
Chapter 11

Stress–Strain Models

Buddhism statue in Sukhothai, Thailand.

Sukhothai was the capital of the first Thai kingdom within the present territory of Thailand. Buddhism
flourished in this capital. Sukhothai Kingdom reached its peak in late thirteenth Century under the reign
of King Ramkhamhaeng. After him, however, Sukhothai declined quickly and came under control of
Ayutthaya Dynasty in late fourteenth Century.



Fig. 11.3     and     of hyperbolic model

�  11.1  Hyperbolic and Ramberg–Osgood Stress–Strain Models

Stress–strain relationship of soil is characterized by the rigidity when strain is small as well as the shear
strength at large strains, which is the upper bound of the stress level. This fundamental nature of soil
behavior has often been modeled by a hyperbolic curve (Fig. 11.1); refer to Kondner (1963) together
with Kondner and Zelasko (1963).

Fig. 11.1 Hyperbolic modeling of stress- Fig. 11.2 Hyperbolic stress–strain model
strain behavior subjected to
monotonic shear  for cyclic loading

It is possible to model a cyclic stress–strain curve by a hyperbola as well. This model is used for
dynamic analyses in the time domain. In case of an analysis on a one-dimensional (level) ground
subjected to horizontal shaking,
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in which Gmax  is the shear modulus at a very
small strain amplitude, while a parameter of
g r  is called the reference strain. Since

    t gÆ G rmax   when  g Æ • ,

g r  stands somehow for shear strength
property.

The hyperbolic equation (11.1) models the skeleton curve BOA in Fig. 11.2. The skeleton curve is the
one that passes through the ends of hysteresis loop with a variety of strain amplitude ±g A  (Fig. 11.2).
Equation (11.2) gives a formula for secant modulus, G, varying with the strain amplitude�
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The hysteresis loop, A�B�A in Fig. 11.2, is often modeled by enlarging the skeleton curve two times
(Masing rule: Masing, 1926);
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where g gB A= -  and t tB A= -  as shown by (11.1). The damping ratio is obtained by calculating W and
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DW  (area of loop):
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Figure 11.3 demonstrates the relationship of G Gmax  and h with the strain amplitude. It should be noted
that the reference strain is the strain amplitude at which G Gmax = 0.5. The damping ratio at a very large
strain amplitude approaches 2/p  = 0.637, which is much larger than what is reported by experiments
(Chap. 10). Thus, the hyperbolic model should not be used in a large-strain range. Although its idea is
clear, the hyperbolic model cannot freely adjust the shape of curves. Hence, experimental results cannot
be fully considered. This problem is avoided in an equivalent-linear approach (Sect. 9.10) by using a
model by Hardin and Drnevich (1972):

   Damping ratio,   Maximum damping ratio at large strain 1-
max

h G
G= ¥ Ê

Ë
ˆ
¯

in which G Gmax  at a given strain amplitude is derived from (11.2).

Fig. 11.4 Variation of skeleton curve with a   Fig. 11.5 Variation of skeleton curve with changing r.

The Ramberg–Osgood model is another kind of idea that reproduces the one-dimensional stress–strain
behavior in the course of cyclic shear. Jennings (1964) used this model in terms of force and displacement.
This text, however, describes the skeleton curve of this model by means of stress and strain:
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in which a subscript “y” means characteristic values, while a  and r are soil parameters to be determined
by soil testing. Figures 11.4 and 11.5 illustrate the variation of curves by (11.7) with changing parameters:
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1. There is no upper bound in shear stress; i.e., lim
g

t
Æ •

 is infinite. Therefore, shear strength is not

considered. As an alternative, soil parameters in the model are adjusted to make shear stress at 1%
strain, for example, equal to an appropriate value.

2. Since there are three parameters, there is more freedom to take into account the complex soil
behavior;
for example, shear modulus at small strain, damping ratio at large strain, and shear stress
at large strain.

3. Equation (11.7) helps calculate the strain value from a given value of stress. Shear stress, conversely,
cannot be directly calculated from strain. This may make a nonlinear analysis more time consuming
because stress determination needs iteration.

Both hyperbolic and Ramberg–Osgood models are intended to be used for a single-degree-of-freedom
situation. Therefore, horizontal shaking of a level ground is their major target. Extension to a multi-
dimensional situation needs more elaborate modeling.

The major features of this model as compared with the hyperbolic model are as what follows.
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�  11.2  Dilatancy of Sand Subjected to Cyclic Drained Shear

Deformation of soil is characterized by dilatancy, which is the volume change induced by shear deformation
(Sect. 1.6). Under cyclic loading, the volume change occurs as contraction, which means subsidence of
ground surface after an earthquake event (Sect. 17.11). It will be shown later that the volume contraction
in drained condition is equivalent with the development of excess pore water pressure in undrained
conditions (Sect. 18.1). This is the cause of liquefaction and extensive damage.

Figure 11.6 illustrates an example of a drained cyclic shear test with a constant amplitude of strain
conducted by a torsion shear apparatus (Sect. 18.8). The density of the tested sand was medium (relative
density = 56%). It is first observed that the stress amplitude increases as the number of cyclic loading
increases (see Fig. 10.6 as well). This implies that stiffness of soil increases with the progress of drained
cyclic loading. Second, the net volumetric strain is contractive, accumulating toward 5% or more,
although dilatant behavior is still observed when the shear strain exceeds 0.7%. Figure 11.7 illustrates
more detailed variation of volumetric strain in one cycle in which both contraction and dilation occur in
different phases of deformation.

(a) Stress–strain behavior

Fig. 11.7 Accumulation of volumetric strain in one cycle

   of loading (data from Shahnazari and Towhata, 2002)

(b) Development of volume contraction

Fig. 11.6 Drained cyclic shear test (Dr =

 56%)  
(Shahnazari and Towhata, 2002)

Fig. 11.8 Volume change of very loose sand (Dr =

24% )  (Shahnazari and Towhata, 2002)

Figure 11.8 indicates the volume contraction of looser sand. Although the consolidation stress and strain
amplitude are identical with the data in Fig. 11.6, the accumulation of volume change occurred faster.
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As mentioned in Sect. 1.6, the dilatant behavior of sand has been investigated by many people by using
the so-called stress-dilatancy relationship:
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in which ev  designates the volumetric strain (positive in compression). Positive and negative dilatancy
is reproduced in accordance with positive and negative values of d dv pe g . Moreover, the present

section employs g p , which is the plastic (irrecoverable) component of shear strain. The stress dilatancy

relationship of sand undergoing cyclic loading was studied by Pradhan et al. (1989) and later by Hinokio
et al. (2001). The present study, in contrast, attempts to indicate the stress-dilatancy behavior of sand
subjected to more number of cycles.

Fig. 11.9 Stress-dilatancy relationship of sand Fig. 11.10 Stress-dilatancy relationship of sand

with relative density = 56% (Shahnazari with relative density = 24% (Shahnazari

and Towhata, 2002) and Towhata, 2002)

Figures 11.9 and 11.10 reveal two
stress-dilatancy diagrams that
were obtained by tests with relative
densities of 56% and 24%, respec-
tively. The employed number of
loading cycles was 160 and 80,
and the relative density was in-
creased by cyclic loading to 80%
and 69%, respectively. Only data
from selected cycles was plotted
in the figures. Note that
- <d dvol pe g 0  means volume

contraction when the stress ratio,

t s v
¢ , is increasing and vice ver-

sa. From these diagrams, the following points may be made:
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2. There is an approximate linearity in the stress–dilatancy relationship.

3. - d dvol pe g  jumps upon the initiation of unloading as reported by Pradhan et al. (1989).

4. The first cycle of loading exhibits greater values of - d dvol pe g , which imply greater tendency for

volume contraction.

5. Immediately after the onset of unloading (change of loading direction), -d dvol pe g  exhibits volume

contraction. This tendency increases as the number of loading cycles increases.

6. Conversely towards the end of loading (before unloading), - d dvol pe g  shows greater values (more

dilatancy), making the width of stress–dilatancy loop smaller; for definition of “width”, see the
figures.

Volume contraction as a consequence of cyclic shear results not only in ground subsidence but also in
lateral contraction. In a horizontal ground where lateral strain is confined to zero, the potential contraction
in the horizontal direction causes reduction of lateral earth pressure. Figure 11.11 is an experimental
evidence of this phenomenon, which was obtained by torsion shear tests. This finding implies reduction
of lateral earth pressure coefficient at rest (K0 ).

1. Although the density of sand affects the range of mobilized (activated) stress level, the range of
dilatancy ratio, - d dvol pe g , is not much affected.
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�  11.3  Theory of Elastoplasticity

Hyperbolic and Ramberg–Osgood models in Sect. 11.1 presented relationships between shear stress and
strain, which are useful in dynamic analyses on horizontal ground. Since only one component of stress
and one component of strain are therein studied, however, those models cannot be applied to two- or
three-dimensional analyses in which many components of stress and strain are involved.

The elastoplastic modeling is one of the widely employed approaches to multi-dimensional modeling in
which an increment of strain, de , induced by stress increments is decomposed into elastic and plastic
components;

d d d pe e e= +e      (11.9)

where the prefix of “e” and the prefix of “p” designate
elastic and plastic components, respectively. In the
elastoplastic terminology, the elastic component is the
one which is recovered upon removal of the loaded
stress increments, while the plastic component remains
unchanged (irreversible) upon unloading and reloading
(Fig. 11.12). The elastic strain increments are calculated
by a conventional elasticity framework. In a three-
dimensional case, the isotropic theory of elasticity states
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            (11.10)

in which E is the Young's modulus (modulus of elasticity), n  is the Poisson ratio, and E/ 2 1 +( ){ }n  is
often called the shear modulus, G. In case that stress–strain relationship is nonlinear, these soil parameters
are defined by tangent values and change with the magnitudes of stress components, void ratio, and
possibly other soil parameters.

The theory of plasticity prefers to use the tensor way of designation for stress and strain. The relationships
between the tensor designation and the engineering designation (11.10) are given by

  e e e e e e e e e11 22 33 12 21 23 32 31 13{ }
     = { }e e e g g g g g gxx yy zz xy xy yz yz zx zx2 2 2 2 2 2 ,   (11.11)

  s s s s s s s s s11 22 33 12 21 23 32 31 13{ }
     = { }s s s t t t t t txx yy zz xy xy yz yz zx zx . (11.12)

By using the tensor designations, the theory of plasticity (Hill, 1983) expresses increments of plastic
strain as

  Definition of elastic and plastic 
                  strain components

Strain

Stress
Elastic and plastic 
strain increments

Elastic compo-
nent only

Yielding

Fig. 11. 12
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d  dpe ∂
∂sij

ij

h
g

f=      (i,j = 1,2,3)            (11.13)

in which h, g, and f are called hardening function, plastic
potential, and yield function, which are functions of stress
components and soil density possibly together with other
soil parameters.

The theory of plasticity has several hypotheses. First, the
plastic deformation occurs only when the yield function,
f, increases. In other words, plastic deformation occurs
only after yielding (Fig. 11.12) and no plastic deformation
occurs when the current stress level is lower than the
previous maximum value. In the extreme case where de-
formation is large close to failure, the yield function be-
comes similar to a failure criterion (Sect. 1.5).

Second, the ratio of components in a plastic strain increment
(11.13) is independent of the magnitude and direction of
stress increment. In other words, the orientation of the
vector of plastic strain increment
in Fig. 11.13 is independent of the
direction and magnitude of the
stress increment vector. This
orientation is determined (flow
rule) by partial derivative of the
plastic potential function,
∂ ∂sg ij . Hence, this orientation is

normal to the plane of constant g
function. The stress–dilatancy
relationship (Sect. 1.6) that is
widely observed in soil testing
determines the ratio of shear and
volumetric strains and therefore is
a kind of flow rule (Fig. 11.14).

Some theories employ g that is equal to f (associated flow rule). In this situation, the vector of plastic
strain increment is normal to the yield locus (Fig. 11.13). This feature is called normality. On the
contrary, the nonassociated flow rule employs different f and g functions.

The magnitude of the plastic strain increment vector is determined by the increment of the yield

function, df = ∂ ∂s sf ij ij( )d , in (11.13).

Principal stresses (Sect. 1.3) play a major role in plasticity theory. The requirement of objectivity states
that the ground deformation as calculated by the plasticity theory has to be independent of the choice of
coordinate directions (x-y-z system or x´-y´-z´ system). Therefore, h, g, and f functions in (11.13) are
functions of principal stresses that are independent of the coordinate system. In other words, they are
functions of stress invariants such as

Plastic
strain

increments

Stress 
axes

Current stress 
point

Stress 
increments

Yield locus
(f = constant)

Stress space

Fig. 11.13 Schematic illustration of 
              plastic strain increments

Fig. 11.13
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Contractive
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: shear straing
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Shear stress
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d de

dg

Fig. 11.14 Use of stress-dilatancy relationship as flow 
                  rule of plasticity

Fig. 11.14
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Effective stress components are used
in the above expression because soil
behavior is governed not by the total
stress but by the effective stress. The
third hypothesis of plasticity theory is
called coaxiality, which states that the
principal axes of stress and plastic strain
increments are parallel to each other
(Fig. 11.15).

The use of principal stresses or stress invariants in functions h, g, and f causes one significant problem in
application of plasticity theory to cyclic stress history. Figure 11.16 compares two kinds of shear stress
history: OABC and OABD. Since the principal stress formulation cannot recognize the different direction
of shear stress after B, continued soft behavior in BC and elastic reloading in BD cannot be reproduced.

This problem is significant in the popular P'-q formulation 
  

¢ = ¢ + ¢ + ¢( )[P s s s1 2 3 3/  and q = ¢ - ¢ ]s s1 3  as

well.

Fig. 11.17 Development of plastic shear strain under continuous rotation of principal stress axes

It is physically possible that principal stress axes rotate significantly while maintaining the magnitudes
of ¢s1 , ¢s 2 , and ¢s 3 constant. Since f, g, and h functions are held constant under constant values of
principal stresses, the theory of plasticity does not give plastic stress increments; df = 0 in (11.13). In
reality, on the contrary, such stress components as t xz  can still vary, and changes corresponding strain

components (g xz  for example). Consequently, plastic strain of g xz
p  can develop (Ishihara and Towhata,

1983). Figure 11.17 illustrates the development of shear strains, e ev h-( ) / 2 and g vh , undergoing  cyclic

 rotation of principal stress  axes while maintaining s s1 3-  constant. Figure 11.18 shows vectors  of strain
 increments along another circular stress path. As the stress state approached failure in the third  cycle,
 the vector became greater and more perpendicular to the circular stress path. Thus, the strain increment
 vector  became overwhelmed by plastic components that were coaxial with the principal stress.

Consequently, it is reasonable to state that elastoplasticity theory for, in particular, complex cyclic
loading should be formulated with special provisions for stress axes rotation; simple use of stress
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invariants is not appropriate. An example of such a provision is the use of stress difference tensor ,
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11.16). This kind of modeling produces plasticity mechanism even when the stress level decreases from
the previous maximum value (inside the yield locus in the classical sense) as schematically illustrated in
Fig. 11.19. Mroz et al. (1978) developed such a theory.

Fig. 11.18 Development of strain increments during Fig. 11.19 Idea of multiple yield

   continuous rotation of principal stress axes mechanisms of plasticity

Stress

history

Three dimensional 
stress space

Internal 
yield loci

External classic 
    yield locus

s sij ij- *, in which s ij * stands for the stress state at the beginning of unloading (Point A in Fig.
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�  11.4  Dilatancy under Cyclic Loading

Dilatancy is a phenomenon of volume change caused by shear deformation of discrete material (Sects.
1.2 and 1.6). In earthquake engineering practice, volume contraction due to dilatancy (negative dilatancy)
is important because it stands for ground subsidence induced by strong shaking. Dilatancy plays an
extremely important role in liquefaction analysis (Chap. 2) as well, because the major cause of liquefaction
and large ground deformation is the development of high pore water pressure caused by dilatancy (Sect.
18.1).

Fig. 11.20  Volume contraction of sand due to Fig. 11.21  Increment of volumetric strain

cyclic shear (Martin et al., 1975) per cycle of shear strain (Martin et al., 1975)

This section concerns modeling of dilatancy
under one-dimensional cyclic shear loading.
There are two kinds of approach for modeling
of dilatancy. One is modeling of volume
change, which is measured in cyclic drained
shear of sand. Martin et al. (1975) conducted
drained cyclic simple shear tests and reported
that the volumetric strain due to dilatancy is
proportional to shear strain amplitude; see Fig.
11.20. They studied the increment of volumetric
strain per cycle (Fig. 11.21) and proposed an
empirical formula,

d d a d
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a d

e g e e
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C1 2
3

2

4

,   (11.14)

where ded  is the increment of volumetric strain per cycle of strain amplitude g a . If cyclic loading occurs
in a drained manner (dry sand for example), this ed  is equal to the real volume compression. If loading
is undrained as is the case of liquefaction, this potential volume contraction is converted to the decrease
in effective stress under constant volume by

d d dv d¢ = -( )s e eK ,                         (11.15)

where ev  is the volumetric strain that does occur in reality. Note that ev  = 0 under perfectly undrained
conditions. Moreover, K is called bulk modulus of soil and is equivalent with 1/mv (mv being volume
compressibility in (1.12)) in consolidation theory. The determination of soil parameters in (11.14)
requires cyclic drained loading on undisturbed soil specimens.

Fig. 11.22 Stress-path model of dilatancy 
   and excess pore water pressure 
   (see Set. 22.4)

Fig. 11.22
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undrained cyclic loading. Apparently, this approach is related with liquefaction tests on sand. Figure
11.22 (Ishihara and Towhata, 1982) indicates a modeled relationship between decrease in effective
stress (increase in pore water pressure) and cyclic change in shear stress. This stress path model consists
of three parts: under loading (increase of shear stress), unloading (decrease of shear stress), and that near
perfect liquefaction.

Both approaches as described above concern one-dimensional cyclic loading (case of horizontal ground
subjected to one direction, EW or NS, of shaking). For more complicated situations, those models have
to be significantly revised, or more complicated models such as stress–dilatancy approach of plasticity
(Sects. 1.6 and 11.3) for volume change or energy correlation of pore water pressure (Sect. 20.8–20.10)
are employed.

The other approach to modeling of dilatancy is that of excess pore water pressure that develops during
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�  11.5  Multi-Nonlinear Spring Model

Figure 11.23 illustrates an example of multi–
nonlinear spring model for a two-dimensional
situation in which simultaneous loading of

s sv h-( ) 2  and t vh  associated with

continuous rotation of principal stress axes is
taken into account (Towhata and Ishihara,
1985). The big arrow in the figure stands for
the above-mentioned shear stress components
and its variation induces the displacement of
the point of action at the center. This
displacement stands for the shear strain of soil;

e ev h-( ) 2  and g vh 2 . Note that the ratio of

two stress components (direction of the arrow)
indicates the orientation of principal stresses.
When this orientation rotates, the direction of
the arrow changes and component springs are subjected to nonlinear deformation. Consequently, plastic
deformation is produced. This model was combined with the energy correlation of excess pore water
pressure (Sects. 20.8–20.10) to reproduce the undrained cyclic behavior of loose sand. It was applied by
Iai et al. (1992a,b) to develop a seismic design code of harbor structures.

The relationship between the nature of springs and the reproduced soil properties are as what follows. In
an ideal case where the number of springs is infinite, the shear modulus of soil at small strain, Gmax , and
the spring modulus at small deformation, kmaxdq , are related to each other by supposing a loading in the
direction of p / 2 in Fig. 11.23;

G k kmax max/

/
maxcos= -Ê

Ë
ˆ
¯

Ï
Ì
Ó

¸
˝
˛

=Ú q p q p
p

p

2

2

2

5 2
 d . (11.16)

When the deformation of springs is extremely large, all the springs develop their full strength; Ff  dq .

Accordingly, the magnitude of shear strength of modeled soil is given by

Shear strength of soil   = -Ê
Ë

ˆ
¯ =Ú2

2
4

0
F d Ff fcos q p qp

. (11.17)

These simple calculations assumed that all the springs have identical properties of kmax  and Ff . By

changing these parameters with the direction of springs, q , it is possible to model anisotropic soil
properties.

Since a two-dimensional condition has two independent shear stress components such as e ez x-( ) 2 and

g zx  or g x  and g y , the two-dimensional model illustrated in Fig. 11.23 is useful. In a three-dimensional

condition, there are five independent shear stresses (six stresses minus mean effective stress) and its
modeling by a multi-spring model is not easy. Simple expansion of the circle in the figure to a three-
dimensional sphere is not sufficient because a sphere can handle only three degrees of freedom. Nishimura
and Towhata (2004) solved this problem by allocating many circle models on the surface of a sphere;
two degrees of freedom from a circle and three more degrees from the sphere.

Fig. 11.23 Multi-spring model for two-dimensional 
                 shear deformation

Fig. 11.23
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these expressions, i and j are 1, 2, or 3, whiled ij  stands for the Kronecke´s delta;

  d ij  = 1 if i j=  and d ij=0 if i jπ .

Moreover, ¢ ∫ ¢ + ¢ + ¢( )s s s sm 1 2 3 3 designates the effective mean principal stress, and ev  is the volumetric

strain. Note that the above definitions of t  and g  follow the tensor abbreviation;

      A B A Bk k k k
k

∫ Â  and, in particular, t t t tij ij ij ij
ji

∫ ÂÂ

The problem lying in the stress–dilatancy formulation is that no volumetric strain {��8|¯ if cyclic
loading occurs with a constant value of g ; if dg = 0 , d ve  has to be zero in order to avoid an infinite
value of d dve g .

The bowl model was proposed by Fukutake and Matsuoka (1989) with a scope to predict volume
contraction of sand undergoing multi-dimensional cyclic shear. For illustration, this section studies a
situation of Fig. 11.24 where soil is sheared by two components of shear stress: t x  and t y . The

associating shear strains, g x  and g y , are substituted in the dilatancy model in Fig. 11.25 where a

bowl-like curved surface stands for the relationship between volume change and shear strain. The
concave shape stands for the fact that volume expands when shear strain is large. See its similarity with
the experimental curve in Fig. 11.8.

Fig. 11.24 Soil subjected to two- Fig. 11.25 Conceptual illustration of bowl
 dimensional shear model of dilatancy

Since the volume of soil further continues to contract with the number of shear cycles, the bowl surface
moves down in Fig. 11.25, thus representing the accumulated volumetric contraction during cyclic
loading. This downward translation is a function of the shear strain path;

   Length of shear strain path ∫ ( ) + ( )[ ]Ú d dg gx y
2 2

.

g
y

g x

Volume contraction
ev

Downward translation
with accumulation of 
strain path

x

y
g
xandt x

t
y

g
yand

It seems promising to extend the stress–dilatancy relationship (Fig. 11.14) to a multi-dimensional
conditions. This goal may be achieved by employing the generalized shear stress of t ∫
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�  11.6  Discrete Element Analysis

Although the finite element analysis has been proved to be a powerful tool to calculate deformation of a
continuous medium, there have been different attempts that consider materials discontinuous. This
attempt is appropriate for such situations as post-failure behavior of rock slopes in which blocks of
breached rock move and collide independently (Cundall, 1971; Kawai and Takeuchi, 1981).

Deformation analysis on an assembly of circular or spherical objects started in 1950s (Deresievicz,
1958a,b). Since sand consists of grains, this approach is attractive; particularly being so when displacement
is large. Hence, a method of analysis called distinct element analysis or discrete element analysis (DEM)
has been developed in which particles move and collide with each other (Cundall and Strack, 1979).
However, the limited capacity of computers has not allowed to analyze behavior of real individual grains
in either two-dimensional or three-dimensional manners; the num-
ber of real grains is too many for any computer memory. Hence,
the existing DEM works in a two-dimensional manner on imag-
inary grains, which are much bigger than real grains. The two-
dimensional analysis employs void ratio, which is smaller than
the well-known void ratio range in real sandy deposit. For example,
a regular packing of round grains in Fig. 11.26 has void ratio of
1-p /4 = 0.273.

Fig. 11.27 Contact mechanism Fig. 11.28 Contact mechanism in Fig. 11.29 Grains turning
 in normal direction shear direction around corner

In DEM, the grain-to-grain interaction is modeled by nonlinear springs and dashpots, which are illustrated
in Figs. 11.27 and 11.28. When the grain-to-grain distance is short, a particle contact occurs, and a
normal mechanism (Fig. 11.27) is activated to resist against compression. At the same time, a shear
resistant mechanism (Fig. 11.28) is generated that stands for friction between grains. The magnitude of
friction in Fig. 11.28 varies with the extent of contact force in Fig. 11.27. DEM analysis is more
advantageous than FEM when displacement and deformation are large. For example, DEM can calculate
grain movements that turn around a corner of sinking foundation (Fig. 11.29), while such an analysis is
very difficult in FEM.

In a dynamic analysis, the grain-to-grain distance has to be examined for pairs of extremely many
particles at every time increment. To make ease this procedure, most DEM analyses employ circular or
spherical grains. Moreover, previous DEM assumed only such two types of mechanisms as compression
and shear at contact points. This idea is reasonable when the real contact occurs at a single point. If the
real contact occurs by a plane or two points, the transfer of moment becomes important. Iwashita and
Oda (1998) installed bending moment mechanism at contacts of imaginary spherical particles.

Friction

Shear 
force

Displacement

FrictionContact 
force

Grain-to-grain 
distance

d

d

= -( )1 4 2p d

Void volume

Fig. 11.26 Regular packing of 
 two-dimensional circular grains
Fig. 11.26
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For an application to geotechnical earthquake problems, Kanatani et al. (2001) combined FEM and
DEM in which FEM was applied to a more continuous soil deposit, while DEM to an accumulation of
big concrete pieces. Furthermore, Hakuno and Tarumi (1988) as well as Nakase et al. (1998) showed
how to calculate excess pore water pressure and seepage flow in a water-saturated model. Figure 11.30
illustrates an example calculation of liquefaction-induced deformation in a 30g centrifuge test. The
number of spherical elements are 14,000 with the diameter of 0.4 mm. Shaking of 300 Gal with 2 Hz
was applied. It is seen in this figure that the subsidence was terminated after some subsidence at which
the buoyancy and gravity forces achieved equilibrium. Note that the force equilibrium after some
displacement can be reproduced by FEM only if a large-displacement formulation is employed.

A three-dimensional DEM analysis is very interesting but evidently difficult because of the heavy
computation load. Harada and Gotoh (2006) conducted this type of analysis on the transportation of
river bed grains, taking simply into account the water effects. They employed 9,350 grains.

Fig. 11.30 DEM calculation on subsidence of embankment into liquefied subsoil
(Honda and Towhata, 2006)
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