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Applications of Fuzzy Logic

8.1 Fuzzy Logic in Power Plants

8.1.1 Fuzzy Logic Supervisory Control for Coal Power Plant

The high temperature Winkler gasification (HTW) process that was developed
by Rheinbraun has been used for many years in pilot and demonstration plants
to generate synthesis gas and fuel gas out of brown coal. Conventional methods
were used before to control the gas throughput. While the conventional control
engineering implementation was able to run the process in a stable operating
point, improvements were necessary to use the HT'W process in a coal power
station with integrated coal gasification:

— More precise control of gas throughput under fluctuations of the coal
quality

— More robust control in cases of fast load changes

— Automation of supervisory control operation

On top on the existing base level automation, a supervisory fuzzy logic con-
trol strategy was implemented on the HTW plant in Berrenrath/Germany.
Fuzzy logic was used because the control problem was strongly non-linear and
involves multiple measured and command variables. On the other hand, ex-
tensive operator knowledge about the process was available. The implemented
fuzzy logic supervisory control strategy successfully improved throughput con-
trol quality as well as the adaptation to different coal parameters.

High Temperature Winkler Gasification

The process that is used to gasify the coal is called High temperature Winkler
method (HTW). The HTW gasification method uses a high temperature fluid
bed process to convert brown coal into synthesis gas, a mixture of carbon
monoxide (CO) and hydrogen (Hz). This gas mix can be used to produce
chemical base products like aldehydes or organic acids. Alternatively it can be
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used in a power plant gas turbine to generate electricity. The gas produced by
the demonstration plant is used for chemical synthesizes. Later in the power
plant application the gas will be used to run a gas turbine/steam turbine
combination.

The HTW process has been used for the gasification of coal by the Ger-
man coal company Rheinbraun since 1956. The demonstration plant started
operation in 1985. It converts 720 t of coal per day into 900,000 m? (iN) syn-
thesis gas. In 1996 Inform added a fuzzy logic supervisory control to enable
the process for a power plant application. Figure8.1 shows a photo of this
plant.

The main inputs for the HTW process are coal, oxygen and steam. The
coal is first ground to small pieces and pre-dried before it is fed into the
bottom part of the fluid bed reactor. The steam and the oxygen are fed into
the reactor on four different levels, into and above the fluid bed. In the fluid
bed the coal reacts with the oxygen and the steam. This reaction takes place
at a temperature of around 800°C and at a pressure of 10 bar. After the
reaction in the fluid bed the generated gas enters the hot zone above the fluid
bed. At temperatures around 1,000°C additional oxygen and steam is added
and left over coal particles react with the gases. This way additional gas is
produced and by-products like methane and other hydrocarbons are converted
to carbon monoxide and hydrogen. The produced gases leave the reactor at
the top through the reactor head. At this point the gas is still mixed with a
lot of particles. These are filtered out and fed back into the fluid bed with a
zyklon filter and a feed back tube.

Fig. 8.1. HTW plant in Berrenrath, Germany
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The coal ashes accumulate at the bottom of the fluid bed reactor. They are
removed from there out of the reactor by two conveyor spirals. The hot raw
gas is cooled down to 270°C. Its heat is used to generate pressure steam, some
of which is recycled back into the process. Ceramic filters remove remaining
dust particles out of the gas. The following gas washer removes NH3, HCL and
other gas components. The following CO conversion creates the correct carbon
monoxide/hydrogen mix for the methanol synthesis. After a compression to 37
bar the gas is processed in a non-selective rectisol washer (COz/H2S washer).
At temperatures below —40°C liquid methanol is used to wash out carbon-
dioxide and sulfuric components. The methanol is used again after recycling
it and the purified synthesis gas is used at a nearby chemical plant. Figure 8.2
shows the process diagram of the HTW plant. The coal input, the oxygen
input, the distribution of the oxygen input over the eight different nozzles
and the ash removal rate have to be controlled to use the coal efficiently and
to generate the correct mixture of gases. Instead of coal a mixture of coal and
plastic refuse can be used in the HT'W process. This way the coal consumption
is reduced and the plastic refuse is recycled into synthesis gas.

Conventional Control

The HTW demonstration plant is controlled with an Eckhardt PLS-80E DCS
system. This system controls over 6,000 measurements and actuators. The
main control room is equipped with ten Unix-based operator consoles and
four real-time servers. So far nearly all the set points of the underlying control
circuits are set and adjusted manually by the operators. They constantly
monitor the process condition and adjust the set points of the underlying
control circuits accordingly (i.e. coal input, oxygen input). A few years ago it
was tried to automatically generate some set points using a conventional PID
controller, but the results were not satisfying. This supervisory control only
worked fine when the coal quality was very constant. Otherwise the process
quality would deteriorate significantly and the operators had to intervene and
switch back to manual operation.
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Fig. 8.2. Process diagram of HTW plant
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Supervisory Fuzzy Logic Control

Two main tasks have been defined for the supervisory fuzzy logic control:
regulation of the gas throughput and process stabilization.

The fuzzy logic must keep the gas throughput at the set point and it has
to respond to set point changes with the correct dynamic speed. The set point
can vary from 70% (partial load) to 100% (full load). The fluctuations of the
gas throughput result mainly from variations of the coal quality (humidity,
ash content and granularity). These effects have to be compensated by the
fuzzy logic.

The process stabilization must keep several process parameters in the
optimum range. The reactor load influences the optimum of these process
parameters. The position of the optimum also depends on the coal quality.
The following parameters were used to define the quality of the process:

— Temperature in the postgasification zone
— Height and density of the fluid bed
— Composition of the produced gas (CO, CHy, Hs)

The process stabilization is especially difficult when the HTW process is
fed with a mixture of coal and plastic refuse. This is done because plastic refuse
is a very inexpensive fuel. But the addition of plastic to the coal results in
drastically different process conditions. The fuzzy logic control uses the regular
measurements of the process conditions to detect any addition of plastic to
the coal. This will result into an adapted control strategy of the fuzzy logic
control.

Fuzzy Logic Control Design

The specification of the control task resulted into a preliminary concept of
the fuzzy logic controller. The operator knowledge was than used to specify
the control strategy of the fuzzy logic system. Several structured audits took
place to evaluate the operator knowledge systematically. The audits focused
on the operators’ manual control strategies and on the relationships between
the inputs and the outputs of the process. This procedure is in accordance
with the standardized fuzzy logic design method.

The audits resulted into the following concept for the fuzzy logic control:
deviations of the gas throughput from its set point immediately result into a
correction of the oxygen input. The coal input is adjusted accordingly to keep
the ratio between coal and oxygen at a constant level. Changes of the reactor
pressure predict changes of gas throughput. Therefore the pressure gradient
is used as an early warning indicator for changes of the gas throughput.

For process stabilization and for the adaptation to different coal qualities
the fuzzy logic controller uses the following parameters to keep the process in
a stable operating condition:
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— Coal to oxygen ratio

— Distribution of the oxygen between the fluid bed zone and the gasification
zone

— Ash outtake

— Fluidification with steam and inert gas

Sometimes one and the same process input value has to be modified to
keep several different critical measurements (temperature, fluid bed height) in
the optimum range. This can have conflicting results. For example: a too low
fluid bed is normally corrected with an increase of the coal input. A too
low temperature is corrected with a reduction of the coal input and a too low
dust output is also corrected with a reduction of the coal input. But a too
low temperature can occur together with a too low fluid bed. The ability of
the fuzzy controller to weight different conflicting indications based on their
significance and to use a lot of inputs to determine the best reaction to each
situation is very useful to control complex processes.

The fuzzy logic controller has a total number of 24 inputs and eight out-
puts. A preprocessing reduces the 24 inputs to ten characteristic descriptors.
These are fed into the fuzzy logic system. The fuzzy outputs go through a
post-processing step to generate the actual set points for the process inputs.
Figure 8.3 shows the core structure of the fuzzy logic system.

Integration of Fuzzy Logic into the DCS

The process measurements are coming to the fuzzy logic control through the
Eckhardt DCS. The fuzzy logic system generates set point values for the
underlying PID controllers. The fuzzy logic controller was implemented on an
0S/2 PC. Therefore the set up of the communication between the distributed
process control systems (DCS) and the fuzzy logic controller was an important
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Fig. 8.3. Fuzzy controller structure
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part of the whole project. The communication was implemented using Factory
Link, a well-known SCADA program by US-Data. A factory link application
is running on the same OS/2 PC together with the fuzzy logic controller. The
fuzzy logic controller reads data out of the Factory Link Real Time DataBase
and it also writes data back into it. Another Factory Link task is communi-
cating with the DCS through the Eckhardt DCS bus. This way an image of
the process measurements is created in the Factory Link RTDB and the fuzzy
outputs are forwarded to the DCS.

Factory Link initiates a new fuzzy logic evaluation every 10s. The DCS
either uses the external set points generated by fuzzy logic or the internal set
points entered by the operators. The operators can switch from the “manual
mode” to the “fuzzy logic mode” and back. The “fuzzy logic mode” can only
be activated when all the critical system variables are in a predefined safe
range. The DCS automatically switches back into “manual mode” whenever
a system variable exceeds the safe range. The fallback to “manual mode”
also takes place if the communication between the DCS and Factory Link is
interrupted.

Figure 8.4 shows the integration of the fuzzy logic control into Factory Link
and the Eckhardt DCS. The OS/2 PC is also connected with a serial cable to
a WIN95 PC, on which the fuzzy TECH development system is installed. This
program was used to develop the fuzzy logic control and to generate C-Code
for the implementation on the OS/2 PC. The WIN95 PC is also used for
online optimization and visualization of the fuzzy logic controller. The serial
link to the OS/2 PC enables the user to modify the fuzzy system on the fly
from the fuzzy TECH development system on the WIN95 PC while the system
is running and controlling the process.

Setting the Fuzzy Logic Control into Operation

The first design of the fuzzy logic control, the data preprocessing and post-
processing were tested using the simulation tool VisSim. This way the concept
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Fig. 8.4. Integration of fuzzy logic into DCS
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was checked for any structural errors and an early prototype was presented
to the customers. Figure 8.5 shows a test of the fuzzy logic system using sim-
ulated data as input.

After the successful completion of the simulations the fuzzy logic was tested
offline with real time data from the DCS. To do this the fuzzy logic control
first was implemented on the OS/2 PC. The fuzzy controller than used real
time DCS measurement values to generate set points values for the DCS. But
during these offline simulations the DCS was only using the internal manual
set points and not the fuzzy logic set points. By comparing the external fuzzy
logic set points with the internal operator set points deviations between man-
ual and automatic operation could be detected and if necessary eliminated.

After the offline testing was finished successfully the online testing started.
For the online tests the DCS activated the external set points and so the closed
loop performance of the fuzzy logic controller could be tested. The fuzzy logic
controller was optimized while running in the closed loop mode from the
fuzzy TECH development tool on the WIN95 PC. To do this the OS/2 PC was
connected with a serial cable to the WIN95 PC. This way the fuzzification,
inference and defuzzification were visualized in fuzzy TECH. Modifications of
the rule base or term definitions were also entered in fuzzy TECH and than
send to the fuzzy logic controller on the OS/2 PC.

The fuzzy controller proved to be working very effectively during the first
few online tests. After that a long series of evaluation tests started. During
these tests the performance of the fuzzy controller was tested using a lot of
different coal qualities and different loads (70-100%).

Regulation of Gas Throughput

The conventional control focussed on process stabilization not keeping the
throughput at its set point. The following diagram shows the changes in
the gas throughput when fuzzy controller is active. The fuzzy logic control
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Fig. 8.5. Simulation with VisSim
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clearly improves the throughput control. It compensates fluctuations in the
granulation of the coal. Figure 8.6 shows the fluctuations of the synthesis gas
throughput with and without fuzzy logic.

Change of Load

The fuzzy controller has to regulate the gas throughput in the range 70-100%
load with a maximum load gradient of 4% min~?.

Figure 8.7 shows a load change from 94% to 76% and back to 94%. The
resulting load gradient was 3.2%min~!. Currently the load change behavior

is being improved by using a modified pressure evaluation.

Adaptation to Coal Add-Ons

Sometimes the HT'W process is fed with a mixture of coal and plastic refuse.
The resulting process parameters vary greatly from the standard operating
conditions. For example the content of methane in the raw gas increases. The
fuzzy controller recognizes the different operating conditions and generates a
matching internal set point for methane. Figure 8.8 illustrates how this enables
the fuzzy controller to stabilize the process.

Adaptation to Different Coal Qualities

The fuzzy controller also keeps the synthesis gas throughput constant when
the coal quality changes. Figure 8.9 shows the results of a change of the coal’s
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water content from 18% to 12%. The fuzzy controller reduces the coal input
to compensate the coal change. Later after switching back to moist coal the
coal input is increased accordingly.
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Conclusion

The fuzzy controller was implemented very quickly. The transfer of the process
know-how into the fuzzy controller and its realization took 15 days. So far over
1,100 h of operating time have been evaluated. In nearly all situations the
performance of the fuzzy controller was much superior to the manual control.
It was able to keep the process parameters in the optimum range whenever
the coal quality changed. It was also able to adjust the gas throughput with
the necessary change rate. The average gas throughput was kept at the set
point. The operating personal has accepted the fuzzy controller as a helpful
component because its transparent integration into the PLS makes it easy for
them to use it.

8.2 Fuzzy Logic Applications in Data Mining

8.2.1 Adaptive Fuzzy Partition in Data Base Mining:
Application to Olfaction

Introduction

Flavor and odor remain permanent challenges in academic and industrial
research. The economic impact of the olfactory field explains the large number
of articles involving data analysis methods to process sensorial and experi-
mental measurements. However, odor evaluation by man represents a special
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field of research, whose specific difficulties need to be overcome to lead to
robust results. The multiplicity of factors involved in the olfaction biological
process prevents the derivation of efficient predictive mathematical models.
Four points mainly define this complexity:

(1) A huge number of receptors is involved in olfaction

(2) Knowledge related to the 3D structure of these receptors is still missing
(3) Different types of chemical compounds can affect the same receptor

(4) One compound can exhibit simultaneously different odors

Furthermore, the importance of fuzziness linked to the expert’s subjectiv-
ity has to be considered. Much progress has been made in the knowledge of
physiological and psychological factors influencing the expert’s olfaction eval-
uation, but it is not sufficient to clearly discriminate between objectivity and
subjectivity in the characterization exhibited by panels of experts.

All these factors prevent the direct transposition of advances in
Chemometrics and Molecular Modeling in Medicinal Chemistry into the field
of olfaction. Nevertheless, the use of multivariate data analysis approaches can
play an important part to improve the knowledge of the molecular descriptor
role in olfaction and, then, the implementation of robust mathematical mod-
els. Traditional pattern recognition procedures, like Principal Component
Analysis (PCA) (Niemi 1990), Discriminant Analysis (DA) (Hubert 1994),
and Cluster Analysis (Kaufman and Rousseeuw 1990), and methods pertain-
ing to the field of Artificial Neural Networks, like Back Propagation Neural
Networks (BPNN) (Hecht-Nielsen 1989) or Kohonen Self-Organizing Maps
(SOM) (Kohonen 2001), are been widely used in the development of several
electronic noses and in data analysis of olfactory data sets.

These approaches offer different possibilities and objectives. PCA can be
considered as being only a projective technique. It is worth using this method
when clusters or classes can be visually delineated. DA is really a discriminant
technique as it aims to find linear relations in the molecular descriptor hyper-
space able to separate different compound categories included in the data set.
Both methods, PCA and DA, work correctly if the compounds, belonging to
different classes, are grouped in well separated regions, but, in more complex
distributions, their classification power becomes poor.

Cluster Analysis offers a first solution to this problem. It consists of ob-
taining self-partitioning of the data, in which each cluster can be identified as
a set of compounds clearly delineated regarding the molecular descriptor set
involved. Instead of trying to inspect all the compounds in the database to
understand and analyze their chemical properties, it is only required to select
typical compounds representing each cluster to get a deeper knowledge of the
structure of the database, i.e., of the distribution of the compounds in the
derived hyperspace. The main problems related to this method are that:

(1) The number of clusters and the initial positions of the cluster centers can
influence the final classification results



168 8 Applications of Fuzzy Logic

(2) Compound separation is based on a binary notion of belonging, for
which a compound located between two clusters is included in only one
cluster

SOM has been considered as an alternative method to overcome the
above limitations. It integrates nonlinearity into the data set, so as to project
the molecular descriptor hyperspace onto a two-dimensional map and to pre-
serve the original topology, as the points located near each other in the original
space remain neighbors in SOM. This technique has been used to process huge
amounts of data in a high-dimensional space, but, like PCA, it remains an
unsupervised projective method. Then, for predictive objectives, SOM has to
be combined with another technique, generating a hybrid system that offers
an automatic objective map interpretation.

Contrary to SOM, BPNN is a supervised predictive method. It is able
to discriminate any nonlinearly separable class, relating continuous input
and output spaces with an arbitrary degree of accuracy. This method,
applied to several fields of chemical database analysis, has proved to be very
efficient in modeling complex data set relationships. However, as in other
Artificial Neural Networks techniques, the complexity of the modeling func-
tion often prevents extraction of relevant information suitable to explain
the model and, therefore, to deliver a better understanding of biological
mechanism.

Fuzzy concepts introduced by Zadeh (1977) provide interesting alterna-
tive solutions to the classification problems within the context of imprecise
categories, in which olfaction can be included. In fact, fuzzy classification rep-
resents the boundaries between neighboring classes as a continuous, assign-
ing to compounds a degree of membership of each class. It has been widely
used in the field of process control, where the idea is to convert human expert
knowledge into fuzzy rules, and it should be able to extract relevant structure—
activity relationships (SAR) from a database, without a priori knowledge.

A data set of olfactory compounds, divided into animal, camphoraceous,
ethereal and fatty olfaction classes, was submitted to an analysis by a
fuzzy logic procedure called adaptive fuzzy partition (AFP). This method
aims to establish molecular descriptor/chemical activity relationships by dy-
namically dividing the descriptor space into a set of fuzzily partitioned
subspaces. The ability of these AFP models to classify the four olfactory
notes was validated after dividing the data set compounds into training and
test sets, respectively.

The aim of this work is to apply a fuzzy logic procedure, that we called
AFP, to a chemical database derived from olfactory studies, in order to develop
a predictive SAR model. The database included 412 compounds associated
with an odor appreciation defining the presence or the absence of four different
olfactory notes. A set of 61 molecular descriptors was examined and the most
relevant descriptors were selected by a procedure derived from the Genetic
Algorithm concepts.
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Materials and Methods
Compound Selection

A database derived from the Arctander’s books (Arctander 1960, 1969),
including 2,620 compounds and 81 olfactory notes, was submitted to a PCA
analysis, in order to determine a reduced subset of compounds representing
very weakly correlated odors. The relative results allowed to determine a data
set of 412 olfactory compounds homogeneously distributed in four classes:
animal, camphoraceous, ethereal, and fatty odors.

Molecular Descriptors

The reduced data set was distributed in a 61 multidimensional hyperspace
derived from a selected set of 61 molecular descriptors. This descriptor
set includes topological, physicochemical and electronic parameters. In vir-
tual screening, general descriptors have proved a good compromise, from an
efficiency point of view, for data mining in large databases. The advantage
of these descriptors is their ability to take into account not only the main
structural features of each molecule, but also their global behaviors. Then,
they should be able to take simultaneously into account the complexity of
the olfaction mechanism and the approximation of the odor scale. Molar
refractivity (MR), molar volume (MV), molecular weight (MW), and Van
Der Waals volume (VAWYV) were used as size descriptors.

The shape features of the molecules were characterized by topological
indices which account for the ramification degree, the oblong character, etc.,
20 molecular connectivity indices, a series of information content descriptors
(ICo, SICo, CICO, IC1, SIC1,CIC1, IDW), Wiener index (W), centric in-
dex (C'), Balaban index (J), Gutman index (M2), Platt number (F'), counts
of paths of lengths 1-4, counts of vertices with 1-4 nearest neighbors were
used The number of N, O, and S atoms in a molecule was also considered.
A lipophilicity descriptor represented by the octanol/water partition coeffi-
cient (log Poct/water) was calculated using the Hansch and Leo method. An-
other descriptor was derived from the electronegativity of molecules (EMS)
by the Sanderson method.

Descriptor Selection

To select, amidst the 61 descriptors, the best parameters for classifying the
data set compounds, a method based on genetic algorithm (GA) concepts was
used. GA, inspired by population genetics, consists of a population of indi-
viduals competing on the basis of natural selection concepts. Each individual,
or chromosome, represents a trial solution to the problem to be solved. In
the context of descriptor selection, the structure of the chromosome is very
simple. Each descriptor is coded by a bit (0 or 1) and represents a compo-
nent of the chromosome. 0 defines the absence of the descriptor, 1 defines its
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presence. The algorithm proceeds in successive steps called generations. Dur-
ing each generation, the population of chromosomes evolves by means of a
“fitness” function (Davis 1991), which selects them by standard crossover and
mutation operators. The crossover phase takes two chromosomes and produces
two new individuals, by swapping segments of genetic material, i.e., bits in
this case. Within the population, mutation removes the bits affecting a small
probability.

Genetic algorithms are very effective for exploratory search, applicable to
problems where little knowledge is available, but it is not particularly suitable
for local searches. In the latter case, it is combined with a stepwise approach
in order to reach local convergence. Stepwise approaches are quick and are
adapted to find solutions in “promising” areas that have been already identi-
fied.

To evaluate the fitness function, a specific index was derived by using a
fuzzy clustering method. Furthermore, to prevent over-fitting and a poor gen-
eralization, across validation procedure was included in the algorithm during
the selection procedure, by randomly dividing the database into training and
test sets. The fitness score of each chromosome is derived from the combina-
tion of the scores of the training and test sets.

The following parameters were used in the data processing of the data set
of 412 olfactory compounds:

(1) Fuzzy parameters — weighting coefficient = 1.5, tolerance convergence
= 0.001, number of iterations = 50, number of clusters = 10.

(2) Genetic parameters — number of chromosomes = 10, chromosome size = 60
(number of descriptors used), number of crossover points = 1, percentage
of rejections = 0.1, percentage of crossovers = 0.8, percentage of muta-
tions = 0.05, time off (10,100), number of generations = 10, ascendant
coefficient = 0.02, descendant coefficient = —0.02. Calculations were per-
formed using proprietary software.

Adaptive Fuzzy Partition

AFP is a supervised classification method implementing a fuzzy partition
algorithm. It models relations between molecular descriptors and chemical
activities by dynamically dividing the descriptor space into a set of fuzzy
partitioned subspaces. In a first phase, the global descriptor hyperspace is
considered and cut into two subspaces where the fuzzy rules are derived.
These two subspaces are divided step by step into smaller subspaces until
certain conditions are satisfied, namely when:

(1) The number of molecular vectors within a subspace attains a minimum
threshold number

(2) The difference between two generated subspaces is negligible in terms of
chemical activities represented

(3) The number of subspaces exceeds a maximum threshold number
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The aim of the algorithm is to select the descriptor and the cut position,
which allows the maximal difference between the two fuzzy rule scores gen-
erated by the new subspaces to be determined. The score is defined by the
weighted average of the chemical activity values in an active subspace A and in
its neighboring subspaces. If the number of trial cuts per descriptor is defined
by N cut, the number of trial partitions equals (N cut +1)N. Ounly the best
cut is selected to subdivide the original subspace. All the rules created during
the fuzzy procedure are considered to establish the model between descriptor
hyperspace and biochemical activities. The global score in the subspace Sk
can then be calculated. All the subspaces k are considered and then the score
of the activity O for a generic molecule is computed. The following parameters
were used to process the data set of 165 pesticide compounds: maximal num-
ber of rules for each chemical activity = 35; minimal number of compounds
for a given rule = 4; number of cutting for each axis = 4;p = 1.2 and ¢ = 0.8.

Descriptor Selection

Four relevant descriptors can be selected by the GA procedure. The first
three descriptors may correspond to topological indices encoding information
about molecular structure. All the atoms are considered to be carbon atoms.
The values for noncarbon heteroatoms are computed differently regarding
the values for identically connected carbon atoms. Finally, VES, an electronic
index, represents the variance of electronegativity computed by the Sanderson
method (Sanderson 1976).

AFP Model

The AFP model was established on the training set compounds, defining four
molecular descriptor — odor relationships, one for each olfactory note. The
number of rules implemented in each relationship was dependent on the com-
plexity of the compound distribution regarding a given odor. The animal,
camphoraceous, ethereal and fatty odors were, respectively, represented by
17, 18, 14, and 24 rules. The number of rules concerning the fatty odor shows
that the corresponding relationship was the most difficult to establish. A pos-
sible explanation could be found in the fact that only complex combinations
of molecular descriptors can represent the distribution of the ethereal com-
pounds, so requiring a high number of rules. Another one can be related to
the cutting procedure performed by the algorithm. But this hypothesis is less
probable as a different number of cuts, 3, 4, and 5 per axis, leads to similar
results.

The most important ability of the AFP method is its capacity to solve
such complex problems as olfaction, transcribing the molecular descriptor—
activity relationships into simple rules that are directly related to the selected
descriptors. The contribution of the GA procedure is obviously fundamental:
it reduces the amount of information in the input step, making it easier to
determine and interpret the model.
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Conclusion

Data base mining (DBM) algorithms, based upon molecular diversity analysis,
are becoming a must for pharmaceutical companies in the search for new leads.
They allow the automated classification of chemical databases, but the huge
amount of information provided by the large number of molecular descriptors
tested is difficult to exploit. Then, new tools have to be developed to give
a user-friendly representation of the compound distribution in the descriptor
hyperspace.

Furthermore, the difficulty of data mining in olfaction databases is ampli-
fied by the fact that one compound can have different odors and its activity is
usually expressed in a qualitative way. Another source of complexity derives
from the fact that one receptor can recognize different chemical determinants
and the same compound can be active on different receptors.

Fuzzy logic methods, developed to mimic human reasoning in its ability
to produce correct judgements from ambiguous and uncertain information,
can provide interesting solutions in the classification of olfactory databases.
In fact, these techniques should be able to represent the “fuzziness” linked to
an expert’s subjectivity in the characterization of the odorous notes, comput-
ing intermediate values between absolutely true and absolutely false for each
olfactory category. These values are named degrees of membership and are
ranged between 0.0 and 1.0.

In this section, a new procedure, the AFP algorithm, was applied to a data
set of olfactory molecules, divided into animal, camphoraceous, and ethereal
and fatty compounds. This method consists of modeling molecular descriptor—
activity relationships by dynamically dividing the descriptor hyperspace into
a set of fuzzy subspaces. A large number of molecular descriptors may be
tested and the best ones may be selected with help of an innovative procedure
based on genetic algorithm concepts.

8.3 Fuzzy Logic in Image Processing

8.3.1 Fuzzy Image Processing
Introduction

Fuzzy image processing is not a unique theory. It is a collection of different
fuzzy approaches to image processing. Nevertheless, the following definition
can be regarded as an attempt to determine the boundaries:

Fuzzy image processing is the collection of all approaches that understand,
represent and process the images, their segments and features as fuzzy sets.
The representation and processing depend on the selected fuzzy technique and
on the problem to be solved.
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Fig. 8.10. General structure of fuzzy image processing

Fuzzy image processing has three main stages: image fuzzification, mod-
ification of membership values, and, if necessary, image defuzzification (see
Fig.8.10.).

The fuzzification and defuzzification steps are due to the fact that we
do not possess fuzzy hardware. Therefore, the coding of image data (fuzzi-
fication) and decoding of the results (defuzzification) are steps that make
possible to process images with fuzzy techniques. The main power of fuzzy
image processing is in the middle step (modification of membership values,
see Fig.8.11). After the image data are transformed from gray-level plane
to the membership plane (fuzzification), appropriate fuzzy techniques modify
the membership values. This can be a fuzzy clustering; a fuzzy rule-based
approach, a fuzzy integration approach, and so on.

Need for Fuzzy Image Processing

The most important of the needs of fuzzy image processing are as follows:

1. Fuzzy techniques are powerful tools for knowledge representation and
processing

2. Fuzzy techniques can manage the vagueness and ambiguity efficiently

3. In many image-processing applications, we have to use expert knowledge
to overcome the difficulties (e.g., object recognition, scene analysis)

Fuzzy set theory and fuzzy logic offer us powerful tools to repre-
sent and process human knowledge in form of fuzzy if-then rules. On
the other side, many difficulties in image processing arise because the
data/tasks/results are uncertain. This uncertainty, however, is not always
due to the randomness but to the ambiguity and vagueness. Beside random-
ness which can be managed by probability theory we can distinguish between
three other kinds of imperfection in the image processing (see Fig.8.12):
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Fig. 8.13. Representation of colors as fuzzy subsets

— Grayness ambiguity
— Geometrical fuzziness
— Vague (complex/ill-defiend) knowledge

These problems are fuzzy in the nature. The question whether a pixel
should become darker or brighter than it already is, the question where is the
boundary between two image segments, and the question what is a tree in a
scene analysis problem, all of these and other similar questions are examples
for situations that a fuzzy approach can be the more suitable way to manage
the imperfection.

As an example, we can regard the variable color as a fuzzy set. It can be
described with the subsets yellow, orange, red, violet, and blue:
color = {yellow, orange, red, violet, blue}

The noncrisp boundaries between the colors can be represented much better.
A soft computing becomes possible (see Fig.8.13).

Fuzzy Image Enhancement
Contrast Adaptation

In recent years, many researchers have applied the fuzzy set theory to develop
new techniques for contrast improvement. Following, some of these approaches
are briefly described.

Contrast Improvement with INT-Operator

1. Step: define the membership function

—F,
9Imax — Imn
Hmn = G(Gmn) = {1 + ]
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2. Step: modify the membership values

Fmn =91 22 1 = pn]® 0.5 < ptapn < 1

3. Step: generate new gray-levels
g;nn = G_l(ﬂinn) = gmax — Fa ((:u;nn)_l/Fe - 1)

Contrast Improvement Using Fuzzy FExpected Value

[t

. Step: calculate the image histogram
. Step: determine the fuzzy expected value (FEV)
. Step: calculate the distance of gray-levels from FEV

4. Step: generate new gray-levels

w N

g;,m = max(0,FEV — D,,,,,) if gmn < FEV,
g, =min(L — 1, FEV + D,,,,,) if gyun > FEV,
g, = FEV otherwise.

Contrast Improvement with Fuzzy Histogram Hyperbolization

1. Step: setting the shape of membership function (regarding to the actual
image)

Step: setting the value of fuzzifier Beta (a linguistic hedge)

Step: calculation of membership values

Step: modification of the membership values by linguistic hedge

Step: generation of new gray-levels

L-1 s
/ _ . - mn( mn) —
o = (5 27) o 1],

Contrast Improvement Based on Fuzzy if-then Rules

A e

1. Step: setting the parameter of inference system (input features, member-
ship functions)

2. Step: fuzzification of the actual pixel (memberships to the dark, gray, and
bright sets of pixels)(Fig. 8.14)

3. Step: inference (e.g., if dark then darker, if gray then gray, if bright then
brighter)

4. Step: defuzzification of the inference result by the use of three singletons

Locally Adaptive Contrast Enhancement

In many cases, the global fuzzy techniques fail to deliver satisfactory results.
Therefore, a locally adaptive implementation is necessary to achieve better
results.
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Fig. 8.14. Histogram fuzzification with three membership functions

Subjective Image Enhancement

In image processing, some objective quality criteria are usually used to ascer-
tain the goodness of the results (e.g. the image is good if it possesses a low
amount of fuzziness indicating high contrast). The human observer, however,
does not perceive these results as good because his judgment is subjective.
This distinction between objectivity and subjectivity is the first major prob-
lem in the human-machine interaction. Another difficulty is the fact that
different people judge the image quality differently. This inter-individual dif-
ference is also primarily due to the aforesaid human subjectivity.

Following, an overall enhancement system will be described briefly. The ap-
proach is based on the combination of differently enhanced images obtained by
using different algorithms each satisfying the observer’s demand only partly.
The fusion result should meet the subjective expectations of every individual
observer.

An Overall System for Image Enhancement

The proposed enhancement system consists of two stages: an offline stage in
which an aggregation matrix will be generated which contains the relevancy
of different algorithms for corresponding observers, and an online stage where
new image data will be enhanced and fused for a certain observer.

Offline Stage

The offline stage consists of five phases: image enhancement by means of dif-
ferent algorithms (or by just one algorithm with different parameters), extrac-
tion of the objective quality criteria, learning the fuzzy measure (subjective
quality evaluation), aggregation (regarding to different images and different
observers), and finally, a fuzzy inference (final quality measure for each image).
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The result of the offline stage will be an aggregation matrix containing the
relevance of all involving algorithms for each observer. The system phases can
be briefly described as follows:

Phase 1 (enhancement): different algorithms Ak (or one algorithm with dif-
ferent parameters) enhance all test images Xi and deliver their results X'i,Ak.
The selection of these algorithms is dependent on the image quality that
we are interested in, e.g., contrast, smoothness, edginess, etc. At least two
algorithms, or two different parameter sets for the same algorithm, should be
selected.

Phase 2 (extraction): depending on the specific requirements of the applica-
tion, suitable quality measures h(X'i,Ak) are extracted, e.g., contrast, sharp-
ness or homogeneity measures. These criteria can serve as objective quality
measures and will be aggregated with subjective measures in the forth phase
via fuzzy integral.

Phase 3 (learning): the observer judges the quality of all enhanced images. The
images are presented to the observer in random order. Moreover, the observer
is not provided with any information about the algorithms used in the first
phase. In order to map the subjective assessments into numerical framework,
the ITU recommendation BT 500 can be used. The quality of the images
generated by the kth algorithm as excellent (= 1), good (= 2), fair (= 3),
poor (= 4), and bad (= 5). For all M judgments pi,b of the bth observer, the
mean opinion score (MOS) will be calculated.

Phase 4 (aggregation of measures/judgments): considering the objective
measures and subjective judgments, one recognizes two conflicts. First, the
observer judges the results of the same algorithm from image to image dif-
ferently. Second, considering the divergence between objective and subjective
assessments, the relevance of different algorithms is not always obvious. To
solve these problems two new measures the degree of compromise m* and the
degree of compatibility g are introduced.

Phase 5 (inference): the elements of vectors G (degree of compatibility) and
F (degree of compromise) are fuzzified with three membership functions. The
output of the inference system is an aggregation matrix quantifying the image
quality and is represented by five nonsymmetric membership functions. Then
the if-then rules may be formulated.

Online Stage

In the second stage the system uses only the information stored in the aggrega-
tion matrix and an index indicating the current expert looking at the images.
The image fuzzification, therefore, plays a pivotal role in all image processing
systems that apply any of these components. The following are the different
kinds of image fuzzification:



8.3 Fuzzy Logic in Image Processing 179

membership

0 gray levels 255

Fig. 8.15. Histogram fuzzification

Histogram-based gray-level fuzzification (or briefly histogram fuzzification)

Example: brightness in image enhancement

Local fuzzification (example: edge detection)

Feature fuzzification (scene analysis, object recognition)(Fig. 8.15)

In order to be in a form suitable for computer processing an image function
f(z,y) must be digitized both spatially and in amplitude (intensity). Digiti-
zation of spatial co-ordinate (x,y) is called image sampling, while amplitude
digitization is referred to as intensity or gray-level quantization. The latter
term is applicable to monochrome images and reflects the fact that these
images vary from black to white in shades of gray. The terms intensity and
gray-level can be used interchangeably.

Suppose that a continuous image is sampled uniformly into an array of N
rows and M columns, where each sample is also quantized in intensity. This
array, called a digital image, may be represented as,

T11 T12 T13 TiM

T21 Z22 T23 TaM
f(m,n) = . ,

N1 IN2 IN3 " INM

where m,n are discrete variables.
Each element in the array is called an image element, picture element, or

pizel.
There are basically two methods available for image processing. They are:

1. Frequency domain method
2. Spatial domain method

Frequency Domain technique:

It refers to an aggregate of complex pixels resulting from taking the Fourier
Transform and arises from the fact that this particular transform is composed
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of complex sinusoids. Due to extensive processing requirements, frequency-
domain techniques are not nearly as widely used as spatial domain techniques.
However, Fourier Transform plays an important role in areas such as analysis
of and object motion and object description.

Two-dimensional Fourier Transform pair of an N x N image is defined as,

F(u,v) =

2=

N-1 N-1
> Y fy) exp(—j2n(zu+vy) /N)
=0 y=0

foru=0,1,2,...,N — 1.

In this method, processing is done with various kinds of frequency filters.
For example, low frequencies are associated with uniformly gray areas, and
high frequencies are associated with regions where there are abrupt changes
in pixel brightness.

Spatial domain technique: this method refers to aggregate of pixels composing
an image, and they operate directly on these pixels. Processing functions in
spatial domain may be expressed as

9(z,y) = h[f(z,y)]

f(z,y) is the input image

g(x,y) is the resultant image

h is the operator on f defined over some neighborhood of (z,y)

The principal approach used in defining a neighborhood about (z,y) is
to use a square/rectangular subimage area centered at (x,y). Although other
neighborhood shapes such as circle are sometimes used, square arrays are by
far most predominant because of their ease of implementation.

Smoothing: smoothing operations are used for reducing noise and other
spurious effects that may be present in an image as a result of sampling,
quantization, transmission or disturbances in the environment during image
acquisition.

Mainly there are two types of smoothing techniques. They are:

1. Neighborhood averaging
2. Median filtering

Neighborhood averaging: it is a straightforward spatial domain technique for
image smoothing. Given an image f(x,y), the procedure is to generate a
smoothed image g(x,y) whose intensity at every point (x,y) is obtained by
averaging the intensity values of pixels of f contained in predefined neighbor-
hood of (x,y). The smoothed image is obtained by using the relation

1 .
g(z,y) = 12 ( z):esf(m,n) for all x and y in f(z,y).
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Median filtering: one of the difficulties of neighborhood averaging is that it
blurs the edges and other sharp details. This blurring can often be reduced
significantly by the use of the median filters, in which we replace the intensity
of each pixel by median of the intensities in a predefined neighborhood of that
pixel, instead of by the average.

Fuzzy image processing is not a unique theory. It is a collection of different
fuzzy approaches to image processing. Nevertheless, the following definition
can be regarded as an attempt to determine the boundaries:

Fuzzy image processing is the collection of all approaches that understand,
represent and process the images, their segments and features as fuzzy sets.
The representation and processing depend on selected fuzzy technique and on
the problem to be solved.

Fuzzy image processing (FIP) has three main stages:

1. Image fuzzification
2. Modification of membership values
3. Image defuzzification

The general structure of an FIP is shown in the figure. The fuzzification
and defuzzification steps are due to fact that we do not possess fuzzy hardware.
Therefore, the coding of image data (fuzzification) and decoding of the results
(defuzzification) are steps that make possible to process images with fuzzy
techniques.

Expert
Knowledge
Input image
Image Membership Image
Fuzzification Modification Defuzzification
A
Repult
Result
Fuzzy logic
Fuzzy set theory

Basic steps in FIP

The main power of fuzzy image processing is in the middle step (modi-
fication of membership values). After the image data are transformed from
gray-level plane to the membership plane (fuzzification), appropriate fuzzy
techniques modify the membership values. This can be a fuzzy clustering; a
fuzzy rule-based approach, a fuzzy integration approach and so on.
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Necessity of FIP: there are many reasons for use of fuzzy techniques in image
processing. The most important of them are as follows:

In many image-processing applications, we have to use expert knowledge
to overcome the difficulties (e.g., object recognition, scene analysis). Fuzzy
set theory and fuzzy logic offer us powerful tools to represent and process
human knowledge in form of fuzzy if-then rules. On the other side, many
difficulties in image processing arise because the data/tasks/results are un-
certain. This uncertainty, however, is not always due to randomness but to
the ambiguity and vagueness. Beside randomness, which can be managed by
probability theory, we can distinguish between three kinds of imperfection in
image processing.

These problems are fuzzy in nature. The question whether a pixel should
become darker than already it is, the question where is the boundary between
two image segments, and the question what is a tree in a scene analysis
problem, all of these and other similar questions are examples for situa-
tions that a fuzzy approach can be the more suitable way to manage the
imperfection.

Before one is able to conduct meaningful pattern recognition exercises
with images, one may need to preprocess the image to achieve the best image
possible for the recognition process. The original image might be polluted
with considerable noise, which would make the recognition process difficult.
Processing, reducing, or eliminating this noise will be a useful step in the
process. An image can be thought of an ordered array of pixels, each charac-
terized by gray tone. These levels might vary from a state of no brightness,
or completely black, to a state of complete brightness, or totally white. Gray
tone levels in between these two extremes would get increasingly lighter as we
go from black to white.

Contrast enhancement: an image X of N x M dimensions can be considered
as an array of fuzzy singletons, each with a value of membership denoting the
degree of brightness level p,p = 0,1,2... P — 1 (e.g., range of densities from
p =0 to p = 255), or some relative pixel density. Using the notation of fuzzy
sets, we can write,

M11/1’11 M12/I12 MlM/le

#21/»”521 ,u22/$22 #2M/$2M
X fr—

UN1/TN1  pN2/TNe o UNM/TNM

where 0 < iy, <1l,m=1,2...M,n=1,2...N.

Contrast within an image is measure of difference between the gray-levels
in an image. The greater the contrast, the greater is the distinction between
gray-levels in the image. Images of high contrast have either all black or all
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white regions; there is very little similar gray-levels in the image, and very
few black or white regions. High-contrast images can be thought of as crisp,
and low contrast ones as completely fuzzy. Images with good gradation of
grays between black and white are usually the best images for purposes of
recognition by humans.

The object of contrast enhancement is to process a given image so that the
result is more suitable than the original for a specific application in pattern
recognition. As with all image-processing techniques we have to be especially
careful that the processed image is not distinctly different from the original
image, making the identification process worthless. The technique used here
makes use of modifications to brightness membership value in stretching or
contracting the contrast of an image.

Many contrast enhancement methods work as shown in the figure below,
where the procedure involves primary enhancement of he image, denoted with
an E; in the figure, followed by a smoothing algorithm, denoted by an S, and
a subsequent final enhancement, step Es.

(e H[=-[=]

Method of contrast enhancement

The function of the smoothing operation of this method is to blur (make
more fuzzy) the image, and this increased blurriness then requires the use
of final enhancement step Es. Generally smoothing algorithms distribute a
portion of the intensity of one pixel in the image to adjacent pixels. This
distribution is greatest for pixels nearest to the pixels being smoothed, and it
decreases for pixels farther from the pixel being smoothed.

The contrast intensification operator, on a fuzzy set A generates another
fuzzy set, A = INT(A) in which the fuzziness is reduced by increasing the
values of pa(x) that are greater than 0.5 and decreasing the values that are
less than 0.5. If we define this transformation T7, we can define T} for the
membership values of brightness for an image as,

Ty (fmn) = Tll(:umn) = zﬂmnza 0 < tmn <0.5,
= {,(ﬂmn) =1- 2(1 - ,umn)Qa 0.5 < pmn < 1.

The transformation T;. is defined as successive applications of 77 by the re-
cursive relation,

Tr(umn) = Tl[Trfl(,umn)] r= 172737'~~

The graphical effect of this recursive transformation for a typical member-
ship function is shown in figure below. The increase in successive applications
of the transformation, the curve gets steeper. As r approaches infinity, the
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shape approaches a crisp function. The parameter r allows the user to use an
appropriate level of enhancement for domain-specific situations.

Example: Given the following 25 pixel array as shown below

110 105 140 107 110
110 132 105 115 154
140 105 105 115 154
137 135 145 150 150
140 118 115 109 148

Array of pixels with given intensities

We now scale the above values to obtain the membership functions of each
of the pixel given as shown in the table below.

0.43 0.41 0.55 0.42 0.43
0.43 0.52 0.43 0.59 0.41
0.55 0.41 0.41 0.45 0.60
0.54 0.53 0.57 0.59 0.59
0.55 0.46 0.45 0.42 0.58

Scaled values indicating memberships of each pixel
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Applying the formulas given before does the contrast enhancement of
above array of pixels, which are stated below again.

T1(ttmn) = T1 (ftmn) = 24tmn’, 0 < ftmn < 0.5
= T! (o) = 1 — 21 = ptmn)? 0.5 < ponn < 1,

where i, is the membership of the (m,n)th element in the array of pixels.
After one application of the enhancement, i.e., the INT operator on the
above array of pixels we get the following results.

0.37 0.33 0.60 0.35 0.37
0.37 0.54 0.37 0.66 0.33
0.60 0.33 0.33 0.40 0.68
0.57 0.56 0.63 0.66 0.66
0.60 0.42 0.40 0.35 0.65

Membership values of pixels after application of INT operator once

Thus we see that the pixels having the membership values greater than
0.5 have been increased in intensity and those with value less than 0.5 have
been decreased in intensity.

Sample calculations:

Consider the pixel of intensity 0.43, the new intensity value is, 2 x 0.43% = 0.37
as 0 < 0.43 < 0.5.

Consider the pixel of intensity 0.55. As it is between 0.5 and 1.0 we get its
new value as [1 — 2(1 — 0.55)%] = 0.60.

In this way we calculate all the new intensities of the other pixels.
Smoothing: smoothing of a pixel is done by averaging the intensity values

in the neighborhood of the pixel and substituting the averaged value for the
intensity of the pixel. Consider the following figure.



186 8 Applications of Fuzzy Logic

My

H2 Ho M3

Ha

We can now write the intensity of the pixel pg as

po = (1 + po + piz + pa) /4.

Also we can find the new intensity of the pixel by substituting the median of
the intensities of the pixels in place of the intensity of the pixel.

Example: Consider an array of 30 pixels denoting the letter M as shown
below

220 30 40 15 250
205 230 0 239 230
225 20 225 20 220
217 255 30 10 215
220 25 15 255 235
210 20 10 15 220

The noisy intensities are denoted in bold. The operation of smoothing is
to reduce the noise caused due to them. The scaled values giving membership
of pixels is as shown below.

The scaled membership values of the pixels can be obtained by dividing
the pixel intensity by 255. For example consider the pixel of intensity 220, its
membership value can be determined by dividing 220 by 255. Therefore we
obtain the new intensity of the pixel as,

220,255 = 0.86.
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In similar manner, we calculate the membership values of other pixels also.

0.86 0.18 0.04 0.06 0.98
0.80 0.90 0.00 0.94 0.90
0.88 0.08 0.88 0.08 0.86
0.85 1.00 0.11 0.04 0.84
0.86 0.10 0.06 1.00 0.92
0.82 0.08 0.04 0.06 0.86

Now we apply the formula given before to each of the pixel except at
the edges because at the edges we do not know the all the intensities in the
neighborhood of the pixel. The application of the smoothing operation for

once gives us the following results.

Sample calculations:

0.86 0.18 0.04 0.06 0.98
0.80 0.26 0.53 0.39 0.90
0.88 0.75 0.37 0.41 0.86
0.85 0.45 0.23 0.62 0.84
0.86 0.36 0.40 0.50 0.92
0.82 0.08 0.04 0.06 0.86

Consider the pixel in second row and second column. Its new intensity is

given by

(0.18 + 0.80 + 0.00 + 0.08) /4.
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The new intensity of the pixel in second row and third column is given by
(0.04 + 0.26 + 0.88 4+ 0.94) /4.

Here care has to be taken to incorporate the obtained new intensity of
the pixel in the neighborhood, i.e., we have to substitute the new intensity
of the pixel when the new intensity of the pixel in its neighborhood is to be
calculated.

We see that the noise due to the pixels has been decreased very much. On
further application of the smoothing operation we can decrease the noise very
much.

Further examples on contrast enhancement and smoothing:

Given a 10 x 10 pixel array. It represents a dark square image in which there
is a lighter square box that is not very apparent because the background is
very nearly the same as that of the lighter box itself.

77 89 77 64 77 71 99 56 51 38

77 122 125 125 125 122 117 115 51 26

97 115 || 140 || 135 || 133 153 || 166 || 112 56 31

82 112 || 145 || 130 || 150 166 | 166 107 74 23

84 107 || 140 138 | 125 158 158 120 71 18

77 110 || 143 148 153 145 || 148 122 77 13

79 102 99 102 97 94 92 115 77 18

71 77 74 77 71 64 77 89 51 20

64 64 48 51 51 38 51 31 26 18

51 38 26 26 26 13 26 26 26 13




8.3 Fuzzy Logic in Image Processing

189

When we take the intensity values above and scale them on interval [0,255],
we get membership values in the density set white (low values are to black,

high values close to white).

0.30 || 0.35 0.30 | 025 0.30 | 0.28 || 0.39 | 0.22 || 0.20 | 0.15
0.30 | 0.48 0.49| 0.49 | 0.49 || 0.48 | 0.46 | 0.45 || 0.20 | 0.10
0.38 || 0.45 || 0.55 | 0.53 | 0.52 || 0.60 | 0.65 || 0.44 || 0.22 | 0.12
0.32 | 0.44 | 057 | 051 | 0.59 | 0.65 || 0.65 | 0.42 || 0.29 || 0.09
0.33| 042 | 055 | 0.54 || 0.53 | 0.62 || 0.62 | 0.47 || 0.28 || 0.07
0.30 | 043 | 0.56 | 0.58 | 0.60 | 0.57 || 0.58 | 0.48 || 0.30 || 0.07
0.31| 040 | 0.39 | 0.40 | 0.38 | 0.37 || 0.36 | 0.45 || 0.30 || 0.05
0.28|| 0.30 || 029 | 0.30 || 0.28 || 0.25 || 0.30 | 0.35 || 0.20 || 0.08
025| 025 | 0.19 | 0.20 | 0.20 | 0.15 || 0.20 | 0.12 || 0.10 || 0.07
0.20 | 0.15 | 0.10 | 0.10 || 0.10 | 0.12 || 0.05 | 0.10 || 0.10 || 0.05

Using the contrast enhancement we modify the pixel values to obtain the
matrix as shown below.

0.18| 0.24 | 0.18 | 0.12 | 0.18 || 0.16 | 0.30| 0.10 0.08| 0.05
0.18| 046 | 048 | 048 | 048 || 046 | 042)| 040 0.08| 0.05
029 | 040 060 | 056 | 0.54 || 0.68| 0.75| 0.39|| 0.10| 0.03
020| 039 063 052 | 0.66 | 0.75| 0.75| 0.35| 0.17| 0.02
0.22| 035 060 | 058 | 0.56 | 0.71 | 0.71| 0.44| 0.16| 0.01
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0.18| 0.37 | 0.61 | 065 || 0.68 || 0.63| 0.65| 0.46| 0.18| 0.01

019} 032 030 032 | 029 | 0.27 | 0.26| 0.40| 0.18| 0.01

0.16| 0.18 | 0.17 | 0.18 | 0.16 | 0.12| 0.18| 0.24| 0.08 || 0.01

0.12| 0.12 | 0.07 | 0.08 | 0.08 | 0.05| 0.08| 0.03| 0.02| 0.01

0.01| 0.01 ) 0.01 | 0.01 | 0.01 | 0.01 | 0.01| 0.01| 0.01| 0.01

The point to be noted here is that the intensity values above and below 0.5
have been suitably modified to increase the contrast between the intensities.

FExzample on smoothing:

Consider the above example in which on repeated applications, the final
enhanced image is obtained. Now some random salt and pepper is introduced
into it. Salt and pepper noise is occurrence of black and white pixels scattered
randomly throughout the image.

The scaled values of intensities of pixels are as shown in the matrix.

0.00 | 0.00 | 0.00 | 0.00 | 0.00 || 0.00 || 0.00 | 0.00 | 0.00 | 0.00

0.00 | 0.00 | 0.00 || 0.00 | 0.00 | 0.00 || 0.00 | 0.00 | 0.00 | 0.00

0.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 || 1.00 | 0.00 | 0.00 | 0.00

0.00 | 0.00 | 1.00 | 1.00 | 0.00 || 1.00 || 1.00 | 0.00 | 1.00 | 0.00

0.00 | 0.00 | 1.00 | 1.00 | 1.00 | 0.00 || 1.00 | 0.00 | 0.00 | 0.00

0.00 | 0.00 | 1.00 | 1.00 | 1.00 || 1.00 | 1.00 | 0.00 | 0.00 | 0.00

0.00 | 0.00 | 0.00 || 0.00 | 0.00 | 0.00 || 0.00 | 0.00 | 0.00 | 0.00

0.00 | 0.00 | 0.00 || 0.00 | 0.00 | 0.00 || 0.00 | 0.00 | 0.00 | 0.00

0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 || 0.00 | 1.00 | 0.00 | 0.00

0.00 | 0.00 | 0.00 | 0.00 | 0.00 || 0.00 || 0.00 | 0.00 | 0.00 | 0.00
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After one application of smoothing algorithm, the intensity values are as
shown below

0.00 || 0.00 | 0.00 | 0.00 || 0.00 || 0.00 | 0.00 || 0.00 || 0.00 || 0.00

0.00 | 0.00 | 0.25 || 0.31 || 0.33 || 0.33 || 0.33 || 0.08 | 0.02 || 0.00

0.00 | 0.25 | 0.62 || 0.73 || 0.52 | 0.71 || 0.51 || 0.15 || 0.29 || 0.00

0.00 || 0.31 || 0.73 || 0.62 | 0.78 || 0.62 || 0.53 || 0.42 || 0.18 || 0.00

0.00 || 0.33 || 0.77 || 0.85 | 0.66 | 0.82 | 0.59 || 0.25 || 0.11 || 0.00

0.00 || 0.33 || 0.52 || 0.59 | 0.56 || 0.60 | 0.30 || 0.14 || 0.06 | 0.00

0.00 || 0.08 || 0.15 || 0.19 || 0.19 || 0.20 || 0.12 || 0.07 || 0.03 || 0.00

0.00 | 0.27 | 0.11 0.07 || 0.07 || 0.07 || 0.05 || 0.28 | 0.08 || 0.00

0.00 || 0.07 || 0.04 || 0.03 | 0.02 | 0.02 | 0.27 || 0.14 || 0.05 || 0.00

0.00 | 0.00 | 0.00 || 0.00 | 0.00 || 0.00 | 0.00 | 0.00 | 0.00 || 0.00

It can be seen that after application of smoothing algorithm the noise
intensity has been reduced. Later we apply enhancement algorithm to obtain
the figure without any noise.

We have seen two methods of fuzzy image processing namely, contrast
enhancement and smoothing. There are many other techniques such as filter-
ing, edge detection and segmentation. In contrast enhancement we improve
the gradation between the black and white and are able to easily spot out the
distinction between gray levels in the image. In smoothing we were able to
decrease the salt and pepper noise in the image.

Conclusion

In this section we have seen in detail about the fuzzy image processing and
the methods of image enhancement. The idea discussed can be extended even
to higher dimensional problems. The process is found to operate based on
the online and offline stage. Hence, this is a wide extension of fuzzy logic
applications.



192 8 Applications of Fuzzy Logic
Adaptive Fuzzy Rules For Image Segmentation

Segmenting magnetic resonance images of the same body region taken at
different times is a challenging task. Obtaining reliable data to train a classifier
is difficult due the differences among subjects and even differences over time
in images acquired from a single subject. Unsupervised clustering can be used
to group like tissues into classes. However, clustering does not provide class
labels, is time consuming, and may not always provide suitable data partitions.
In this paper we show how a set of adaptive fuzzy rules can be used to identify
many of the voxels from a magnetic resonance image before clustering is done.
This allows clustering to be done on a subset of an image with a “good”
initialization, which mitigates the time required. The identified voxels can
also be used to identify clusters. The fuzzy rule based system followed by a
clustering step has been applied to 105.5 mm thick, magnetic resonance images
of the human brain which are taken from 15 different subjects. It is shown
that the segmentations produced are approximately five times faster than
those produced by fuzzy clustering alone and are comparable in the accuracy
of the segmentation.

Using Fuzzy Rules for Segmentation

The fuzzy rules for partially segmenting MR images of the brain are built
to operate on the T1, T2, and proton density weighted intensity feature
images. The first step in developing a set of fuzzy rules to segment an im-
age is determining the antecedent fuzzy sets. Hence, it is necessary to find
thresholds that separate tissue types in each of the three feature images.

In order to build fuzzy rules that apply to a large number of images, the
tissue thresholds, which determine the antecedent fuzzy sets of the rule, are
found via histogram analysis applied to each image slice to which the rules will
be applied. Figures8.16-8.18 show a typical set of intensity histograms with
“turning points” which can be used to approximately separate tissue types.
For example, all voxels below bl in the PD histogram are air with those
between b2 and b4 generally white matter (Fig.8.17), and voxels between
al and a2 in the T1 histogram (Fig.8.16) are a mixture of gray and white
matter. The histogram shape remains approximately the same across normal
subjects and as will be seen will have an expected set of changes for patients
with brain pathology. All patients with pathology have been injected with
gadolinium whose magnetic properties cause enhancement in regions where
the blood, brain barrier have been breached (i.e., regions where tumor exists).

Examining the histograms for a set of training images discovered the
existence of turning points. This research used six normal and four abnormal
slices, which were segmented or ground truthed by expert radiologists into
tissues of interest, as a training set. Projections of voxels, known to be of a
given tissue type, onto one or more of the histograms shown in Figs. 8.16—8.18
allowed us to choose the turning points. The turning points in the histograms
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Fig. 8.16. T1 histogram with turning points
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Fig. 8.18. T2 histogram with turning points

are essentially the approximate boundaries between tissue types. The turning
points are automatically chosen on each test slice. From the turning points in
the histogram, fuzzy rules to identify four tissue classes (white matter, gray
matter, air/bone or background, and other or skull tissues such as fat, vis-
cous fluid in the eyes, etc.) can be generated. The rules and antecedent fuzzy
sets were generated by examining the intersection of tissue types in the three
intensity histograms.
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The rules adapt to each slice processed because they are generated from
the turning points found on each slice. So, technically the rules’ membership
functions are automatically generated for each slice. The turning points are
either peaks, valleys or the beginning of a hill in a histogram. The peaks and
valleys can be found by searching for a maximum/minimum histogram value.
The hill beginning is found by first creating intensity bins of width 30 (they
contain 30 intensity levels). Next the approximate hill starting point is found
by comparing the histogram sum in the first bin with the corresponding sum
of the succeeding bin. If the ratio is greater than or equal to our ratio threshold
of 1.8, then the middle intensity level of the bin was chosen as the beginning
point of the hill. If the ratio is less than the threshold the next two bins are
tested with the procedure continuing until a hill begin point is found. If a
peak is found before a hill begin point, 0.1 reduces the ratio and the process
is restarted.

Neither csf, which is a small class, nor pathology show up as a clear peak in
any of the histograms. It was found that pathology and csf could be partially
distinguished by viewing the voxel intensity as a percentage of the range of
intensities in either T1 or T2 weighted images. This approach enabled rules to
be generated for csf and pathology. The six fuzzy rules generated are shown
in Fig.8.19.

IF vozel in T1 is Set-E
AND veozel in T2 is Set-F
THEN woazel is csf

IF vazel in PD is Set-C
AND vozel in TI is Set-A
THEN wozel is White maiier

IF vazel in PD is Set-D

AND vazel in TI is Set-A

AND NOT (vazel in T2 is Set-F AND
vozel in T1 is Set-E)

THEN wozel is Gray matter

IF vozel in T1 is Set-B
AND vozel in T2 is Set-F
THEN wvezel is Pathology

IF vazel in T1 is Set-B

AND NOT (vozel in T2 is Sei-F)
THEN wnozel is Other

IF PD vozel iniensity < b1

AND T2 vozel intensily < cl

THEN wozel is Background

MIN was used as the fuzzy ‘and’ in
the rules and NOT(z) =1 —=.

Fig. 8.19. Fuzzy rules for MR image segmentation
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The fuzzy sets used to generate the fuzzy rules are shown in Fig. 8.120 and
together with the rules indicate how the turning points based on histogram
shape can be used to separate voxels of different tissue types.

The rules are applied to all voxels, but will not classify all voxels. Spatial
information is used to assign memberships to voxels which are unclassified.
An unclassified voxel (i.e., having a zero membership in all classes) is assigned
a membership that is the average membership of its eight neighboring vox-
els, for each of the six classes. Also in the case of isolated classifications, i.e.,
when a voxel has a membership of 1.0 in a class A, if all the eight surrounding
voxels have zero membership in that class, then the isolated voxel’s member-
ship for class A is made zero. This step is aimed at reducing classification
€rrors.

Finally, the voxel memberships in all classes are normalized to 1 using:

(1) = pi ()
SN SHEY

where (csf, GrayMatter, WhiteMatter, Pathology, Skull tissues, Background).
The pathology rule applied to normal slices will incorrectly label a small
number of voxels as pathology. This error will need to be corrected in later
processing.

Patients with brain tumors are typically treated with radiation and
chemotherapy. A side effect of treatment is that the MR characteristics of
gray and white matter are changed and the PD histogram becomes some-
thing like that shown in Fig. 8.21. The “valley” shown in Fig. 8.17 is gone and
“turning points” b3, b4, and b5 cannot be reliably chosen.

Our strategy is to edge detect and remove the edge voxels or sharpen
the boundary between gray and white matter. The edge-value operator we
used is called the DIF1 operator as described. A histogram of the voxels
with low edge values will leave the peaks essentially the same and deepen
the valley between the peaks. This approach can be applied to normal slices
with the sole effect of deepening the already existing valley in the PD his-
togram.

An effective edge value threshold must be chosen to make this approach
work. The initial threshold is chosen to be 5, then edge detection is done and
all voxels with an edge value less than 5 are used to create a PD histogram.
If two peaks are found in the histogram the turning points are created, oth-
erwise the threshold is increased by 5 and the histogram re-created, peak
detection done, etc. The process continues until two peaks are found or an
edge value limit (30 here) is reached. In the case that no peaks could be
found approximate peaks are chosen at 1/3 and 2/3 of the region between bl
and b2 (Fig. 8.21). Figure 8.22 shows an example abnormal slice with the PD
edge value image thresholded at 15 and the histogram of all voxels with edge
strengths <15.
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Fig. 8.20. Fuzzy sets created using turning points from histograms (a) and fuzzy
sets created for identifying csf (b)
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Fig. 8.22. PD edge value image: (a) Thresholded at 15 (i.e., white voxels are edge
voxels with edge value >15 (b) Histogram of voxels <15

All voxels can now be classified, though imperfectly, for normal or
abnormal volumes. The voxels that belong to classes with memberships
greater than 0.8 are generally correctly assigned. The rest of the voxels are
more problematic. Hence, we regroup them with a semisupervised clustering
algorithm, ssFCM. The voxels with membership greater than 0.8 are used as
training voxels for ssFCM and are weighted by a value of 100. The ssFCM
algorithm works as fuzzy c-means (FCM) except that training voxels cannot
change clusters and will always influence the cluster centroid to which they
are assigned. When they are weighted it is the same as having w (100 here)
instances of the train voxels influencing the cluster center location and hence
the assignment of voxels, not in the train set, to clusters.

For a typical normal slice there will be 16,816 training voxels (memberships
greater than 0.8) and 13,910 unassigned voxels. The remaining 34,810 voxels
were air or skull tissue voxels and are not clustered. The clustering is done
into ¢ = 10 classes to allow comparisons with FCM partitions of these same
images.

Experiments and Results

The fuzzy rules to identify tissues followed by an ssFCM clustering were
applied to 39 normal slices from eight volunteers and 66 abnormal slices from
seven patients. These slices lie in a range from near the center of the ventricles
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in the axial plane, characterized by a distinct X-shaped csf area and a single
symmetric region of white matter to slices near the top of the brain in the
axial plane, where the ventricular area is completely absent. There were six
normal slices and four slices with pathology used to develop the fuzzy rule
structure. These ten slices may be viewed as a set of training slices.

To approximate ground truth a set of supervised k nearest neighbor
(kNN) segmentations were used. These segmentations were created by multi-
ple observers choosing training sets for each slice. Segmentations that resulted
in visually good partitions of the data are used for comparison with our un-
supervised approaches. The value k = 7 was used.

Tables 8.1 and 8.2 summarize the comparison between the hybrid system
(fuzzy rules followed by ssFCM) and regular FCM vs. pseudo ground-truth
(kNN) for normal and abnormal slices, respectively. The time required is much
less for the hybrid system. There are more classification differences from the
kNN based “ground truth” for the hybrid system than FCM. To determine
whether the differences were significant we applied a Wilcoxon’s sum of ranks
test. The z values obtained are shown in Table8.3. A value z < 1.64 indi-
cates that there is a greater than 10% chance that the observed difference is
likely to occur by chance and hence cannot be proven significant. So, the z
values in Table 8.3 lead us to conclude there is no significant difference in the
segmentation results.

Hence a set of fuzzy rules whose antecedent fuzzy sets adapted to each
image are shown to be effective in reducing the time to segment magnetic res-
onance images of the human brain into tissues of interest. The segmentation

Table 8.1. Mean and standard deviation of results (test slices)

1|c]| 2¢||Regular FCM  2¢||Hybrid system

Mean Std. Dev. Mean Std. Dev.
Classification differences 4080.3 1328.7 5076.9  1566.9
(33 normals)
Classification differences 2376.4 1144.7 2402.5 1327.2
(62 abnormals)
Execution time (33 normals) 23.1 7.2 4.8 2.0
Execution time (62 abnormals) 21.4 9.8 3.7 1.3

Table 8.2. Mean and standard deviation of results (training slices)

1|¢|| 2c||Regular FCM  2¢||Hybrid system

Mean Std. Dev. Mean Std. Dev.
Classification differences 3986.5 846.5 3558.8  464.7
(six normals)
Classification differences 2773.0 1039.1 2167.8  879.5
(four abnormals)
Execution time (six normals) 21.7 6.4 5.7 2.0

Execution time (four abnormals) 19.8 6.4 3.0 1.1
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Table 8.3. z Values obtained from Wilcoxons’ sum of ranks test

Normal Abnormal
Test 1.4 0.82
Train 0.48 0.29

produced by the fuzzy rules serves as an initialization to a semisupervised clus-
tering algorithm which produces the final segmentation. The developed hybrid
segmentation system is approximately five times faster than FCM clustering.
It has been tested on 105.5 mm thick, magnetic resonance image slices of the
human brain using T1, T2, and proton density weighted images as feature
images (i.e., each voxel has three features). The images come from 15 dif-
ferent subjects and span a range from the ventricles (roughly the middle of
the brain in the axial plane) to the top of the brain. The hybrid segmenta-
tions are insignificantly different than those obtained with FCM clustering
when compared with a pseudo ground truth created from a supervised KNN
segmentation.

The overall performance of the segmentation approach demands further
refinement using some kind of knowledge. An example of a slice with signifi-
cant extracranial tissue that is misclassified in this approach as white matter
is shown in Fig. 8.23. Since the tissue is clearly outside the skull, simple knowl-
edge about removing all tissue spatially outside the skull would prevent this
tissue from being considered during processing.

The approach of using fuzzy rules whose antecedents fuzzy sets are created
from intensity histograms can be applied to other domains of images taken
of the same region over time as long as the shape of the histograms remains
approximately constant. Such rules provide a fast initial segmentation that
can be further refined via other image processing techniques or with the use
of heuristics in conjunction with image processing algorithms.

Fig. 8.23. MR image with significant extracranial tissue (run-81)
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8.4 Fuzzy Logic in Biomedicine

8.4.1 Fuzzy Logic-Based Anesthetic Depth Control
Introduction

In most surgical operations, to anesthetize patients, manual techniques are
used in hospitals. The manual systems work either ON or OFF situations.
Because of not having interval values between ON and OFF in manual sys-
tems, anesthetic operations could not be safety and comfort. For this reason,
Fuzzy logic control is applied to control anesthesia. In this paper, an objec-
tive approach of giving anesthetic to patients during surgical operation using
Fuzzy logic is proposed.

Fuzzy logic theory is a general mathematical approach that allows partial
memberships. Several studies have shown fuzzy logic control to be an appro-
priate method for the control of complex processes. The basic configuration
of the logic system considered in this section is shown in Fig. 8.24.

Fuzzy logic system inputs T and N represent blood pressures (mmHg) and
pulse rates (p m~!), which are respectively obtained from patients during
anesthesia. Anesthesia Output (AO) represents fuzzy logic system output.

The potential benefits of using fuzzy logic control during anesthesia; in-
creasing patients safety and comfort, directing anesthetists attention to other
physiological variables they have to keep under control by abating their tasks,
using optimum anesthetic agent, protecting environment by using anesthetic
agent and decreasing the cost of surgical operations.

Fuzzy Logic Control Application In Anesthesia
Fuzzifier

Here two fuzzy logic input sets are used. One of them is the systolic blood
pressure of the patients, which are obtained in operation. The second input of
fuzzy logic set is pulse rates. The minimum and the maximum values (systolic
blood pressure and pulse rate) are obtained from surgical operations in 10 min
intervals from 27 patients (Table 8.4).

Fuzzy Rule Base

Fuzzifier Defuzzifier >

Fuzzy Inference
Engine

Fig. 8.24. A block diagram of basic fuzzy logic system
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Table 8.4. Blood pressure, pulse rate and anesthesia ratio values accepted for fuzzy
logic control

Variable Minimum Maximum
value value
Blood Pressure (mmHg) 60 220
Pulse Rate (p m™*) 40 150
Anesthesia Ratio (%u) 0 4

Table 8.5. Membership function values

Linguistic variables Very low Low Normal High Very high
Blood pressure (mmHg) < 80 90 100-140  160-170 > 190
Puse rate (p m)™! < 50 60 70-90 95-110 > 120
Anesthesia ratio (%u) 0 0.5-0.8 1-2.5 3-3.6 4

The sexuality of patients that the systolic blood pressure and pulse rate
values obtained are 12 women and 15 men. The age dispersion is between 3
and 77.

Aiding with the anesthetists, membership function values are formed as
very low, low, normal, high and very high intervals as shown in Table 8.5.

Fuzzifier operation is applied for blood pressure and pulse rate data. This
operation is realized to identify whether the input data is the member of this
set or not. To fuzzify both input data, trapezoid membership set is used.

As shown in Fig. 8.25, blood pressure data membership sets between 80
and 194 mmHg are examined in groups as named T1, T2, T3, T4, T5, T6,
T7, T8, T9, T10, and T11. Memberships sets for blood pressure data are
computed as:

Membership function for T1:

n(z) =(80—x)/(80 —84) 80 <z <84

uz) =1 84 < x < 90

wz) =(94—2)/(94—-90) 90 <2z <9
As shown in Fig. 8.26, pulse rate data membership sets between 50 and
124 are examined in groups named as N1, N2, N3, N4, N5, N6, and N7.

Membership sets for pulse rate data are computed as:
Membership function for N1:

w(z) = (80 — ) /(80 — 84) 50 <z < 54
wz) =1 54 < x < 60
w(z) = (94 — z)/(94 — 90) 60 < x < 64

Fuzzy Rule Base and Data Base

Fuzzification is based on the rules that T and N inputs result in certain outputs
according to the rule base. Anesthetist is consulted about input and output
data in rule base.
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Fig. 8.25. Membership sets for blood pressure data
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Fig. 8.26. Membership of pulse rate

The data given in Table 8.6 have impossible conditions in human beings.
These values are accepted as invalid conditions (Table 8.6).

Fuzzy Inference Engine

Defining the output sets according to rule base is materialized in output unit.
Contacts that are obtained according to this rule base are interpreted using
minimum correlation method such as:

if T=T1 and N=N1 then A=A1.
The rule base for T and N fuzzy inputs are shown in Table8.7.

Defuzzifier

In defuzzifier unit, fuzzified functions, obtained from fuzzy inference engine
are converted into numeric values. Output membership sets A1, A2, A3, A4,
and Ab are converted into numeric values using the following equation:
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Table 8.6. Invalid input conditions

Blood pressure Pulse rate Anesthesia rate
High Very_low Invalid condition
Very_high Very_low Invalid condition
High Low Invalid condition
Very_high Low Invalid condition
Very _low High Invalid condition
Low High Invalid condition
Very _low Very_high Invalid condition
Low Very_high Invalid condition

Output membership sets according to the rule base for T and N fuzzy inputs are
defined as Al, A2, A3, A4, and A5 shown in Table8.5. Note that S is the invalid
condition given in Table 8.4.

Table 8.7. Rule base for T and N fuzzy inputs

N1 N2 N3 N4 N5 N6 N7
T1 Al Al A2 A2 A2 S S
T2 A2 A2 A3 A3 A3 A4 A4
T3 A2 A3 A3 A3 A3 A4 A4
T4 A2 A3 A3 A3 A3 A4 A4
T5 A2 A3 A3 A3 A3 A4 A4
T6 A2 A3 A3 A3 A3 A4 A4
T7 A2 A3 A3 A3 A3 A4 A4
T8 S A4 A4 A4 A4 A5 A5
T9 S A4 A4 A4 A4 A5 A5
T10 S A4 A4 A4 A4 A5 A5
T11 S A5 A5 A5 A5 A5 A5

AO = =2

AO: Anesthesia output pa(z): Anesthetic membership function, z: Member
(blood pressure, pulse rate).

Finally, anesthetic rate applied to the patient is determined from AO
values. Membership function of fuzzifier is shown in Fig. 8.27.

Conclusion

Anesthetic depth control can be successfully implemented with the help of
fuzzy logic. Membership function and base rules have been determined from
an experimental prestudy on some patients. By this new analysis method, one
can achieve better performance on how much and when to apply anesthetic
agent. The main advantage of this system is that the anesthetic is given to
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Fig. 8.27. Membership function of fuzzifier

the patient in a precise way, the anesthetist will spend less time to provide
anesthetic and the patient will have a safer and less expensive operation.

8.5 Fuzzy Logic in Industrial and Control Applications

8.5.1 Fuzzy Logic Enhanced Control of an AC Induction Motor
with a DSP

Introduction

Fuzzy logic is a new and innovative technology being used to enhance control-
engineering solutions. It allows complex system design directly from engi-
neering experience and experimental results, thus quickly rendering efficient
solutions. In a joint application project, Texas Instruments and Inform Soft-
ware have used fuzzy logic to improve AC induction motor control. The results
were intriguing: control performance has been improved while design effort has
been significantly reduced.

Market analysis shows that 90% of all industrial motor applications use
AC induction type motors. The reasons for this are high robustness, reliabil-
ity, low cost, and high efficiency. The drawback of using an AC induction type
motor is its difficult controllability, which is due to a strong nonlinear behavior
stemming from magnetic saturation effects and a strong temperature depen-
dency of electrical motor parameters. For example, the rotor time constant of
an induction motor can change up to 70% over the temperature range of the
motor. These factors make mathematical modeling of motor control systems
difficult. In real applications, only simplified models are used. The commonly
used control methods are:
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— Voltage/frequency control (U/f)
— Stator current flux control (Is/ f2)
— Field oriented control

Of these approaches, the field-oriented control method has become the de
facto standard for speed and position control of AC induction motors. It deliv-
ers the best dynamic behavior and a high robustness under sudden momentum
changes. Alas, the optimization and parameterization of a field oriented con-
troller is laborious and must be performed specifically for each motor. Also,
due to the strong dependency of the motor’s parameters, a controller opti-
mized for one temperature may not perform well if the temperature changes.
Figure 8.28 shows the demonstration of Test Motor at the Embedded Systems
Conference.

To avoid the undesirable characteristics of the field oriented control
approach, the companies Texas Instruments and Inform Software have
developed new alternative control methods, and compared them with the
field oriented control approach. The alternative methods involved two types
of flux controllers enhanced by fuzzy logic and NeuroFuzzy techniques, respec-
tively. The goal was to use fuzzy logic to improve the dynamic behavior of the
flux control approach such that the robust behavior of the flux controller and
the desirable dynamic properties of the field oriented controller are achieved
simultaneously.

Field Oriented Control Method

Figure 8.29 shows the principle of field oriented control. It allows for control
of the AC induction motor in the same way a separately exited DC motor
is controlled. The flux model computes the “phase shift” between rotor flux
field and stator field from the stator currents iu and 7v, and the rotor angle
position n. The field oriented variables of the two independent controller units
are subsequently computed by the transformation of the stator currents using
this “phase shift.”

Fig. 8.28. Demonstration of the Test Motor at the Embedded Systems Conference,
San Jose
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Fig. 8.29. Field-oriented control of AC induction motors

The actual control model consists of two components of cascaded standard
PI controllers. The upper component comprises outer magnetizing current
(imr) controller and inner isq current controller. The lower component com-
prises a speed controller and momentum controller. The input of the speed
controller is computed as the difference between set speed n,os and filtered
measured speed n.

To optimize the field oriented control model, all controllers must be para-
meterized and optimized individually. In this application project, the method
of optimized amplitude adaptation was used to tune the current controller,
and the method of the symmetrical optimum was used for the velocity con-
troller. Implementation effort for the field oriented controller was three per-
son months, including parameterization and design of the flux model. The
computation time for the inner current controllers, the flux model, and the
coordinate transformation is 100 us on a TMS320C31-40 MHz digital signal
processor. When switching the set speed from —1,000 to 41,000 rpm, the
new set speed is reached within only 0.25s without any overshoot. However,
this excellent performance is not always available. When the motor heats up
the control performance drops significantly, and a motor with slightly different
characteristics will achieve only mediocre results utilizing the same controller.

Fuzzy Fluz Control Method

The conventional flux control model has been enhanced by fuzzy logic in two
steps. In the first step, the nonlinear relation between slip frequency and stator
current was described by a fuzzy logic system (Fuzzy Block #1). Figure 8.30
shows the principle of the resulting fuzzy flux controller. The control model
consists of three inner control loops and one outer control loop. The inner
control loops control the three stator phase currents using standard PI con-
trollers. The outer control loop determines the slip frequency ns, also using
a standard PI controller. The slip frequency is the input to Fuzzy Block #1,
which outputs the set value of the stator current. The primary objective for
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Fuzzy Block #1 is to keep the magnetizing current constant in all operating
modes. The magnetizing current is a nonlinear function of the slip frequency,
the rotor time constant, the rotor leakage factor, and a nonconstant offset
current.

The stator frequency m, is the sum of the measured rotor frequency n
and the slip frequency no. The reference position is determined by integration
of the stator frequency n;. Modulated by sin/cos, the reference position is
multiplied with the set value of the stator current, and split back into a three
phase system of the stator current set values.

The rules of the fuzzy block were not manually designed, but rather gen-
erated from existing sample data by the NeuroFuzzy add-on module of the
fuzzyTECH design software. NeuroFuzzy utilizes neural network techniques
to automatically generate rule bases and membership functions from sample
data. The benefit of the NeuroFuzzy approach over the neural net approach is
that the result of NeuroFuzzy training is a transparent fuzzy logic system that
can be explicitly optimized and verified. In contrast, the result of a neural net
training is a rather nontransparent black box.

Comparison with Field Oriented Control

Figure 8.31 shows the performance of the fuzzy flux controller in comparison
with the field oriented controller. The overshoot performance is almost as good
as that provided by the field oriented control, however, it takes the fuzzy flux
controller almost twice as long to reach the new set speed (curve Fuzzy_1). On
the other hand, parameterization and optimization of the fuzzy flux controller
only required four person days. The computation time for the entire controller
is 150 us on the TMS320C31-40 MHz digital signal processor.

To improve the performance of the fuzzy flux controller, in a second step,
the standard PI controller for the outer control loop was replaced by a fuzzy
PI controller (Fuzzy Block #2 in Fig. 8.31). This fuzzy PI controller does not
use the proportional (P) and integral (I) component of the error signal, but
rather the differential (D) and proportional (P) component then integrates the
output. This type of fuzzy PI controller has been used very successfully in a
number of recent applications, especially in the area of speed and temperature
control. In contrast to the standard PI controller, the fuzzy PI controller
implements a highly nonlinear transfer characteristic. The subwindow in the

Fuzzy Block #1 isref

ref o K 2' ®_’ ) |
{
’—""-‘E—[ o—| 2

sin/cos

Fig. 8.30. Principle of fuzzy flux controller
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Fig. 8.31. Enhanced fuzzy flux controller

lower left part of Fig.8.32 shows the transfer characteristics for the fuzzy PI
controller implemented in this application.

The enhanced fuzzy flux controller reveals a much-improved dynamic per-
formance. The good performance attained in this case hinges on the nonlinear
behavior of the fuzzy PI controller. In contrast to the conventional linear PI
controller, the nonlinearity of the fuzzy PI controller produces stronger con-
trol action for a large speed error, and a smoother control action for a small
speed error. This also results a higher robustness of the enhanced fuzzy flux
controller against parameter changes. The implementation of the second fuzzy
block with the fuzzy flux controller only required an additional day for the
fuzzy logic system itself, and two additional days for the optimization of the
total system. Hence, the total development effort for the enhanced fuzzy flux
controller was seven person days in comparison to three-person month for
the field-oriented controller. The computation time for the entire controller is
200 us on the used TMS320C31-40 MHz digital signal processor.

System Simulation Using Matlab/Simulink and fuzzyTECH

The initial design of the system was implemented in a software simulation.
The fuzzyTECH fuzzy-system development software was used together with
the Matlab/Simulink control-system simulation software. FuzzyTECH allows
using fuzzy blocks in Simulinks control diagrams. This tool combination allows
for the design of simulations combining conventional and fuzzy logic control
engineering technologies in the same software environment. Figure 8.32 shows
the development of the fuzzy blocks with fuzzy TECH/Simulink. The differen-
tial equation used for the simulation of the AC induction motor is modeled.

Fuzzy Logic on Digital Signal Processors

Because of the increasing number of successful of applications of fuzzy logic
in both control engineering and signal processing, DSP market leader Texas
Instruments was looking for a software partner to implement fuzzy logic on
DSP. In 1992, a formal partnership was formed with Inform Software Corp.,
a company specializing in fuzzy logic. One product of the partnership was the
design of dedicated versions of fuzzyTECH that allow the implementation of
fuzzy logic systems on standard TI-DSPs. The primary objective was to reach
an acceptable computing performance level for fuzzy logic on DSPs, a quality
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Fig. 8.32. Simulation of the enhanced fuzzy flux controller using the software prod-
ucts fuzzy TECH and Matlab/Simulink

previously unknown to software implementations of fuzzy logic. Using the
fuzzyTECH assembly kernel for 16 bit resolution, 2.98 million fuzzy rules per
second can be computed on the TMS230C52 (25 ns instruction cycle DSP),
including fuzzification and defuzzification. For comparison: the most recent
dedicated fuzzy processor of VLSI (VY86C500/20) only computes 0.87 million
fuzzy rules per second (not including fuzzification and defuzzification) with
just 12 bit resolution (VLSI data sheet). While the referenced DSP only costs
a few dollars in large quantities, the fuzzy processor is quoted at $75 each.
This comparison shows that in most applications, the use of dedicated fuzzy
processors is not necessary.

Conclusion

The application project discussed in this section shows that even in ar-
eas where traditional control engineering already offers comprehensive solu-
tions, fuzzy logic can deliver substantial benefits. The fuzzyTECH assembly
kernel for DSPs developed by Texas Instruments and Inform Software Corp.
allows for the integration of fuzzy logic systems together with conventional
algorithms on the same chip, even when control loop times of a fraction of a
millisecond are required. Texas Instruments and Inform Software Corp. now
work on further enhancements of the fuzzy flux controller. The companies
are currently striving for even better dynamic performance by adding a fuzzy
air-gap flux observer to the system.



210 8 Applications of Fuzzy Logic
8.5.2 Truck Speed Limiter Control by Fuzzy Logic
Introduction

Commercial trucks having a maximum load of more than 12 tons are required
to be equipped with a speed limiter that limits their maximum speed to
53.3 mph (86 km h~1). This case study focuses on the electro-pneumatic design
of such a speed limiter. In this design, a pneumatic cylinder mechanically
limits the throttle-opening angle of the fuel pump arm. A pulse proportional
electromechanical valve controls the cylinder pressure. This valve is connected
to an electronic control unit (ECU) that uses a microcontroller to drive the
valve according to the actual speed of the truck.

The design of an algorithm for this control problem proved to be difficult,
since the same speed limiter device is used in a variety of different trucks,
which exhibit different behaviors. In addition to this, the dynamic behavior
of a truck differs very much depending on whether it is fully loaded or empty.
Conventional control algorithms, such as PID controls, assume a linear model
of the process under control and can hence not be used for a solution. A so-
lution using a mathematical model of the truck is first laborious to build and
second of prohibitive computational effort for a low-cost 8-bit microcontroller.
Hence, fuzzy logic control was used to design the control algorithm.

Speed Limiter Requirements and Conventional Control

Figure 8.33 exemplifies the function of a truck speed limiter. When the truck
approaches the maximum velocity, the pneumatic valve reduces the throttle
opening angle of the fuel pump arm so that the maximum velocity vs. is not
surpassed. If the driver pushes down the accelerator pedal even more, the
speed limiter has to ensure a smooth ride at the maximum velocity.
However, due to the dead time and nonlinearities involved with this control
action, an actual overshoot and hunting occurs when using a proportional or
on—off controller. Adding a differential and integral part yields a PID controller
model. A PID controller generates the command value as a linear combination

Speed

Time

Fig. 8.33. The function of a speed limiter is to stop the truck from driving faster
than the maximum allowed speed (vs)
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Fig. 8.34. Tolerances for the operation of the speed limiter

of the error (P), the derivative of the error with respect to time (D) and the
integral of the error with respect to time (I). To tune a PID controller, the
combined weights of these three (3) components must be chosen, so that
they approximate the nonlinear behavior of the process under control at its
operating point. While this works with most processes that are at only one
operating point, it fails when the operating point moves. With a truck speed
limiter, the operating point moves because of the different load situations,
such as driving uphill or downhill, as well as driving empty or with a full
load. Furthermore, the characteristic of the pneumatic valve and the truck
fuel injection are highly nonlinear and vary from one truck to another.

Hence, if a PID control algorithm is used in a truck speed limiter, it can
only be tuned well for one operation point and one type of truck. For other
operation points and different truck types, overshoot and hunting occurs. The
European legislation hence allows operation of the speed limiter within a
certain tolerance. Figure 8.34 shows an example of this. When reaching the
maximum speed, an initial overshoot of 5kmh~! is tolerated. After this, the
speed must be kept constant within an interval of +1.5kmh~"'. Even though
this overshoot and hunting is tolerated by the European legislation, it causes
annoying speed fluctuations when driving.

Mechanical Design of the Speed Limiter

Figure 8.35 sketches the outline of the mechanical design of the speed limiter.
An ECU compares the digital pulse signal from the speedometer with the
maximum speed value preset in the device. Based on this, it computes the
command value for the pulse proportional valve (PPV) that controls the air
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Fig. 8.36. The electronic control unit of the speed limiter using a PIC 8-bit micro-
controller

pressure in the cylinder. The air stems from the vehicles’ pressured air system.
In a nonlinear but proportional ratio, the cylinder shortens the arm linking
the accelerator pedal to the fuel pump so that the fuel pump is throttled.

Design of the Speed Limiter Electronic Control Unit

The ECU itself is designed as a mixed digital and analog circuit. Speedometer
signal processing, the fuzzy logic control algorithm, and diagnosis functions are
computed by a PIC 8-bit microcontroller (MCU). The MCU uses an external
E2PROM to store parameters of the truck and speedometer, the maximum
velocity, and diagnosis variables.

The MCU also generates a pulse-width modulated signal (PWM) that is
amplified by a power stage to drive the PPV. The analog part is responsible for
the preprocessing and filtering of the speedometer signal. Figure 8.36 shows
a photo of the unit.

The Fuzzy Logic Controller

Fuzzy logic is an innovative technology to design solutions for multiparameter
and nonlinear control problems. It uses human experience and experimen-
tal results rather than a mathematical model for the definition of a control
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Fig. 8.37. Structure of the fuzzy logic speed limiter controller

strategy. As a result, it often delivers solutions faster than conventional con-
trol design techniques. In addition, fuzzy logic implementations on microcon-
trollers are very code space and execution speed efficient.

The entire fuzzy logic algorithm was developed, tested and optimized us-
ing the software tool fuzzyTECH. Figures 8.37-8.39 all show screen shots
of the fuzzy logic speed limiter design in various editors and analyzers of
fuzzyTECH. Figure 8.37 displays the Project Editor featuring the structure
of the fuzzy logic system. On the left-side, two input interfaces fuzzify the two
input variables “Acceleration” and “Speed_Error.” The rule block in the mid-
dle contains all the fuzzy logic rules that represent the control strategy of the
system. On the right-side, the output variable “PMV _Set_Value” is defuzzified
in an output interface.

Figure 8.38 shows more details of the fuzzy logic system. Each linguistic
variable is displayed in a variable editor window and the rules are displayed in
the Spreadsheet Rule Editor window. Each linguistic variable contains five (5)
terms and membership functions. They are connected by a total of 12 fuzzy
logic rules. All membership functions are of Standard types. As a defuzzifica-
tion method, the Center-of-Maximum (CoM) method is used.

All rules in the fuzzy logic system now let the designer define the best
reaction (output variable value) for a given situation. The situation is
described by the combination of the input variables. After such a control
strategy has been defined by the designer, a number of different analyzer
tools can be used to verify the system’s performance. Figure 8.39 shows the
3D Plot as an example. In the 3D Plot, the two horizontal axes show the two
input variables “Acceleration” and “Speed_Error.” The vertical axis plots the
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Fig. 8.39. Debugging of the fuzzy logic system — Transfer characteristics of the
fuzzy logic controller under testing

output variable, “PWM_Set_Value”, the set value for the PWM unit on the
microcontroller. Rule 1, as shown in Figure 8.38, indicates:

IF Speed_Error=much_2_slow THEN PWM_Set_Value=HIGH_DEC

This rule represents the engineering knowledge that if the truck is way under
the speed limit, no pressure should be applied to the cylinder. The membership
function of the term “much_2_slow” is shown also in the respective variable
editor in Figure 8.38. The 3D Plot in Fig. 8.39 plots the transfer characteristic
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as a result of this. In the front part of the curve, the value of the output
variable is very low (color of surface light). As you proceed to the left along
the Acceleration axis, the output variable value gets higher. This is a result
of Rule 6 that defines:

IF Acceleration = HIGH_ACC AND Speed_Error = much_2_slow THEN
PWM_Set_Value = HIGH_INC

This rule represents the engineering knowledge that if in the same general
case of the truck being way slower than the limit, the special case of a high
acceleration should result in medium pressure on the cylinder. This ensures
that the cylinder is already filled with some pressure if the truck reaches the
limit quickly. If this rule would not have been formulated, a speed overshoot
would occur.

Optimization and Implementation

A fair deal of optimization was accomplished offline on the PC since
fuzzyTECH can simulate the fuzzy logic system without the target hardware.
However, final optimization and verification of the system was conducted on
real trucks.

Figure 8.40 shows the test and optimization setup. The target system,
the MCU of the ECU, is mounted in the truck and connected to the de-
velopment PC (notebook in the truck’s cabin) by a serial cable. Such serial
connection allows for modification of the running fuzzy logic controller “on-
the-fly.” This development technique is very efficient because it allows for
the developer to analyze how a certain behavior of the fuzzy logic controller
is caused by the membership function definition and the rules. Also, since
modifications can be done in real time, the effects can be “felt” on the truck
instantly.

One way to enable “on-the-fly” debugging is to link the fuzzyTECH
RTRCD Module (real-time remote cross debugger) to the fuzzy logic con-
troller that runs on the MCU and connect it to a serial driver. The RTRCD
Module consumes about KB of ROM, a few Bytes of RAM, and some
computing resources to serve the serial communication on the MCU. Since

Target System (MCU)

[olom O

Serial Link (RS232)

Development System (PC)

Fig. 8.40. Cross optimization of the running fuzzy logic controller by a serial link
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the PIC16 MCU used in this application cannot provide such resources, the
serial debug mode of fuzzy TECH was used rather than the RTRCD Module.
In serial debug mode, the values of the input variables are sent from the MCU
to fuzzyTECH running on the development PC via the serial cable and the
results are sent back. fuzzyTECH shows the entire fuzzy logic computation
in its editor and analyzer windows, and allows for “on-the-fly” modifications.
To support serial communication, a piggyback board containing a MAX232
driver IC was mounted on the speed limiter board shown in Fig. 8.36.

The advantage of using the serial debug mode of fuzzyTECH over the
RTRCD Module is that code size and computation effort that previously
was required for the fuzzy logic computation on the MCU are now saved
and can thus be used for the serial communication. The disadvantage of the
serial debug mode of fuzzyTECH is that it computes the systems’ results on
the PC where real-time response cannot be guaranteed. Also, any crash of
MS-Windows, the PC, or the serial communication will halt computation in
serial debug mode.

Conclusion

After optimization of the fuzzy logic rule strategy on different trucks and
various load conditions, the speed limiter showed a response curve as shown
in Fig. 8.41. The fuzzy logic controller achieves a much smoother response,
does not show overshoot behavior, and provides a higher accuracy of keeping
the speed limit compared to a conventional controller.

The final fuzzy logic system was compiled to PIC16 assembly code by
the fuzzyTECH MP-Edition and required 417 words of ROM space and 32
bytes of RAM. The RAM space can be used for other computation tasks
such as preprocessing and filtering while the fuzzy logic system is not run-
ning. The entire fuzzy logic system needs less than 2ms to compute on the
PIC16 MCU.

Fig. 8.41. Speed limiter performance of the fuzzy logic controller
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8.5.3 Analysis of Environmental Data for Traffic Control Using
Fuzzy Logic

Introduction

Traffic control is based on the analysis of traffic data and environmental condi-
tions. Particularly bad environmental conditions may cause hazard to drivers.
In this section, we discuss the use of fuzzy logic for the analysis of environmen-
tal conditions such as road surface condition, visual range and weather con-
ditions detected by local sensor stations and road sensors. Because detection
of environmental conditions involves a number of uncertainties, conventional
approaches do not deliver satisfactory solutions. The fuzzy logic solution dis-
cussed in this section in contrast:

— Takes into account the different types and quality of equipment used at

the different detection stations

Uses a two-step plausibility check to determine the quality of sensor signals

— Computes substitute values for missing information using sensors from
other detection stations

— Leads to more appropriate results for the evaluation of road surface condi-
tions and visual range to indicate slippery road conditions or fog warning

Traffic Management

The first traffic management systems used in Germany were implemented on
roads with frequent accidents caused by fog or icy road conditions. Later,
these system were extended to detect and control traffic to increase the traffic
capacity. These traffic control systems use several detection stations along
the road. These stations employ magnetic sensors for traffic detection, as well
as weather stations transmitting environmental data from road surface and
the air layer near the ground.

A central traffic control computer collects the data transmitted from the
section stations. A control strategy derives an adequate speed limit for every
section. The control objectives are:

— Keep traffic flowing in case of peak traffic
— Slow down traffic at the inflow to congestion
— Warn for bad weather conditions such as fog or ice

Along the road of such an “intelligent” highway, alterable road signs posted
on traffic sign gantries display speed limits for each lane and display nonreg-
ular events such as road work, warnings for traffic back-ups, breakdowns, an
accident, or dangerous weather conditions (Fig. 8.42).
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Fig. 8.42. Environmental and traffic sensors in a traffic control system

Environmental Data Analysis

The traffic situations depend highly on environmental conditions. An intel-
ligent highway thus should warn drivers of slippery road conditions and low
visibility. Sensors are used to indicate and classify icy or wet road pavement
and to indicate the visual range.

An ideal weather station uses road sensors measuring road surface temper-
ature, road surface moisture, water film depth, and salt content of water film.
Near the road, the ideal weather station detects air and ground temperature,
amount of precipitation, type of precipitation, wind velocity and direction,
sun beam intensity and illumination.

However, most existing weather stations are not equipped with this full
range of sensor equipment. In addition, some sensors do not work reliably
under all conditions. For example, a standard salinometer needs a wet road
surface to measure the remaining salt content on the road. Besides measure-
ment problems, sensors frequently fail because of “biological attacks” such as
spiders or butterflies that cover the surface of visual based detectors. Con-
ventional traffic control systems misinterpret this as high rain intensity or
low visual range. This can cause completely wrong traffic warnings. Because
sensors often stem from different vendors, conventional systems do not use
interrelationships between the signals of different detection stations to iden-
tify such implausibilities.

Fuzzy Logic System Architecture

The fuzzy logic data analysis unit was designed as part of a larger traffic
control system. As shown in earlier applications, fuzzy logic is well suited to
create solutions for traffic control systems. Figure 8.43 shows the architecture
of the analysis unit, separating a component to verify the sensor information
from components to evaluate the road surface and visual range condition.
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Fig. 8.43. Architecture of environmental data analysis

Sensor Plausibility Analysis

A two-step approach was used to verify the sensor signals. The first step
utilizes the fact that no weather signal remains constant. In particular, if the
signal jumps abruptly or remains completely constant over time, the sensor
signal is considered to be faulty.

In this case, the fuzzy logic system regenerates the information from other
sensors. To design this fuzzy logic system, meteorological knowledge about the
maximum gradients of all sensor signals, a time frame for a required movement
of the signals, and maximum jumps of the gradients to identify discontinuity
were acquired from experts.

The second step uses four separate fuzzy logic modules to combine inter-
related signals.

Road Moisture Module

This module, combines all data, that indicates anything about moisture
or water on the road. The fuzzy logic module consists of five rule blocks
(Fig. 8.44) that implement:

— A compensation rule block for the hygroscopical behavior of the road
moisture sensors. For example, if the salt content is very high, the moisture
sensor indicates higher values.

— A cross check rule block between detected road surface moisture, the sen-
sors that detect a water film on the road, and the amount of precipita-
tion ions detected during the last 30 min. For example, if strong rain was
detected over the past minutes, the road must be wet.

— A cross check rule block of the humidity sensor using dew point, road
temperature, and a moisture sensor. For example, if the dew point is
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Fig. 8.44. Road moisture fuzzy logic module

lower than the road temperature and the verified moisture indicates a dry
road, the humidity signal must be wrong.

— A cross check rule block to the precipitation sensor.

— A diagnosis rule block to derive an error message from the given signal
situation.

As result, the module produces verified signals of road moisture, amount of
precipitation, and humidity.

Road Temperature Module

This fuzzy logic module contains two rule blocks (Fig. 8.45) to compute:

— A verified value of the road surface temperature by cross check of the
temperature signal, the gradient of this signal, and the precipitation.
For example, the temperature signal can only decrease rapidly if a large
amount of precipitation is detected.

— A verified value of the freezing point, taking into account salt content
and road surface moisture. Because the salt content sensor does not work
with dry road conditions, a salt content forecast is used when the signal
is not available.

Precipitation Type Module

The verification of the precipitation type is the most complex verification
module. This fuzzy logic module verifies existing sensors that indicate the
precipitation type by a cross check with the verified signals of road mois-
ture, precipitation quantity, visual range, and other environmental conditions
(Fig. 8.46). If the sensor delivers implausible results or is not available, a sub-
stitute value is computed. The module consists of a number of rule blocks
that:
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Fig. 8.46. Precipitation type fuzzy logic module

— Indicate if the weather conditions allow for hail or snow. For example, an
air temperature level is defined at which snow is implausible.
— Compare the visual range with the precipitation quantity.
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— Aggregate the information with the precipitation quantity and visual
range.

Visual Range Module

The visual range fuzzy logic module computes a verified value of the visual
range by using two rule blocks (Fig. 8.47) that:

— Cross check the visual range with the precipitation quantity. For example,
there is no fog during heavy rain.

— Cross check the visual range with air humidity. For example, fog only
occurs during very high humidity.

Using these verified signals, the subsequent two components conclude road
and fog conditions. The Road Condition component (Fig. 8.48) uses the
qualified values of precipitation type and quantity, as well as the road mois-
ture to indicate a dangerously wet road. Precipitation type, freezing point,
and road temperature indicate icy conditions. A final rule block aggregates
the information to a standardized road condition classification code. An ad-
ditional component aggregates the verified values of visual range and precip-
itation type to compute the standardized visual range classification code.

Conclusion

Conventional traffic systems are susceptible to faulty weather sensor signals.
The fuzzy logic approach presented delivers more reliable results using mete-
orological expertise. The solution discussed was implemented using the fuzzy
logic development software fuzzy TECH. The table in Fig. 8.49 shows the num-
ber of variables, structures, rules and memberships of each component and the
complete system used.

fuzzpTECH 4.2 Edition - SICHTQ.FTL®

Visual Range
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Fig. 8.47. Visual range fuzzy logic module
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Fig. 8.48. Analysis of road surface condition

Module Variables | Rule Blocks | Rules | MBFs

Road Moisture 16 5| 489 70
Road Temperature 10 2| 130 39
Precipitation Type 15 6 204 60
Visual range 7 2| 142 36
Analysis road condition 7 3 60 33
Analysis visual range 3 1 35 17
Complete unit 58 19| 1060 255

Fig. 8.49. Size of fuzzy logic unit and its modules

In day to day operation, the fuzzy logic solution has shown that it can pre-
vent traffic control system malfunction in most sensor breakdown situations.
In addition “biological attack” situations were detected and misleading rain
or fog detection was avoided.

In a complete traffic control system, analysis of environmental conditions is
only one component of its functionality. However, faulty weather detection can
cause the entire traffic control system to malfunction. Thus, the enhancement
of traffic control systems by fuzzy logic greatly improves the reliability of
traffic control.

8.5.4 Optimization of a Water Treatment System Using Fuzzy
Logic

Introduction

This case study is about a fuzzy logic solution in biochemical production at the
world’s largest oral penicillin production facility in Austria. After extracting
the penicillin from the microorganisms that generated it, a waste water treat-
ment system further processes the remaining biomass. Fermentation sludge
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Fig. 8.50. Picture of a decanter and its schematic

obtained in the course of this treatment contains microorganisms and rem-
nants of nutrient salts. It is the basic material for a high quality fertilizer and
sold as a by-product of the penicillin production. To render the fertilizer, the
sludge is concentrated in a decanter and then cleared of the remaining water
in a vaporizer. In order to reduce energy costs of the vaporizing process, the
separation of water and dry substance in the decanter must be optimized.
Before the implementation of the fuzzy logic solution, operators controlled
the process manually.

Fuzzy Logic Replaces Manual Control

Due to its complexity, operators control the process of proportioning decanter
precipitants manually. Drainage control in the decanter is very crucial. To
save energy cost in the vaporizing process, the decanter must extract as
much water as possible. However, to achieve optimal results requires an
operating point close to the point where the decanter becomes blocked. If
blockage occurs the process must be stopped and the decanter manually
cleaned, thus operators run the process far away from this optimal point.
Alas, this results in high operational energy costs. In this case study, a
fuzzy logic system replaced the suboptimal manual control of the operators
(Fig. 8.50).

Fuzzy Logic Applications in Chemical Industry

A number of conventional control techniques exist to automate continuous
processes in chemical industry. To keep single variables of the process constant,
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Fig. 8.51. Using a fuzzy logic controller to determine the set values for underlying
PID control loops

PID controllers or the like are very common. Even though, most technical
processes are nonlinear and PID controllers are a linear model, this works
fine. This is because within a continuous process, the behavior of the process
can be well-approximated linearly near the operation point. In processes with
simple time behavior (no dead times etc.), even P (proportional) controllers
and bang—bang controllers often suffice.

While keeping single process variables at their command values is rather
simple, the determination of the optimal operation point as the combination
of all set values of the variables is often a complex multivariable problem.
In most cases a solution based on a mathematical model of the process is far
beyond acceptable complexity. In some cases, the derivation of a mathematical
model of the plant consumes many man-years of effort. Hence, in a large
number of plants, operators prefer to control the operation point of the process
manually.

In these cases, fuzzy logic provides an efficient technology for putting the
operator control strategies into an automation solution with minimum effort.
Figure 8.51 shows how to combine the fuzzy logic system with underlying
PID controllers. In practical implementations, the PID controllers run on
the same DCS as the fuzzy logic controller. Figure 8.52 shows the technical
integration of fuzzy logic into DCS.

Decanter Control

The sewage of the fermenters contains about 2% dry substance. In a first
step, milk of lime neutralizes the sewage. Second, a fermenter biologically
degrades the sewage. Third, bentonite is added in a large reactor. This results
in a precoagulation of the sludge. Next, the slurry is enriched with cationic
polymer before the water is separated in the decanter. The cationic poly-
mer discharges the surface charge of the sludge particles and hence leads to
coagulation (Fig. 8.53).

Bentonite and polymer addition exert a fundamental influence on
the drainage quality obtained in the decanter. In order to achieve a high
drainage quality, the gradation of chemicals has to be optimized. A changed
bentonite proportioning causes only a slow change in the precipitation process
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Fig. 8.53. Process diagram of sludge draining

because of the dead time of the reactor of about 20min (reactor capacity
30m3 at a volume flow of 90m® h~!) and the dead time of the decanter of
about 5—7min. An increase in bentonite addition principally results in an
improvement of coagulation. Implementation of just a polymer proportioning
controller must only consider the dead time of the decanter. An increase in
polymer addition first results in an improvement of coagulation, but with
further addition coagulation impairs.
The control strategy of the operators uses two measured variables:

— A turbidity meter measures the purity of the water. High turbidity indi-
cates a high remaining solids content of the water.

— A conductivity meter measured the draining degree of the slurry. A high
conductivity of the slurry indicates a high water content.

Control Strategy Objectives

The prime objective of the control strategy is to minimize the operational cost
of the total drying process. In particular, the objectives are:
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— Minimize amount of precipitants. The polymer used is very expensive.

— Minimize remaining water content. The vaporization of the remaining
water consumes large amounts of energy.

— The biological mass content of the sewage water of the decanter should
be 0.7g 1. Exceeding a value of 1.5g 17" reduces the operability of the
clarification plant and can even result in a breakdown of the next sewage
stage because of its limited capacity to degrade biological mass.

— The third objective has an absolute priority, above other objectives, to
ensure safe operation. If the biological mass content reaches its upper
limits, the control strategy reduces it regardless of economic considera-
tions. Besides the critical biological mass content of the sewage water,
only the first two objectives are relevant. A rough cost estimation shows
that the most effective way to reduce the expenses of the process is to min-
imize the energy used in the evaporators. If the dry substance content of
the thick slurry is increased by 1% (this corresponds to a change of conduc-
tivity of about 0.5 mS cm_l), the costs of energy (used in the evaporator)
could be reduced by $140 per day. A reduction of bentonite addition by
10% saves about $30 per day, and a decrease of polymer addition by 10%
reduces costs by $40 per day. A small decrease of chemical gradation can
result in a significant reduction of dry substance contents in thick slurry.
Therefore the main objective of optimization is to obtain the best possible
result of draining with least use of chemicals.

Designing the Fuzzy Logic Rule Base

An increase of polymer addition results in an increase of drainage grade.
This reduces the turbidity of the sewage water (degree of suspended matter)
and conductivity of the thick slurry (water content). Exceeding the optimum
polymer gradation, further addition of polymer leads to a decline of the sep-
aration power in the decanter. The separation power on polymer gradation
L = f(dmpolymer/dt) follows a parabolic curve (Fig. 8.54). Conductivity of
the slurry is used as an indicator for the separation power obtained. Hence,
the control strategy is to find the minimum of conductivity by modifying the
polymer addition.

The problem with this is that the shape of the curve and hence also the
level and position of the minimum may significantly vary over time. The only
way to find out the direction to the minimum from the current operating
point is to apply a change in the polymer gradation and evaluate its effects. If
the draining of thick slurry improves, the conclusion is that this decision was
correct and can be repeated. If the decision results in a decline, the fuzzy logic
controller pursues the opposite strategy. The stronger the system’s reaction
to a change in polymer addition is, the greater is the current operation point’s
distance to the optimum.

Likewise, an increase in bentonite addition leads to an increase in separa-
tion power of the decanter until an optimum is reached. If more bentonite is
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Fig. 8.54. Thick slurry conductivity over polymer proportion

added beyond this point, neither improvement nor decline occurs. Thus, an
increase in bentonite addition beyond the optimal point is less critical than
an increase in polymer addition. However, bentonite addition should be kept
as low as possible to minimize operating cost.

Structure of the Decanter Controller

A change in bentonite addition has a greater long-term effect than a change
in polymer addition, due to the larger dead time. As a correlation between
bentonite and polymer addition exists, it is sensible to change the polymer
addition independent of the separation quality in the short term and to let
the bentonite controller run with delay.

Sewage quality is only restricted by an upper limit, whereas slurry qual-
ity is of great economical importance. For these reasons, polymer addition
is controlled by a first set of rules in correlation to the slurry quality. An
absolute point of reference does not exist because of the changing optimum
of the polymer addition characteristics. Hence, no absolute input or output
values are used. The controller determines its position in the objective func-
tion from a prior change in polymer addition and the resulting reaction of
conductivity.

The first rule block of the fuzzy logic controller works on the targeting.
Input values for this rule block are the increment of set point in the previous
cycle (pr_decision) and the resulting change in conductivity (d_conductab).
The output of the rule block is the increment (polymerl) on the set point
of the polymer PID controller. Figure 8.55 shows the control strategy of this
rule block as a matrix. The entries in the matrix represent the output variable
polymerl of the rule block.
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Difference in Conductability
(d_conductab)

N Z P
N N Zz P
Previous
Decision Z Z Z P
(pr_decision)

P P N N

Fig. 8.55. Matrix representing the control strategy of polymer proportion. N rep-
resents “negative”, Z represents “zero”, and P represents “positive”

A positive change in conductivity implies a decline of the plant’s operating
state. If the controller in the previous cycle (pr_decision) recommended “neg-
ative” (reduce polymer addition) and conductivity increased as a reaction to
this, the controller must now operate in the opposite direction and increase
polymer addition. If the controller recommended “positive”, polymer addition
must be reduced. Conductivity may increase although the controller has not
given a recommendation in the previous cycle (pr_decision = 0). In this case,
the optimum moved by external influence and action must be taken.

As the fuzzy logic controller does not know in which direction the optimum
moved, it has to choose one direction. For this, it increases polymer addition
to test the reaction of the process. It tests with a polymer increase rather
then a decrease, as the curve in the figure rises more gently into the positive
direction, and an increased use of polymer is cheaper than the raised energy
costs that stem from the evaporation process.

If the test result is favorable, this will be confirmed in the next cycle. If
it is negative, the controller will simply change the signs of the output in
the subsequent cycle (see matrix in Fig. 8.55). This only represents the basic
principle of the rule block. The final implementation of the rule block contains
additional rules that more finely differentiate the input value. As such, the
fuzzy logic controller can differentiate between several cases and thus adapt
the size of gradation change to the reaction of the process that is, to the
proximity to the optimum.

The turbidity of the sewage water forms a restriction that in some cases for-
bids the reduction of the precipitant addition. Therefore, a second rule block
evaluates the turbidity of the sewage water (turbidity) and the output of the
first rule block (polymerl) to determine the final polymer addition increment
(polymer2). Figure 8.56 shows the structure of the fuzzy logic system. As long
as turbidity units are below 2,500 TE/F, the second rule block transfers the
first block’s recommendation to the output. Starting at about 3,000 TE/F,
all recommendations of the first rule block are transferred, except recommen-
dations to reduce polymer addition. If about 3,500 TE/F are exceeded, the
second rule block always recommends an increase of flocculent addition. Only
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the rate of increase of flocculent addition changes, depending on the recom-
mendation of the first rule block.

To determine the betonite addition, a third rule block uses the output of
the second rule block and a fourth input variable, called ration. The ratio is
calculated outside the fuzzy logic system.

Integrating the Fuzzy Logic Controller in the System

Figure 8.57 shows the total structure of the entire control system. In ad-
dition to the fuzzy logic system, function blocks (CALC, RATIO) provide
preprocessing of the sensor signals, ramp generation, and ratio control. The
entire control system is implemented using a standard DCS. The most impor-
tant input variable of the controller is the change in the conductivity of the
slurry. Alas, the conductivity measurement circuitry is subject to strong sig-
nal noise. Hence, a low pass filter is used that determines the average change
in conductivity during the last 10 min at 1-min intervals. This forms the input
variable d_conductab of the fuzzy logic system. Turbidity, the fuzzy system’s
second input, uses a similar filter.
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Conclusion

Compared to the manual operation, the fuzzy logic controller saves about
$70,000 in energy costs per year. Thus fuzzy logic is more efficiently used in
water treatment system.

8.5.5 Fuzzy Logic Applications in Industrial Automation
Introduction

In this section, we review eight recent applications of fuzzy logic in industrial
automation. All applications used the so-called “fuzzyPLC,” an innovative
hardware platform that merges fuzzy logic and traditional automation tech-
niques. Following a quick overview on the fuzzyPLC, we discuss the eight
applications and focus on how fuzzy logic enabled a superior solution com-
pared to conventional techniques. Whenever possible, we quantify the benefit
in cost saving or quality improvement.

In recent years, fuzzy logic has proven well its broad potential in industrial
automation applications. In this application area, engineers primarily rely
on proven concepts. For discrete event control, they mostly use ladder logic,
a programing language resembling electrical wiring schemes and running on
so-called programmable logic controllers (PLC). For continuous control, either
bang-bang type or PID type controllers are mostly employed.

While PID type controllers do work fine when the process under control is in
a stable condition, they do not cope well in other cases:

— The presence of strong disturbances (nonlinearity)
— Time-varying parameters of the process (nonlinearity)

Presence of Dead Times

The reason for this is that a PID controller assumes the process to behave
in a strictly linear fashion. While this simplification can be made in a stable
condition, strong disturbances can push the process operation point far away
from the set operating point. Here, the linear assumption usually does not
work any more. The same happens if a process changes its parameters over
time. In these cases, the extension or replacement of PID controllers with
fuzzy controllers has been shown to be more feasible more often than using
conventional but sophisticated state controllers or adaptive approaches. How-
ever, this is not the only area where there is potential for fuzzy logic based
solutions.

Multivariable Control

The real potential of fuzzy logic in industrial automation lies in the straightfor-
ward way fuzzy logic renders possible the design of multivariable controllers.
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In many applications, keeping a single process variable constant can be done
well using a PID or bang-bang type controller. However, set values for all
these individual control loops are often still set manually by operators. The
operators analyze the process condition, and tune the set values of the PID
controllers to optimize the operation. This is called “supervisory control” and
mostly involves multiple variables.

Alas, both PID and bang—bang type controllers can only cope with one
variable. This usually results in several independently operating control loops.
These loops are not able to “talk to each other.” In cases where it is desirable
or necessary to exploit interdependencies of physical variables, one is forced to
set up a complete mathematical model of the process and to derive differential
equations from it that are necessary for the implementation of a solution. In
the world of industrial automation, this is rarely feasible:

— Creating a mathematical model for a real-word problem can involve years
of work.

— Most mathematical models involve extensive simplifications and lineariza-
tions that require “fudge” factors to optimize the resulting controller later
on.

— Tuning the fudge factors of a controller derived from a mathematical
model is “fishing in the dark,” because optimizing the system at one oper-
ating point using global factors usually degrades the performance at other
operating points.

Also, many practitioners do not have the background required for rigorous
mathematical modeling. Thus, the general observation in industry is that
single process variables are controlled by simple control models such as PID
or bang—-bang, while supervisory control is done by human operators.

This is where fuzzy logic provides an elegant and highly efficient solution
to the problem. Fuzzy logic lets engineers design supervisory multivariable
controllers from operator experience and experimental results rather than
from mathematical models. A possible structure of a fuzzy logic based control
system in industrial automation applications is exemplified by Fig. 8.58. Each
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Fig. 8.58. Using a fuzzy logic controller to determine the set values for underlying
PID control loops
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single process variable is kept constant by a PID controller, while the set values
for the PID controller stem from the fuzzy logic system. This arrangement
is typical for cases like control of several temperature zones of an oven or
control of oxygen concentrations in different zones of a waste water basin.
In other cases, it could be reasonable to develop the complete closed loop
control solution in a fuzzy system. This illustrates why it is very desirable
to integrate conventional control engineering techniques, such as ladder logic
or instruction list language for digital logic and PID control blocks tightly
together with fuzzy logic functionality.

Merging Fuzzy Logic and PLCs

In 1990, when more and more successful applications proved the potential of
fuzzy logic in industrial automation, the German company Moeller GmbH
and the US/German company Inform Software created the fuzzyPLC based
on the observation that fuzzy logic needs tight integration with conventional
industrial automation techniques (Fig. 8.59).

To make it available at a low cost, the core of the fuzzyPLC uses a highly
integrated two-chip solution. An analog ASIC handles the analog/digital inter-
faces at industry standard 12 bit resolution. Snap-On modules can extend the
periphery for large applications of up to about 100 signals. An integrated field
bus connection, based on RS485, provides further expansion by networking.
The conventional and the fuzzy logic computation is handled by a 16/32 bit
RISC microcontroller. The operating system and communication routines, de-
veloped by Moeller, are based on a commercial real time multitasking kernel.
The fuzzy inference engine, developed by Inform Software, is implemented
and integrated into the operating system in a highly efficient manner, so that
scan times of less than one millisecond are possible. The internal RAM of
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Fig. 8.59. The fuzzyPLC contains fuzzy and conventional logic processing capabil-
ities, field bus connections, and interfaces
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256 KB can be expanded by memory cards using flash technology. Thus, the
fuzzyPLC is capable of solving quite complex and fast industrial automation
problems in spite of its compact and low price design.

The fuzzyPLC Engineering Software

The fuzzyPLC is programed by an enhanced version of the standard fuzzy logic
system development software fuzzyTECH from Inform Software. fuzzyTECH
is an all-graphical, design, simulation, and optimization environment with
implementation modules for most microcontrollers and industrial computers.
To support the complete functionality of the fuzzyPLC, fuzzyTECH has been
enhanced with editors and functions to support the conventional programing
of the PLC. Thus, a user only needs one tool to program both conventional
and fuzzy logic parts of the solution.

The fuzzyTECH software combines all necessary editors for membership
functions, linguistic variables, rule tables, and system structure with ana-
lyzer functions and optimization features. The software runs on a PC and
is linked to the fuzzyPLC by a standard serial cable (RS232) or the field
bus (RS485). Through this link, the developer downloads the designed sys-
tem to the fuzzyPLC. Because fuzzy logic systems often require optimization
“on-the-fly,” fuzzyTECH and the fuzzyPLC feature “online-debugging” where
the system running on the fuzzyPLC is completely visualized by the graphical
editors and analyzers of fuzzyTECH. Plus, in online-debugging modes, any
modification of the fuzzy logic system is instantly translated to the fuzzyPLC
without halting operation.

Application Case Studies

In this section, we review eight recent highly successful applications of fuzzy
logic in industrial automation using the fuzzyPLC:

— Antisway control of cranes

— Fire zone control in waste incineration plants

— Dosing control in wastewater treatment plants

— Control of tunnel inspection robots

Positioning in presses

— Temperature control in plastic molding machines
Climate control and building automation

— Wind energy converter control

Antisway Control of Cranes

In crane control, the objective is to position a load over a target point. While
the load connected to the crane head by flexible cables may well sway within
certain limits during transportation, the sway must be reduced to almost zero
for load release when the target position is reached. Hence, a controller must
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Fig. 8.60. The 64 ton crane of Hochtief Corp. uses fuzzyPLC based antisway
positioning control (Video)

use at least two input variables, for example position and sway angle. Thus,
a simple PID controller cannot be used as it is restricted to one input. Con-
ventional solutions of the problem require highly elaborate approaches, like
model based control or state variable controllers that need intensive engineer-
ing and hardware resources. These technologies tend to push system costs
into regions that make antisway systems economically unaffordable. For these
reasons, most cranes are still operated manually.

In spite of the difficulties involved with automated control, human
operators can control cranes quite well in most cases. Because fuzzy logic
is a technology that facilitates control system design based directly on such
human experiences, it has been used for crane automation for almost a decade.
The types of cranes include container cranes in harbors, steel pan cranes,
and cranes in a manufacturing environment. Recently, a 64 ton crane that
transports concrete modules for bridges and tunnels over a distance of 500
yards has been automated with a fuzzyPLC in Germany (Fig. 8.60).

The benefit was a capacity gain of about 20% due to the faster transporta-
tion and an increase in safety. Accidents were frequent, because the crane
operators walk parallel to the crane during operation with a remote con-
troller. Before, when they had to watch the load to concentrate on the sway
angle, they frequently stumbled over parts lying on the ground. The crane
was commissioned in Spring 1995 and the fuzzy logic antisway controller has
been continuously enabled by the crane operator, showing the high degree of
acceptance by the operators. This fact is of special importance since not only
technological feasibility but also psychological aspects are important for the
success of an industrial automation solution (Fig. 8.61).

The real solution uses about ten inputs, two outputs, and four rule blocks
with a total of 75 rules.

Fire Zone Control in Waste Incineration Plants

Maintaining a stable burning temperature in waste incineration plants is
important to minimize the generation of toxic gases, such as dioxin and furan,
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Fig. 8.61. A software simulation of the crane controller

as well as to avoid corrosion in the burning chambers. There are two primary
difficulties of this temperature control process:

— The caloric value of the waste fluctuates strongly.
— The fire position and shape cannot be measured directly.

Because the heat generated from the burning process is used to produce elec-
trical energy, a stable incineration process is also of high commercial interest.

In recent applications at waste incineration plants in the cities of Hamburg
and Mannheim in Germany, fuzzy logic has been successfully applied. In
Mannheim, where two fuzzyPLCs were used to control the burning process,
the steam generation capacity of one furnace is 28 Mgh™'. Using the indus-
try standard conventional controller, steam generation fluctuated by as much
as 10Mgh™" in just 1h. The fuzzy logic controller was capable of reducing
this fluctuation to less than +1 Mgh™'. This dramatically improved robust-
ness and also caused the NO, and SO, emission to drop slightly, and the CO
emission to drop to half (Fig. 8.62).

Dosing Control in Waste Water Treatment Plants

Wastewater treatment processes are a combination of biological, chemical,
and mechanical processes. This makes the creation of a complete mathematical
model for their control intractable. However, there is a large amount of human
experience that can be exploited for automated controller design. As such
operator experience can be efficiently put to work by fuzzy logic, many plants
already use this technique.

In a recent application in Bonn, dosing of liquid FeCls for phosphate
precipitation has been successfully automated using the fuzzyPLC. Recently
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Fig. 8.62. In a waste incineration plant, a crane continuously delivers waste from
the bunker to the belt running through the burning zone. The exhaust gases are
cooled and cleaned

changes in legislation require water treatment plants in Germany to limit the
total amount of phosphate in the released water to 1mgl~!. To extract the
phosphate from the water, FeCls is added, which converts the phosphate into
FePOy that is sedimented with the sludge. Because a violation of the legal
phosphate limit results in severe penalties, the operators tend to overdose the
FeCl; (Fig. 8.63).

To optimize the FeCls dosing, a fuzzy logic controller that uses the input
variables phosphate concentration, its derivative, water flow, its derivative,
and dry substance contents was designed. The output of the fuzzy logic con-
troller is the change of the set variable for the injected FeCls. An underlying
conventional PI type controller stabilizes the FeCls flow to this set point. The
PI type controller is implemented as a function block in the fuzzyPLC as well.
This is an example of the combination of fuzzy logic and conventional control
engineering techniques.

The total fuzzy logic controller uses 207 rules to express the control strat-
egy based on the five input variables of the fuzzy logic control block. The total
implementation time was three staff months and resulted in savings of about
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Fig. 8.63. By injecting FeCls into the sludge, dissolved phosphate precipitates from
the waste water
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Fig. 8.64. A software simulation of a simplified precipitation controller

50% of the FeCls compared to the manual control before. Taking implemen-
tation time and hardware/software costs into consideration with the savings
on FeCls results a return in investment time of half a year (Fig. 8.64).

Control of Tunnel Inspection Robots

The German Aerospace corporation DASA has developed a sewage pipe
inspection system using two robot units and a support truck. The objective of
the robots is to detect leakage in segments of the pipe by applying air pressure
to the sealed space between the two robots. Because the vertical access shafts
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can be quite far away from each other, the robots have to operate up to 400
yards away from the truck. The robots are connected to each other and the
truck by cables that provide air pressure, electrical energy, and control signals
to the robots (Fig. 8.65).

When DASA developed the system, a severe control problem came up. To
avoid entanglement of the cables that can result in the robots getting stuck
in the pipe, cable tension must be controlled very carefully. A conventional
approach using complex state variable controllers turned out to be too costly
in terms of both money and design time. A control system implemented on
two fuzzyPLCs using about 200 rules each showed very good results in a
very short engineering time at less than 10% of the costs of a conventional
solution.

Positioning of Presses

One area with big potential for fuzzy solutions is the control of drives. In this
example, we discuss hydraulic axis control. One of the most complex fuzzy
projects was done for a hydraulic press used to press laminates, printed circuit
boards, and floor coverings. The task was the synchronized control of a 14-axis
system. The position control of the axis, a superimposed pressure controller,
the parallel running of the steel belt and the synchronization of all axes had
to be solved (Fig. 8.66).

The automation system employed has a highly decentralized structure and
consists of two large master PLCs, a number of smaller compact PLCs, a PC
based supervisory system, and seven fuzzyPLCs. All units are networked using
the integrated field bus interfaces. Very important for the synchronization of
the entire machine is the ability of the field bus network to satisfy the real
time requirements. One typical problem involved in the control of hydraulic

IOI

Fig. 8.65. The two robot units in the sewage pipe (right) are supplied from a
specialized truck by cables
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Fig. 8.66. Control of hydraulic systems is difficult as many nonlinearities, such as
the “stick-slip” effect, are involved

systems is the so-called “stick slip effect.” The transition of an axis from
standstill to motion is highly nonlinear because of the transition from stick
friction to slip friction. This makes designing a good controller for hydraulic
systems difficult. In the cited application, fuzzy logic rendered a good solution
technique, freeing system design from the burden of the theory of nonlinear
systems synthesis. The overall design time using fuzzy logic was only a third
of what a conventional approach had required in past applications of conven-
tional control for similar presses.

Temperature Control in Plastic Molding Machines

In plastic molding machines, temperature control is crucial to achieve high and
consistent product quality. This requires LABORIOUS tuning of the involved
control algorithms, because the dead times involved in an extrusion machine
are significant and there is significant coupling between the different temper-
ature zones.

To cut down the commission time for these machines, KM corporation
has developed a self-tuning controller using the fuzzyPLC. At start up time,
some parameters are estimated that are used to scale the nonlinear fuzzy
controller. In contrast to conventional tuning algorithms, this controller does
not require a cooling down of the machine to room temperature before self-
tuning can work. Even very difficult temperature zones with big dead times
can be handled by this algorithm and the result is a very robust controller.
This is important because the temperature properties of an empty machine
and one filled with plastic material are extremely different. Compared to con-
ventional systems, the fuzzy logic enhanced temperature controller performs
with a faster response time and a significantly smaller overshoot combined
with extreme robustness (Figs. 8.67 and 8.68).
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Fig. 8.67. To achieve high product quality, keeping the temperature constant is
critical in molding plastic
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Fig. 8.68. The fuzzy logic controller in the molding machine reaches the set point
faster and avoids overshoot

Climate Control Using Fuzzy Logic

Climate control systems reveal a high potential for energy savings. In a recent
application at a major hospital in Europe, the integration of fuzzy logic saves
about 25% on electrical energy, equivalent to the amount of $50,000 per year
(Fig. 8.69).

The fuzzy logic controller outputs the set values for the coolant valve,
the water heater valve, and the humidifier water valve. The fuzzy logic con-
trol strategy uses different temperature and humidity sensors to determine
how to operate the air conditioning process in a way that conserves energy.
Again, the capability of processing interdependent variables results in signif-
icant advantages over conventional solutions. For example, one knows that
when temperature rises, relative humidity of the air decreases.
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Fig. 8.69. An application of fuzzy logic in the A/C system of a large hospital in
Germany saved more than 25% on energy costs

This knowledge can be exploited by implementing a fuzzy logic control
strategy that allows the temperature controller “to tell” the humidity con-
troller that it is going to activate the heater valve. The humidity controller
now can respond to this before it can detect it by its sensor.

Wind Energy Converter Control

In recent years, technological advancements made the commercial use of
wind energy feasible. A trend to larger plants further improved the
cost/performance ratio. However, such large wind energy converters require
advanced control systems both to ensure high efficiency and long life. The con-
troller sets the angle of the rotor blades based on the wind situation (pitch
control). However, wind is not a one-dimensional figure. Strength, gustiness,
and fluctuation of the wind angle must be evaluated to determine the optimal
rotor blade angle (Fig. 8.70).

There is a trade-off between efficiency, safety and wear of the wind energy
converter. If the blade angle is set to draw the maximum amount of energy
from the wind, the risk of sudden wind gusts causing excessive mechanical
stress on the converter increases. For these reasons, an Aerodyn wind energy
converter was enhanced with a fuzzy system based on human experience to
find the best compromise to this trade-off. The first implemented system is
running in a field test and shows quite promising results. The quality of the
controller is not only measured in constancy of the delivered power, but also in
measures of mechanical stress on the tower, the nacelle and the rotor blades.
The next step will be the application of the achieved results to the first 1.2 MW
systems that are to be launched in the marketplace in 1996.

Conclusions

In all eight applications, the key to success lies in the clever combination
of both conventional automation techniques and fuzzy logic. Fuzzy logic by
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Fig. 8.70. To maximize the efficiency of a wind energy converter, the pitch controller
must consider many inputs

no means replaces conventional control engineering. Rather, it compliments
conventional techniques with a highly efficient methodology to implement mul-
tivariable control strategies. Thus, the major potential for fuzzy logic lies in
the implementation of supervisory control loops.

8.5.6 Fuzzy Knowledge-Based System for the Control of a Refuse
Incineration Plant Refuse Incineration

Introduction

A refuse incineration plant is a complex process, whose multivariable control
problems cannot be solved conventionally by deriving an exact mathematical
model of the process. Because of the heterogeneous composition of household
refuses, observing the combustion chamber by a human operator partly man-
ually controlled most incineration plants. Figure 8.71 shows the diagrammatic
layout of a refuse incineration plant.

The incoming refuse is initially stored in a bunker and then transported
by a grapple crane into the feed hopper of the incineration plant. The refuse
lands on the grate via the down shaft and feeder. The grate consists of two
parallel tracks each with five under grate air zones. The optimum position of
the fire is in the middle of the third grate zone, since at this point the refuse
is adequately predried and thereafter there is still enough residence time in
order to ensure complete burnout.
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Structure of a Refuse Incineration Plant
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Fig. 8.71. Schematic structure of the refuse incineration plant in Hamburg
stapelfeld

Although the crane operator attempts to homogenize the refuse by mixing,
it is not possible to maintain a uniform feed quality. The existing automatic
systems and control circuits have as their main objective the maintenance
of a constant thermal output with good burnout, thereby creating the pre-
conditions for an uniformly high energy production. In order to attain this
objective the plant operators must be highly qualified. In spite of such mea-
sures, in the majority of incineration plants it is not possible to dispense with
manual intervention because of the extremely inhomogeneous composition
of household refuse. During the course of manual intervention the operator
observes the furnace and adjusts the refuse feed and the grate-operating mode
accordingly.

While the quantities of refuse to be incinerated are steadily increasing
the environmental laws are becoming ever more restrictive. Recent insights
on the toxicity of chlorinated organic pollutant emissions have also dictated
a change in the objectives of refuse incineration; together with the ideal of
constant combustion output it is becoming ever more urgent to optimize the
process in ecological terms, i.e., to ensure the largest possible reduction in
volume while minimizing emissions.

During combustion a control system must therefore maintain the following
conditions:

1. Control of the Oy concentration in the flue gas to keep it at a constant

figure.

. Maintanance of a uniform thermal output.

3. Maintanance of optimum flow conditions in the furnace and the first boiler
pass with as little variation as possible so that the desired conditions for
attaining the lowest possible

4. Degree of emissions and thus preventing corrosion are always maintained.

[\V]

These conditions can only be fulfilled by optimized combustion at a stable
operation point. Conventional control systems are incapable of reacting to
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Fig. 8.72. Covered observation area of the IR-camera

the inevitable local and intermittent in homogeneities of the refuse fed to the
grate, which are attributable to varying calorific values and ignition properties.
It is as a result impossible to avoid pronounced variations in the combustion
process and such variations are always associated with unfavorable emission
figures.

The most important control variable at the plant is the steaming capacity.
The primary air admitted to the various under grate air compartments
mainly affects this. Disturbances here occur as a result of the inhomoge-
neous composition at localized points. The primary air distribution must
therefore be continually matched to the requirements of the individual grate
zones. Since Os content in the flue gas must be maintained at a constant
figure the secondary and primary air are controlled in counterbalance to each
other.

Between the feeder and the combustion zone there is always a quantity of
uncombusted refuse whose amount varies in accordance with the feed quality.
As a result of this storage effect there is no direct connection between feeder
movement and the position of the fire on the grate. The position can only
be registered by visual observation by the plant operators or video picture
evaluation.

A possible method of automating this process is the registration of com-
bustion by infrared thermograph. This offers the immediate advantage that
the plant operator is in a position to observe combustion directly from the
control room. Because of the geometry of the furnace in the plant under con-
sideration the area, which must be observed, lies mainly in grate zone 3, but
also to some extent in zones 2 and 4, which cannot be so completely observed
(Fig. 8.72).

This is however more than adequate in order to determine the position
of the fire. Additionally it is possible, by statistical evaluation of the infrared
picture, to determine the width of the combustion zone and derive from this in-
formation on asymmetric positions of the fire or secondary combustion zones.

Even if all the information given above is available it is still necessary to
development an adequate mathematical model that will allow the information
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to be applied to a conventional control system. However combustion processes
as a rule are of a highly nonlinear nature and represent multivariant problems.
For conventional control system strategies the only feasible method is therefore
to influence controllers by heuristic programing.

New solutions to problems of that kind are offered by the use of advanced
control techniques. In particular fuzzy logic control has been applied to similar
combustion processes. Complex interactions between the various items of in-
formation evaluated require a methodology of structured information analysis.

Methods for the Development of Control Systems

Conventional technologies of process automation require a lot human re-
sources: beside the setup of hardware and interfaces, operator’s control knowl-
edge must be acquired as well as control engineer’s experience, and software
specialists have to be called for the implementation. This presupposes that all
these specialists communicate with each other searching for a way to trans-
late the control strategy into the code of a programing language. For this,
human ideas, concepts and causalities often must be expressed on a techni-
cal level. Fuzzy logic, uses linguistic variables with membership functions in
if-then-rules, is an approved methodology to implement that kind of linguistic
knowledge.

State-of-the-art in fuzzy logic control applications is the simple calculus of
“fuzzy—if-then-rules” which predominantly use MIN/MAX operators. While
fuzzy control algorithm using this simple calculations have successfully been
applied in a variety of control problems, these approaches are only a rough
approximation of the linguistic meaning they have to represent.

This can be prevented by using fuzzy operators representing linguistic con-
junctions like “and” and “or” and by considering rules themselves as “fuzzy.”
Different advanced inference procedures were proposed by Zadeh known as
the “compositional rule of inference,” Kosko using so-called Fuzzy Associative
Maps (FAMs) and others. These concepts allow a “degree of support” (DoS)
(also called “degree of plausibility”) to be associated with any rule. Zadehs
concept enables a very fine tuning of the rules but involves a large computa-
tional effort that forbids its usage in most real-time systems. In order to that,
Koskos FAMs only require a small computational effort but only introduce a
“weight” factor to each rule.

For both computational efficiency and appropriateness, a combination of
these methods was found: the degree to which every rule fires is determined
by aggregating the degree to which the premise is fulfilled with its DoS. Of
course, this operation can be computed using a fuzzy operator. Applying the
product operator for this item, the DoS can be interpreted as a “weight”
for every rule. This method is rather simple to use: first, define degrees of
support of only either zero or one. Second, for fine-tuning, use values between
0 and 1.
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For larger systems handling 50 fuzzy rules and more, rule based systems
are no longer lucid and easy to comprehend, if rules are represented in a simple
list. Additional structural features enabling for example the classification of
rules in rule blocks coming with appropriate rule representations must be
used.

The choice of appropriate methods for the knowledge representation is due
to the fact that appropriate software tools for the development of control sys-
tems are available. Although fuzzy control systems are sometimes programed
in a conventional programing language, for complex application, it is neces-
sary to use a tool, which prevents repeated programing fuzzy methods like
inference strategies or defuzzification methods.

For the definition of a fuzzy control strategy, a variety of software tools
based on the concept of compiling/precompiling, which already exist in the
market, can be used. Although this concept works well for the development of
conventional software, it has several inherent drawbacks for the construction
of fuzzy control systems.

This work investigates which advanced methods render the application of
fuzzy control in complex problems possible and how fuzzy controllers may be
built more efficiently. The results of this theoretical work have already been
implemented in a professional fuzzy logic development system.

First one has to define an initial control strategy as a prototype. Containing
the complete structure of the desired system, the prototype is representing all
items of the control strategy. For the given process, the prototype was set up
with 18 linguistic variables used in 70 fuzzy rules, with nine rule blocks. The
control strategy is compiled and linked to the process or its simulation for
testing.

Improvement of the Control System

If at first the controller does not work perfectly — which happens often — the
control strategy must be revised. For the revision, existing debuggers are
clearly inappropriate since they either work on the compiled code or do not
work in real-time. Additionally, when a fuzzy control strategy is being designed
for a continuous process or its simulation, trying small definition changes
and then analyzing the subsequent reaction of the control loop do optimiza-
tion. To recompile the controller, and thereby interrupting the continuity of
the process, a small change is always made, development time is increased
considerably.

For these reasons, online-technology has to be used for further optimiza-
tion. With this tool, a fuzzy logic control strategy can be graphically visualized
while the fuzzy system is actually controlling the process in real-time. This
enables the engineer to understand the dynamic behavior of both the con-
troller and the process.

In the optimization step, one often wants to try out little modifications to
the rule strategy or the membership functions to subsequently increase system



248 8 Applications of Fuzzy Logic

performance. If a code generating approach such as a fuzzy-precompiler is
used, whenever a change is done, the controller has to be put offline and the
controller to be recompiled. In addition to being very inefficient, this approach
has got another drawback: a continuous process is always put back to manual
control out of its operating point by the recompilation. Hence, the engineer
can no longer visualize the effect of the control strategy modification. This
makes efficient optimization next to impossible. The incineration plant is a
perfect example for such an application.

Once the system is readily optimized, a precompiler or compiler can be
used for a code-optimized implementation of the final system on the controller
hardware. The development approach for complex fuzzy logic control systems
must cover the following steps:

Design: Definition: the system design contains the definitions of linguistic
variables, fuzzy operators, the fuzzy rule base and the defuzzification method.
Graphical design tools should support this. The step results in a first prototype
of the controller.

Offtine optimization: to check the controller’s static performance, one can
either test the controller interactively by applying input values and analyzing
the information flow in the system or one can simulate the controller’s per-
formance on pre-recorded process data or a mathematical model of the plant,
if available.

For all debugging, simulation and analyzing steps, a software implemen-
tation of the controller is necessary. Graphical analyzing tools and debug
features connected to graphical design tool ease the error detection and opti-
mization. This step ends with a refined prototype.

Online optimization: The refined prototype is now optimized on the running
process. To allow for online development, the workstation/PC running the
development tool must be connected to the process controller hardware by
just a serial cable. This step establishes the final optimized system ready for
implementation.

Implementation: The optimized system is code-optimized for the final sys-
tem. Highly optimizing precompiler and compiler specialized for the applied
hardware can be used. Result is a controller software, code size and runtime
optimized.

A New Structure for the Control System

The application of advanced fuzzy logic development techniques has led to a
new structure for the desired control system. The system is divided into three
stages in each of which a short-term and a long-term strategy is operated. The
first stage corresponds to a steaming capacity control circuit, subdivided into:

— A short-term control cycle for the steaming capacity and
— A long-term control cycle influencing the Oy concentration in the flue gas
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— The set value for the long-term control system is calculated from a com-
bination of the Oy content together with the information obtained from
the short-term control system on system behavior

The second stage controls the throughput of refuse and here:

— The grate movement is responsible for the short-term control of the posi-
tion of the fire on the grate and

— The feeder is utilized for the long-term adjustment of the amount of refuse
fed to the grate

— Characteristic parameters from the IR thermography are utilized to
determine the position of the fire on the grate at any given time.

The third stage, which serves to optimize combustion, additional information
from IR-thermography is employed. The optimization consists of the following
steps:

— Control of the primary air for the various undergrate air zones.
— Control of the length of the fire by governing the feed velocity in the
individual grate zones.

The utilization of fuzzy logic permits the integration of many disparate
items of information. Besides directly measurable parameters such as, for
example, the steaming capacity, various identifying parameters for the position
of the fire and its lenghtare utilized which can be obtained from the IR
thermography data.

The result is a hybrid system in which conventional calculation mthods
are combined with the methods of fuzzy logic. This permits the uncertainties
which ineevitably occur to be taken into account in an appropriate way.
In order to model the control strategy from existing experts knowledge the
individual components of the structure indicated were implemented using lin-
guistic variables and fuzzy logic rules.

The graphic development tool fuzzyTECH was employed to implement this
control concept. Figure 8.73 shows a section of the main worksheet in which
the firing capacity control system is depicted. The symbols here represent
rule blocks and interfaces. Each rule block stands for a set of fuzzy rules and
the interfaces represent the data transfer to the upstream or down-stream
mathematical operations.

Conclusion

This optimized fire capacity control system fundamentally ensures a more even
combustion pattern. As a result it is possible to reduce the CO content in the
flue gas and improve the burnout parameters while simultaneously reducing
emissions and in particular the chlorinated organic pollutants therein.
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Fig. 8.73. Part of the structure of the fuzzy project: “power control”

8.5.7 Application of Fuzzy Control for Optimal Operation
of Complex Chilling Systems

Introduction

The optimization potentials for the operation of chilling systems within the
building supervisory control systems are limited to abilities of PLC functions
with their binary logic. Little information about thermal behavior of the build-
ing and the chilling system is considered by operation of chilling systems with
PLC-solutions. The aim of this project introduced in this paper is to replace
inefficient PLC-solutions for the operation of chilling system by a fuzzy con-
trol system. The focus of the optimization strategy realized by fuzzy control
is to ensure an optimal operation of a chilling system. Optimal operation
means:

— Reducing operation time and operation costs of the system,
— Reducing cooling energy generation and consumption costs.

Further requirement on the optimization strategy is providing a user net
chill water supply temperature with a set point error as little as possible.
This feature of the chilling system is important, in order to ensure research
and working conditions in the building. Analysis of the online thermal behav-
ior of the building and the chilling system is necessary, in order to find the
current efficient cooling potentials and methods during the operation. The
thermal analysis also focuses the measurement of important physical values
of the system as input variables for different fuzzy controllers, since no expert
knowledge exists for optimally operation of the system. This realized fuzzy
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control system would open new application fields for fuzzy technology within
the building automation engineering.

The designed fuzzy controllers are software solutions, in order to use the
existing building supervisory control system with its interface units, connected
to the chilling system. Three different fuzzy controllers have been developed
with a total rule number of just 70. Comparison of the system behavior before
and after the implementation of fuzzy control system proved the benefits of
the fuzzy logic based operation system realized here.

Description of the Chilling System

The chilling system described here supplies chill water to the air conditioning
systems (AC-systems) installed in the Max Plank Institute for Radio astron-
omy in Bonn. The AC-systems ensure the research conditions by supplying
conditioned air to the building. The amount of cooling power for the build-
ing is the sum of internal cooling load (produced by occupants, equipment
and computers) and the external cooling load, which depends on out door
air temperature (75,,¢) and sun radiation through the windows. The cooling
machines installed here, uses the compression cooling method. The principle
of a compression cooling machine can be described in two thermodynamically
processes.

In the first step of the cooling process, the heat energy will be transferred
from the system to the heat exchanger (evaporator) of the cooling machine,
and therefore the liquid gas will evaporate by absorbing the heating energy.
After the compression of the heated gas, in the second part of the process,
the gas condenses again by cooling the gas through the air-cooling system.
In that step of the process, the heat transfer is from the condensation system
to the out door air space. The process is continuous, and based on the second
law of the thermodynamics.

Figure8.74 presents the chilling system as a schematic diagram. The
whole system consists of the following components:

— three compression-cooling machines
— three air cooling systems and
— two cooling load storage systems

During the operation of the cooling machines, the air cooling systems will
be used, in order to transfer the condensation energy of the cooling machine
to the out door air space. If the out door air temperature is much lower than
user net return temperature on heat exchanger one, the air cooling system
should serve as a free cooling system and replace the cooling machine. The
additional cooling load storage systems are installed in order to fulfill the
following requirements: firstly to load cooling energy during the night time,
and therefore reduce the cost of electrical power consumption (by using cheap
night tariff for electrical power), and secondly supplying cooling energy during
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Fig. 8.74. Schematic diagram as a part of the chilling system with simplified
instrumentation

the operation time, if a maximum cooling energy is needed and cannot be pro-
vided by existing cooling machines. In both cases the cooling storage system
does not reduce energy consumption, but the cost of energy production and
consumption.

State of the Control Engineering for Operation of Chilling Systems

The heart of a building energy management system is the Building Supervi-
sory Control System, which consists of a hierarchically organised, function ori-
entated control system having separate intelligent automation units. A clearly
defined division of functions by hierarchical levels with extensive communi-
cation horizontally and vertically across all levels is an essential aspect of
perfect operational efficiency. The building supervisory control system with
its “distributed intelligence” is configured into four hierarchical information-
processing levels, as shown in Fig. 8.75.

Supervisory Level for Implementation of the Fuzzy Control System

The initial function of this Level is to analyze the operating status of the
systems. The main function of this level is to Control, monitor and log the
processes within the Building as a whole but serves also for configuring of
the automation units at the automation level. The supervisory control level
has access to all physical data points of the chilling system. The fuzzy control
system for optimization strategy realized here is a software solution and is
implemented into the supervisory control system. The designed software Fuzzy
control has to be translated into a system orientated mathematical, and logical
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Fig. 8.75. Distributed intelligence building supervisory systems with implemented
fuzzy controller

programming language (GPL). All the operation instruction formulated in
the supervisory level will be transferred to the chilling system through the
automation level as shown in Fig. 8.75.

Automation Level for the Operation of the Chilling System

The automation level houses the distributed intelligence for mathematically
and physically based operation functions as multicontrollers. The purpose
of the D3-C (Distributed Direct Digital Control) systems is to monitor and
control the most important status and processes within the building. The
D3-C system, which also provides PLC functions, allows a logical link to be
set up in the form of time or status elements, in order to guarantee optimum
performance. The control strategy for the inner control loops of the chilling
system has been realized on this level. Therefore the supervisory level sends
the set points and the start/stop instructions as result of fuzzy controllers for
each unit of the system to this level.

Fuzzy Control System

The aim of the fuzzy control system which has to be developed, and imple-
mented into the existing building supervisory system as shown in Fig. 8.75 is
to run the chilling system in such a way that the following requirements for
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the operation of the system will be fulfilled: regarding the cooling potential
of the out door air, the air cooling system should serve as a cooling power
generator as long as possible. The free cooling system (FC system) should
run before the cooling load storage system (CLS-system), and cooling ma-
chines. This has to be considered by the fuzzy controller for the operation
of cooling machines. The CLS-system should run during the daytime before
any cooling machine, if the cooling load of the building is expected to be
low.

Optimization strategy for the discharge of CLS-system will ensure that
there will not be a peak in the electrical power consumption, and reduce
the cost of electrical power consumption, by keeping of low price tariffs for
electrical power. The cooling machines should run at their lowest possible
level. The fuzzy control system must ensure supply of the needed cooling
power during the operation time of the building by lowest cost and shortest
system operation time with a low range of set point error for the supply
temperature.

A concept of knowledge engineering by measuring and analyzing of system
behavior is necessary, since no expert knowledge exists for the formulate of
the fuzzy rules. Measuring of two physical values of the system is necessary, in
order to consider system behavior for an online optimization strategy. These
process values are: the out door air temperature Ty,t, which partially presents
the thermal behavior of the building, and the user net return temperature
(Tun), which contains the total cooling load alternation of the building.
These requirements focus on three different fuzzy controllers for the different
components of the chilling system as shown in Fig. 8.76.

Conclusions

An optimization strategy for the operation of a complex chilling system is
realized by Fuzzy control system, and implemented into an existing building
automation system. The focus of the optimization strategy by fuzzy control
is to ensure an optimal operation of a chilling system. Optimal operation
means: reducing operation time and operation costs of the system, reducing
cooling energy generation, and consumption costs. Few rules for each con-
troller were necessary, in order to have the fine-tuning of the fuzzy control
system. Three fuzzy controllers were necessary in order to reach maximum
efficiency by operation of different components of the chilling system. This
realized fuzzy control system is able to forecast the maximum cooling power
of the building, but also to determine the cooling potential of the out door
air. The operation of systems by fuzzy control enormously reduced the cost
of cooling power.
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system

8.5.8 Fuzzy Logic Control of an Industrial Indexing Motion
Application

Introduction

The use of closed loop control systems in factory automation continues to
increase as manufacturing tolerances tightens and consumers are demand-
ing ever-higher quality products. Closed loop systems, by their very nature,
provide tighter control and increased robustness compared to open loop sys-
tems. However, most industrial closed loop control algorithms used in today’s
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factories are based on the traditional proportional-integral-derivative, or PID,
controller. The PID controller has provided adequate control for years dating
back to the 1920s, but does have some weaknesses that make it vulnerable in
the face of ever more demanding factory automation applications.

Background

Most PID controllers used in industry are tuned by a trial and error method.
Even if a more systematic design based on classical control theory is used, it
is still limited by the assumption that the plant is linear, or at least a plant
that operates in a linear region, and its dynamics do not change over time.
When nonlinear effects arise in the system to be controlled, the PID con-
troller may have difficulty controlling it. This nonlinearity includes friction,
saturation, backlash, hysteresis, etc. Ultimately, all physical systems will dis-
play nonlinear, time-varying behavior as inputs grow unbounded and as the
systems are operated over extended periods of time. The PID controller may
have difficulty controlling these types of plants whereas a more robust type of
controller will provide better performance. One such type of control is fuzzy
logic control.

Fuzzy logic control is an intelligent control technique that uses human
expert knowledge of the system to be controlled and incorporates it into a
series of control rules. It is, however, more than just a series of if-then rules
that operate on variables belonging to sets described by binary logic. These
rules operate on variables that will have varying degrees of membership in
fuzzy, or multivalued, sets depending upon the operating region of the system.
This method of control mimics that of human reasoning. We investigate the
increased servo motor controller robustness potential through the use of fuzzy
logic control for a particular industrial indexing operation.

Problem Description

The hardware setup of an electric servomotor that feeds paper to a specific
length in a manufacturing process is illustrated in Fig. 8.77. Its exact duplicate
was built in the laboratory for this investigation. The paper is cut and used
as a component in a consumer product. Repeatable and accurate feed length
is critical as it affects the quality of the final product. The motor is directly
coupled to a knurled drive roller via a flexible coupling. The flexible coupling
allows for any slight misalignment between the motor shaft and the drive
roller. It provides radial flexibility while minimizing torsional flexibility. A
second roller, namely the tension roller, provides the friction that pulls the
paper between the two rollers. Tension adjustment is provided via a tensioning
screw above the tension roller.

The present method of controlling this feed-to-length servo application
is by commercially available controller, motor drive and servomotor. This
configuration is illustrated in Fig. 8.78. The controller uses PD position control
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Fig. 8.78. Control system configuration

based upon a quadrature incremental encoder feedback signal. The motor
drive also has its own inner velocity control loop that provides additional
stability.

The present PD control provides adequate performance and can meet the
present manufacturing specifications. The motivation behind this research is
to find an improved method of control. Why attempt to improve upon an
adequate control solution? There are several reasons.

There is a need to retune the present PD controller whenever a plant
parameter changes. This can be as small as a change in paper thickness or it
could be a parameter that slowly changes with time such as bearing friction.
If a more robust means of control is used, it may require less tuning of the
controller in the field. This then provides improved standardization of iden-
tical machines in the field because all machines will use similar or identical
controller parameters.

This type of mechanical configuration (motor coupled to load via a flexible
coupling) is very common. There are plants with this configuration that are
very likely poorly controlled by PID control and that could benefit from this
even more than the present plant.
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Fuzzy Logic Position Loop Design

In designing an FLC for servo motor position control, several key items must
be clearly defined. First of all, as in the design of any control system, the
performance specifications must be specified. These may include:

— Time response
— Stability and robustness
— Disturbance rejection

Once these are established, the FLC design proceeds with the assignment of:

A universe of discourse for each input and output variable

— Linguistic labels for the variables and their values

— Membership functions for each variable

— Rule base

— The method for combining membership functions from different universes
of discourse

— The implication method

— The aggregation method

— The defuzzification method

Simulation and tuning then follow to complete the design.
Performance Specifications

The performance requirements of the paper feed system are:

1. Feed length: 0.680" + 0.010”
2. Feed time: 98 ms
3. Overshoot: <0.007”

These machine performance requirements translate into closed loop servo con-
trol requirements:

1. Feed length: 866 servomotor encoder counts +12 counts

Settling time: 98 ms

Resolution: 0.000785 in per count

Percent overshoot: <8 encoder counts

Disturbance rejection: in this system, frictional torque can be considered
a low frequency disturbance

ANl

Obviously, it is desirable to attenuate any low frequency disturbance but some
friction may actually help dampen this system.

High Frequency attenuation: The actual plant is known to have a resonant
dip at 700rad s~ and a resonant peak at 1,000rad s~ '. These frequencies and
higher must be attenuated to ensure the magnitude does not approach and
climb above the 0dB line.
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Structure of the Fuzzy Logic Position Loop

Many servo motion control applications do not fully utilize all three parame-
ters of the PID controller. Instead, only the proportional and derivative gains
are used. Proportional gain adjustments vary the bandwidth to meet the set-
tling time specification. Derivative gain adjustments vary the system response
to meet overshoot requirements. Increasing derivative gain will reduce the con-
trol signal magnitude when the error rate is high, thereby reducing or elimi-
nating overshoot. Integral gain is normally only used to reduce steady state
error caused by friction, gravity, etc. However, the misapplication of integral
gain can cause stability problems.

Likewise, when designing an FLC, we begin by looking at the error signal
and the rate of change of the error. With these two pieces of information, we
can determine the state of the system and hopefully control it. Therefore, the
FLC designed here will be a two input one output controller; the inputs being
the error and error rate and the output being the control signal to the plant.

The FLC in this section is positioned as shown in Fig. 8.79, directly where
a PD controller would be positioned in the control loop. This configuration
is the most straightforward and allows a direct comparison between the FLC
and PD controllers.

Note in Fig. 8.79 that the second input, y, is the discrete time approxima-
tion of the rate of change of the inverted output signal. y is used instead of
the time derivative of the error because the error can change instantaneously
with a step input. This instantaneous change produces an impulse in the error
rate, which adversely affects the FLC performance. The output, however, can-
not change instantaneously and is therefore used as one of the FLC inputs.
However, with a continuously differentiable error signal, the error rate should
be used instead.

Position

Normalizin
Reference Position Scaling o ,\Snr?ta?tr
Command 4+ Error e y Position
- D "1Fc —-{>—*— Plant *
X
.' Output
Output Rate Gain
Gain
Normalizing
Scaling
and Signal
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Fig. 8.79. FLC control configuration
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Table 8.8. Membership parameters

e, Ay, u — Triangular membership functions
ifa1 < e < a2 and a1 # a2

az—aj
pale) = a”;:az %f az < e < asand az # az
1 ifa1 = a2 = a3
0 Otherwise
e Ay U

Linguistic a1 az as a1 a2 as ai az as
variable
NX - - - —oo —1.10 —1.00 — - -
NL —o0 —1.00 -0.40 -1.10 -1.00 -0.70 —1.30 —1.00 —0.70
NM -0.85 -0.33 -0.15 —-0.80 -0.60 —-0.25 —0.90 —0.60 —0.30
NS -0.40 -0.12 -0.15 —-0.30 -0.17 0.00 —-375 —175 0.00
ZE —0.07 0.00 0.07 —-0.10 0.00 0.10 —0.225 0.00 0.225
PS 0.015 0.12 0.40 0.00 0.17 0.30 0.00 0.175 0.375
PM 0.15 0.33 0.85 0.25 0.60 0.80 0.30 0.60 0.90
PL 0.40 1.00 00 0.70 1.00 1.10 070 1.00 1.30
PX - - - 1.00 1.10 00 - - -

Setting Up the Fuzzy Logic Controller

There are three essential ingredients in a FLC: fuzzification, rule base, and
defuzzification. Fuzzification is accomplished through the definition of the
fuzzy membership functions, shown in Table 8.8. Here, the numerical values
of e and y are translated to symbolic ones, such as positive medium (PM)
or negative large (NL) etc. with an associated grade. This grade is defined
by using the triangular membership functions. These triangular membership
functions for e, y, and u are defined as:
e = (a1 ag a3) € Ra, with a; < as < ag. The value of ay is the center of e
where the linguistic label has its maximum membership grade of one, that is
te(az) =1, a3, and a; are the other two defining membership function points
that lie to the left and right of as. These membership functions are fully
described by the equation at the top of Table 8.8. The membership functions
for yand wu are defined in the same manner. The final parameters for each of
the membership functions are based on the fine-tuning of the controller.
Once the input signals are converted to symbolic variable through fuzzifi-
cation, they are ready to be processed by using an English-like rule base, con-
sisting of if-then statements. Generating the rules for a fuzzy inference system
is often the most difficult step in the design process. It usually requires some
expert knowledge of the plant dynamics. This knowledge could be in the form
of an intuitive understanding gained from an operator who has experience
manually controlling it. Or, it could come from a plant model, which is then
used in a computer simulation. This latter method was used in this study.
The rule base for the FLC proposed in this study is listed in Table 8.9. These
rules follow from an initial rule base that was modified in the tuning process
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Table 8.9. Rule base

Output rate
NX NL] NM| Ns| zE [ PS [ PM | PL | PX
NL NL
NM NL | NM[ NL [ NM [ NS [ ZE
.| _NS NM NL NS | PS
2] ZE | NL NS ZE* PS PL
=1 ps NS | Ps PL PM
PM ZE PS PM | PL [ PM | PL
PL PL
*Weighted 0.1 of other rules

in order to achieve the desired control and robustness. Multiple simulations
were run to arrive at these final rules. The total number of rules in this FLC
is 39 out of a possible 63.

The final step in FLC is to compute the numerical value of the controller
output based the outcomes rule inference. Using the common centroid method,
also known as the center of gravity (CoG) method, does this.

FLC Tuning

Tuning an FLC may seem at first to be a daunting task. There are many
parameters that can be adjusted. These include the rules, membership func-
tions and any other gains within the control system. The approach used here
is to reduce the fine-tuning effort to the adjustment of two gains; the output
gain and the output rate gain.

As shown in Fig. 8.79, the output gain adjusts the control signal, u(t), and
the output rate gain adjusts the magnitude of the output rate signal, y(k).
One method of tuning is, the error signal, e, will always be automatically
normalized based on the present reference signal magnitude and no further
adjustment of this gain is allowed nor needed. The output gain is in some
ways analogous to the proportional gain in a PD controller and the output
rate gain is analogous to the derivative gain. This analogy breaks down when
the FLC is grossly mistuned. Adjustment of the output gain changes the
system bandwidth and adjustment of the output rate gain will change the
overshoot characteristics.

The overall FLC tuning process is as follows:

— Gross adjustment of the system is done by iteratively adjusting rules,
membership functions, the output gain and the output rate gain. Rule
optimization is accomplished through computer simulation on a trial and
error basis. If there is inadequate knowledge represented in the rule base
to properly control the plant, additional membership functions and rules
must be added to the FLC.
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— Once gross tuning is accomplished, the FLC is finely tuned. This involves
slight adjustments of individual membership functions and the output and
output rate gains.

To better understand the tuning process requires an understanding of how
membership function parameters affect the system response. The reason this
is important is because the adjustment of the output gain and the output rate
gain are actually an adjustment of the control signal’s membership functions
and the output rate’s membership functions.

Let us begin with the output gain. Increasing the output gain effectively
stretches the control signal membership functions in proportion to the output
gain. As the membership functions widen and move away from the origin,
it makes the meaning of their associated linguistics quantify larger numbers.
Imagine the control signal membership functions moving away from the origin
and widening. The effect will be that for a constant value generated in the
antecedent, the consequent becomes larger. The opposite is true when the out-
put gain is decreased. Keep in mind that increasing or decreasing the output
gain is not actually stretching or contracting the membership functions. The
change in gain merely has the same effect as if the gain was left unchanged
and the membership functions were changed.

Moving or changing the width of individual control signal membership
functions will have a similar effect. The membership function whose position
or width has changed relative to its adjacent membership functions will have
a greater or lesser effect on the control signal. A simple example is the ZE
control signal membership function used in this study. As this membership
function is widened relative to its adjacent membership functions, it will move
the COG closer to zero during defuzzification. This then has the effect of
reducing the control signal gain when both the error and output rate are
small. Narrowing the ZE membership function will move the COG further
away from zero and therefore increase the gain when both the error and error
rate are small.

Changing the output rate gain has the effect of stretching or contracting
the output rate membership functions. This is similar to the effect the output
gain has on the control signal membership functions. However, there is one
major distinction. The output rate membership functions are scaled inversely
proportional to the output rate gain. As the gain is increased, the member-
ship functions effectively narrow and move closer to the origin hence making
the meaning of their associated linguistics quantify greater numbers during
input fuzzification. In this study, increasing the output rate gain will slow and
dampen the system response. The opposite is true when the output rate gain
is decreased.
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Remarks

There are some essential points to keep in mind when designing an FLC:

Thoroughly study the physical problem at hand before beginning FLC
design.

Initially, keep it simple. Start with the minimum number of inputs, out-
puts and membership functions (perhaps five or less). This will hopefully
keep the maximum number of rules manageable.

Initially, use triangular (or similarly simple) membership functions and
space them uniformly over the universe of discourse. Always normalize
the universe of discourse between minus one and one or zero and one.
Initially, add rules to the rule base such that they monotonically increase
or decrease across rows and down columns (i.e., avoid rows and columns
such as NL, NM, NS, NM, ZE).

Initially, scale the input and output signals to determine their effect on
the overall response. Perhaps this will suffice in designing and tuning the
FLC. If the response is poor and does not meet specifications, then modify
the rules. Modify membership functions only for fine-tuning when output
gain and output rate gain adjustment is inadequate.

Keep in mind that it will be relatively straightforward to design an FLC
for a plant for which the designer understands the nominal conditions. The
challenge and difficulty is designing a robust FLC that is relatively insensi-
tive to changing plant parameters encountered in the factory environment.
In this case, membership function positions may need to be dramatically
changed. Also, the rules may need modification such that they do not nec-
essarily monotonically increase or decrease across rows and down columns.
Designing an FLC, as with most controller designs, is an iterative process
that may require many cycles before specifications are met. Fewer cycles
should be needed on subsequent designs as the designer gains experience.

Conclusions

An FLC has been developed to control the position of a servomotor in an
industrial indexing application. The FLC’s performance can be compared to a
PD position controller. This can be done by software and hardware prototype
demonstrations that disturbances and parameter variations have less effect on
the performance of the FL.C than the PD controller. These parameters include
step size, load inertia, friction and input disturbances. There is, however,
a tradeoff between the robust performance of FLC and the complexity of
the controller and control design. The decision on whether to adopt an FLC
method will have to be made based on the improvement/cost ratio for each
application.
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8.6 Fuzzy Logic in Automotive Applications

8.6.1 Fuzzy Antilock Brake System
Introduction

In recent years fuzzy logic control techniques have been applied to a wide
range of systems. Many electronic control systems in the automotive industry
such as automatic transmissions, engine control and Antilock Brake Systems
(ABS) are currently being used. These electronically controlled automotive
systems realize superior characteristics through the use of fuzzy logic based
control rather than traditional control algorithms.

ABS is implemented in automobiles to ensure optimal vehicle control and
minimal stopping distances during hard or emergency braking. The number
of cars equipped with ABS has been increasing continuously in the last few
years. ABS is now accepted as an essential contribution to vehicle safety.
The methods of control utilized by ABS are responsible for system perfor-
mance.

Intel Corporation is the leading supplier of microcontrollers for ABS and
enjoys a technology agreement with Inform Software Corporation the lead-
ing supplier of fuzzy logic tools and systems. The combination of Intel ABS
architecture and fuzzy logic is a result of long-term investment and exploration
of new technologies and ideas. The increasing automotive customer awareness
of ABS has greatly increased the demand for this technology. Improving ABS
capability is a mutual goal of automotive manufacturers and Intel Corpora-
tion. The growing interest in the automotive community to implement fuzzy
logic control in automotive systems has produced several major automotive
product introductions.

Fuzzy Logic Overview

Formal control logic is based in the teachings of Aristotle, where an element
either is or is not a member of a particular set. Since many of the objects
encountered in the real world do not fall into precisely defined membership
criteria, some experimentation was inevitable. Zadeh was one of those who
investigated alternative forms of data classification. The result of this investi-
gation was the introduction of fuzzy sets and fuzzy theory at the University of
California Berkeley in 1965. Fuzzy logic, a more generalized data set, allows
for a “class” with continuous membership gradations. This form of classifica-
tion with degrees of membership offers a much wider scope of applicability,
especially in control applications.

Although fuzzy logic is rigorously structured in mathematics, one advan-
tage is the ability to describe systems linguistically through rule statements.
One such control rule statement for an air conditioning unit might be:

“If temperature is Hot and Time of Day is Noon then air conditioning
equals very high.”
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Several rules, similar to the example, could be used to describe a system
and controlled response. The parameters of Hot, Time and Very High are
defined by membership functions. As linguistic descriptions of a system are
much easier to produce than complex mathematical models, fuzzy logic has
great appeal for controlling complex systems as changes in the system have
little if any effect upon the algorithm.

Fuzzy ABS would require more complex control constructs than simple
“if-then” rules. In this type of control system, input variables map directly
to output variables. This simple mapping does not provide enough flexibility
to encode a complex system such as an ABS system. However, more complex
techniques are available which can be applied to fuzzy logic systems. For
example, it is possible to build a control with intermediate fuzzy variables,
or systems, which have memory. With these constructs, it is possible to build
rules such as...

“If the rear wheels are turning slowly and a short time ago the vehicle
speed was high, then reduce rear brake pressure.”

Such rules lend themselves to development of an ABS braking system
based on fuzzy logic. The output of a fuzzy logic system is determined in
one of several ways. The COG technique will be discussed in this paragraph.
Once all rules are evaluated, their outputs are combined in order to provide
a single value that will be defuzzified. This output calculation is performed
as follows. The control rule output value is multiplied by its position along
the X-axis, yielding position times weight for the rule. This calculation is
repeated for all control rules. These position/weight products are combined
to form the sum of products. This sum of the products is divided by the sum
of output values to determine the COG output along the X-axis. COG is the
final system output in a control algorithm.

Fuzzy ABS

ABS systems were introduced to the commercial vehicle market in the early
1970s to improve vehicle braking irrespective of road and weather conditions.
However, due to the technical difficulties and high cost of early systems, ABS
was not recognized by automakers as an advantage until the mid-1980s. The
ABS market has rapidly grown and is forecast to be $5 billion yearly by 1995
and $10 billion or more by the year 2000. Experts predict that 35-50% of all
cars built worldwide in 5 years will have ABS as standard equipment.

Electronic control units (ECUs), wheel speed sensors, and brake modula-
tors are major components of an ABS module. Wheel speed sensors transmit
pulses to the ECU with a frequency proportional to wheel speed. The ECU
then processes this information and regulates the brake accordingly. The ECU
and control algorithm are partially responsible for how well the ABS system
performs.

Since ABS systems are nonlinear and dynamic in nature they are a prime
candidate for fuzzy logic control. For most driving surfaces, as vehicle braking
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force is applied to the wheel system, the longitudinal relationship of friction
between vehicle and driving surface rapidly increases. Wheel slip under these
conditions is largely considered to be the difference between vehicle velocity
and a reduction of wheel velocity during the application of braking force.
Brakes work because friction acts against slip. The more slip given enough
friction, the more braking force is brought to bear on the vehicles momentum.
Unfortunately, slip can and will work against itself during cornering or on
wet or icy surfaces where the coefficient of surface friction varies. If braking
force continues to be applied beyond the driving surface’ useful coefficient of
friction, the brake effectively begins to operate in a nonfriction environment.
Increasing brake force in a decreasing frictional environment often results in
full wheel lockup. It has been both mathematically and empirically proven a
sliding wheel produces less friction a moving wheel.

Inputs to the Intel Fuzzy ABS are derived from wheel speed. Acceleration
and slip for each wheel may be calculated by combining the signals from each
wheel. These signals are then processed in the Intel Fuzzy ABS system to
achieve the desired control. Unlike earlier 8-bit microcontroller architectures
with limited math capability, the Intel Fuzzy ABS example utilizes a high
performance, low cost, 16-bit 8XC196Kx architecture to take advantage of
improved math execution timing.

Model BUILDER

Unlike a conventional ABS system, performance of the Intel Fuzzy ABS sys-
tem can be optimized with less detailed knowledge of the internal system
dynamics. This is due to the process used to refine the rule base and in
the initial development of the system using Inform Software Corporation
fuzzyTECH(R) 3.0 MCU-96 software tuned for the Intel Architecture with
optimized code output and the associated Real Time Cross Debugger. The
software tool set combined with a linguistic approach to control implemented
in the Intel Fuzzy ABS solution allows for rapid development. A cornerstone
of this rapid development is the Intel fuzzy logic modeling software kit called
fuzzyBUILDER.

The development system, called fuzzyTECH(R) MCU-96, is specifically
optimized for the MCS(R) 96 architecture. It contains:

— A fully graphical CASE tool that supports all design steps for fuzzy system
engineering.

— A simulation and optimization tool for fuzzy systems. This tool displays
system performance and can be interfaced to conventional simulators to
obtain performance data.

— A code generator which generates complete C-Code for the fuzzy system.
The C-Code calls optimized assembly routines on the target controller for
fast performance.
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Table 8.10. Performance of a 20 MHz 8XC196Kx device

7 Rules 20 Rules 20 FAM rules 80 FAM rules
2in/lout 2in/lout 2in/1 out 3in/1 out
0.22ms 0.33ms 0.34 ms 0.50 ms

The following Table 8.10 shows the performance of several test systems on a
20 MHz 8XC196Kx device. All times shown are worst-case execution results.
Note FAM rules are individually weighted as opposed to a system in which
all rules have identical weight:

Conventional ABS control algorithms must account for nonlinearity in
brake torque due to temperature variation and dynamics of brake fluid
viscosity. Also, external disturbances such as changes in frictional coefficient
and road surface must be accounted for, not to mention the influences of tire
wear and system components aging. These influential factors increase system
complexity, in turn effecting mathematical models used to describe systems.
As the model becomes increasingly complex equations required to control ABS
also become increasingly complicated. Due to the highly dynamic nature of
ABS many assumptions and initial conditions are used to make control achiev-
able. Once control is achieved the system is implemented in-vehicle and tested.
The system is then modified to attain the desired control status. However, due
to the nature of fuzzy logic, influential dynamic factors are accounted for in
a rule based description of ABS. This type of “intelligent” control allows for
faster development of system code.

ABS Block diagram:

. Feed-
4 W.D. Ignition back

L L )

Brake Data Input

L

Main Program
Fuzzy Logic
Inference
Engine

N\
Data Output

Wheel
Speed

Error
Lamp

PWM

Inputs:
The Inputs to the Intel Fuzzy ABS are represented in the diagram above and
consist of:
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1. The brake: this block represents the brake pedal deflection/assertion. This
information is acquired in a digital or analog format.

2. The 4 W.D: this indicates if the vehicle is in the 4-wheel-drive mode.

3. The ignition: this input registers if the ignition key is in place, and if the
engine is running or not.

4. Feed-back: this block represents the set of inputs concerning the state of
the ABS system.

5. Wheel speed: in a typical application this will represent a set of four input
signals that convey the information concerning the speed of each wheel.
This information is used to derive all necessary information for the control
algorithm

FuzzyTECH(R) 3.0

The proposed system shown above has two types of outputs. The PWM signals
to control ABS braking, and an Error lamp signal to indicate a malfunction
if one exists.

Intel Fuzzy ABS Features

In the Intel Fuzzy ABS an embedded 87C196JT microcontroller (a member
of the 8XC196Kx family) is used in conjunction with Inform Software Cor-
poration fuzzyTECH(R) software. Rules constitute the base of the algorithm
and are evaluated in sequence, one after the other.

In contrast, if a custom dedicated fuzzy parallel processor were to be
used, rules could be evaluated in parallel. The parallel processing method sug-
gests a fast processing cycle. However, in this case data acquisition and data
output continues using conventional peripherals. The time gained in parallel
rule processing can be lost in acquiring and manipulating data via external
peripherals. The best solution continues to use a software fuzzy algorithm on
a microcontroller with fast internal peripherals. In this case, sequential rule
processing is transparent to the system and the process appears to have been
done in parallel. The MCS(R) 96 family of microcontrollers is equipped with
high performance internal peripherals that make data acquisition and data
conditioning of outputs fast and easy to handle. This, and the wide range
of addressing modes, broad availability of interrupts and a powerful set of
instructions make Intel microcontrollers immanently suitable for fuzzy logic
applications.

For an ABS implementation, the MCS(R) 96 family is also a perfect match.
The High Speed Input Output unit can be used to effectively handle I/O
without impacting precious on-chip timer resources. Most microcontrollers
in the Intel 16-bit family have also incorporated on-chip Analog-to-Digital
converters with 1,024 discrete codes (10-bit resolution). The use of on-chip
A /D reduces chip count. The A/D can be used to sense braking action taken
by the driver. In addition, there is a large set of both direct and indirect
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interrupts to deal with real-time events and exceptions. The priority scheme
of the interrupts can be modified dynamically in software.

For outputs the on-chip pulse width modulator (PWM) unit is available
for use in providing variable output signals to the individual wheels. Changing
the frequency and/or the duty cycle of the PWM can be done simply with a
very fast register write operation.

In addition to the peripherals, microcontrollers in the Intel 16-bit MCS(R)
96 family have internal RAM and ROM. Program instructions and data can
be stored on-chip for optimized execution. No long external bus cycles are
required to read data due to the large register based architecture. This feature
is extremely beneficial to fuzzy logic. The knowledge base, i.e., the rules and
the membership functions can be stored on-chip. Thus, rules can be evaluated
in a very short amount of time.

Conclusion

The use of fuzzy-logic in conjunction with microcontrollers is a fairly new
development in automotive applications. Fuzzy logic and or neural networks
are used to control automotive applications like ABS, automatic braking for
collision avoidance, adaptive cruise control and chassis control.

8.6.2 Antilock-Braking System and Vehicle Speed Estimation
Using Fuzzy Logic

Introduction

Vehicle dynamics and braking systems are complex and behave strongly
nonlinear which causes difficulties in developing a classical controller for ABS.
Fuzzy logic, however facilitates such system designs and improves tuning abil-
ities. The underlying control philosophy takes into consideration wheel accel-
eration as well as wheel slip in order to recognize blocking tendencies. The
knowledge of the actual vehicle velocity is necessary to calculate wheel slips.
This is done by means of a fuzzy estimator, which weighs the inputs of a longi-
tudinal acceleration sensor and four-wheel speed sensors. If lockup tendency is
detected, magnetic valves are switched to reduce brake pressure. Performance
evaluation is based both on computer simulations and an experimental car.

Fuzzy control, a relatively new, intelligent, knowledge based control tech-
nique performs exceptionally well in nonlinear, complex and even in not math-
ematically describable systems. Thus the use of fuzzy logic for an ABS seems
to be promising.

Antilock-Braking Systems

The aim of an ABS is to minimize brake distance while steerability is retained
even under hard braking. To understand the underlying physical effect, which
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Fig. 8.80. (a) Friction characteristics; (b) Wheel model
F.: Wheel load; R: Wheel radius; w: Angular wheel frequency; v: Velocity of wheel
center; Fr,: Longitudinal force

leads to wheel blocking during braking, consider Fig. 8.80a: coefficient of
friction is shown as a function of wheel slip, relating to the terms given in
Fig. 8.80b.

Calculating the wheel slip by

v—wR

5= 100%,
the longitudinal wheel force results in F| (s) = p(s)F..

At the beginning of an uncontrolled full braking, the operating point starts
at s = 0, then rises steeply and reaches a peak at s = spax. After that,
the wheel locks within a few milliseconds because of the declining friction
coefficient characteristic which acts as a positive feedback. At this moment
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the wheel force remains constant at the low level of sliding friction. Steering
is not possible any more.

Therefore a fast and accurate control system is required to keep wheel slips
within the shaded area shown in Fig. 8.80a.

Vehicle Speed

A crucial point in the development of wheel slip control systems is the deter-
mination of the vehicle speed. There are several methods possible: until now
the velocity is measured with inductive sensors for the wheel rotational speed.
Especially in the case of brake slips the measured speed does not correspond
with reality. To obtain very accurate results, optical or microwave sensors take
advantage of a correlation method. However, these sensors are very expensive
and will not be used for ABS.

Sensors and Actuators

The experimental car was fitted with sensors and actuators shown in Fig. 8.81.
Each wheel is connected to a metallic gearwheel, which induces a current
within an attached sensor. The frequency of the rectangular shaped cur-
rent is proportional to the angular frequency w; ; and can be evaluated by a
microcontroller. In addition to common ABS fitted cars, a capacitive acceler-
ation sensor for measuring the longitudinal acceleration a, is implemented.

Furthermore Fig. 8.81 depicts the hydraulic unit including main brake
cylinder, hydraulic lines and wheel brake cylinders. By means of two magnetic
two-way valves each wheel, braking pressure p; ; is modulated. Three discrete
conditions are possible: decrease pressure, hold pressure firm, and increase
pressure (up to main brake pressure level only). Each valve is hydraulically
connected to the main brake cylinder, to the wheel brake cylinders and to the
recirculation.

WP Pt

(ON3 P|,l'

Fig. 8.81. Sensors and actuators of the experimental car
CG: Center of gravitiy; a,: Longitudinal acceleration; w;_ ;: Angular wheel frequency;
HU: Hydraulic Unit; p; j: Wheel brake pressure; i: 1=left, r=right; j: f=front, r=rear
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Fig. 8.82. Estimation of car velocity

Estimation of Vehicle Speed Using Fuzzy Logic

There exists an estimation system based on Kalman-Filter, which performs
well, but is not suitable because of very high performance requirements. In
this approach the speed estimation uses multisensor data fusion that means
several sensors measure vehicle speed independently and the estimator decides
which sensor is most reliable. Figure 8.82 represents the schematic structure
of the fuzzy estimator. The signals of the four wheel speed sensors w; ; are
used as well as the signal of the acceleration sensor a,.

In a data preprocessing block the measured signals are filtered by a lowpass
and the inputs for the fuzzy estimator are calculated: four wheels slip w; ;,
and an acceleration value Av,. The applied formulas are:

’UFuz(k‘ - ].) — wi’j(k — 1)R

Elwi,j (k) = op (]{; — 1) 100%
wnd (az (k) (k)T
_ Qg — GOffset
Avy(k) = o) 100%

whereby aofset 1S a correction value consisting of an offset and a road slope
part. Comparing the measured acceleration with the derivative of the vehicle
speed Vg, which is calculated with the fuzzy logic system, derives it. After
this subtraction, the signal is low pass filtered to obtain the constant com-
ponent aofiset Vruz(k — 1) is the estimated velocity of the previous cycle. A
time-delay of T' is expressed by the term 1/z.

The fuzzy estimator itself is divided into two parts. The first (Logic 1)
determines which wheel sensor is most reliable, and the second (Logic 2)
decides about the reliability of the integral of the acceleration sensor, shown
in Fig. 8.83.

This cascade structure is chosen to reduce the number of rules.

Starting at block “Logic 1”7 and “Logic 2” the crisp inputs are fuzzificated.
Figure 8.84 shows the input-membership-functions (IMF) with four linguistic
values (Negative, Zero, Positive and Very_Positive).



8.6 Fuzzy Logic in Automotive Applications 273

Fig. 8.83. Stucture of the fuzzy estimator
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Fig. 8.84. Input membership functions
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Fig. 8.85. Output membership functions

The rule base consists of 35 rules altogether. To classify the present driving
condition vehicle acceleration is taken into consideration. This should be ex-
plained for three situations:

1. Av, Positive: braking situation, all wheels are weighted low because of
wheel slips appearing.

2. Av, Zero: if wheel speeds tend to constant driving the acceleration signal
is low weighted in order to adjust the sensor.

3. Av, Negative: the experimental car was rearwheel driven therefore rear
wheels are less weighted than front wheels.

Figure 8.85 depicts the output-membership-functions (OMF). Here, three
linguistic values are sufficient. The output of the estimation is derived as a
weighted sum of the wheel measurement plus the integrated and corrected
acceleration:
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The Fuzzy-ABS Algorithm

The Fuzzy-Controller uses two input values: the wheel slip Sg:

UFuz — W UFuz — UWheel .
Sg = —= = . and the wheel acceleration:
UFuz UFuz
OVWheel _ AUwWheel
AWheel ot ~ At ,

with wheel speed vwheel and vehicle speed vgy,,, which is given by the Fuzzy-
Estimator.

The input variables are transformed into fuzzy variables slip and dvypeel /dt
by the fuzzification process. Both variables use seven linguistic values, the slip
variable is described by the terms
slip = {zero, very small, too small, smaller than optimum, optimum, too large,
very large},
and the acceleration dvypeel/dt by
dvwhee/dt = {negative large, negative medium, negative small, negative few,
zero, positive small, positive large}.

As a result of two fuzzy variables, each of them having seven labels, 49
different conditions are possible. The rule base is complete that means, all 49
rules are formulated and all 49 conditions are allowed. These rules create a
nonlinear characteristic surface as shown in Fig. 8.86.
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Fig. 8.88. Fuzzy calculations

Using this characteristic surface, the two fuzzy input values slip and
dvywhee/dt can be mapped to the fuzzy output value pressure. The labels
for this value are:
pressure = {positive fast, positive slow, zero, negative slow, negative fast}

The structure of the fuzzy ABS controller is shown in Fig. 8.87.

The optimal breaking pressure results from the defuzzification of the lin-
guistic variable pressure. Finally a three-step controller determines the posi-
tion of the magnetic valves, whether the pressure should be increased, hold
firm or decreased.

Figure 8.88 summarizes the total amount of fuzzy calculations. Numbers
within a rectangle indicate the quantity of fuzzy rules.

Simulation of a Full Braking

After implementation of the whole system in SIMULINK, a full braking on
high-m-road was carried out, with and without the fuzzy ABS. Without fuzzy
ABS the braking pressure reaches a very high level and the wheels block within
short. This results in an unstable behavior, the vehicle cannot be steered any
more and the stopping distance increases.

With fuzzy ABS controller activated, steerability is not only retained dur-
ing the whole braking maneuver, but the slowing down length was consid-
erably shortened as well. The following graphs show the steady decline of
the vehicle speed, the fluctuating decline of the wheel speed of the left front
wheel as an example and the fluctuating level of the wheel slip. The applied
braking pressure is depicted in the last diagram. The other wheels behave
approximately similar (Fig. 8.89).
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Fig. 8.89. Simulations of a full braking

Implemenation of the Fuzzy ABS Controller

The fuzzy ABS controller uses the microprocessor SAB 80C166 together with
the fuzzy coprocessor SAE 81C99A. Due to the implementation of Fuzzy al-
gorithms into the hardware of the coprocessor, the calculation speed of the
host processor increased significantly. While the control cycle time was set to
a standard value of 7ms, the computation time was only 0.5 ms! This offers
facilities for implementation of extended vehicle dynamics control. The flexi-
bility of the coprocessor is considerable, up to 64 rule bases are possible, each
of them having up to 256 inputs and rules. Furthermore an interface to most
commonly used microprocessors is available. Arbitrary shapes of member-
ship functions, different defuzzification modes including “Center of Gravity,”
an enormous rule engine with up to 10 million rule calculations per second
makes this device a very interesting product in the field of real time fuzzy
control.



8.7 Application of Fuzzy Expert System 277
Conclusion

The basis of the controlling algorithm consists of a nonlinear characteristic
surface, which was created by fuzzy logic. The convincing advantage of fuzzy
logic is the ability to modify and tune certain parts of this characteristic
surface easily and carefully. Just the linguistic rules or variables need to be
varied. This simplifies the development and shortens the development time
considerable. Implementation of the fuzzy ABS leads to excellent results of
braking behavior of the test vehicle. The deceleration level and steerability is
comparable to commercially available systems.

8.7 Application of Fuzzy Expert System

8.7.1 Applications of Hybrid Fuzzy Expert Systems in Computer
Networks Design

Introduction

The task of designing and configuring large computer networks most suited
to a certain application and environment is difficult, as it requires highly
specialized technical skills and knowledge, as well as a deep understanding
of a dynamic commercial market. Current expert systems have made solid
achievements in supporting decision makers; they use prior experience to solve
problems in different domains. Hybrid fuzzy expert systems have appeared
all over the world proving that integrated fuzzy expert systems/neural net-
works methods replaces classical hard decision methods and providing better
performance.

The current most significant trend in the computing world is the growth of
distributed processing, a technique that puts computing power closer to users
rather than in large, central mainframes. Computer communication networks
are the key for such distributed systems as they ease the share of information
between cities, building complexes, buildings, departments, and networked
nodes. Computer communication networks are generally classified into three
broad categories each differentiated primarily by the distances they span:

— Local area networks (LANSs) are short-distance networks (usually with a
range of less than 1 mile) typically used within a building or building
complex for high-speed data transfer between computers, terminals, and
shared peripheral devices,

— Metropolitan-area networks (MANs) are medium-distance, high-speed
networks with range of from 1 mile to 50 miles. MANSs often transmits
voice and video in addition to data, and

— Wide area networks (WANSs) are primarily long-distance networks used
for the efficient transfer of voice, data, or video between local, metropol-
itan, campus, and premise networks. WANs typically use lower-transfer
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rates, and common-carrier services or private networking via satellite and
microwave facilities.

In this age of internet working the ability to effectively communicate is the
key to the business success. Efficient and optimal network design is necessary
to make communication networks usable and affordable. By network design,
we mean the selection of various network devices and connections to accom-
plish an organization’s operational objectives. A network’s configuration can
greatly affect its performance and cost. It is, therefore, vital that the best com-
bination of equipment, connections, and placement of network connections for
end-user nodes be made to satisfy an organization’s objectives.

These objectives may include a multitude of factors other than the prices
of the computers and the networks, such as the reliability, the response, the
availability, and the serviceability.

Professional designers with intensive knowledge and experience are needed
for large computer communication network design, modeling and simulation.
Such designers must be well informed about the most recent updates in this
rapidly advancing field to be able to handle the available state of-the-art
technologies. Since designers of such caliber are difficult to find and usually
very expensive, we proposed the use of hybrid fuzzy expert systems to play
their role and/or assist them in their task.

In this section, we focus on presenting the design, the knowledge repre-
sentation, and the operation of a network design hybrid fuzzy expert system
(FES).

Expert Systems in Network Design

ELAND, an Expert Design of Local Area Networks, has been the first activity
in applying expert systems in network design. The ELAND’s problem decom-
position approach to the computer network design problem was suitable for
solving the problem 5-8 years ago.

In COMNED, we proposed a modern approach for using expert systems
for network design, keeping in mind (1) the system openness and modularity
in-order to allow the system future updatability and functionality and (2) the
usage of the available powerful network simulation tools.

COMNED has been fully implemented in the Telecommunication and Net-
working Laboratories, of the University of Miami, the expert system recom-
mends the network feasible solutions most suited to the user’s application
and environment. A network simulation package receives the configuration of
the network solutions from the expert system to be modeled, simulated and
evaluated, after which the values of the performance indices are reported back
to the expert system. One of the most significant properties of the computer
communication market is its rapid advancement and change in a very short
period of time.
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Using classical expert systems and machine learning approaches to learn
new emerging technologies, we have to learn the values of all the design vari-
ables for this technology and create all the facts/rules required to make the
technology available as a design option the next time the system is used.

Consider learning the value of a design variable like the “noise_resistance”
for a newly emerging cabling system, then the knowledge engineer should
enter the degree of truth for the low, medium, high, and very_high val-
ues of this design variable for this cabling system. The problem with this
approach is that when using the experience of different design experts or
knowledge engineers their estimates for the degrees of certainty could highly
differ, then with this approach there will be multiple basis for the estimation
process.

A second problem emerged with this approach. Consider, for example, that
a 1.0 degree of truth was given to the ATM topology support for 500 nodes,
and now the system was required to learn a new topology which has better
capabilities in supporting the 500 nodes, then the degree of truth of the ATM
topology support for this number of nodes should change to a lower value for
the 1.0 to be given to the newly learned topology. On what basis this change
should happen? If we depend on the knowledge engineer estimate then we are
magnifying the problem of multiple estimation basis. If we consider a fixed
change like 0.1 decrease (the degree of truth of the ATM topology support
for 500 nodes will change to 0.9), we then find that many cases are far from
realistic.

Also during the development of COMNED, a significant potential was
found in integrating fuzzy sets, fuzzy logic, and neural networks into the
knowledge representation and the reasoning process of the expert system.
In particular we realized that:

1. The nature of knowledge representation and its suitableness to undergo
the well-founded FES theory. Sixty to 70% of the used expert system
facts/rules were found to be of fuzzy nature.

2. Hybrid fuzzy reasoning, was found to give better reasoning performance.

In addition, neural networks could be integrated with fuzzy expert sys-
tems to tune the shapes of fuzzy membership functions of the different design
variables, this will improve the reasoning and confidence performance of the
expert system and make the FES approach more justifiable.

For all the above reasons, we found ourselves motivated to present a hybrid
FES approach for network design, keeping all the objectives of COMNED, and
using fuzzy logic/neural networks to improve the system reasoning, manage
the confidence calculation and estimation, and solve the above mentioned
machine learning problem.
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Fig. 8.90. END architecture and operation

Network Design Hybrid Fuzzy Expert System:
Architecture and Operation

The hybrid FES proposed in this paper is a part of a global network design
system called “END,” An Expert Network Designer. The internal structure
of the hybrid FES is shown in Phase #1, Phase #2, and Phase #4 areas
of Fig. 8.90. END is divided into four distinct Phases — the configuration
entry phase, solution recommendation phase, model simulation phase, and
the performance analysis phase.

Configuration Entry Phase

In this phase, the hybrid FES interacts with the user through a user interface
to obtain a general description of the networking project. The description is
obtained through a group of planners which issue a number of hierarchical
questions going from the highest possible network level, which is the num-
ber of network sites, the WAN interconnectivity between the different sites,
passing by the number of buildings in each site, the number of floors in each
building. etc., and ending with the number of workstations and servers in the
departmental LANs. The system questions are designed to be as simple as pos-
sible for any person, not necessarily a network specialist, who is aware of the
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network general functionality and layout. The system uses a fuzzy knowledge
base consisting of a database of information necessary for providing expert
advice, a set of assertions relating these pieces of information, domain-specific
information about the network configuration, traffic characteristics, and mea-
sures for determining the suitability of various models in its model library, as
well as information about modeling, analysis, and simulation in general.

The answers of the configuration questions and the other design guidelines
are used to find the network feasible solutions through a fuzzy network design
inference engine. This inference engine uses fuzzy rule-based heuristics on an
if-then formalism. In the case of finding multiple solutions for a certain user
configuration, the system interacts with the user, in a solution refinement
session, with a new set of questions, depending on the different solutions
obtained, to be able to filter the solutions to the most suitable solutions for
the user environment.

The user answers are used to revise the design guidelines initially assumed
by the system. The Technology and Design Techniques Learning is a neural
network /knowledge acquisition learning subsystem used to improve the time-
efficiency of END’s network design problem solver and allow the hybrid FES
to learn the new emerging network technologies, modern network design tech-
niques, and the updated specifications of the existing technologies. Finally,
the Neural Membership Functions Tuning subsystem is a neural network to
tune the membership functions of the fuzzy network design variables.

Solutions Recommendation Phase

In this phase, the hybrid FES reports the best feasible topologies and cabling
systems most suited to the user’s application and environment (entered in the
last phase) for each subnet, backbone and WAN; in addition to the confidence
rank in each solution. At the end of the user interaction session, a graphical
layout of each global feasible network solution is given to the user on a GUI.
Optional full solution reasoning is available if the operator is interested in
knowing why these solutions were chosen.

Model Simulation Phase

If the operator chooses to run the optional network simulation ranking, END
will generate a separate model for each feasible solution under a network
simulation package with the aid of a communications — oriented simulation
language, run the simulations, and report the simulation results to the expert
system part.

Solutions Analysis Phase

In this phase a Performance Analyzer receives the simulation results from
previous phase, in conjunction with the global network solutions from the
Solution Recommendation Phase, to start classifying the different solutions
with respect to their significance in each measured performance parameter.



282 8 Applications of Fuzzy Logic

The hybrid FES is designed to have two solution ranking subsystems:

1. A Technical Ranker which ranks the solutions according to the measured
performance parameters.

2. A Confidence Ranker which simply ranks the solutions according to the
user confidences in their satisfaction to the solution properties.

All solutions with confidence less than a preassigned value are initially elimi-
nated as feasible solutions.

All the other solutions are ranked first according to the Technical Ranker,
and second according to the Confidence Ranker.

Network Design Problem

The network design problem solving structure is a tree traversal. Figure 8.91
presents the decomposition of the network design problem, which introduces
in each step a sequence of subproblems that must be solved. The global phys-
ical network problem “root node” is decomposed into subproblems for each
network site and the WAN connecting these sites. In the design tree lower
levels each network site problem is decomposed into subproblems for each
building in the site and the site’s backbone. Then each building problem is
further decomposed into subproblems for each subnetwork in the building
and the building’s backbone. Finally, all the backbone and the subnetwork
problems are decomposed into topology and cabling system subproblems.
The global network design problem is finally decomposed at the tree leaves
into a number of topology and cabling system subproblems. For solving these
two problems, COMNED uses a single general purpose subnetwork design
inference engine which is invoked every time the system reaches the design

Global Physical
Network
Network Site_0 Network Site_1Y ---------- Network Site_n

Site_0.Building_0Ywag----------- {Site_0.Building_m) ------------
Backbone Catiskbone ite_0.Building_0} fte_0.Building 0y ---------- (Site_0.Building O
Topology aoing Syste Backbone ubnetwork_Q ubnetwork k

Backbone Backbone Subnetwork Subnetwork
Topology Cabling System Topology Cabling Systel

Fig. 8.91. Design problem decomposition

Wide Area Network
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tree leaves to obtain the suitable topology and cabling system for the currently
active problem. This problem decomposition represents the formalization of
the practical approach used by design experts for computer networks design.

Operation and Knowledge Representation

The expert system uses fuzzy fact-like and constraint-like structures to repre-
sent the specification of the different network topologies and cabling systems.
In addition, it uses conceptual application-oriented design rules to represent
the logic of network design.

There are three main fuzzy inferencing rules, the first for finding feasi-
ble cabling systems, the second for finding feasible topologies, and the third
for finding WAN feasible solutions. A prolog-like format of the main infer-
ence rules and design decision trees are shown in Fig. 8.92. The subnetwork
general specifications (obtained from the user and represented by the expert
planners as design guidelines) are passed as arguments to these three infer-
ence rules which therefore will obtain, using the fuzzy predefined knowledge,
the cabling systems “Cable_media,” the network “Topology,” and WAN types
“WAN_Type” satisfying the passed subnetwork specifications. It is clear from
the cabling system design decision tree and the inferencing rule shown in
Fig. 8.92a, that the chosen cabling system depends on three design variables,
the level of noise resistance “noise_resistance,” the budget required to con-
nect one node using this cabling system “cable_with_budget_per_station,” and
the distance supported by the cabling system “cable_with_distance.” The val-
ues of such variables for the chosen cabling system (Cable_noise_resistance,
Cable_budget, and Cable_distance) should be, compared to the general spec-
ifications obtained from the user (Noise, Budget, and Distance), of equal
or higher noise resistance “Noise=<Cable_noise_resistance,” of less budget
requirements “Budget>=Cable_budget” and able to support wider network
span “Distance=<Cable_distance.”

Such design variables are chosen in our system as fuzzy variables with
different membership functions. For example, the “noise_resistance” is a fuzzy
variable with four membership functions low, medium, high, and very_high.

low(noise_resistance)= Fi (cabling_sytem)medium(noise_resistance)
= Fy(cabling_system)

high(noise_reistance)= F3(cabling_system)very_high(noise_reistance)
= Fy(cabling_system)

The four membership functions F, F5, F3, and F); were chosen to be gaussian
functions, as shown in Fig. 8.93. The values of such functions represent
the degree of truth of the satisfaction of these membership functions of the
“noise_resistance” fuzzy design variable. The membership functions are cho-
sen such that the functions will have a contour similar to that estimated by a
single knowledge engineer or a design expert.
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(a) Cabling system design tree and inference rule

Cabling System
Budget per node Cable Distance Topology support
cable(Cable_media,Budget, Distance,Noise):-

noise_resistance(Cable_noise,Cable_media),Noise<=Cable_noise_resistance,
cable_with_budget_per_station(Cable_media,Cable_budget), Budget=>Cable_budget,
cable_with_distance(Cable_media, Cable_distance),Distance<=Cable_distance::95.

(b) Topology design tree and inference rule

ubnetwork Topology)

Budget per node Number of nodes Reliability

topology(Budget, Stations, Reliability,Ibm, Expand, Speed, Topology):-
topology(Budget_per_station(Topology,Min_budget),
Budget>=Min_budget,

number_of_stations(Max_stations, Topology),
Stations=<Max_stations,

Expand=<Max_stations,

lan_reliability(Reliability, Topology),
Ibm_environment(lbm, Topology),

high_speed(speed, Topology)::95.

Bandwidth Transfer Rate

(c) WAN design tree and inference rule
Wide Area Network,

WAN Purpose Traffic Pattern

wan_type(WAN_purpose, Traffic_nature, Distance, WAN_Type):-
wan_purpose(WAN_purpose, WAN_Type),
traffic_nature_and_distance(Traffic_nature,Distance, WAN_Type)::95

WAN Distance

Fig. 8.92. Inference engine design trees and rules

Consider that the user entry for a subnetwork media noisiness (part of
any subnetwork general specification obtained from the system user during
the Configuration Entry Phase) was level high. From Fig. 8.93, a cabling sys-
tem like the unshielded_twisted_pair will have a degree of truth equal to 0.09
while another cabling system like the thick_coaxial will have a degree of truth
equal to 0.82. Similar membership functions are used for the other two fuzzy
design variables “cable_with_budget_per_station” and “cable_with_distance.”
Obtaining the degree of truth for each of the three fuzzy design variables
(Cable_noise_resistance, Cable_budget, and Cable_distance) say d1,d2, and d3,
for a specific cabling system, we can realize that the degree of truth of choos-
ing this particular cabling system “Cable_media” (which is the same like the
degree of linguistic certainty of the rule used in its choice) is:

Conf = min(min(d1, d2, d3), 95),
where 95 is the linguistic certainty of the premise of the rule “cable
(Cable_media, Budget, Distance, Rule).”
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Fig. 8.93. Membership functions of the noise_resistance fuzzy variable

The above method is used in the MILORD computation method for cal-
culating the degree of linguistic certainty of fuzzy rule.

All the above applies for all the design variables in the “topology” and
“wan_type” design inference rules shown in Fig. 8.92b,c. For example, the
membership functions of the fuzzy design variable “ibm_environment,” which
shows the extent of suitableness of a specific networking topology for an IBM
mainframe environment (used as a fuzzy design variable in the last raw of the
topology design inference rule), has two membership functions yes and no.
yes(ibm_environment)=G (topology)
no(ibm_environment)=G5(topology)

The two membership functions G; and G, were chosen as gaussian and
constant functions, respectively. The two functions are shown in Fig. 8.93. The
values of such functions represents the degree of truth of the satisfaction of
these membership functions of the “ibm_environment” fuzzy design variable.

Expert System Shell and Solution Reasoning

The hybrid FES uses an optimized FES shell based on MILORD system shell
which provides an inference engine to supervise the execution of the system
rules. It uses standard backward chaining with uncertain reasoning capabilities
based on fuzzy logic to satisfy the top-level goal. The engine allows the appli-
cation of degrees of certainty by means of expert-defined linguistic statements.
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Fig. 8.94. Connectionist neural model for fuzzy membership function optimization

It also provides the features of accumulating proofs for query explanation and
solution reasoning.

The system stores proofs and explanations for the system predefined
knowledge, the user collected knowledge, and the system queries. The expla-
nations for the system predefined knowledge and the user collected knowledge
are used by the design/solution reasoning subsystem to explain the system
decisions. The system query explanations are used by the Online Help and
Query Explanation subsystem to explain the purpose and the role of these
queries to the system operators whenever requested.

System Output

The hybrid fuzzy rule-based expert system reports the best feasible topologies
and cabling systems for each subnet, backbone, and WAN during its opera-
tion, in addition to the confidence rank in each solution. At the end of the
user interaction session, a graphical layout of each global feasible network
solution is given to the user on the GUI. Finally, if the operator chooses to
run the optional network simulation ranking, the system will generate a sep-
arate model for each feasible solution under the network simulation package,
run the simulations, and report the best solution to the operator. In addition
an optional full solution reasoning is available if the operator is interested in
knowing why these solutions were chosen.
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Sensitivity to Changes in the Membership Functions

Using different shapes, centers and values for the membership function, it
was found that there is a general increase in the number of feasible solution
with the increase in the values of the membership functions of the different
fuzzy design variables and vice versa. The change in the number of solutions
is not directly proportional to the change in the membership functions but
it depends on many other factors, like the user’s network configuration, the
nature of the feasible solutions and the operating point in the formalized
network design space. Minimum inferencing was found to be less sensitive to
the changes of the membership functions. Product and Average inferencing
were found to be more sensitive to such changes.

Membership Functions Optimization in the Network Design Fuzzy
Expert System

In the previous sections a FES was successfully applied in computer commu-
nication network design. The only problem with this approach was the choice
of the membership functions of the different network fuzzy design variables
and their shapes.

A neural network connectionist model could be used to solve the problem of
choosing the optimal shape of the fuzzy membership functions in the network
design FES. The neural network connectionist model has just one fuzzy output
which is the network feasible solutions for the input network configurations.
Figure 8.94 shows the proposed neural-network connectionist model:

Layer 1: the nodes in this layer transmit network configuration input values
(NC-1 to NC-n) to the next layer directly.

Layer 2: the output function of this node is the membership function of the
different fuzzy design variables.

Layer 3: the links in this layer are used to perform the precondition matching
of the fuzzy logic rules of the network design FES.

Layer 4: the nodes in this layer have two operation modes: down—up trans-
mission and up—down transmission modes. In the down—up transmission
mode, the links at layer four should perform the OR operation to integrate
the fired rules which have the same consequence.

Layer 5: there are two kinds of nodes in this layer. The first kind of node
performs the up—down transmission for the estimated confidence in the
obtained feasible solutions (training data from a design expert based on
the input network configuration and the output feasible solutions) to be
fed into the network. The second kind of node performs the down—up
transmission for the proposed confidence in the same obtained feasible
solutions.

Again a two-stage hybrid learning algorithm is used. This learning algorithm
will determine optimal centers and widths of the membership functions of the
fuzzy design variables used in Layers 2 and 4.
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In phase one of the hybrid learning algorithm, a self-organized learning
scheme is used to locate initial membership functions. In phase two, a super-
vised learning scheme is used to optimally adjust the membership functions for
desired outputs. To initiate the learning scheme, training data (the estimated
confidence in each network feasible solution) and the desired or guessed coarse
of fuzzy partition (i.e., the general membership function shapes of the different
fuzzy network design variables) must be provided from the outside world. Be-
fore this network is trained, an initial form of the network is first constructed.
Then, during the learning process, some nodes and links of this initial network
are deleted or combined to form the final structure of the network.

With the connectionist neural network model for fuzzy membership func-
tion optimization, the category of the network design FES will move from
Loosely Coupled hybrid FES model to Fully Integrated model.

Conclusion

Fuzzy expert systems have proved to be very successful in formalizing the
practical rules used by the design experts for computer networks design, for-
malizing the logic of solving computer network design problems, and initially
choosing the most suitable solutions for a certain networking requirement. By
using fuzzy expert systems to generate the network models/simulations the
user is not required to have any kind of background of the simulation pack-
age operation. Neither is the user required to bean expert in networks design.
The user is only required to answer a group of general questions about the
network requirement: he/she will get a network design, a description of the
design, why it was chosen, a graphical diagram of the design, a design sim-
ulation, vector simulation results (curves), and even results analysis by the
expert system. Automating the process of network modeling and simulation
generation is very important as it can save the user time and expense.

Fuzzy logic addresses several problems with current expert systems like,
providing better knowledge representation, better reasoning performance, and
better management of confidence factors. Fuzzy logic was found to aid the eas-
iness of the learning process, in this paper, it was clear how fuzzy logic solved
the problem of multiple estimation basis by the usage of predefined mem-
bership functions and how the problem of saturating the membership func-
tions was eliminated by the usage of the membership functions axis-shifting.
Proposing the full integration of neural networks to tune the shapes of fuzzy
membership functions will improve the performance of the FES and make the
FES approach more justifiable.

8.7.2 Fuzzy Expert System for Drying Process Control

Introduction

The problems during the synthesis of the automatic control systems for diver-
sified processes in agriculture and industry cannot be sufficiently solved using
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classical control methods. The difficulties occur when a number of mutually
dependent variables, having different values under diversified conditions, are
to be controlled. In many of the controlled processes, the system operator
knows the way to change the control variables in the case of altered condi-
tions on the basis of the experience. In order to realize the automation of a
certain process, it is necessary to implement the information based on expe-
rience into the control system. This is very difficult to achieve in the classical
control systems.

Mentioned problems can be solved through integration of the expert sys-
tem and the fuzzy control. The expert systems are based on the computer
control of the processes. Every expert system includes existence of a knowl-
edge basis, which is in fact implementation of the experience, obtained by
the system investigation, into the process control. The form, the structure,
and the components of the knowledge basis, depend on the controlled process
itself. Using the set of measured data, the demand for doing an action in the
system as well as the action character, can be established (qualitatively and
quantitatively) according to the knowledge basis.

The knowledge basis handling is very often based on the fuzzy logic. In
most of the cases the expert system is in fact a fuzzy system used for inclusion
of the working regimes into the control system. The fuzzy logic is very success-
fully applied in the process control itself, i.e., in the control of the measured
values. The advantages of the fuzzy logic are stated when the control of a
number of the mutually dependent values, influenced by the same controlling
variables, is concerned. The fuzzy logic can achieve that error signals of all
the controlled values are taken into account at the same moment. Based on
the fuzzy system control rules, which are obtained by the investigation of the
controlled process in different working conditions, the outputs that can bring
the system very fast into the desired condition are generated.

Expert System Development

An optimum regime in the knowledge basis should be defined as one en-
abling the highest proportion of the obtained final product and used fuel, for
the given values of input parameters, including the adequate output material
moisture content. During the operation, the control system selects, in this way,
the nominal values obtained by the fuzzy controller of the fuel flow-rate and
the belt-conveyer speed. It is important to notice that the belt-conveyer speed
and the fuel flow-rate are now changing simultaneously, i.e., it is not necessary
to wait for the variation of the output temperature in order to change the fuel
flow rate. The structure of the described conception of the control system is
shown in Fig. 8.95.

The synthesis of this fuzzy control system can be divided into the five
steps:

1. Creation of the knowledge basis
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Fig. 8.95. Structure of the fuzzy control system for direct rotary dryer

2. Definition of the input material moisture content and presentation of the
input variables using fuzzy variables

3. Selection of the operational regimes

. Selection of the control rules and synthesis of the fuzzy controller

5. Choice of the fuzzy controller parameters

W~

The knowledge basis should ensure the selection of the nominal values for
the fuel flow-rate and the belt-conveyer speed on the basis of the measured
input material moisture content, height of the material layer, and nominal
temperature at the dryer output (between 80°C and 90°C).

In order to implement into the expert system and to obtain the data from
the knowledge basis, it is necessary to present the measured input material
moisture content in the form of the triangular fuzzy numbers:

A = (a1,a2,a3) (8.1)

where aq, lower range of the fuzzy number; a, nominal value of the fuzzy
number corresponding to the higher degree of membership; as, upper range
of the fuzzy number.

Graphical interpretation of the input moisture content using fuzzy num-
bers is shown in Fig. 8.96.

Every measured value of the input material moisture content will always
have exactly two corresponding fuzzy numbers having the membership func-
tions different from zero. Two nominal values of the fuel flow-rate and the
belt-conveyer speed, along with the given nominal output temperature and
height of the material layer, are chosen for these two fuzzy numbers out of
the knowledge basis. Based on the membership function for these two fuzzy
numbers, and on these two nominal values for the fuel flow rate, the fuel
flow-rate nominal value is calculated. Situation is a little bit different if the
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Fig. 8.96. Interpretation of the input material moisture content using fuzzy
numbers

belt-conveyer speed is considered. The belt-conveyer speed is changing in pre-
cisely determined shift quanta. If the two different values for the belt-conveyer
speed are chosen from the knowledge basis as the nominal values, one of these
values must be adopted as the nominal value for the belt-conveyer speed. The
difference between these two values is one shift quantum.

Fuzzy Controller Synthesis

For the process control itself it is necessary to present the output tempera-
ture and the fuel flow-rate deviations from theirs nominal values in the form of
fuzzy variables. In the case of the belt-conveyer speed, situation is again differ-
ent (the belt-conveyer speed is changed in the shift quanta), so the deviation
of the belt-conveyer speed from the nominal value can always be presented
by a certain number of the shift quanta. Concerning the process control, the
belt conveyer-speed can be changed for the exactly determined number of
quanta. The belt-conveyer speed preservation (influenced by the input mater-
ial moisture content) at the nominal value is a part of the process control with
applied expert system. On the other hand, maintenance of the fuel flow-rate,
and the output temperature, at the nominal values is carried out using fuzzy
controller.

Deviations of the output temperature and the fuel flow-rate from the nom-
inal values can be expressed as:

AT, =T, — Tpy (8.2)

AG; = Gy — G (8.3)

It is necessary to express the deviations 7T, and Gy in the form of fuzzy num-
bers. T, is expressed by the linguistic fuzzy variables having the following
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Fig. 8.97. Interpretation of the output temperature deviation by the linguistic fuzzy
variables

meaning: LNT — large negative deviation of the temperature, MNT — mean
negative deviation of the temperature, ZRT — zero deviation of the tempera-
ture, MPT — mean positive deviation of the temperature, LPT — large positive
deviation of the temperature.

The membership functions of these fuzzy variables are shown in Fig. 8.97.

It can be noticed from Fig. 8.97 that membership functions of the fuzzy
variables, describing the deviation of the output temperature, depend on a
single parameter, marked with KTo. This parameter remains changeable in
the program for the system control. The variations of this parameter make
possible that the user is able to adjust the performances of the fuzzy con-
troller according to his demands. The parameter KTo has immense influence
at the fuzzy controller behavior. The proper work of whole the control system
depends on the proper selection of this parameter. Deviation of the fuel flow-
rate from the nominal value is represented by the fuzzy variables in a similar
way. The membership functions of the linguistic variables describing deviation
of the fuel flow-rate are shown in Fig. 8.98 and have the following meanings:
LNG — large negative deviation of the fuel flow-rate, MNG — mean negative
deviation of the fuel flow-rate, ZRG — zero deviation of the fuel flow-rate,
MPG — mean positive deviation of the fuel flow rate, LPG — large positive
deviation of the fuel flow rate.

In the case of presenting the fuel flow-rate deviation from the nominal
value by the fuzzy variables, one parameter remains also unfixed (KGf). In
order to avoid the possibility of the steady-state error in the case of the mea-
surement error, the uneven distribution of the points having maximum degree
of membership for the linguistic variables is adopted.

Defuzzification

Generation of the signal controlling the fuel-flow valve is obtained using the
defuzzification method. The output (controlling) signal, which is brought to
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Fig. 8.98. Interpretation of the deviation of the fuel flow rate by the fuzzy variables

Table 8.11. Fuzzy control rules

AGi\AT, LNT MNT ZRT MPT LPT

LNG 1: LPO 2: LPO 3:ZRO 4: ZRO 5: MNO
MNG 6: LPO 7: MPO 8: ZRO 9: MNO 10: MNO
ZRG 11: LPO 12: MPO 13: ZRO 14: MNO 15: LNO
MPG 16: MPO 17: MPO 18: ZRO 19: MNO 20: LNO
LPG 21: MPO 22: ZRO 23: ZRO 24: LNO 25: LNO

the valve, is proportional to the necessary change of the fuel flow-rate. The
corresponding fuzzy variables are as follows: LNO — large negative output,
MNO - mean negative output, ZRO — zero output, MPO — mean positive
output, VPO — large positive output.

The nominal value for the zero output is 0, while the nominal values for
LNO, MNO, MPO, and VPO are chosen by the user, so that the performances
of the fuzzy controller can be adjusted by changing these parameters. It is
adopted that MPO = —MNO = Kos and LPO = —LNO = Kob. Kos and
Kob are two more parameters that influence the performance of the fuzzy
controller. The degree of membership of the output fuzzy variables is generated
on the basis of the fuzzy control rules. Fuzzy control of this one system is based
on 25 control rules, which can be represented as in Table 8.11. The rules are
shown in such a way that rows present the deviation of the fuel flow-rate,
and columns present the deviation of the output temperature. Each table
field corresponds to the single control rule, i.e., to the fuzzy variable, which
describes the system output for the corresponding input fuzzy variables. The
rules can be numbered in order to enable easier analysis. This is also done in
Table 8.11.

Every decision rule represents the one fuzzy relation between the tem-
perature deviation, the fuel flow rate deviation, and the system output. The
decision rules are given in the form of the logical implications:
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If AT, = (Linguistic variable LVT)
And AGy = (Linguistic variable LVG)
then

Output = (Linguistic variable LVO)

All the control rules can be considered as the fuzzy phrases in the form of
the fuzzy implications. If one of the control rules is marked with N as fuzzy
phrase, according to the Min—Max-Gravity Method its membership function
would be:

uN(AT,, AGy, output) = Min {uLVT(AT,), uULVG(AG;), uLVO (output) }
(8.4)
LVT, LVG, and LVO are the linguistic variables describing input and output.
The total value of the fuzzy output membership function is given by the
expression:

uwOUTPUT(AT,, AGt, output) = Max {uN1(AT,, AG¢, output), ..., uNn
x (AT, AGt, output)} (8.5)

Therefore, the fuzzy output membership function is determined by the
maximum degree of membership of a fuzzy phrase, from the set of the control
rules. This means in practice, that the degree of membership of the certain
output linguistic variable LVO is equal to the maximum degree of membership
among all the fuzzy implications, which implicate the control rule LVO. In this
manner, the degrees of membership of all the output linguistic variables taking
the values LNO, MNO, ZRO, MPO, and LPO, are defined. The output itself
is calculated as the center of gravity from the following expression:

" LVO;uOUTPUT(AT,, AGy, LVO;)

tput = - :
outpt > nOUTPUT(AT,, AG;, IVO;) 50

K2

Conclusions

The explained process control is especially convenient to use in the systems
where more dependent variables have to be controlled. It is also applicable in
the systems where it is desirable to change the operational regimes and where
the nominal values of the controlled variables are changeable during the system
operation on the basis of the input parameters. The concept of the knowledge
basis is in operation with the fuzzy variables. In other words, the knowledge
basis is developed as the fuzzy system and used for the operational regime
definition. The model of fuzzification and defuzzification was worked out.
The linguistic variables of the model have different distance between the
points having maximum degree of membership. In this manner, by using rela-
tively low number of the linguistic variables, rough and fast control is obtained
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for the large disturbances, while slow and precise control is obtained in the
case of small disturbances. Compared with classical control, the result is in
the highly improved response to the disturbances of the system.

The fuzzy logic can find an adequate application in the drying process
control because of the almost unpredictable way of the input material modifi-
cation. In order to achieve the high quality of the final product, rational energy
consumption and the increment of productivity, it is necessary to vary working
regimes, i.e., to control a large number of mutually dependent variables. It is
also necessary to implement the working regime selection experience into the
control system. Considering the above facts, it is reasonable to expect that
expert system with the fuzzy control can give very good results in the drying
process automation.

8.7.3 A Fuzzy Expert System for Product Life Cycle Management
Introduction

The real-world decision-making is too much complex, uncertain and impre-
cise to lend itself to precise, prescriptive analysis. It is this realization that
underlies the rapidly growing shift from conventional techniques of decision
analysis to technologies based on fuzzy logic. It was originally proposed as a
means for representing uncertainty and formalizing qualitative concepts that
have no precise boundaries. So far, engineering applications of fuzzy logic have
gained much more attention than business and finance applications, but an
even larger potential exists in the latter fields.

Fuzzy logic is an excellent means to combine Artificial Intelligence meth-
ods. The advantage of fuzziness dealing with imprecision fit ideally into de-
cision systems; the vagueness and uncertainty of human expressions is well
modeled in the fuzzy sets, and a pseudo-verbal representation, similar to an
expert’s formulation, can be achieved. Fuzzy logic avoids the abrupt change
from one discrete output state to another when the input is changed only
marginally. This is achieved by a quantization of variables into membership
functions.

Expert systems were designed to reason through knowledge to solve prob-
lems using methods that humans use. A FES is an expert system that utilizes
fuzzy sets and fuzzy logic to overcome some of the problems, which occur
when the data provided by the user are vague or incomplete.

In this section, we illustrate that the fuzzy approach may be useful in
industrial economics. In particular a FES is adapted for product life cycle
management. All products have certain life cycles. The well-known product
life cycle approach describes the changing features of markets during their
evolution. It may therefore serve as the theoretical framework within which
the market changes can be explained. The life cycle refers to the period from
product’s first launch into market until its final withdrawal and it is split up
in phases.
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Fig. 8.99. Life cycle period of a new product

Although life cycle varies in accordance with the product and sector base,
usually there are four phases in life cycle period as shown in Fig. 8.99. First
period is the Entrance Phase, second period is the Development Phase, third
one is the Maturity Phase and fourth period is the Satisfaction Phase. En-
trance Phase is the period of a product presentation to market and effort
spent for acceptance and in general it is the period of catching up at par
point. Development Phase is the best step in which the product has reached
maximum profit and has been through the brightest period. In the Maturity
Phase problems come up gradually and decrease in sales starts. Decrease in
sales start but companies try to keep sales high by some other marketing ac-
tivities, which are called as other sales efforts. In that period increase in sales
like jumping sales (comb tooth) occur. It is generally agreed that innovation,
performance, and competition depend significantly on the maturity of mar-
kets. Satisfaction Phase is the period that the companies would not prefer to
be in and will start to lose in a while.

During maturity period significant changes are made in the way that the
product is behaving into the market. Since an increase in profit is the major
goal of a company that introduces a product into a market, the product’s life
cycle management is very important. Presentation of a new product to the
market at the best time shall provide advantage to companies in competition
and increase in share in the market.

In the conventional product life cycle, introduction of new product to
market corresponds to the point shown as point “A” in Fig. 8.99. When the
company comes to this point in the end of maturity period, it has to choose one
of the alternatives of new product, new market, or withdrawal of goods from
market, so as not to enter into the fourth period, the regression. Depending
on the structure in which the company is, new product alternative can be the
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new product in physical/functional context, new product in the consumer’s
view or alternative usage.

Point chosen as point “A” in Fig. 8.99 in the existing systems is considered
to be late for the new product to enter to market. Because, this point is the
period in which the company withstands a number of costs called other sales
efforts (promotion,