
Chapter 13

Seismic Force Exerted on Structures

Sigiriya means Singha (lion) giri (mountain) in Sanskrit language. King Kasyapa of Sri Lanka who was
afraid of his enemy's attack located his palace at the top of this rock. Water was supplied from big pools
which were excavated at the top of the rock as well.



�  13.1  Analysis on Soil–Structure Interaction

Effects of ground shaking on underground structures such as tunnels and basements are often analyzed
by connecting structures with free field of ground (1D soil columns without effects of embedded
structures) by means of (nonlinear) springs, see Fig. 13.1a. Springs are classified into those concerning
normal earth pressure and those transmitting shear force. This method of analysis is called the method of
seismic displacement, the method of subgrade reaction, or the method of Winkler foundation. The
modulus of springs has long been studied in the fields of, for example, pile foundation (nonlinear
subgrade reaction modulus). The horizontal response (time history of displacement) of a one-dimensional
soil column is first calculated by using wave propagation theory in a level ground (Sect. 4.1 and Chap.
8). The calculated motion is then substituted at the support of springs, which generate dynamic response
of the structure.

Strictly speaking, the method in Fig. 13.1a is not sufficient. Suppose a soil mass embedded in a free field
consisting of the same type of soil. Since no relative displacement occurs between the soil mass and the
free field, because of the same material type, spring mechanisms are not activated, causing no motion in
the soil mass in the analysis. This problem is solved by superimposing stress components in the free
field (Fig. 13.1b). Thus, a strict analysis requires a free-field calculation of both displacement time
history and the stress time history, which are then substituted in a soil-structure interaction analysis (Fig.
13.1b). In most practical cases, the magnitude of free-field stress is less significant than the spring forces
and the stress superposition is ignored.

(a) Structures connected to free field by springs (b) Rigorous method of seismic displacement
with superimposed free-field stress around
the structure.

         Fig. 13.1 Method of seismic displacement

An example of an elaborate method of analysis is illustrated in Fig. 13.2 in which a dynamic finite
element analysis was conducted on nonlinear soil models and elastic model of a Daikai subway station
in Kobe which collapsed during the 1995 Kobe earthquake. Conventionally, it had been believed that
tunnel was safe during earthquakes because shaking at depth is weaker and the surrounding stiff ground
prevents large deformation of tunnels in mountains (Sect. 13.7). Such an idea did not hold true when
shaking was extremely strong and the surrounding soil was not very stiff; Daikai station was constructed
in an excavated pit and then backfilled.

252           13     Seismic Force Exerted on Structures  

Free field response

: Normal and shear
   stresses in free field



employed computer code could
not handle nonlinear deforma-
tion characteristics of both soil
and concrete at the same time.
To overcome this problem, the
maximum calculated forces ex-
erted by surrounding soil ele-
ments upon the structural ele-
ments were applied statically on
the nonlinear model of the sub-
way station (Fig. 13.3). Nonlin-
ear springs at connection of col-
umns and slabs stand for the non-
linearity of the structure. This
analysis was able to reproduce
the failure of central columns
(Fig. 13.4), which consequently caused the significant subsidence
at the ground surface (Fig. 13.5). This lesson triggered reinforce-
ment of central columns in many other subway stations. See
examples in Tokyo (Figs. 13.6 and 13.7).

Theoretically the dynamic soil–structure interaction is
often decomposed into the inertial and kinetic
interaction; Fig. 13.8 illustrates an example of a structure
supported by a single pile. The inertial interaction means
the force which is the mass of the super structure ¥  its
acceleration and is exerted on the foundation. The kinetic
interaction is the force that is caused by the differential
displacement between soil and the foundation. Springs
in Fig. 13.1 stand for the kinetic interaction. Both kinds
of force induce dynamic deformation and possibly
failure.

Fig. 13.2 FE model of failed subway station
               (Nakamura et al., 1996)
Fig. 13.2

Fig. 13.4 Collapse of columns 
  at the center of station   
  (Nakamura et al., 1996)

Fig. 13.4

Fig. 13.5 Ground subsidence above Daikai 
   subway station (by Nozomu Yoshida)
Fig. 13.5

 Static nonlinear analysis of subway 
                 station. (Nakamura et al., 1996)
Fig. 13.3

One of the limitations of the dynamic analysis in Fig. 13.2 was that the complicated nonlinear behavior
of the structural members (columns and slabs) was not taken into account. This was because the
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Fig. 13.6 Reinforced central columns in Kasuga Fig. 13.7 Reinforced central columns in Daimon
Station of Tokyo Metropolitan Subway Station of Tokyo Metropolitan Subway

 Fig. 13.8 Schematic illustration of dynamic soil–structure interaction

Kinetic interaction

So
il 

di
sp

la
ce

m
en

t

Inertial interaction

+=

254          13     Seismic Force Exerted on Structures  



�  13.2  Seismic Design of Embedded Pipeline

Embedded pipelines for gas, water, electricity, and communications are subjected to earthquake effects
such as buckling, bending failure, and separation at joints. Since these seismic effects are caused by
distortion of ground, the seismic design of embedded pipelines puts emphasis on soil–structure interaction;
the seismic inertia force is therein less important.

Figure 13.9 illustrates the concept of seismic design in which the ground consists of two layers, a soft
surface deposit and a stiff engineering base. In this figure a pipeline is connected with the surface soil by
springs (elastic beam resting on Winkler foundation). This figure concerns only with bending of a pipe
because the springs are perpendicular to the axis of the pipe. Figure 13.10 illustrates another application
of the method to lateral response of a pile. The use of (linear or nonlinear) springs between an embedded
structure and free ground motion is called the method of seismic displacement and is widely practiced in
design of piles as well.

Fig. 13.9 Analysis on soil–pipeline interaction

Fig. 13.10 Method of seismic displacement

 
as applied to lateral response of pile

The seismic input is given by the amplitude of
soil displacement, u, which is idealized by

u z U
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(13.1)

where z is the depth below surface, U is the
surface displacement amplitude, and L is the
wave length of surface displacement. The
displacement varies in a harmonic manner in
both x and z directions. This ground
displacement exerts lateral forces on the
pipeline through spring connections. Since the magnitudes of ground displacement and spring forces
vary in the x direction, the pipeline is subjected to bending.
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response of the surface soil, which is idealized by a single-degree-of-freedom model as the theory of
response spectrum states. See Fig. 13.11 for example of Sv , while KH is 0.65 for example. Note in
this figure that the response spectrum, Sv , is a function of natural period, T.

3. The natural period of the surface deposit, T, is calculated by T H V= 4 s  where Vs  is the S-wave
velocity of soil (6.30). It is assumed that the surface shaking occurs in a harmonic manner under this
natural period.

4. Since the amplitude of velocity in the surface soil is K S TH v ( ), the displacement amplitude is given
by

   Displacement amplitude =  Velocity amplitude/ Circular frequency
= K S T TH v ( )[ ] ( )2p .  (13.2)

5. Since the displacement, U, at the surface of a soil column is 4 p  times greater than that of a
single-degree-of-freedom model, (13.1) is modified to be
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For derivation of 4 p  parameter, refer to Sect. 13.3.
6. The wave length, L, for design is determined in practice as the harmonic mean of two wave lengths

L L L L L= +( )2 1 2 1 2 ,                                                                        (13.4)

where L1=Vs T=4H, Vs  the S-wave length in the surface soil, and L2=(Vs  in the engineering base) ¥ T.

The surface displacement, U, in (13.1) is given for design purposes by the following procedure.
1. The seismic coefficient (Sect. 7.1) in the engineering base is specified as KH.
2. The (relative) velocity response spectrum (Sect. 23.1) of a design earthquake motion in the base is

normalized by the seismic coefficient and is designated by Sv . Hence, K SH v  is the design velocity
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�  13.3  Amplification: Soil Column Vs. Spring–Mass Model

A comparison is going to be made of seismic amplifications
of a realistic soil column and its equivalent single-degree-
of-freedom model, see Fig. 13.12. The properties of the
soil column are uniform while the single-degree-of-freedom
model consists of a lumped mass and an elastic spring.
They are called equivalent when their natural periods are
identical. The response of these two models to the base
acceleration of A t sinw  is going to be studied.

The response of the lumped mass model is governed by

d
d

 o

2

2
2U

t
U A t+ = -w wsin , (13.5)

where U is the displacement relative to the base, d d2 2U t
its second time derivative, and wo the natural circular
frequency of the model.

Similar to the discussion on lifeline earthquake engineering (Fig. 13.9), the displacement of a soil
column, u, is approximated by the fundamental harmonic mode of response

u z t U t
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H
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2
, (13.6)

in which U(t) is the unknown time history of surface displacement. The governing equation of motion
for U(t) in (13.6) is derived by using the theory of Lagrangean equation of motion (Sect .25.3). First, the
kinetic energy of the soil column, K, is expressed in terms of U
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The potential energy due to strain of the soil column is denoted by Q
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The potential energy due to the inertia force is denoted by I
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Equations (13.6)–(13.8) are substituted in the Lagrangean equation of motion
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Fig. 13.12 Soil column and spring–mass 
                 model
Fig. 13.12
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Accordingly, the natural circular frequency of the soil column is given by

w p p p
ro H V H

G= = =2 2
4 2Natural period s

. (13.12)

Equation (13.11) is simplified to be

d
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p
wsin     (13.13)

By comparing (13.5) and (13.13), which are of a similar appearance, it is found that the surface motion
of a soil column (13.13) is 4 p  times greater than the response of a spring-mass model when their
natural periods are made identical. This finding was used in derivation of (13.3). The factor of 4 p  is
called the participation factor (OPQR).

Consequently,
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�  13.4  Rigorous Compaction of Soil Column and Equivalent Spring–Mass Model

The assumption of harmonic variation of displacement along a soil column (z direction) is removed from
the discussion in the preceding Sect. 13.3. The harmonic response of a spring-mass model is obtained by
solving
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Fig. 13.13 Amplification of relative
   displacement in uniform soil column Fig. 13.14 Comparison of response of soil
   and equivalent mass-spring model  column and equivalent spring-mass model

The response of a uniform soil column is obtained by considering the wave propagation. By paying
attention to the fact that the concerned displacement, u z t,( ) , is a relative displacement to the base
displacement of -A t sin /w w 2 ,
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At the ground surface, z = 0, in particular,
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in which w po s= ( )V H2  was taken into account. Note again that this u z t=( )0,  is the surface displacement

relative to the base.
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the spring-mass model does not have the second resonance peak due certainly to its single degree of
freedom. The ratio of the amplification, however, reveals that two models are different:

Ratio of amplitude
Amplitude at surface of soil column
Amplitude of spring mass model
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Figure 13.14 compares (13.18) against the simplified solution of 4 p  that was derived in Sect. 13.3. It is
found therein that the approximate solution is acceptable in the lower frequency range; being valid at
least up to the first resonance frequency.

The behaviors of a soil column and its equivalent spring-mass model are compared by using a common
value of wo. Figure 13.13 illustrates that the amplification curves of two models look similar except that
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�  13.5  Seismic Water Pressure on Wall

Dam engineering has been interested in the water pressure exerted by a reservoir (£m¤, m¥) subjected
to a seismic inertia force. Westergaard (1931) developed a theory that can calculate this dynamic
pressure by assuming a semi-infinite reservoir water facing a vertical quay wall (Fig. 13.5). The total
water pressure acting on a wall is given by

     Water pressure = Hydrostatic pressure + Westergaard pressure

Fig. 13.15 Westergaard´s dynamic
     reservoir pressure

Fig. 13.16 Forces acting on water-front wall of gravity type

Westergaard derived a series solution (¦®N) of the dynamic water pressure. The distribution of this
pressure was reasonably approximated by a parabola (see Fig. 13.15),

 p K hy= 7
8 h wg ,  (13.19)

where p is the hydrodynamic pressure at a water depth of y, Kh the horizontal seismic coefficient, g w,
the unit weight of water, and h the depth of reservoir. By integrating (13.19) from y = 0 to y = h,

Total hydrodynamic force h w= 7
12

2K hg . (13.20)

The point of action of the Westergaard pressure is found as

y
K hy y y

K h
h

h

=
¥

=
Ú

7
8

7
12

3
5

0

2

h w

h w

 dg

g
, (13.21)

while the hydrostatic pressure has a triangular distribution and acts at 1/3 from the bottom.

Figure 13.16 illustrates the lateral forces acting on a revetment wall at a water front. Note that the
hydrodynamic pressure decreases the water pressure because the inertial force is oriented towards the
reservoir water. Accordingly, the lateral stability of the wall is lost when

  (Seismic active earth pressure calculated by Mononobe–Okabe theory)
– (Hydrostatic water pressure) + (Westergaard hydrodynamic pressure)
– (Shear resistance at the bottom)

Seismic active
earth pressure by
Mononobe-Okabe

Hydro-
dynamic
pressure

Hydro-
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pressure

Shear 
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Water

Wall

Dry 
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Direction of inertia force, K h
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the inertia force, consequently decreasing the total water pressure. The above calculation does not care
the moment equilibrium that concerns the rotation of the wall.

The backfill soil in Fig. 13.16 is dry and unrealistic for simplicity. When this soil is water-saturated, (1)
accumulation of excess pore water pressure due to dilatancy, and (2) dynamic fluctuation (�K.�) of
pore water pressure due to inertia force have to be taken into account. The accumulation of excess pore
water pressure will be discussed after Sect. 17.1 concerning liquefaction. Section 24.17 will address the
application of Westergaard theory to dynamic earth pressure in liquefied subsoil.

Matsuo and O-Hara (1965) developed a theory on the amplitude of pore pressure fluctuation in pervious
soil. This amplitude is about 70% of the Westergaard pressure, oriented in the direction of Kh . They
reported their shaking table tests to show a good agreement between prediction and observation.

is positive. Note further that the direction of the hydrodynamic pressure is identical with the direction of
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�  13.6  Dynamic Earth Pressure Exerted by Water Saturated Backfill

In most design practice, the seismic earth pressure exerted by water-saturated back fill is calculated by
simply modifying the Mononobe–Okabe active earth pressure formula (Sects. 12.5 and 12.7);

P
K

Hae
ae=

2
2g ,    (13.22)

in which the seismic earth pressure coefficient, Kae , changes with the seismic coefficient, Kh , in terms
of the angle, y  (Fig. 13.17).

The Mononobe–Okabe formula consists of two mechanisms. The one is a mechanism of shear resistance.
Since shear strength is governed by the effective stress, the unit weight as employed in the earth pressure
formula has to be the buoyant unit weight, ¢ = -g g g w . The problem is that the mass of existing pore
water is removed from the analysis.

Fig. 13.17 Definition of orientation Fig. 13.18 Active seismic failure of quay wall
of combined force and tilting of building behind the wall

The use of ¢g  in place of g  in (13.22) is not sufficient. This is because the seismic force is exerted on
mass of both soil grains and pore water. Unless the permeability of soil is extremely high, soil grains and
pore water move together. Thus, the inertia force is given by Khg  and Kvg ; note that g  is used here and
not ¢g . Therefore, the calculation of seismic earth pressure should employ both g  for inertia force and
¢g  for shear resistance. Equation (13.17), however, can make use of only one kind of unit weight.

In practice, (13.22) should use ¢g ,

P
K

Hae
ae= ¢

2
2g .  (13.23)

However, the seismic coefficient in the horizontal direction has to be modified in order to take into
account the horizontal inertia force. Therefore, the seismic coefficient, ¢Kh , is defined by

¢ ∫
¢

K Kh h
g
g

.  (13.24)
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The new seismic earth pressure coefficient, Kae , is calculated by using (13.25). For an example of
seismic active earth pressure exerted by water-saturated backfill, see Fig. 13.18. This wall moved
towards the sea and the backfill moved together. Consequently, a pile foundation of a building on the left
side was destroyed and the building tilted towards the sea.

Accordingly,
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�  13.7  Damage in Tunnels Caused by Earthquakes

It has been conventionally believed that tunnels have good resistance against shaking, most probably.
The first reason for this is that the intensity of shaking in rock under the ground is weaker than the
surface acceleration (Fig. 13.14). The second reason is because the rock mass around a tunnel has
sufficient rigidity to keep the shape of the tunnel unchanged. Even when tunnels are intersected with
causative faults, no fatal collapse occurred (Sect. 16.7). This traditional idea is not always correct,
however, as illustrated by the following examples. Remarks on subway tunnels were made in Sect. 13.1.

Fig. 13.20 Factors concerning seismic damage of
tunnels (JRTT, 1996)

Fig. 13.19 Acceleration recorded in rock mass

Fig. 13.21 Collapsed Kinoura tunnel during the 1992
     Noto-Hanto-Oki earthquake

Figure 13.20 is a summary of
earthquake-induced problems
in tunnels. The number of
events related with seven sit-
uations are illustrated therein.
It is noteworthy that the major-
ity of problems were caused
by slope instability at the en-
trance. The second majority is
related with difficult geology
and deformation that had been
going on prior to earthquakes.
In contrast, the number of cases
is small concerning poor tunnel
materials such as deterioration,
fault action, ongoing construc-
tion, and tunnels that experi-
enced collapse or other acci-
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Figure 13.21 illustrates collapse of a tunnel during the 1992 Noto-Hanto-Oki earthquake (Xª«Ú��
�). This Kinoura (¬�) tunnel had a overburden soil of only 22 m (Fig. 13.22), which collapsed into
the tunnel. It was possible at the time of inspection to see the sun light through the collapsed tunnel from
inside the tunnel. One of the common problems caused by earthquakes in tunnels is the slope failure near
the entrance (Fig. 13.23). Slope reinforcement or construction of a protective structure is thus important.
Another source of problem lies in a fault (Sect. 16.7).

The dynamic shaking and ground pressure may affect tunnels. Figure 13.24 indicates the significant
distortion of Haguro Tunnel during the 2004 Niigata-Chuetsu earthquake. While the weak bottom of the
tunnel (road pavement) buckled due to lateral compression, the top part developed longitudinal cracks
due to superposition of bending and compression (Fig. 13.25). The distortion of Haguro Tunnel is
related to the following two issues. First, the rock around the tunnel is young and soft as evidenced by a
large landslide that occurred immediately next to the tunnel entrance (Fig. 13.26). The shortage in
rigidity made it difficult for the tunnel to maintain its shape. Second, the bottom part of the tunnel
(invert) did not develop arching action and was not very rigid, thus being vulnerable to compression and
buckling failure. The compression in the bottom easily resulted in extension in the top (Fig. 13.27).
Since the Haguro Tunnel was very important in a local road network, it was restored within six months
by replacing the damaged concrete by new one. Note that a similar damage and collapse were experienced
in a subway tunnel in Kobe (Sect. 13.1).

Tunnel damages due to fault action will be discussed in Sect. 16.7.

Fig. 13.24 Distorted shape and buckling Fig. 13.25 Tension crack in top part
  of pavement in Haguro Tunnel, of Haguro Tunnel
  Niigata-Chuetsu

Fig. 13.26 Landslide near the western Fig. 13.27 Schematic illustration of deform-
entrance of Haguro Tunnel ation mechanism of Haguro Tunnel
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�  13.8  Nodular Pile

Pile foundation is often damaged by strong earthquake motion. One reason for the damage is the inertial
action due to mass of a super structure, and the other is the kinematic action induced by shaking ground.
Figure 13.28 illustrates an example of pile damage due to inertial effects.

Past experiences showed good performance of a type of pile, which is called a nodular pile. Being a
prefabricated prestressed concrete pile, a nodular pile has an irregular shape and develops increased skin
friction. Figure 13.29 indicates a nodular-pile foundation in Kobe Port Island after the quake in 1995,
Although it was located immediately behind a damaged quay wall, the foundation was able to survive
the significant soil displacement. Moreover, Fig. 17.39 shows a building that was supported by nodular
piles and survived the subsoil liquefaction. More precisely, the columns and roofs that were supported
by nodular piles had no damage, while the concrete block floors suffered significant distortion because
they simply rested on ground and were not connected to the stable structural members.

Fig. 13.28 Damaged pile in Navrakhi Harbor, Fig. 13.29 Nodular pile foundation in Kobe
Gujarat Province, India, in 2001 Rokko Island in 1995 (Japan Pile Inc., 2007)

A nodular pile is an embedded pile
whose installation process is
illustrated in Fig. 13.30. First, a
hole is bored by an auger (Fig.
13.30a), and then the auger moves
back and forth in the hole, while
jetting grout and mixing it with
soil (Fig. 13.30b). After sufficient
mixing, a nodular pile is pushed
downwards from the surface (Fig.
13.30c). After curing time, the pile
and the surrounding cement-
mixed soil forms a body of pile.
Since the injected grout has high
w/c ratio (water/cement being
typically 100%), the pile has much
higher rigidity than the soil.

(a) Auger boring           (b) Grouting and               (c) Installation of 
                                            mixing with soil               nodular pile

Fig. 13.30 Installation of nodular pileFig. 13.30
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Fig. 13.31 Nodular piles prior to installation Fig. 13.32 Installation of nodular pile

In the current design practice,
the increased bearing capacity
of a nodular pile is attributed
to the pile diameter, which is
increased by the enlarged
nodules and the surrounding
cement-mixed soil. In reality,
the bearing capacity is
increased by the force transfer
from the pile axis to the
surrounding soil by means of
nodules (Yabuuchi, 2007). It
seems that the compressed soil
under a node expands laterally,
increases the horizontal
effective stress along the pile
shaft, and further increases the
skin friction, see Fig. 13.33.

Fig. 13.33 Probable mechanism 
  of increased skin friction of 
  nodular pile

Fig. 13.33

Fig. 13.34 Soil container for model 
  tests on vertical bearing capacity of 
  nodular pile

Fig. 13.34

Figure 13.31 shows nodular piles prior to installation. The diameter of the main shaft is 300 mm or more 

and the minimum diameter of nodes is 440 mm. The spacing between nodes is 1 m. It is possible to connect 

two or more piles for deeper installation. Figure 13.32 indicates two stages during pile installation; auger 

boring and pushing of a pile. 
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To further study this issue, model tests were conducted (Borda et al., 2007) in a container (Fig. 13.34)
that has air bags at the ground surface so that overburden pressure would be applied for better reproduction
of in-situ stress conditions. Figure 13.35 reveals an employed model pile that measures 4.0 cm in
diameter and is of one or a few simplified node. The diameter of the node measured either 6.4 cm (small
node) or 7.1 cm (big node). The measured relationship between skin friction and vertical displacement of
a pile is presented in Fig. 13.36 for the case of single node. It is therein seen that a plain pile without
node achieved the ultimate but negligible skin friction after a small displacement and this friction was
maintained constant under larger displacement. In contrast when a node was attached to a pile, the skin
friction increased gradually with displacement and finally the magnitude of friction was remarkably
greater than that of a plain pile. Note, however, that the behavior of a nodular pile undergoing lateral
load is yet to be known.
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Fig. 13.35 Model of nodular pile Fig. 13.36 Displacement vs. skin
           for bearing capacity tests  friction curves for model piles 

with and without node
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