definition of the ground
and of the feet. However, in this paper, we only consider situations in which
the ground is everything that is not part of the biped and the feet are the two
commonly known appendages at the end of the legs.

Turning now to the question of whether the biped will fall, consider the de-
terministic closed-loop dynamics of the biped in the general form ẋ = f(x, t),
where x ∈ �N is the state vector. Define a subset F ⊂ �N which includes all
configurations of the robot for which some part of the robot other than the
feet is touching the ground. The basin of attraction of F , which we will call
the “Basin of Fall”, defines all of the states of the robot that eventually lead
to a fall:

Definition 2 (Basin of Fall). Subset of state space that leads to a fall. B ⊂
�N , x(t) ∈ B ⇒ ∃∆t ≥ 0 s.t. x(t+∆t) ∈ F

The complement of the Basin of Fall is the Viability Kernel of Wieber [32].
Whether or not the robot will fall down, and hence whether or not the robot
is stable, can now be precisely defined.

Definition 3 (Stable). A biped is stable if and only if the state of the robot
is not inside the Basin of Fall, B.

Note that for a real-world biped in a non-deterministic environment, the
Basin of Fall may be the entire state-space, as all bipeds will eventually fall
given enough time. Also, note that for a biped that has regions of chaotic gait,
the Basin of Fall may be Uncomputable as determining whether some states
are in the Basin of Fall may be Undecideable [26]. In addition, for the system
to be deterministic, the dynamics, f , and the state vector, x, must contain
full information about the environment such as the ground profile. Encoding
the entire environment for all time is prohibitive in general.

Therefore, to ensure computability, non-zero volume of stable states, and
feasible definition of the state and environment, one may wish to consider the
state of the biped to be stable if it does not lead to a fall after some reasonable
finite amount of time, τ , and define the Time-Limited Basin of Fall as follows:

Definition 4 (Time-Limited Basin of Fall). Subset of state space that
leads to a fall within a finite amount of time, τ . Bτ ⊂ �N , x(t) ∈ Bτ ⇒
∃∆t, 0 ≤ ∆t ≤ τ s.t. x(t+∆t) ∈ F

For human-like walking, approximately 1 minute is a reasonable horizon
to consider since it is highly unlikely that a biped would be in a state where a
fall is inevitable but the biped can stagger around before the fall for a whole
minute.

Computing the Basin of Fall, B, is conceptually simple, but computation-
ally expensive. Given an accurate closed-loop dynamic model and a discretized
state space, one can use dynamic programming to determine B. Let V (x) be
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the value function encoding the time until the biped falls. Initialize V to zero
for states that are falling states and infinity for all other states. Then use
the update rule V (xn) = min(V (xn), V (xn+1) +∆t) where state xn dynam-
ically leads to state xn+1 and ∆t is the time taken to transition from state
xn to xn+1. In the worst case N2 updates would have to occur, where N is
the number of discrete states. If the dynamics can be simulated backward in
time, then only N updates need be made if the states are visited recursively,
starting from falling states. In a companion paper [28], we will use similar
ideas to explore stochastic stability margins for legged locomotion.

A stability margin that logically follows from the previous discussion is
the distance to the Basin of Fall, called the Viability Margin by Wieber [32].

MV iability(x) =

{
minx′∈B (|x − x′|) if x /∈ B

−minx′ /∈B (|x − x′|) if x ∈ B
(1)

By definition the Viability Margin is both a necessary and sufficient in-
dicator of stability and thus would be a good stability margin for a biped.
However, it does have drawbacks. It does not take into consideration what
disturbances we would like the biped to be robust to, since distance in state
space does not necessarily correlate to real-world disturbances. It does not
take into consideration the dynamics of the system in moving from the cur-
rent state to the nearest boundary state, since Cartesian nearness does not
necessarily correlate with dynamic nearness. It assigns importance to each
degree of freedom based upon its units of measure. It is difficult to compute.
And finally, it does not give us much insight into why a biped is stable or
why it falls. Some of these problems could be mitigated by such things as
weighting the state variables based on importance, for each state computing
the magnitude of a given disturbance required to transition the biped into
a Basin of Fall state, etc. However, these additions would only add to the
computational complexity of computing this margin.

Additionally, perfect dynamic models are impossible to attain for real sys-
tems, and to compute the entire Basin of Fall during experimental trials would
require an infeasible number of trials, many of which could result in damage
to the biped.

Due to these limitations, instead of attempting to compute the entire Basin
of Fall, in this paper we endeavor to develop heuristic stability margins that
approximate whether a state is in the Basin of Fall. These margins, such as the
N-Step Capture Margin, give an indication of the ability of the biped to come
to a stop within a given number of steps. Previous stability margins, such as
the static stability margin, are similar heuristic approximations, but are typi-
cally too conservative. In the next section we discuss desirable characteristics
for heuristic bipedal walking stability margins.
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3 Desirable Characteristics of Stability Margins

An ideal stability margin for a biped would act as a fortune teller. It would
tell us when the biped is going to fall down next, what the cause will be, and
how it can be prevented. If the biped is not going to fall down, the margin
would indicate the closest the biped will be to falling down in the next step or
so, at what point during the gait this occurs, and how much extra disturbance
it could handle.

While such omniscience is infeasible for anything but the simplest systems,
some reasonable characteristics we may desire for stability margins include:

• Necessary. If the stability margin is outside an acceptable threshold of
values, the robot will fall down.

• Sufficient. If the stability margin is inside the acceptable threshold of val-
ues, the robot will not fall down.

• Comparable. Two control algorithms should be comparable for stability
based on their relative stability margins.

• Measurable and Computable. One should be able to measure the relevant
state variables and estimate the stability margin on-line in order to use it
for control purposes.

• Meaningful. The stability margin should answer relevant questions as to
why the robot fell. It should correlate with the degree of robustness to
disturbances, such as noise, terrain irregularities, and external forces or
impulses.

The Viability Margin is necessary, sufficient, and allows comparisons. How-
ever, its main drawback is that it is very difficult to compute. Various heuristic
stability margins, which are much easier to compute, have been used in an-
alyzing and controlling bipeds. In the next section we review some of the
margins that are commonly used for bipedal walking and discuss how well
they achieve these desirable characteristics. In the subsequent sections we in-
troduce some heuristic stability margins which we believe more accurately
measure the stability of a biped as defined by Definition 3.

4 Review of Stability Margins for Bipedal Walking

While there have been many proposed ways to define stability for a bipedal
walking robot, we argue that many of these do not adequately address the de-
sired characteristics described above. Here we review eigenvalues of Poincare
return maps [14], the Zero Moment Point (ZMP) criterion [30], the foot rota-
tion indicator (FRI) [7], and change of angular momentum [1, 20] as potential
stability margins in light of the desired characteristics.
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4.1 Eigenvalues of Poincare Return Maps

For a periodic system, trajectories in state space will cycle and return each
cycle to a point in a slice of state space. Deviations from a periodic limit cycle
will return to the cycle, and for small deviations, typically follow a linear
relation,

Xn+1 = KXn , (2)

where X is the vector of deviations from the fixed point that the limit cycle
passes through and K is a linear return matrix. One of the eigenvalues of
K, corresponding to the evolution of the orbit, will be 1.0. If the magnitude
of the remaining eigenvalues of K are all less than one, then the limit cycle
is stable. Thus, the magnitude of the largest eigenvalue of the return map,
disregarding the eigenvalue corresponding to the orbit, is a suitable stability
margin for a periodic system. Measuring the eigenvalues of Poincare return
maps is commonly used for analyzing Passive Dynamic Walking robots [16,
8, 27, 2, 4, 29] and was used by Miura and Shimoyama [17] to analyze their
Biper robots.

However, using eigenvalues of Poincare return maps assumes periodicity
and is valid only for small deviations from a limit cycle. While most bipedal
systems, including humans, indeed seem to be periodic, there is nothing about
the bipedal walking problem that requires periodicity. In particular, a biped’s
motion is not periodic when walking over discontinuous rough terrain, or when
abruptly changing speed or direction of travel. In addition, large disruptions
from a limit cycle, such as when being pushed, cannot be analyzed using this
technique as it assumes small deviations. Therefore, while eigenvalue magni-
tudes of Poincare return maps may be sufficient for analyzing periodic bipedal
walking, they are not sufficient for analyzing nonperiodic motions, and are not
necessary for analyzing bipedal walking in general.

4.2 Zero Moment Point (ZMP) and Foot Rotation Indicator (FRI)

The Zero Moment Point (ZMP) is the location on the ground where the net
moment generated from the ground reaction forces has zero moment about
two axes that lie in the plane of the ground [30]. The ZMP when used in
control algorithm synthesis for bipedal walking robots typically is computed
analytically based upon desired trajectories of the robot’s joints. As long as
the ZMP lies strictly inside the support polygon of the foot, then these desired
trajectories are dynamically feasible. If the ZMP lies on the edge of the support
polygon, then the trajectories may not be dynamically feasible.

During playback of the desired joint trajectories, the actual ZMP is mea-
sured from force sensors in the foot or by observing accelerations of all the
joints [10]. Then deviations between the precomputed and actual ZMP are
typically used to modify the joint trajectories [34, 9]. The ZMP is equivalent
to the Center of Pressure (CoP) but is commonly used to mean the analyti-
cally computed point based on the state and acceleration of the robot whereas
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the CoP is commonly used to mean the point measured from ground reaction
forces.

The Foot Rotation Indicator (FRI) point [7] is the point on the ground
where the net ground reaction force would have to act to keep the foot station-
ary given the state of the biped and the accelerations of its joints. If the foot
is stationary, then the FRI, the ZMP, and the CoP are all the same point. If
the foot is experiencing rotational acceleration, then the ZMP and CoP are on
an edge of the support polygon, and the FRI is outside the support polygon.
Therefore the FRI is a more general form of the ZMP and provides both a
positive and negative margin when used for control and analysis purposes.

The ZMP stability margin is the distance from the ZMP to the nearest
edge of the convex hull of the support polygon. In its typical use it measures
how much room for error there is in achieving the desired trajectories of the
robot. If the ZMP reaches the edge of the support polygon, then the desired
Center of Mass trajectory may no longer be dynamically feasible.

Maintaining the ZMP inside the support polygon is not a necessary condi-
tion for stable walking. During toe-off in human walking and in walking of the
robot Spring Flamingo [23], the ZMP stability criterion is violated, the FRI
point lies outside the foot, and the foot rotates. For bipeds with point feet
[11, 24, 5, 31], and Passive Dynamic Walkers with curved feet, when on one
support foot, the ZMP, FRI, and CoP have little value as they are all simply
the location of the foot, and the ZMP criterion is always violated. Maintaining
the ZMP inside the support polygon is also not a sufficient condition for stable
walking since a biped can fall down while its ZMP remains in the center of
its foot. As an example, if all the joint torques are set to zero, the robot will
collapse while the ZMP stays inside the foot.

The ZMP criterion does become a sufficient criterion for stable walking
when coupled with a particular class of control algorithms, typically those that
rely on stiff tracking of predetermined joint trajectories [13, 34, 9, 19]. One
way to state the ZMP criterion is: Given desired state variable trajectories that
are consistent with the dynamics and that predict the ZMP staying inside the
support polygon, a trajectory tracking control algorithm can stably track those
trajectories as long as the ZMP does indeed remain inside the support polygon.

In these terms the ZMP criterion is a sufficient criterion for stable walking
and has become a very powerful tool for trajectory generation and verification
of the dynamic feasibility of trajectories during execution. However, its utility
has perhaps led to its overuse, resulting in the majority of bipedal robots
relying heavily on prerecorded trajectories and stiff joint control to achieve
those trajectories. Such stiff joint control of prerecorded trajectories typically
leads to poor robustness to pushes and unknown rough terrain, relies on a flat-
footed gait, and makes it difficult to incorporate natural dynamic mechanisms
that have shown their utility in Passive Dynamic Walkers [16, 8, 27, 2, 4, 29],
and a growing number of powered bipeds [22, 3, 33].

Since the ZMP criterion is a sufficient condition for stable walking only
when coupled with a particular class of control system, as pointed out by
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Abdallah and Goswami [1] the ZMP criterion should be viewed as a control-
lability criterion that assesses the dynamic feasibility of a desired trajectory
through state-space.

It is important to note that the ZMP, CoP, and FRI are not functions of
the state variables of the robot, but rather require knowledge of either the
joint torques and/or the joint accelerations. Thus, they themselves cannot
be viewed as state variables, and thus are not good candidates for stability
margins that are a function of the state of the robot. Instead, for this paper
and in previous work [23, 22], we view the Center of Pressure as a control
input that can be arbitrarily and instantaneously changed, within the limits
of actuator bandwidth, force limits, and the limitation that it stays inside the
support polygon.

4.3 Angular Momentum

Motivated by observations that humans appear to regulate angular momen-
tum about the Center of Mass when standing, walking, and running, re-
searchers [1, 20] have suggested that angular momentum about the Center
of Mass (refered to as spin angular momentum) of a biped should be min-
imized throughout a motion. They argue that the spin angular momentum
should be used when needed to balance, such as when lunging to prevent a
fall after being pushed, or windmilling one’s arms when standing on a balance
beam. The amount of angular momentum that is available is limited by joint
angle limits, joint speed limits, and joint power limits. By minimizing angular
momentum when not required, the biped has a reserve it can draw on when
necessary.

Minimizing spin angular momentum is not a necessary condition for stable
walking. One can walk while violently thrashing his or her upper body mass
around. It is not graceful, nor efficient, and perhaps grace and efficiency are
the primary reasons humans do not usually walk in this fashion. Minimizing
spin angular momentum is also not a sufficient condition for stable walking,
as a biped can fall over while maintaining an angular momentum of zero.
Therefore, we believe angular momentum about the Center of Mass, taken
purely on its own, is not a good indicator of whether a biped will fall and
hence not a good stability margin by itself.

However, the reserve in spin angular momentum that can be utilized to
help recover from a push or other disturbance is important, as there is a
coupling between angular momentum rate change and linear momentum rate
change, and hence speed. This coupling arises from the fact that the net angu-
lar momentum rate change of the biped, about the Center of Pressure, is only
modified by gravity (Fig. 1). Since the ground reaction force, by definition,
acts through the Center of Pressure it does not affect the angular momen-
tum about this point. The angular momentum dynamics about the Center of
Pressure can therefore be written as

Ḣtot = mgl sin θ1 , (3)



Velocity-Based Stability Margins for Fast Bipedal Walking 307

Fig. 1. Bipedal model for sagittal plane dynamics. l is the virtual leg length from
the Center of Pressure to the Center of Mass. θ1 is the angle from vertical to the
virtual leg. F is the ground reaction force, with component Fl along the virtual leg
and F⊥ perpendicular to it. m and Hcm are the mass and angular momentum about
the Center of Mass of the biped. g is the gravitational acceleration constant

where Htot is the total angular momentum about the Center of Pressure, m is
the mass of the robot, g is the gravitational acceleration, l is the distance from
the Center of Pressure to the Center of Mass, and θ1 is the angle from the
Center of Pressure to the Center of Mass with vertical being zero. The total
momentum about the Center of Pressure consists of the angular momentum
of the Center of Mass rotating about the Center of Pressure, plus the spin
angular momentum about the Center of Mass:

Htot = H0 +Hcm = ml2θ̇1 +Hcm . (4)

Differentiating, we get

Ḣtot = mgl sin θ1,= ml2θ̈1 + 2mll̇θ̇1 + Ḣcm . (5)

The first term, ml2θ̈1 is the acceleration of the Center of Mass pendu-
luming around the Center of Pressure. The second term, 2mll̇θ̇1 encodes the
coupling of distance to Center of Mass and rotational velocity (which makes
a person rotate faster when they pull their legs in on a tire swing). Since
only gravity has an influence on Ḣtot, equation 5 demonstrates the coupling
between acceleration of spin angular momentum about the Center of Mass,
Ḣcm, and acceleration of the Center of Mass about the Center of Pressure,
θ̈1. A clockwise acceleration of internal inertia will create a counterclockwise
acceleration of the Center of Mass penduluming over the Center of Pressure
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and vice versa. That is what leads to the counterintuitive strategy of lunging
your upper body forward to prevent falling forward.

Since spin angular momentum is useful for catching balance in this way,
having a reserve is useful. However, instead of using the reserve of spin angular
momentum as a stability margin by itself, in Sect. 7 we propose using it as
it relates to reducing the velocity of the biped. In the next section we justify
our focus on velocity for analyzing bipedal stability.

5 Bipedal Walking and Stability

There are five subtasks that a biped performs while walking.

T1 Maintain body orientation within a reasonable bound.
T2 Maintain virtual leg length within a reasonable bound.
T3 Swing the swing leg.
T4 Transfer support from one support leg to the other.
T5 Regulate Center of Mass velocity.

For human-like bipedal walking, subtasks T1 through T3 are achievable
through traditional control means as long as the support leg is firmly planted
and joint torque limits that prevent foot slippage are observed. While there
are occasions during the gait cycle where these tasks are not fully control-
lable, such as perhaps at the end of toe-off, we argue that there is plenty
of opportunity during a normal bipedal walking gait to control orientation,
virtual leg length, and leg swing using traditional techniques that depend on
full controllability and full observability.

Subtask T4, transfer of support, is difficult when attempted using tradi-
tional high-gain joint position control techniques due to the over-constrained
kinematics that the resultant closed loop kinematic structure presents [25].
However, when low impedance force control techniques are used [23], the sys-
tem is no longer over-constrained and smooth transfer of support can occur
relatively easily.

We contend that the most difficult subtask in bipedal walking from a con-
trollability point of view is subtask T5, regulating the Center of Mass velocity.
It is this subtask that makes bipedal walking both an interesting and chal-
lenging problem. It is the most difficult subtask as the degrees of freedom
that contribute to the velocity vector are under-actuated from a continuous
dynamics point of view. Once the Center of Mass projection on the ground
moves even a small distance out of the support polygon of the feet, then a sig-
nificant amount of angular acceleration of internal mass, such as windmilling
the arms or lunging the upper body, must occur to bring the Center of Mass
back. Beyond a certain distance, the Center of Mass cannot be brought back
at all and the biped must take a step. Thus velocity can be regulated only
through a combination of the continuous dynamics and the discrete dynamics.
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It is this lack of actuation and the requirement of taking a step to continue
walking that leads many to describe walking as a sequence of controlled falling.

We can illustrate the difficulty of regulating velocity versus orientation
and leg length by looking at the dynamics of walking during single support.
To simplify the discussion, we consider only sagittal plane dynamics (Fig. 1),
but our discussion extends to 3D dynamics. The dynamics of the rotation of
the mass about the Center of Pressure (5) is

Ḣtot = mgl sin θ1 = ml2θ̈1 + 2mll̇θ̇1 + Ḣcm (6)

where l is the virtual leg length from the Center of Pressure to the Center of
Mass, θ1 is the angle from vertical to the virtual leg, m and Hcm are the mass
and angular momentum about the Center of Mass of the biped, and g is the
gravitational acceleration constant.

As discussed in Sect. 4, humans tend to regulate their angular momentum
about the Center of Mass, and thus the magnitude of Ḣcm is kept relatively
low. Suppose Ḣcm = 0. Since the virtual leg length, l is always positive, then
equation 6 can be rewritten as

θ̈1 = −c1 l̇θ̇1 + c2 sin θ1 (7)

where c1 and c2 are always positive. If θ̇1 and θ1 have the same sign, then the
magnitude of θ1 must always be increasing, assuming |l̇| <∞ and −π < θ1 <
π. In physical terms, this means that if the Center of Mass is moving away
from the Center of Pressure, it cannot be stopped without either moving the
location of the Center of Pressure (instantaneoulsy changing the value of θ1),
or by accelerating internal inertia. However, once the Center of Mass is beyond
the support polygon of the foot, changing the Center of Pressure alone cannot
stop further motion of the Center of Mass. At that point, only accelerating
internal inertia (Ḣcm �= 0), or taking a step can prevent a fall. Due to joint
range of motion, velocity, and torque limits, the amount of opportunity for
using angular momentum to catch balance is limited. Therefore, during a large
portion of a human-like walking gait, the only way to prevent a fall is to take
another step.

Turning to the dynamics of the virtual leg length from the Center of Pres-
sure to the Center of Mass we have

ml̈ = mlθ̇1
2 −mg cos θ1 + Fl (8)

where Fl is the component of the ground reaction force along the line from the
Center of Pressure to the Center of Mass and is typically positive since the
total ground reaction force must be positive and lie inside the friction cone. Fl

is a function of the leg actuator forces and as long as the leg isn’t straight can
be arbitrarily and instantaneously set to any positive value, assuming ideal
force-source actuators, as long as it doesn’t result in slipping on the ground.
Sincemg is typically larger thanmlθ̇1

2
on the Earth at typical walking speeds,
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one can achieve a large range of negative l̈, and an even larger range of positive
l̈, bounded only by the strength of the leg. Therefore, during a large percentage
of the walking gait, the virtual leg length, l is fully controllable.

Turning to the dynamics of the angular momentum about the Center of
Mass we have

Ḣcm = lF⊥ (9)

where F⊥ is the component of the ground reaction force perpendicular to the
line from the Center of Pressure to the Center of Mass. F⊥ is a function of
the leg actuator forces and can be arbitrarily and instantaneously set to any
value, assuming ideal force-source actuators, as long as it doesn’t result in
slipping on the ground. Since a large range of positive and negative values
of Ḣcm can be achieved during a large portion of the walking gait, angular
momentum about the Center of Mass is fully controllable.

Note that in this discussion we do not break out the components of Hcm

due to their complexity, nor do we consider the motion of internal degrees of
freedom. We assume that all the internal degrees of freedom have an actuator
associated with them, and only consider their net effect on the walking motion
as it couples through Hcm. Achieving any orientation of internal body parts,
or swinging the swing leg along a trajectory in internal coordinates is thus
achievable with traditional control means.

Note that in this discussion we use θ̇1 as our velocity variable (and could
use θ̇2 for a 3D analysis). However, any two variables that are independent of
virtual leg length velocity, l̇ could be used. Except for a fall, the virtual leg
should never lie in the horizontal plane. Therefore, ẋ and ẏ would also be a
suitable choice in the above analysis. As long as we choose a definition of a
velocity vector that along with the virtual leg vector spans the 3D space, the
above analysis can be modified to show that velocity is not fully controllable
for a large percentage of a human-like walking gait.

We have shown that virtual leg length and body orientation are fully
controllable during a large portion of a natural gait, with the main limitation
in their control being the requirement that the foot doesn’t slip on the ground.
In contrast, velocity is not controllable with continuous dynamics once the
Center of Mass has moved away from the support polygon. For human-like
walking, velocity is controllable only through a combination of continuous
dynamics and discrete dynamics (i.e. taking a step). This lack of controllability
is why we consider velocity regulation the most challenging part of walking
and why we focus on stability margins were velocity is central.

6 Capture Points and Capture Regions

A key capability required for robust 3D walking is the ability to place the swing
leg foot at an appropriate position, such that the Center of Mass can come to
rest over the foot. We call such a point a “Capture Point”. Before defining a
Capture Point, we define a Capture State and a Safe Feasible Trajectory:
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Definition 5 (Capture State). State in which the kinetic energy of the biped
is zero and can remain zero with suitable joint torques.

Definition 6 (Safe Feasible Trajectory). Trajectory through state space
that is consistent with the robot’s dynamics, is achievable by the robot’s actu-
ators, and does not contain any Falling States.

Note that the Center of Mass must lie above the support polygon in a
Capture State. We now define a Capture Point:

Definition 7 (Capture Point). For a biped in state x, a Capture Point, p,
is a point on the ground where if the biped covers p, either with its stance foot
or by stepping to p in a single step, and then maintains its Center of Pressure
to lie on p, then there exists a Safe Feasible Trajectory that ends in a Capture
State.

Note that since height, swing, orientation, and velocity are dynamically
coupled, the location of a Capture Point is dependent on the trajectory
through state-space before and after swinging the leg and thus is not a unique
point. Therefore, there exists a Capture Region on the ground such that if the
Center of Pressure is placed inside this region, then the biped can come to a
stop for some height and orientation trajectory.

Definition 8 (Capture Region). The set of all Capture Points.

The size of the Capture Region is highly dependent on how fast the swing
leg can swing to a Capture Point before the biped has accelerated and the
point is no longer a Capture Point. The faster the swing leg, the larger the
area of the Capture Region. Therefore, all else being equal, a biped with a
faster swing leg will have a higher margin of stability than one with a slower
swing leg.

If constraints are placed on the subsequent height, swing, orientation, and
internal motion of the robot, then the size of the Capture Region will be
reduced. For example, we can define a momentum-regulated capture region
as the set of all Capture Points that exist when Ḣcm is regulated during the
subsequent motion. With enough constraints, the Capture Region may be
reduced to a single point, or perhaps even vanish.

Note that our definition of Capture Point also implies that the swing leg
can reach the point. Let us define an Unreachable Capture Point as a
point that is not a Capture Point, but would be if the swing leg did not have
kinematic constraints. The Unreachable Capture Region is then the set
of all Unreachable Capture Points and there is no intersection between the
Unreachable and Reachable Capture Regions.

While being able to stop in one step implies stability by definition 3, it is
overconservative. Being able to stop in two steps is a less conservative estimate
of stability and hence we consider Two-Step Capture Points.



312 J.E. Pratt and R. Tedrake

Definition 9 (Two-Step Capture Point). A point on the ground, p, such
that if the biped swung its swing leg to cover p with its foot and maintained
its Center of Pressure to lie on p, then there exists a Safe Feasible Trajectory,
such that at some state along the trajectory, there exists a Capture Point.

Definition 10 (Two-Step Capture Region). The set of all Two-Step Cap-
ture Points.

We can now define an N-Step Capture Point recursively:

Definition 11 (N-Step Capture Point). A point on the ground, p, such
that if the biped swung its swing leg to cover p with its foot and maintained
its Center of Pressure to lie on p, then there exists a Safe Feasible Trajectory,
such that at some state along the trajectory, there exists an N-1-Step Capture
Point.

Definition 12 (N-Step Capture Region). The set of all N-Step Capture
Points.

If an N-Step Capture point exists, then we say that the biped is “N-Step
Capturable”. As N approaches ∞, the N-step Capture Region converges to
the area on the ground that the foot can be placed at without resulting in an
eventual fall.

Note that the above definitions require the maintenance of the Center of
Pressure at a Capture Point, which is not necessary nor typical in walking.
More general definitions would allow the Center of Pressure to move inside the
foot. However, we conjecture that such definitions would result in equivalent
Capture Regions, i.e. if a biped can stop by taking a step and then moving
its Center of Pressure around its foot, then the biped can stop by taking the
same step and maintaining the Center of Pressure at a single point inside
the foot. We chose to maintain the Center of Pressure at a Capture Point in
our definitions for computational reasons since doing so reduces the potential
action space by two degrees-of-freedom. However, in controlling a biped, there
is no such requirement.

The stability margins we propose in the next Section will give a measure
of how much opportunity there is to stop based on the ability to reach a
Capture Region with the swing leg. Knowing where the leg can swing to will
be important and so we define the Reachable Region as follows.

Definition 13. Reachable Region: Region on the ground that can be reached
kinematically by any point on the bottom of the swing foot.

7 Proposed Stability Margins

We now propose some velocity-based stability margins for bipedal walking
that are based on Capture Regions. Because the Capture and Reachable Re-
gions depend on the current state of the robot, x, these margins are scalar
functions of x.
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• Zero-Step Capture Margin. M(x, 0): Maximum distance from points
in the Capture Region to their closest edge of the support polygon if the
Capture Region and support polygon intersect. Otherwise, the negative
distance from the Capture Region to the support polygon.

• One-Step Capture Margin. M(x, 1): Maximum distance from points
in the Capture Region to their nearest boundary of the Reachable Region
if the Capture Region is non-empty. Otherwise, the negative distance from
the Unreachable Capture Region to the Reachable Region.

• N-Step Capture Margin. M(x, N): Maximum distance from points in
the N-Step Capture Region to their nearest boundary of the Reachable
Region if the N-Step Capture Region is non-empty. Otherwise, the negative
distance from the Unreachable N-Step Capture Region to the Reachable
Region.

Note that the Zero-Step Capture Margin is equivalent to the traditional
static stability margin when velocity is negligible and angular momentum is
not used for capturing balance. For a moving biped, it is more appropriate
than the traditional margin, since the Center of Pressure needs to be placed
near the Capture Point rather than the ground projection of the Center of
Mass to stop the biped.

The above margins assume that any dynamically feasible trajectory through
the state space is acceptable. Variants of the above margins can be defined
that impose constraints on the trajectories, control system, etc. For example,
angular-momentum-regulated versions of these margins such as the Angular-
Momentum-Regulated N-Step Capture Margin, M(x, N, |Ḣcm| <
Ḣcmmax

), can be defined as above, but where the Capture Region is computed
with the assumption that angular momentum is limited for capturing balance.
These margins are useful for determining whether the robot is Capturable
without having to rely on drastic measures such as lunging or windmilling.

All of the above margins are in terms of how close the biped is to being
able to stop. Determining if a biped is able to stop over a number of steps
is appropriate, since if a biped cannot slow down and eventually stop, then
its state is likely in the Basin of Fall, except for some metastable border
states on the boundary of the Basin of Fall. We conjecture that in the limit
as N approaches infinity, N-Step Capturable implies stability as defined by
Definition 3. For most practical purposes, if the biped cannot stop in several
steps, it is probably close enough to falling to consider it unstable. Therefore,
though still not a completely necessary criterion, being say 10-step Capturable
should be a suitable stability criterion.

The above stability margins are all in terms of Cartesian distance of various
regions on the ground to the Reachable Region. This distance is related to
the ability to get the swing leg to the region and also the time before the
region moves and is no longer reachable if it isn’t stepped to rapidly. One
could also define other margins in terms of the area of a given region. These
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margin would give an indication of the degree of accuracy required in placing
the swing leg in the region. For example,

• N-Step Area-Based Capture Margin. Marea(x, N): Area of the N-
Step Capture Region if the N-Step Capture Region is non-empty. Other-
wise, the negative distance from the Unreachable N-Step Capture Region
to the Reachable Region.

We have now suggested a number of potential stability margins that can be
used for analyzing and controlling bipedal walking. In terms of the desirable
characteristics listed in Sect. 3, the margins listed above are sufficient con-
ditions for stability, allow comparisons between different walking algorithms,
and are meaningful. While none of them, except for boundary cases requir-
ing extreme computationally complexity, are tight necessary conditions, they
are tighter necessary conditions than previously proposed stability margins.
These margins are measurable and computable. For N = 1, estimates with
low computational complexity are easy to derive, as described in the next
section. As N increases, the computational requirements likely increase, but
may be reasonable for small N .

Deciding which margin is the most desirable and what degree of stability is
required depends on tradeoffs between performance and safety. For example,
if the biped is walking carefully over stepping stones, then having a large
One-Step Area-Based Capture Margin may be desirable. If the biped is a
gymnast on a balance beam, then being Angular-Momentum-Regulated One-
Step Capturable is important since lunging or windmilling to prevent a fall
results in deductions. And if the biped is an Olympic Race Walker, being able
to stop in a small number of steps is less important than speed, so a small
degree of ∞-Step Capture Margin is all that may be required.

In the next section we will discuss methods for estimating Capture Point
locations and some of these stability margins.

8 Estimating Stability Margins

In this section we describe some methods for estimating our proposed stability
margins.

8.1 Estimating One-Step Capture Points

We can derive estimates of the location of Capture Points by using inverted
pendulum models that approximate walking. Using a constant length inverted
pendulum model (Fig. 2, left side) and equating initial and final energy, we
have 1

2mv
2 +mgh0 = mgl, where m is the mass, v is the velocity of the mass,

g is the gravitational constant, h0 is the initial height above the ground, and
l is the virtual leg length. Let ŝ be the unit vector parallel to the ground that
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Fig. 2. Simple models for estimating the location of Capture Points

points in the same direction as the Center of Mass velocity. The Capture Point
will lie somewhere on the line defined by the projection of the Center of Mass
on the ground and ŝ: xc = rcŝ, where xc is the location of the Capture Point
with respect to the ground projection of the Center of Mass and rc is the
distance from the Center of Mass projection to the Capture Point. Because
rc, l, and h0 form a right triangle, we have rc =

√
l2 − h2

0. Solving for rc we
get

rc = v

√(
h0

g
+

v2

4g2

)
(10)

This model assumes that the leg length stays constant as the Center of
Mass follows an arc, coming to rest above the Capture Point. Another model,
referred to as the Linear Inverted Pendulum model [11, 12], assumes that the
Center of Mass height stays constant (Fig. 2 – right side). Using this method to
compute the location of a Capture Point results in an even simpler equation.
In order to counter gravity, the vertical force on the mass must bemg. Because
ground reaction forces can only act on the line between the Center of Pressure
and the Center of Mass, similar triangles are formed and we have

Fx

mg
=

x

h0
=⇒ Fx =

mg

h0
x (11)

where Fx is the horizontal force on the mass, and x is the distance from the
mass to the Capture Point. Because the mass moves at a constant height, the
energy absorbed while moving above the Capture Point will be the integral
of the force times the displacement:

E =

rc∫

0

F dx =
mg

h0

rc∫

0

x dx =
mg

2h0
r2c (12)

Equating initial and final energies, we have 1
2mv

2 = mg
2h0

r2c . Solving for rc we
get

rc = v

√
h0

g
(13)
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Equations (10) and (13) give estimates for two different Capture Points,
one based on the Center of Mass following an arc, and one based on it follow-
ing a straight horizontal line. Because the Center of Mass typically follows a
flattened arc in bipedal walking, a more relevant Capture Point for a typical
gait will likely fall between those two bounds. For parameter values typical in
human walking, these two bounds are within 15% of each other.

The above estimates assumed that the swing leg could instantaneously
arrive at the Capture Point. Since it may take some time for the swing leg to
get to the Capture Point, we should estimate where the Capture Point will be
when the swing leg arrives. If we have an estimate on the time remaining for
swing, we can estimate the predicted Capture Point location using the Linear
Inverted Pendulum model. Figure 3 illustrates the key variables in estimating
the predicted Capture Point location. First we estimate the Center of Mass
trajectory. From the previous analysis, Fx = mg

h0
x. Therefore, ẍ = g

h0
x. Since

this is a linear equation, it can be solved in closed form [11, 12]

x = C0e
wt + C1e

−wt, ẋ = D0e
wt +D1e

−wt (14)

where w =
√

g
h0

and

C0 =
1
2

(
x0 +

v0
w

)
, C1 =

1
2

(
x0 −

v0
w

)
,

D0 =
1
2

(wx0 + v0) , D1 =
1
2

(−wx0 + v0) (15)

The equations for y are identical, with the proper substitutions. Given the
estimated swing time, we can estimate the location and velocity of the Center
of Mass at the end of swing using Equation (15). Using Equation (13) we then
can estimate the location of the Capture Point at the end of swing. As the leg
is swinging, we can update the predicted Capture Point location and adjust
the swing leg trajectory to land in the desired location.

The above estimates of Capture Points were for point mass models. We can
estimate a Capture Region using the above equations to compute the center of
the region and then models for using angular momentum to determine a region
around the center. Suppose we have no limit in how fast we can change our
angular momentum (Ḣcm is unbounded), but we do have a limit on the angular
momentum about the Center of Mass that we have in “reserve”, Hreserve.
Also suppose we have a limit on the duration, τreserve that the biped can
achieve that angular momentum before running into joint limits and having
to “pay it back” by stopping the rotation. We conjecture that once it has been
determined to use reserve angular momentum to catch balance, immediately
using all that is available as rapidly as possible is the strategy that results in
the recovery from the worst conditions.

If we assume that the change in angular momentum is achieved instanta-
neously through an impulsive torque, then the change in rotational velocity
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Fig. 3. Evolution of the Center of Mass and a Capture Point from time t to t+∆t.
xcop(t) is the location of the Center of Pressure; xcom(t) and vcom(t) are the location
and velocity of the Center of Mass; and xc(t) is the location of the Capture Point

of the Center of Mass about the Center of Pressure can be determined by
integrating Equation (6) for an infinitesimal amount of time. The result is

∆θ̇1 = − 1
ml2

Hreserve (16)

Given the new velocity, we can estimate the Center of Mass trajectory
during the next τreserve seconds using Equation (14). At the end of this time,
the angular momentum must be “paid back” before joint angle limits are
violated. We can then repeat the above steps to estimate the final Center of
Mass position and velocity.

To estimate the Capture Region, one can use a search, guessing points on
the boundary and checking with the above procedure to see if the Center of
Mass can be captured over that point with the reserves of angular momentum.
After several points on the boundary are determined, then the Capture Region
can be estimated with a best-fit curve.

8.2 Estimating N-Step Capture Points

Estimating N-Step Capture Points can be achieved through a brute-force
search algorithm. Even with a large state space, the search can be relatively
fast if N is small and a discrete step-to-step transition function, S is known,

xn+1 = S(xn,xstep,P) (17)

where xn is the state of the step n, xstep is the location of the point that the
biped steps to, and P are parameters that govern the motion of the step. The
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Linear Inverted Pendulum analysis described previously provides one such
example of a discrete step-to-step transition function, with the time of step
being the only input parameter.

Since it is likely that, on flat ground, an N-Step Capture Region is a
connected, and perhaps even convex area on the ground, a search for the
boundary of the Capture Region can be performed when considering the first
xstep. After the first step, then steps should only be considered that are likely
optimal for stopping as quickly as possible. If a One-Step Capture Point exists,
then the step should be there. If not, then the step should be as quickly as
possible as far as possible toward the Unreachable Capture Region.

8.3 Quick Estimates on the Number of Steps Required for a Stop

We can estimate the approximate number of steps required for a biped to
stop by estimating how much the biped can slow down each step using the
Linear Inverted Pendulum model. The amount of energy absorbed during
deceleration is mg

2h0
rstep and the amount of energy returned during acceleration

is mg
2h0

raccel where rstep is the step length from Center of Mass projection on
the ground to the Center of Pressure, and raccel is the distance from the
trailing support leg’s Center of Pressure to the Center of Mass projection on
the ground. If swing can happen quickly enough, raccel can be zero. However,
when the swing leg takes long enough to swing that exchange of support
cannot be achieved before the Center of Mass passes over the trailing Center
of Pressure, then raccel �= 0. raccel can be estimated with (14), given the
required swing time. With the net change in energy we can then determine
the velocity on the next step,

v2
n+1 = v2

n − g

h0
r2step +

g

h0
r2accel (18)

We can iterate on Equation (18) to estimate the number of steps required
to stop the biped. Note that a biped will always be able to slow down if
the swing leg is fast enough to have a non-symmetric stance in which the
Center of Pressure is in front of the Center of Mass more than it is behind it
(rstep > raccel). When the swing leg takes too long to swing (rstep < raccel)
the biped necessarily continues to speed up and eventually falls down.

If raccel = 0, then the number of steps required to stop is N = h0
gr2

step
v2. If

raccel �= 0 then N > h0
gr2

step
v2. For typical human parameters at fast walking

speeds, h0
gr2

step
v2 ≈ 1 meaning a human at top speed usually requires 1 or 2

steps to come to a stop but typically not more. This estimate is easily verified
through simple experiments in which one person walks fast while another calls
out “stop” at a random time.

Note that a biped with its mass concentrated in its body, and no limit
to the torques at its joint, should be able to walk extremely fast along a
straight line trajectory. The only limit is how quickly it can swing its leg
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and transfer support. But with massless legs, it should be able to swing and
transfer instantaneously. Along a flattened arc trajectory, the speed would
be limited by the requirement of the centripetal acceleration of the Center
of Mass being less than the acceleration of gravity. At higher velocities, the
ground reaction force falls below zero and the biped becomes airborne. For
humans walking at Earth’s gravity, this limitation is not the limiting factor in
top speed [22]. However, at the gravity of the moon, this limitation is relevant
and explains why astronauts preferred to hop on the moon rather than walk.

9 Standing Balance Strategies

Using our proposed stability definitions we can now propose an algorithm
for selecting an appropriate strategy to regain balance after being disturbed
when standing. The algorithm below is for the reflex phase of balance recovery
[1]. Once the robots velocity is captured, than a recovery phase can begin to
restore the posture of the robot.

1. if Momentum-Regulated Zero-Step Capturable, then use the Center of
Pressure to maintain balance.

2. else if Zero-Step Capturable, then use angular momentum to capture bal-
ance by lunging or windmilling.

3. else if Momentum-Regulated One-Step Capturable, then take a step to a
Momentum-Regulated Capture Point and use the Center of Pressure to
maintain balance after the step.

4. else if One-Step Capturable, then take a step to a Capture Point and use
angular momentum to capture balance after the step.

5. else if N-Step Capturable, take a sequence of steps to capture balance.
6. else take a running step and/or fall.

The first two strategies have been well documented with human walking
and are often refered to as the “ankle strategy” and the “hip strategy” [15].
We prefer to call them the “Center of Pressure strategy” and the “Angular
Momentum Strategy”. All of the strategies are easily observable in easily
performable balance experiments. Using the stability margins proposed in
this paper, it should be possible to hypothesize what amount of disturbance
is required to cause a human to switch from one strategy to another one.

10 Control Algorithms

10.1 Control Algorithms for Push Recovery

The balance strategies listed above can be easily implemented in a control
algorithm for push recovery. For such an algorithm, it is not important to
accurately compute the various stability margins. What is more important is
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to rapidly determine which balance recovery method to attempt. If a step is
required, reaction speed is critical and therefore, determining a good place to
step is more appropriate than deliberating on the optimal place to step.

In a simulation study, we developed an algorithm that attempts to stay
balanced on one foot. The simulated robot uses modulation of the Center
of Pressure in order to keep the Capture Point, which is estimated every
control cycle using the Linear Inverted Pendulum model, inside the foot. The
commanded Center of Pressure location, xCoP is computed using a linear
controller on the desired Capture Point location, x′

capture,

xCoP = xcapture + k(x′
capture − xcapture) (19)

where k is the controller gain parameter. If the computed Center of Pressure
location falls outside the foot, then it is changed to the nearest point on the
foot’s edge that lies on the line from the desired Capture Point to the actual
Capture Point.

When a significant push occurs, the Capture Point moves outside of the
foot. The biped approximates how long it will take to swing the leg to the
point and uses that time in the estimate of where the Capture Point will be
after swing. If this Capture Point is reachable, then the biped moves its Center
of Pressure to the point on the foot nearest the Capture Point to minimize
further acceleration and then takes a step to the Capture Point to regain
balance. If this Capture Point is unreachable, then the algorithm assumes
that if a 2-Step or N-Step Capture Region does exist, that it is near the
boundary of the Reachable Region nearest the Unreachable Capture Point.
Therefore, the biped will take a step as far as possible towards the Capture
Point and then determine a new Capture Point to attempt to step to.

This algorithm works fairly well, validating the Capture Point estimates.
When the robot is pushed in such a way that a Capture Point is reachable,
the robot does regain balance on that step most of the time. This indicates
that even if the estimated Capture Point is not a Capture Point, its margin
of error is within the size of the foot.

10.2 Control Algorithms for the Stepping Stones Problem

Now consider the problem of taking steps to desired locations. We refere to
this problem as the One-Step Stepping Stones problem, since it is similar to
crossing a pond over stones considering only one step at a time.

In a simulation study, we developed an algorithm for one-step stepping
stones that uses the Center of Pressure on the support foot to guide the
Capture Point out of the foot toward the desired stepping location when told
to take a step. The swing leg then swings to the desired stepping location
and is loaded once the estimated Capture Point becomes coincident with the
desired step location. Figure 4 shows time elapsed snapshots of the simulated
biped using this algorithm. Note that since the robot steps to a Capture Point,
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Fig. 4. Time elaspsed snapshots of simulated 12 degree-of-freedom lower-body biped
walking over discrete steps while remaining One-Step Capturable. Snapshots are
taken at one second intervals

at all times it is One-Step Capturable. If the robot is not told to step to the
next desired location, it will stop and balance on one leg.

Since the desired footholds are staggered, the motion is not periodic and
hence Poincare return maps could not be used to demonstrate stability of this
simulation. Since there is a toe-off phase, the ZMP criterion is violated on
every step and is therefore not applicable to this simulation.

Even though the robot is One-Step Capturable throughout the simulation,
the motion is dynamic, fairly natural-looking, moderate speed, and includes
toe-off and double-support phases. If the robot is told the next step in advance,
it does not need to stop over the current step and can continue at a moderate
velocity. Therefore, being One-Step Capturable does not imply stopping or
even imply slow walking. In this example the small performance degradation is
well worth it in order to get the safety margin that being One-Step Capturable
provides.

In current work we are investigating how speed can be increased by looking
two or three steps ahead and guiding the capture point on a path that curves
by the first stepping stone and then on to the second stepping stone as the
first step is being taken.

11 Discussion and Future Work

11.1 Probabilistic Stability Margins

In this paper, we have defined stability assuming a deterministic system. How-
ever, bipeds should be considered nondeterministic, since ground variations,
sensor noise, and external disturbances are impossible to precisely model.

Most stability margins handle nondeterminism by relating to the tolerance
to a particular unknown disturbance. This is the case for phase margins and
gain margins in traditional linear control and is the case for many margins for
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bipedal walking, such as the static stability margin and the margins introduced
in this paper.

These margins typically give comparative indications of robustness to ter-
rain, noise, and disturbances (the larger the margin, the greater the distur-
bance that can be tolerated). They sometimes are an indication of the mag-
nitude of the largest single disturbance that can be tolerated. However, they
usually do not indicate the probability of instability given a particular distur-
bance distribution. In a companion paper [28], we explore stochastic stability
margins for legged locomotion.

11.2 Proofs of Conjectures

In this paper we have stated several conjectures without proof. While these
conjectures seem logical, it would be very useful to prove them since they are
relied on for both the theory and the computational implementation in this
paper. These conjectures are:

• In the limit as N approaches infinity, N-Step Capturable implies stability
as defined by Definition 3.

• The Capture Region remains the same whether or not the constraint is
enforced that the Center of Pressure remains at a Capture Point during a
step.

• For flat terrain, the Capture Region will be a connected, and perhaps even
convex, area on the ground.

• Once it has been determined to use reserve angular momentum to catch
balance, immediately using all that is available as rapidly as possible is
the strategy that results in the recovery from the worst conditions.

11.3 Generalization

In this paper we considered bipedal walking only. For a multi-legged robot or
animal, similar definitions should apply. The difference would be that instead
of requiring the foot to cover a Capture Point, the resultant convex hull of
the support polygon would need to cover a Capture Point. For running, the
difference would be in the Reachable Region of the swing foot. The Reachable
Region would be larger, and in addition to being kinematically constrained,
it would also be constrained by the leg strength and take-off velocities.
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Summary. The paper considers the use of sum of squares techniques in nonlinear
model predictive control. To be more precise, sum of squares techniques are used to
solve at each sampling instant a finite horizon optimal control problem which arises
in nonlinear model predictive control for discrete time polynomial systems. The
combination of nonlinear model predictive control and sum of squares techniques
is motivated by the successful application of semidefinite programming in linear
model predictive control. The advantages and disadvantages of applying sum of
squares techniques to nonlinear model predictive control are illustrated on a small
example.

1 Introduction

Model predictive control (MPC) is a popular control strategy, especially suit-
able for the control of multivariable systems subject to input and state con-
straints [1, 26, 16]. The basic idea of model predictive control is to determine
the control input by repeatedly solving at each time instant a finite horizon
optimal control problem. In general one distinguishes between linear and non-
linear model predictive control. In linear model predictive control, the optimal
control problem is usually solved for a linear system subject to linear input
and state constraints and a quadratic performance index. In contrast to linear
model predictive control, nonlinear model predictive control (NMPC) allows
the consideration of a nonlinear system, possible nonlinear input and state
constraints, and a possible nonquadratic performance index in the optimal
control problem setup. Model predictive control, especially linear model pre-
dictive control, is widely used in industry [24]. One reason why linear model
predictive control is more successful than nonlinear model predictive control
is that the optimal control problem with linear constraints and a quadratic
performance index is a convex quadratic optimization problem for discrete
time linear systems. The key advantage in this case is that any local mini-
mum is also a global minimum and that efficient numerical algorithms exist
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which guarantee to converge to the global minimum [5]. In nonlinear model
predictive control, the finite horizon optimal control problem is in general a
nonconvex optimization problem. Nonconvex optimization problems are often
hard to solve and rather a local minimum than a global minimum is obtained
[16].
The purpose of this paper is to solve the nonlinear and in general noncon-
vex optimization problem that stems from the finite horizon optimal control
problem in nonlinear model predictive control for discrete time polynomial
systems via sum of squares techniques [15, 20, 25]. Sum of squares techniques
are based on the sum of squares decomposition which is an efficient method to
check if a multivariate polynomial can be decomposed into a sum of squares
since it can be solved via semidefinite programming [5]. The advantages and
disadvantages of this combination are discussed on a small example. Further-
more, an introductory review of nonlinear model predictive control, sum of
squares techniques, and polynomial optimization is given and an extension of
the results presented in [25] to the class of implicit discrete time polynomial
systems is introduced.
The remainder of the paper is organized as follows: In Sect. 2, nonlinear model
predictive control is reviewed and in Sect. 3 an overview of the sum of squares
decomposition of multivariate polynomials and polynomial optimization is
given. In Sect. 4, polynomial optimization is applied to nonlinear model pre-
dictive control for discrete time polynomial systems. Finally, conclusions are
stated in Sect. 5.

1.1 Notation

A polynomial p in x = [x1, . . . , xn] is a finite linear combination of mono-
mials, i.e., p(x) =

∑
α cαx

α =
∑

α cαx
α1
1 ...xαn

n , where cα ∈ R and α =
[α1, . . . , αn], αi ∈ N0. The degree of p is defined as d =

∑n
i=1 αi. The set

of all polynomials in x = [x1, . . . , xn] with real coefficients is written as R[x].
A polynomial vector field f : R

n → R
n, f(x) = [f1(x), . . . , fn(x)]T is a vector

field with fi(x) ∈ R[x]. A polynomial p is called positive definite, if p(0) = 0
and p(x) > 0,∀x ∈ R

n \ {0} and positive semidefinite if p(x) ≥ 0,∀x ∈ R
n.

2 Nonlinear Model Predictive Control

In this part of the paper, the basic idea and the mathematical setup of non-
linear model predictive control is introduced in Sect. 2.1 and Sect. 2.2 respec-
tively. Furthermore, Sect. 2.3 provides a review of nonlinear model predictive
control schemes that asymptotically stabilize nonlinear systems subject to
input and state constraints.
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2.1 Basic Idea of Model Predictive Control

The motivation of model predictive control is to stabilize a system by solving
the infinite horizon optimal control problem

min
u · |k

∞∑
i=k

F (xi|k, ui|k) (1a)

s.t. xi+1|k = f(xi|k, ui|k), xk|k = xk , (1b)
ui|k ∈ U , xi|k ∈ X . (1c)

In the infinite horizon optimal control problem, a system (1b) with the ini-
tial condition xk is asymptotically stabilized while a performance index (1a)
subject to input and state constraints (1c) is minimized. The performance
index (1a) often stems from economical and ecological considerations of the
considered control problem. However, problem (1) is in general very difficult
to solve. For unconstrained linear systems with a quadratic performance in-
dex, the closed solution of the infinite horizon optimal control problem can be
determined. In this case, the solution of (1) is the well-known linear quadratic
regulator. One possibility to obtain a computationally tractable approxima-
tion of (1), i.e., for constrained nonlinear systems with a nonquadratic per-
formance index, is to consider the finite horizon optimal control problem

min
u · |k

k+N−1∑
i=k

F (xi|k, ui|k) (2a)

s.t. xi+1|k = f(xi|k, ui|k), xk|k = xk , (2b)
ui|k ∈ U , xi|k ∈ X , (2c)

where N is the so called prediction horizon. The basic idea of model predictive
control is the following one: At each time instant k, the finite horizon optimal
control problem (2) is solved on-line with the current measurement of the
system state xk as an initial condition. To obtain a feedback, only the first
control action of the optimal control sequence obtained from the finite horizon
optimal control problem (2) is applied to the system (2b). These steps, i.e.,
solving the optimal control problem (2), applying the first control action to the
system, and updating the initial condition by the current measurement of the
system state, are repeated continuously in model predictive control. Due to on-
line optimization in model predictive control, this control strategy is suitable
to control linear as well as nonlinear multivariable systems with input and
state constraints. However, the repeated solution of the finite horizon optimal
control problem (2) leads to stability problems of the closed loop system [3].
Therefore, different approaches have been developed to achieve closed loop
stability. An introductory overview of model predictive control schemes with
guaranteed closed loop stability is given in the next sections.
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2.2 Setup of Nonlinear Model Predictive Control

Before discussing different nonlinear model predictive control schemes with
guaranteed closed loop stability, the mathematical setup is introduced. Con-
sider the stabilization problem for nonlinear discrete time systems described
by the difference equations

xk+1 = f(xk, uk) (3)

subject to the input and state constraints

uk ∈ U , xk ∈ X , (4)

where xk ∈ R
n is the state and uk ∈ R

m the control input of the system.
Furthermore, assume that the equilibrium point to be stabilized is at the
origin, i.e., the vector field f satisfies f(0, 0) = 0. The set X is a closed subset
of R

n and the set U a compact subset of R
m, both containing the origin.

Suppose that the full state xk is available at time instant k. Then the finite
horizon optimal control problem that has to be solved at each time instant k
in nonlinear model predictive control is given by

min
ν

E(xk+N |k) +
k+N−1∑

i=k

F (xi|k, ui|k)

s.t. xi+1|k = f(xi|k, ui|k), xk|k = xk

ui|k ∈ U , i ∈ [k, k +N − 1]
xi|k ∈ X , i ∈ [k, k +N − 1]
xk+N |k ∈ E ,

(5)

where

J(ν, xk) = E(xk+N |k) +
k+N−1∑

i=k

F (xi|k, ui|k) (6)

is the cost function, ν the control sequence ν = [uk|k, . . . , uk+N−1|k]T , N
the length of the prediction and the control horizon, and xi|k the predicted
system state at time instant i that is obtained by applying the control input
sequence uk|k, . . . , uk+i−1|k to the system (3) from the initial condition xk.
Furthermore, the stage cost F : R

n × R
m → R is a positive definite function

and satisfies F (0, 0) = 0. The terminal cost E : R
n → R satisfies E(0) = 0 and

E is the terminal region. The optimal solution to the finite horizon optimal
control problem (5) is denoted by ν� = [u�

k|k, . . . , u
�
k+N−1|k]T . The actual

control action of the nonlinear model predictive controller is the first element
of ν�, i.e., uk = u�

k|k. The finite horizon optimal control problem (5) differs
from the optimal control problem (2) because of the terminal cost E and the
terminal region E . In the next section a summary is given on how to choose
the terminal cost E and the terminal region E in order to achieve closed loop
stability.
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2.3 Stability of Nonlinear Model Predictive Control

A wide variety of approaches have been developed to achieve asymptotic closed
loop stability [1, 9, 16]. All these approaches are based, implicitly or explicitly,
on three ingredients: A terminal cost E, a terminal region E , and a locally
stabilizing control law uk = ϕ(xk). Many of these approaches are covered by
the following theorem [16]:

Theorem 1. The closed loop system is asymptotically stable if the optimal
control problem (5) is feasible at the first time instant and the following as-
sumptions are satisfied for a terminal cost E, a terminal region E, and a
locally stabilizing control law uk = ϕ(xk):

[A1] E(xk) > 0, ∀xk ∈ R
n \ {0}

[A2] E ⊆ X , 0 ∈ E
[A3] ϕ(xk) ∈ U , ∀xk ∈ E
[A4] f(xk, ϕ(xk)) ∈ E , ∀xk ∈ E
[A5] E(f(xk, ϕ(xk))) − E(xk) ≤ −F (xk, ϕ(xk)),∀xk ∈ E .

A proof of Theorem 1 can be found, e.g., in [16]. In the following, a num-
ber of approaches are described based on Theorem 1 which ensure closed loop
stability.

Zero Terminal State Constraint. An approach to guarantee closed loop sta-
bility is to choose E(xk) = 0, E = {0}, and ϕ(xk) = 0 [14], i.e., one obtains
the so called zero terminal state constraint

xk+N |k = 0 . (7)

If the optimal control problem (5) is feasible at the first time instant, all as-
sumptions of Theorem 1 are satisfied and closed loop stability is achieved.
The advantage of this method is the conceptual simplicity. The disadvantage
of the zero terminal constraint is that it makes the resulting optimal control
problem (5) in general difficult to solve and a long prediction horizon is needed
to obtain feasibility at the first time instant.

Terminal Region. Another approach, called dual mode model predictive con-
trol [17], is to choose E(xk) = 0, E = {xk ∈ R

n|xT
k Pxk ≤ α}, and

uk = ϕ(xk) = Kxk as a locally stabilizing linear state feedback. The positive
definite matrix P of the terminal region E and the linear feedback matrix K
are determined by a particular procedure in such a way that the assumptions
of Theorem 1 are satisfied [17]. The dual mode refers to two different con-
trollers that are applied in different regions of the state space depending on
the state being inside or outside the terminal region E . If the state is outside
the terminal region E , the model predictive controller is used to steer the state
inside the terminal region E . If the state is inside the terminal region E , the
linear feedback uk = Kxk is applied. Hence, closed loop stability is achieved
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by switching between the model predictive controller and the linear controller.
From a computational point of view, this approach is more attractive than the
zero terminal state constraint (7) since the terminal state is only required to
lie in a region around the origin. A drawback of this approach is the switching
between the model predictive controller and the linear controller which makes
the implementation complicated.

Terminal Cost and Terminal Region. In the so-called quasi infinite hori-
zon model predictive control scheme [6], the terminal cost E is chosen as
E(xk) = xT

k Pxk, the terminal region E as E = {xk ∈ R
n|xT

k Pxk ≤ α}, and
uk = ϕ(xk) = Kxk as a locally stabilizing linear state feedback. The terminal
cost E, the terminal region E , and the linear feedback uk = ϕ(xk) = Kxk

are calculated off-line by a procedure described in [6] so that the assumptions
of Theorem 1 are satisfied. The underlying idea of the quasi infinite horizon
model predictive control scheme is to approximate the infinite horizon opti-
mal control problem (1) by the terminal cost E. Due to this approximation it
can be shown that this scheme has a better performance in comparison with
the zero terminal constraint model predictive controller or the dual model
model predictive controller. Furthermore, the terminal region E of the quasi
infinite horizon model predictive controller is better suited for computational
purposes than a zero terminal state constraint.

Note that not all nonlinear model predictive control schemes with guaranteed
closed loop stability are reviewed. For a detailed and more rigorous treatment
of model predictive control schemes with guaranteed stability for discrete time
and continuous time systems, see e.g. [16] and the references quoted therein.
In summary, model predictive control is suitable to control linear and nonlin-
ear multivariable systems subject to state and input constraints. Furthermore,
closed loop stability can be guaranteed by adding, e.g., a terminal cost E or a
terminal region E to the finite horizon optimal control problem (2). The price
to pay in model predictive control is that one has to solve at each time instant
a finite horizon optimal control problem, i.e., in general a nonlinear and possi-
ble nonconvex optimization problem. Typically, specially tailored optimizers
[2, 8] are used to solve the optimization problem in nonlinear model predictive
control which enable to use this control strategy for practical control problems.
For discrete time polynomial systems, the resulting optimization problem is a
polynomial optimization problem if the objective function and the constraints
are polynomial functions. One possible solution approach to solve polynomial
optimization problems is to translate the original optimization problem to a
semidefinite program via the theory of moments [15] or the theory of sum of
squares polynomials [20]. This solution approach is in the following applied to
solve the finite horizon optimal control problem in nonlinear model predictive
control for discrete time polynomial systems. In the next section, a review of
sum of squares techniques and polynomial optimization is given and in Sect.
4 polynomial optimization is applied to nonlinear model predictive control.
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3 Sum of Squares Techniques

In this section, an introduction to the sum of squares decomposition of multi-
variate polynomials and polynomial optimization is given. The background of
the sum of squares decomposition is presented in Sect. 3.1. Furthermore, the
concept of polynomial optimization is introduced in Sect. 3.2. Finally, Sect.
3.3 gives an example to polynomial optimization.

3.1 Sum of Squares

The sum of squares decomposition is a method to check if a multivariate
polynomial can be decomposed into a sum of squares. Since a sum of squares
polynomial is always positive semidefinite, one can use the sum of squares de-
composition as a sufficient condition to check if a multivariate polynomial is
positive semidefinite. The question whether a polynomial in several variables
can be written as sum of squares has a long history and goes back to Hilbert
[12]. From a computational point of view, one can show that the general prob-
lem of checking if a polynomial is positive semidefinite is a NP-hard problem,
i.e., the problem is hard to solve. Today, questions about positive polynomials
are investigated in the field of real algebraic geometry. In the following, some
facts about sum of squares polynomials and some computational aspects of
the sum of squares decomposition are summarized. More details about sum
of squares decomposition and its application in control theory can be found
in [19, 29, 22].

Definition 1. A polynomial p of degree d = d1 + ...+dn, di ∈ N0 with real co-
efficients cd, i.e., p(x) =

∑
d1+...+dn≤d cdx

d1
1 ...x

dn
n , is a sum of squares (SOS)

if there exists a finite number of polynomials pi such that p can be written as

p(x) =
∑

i

p2
i (x) . (8)

Hilbert proved that not every positive semidefinite polynomial can be written
as a sum of squares. However, Artin’s result in 1927, which was the answer to
Hilbert’s 17th problem posed in 1900, states that every positive semidefinite
polynomial is a sum of squares of rational functions [22]. The next theorem,
which is central for computational purposes, gives the answer to the question,
when a polynomial is a sum of squares [7]:

Theorem 2. A polynomial p of degree 2d has a sum of squares decomposition
if and only if there exists a positive semidefinite matrix Q such that

p(x) = mT (x)Qm(x) , (9)

where m is the vector of all monomials in x1, . . . , xn of degree less or equal
to d, i.e., m(x) = [1, x1, x2, . . . , xn, x1x2, . . . , x

d
n]T . There exist

(
n+d

n

)
such

monomials.
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This representation theorem, which is based on the so called “Gram matrix”
method, tells that all sum of squares polynomials can be parameterized by
the set (convex cone) of positive semidefinite matrices. The next theorem [27],
which basically extends Artin’s result, gives a link between sum of squares
polynomials and positive definite polynomials.

Theorem 3. If p is a positive definite polynomial, then ‖x‖rp(x) is a sum of
squares polynomial for a sufficiently large integer r.

This theorem is helpful if positive definiteness of a polynomial must be checked
with the help of a sum of squares decomposition. Furthermore, it is often useful
and sufficient to check positive semidefiniteness of a polynomial p on a subset
in R

n constrained by the set of points {x ∈ R
n : p1(x) ≥ 0}, where p1 is a

polynomial. In the theory of quadratic forms, this is usually done via Finsler’s
lemma or the S-procedure [4]. An analogous type of argument does the same
for polynomials (cf. e.g. [18]):

Lemma 1. Let p1 be a polynomial. A polynomial p is positive semidefinite on
the set {x ∈ R

n : p1(x) ≥ 0}, if there exists a positive semidefinite polynomial
q such that p(x) − q(x)p1(x) is positive semidefinite.

It should be mentioned that there also exist representation theorems for
(strictly) positive polynomials on compact semialgebraic sets, i.e., compact
sets defined by polynomial inequalities [13, 22]. These representation theo-
rems [13, 22] play a decisive role in the polynomial optimization theory [15, 20]
which is outlined in Sect. 3.2.
However, what makes the above results especially appealing from a computa-
tional point of view is the fact that these results can be efficiently and reliably
solved on a computer, namely, with the help of semidefinite programming. In
particular, in [19], the gap between the Gram matrix method and semidefinite
programming was bridged by showing that the existence of a sum of squares
decomposition of a polynomial can be decided by solving a semidefinite pro-
gram. Semidefinite programming, which may be viewed as a generalization of
linear programming, is a convex optimization problem with a linear objective
function under linear matrix inequality constraints. Semidefinite programs
have very nice properties in optimization theory and practice [30, 5] and are
very successful in linear control design and combinatorial optimization [4].
Combining the sum of squares decomposition and semidefinite programming,
solutions for the following system of affine polynomial inequalities can be ob-
tained [19, 29]:

Nj∑
i=1

qi(x)pij(x) ≥ rj(x)

Nj∑
i=1

q̃i(x)p̃ij(x) = r̃j(x) ,

(10)
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where j = 1, . . . ,M , pij , p̃ij , rj , and r̃j are given polynomials and qi and
q̃i are unknown (to be determined) polynomials, for which the degrees have
to be specified. This system of polynomial equations and inequalities can be
solved by a sum of squares relaxation, namely by solving

Nj∑
i=1

qi(x)pij(x) − rj(x) = SOS

Nj∑
i=1

q̃i(x)p̃ij(x) − r̃j(x) = 0 ,

(11)

where SOS stands for an arbitrary sum of squares polynomial. If one would
like to enforce positive definiteness instead of semidefiniteness, e.g., p(x)q(x)
> 0, then this can be done for example via p(x)q(x)− r(x) = SOS, where r is
a positive definite polynomial, e.g. r(x) = εxTx, ε > 0. Note, that for example
with the freely available Matlab toolbox SOSTOOLS [21] the equations and
inequalities of type (11) can be easily solved.
In summary, it should be noted that the sum of squares decomposition is
a relaxed condition, i.e., a sufficient condition for positive semidefiniteness.
Hence there may exist solutions to the above polynomial system of equations
and inequalities, although no solution can be found by using the sum of squares
decomposition. Furthermore, the degrees of the unknown polynomials qij and
q̃ij must be specified a priori. In the next section, the sum of squares techniques
are applied to solve polynomial optimization problems.

3.2 Polynomial Optimization

In recent years, major advances in polynomial optimization have been made.
Two approaches based on semidefinite programming have been developed.
One approach uses the theory of moments [15] and the other approach the
theory of sum of squares [20, 28]. These methods are strongly related because
the theory of moments is, in some sense, dual to the theory of nonnegative
polynomials. Both approaches build a sequence of semidefinite programs of
increasing size. The optima of these semidefinite programs converge monoti-
cally to the global optimum for the original nonconvex polynomial optimiza-
tion problem. In the following, the basic idea of polynomial optimization via
the sum of squares approach is outlined. Consider the optimization problem

min
x∈K

p0(x) , (12)

where p0(x) ∈ R[x] and K = {x ∈ R
n : pi(x) ≤ 0, i = 1, . . . ,m} is a

compact set described by multivariate polynomial inequalities, i.e., pi(x) ∈
R[x], i = 1, . . . ,m. Furthermore, some pi satisfies, on its own, the condition
that {x ∈ R

n : pi(x) ≤ 0} is compact. Under these assumptions, a represen-
tation theorem [23] can be established as follows:
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Theorem 4. If the assumptions as stated above are satisfied, then any poly-
nomial p0 strictly positive on the set K can be written as

p0(x) = q0(x) −
m∑

i=1

qi(x)pi(x) , (13)

where qi, i = 0, . . . ,m, are all sum of squares polynomials.

Unfortunately, the degrees of the sum of squares polynomials qi, i = 0, . . . ,m,
are unknown and must be chosen sufficiently high. However, Theorem 4 plays
a central role since it allows to consider the following equivalent polynomial
optimization problem [20, 28]

max t

s.t. p0(x) − t+
m∑

i=1

qi(x)pi(x) ≥ 0, ∀x
(14)

where pi, i = 0, . . . ,m, are given polynomials and qi, i = 1, . . . ,m, are un-
known sum of squares polynomials. The basic idea of the optimization problem
(14) is shown in Fig. 1 for an unconstrained polynomial optimization prob-
lem in one variable. Instead of minimizing the polynomial p0 directly, t is
maximized while satisfying the inequality in (14).
Since the unknowns t, qi, i = 1, ..,m, enter affine in the polynomial opti-
mization problem (14), it can be solved using the sum of squares decompo-
sition of multivariate polynomials introduced in the previous subsection. If
the degrees of the sum of squares polynomials qi, i = 1, . . . ,m, have not been
chosen sufficiently high, then t is a lower bound for p�, where p� is the global
optimum of the original polynomial optimization problem (12). However, in-
creasing the degrees of the sum of squares polynomials qi, i = 1, . . . ,m, the
lower bound t converges arbitrarily close to p�. The price to pay for improving
the lower bound t by increasing the degrees of the sum of squares polynomi-
als is that the number of decision variables and the size of the semidefinite
program of the polynomial optimization problem (12) grow exponentially.
The theory of moments [15] relates to the theory of nonnegative polynomi-
als [20, 28] by considering the dual problem of (14). It can be shown that
the dual problem of (14) is the semidefinite program obtained by solving the

x

p0(x)

0x

p0(x)

0

t > t

x

p0(x)

0

t = t
t < t

Fig. 1. Basic idea of polynomial optimization
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original polynomial optimization problem (12) using the theory of moments.
What remains to be discussed is the detection of the global optimum and the
extraction of the optimal solution. In [11], a rank condition is proposed to de-
tect the global optimum. The extraction of the optimal solution is based on a
Cholesky decomposition and on an eigenvalue problem. For a more thorough
discussion of polynomial optimization, consult [11, 15, 20] and the references
quoted therein. Note, that with the freely available Matlab software toolbox
GloptiPoly [10] polynomial optimization problems of type (12) can be easily
solved. In the following, a small example is given to illustrate the possibili-
ties of polynomial optimization before applying polynomial optimization to
nonlinear model predictive control in Sect. 4.

3.3 Example

Consider the polynomial optimization problem

min
x1,x2

2x4
1 − 4x2

1 + x1 + x2
2 + 4

s.t. − 3
2
≤ x1 ≤ 3

2
, −3

2
≤ x2 ≤ 3

2
,

where the objective function p0(x) = 2x4
1−4x2

1 +x1 +x2
2 +4 has one local and

one global minimum as shown in Fig. 2. Using GloptiPoly [10] to solve the
semidefinite programming relaxations described above, the computed lower
bound is t = 0.9705 and the extracted solutions are x1 = −1.0575 and x2 = 0.
In this example, the lower bound t = 0.9705 is equal to the global minimum of
the original problem. This example illustrates that the global minimum of a

−2
−1

0
1

2

−2

0

2
0

2

4

6

8

10

12

x
1

x
2

p 0(x
)

Fig. 2. Nonconvex polynomial objective function p0
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nonconvex polynomial optimization problem can be efficiently computed via
semidefinite programming.

4 Sum of Squares in Nonlinear Model Predictive Control

In this section, sum of squares techniques and polynomial optimization are
applied to nonlinear model predictive control for the class of discrete time
polynomial systems. In Sect. 4.1 and Sect. 4.2, it is shown that the finite
horizon optimal control problem in nonlinear model predictive control can be
formulated as a polynomial optimization problem and can be solved with the
polynomial optimization techniques presented in the Sect. 3. Furthermore, the
applicability of polynomial optimization in nonlinear model predictive control
is shown in Sect. 4.3.

4.1 Polynomial Optimization Formulation of NMPC

In the following it is shown that the finite horizon optimal control problem
(5) in nonlinear model predictive control can be formulated as a polynomial
optimization problem for the class of discrete time polynomial systems. In the
following it is assumed that the system (3) is polynomial, i.e., f : R

n ×R
m →

R
n is a polynomial vector field and f(0, 0) = 0. Furthermore, the stage cost

F : R
n×R

m → R is assumed to be a polynomial map that satisfies F (0, 0) = 0.
The terminal penalty term E : R

n → R is assumed to be also a polynomial
map with E(0) = 0 and the terminal region E can be described by a polynomial
inequality. In order to formulate the finite horizon optimal control problem (5)
as a polynomial optimization problem, the predicted states xk+1|k, . . . , xk+N |k
must be computed from the future inputs uk|k, . . . , uk+N−1|k and the initial
condition xk. To write (5) in a compact form, the vector

ξ =
[
xk+1|k, xk+2|k, ... , xk+N |k

]T
(15)

for the predicted states is introduced. Iterating system (3) yields

ξ = H(ν, xk) (16)

with

H(ν, xk) =




h1(uk|k, xk)
h2(uk|k, uk+1|k, xk)

...
hN (uk|k, . . . , uk+N−1|k, xk)




=




f(xk, uk|k)
f(xk+1|k, uk+1|k)

...
f(xk+N−1|k, uk+N−1|k)
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and ν = [uk|k, . . . , uk+N−1|k]T . Note, that hi, i = 1, . . . , N , are multivariate
polynomial functions in ν for a fixed initial condition xk. Using (16), the cost
function (6) can be rewritten as

J(ν, xk) = F (xk, uk|k)
+ ...

+ F (hN−1(uk|k, . . . , uk+N−2|k, xk), uk+N−1|k)
+ E(hN (uk|k, . . . , uk+N−1|k, xk))
= p0(ν) .

(17)

Hence, J(ν, xk) is a multivariate polynomial function in ν for a fixed state xk,
i.e., p0(ν) ∈ R[ν]. Next, the constraints of the optimization problem (5) must
be expressed in terms of polynomial inequalities. For simplicity, suppose that
the constraints are given as

X := {xk ∈ R
n|xmin ≤ xk ≤ xmax}

U := {uk ∈ R
m|umin ≤ uk ≤ umax} ,

(18)

where xmin, xmax, umin, umax are constant vectors. Therefore, the constraints
can be written as

L

[
H(ν, xk)

1

]
≤ 0 ,

M

[
ν

1

]
≤ 0 ,

(19)

where

L =




I1 0 ... 0 −xmax

−I1 0 ... 0 xmin

0 I1 ... 0 −xmax

0 −I1 ... 0 xmin

...
... ...

...
...

0 0 ... I1 −xmax

0 0 ... −I1 xmin




, M =




I2 0 ... 0 −umax

−I2 0 ... 0 umin

0 I2 ... 0 −umax

0 −I2 ... 0 umin

...
... ...

...
...

0 0 ... I2 −umax

0 0 ... −I2 umin




,

and I1 and I2 are identity matrices of appropriate dimensions. Therefore,
(19) defines 2(n + m)N polynomial inequality constraints pi(ν) ∈ R[ν], i =
1, . . . , 2(n+m)N , for a fixed state xk. Combining (17), (19), and the fact that
the terminal region E is described by an additional polynomial inequality, e.g.,

p2(n+m)N+1(ν) ≤ 0 , (20)

one obtains the following theorem [25]:
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Theorem 5. The finite horizon optimal control problem (5) can be formulated
as a polynomial optimization problem of the form

min
ν∈K

p0(ν) (21)

for discrete time polynomial systems, if K = {ν ∈ R
m ·N : pi(ν) ≤ 0, i =

1, . . . , 2(n+m)N+1} is a compact set described by the multivariate polynomial
inequalities pi(ν) ∈ R[ν], i = 1, . . . , 2(n+m)N + 1.

4.2 Polynomial Optimization Formulation of NMPC for Implicit
Discrete Time Polynomial Systems

In the following it is briefly outlined that polynomial optimization can also
be applied to solve the finite horizon optimal control problem in nonlinear
model predictive control for implicit discrete time polynomial systems, i.e.,
for systems of the form

f(xk+1, xk, uk) = 0 . (22)

The basic idea in this case is to introduce the vector

W (ξ, ν) =




f(xk+1|k, xk, uk|k)
f(xk+2|k, xk+1|k, uk+1|k)
f(xk+3|k, xk+2|k, uk+2|k)

...
f(xk+N |k, xk+N−1|k, uk+N−1|k)



, (23)

where the variables ξ =
[
xk+1|k, xk+2|k, ... , xk+N |k

]T are considered now as
independent variables. Therefore, the cost function (6) can be rewritten as

J(ν, xk) = F (xk, uk|k)
+ ...

+ F (xk+N−1|k, uk+N−1|k)
+ E(xk+N |k)
= p0(ξ, ν) ,

(24)

where p0(ξ, ν) is a multivariate polynomial function in the variables ξ and ν
for a fixed state xk, i.e., p0(ξ, ν) ∈ R[ξ, ν]. In the same way one can proceed
writing the state and input constraints and the terminal region as polyno-
mial inequalities in ξ and ν. Therefore, one has 2(n + m)N + 1 polynomial
inequalities of the form

pi(ξ, ν) ≤ 0, i = 1, . . . , 2(n+m)N + 1 (25)
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with pi(ξ, ν) ∈ R[ξ, ν], i = 1, . . . , 2(n+m)N + 1, for a fixed state xk. Finally,
one has to restore the relation between xk+i|k and xk+j|k by introducing the
constraint

‖W (ξ, ν)‖2 = 0 , (26)

where ‖x‖ = (
∑n

i=1 x
2
i )

1
2 denotes the Euclidian norm of x ∈ R

n. Note, that
equality (26) can be rewritten as two polynomial inequalities of the form

p2(n+m)N+2(ξ, ν) = ‖W (ξ, ν)‖2 ≤ 0

p2(n+m)N+3(ξ, ν) = ‖W (ξ, ν)‖2 ≥ 0 .
(27)

Therefore, the finite horizon optimal control problem for implicit discrete time
polynomial systems can be solved via the polynomial optimization techniques
presented in Sect. 3. This result is summarized in the next theorem.

Theorem 6. The finite horizon optimal control problem (5) can be formulated
as a polynomial optimization problem of the form

min
(ξ,ν)∈K

p0(ξ, ν) (28)

for implicit discrete time polynomial systems of the form (22), if K = {(ξ, ν) ∈
R

n ·N × R
m ·N : pi(ξ, ν) ≤ 0, i = 1, . . . , 2(n + m)N + 3} is a compact set

described by the multivariate polynomial inequalities pi(ξ, ν) ∈ R[ξ, ν], i =
1, . . . , 2(n+m)N + 3.

Due to Theorem 5 and Theorem 6, the polynomial optimization techniques
presented in Sect. 3 can be applied to nonlinear model predictive control for
discrete time polynomial systems. In the next section, the applicability of sum
of squares techniques in nonlinear model predictive control is demonstrated
on a small example.

4.3 Example

In the following, polynomial optimization is used to solve the finite horizon
optimal control problem in nonlinear model predictive control for discrete
time polynomial systems as stated in Theorem 5. Consider the stabilization
problem of the second order polynomial system [6] described by the difference
equations

xk+1 = f(xk, uk) ,

where

xk = [x(1)
k , x

(2)
k ]T ,
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f(xk, uk) =


 x

(1)
k + 0.1x(2)

k + 0.05(1 + x
(1)
k )uk

0.1x(1)
k + x

(2)
k + 0.05(1 − 4x(2)

k )uk


 .

This system is unstable and its linearization around the origin is stabilizable
but not controllable. Furthermore, the input has to satisfy the constraint U :=
{uk ∈ R| − 2 ≤ uk ≤ 2}. To stabilize the system, a nonlinear model predictive
controller is designed based on the finite horizon optimal control problem (5)
with a quadratic stage cost

F (xk, uk) = xT
k

[
0.5 0
0 0.5

]
xk + 0.1u2

k ,

a prediction and control horizon of the length N = 4, a terminal penalty term
E(xk) = xT

k Pxk, and a terminal region E = {xk ∈ R
2|xT

k Pxk ≤ α}. Using
the quasi infinite horizon method [1, 6] to ensure stability of the closed loop
system, the matrix P and the parameter α are chosen as

P =

[
4.5 1.8
1.8 4.5

]
, α = 0.3 .

The resulting polynomial MPC finite horizon optimal control problem was
solved using GloptiPoly [10]. Figures 3 and 4 show the initial response of the
closed loop system with an initial condition x0 = [−0.3,−0.9]T . It can be
seen that the closed loop trajectories converge to the origin without violat-
ing the input constraints. Hence, this example demonstrates that in principle
the polynomial optimization techniques based on semidefinite programming
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can be used to solve the finite horizon optimal control problem in nonlinear
model predictive control for discrete time polynomial systems. Finally, some
computational properties of the resulting polynomial optimization problem
are summarized in Table 1. This table shows some optimization parameters
of the polynomial optimization problem obtained using Matlab 6.5 and Glop-
tiPoly on a Linux PC with a 3 GHz Intel Pentium 4 processor and 1.5 GB
RAM. From Table 1 it can be seen that for a prediction horizon N greater
than N = 4 the size of the semidefinite program (SDP) increases strongly. The
reason for this increase is that the problem size of polynomial optimization
problems growths exponentially with the number of variables [11, 15]. There-
fore, these techniques can be only applied to small and medium size problems.
In order to make these techniques applicable to larger polynomial optimization
problems and thus to model predictive control for real world application, it is
necessary to develop numerical methods which exploit the system structure,
e.g., sparsity and symmetry of polynomial optimization problems.
Summarizing, the key advantage of applying sum of squares techniques in
nonlinear model predictive control is that a global minimum of a possible
nonconvex finite horizon optimal control problem is obtained via semidefinite
programming. This property can avoid unacceptable performance degradation

Table 1. Optimization parameters

Prediction horizon N = 3 N = 4 N = 5

Number of variables 3 4 5

SDP decision variables 455 495 3003

Relaxation 6 4 5
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in nonlinear model predictive control. The main disadvantage of this approach
is that it is computationally very demanding using currently available algo-
rithms and therefore only applicable to small and medium size problems.

5 Conclusion

In this paper it was shown that sum of squares techniques and polynomial
optimization can be applied to solve finite horizon optimal control problems
in model predictive control for the class of discrete time polynomial control
systems. Polynomial optimization problems can be solved via semidefinite
programming based on the theory of sum of squares polynomials and on the
theory of moments. The key advantage of this approach is that a global min-
imum of a possible nonconvex optimal control problem in model predictive
control is obtained via semidefinite programming. This property can avoid
unacceptable performance degradation in model predictive control. The ap-
plicability of polynomial optimization in nonlinear model predictive control
was demonstrated on an example. However, this example also shows that a
straightforword application of sum of squares techniques in model predictive
control is only applicable to small and medium size polynomial optimiza-
tion problems, because polynomial optimization problems are computation-
ally very demanding using currently available algorithms.
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Summary. Stability of biped walking is an important characteristic of legged loco-
motion. Whereas clinical investigations often relate increased variability to decreased
stability, there are only few studies examining stability aspects directly. On the other
hand, various papers from the field of robotics are dedicated to the question: how
can the stability of legged locomotor systems be quantified? Particularly, when it
comes to realizing fast motions in robots, the question of maintaining dynamic sta-
bility is of utmost importance. The current paper presents a theoretical comparison
of several measures for dynamic stability – namely Floquet multipliers and Local Di-
vergence Exponents (LDE). The sensitivity of these parameters to changes in speed
of human treadmill locomotion is investigated. Experimental results show that two
different types of stability with respect to speed dependence seem to exist. Short
term LDE and Floquet multipliers consider the stability over a period of one stride,
which seems to be optimal at intermediate walking speeds. Long term LDE quan-
tify stability of movement trajectories over multiple strides. This type of stability
decreases with speed and may be one reason for changing gaits from walking to
running at a certain speed value.

1 Introduction

Stability of biped walking is an important characteristic of legged locomotion
[1]. Studies which investigate this issue from a clinical point of view mainly
target the question: how is an upright gait maintained in the presence of inter-
nal and external perturbations [2, 3, 4]?. Particularly, the effect of macroscopic
perturbations challenging the musculoskeletal system’s capabilities of balance
control is studied. The measures being used for determining the degree of
stability in this context are commonly based on the vertical projection of the
center of mass onto the base of support [5].

When analyzing steady-state locomotion in the absence of external large
scale perturbations, a different notion of stability comes into play. Here, the
question is: how stably does the movement system reproduce the trajectories
of the state-variables from one cycle of motion to the other? This issue can be
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investigated by using tools from the theory of nonlinear dynamical systems like
Floquet multipliers [6] and Lyapunov exponents [7, 8]. Both of these measures
quantify the effect of microscopic perturbations on the movement trajectories.
Microscopic perturbations arise from extrinsic circumstances like irregular
surfaces as well as from internal sources like inaccuracies during movement
generation. Analyzing the impact of such microscopic perturbations during
movement generation is essential for a deeper understanding of neuromuscular
control in the context of nonlinear dynamical system theory [9].

The present study investigates dynamic stability of treadmill walking in
healthy subjects with special consideration of the influence of walking speed.
In particular, for the first time a comparison of two similar measures of dy-
namic stability – Floquet multipliers and Local Divergence Exponents – for
this type of movement is undertaken.

2 Methods

The following subsections briefly review the mathematical basis of the mea-
sures of dynamic stability used here and the experimental setup used for data
acquisition. Specifically, an adaption of the calculation of Floquet-Multipliers
to treadmill walking and the method used for the estimation of Lyapunov
exponents are explained.

2.1 Dynamic Stability Measures

Modified Floquet-Multipliers

Let γ be a periodic orbit of some flow Φt in �n arising from a nonlinear flow
f(x). We then first take a local cross section Σ ⊂ �n of dimension n-1. Σ
defines a hypersurface which needs not to be planar but has to be chosen
such that the flow is everywhere transverse to it [10]. Further on, only those
points where the Φt intersects Σ are considered (“Poincaré map”). Thereby
it is assumed that the oscillation period Tp is fixed. The Floquet-Multipliers
represent a measure of how the intersecting points vary from one period of
oscillation to the next.

For application of Floquet multipliers to gait analysis one starts from a
discrete state space description of the human movement system [11]:

x(k) = [q1(k), . . . , qS(k), q̇1(k), . . . , q̇S(k)]T (1)

For investigating dynamic stability of gait, possible state variables q and q̇ are
primarily the joint angles and the trajectories of selected points on the body
surface. The number of state variables S depends on the measurement system
at hand and the desired degree of differentiation of the model. Applying a
Poincaré mapping to equation (1) leads to the following formulation:
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xn+1 = Pp(xn) (2)

Pp represents a nonlinear vector function, which maps the state space vector
x at point in time p of the oscillation period n to the state space vector
at the same point in time during period (n + 1) (p is arbitrary, yet fixed
during the oscillation period). In the following only strictly periodic solutions
of equation (2) are considered:

x∗
p = Pp(x∗

p) (3)

For investigating the stability of the equilibrium point x∗ against infinitesimal
perturbations δx, Pp is linearized around x∗ as follows:

Jp =
∂Pp

∂x
(x∗

p) (4)

δxn+1 = Jpδxn (5)

Here Jp is the Jacobian (also called Floquet or monodromy) matrix [10].
Due to the linearization, now, instead of the nonlinear vector function Pp the
linear matrix Jp needs to be estimated from the measurement data (see below).
Stability of the equilibrium point x∗

p of the linear system (5) is determined
through the Eigenvalues βp

s , s = 1, . . . , 2S of Jp. The Eigenvalues βp
s are also

called Floquet Multipliers. x∗
p is stable if |βp

s | < 1 for all s. In case of stability
the Eigenvalue with the maximum absolute value |βp

max| dominates the system
behavior.

Floquet multipliers were introduced into the field of gait analysis in [12]

and were applied to the investigation of dynamic stability of post-polio gait
[11, 6]. In these studies, overground walking was investigated and in par-
ticular the transition into the dynamical equilibrium was analyzed. For this
purpose, the first four steps starting from stand were analyzed under the as-
sumption that dynamic equilibrium was achieved after the fourth step. In
this case, Floquet multipliers quantify stabilization of gait after a very large
perturbation (the resting position).

During treadmill walking however, dynamic stability against infinitesimal
deviations from dynamic equilibrium is of interest. Therefore, a different de-
finition of the dynamic equilibrium needs to be assumed. In this paper, this
equilibrium is defined as the mean value of the state space vector x at point
in time p over all strides of a particular trial:

x∗p,s =
1
N

N−1∑
n=0

xs(p+ n ·Tp), s = 1, . . . , 2S (6)

Deviations from x∗
p for all N strides are calculated by:

δxn = x(p+ n ·Tp) − x∗
p, n = 0, . . . , N − 1 (7)

The elements Jp,ns of the Jacobian Jp now are estimated from a system of
linear equations:
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δxn+1 =
2S∑
s=1

Jp,ns · δxns, n = 1, . . . , N − 1 (8)

The N − 1 equations of system (8) describe the linear evolution of the devia-
tions from stride n to stride n + 1. For this reason, the minimum number of
strides that need to be measured is determined by the dimension of the state
space model. A necessary condition for a unique solution of equation (8) is 1:

N ≥ 2S + 1 (9)

This relation is not mentioned explicitly in [6], however, condition (9) is ful-
filled implicitly by the experimental protocol (the first 3 strides from 16 trials
are accumulated to a measurement series of 48 strides, the 4th stride is the
equilibrium [6]).

In theory, the Floquet multipliers are independent from the point in time
p when the Poincaré map is being calculated. In experimental practice how-
ever, there are nevertheless differences when considering different points in
time during the gait cycle. For this reason the authors in [6] use the times
of maximum knee flexion, because these, according to the authors, lead to
the most consistent results. These differences result from slight errors in the
detection of the points in time from experimental data but also from the fact
human gait is not strictly periodic.

Therefore, in the current paper a modified version of the Floquet multipli-
ers is introduced which is based on the dynamic equilibrium during treadmill
walking as defined in equation (3). The model of the movement system consists
of the three sagittal joint angles for the left and the right leg and the corre-
sponding temporal derivatives (dimension of model 2S = 12). The derivatives
at points in time k are estimated as follows:

q̇(k) = (q(k + 1) − q(k − 1))/2 (10)

In order to eliminate the dependence on the point in time when the Poincaré
maps are calculated, the Floquet multipliers were modified by taking the
average values of the Floquet multipliers over all K points of the normalized
gait cycle (αstr):

αstr = 1/K
K∑

p=1

βp
max (11)

Local Divergence Exponents

Lyapunov exponents quantify the development of trajectories in state space
after an initial infinitesimal perturbation. They are a measure for the sensitiv-
ity of a system to such perturbations and express the degree of predictability
1 A sufficient condition is that the determinant of the system (8) must be different

from 0.
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Fig. 1. Development of initial perturbations with the system dynamics and its
quantification through local divergence exponents (adapted from [13])

of a dynamical system (see Fig. 1). For a complete description of the effects
of a perturbation, the system development needs to be described in all direc-
tions of the reconstructed state space yielding multiple Lyapunov exponents.
The number of these exponents is equal to the dimension of the embedding
space and altogether they set up the so called Lyapunov spectrum. In prac-
tice, calculation of the full spectrum is difficult and analysis is restricted to
the largest Lyapunov exponent λmax, which dominates the behavior of the
system. In this paper, the algorithm described in [14] using the modification
from [13] is applied. In contrast to other implementations [15], this algorithm
uses all the points of a time series and thus allows for reliable estimates for
short measurements. In order to eliminate dynamical correlations, a Theiler
window of one stride duration was applied during reconstruction of the state
space [13, 16].

The maximum finite time Lyapunov exponent λmax is defined as

d(t) = d0e
λmaxt (12)

where d(t) is the mean distance between neighboring trajectories at time t.
d0 is the initial distance between the reference points xj and their nearest
neighbors xk. The nearest neighbor is calculated as follows [14]:

d0 = min
xk

‖xj − xk‖, j, k = 1, . . . ,M , j �= k (13)

Here, M is the number of reference trajectories. This definition of the Lya-
punov exponent λmax is valid only in the dual limit t → ∞ and d0 → 0. For
practical application with finite sampling times, the λmax are approximated
by their finite estimated values λ∗, which are calculated as follows [13, 14]:

ln dj(i) ≈ λ∗ · i ·∆t+ ln d0 (14)

In equation (14) dj(i) designates the jth pair of nearest neighbors after i
discrete time steps, which is an expression for local divergence. Since Lyapunov
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Fig. 2. Local divergence for the left ankle flexion angle of one subject at different
walking speeds (vTM = 0.2, . . . , 1.4 m/s )

exponents are a measure of the mean changes of d0 over time, the dj(i) are
averaged over all M reference trajectories [14]:

d(i) =
1
∆t

〈ln dj(i)〉 (15)

Here, 〈 · 〉 denotes the mean over all values of j. The mean local divergence
d(i) over the number of strides for the left ankle joint angle of one subject
is depicted in Fig. 2. The line coding in the graph corresponds to seven in-
dividual walking speeds between 0.2 und 1.4m/s. In order to allow for direct
comparison of the curves belonging to different speeds, the x-axis was nor-
malized to the duration of one stride as described in [17]. The oscillations
during the first stride are caused by differences in the density of points when
following trajectories in the different directions of the state space.

λ∗ is derived from these curves [13, 14]. In order to distinguish the es-
timated values λ∗ from the theoretically defined Lyapunov exponents λmax,
they are also called local divergence exponents [13]. The estimation depends
on selecting a range with constant slope in the curves in Fig. 2 which is difficult
to realize with sufficient accuracy in experimental data [14].

Therefore, an approach first described by [13] was used here: two different
time scales were analyzed, where short term LDE (denoted as λST ) were
calculated over the first stride and long term LDE (λLT ) were computed for
the strides 4–10 (Fig. 3).

Using these procedures, local scaling exponents were calculated for a series
of measurements obtained from an experimental protocol described in the next
subsection.
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Theoretical Comparison of the Two Measures

Both, the LDE as well as the Floquet multipliers represent geometrical mea-
sures, which quantify the development of two neighboring trajectories with
the system dynamics. Regarding their application to the investigation of dy-
namic stability of human gait [13, 18, 6, 12, 11], however, there are several
important differences to note:

Peridocity: Floquet multipliers are based on the assumption of a strictly
periodical system, whose attractor is analyzed at specific points in time
[12]. The LDE do not require the system to be periodic.

Linearization: Floquet multipliers are the Eigenvalues of a linearized trans-
formation matrix describing the system dynamics between selected peri-
odic points in time. The LDE do not rely on any kind of linearization.

Modelling: Floquet multipliers are based on an a priori model of the human
movement system [6], which determines the dimension of the state space.
The embedding dimension which is used for calculating the LDE is de-
rived from experimental data during further analysis. Therefore, Floquet
multipliers inherently describe dynamic stability of the entire movement
system as it is captured by the model. The LDE on the other hand quan-
tify stability of the individual joint angle trajectory.

2.2 Experimental Protocol of Gait Data Acquisition

Using a commercial motion analysis system (Motion Analysis, Santa Rosa,
CA) kinematic data from 10 subjects with no prior history of gait disorders
were acquired. Three-dimensional trajectories of retroflective markers placed
on anatomical landmarks as prescribed in [19] were recorded and transformed
into joint angles [20]. For each subject, seven trials of 90 s each with fixed
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Fig. 4. Experimental setup for acquisition of gait data during treadmill walking

speeds ranging from vTM = 0.2, 0.4, . . . , 1.4m/s were recorded. Additionally,
three trials at slow, medium and fast walking speeds were performed. In order
to avoid systematic errors, the order of speed was randomized. Whereas there
are reference data for walking overground [21, 22, 23], here, for the first time a
normative base of kinematic movement data is provided for treadmill walking.
Parts of these results were published in [24].

3 Results

3.1 Sagittal Plane Kinematics

The mean joint angles for the seven fixed walking speeds are displayed in
Fig. 5. Assuming symmetry between the left and right side of the body, the
data from both sides were averaged to yield one single time series per subject
and speed. The most prominent changes with increasing speed are the increas-
ing range of motion and a phase shift of the extreme values in the curves. This
corresponds to the results described in [23]. On the basis of these joint an-
gle curves, the two stability measures introduced in the previous section were
calculated.

3.2 Local Dynamic Stability

Floquet-Multipliers

In Fig. 6 the modified Floquet multipliers αstr as defined in the previous
section for all trials are plotted over walking speed (black squares). The solid
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line delineates the quadratic regression curve over the range of speeds covered
by the measurements. The regression explains 24% of variance in the raw
data (r2 = 0.24). Hence, the relationship is not very strong, yet nevertheless
significant (p < 0.05) indicating a certain dependence of this stability measure
on walking speed with a weak local minimum at intermediate speeds.

Local Divergence Exponents

The course of local dynamic stability over walking speed for the sagittal joint
angles of the lower limbs is depicted in Fig. 7. The long term LDE (λLT ) are
shown in the left column, the short term values (λST ) are displayed in the
right column. Quadratic regression curves are shown; the r2-values give the
proportion of explained variance in the data. The individual graphs contain
the accumulated values for both the left and the right side joint angles.

In general, the regression curves indicate that the two estimates of local
dynamic stability depend on walking speed. However, there appears to exist
a significant difference in speed dependence on the two time scales: the λST

express a minimum at intermediate speeds for the hip joint and no clear
tendency in the two remaining joints. The λLT , which describe the long term
stability, continuously increase towards larger speed values.
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Fig. 9. Speed dependence of long term stability expressed in normal walking

In order to further investigate these different tendencies and to allow for
comparison with the results obtained in [25], the local divergence exponents
here were also calculated for the time derivatives of the sacral marker position
on both time scales. The main reason for using these velocity data instead of
the position is to eliminate drift effects in the absolute marker positions during
walking on the treadmill [25].

The course of the regression curves in the Figs. 8 and 9 confirms the
differences in speed dependence for the two different time scales: whereas the
speed dependence of short term stability expresses a distinct minimum at
intermediate speeds (≈ 1.3m/s), the long term values show a clear increase
towards higher speeds. The percentage of variance explained in both cases
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reaches almost 50%. Since the basic dynamic properties of the system are in
principal not dependent on the measurement modalities chosen for analysis,
this supports the idea of two different effects of speed on stability of walking.

3.3 Experimental Comparison of the Two Measures

The two measures for dynamic stability applied here are both based on a
geometrical point of view with respect to the system dynamics. However,
as shown in Sect. 2.1, there are several differences in the way the measures
are defined. The fact that they both aim at quantifying dynamic stability of
walking calls for an analysis of the relation between their values.

Table 1 gives a list of the linear correlations between the modified Floquet
multipliers introduced in Sect. 2.1 and the Local Divergence exponents. The
individual cells of the table contain the correlation coefficients coded as gray
values. Darker gray cells contain large positive correlations, lighter gray cells
display negative values. Statistically significant coefficients are printed in bold
font, non significant correlations stand in parentheses.

Table 1. Linear Correlations between the different measures for dynamic stability

Leaving out λSTKnee there are essentially three blocks containing corre-
lations with different signs: the features x1 to x5 are weakly positively corre-
lated with each other and negatively with the features x6 to x9. The latter
are strongly correlated to each other. The absolute value of the correlation
coefficients increases significantly from the first to the third block.

4 Discussion

The results presented in the previous section comprise two measures of dy-
namic stability of walking. Theoretical comparison of the two measures as
described in Sect. 2 illustrates differences which arise from the mathematical
definitions of the two measures. However, the difference in speed dependance
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shown in Sect. 3 demonstrates that these theoretical differences are not fully
replicated by the experimental application. Whereas theory suggests group-
ing the measures according two their mathematical definition – Floquet versus
Lyapunov –, the experiments performed here emphasize the importance of the
time scale on which the measures are based.

This finding is supported by the data listed in Table 1 as follows: since
block x1 – x5 mainly consists of the λST which are calculated over the first
stride, it makes sense to assume that this block indicates short term stability.
αstr is positively correlated with λSTHip and λSTV Sacral V el. This coin-
cides well with the fact that this measure is based on the assumption of a
strictly periodic system (see Sect. 2.1) and consequently measures short term
stability as well. The second block which consists of the λLT describes some
sort of long term stability that is captured over several strides. The differences
in modeling between αstr and λ seem to make no difference here. From this,
it may be argued that capturing the full kinematics of the entire movement
system may be not necessary to describe dynamic stability of walking.

Both the measures describing short term stability of periodic walking mo-
tion over one stride (αstr and λST ) exhibit a tendency towards maximal sta-
bility at intermediate speeds, whereas long term stability seems to decrease
continuously towards faster speeds2. The minima in αstr and λST,Hip agree
with the results from [26] where a maximum in stability for the head marker
trajectory at the preferred walking speed was found. The average self-selected
speed of the subjects analyzed here was around 1.02m/s which does not co-
incide with the location of the minimum in λST for the hip (≈ 1.4m/s). This
together with the fact that the quadratic speed dependency is only weak cor-
responds well with the conclusion of the authors in [26] that (short term) sta-
bility is only one criterion among others determining the self selected walking
speed.

The significant increase in λLT with walking speed indicates increasing
instability during faster gaits. This corresponds well with the interpretation
that the local divergence exponents quantify the capability of the locomotor
system to compensate for slight irregularities from stride to stride. This capa-
bility is increasingly challenged at higher gait speeds which leads to decreased
stability of motion. The highest speed values adopted by the subjects in this
study are close to the walk-run-transition (mean value vTM = 1.89±0.08m/s,
compared e.g. to vTM = 2.17m/s in [27]). According to the theory of non-
linear dynamical systems, this transition can be interpreted as switching to
a different system attractor. Therefore, following the reasoning illustrated in
[28], it can be hypothesized that this increasing instability is an important
factor in changing gaits [28, 29, 27].

In contradiction to the results obtained here, the authors in [25] found
a continuous increase on both time scales. The authors investigated the
derivative with respect to time of the three dimensional trajectory of a

2 Larger values of λ indicate decreasing stability.
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marker in the area of the sacral vertebral column. A potential reason for
the difference in the results is the smaller range of speeds investigated there
(vpref , vpref ± 20%, vpref ± 40%).

The correlation between λLT and walking speed which was shown here also
supports the results described in [7]. The authors demonstrated that older
subjects show significantly higher values in their local divergence exponents
compared to a younger reference group. This was interpreted as an indicator
of increased instability of walking with age. At the same time, the older group
showed significantly lower walking speeds, a fact that was not examined in
more detail by the authors. The dependence of the local divergence exponents
on walking speed, which was found here, underlines the explanation found by
the authors that, in fact, aging leads to increased walking instability. This
increase is most probably not only a consequence of the difference in walking
speed [7].

An interesting question is why the speed dependence of the sacral marker
velocities is much more pronounced than that of the joint angles. There are two
possible explanations for this: on the one hand, the differences could be related
to the way the stability measures are determined. There are several marker
trajectories connected in a nonlinear way during the the calculation of the
joint angles, which might lead to slight nonstationarities. On the other hand,
it can be hypothesized that there are different control mechanisms involved
in controlling the position/velocity of the sacral marker in comparison to the
joint angles.

The fact that virtually all values of λ have positive values and as such
indicate chaos does not necessarily mean that, gait itself is chaotic [13]. As
pointed out in [30] stochastic noise can indicate chaos where in fact there
is none. A sound investigation of this question can be undertaken using the
method of surrogate data [30].

5 Conclusion

The results presented here complement data from previous studies [25]. Two
different mechanisms regarding dynamic stability of locomotion seem to exist:
the minimum in λST at intermediate speed values suggests that short term
stability may serve as an optimization criterion in the locomotor system. The
increased local dynamic stability (λLT ) towards slower speeds may explain
the tendency towards slower speeds in many gait pathologies. On the other
hand, the increasing instability at higher speeds may be one reason for the
transition from walking to running.
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Summary. The spring loaded inverted pendulum model (SLIP) has been shown to
accurately model sagittal plane locomotion for a variety of legged animals. Tuned
appropriately, the model exhibits passively stable periodic gaits using either fixed leg
touchdown angle or swing-leg retraction protocols. In this work, we investigate the
relevance of the model in insect locomotion and develop a simple feedback control
law to enlarge the basin of stability and produce stable periodic gaits for both
the point mass and rigid body models. Control is applied once per stance phase
through appropriate choice of the leg touchdown angle. The control law is unique in
that stabilization is achieved solely through direct observation of the leg angle and
body orientation, rather than through feedback of system positions, velocities, and
orientation.

1 Introduction

The spring loaded inverted pendulum (SLIP) [1, 2, 3, 4] has emerged as a
template of locomotion dynamics in the vertical plane for a large number of
animals. In the model, the combination of legs animals use during each stance
phase is idealized as a single effective leg represented by an elastic spring. Ex-
perimental research on animal locomotion has shown that running animals use
multiple legs as one [5], and that the resulting body motion is well represented
by this simple template [1, 2, 6, 7]. For suitable model parameters, both the
rigid body and point mass models produce self-stabilizing periodic gaits, with
or without the inclusion of simple feedforward control methodologies [8, 9, 10].

Much of the previous research on the SLIP model has utilized a fixed angle
leg reset policy, where the leg touchdown angle remains constant for each
stance phase. While this leg touchdown protocol produces stable periodic
gaits for the point mass and rigid body models, the basin of stability for
the rigid body model remains quite small and stability is only achieved for
suitably tuned model parameters [8]. Additionally, use of a similar fixed angle
leg reset protocol in a three dimensional spatial SLIP model produces only
unstable periodic gaits [11]. In this work, we investigate the performance of
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the two dimensional SLIP model in modeling insect locomotion and, looking
forward to developing simple stabilizing controllers for the spatial SLIP model,
construct a simple feedback control law to expand the basin of stability for
periodic orbits of both the point mass and rigid body SLIP models.

The paper is structured as follows. In Sect. 2, we briefly review the rigid
body vertical plane SLIP formulation of [8]. While we primarily focus on the
point mass model, extensions to motions of the rigid body model are also
considered in Sect. 4.2. In Sect. 3, we investigate the stability of periodic gaits
of the SLIP model with model parameters similar to those of the cockroach
Blaberus discoidalis. We find that the fixed angle leg reset policy utilized
in previous works produces predominantly unstable periodic gaits for these
model parameters. These results, in conjunction with the stability results of
the spatial SLIP model for a similar leg touchdown protocol, prompt an in-
vestigation into the stability properties of alternate leg touchdown protocols.
Specifically, we begin by analyzing a leg touchdown protocol that places the
next leg down at the same angle, relative to the inertial frame, that the pre-
vious leg was lifted. Neglecting gravity during the stance phase, we show that
such a protocol produces neutrally stable period two as well as period one
orbits. Since one of the eigenvalues of the period one orbits is negative one,
continuity arguments suggest that leg placement protocols between these ex-
tremes will produce stable periodic gaits. We therefore introduce a simple,
adaptive leg touchdown angle control law in Sect. 4.1 that connects both this
leg touchdown protocol as well as the fixed angle leg reset policy, and show
that the control law improves the stability properties of periodic gaits. We
briefly consider the stability of periodic orbits of the rigid body model under
a similar control law in Sect. 4.2, and numerically show that while inclusion
of this control law produces stable gaits, periodic gaits are only necessarily
achieved by incorporating delay feedback control into the control law.

2 Review of SLIP Model Formulation

The SLIP model, illustrated in Fig. 1, consists of a rigid body of mass m and
moment of inertia I. A pair of legs are attached at a frictionless pin joint P
in the body, displaced a distance d from the center of mass, where d can take
either sign. While the SLIP model has primarily been used in investigating
the motions of larger animals, in this work we examine its relevance in insect
locomotion, in particular the locomotion of the cockroach Blaberus discoidalis.
Cockroaches run in an alternating tripod gait, with three legs down during
each stance phase. Experiments have shown that the forces produced by these
legs during the stance phase are well represented by a single effective leg. Since
the mass of the legs of the insect comprise less than 6% of the total mass, we
therefore model the tripod of legs by a single, massless effective leg represented
by a linear, elastic spring of nominal length l.
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Fig. 1. SLIP rigid body model formulation, illustrating coordinate systems and
relevant quantities at (a) leg lift-off and (b) leg touchdown

If both legs are attached at the same point P in the body, a full stride
consists of a stance and flight phase, since left and right stance phases are
indistinguishable. The stance phase begins when the leg, extended at its nom-
inal length l, touches the ground at an angle βTD

n with respect to the inertial
frame. Superscripts of TD and LO denote values at touchdown and lift-off
respectively, whereas subscripts identify the specific stance phase. The foot
placement remains fixed during the stance phase and is represented by a mo-
ment free pin joint. Under the influence of gravity and its own momentum, the
body moves forward in the y direction during the stance phase, compressing
and extending the elastic leg. When the leg returns to its nominal length, it is
lifted from an angle βLO

n with respect to the inertial frame and a flight phase
ensues. Simple ballistic dynamics govern the flight phase, and the next stance
phase begins when the leg touches the ground, placed at an angle βTD

n+1 with
respect to the inertial frame. While feedforward control is required to place
each leg in anticipation of the next stance phase, no energy is required to
move the leg to the prescribed position since the leg has no mass. As a result,
the system is passive and energy is globally conserved, since no impacts or
impulses occur.

The equations of motion for the stance phase are derived in [8] and sum-
marized here, implemented with a linear spring leg:

mζ̈ = mζψ̇2 −mg cos(ψ) − k(1 − l

η
)(ζ + d cos(θ + ψ))

2mζζ̇ψ̇ +mζ2ψ̈ = mg sin(ψ) + k(1 − l

η
)dζ sin(θ + ψ) (1)

Iθ̈ = k(1 − l

η
)dζ sin(θ + ψ)

where η, ζ, ψ, θ, and k denote the leg length, distance from the foot placement
to the center of mass, angle ζ makes with the vertical inertial axis, body rota-
tion, and spring stiffness respectively. The flight phase dynamics are governed
by simple ballistic dynamics which may be integrated to yield
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y(t) = yLO + ẏLOt, z(t) = zLO + żLOt− 1
2
gt2, θ(t) = θLO + θ̇LOt . (2)

The composition of the stance and flight phase dynamics result in a
piecewise-holonomic system. While systems with piecewise-holonomic con-
straints can display asymptotic stability [12], they are often best described
in terms of partial asympototic stability. In these cases, the corresponding pe-
riodic motions typically exhibit some neutral eigendirections (with eigenvalue
= 0 or Floquet multiplier = 1) often associated with conserved quantities or
symmetries such as energy conservation or rotational invariance. As in previ-
ous analyses for the conservative horizontal and vertical plane models [8, 13],
perturbations to stable gaits in the direction of the eigenvector(s) of these
conserved quantities or symmetries do not grow nor decay, but result in the
attainment of a new gait.

3 Periodic Gaits, Stability and Control

Many prior SLIP model analyses focus on gait properties for a fixed angle
leg reset model, where the leg is reset to its original touchdown angle at
the beginning of each stance phase. For model parameter ranges consistent
with larger animals, these studies illustrate the ability of the model to pro-
duce passively stable gaits. While we initially examine gaits produced for a
fixed angle leg reset model with parameters set to those typical of the roach
Blaberus discoidalis, we subsequently investigate simple feedback control laws
that prescribe the leg touchdown angle and enhance stability.

In all cases, simulations are developed and performed using the Runge-
Kutta integrator ode45 available in Matlab. As in previous work [8, 14, 15],
we determine periodic orbits and their stability through use of a Poincaré map
[16], with a Poincaré section defined at the instant of leg touchdown. Fixed
points of the mapping represent periodic gaits in the continuous system, and
are identified by a Newton-Raphson iteration. As illustrated in Fig. 1, we
simplify the stability analysis through the definition of our Poincaré map in
terms of variables of a new coordinate frame (v, δ, θ, θ̇, β), where v is the center
of mass velocity, δ is the velocity heading angle measured clockwise from the
inertial horizontal axis, θ is the body rotation and θ̇ is the angular velocity.

Stability of fixed points of the mapping is determined by examining the
eigenvalues of the linearization of the Poincaré map about the fixed point.
If any eigenvalue is greater than unity the periodic orbit is unstable and if
all non-unity eigenvalues remain within the unit circle, the periodic orbit is
stable.

3.1 Fixed Angle Leg Reset Gaits

We begin by investigating the point mass SLIP model with parameters similar
to those of the cockroach Blaberus discoidalis: spring stiffness (k) of 20 N/m,
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Fig. 2. Point mass SLIP gait families (vTD
n , δTD

n ) for βTD
n = 1.1−1.3. Gait stability

is indicated by dotted and solid lines for unstable and stable gaits respectively. Model
parameters used in calculating the gaits are similar to those of Blaberus discoidalis,
as described in the text. Gait families for increasing βTD

n are obtained as one moves
from right to left in the plot

leg length (l) of 0.015 m, body mass (m) of 0.0025 kg, and a leg touchdown
angle (βTD

n ) between 1.1− 1.3 radians. These parameter values are chosen to
produce reasonable leg compressions (less than 50%) during the stance phase,
as well as to match experimental stride length and frequency results [17].
While the theoretical results neglect gravity during the stance phase so that
angular momentum is conserved, gravity is included in both stance and flight
phases in all simulations conducted in this work. In this section, we consider
only the point mass SLIP model with d = 0; extensions to the rigid body
model with d �= 0 and an adaptive control law are presented in Sect. 4.2.

Using Newton-Raphson routines in conjunction with the model simulation,
we obtain a one parameter family of periodic gaits, depending upon the body
touchdown velocity, v. The gait family is initially obtained for a nominal
value of βTD

n = 1.20, which best matches the experimental stride length and
frequency results. Gait families for values of βTD

n = 1.1−1.3 are subsequently
obtained to see if changes in gait stability occur for these alternate values,
even though stride length and frequency results do not necessarily match
those observed experimentally. As illustrated in Fig. 2, almost all periodic
gaits obtained over this range of leg touchdown angles are unstable. A small
range of stable periodic gaits exist for leg touchdown values between 1.1−1.11,
although the minimum touchdown speeds obtained in these instances exceed
the preferred operating speed of 0.25 m/s of Blaberus discoidalis.
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3.2 Alternate Leg Angle Touchdown Protocols

The stability properties of the SLIP model with parameters similar to those
of Blaberus discoidalis, in conjunction with the instability results of the fixed
angle leg reset policy in the three dimensional spatial SLIP model, prompt an
investigation into alternate leg touchdown protocols. A problem with the fixed
angle leg reset policy is the propensity for the model to trip. During each flight
phase, the body must attain a height sufficient to place the next leg down at
the constant touchdown angle. Many initial conditions produce gaits that do
not satisfy this condition, leading to gaps in the mapping where no periodic
gaits can exist, as found in [8]. A simple means of eliminating these gaps is to
place the next leg down at the previous leg liftoff angle, βTD

n+1 = βLO
n . Even

in the absence of a flight phase, a model utilizing this leg touchdown protocol
on a level surface will not stumble, although the forward velocity may be
insufficient to compress the elastic spring and move the body forwards past
the foot placement point.

Properties of Period Two Gaits with βT D
n+1 = βLO

n

Implementing a leg touchdown protocol where the new leg touchdown angle
equals the previous leg lift-off angle primarily produces asymmetric period
two gaits, βTD

n+2 = βTD
n �= βTD

n+1, although period one gaits also exist, due to
the symmetry of leg touchdown and lift-off angles in such gaits, βTD

n = βLO
n .

We construct a Poincaré map, through the use of conservation laws, to deter-
mine necessary conditions for periodic orbits, as well as stability properties
of those orbits. Analytically, as in previous studies [11, 8], we assume that
leg forces dominate gravity forces during the stance phase. As in [8], we use
a mixed approximation in computing the stance map, where we concurrently
neglect the effect of gravity during stance to retain conservation of angular
momentum, but retain the effect of gravity in computing the velocity mapping
to enforce energy conservation. The variations in the leg angle swept during
stance, ∆ψ, therefore reduce to those examined in the lateral leg spring model
[14, 13], and the analyses conducted therein apply.

We compute the touchdown velocity mapping directly from energy conser-
vation, with the zero potential energy level defined at the initial touchdown
height as

m(vTD
n )2

2
=
m(vTD

n+2)
2

2
+mgl(sin(βTD

n+2) − sin(βTD
n )) (3)

vTD
n+2 =

√
(vTD

n )2 + 2gl(sin(βTD
n ) − sin(βTD

n+2)) . (4)

We compute the velocity heading angle mapping using conservation of linear
momentum, conservation of angular momentum and conservation of energy.
Since the next leg touchdown angle equals the previous leg lift-off angle in
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this protocol, conservation of energy between the lift-off and touchdown con-
ditions necessarily yields vTD

n+1 = vLO
n and vTD

n+2 = vLO
n+1. Conservation of linear

momentum during the flight phase

vTD
n+1 cos(δTD

n+1) = vLO
n cos(δLO

n ) (5)

vTD
n+2 cos(δTD

n+2) = vLO
n+1 cos(δLO

n+1) (6)

therefore yields δTD
n+1 = −δLO

n and δTD
n+2 = −δLO

n+1. Since gravity is neglected
during stance, angular momentum is conserved during each stance phase

ml2vTD
n sin(βTD

n − δTD
n ) = ml2vLO

n sin(βLO
n + δLO

n ) (7)

ml2vTD
n+1 sin(βTD

n+1 − δTD
n+1) = ml2vLO

n+1 sin(βLO
n+1 + δLO

n+1) . (8)

Utilizing the relationships for the velocities, velocity heading angles and leg
touchdown protocol developed above, however, we find that the magnitude of
angular momentum remains constant across all stance phases for this protocol

ml2vLO
n sin(βLO

n + δLO
n ) = ml2vTD

n+1 sin(βTD
n+1 − δTD

n+1) (9)

ml2vLO
n+1 sin(βLO

n+1 + δLO
n+1) = ml2vTD

n+2 sin(βTD
n+2 − δTD

n+2) . (10)

As a result, we find

ml2vTD
n+2 sin(βTD

n+2 − δTD
n+2) = ml2vTD

n sin(βTD
n − δTD

n ) (11)

such that the velocity heading angle map can be expressed as

δTD
n+2 = βTD

n+2 − sin−1(
vTD

n

vTD
n+2

sin(βTD
n − δTD

n )) . (12)

Stance phase geometry and the leg touchdown protocol produce a relationship
for the leg touchdown angle mapping as

βTD
n+2 = βLO

n+1 = π −∆ψ2 − βTD
n+1

= π −∆ψ2 − (π −∆ψ1 − βTD
n )

= ∆ψ1 −∆ψ2 + βTD
n (13)

where ∆ψ1 and ∆ψ2 represent the leg angle swept during the first and sec-
ond stance phase respectively. The full period two Poincaré map is therefore
comprised by equations (4), (12), and (13), and a periodic orbit for this map-
ping requires ∆ψ1 = ∆ψ2. Ignoring gravity, the formulas for each ∆ψ can be
constructed from conservation of angular momentum and energy during the
stance phase, as in [14], to yield
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∆ψ1 =

l∫

ζb1

2vTD
n l sin(βTD

n − δTD
n )dζ

ζ
√

((vTD
n )2 − k/m(ζ − l)2)ζ2 − l2(vTD

n )2 sin2(βTD
n − δTD

n )
(14)

∆ψ2 =

l∫

ζb2

2vTD
n+1l sin(βTD

n+1 − δTD
n+1)dζ

ζ
√

(a− k/m(ζ − l)2)ζ2 − l2(vTD
n+1)2 sin2(βTD

n+1 − δTD
n+1)

(15)

a = (vTD
n+1)

2 + 2gl(sin(βTD
n+1) − sin(βTD

n )) (16)

where ζb1, ζb2 are the largest positive roots of the equation(s)

ml2(vTD
n )2 sin2(βTD

n − δTD
n ) + k(ζb1 − l)2ζ2

b1 −mζ2
b1(v

TD
n )2 = 0 (17)

ml2(vTD
n+1)

2 sin2(βTD
n+1 − δTD

n+1) + k(ζb2 − l)2ζ2
b2

mζ2
b2[(v

TD
n+1)2 + 2gl(sin(βTD

n+1) − sin(βTD
n ))]

= 1 . (18)

Here, ζb1, ζb2 represent the distance between the center of mass and the foot
placement point when ζ̇ = 0. For the point mass system, in which ζ = η, this
represents the state of maximal spring compression. For consistency, gravity is
included in the energy calculation at leg touchdown, but not during the stance
phase, in the formulation of ∆ψ2. Conservation of energy between the start
of the first and second stance phases yields a = (vTD

n )2, and from equations
(7–9), we find vTD

n+1 sin(βTD
n+1−δTD

n+1) = vTD
n sin(βTD

n −δTD
n ). Substituting these

values into the expression for ∆ψ2 in (15) shows that the integrands of (14-
15) are equivalent. Similar arguments can be used to show that equations (17)
and (18) are equal, resulting in ζb2 = ζb1. By ignoring gravity during stance,
we find that ∆ψ1 necessarily equals ∆ψ2 such that the period two mapping
reduces to

vTD
n+2 = vTD

n (19)

δTD
n+2 = δTD

n (20)

βTD
n+2 = βTD

n . (21)

Therefore, under these assumptions, this leg touchdown protocol necessarily
produces period two gaits. The eigenvalues of the mapping are all unity, indi-
cating that these gaits are neutrally stable. Numerical simulations verify this
result for a large number of gaits, even when gravity is included during the
stance phase. The limited effect of gravity during the stance phase observed
here is restricted to this particular leg touchdown protocol and model. Specif-
ically, this leg touchdown protocol ensures, through conservation of energy
and conservation of linear momentum, that orbits of the system are reflection-
symmetric about the midpoint of the flight phase. As a result, while angular
momentum is not conserved during either stance phase, the net angular im-
pulse delivered by gravity during the first stance phase is counteracted by an
equal and opposite net angular impulse during the second stance phase. For
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other leg touchdown protocols, especially those relating to period one orbits,
gravity can have a significant effect on orbits and orbital stability, as discussed
in [8, 18].

Properties of Period one Gaits with βT D
n+1 = βLO

n

Neutrally stable period one gaits, with βTD
n+1 = βTD

n = βLO
n , exist as a subset

of the family of period two gaits analyzed previously. The eigenvalues of the
period two mapping in this case represent the square of each eigenvalue in
the period one map, suggesting that eigenvalues in the associated period one
mapping are ±1. We pursue a stability analysis in this section to determine
if one of the eigenvalues is negative one for this leg touchdown protocol. If
an eigenvalue is negative one, then continuity suggests that a leg touchdown
protocol exists between the extremes of βTD

n+1 = βTD
n and βTD

n+1 = βLO
n that

produces stable periodic gaits.
The period one Poincaré map for the leg touchdown protocol βTD

n+1 = βLO
n

is a composition of the stance and flight phase maps. The full stride map is
constructed similarly to the period two map, using conservation of energy,
conservation of linear momentum and conservation of angular momentum to
yield

vTD
n+1 =

√
(vTD

n )2 + 2gl(sin(βTD
n ) − sin(∆ψ + βTD

n )) (22)

δTD
n+1 = π −∆ψ − 2βTD

n + δTD
n (23)

βTD
n+1 = π −∆ψ − βTD

n . (24)

As in [8], consistency requires that we neglect gravity in computing the liftoff
velocity in the heading angle map, since gravity is neglected in the compu-
tation of the leg sweep angle, ∆ψ, during stance. Neglecting gravity in this
computation yields vLO

n = vTD
n , resulting in the heading angle map presented

above. A period one orbit therefore requires ∆ψ = π − 2βTD
n , which implies

through the stance phase geometry that βLO
n = βTD

n . We construct the Jaco-
bian of the Poincaré map evaluated at the fixed point as




1 + b ∂∆ψ
∂vT D

n
b ∂∆ψ

∂δT D
n

b(2 + ∂∆ψ
∂βT D

n
)

− ∂∆ψ
∂vT D

n
1 − ∂∆ψ

∂δT D
n

−(2 + ∂∆ψ
∂βT D

n
)

− ∂∆ψ
∂vT D

n
− ∂∆ψ

∂δT D
n

−1 − ∂∆ψ
∂βT D

n




(25)

where

b =
gl cos(βTD

n )
vTD

n

. (26)

We calculate the eigenvalues of the Jacobian, evaluated at the fixed point, in
the Appendix as
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λ1,2 = 1 (27)

λ3 = −1 − ∂∆ψ

∂βTD
n

− ∂∆ψ

∂δTD
n

+ b
∂∆ψ

∂vTD
n

(28)

where ∆ψ is computed as in equation (14).
While ignoring gravity during the stance phase enables∆ψ to be computed

analytically, as in [14], it results in a complex expression in terms of incom-
plete elliptic integrals. As in [13], we instead utilize the Schwind-Koditschek
approximation [18] to compute ∆ψ and the associated derivatives. Using this
approximation, the computation of ∆ψ can be approximated by

∆ψ =
2lvTD

n sin(βTD
n − δTD

n )(l − ζb)

ζ̂

√
((vTD

n )2 − k/m(ζ̂ − l)2)ζ̂2 − l2(vTD
n )2 sin2(βTD

n − δTD
n )

(29)

ζ̂ =
3ζb + l

4
. (30)

While straightforward, computing the derivatives required in the eigenvalue
expression is lengthy and left to the Appendix. Using the fixed points com-
puted for the gait family with βTD

n = 1.2, we numerically compute the third
eigenvalue using equation (28) and the relationships for the derivatives de-
tailed in the Appendix. This computation reveals that the third eigenvalue
has a maximum deviation of 10% from −1 across all the gaits of the gait fam-
ily. Purely numerical computation of the Jacobian and associated eigenvalues
for each gait reveal that the third eigenvalue is equal to −1 in each case. The
difference between the numerical results and our analytical approximation re-
sults from neglecting gravity during stance as well as the approximation used
for the computation of ∆ψ and the associated derivatives. However, taken
together, these results show that periodic gaits utilizing this leg touchdown
protocol are neutrally stable, with one eigenvalue equal to negative one.

4 An Adaptive Control Law

The results of the analyses for the period two and period one orbits under the
leg touchdown protocol βTD

n+1 = βLO
n are used to guide the construction of an

adaptive control law for period one orbits.

4.1 Control of the Point Mass SLIP Model

We begin by deriving a general period one Poincaré map with varying leg
touchdown angle, using conservation of energy, conservation of linear momen-
tum during the flight phase, and conservation of angular momentum during
the stance phase as
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vTD
n+1 =

√
(vTD

n )2 + 2gl(sin(βTD
n ) − sin(βTD

n+1)) (31)

cos(δTD
n+1) =

√
(vTD

n )2 + 2gl(sin(βTD
n ) − sin(βLO

n ))
(vTD

n )2 + 2gl(sin(βTD
n ) − sin(βTD

n+1))
cos(g(· · · )) (32)

βTD
n+1 = f(βTD

n , βLO
n , vTD

n , δTD
n ) (33)

where

g(βTD
n , vTD

n , δTD
n ) = βLO

n + sin−1(
vTD

n

vLO
n

sin(δTD
n − βTD

n )) (34)

βLO
n = π −∆ψ − βTD

n (35)

vLO
n =

√
(vTD

n )2 + 2gl(sin(βTD
n ) − sin(βLO

n )) . (36)

While a period one orbit of the mapping must satisfy βTD
n+1 = βTD

n = βLO
n

and ∆ψ = π − 2βTD
n , the stability of an orbit depends upon the leg touch-

down protocol utilized in response to perturbations from the periodic orbit.
Using the fixed angle leg reset policy (βTD

n+1 = βTD
n ) with model parameters

similar to those of Blaberus discoidalis primarily produces unstable gaits with
a single eigenvalue greater than unity, whereas using the leg touchdown pro-
tocol βTD

n+1 = βLO
n necessarily produces neutrally stable periodic gaits with

an eigenvalue of −1. Continuity therefore suggests that the stability of the
periodic gait should vary continuously for leg placement protocols between
these two extremes. An adaptive control law that incorporates both of these
leg touchdown protocols and satisfies the leg angle symmetry condition for a
periodic orbit is given by

βTD
n+1 = βLO

n + c(βTD
n − βLO

n ) (37)

where c is an arbitrary constant. Since gait symmetry requires βTD
n = βLO

n

for a periodic gait, c only changes the stability of a gait, since a periodic gait
remains periodic for any value of c. In particular, we expect that the unstable
gaits observed in the SLIP model will stabilize as c is decreased from unity
(the fixed angle leg reset policy, βTD

n = βLO
n ), since the unstable eigenvalue

must enter the unit circle and tend towards −1 as c tends towards zero (the
βTD

n+1 = βLO
n protocol).

We investigate the stability properties of periodic gaits utilizing this feed-
back control law using numerically computed periodic orbits and eigenvalues,
with model parameters set to values similar to those of Blaberus discoidalis.
We begin by analyzing the effect changing c has on the eigenvalues of a repre-
sentative gait family, as illustrated in Fig. 3. As illustrated in the second panel,
decreasing c from unity shifts the non-unity eigenvalue curve downwards, sta-
bilizing an increasing number of gaits until almost all gaits are stabilized for
c = 0.1. We note, however, that as c decreases, some gaits, while still stable,
will be relatively less stable as the eigenvalue determining stability tends to-
wards negative one. This is illustrated in the third panel for a single orbit,
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Fig. 3. (a) SLIP periodic gait family and stability for β = 1.2, with other para-
meters set to those of Blaberus discoidalis, as described in the text (b) Gait family
eigenvalues for c = 1, 0.7, 0.5, 0.3, 0.1, 0, with curves moving downwards as c de-
creases. (c) Eigenvalue variation as c varies from 1 to 0 for the periodic gait (*)
identified in (a)

denoted with a * in the first panel, where we observe that an almost linear
eigenvalue variation occurs with changes in c. As c decreases from unity, the
unstable gait becomes less unstable, stabilizes for c < .46, and becomes more
stable until c reaches 0.23, at which point the eigenvalue begins to grow in
magnitude as it approaches −1 at c = 0. As c passes through zero, we find
that the eigenvalue passes through −1, indicating a flip bifurcation. Therefore,
for c < 0, we find that the period one orbit once again becomes unstable.

We illustrate the performance of the control law, for c = 0.3, in Fig. 4.
While a fixed angle leg reset policy is incapable of producing a stable periodic
orbit with these model parameters, we see that the inclusion of this simple
control law leads to stabilization to a periodic orbit within several stance
phases. How quickly a new stable gait is obtained depends upon how close
the eigenvalue is to zero, which depends upon c and the model parameters.
We note that variations in βTD utilized in stabilizing the orbit remain quite
small.

It is important to clarify the definition of asymptotic stability that is
being utilized in this context. Since energy conservation and translational
invariance naturally produce unity eigenvalues, we apply the definition of
asymptotic stability used by Coleman et al. [19] and Coleman and Holmes
[20]. In this less restrictive definition of asymptotic stability, a periodic orbit
is asymptotically stable if perturbations result in the convergence to a nearby
periodic gait. Perturbations to a periodic gait for our system and control result
in the attainment of a new, stable gait, due to the partial asymptotic stability
of these gaits and the coupling of motions introduced through the inclusion
of the control law.

Since the model remains conservative under this control law, we also illus-
trate the changes in gait stability for a constant energy surface, as illustrated
in Fig. 5. The gait family illustrated therein is determined by choosing an en-
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Fig. 4. Stabilization of the SLIP model to a periodic gait for c = 0.3, with parame-
ters are set to values similar to the cockroach Blaberus discoidalis. Plus signs denote
the start and end of the stance phase and stars denote the start of the stance phase

ergy value and varying βTD
n , thereby implicitly determining vTD

n , and finding
the associated δTD

n that determines a periodic orbit by a Newton-Raphson it-
eration. The gaits for this constant energy represent the periodic orbits which
the model can settle on, assuming no perturbations occur that change the
energy of the system. As c decreases, we see that an increasing number of
gaits stabilize, until all gaits are stable at c = 0.1. To be clear, however, the
definition of asymptotic stability utilized in this work means that perturba-
tions to a particular periodic orbit that do not result in a change in energy
do result in the state asymptotically converging to a nearby periodic orbit of
the gait family. Obviously, perturbations to a conservative system that result
in a change in the total system energy necessarily result in the convergence
to a new periodic gait that belongs to a different gait family. Perturbations
that would typically be encountered in practice would tend to fall into this
latter category rather than the former. In fact, Altendorfer [21] notes that
the small range of touchdown speeds evidenced for a constant energy surface
necessitates changes in the total system energy if the controlled system is to
exhibit a useful range of touchdown velocities.

Achieving asymptotic stability in the more traditional sense to perturba-
tions within the energy surface (i.e. returning to the original periodic orbit)
requires a measure of knowledge of the periodic orbit that we wish to stabilize.
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Fig. 5. Periodic gaits and stability for the SLIP model as a function of c, for
a constant energy surface corresponding to an insect running at 0.25 m/s at a
height of .014 m. All other parameters are similar to those of Blaberus discoidalis, as
described in the text. (a) Periodic gaits for c = 0.0− 1.0, with dotted and solid lines
denoting unstable and stable periodic gaits respectively (b) Eigenvalue variation for
the periodic gaits of panel (a)

The fixed angle leg reset gaits that exhibit this property for larger animals
accomplish this naturally since the leg touchdown protocol defines a desired
leg touchdown angle and therefore a desired touchdown velocity, assuming a
constant energy. We note that we have constructed a control law similar in
structure and content to that presented in this work which includes a depen-
dence on a desired touchdown angle, βTD

des . This alternate control law produces
asymptotically stable periodic gaits in the more traditional sense, as explained
above. The performance of this alternate control law will be investigated in
detail in a future work.

Finally, returning to the original gait family plot of Fig. 2, we illustrate
how this control law enlarges the basin of attraction, as illustrated in Fig. 6.
As c decreases, an increasing number of periodic gaits on all gait family curves
stabilize. Considering that perturbations to an orbit will typically occur trans-
verse to the constant energy surface, this control law therefore enables the
model to successfully recover from a large range of perturbations. As a result,
implementing this control expands the stability basin of the SLIP model.

4.2 Control of the Rigid Body SLIP Model

Displacing the leg attachment point from the center of mass in the SLIP model
couples the translational and rotational dynamics and introduces pitching.
Use of the same control law formulation, with leg angles defined in the iner-
tial frame, is examined briefly in this section. Preliminary simulations of the
rigid body SLIP model suggest that the control law implementation stabilizes
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Fig. 6. SLIP gait families for βTD
n = 1.1−1.3 for (a) c = 0.7 (b) c = 0.5 (c) c = 0.3

and (d) c = 0.1. Gait stability is indicated by dotted and solid lines for unstable and
stable gaits respectively. Model parameters used in calculating the gaits are similar
to those of Blaberus discoidalis, as described in the text

the system, but does not necessarily produce period one gaits, since the quasi-
periodic gaits observed in [8] also appear, as illustrated in Fig. 7. However,
the recurrent nature of quasi-periodic orbits enables the use of chaos con-
trol methods to enforce stabilization to period one gaits. Specifically, a delay
feedback controller [22] is implemented to enforce stabilization to period one
orbits. Delay feedback control incorporates the difference between the value
of a state variable at one instant and one period delayed, such that the con-
trol effect vanishes when the periodic orbit is attained. In our system, delay
feedback control is implemented by including a dependence in the control law
on the pitch angle as follows

βTD
n+1 = βLO

n + c(βTD
n − βLO

n ) + c2(θLO
n − θLO

n−1) . (38)

The effect of the control law and the control law with delay feedback included
is illustrated in Figs. 7 and 8. In both cases, the rigid body SLIP model is
simulated from the same set of initial conditions (v = 0.25, δ = 0.2, θ = 0, θ̇ =
−0.2). Figure 7 illustrates that while the inclusion of the leg angle control does
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Fig. 7. Rigid body SLIP simulation with the standard leg angle feedback control
implemented, with d = 0.001, c = 0.1, I = 1.86 × 10−7 and initial conditions as
specified in the text. Model parameters used in calculating the gaits are similar to
those of Blaberus discoidalis, as described in the text. Plus signs (+) denote the
start and end of each stance phase, whereas stars (*) denote the start of each stance
phase

stabilize the system, the resulting orbit is quasi-periodic rather than period
one. While period one gaits may be obtained through the use of this control
scheme, they are not necessarily achieved. Conversely, Fig. 8 illustrates the
effect of the control law with delay feedback control included. As illustrated,
the system not only stabilizes, but stabilizes to a period one orbit. Simulations
initiated from a wide range of initial conditions provide similar results. As in
previous analyses, the translational and rotational coupling present in the
equations of motion, as well as in the control law, lead to the attainment of a
new gait in response to perturbations. While further investigation is required
to quantify the effects of these control laws on the stability of the rigid body
SLIP model, these preliminary results suggest that the control laws presented
here will expand the very small basin of attraction identified for this model
in previous studies [8].
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Fig. 8. Rigid body SLIP simulation with delayed feedback control, with d = 0.001,
c = 0.1, c2 = 1.25, I = 1.86 × 10−7 and initial conditions as specified in the text.
Model parameters used in calculating the gaits are similar to those of Blaberus
discoidalis, as described in the text. Plus signs (+) denote the start and end of each
stance phase, whereas stars (*) denote the start of each stance phase

5 Conclusion

In this work, we investigate the applicability of the SLIP model to insect lo-
comotion, specifically that of the cockroach Blaberus discoidalis. We find that
unlike previous results obtained for the SLIP model when applied to larger
animals, periodic gaits produced for these model parameters remain largely
unstable over a wide range of leg touchdown angles. This, in conjunction with
results indicating that a fixed angle leg reset policy employed in a spatial SLIP
model produces only unstable gaits, prompts an investigation into alternate
leg touchdown protocols and their effects on gait stability. In particular, we
show that a leg angle touchdown protocol that places the next leg down at
the previous leg lift-off angle, βTD

n+1 = βLO
n , necessarily produces neutrally sta-

ble period two gaits, and is capable of producing neutrally stable period one
gaits with an eigenvalue equal to negative one. Continuity arguments between
this leg touchdown protocol and the fixed angle leg reset protocol are used to
develop a feedback control law based on inertial leg touchdown angles that
stabilizes these unstable periodic gaits. Numerically computed gait families



378 J. Schmitt

verify that lowering the parameter c in this control law increases the number
of stable periodic gaits, therefore expanding the basin of stability. Implement-
ing the same control law in a rigid body SLIP formulation also produces stable
gaits, but not necessarily periodic gaits, since quasi-periodic gaits also appear.
Utilizing the pitch angle as delay feedback control in the control law forces
stabilization to period one orbits.

The control laws developed in this work are unique in that they: a) do not
require knowledge of pre-existing periodic orbits or linearization about those
orbits to achieve control b) require relatively simple feedback measurements
rather than full state feedback for implementation c) apply control once per
stance phase rather than continuously during the stance phase and d) can
adapt to perturbations by changing to a different stable periodic gait that
is more suitable to the new environment. Qualitatively, it appears that the
effectiveness of the control law results from implicit information about the
system angular momentum that is present in a reading of the leg lift-off angle.
Quantitative exploration of this hypothesis will be conducted in future work.
Additionally, it appears that these control laws may also have applicability in
both the horizontal plane and spatial SLIP models. Preliminary simulations
utilizing two control laws specifying the leg placement angles of a point mass
spatial SLIP model appear to, at least for some parameter ranges, produce
stable periodic gaits. We plan to investigate these applications further in later
works.
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Appendix

The eigenvalues of the period one Poincaré map are determined from det(λI−
DP ), where I is the identity matrix and DP is the Jacobian matrix of (25).
Evaluating the determinant and simplifying yields

( λ −1 − b
∂∆ψ

∂vTD
n

)(λ2 + (
∂∆ψ

∂βTD
n

+
∂∆ψ

∂δTD
n

)λ− 1 − ∂∆ψ

∂βTD
n

− ∂∆ψ

∂δTD
n

) +

( λ −1)b
∂∆ψ

∂vTD
n

∂∆ψ

∂δTD
n

+ (λ− 1)(2 +
∂∆ψ

∂βTD
n

)b
∂∆ψ

∂vTD
n

= 0 . (A-1)

Factoring a (λ− 1) out of all terms yields
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( λ −1)((λ− 1 − b
∂∆ψ

∂vTD
n

)(λ+ 1 +
∂∆ψ

∂βTD
n

+
∂∆ψ

∂δTD
n

) +

b
∂∆ψ

∂δTD
n

∂∆ψ

∂vTD
n

+ 2b
∂∆ψ

∂vTD
n

+ b
∂∆ψ

∂βTD
n

∂∆ψ

∂vTD
n

) = 0 . (A-2)

Expanding further and simplifying yields

(λ− 1)2(λ+ 1 +
∂∆ψ

∂βTD
n

+
∂∆ψ

∂δTD
n

− b
∂∆ψ

∂vTD
n

) = 0 (A-3)

which yields the expression for the eigenvalues in (27–28).
From (28), it is clear that we need to calculate ∂∆ψ

∂βT D
n
, ∂∆ψ

∂vT D
n
, ∂∆ψ

∂δT D
n

, in order
to determine the value for the relevant eigenvalue that determines stability.
The approximation of ∆ψ presented in (29–30) can be simplified further as

∆ψ =
p

q
(A-4)

p = 128lvTD
n sin(βTD

n − δTD
n )(l − ζb) (A-5)

q = (3ζb + l)
√
s (A-6)

s = (16(vTD
n )2 − 9k

m
(ζb − l)2)(3ζb + l)2 (A-7)

− 256l2(vTD
n )2 sin2(βTD

n − δTD
n ) .

Since ∆ψ is a function of ζb, in evaluating the required partial derivatives, we
need ∂ζb

∂vT D
n
, ∂ζb

∂δT D
n
, ∂ζb

∂βT D
n

, all of which may be determined implicitly from (17)
as

∂ζb
∂vTD

n

=
mvTD

n (ζ2
b − l2 sin2(βTD

n − δTD
n ))

ζb(−m(vTD
n )2 + k(2ζb − l)(ζb − l))

(A-8)
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It has long been the dream to build robots which could walk and run with
ease. To date, the stance phase of walking robots has been characterized by
the use of either straight, rigid legs, as is the case of passive walkers, or by the
use of articulated, kinematically-driven legs. In contrast, the design of most
hopping or running robots is based on compliant legs which exhibit quite
natural behavior during locomotion.

Here we ask to what extent spring-like leg behavior could be useful in
unifying locomotion models for walking and running. In so doing, we com-
bine biomechanical experimental and computer simulation approaches with
theoretical considerations and simple legged robots.

We have found that (1) walking and running result from mechanical sta-
bility which corresponds to the experimentally observed gait dynamics, (2)
running is a subset of stable movement patterns for high system energies,
and (3) walking with knee flexion during stance can result from passive leg
mechanics with elastic structures spanning the joints.

1 Introduction

What are the common design and control principles of legged locomotion?
On the one hand, we must consider the internal leg function: the number

of leg segments, the arrangements of muscles, ligaments and other soft tissue
within the leg and the appropriate muscle activation patterns in order to
generate a desired leg behavior.

On the other hand, we need to integrate the leg into an encompassing con-
trol system – the global leg function – such that we can observe a “complete”
movement pattern including legs and the supported body. This means that
if we have simple, biologically meaningful models describing the leg behavior
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Fig. 1. Leg function is divided into global and internal leg functions. Global leg
function describes the leg control based on a given internal leg function. The internal
leg function addresses issues of design and control of a segmented leg itself. To
identify control strategies we analyze the mechanical stability of selected leg designs
at different levels of leg function

in a desired movement task, we can use these leg templates (i.e. simplified
models, [7]) to derive the required leg control strategy.

A very simple description of the leg behavior is provided by the spring-
mass model. Here, the force generated by the leg during the stance phase is
assumed to be proportional to the amount of leg compression, i.e. the more
the leg shortens the larger the corresponding leg force. Despite its simplicity
this model is a very powerful tool to predict movement strategies or jumping
performance [22]. It can help to better understand the role of leg segmentation
or muscle function during fast movements. Furthermore, spring-like leg oper-
ation seems to ease required control action even in highly dynamic situations
with reduced sensory perception.

In legged locomotion we observe a sudden change in leg behavior between
walking and running. This gait transition occurs in most animals at about
the same dimensionless speed at Froude number equal to approximately 0.4,
which is calculated using the equation v2/gl (where v is the forward speed, g
is the gravitational acceleration, and l is the leg length, [14, 26, 8, 18]).

This suggests the possibility that common, underlying mechanical princi-
ples may exist for legged systems. If this is true, mechanical design method-
ologies could be derived which would yield systems equally capable of walking
and running gaits, depending on the selected system condition (e.g. system
energy) or movement strategy.

In order to change gait, either the mechanical system could change its
behavior in an internal and self-organized fashion or the overlaying control
strategy could initiate the gait transition. This might point to distinct move-
ment primitives (i.e. programs) which could be used to select gaits. In order
to control a given mechanical system we could apply simple feedback control
approaches (e.g. a PD controller). In this paper we rather suggest a different
approach. First, we build simplified mechanical models either on a computer
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(i.e. simulation models) or as physical models (i.e. robots) and explore their
behavior for a variety of reasonable initial conditions and model parameters.
Second, we compare the predictions of different proposed models with exper-
iments of human or animal locomotion. Finally, we investigate the influence
of the model parameters on the movement performance and try to estimate
the best control strategy in order to improve system stability with the lowest
possible sensory effort.

In this paper we describe a series of simple models of internal and global
leg functions and compare them with the behavior of two experimental legged
robots. We will start with two models addressing internal leg behavior, a three-
segment model with elastic joints and a two-segment model with an extensor
muscle. Afterwards, we present models describing the global leg function in
spring-mass running and walking. Finally, we explore the behavior of the
simple legged robots, imitating walking and running.

2 Internal Segmentation of the Leg

In order to operate in a spring-like fashion, a segmented leg must be able to
compress and extend stably. With two segments, a leg would have no problem
doing so as long as the internal leg joint is operating in a spring-like fashion
as well. Leg compression directly translates into joint flexion, which in turn
results in higher joint torque and consequently, in increased leg force. The only
problem could be in the generation of linear leg spring behavior as observed in
human and animal locomotion. Therefore, the joint spring should be nonlinear
in terms of the torque-angle characteristics, i.e. being more compliant at low
compressions and being stiffer at larger joint flexion.

If we extend the two-segment leg by one segment we obtain a three-segment
leg similar to the human leg, with foot, shank and thigh. Now, leg compres-
sion can result in different outcomes. Let us assume both internal leg joints
(e.g. ankle and knee) to be equally stiff and let us further assume completely
symmetric leg geometry (equal segment lengths, equal initial joint angles).
We would then expect a transformation of leg compression into equal flexion
of the two joints. Interestingly, however, this is not the case (Fig. 2).

In the three segment leg, stability requires a local minimum of the mechan-
ical system energy with respect to variations in the joint angle configuration
(ankle and knee) and a given leg length (e.g. distance hip to toe). At a cer-
tain amount of leg compression however, this local minimum in system energy
changes into a local maximum when loading both joints equally. Consequently,
symmetric bending of both joints becomes unstable. Even perfect adjustment
of the joint springs cannot prevent asymmetric joint behavior if a certain
critical amount of leg compression is exceeded [25]. Here, one leg joint starts
to extend whereas the second joint flexes rapidly. As a consequence, the leg
force is not shared equally between the joints and the leg stiffness drops. This
situation would lead to high local stresses at the flexing joint which could
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Fig. 2. Three-segment model with equal segment lengths (L1=L2=L3) and two joint
springs of equal stiffness and equal static equilibrium angles (A). After a certain
amount of leg compression (B) symmetric bending of both joints becomes unsta-
ble. Depending on infinitely small perturbations the two joints proceed by rotating
asymmetrically, with one extending and the other flexing (C)

result in structural damage or failure in a real leg. To avoid this disastrous
behavior, different measures can be introduced. One strategy is to steer the
leg joint movements by a kinematic control approach, whereby the joint an-
gle is constrained along a desired trajectory. This intervention may work at
low energies through the use of a high-bandwidth controller to counteract the
system dynamics. At faster leg movements however, a more systematic mod-
ification is required. Stability analysis of the three-segment leg reveals that
different solutions exist to avoid this intrinsic instability (Fig. 3).

Strategy A: The joint spring characteristics are slightly non-linear, e.g.
the joint stiffness increases with joint flexion. If one joint flexes more than the
other, the increased joint stiffness compensates for the mechanical disadvan-
tage caused by the joint’s increased flexion. The model predicts a higher non-
linearity in joints whose configuration at static equilibrium is characterized by
greater extension (e.g. knee compared to ankle). This prediction is confirmed
by experimental results. The required nonlinearity of the joint torque char-
acteristics might be provided by the nonlinear stress-strain characteristics of
tendons and aponeuroses connecting the muscle to the skeleton as found in
human running or jumping [13, 21].

Strategy B: The leg segmentation is asymmetric, i.e. the outer leg seg-
ments are different in length. The model predicts that stable leg operation
can be achieved if the joint adjacent to the shorter outer segment (e.g. ankle
in humans) is more flexed compared to the other leg joint. This finding is in
agreement with human leg design.
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Fig. 3. Five strategies to avoid instability in an elastic three-segment leg: (A)
nonlinear joint springs, (B) asymmetric leg segmentation and leg joint configuration,
(C) biarticular elastic structures, (D) joint constraints, e.g. heel contact, and (E)
operation in a bow configuration

Strategy C: The risk of out-of-phase joint function due to mechanical in-
stability can be reduced by adding biarticular elastic structures. In the case
of asymmetric leg segmentation (Strategy B) it is sufficient to have only one
biarticular spring which flexes the more extended joint (knee) and extends
the more flexed joint (ankle). The risk of over-extension of the ankle joint
is largely avoided by the flexed ankle configuration (about 80–120 degrees)
during human locomotion. A biarticular antagonist of the m.gastrocnemius is
not required and does not exist in nature.

Strategy D: Even if all previous strategies (A–C) fail to prevent unstable
leg operation, there is still another hard-built safety measure to avoid overex-
tension of the more extended leg joint (the knee): the mechanical constraint of
joint flexion due to a skeletal structure, e.g. the calcaneus with the heel pad.
If the activity of the plantar flexors is not sufficient the heel strike prevents
overextension of the knee which would have serious consequences in many
athletic movements like running or long jumping.

Strategy E: Finally, there is a strategy to achieve stable leg operation by
using a very different nominal leg configuration by swapping the leg joints
(from a zigzag or Z-configuration) to the same side with respect to the leg
axis (bow or C-configuration). The leg configuration is safe and simple to
control at cost of reduced limb stiffness and reduced leg force. It can be found
in the upper limbs of humans or in spiders.

All of these strategies guarantee parallel joint operation in a three segment
leg and can be found in nature. It is important to realize that these measures
are not exclusive and are often implemented in a highly redundant fashion.
Similar to the air bags in our cars, the leg includes several design and con-
trol strategies to avoid mechanical instability potentially leading to serious
damages of the musculo-skeletal system. Elastic joint behavior in itself does
not guarantee stable leg operation during contact. However, for the identified
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leg design and control strategies (Fig. 3) the control of the highly nonlinear
segmented leg could be simplified. The results demonstrate that spring-like
leg operation can be a key for better understanding the architecture and func-
tion of biological legs. On the joint level, spring-like behavior (joint stiffness
and nominal angle) can be adapted based on neuromuscular mechanisms [6],
[10]. In turn, if all required measures are undertaken to guarantee stable leg
operation, spring-like leg operation can result at various loading conditions.

3 Generation of Muscle Activity

Periodic movement patterns as observed in legged locomotion require a cyclic
action of the muscles within the body. The time series of the corresponding
muscle activation pattern could be the result of different mechanisms. One
possibility is direct control of muscle activation by supraspinal commands.
In this case the exact timing of all muscles would require a high processing
(i.e. high-bandwidth) capacity in the brain. A different approach would be
the generation of periodic movement patterns in rhythm generators located
in the spinal cord (central pattern generators, [12]). Then the higher control
could be reduced to coordinate these pattern generators. Another possibility
is the generation of the required muscle activation based on the dynamics
of the musculo-skeletal system and sensory feedback to the spinal cord [27].
Such a control strategy could further relax the neural control effort and could
take advantage of positive side-effects of the muscle-reflex dynamics. In a
simulation study [10], we asked which proprioceptive reflex loop would be
capable of generating the required muscle stimulation STIM(t) for steady
state hopping in place (Fig. 4). Leg geometry is reduced to two massless leg
segments with one Hill-type extensor muscle spanning the leg joint. The body
is represented by a point mass on top of the upper segment (Fig. 4). Muscle
stimulation is assumed to be the sum of a given central command, STIM0,
and a potential reflex contribution (amplified and time delayed sensory signal
based on muscle length, muscle velocity or muscle force).

We found that steady state hopping is possible (1) with an optimized
stimulation pattern STIM0(t) or (2) based on a constant STIM0 and positive
length or positive force feedback. The predicted maximum hopping height
employing positive force feedback is 83% of that calculated using an optimal
muscle stimulation pattern and turned out to be robust with respect to sim-
ulated external perturbations (e.g. changed ground properties, Fig. 4C). At
moderate hopping heights, an almost spring-like leg operation is predicted
(Fig. 4B). The simulation results indicate that the generation of the exten-
sor muscle activity in hopping or running tasks could be facilitated by posi-
tive force feedback. Instead of giving the muscle a precisely timed activation
pattern, the task is now executed based on a constant stimulation (STIM0)
and proper integration of proprioceptive signals into the activation of the
extensor-motoneuron. The control effort is therefore largely reduced and the
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Fig. 4. (A) Two-segment leg model with one extensor muscle and proprioceptive
feedback. The activity of the α-motoneuron driving the extensor muscle (STIM ) is
assumed to be the sum of a central command (STIM0 ) and a contribution of the re-
flex loop based on different sensory signals (muscle length, muscle velocity or muscle
force). Muscle stimulation signals STIM(t) with and without sensory feedback for
stable hopping in place are calculated. (B) The best hopping performance based on
sensory feedback is achieved with positive force feedback and a constant bias signal
STIM0. Here, spring-like leg behavior is found. (C) The muscle-reflex dynamics are
robust with respect to environmental changes like hopping on a dissipative substrate
(sand)

leg behavior is more robust with respect to perturbations. Furthermore, even
with little or no passive compliance (as would be provided by tendons, for in-
stance) the muscle-reflex dynamics produced spring-like leg behavior. In that
respect leg stiffness is an emergent steady-state behavior in cyclic hopping
(or running) based on the neural integration of sensory information and will
therefore adapt to environmental changes detected by the sensory organs.

In the previous sections two simplified models for the internal leg function
are introduced. Both models give new insights into how spring-like legs could
be designed and controlled. It turned out that compliant leg operation is not
just useful to store elastic energy; it also helps to make a segmented leg safe
and robust when faced with external perturbations.

In the following two sections we will deal with the global leg function, i.e.
how a spring-like leg can be controlled to obtain stable locomotion as observed
in running or walking. We provide evidence that spring-like leg operation may
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also be useful in facilitating the global leg function, i.e. the method in which
the body utilizes limbs for stable locomotion.

4 Running with Elastic Legs

The movement of a single leg during walking and running is characterized by a
series of contact and swing phases. At lower speeds humans generally choose
to walk whereas at higher speeds running is preferred. During the stance
phase of running, the leg compresses until midstance and then extends until
the leg leaves the ground. The force generated by the leg is approximately
proportional to the amount of leg compression [4, 3]. This relation provides
the basis for the concept that leg stiffness is the parameter describing that the
ratio between leg force and leg compression remains constant. This concept
leads to the spring-mass model which describes the movement of the center of
mass based on a spring-like leg operation during the stance phase of running
[1].

For certain combinations of leg stiffness k and leg angle of attack α0 cyclic
motion of the center of mass (COM) can be observed (Fig. 5A). Interestingly,
cyclic movement can also be achieved for slightly different initial conditions.

Fig. 5. Spring-mass running. (A) For certain combinations of leg stiffness k and
angle of attack α0 a cyclic movement of the center of mass can be found. (B)
Different angles of attack can result in stable running patterns (here α0 = 67o, 68o

with leg stiffness k = 20 kN/m, body mass m = 80 kg, leg length l = 1 m). Steeper
angles overshoot a step resulting in failure at the proceeding step (α0 = 69o) whereas
flatter angles decelerate the movements until forward velocity goes to zero (α0 =
66o). With leg retraction, e.g. increasing α0 prior to landing, the angular adjustment
can vary much more without losing running stability (not shown here, for details
see [24])
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The movement of the center of mass approaches a steady state after a couple
of steps without modifying the landing leg angle α0 (Fig. 5B). However, even
when modifying the angle of attack α0 stable running can be observed, al-
though the COM trajectory has adapted slightly. Hence, spring-mass running
is self-stabilizing and robust with respect to changes in the initial conditions
and model parameters (e.g. leg angle of attack, leg stiffness, system energy).
The adjustment of leg stiffness and angle of attack is not unique. At a given
running speed, different combinations are possible (Fig. 5B) and result in spe-
cific running styles; for instance, in terms of step length or step frequency. This
prediction agrees with experimental results [23]. With increasing speed, the
range of successful combinations of leg angle and leg stiffness is even increased.

In contrast, at low speed (less than 3 m/s) no stable running is predicted
with the constant angle of attack control policy at any leg stiffness. However,
animal or human running reveals that the leg angle is not kept constant prior
to landing [5]. In fact, a backward rotation of the leg with respect to the body
is observed. Introducing this early leg retraction we find an increased stability
in spring-mass running at low speeds [24]. Even larger variations in internal
or external conditions (e.g. a change in ground level of 50 percent leg lengths)
can be managed when leg retraction is used.

In this section we introduced two global leg control strategies for running
with compliant legs: constant angle of attack and leg retraction. We found
that for a given system energy spring-mass running is stable for various com-
binations of leg stiffness k and angle of attack α0. For higher running speeds
and by employing leg retraction the region of stable running (leg stiffness and
leg angle adjustment) is largely enhanced.

In a recent study, the spring-mass model for running was extended to a
rigid body model in the vertical plane and analyzed based on an analyti-
cal approximation neglecting gravity during the stance phase [11]. The results
support the identified strategies for stable running with a fixed angle of attack
policy. Furthermore, it is argued that at high running speeds the domains of
attraction become smaller (i.e. the system is less robust with respect to per-
turbations of the center of mass trajectory) leading to a demand for more
elaborated control methods. One possible method could involve the adapta-
tion of leg stiffness to flight time duration (e.g. due to muscle preactivation)
similar to the strategy of leg retraction. Therefore, an integration of muscular
mechanisms into the analysis of running stability would be helpful.

5 From Running to Walking

So far only a single leg was considered in the analysis of spring-mass run-
ning. As a next step we generalize the model to bipedal locomotion. Does the
concept of spring-like leg operation hold only for running with single support
phases? What happens to the system dynamics if more than one leg is in
contact with the ground at the same time?
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Fig. 6. Spring-Mass Walking. (A) For certain combinations of leg stiffness k and
angle of attack α0 a cyclic movement of the center of mass can be found. (B)
The single leg force patterns (upper line: vertical force, lower line: horizontal force)
resemble that found in human and animal walking [9]

In a previous simulation study we investigated the behavior of a bipedal
spring-mass model [9]. This model consists of two massless springs (leg stiff-
ness k) and a point mass representing the center of mass (COM). During the
single support phase one leg spring remains in contact with the ground while
the other is positioned at a constant angle of attack. If the COM reaches
the corresponding landing height of the second leg before the first leg leaves
the ground a double support phase occurs (Fig. 6A). Although slightly more
complex than the previous running model, stable solutions can again be found
using different combinations of leg stiffness k and angle of attack α0. In con-
trast to the single leg model, stable solutions with double support phases
can only be found for low system energies (forward speed lower than about
1.4 m/s). The single leg forces predicted by the bipedal spring-mass model are
very close to the observed patterns in human and animal walking (Fig. 6B).
The corresponding maximum walking speed is only slightly above the pre-
ferred walking speed observed in humans. This suggests higher control efforts
at higher walking speeds. Hence, mechanical stability and therefore a relaxed
control (rather than metabolic considerations) could be important criteria to
explain the preferred walking speed.

At high energies (forward speed larger than about 3 m/s) the previously
observed running pattern is found if the leg is allowed to contact the ground
after take-off of the opposite leg. Thus, the bipedal spring-mass model can
both stable walking and running on a single mechanical system. There is
an energetic gap between both gaits which can only be accessed by a more
complicated control strategy (e.g. leg retraction of the swing leg). The model
suggests that walking and running are two natural and self-stabilizing behav-
iors of a simple mechanical system. This concept has strong implications on
the design and control of legged systems in general. Leg compliance is not only
a strategy to facilitate control; it might also be the origin of the existence of
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natural gaits. Furthermore, it resolves the issue of collision avoidance which
was addressed recently in studies on inverted pendulum walking [20].

In the last sections we examined consequences of compliant leg operation
on a global scale. We found that the two fundamental gaits of legged loco-
motion are natural behaviors of elastic legs attached to a common center of
mass. In the next section simple legged robots are introduced. How does the
behavior of a constructed leg compare to the conceptional models for legged
locomotion presented in the last four sections?

6 Exploring Simple Legged Robots

Elastic leg behavior can elucidate design and control strategies used in legged
systems. However, all models presented so far are based on computer sim-
ulations or analytical calculations. While the model-based predictions have
been compared to results from biology, as discussed in Sects. 3, 4 and 5, it
was decided that further validation under real-world conditions was necessary.
Therefore, we built a series of very simple legged robots to better understand
the pros and cons of our theoretical models, examining their validity and the
underlying assumptions, and to examine any overlooked elements.

What should a simple legged robot look like? A good example can be
found in the pioneering work of Raibert and his coworkers [19]. These robots
are made of elastic legs (pogo sticks) which are controlled in such a manner as
to regulate hopping height, body speed and pitch at desired values. We found
the construction of a pogo stick leg still “delicate” from the mechanical point
of view (e.g. due to constraint forces perpendicular to the leg axis) and decided
consequently to start with a simple two-segment leg (Fig. 7A), instead.

6.1 Robot Testbed with Elastic Two-Segment Leg

Our goal is to explore the natural dynamics of a two-segment elastic leg dur-
ing forward hopping. The movement of the robot (Fig. 7A) is constrained by
a metal boom which allows the robot to only move in vertical and horizontal
direction. Body pitch movements are not allowed to keep the mechanical sys-
tem as simple as possible. The focus of this approach is to better understand
how legged systems are organized. The movement of the leg is driven by a
servo motor between the body and the upper leg segment (thigh). The motor
introduces a sinusoidal oscillation defined by oscillator frequency f, angular
amplitude A and offset angle O. Taking a maximum angular velocity ωMAX

of the motor (1 rotation/s) into account, the amplitude A can be calculated
depending on the frequency f with

A = ωMAX/(2πf) . (1)
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Fig. 7. (A) The “Fujubot” robot, with an elastic two-segment leg kinematically
driven at a sinusoidal trajectory using a hip-mounted servo motor. (B) Experimen-
tal data for stable robot hopping. The angle of the upper segment (phi) is predefined
by the motor control. At touch-down (dotted vertical lines) retraction of the upper
segment is briefly interrupted, but recommences immediately afterwards. (C) Ex-
perimental data on human walking and (D) running at 2 m/s

This robot follows the rapidly prototyped, minimalist approach to design
(“cheap design” robots, [16]), avoiding high-end or high-precision components
and advanced control approaches. For instance, the upper leg segment does
not follow the desired angular trajectory of the servo motor (Fig. 7B). Every
time the leg hits the ground leg retraction is interrupted. This is due to the
fact that the leg joint flexes shortly after landing impact. Comparing this
observation with experimental data in human running and walking we find
the same phenomenon. At a forward speed of 2 m/s the relative timing of
protraction and retraction of the upper limb is very similar between walking
and running. Both in the robot and in human running touch-down occurs
shortly after the initiation of limb retraction. This is in agreement with the
predicted role of leg retraction for stability [24].

To investigate the influence of an enforced leg retraction after touch-down,
we implemented a higher torque motor using very stiff coupling of the motor
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Fig. 8. (A) Dependency of hopping direction on control parameters (oscillation
frequency f, offset angle O) of the servo motor. (B) With no hip actuation the leg
force FLEG merely depends on joint torque M and leg geometry. (C) Leg force is
enhanced compared to (B) if the hip retracts actively (hip extension torque). The
opposite is true if leg retraction is pointing to the left, in which case the leg force is
reduced

to the hip joint. As a result the boom keeping the upper body upright broke.
Consequently, a more compliant coupling was inserted between the motor and
the hip joint, imitating the biological function of tendons in hip muscles.

The robot demonstrates a variety of behaviors depending on the selected
oscillator frequency f and offset angle O. Surprisingly, at low oscillation fre-
quencies, the hopping direction is not as expected, namely opposite to the leg
joint (Fig. 8A). This movement could well be compared to that of a hopping
bird. This behavior is not very sensitive to changes in the control parameters.
At higher frequencies (above 6 Hz) a more human-like movement is observed.
Then, the leg joint points forward (similar to a human knee). At an inter-
mediate region hopping in place is observed with no substantial horizontal
movement.

Why does the robot change its movement direction depending on the se-
lected control frequency? To approach this question the effect of active limb
retraction on the leg dynamics is considered in Figs. 8B and 8C. For simplic-
ity, we focus on a static approach neglecting all dynamic effects, i.e. due to
segmental accelerations, joint damping, or torques at the foot point. With no
retraction (zero hip torque), leg force is directly dependent on limb configura-
tion. This is a consequence of the rotational spring which relates joint torque
to joint angle.

If the hip is actively contributing to limb retraction (Fig. 8C), leg force
is increased or decreased depending on the geometrical relation between leg
joint torque and hip torque. In bird-like hopping, leg force is reduced whereas
in human-like hopping the force is increased. As a consequence of this in-
creased (or decreased) leg force, the natural frequency of the hopping system is
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changed, i.e. an increased leg force to some extent imitates a stronger (stiffer)
leg associated with a higher step frequency. This is a well known dependency
for the spring-mass model.

Hence, with compliant legs movement direction can be encoded as a fre-
quency signal. At this level, the detailed trajectories of the limb segments are
not required to control the different directions of movement. Stable hopping
is robust with respect to variations in the control parameters (oscillation fre-
quency, offset angle). This is in line with the self-stabilizing mechanisms of
spring-mass running. It remains to be investigated in detail how the control
parameters influence the angle of attack and the effective leg stiffness. Fur-
thermore, we found that elastic joint behavior is important in dealing with
impacts (e.g. touch-down) avoiding damage to the actuator. A simple har-
monic oscillation in the hip is sufficient to obtain stable hopping movement.
The observed protraction and retraction plots of the upper limb are very sim-
ilar to those observed in human walking and running. This encouraged us
to build bipedal robots imitating the hip strategy of the one-legged hopping
robot. Based on this experimental platform we will extend the concept of
spring-like hopping to compliant walking.

6.2 Bipedal Robot

The bipedal spring-mass model indicates that compliant legs may facilitate
stable running and walking. Does this mean that walking is just running with
double support phases? We approach this question by comparing experimen-
tal data on human walking and running with the behavior of a simple bipedal
robot. We will demonstrate that leg compliance is useful in generating sta-
ble walking movements. The analysis of the three-segment model (Sect. 1)
indicates that elastic joint operation may lead to a synchronous operation of
the leg joints. Such behavior can be found in human running (Fig. 9) where
during stance both knee and ankle joint flex and extend in parallel. In walking
this situation is not found: the knee joint extends during midstance and the
ankle joint extends only at the late portion of the stance phase when the knee
joint has returned to flexing. The desired function of a mechanical spring to
store and release elastic energy does not seem to be fulfilled by a walking leg.
The high level of coordination between knee and ankle joint in running allows
an efficient push-off phase after midstance. The biarticular m.gastrocnemius
transfers the rotational energy of the knee joint to the ankle which in turn
is capable of generating a rapid leg extension. In walking this coupling is
not found. The extension of the knee joint does not lead to a push-off phase
because the ankle joint does not follow the knee extension. In the extended
configuration the knee is not able to contribute to leg lengthening but it has
a significant contribution to leg rotation. In fact, the effect of thigh retraction
on leg retraction is reduced by knee extension and (later) supported by knee
flexion. As a result the thigh is already protracting before the leg leaves the
ground (Fig. 9A).
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Fig. 9. (A) Leg kinematics in human walking and running at the preferred tran-
sition speed (2 m/s). (B) Knee and ankle joint kinematics and vertical ground
reaction forces corresponding to (A). (C) Muscle activity vs. muscle length of
m.gastrocnemius medialis (GASm) of one subject during walking (41 steps, cir-
cles) and running (45 steps, crosses) at 2 m/s. Thick lines represent mean tracings
for walking and running. Muscle length is calculated based on knee and ankle angle
data [15]

If the rotational energy during knee extension (at midstance in walking)
is not used for push-off, how can this energy be reused for locomotion? With
continuous thigh retraction during stance phase (e.g. due to active hip retrac-
tion) the m.gastrocnemius gets stretched and can use the knee rotation at a
later time to contribute to ankle extension. Hence, the rotational energy of
the knee during midstance could still be reused for push-off triggered by the
amount of leg rotation during stance phase. Therefore, we hypothesize that
in walking the nominal length of the biarticular m.gastrocnemius should be
longer than when compared to running.

To test this hypothesis we analyze the activity of m.gastrocnemius medialis
(Fig. 9C) and compare it to the estimated length of the muscle [15]. We find
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Fig. 10. (A) The “JenaWalker” bipedal robot, equipped with compliant legs. (B)
Joint kinematics of knee and ankle joint and ground reaction forces (GRF) during
human walking and (C) during robot walking. Dotted curves indicate opposite leg

that muscle activity is dependent on muscle length and gait. In walking the
EMG is active at greater muscle length as compared to running. This indicates
that walking could take advantage of elastic biarticular structures spanning
knee and ankle joint as also suggested in a previous simulation study [2].

To test this idea the bipedal “JenaWalker” robot was developed (Fig. 10A,
[17]). In order to investigate this gait-specific interplay between ankle and knee
joint we decided to use three-segment legs. A biarticular spring was installed
between knee and ankle joints, simulating the function of m.gastrocnemius.
Furthermore, two additional “muscles” were required in the leg: one foot flexor
(m.tibialis anterior) and one biarticular knee extensor and hip flexor (m.rectus
femoris). This combination of elastic structures in a three-segment leg turned
out to be sufficient to generate stable locomotion. In agreement with our
experimental data on human walking we kept the hip control the same as in
the hopping robot (i.e. a simple harmonic oscillation).

An example of the leg kinematics and the ground reaction forces for stable
walking is given in Fig. 10C. The robot is able to reproduce the experimentally
observed knee and ankle joint kinematics (Fig. 10B). It is important to note
that no effort was made to optimize the leg kinematics or the ground reaction
forces to fit biological data. The criterion used for optimization is a steady
periodic movement pattern. The robot is able to walk, hop and run specified
by a corresponding motor adjustment. For instance, walking is robust with
respect to changing step frequencies. Running is only possible for high offset
angles with the legs operating in front of the body. This is due to the fact
that the leg cannot bend freely during the swing phase. With synchronous hip
function, hopping was found.
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The legged robots presented here demonstrate that stable walking and
running can be observed with compliant legs and simple harmonic oscillations
at the hip joint. The movements are robust although both design and control
are very simple. In the three-segment leg, the function of knee and ankle
joint is gait-specific. The biarticular muscles could play an important role
in synchronizing the internal leg function depending on the selected gait.
Running can be considered as a gait with fast leg compression and fast leg
rotation. The leg rotation (retraction) is mainly provided by hip extension and
knee flexion (plus late ankle extension). Due to synchronized operation of knee
and ankle, the high joint angular velocities are slowed down in the biarticular
m.gastrocnemius. Walking is a gait with slow leg compressions and slow leg
rotation. Leg rotation is reduced by knee extension during midstance but
supported by knee flexion at early and late stance phase. As a consequence,
the upper limb can already start protraction while the leg is still on the ground.
This allows the hip control to still follow a harmonic oscillation despite a duty
factor larger 0.5. Due to the out-of-phase operation of knee and ankle, the slow
joint movements are accelerated in the biarticular m.gastrocnemius. Further
research is required to better understand these intersegmental dynamics in
walking and running at different speeds and environmental conditions.

7 Conclusions

In this paper we summarized several simple biomechanical models and “cheap”
design robots describing legged locomotion. The common design principle was
to reduce the systems to a minimal configuration which allows for a system-
atic investigation of the underlying mechanisms of legged locomotion. The
introduction of compliant structures and the search for self-stabilizing mech-
anisms revealed to be effective tools to identify natural movement patterns
and relaxed control strategies.

It turned out that walking and running can be described as two natural
movement patterns of one mechanical system with elastic legs. The organiza-
tion of the segmented leg is largely supported by elastic structures spanning
one or more joints. For properly designed legs, the control is largely simpli-
fied and could be reduced to an adjustment of hip oscillators in our legged
robots. In the future, we aim to identify leg designs which are equally suited
for both human-like walking and running. Therefore, a better understanding
of the gait selecting mechanisms will be required.

References

[1] Blickhan, R. (1989) The spring-mass model for running and hopping. J. Bio-
mech. 22, 1217–1227.



400 A. Seyfarth et al.

[2] van den Bogert, A. J. (2003) Exotendons for assistance of human locomotion.
Biomedical Engineering Online, 2–17.

[3] Cavagna, G. A., Heglund, N. C. and Taylor, C. R. (1977) Mechanical work in
terrestrial locomotion: two basic mechanisms for minimizing energy expendi-
ture. Am. J. Physiol. 233, 243–261.

[4] Cavagna, G. A., Saibene, F. P. and Margaria, R. (1964) Mechanical work in
running. J. Appl. Physiol. 19, 249–256.

[5] De Wit, B., De Clercq, D., and Aerts, P. (2000). Biomechanical analysis of the
stance phase during barefoot and shod running. J. Biomech. 33, 269–278.

[6] Feldmann, A. (1966) Functional tuning of the nervous system during control of
movement or maintenance of a steady state posture. II controllable parameters
of the muscles. Biophysics 11: 565–578.

[7] Full, R. F. and Koditschek D. (1999) Templates and anchors: neuromechanical
hypotheses of legged locomotion on land. J. Exp. Biol. Vol. 202, Issue 23, 3325–
3332.

[8] Gatesy, S. and Biewener, A. (1991) Bipedal locomotion effects of speed, size
and limb posture in birds and humans. J. of Zool. 224, 127–147.

[9] Geyer, H. (2005) Simple models of legged locomotion based on compliant limb
behavior. PhD Thesis. University of Jena.

[10] Geyer, H., Seyfarth, A. and Blickhan, R. (2003) Positive force feedback in
bouncing gaits? Proc. R. Soc. Lond. B 270, 2173–2183.

[11] Ghigliazza, R., Altendorfer, R., Holmes, P., and Koditschek, D. (2003) A simply
stabilized running model. SIAM Journal on Applied Dynamical Systems, 2(2),
pp. 187–218.

[12] Grillner, S. (1986) in Wenner-Gren International Symposium Series Vol. 45.
Neurobiology of Vertebrate Locomotion (eds. Grillner, S., Stein, P. S. G., Stu-
art, D. G., Forssberg, F. and Herman, R. M.) 505–512 (Macmillan, London).

[13] Guenther, M. and Blickhan, R. (2002) Joint stiffness of the ankle and the knee
in running. J. Biomech. 35, 1459–1474.

[14] Hayes, G. and Alexander, R. M. (1983) The hopping gaits of crows (corvidae)
and other bipeds. J. Zool. Lond. 200, 205–213.

[15] Hof, A. L., van Zandwijk, J. P. and Bobbert, M. F. (2002) Mechanics of human
triceps surae muscle in walking, running and jumping. Acta Physiol Scand 174,
17–30.

[16] Iida, F. (2005) Cheap design approach to adaptive behavior: walking and sens-
ing through body dynamics. AMAM conference, Ilmenau.

[17] Iida, F., Minekawa, Y., Rummel, J., and Seyfarth, A. (2006) Toward human-
like biped robot with compliant legs. Intelligent Autonomous Systems 9. Arai,
T. et al. (Eds.). IOS Press, 820–827.

[18] Kram, R., Domingo, A., and Ferris, P. F. (1997) Effect of reduced gravity on
the preferred walk-run transition speed. J. Exp. Biol. 200, 821–826.

[19] Raibert, M (1986) Legged robot that balance. MIT press.
[20] Ruina, A., Bertram, J. E. A., and Srinivasana, M. (2005) A collisional model

of the energetic cost of support work qualitatively explains leg sequencing in
walking and galloping, pseudo-elastic leg behavior in running and the walk-to-
run transition. J. Theor. Biology, 237, 170–192.

[21] Seyfarth, A., Blickhan, R., and van Leeuwen, J. L. (2000) Optimum take-off
techniques and muscle design for long jump. J. Exp. Biol. 203, 741–750.



Running and Walking with Compliant Legs 401

[22] Seyfarth, A., Friedrichs, A., Wank, V., and Blickhan, R. (1999) Dynamics of
the long jump. J. Biomech. 32, 1259–1267.

[23] Seyfarth, A., Geyer, H., Guenther, M., and Blickhan, R. (2002). A movement
criterion for running. J. Biomech. 35, 649–655.

[24] Seyfarth, A., Geyer H., and Herr, H. (2003) Swing-leg retraction: a simple
control model for stable running. J. Exp. Biol. 206, 2547–2555.

[25] Seyfarth, A., Guenther, M., and Blickhan, R. (2001). Stable operation of an
elastic three-segmented leg. Biological Cybernetis 84, 365–382.

[26] Thorstensson, A. and Roberthson, H. (1987) Adaptations to changing speed
in human locomotion: speed of transition between walking and running. Acta
Physiol. Scand. 131, 211–214.

[27] Zehr, E. P. and Stein, R. B. (1999) What functions do reflexes serve during
human locomotion? Prog. Neurobiol. 5, 185–205.



Self-stability in Biological Systems – Studies
based on Biomechanical Models

H. Wagner1 and P. Giesl2

1 Biomechanics and Motor Control, WWU Münster, Horstmarer Landweg 62b,
48149 Münster, Germany
heiko.wagner@uni-muenster.de

2 Zentrum Mathematik, TU München, Boltzmannstr. 3, 85747 Garching bei
München, Germany
giesl@ma.tum.de

Summary. Mechanical properties of complex biological systems are non-linear, e.g.
the force-velocity-length relation of muscles, activation dynamics, and the geometric
arrangement of antagonistic pair of muscles. The control of such systems is a highly
demanding task. Therefore, the question arises whether these mechanical properties
of a muscle-skeletal system itself are able to support or guarantee for the stability of
a desired movement, indicating self-stability. Self-stability of single joint biological
systems were studied based on eigenvalues of the equation of motions and the basins
of attraction were analysed using Lyapunov functions. In general, we found self-
stability in single muscle contractions (e.g. frog, rat, cui), in human arm and leg
movements, the human spine and even in the co-ordination of complex movements
such as tennis or basketball. It seems that self-stability may be a general design
criterion not only for the mechanical properties of biological systems but also for
motor control.

1 Introduction

The basis for human and animal motion and locomotion are co-ordinated mus-
cle contractions. Even for very simple movements, a huge number of muscles
must be controlled. Therefore, we may ask how humans and animals are able
to control such complex neuromusculoskeletal systems. Especially for humans,
the easiest way to get an answer is to ask somebody. But we would not expect
a meaningful answer because the motor control system acts almost without
conscious control. The muscles must generate sufficient forces and moments
at the joints. However, these forces and moments must be fine tuned in such
a way that they can react upon sudden perturbations. This fine tuning may
be guaranteed by mono- and poly-synaptic reflexes with negative and pos-
itive feedback-loops [5]. On the other hand, the mechanical properties of a
musculoskeletal system itself may support or even guarantee for sufficient sta-
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bility [7, 4]; in these cases motion or locomotion is self-stabilized [10, 2, 1].
Simple biomechanical models, e.g. single muscle contractions or one degree of
freedom joint models, can be self-stabilized. But even if these subsystems are
self-stabilized the global motion of the multi-body system may still be un-
stable. However, the global control of a locally self-stabilized system is easier
compared to a locally unstable system. The purpose of this paper is to analyze
and summarize the self-stabilizing properties of biological systems, i.e. single
muscle contractions, single joint movements, and more complex arrangements
like the human spine. This paper is a companion paper to Giesl and Wagner
(this issue) where the mathematical details to analyse stability and basins of
attraction of biomechanical models are given.

2 Single Muscle Quick Release Contractions

The first step in analyzing self-stability of musculoskeletal systems was to
study whether mechanical properties of muscles themselves may provide self-
stability. A simple method to investigate the self-stabilizing properties of dis-
sected muscles is a quick-release experiment. In quick-release experiments dis-
sected muscles are loaded with an external weight or force, which will be
released suddenly [8]. Typically, after the release the muscles contracted and
found a new equilibrium at shorter muscle lengths, indicating that the systems
were stable (Fig. 1).

As a next step, the quick-release experiments were described and simulated
by an equation of motion of a biomechanical model. Based on the equation of
motion the stability could be analysed by the eigenvalues of the system. For
the given experiments the eigenvalues were negative indicating self-stability.
Furthermore, because of the simplicity of the model, the system could be
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Fig. 1. Schematical representation of a quick-release experiment. At time t0 the
external load was released (upper row) and the muscle contracted until a new equi-
librium was found between the external force and the muscle force
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analysed analytically. From this it could be shown that the classical muscle
properties, i.e. the force-velocity relation, force-length relation, are sufficient
to provide self-stability. As the mechanical properties of dissected muscles
support self-stability, the question arise whether muscles within a geometrical
arrangement of joints are still able to achieve self-stability.

3 One Degree of Freedom Joint Models

In models consisting of a muscle and a simple one-degree of freedom rota-
tional joint the interactions between the muscle and joint properties influence
the stability of the system. In general, the inner muscle moment arm as well
as the moment arm according to the external force vector depended on the
flexion angle of joints. The individual shapes of these dependencies were in-
fluencing the mechanical stability of the system. We performed quick-release
experiments with the elbow-joints of rats and cuis, while the extensor muscles
were stimulated [8]. Here again, the systems found new equilibriums after the
release of the external loads, indicating stability. A stability analysis based on
a biomechanical model resulted in negative eigenvalues, indicating asymptotic
stability likewise. For flexor muscles of an elbow joint the moment arms can be
calculated from simple trigonometric assumptions, whereas the moment-arms
of extensor muscles depends on individual geometrical arrangements. Based
on an analytical analysis of the eigenvalues (Giesl and Wagner, this issue) it
can be estimated that the derivative ∂hext

∂β of the geometric function hext with
respect to the flexion angle β must be positive to support stability. This is
guaranteed around elbow flexion angles below ca. 90◦ (Fig. 2).
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Fig. 2. Representation of the flexor moment arm at an elbow joint (length humerus
= 0.27 m, length ulna = 0.26 m, insertion of the muscle at the ulna = 0.048 m).
The slope of the curve indicates that stability is supported for flexion angles below
ca. 90◦
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Fig. 3. The basins of attraction of equilibrium points in the phase-plane were cal-
culated with Lyapunov-functions of the systems (Giesl and Wagner this issue).
The basins of attraction (black lines – extensor activation 50% of maximum vol-
untary contraction) were reduced with increasing elbow angles (left: equilibrium at
β0 = 70◦; middle: β0 = 80◦; right: β0 = 90◦). Furthermore, the basins of attrac-
tion were reduced with decreasing level of co-activation (thin gray lines – extensor
activation 25% of maximum voluntary contraction)

Experiments with humans supported this result [6]. Here, we determined
individual muscle properties of the flexor and extensor muscles. Then the
subjects performed quick-release contractions [12]. As a result, the subjects
found new equilibriums at lower elbow flexion angles, which was in accor-
dance with the animal experiments. The stability analysis of the experiments
resulted in negative eigenvalues for flexion angles below ca. 90◦, indicating
stability. Furthermore, basins of attraction were calculated based on the the-
ory of Lyapunov functions. We found considerable large basins of attraction
at low elbow flexion angles and unstable situations for more extended elbows
(Fig. 3). Furthermore, the areas of the basins of attraction depended on the
co-activation level of the antagonistic muscles.

Finally, we analysed simple vertical oscillations of a human leg model
[10, 11]. Here additionally, the self-stability was supported by a moving center
of rotation at the knee joint, as well as a co-activation of bi-articular muscles,
i.e. rectus and biceps femoris muscles.

While introducing a joint it is much more complicated to achieve self-
stability. Therefore, several solutions to support the stability could be found
in biological systems, e.g. co-activation of bi-articular muscles, moving center
of rotations.

4 Varying Center of Rotation Model

In the previous section we have discussed the stabilizing behaviour of simple
biomechanical models of extremities, i.e. elbow joint and knee joint. These
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models have a well defined location of the instantaneous center of rotation. In
the following we will discuss models with simple one-degree of freedom rota-
tional joints and varying center of rotations. As an example, we may think of
lateral flexions of the human lumbar spine. Here we can not define one single
center of rotation but depending on the intermuscular co-ordination of local
inter-vertebral muscles the center of rotation will vary between the lowest (L5-
S1) and the highest functional unit (L1-L2). As a simplification we analyzed
rotations at one functional unit, e.g. L1-L2, while the other units were assumed
to be stiff. How interactions between different joints of models with more than
one degree of freedom may influence the stability of the system cannot be an-
swered with the present simplified model. Is it still possible to self-stabilize
such a model with a single pair of antagonistic muscles? First, we described
the antagonistic muscles with a Hill-type model including a force-velocity re-
lation, but excluding a force-length relation [9]. As a result two stable areas
existed; one around L5-S1 with negative attachment angles of the muscles, e.g.
obliquus internus muscle, and another one more cranially for positive attach-
ing angles of the muscles, e.g. obliquus externus or multifidus muscles. But it
was impossible to stabilize every center of rotation with only one antagonis-
tic muscular arrangement. Therefore, we improved the model and included a
force-length relation such that the muscle was acting on the ascending limb.
Now, it was possible to self-stabilize the system at every location of the center
of rotation (Fig. 4). We calculated the minimum physiological cross-sectional
area (PCSA) of the acting muscles that still can stabilize the system. The
physiological cross-sectional area is nearly proportional to the maximum iso-
metric force of a muscle, therefore, a low minimum value of PCSA indicates
that only low muscular force is necessary to stabilize the system. For oblique
muscle arrangements a minimum physiological cross-sectional area (PCSA)
between 50 and 80 cm2 was found, whereas, muscles acting in parallel to the
spine were able to stabilize the system with only 7 cm2. Introducing additional
antagonistic muscles could not reduce this minimum value of the PCSA.

5 Discussion

The purpose of this paper was to analyze and summarize the self-stabilizing
properties of biological systems. We tried to draw a line from single muscle
contractions, single joint movements, to more complex arrangements like the
human spine. Single muscle contractions could be stabilized based on typical
shapes of bio-mechanical properties, i.e. the force-velocity relation and the
force-length relation of skeletal muscles. It could be shown analytically, that
the typical shape of the force-velocity relation was essential for the stabilisa-
tion of single muscle contractions [8].

Furthermore, if acting on the ascending limb of the force-length relation,
the typical shape of the active and passive force-length relation supports the
self-stability of muscles. Especially for muscle lengths above the optimum
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Fig. 4. Lyapunov-functions for different antagonistic muscle arrangements describ-
ing the lumbar spine. The centers of rotations were located at L1-L2, L2-L3, L3-L4,
L4-L5, and L5-S1 [3]. For all situations a minimum PCSA for self-stability was cal-
culated. The x-axis shows the flexion angle of the segment, while 180◦ represented
the vertical position. The small icons represent the muscular arrangements of the
different models and the minimum PCSA for each model is given at the top

length the passive properties were important. In sub-maximal contractions,
the activation level of the muscle changes the slope of the force-velocity and
force-length relation and thus changes the stability of the system. Therefore,
sub-maximal co-ordination patterns in physiological motions and locomotion
influences the self-stability of the system [11].

If the muscle was not dissected the geometrical arrangement of joints influ-
enced the self-stability behaviour. The flexion angle of an elbow joint effected
the stability of the system. Extending the elbow more than about 90◦ results
in an unstable situation [6]. This simple geometrical dependency may influence
simple movement tasks, e.g. imagine a waiter who should not spill the water
in the glass while moving. But also throwing tasks are influenced by these
geometric relations. Compare throwing a basketball with juggling. Whereas
in the first case the basketball will be released with a nearly extended elbow



Self-stability in Biological Systems 409

joint, in the second case the juggling-ball leaves the hand with a more flexed
elbow joint.

Especially the stabilisation of the human spine is a challenging task. Here
the location of the center of rotation may vary depending on the activation
pattern of intervertebral muscles. They are influencing the stiffness around
the spine and therefore the location of the instantaneous center of rotation.
However, the simulations support the assumption that even for this compli-
cated situation the muscles can guarantee for the self-stabilizing function of
the spine. Without changing the activation patterns of the trunk muscles, it
seems to be possible to stabilize lateral flexions at different centers of rota-
tions [9]. This analysis of the self-stabilizing behaviour of biological systems
may influence different scientific areas, e.g. robotics and prosthetics, and it
may hopefully have an effect for the medicine and physiotherapy. A profound
understanding of the self-stabilizing properties of biological systems is impor-
tant while investigating the motor control of complex movements of the whole
body. Although the models analyzed here were very simple, we may assume
that self-stability seems to be an important criterion for the evolution of hu-
mans and animals. If the basin of attraction of an equilibrium point or an
envisioned trajectory is considerably large this may offer a great advantage
for motor control systems. A self-stable system can be controlled much easier
with simple reflexes compared to an unstable system. If the system is risking
to move out off the basin of attraction a simple reflex may be sufficient to
push it back into the stable basin. Especially for fast movements, which do
not require a high precision, the neuronal system can be unburdened. Con-
sidering the control of legged robots this may reduce the requirements on the
precision of the sensors and the controller systems.
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Summary. Walking, running or jumping are special cases of articulated motions
which rely heavily on contact forces for their accomplishment. This central role of the
contact forces is widely recognized now, but it is rarely connected to the structure of
the dynamics of articulated motion. Indeed, this dynamics is generally considered as
a complex nonlinear black-box without any specific structure, or its structure is only
partly uncovered. We propose here to precise this structure and show in details how
it shapes the movements that an articulated system might realize. Some propositions
are made then to improve the design of control laws for walking, running, jumping
or free-floating motions.

1 Introduction

Improving the technology of sensors, actuators, computing power, mechanical
design, might still be necessary in order to achieve faster and more reliable
motions than what can be observed today in humanoid robotics, but better
control law designs will probably be one of the key points. The design of feed-
back laws heavily relies on the understanding that we have of the underlying
dynamics, and there may still be room for improvement here.

Walking, running or jumping are special cases of articulated motions that
strongly depend on contact forces for their accomplishment. This central role
of the contact forces is widely recognized now, but it is rarely connected to
the structure of the dynamics of articulated motion. Indeed, this dynamics
is generally considered as a complex nonlinear black-box without any specific
structure, or its structure is only partly uncovered. We propose here to pre-
cise this structure and show in details how it shapes the movements that an
articulated system might realize.

The existence of a structure in the dynamics of articulated motion has
often been recognized [4, 7, 21, 25, 29], but it has never been analyzed as
thoroughly as in [18]. Even in a study as precise as what can be found in [21,
20], it is not completely clear that behind the “d’Alembertian wrench” of
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the system studied there lies in fact its Newton and Euler equations, as will
be stated here. Most of all, the holonomy and nonholonomy of the kinetic
momenta and their implications for the locomotion of articulated systems has
been rarely if not never discussed outside the works of the authors of [18],
with the only exception of space robotics [16, 19].

The analysis that we are going to propose here is therefore deeply inspired
by what can be found in [18]. Now, this brilliant work has been made in the
framework of Lie algebras, a very powerful framework for high-level analysis
of dynamical systems, but which may hide somehow the details appearing in
the “real” equations to the reader who doesn’t speak this language fluently.
The main point of the present article is therefore to rederive these results
without the use of Lie algebras. Doing so calls for an unusual way to derive
the dynamics of articulated systems, through the use of Gauss’s principle.

We’re going therefore to present this principle and how it can be used to
derive the dynamics of articulated systems in Sect. 2. This original way of de-
riving this dynamics will be helpful then in Sect. 3 in order to precise its inner
structure. What this structure implies for the movements that articulated sys-
tems can realize will be studied then in Sect. 4, where nonholonomy makes its
first appearance. Nonholonomy will be the main topic then of Sect. 5, where
some implications of this phenomenon for the locomotion of articulated sys-
tems are put to light, and where propositions are made to make use of it in
order to improve the design of control laws for walking, running, jumping or
free-floating motions.

2 Gauss’s Principle and the Dynamics
of Articulated Motion

2.1 Gauss’s Principle

Gauss’s principle, equivalent to d’Alembert’s one, can be seen as an extension
of the principle of virtual work to the dynamical case. It states that the accel-
eration of a set of solids subject to some constraints deviates the least possible
from the acceleration that it would have had without the constraints [23, 27].
This deviation is measured with the following kinetic metric:

D =
∑

k

1
2

(ẍk − ẍk)Tmk (ẍk − ẍk) +
1
2

(ω̇k − ω̇k)T
Ik (ω̇k − ω̇k) , (1)

with ẍk and ω̇k the translation and rotation accelerations of the kth solid, mk

its mass, Ik its inertia matrix expressed at its center of mass, and ẍk and ω̇k

the translation and rotation accelerations that it would have had without the
constraints, that is the solutions of the classical Newton and Euler equations,

mk ẍk = fk ,

Ik ω̇k − (Ik ωk) × ωk = τk ,
(2)
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where fk and τk are the forces and torques acting on this solid. Note that the
Euler equation is expressed in a frame attached to the solid, as well as the
velocity ωk, reason why there is a gyroscopic term (Ik ωk) × ωk.

2.2 The Dynamics of Articulated Motion

Considering now a set of solids constrained to move together by a set of artic-
ulations, their dynamics can be computed with the help of Gauss’s principle.
The constraints induced by the articulations can be expressed implicitly by
describing the positions of the different solids of the system in a compact way
through a configuration vector q ∈ R

n. Their velocities and accelerations can
be related then to the vectors q̇ and q̈ with the help of translation and rotation
jacobians:

ẋk = Jtk(q) q̇ ,

ωk = JRk(q) q̇
(3)

and
ẍk = Jtk(q) q̈ + J̇tk(q, q̇) q̇ ,

ω̇k = JRk(q) q̈ + J̇Rk(q, q̇) q̇ .
(4)

Introducing these relations in the definition (1) of the deviation D and solving
the Newton and Euler equations (2) for ẍk and ω̇k, the optimality condition
for the minimization of this deviation turns into (we skip these calculations
which are completely straightforward)

∂D
∂q̈

= M(q) q̈ +N(q, q̇) q̇ −F = 0 , (5)

with

M(q) =
∑

k

JT
tk mk Jtk + JT

Rk Ik JRk , (6)

N(q, q̇) =
∑

k

JT
tk mk J̇tk + JT

Rk Ik J̇Rk − JT
Rk (Ik JRk q̇) × JRk , (7)

F =
∑

k

JT
tk fk + JT

Rk τk . (8)

We end up therefore with a classical Lagrangian description of the dynamics
of a system of articulated bodies with an inertia matrix M(q), nonlinear dy-
namical effects N(q, q̇) q̇ and generalized forces F acting on the system. Note
that we’re taking some liberties in (7) and in the following with the notation
of the cross-product by considering that given a vector v ∈ R

3, the notation
(v)× means in fact multiplying by the classical anti-symmetric matrix




0 −v3 v2

v3 0 −v1
−v2 v1 0


 .
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The point here is that even though the definition (6) of the inertia matrix
is identical to what can be found in usual robotics textbooks [15, 26], it is not
the case for the definition (7) of the nonlinear effects. Indeed, these nonlinear
effects are generally presented through Christoffel symbols that completely
hide the structure that can be seen here, and this structure is going to be
very useful in analyzing the dynamics of articulated motion. For example, one
can observe immediately with the definitions here that the matrix Ṁ − 2N is
anti-symmetric.

3 Inner Structure of the Dynamics
of Articulated Motion

3.1 The Structure of the Configuration Vector

In the case of locomoting or free-floating articulated systems, the configuration
vector q ∈ R

n introduced in the previous section stitches in fact together three
very distinct informations,

q =



q̂

x0

θ0


 , (9)

where q̂ describes the positions of the articulations of the system, and x0 and
θ0 the position and the orientation of a reference frame attached to one solid
of the system.

This structure of the configuration vector can be found then in all the
kinematic and dynamic equations of the system, to begin with the translation
and rotation jacobians that were introduced in (3). Indeed, if we consider the
translation and rotation velocities ˆ̇xk and ω̂k of the kth solid with respect to
the reference frame that we have just introduced, they must be composed with
the velocities ẋ0 and ω0 of this reference frame itself in order to obtain the
total translation and rotation velocities ẋk and ωk of the solid. This is done
through the following classical composition rules (remember that the rotation
velocities ω are expressed in local frames):

ẋk =R0(θ0) ˆ̇xk + ẋ0 + (R0(θ0)ω0) × (xk−x0) ,

Rk(q)ωk =Rk(q) ω̂k +R0(θ0)ω0

with R0(θ0) and Rk(q) the orientation matrices of the kth solid and the ref-
erence frame with respect to the inertial frame. Now, if we use the fact that
the velocities ˆ̇xk and ω̂k are solely related to the vector ˆ̇q,

ˆ̇xk = Ĵtk(q̂) ˆ̇q ,

ω̂k = ĴRk(q̂) ˆ̇q ,
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and the fact that the rotation velocity ω0 of the reference frame can be related
to the angular velocity θ̇0,

ω0 = JR0(θ0) θ̇0 ,

these composition rules turn into (with shortened notations)

ẋk =R0 Ĵtk
ˆ̇q + ẋ0 − (xk−x0) ×R0 JR0 θ̇0 ,

ωk = ĴRk
ˆ̇q +RT

kR0 JR0 θ̇0 ,

where we can observe that the translation and rotation jacobians that were
introduced in (3) exhibit a structure corresponding exactly to the structure
(9) of the configuration vector:

Jtk =
[
R0 Ĵtk 3×3 −(xk−x0) ×R0 JR0

]

JRk =
[
ĴRk 3×3 RT

k R0 JR0

] (10)

with 3×3 and 3×3 a zero and an identity matrix.

3.2 Back to Newton and Euler Equations

Replacing this structure of the jacobians JT
tk and JT

Rk in (6)–(8), we obtain
a structure of the inertia and non-linear effects matrices and of the gener-
alized forces that corresponds once again exactly to the structure (9) of the
configuration vector:

M(q)=
∑

k




ĴT
tk R

T
0 mk Jtk + ĴT

Rk Ik JRk

mk Jtk

JT
R0R

T
0

(
(xk−x0) ×mk Jtk +Rk Ik JRk

)


 , (11)

N(q, q̇)=

∑
k




ĴT
tk R

T
0 mk J̇tk + ĴT

Rk Ik J̇Rk − ĴT
Rk (IkJRk q̇) × JRk

mk J̇tk

JT
R0R

T
0

(
(xk−x0) ×mk J̇tk +Rk Ik J̇Rk −Rk (IkJRk q̇) × JRk

)


 , (12)

F =
∑

k




ĴT
tk R

T
0 fk + ĴT

Rk τk

fk

JT
R0R

T
0

(
(xk−x0) × fk +Rk τk

)


 . (13)

The dynamics (5) can be split therefore in three lines, each one with a very
specific structure. Particularly interesting are the two last ones: with the help
of relations (3) and (4), the line in the middle gives
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∑
k

mkẍk =
∑

k

fk

and the last line gives

JT
R0R

T
0

∑
k

(xk − x0) ×mkẍk +Rk Ik ω̇k −Rk (Ik ωk) × ωk =

JT
R0R

T
0

∑
k

(xk−x0) × fk +Rk τk

what, putting aside the multiplication by JT
R0R

T
0 , corresponds to an equality

between the dynamical momentum of rotation of the whole system and the
sum of all the torques applied to it, both expressed with respect to x0 in an
absolute reference frame. What appears here are therefore simply a Newton
and an Euler equation for the whole system.

3.3 Forces Acting on the System

We’re going to consider three different types of generalized forces, those which
are most generally found acting on systems of articulated bodies: the gravity
Fg, the control forces Fu and the contact forces Fc. The gravity forces and
torques acting on each solid are simply fk = mk g and τk = 0, where g is
simply the vector of the gravity field. Replacing this in (13) gives

Fg =
∑

k




ĴT
tk R

T
0 mk g

mk g

JT
R0R

T
0 (xk−x0) ×mk g


 . (14)

Now, we can observe from the structure (10) of the translation and rotation
jacobians that we obviously have

Jtk




0
g

0


 = g and JRk




0
g

0


 = 0

so that a short inspection of (11) leads to the fact that

Fg = M(q)




0
g

0


 .

This implies that the dynamics (5) of the system under the action of gravity
can be written as:
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M(q)


q̈ −




0
g

0





+N(q, q̇) q̇ = 0 .

Here lies the obvious observation that even on an articulated system, the
action of gravity is nothing but a linear acceleration in the direction of the
gravity field.

Concerning control forces, we’ll consider that the only ones acting on the
system are internal forces acting between the different solids of the system,
coming from the action of muscles or actuators on the articulations of the
system. In this case, the application of Newton’s law of action and reaction
leads us immediately to the conclusion that their sum (13) is of the form

Fu =



u

0
0


 , (15)

and we’re not going to precise any deeper the structure of the vector u for the
analysis undertaken here.

Concerning the contact forces between the system and its environment,
very different models exist [3] and we will focus only on the fact that what-
ever the model, there are always similar constraints on their direction and
amplitude due to unilaterality and limited friction. We will gather all these
limitations in a vector inequality relating these forces to the position of the
system:

A(q,Fc) ≤ 0 (16)

4 Motions that an Articulated System can Realize

4.1 With only Control Forces

If we introduce the center of mass xG of the system,

xG =
1
m

∑
k

mkxk with m =
∑

k

mk ,

the Newton equation of the whole system appears to be simply

mẍG =
∑

k

fk . (17)

If we get rid of the multiplication by JT
R0R

T
0 in the Euler equation and if we

add to it
(x0 − xG) ×

∑
k

mkẍk = (x0 − xG) ×
∑

k

fk
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in order to express the momentum of rotation and the sum of torques with
respect to the center of mass instead of x0, we obtain
∑

k

(xk−xG)×mkẍk+Rk Ik ω̇k−Rk (Ik ωk)×ωk =
∑

k

(xk − xG)×fk+Rk τk ,

(18)
what is equal to

d

dt

[∑
k

(xk − xG) ×mkẋk +Rk Ik ωk

]
=

∑
k

(xk − xG) × fk +Rk τk ,

where the left hand side appears to be simply the derivative of the kinetic
momentum of rotation of the system. This way, we can see that if the sys-
tem is under the action of only the control forces (15), we have the obvious
conservation of the kinetic momenta:

mẋG = Constant ,∑
k

(xk − xG) ×mkẋk +Rk Ik ωk = Constant .

If the system starts with a zero velocity, these constants are zero and the first
equation implies that whatever the control forces employed, the center of mass
of the system will remain unmoved. The implications of the second equation
are more subtle since it is a nonholonomic constraint, a relation between the
velocities of the bodies of the system that doesn’t imply a relation between
their positions and orientations: it constrains the movements that the system
can realize, but not the positions that it can reach.

We’re going to spend more time in Sect. 5 on the many implications of this
nonholonomy, but we can already stress that notwithstanding this conserva-
tion of the kinetic momentum of rotation, the position of the articulations q̂
and the orientation of the system θ0 can be controlled together to any desired
value, with the only action of muscles or actuators on the articulations of the
system: controlling the articulations of the system is enough to control also
its orientation.

4.2 With Gravity Forces

If the system is under the action of the gravity forces (14) in addition to the
control forces considered earlier, we can observe that the only modification
to the movements of the system is that its center of mass will be linearly
accelerated along the gravity vector instead of staying idle:

ẍG = g .

The conservation of the kinetic momentum of rotation is unchanged, and so
is the conclusion about its nonholonomy, and so is therefore the fact that
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Fig. 1. Falling back on the feet thanks to nonholonomy [6]

controlling the articulations of the system is enough to control also its orien-
tation. This can be observed in the most usual example of articulated system
under the action of gravity and muscles, a cat falling which always manages
to fall back on its feet. Figure 1 shows the similar case of a dog, and a close
inspection of this stop-motion allows to understand how the rotation of the
body is undertaken even though the kinetic momentum of rotation is kept un-
changed to zero: limbs are moved back and forth with different lengths, and
therefore with different inertial properties. We’re going to focus again later
on this very simple principle.

4.3 With Contact Forces

Of the three types of forces considered in Sect. 3.3, the contact forces appear
therefore to be the only one able to generate movements of the center of
mass of the system in any way other than falling down. The locomotion of
articulated systems completely rely therefore on the availability of contact
forces. Now, we have seen that these contact forces are limited because of
unilaterality and limited friction, as has been resumed in the general inequality
(16). Every movement undertaken by an articulated system has therefore to
comply with these limitations.

Research in biped locomotion has been extensively focusing on this ques-
tion, and in different ways, either focusing explicitly on the dynamic mo-
menta that appear in the Newton and Euler equations (17)–(18) as in the
Resolved Momentum Control approach [10, 11], in the Zero Moment Point
analysis [8, 28] and in other similar works [9, 13, 22], or treating more glob-
ally the force allocation problem directly in the Lagrangian Equation (5) as
in [7, 14, 29]. Since we have seen that this Lagrangian equation embeds ex-
plicitly the Newton and Euler equations of the system, we can conclude that
these two ways of approaching the problem are exactly equivalent.

The contact forces are also the only ones which can have an effect on
the momentum of rotation of the system and therefore potentially remove,
within the bounds of the inequalities (16), all the dynamical constraints that
existed on the movements of articulated systems. This point is less crucial
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Fig. 2. 22 degrees of rotation of the whole body in the sagittal plane induced by 24
steps of the walking pattern recorded in [31] and replayed on a simple free-floating
biomechanical model, what corresponds to a complete turn in 393 steps

though than the problem of moving the center of mass since we have seen
that the nonholonomy of this momentum of rotation allows for a control of
the orientation of the system through the control of its articulations. This is
going to be the main topic of the next section.

5 Some Implications on the Locomotion
of Articulated Systems

5.1 Nonholonomy of the Momentum of Rotation When Walking

We have seen in Sect. 4.2 that the nonholonomy of the momentum of rotation
can be observed in the case of the very specific movements that cats and dogs
realize in order to fall back on their feet. It is in fact a very general phenomenon
that can be observed even when walking. When replaying for example the
walking pattern recorded in [31] on a simple biomechanical model with no
external forces and therefore with a kinetic momentum of rotation constantly
equal to zero, we can indeed observe a rotation of the whole body happening in
the sagittal plane (Fig. 2). Note that a general property of such nonholonomic
constraints is that the outcome of the movement doesn’t depend on its speed,
but solely on its shape, so we can measure the nonholonomy here as an amount
of rotation of the whole body for each step of walking, depending solely on
the shape of this step, regardless of its actual speed. In this case, that gives
1/393rd of a complete turn of the body per step accomplished.

A more accurate measurement of this phenomenon can be obtained on a
robotic system such as the HRP-2 robot, for which the inertial properties and



Holonomy and Nonholonomy in the Dynamics of Articulated Motion 421

0.007

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Fig. 3. Fraction of a complete turn in the sagittal plane of the whole body of the
HRP-2 robot induced by a step of walking as a function of the height of this step
(in meters), with up to 1/159th of a complete turn for a 25 cm high step

the movements actually realized can be known with very good precision. We
can accurately measure then the amount of rotation of the whole body as a
function of the shape of the step, for example its height in Fig. 3, reaching
here 1/159th of a complete turn of the body for a 25 cm high step.

Note that this phenomenon is intrinsic to the movements of the legs when
walking, back and forth with different lengths in order to avoid undesired
contacts with the ground, and therefore back and forth with different inertial
properties, just as what has been observed in the case of the dog falling in
Fig. 1. Keeping the body upright when walking necessarily calls therefore for a
second phenomenon in order to counterbalance this rotation. One can imagine
the arms making the exact inverse of the movements of the legs, with different
lengths when moving back and forth, but this is not what can be observed in
natural walking patterns, without mentionning the cases when the arms don’t
even move back and forth, when holding a heavy object or when keeping arms
crossed. The counterbalancing phenomenon that can be observed is in fact a
non-zero mean kinetic momentum of rotation in the direction opposite to the
rotation induced by the legs’ movements (Fig. 4). With these observations in
mind, the proposition made in [22] of controlling the kinetic momentum of
rotation of a walking system to keep it to zero appears to be problematic: a
zero kinetic momentum of rotation appears to be incompatible with walking,
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Fig. 4. Kinematic momentum of rotation of the HRP-2 robot in the sagittal plane
(in kg.m2.s−1) as a function of time (in seconds) when executing 25 cm high steps
on the ground

and designing a control law to do so will obviously lead to an error either in
the tracking of the walking movements or in the tracking of the zero kinetic
momentum, both potential sources of instability.

It could be tempting then to control this kinetic momentum of rotation to
a non-zero value, following for example the framework presented in [11], but
the choice of the desired value may not be easy to decide since it should be
made according to the specific shape of the walking pattern being considered.
On top of that, the kinetic momentum of rotation can be observed to vary
strongly when walking (Fig. 4), so the choice of a constant value might be an
unnecessary limitation. But most of all, as we have already observed in Fig. 2,
the value of the kinetic momentum of rotation is only scarcely related to the
actual rotations that the articulated system is going to realize: deciding a
value for this momentum decides in fact almost nothing about the movement
to come. It may not be sure therefore whether focusing specifically on the
control of the kinetic momentum of rotation as proposed in [1, 9, 11, 13, 22] is
the best option, after all. At least, it is incomplete in controlling the motion
of an articulated system.
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5.2 Some Hints for Improving the Control of Walking, Running,
Jumping and Free Floating Motions of Articulated Systems

The amounts of rotation measured in the previous section, 1/393rd to 1/159th

of a complete turn, might look small if not negligible, the main reason that
led to the erroneous conclusion in [22] that they might be strictly zero. But
we should not forget the example of the cat always falling back on its feet:
nonholonomy can be a very precious tool in the control of the locomotion of
articulated systems, not to be underestimated.

Of course, solely varying the height of the steps as in the previous section is
not a serious solution to completely stabilize a walking movement, but this is
an indication that varying the shape of the walking pattern can help improve
this stability, especially if motions of the whole body are involved, for greater
efficiency (the arms can be a precious source of inertial effects). At least,
this can be a valuable addition to the methods already known for stabilizing
walking motions such as varying the step lengths or the speed [30].

Useful in the case of walking, making use of this nonholonomy can become
an absolute necessity in the case of running, jumping and free floating motions,
being the only way to control the orientation of the system when contact
forces are not available anymore. Now, it is well known as a side effect of
a famous theorem due to R.W. Brockett [2] that the complete control of a
system with nonholonomic constraints can’t be realized with continuous time-
invariant feedback control laws: discontinuous or time-varying control laws are
a necessity in this case [5]. This explains why the use of this nonholonomy is
out of reach of the control laws proposed in [12, 17, 25] which are all continuous
and time-invariant.

Using this nonholonomy is a well established control method in space ro-
botics [16, 19, 24], but the only control law making such a use of this non-
holonomy that seems to have been proposed so far for humanoid locomotion is
for running, in [4]. There, a time-varying control law is proposed in the flight
phase by simply letting an additional degree of freedom in the design of the
trajectories be used to control the orientation of the system. We can observe
there that calling for discontinuous or time-varying control laws doesn’t nec-
essarily imply complex solutions: local modifications of the shape of the limb
trajectories can be just enough, what can be made even easier from a compu-
tational point of view with the help of a library of precomputed motions.

6 Conclusion

The core of this short note has been a precise description of the inner structure
of the dynamics of articulated systems of bodies, establishing in particular how
the Newton and the Euler equations of the whole system are very simply and
directly embedded inside its Lagrangian dynamics, implying an immediate
equivalence between the approaches that focus on the former equations and
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the approaches that focus on the latter one. This whole analysis has been made
possible in the first place thanks to an original derivation of this Lagrangian
dynamics through the use of Gauss’s principle.

Conclusions have been derived then concerning the holonomy of the New-
ton equation and the nonholonomy of the Euler equation, implying the neces-
sity of contact forces for articulated systems to realize translations, but not
rotations for which joint forces are enough. A specific analysis of this latter
phenomenon has been undertaken then in the case of walking motions, and
propositions have been finally made to make use of it for improving the design
of control laws for stabilizing walking, running, jumping, and more generally
every kind of articulated movements on the ground and in the air.
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Summary. In human walking, the swing leg moves backward just prior to ground
contact, i.e. the relative angle between the thighs is decreasing. We hypothesize
that this swing leg retraction may have a positive effect on gait stability, because
similar effects have been reported in passive dynamic walking models, in running
models, and in robot juggling. For this study, we use a simple inverted pendulum
model for the stance leg. The swing leg is assumed to accurately follow a time-based
trajectory. The model walks down a shallow slope for energy input which is balanced
by the impact losses at heel strike. With this model we show that a mild retraction
speed indeed improves stability, while gaits without a retraction phase (the swing
leg keeps moving forward) are consistently unstable. By walking with shorter steps
or on a steeper slope, the range of stable retraction speeds increases, suggesting a
better robustness. An optimization of the swing leg trajectory of a more realistic
model also consistently comes up with a retraction phase, and indeed our prototype
demonstrates a retraction phase as well. The conclusions of this paper are twofold;
(1) use a mild swing leg retraction speed for better stability, and (2) walking faster
is easier.

1 Introduction

In human walking, the swing leg moves forward to maximal extension and
then it moves backward just prior to ground contact. This backward motion
is called “swing leg retraction”; the swing foot stops moving forward relative
to the floor and slightly moves backward before touching the ground. In bio-
mechanics it is generally believed that humans apply this effect (also called
“ground speed matching”) in order to reduce heel strike impacts. However, we
believe that there is a different way in which swing leg retraction can have a
positive effect on stability; a fast step (too much energy) would automatically
lead to a longer step length, resulting in a larger energy loss at heel strike.
And conversely, a slow step (too little energy) would automatically lead to a
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shorter step length, resulting in less heel strike loss. This could be a useful
stabilizing effect for walking robots.

The primary motivation to study swing leg retraction comes from our
previous work on passive dynamic walking [15, 4, 19]. Passive dynamic walk-
ing [11] robots can demonstrate stable walking without any actuation or con-
trol. Their energy comes from walking downhill and their stability results from
the natural dynamic pendulum motions of the legs. Interestingly, such walk-
ers possess two equilibrium gaits, a “long period gait” and a “short period
gait” [5, 12]. The long period gait has a retraction phase, and this gait is the
only one that can be stable. The short period gait has no swing leg retraction.
This solution is usually dismissed, as it never provides passively stable gaits.

More motivation stems from work on juggling and running, two other
underactuated dynamic tasks with intermittent contact. The work on jug-
gling [14] featured a robot that had to hit a ball which would then ballistically
follow a vertical trajectory up and back down until it was hit again. The re-
search showed that stable juggling occurs if the robot hand is following a well
chosen trajectory, such that its upward motion is decelerating when hitting
the ball. The stable juggling motion required no knowledge of the actual posi-
tion of the ball. We feel that the motion of the hand and ball is analogous to
that of the swing leg and stance leg, respectively. Also analogous is the work
on a simple point-mass running model [16]. It was shown that the stability of
the model was significantly improved by the implementation of a retraction
phase in the swing leg motion. It has been suggested [13] that this effect also
appears in walking.

In this paper we investigate the stabilizing influence of the swing leg retrac-
tion speed just prior to heel strike impact. We use a Poincaré map analysis of
a simple point-mass model (Sect. 2). The results are shown in Sect. 3, includ-
ing a peculiar asymmetric gait that is more stable than any of the symmetric
solutions. Section 4 reports that the results are also valid for a model with a
more realistic mass distribution. The discussion and conclusion are presented
in Sects. 5 and 6.

2 Simulation Model and Procedure

The research in this paper is performed with an inverted pendulum model
consisting of two straight and massless legs (no body) and a single point mass
at the hip joint, see Fig. 1. Straight legged (“compass gait”) models are widely
used as an approximation for dynamic walking [7, 6, 9, 8, 5].

2.1 Stance Leg

The stance leg is modeled as a simple inverted pendulum of length 1 (m)
and mass 1 (kg) (Fig. 1). It undergoes gravitational acceleration of 1 (m/s2)
at an angle of γ following the common approach to model a downhill slope
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φ
g=1

γ

θ

m=1

l=1

swing leg 
retraction

Fig. 1. Our inverse pendulum model, closely related to the “Simplest Walking
Model” of [5]

in passive dynamic walking. It has one degree of freedom denoted by θ, see
Fig. 1. The foot is a point and there is no torque between the foot and the
floor. The equation of motion for the stance leg is:

θ̈ = sin(θ − γ) (1)

which is integrated forward using a 4th order Runge-Kutta integration routine
with a time step of 0.001 (s).

2.2 Swing Leg

The swing leg is modeled as having negligible mass. Its motion does not affect
the hip motion, except at the end of the step where it determines the initial
conditions for the next step. A possible swing leg motion is depicted in Fig. 2
with a dashed line. As is standard with compass gait walkers, we ignore the
brief but inevitable foot scuffing at midstance.

The swing leg motion at the end of the step is a function of time which we
construct in two stages. First we choose at which relative swing leg angle φ
(See Fig. 1) heel strike should take place, φlc. This is used to find a limit cycle
(an equilibrium gait), which provides the appropriate step time, Tlc. Second,
we choose a retraction speed φ̇. The swing leg angle φ is then created as a
linear function of time going through the point {Tlc, φlc} with slope φ̇.

2.3 Transition

The simulation transitions from one step to the next when heel strike is de-
tected, which is the case when φ = −2θ. An additional requirement is that
the foot must make a downward motion, resulting in an upper limit for the
forward swing leg velocity φ̇ < −2θ̇ (note that θ̇ is always negative in nor-
mal walking, and note that swing leg retraction happens when φ̇ < 0). In
our simulation, we use a third order polynomial to interpolate between two



430 M. Wisse et al.

0 1 2 3 4

0.6

-0.4

-0.2

0

0.2

time (s)

5

0.4 Exact swing motion
is irrelevant

Nominal heel strike

Continued motion
if heel strike is delayed

Range of stable
retraction speeds

Swing leg retraction

Nominal motion
of stance leg θ

This paper addresses linearized
stability; the width of this region
is very small, unlike the drawing.

φ 
an

d
 θ

 (r
ad

)

Nominal motion
of swing leg φ

Fig. 2. The figure shows an example trajectory and it shows the stable region
(hatched area) for retraction speeds. Only the swing leg trajectory around heel strike
is important; the swing leg by itself has no dynamic effect on the walking motion
other than through foot placement

simulation data points in order to accurately find the exact time and location
of heel strike.

The transition results in an instantaneous change in the velocity of the
point mass at the hip, see Fig. 3. All of the velocity in the direction along
the new stance leg is lost in collision, the orthogonal velocity component is
retained. This results in the following transition equation:

θ̇+ = θ̇− cosφ (2)

in which θ̇− indicates the rotational velocity of the old stance leg, and θ̇+

that of the new stance leg. At this instant, θ and φ flip sign (due to relabeling
of the stance and swing leg). Note that in Eq. (2) φ could equally well be
replaced with 2θ.

The instant of transition is used as the start of a new step for the swing leg
controller; in the case that a disturbance would make step n last longer than
usual, then the start of the swing leg trajectory for step n + 1 is postponed
accordingly. Thus, although the swing leg motion is a time-based trajectory
independent of the state of the stance leg, it does depend on foot contact
information for the start of the trajectory.
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Fig. 3. At heel strike the velocity of the point mass is redirected. All velocity along
the length of the new stance leg is lost, so that θ̇+ = θ̇− cos φ

2.4 Finding Limit Cycles

The model exhibits a limit cycle if the initial conditions of step n + 1 are
exactly equal to those of step n. For this model, the only independent initial
conditions are the stance leg angle (θ) and its velocity (θ̇). The motion of the
swing leg is fully trajectory controlled; we assume that it accurately follows
the desired trajectory.

The first step of finding a limit cycle is to guess initial conditions that
are near a hypothesized limit cycle, either through experience or by starting
from a known limit cycle for similar parameter values. This provides initial
guess {θ0, θ̇0}. Then a Newton-Raphson gradient-based search algorithm is
applied on the difference between {θ0, θ̇0} and the initial conditions of the
next step, which we obtain through forward simulation. The search algorithm
terminates when the norm of the difference is smaller than 1e−9. The search
algorithm uses a numerically obtained gradient J which is also used for the
stability analysis as described in the next paragraph. Note that this procedure
can find unstable as well as stable limit cycles.

2.5 Poincaré Stability Analysis

The stability of the gait is analyzed with the Poincaré mapping method, which
is a linearized stability analysis of the equilibrium gait. The Poincaré map-
ping method perturbs the two independent initial conditions and monitors
the effect on the initial conditions for the subsequent step. Assuming linear
behavior, the relation between the original perturbations at step n and the
resulting perturbations at step n+ 1 is captured in the Jacobian matrix J, as
in: [

∆θn+1

∆θ̇n+1

]
= J

[
∆θn

∆θ̇n

]
(3)

If the magnitudes of both of the eigenvalues of J are smaller than 1, then
errors decay step after step and the gait is stable. The eigenvalues could have
imaginary parts, as was the case for the passive model [5], but in the model
with trajectory control they have no imaginary parts.
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2.6 Nominal Gait

We have chosen the steady passive gait with a slope of γ = 0.004 rad as a
basis of reference for walking motions. For the passive model, γ is the only
parameter, and for γ = 0.004 there exists only one unstable equilibrium gait
(the “short period solution”) and one stable equilibrium gait (the “long period
solution”). We use the latter as our reference gait. The initial conditions and
the step time of that gait are listed in Table 1.

Table 1. Initial conditions and step time for steady walking of the passive walking
model at a slope of γ = 0.004 rad. Note that the initial velocity for the swing leg φ̇ is
irrelevant for our study, because the swing leg motion is fully trajectory controlled

θ 0.1534 rad

φ = −2θ 0.3068 rad

θ̇ −0.1561 rad/s

φ̇ 0.0073 rad/s

step time 3.853 s

3 Results

3.1 Nominal Limit Cycle

For the given gait of Table 1 on a given slope of γ = 0.004 rad, the only
parameter that we can vary is the retraction speed φ̇; how fast is the swing
leg moving rearward (or forward, depending on the sign) just prior to heel
strike. This parameter has no influence on the nominal gait, but it does change
the behavior under small disturbances as captured by the Poincaré stability
analysis. Note that the swing leg will follow a fixed time-based trajectory
independent of the disturbances on the initial conditions.

The stability results are shown in Fig. 4; the eigenvalues of J on the vertical
axis versus the retraction speed φ̇ at the horizontal axis. A positive value for
φ̇ indicates that the swing leg keeps moving forward. A value of zero means
that the swing leg is being held at the heel strike value φ = 0.3068 and so the
foot comes down vertically. A negative value for φ̇ indicates the presence of a
retraction phase.

Figure 4 shows that stable gaits emerge for retraction speeds of −0.18 <
φ̇ < 0.009, and that the fastest convergence will be obtained with φ̇ = −0.09
since the maximum absolute eigenvalue is minimal at that point. In other
words, swing leg retraction is not necessary for stable walking, but errors will
definitely decay faster if the swing leg motion does include a retraction phase.
Also, even though some forward swing leg motion (φ̇ > 0) is allowable, this
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Fig. 4. The graph shows the range of stable retraction speeds. The stability is
indicated with eigenvalues of J on the vertical axis. The walking motion is stable if
the eigenvalues are between −1 and 1. The horizontal axis contains the retraction
speed φ̇. A positive value for φ̇ indicates that the swing leg keeps moving forward,
a value of zero means that the swing leg is being held at the heel strike value
φ = 0.3068 and so the foot comes down vertically. A negative value for φ̇ indicates
the presence of a retraction phase. Stable gaits exist for retraction speeds between
−0.18 and +0.009 rad/s. In words, this graph shows that relative hip angle should
be decreasing around the instant that heel strike is expected

would make the walker operate very close to instability characterized by a
rapidly growing eigenvalue.

An interesting data point is φ̇ = 0. One of the eigenvalues there is zero
(λ1 = 0); any errors in the initial condition θ will be completely eliminated
within one step, because it is certain that the step will end with φ = 0.3068
as the swing leg will be held at that value until heel strike occurs. The other
eigenvalue can also be calculated manually. Although the derivation is a little
more involved, the result simply reads λ2 = cos2 φ. A system with φ̇ = 0 is
dynamically equivalent to the “Rimless Wheel” [10, 2].

3.2 The Influence of Step Length

We repeat the stability analysis of the previous subsection still using the same
slope γ = 0.004 but varying the step length of the gait. For example, we choose
a much faster and shorter step starting with θ0 = −0.1317. The limit cycle
belonging to that value starts with θ̇0 = −0.17 while the step time is 2 s (this
is what we tuned for). The resultant eigenvalues are shown in Fig. 5. Clearly
there is a much larger range of stable retraction speeds, at the cost of slightly
slower convergence. A retraction speed of φ̇ = −0.71 seems optimal, i.e. this is
where we find the smallest value when taking the maximal absolute values of
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Fig. 5. A faster walking motion (T = 2 s) leads to a much larger range of stable
retraction speeds

both of the eigenvalues. The absolute eigenvalues are 0.8, i.e. errors decrease
20% per step.

Figure 6 provides an overview of the effect of step length on stable range of
retraction speeds and the optimal retraction speed and accompanying eigen-
values. The stable range decreases for larger step lengths until it is zero for
φ = 0.3155. Above that value no limit cycles exist, because the energy supply
from gravity cannot match the large impact losses. Near this value, the walker
is operating dangerously close to a state in which it does not have sufficient
forward energy to pass the apex at midstance, resulting in a fall backward.
The main conclusion from this graph is that it is wise to operate well away
from a fall backward, i.e. walk fast!
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Fig. 6. Effect of step length on the range of stable retraction speeds for a floor
slope of γ = 0.004. The gray area shows that shorter steps are better. The graph
also shows the retraction speed with the smallest eigenvalues
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Fig. 7. Effect of floor slope on the range of stable retraction speeds for a step length
of φ = 0.3068. The gray area shows that steeper slopes (and thus faster steps) are
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Fig. 8. A step-down of 0.1% of the leg length results in a slightly longer step time
(∆T1 > 0), followed by a significantly faster second step (∆T2 < 0)

3.3 The Influence of the Slope Angle

The influence of the slope angle is similar to the that of the step length. A
steeper slope provides more energy input and thus the resultant gait is faster,
an effect similar to decreasing the step length. Figure 7 shows how the range
of stable retraction speeds depends on the slope angle, for the nominal step
length φ = 0.3068.

3.4 Effect of Step-Down Disturbance on Step Time

During preliminary presentations of this work [18], we were asked whether
the beneficial stability effect of swing leg retraction also holds in the case
of a step-down in the floor. One might think that the step-down has the
following adverse effect: the disturbed step takes longer than normal due to
the extra step-down height (Fig. 8). The swing leg retraction then results
in a shorter -than-normal steplength, while the extra energy should rather
have been dissipated with a longer -than-normal steplength. Thus it seems
that swing leg retraction worsens the effects of the step-down disturbance.
However, we will show here that the opposite is true.
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Fig. 9. Effect of a step-down of 0.1% of the leg length on the step time of the
disturbed step and the step after that (“second step”). Both graphs show that the
second step is much more disturbed than the disturbed step itself. The top graph
shows that a fast walking gait results in a much smaller step time disturbance than
a slow walking gait (bottom graph). Both graphs show that swing leg retraction is
beneficial because it reduces the effect of a step-down on the step time of the second
step

The most important gait characteristic for a disturbance analysis is the
step time. For a simple 2D model, the step time is the most telling characteris-
tic to predict how likely a forward or backward fall is. So, we must investigate
the effect of the step-down disturbance on the step time. It turns out that the
step after the disturbed step (“second step” in Fig. 8) suffers most, see Fig. 9.
In this figure we show the effect of a step down of 0.1% of the leg length. The
disturbed step itself has a slightly longer step time, and the second step has
a significantly shorter step time. From this figure we draw two conclusions:
(1) the step time is considerably less disturbed for the fast gait, so walking
faster is better, and (2) the presence of a swing leg retraction phase actually
reduces the step time disturbance ∆T , contrary to what one might expect.
Note that this analysis was only done for the range of stable solutions from
Figs. 4 and 5.
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3.5 Asymmetric Gait is More Stable

The results in the previous sections show that the retraction speed can change
the eigenvalues, but it doesn’t ever seem to obtain eigenvalues of all zeros. The
explanation is simple; the system uses one control input (the swing leg angle φ
at heel strike) with which it must stabilize two states (stance leg angle θ and its
velocity θ̇). For a discrete control situation like the one at hand, the controller
needs at least two interactions with the system before a random disturbance
can be eliminated. In other words: although one cannot obtain “deadbeat
control” (all eigenvalues zero) within a single step, it should be possible to
find a deadbeat controller for a succession of two steps. Here we present such
a controller for our nominal situation of γ = 0.004 and φ = 0.3068.

The previous solutions were all symmetric, i.e. the trajectory of the swing
leg was the same each step. We found that a purposefully induced asymmetric
gait can result in eigenvalues of all zeros. The swing leg trajectories (one
for leg 1 and another for leg 2) are shown in Fig. 10. Leg 1 always goes
to φ = 0.3068 and does not have a retraction phase (i.e. the foot comes
straight down). Leg 2 always follows a trajectory with a retraction speed of
φ̇ = −0.125245. If one calculates the eigenvalues over a series of steps of Leg 1
– Leg 2 – Leg 1 (or more), all eigenvalues are zero. This means that any
disturbance will be completely eliminated after three steps of this asymmetric
gait.

Preliminary research suggests that this “deadbeat” solution even pertains
to large errors, although that requires a non-constant retraction speed. We
intend to investigate such large-error solutions in the future. Note that in
steady gait, the motion of the swing legs is asymmetric (one retracts and the
other does not) but the step length and step time are still symmetric. Hence
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Fig. 10. An asymmetric gait can lead to two-step deadbeat control, i.e. to two
eigenvalues of zero
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this solution is conceptually entirely different from the “period-two” solutions
found in a bifurcation analysis (e.g. [5]). Also note that due to the asymmetry,
the eigenvalues cannot be divided up into “one-step” eigenvalues.

4 Automated Optimization on a More Realistic Mass
Distribution also Results in Swing Leg Retraction

The theoretical results in the previous section are based on a point mass
model for walking. One of the main assumptions there is that the mass of the
swing leg is negligible. Obviously, in real walking systems this is not true. The
reaction forces and torques from a non-massless swing leg will influence the
walking motion. In our experience, the main effect is energy input. Driving
the swing leg forward also pumps energy into the gait. A benefit of this effect
is that a downhill slope is no longer required, but the question is whether it
breaks the stabilizing effect of swing leg retraction. Or, even if it does still
help stability, whether the stability gain outweighs the added energetic cost
for accelerating the swing leg. We study these questions using a model with
a more realistic mass distribution, based on a prototype we are currently
experimenting with [1] (Fig. 11). The swing leg trajectory is optimized both
for stability and for efficiency.

The model (Fig. 11) has the same topology as our initial model (Fig. 1).
However, instead of a single point mass at the hip, the model now has a
distributed mass over the legs, see Table 2. The swing leg follows the desired
trajectory with reasonable accuracy using a PD controller on the hip torque:

T = k(φ− φdes(t)) + dφ̇ (4)

with gain values k = 1500 and d = 10. The swing leg trajectory is parame-
terized with two knot points defining the start and the end of the retraction

c

g
w

m, I

Fig. 11. Our current experimental biped and a straight-legged model with mass
distribution based on the experimental robot, see Table 2
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Table 2. Parameter values for a model with a more realistic mass distribution in
the legs

gravity g 9.81 m/s2

floor slope γ 0 rad

leg length l 0.416 m

leg mass m 3 kg

vertical position CoM c 0.027 m

horizontal position CoM w 0 m

moment of inertia I 0.07 kgm2

phase (Fig. 12). The trajectory before the first knot point is a third order
spline which starts with the actual swing leg angle and velocity just after heel
strike. The trajectory between the two knot points is a straight line. This
parametrization provides the optimizer with ample freedom to vary the re-
traction speed, the nominal step length, and the duration of the retraction
phase.

The optimization procedure is set up as follows. The model is started with
manually tuned initial conditions, after which a forward dynamic simulation
is run for 20 simulated seconds. The resulting motion is then rated for average
velocity and efficiency:

cost = Σ20s(wTT
2 + wv(ẋ− ẋdes)2 + wv ẏ

2) (5)
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Fig. 12. The desired trajectory for the swing leg is parameterized with two knot
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Fig. 13. Retraction speed φ̇ as a function of the level of random torque disturbances.
A negative value for φ̇ indicates the presence of a retraction phase. The results are
obtained with an optimization algorithm which was initialized with trajectories with
a retraction phase for some runs and without one for others. Irrespective of the
initialization and the level of disturbances, the optimization always settles into a
trajectory with a retraction phase, i.e. φ̇ is always negative just prior to foot contact

with the weight for the torque penalty wT = 0.1, the weight for the velocity
penalty wv = 1, and the desired forward velocity ẋdes = 0.3, summed over a
trial interval of 20 s. During the motion, random noise with uniform distri-
bution is added to the hip torque. In this way, the model is indirectly rated
for robustness; if the noise makes the walker fall, then the resultant average
walking velocity is low and so the penalty for not achieving ẋdes is high.

A simulated annealing procedure optimized the cost function of (5) by
adjusting the four knot point parameters for the swing leg trajectory. Fig-
ure 13 shows that for a wide range of noise levels and initialization values,
the optimization procedure consistently settles into gaits with a retraction
phase. These results fully concur with the theoretical results for the model
with massless legs. Therefore, we conclude that the analysis is valid and the
conclusion holds: a mild retraction speed is beneficial for the walking stability.

5 Discussion

This work was limited to a small error analysis. Our future work consists of
analyzing the effect of the swing leg motion when under large disturbances, i.e.
an analysis of the basin of attraction must be added to the present linearized
stability analysis [19]. We also intend to investigate the effects of an increased
model complexity by adding knees, feet, and an upper body.

Observations of the gait of our previously developed passive-based walking
robots [17] show that they all walk with a retraction phase in the swing leg
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Fig. 14. Left: our prototype Denise. Right: the graph shows the clear existence of
a retraction phase. The graphs shows a measurement of the motion of Denise’s heel
with respect to the floor. We measured over 150 steps from several trials. The data is
time-synchronized using heel strike at the end as the reference, and the final position
after heel strike is defined as 0 meters. Then we calculated the mean and standard
deviation, which are shown in the graph

motion. For illustration, Fig. 14 shows the motion of the swing foot with
respect to the floor, as measured with a motion capture system on our most
recent prototype Denise [3]. The measurements (an average of over 150 steps)
show that there exists a clear retraction phase just prior to heel strike.

6 Conclusion

In this paper we research the effect of swing leg retraction on gait stability.
The conclusions are straightforward:

1. Walk fast; this decreases the sensitivity of the gait to the swing leg motion
just prior to heel contact.

2. Use mild swing leg retraction; by moving the swing leg rearward just
prior to heel contact, one avoids the highly unstable effects that occur when
the swing leg is still moving forward at heel contact.
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