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90 Computer Simulation Studies
in Condensed-Matter Physics XV
Editors: D.P. Landau, S.P. Lewis,
and H.-B. Schüttler
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Preface

This book is a collection of 31 papers presented at the International Workshop
on Modern Trends in Geomechanics, held on 27–29 June 2005 in Vienna.
This workshop was run under the motto to bring together different schools of
thought in geomechanics research. The workshop was attended by about 50
participants from 15 countries. Besides the presentations, the workshop also
offered welcoming occasions for stimulating discussions.

The contributions in this book cover a wide range of topics from applied
mathematics to geoengineering applications, reflecting the breadth and depth
of geomechanics research. The articles are peer reviewed and arranged in six
parts: general aspects, constitutive modelling, micromechanics, analytical and
numerical methods, granular materials and engineering applications.

We would like to thank all contributors for their diligence to provide timely
their contributions. The generous support received from the following organi-
zations is gratefully acknowledged:

– Alpine Mayreder Construction Ltd
– Bank Austria – Credit Institute
– Austrian Geomechanics Society

Our thanks also go to the managing editors at Springer, in particular
Ms. Heather King and Dr. Thomas Ditzinger, who have enabled the qual-
ity publication of this book at reasonable price. Last but not least, we would
like to express our thanks to our co-workers in Vienna and Nottingham for
their help during the workshop. In particular, our secretaries, Anke Priewasser
(Vienna) and Caroline Dolby (Nottingham), deserve our heartfelt thanks for
their effort in organising the workshop and compiling this book.

W. Wu H-S. Yu
Vienna Nottingham
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Energy Methods for Constitutive Modelling
in Geomechanics

I.F. Collins and A.T.T. Tai

School of Engineering, University of Auckland, New Zealand
i.collins@auckland.ac.nz

1 Introduction

Some of the earliest applications of energy arguments to develop conceptual
models for the behaviour of soils, sands and other geomaterials are those es-
tablishing stress–dilatancy relations due to Taylor [35] and Rowe [31]. The
original formulations of the Cam Clay, critical state models was based upon
concepts of the plastic dissipation of energy. More recently, energy arguments,
based upon the laws of thermodynamics have been used to establish general
procedures for constitutive modelling [37]. One of the best known thermome-
chanics formulations is due to Rice [29]. However this has a built in “normality
structure” and is not appropriate for frictional geomaterials which commonly
exhibit non-normal flow rules. Here we use the line of development described
in the books by Ziegler [40], Maugin [21] and papers by Collins and Houlsby
(1997) and Houlsby and Puzrin [18], who coined the term “hyper-plasticity”
for this approach. The characterizing feature of the hyper-plastic approach is
that the complete elastic–plastic constitutive behaviour, including yield condi-
tions and flow rules, can be determined from two thermomechanical potentials,
the free energy and the dissipation rate.

2 The Extant Approach to Critical State Soil Mechanics

The original approach to critical state soil mechanics [23,24,30,32] was based
on the plastic work equation:

ŴP = pėPv + qėPγ = MpėPγ = Φ̂, (1)

where we are using the standard notation for triaxial tests. All stresses are
to be interpreted as effective stresses. This relation equates ŴP, the rate of
plastic work, to Φ̂, the rate of energy dissipation. The latter being assumed to
be entirely due to frictional shearing,M being a frictional coefficient. (Note we
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are here, for simplicity, assuming the plastic shear strain rates are positive.)
In using (1) the rate of elastic work is tacitly assumed to be balanced by the
rate of change of the recoverable, elastic free energy. This equation can be
rewritten as:

η ≡ q

p
= M + tan ψ,where tanψ ≡ − ė

P
v

ėPγ
, (2)

where ψ is the dilation angle. In this form the relation is equivalent to Taylor’s
[35] stress–dilatancy equation, demonstrating that as a result of dilation the
“strength” of the soil is increased by the additive factor tanψ. Schofield and
Wroth [32] then identified that the dilation angle defines the normal to the
plastic potential, so that (2) can again be rewritten as:

q

p
=M +

dq
dp
,which integrates to give q =Mp ln

(
pc
p

)
. (3)

Drucker’s postulate or the maximum work hypothesis was then invoked to
identify the plastic potential and the yield locus and hence predicted a normal
flow rule. As is well known the yield loci (3), of what is now known as “original
Cam Clay”, have a vertex on the pressure axis, where p = pc. It was further
assumed that this consolidation pressure is a unique function pc(e) of e – the
voids ratio. This function describes the expansion or contraction of the yield
loci. It should be noted that although this, and the other classical critical state
soil models are frequently referred to as being “isotropic hardening models”,
they do in fact contain a “kinematics hardening” component in the sense that
they translate along the pressure axis as well as expand isotropically, although,
of course, they do describe isotropic material behaviour. This observation is
important since the physical origins of kinematics and isotropic hardening are
very different [36].

Analysis of this model showed that if a loading programme was continued
sufficiently far, a soil element would eventually reach a critical “state”, at
which the element would continue to shear, but under constant stresses and
without change in volume. These critical states lay on unique “failure” line,
q = Mp in the stress plane and on a unique curve p = (1/2)pc(e) in the (p, e)
plane. This curve is usually assumed to be a straight line either in the (ln p, e)
or (ln p, ln v) plane. These critical lines separate domains of compactive (loose
or wet) and dilative (dense or dry) behaviour. This model was a major advance
as it combined the classical idea of Coulomb failure, Casegrande’s concept of
a critical void ratio and Taylor’s model of Reynolds dilatancy .

However some of the specific properties of the model, such as the vertex,
were deemed to be unsatisfactory by some, and Burland [3] and Roscoe and
Burland [30] produced the “modified Cam Clay” model, by postulating a
plastic work equation, which includes volumetric dissipation

pėPv + qėPγ = p
√
ėP2
v + M2ėP2

γ , (4)
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which, using the extant procedure, predicts a yield locus and associated flow
rule (“stress–dilatancy relation”) of the form:

q2 −M2p(pc − p) = 0, and tan ψ =
η2 −M2

2η
. (5)

The yield loci are now elliptical, and do not have vertices, but the stress–
dilatancy relation is now markedly different from Taylor’s. Nevertheless the
new yield loci are found to be more in accord with experiment, at least for
lightly over-consolidated clays.

3 A Critique of the Extant Procedure

Here we are concerned with the validity of the arguments, illustrated earlier,
which were used to establish the yield condition and flow rule, from a pos-
tulated dissipation function. Although they have been used by a number of
subsequent workers, they are open to three major criticisms:

(a) The plastic work equations (1) and (4) identify the plastic work rate with
the rate of energy dissipation. This is not generally true [6, 7]. In the
current class of models, in which a soil state is defined by the elastic
and plastic strains, the free energy function Ψ in general, depends on the
plastic as well as the elastic strain. The free energy is frequently assumed
to be decoupled and can be written as the sum of two state functions
ΨE(eEij) + ΨP(ePij) [9, 10, 36]. The plastic work equation should hence be
written as:

ŴP = Ψ̇P + Φ̂, where Φ̂ ≥ 0. (6)

Physically this extra term ΨP represents that proportion of the elastic
energy stored at the micro-level, within the grains, that is not recovered
during elastic unloading. Instead it is trapped as a result of the “grain
rearrangement” associated with the plastic deformation. It is frequently
referred to as “frozen elastic energy” or “stored plastic work” [7, 13, 36].
It can only be recovered under reversed plastic loading. It would seem to
be of more importance in clays than sands, since, in addition to the effect
of grain rearrangement, energy can be stored at the micro-level within
elastically deformed platelets within the flocculated particle structure as
suggested by Bjerrum [2]. The rate of change of the plastic part of the
free energy can be used to define the shift or back stresses

Ψ̇P ≡ pSėPv + qSėPγ (7)

These stresses control the kinematics aspects of the material hardening.
(b) The use of the current pressure p in the expression for dissipation means

that the dissipation mechanism is unaffected by pre-consolidation, and the
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material has no memory. Whilst this would seem appropriate for sands at
confining pressures low enough not to induce crushing, it would not seem
apt for clays or crushable sands, whose structure is significantly affected by
prior consolidation. In fact the hyper-plastic thermomechanical procedure
when applied to the dissipation functions in (1) and (4), result in open
ended, “Coulomb-type” yield loci, with no pre-consolidation pressure as
shown by Collins and Hilder [8].

(c) The “dissipative stresses” pD and qD can be defined by

pDė
P
v + qDėPγ = Φ̂. (8)

Thus, whilst it is the inner product of the plastic strain rate with the ac-
tual stress, which gives the plastic work rate, it is the inner product with
the dissipative stress, which gives the dissipation rate. The rate indepen-
dence of a material requires its dissipation function to be homogeneous of
degree 1 in the plastic strain rates. One of the most powerful and useful
results of hyper-plastic thermomechanics is that for such materials, the
dissipative stresses must lie on a yield locus, whenever dissipation occurs,
and that the plastic strain rates are given by a normal flow rule in dis-
sipative stress space. The yield function in true stress space can then be
found by using the shift stresses. When the dissipation function involves
the actual pressure, the flow rule is non-associated in true stress space as
shown by Collins and Houlsby and Collins [6, 9]. The flow rule is hence
determined by the thermodynamic potentials and one does not have to
invoke any extraneous normality, or other flow rule, hypothesis in this
procedure.

4 The Hyper-Plastic Thermomechanical Procedure

The basic plastic work equation (6) can be written as:

ŴP = pėPv + qėPγ = pSėPv + pDėPv + qDėPγ , (9)

where pS ≡ ∂ΨP/∂ePv is the shift pressure. Here we are assuming that the
plastic shear strains do not induce any “frozen elastic energy”. A view sup-
ported by the experiments of Luong [20] and Okada and Nemat-Nasser [26],
so that ΨP is independent of ePγ . It follows that

p = pS + pD and q = qD. (10)

To generate the modified Cam Clay model we will choose the dissipation
potential to be

Φ̂ = pcd
√
ėP2
v +M2ėP2

γ , (11)

where pcd(ePv ) is that part of the consolidation pressure which causes dissipa-
tion. Using Euler’s theorem , dissipative stresses are hence given by

pD ≡ ∂Φ̂

∂ėPv
=
p2cdė

P
v

Φ̂
, and qD ≡ ∂Φ̂

∂ėPγ
=
p2cdM

2ėPγ

Φ̂
. (12)
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Eliminating the strain rates from (11) and (12), gives the elliptical, dissipative
yield condition and associated flow rule:

p2D
p2cd

+
q2D

M2p2cd
= 1 and tan ψ ≡ − ė

P
v

ėPγ
=
M2pD
qD

, (13)

which using (10) gives the elliptical yield loci in true stress space:

(p− pS)2
p2cd

+
q2

M2p2cd
= 1. (14)

When q = 0, yielding occurs when p = pS±pcd, so that if we insist that the
yield loci all go through the origin, pS = pcd, and the consolidation pressure
is pC = 2pS, and (14) reduces to (5), the yield condition for modified Cam
Clay. Note that if we do not make this assumption, we can generate “bubble
models” in which both ends of the yield locus translate. Hardening or softening
is governed by the function pS(ePv ), or equivalently by pC(epv), which are known
from the critical state (or normal consolidation) lines in the (v, p) plane. Note
that on the critical state line q = Mp, p = pS and ėPv and pD are both zero. It is
very important to appreciate that since the shift stresses are derived from the
free energy function, they are functions only of the current plastic strains. The
dissipative stresses however are derived from the dissipation function, which
depends on the current rate of change of the plastic strains. The relation
between the pressure and the plastic volume strain is hence unique, whenever
the dissipative pressure is zero. As illustrated earlier, this always happens on
the critical state line (CSL) for isotropic models, but, as will be seen, this is
not the case when anisotropy is induced. Since the pressure is also a unique
function of the elastic volume strain, it follows that the critical state line
(CSL) in (v, p) space is also unique for isotropic models.

It should also be noted that the earlier theory assumes that dissipation is
governed by the same function for plastic compaction (ėPv > 0) as for dilation
(ėPv < 0).

An unsatisfactory aspect of this model is that the shear component of
the dissipation in (11), is MpcdėPγ instead of MpėPγ as would seem more ap-
propriate when modelling frictional behaviour. In consequence Collins and
Hilder (2002) investigated an extended two-parameter family of generalized,
isotropic critical state models, which include modified Cam Clay and the fric-
tional extension suggested earlier as special cases. The dissipation function
is taken to be

Φ̂ =
√
A2ėP2

v +M2B2ėP2
γ , (15)

where A and B are linear functions in p and pS:

A = (1 − γ)p+ pS and B = (1 − α)p+ αpS, (16)

where α and γ are parameters with values in the interval {0,1}. Both parame-
ters are 1 for modified Cam Clay. The resulting yield loci, are still elliptical,
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with an associated flow rule, in dissipative stress space

p2D
A2

+
q2D

M2B2
= 1 tan ψ ≡ − ė

P
v

ėPγ
= −M

2pD
qD

B2

A2
, (17)

but are transformed into different shaped curves in true stress space, since A
and B now also depend on the true pressure p

(p− pS)2
A2

+
q2

M2B2
= 1 (18)

and the flow rule is no longer associated.
In all cases the critical state is reached when pD = 0, p = pS and q = Mp.

Moreover the volumetric plastic strain rate is zero so that the dissipation is
purely frictional, and the rate of change of the frozen energy is also zero, i.e.
Ψ̇P(epv) = 0 Frozen elastic energy is created on the contractive, hardening,
loose (wet) side of critical, but released on the dilative, softening, dense (dry)
side. As noted earlier, the CSL for all these models is also unique in (v, p)
plane.

Putting q = 0 in (), the consolidation pressure is seen to be pC = rpS,
where r = 2/γ is the “spacing ratio” [23, 39]. The parameter γ is hence a
measure of the “length” of the yield locus, whilst α is a “tear drop” parameter.
As α decreases from unity, the locus becomes less elliptical and more tear drop
shaped as illustrated in Fig. 1. The Coulomb model is recovered when both
parameters and pS are zero

The elliptical dissipative yield locus can be given a parametric represen-
tation

pD ≡ p− pS = A sin 	 and qD ≡ q =MB cos 	. (19)

The yield condition can hence be expressed in terms of the parametric angle
	 using (17) and (19):

ξ ≡ pS
p

=
(1 − (1 − γ) sin	)

1 + sin	
, η ≡ q

p
= M

[1 + (1 − 2α+ αγ) sin	)] cos	
1 + sin	

.

(20)

q

pO
pD

qD
CSL CSL

a = 0.5, g = 0.4

O

Fig. 1. Yield loci in dissipative and true stress planes, isotropic model
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This is a parametric form of the yield condition for an isotropic material,
which, provided the plastic behaviour is governed by angles and not by a
yield stress, can always be written in the form η = F (ξ). This follows from
elementary dimensional analysis. The parameter ξ is essentially the “state
parameter” of Been and Jefferies [1], as it is a measure of displacement from
the critical state line in the voids ratio–pressure plane. The stress ratio and
dilatancy angle depend just upon ξ. A similar state pressure index has been
used by Wang et al. [38]. As pointed out by Sladen et al. [34] this is, in fact, an
essential feature of all isotropic critical state models. In the thermomechanical
formulation it is more convenient to use the angle 	 as the fundamental,
isotropic state parameter. This is a measure of the angular displacement from
the critical state, where 	 = 0, in the dissipative stress diagram.

For this extended class of critical state models the dilatancy angle is
given by

tan ψ = −M [1 + (1 − 2α+ αγ) sin	)] tan	
(2 − γ) . (21)

This extended family of critical state models was originally developed on
purely phenomenological grounds. However Collins [6] has recently shown that
the new parameters: α and γ, can be given micro-mechanical interpretations,
using a bi-modal model, based upon the discrete element method (DEM) find-
ings of Radjai et al. [27]. The micro-mechanical representative volume element
(RVE) is assumed to consist of a strong network, consisting of force chains,
and a complementary weak network, where the direct stresses are lower, but
the grains are more readily able to shear. It is found that α is the volume frac-
tion of force chains, whilst γ depends on the fraction of the mean pressure,
which is carried by the force chains.

5 Reynold’s Dilatancy and Induced Anisotropy

The flow rules of isotropic models such as those discussed earlier are frequently
interpreted as “stress–dilatancy relations”. However, with the exception of
that for original Cam Clay, these are not compatible with the original ideas of
Reynolds [28]. It has been appreciated for some time, that dilation induced by
shearing is accompanied by the development of anisotropy. This anisotropy is
due to the reorientation of contact normals between particles, the development
of anisotropic distribution of voids, and the reorientation of individual grains.
To model this behaviour, the volumetric plastic strain rate is regarded as
the sum of two parts as outlined in Collins [7]. One, denoted by ėPvir, is the
irreversible strain rate resulting from changes in the current stress, and is that
predicted by an isotropic theory, such as that outlined earlier. The second part
is the induced or reversible plastic volume strain rate, which arises as a result
of shearing and is given by

ėPvin = − tan θ ėγP , (22)
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where θ is termed the “induced dilatancy angle”. This division of the plastic
volume strain rate is very similar to that proposed by Nixon and Chandler [25]
or Shamoto et al. [33] when modelling cyclic behaviour. As will be seen θ is
also a measure of the induced anisotropy. Following Kanatani, Goddard and
Bashir, Houlsby and Collins and Muhunthan [11, 15, 17, 19], we will regard
this induced dilatancy as an internal constraint, which does no work and does
not dissipate or store any energy. This is because if the grains were rigid and
frictionless, the work needed to induce Reynolds dilatancy would be zero, in
the quasi-static, weightless limit.

The basic plastic work equation is hence now written as:

pėPv + qėPγ = pSėPvir + {pRėPvin + qRėPγ } + {pDėPvir + qDė
P
γ }. (23)

The first term on the right-hand side is the rate of change of frozen elastic
energy given by the rate of change of the plastic part of the free energy
function. This is independent of the plastic shear strain and only depends on
the irreversible part of the volumetric plastic strain. Hence pS = pS(ePvir). The
second term is the rate of working associated with Reynolds dilatancy, which,
as stated, must be zero. Hence, the reaction stresses must satisfy

qR = pR tan θ. (24)

This model is a refinement of that presented by Collins and Muhunthan [11],
in that the distinction between the reaction and shift stresses is more precisely
defined. The third term is the rate of dissipation, which, like the free energy,
does not depend on the induced volume changes. Note the definition of the
dissipative stresses pD and qD differs from that we have used in (8). From (23)
we see that the two sets of stresses are related by

pD = pD and qD = qD − tan θ pD. (25)

By equating like plastic strain rate terms in this work equation we deduce

p = pR, p = pS + pD and q = qR + qD. (26)

From these equations we deduce that the stress ratio is

q

p
=
qD
p

+ tan θ. (27)

The first term on the right-hand side is the “intrinsic strength” associated
with the dissipative yield function, the second is the “extra strength” arising
from the induced dilatancy and accompanying anisotropy. We can now apply
the general procedure to determine the yield loci, flow rule, etc. to develop the
anisotropic extension of the general class of models discussed earlier. However,
here, for illustrative purposes we will only consider modified Cam Clay, for
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which the dissipation function is

Φ̂ = pcd
√

(ėPvir)2 + (MePγ )2 = pcd
√

(ėPv + tan θ ėγ)2 + (MePγ )2. (28)

This is similar to the dissipation function originally proposed by Dafalias [14]
to model anisotropic behaviour. Here M is not necessarily a constant, but,
like θ, can evolve with the deformation. Application of the standard procedure
shows that the elliptical dissipative yield loci are given by

p2D
p2cd

+
q2D

M2p2cd
= 1 or

p2D
p2cd

+
(qD − tan θ pD)2

M2p2cd
= 1. (29)

With parametric representations

pD = pD = pcd sin	, qD = Mpcd cos	, qD = pcd(M cos 	 + tan θ sin	.
(30)

The yield loci in (pD, qD) space are the same as illustrated in Fig. 1. The
“barred” dissipative stress plane, hence describes the isotropic part of the
deformation, and the associated, normal flow rule give the isotropic part of
the dilation. In the (pD, qD) plane the ellipses are rotated, as illustrated in
Fig. 2, and the flow rule in this plane gives the total dilation, thus:

tanψ ≡ − ė
P
vir

ėPγ
= −M tan 	, (31)

and tanψ ≡ − ė
P
v

ėPγ
= tan θ + tanψ = tan θ − M tan	. (32)

In terms of total effective stresses, the yield loci are

(p− pS)2
p2S

+
(q − p tan θ)2

M2p2S
= 1, (33)

or in parametric form
pS
p

= 1/(1 + sin	), and
q

p
= tan θ + M

cos	
1 + sin	

. (34)

qD

pD

PTL

KNCL
RTL

p

q

O

KNCL

PTL
RTL

Fig. 2. Yield loci in dissipative and true stress planes, anisotropic model
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Eliminating θ between (32) and (34) gives the general stress–dilatancy rela-
tion:

q

p
= tanψ +M sec 	. (35)

(Note that we have again identified pS and pcd, to ensure that the origin
lies upon the yield loci, as in the isotropic theory.) The state of the soil is
hence defined by the (isotropic) state parameter 	, or equivalently pS/p, and
θ, which is a fabric parameter, dependent on the degree of anisotropy. In
Fig. 2 the kinematics normal consolidation line (KNCL), where ėγ = 0 and
	 = π/2, has slope θ, in the (q, p) plane. The CSL of the isotopic models now
splits into two lines. On one, the total plastic dilation angle and plastic volume
strain rate are zero. This is the phase transition line (PTL) encountered in
undrained tests. On this line the dilative strains induced by the Reynolds’
effect are exactly, counterbalanced by the compactive strains induced by stress
changes. For Modified Cam Clay (MCC), the slope of this line is M and the
dissipation rate is pSMėPγ , where M =

√
M2 + tan2 θ.

On the second line, corresponding to the point where pD = 0 and 	 = 0
in Fig. 2 the irreversible volumetric strain rate, due to stress changes is zero,
so that the deformation is entirely as envisaged by Reynolds. On this line
ψ = θ, as the only volume changes are those induced by shear. For this reason
Collins [7] suggested that this line be termed the Reynolds–Taylor line (RTL).
From (34) or (35), the slope of this line is given by the classic Taylor relation:

q

p
= tan θ +M = tanψ +M, (36)

though here, we are working within an anisotropic framework. The dissipative
pressure is zero on the RTL, so that p = pS, and hence the pressure is a unique
function of ePvir. The Reynolds–Taylor state is hence represented by a unique
line in the (ePvir, p) plane. Assuming a value for the spacing ratio, this line and
hence the kinematic hardening function, pS(ePvir), can be determined from
isotropic compression tests. Although the material is dilating on this line, this
dilation does not dissipate any energy and the dissipation is given by (1), as
originally envisaged by Schofield and Wroth [32]. It is of course important to
emphasize that the values of θ and M are path dependent and all these lines
in the (p, q) plane rotate as the deformation proceeds. In a drained test, the
final position of the RTL corresponds to the ultimate failure line, whilst in
an un-drained test it gives the ultimate or asymptotic state line of Gudehus
et al. [16] and Chu [4] and Lo [5]. The main object of this chapter has been to
describe a physically motivated, theoretical framework. Detailed applications
to the modelling of sand, will be presented elsewhere.

6 Achievements and Ongoing Research

To date the main achievements are:

(a) The use of the hyper-plastic thermomechanical formulation provides a
rich, mathematical structure for systematically developing models of
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geomaterials. In particular it is providing a new energy interpretation
of the classical critical state models.

(b) An extended family of critical state models have been developed, which
better models the behaviour of clays and sands.

(c) The flow rule and yield loci are determined from the assumed form of
the thermodynamic potentials. Much of the arbitrariness of the choice of
these functions has been removed.

(d) The distinction between “Reynolds dilatancy” and plastic flow rules has
been emphasized.

(e) Induced anisotropy is seen as a natural consequence of dilatancy.
(f) Definite statements can be made about the uniqueness of “critical lines”

in (e, p) space.
(g) Micro-mechanical concepts can be included in the formulation of the ther-

modynamic potentials. Specifically, aspects of the force chain structure can
be included, by introducing two new parameters, which affect the shape
of the yield loci and form of the flow rule.

The main limitations of the current analyses are:

(a) Attention has been focused on single surface models. Whilst there are
no difficulties in extending the general procedures to multi-surface, sub-
loading and bounding surface models, the exact forms of the free energy
potentials, which govern the translation of these surfaces still need to be
determined. A particularly important aspect is the modelling of particle
re-arrangement and of grain crushing.

(b) The analyses presume that the strain can be regarded as the sum of an
elastic and plastic strain, and that these strains can be used as state vari-
ables. It also assumes that the free energy can be separated into elastic
and plastic components. Analysis of the homogenization procedure, as-
suming continuous stress and strain fields at the micro-level, show that
these assumptions are only strictly valid when the micro-elasticity, aris-
ing from the grain deformations is linear [12,22]. When the micro-elastic
behaviour is non-linear, it is no longer possible to treat elastic and plas-
tic strains as state variables. Instead, the elastic–plastic decomposition
must be performed on the strain rate, and the resulting elastic and plastic
strains are path dependent.

(c) Whilst the models take account of the freezing of elastic energy and
the bimodal nature of the stress and strain distributions at the meso-
level, they do not account for the detailed behaviour at the micro-level.
Specifically they do not account for the complexity of individual grain
interactions.
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Physical Background of Hypoplasticity
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1 Introduction

No other concept was and is as successful in Soil Mechanics as hypoplasticity.
This is due to a sound physical background, as will be briefly outlined in this
chapter. A reviewer’s response to my first proposal more than 30 years ago
was “Terzaghi completed Soil Mechanics 1925, so there is no need for further
research”. In fact Terzaghi contributed a lot to our science, but certainly he
did not complete it. With hypoplasticity we have joined the mainstream of
Physics.

“Original hypoplasticity” was chosen as title of Sect. 2 as there are some
common features with Schofield’s [55] “Original Cam Clay”. The concept of
asymptotic states was taken over, but it was formulated in a more consistent
manner. Percolations appear instead of thermodynamic phase transitions. Po-
lar quantities are introduced for state limits with localizations in Sect. 3. This
can lead to pattern formation or deterministic chaos. The intergranular strain
is also introduced by means of state limits (Sect. 4). It renders possible a kind
of interpolation between hypoelastic and hypoplastic behaviour.

To a certain extent hypoplasticity is supported by statistical granular dy-
namics simulations. The main difference to molecular dynamics is that granu-
lar encounters are not conservative: there is no potential for the intergranular
forces, and the grains are changed every time. Therefore there is no Hamil-
tonian, and thus no dynamic equilibrium with temperature and state func-
tions as potentials. Instead, external drift with energy input can lead to state
limits independently of the start. These are represented by attractors, i.e.
asymptotic solutions of the hypoplastic relations. This requires that certain
properties of the grains are permanent although they undergo dislocations
near contacts, so abrasion and fragmentation are neglected.

Clay particles are less regular and far softer even than angular calcite
grains. Certain properties of them must nevertheless be permanent as pro-
portional compression and isochoric shearing of remoulded saturated clay can
lead to asymptotic states independently of the start. Cracking is indicated as
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a third kind of state limit of Cam Clay, it can be specified by hypoplasticity.
Viscosity of the particles plays a significant role, this is modelled by visco-
hypoplasticity (Sect. 5). It is due to thermally activated dislocations of the
solid particles. The bound pore water influences the skeleton behaviour as its
density is changed with changes of the skeleton (Sect. 6).

Grain skeletons can reveal similar viscous effects as clays, which cannot
be explained by thermal activation. This leads to seismo-hypoplasticity with
a granular temperature (Sect. 7). The granular dynamics is not yet fully un-
derstood. Further open questions arise with unsaturated skeletons and with
crushing particles. Hypoplasticity has not reached a dead end (Sect. 8).

2 Original Hypoplasticity

Goldscheider [18] discovered some properties of sand under cuboidal defor-
mations which enhanced the birth of hypoplasticity. First, there is no elastic
range, but a limit condition with a flow rule. Second, with constant mean
pressure the amount of contractancy after a reversal is bigger than the one
of dilatancy before. Third, proportional compressive deformation paths lead
to proportional stress paths asymptotically. So I gave up elastoplasticity and
pointed out the need of novel constitutive relations with these properties [26].

After frustrating attempts with statistical mechanics Kolymbas [39] pro-
posed constitutive equations of the rate type with the properties outlined
above. After this breakthrough lengthy trial and error attempts led to im-
proved representations, but determination and physical meaning of the para-
meters were not satisfactory. A way out was opened by Kolymbas [40] combin-
ing the influences of pressure and density. Bauer [6] and Gudehus [21] proposed
pressure-dependent limit void and stress ratios and hypoplastic relations con-
sistent with them. This rendered possible an easy and robust determination
of parameters, and more and more validations by model and field tests.

The limit void ratios may be briefly discussed (Fig. 1) in comparison with
Critical State Soil Mechanics (CSSM, [56]). Following Casagrande [11], critical
states are defined in CSSM as asymptotes for simple shearing with stationary
stress ratio

τ/σ′ = tanϕsc (1)

and void ratio
ec = ecr − λ ln(σ′/σr). (2)

The reference stress σr is chosen at will and thus not objective. Evidently (2)
fails for σ′ → 0 and σ′ → ∞. In hypoplasticity critical states are defined as as-
ymptotes for isochoric shearing, so the problem of localization is circumvented
(Sect. 3). Equation (1) holds again, but

ec = ec0 exp
[
−
(

3σ′

hs

)n]
(3)
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Fig. 1. Pressure-dependent limit rations of highly (H) and moderately (M) plastic
clay by CSSM (a) and by hypoplasticity (b)

is assumed instead of (2). The granulate hardness hs is objective, it ranges
from ca. 100 MPa for angular calcite to ca. 10 GPa for round quartz grains.
Near σ′ = 0 (3) can be replaced by

σ′ ≈ 1
3
hs(1 − ec/ec0)1/n, (4)

which is typical of a percolation [57]. The index n increases from ca. 0.2 for
angular to ca. 0.5 for round grains. Thus it decreases with an increase of the
fractal dimension of the grain surface.

For an isotropic compression from a very loose state the void ratio by
CSSM tends to (2) with eir instead of ecr, and to (3) with ei0 instead of ec0
by hypoplasticity. Thus CSSM implies the conventional virgin compression
law that fails for σ′ → 0 and σ′ → ∞. The percolation by (4) is known
in granular physics [28]. For an oedometric compression the same holds true
with a reference void ratio halfway between the ones for critical states and for
isotropic compression.

Other stress states can similarly be allowed for in CSSM and in hy-
poplasticity. The latter implies a critical stress ratio for cylindrical symmetry,
wherein ϕsc is related with ϕc by Bauer’s [7] formula

tanϕsc = 2/
√

1 + 3/ sin2 ϕc . (5)

Formally (5) is also proposed for peak states, replacing ϕc by ϕp for cylindrical
symmetry and ϕsp for simple shearing. Postponing localization (Sect. 3) and
cyclic densification (Sect. 4), we consider now state limits with the lowest
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possible void ratio, ed. A cylinder with ed is capable of uniaxial stress, then it
has ϕp = 90◦, (5) yields ϕsp = 45◦. In this physically meaningful extreme state
of the skeleton, which may then be considered as a kind of dry masonry, there
is dilatation without sliding. This replaces the unspecified tensile cracking of
CSSM proposed by Schofield [55].

Granular dynamics simulations give partial support to hypoplasticity. Sub-
stituting grain contacts by linear normal and shear springs with dry friction,
however, misses the pressure–density relationship. Thus at best the lack of an
elastic range and a certain influence of e on ϕp and dilatancy can be shown.
Only recently the non-linearity due to pressure-dependent contact flats has
been allowed for [49]. It corresponds to (4) qualitatively, the asymptotic prop-
erties for stationary shearing and proportional compression are reproduced
as in hypoplasticity (Fig. 2). Uniaxial stress states have earlier been produced
with the same model [61], but with very low e like a jointed rock. Further sim-
ulations with e ≈ ed are advisable to better understand the granular phase
transition from skeleton to dry masonry (cf. Sects. 3 and 4).

3 Shear Localization

As outlined already by Cauchy, the symmetric stress tensor named after him
is not the only substitute of internal forces. It cannot represent spatial fluc-
tuations (Sect. 4) and polar effects. The polar quantities introduced by the
Cosserat brothers were first applied to dislocations of solids. It was realized
that they play a role only near surfaces, also those separating a body by local-
ization. The molecules along a liquid surface are polarized and more densely
packed, in particular along a cavitation. This holds true also for interfaces be-
tween different solids and/or fluids. Cum grano salis, i.e. with non-conservative
interparticle forces, these statements can be transferred to soils.

For a shear localization it suffices to introduce three polar quantities: ro-
tation rate ωc minus shearing and rigid body parts, couple stress mc and
non-symmetric part τc of shear stress. Hypoplastic relations with these quanti-
ties have two additional attractors (Fig. 3): Stationary shearing with constant
rate D and ωc leads to constant stress ratios mc/dgσ and τc/σ in addition
to τ/σ = tanϕsc, whereas stationary shearing or proportional compression
with ωc = 0 leads to mc = 0 and τc = 0. The mean grain size dg enters
as characteristic length. With these attractors the first attempt was already
successful [58], later versions were more elegant [34].

Consider now the evolution of an initially dense slender biaxial sample
by shortening (Fig. 4). Minute initial fluctuations of e evolve into a pattern
when approaching the peak σ1. Alongside with it a pattern of mc with zero
mean value evolves. At peak a single shear band arises, the skeletons below
and above are only shifted past each other. Shortening of a flat biaxial sample
leads to a similar initial pattern, but at peak a zig-zag shear band appears
(Fig. 5). With further shortening and dilation the sample is paved by further
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Fig. 2. Simulated response of an assembly of polygons [49] to biaxial shearing with
constant pressure (a, b) and proportional compression (c)

zig-zag bands. In the asymptote there is a fractal spatial fluctuation of mc

around zero and of e around ec. All this is validated by experiments [25].
Similar critical phenomena appear in various non-linear dynamic systems.

Thermodynamic systems at critical points, characterized by zero transition
energies, generate spatial patterns and obey power laws with universal ex-
ponents for deviations from the critical temperature [10]. Far off equilibrium
irregular propagations can evolve into coherent waves at a critical point [29].
With modified boundary conditions, a deterministic chaos can evolve from
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a biaxial sample, calculated with hypoplasticity [25]

the same critical point. Molecular critical phenomena can also arise with in-
terfaces, e.g. spontaneous capillary condensation or cavitation.

Granular physics was triggered by the discovery of self-organized criticality
and 1/f -spectrum of avalanches from a little sand heap [4]. Later physicists
realized the role of density in granular phase transitions. A granular gas with-
out equilibrium was introduced, but grain skeletons posed a harder task. The
granular dynamics of shear localization was partly revealed [3]. Average grain
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Fig. 5. Evolution of a flat biaxial sample, calculated with hypoplasticity and polar
terms [25]

rotations inside shear bands indicate ωc, whereas they fluctuate around zero
outside. mc and τc were derived as averages of suitable grain groups without
contact moments [16]. These are important qualitative first steps.

The following interpretation of hypoplasticity in this light is admittedly
heuristic. The critical state of a grain skeleton is a kind of critical point:
its continuation does not change the average state, the spatial fluctuation is
fractal in the range between sample and grain size. It is achieved by uniform
shift imposed from the boundaries with constant mean pressure or density. A
power law (4) holds near σ = 0, but counterparts of power laws near a critical
temperature are not known.

Peak states of grain skeletons are similar to molecular critical points in so
far as they lead to localization along spontaneously arising internal interfaces.
Along the middle of a shear band there are no polar quantities, there the state
limit is described by a peak stress ratio and dilatancy ratio. Both depend on
the instantaneous density index

Id = (ec − e)/(ec − ed), (6)

wherein ec and ed depend on σ via (3) with ed0 < ec0 for ed. Id enters the
evolution equations via (1 − Id)α with an exponent α depending on grain
roughness, thus a power law holds near critical states. The unattainable state
limit with Id = 1, ϕc = 90◦ and maximum dilatancy is an upper bound of
peak states.

Peak states imply localization under further boundary shift as thus the
dissipation of energy is reduced. The shear zone thickness ranges from grain
to body size for Id from 1 to 0. Polar quantities arise spontaneously along
shear bands if these are not enforced along rough boundaries, and can be
swept out again if the skeleton is forced towards an overall critical state. For
geotechnical boundary conditions this comes up to deterministic chaos more
than to self-organization. That’s why plastic limit states provide at best crude
estimates and the bound theorems do not hold. More research is needed, in
particular with hypoplasticity, until such critical phenomena of grain skeletons
are properly understood so that they can be technically controlled.
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4 Alternating Evolutions of Grain Skeletons

The typical response to cyclic shearing with constant σ′ predicted with hy-
poplasticity shows a step-wise densification and hardening up to periodic
asymptotic loops. The lowest e approaches ed for small amplitudes. With
deviator cycles around a critical stress ratio a periodic ratcheting is achieved
with ed < e < ec (Fig. 6). Thus alternating evolutions can lead to periodic
butterfly-shaped state loops. These resemble strange attractors of conserva-
tive systems, and may also indicate impending deterministic chaos of non-
conservative grain skeletons.

Hysteresis and ratcheting are not really as strong as in Fig. 6. This short-
coming of hypoplasticity is overcome with the intergranular strain tensor
δ [45]. For sufficiently big monotonous deformations δ is determined by the
tensors σ and D of stress and stretching rate and not needed therefore, hy-
poplasticity then works without it. Many small strain cycles lead to δ → 0,
then the response is hypoelastic, i.e. incrementally linear. Cases in between
are covered by an interpolating evolution equation with tr(Dδ) as a switch
function. This leads to a less hysteretic alternating evolution (Fig. 7). The ob-
served behaviour in resonant column tests with different amplitudes suffices
to determine the parameters for δ [12].

The need of an internal tensorial variable in addition to the external
ones, σ and e, was recognized when dealing with the asymptotic response
to proportional compression [26]. As outlined earlier, δ has two attractors,
viz. for hypoplastic and hypoelastic behaviour. They can be related with the
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spatial fluctuation of intergranular forces. It is maximal together with δ, then
force chains are marked and neighboured grains with low forces are close to
sliding [53] so that the skeleton is prone to dissipation. The fluctuation is
minimal for δ = 0, then no grains are close to sliding so that the response
is non-dissipative. Simulations show for ratcheting that the fluctuation gets
stationary somewhere between upper and lower bounds [1].

There is some similarity with a non-porous solid with crystallite dislo-
cations and eigenstress. Thermal annealing is similar to attaining minδ by
minute oscillations. Solid dislocations are thermally (Sect. 5), granular ones
seismically activated (Sect. 6). In both cases a back stress is not physically
justified as this would be a spatial mean value. As the spatial fluctuation of
intergranular forces is fractal over several grain sizes δ can be independent
of the latter. Evidently the deviatoric plastic strain is not a state variable.
Elastoplastic relations with nucleating and bounding yield surfaces may at
best get objective with suitable infernal variables but even then they are less
economic and transparent than hypoplastic ones.

Response envelopes [20] have been and can be of use for further improve-
ment of hypoplastic relations. There is no need for inverse ones which are
explicit in strain. The extension to more than two components is straightfor-
ward, but not prioritary. The necessity of an elliptic shape was proven by sys-
tematic variations [64]. It characterizes the hypoelastic part with a potential,
although this cannot uniquely be separated. Granular dynamics simulations
may be of use to bridge between the attractors of δ, but not with linear contact
springs (cf. end of Sect. 2).
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Stability cannot be judged from the incremental response only. The no-
tion local stability is physically irrelevant, even the stability of a sample or
a representative volume element cannot be judged without boundary con-
ditions. Along the boundaries there are fluctuations as those represented by
polar stresses and δ, and there is also a transmission of chaotic acoustic waves
(Sect. 7). As elastic strain rates cannot clearly be separated the net energy for
stress cycles is scarcely of use. Plasticity bound theorems do not hold for lack
of normality, the existence of statically possible fields is only necessary for
stability. Energy balances with assumed kinematic chains can at best yield
estimates [19,21].

The propagation of shear waves is more revealing for stability [48]. The re-
sponse to repeated waves was simulated with hypoplasticity and validated by
shakebox tests and earthquake data [27]. Loss of stability may be revealed by
loss of propagation [47], or by the emission of coherent waves [2]. Stability may
also be defined by step-wise reduced ratcheting under repeated equal bound-
ary impacts [23]. This corresponds to Liapunov’s definition, but a Liapunov
function has still to be found.

5 Visco-Hypoplasticity

Rate-independence is assumed in original hypoplasticity, and also with in-
tergranular strain. This is apparently justified if the interaction of grains is
rate-independent. Clays and organic soils have softer particles (the name grain
is not adequate) so that rate effects are important. Terzaghi [60] reported on
creep effects in solid friction experiments and proposed contact flat sizes in
proportion to the gross pressure and the inverse of solid strength. Prandtl [52]
used the same argument to support Amonton’s friction law long before Bow-
den and Tabor [9]. Based on Arrhenius’ law and creep experiments, he derived
the equation

τ = τr[1 + c1 ln(ε̇/c2)] (7)

for the dependence of solid shearing resistance τ on strain rate ε̇. He showed
that the two parameters c1 and c2 are proportional to the absolute temper-
ature T . This means that plasticity implies thermally activated non-linear
viscosity. Mitchell et al. [43] showed by creep tests with T -control that (7)
works for a saturated clay. Derived activation energies per mole were typical
for ceramics, but activated flow units could not be identified. Bjerrum [8] ob-
served resistances to undrained shearing which can be approximated by (7).
He also reported on compression and overconsolidation with time for constant
σ′. Leinenkugel [42] observed the same rate-dependence and proposed

cu = σe tanϕsc[1 + Iv ln(ε̇/ε̇r)] (8)

with Hvorslev’s [37] equivalent stress σe. The viscosity index Iv and the ref-
erence rate ε̇r correspond to c1 and c2 in (8), so both are proportional to
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T . With e corresponding to σ′ by (2) Leinenkugel [42] could reproduce Bjer-
rum’s [8] statements on delayed compression. He interpreted his findings with
the theory of rate processes.

It was repeatedly observed [46] that (1) holds with constant ϕc for sta-
tionary shearing independently of ε̇. This is reconciled with Terzaghi’s and
Prandtl’s argument by assuming contact flat sizes that decrease with bigger
ε̇ via (7). If ε̇ is increased with constant e both τ and σ′ increase so that
(1) holds again, this explains (8). Persson [51] derived (8) by assuming ther-
mally activated dislocations of nano-size homogeneous blocks, and related
their properties with the factors c1 and c2. The dislocation energy of clay
particles could thus be related with Iv in (9) [22] via

εa ≈ kBT (12 + 1/Iv) , (9)

yielding realistic values from ca. 0.5 to 3 eV for Iv from 0.06 to 0.01. As with
sliding friction [50] the high-frequency submicroscopic oscillations are not at
variance with the rate-independence of ϕc.

Rate-dependent state limit void ratios can be approximated by (2) or (3)
with σr or hs depending on ε̇ as cu by (8). Using this hs, i.e.

hs = hsr[1 + Iv ln(D/Dr)] ≈ hsr(D/Dr)Iv (10)

with the modulus D of stretching rate in a hypoplastic relation describes also
transitions for monotonous deformations with varying strain rate or effective
stress [21]. This does not work, however, for path reversals and relaxation.

Kolymbas [39] proposed a rate-type relation with the second-order stretch-
ing rate D2 that reproduces rate-dependence, creep and relaxation. As it re-
quires an initial strain rate and higher-order differences the search went on
for simpler relations [64]. Niemunis [44] achieved a breakthrough by combin-
ing hypoplasticity with Cam Clay and Perzyna’s concept. He employed also
the intergranular strain. Even for a diatomaeceous clay the quality is excep-
tional (Fig. 8). This holds true also for wave propagation [27]. Instead of Id
for granular soils, a suitable OCR is the decisive state variable.

I have proposed a visco-hypoplastic relation on this base without using
(2) from Cam Clay [22]. It implies three state limits by (3) with hs by (10)
and is thus physically consistent. An objective reference strain rate, Dr in
(10), is proposed. The intergranular strain δ can also be incorporated in order
to improve the response to jumps and reversals. As it represents the spatial
fluctuation of interparticle forces the evolution equation for it should allow
for viscosity.

Attractors are the backbone of my visco-hypoplastic equations. Three of
them are reached with a constant D. They represent the same state limits as
in hypoplasticity, but now hs depends on D. Other than in original hypoplas-
ticity, they can also be reached with constant effective stress and/or strain
components, i.e. by creep and/or relaxation. The time-variate D is then given
by the instantaneous mean effective pressure and void ratio via (3) and (10).



28 Gerd Gudehus

160

140

120

100

80
0 5 10 15 20

s
1-

s
2 

 [k
P

a]

e1- (1/2)e2  [%]

j

i

h

g

f

e

d

c

b

a Predicted

Measured

(b)

1.8

s1� [kPa]

j
kl

m+n
i h

g
f

e
d
c
b

a

Predicted

Measured

3.0

2.7

2.4

2.1

e 
 [1

]

50 100 200 500

(a)

Fig. 8. Compression (a) and shearing behaviour (b) of a diatomaeceous clay, ob-
served [41] and simulated by visco-hypoplasticity [44]

For pure relaxation and for stabilizing creep a lower bound of hs is proposed
for D below a very low threshold . Thus further attractors can be approached
withD → 0 or t→ ∞, which may be interpreted as thermodynamic equilibria.

Attractors should also be the core of extended visco-hypoplastic relations.
For shear localization this means that the ratios of polar and non-polar stresses
reach asymptotic values for constant extended stretching rate, and that as-
ymptotes with decreasing amount can be reached with constant generalized
stress. For the intergranular strain there are driven attractors with constantD
as for rate-independence, and also autogenous ones for constant components.

Molecular dynamics counterparts of visco-hypoplasticity do not yet exist.
Simulations of idealized dilute colloids [15] refer at best to a slurry. Simulations
with hard grains and electrolytes may help to understand the influence of
the iomic strength in fine-grained soils where macropores delimit the use of
hypoplasticity. Not even the identity of clay aggregates is clear. Only their
permanence may be deduced from the existence of attractors, in particular
critical states.

6 Hydro-Pyknotropy

Terzaghi [59] discovered peculiar properties of water in narrow solid–liquid
interfaces. He introduced the notion of bound pore water. Derjaguin and
Churayev [13] showed that this “polywater” is denser and far more viscous
than normal water. After decades it became clear that it exists only in nano-
size diffuse boundary zones. Equilibrium mean-field solutions are used in the
DLVO-theory of colloids with spherical particles. Equilibrium solutions have
also been proposed for idealized clay aggregates [65], they have little in com-
mon with results of molecular dynamics [15] and of force microscopy [38].

There is only little and indirect evidence for the behaviour of bound pore
water far off equilibrium. Zou [66] could explain the non-linear permeability
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of clays by assuming that the activation energy εa of the bound pore water
is reduced with increasing rate of shearing. He showed that εa can reach
ca. 8kBT ≈ 0.2 eV, which is well above ca. 0.5kBT of free water and well
below the dislocation energy of solid particles by (9). Rendulic [54] observed a
minute density increase of pore water in triaxial tests. Topolnicki [62] observed
density decrease and increase in drained isochoric biaxial tests. The average
pore water density was changed up to ca. ± 0.5% for saturated kaolin clay
at p′ ≈ 200 kPa. This indicates that the bound pore water can undergo a
dilatant stripping by skeleton deformations, and can also contract.

I have worked out [24] a hypoplastic relation for the relative excess of pore
water density,

χ = vwo/vw − 1, (11)

wherein vw denotes the specific volume of partly bound water, and vw the
one of the free pore water. χ is a measure of hydro-pyknotropy, i.e. variable
water density. State limit values of χ can be related with the ones of the solid
particle skeleton by (2) and (11) via

χ = κχ(e0 − e) (12)

with e0 = ed0, ec0 or ei0 respectively. Thus χ = 0 is assumed for p′ = 0 and
χ = κχ for p′ → ∞. κχ ≈ 0.2 was estimated as first approximation.

A rate-type relation links χ̇ with ė and D so that the χ state limit values
are attractors alongside with the ones of the skeleton. A second parameter mχ

is chosen so that the dilation ratio of the pore water for ṗ′ = 0 exceeds the
one of the skeleton for OCR ≤ 5 initially, and is lower otherwise. This leads
to expulsion or imbibition of pore water for isochoric shearing with OCR < 2,
which is rather close to what Topolnicki [62] observed, so there is apparently
a first validation.

Starting with OCR < ca. 2, undrained shearing leads to a decrease of p′,
and thus to an increase of pore water pressure pw for constant total pressure.
This explains the apparent residual friction angle ϕr < ϕsc of highly plastic
clay [37], as the low permeability prevents drainage of shear bands whereas
the pw increase is not observed at the sample boundary. It explains also that
clays are denser in shear bands than their neighbourhood after tests with
OCR < ca. 2 initially [31].

For OCR well above 2 initially and undrained shearing the dilation of the
skeleton is restricted to the one of the pore water. This flattens the τ -peak
for apparently drained shearing as with localization the locally increased D
prevents further drainage towards the shear band. Thus back-calculated peaks
come closer to the observed ones [22]. The local suction, which is not observed
at the boundaries, explains the densification observed after the test [31]. I
also made an attempt to explain cracking by this theory [24]. The necessary
condition σ′2 = 0 normal to a crack can be reached by rapid undrained shearing
so that an extreme local dilation of pore water is achieved with e → ed by
reduction of p′. The crack is oriented by 45◦ − ϕp/2 = 0◦ against the σ′-
direction as ϕp = 90◦ holds for ed state limits (Sect. 2).
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An additional condition is that pw attains the capillary entry pressure
pce. As pce equals the tensile strength of saturated aggregates without net
interparticle adhesion, a unaxial undrained tension test can thus be explained
and evaluated for ed. Uniaxial undrained shortening up to axial splitting can
likewise be explained. This helps to understand the plastic limit index test:
after densification to ed = wpγs/γw by rather uniform cyclic shearing the
subsequent localized undrained deformation leads to cavitation.

Shrinkage cracking cannot yet be explained in the same manner. The simi-
larity of crack patterns for biaxial extension, undrained shortening and shrink-
age suggests a common mechanism. Shear band patterns in clay have much in
common with those in sand, but their analysis is more difficult due to skeleton
viscosity and filtration [32]. The difficulties increase for cracking, which can
be considered as anomalous shear localization. As cracking is a critical phe-
nomenon and a kind of phase transition with percolation, other approaches
like with the renormalization group [10] may be more promising.

7 Seismo-Hypoplasticity and Granular Temperature

Rate-independence of grain skeletons is often inferred from the one of inter-
acting grain couples. This is at variance with observations: drained triaxial
shortening of quartz sand with jumps of strain rate [14] reveals a shear stress
response like a lowly plastic clay (Fig. 9). This can be modelled by visco-
hypoplasticity with Iv = 0.02, but the dislocation energy by (9) is too low for
quartz. After a D-jump up or down there is an increase or decrease of dila-
tancy that disappears with further shearing. Creep is observed with constant
deviator stress τ that stabilizes with densification for τ/σ′ < tanϕsc.

Stress kinks reported in the same paper indicate a microseismic activity.
Ring shear tests with constant mean σ and a local σ-transducer reveal a rate-
independent spectrum of such stick-slip events (Fig. 10). Rate-independent
kinks are also obtained with granular dynamics simulations. They indicate the
repeated building and collapse of force chains [53]. The simulated spectrum
is nearly fractal as with earthquakes [61]. Each microseismic event implies
acoustic emission with frequencies that increase for smaller grains, normally
it fades away long before the next snap-through.

The chaotic part of kinetic energy in an assembly of grains may be inter-
preted as granular temperature Tg [30]. For a granular gas with colliding grains
an equation of state can be formulated with Tg although there is no dynamic
equilibrium as with conservative interparticle forces [17]. This explains the
linear viscosity of strongly shaken grain assemblies as observed by Barkan [5].
The non-linear viscosity of skeletons (Fig. 9) with rate-independent ϕsc [36]
requires another approach.

I have proposed seismo-hypoplastic relations with a heuristic Tg [23]. For-
mally they agree with my visco-hypoplasticity ones (Sect. 5), but Iv and Dr
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Fig. 9. Response of sand to drained triaxial compression with jumps of strain rate [9]
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are proportional to Tg instead of T . With suitable reference values the ob-
served rate-dependence and creep (e.g. Fig. 9) is reproduced. Stabilization or
destabilization with decreasing or increasing e and/or τ/σ′ is obtained realis-
tically. As the dissipated work per unit of deformation, say 1%, is proportional
to σ′ for stationary shearing the same is assumed for Trg. Referred to a crit-
ical state (τ/σ′ = tanϕsc) with the same σ′ or p′, Tg is somewhat bigger for
isotropic compression with ei and zero for ed state limit (cf. Sect. 2). Thus the
solid hardness increases with D by (10). This explains the increase or decrease
of dilatancy with an increase or decrease of D for constant σ′ or p′, and its
subsequent decay after the adaption of e with continued shearing.

The granular dynamics may be explained as follows. Imagine first grains
with conservative interaction, i.e. without friction and plastic flats. A skele-
ton of them in a slowly sheared layer with constant σ has τ/σ > 0 due
to anisotropic intergranular forces. If the acoustic waves due to collisions
are absorbed at the boundaries the average kinetic energy Tg is stationary
and maximally chaotic, so there is a Boltzmann distribution. (With reflecting
boundaries Tg would increase until the skeleton expands to a granular gas.)
For shearing with higher D the average grain distance is somewhat higher,
and so is e, as Tg impedes the grain encounters. This corresponds to ther-
mally activated dislocations of a sheared solid in a thermostat with T = 0,
but T > 0 inside due to stationary dissipation. Thus Tg is endogenous, and
the grain encounters are seismically activated.

Similary as with a granular gas, it is assumed that the chaotic kinetic
energy is Boltzmann-distributed also with friction. Tg is proportional to the
content of the spectrum of stick-slip kinks normalized by the average strain
rate (Fig. 10). As the size distribution of force chains is nearly fractal the spec-
trum saturates towards the grain size and the sample size. A certain fraction
of the mechanical energy input dissipated per unit of deformation is immedi-
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ately absorbed by heat, a second mechanical chaotic part is released with each
collapse of force chains and radiated, then it is also absorbed by intergranular
friction which is thus activated. The proper boundary of a sample or a rep-
resentative volume element must therefore be permeable for chaotic acoustic
waves, which are generated and absorbed in the interior and the environment.

In case of ratcheting by repeated acoustic waves the microseismic activity
is pulsating, and so is Tg. Cumulative changes of position, and also of average
state for step-wise stabilization or destabilization, are obtained with an aver-
age T g per period. Realistic relations of e, σ′ and τ/σ′ with the number of
periods can thus be obtained. They can partly substitute rather cumbersome
empirical relations based on cyclic triaxial tests [63]. Thus vibro-hypoplasticity
can be used to predict cumulative effects for such a big number of periods
that numerical approaches with elasto-hypoplasticity are too cumbersome or
numerically unstable. We are carrying out triaxial tests with ratcheting to
better understand Tg and its pulsation [35]. As with Fig. 9 stationary ratchet-
ing can be obtained with τ -cycles around σ tanϕc. The σ1-kinks are precisely
measured, their spectrum for different amplitudes is revealing. This will also
help to better understand the intergranular strain and to improve constitutive
relations with it.

8 Concluding Remarks

In the core of all hypoplastic relations are their attractors. They represent
state limits which characterize phases of the skeleton of solid particles and
of the partly adsorbed pore liquid. As the interaction of the solid particles
is not conservative the attractors are driven, i.e. they require energy supply
to compensate for dissipation. Similar attractors are also obtained with ade-
quate granular dynamics simulations. With thermally activated dislocations
skeletons can reach a thermodynamic equilibrium after extremely long time,
this is a further attractor. The partly bound pore fluid can reach attractors
far off equilibrium, but returns to it in a short time if the skeleton is fixed.
Dilatancy and contractancy of skeleton and pore fluid are different in general,
both are characteristic of dissipative particle aggregates.

With localization of shear zones the concept of attractors works likewise,
but in a more complex manner. Hypoplastic relations extended by polar quan-
tities can thus yield realistic shear zone thickness and patterns. Results of sim-
ulations have to be properly averaged to support these findings. With suitable
boundary conditions a fractal sequence of shear band patterns is obtained that
leads to an overall critical state with fractal spatial fluctuations. A strange
attractor could not be found for this evolution, the renormalization group is
possibly more adequate for this critical phenomenon far off equilibrium.

For saturated clays rate-dependent attractors can likewise be defined with
polar quantities. The evolution of shear bands is linked with dilation of the
partly bound fluid if rapid shearing prevents filtration. Otherwise the analysis
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gets more complex. The anomalous extreme case of shear localization with
lowest void ratio and unaxial effective stress state, combined with capillary
entry for cavitation of pore fluid, leads to cracking. For crack patterns strange
attractors or renormalization groups have to be developed. This could also
open a more profound access to unsaturated soils.

The microseismic activity of grain skeletons justifies a seismo-hypoplastic
relation with a granular temperature and attractors. Ratcheting by repeated
seismic waves could open a new access to the intergranular strain represent-
ing the spatial fluctuation of intergranular forces, again with attractors. The
spontaneous emission of coherent acoustic waves is another critical phenom-
enon that calls for attractors or a renormalization group. Thus a spontaneous
collapse could be better controlled.

All these attractors require permanent solid particles. It is not yet known
how far this assumption is physically justified, and how it could be overcome
without losing the advantage of attractors.
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1. Alonso-Marroqúın F. & Herrmann H.J. (2004) Ratcheting of granular materials.
Physical Review Letters 92(5): 054301-1–4

2. Andreotti B. (2004) The song of dunes as a wave-particle mode locking. Physical
Review Letters 93(23): 238001-1–4
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1 Introduction

In previous papers [2,5–9] we have developed a theory for plastic materials in
which the entire constitutive response is determined by specification of two
potential functions. We have termed this approach “hyperplasticity”. There
are many other areas of continuum mechanics where similar approaches have
been made. For instance Ziegler [10] develops theories for viscous materials.
Many authors treat flow processes within a thermodynamic context, and fre-
quently make use of a dissipation function. In our previous papers, the special
features of rate-independent materials have been the reason for an emphasis
that differs somewhat from most treatments of the subject.

We explore in this paper how the hyperplasticity approach can be gen-
eralised and set within the context of a wider variety of types of material
behaviour. In particular we shall again place an emphasis on the use of two
potential functions, and on the use of Legendre transformations to obtain
alternative formulations.

When more complex materials are considered, there are two classes of be-
haviour which are dissipative. The first is associated with fluxes, for instance
flow in a porous medium or the flow of electrical current. In these cases the
dissipation is associated with the spatial gradient of some variable (e.g. the
hydraulic head for flow in a porous medium, the voltage for an electrical prob-
lem). The constitutive behaviour is usually described by a linear relationship
between the flux and the spatial gradient.

The second type of dissipation is associated with the time variation of
internal variables. The plasticity problems treated in our earlier papers are of
this character. Viscous behaviour can also be described in this way.

Most treatments of the thermodynamics of dissipative continua concen-
trate either on fluxes or on rates of change of internal variables. However,
whilst the two problems have much in common, they also have important dif-
ferences. Most obviously one involves a spatial variation and the other a time
variation. It is tempting to treat both in the same way, and many authors
adopt this approach, using for instance “generalised forces” and “generalised
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fluxes”. Here we adopt a slightly different approach, keeping separate those
variables associated with fluxes, and those associated with internal variables.
In this way the different ways that the two types of process appear in the
relevant equations can be made clearer.

Rather than considering the possibility of abstract, unspecified fluxes, we
find it more useful to develop our approach by considering a concrete example.
The case that we take is a very important problem in geomechanics and
other fields, namely flow in a porous medium. This serves as a useful example
because the flux itself has mass, which introduces a number of features to the
problem that need careful treatment. The porous medium has to be treated
as consisting of two phases, and there is a partition of the extensive quantities
(e.g. internal energy, entropy) between the solid skeleton and fluid phases.

How does our treatment differ from previous work on the mechanics of
porous continua? Firstly, and in contrast to comprehensive works such as
Coussy [3], de Boer [4], we do not attempt here to set out a fully comprehen-
sive model for porous continua in all their complexity. Instead our purpose is to
set out a simple framework, consistent with our earlier work, within which flow
phenomena in porous media may be described in terms of conceptual models.

Coussy [3] employs a thermodynamic terminology, but in his approach he
uses different energy functions for the skeleton and for the pore fluid. Here
we treat the two using the same energy function, which has the advantage of
consistency.

de Boer [4] also addresses porous media within a thermodynamic context,
including a detailed historical review. However, he places hardly any emphasis
on the dissipation in a porous medium, a concept which is absolutely central
to treatment adopted here.

For simplicity we prefer, where possible, to adopt a small strain formula-
tion. However, the problem of coupled fluid and skeleton behaviour cannot be
treated rigorously within the small strain framework. This is because there
is a coupling between strains, fluid flow and density changes, whilst in the
small strain formulation the density is treated as a constant. In the follow-
ing, therefore, it is necessary to move to a large strain formulation. There
is a choice between adopting a Lagrangian approach, in which the problem
is formulated in terms of initial coordinates, and an Eulerian approach, in
which it is formulated within the current coordinates. We adopt the Eulerian
approach for much of the following development, since this allows a more di-
rect interpretation of the variables. It will prove necessary, however, to make
a transformation to Lagrangian variables for part of the analysis.

In the small strain approach we used in earlier papers (as cited earlier),
for convenience all the extensive quantities were defined per unit volume.
Since the density was in effect constant this is exactly equivalent to use of
extensive quantities per unit mass, but avoids a factor of the density appear-
ing throughout the equations. In large strain analysis it is necessary to use
extensive quantities per unit mass, as is usual in thermodynamics, and we
adopt this approach below.
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2 Notation

We make much use of vectors and tensors, and for these we use the subscript
notation. Thus σij is a shorthand for a second-order tensor which could be
written out in full in matrix form as⎡⎣σ11 σ12 σ13σ21 σ22 σ23

σ31 σ32 σ33

⎤⎦ .
We adopt the summation convention over a repeated index, so that, σii ≡
σ11 + σ22 + σ33. The unit tensor (Kronecker delta) is given by δij , where
δij = 1 for i = j and δij = 0 for i 	= j. The deviator of a tensor is indicated
by a prime notation, thus σ′ij ≡ σij − (1/3)δijσkk.

We denote the time differential by the dot notation, thus ẋ ≡ ∂x/∂t.
Spatial differentiation is denoted by a comma notation, so that if xi are the
co-ordinate directions, then y,i ≡ ∂y/∂xi.

As mentioned earlier, we adopt here an Eulerian approach to the descrip-
tion of a material undergoing large strain, i.e. the description of the material
is based on the current co-ordinate system. In this it will be necessary to
distinguish between the time differential of a variable x at a particular point
in space, and the material derivative, which represents the rate of change for
an element of the material, which has a current velocity νi. We denote the
material or convective derivative by dx/dt = x̃ = ẋ+x, iνi. We can note, from
this definition, that it follows that the product rule applies to the convective
derivative, e.g. the material derivative of xy is x̃y + xỹ, and we shall make
much use of this result in the following.

3 Thermomechanical Framework

3.1 Density Definitions, Velocities and Balance Laws

Consider a volume V fixed in space bounded by a surface S. The unit outward
normal to the boundary is ni. The volume contains porous material with
a skeleton material of density ρs and with a porosity n (volume of voids
divided by total volume). Thus the mass of skeleton per unit total volume is
ρ = (1−n)ρs. We should also note that ρ is the “dry density” in soil mechanics
terminology.

The velocity of the skeleton at any point is νi, so that the mass flux of the
skeleton per unit area is ρνi, and the outward mass flux per unit area from
V is ρνini. For conservation of mass we can write that the rate of increase of
mass within the volume, plus the outward mass flux is zero:∫

V

ρ̇dV +
∫
S

ρνinidS = 0. (1)
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Applying Gauss’s divergence theorem,1 the above transforms to∫
V

(ρ̇+ ρνi,i)dV = 0.

Then noting that V is arbitrary, we can write this in local form:

ρ̇+ (ρνi),i = ρ̇+ ρ,iνi + ρνi,i = ρ̃+ ρνi,i = 0, (2)

which establishes the link between the material rate of change of dry density
and the dilatation rate.

A comment is relevant here about the importance of the assumption that
the volume V is arbitrary. This is only justified provided that V is large enough
so that averaged values of stresses, strains etc. over the volume element are
meaningful. Such an element is said to be a “representative volume element”.
In the context of the mechanics of granular materials this will typically require
that the element contains many thousands of particles. At the same time
the element must be sufficiently small so that changes of stresses etc. across
the element are small. This requirement of course conflicts with the first,
and there are classes of problem for which both criteria cannot be satisfied
simultaneously. Such problems (e.g. those involving strong localisation) are
not amenable to treatment by conventional continuum mechanics, although
there are certain techniques that allow the scale at which continuum mechanics
can be applied to be pushed ever smaller.

We now allow for the possibility of fluxes of a pore fluid. We shall consider
a pore fluid, the amount of which is specified by the parameter w defined as
mass of fluid per unit mass of skeleton material (i.e. the water content in soil
mechanics terminology). Note that in the study of the mechanics of granular
media, a wide variety of different quantities are used to define the amount
of fluid present in the porous medium. The flux of the fluid mass is mi per
unit area relative to the skeleton. The total flux vector of the fluid is therefore
mi + ρwνi, and the outward flux of the fluid across the boundary S follows as
(mi + ρwνi)ni.

We note that the mass of fluid per unit volume of skeleton is ρw. It follows
that

ρw = nρw, (3)

where ρw is the density of the fluid. The mass flux vector mi can also be
written as:

mi = ρwwi = ρwn (νwi − νi) , (4)

where wi is the Darcy artificial seepage velocity and νwi is the average absolute
velocity of the fluid.
1 In the above terminology, Gauss’s divergence theorem states that, for any variable

x that is continuous and differentiable in V ,
∫
S

xnidS =
∫
V

x,idV .
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Noting that the mass of the fluid is conserved, there is a balance equation
analogous to (1) of the form∫

V

∂

∂t
(ρw) dV +

∫
S

(mi + ρwνi)nidS = 0, (5)

which we can rewrite in local form by using the divergence theorem of Gauss,
to obtain the local conservation law:

ρ̇w + ρẇ +mi,i + ρ,iwνi + ρw,iνi + ρwνi,i = 0 (6)

or
ρw̃ + ρ̃w +mi,i + ρwνi,i = 0, (7)

which by virtue of the skeleton mass conservation equation (2) becomes

ρw̃ +mi,i = 0. (8)

It is convenient to obtain a combined continuity equation for flow of the
skeleton and pore fluid. First we can note ρ̃ = ρ̃s (1 − n)− ρsñ so that we can
rewrite the mass continuity equation as

ρ̃s (1 − n) − ρsñ+ ρs (1 − n) νi,i = 0. (9)

We can also obtain by manipulation of (7):

ρ̃wn+ ρwñ+ (ρwwi),i + nρwνi,i = 0. (10)

Finally dividing (9) by ρs and (10) by ρw and adding we obtain:

νi,i + wi,i + wi

ρw,i
ρw

+ n
ρ̃w

ρw
+ (1 − n) ρ̃

s

ρs
= 0. (11)

If both the soil grains and the pore fluid are incompressible then this
reduces to the simple form νi,i + wi,i = 0. Introducing νw = 1/ρw and νs =
1/ρs the continuity equation can also be written νi,i +wi,i = miν

w
,i + ρwν̃w +

ρν̃s, where
1
ρ

= ν = νs + wνw. (12)

3.2 Tractions, Stresses, Work and Energy

The tractions (forces per unit area) on the skeleton on the fraction (1 − n) of
the boundary S are ti, and the pressure in the pore fluid is p which acts on a
fraction n of the boundary. The work done per unit area by the surroundings
against the tractions on S is therefore (1 − n) tiνi, and that done against the
pore pressure is −npniνwi . There are also body forces arising from a gravita-
tional field of strength gi. The work done per unit volume by the body forces
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on the skeleton is ρνigi and on the fluid is ρwνwi gi. The heat flux per unit
area is qi, so that the outward heat flux from S per unit area is qini.

As an extensive quantity, the kinetic energy of the whole matter enclosed
in volume V may be written as the sum of the kinetic energies of the skeleton
and of the fluid:

K =
1
2

∫
V

ρ (νi)
2 dV +

1
2

∫
V

ρw (νwi )2 dV . (13)

At this stage we are neglecting the effects of tortuosity, which are due to
the fact that the pore fluid must take a tortuous path between the skeleton
particles, so that the average speed of the water particles is higher than the
magnitude of the average velocity. We shall, however, show how the results
can be modified later to take this into effect. Now consider the rate of change
of kinetic energy in the volume V , which can be written

K̃ =
∫
V

∂

∂t

[
ρνiνi

2
+
ρwνwi ν

w
i

2

]
dV

+
∫
S

[ρνiνi
2

]
νjnjdS +

∫
S

[
ρwνwi ν

w
i

2

]
νwj njdS. (14)

The volume integral reflects changes of the kinetic energy with time in the
volume, while the surface integrals account for the kinetic energy brought into
the volume due to the skeleton and pore fluid movement through the surface.
Applying the theorem of Gauss and grouping the resulting terms it is possible
to obtain:

K̃ =
∫
V

ρνi (ν̇i + νi,jνj) dV+
∫
V

(ρ̇+ ρνj,j + ρ,jνj)
[νiνi

2

]
dV

+
∫
V

ρwνwi
(
ν̇wi + νwi,jν

w
j

)
dV

+
∫
V

(
ρ̇w + ρẇ + ρwνwj,j + ρw,jν

w
j + ρ,jwνwj

) [νwi νwi
2

]
dV . (15)

Recalling the mass balance equations for skeleton and for fluid (2) and
(6), respectively, we note that the second and fourth integrals vanish. We
introduce also the definitions of the accelerations of the skeleton and fluid
particles, respectively

ai = ν̃i = ν̇i + νi,jνj , (16)

awi = ν̃wi = ν̇wi + νwi,jν
w
j , (17)

where the material derivative with respect to a fluid particle is denoted by
ẋ+x,iνwi = x̃. The expression for the rate of change of kinetic energy becomes
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K̃ =
∫
V

(ρνiai + ρwνwi a
w
i ) dV

=
∫
V

(ρai + ρwawi ) νidV +
∫
V

mia
w
i dV . (18)

3.3 The First Law

The First Law of Thermodynamics states that there is a variable, called spe-
cific internal energy, such that the rate of increase of the internal energy in the
volume plus the rate of change of the kinetic energy in this volume is equal to
the sum of the rates of energy input at the boundaries plus the rate of work
of the body forces in the volume. We attribute a specific internal energy us

to the skeleton and uw to the pore fluid. The first law therefore becomes∫
V

∂

∂t
(ρus + ρwuw) dV +

∫
S

(ρusνi + ρwuwνwi )nidS

+
∫
V

(ρai + ρwawi ) νidV +
∫
V

mia
w
i dV =

∫
S

((1 − n) tiνi − npniνwi ) dS

+
∫
V

(ρνi + ρwνwi ) gidV +
∫
S

(−qini) dS. (19)

We can note that the tractions and pore pressure are related to the stresses
by (1 − n) tj −npnj = σijni, so that (1 − n) tjνj = σijνjni +nνwj pnj −pwjnj
and we can rewrite the above as∫

V

∂

∂t
(ρus + ρwuw) dV +

∫
S

(ρusνi + ρwuwνwi )nidS

+
∫
V

(ρai + ρwawi ) νidV +
∫
V

mia
w
i dV

=
∫
S

(σijνj − pwi − qi)nidS +
∫
V

(ρνi + ρwνwi ) gidV . (20)

Applying the divergence theorem of Gauss we obtain the local form

∂

∂t
(ρus + ρwuw) + (ρusνi + ρwuwνwi ),i

= (σijνj − pwi − qi),i + (ρνi + ρwνwi ) gi

− (ρai + ρwawi ) νi −mia
w
i (21)
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and expanding the differentials in the first row of (21) we obtain:

d
dt

(ρus + ρwuw) + (ρusνi,i + ρwuwνi,i) + (uwmi),i

=
d
dt

(ρus + ρwuw) − (ρ̃us + ρ̃wuw) +
(
uw,imi − ρw̃uw

)
= ρũs + ρwũw + uw,imi. (22)

The second row of (21) may be transformed as follows:

(σijνj − pwi − qi),i + (ρνi + ρwνwi ) gi
= (σij,i + ρgj) νj + σijνj,i − p,iwi − pwi,i − qi,i + ρwnνwi gi
= (σij,i + ρ (1 + w) gj) νj + σijνj,i + (ρwgi − p,i)wi − pwi,i − qi,i.(23)

We can then decompose νi,j into its symmetric and antisymmetric parts,
identifying the former as the strain rate and the latter as the vorticity tensor:

dij =
1
2

(νi,j + νj,i) , (24)

ωij =
1
2

(νi,j − νj,i) , (25)

so that after substitution of (22)–(25) into (21) we can write

ρũs + ρwũw + uw,imi

=
(
σij,i + ρ (1 + w) gj − ρaj − ρwawj

)
νj + σijωji

+σijdij + (ρw (gi − awi ) − p,i)wi − pwi,i − qi,i. (26)

Equations of Motion

No change in internal energy should, however, be caused by either a rigid
body translation or rotation, so that we can conclude that(

σij,i + ρ (1 + w) gj − ρaj − ρwawj
)
νj = 0

and σijωji = 0 for all νj and ωij . These are of course the virtual work forms
of the direct and rotational equilibrium conditions. From the latter it follows
that the antisymmetric part of σij must be zero, i.e. that σij is symmetric.
This condition is usually referred to as that of complementary shear stresses.
From the former it follows that

σij,i + ρ (1 + w) gj − ρaj − ρwawj = 0, (27)

which can be recognised as the equations of motion (or the static equilib-
rium equations in the case of zero acceleration). Equation (27) expresses the
momentum balance for the porous medium considered as a whole, and they
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have been derived as a part of formulation rather than postulated. However,
this equation is not sufficient for description of the momentum balance of the
pore fluid, which cannot be derived until some constitutive statement is made
about interaction between the fluid and skeleton. The missing fluid balance
equation will later be derived as a part of the formulation.

In view of (27), (26) reduces to

ρũs + ρwũw + uw,imi =
σijdij + (ρw (gi − awi ) − p,i)wi − pwi,i − qi,i. (28)

3.4 The Second Law

The Second Law of Thermodynamics can be stated in a number of different
ways. We state it here in the form that there exists a function of state, the
specific entropy s, such that the rate of entropy production is non-negative.
We attribute ss to the skeleton and sw to the pore fluid, so that the specific
entropy of the whole medium is

s = ss + wsw. (29)

The flux of the entropy ηi is defined by ηi = qi/θ. Unlike the case for the
flux of the pore fluid, the total amount of entropy is not conserved. This is
expressed by rewriting the fundamental inequality for the entropy in the form∫

V

∂

∂t
(ρss + ρwsw) dV +

∫
S

(ρssνi + ρwswνwi )nidS ≥
∫
S

(
−qi
θ
ni

)
dS. (30)

The above equation states that the rate of increase of entropy within the
volume, plus the convection of entropy across the boundary is greater than
or equal to the entropy flux (from heat flow) into the volume. The additional
entropy production is due to dissipative processes.

Applying the divergence theorem we obtain:

∂

∂t
(ρss + ρwsw) +

(
ρssνi + ρwswνwi +

qi
θ

)
,i
≥ 0, (31)

which can be written as

d
dt

(ρss + ρwsw) + (ρssνi,i + ρwswνi,i) + (swmi),i +
(qi
θ

)
,i

=
d
dt

(ρss + ρwsw) − (ρ̃ss + ρ̃wsw) +
(
sw,imi − ρw̃sw

)
+
(qi
θ

)
,i

= ρs̃s + ρws̃w + sw,imi +
qi,i
θ

− qiθ,i
θ2

=
ρd

θ
≥ 0, (32)

where d is the specific dissipation, corresponding to irreversible part of entropy
production, and must always be non-negative. We note that in earlier papers



48 G.T. Houlsby and A.M. Puzrin

we have used d for just the “mechanical dissipation”. The quantity defined as
d here includes also the term usually referred to as the “thermal dissipation”,
which is due to the heat flux. The condition that the total dissipation be
non-negative is slightly less restrictive than the earlier requirement that the
mechanical dissipation be non-negative.

3.5 Combining the First and Second Laws

We now combine (28) and (32) to obtain:

ρũs + ρwũw + ρd = σijdij − pwi,i + ρθs̃s + ρwθs̃w − ηiθ,i
+ (ρw (gi − awi ) − p,i)wi −

(
uw,i − θsw,i

)
mi (33)

which, by virtue of the continuity equation can be written as:

ρũs + ρwũw + ρd

= (σij + pδij) dij − ρpν̃s − ρwpν̃w + ρθs̃s + ρwθs̃w

− ηiθ,i + (gi − awi − νwp,i)mi −
(
uw,i − θsw,i + pνw,i

)
mi. (34)

Defining the total internal energy per mass of skeleton as u = us + wuw

we then obtain:

ũ+ d =
1
ρ

(σij + pδij) dij − pν̃s − wpν̃w + θs̃+ wθs̃w + uww̃

+
1
ρ

(gi − awi − νwp,i)mi − 1
ρ

(
uw,i − θsw,i + pνw,i

)
mi − 1

ρ
ηiθ,i.

(35)

The left hand side is clearly the sum of a stored term (ũ) and a dissipated
term (d). It is tempting therefore to identify it with the total energy input,
but this would be incorrect, as that is represented by ũ itself.

The right hand side of (35) includes three types of term. The first involves
the strain rate. The second type involves material differentials, and the third
involves fluxes. The presence of the strain rate poses a problem within the
Eulerian formulation, as it does not prove to be possible to express the strain
rate as a material derivative of any observable quantity. This problem can be
avoided by adopting a Lagrangian formulation. We can rewrite:

1
ρ

(σij + pδij) dij =
1
ρ0

(
πij + pLδij

)
Δ̇ij , (36)

where πij is the Piola–Kirchhoff stress tensor and Δij is the Green–Lagrange
strain defined by 2Δij = PkiPkj−δij where Pij = ∂xi/∂Xj and xi and Xi are
the current (Eulerian) and initial (Lagrangian) coordinates of a material point
measured in a Cartesian system. The initial dry density is ρ0. It can be shown
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that πij = det (Pij)P−1
ik σklP

−1
jl and Δ̇ij = PkidklPlj . It is also necessary to

introduce the variable PL = p det (Pij)P−1
ik P

−1
ik which is the transformation

of the pore pressure to the Lagrangian coordinate system. We note that in
the Lagrangian coordinates no distinction is necessary between the time and
material derivatives so that Δ̇ij = ∂Δij/∂t = dΔij/dt = Δ̃ij .

In principle it would be possible to transform all the other variables to
Lagrangian coordinates too, but this has the disadvantage that physical mean-
ing is lost. Since these transformations are not strictly necessary for the fol-
lowing argument we shall leave the remaining terms in their Eulerian form.

We can now write (35) as

ũ+ d =
1
ρ0

(
πij + pLδij

)
Δ̃ij − pν̃s − wpν̃w + θs̃+ wθs̃w + uww̃

+
1
ρ

(gi − awi − νwp,i)mi − 1
ρ

(
uw,i − θsw,i + pνw,i

)
mi − 1

ρ
ηiθ,i.

(37)

3.6 The Internal Energy Function

We now adopt the hypothesis that the internal energy is a function of the
strains, the entropy, the water content, the extensive quantities νs, ss, νw

and sw, and certain internal variables αij . We assume that the function can
be decomposed in the form

u = u (Δij , αij , ν
s, ss, w, νw, sw)

= us (Δij , αij , ν
s, ss) + wuw (νw, sw) , (38)

so that

ũ =
∂u

∂Δij
Δ̃ij +

∂u

∂αij
α̃ij +

∂u

∂νs
ν̃s +

∂u

∂ss
s̃s +

∂u

∂w
w̃ +

∂u

∂νw
ν̃w +

∂u

∂sw
s̃w

=
∂us

∂Δij
Δ̃ij +

∂us

∂αij
α̃ij +

∂us

∂νs
ν̃s +

∂us

∂ss
s̃s + uww̃ + w

∂uw

∂νw
ν̃w + w

∂uw

∂sw
s̃w.

(39)

3.7 The Dissipation Function and Force Potential

We also postulate that the dissipation is a function of the same state variables,
but also of α̃ij (rate of change of internal variable) and of the fluxes, i.e.

d = d (Δij , αij , ν
s, ss, w, νw, sw, α̃ij ,mi, ηi) . (40)

We can either derive a force potential z from the dissipation using the
procedure described in the Appendix, or we can in fact assume the form of
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z and derive d. In either case the force potential is defind such that

d =
∂z

∂α̃ij
α̃ij +

∂z

∂mi
mi +

∂z

∂ηi
ηi, (41)

where z, the force potential, is a function of the same variables as d

z = z (Δij , αij , ν
s, ss, w, νw, sw, α̃ij ,mi, ηi) . (42)

3.8 Constitutive Equations

Substituting (39) and (41) into (35), and collecting terms we obtain the most
important equation in this paper

0 =
(

1
ρ0

(
πij + pLδij

)− ∂us

∂Δij

)
Δ̃ij +

(
−p− ∂us

∂νs

)
ν̃s +

(
θ − ∂us

∂ss

)
s̃s

+w
(
−p− ∂uw

∂νw

)
ν̃w + w

(
θ − ∂uw

∂sw

)
s̃w +

(
− ∂us

∂αij
− ∂z

∂α̃ij

)
α̃ij

+
(

1
ρ

(gi − awi − νwp,i) − ∂z

∂mi

)
mi +

(
−1
ρ
θ,i − ∂z

∂ηi

)
ηi

−1
ρ

(
uw,i − θsw,i + pνw,i

)
mi. (43)

Now (43) should be satisfied for any combination of Δ̃ij , α̃ij , ν̃
s, s̃s, ν̃w, s̃w,

ηi, and mi since all these quantities are independent of each other, each term
in (43) has to be equal to zero independently. Because the internal energy
function (38) is independent of Δ̃ij , ν̃

s, s̃s, ν̃w and s̃w, from the first two rows
of (43) it follows that

1
ρ0

(
πij + pLδij

)
=
∂us

∂Δij
, (44)

−p =
∂us

∂νs
, (45)

θ =
∂us

∂ss
, (46)

−p =
∂uw

∂νw
, (47)

θ =
∂uw

∂sw
. (48)

Considering now a spatial gradient of uw, we can obtain:

uw,i =
∂uw

∂νw
νw,i +

∂uw

∂sw
sw,i = −pνw,i + θsw,i (49)

so that the fourth row of (43) is identically zero.
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Equations (44–48) express an essential property of the internal energy func-
tion: that it is a potential for stresses and temperature. The basic form of these
relationships is well known from hyperelasticity, but the particular expressions
here deserve some comment. First note that the intensive quantities of pore
pressure and temperature each appear as a partial derivative of the internal
energy of the skeleton and of the pore fluid. The fact that both derivatives are
related the same value of the intensive variable reflects in effect an assumption
of an intimate mixing of the two phases. The temperature of the solids and
fluid is assumed to be the same, and the pore pressure acts equally on the
solids and the fluid. We later find it convenient (in the context of Legendre
transforms of the energy function) to distinguish between the temperatures
and pressures derived from the two terms in the potential: one for the particles
and one for the fluid. We shall, however, continue to use the assumption of
intimate mixing of the two components.

Equation (44) embodies Terzaghi’s principle of effective stress for a porous
medium. It demonstrates that (for the choice of kinematics variables we have
made) the quantity that is work conjugate to the strain rate is not the total
stress σij but the effective stress σij = σij + pδij (the positive sign appears
because we have followed the tensile positive convention usual in continuum
mechanics for the stresses, whilst the pore pressure is positive in compression).
The corresponding definition of the Lagrangian effective stress is given by the
following equation:

πij = πij + pLδij . (50)

Unfortunately, an argument similar to that used to develop (44–48) above
cannot be applied to the terms in the second and third rows of (43), because
the z function does depend on α̃ij , ηi and mi. Assuming independence of the
fluxes and of the rate of the internal variable, only the weaker conditions(

∂us

∂αij
+
∂z

∂α̃ij

)
α̃ij = 0;(

θ,i + ρ
∂z

∂ηi

)
ηi = 0;

and (
(νwP,i − gi + awi ) + ρ

∂z

∂mi

)
mi = 0

can be formally derived from (43).
However, at this stage we restrict ourselves to analysis of models to which

stricter conditions (than those described above) can be applied

∂u

∂αij
+
∂z

∂α̃ij
= 0, (51)

θ,i = −ρ ∂z
∂ηi
, (52)

νwp,i − gi + awi = −ρ ∂z
∂mi

. (53)
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Equation (51) is Ziegler’s orthogonality condition, defining visco-plastic
constitutive behaviour, (52) is (for an appropriate form of z) the Fourier
heat conduction law, while (53) represents the missing equations of motion
of the pore fluid, which becomes more obvious after they are rewritten as
following:

(−pδij),i + ρwgj − ρwawj − ρwρ ∂z
∂mj

= 0, (54)

where the third term in the left part can be identified with a “drag” force.
When inertial effects can be neglected, and with an appropriate choice of

force potential z, (53) becomes Darcy’s law for fluid flow (for constant a fluid
of constant density ρw).

4 Discussion

Equations (44–48) and (51–53) represent a complete set of the constitutive
relationships describing the material, which is therefore defined entirely by
specification of two scalar potential functions u and z in (38) and (42), respec-
tively. Equations (51–53) are sufficient, but not necessary, to ensure that the
laws of thermodynamics are obeyed.

Note that the entire formulation of the constitutive behaviour is based on
the following principles:

– The mass conservation laws (1) and (5)
– The First Law of Thermodynamics (19)
– The Second Law of Thermodynamics (30)

and the following assumptions:

– The existence of the internal energy function (38) independent of rigid
body translation and rotation.

– The existence of the quasi-homogeneous dissipation function (40) satisfy-
ing (41).

– The two above functions should be related through Ziegler’s orthogonal-
ity condition (51) and the Onsager reciprocity relationships for the fluxes
which follow directly from (52) and (53).

Needless to say, the above formulation of the constitutive behaviour is
guaranteed to satisfy the laws of thermodynamics. We make no secret of the
fact, however, that we have introduced some additional, more restrictive as-
sumptions. It is for the reader to decide whether these restrictions reduce the
scope for constitutive modelling to such an extent that the materials that can
be described are no longer realistic. We address later, however, some of the
advantages that follow from adopting the more restrictive approach. It is our
belief that in fact a very wide variety of material response can be described
within this framework. Furthermore we are not aware of any specific coun-
terexamples from the physical world, which provide clear evidence that the
restrictions imposed above are invalid.
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4.1 The Complete Formulation

We summarise the position we have arrived at as follows. The first step is
to specify a constitutive model through internal energy and force potential
functions

u = u (Δij , αij , ν
s, ss, w, νw, sw)

= us (Δij , αij , ν
s, ss) + wuw (νw, sw) , (55)

z = z (Δij , αij , ν
s, ss, w, νw, sw, α̃ij ,mi, ηi) . (56)

Using these functions, the differential relationships in Table 1 are applied.
The variables involved in the solution (with the numbers of variables for vector
and tensor quantities) are xi (3), νi (3), νwi (3), ai (3), awi (3), Pij (9), Δij

(6), πij (6), αij (6), ρ, w, νs, Ss, νw, Sw, p, pL, θ,mi (3) and ηi (3), that
is 57 variables in all. We supplement these with four further formal variables
through θ = θs = θw and p = ps = pw. The use of these variables allows
the Legendre transform of the energy function to be carried out consistently.
Specification of initial and boundary conditions completes the formulation.

4.2 Modifications to Account for Tortuosity

Effects of tortuosity have been neglected in the above derivations. It is usual
to account for such effects by introducing a tortuosity factor a (see e.g. [3]),
which is the ratio between average of the squared microscopic relative velocity
of the fluid with respect to the skeleton, and the square of the average of the
same quantity. It is straightforward to show that a is a factor always greater
than or equal to unity. When this factor is included, the expression for the
kinetic energy becomes

K =
1
2

∫
V

ρ(νi)2dV +
1
2

∫
V

ρw
(
(νwi )2 + (a− 1) (νri )

2
)

dV, (57)

where νri = νwi −νi is the macroscopic relative velocity of the fluid with respect
to the skeleton.

When the additional terms due to this change are followed through to (37),
the only change necessary is to replace awi in the first term on the second line
with a modified acceleration term awei , which is defined as:

awei = awi + (a− 1)ν̃ri +
1
2
ãνri . (58)

Note that the term in awi in the equation of motion (27) is not altered. In
Table 1 the awi term in the first equation of motion is unaltered, but that in
the second equation of motion is modified to awei . Because there is now the
additional variable a in the problem, a further equation is now required. This
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Table 1. Summary of equations

equation type equation no. of
equations

differential of free
energy (skeleton)

πij + pLδij = ρ0∂us/∂Δij

−p = ∂us/∂νs

θs = ∂us/∂ss

6
1
1

differentials of free
energy (pore fluid)

−p = ∂uw/∂νwc
θw = ∂uw/∂sw

1
1

Ziegler’s orthogonality
condition

∂us/∂αij + ∂z/∂α̃ij = 0 6

heat conduction law θ,i = −ρ∂z/∂ηi 3

mass balance equations ρ̃ + ρνi,i = 0
ρw̃ + mi,i = 0

1
1

Second Law of
Thermodynamics

θ

(
s̃s + ws̃w +

1

ρ
sw

,imi +
1

ρ
ηi,i

)
=

∂z

∂α̃ij
α̃ij +

∂z

∂mi
mi +

∂z

∂ηi
ηi ≥ 0

1

equations of motion (Pjkπik),i + ρ0(1 + w)gj = ρ0(aj + waw
j )

νwp, i − gi + aw
i = −ρ∂z/∂mi

3
3

strain definition 2Δij = PkiPkj − δij 6

deformation gradient Pij = ∂xi/∂Xj 9

skeleton velocity νi = x̃i 3

skeleton acceleration ai = ν̃i 3

fluid acceleration aw
i = ν̇w

i + νw
i,jν

w
j 3

mass flux definition mi = ρw (νw
i − νi) 3

density definition 1/ρ = νs + wνw 1

Lagrangian pore
pressure

pL = p det (Pij) P−1
ik P−1

ik 1

total number of equations 57

would be a constitutive relationship for the tortuosity factor a, which could
for instance be expressed as a function of the porosity. Berryman [1] suggests
the expression a = (n+ 1)/2n for a matrix of spherical particles. In terms of
the variables in Table 1 this would become a = (ρwνw + 1) /2ρwνw.

4.3 Legendre–Fenchel Transforms

In the classical thermodynamics, in addition to the specific internal energy (u),
three other energy functions are defined: specific Helmholtz free energy (f),
specific enthalpy (h) and specific Gibbs free energy (g). These functions are re-
lated to the specific internal energy (55) through a series of Legendre–Fenchel
Transformations (see the Appendices in [2] and [8]), as shown in Table 2.



Thermodynamics of Porous Continua 55

T
a
b
le

2
.

E
n
er

g
y

p
o
te

n
ti

a
ls

fo
r

u
se

in
la

rg
e

st
ra

in
co

n
ti

n
u
u
m

m
ec

h
a
n
ic

s
o
f
p
o
ro

u
s

m
ed

ia

in
te

rn
a
l
en

er
g
y

H
el

m
h
o
lt

z
fr

ee
en

er
g
y

en
th

a
lp

y
G

ib
b
s

fr
ee

en
er

g
y

u
(Δ

ij
,α

ij
,ν

s
,s

s
,w

,ν
w
,s

w
)

f
(Δ

ij
,α

ij
,ν

s
,θ

s
,w

,ν
w
,θ

w
)

h
(π

ij
,α

ij
,p

s
,s

s
,w

,p
w
,s

w
)

g
(π

ij
,α

ij
,p

s
,θ

s
,w

,ν
w
,θ

w
)

=
u

s
(Δ

ij
,α

ij
,ν

s
,s

s
)

=
f

s
(Δ

ij
,α

ij
,ν

s
,θ

s
)

=
h

s
(π

ij
,α

ij
,p

s
,s

s
)

=
g
s
(π̄

ij
,α

ij
,p

s
,θ

s
)

+
w

u
w

(ν
w
,s

w
)

+
w

f
w

(ν
w
,θ

w
)

+
w

h
w

(p
w
,s

w
)

+
w

g
w

(p
w
,θ

w
)

f
=

u
−

sθ
h

=
u
−

π̄
i
j
Δ

i
j

ρ
0

+
p
v

g
=

u
−

sθ
π̄

i
j
Δ

i
j

ρ
0

+
p
v

f
s
=

u
s
−

ss
θ
s

h
s
=

u
s
−

π̄
i
j
Δ

i
j

ρ
0

+
p
s
ν

s
g
s
=

u
s
−

ss
θ
s

π̄
i
j
Δ

i
j

ρ
0

+
p
s
ν

s

f
w

=
u

w
−

sw
θ
w

h
w

=
u

w
+

p
w
ν

w
g
w

=
u

w
−

sw
θ
w

+
p
w
ν

w

π
ij

=
π

ij
+

p
L
δ i

j
=

ρ
0

∂
u
s

∂
Δ

i
j

π
ij

=
π

ij
+

p
L
δ i

j
=

ρ
0

∂
f
s

∂
Δ

i
j

Δ
ij

=
−ρ

0
∂

h
s

∂
π

i
j

Δ
ij

=
−ρ

0
∂

g
s

∂
π

i
j

χ
ij

=
−ρ

0
∂

u
s

∂
α

i
j

χ
ij

=
−ρ

0
∂

f
s

∂
α

i
j

χ
ij

=
−ρ

0
∂

h
s

∂
α

i
j

χ
ij

=
−ρ

0
∂

g
s

∂
α

i
j

p
s
=

∂
u
s

∂
ν
s
;

p
w

=
∂

u
w

∂
ν
w

p
s
=

∂
f
s

∂
ν
s
;

p
w

=
∂

f
w

∂
ν
w

ν
s
=

∂
h
s

∂
p
s
;

ν
w

=
∂

h
w

∂
p
s

ν
s
=

∂
g
s

∂
p
s
;

ν
w

=
∂

g
w

∂
p
w

θ
s
=

∂
u
s

∂
ν
s
;

θ
w

=
∂

u
w

∂
s
w

ss
=

∂
f
s

∂
θ
s
;

sw
=

∂
f
w

∂
θ
w

θ
s
=

∂
h
s

∂
s
s
;

θ
w

=
∂

h
w

∂
s
w

ss
=

∂
g
s

∂
θ
s
;

sw
=

∂
g
w

∂
θ
w



56 G.T. Houlsby and A.M. Puzrin

As demonstrated in Table 2, all the derived energy functions e can be also
decomposed into the specific energy functions es and ew attributed to the
skeleton and fluid, respectively. Moreover, by the virtue of (12) and (29), these
parts can be transformed independently. Constitutive equations in the last row
of Table 2 follow directly as properties of the corresponding Legendre–Fenchel
Transformations (see again the Appendices in [2–8]).

The choice of which formulation to use will depend on the application in
hand. For instance the four forms of the energy potential in classical thermo-
dynamics are adopted in different cases (e.g. isothermal problems, adiabatic
problems etc.).

The dissipation function formulation can be also adjusted to the chosen
energy formulation, simply by expressing the force potential z through corre-
sponding variables:

z = zu (Δij , αij , νs, s
s, w, νw, s

w, α̃ij ,mi, ηi)

z = zf (Δij , αij , νs, θ
s, w, νw, θ

w, α̃ij ,mi, ηi)

z = zh (πij , αij , p
s, ss, w, pw, sw, α̃ij ,mi, ηi)

z = zg (πij , αij , p
s, θs, w, pw, θw, α̃ij ,mi, ηi)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (59)

In principle it would be possible to define the dissipation function in terms
of a different set of variables than the energy function, but only in rather
particular circumstances might this be useful.

4.4 Small Strain Formulation

The displacement vector of a point with initial coordinates Xi is defined by
ui = xi − Xi, so that the deformation gradient can be expressed as Pij =
δij + ui,j . The assumption of small strains is equivalent to ||ui,j || << 1,
therefore det(Pij) ∼= 1 + ui,i and, after the higher order terms are neglected,
the following simplifications can be applied to the formulation in Table 1:

– 2Δij = PkiPkj − δij ∼= ui,j + uj,i = 2εij , where εij is the linearised strain
tensor

– πij = det(Pij)P−1
ik σklP

−1
jl

∼= σij
– pL = p det(Pij)P−1

ik P
−1
ik

∼= p
The linearised strain tensor can in some circumstances be decomposed into

elastic and plastic components εij = εeij + εpij , and the kinematics internal
variable αij can be associated with the plastic strain tensor εpij .

4.5 Example

The following example describes a conventional thermo-poro-elasto-plastic
model which can be applied to describe small strain behaviour of saturated
isotropic frictional granular material. The constitutive behaviour is completely
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defined by the following two potential functions. The first one is Gibbs free
energy function g = gs + wgw, which we assume to have constant, linear and
quadratic terms, written in the following form so that certain constants retain
their usual meaning:

gs = gs0 + (ps − p0) νs0 − (θs − θ0) ss0

− (p− p0)2
2Ks

νs0 + 3αs (θs − θ0) (ps − p0) νs0 − csp
(θs − θ0)2

2θ0

− 1
ρ0

(
1

3K
σiiσjj

6
+

1
2G
σ′ijσ

′
ij

2
+ α (θs − θ0)σkk + σijαij

)
(60)

gw = gw0 + (pw − p0) νw0 − (θw − θ0) sw0

− (pw − p0)2
2Kw

νw0 + 3αw (θ − θ0) (pw − p0) νw0 − cwp
(θw − θ0)2

2θ0
(61)

where initial values are denoted with the subscript “0”, and the constants
have the following physical meanings:

– Ks and Kw are the isothermal bulk moduli of the skeleton particles and
fluid, respectively

– 3αs and 3αw are the volumetric thermal expansion coefficients of the skele-
ton particles and fluid, respectively

– csp and cwp are the mass heat capacity at constant pressure p0 of the skeleton
particles and fluid, respectively

– K and G are the isothermal bulk and shear moduli of the skeleton matrix,
respectively

– α is the linear thermal expansion coefficient of the skeleton matrix.

The second function required is the force potential, which we choose in the
form

z =
μσii
ρ0

√
α̃′
ijα̃

′
ij +

Λ

ρ0

(
3β
√
α̃′
ijα̃

′
ij + α̃ii

)
+

νw
2ρkm

mimi +
θ

2ρkη
ηiηi, (62)

where Λ is a Lagrangian multiplier associated with a dilation constraint c =
3β
√
α̃′
ijα̃

′
ij + α̃ii = 0. The constants have the following physical meanings:

– km is the permeability coefficient.
– kη is the thermal conductivity coefficient.
– μ and β are the coefficients related to the effective angles of friction φ′ and

dilation ψ obtained in triaxial compression

β =
2
√

2 sinψ√
3(3 − sinψ)

;μ+ β =
2
√

2 sinφ′√
3(3 − sinφ′)

. (63)
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The following constitutive relationships can be derived from the earlier
formulation using the equations from the last column of Table 1:

εij =
σii
3K

+ 3α(θ − θ0) + αij ; ε′ij =
σ′ij
2G

+ α′
ij , (64)

νs − νs0
νs0

= 3αs (θs − θ0) − ps − p0
Ks

, (65)

νw − νw0
νw0

= 3αw (θw − θ0) − pw − p0
Kw

, (66)

ss = ss0 + csp
(θs − θ0)
θ0

− 3αs (ps − p0) νs0 +
ασkk
ρ0

, (67)

sw = sw0 + cwp
(θw − θ0)

θ0
− 3αw (pw − p0) νw0 . (68)

Equation (64) represents decomposition of the strain tensor into elastic
and plastic components, where elastic part is defined by conventional ther-
moelasticity. Equations (65) and (67) give thermoelastic relationships for the
skeleton, while (66) and (68) represent classical thermoelastic relationships
for the fluid.

Evolution equations for plastic strains are obtained by defining gener-
alised stress χij = −ρ0

(
∂gs

∂αij

)
= σij and dissipative generalised stress

χij = −ρ0 (∂z/∂α̃ij), so that

χ′ij = (μσii + 3Λβ)
α̃′
ij√

α′
ijα̃

′
ij

; χii = 3Λ (69)

and by eliminating α̃′
ij and Λ from (69) we obtain the equation of the yield

surface in the dissipative generalised stress space

y (σij , χij) =
√
χ′ijχ

′
ij − (μσii + βχii) = 0. (70)

The flow rule α̃ij = λ̃∂y/χij (where λ̃ is a Lagrangian multiplier) fol-
lows from the properties of the Legendre–Fenchel Transformation y = χijα̃ij/
ρ0− z = 0 relating the yield surface to the force potential. When Ziegler’s or-
thogonality condition χij = χij is applied to the equations of the yield surface
and flow rule, it becomes clear that the behaviour described is equivalent to
that of a perfectly plastic model with the Drucker–Prager failure cone defined
by an effective angle of internal friction φ′, and a non-associated flow rule
with the plastic potential cone defined by an angle of dilation ψ.

Finally, from (52) and (53), after neglecting inertial effects and substituting
ηi = qi/θ and mi = wi/νw, it follows:

qi = −kηθ,i, (71)
wi = −km (νwp,i − gi) . (72)
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Equation (71) is the isotropic Fourier heat conduction law, while for con-
stant νw (72) becomes the isotropic version of Darcy’s law for fluid conduction.

Thus, by employing just two potentials, we have derived a theory for a
porous continuum that includes elastic and plastic behaviour of the soil skele-
ton, with the latter being governed by a frictional criterion and involving
dilation and non-associated flow. Thermal expansion and thermal capacity
are taken into account for both the skeleton and the pore fluid. Heat conduc-
tion and seepage are included in the model, which also embodies the principle
of effective stress. The versatility of the approach that we have termed hyper-
plasticity in describing a wide variety of phenomena relevant to the mechanics
of granular materials and porous continua is therefore demonstrated.

5 Conclusions

The theoretical framework presented in this paper extends our previous work
to problems involving:

– Large strains
– Fluid flow in porous media
– Heat flow in porous media
– Inertial effects

As in the standard hyperplastic approach, the entire constitutive behaviour
is completely defined by specification of two scalar potential functions. How-
ever, in the generalised framework these functions also include the properties
related to the different phases of the medium and their interaction. The fluid
and heat conduction laws are also specified through these potentials, complet-
ing the description of the constitutive behaviour of the complex media.

Appendix

For certain simple cases the force potential may be derived using procedures
described by Houlsby and Puzrin [6]. For more general cases the following
method may be used.

Consider the definition z(τ0α̇ij) =
τ0∫
0

d(τα̇ij)
τ dτ . Differentiation with re-

spect to τ0 gives ∂z(τ0α̇ij)
∂(τ0α̇ij)

α̇ij = d(τ0α̇ij)
τ0

, and setting τ0 = 1 yields the re-

sult ∂z(α̇ij)
∂α̇ij

α̇ij = χijα̇ij = d(α̇ij). This demonstrates that application of
the above definition leads to a potential with the required property that
χij = ∂z/∂α̇ij satisfies χijα̇ij = d. Thus by setting τo = 1 above we ob-

tain z(α̇ij) =
1∫
0

d(τα̇ij)
τ dτ .
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1 Introduction

The incremental deformation of an unsaturated granular material depends
amongst others on the increments of both the total stress and the pore fluid
stress, the latter being related to the level of saturation. Despite the complex-
ity of these relations the incremental deformation could still be described by
the same material models as already derived for saturated granular materials
if the combined effects of the total stress, the pore fluid stress and the level
of saturation could be combined in a suction-induced effective stress measure,
which would represent the interparticle forces which are at the basis of the
definition of the intergranular stress.

In this paper first the various aspects of this suction-induced intergranular
stress concept are characterised, taking full account of both the observed
behaviour and published fundamental analyses of the combined actions of
the pore fluid and pore air on the granular structure. In particular the role of
the pore air stress in the definition of the suction-induced intergranular stress
is considered in detail. Finally, the resulting rate form of the effective stress–
strain relation of a compressible soil skeleton composed of a compressible
mineral is formulated.

2 Characteristics of Saturation Versus Suction

Because the moist pore air and pore water with dissolved air are separated
by curved interfaces with surface tension, the moist pore air stress pg and
the pore water stress pw are different. In case of unsaturated soil the pore
water stress pw concerns suction. This suction is related to various quantities,
amongst others the water saturation Sw, its rate of change ∂Sw, the mean
grain size d50 and the moist pore air stress pg. A possible relation is illustrated
in Fig. 1 in terms of the saturation Sw versus the dimensionless measure of
the pore water suction Ψ
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Fig. 1. Hysteretic cycle of wetting and drying in terms of the relation between
the saturation Sw and the dimensionless pore water suction Ψ . Also the various
saturation phases are indicated

Ψ =
(pw − pg)d50

2σs
=
Ψd50
2σs

, (1)

where σs is the surface tension of the water–air interface, which for pure water
is given by Edlefsen and Andersen [3]

σs = 0.1171 − 0.0001516 T (Nm−1) (2)

with T being the temperature in (K) and ψ is the capillary pore suction, also
known as matric suction, defined by

ψ = pw− pg. (3)

As a consequence of the application of the sign convention of continuum me-
chanics with tension and stretch being positive, the capillary suction ψ is
positive if the pore water stress pw is less compressive, or even tensile, than
pore gas stress pg , which can only be negative.

The water saturation Sw is considered to depend at least on both the
dimensionless suction Ψ and the rate of change of the water saturation ∂Sw

thus
Sw = Sw(pw, pg, ∂Sw, d50, σs) = Sw(Ψ, ∂Sw). (4)

The dependence on the rate of change ∂Sw is considered to be due to the
difference of the liquid–solid contact angle for wetting and drying.

Figure 1 indicates the potential response of the application of repeated
cycles of wetting and drying.

Depending on the water saturation Sw the following three saturation
phases can be distinguished [1], namely:

(a) The pendular saturation phase concerns the smaller water saturation
range, 0 ≤ Sw ≤ Sp = ∼0.4−0.7, in which the pore water occurs in
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the form of both liquid bridges and small pockets in the grain surfaces,
while the air phase is continuous. The air will often, but not necessarily,
be in open contact with the atmosphere. Free flow of both dry air and
water vapour can occur.

(b) The funicular saturation phase, with both continuous gas and water
phases, occurs for water saturation levels in the approximate range
∼0.4−0.7 = Sp ≤ Sw ≤ Si = ∼0.7−0.9. The gas–water interfaces are
in direct contact with the grains and parts of the surface of the grains
remain dry, enabling the surface tension to connect the gas–water inter-
faces to the grains. Therefore these larger gas–water interfaces will move
with the soil skeleton and reduce the hydraulic conductivity of the pore
structure drastically.

(c) The insular saturation phase, in which the pore gas occurs in the form
of entrapped gas bubbles within a continuous water phase. Individual
bubbles can only fit in the pores of the soil skeleton if the water saturation
is sufficiently large, e.g. ∼0.7−0.9 = Si ≤ Sw ≤ 1, and if the mean bubble
diameter db is sufficiently small, e.g. db/d10 < 0.2−0.5, in which d10 is
the grain size for which the mass of the smaller grains form 10% of the
dry soil mass.

For increasing saturation the pore gas stress pg in the pore gas bubbles
can increase towards very large pressure, depending on the rates of loading
and solution of air in water. In such case the larger pressure will be reached
at the instant of implosion of the gas bubbles when reaching full saturation.
Therefore for insular saturation the application of the capillary suction ψ ac-
cording to 3, thus ψ = pw−pg, in amongst others the relation between the
saturation Sw and the pore water suction, illustrated in Fig. 1, is not appro-
priate in general. In fact the pore gas stress pg in the entrapped gas bubbles
would cause the capillary suction ψ to reach positive infinity for full saturation
rather than about zero as illustrated in Fig. 1. Consequently for the insular
saturation range another global suction measure needs to be applied, as

ψb = pw−pb (5)

in which pb is the background air stress, which is the pore gas stress in the
ground in open contact and equilibrium with the atmospheric air stress at the
ground surface.

3 Typical Expressions for Saturation Versus Suction

A popular non-hysteretic model [4] relating the water saturation Sw and the
capillary pore suction ψ for the insular and funicular saturation phases reads

Sw− Sr
1 − Sr =

(
1

1 + {χψ}η
) η−1

η

; χψ =

({
Sw − Sr
1 − Sr

} −η
η−1

− 1

) 1
η

, (6)
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where Sr is the so-called “residual” degree of saturation. The main simpli-
fying and limiting assumption of this model is that at this residual degree
of saturation Sr the capillary suction ψ approaches infinity. Apparently both
the vapour flow in the pendular saturation phase and the related distribution
of the capillary pore suction of the adhered pore water have not been taken
into account. The parameter η is a dimensionless exponent and parameter χ
is the pore size distribution parameter, also known as the inverse of the cap-
illary pore suction ψ at “air entry”. Both parameters η and χ depend on the
pore size in terms of the mean grain diameter d50. Typical values for clay, silt
and sand (e.g. [4]) of the parameters, Sr η, χ and d50 have been collected in
Table 1. The indicated mean grain diameter d50 corresponds to the measured
intrinsic permeability κ as expressed (e.g. [8]) by

κ = C
n3

(1 − n)2 d
2
50 (7)

in which C is a dimensionless factor.
The ranges of saturation and suction corresponding to the parameters in

Table 1 are illustrated in Fig. 2a in terms of the saturation Sw versus the Briggs
logarithm of the dimensionless pore water suction measure Ψ as defined by
(1), thus log Ψ = log(ψd50/(2σs)). For each type of soil two extreme curves
are shown, one curve for the first parameters of the range in Table 1 and the
other curve for the last parameters indicating the ranges.

Figure 2a shows that the steepness of the relations decreases in the se-
quence from sand, to silt and finally to clay, while the width of the ranges in
terms of dimensionless suction measure logΨ increases.

Particularly for clay relatively large values of logΨ are reached. For de-
creasing saturation Sw the curves become flat when approaching the residual
saturation Sr. This is consistent with the property of expression (6) that χψ
approaches infinity when Sw reduces to Sr. This clarifies a limitation of ex-
pression (6), namely that matrix suction ψ would be infinite if the saturation
would equal the residual saturation Sr. Apparently this relation cannot de-
scribe the suction for decreasing saturation Sw<Sr, approaching the dry state
Sw = 0.

To ensure that the transition between the funicular and pendular satura-
tion phases at saturation Sw =Sp occurs at the specific capillary pore suction

Table 1. Typical ranges of unsaturated soil parameters of (6) for various soils (in
accordance with e.g. [4]).

soil type Sr η χ d50

unit – – m2 N−1 m
clay 0.2–0.1 1.2–2 10−6 − 10−5 10−7 − 10−9

silt 0.15–0.08 2–4 10−5 − 10−4 10−5 − 10−7

sand 0.1–0.05 4–10 10−4 − 5.10−4 10−3 − 10−5
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Fig. 2. Saturation Sw versus logarithm of dimensionless pore water suction Ψ for
various soils with parameter ranges as indicated in Table 1. (a) Defined by (6) [4], (b)
defined by (6), (9) and (12), including pendular phase with transition at saturation
Sp = cSr (13) for factor c = 1.1

ψp the corresponding residual saturation Sr can be derived from (6), giving

Sr =

{
Sp −

(
1

1 + {χψp}η
) η−1

η

}{
1 −

(
1

1 + {χψp}η
) η−1

η

}−1

. (8)

It may be noted that this transition occurs when the pore water phase becomes
discontinuous and thus the corresponding permeability becomes zero. In the
pendular phase Sw<Sr the transport of pore water can only occur as water
vapour through the continuous gas phase.

For the continuation of the relation (6) between the saturation Sw and
the matrix suction ψ into the pendular range good fits to high quality ex-
perimental data are essential. For such fits simple relations with a minimum
number of additional parameters are needed. The exponential decaying func-
tion through the transition point ψp, Sp as given by the first expression of (9)
has one parameter ζ. From this expression for the slope the second expression
of (9) results

Sw = Sp exp
(
−ζ log

(
Ψ

Ψp

))
;

dSw

d logΨ
= −ζ Sw. (9)

The single parameter ζ cxan be derived from the slope of (6) at this transition
point ψp, Sp, which is expressed by

dSw

dψ

∣∣∣∣p = −χ (η − 1) (1 − Sr) {χψp}η−1

(
1

1 + {χψp}η
) 2η−1

η

. (10)
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Elaborating (9) further to obtain the same derivative dSw/dψ|p as in (10)
gives

dSw

dψ

∣∣∣∣p =
dSw

d logΨ

∣∣∣∣p d logΨ
dΨ

∣∣∣∣p dΨ
dψ

= − ζ Sp

ln 10ψp
. (11)

From (11) the fitting parameter ζ can be derived as

ζ = − ln 10ψp

Sp
dSw

dψ

∣∣∣∣p (12)

in which (10) can be substituted in the last term.
Figure 2b shows the same curves as illustrated in Fig. 2a above the transi-

tion point ψp, Sp and the curves according to (9) with parameter ζ according
to (10) and (12) below this transition point. The transition point ψp, Sp is
defined by the saturation Sp as a factor c times the residual saturation Sr as
defined by Genuchten [4], namely

Sp = c Sr. (13)

The curves in Fig. 2b have been obtained for the magnitude of factor c = 1.1.
The first expression of (9) for Sw<Sp, illustrated in Fig. 2b, is applicable for
the case that for decreasing saturation Sw towards the dry state Sw = 0 the
dimensionless matrix suction Ψ increases towards infinity. However, amongst
others due to the roughness of the particles, during decreasing saturation Sw

in the pendular phase a maximum suction may be reached, after which for
continuously decreasing saturation Sw this suction may decrease towards zero
(e.g. [6]). This aspect of the moisture–grain interaction may be accounted for
approximately by the following expression, namely

Ψ = Ψp

(
Sw

Sp

)− ln 10
ζ

f

[
Sw

Sp

]
(14)

in which the modification function f [Sw/Sp] reads

f

[
Sw

Sp

]
= 2 + ln

(
sin

{
π
2

(
Sw

Sp

) 1
λ

})
− sin

{
π
2

(
Sw

Sp

) 1
λ

}
. (15)

The left part of the right hand side of (14) is the inverse of the left expression
of (9). The right part, thus the function f [Sw/Sp], concerns a modification
function, which has unit magnitude and zero slope at Sw = Sp and minus
infinity at Sw = 0. The parameter λ (with λ ≥ 1) enables to define the
detailed shape of this modifying sine-function.

In Fig. 3a, b the modification of the pendular phase according to (15)
of the curves of Fig. 2b is shown for parameters λ = 1 and λ = 2, respec-
tively. For decreasing saturation this modification introduces first the oc-
currence of maximum suctions, which magnitudes decrease with decreasing
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Fig. 3. Saturation Sw versus logarithm of dimensionless pore water suction Ψ for
various soils with parameter ranges as indicated in Table 1, defined by (6) [4] for the
insular and funicular phases as illustrated in Fig. 2. The pendular phase has been
defined by (6), (9) and (12), like in Fig. 2b, but also modified according to (15) for
factors: (a) λ = 1, (b) λ = 2

parameter value λ. Subsequently, the dimensionless suction measure logΨ
decreases monotonically towards minus infinity for the decreasing saturation
towards the dry state, while the corresponding suction ψ approaches
zero.

It may be noted that this property corresponds to that of dry sand, for
which no capillary cohesion is left in the dry state. On the other hand, when
clays are allowed to shrink freely during drying-out they can form hard ma-
terials with significant cohesion, which suggests that for clays the capillary
suction may not become zero at the dry state.

4 Suction-Induced Intergranular Stress Versus Suction

Another basic concept of unsaturated geomaterials is the notion, that the com-
bined action of the pore water suction and the surface tension can be consid-
ered to induce interparticle forces, which in an average sense can be expressed
in terms of the “effective pore suction” ψ′

ij . The “effective pore suction” ψ′
ij

is considered to depend in an intricate way on the pore water stress pw, the
moist pore air stress pg, the water saturation Sw and its rate of change ∂Sw,
the mean grain size d50, the surface tension σs and a fabric tensor of the
granular skeleton Akl (e.g. [5–7,9])

ψ′
ij = ψ′

ij (pw, pg, Sw, ∂Sw, d50, σs, Akl) = ψ′
ij (Ψ, ∂Sw, Akl) . (16)

If the capillary pore suction ψ (3) is positive then the normal components of
the pore-suction-induced intergranular stress tensor ψ′ (16) are compressive,
thus negative in continuum mechanics terms.
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Fig. 4. Possible relations for repeated cycles of wetting and drying in triaxial tests
between the dimensionless isotropic and deviatoric “effective pore suction” compo-
nents Ψ ′

p and Ψ ′
q according to (17) and (18) and the dimensionless pore water suction

Ψ according to (1) and (3)

Some aspects of the relation (16) for the application of repeated cycles
of wetting and drying in triaxial tests are illustrated in Fig. 4, involving the
possible relations between the isotropic and deviatoric components

ψ′
p =

ψ′
11 + 2ψ′

33

3
and ψ′

q = ψ′
11 − ψ′

33 (17)

of the “effective pore suction” ψ′
ij and the capillary suction ψ as defined by (3).

It should be noted that in Fig. 4 in fact the following dimensionless isotropic
and deviatoric effective quantities are used, namely

Ψ ′
p =

ψ′
p d50

2σs
and Ψ ′

q =
ψ′
q d50

2σs
, (18)

while for the dimensionless capillary suction Ψ the quantity according to (1)
is applied.

The right side part of Fig. 4, illustrating the possible relation between the
capillary suction Ψ and the isotropic effective suction Ψ ′

p, indicates a smaller
Ψ ′
p (in absolute terms) during wetting than during drying for the small suction

range Ψ < 16 as considered. For small suction, say for Ψ <∼2, the isotropic
effective suction Ψ ′

p (in absolute terms) is of the same order as the suction Ψ ,
thus Ψ ′

p ≈ −Ψ . It should also be understood that for increasing pore suction,
Ψ > 16, the isotropic effective suction Ψ ′

p may at least for granular materials
eventually approach zero.

The left side part of Fig. 4 illustrates the corresponding effective stress
paths in terms of the suction-induced isotropic and deviatoric intergranular
stresses Ψ ′

p and Ψ ′
q, respectively. It should be noted that the latter is due to

the combined effects of the anisotropy of the micro-structural fabric of the
granular skeleton, for spheres expressed by the fabric tensor A [5–7, 9] and
the pore suctions and surface tension as expressed by the dimensionless pore
suction measure Ψ . The left side part of Fig. 4 illustrates that for wetting,
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thus decreasing suction Ψ , the deviatoric effective suction Ψ ′
q decreases (in

absolute terms) faster to zero than the isotropic effective suction Ψ ′
p. For

drying, starting at full saturation and zero suction Ψ , represented by the
origin in Fig. 4, the isotropic effective suction Ψ ′

p reaches an absolute maximum
at still negligible deviatoric effective suction Ψ ′

q, known as the “air entry”
stress state. Subsequently the deviatoric effective suction Ψ ′

q increases while
the isotropic effective suction Ψ ′

p decreases (in absolute terms) to reach the
maximum deviatoric effective stress level in terms of Ψ ′

q/Ψ
′
p, depending on the

granular fabric, which is to be followed during further “drying out” towards
the completely dry state, also represented by the origin.

In general for the smaller saturation levels with a continuous gas phase,
e.g. Sw � Si, the effective pore suction Ψ ′

ij is considered to be anisotropic due
to the general anisotropic nature of a fabric tensor of the granular skeleton
Akl.

It should be understood that the characteristics of unsaturated granular
soils in terms of the effective pore suction Ψ ′

ij as illustrated in Fig. 4 cannot
be measured directly. The directly measurable quantities are the total stress
tensor σ and the strain tensor ε, apart of earlier mentioned water saturation
Sw and its rate ∂Sw, the pore water stress pw, the pore gas stress pg (or
the background air stress pb in (5) for the insular phase) and the mean grain
size d50, and thus the scalar dimensionless capillary pore suction Ψ as defined
by (1). Therefore the illustrated relations in Fig. 3 can only be deduced by
combining the separately measured effective stress–strain behaviour for the
fully saturated state and the measured behaviour for unsaturated states, which
is a challenge.

5 Specific Definitions for the Pendular and Funicular
Saturation Phases

For both the pendular and funicular saturation phases with a continuous air
phase the pore gas stress pg may only differ marginally from the background
atmospheric air stress pb, which is the gas stress at the considered depth in
the ground in equilibrium with the atmospheric stress. In such case the pore
water stress pw in the ground can be expressed with respect to the background
atmospheric air stress pb, based on (3), by

(pw − pb) = (pw − pg) + (pg − pb) = ψ + (pg − pb) (19)

in which all three stresses pw, pg and pb are measurable and therefore the cap-
illary suction ψ can be determined. In this case the relatively small difference
pg − pb is involved in driving the flow of the pore gas through the continuous
pore air space. For these unsaturated phases the total “intergranular” stress
σ∗ij [2] is due to the interparticle forces, induced by both:

– The capillary pore suction ψ = pw − pg and as such expressed by the
“effective” pore suction Ψ ′

ij (16).
– The total stress, expressed with respect to the local pore gas stress pg,

thus σij − pg δij .
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Therefore for the unsaturated case the total “intergranular” stress σ∗ij can be
defined by the following sum (see [6, 7])

σ∗ij = ψ′
ij + (σij − pgδij) ; (σij − pgδij) = σ∗ij − ψ′

ij . (20)

A more general total stress measure concerns the expression with respect to
the background atmospheric air stress pb, leading with (20) to(

σij − pbδij
)

= σ∗ij − ψ′
ij +

(
pg − pb) δij . (21)

To further clarify this definition of the intergranular stress (21) for the pen-
dular and funicular saturation phases, it is compared to the definition of the
stress contributions for full saturation, namely

σij = σ∗ij + pw δij (22)

in which pw is the pore fluid stress for full saturation. To this end, first (22)
is repeated while subtracting from the terms on both sides of the equal sign
the background isotropic atmospheric air stress pbδij at the considered depth
in the ground (see (19)), leading to(

σij − pb δij
)

= σ∗ij +
(
pw − pb) δij . (23)

Then from the comparison of the right side terms of (21) and (23) follows, that
the quantity (pw−pb)δij for the saturated case changes to −ψ′

ij +(pw−pb)δij
for the pendular and funicular saturation phases, thus(

pw − pb) δij unsaturation⇒ −ψ′
ij +

(
pg − pb) δij . (24)

Multiplication of all terms of (19) by δij and substitution of its last right side
term in (24) gives for the change from the saturated case to the pendular and
funicular saturation phases(

pw − pb) δij unsaturation⇒ −ψ′
ij − ψ δij +

(
pw − pb) δij , (25)

from which follows that the pore fluid stress pw for the full saturation phase
is replaced by

pwδij
unsaturation⇒ −ψ′

ij − ψ δij + pwδij = −ψ′
ij + pgδij (26)

in which the right side term has been obtained after substituting (3). Conse-
quently, in the expression of the intergranular stress σ∗ (22) and (23) for full
saturation, the pore fluid stress pw changes for both funicular and pendular
saturation to the following expression in order to obtain the corresponding
intergranular stress σ∗ as expressed by (21), namely

pw
unsaturation⇒ −ψ

′
ijδij

3
+ pg. (27)

When approaching the completely dry state Sw ↓ 0 of a cohesionless gran-
ular material the suction-induced intergranular stress approaches zero, thus
ψ′
ijδij ↓ 0. In that case from (27) follows that the pore gas stress pg replaces

the pore water stress pw, as could be expected.
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6 Specific Definitions for the Insular Saturation Phase

For insular saturation the water phase is continuous and the air phase occurs in
the form of entrapped gas bubbles. In this particular case the local capillary
pore suction ψ = pw − pg according to (3) of the gas bubbles needs to be
replaced by a more global measure of the pore suction. Instead of the pore gas
stress pg in the entrapped gas bubbles another, at this stage of the derivation
yet -unknown, pore stress px, is to be defined such that the transitions of both
the saturation Sw and the intergranular stress σ∗ij between full and insular
saturation will be smooth. To this end the global pore suction measure ψx,
replacing the capillary suction ψ, is introduced as

ψx = pw− px. (28)

This expression implies that for insular saturation both the saturation Sw

and the suction-induced intergranular stress ψ′
ij are amongst others function

of ψx rather than of ψ.
For the insular saturation phase with entrapped gas bubbles the pore

suction-induced part ψ′
ij of the intergranular stress σ∗ij cannot depend on

the gas stress pg occurring in the gas bubbles. In fact, due to equilibrium the
combined effect on particles of the gas stress pg in the gas bubbles and the
surface tension σs of the gas–water interface of the bubbles is identical to that
of the pore water stress pw in the continuous water phase. Consequently, gas
bubbles adhered to the particle surface exert practically the same force on
that surface, as the pore water would do. Therefore for the insular case the
total intergranular stress σ∗ij could be expressed with respect to any global
gas stress measure px. This notion results in the following expression for the
total intergranular stress σ∗ij , namely

σ∗ij = ψ′
ij + (σij − pxδij) ; (σij − pxδij) = σ∗ij − ψ′

ij . (29)

To determine this pore gas stress px in (28) and (29) on the basis of a smooth
transition of the intergranular stress σ∗ from insular towards full saturation,
thus Sw ↑ 1, the intergranular stress σ∗ for the insular saturation phase accord-
ing to (29) is compared to the definition according to (23) for full saturation,
namely

σ∗ij = − (pw − pb) δij +
(
σij − pb δij

)
. (30)

This comparison shows that (pw − pg)δij for the saturated case would change
to −ψ′

ij for insular saturation, thus

(
pw − pb) δij unsaturation⇒ −ψ′

ij , (31)

if px would be selected equal to the background pore gas stress pb, thus px =
pb. For a smooth transition from the insular state to full saturation, it is also
required that ψ′

p ≈ −ψx, when approaching full saturation Sw ↑ 1, which is
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consistent with the illustration in Fig. 4. This condition is expressed by

lim
Sw↑1

ψ′
ij = −ψx δij . (32)

Substitution of (32) in (31) gives(
pw − pb) δij unsaturation: Sw↑1⇒ ψxδij = (pw − px) δij , (33)

from which also follows for insular saturation, that

px = pb and ψb = pw − pb (34)

in which ψb is the resulting pore suction measure, replacing the capillary
suction ψ for this insular case, which was provisionally indicated earlier
in (5).

The intergranular stress σ∗ for the pendular and funicular cases according
to (21) reads

σ∗ij
∣∣funicular = ψ′

ij −
(
pg − pb) δij +

(
σij − pbδij

)
. (35)

For the insular saturation phase the expression for the intergranular stress
according to (29), after substituting (34), thus for px = pb, becomes

σ∗ij
∣∣insular = ψ′

ij +
(
σij − pbδij

)
. (36)

Subtracting (35) from (36) gives for the change of intergranular stress at the
transition between insular and funicular saturation

Δσ∗ij = σ∗ij
∣∣insular − σ∗ij

∣∣funicular =
(
pg − pb) δij . (37)

This clarifies that due to the definitions of the pore gas stress at the transition
from the funicular to the insular saturation phase, the intergranular stress σ∗

changes incrementally according to (37).
On the basis of (31) and (34) the pore fluid stress pw for the full saturation

phase is for the insular saturation phase replaced by

pw
unsaturation⇒ −ψ

′
ijδij

3
+ pb. (38)

The measured unsaturated soil behaviour of the kind illustrated in Figs. 1 and
4 will not be affected by the change of definition from capillary pore suction
ψ = pw − pg, according to (3) for the pendular and funicular phases, to the
background pore suction ψb (34) for the insular phase, under the following
condition for the transition between the insular and funicular states, namely

if pg = pb then ψb = ψ, (39)

which is usually satisfied in laboratory experiments to measure soil behaviour.
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7 Combined Definitions of Intergranular Stress
for all Saturation Phases

The main differences between the above-mentioned definitions concern those
of the “intergranular stress” σ∗, defined by (21) for the pendular and funicular
saturation phases and (29) with px = pb, according to (34), for the insular sat-
uration phase. Consequently, for all unsaturated phases the following general
expression of the “intergranular stress” σ∗ suffices

σ∗kl = σkl − pwxkl , (40)

which is similar in form of expression (22) for the saturated case. In (40) the
following three cases are distinguished, namely

– For the saturated case with the pore water stress pw (22) gives

pwxkl = pwδkl. (41)

– For all unsaturated phases

pwxkl = −ψ′
kl + pxδkl. (42)

in which the air stress px and suction-induced intergranular stress ψ′
kl are

defined by
– For the pendular and funicular phases, in accordance with (27) and (16),

where pg is the local pore gas stress in the continuous air phase

px = pg; ψ′
kl = f {pw − pg, Aij,···} . (43a)

– For the insular phase, in accordance with (34), (38) and (31), where pb is
the background pore air stress at the considered depth in the ground (19)
in equilibrium with the atmospheric air

px = pb; ψ′
kl = − (pw − pb) δkl. (43b)

8 Rate Forms of Stress–Strain Relations

For the fully saturated case the strain rate ∂εij of the soil skeleton is related
to both the Jaumann rates of the intergranular stress ∂σJ∗ij and the pore fluid
stress ∂pw and the Jaumann effective stress rate ∂σJ

′
ij [2] by

∂εij = D−1
ijkl ∂σ

J∗
kl +

δij ∂p
w

3Ksf
= D−1

ijkl ∂σ
J′
kl (44)

in which D−1
ijkl is the inverse of the tangent elasto-plastic stress–strain matrix

of the soil skeleton and Ksf concerns the bulk stiffness of the mineral as
encountered by the pore fluid stress.
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For the above-mentioned unsaturated phases, in the expression of the
strain rate ∂εij of the soil skeleton for the saturated phase according to (44)
the dependence on the rate of the pore fluid stress ∂pw is replaced for all
unsaturated phases in accordance with (42) and (43) by

∂εij = D−1
ijkl ∂σ

J∗
kl +

δij
3Ksf

(
−∂ψ

′
kl δkl
3

+ ∂px
)

= D−1
ijkl ∂σ

J′
kl (45)

in which (43) can be substituted when the actual saturation phase is known.
Premultiplication of (45) by Dmnij and substitution of the tangent bulk stiff-
ness of the soil skeleton KT = δmnDmnijδij/9 results in the following expres-
sion of the Jaumann rate of the intergranular stress

∂σJ∗mn = Dmnkl ∂εkl − δmn
KT

Ksf

(
−∂ψ

′
kl δkl
3

+ ∂px
)

(46)

in which the air stress px depends on the saturation phase as expressed by
(41), (42) or (43).

9 Conclusions

For unsaturated granular materials the physical background and anticipated
relations between the water saturation, pore water suction, anisotropic fab-
ric tensor, intergranular stress tensor and pore gas stress are formulated,
taking account of observed behaviour and published fundamental analyses.
It is shown that the role of the pore gas stress in the definition of the
suction-induced intergranular stress σ∗ changes from the funicular saturation
phase (35) to the insular saturation phase (36). This implies the occurrence
of an incremental change of the intergranular stress (37) at the transition be-
tween the funicular and insular saturation phases. Finally the effect of the
changing role of the pore gas stress for the various saturation phases on the
rate form of the effective stress–strain relation of a soil skeleton is clarified.
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In this study the mechanism of breakage of structural geological materials un-
der different confining stresses was investigated. Four kinds of failure modes
were distinguished: bulging rupture, shearing rupture, shearing crushing, and
compression crushing. The basic properties of the mechanical behavior were
summarized as elastic deformation, plastic yielding, and brittle rupture, which
in other terms can be represented by springs, sliders, and bonded bars, respec-
tively. Based on these assumptions, the geological materials were conceptual-
ized as binary mediums consisting of structural blocks and broken cells, which
were named as the bonding element and frictional element, respectively. By
assuming that the bonding element was the ideal elasto-brittle body and the
frictional element was the elasto-plastic body, and by using the homogeniza-
tion theory of heterogeneous materials, the stress–strain relations were derived
in an integrated form and in an incremental form according to the deforma-
tion theory of plasticity and the flow theory of plasticity. In these equations
two sets of parameters are included, i.e., breakage coefficients and local stress
coefficients. They can be determined by using curve fitting method with ex-
perimental data. Equations in the integrated form have been used in some
engineering problems, such as the stability of cut slope and wetting deforma-
tion of loess foundation.

1 Introduction

R. Hill was probably the earliest pioneer in the study of the stress–strain
relationship of a heterogeneous body which consists of two elastic mediums
of different moduli [1]. He examined a representative element of such a body
with the volume ν1+ν2, where ν1 and ν2 are the volumes occupied by the first
and second mediums, respectively. Based on the volumetric averaging concept

{σ} = (ν1{σ}1 + ν2{σ}2)/(ν1 + ν2), (1a)

{ε} = (ν1{ε}1 + ν2{ε}2)/(ν1 + ν2) (1b)
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the following stress–strain relationship can be obtained:

{σ} = [D]{ε}; [D] = ν1[D]1[A]1 + ν2[D]2[A]2, (2a)

{ε} = [D]−1{σ}; [D]−1 = ν1[D]−1
1 1[C]1 + ν2[D]−1

2 [C]2, (2b)

where ε and σ are the averaged strain and stress in the representative ele-
ment volume. [D]1 and [D]2 are the rigidity matrixes of the two mediums.
[A]1 and [A]2 ([C]1 and [C]2) are the local strain (stress) coefficients for the
two components, respectively, i.e., {ε}1 = [A]1{ε}; {ε}2 = [A]2{ε}({σ}1 =
[C]1{σ}; {σ}2 = [C]2{σ}), where {ε}1 and {ε}2({σ̄}1 and {σ}2) again are the
averaged strain (stress) for the medium 1 and medium 2.

In recent years, the homogenization theory of heterogeneous materials has
been widely used in different fields of solid mechanics for different materials,
such as alloys, composite materials, and concrete. Wang et al. also used the
theory to derive a similar equation for composite soils [2]. In these studies
only the deformation properties of material were investigated. As for the fail-
ure process, damage and fracture mechanics are still the main theories used in
predicting the development of micro or macrocracks in homogeneous bodies.
In these latter studies, a microelement is nullified if it is broken. However, un-
like metals and concrete with which the structures usually work in extension
or bending states, structures of geological material generally work in a shear
state and a microelement still has frictional resistance after its destruction.
Therefore, a concept of transformation must be introduced, instead of the null,
for geological materials. Based on the homogenization theory and the trans-
formation concept, the author has recently proposed a new kind of model –
binary medium model for geological materials. More than a decade ago when
the author introduced damage mechanics into the study of soil mechanics, the
concept of microelement transformation had already been used, and a so-called
duplex-spring model was proposed [3]. In that model, however, the difference
of strain levels in the two media was ignored, i.e., [A]1 = [A]2 = [I] was as-
sumed in (2a), where [I] is unit tensor. This means that we had adopted the
so-called Voigt assumption as explained in Hill’s paper , or a parallel mode as
shown in Fig. 1a was used [4]. However, in the newly proposed binary medium
model, this assumption is abandoned. In this paper the main achievements in
the development of this new model will be introduced.

2 Idealization of Structured Geological Materials

Although the structure of rock bodies has been recognized since the 1960s, the
concept of soil structure was advanced much earlier [5]. It has also been well
known for a long time that the cohesive resistance and frictional resistance
are not mobilized simultaneously, with the latter coming into effect only after
a definite amount of deformation has been accumulated which is often accom-
panied with strain softening due to the loss of cohesive resistance. Therefore,
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Fig. 1. Load transfer of binary medium material. (a) Parallel mode (b) string mode
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Fig. 2. Basic elements

structural geological materials must be characterized with three properties:
elastic deformation, plastic yielding, and brittle cracking. The corresponding
three elements are the spring, slider, and bonded bar , which are controlled by
modulus E, yield strength f , and break strength q, respectively as shown in
Fig. 2. By combining them in different ways, various modes of strain hardening
and softening behaviors of samples can be simulated.

Based on these understandings, structural geological materials can be ide-
alized as a binary medium consisting of a bonding element and a frictional
element as shown in Fig. 3. The former represents structural bodies, bonding
blocks (body element), or rock bridges (face element), while the later repre-
sents broken cells, softening bands (body element), or joints and cracks (face
element). Accordingly, the process of the failure of geological materials can
be characterized as the breakage of a bonding element and its transformation
into a frictional element.
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Fig. 4. Failure modes of cubic piled samples. (a) 0.03 Mpa (b) 0.15 Mpa (c) 0.45 Mpa

3 Mechanism of Breakage

The binary medium model is a macroscopic model for practical use. Its key
point is to carry out microscopic study on the mechanism of the breakage of
bonding blocks. To this aim, samples piled up from small gypsum blocks in
cylindrical or rectangular shape have been used for biaxial tests [6]. Figure 4
shows three different failure modes observed in rectangular block samples un-
der different confining stresses. Under low confining stress of 30 kPa, the block
columns began to bulge, with cracks opening (see Fig. 4a). Under a moderate
lateral stress of 150 kPa, many blocks were broken down, forming two shear
bands crossing each other (see Fig. 4b). Finally, when the lateral stress was in-
creased to 450 kPa, almost all of the blocks were broken, as shown in Fig. 4c.
Figure 5 shows two breakage modes which were observed in the cylindrical
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Fig. 5. Failure modes of cylindrical blocks. (a) Rupture after local yielding (b) local
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Fig. 6. Failure modes of rock and soil samples. (a) Bulging rupture (b) shearing
rupture (c) shearing crushing (d) compression crushing

block samples under low and high confining stress. Figure 5a shows a block
under low stress that is cracked at the center with two small plastic zones
at the contact area. But, as shown in Fig. 5b, the type of block breakage
under high confining stress was plastic yielding at four contact areas. Based
on these findings and considering the shear rupture mode of rock samples
of high strength, we can distinguish two types of breakage modes: rupture
and crushing. Furthermore, by linking the confining stress to the compression
strength of samples, the following four failure modes can be proposed: (a)
bulging rupture, (b) shearing rupture, (c) shearing crushing, and (d) com-
pression crushing, as shown in Fig. 6.

Note that we have also carried out some numerical simulations of the
failure process of the samples. Figure 7 presents an example of a numerical
simulation, and shows three typical stages of failure of a structural clay sample.
In the first stage, the sample deformed elastically, as shown in Fig. 7a. When
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(a) (b) (c)

Fig. 7. Numerical simulation of failure process of a structural clay sample. (a)
Elastic deformation (b) cracking and rupture of blocks (white bodies) (c) formation
of shear bands (black area)

the load was increased further, cracks and ruptures appeared in some blocks
(see Fig. 7b). Finally, much of the blocks were broken within some areas, i.e.,
a shear band formed, as shown in Fig. 7c.

Based on the above findings, we have come to the conclusion that in the
process from deformation to failure, both rupture and crushing of structural
blocks can take place and also both brittle cracking and plastic yielding exist.
Therefore, it seems unreasonable to solely use a single theory or method, such
as fracture mechanics or damage mechanics, to solve the complicated phenom-
ena which is involved in the failure of geological materials. We shall call the
failure process that includes both rupture and crushing the breakage process
and we think it is necessary to establish a new branch of geomechanics: break-
age mechanics. Breakage mechanics can be established based on the binary
medium model and has the following salient characteristics in comparison with
the current theories:

(a) The bonding element is an elasto-brittle medium, while the frictional el-
ement is an elasto-plastic medium. They have totally different natures.

(b) The bonding element becomes frictional element after its breakage, and
the simple nullification of them is abandoned.

(c) Both of the elements can be either a body element or a face element.
(d) The key point of examination of the change of a sample’s internal structure

under loading moves from expansion of the empty area (cracks, voids) to
the breakage of the concrete body (bonding blocks, rock bridges).

4 Deformation Theory of Breakage Mechanics

4.1 General Formulation

If we assume the existence of an unique relationship between total stress and
total strain for frictional elements, then (2) is still valid but [D] must be
regarded as the secant modulus. Let us define λv = ν2/(ν1 +ν2) as volumetric
breakage coefficient. Then (2) becomes
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{σ} = (1 − λν){σ}1 + λν{σ}2 (3a)

and
{ε} = (1 − λν){ε}1 + λν{ε}2. (3b)

Without loss of generality we can take ν1 + ν2 = 1. Correspondingly, (1a) can
be written as

{σ} = ((1 − λν)[D]1[A]1 + λν [D]2[A]2) {ε}, (4)

In isotropic cases [A]1 and [A]2 are scalar and can be written as a1 and a2.
Then using ε = (1 − λν)ε1 + λνε2, we can obtain (1 − λν)a1 = 1 − λνa2. By
substituting them into (4) we obtain

{σ} = ((1 − b)[D]1 + b[D]2) {ε}, (5)

If we define {σi} = [D]1{ε}as bonding stress and {σf} = [D]2{ε} as frictional
stress, then (5) can be further simplified as

{σ} = (1 − b){σi} + b{σf}, (6)

where b = 1 − (1 − λν)a1 is called the breakage parameter hereafter. It is
evident from the failure mechanism shown in Fig. 6 that when a shear band
forms the abovementioned single volumetric averaging technique may fail to
predict the actual behavior of geological materials. For example, in a mudflow
the sliding body may contain a large amount of stones, which may contribute
nothing to the slope stability. Therefore, it seems to be necessary in this case
to use both volumetric averaging and face averaging techniques.

Let the stress and strain tensors be decomposed into a spherical part,
and deviatoric part, respectively. Correspondingly, in parallel with the volu-
metric breakage coefficient λν , a new facial breakage coefficient λs must be
introduced. In addition, instead of a pair of local strain matrixes [A]1 and
[A]2, two pairs of scalar quantity as1 and as2 as well as aν1 and aν2 will be
employed. The averaging equations can be then expressed as follows:

σm = (1 − λν)σm1 + λνσm2 (7a)

εν = (1 − λν)εν1 + λνεν2 (7b)

{s} = (1 − λs){s}1 + λs{s}2 (8a)

{e} = (1 − λs){e}1 + λs{e}2 (8b)

where {s} = {σ} − σm{I}, {e} = {ε} − (1/3)εν{I}, {I} = {1 1 1 0 0 0}T.
Similarly, the averaging stress–strain relationship can be written as

σm = [(1 − bν)K1 + bνK2]εν , (9a)

σs = [(1 − bs)G1 + bsG2]εs, (9b)
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where σm and σs are the average mean compression stress, and average gen-
eralized shear stress, respectively. εν and εs are the average volumetric strain
and average shear strain, respectively. K1 and K2 (G1 and G2) are the bulk
(shear) moduli for two elements. bν = 1− (1−λν)aν1 and bs = 1− (1−λs)as1
are two breakage parameters.

In the following we shall call (6) the single parameter model, and (9) the
double parameter model. The corresponding parameter b or parameters bν
and bs are internal variables. They can be determined by a “trial and error”
method in a way similar to the determination of hardening parameter in the
theory of plasticity.

4.2 An Ideal Model

In this model the assumption of an ideal frictional material will be used, as
shown in Fig. 8 [7]. Let Ei be the Young’s modulus for a bonding element.
The Young’s modulus for a frictional element can be calculated by Ef = kσ3f ,
where k is a proportional ratio and σ3f is the minor principal stress of the
frictional element. Then (4) becomes:

{σ} = ((1 − b)Ei[P ]i + bkσ3f [P ]f) {ε}, (10)

where [P ]i and [P ]f are matrixes only related to Poisson’s ratio. The incre-
mental form of this equation will be
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{Δσ} = ((1 − b)Ei[P ]i + bkσ3f [P ]f) {Δε}−({σi} − {σf})
{
∂b

∂
�
ε

}{
∂

�
ε

∂ε

}
{Δε} .

(11)
For simplicity, let the major principal strain ε1 be the variable controlling

the evolution of breakage parameter b. When a parabolic function or a hy-
perbolic function between b and ε1 is used, the computed stress–strain curves
under various degree of confining stress are as shown in Fig. 9a, b [7].

4.3 A Model for Over consolidated Clay

Failure in over consolidated clay often happens along a weak band, indicat-
ing that it is necessary to use the double parameter assumption. Again the
bonding element is assumed to be an elasto-brittle body, but its constrained
modulus decreases with the increase of the over consolidation ratio [8]:

Ki =
Mm

Rn
c

1 + ν
3(1 − ν) ;Gi =

Mm

Rn
c

1 − 2ν
2(1 − ν) , (12)

where Rc = σcmax/σc is the over consolidation ratio, Mm is the constrained
modulus when the consolidation stress is equal to the historically maximum
consolidation stress σc = σcmax, n is a model constant, and v is Poisson’s ratio.
The volumetric strain and shear strain of the friction element are calculated
by

εν = cc ln
σm(1 + χ)
σ′m0

(13a)

and
εs = εν

caη

ηc − η , (13b)

where η = σs/σm, χ = cdηm and σ′m0 = σm0/R
n
c . σm0 is a reference stress when

the volumetric strain is 0. ηc and the other coefficients are model constants.
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The two breakage parameters are proposed as

bν = 1 − [1 + c1εν ] exp (−c1εν) (14a)

and
bs = 1 − [1 + c2εs] exp (−c2εs) , (14b)

where c1 and c2 are two other constants. The stress–strain relationship is
expressed as follows:

Δσm = ((1 − bν)Ki + bνKft) Δεν − (Ki −Kfs)
∂bν
∂εν

Δεν (15a)

and
Δσs = ((1 − bs)Gi + bsGft) Δεs − (Gi −Gfs)

∂bs
∂εs

Δεs, (15b)

whereKft and Gft (Kfs and ,Gfs) are tangential (secant) moduli obtained from
(13) for volumetric and shear deformation. When the deviatoric stress Δσs is
known, its components can be obtained by using the Plandtl–Reuss law.

4.4 A Model for Loess

Loess frequently collapses due to wetting, which gives rise to deformation in
a large area. Therefore, in this case the single volumetric averaging technique
can be used [9]. The modulus of the bonding element can be calculated by
using an equation similar to (12), in which the degree of saturation Sr will be
used instead of the over consolidation ratio Rc

Ki =
Ms

Sn
r

1 + ν
3(1 − ν) ; Gi =

Ms

Sn
r

1 − 2ν
2(1 − ν) , (16)

where MS is the constrained modulus of loess at the saturated state. The
stress–strain relationship for a frictional element is the same as shown in (13).
Taking into account the fact that the bond in the loess usually is quite low,
and the bonding blocks can be destroyed not only under shear stress but also
under spherical stress, we shall use the major principal strain as the controlling
factor of breakage. Hence the evolution law of the breakage parameter can be
expressed by

b = 1 − [1 + cbε1] exp (−cbε1) . (17)

The corresponding stress–strain relationship in incremental form then
becomes

Δσm = ((1 − b)Ki + bKft) Δεν

− (Ki −Kfs)
∂b

∂ε1

∂ε1
∂εν

Δεν +
∂σm
∂Sr

ΔSr, (18a)

Δσs = ((1 − b)Gi + bGft) Δεs

− (Gi −Gfs)
∂b

∂ε1

∂ε1
∂εs

Δεs +
∂σs
∂Sr

ΔSr, (18b)

in which the third term in the right side of each equation represents the effect
due to the increase of degree of saturation ΔSr.
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5 Flow Theory of Breakage Mechanics

In this section the flow theory of plasticity will be used for frictional elements.
In this case the local strain coefficient must be regarded as an independent
internal variable in parallel with the breakage coefficient.

5.1 General Relationships

Let us consider a representative volume element (RVE). Let {σ}1 and {ε}1
({σ}2 and {ε}2) represent the local stress and local strain tensors of the elasto-
brittle (elasto-plastic) elements, respectively. Let {σ} and {ε} be the average
stress and average strain of RVE (the top bar is here omitted for simplicity),
and let [D]1 and [D]2 represent the elastic modulus tensors of the two ele-
ments. In addition, f2 and g2 are used to represent the yield function and
potential function for elasto-plastic elements. Then the following stress–strain
relationships in incremental form can be obtained:

{Δε}1 = [D]−1
1 {Δσ}1, (19a)

{Δε}2 = [D]−1
2 {Δσ}2 + Δλ

∂g2
∂{σ}2 , (19b)

where Δλ is the plastic multiplier. If f2 is expressed as

f2({σ}2, h({εp})) = 0, (20)

where h is the hardening parameter, then (19b) can be rewritten as

{Δε}2 = [D]−1
2 {Δσ}2 + a

∂g2
∂{σ}2

{
∂f2
∂ {σ}2

}T

{Δσ}2, (21)

where a is the plastic coefficient defined by

a = −(
∂f2
∂h

{
∂h

∂ {εp}
}T

∂g2
∂{σ}2 )−1. (22)

The volumetric breakage coefficient of the elasto-plastic part can be ex-
pressed by the following relationship:

λν = f1({σ}1). (23)

In addition, the local stress coefficient [C] can be expressed as

{σ}1 = [C]{σ}, (24)

where f1 and [C] are functions to be determined. The methods of their deter-
mination will be discussed later.

Hereafter let {σ}0, {ε}0, {σ}01, {ε}01, {σ}02, and {ε}02 represent the initial av-
erage stress and strain, and local stress and strain for the first and the second
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element, respectively. Let {Δσ}, {Δε}, {Δσ}1, {Δε}1, {Δσ}2, and {Δε}2 be
the corresponding stress increment and strain increment tensors, respectively.
Hence {σ}0 + {Δσ}, {ε}0 + {Δε}, {σ}01 + {Δσ}1, and {ε}01 + {Δε}1, {σ}02 +
{Δσ}2, {ε}02 + {Δε}2 represent the corresponding final stress and strain ten-
sors, respectively. The stress–strain relationship will be deduced in two ways.

5.2 Single Parameter Theory

Let λ0ν be the volumetric breakage coefficient at the initial state, Δλν its
increment and λ0ν + Δλν the new breakage coefficient. Substituting the initial
quantities and final quantities into (2a) and (2b), we can obtain the following
equation, in which the high order terms are omitted:

{Δσ} = {Δσ}1 + λ0ν({Δσ}2 − {Δσ}1) + Δλν({σ}02 − {σ}01), (25a)

{Δε} = {Δε}1 + λ0ν({Δε}2 − {Δε}1) + Δλν({ε}02 − {ε}01). (25b)

After obtaining {Δσ}2 from (25a), then using {Δε}2 = [D]−1
ep {Δσ}2, {Δε}1 =

[D]−1
1 {Δσ}1 and Δλν =

{
∂f1

∂{σ}1

}T

{Δσ}1, and using (3) to eliminate {σ}02
and {ε}02 , (25b) can be rewritten as

{Δε} = [D]−1
ep {Δσ} − (1 − λ0ν)([D]−1

ep − [D]−1
1 )[A]{Δσ} +

1
λ0ν

([D]−1
s

−[D]−1
ep + [D]−1

ep [C] − [D]−1
1 [C]){σ}0{B}[A]{Δσ}, (26)

where

[D]−1
ep = [D]−1

2 + a
∂g2
∂{σ}2

{
∂f2
∂ {σ}2

}T

, (27a)

{B} =
∂f1
∂{σ}1 , (27b)

[A] =
∂{σ}1
∂{σ} = [C] +

∂[C]
∂{σ}{σ}. (27c)

Equation (26) shows that the total increment strain {Δε} can be expressed
in three parts. The first part is the deformation when the whole element
is occupied by the elasto-plastic body. The second part is the reduction of
deformation due to the existence of the elasto-brittle body. The third part is
the deformation due to the increase of Δλν i.e., due to the breakage of the
elasto-brittle microelement.

5.3 Double Parameter Theory

Similarly, let Δσm,Δσm1,Δσm2,Δεν1,Δεν1,Δεν2; {Δs}, {Δs}1, {Δs}2; {Δe},
{Δe}1, {Δe}2, and Δλν ,Δλs be the corresponding incremental quantities of
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the stress and strain tensors; the local stress–strain relationships will be

Δεν1 = (1/K1)Δσm1, (28a)

{Δe}1 = (1/(2G1)){Δs}1, (28b)

Δεν2 = K−1
2 Δσm2 + a

∂g2
∂σm2

(
∂f2
∂σm2

Δσm2 +
{
∂f2
∂ {s}2

}T

{Δs}2
)
, (29a)

{Δe}2 =
1
2
G−1
2 {Δs}2 + a

∂g2
∂{s}2

(
∂f2
∂σm2

Δσm2 +
{
∂f2
∂ {s}2

}T

{Δs}2
)
,

(29b)

where K1 and K2 (G1 and G2) are bulk (shear) moduli for the bonding ele-
ment and frictional element, respectively. Then (23) and (24) for the breakage
function and local stress coefficient become, respectively

λν = fν({σ}1); λs = fs({σ}1). (30)

and
σm1 = cmσm; {s} = cs{s}. (31)

Using the procedure similar to the above, the following stress–strain rela-
tionships can be obtained:

{Δε} =
(

1
3
[K]−1

2 +
1
3
[P ]−1

m +
λ0s
λ0ν

[Qm]−1

)
Δσm{I}

+
(

1
2
[G]−1

2 + [Qs]−1 +
1
3

λ0ν
λ0s

[Ps]−1

)
{Δs}

−(1 − λ0ν)
(

1
3
[K]−1

2 +
1
3
[P ]−1

m − 1
3
[K]−1

1 +
λ0s
λ0ν

[Q]−1
m

)
AmΔσm{I}

−(1 − λ0s )
(

1
2
[G]−1

2 + [Q]−1
s − 1

2
[G]−1

1 +
1
3

λ0ν
λ0s

[P ]−1
s

)
As{Δs}

+
1
λ0ν

(
1
3
[K]−1

s − 1
3
cm[K]−1

1

−
(

1
3
[K]−1

2 +
1
3
[P ]−1

m +
λ0s
λ0ν

[Q]−1
m

)
(1 − cm)

)
σm{I}Δλν

+
1
λ0s

(
1
2
[G]−1

s − 1
2
cs[G]−1

1

−
(

1
2
[G]−1

2 + [Q]−1
s +

1
3

λ0ν
λ0s

[Ps]−1

)
(1 − cs)

)
{s}Δλs, (32)
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where

[K]−1
1 =

1
K1

[I], [G]−1
1 =

1
G1

[II], (33a)

[K]−1
2 =

1
K2

[I], [G]−1
2 =

1
G2

[II], (33b)

[Pm]−1 = a
∂g2
∂σm2

{I} ∂f2
∂σm2

{I}t, (34a)

[Ps]−1 = a
∂g2
∂σm2

{I}
{
∂f2
∂ {s}2

}T

, (34b)

[Qm]−1 = a
∂g2
∂{s}2

∂f2
∂σm2

{I}T, (34c)

[Qs]−1 = a
∂g2
∂{s}2

{
∂f2
∂ {s}2

}T

, (34d)

[K]−1
s =

εν
σm

[I], [G]−1
s =

2{e}
{s} , (35)

Am = cm +
∂cm
∂σm

σm, As = cs +
{
∂cs
∂ {s}

}T

{s}, (36)

in which

[I] =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ [II] =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

The structure of (32) is similar to (26). The first two terms on the right
hand represent the deformation when the whole body is regarded as a fric-
tional medium. The middle two terms represent the reduction of deformation
due to the existence of a bonding element. The final two terms result from
the increase of breakage coefficients Δλν and Δλs. Note that for simplicity,
representation Δλν and Δλs have not been converted to Δσm and {Δs}, but
the following equations hold

Δλν = BvmAmΔσm + {Bν}Ts As{Δs}, (37a)

Δλs = BsmAmΔσm + {Bs}Ts As{Δs}, (37b)

where

Bνm =
∂fν
∂σm1

, {Bν}s =
∂fν
∂{s}1 , Bsm =

∂fs
∂σm1

, {Bs}s =
∂fs
∂{s}1 .
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5.4 Determination of Structural Parameters

In (26) and (32), four sets of parameters in total need to be determined. The
first is the modulus of elasto-brittle material. Theoretically, it can be deter-
mined in laboratory by using undisturbed samples. But actually the results
are doubtful because of unavoidable disturbance in sampling. Therefore, it is
advisable to measure them in situ. The second set contains elastic modulus
and hardening parameter of the frictional element, which can be determined
in a laboratory by using completely disturbed samples. The third and the
fourth sets contain λν , λs and cν , cs, respectively. Because they are closely re-
lated to the internal structure of the samples, we shall call them structural
parameters.

For man-made materials with known internal structures, such as alloys
and composite materials, the structural parameters can be determined by
theoretical analysis in simple cases or by numerical simulation in complicated
cases. But geological materials are natural products, and their internal struc-
ture is actually impossible to determine. Therefore, the only realistic method
seems to be to determine them indirectly. Briefly, the procedure of determina-
tion is recommended as follows: First, assume some empirical functions; then
calculate the stress–strain relation curves by using (26) or (32); and finally
choose the best one by comparing the calculated results with experimental
data.

6 Breakage of Oval Structural Blocks

A mathematical model can be established if a sample is assumed to be a
regularly arranged assembly of oval blocks.

6.1 Breakage Criteria for Oval Block

There are two types of breakage in structural blocks: local crushing and total
rupture. An oval block can be broken by any of the following three criteria
(also see Fig. 10).

(a) (b) (c)

Fig. 10. Breakage of oval blocks. (a) Local crushing (b) shearing rupture (c) bending
rupture
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Local Crushing Criterion

Let c be the cohesion of the block material, E its Young’s modulus, and ν
its Poisson’s ratio. According to Hertz’s contact theory, the following local
crushing criterion can be obtained:

[σ1]I = BIC, (38)

BI =
9π3ξ3(1 − ν2)2c2r2a

16E2r2b
, (39)

where BI is called the first breakage factor. In (38) and (39), ra and rb are the
radius of the long axis and short axis, respectively. ξ is a coefficient calculated
according to the plasticity theory. [σ1] is the nominal major principle stress
at the state of the local crushing.

Shearing Rupture Criterion

Let t be the tensile strength of the block material. Then an oval block will be
ruptured under the following nominal shear stress:

[τ] = BIIt, (40)

where BII is a function of normal stress and is called the second breakage
factor.

Bending Rupture Criterion

When two or three blocks are arranged in the most unfavorable state, the
bending moment at the center cross-section reaches such a state that tensile
fracture happens at the top of the cross-section (see Fig. 10c). The correspond-
ing nominal principal stress will be

[σ1]III = BIIIt, (41)

BIII =
r2b
2r2a
, (42)

where BIII is called the third-breakage factor.

6.2 Five Steps of the Breakage Process

Five steps can be distinguished in the deformation and failure process of a
sample consisting of oval blocks.
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Elastic Deformation Stage

The blocks are assumed to deform elastically ahead of local crushing. Let rb0
and rb be the radius of the short axis measured, respectively, before and after
deformation. The apparent major principal strain can be calculated as follows:

ε1 = 1 − rb
rb0

= (
9(1 − ν2)2σ21

2E2r2b
)1/3. (43)

In the case of σ1 = [σ1]I, r1 = rb1 can be determined accordingly.

Filling Hardening Stage

When the major compression stress σ1 = [σ1]I, local crushing occurs. In this
stage the crushed material drops from the block bodies and fills the pores
between the blocks. If σ1 increases further, the contact area and strain ε1
increases consequently. Assume that in the process of local crushing the blocks
still keep their oval shape while the radius of their short axis is reduced. Then,
at the end of this stage, the radius of the short axis will be

rb2 =
π(1 + η)
6 + πη

rb0. (44)

The corresponding value ε1 can be calculated by (43), where η is the rate of
volume increase after the crushed material has been dropped from the blocks.
The stress σ1 at this time is

[σ1]2 =
9π3ξ3(1 − ν2)2r2a

E2r2b2
. (45)

Compression Hardening Stage

When the voids between the blocks are full of the crushed material (the fric-
tional element), the material begins its densification. Then some part of the
stress will be sustained by the frictional element, which leads to a further
hardening until the subsequent peak stress reaches

σ1 = [σ1]3 = [σ1]3i + [σ1]3f . (46)

where [σ1]3i is the stress shared by the block bodies and can be calculated
by the aforementioned method. [σ1]3f is the stress shared by the frictional
element and can be determined using the Mohr–Coulomb criterion. At this
time r1 = rb3, and the strain ε1 is determined again according to (43).
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Slip Softening Stage

When the stress shared by the frictional element meets the Mohr–Coulomb
criterion, local slipping takes place. This causes to the adjacent blocks to move
relatively, and then initiates the total rupture of the blocks. Accompanied with
the rupture of the structural blocks, the capacity of the sample against the
external load decreases, i.e., strain softening takes place and a shear band
forms.

Plastic Flow Stage

When the blocks within the shear band are broken completely, the sample
reaches a steady plastic flow state. The stress state in this stage can be deter-
mined by the Mohr–Coulomb criterion. Assume that this state will be achieved
when the blocks have moved a distance of a half of a block length horizontally.
Then the vertical strain at the beginning of this stage can be obtained by

ε1 =
(

9(1 − ν2)2σ21
2E2r2b4

)1/3

. (47)

6.3 Stress–Strain Relationship

According to aforementioned description, the stress–strain curves of a sample
under different confining stresses can be obtained. Figure 11 shows clearly that
a sample may exhibit softening behavior at low confining stress but hardening
behavior at high confining stress. The corresponding relationship between the
coefficient of stress concentration and vertical strain ε1 is shown in Fig. 12.
Note that in Fig. 12 the shear banding is not considered. In the calculation,
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Fig. 11. Stress–strain curves of a block assembled sample
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Fig. 12. Relationships between volumetric breakage ratio and vertical strain

the following parameters are used:

E = 20, 000 kPa, k = 20, ν = 0.3, c = 300 kPa, φ = 20◦, η = 1.2, ξ = 5.14

and the shape of blocks is taken as follows: ra0 = 10 cm, rb0 = 8cm.

7 Preliminary Application

7.1 Interpretation of Test Results of Rock Samples

Rock samples exhibit quite different behavior under the action of confining
stress. For example, marmoreal samples show strain-softening behavior under
low confining stress, but hardening under high confining stress. However, well-
cemented sandstone exhibits strain-softening even under high confining stress.
In addition, many tests exhibit some irregular fluctuation in their results.
The proposed binary model can duplicate these phenomena. If the volumetric
breakage function takes the following Weibull’s law:

λν = 1 − exp
[
−
(
σd
qee

)m]
, (48)

then we can get some calculated results as shown in Fig. 13. For details, see
reference [10].

7.2 Wetting Deformation of Loess Foundations

The above-mentioned binary model has also been incorporated into a FEM
code and used to calculate the wetting deformation of a loess foundation
under a circular footing with a preload of 200 kPa. The deformed mesh in this
simulation is shown in Fig. 14. For details, see [11].
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Fig. 14. Wetting deformation of a loess foundation

7.3 Stability of a Cut Slope

The long term stability of cut slopes under natural conditions is still a point
of concern in geotechnical engineering. Here the strain softening effect and
wetting softening effect due to water infiltration influence each other. There
is no effective method available for its analysis. Based on the binary model and
reduced suction concept we have proposed a relatively simple method for this
purpose. Figures 15 and 16 show the computed results for a cut slope, showing
the stability reduction under slow infiltration of rainwater. For details, see [12].
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8 Conclusions and Further Research

Geological materials are natural products. They have many outstanding prop-
erties that are difficult to be modeled by the existing theories that have been
based on the concept of a homogeneous medium. The proposed binary medium
model was designed to better solve this problem. However, until now our study
still takes soils as the main objects. But we hope this model also can be used
to simulate the behavior of rock masses. The following are some conclusions
from our investigations:

1. The structural geological materials can be conceptualized as a binary
medium consisting of a bonding element and a frictional element, which
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can be simulated by the elasto-brittle body and elasto-plastic body, re-
spectively.

2. The binary medium is a heterogeneous material and the homogenization
theory can be used to derive its averaging stress–strain relationship. In
comparison to the traditional theory where only the volumetric averaging
technique is used, this paper introduces both volumetric averaging and
facial averaging techniques.

3. The breakage of the bonding element is controlled by the local stress on
the element. Therefore, it is necessary to establish the evolution law of
the local stress coefficient.

4. Breakage coefficients and local stress coefficients are two sets of internal
variables. The former is similar to the damage coefficient in damage me-
chanics, while the latter is to some extent like the stress intensity factor in
fracture mechanics. Because it is impossible to observe the internal struc-
ture of geological materials in a laboratory by current techniques, only an
indirect method can be used in their determination.

5. The numerical simulation examples show that the proposed binary medium
model can duplicate many fundamental aspects of stress–strain behavior
of geological materials, and seems to be promising in the geotechnical
engineering field.

Of course, the above-mentioned results are just preliminary findings. The
key points of further research in the future are the mechanism of the break-
age of bonding blocks and the evolution law of two sets of internal variable.
Regarding these targets, some procedures are under consideration:

– Theoretical analysis to obtain analytical solutions for simple cases.
– Numerical tests by using FEM and DEM to get the evolution laws in some

typical cases.
– Physical tests to reveal the breakage mechanism of bonding blocks at both

the macroscopic and mesoscopic level including tests of rock and soil sam-
ples under various stress paths and various degree of confining stress.

By these three procedures, it is expected that the fundamental framework
of breakage mechanics for geological materials can be established in the near
future.
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Abstract. The dependence of several constitutive quantities of a typical sand plas-
ticity model, such as the peak and phase transformation stress-ratios, the plastic
modulus, the dilatancy and the location of the critical state line, on the state para-
meter ψ and a properly defined scalar-valued measure of inherent fabric anisotropy,
yields a constitutive framework within which a chosen model is able to simulate
successfully the results of a plethora of loading responses accounting for different
densities, confining pressures, orientation of loading directions and sample prepa-
ration methods. In parallel, appropriate dependence of the dilatancy or the plastic
modulus on an evolving fabric-dilatancy tensor ensures accurate simulation of cyclic
loading. The generic nature of such constitutive ingredients is discussed in regards
to their use in conjunction with different constitutive models.

1 Introduction

In published works of the authors and their collaborators over the period of
last several years on plastic constitutive modeling of sands, a number of novel
constitutive ingredients appear. The first ingredient is the dependence of the
peak and phase transformation stress-ratios on the state parameter ψ (Been
and Jefferies 1985), so that these ratios coincide with the critical stress ratio
when the ψ is zero at critical state. The second ingredient is the dependence
of the plastic modulus and the dilatancy on a scalar-valued measure A of the
relative orientation of inherent fabric anisotropy direction and an appropriate
plastic loading direction. And finally, the third ingredient is the dependence
of the dilatancy and/or the plastic modulus on the relative orientation of an
evolving fabric-dilatancy tensor with the plastic loading direction.

The most important attribute of the foregoing ingredients is that they are
generic, in the sense they can be incorporated in different constitutive models,
as long as the background constitutive framework is that of critical state soil
mechanics (CSSM). This presentation addresses all constitutive modelers, and
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its main goal is to present these constitutive ingredients, explain their generic
nature, which often is lost within the complexities of the constitutive models
they are embedded in, and discuss how they can be used by other researchers
in their own constitutive models.

It is important to emphasize that such ingredients are most appropriate
(but not exclusively so) for sand constitutive models, which are stress-ratio
η = q/p driven, in the sense that a change in stress-ratio is the main mecha-
nism of plastic deformation, contrary to clays where loading under a constant
stress-ratio η induces a large amount of plastic consolidation. Note that q and
p above denote the triaxial stress deviator, q = σ1 − σ3, and the mean effec-
tive stress, p = (σ1+2σ3)/3. In the sequel, bold face characters denote second
order tensors.

2 Dependence on State Parameter

Plastic strain computations in elastoplasticity generally involve two basic pa-
rameters, the plastic modulus Kp and the dilatancy D. In a stress-ratio η
driven model in the triaxial space, both parameters can be made functions of
η, for example:

Kp = h(Mb − η) (1)

D = Ad(Md − η), (2)

where Mb is a “virtual” peak or bounding stress-ratio and Md is a similarly
“virtual” dilatancy or phase transformation stress-ratio. Notice that (1) has
the basic ingredient of a bounding surface formulation, where the plastic mod-
ulus is a function of the “distance” in stress (ratio) space between the current
and the bounding surface states.

Wood et al. [20] proposed to render Mb a function of the state parameter
ψ = e − ec, Been and Jefferies (1985), with ec the void ratio on the critical
state line (CSL) in the e− p space corresponding to the ever-current p, as:

Mb = M − kbψ, (3)

where M is the critical state stress-ratio in q − p space, and kb a material
constant. While (3) was proposed by Wood et al. [20] in a triaxial setting for
the peak stress ratio, it was not directly linked to an expression for the plastic
modulus like (1). Rather it was used in a simple uniaxial simulation of the
stress–strain response, where the variableMb was linked to the development of
deviatoric strain under monotonic loading. It was [11] who adopted the above
(3) in conjunction with (1) for a multiaxial bounding surface constitutive
model formulation of the two-surface kinematics hardening kind, where the
generalization of the (variable with ψ) Mb superbly qualifies for a varying in
size conical bounding surface in stress space. Most importantly, [11] proposed
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also a similar dependence of the dilatancy stress-ratio Md on ψ, which reads

Md =M + kdψ (4)

with kd another material constant. Equations (3) and (4), in conjunction with
(1) and (2), were the novel constitutive ingredients, which enabled the afore-
mentioned general stress-space sand constitutive model to simulate the sand
response under drastically different densities and confining pressures, with
a single set of model constants for a given sand. In particular, (4) was the
element that rendered the model compatible with CSSM premises, as for ex-
ample having failure occur with no volume change. This is very simply the
result of Md = M for ψ = 0 in conjunction with D = 0, for η = M (criti-
cal state). In addition, the dilatant or contractive nature of dense and loose
samples is successfully simulated via (2) and (4), while (1) and (3) address
the important issue of softening in dense samples, since Kp can be positive
(hardening), negative (softening), or zero (peak and/or failure stress-ratio).

In a more general consideration of state-dependent dilatancy, Li and
Dafalias [6], among other things, proposed an exponential dependence of Mb

and Md on ψ, i.e., they suggested instead of (3) and (4), the expressions:

Mb =M exp(−nbψ) (5)

Md = M exp(ndψ) (6)

with nb and nd model constants, in lieu of kb and kd, respectively. Equa-
tions (5) and (6) have a wider applicability than (3) and (4), although the
latter can be used successfully as well.

An illustration of a stress-ratio driven model in the triaxial stress space q–
p is provided in Fig. 1, based on Manzari and Dafalias [11]. Observe the shape
of the yield surface (open wedge with apex at the origin of axes) and note
that it does not move when the stress-ratio η remains constant (stress-ratio
η driven). Furthermore, note the lines corresponding to the aforementioned
Mb,Md, and M . The example in Fig. 1 corresponds to ψ < 0, as it can be
easily concluded from the position of the Mb and Md lines in regards to the
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Fig. 1. Yield surface and the M, Mb, and Md lines in a stress-ratio driven model
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Fig. 2. Experimental results and model simulations for different initial pressures un-
der triaxial compression (e = 0.833); Data: Verdugo and Ishihara [16]; Simulations:
Dafalias and Manzari [4]

M line and the foregoing equations. As the sand approaches critical state
where ψ = 0, the Mb and Md lines converge on the M line, based on (3) and
(4), or (5) and (6) alternatively.

As an example of the predictive abilities of a ψ-dependent stress-ratio η
driven model, Fig. 2 presents a comparison between undrained triaxial com-
pression test data and simulations with the pertinent model of Dafalias and
Manzari [4]. Observe the large variation in the initial pressure (p0 varies from
100 to 3,000 kPa), and how well a ψ-dependent stress-ratio η driven model
simulates the data with a single set of model constants.

Obviously, the foregoing dependence of Mb and Md on ψ presupposes the
explicit definition of the CSL equation in the e − p space. This is usually
performed with a two-parameter linear – logarithmic relation:

ec = e0 − λ ln(p/pa) (7)

or for greater accuracy by [9]:

ec = e0 − λ(p/pa)ξ, (8)

where e0, λ, and ξ are model constants and pa is the atmospheric pressure.
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Table 1. Usual range of constants for ψ dependence of Mb and Md

constant kb kd nb nd

range 0.8 – 3.0 0.3 – 6.0 0.6 – 2.0 0.2 – 3.5

In closure, based on Papadimitriou et al. [14] and related experience, the
usual variation of the constants related to the ψ dependence of Mb and Md

is given in Table 1.
The very simple constitutive ideas embodied in (3) through (6) can very

easily be implemented in other constitutive models where the Mb and Md

appear. For example, Li et al. [10] modified the bounding surface hypoplas-
ticity model of Wang et al. [18] by rendering Md an exponential function of
ψ. In this very simple way, the model was able to predict critical failure with-
out unbounded volume change. Further extending these constitutive concepts,
Wang et al. [19] introduced first the state pressure index Ip = p/pc, with pc
the p on the CSL at the same e, as an alternative measure to ψ, and subse-
quently proposed power dependence on Ip of the dilatancy and failure lines in
q−p space, such lines defined at the same void ratio. In a similar way, many
existing stress-ratio driven constitutive models can incorporate the Mb and
Md (in particular) dependence on ψ or other indices like Ip, without altering
any other basic constitutive features.

3 Dependence on Inherent Fabric Anisotropy

Abundance of experimental evidence suggests a strong dependence of the sand
response on the orientation of the loading in regards to an existing preferred
fabric direction, the latter due to settlement formation under gravity. This is
the case of inherent sand fabric anisotropy, which must be accounted for in a
constitutive modeling approach. The most recent data by Yoshimine et al. [22]
and Nakata et al. [12] in a torsional shear apparatus, are very eloquent in
showing drastic differences in response, often reaching the level of 300% or
more, when the same sand sample is loaded identically with the principal
stress directions in various orientations with respect to the vertical axis of
sample deposition. One catalytic observation of the aforementioned data, is
that the deviatoric strains are almost coaxial with the stress (especially at
high stress ratios), thus, suggesting that whatever difference is observed in
the stress–strain response, is due to differences in the dilatancy and/or the
plastic modulus according to orientation.

The above prompted Li and Dafalias [7] and Dafalias et al. [5] to address
the inherent fabric anisotropy in a very simple way. Firstly, an anisotropic
scalar-valued state variable A was introduced, properly defined in terms of
joint isotropic invariants of an inherent fabric anisotropy tensor F and a nor-
malized “active” loading direction n. More specifically, given the assumed
(and expected) transversely isotropic symmetry of a sample because of the
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procedure of preparation, the fabric tensor F is also transversely isotropic in
the bedding plane of the sample, defined in terms of a single constant, a, as:

[F] =

⎡⎣a 0 0
0 1/2(1 − a) 0
0 0 1/2(1 − a)

⎤⎦ . (9)

The normalized “active” loading direction n is a matter of definition. For
example, one may define a tensor whose eigenvectors coincide with the prin-
cipal stress direction (e.g., as in Li and Dafalias [7]). Such a choice, would fail
however to portray the situation realistically in reverse loading conditions,
because the stress itself does not define, in general, the “active” loading direc-
tion. Therefore, for models with a yield surface the “active” loading direction
n could be defined in terms of the normal to the yield surface (e.g., as in
Dafalias et al. [5]). In cases where there is no yield surface, a loading surface
could substitute for the yield surface, as in stress-reversal models (e.g., as in
Li and Dafalias [8]).

In general, this definition of A accounts in a natural and straightforward
way for the relative orientation of the “active” loading with respect to the
fabric. The definitions of A in the foregoing papers are similar, yet different.
For example, Dafalias et al. [5] proposed the use of the first joint isotropic
invariant of F and n for A, as

A = g(θ, c)F : n, (10)

where θ is the Lode angle related to direction n, c is the absolute ratio of
A in triaxial compression (Ac) and extension (Ae) and g is an interpolation
function for the value of A in different loading directions (between Ac and
Ae). The definition of A by Li and Dafalias [7], and its extension for non-
proportional loading (e.g., rotational shear) by Li and Dafalias [8], essentially
use the second and third joint invariants of F and n, and are not presented
here for reasons of brevity.

In all the foregoing propositions, the plastic modulus Kp was made a
function of A, by the dependence of the plastic modulus scaling coefficient h,
(1), on A. In particular, Dafalias et al. [5] proposed:

h = hA
[
1 + kh − k(Ae−A)/(Ae−Ac)

h

]
, (11)

where kh is constant expressing the ratio of plastic moduli in triaxial extension
and compression. The respective equation of Li and Dafalias [7,8] is linear with
respect to A and is again calibrated in terms of constant kh.

Finally, the dilatancy expression D was made function of A in an indirect
way, namely by rendering the location of the CSL in the e−p space a function
of A. This makes the state parameter ψ, and the ψ-dependent Md, according
to (4) or (6), indirect functions of A. More specifically, Dafalias et al. [5]
proposed a parallel relocation of the CSL, (7) or (8), as a function of A, via:

e0 = eA exp (−A) , (12)
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where eA serves as a model constant. Note that the respective equation of Li
and Dafalias [7,8] is quadratic with respect to A and requires the calibration
of an extra constant kΓ, but its effect is similar to that of (12).

In order to show the performance of the foregoing simple scheme for in-
troducing the effect of inherent fabric anisotropy in a constitutive model, one
has to use appropriate test data. Most appropriate for this purpose are the
data of Yoshimine et al. [22] and Nakata et al. [12], where the same loading
sequence was applied at different directions with respect to the bedding plane
of similarly prepared Toyoura sand samples.

Specifically, these tests were characterized by undrained loading with the
same value of the intermediate principal stress ratio b = (σ2−σ3)/(σ1−σ3) at
different orientations, quantified via the angle α of σ1 with respect to vertical.
As an example of the accuracy of the proposed scheme, Fig. 3 presents a
comparison of data and simulations for b = 0.5, using the Dafalias et al.
[5] model formulation. It has to be underlined that without the proposed
anisotropy scheme, the simulations in Fig. 3c,d would collapse into one single
curve for each plot.

From another point of view, the effect of inherent fabric anisotropy on
sand response may be viewed by comparing measurements from differently

200

150

100

50

0

200

150

100

50

0

200
(a) (c)

(b) (d)

150

150100500 150100500

100

50

0

200

150

100

50

0

0 3 96 12 15 0 3 96 12 15

Data, b= 0.5

Data, b= 0.5

a =15�

a =15� a =15�

a =15�30�
30�45�

45�
45�

45�

60�
60�

75�

75� 75�

75�

Simulations

Simulations

q
=
s 1

-
s

3 
 (

kP
a)

p= (s1+s2+s3) / 3  (kPa) p= (s1+s2+s3) / 3  (kPa)

q
=
s 1

-
s

3 
 (

kP
a)

Y= e1- e3  (%) Y= e1- e3  (%)

Fig. 3. Experimental results and model simulations for different angles of α at
b = 0.5(e = 0.82); Data: Yoshimine et al. [22]; Simulations: Dafalias et al. [5]



110 Y.F. Dafalias et al.

prepared samples of the same sand that undergo the same loading in manner
and direction, i.e., the same values of ratio b and angle α. In this case, it is the
different initial fabric that differentiates the response and not the direction of
loading, as in Fig. 3. Papadimitriou et al. [15] show that the scheme of Dafalias
et al. [5] can be used successfully for the simulation of the effect of different
initial fabrics on sand response.

For example, Fig. 4 shows a comparison of data and simulations of triaxial
compression and extension tests on Toyoura sand samples prepared by four
(4) different methods: air pluviation (AP), dry deposition (DD), dry rodding
(DR), and wet tamping (WT). The tests show a significant effect of the prepa-
ration method on the undrained sand response, which is captured successfully
by the simulations.

These successful simulations were made possible by appropriately cali-
brating the constants related with the proposed anisotropy scheme, i.e., the
constants that appear in (9) through (12). More specifically, Papadimitriou
et al. [15] show that constants eA and hA, (11) and (12), that govern the
overall response are strongly affected by the preparation method, unlike con-
stants a and kh, (9) and (11), that quantify the relative effect of different
loading directions and show a weak dependence on the preparation method.
In practice, if one wants to capture the effects of sample preparation method
for any given sand, he could merely address the variation of constants eA and
hA and retain the values of a and kh constant. In other words, the latter two
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Table 2. Expected range of constants for inherent fabric anisotropy scheme

constant a kh eA hA

range 0.20–0.32 0.15–0.50 0.75–1.0 2.0–35
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Fig. 5. Comparison of undrained triaxial data to model simulations assuming no
effect on D, a unique CSL (use of (13)), or a variable CSL (use of (12)) as a function
of inherent fabric anisotropy (based on [15])

constants are related to the “nature” of the sand, i.e., the mineralogy, grain
shape and size distribution, and are therefore sand-specific.

Based on related experience, the expected variation of the constants related
to the inherent fabric anisotropy scheme is given in Table 2.

The parallel relocation of the CSL in the e−p space as a function of load-
ing direction and manner and/or sample preparation method, obtained via a
dependence on A by the very simple (12), is still a debatable issue in the liter-
ature, because it violates the uniqueness of the CSL. Thus, it was attempted
to account for the effect of inherent fabric anisotropy without violating the
uniqueness of the CSL in the following two ways.

First, Papadimitriou et al. [15] used a direct dependence of the dilatancy
D, (2), on A, as an alternative to (12), by setting:

Ad = AA exp(A). (13)

Note that in (13) it is the AA that serves as a model constant instead of the
eA of (12). It is clear that use of (13) instead of (12) preserves the uniqueness
of CSL, or rather its independence from inherent fabric anisotropy effects. As
shown in Fig. 5, after appropriate calibration, the effect of this alternative di-
rect dependence of dilatancy D on A becomes important after the quasisteady
state and all the way to critical failure, while for the initial parts of loading
(up until the quasisteady state) the differences are unimportant. Yet, if the
overall response is to be considered, use of (12) instead of (13) yields a much
better simulation, as it is evident from Fig. 5, at the price of a non-unique
CSL in the e−p space due to its dependence on A.

The second way to preserve the uniqueness of the CSL but account for the
effect of inherent fabric anisotropy is to consider only the plastic modulus Kp
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dependence on A as shown in (11), with no effect of A on D, direct or indirect,
i.e., without use of (12) or (13). As shown in Fig. 5, the resulting simulation
is almost identical to the one when use of (13) in lieu of (12) was made.

This is the simplest version of the proposed inherent fabric anisotropy
scheme, which again may be used successfully only up until the quasisteady
state, especially when constant a is near 1/3 (as is a = 0.31 for dry rodding in
Fig. 5), which renders the F of (9) almost equal to the identity tensor. Still,
its overall simulative capability is much inferior to the case where both (11)
and (12) are used. The conclusion at present is that the relocation of the CSL
according to (12) appears to play an important role in accounting for the
effect of inherent fabric anisotropy on the stress–strain simulations.

Along similar concepts within CSSM, Wan and his collaborators over the
last years have worked on incorporating fabric and state parameter effects in
various aspects of a critical state model, namely in the mobilized, the peak
friction and the dilatancy angles, in the location of the CSL etc, the latest
version of which is presented in Wan and Guo [17]. While these works are very
interesting due to their direct micromechanical foundation, yet, the approach
presented here is simpler for a continuum mechanics modeling.

More importantly it can easily be incorporated in any sand plasticity
model, since, by definition, any such model must contain the concepts of plas-
tic modulus Kp and dilatancy D, or their equivalent, in its formulation. Even
if the exact form of (1) and (2) is not adopted, certainly the peak and phase
transformation stress ratios are directly or indirectly part of any constitutive
model for sands, in which case (3) and (4), or (5) and (6) can be used. Fur-
thermore, the definition of A is generic, because an “active” loading direction
n can be defined in any such model, while tensor F is defined independently
of the constitutive model at hand.

4 Dependence on Evolving Sand Fabric Anisotropy

In applying the model of Manzari and Dafalias [11] to problems of sand liq-
uefaction, it was realized that under cyclic loading the model was providing
a stabilized undrained stress path much before the mean effective stress p
reached a value close to zero, thus, hindering the onset of liquefaction. By
studying the model performance vs. available experimental data, it was con-
cluded that one of the reasons for this discrepancy, was that after dilation in
loading, the subsequent contraction in unloading was not strong enough to
generate the characteristic “butterfly” shape of the undrained stress path and
the ensuing continuous reduction of the effective p. Available micromechanical
considerations in the literature, suggested the following constitutive scheme.
A dilatancy tensor z was introduced, which evolves according to:

ż = −B 〈−ε̇pv〉 [Cn + z] , (14)

where ε̇pv is the plastic volumetric strain rate, <> are the MacCauley brackets
that ensure that tensor z evolves only during the dilatant phase, while the
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minus sign in front of B provides for z evolution opposite to the “active”
loading direction n. Obviously, (14) introduces two (2) new constants, the B
that corresponds to the rate of evolution of anisotropy and the C that serves
to define the maximum (saturated) value of tensor z, when its rate equals zero.

The coefficient Ad of the dilatancy expression D, (2), was made function
of tensor z and the “active” loading direction n, as:

Ad = A0 (1 + 〈z:n〉) . (15)

Thus, upon reversal of loading and the ensuing change of sign of n, the term
< z:n > from zero becomes active and enhances the value of Ad, and thus of
the dilatancy D. This very simple scheme was proven to be very successful
in achieving the desired effect of intense pore pressure build-up upon load
reversal following dilation Dafalias and Manzari [3, 4]. As an example, Fig. 6
shows that the intensely contractive response of the data after load reversal
following dilation can only be captured with the simulation run taking into
account the evolving fabric anisotropy (C = 4).

In parallel, Papadimitriou and Bouckovalas [13] extended the principle of
Papadimitriou et al. [14] and applied an evolving fabric-related multiplier of
the coefficient h of the plastic modulus Kp expression, (1), i.e.,

h = h0
1 + 〈zp〉2
1 + 〈z:n〉 . (16)

The fabric-related tensor z of the denominator of (16) evolves using (14) and
offers similarly good results near liquefaction, since the weakening of Kp upon
load reversal results in similar trends for undrained loading. In addition to the
above, the scalar zp in the numerator of (16) evolves as

żp = B ε̇pv (17)

with B being the same as in (14). The numerator of (16) provides realistic
rates of accumulation of (volumetric and deviatoric) strains and excess pore
pressures during the whole cyclic loading process, from its consolidation state
all the way to liquefaction or cyclic mobility. Finally note that Papadimitriou
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Fig. 6. Comparison of undrained triaxial data to model simulations with C = 4
(evolving fabric effect on D) and C = 0 (no evolving fabric effect on D); Data:
Verdugo and Ishihara [16]; Simulations: Dafalias and Manzari [4]
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Fig. 7. Comparison of undrained simple shear data to model simulations with
h �= h0 (evolving fabric effect on Kp) and h = h0 (no evolving fabric effect on Kp);
Data: Arulmoli et al. [1]; Simulations: Papadimitriou and Bouckovalas [13]

and Bouckovalas [13] relate the values of B and C in (14) and (17) to the
stress history, thus facilitating their calibration.

As an example, Fig. 7 shows how this scheme with h 	= h0, (16), simulates
successfully the initially decreasing rate of excess pore pressure buildup in the
data, as well as its increase near liquefaction. For comparison, observe that
without this scheme (h = h0), the simulation is unable to simulate the whole
stress history, even if it is appropriately calibrated to yield the same excess
pore pressure at the end of the first load cycle (approx. 24 kPa).

Obviously such constitutive schemes can be directly applied to any con-
stitutive model that uses the concepts of loading direction n, dilatancy and
plastic modulus.

For example, Yang et al. [21] applied the foregoing principles in proposing
a function affecting the dilatancy, which enhances the contractive response
upon load reversal following dilative undrained loading.
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1 Introduction

Hypoplastic constitutive models have been developed since 1980s and since
then they have established a solid base for an alternative description of the
soil behaviour, without an explicit definition of yield and potential surfaces,
see, e.g. the review by [15]. Recent hypoplastic models [3, 16] include the
concept of critical states and have been successfully used in many computa-
tions of boundary value problems within coarse-grained soils. The progress
of hypoplastic models suitable for the description of fine-grained soils has
been delayed. Rate-dependent [4, 13] and rate-independent [6, 8] hypoplastic
models for clays promise to follow the success of the development for sand.
Nevertheless, a thorough testing of various constitutive aspects is required in
order to ensure a correct performance in general conditions of boundary value
problems.

One of the key characteristics of soil behaviour, incorporated in different
ways in the most of the currently available elasto-plastic constitutive models, is
the presence of the surface in the stress–porosity space which bounds all acces-
sible states (state boundary surface). Hypoplastic models do not incorporate
the state boundary surface explicitly in the mathematical formulation. How-
ever, as demonstrated in [11] for a particular hypoplastic model for clay [8],
state boundary surface is predicted implicitly by the constitutive equation as
a by-product of the mathematical formulation.

As shown in [11], state boundary surface of a hypoplastic model for clays
is sufficiently accurately approximated by the so-called swept-out-memory
(SOM) surface, a surface in the stress–porosity space which covers asymptotic
states (limit states, attractors) achieved after sufficiently long proportional
deformation paths. The purpose of this chapter is to provide a mathematical
derivation for the limit states of the two particular endomorphous hypoplas-
tic models – a hypoplastic model for clays by Maš́ın [8], which follows
from [6] and [13], and a hypoplastic model for granular materials by von
Wolffersdorff [16].
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2 Basic Properties of Considered Constitutive Models

A complete mathematical formulation of both models considered in the chap-
ter is given in Appendices A and B. In its most general form, mathematical
formulation of the models is given by

T̊ = h (T,D, e) , (1)

where T̊ is a co-rotated (Jaumann) stress rate, T stands for Cauchy’s stress
tensor, D is Euler’s stretching tensor and e is void ratio. All stresses are
considered as effective in the sense of Terzaghi. According to the terminology
laid out by Kolymbas [7], models belong to the sub-class of hypoplastic models
referred to as endomorphous. In addition to the Cauchy stress T, void ratio
e is also considered as a state variable. The particular form of the isotropic
tensor-valued function h, adopted in constitutive model by [8], follows from [3]
and reads

T̊ (T,D, e) = fs (trT)
[
L(T̂) : D + fd (trT, e)N(T̂)‖D‖

]
, (2)

where the operator trace is defined by trX = X:1 with 1 being the second-
order unit tensor, T̂ is the normalised stress defined by T̂ = T/trT, ‖D‖ =√

D : D is the Euclidian norm of D and the operator arrow is defined as−→
D = D/‖D‖. fs and fd are barotropy and pyknotropy factors [3, 16].

The barotropy factor fs of the hypoplastic model for clays [16] is inde-
pendent of void ratio e and is a linear function of trT. It follows that for
a constant value of the pyknotropy factor fd (i.e. for SOM conditions) the
model [14] is positively homogeneous of degree 1 with respect to stress, i.e.

γ2T̊ (T,D, e) = T̊
(
γ2T,D, e

)
. (3)

The barotropy factor of the hypoplastic model for granular materials [16] is
a non-linear function of trT and void ratio. For this reason the model is not
positively homogeneous with respect to stress. However, as discussed in [14],
for a constant value of fd the model is directionally homogeneous

−→̊
T (T,D, e) = T̊

(
γ2T,D, e

)
, (4)

which is a sufficient condition to predict asymptotic behaviour [14].

3 Proportional Stress and Strain Paths

Behaviour along proportional stress and strain paths (with
−→
D and

−→
T be-

ing constant) is reflected in the so-called SOM states, see Figure 1. These
SOM states can also be considered as attractors of the soil behaviour [2].
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e2

e1 T1
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Fig. 1. SOM behaviour: Proportional stress paths for proportional strain paths

e /epe1

e2 T2/T1

1

Fig. 2. Extended SOM behaviour including void ratio

The response of a real soil, however, does not depend solely on the stress
tensor. Void ratio must be considered as an additional state parameter for
both coarse-grained and fine-grained soils.

Except for constant volume (undrained) deformation, void ratio changes
along proportional strain paths. In the case of hypoplastic models for pairs
of proportional stress and strain paths one can find corresponding void ratios
ep dependent on the mean stress p. Combinations of ep and p for tr

−→
D < 0

plotted in the e:p space can be denoted as normal compression lines. Their
positions in the e:p space may be characterised by the void ratio at vanishing
mean stress (for model [16]), or at vanishing logarithm of the mean stress
normalised by the reference stress (for model [8]), denoted here as ep0. In this
way, extended SOM states which include void ratio can be defined (Figure 2).
Critical states can be considered as an example of extended SOM states for
strain paths with trD = 0, where SOM stress ratio follows from critical
friction angle ϕc.

4 Limit State (Swept-Out-Memory) Conditions

As introduced Sect. 3, at extended SOM states the stress rate tensor T̊ has
the same direction as the stress tensor T and the pyknotropy factor fd is
constant (ḟd = 0) for one particular direction of stretching

−→
D . In the present

developments, we will search for the value of the pyknotropy factor fd and
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direction of stretching
−→
D which correspond to SOM states for the given stress

state T. The rate formulation of the considered hypoplastic equations reads

T̊ = fsL : D + fsfdN‖D‖, (5)

which may be, without loss of generality, simplified by assuming fs being part
of constitutive tensors L and N and taking ‖D‖ = 1 (considered models are
rate independent–positively homogeneous of degree 1 in D). Therefore

T̊ = L :
−→
D + fdN. (6)

At SOM conditions T̊ ‖ T, so we may introduce a scalar multiplier γ such
that

T̊ = γ
−→
T . (7)

Therefore, SOM conditions are described by

γ
−→
T = L :

−→
D + fdN (8)

with
ḟd = 0. (9)

Note that limit states calculated according to (8) and (9) include also propor-
tional strain paths with tr

−→
D > 0 (γ < 0).

4.1 Hypoplastic Model for Clays

Let us now solve (8) for the hypoplastic constitutive model for clays. The
pyknotropy factor fd of this model is defined as

fd =
(

2p
p∗e

)α

, (10)

where p is the mean stress p = −trT/3 and p∗e is the equivalent pressure
on the isotropic normal compression line, which is defined to be linear in the
ln p : ln(1 + e) space and follows [1]

ln(1 + e) = N − λ∗ ln
(
p∗e
pr

)
, (11)

with pr being the reference stress of 1 kPa. Comparison of (10) and (11) reveals
that ḟd = 0 is satisfied for any line defined by

ln(1 + e) = const.− λ∗ ln
(
p

pr

)
. (12)
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Time differentiation of (12) yields the rate formulation of normal compression
lines, as defined in Sect. 3

ė

1 + e
= −λ

∗

p
ṗ . (13)

Because
ė = (1 + e)tr

−→
D , (14)

we have

tr
−→
D = −λ

∗

p
ṗ = −λ∗ tr (γ

−→
T )

trT
= − λ

∗γ
‖T‖ , (15)

from which follows the expression for the scalar multiplier γ

γ = −‖T‖ tr
−→
D
λ∗

. (16)

We see that in the hypoplastic model for clays γ is independent of void ratio
(independent of the actual value of the pyknotropy factor fd), which signifi-
cantly simplifies derivation of the mathematical expression for SOM states.

Equations (16) and (8) may be combined

− T
λ∗

tr
−→
D = L :

−→
D + fdN. (17)

To solve this equation for
−→
D and fd, we introduce the fourth-order tensor A

A = L+
1
λ∗

T ⊗ 1, (18)

such that
A :

−→
D = L :

−→
D +

T
λ∗

tr
−→
D (19)

holds. Equation (17) may be therefore written

A :
−→
D + fdN = 0. (20)

Since ‖−→D‖ = 1, we get
fd = ‖A−1 : N‖−1 (21)

and
−→
D = − A−1 : N

‖A−1 : N‖ , (22)

so we have a direction of stretching
−→
D and the value of pyknotropy factor fd

at SOM surface for any stress level T. Graphical representation of (21) and
(22) is demonstrated in Sect. 5.
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4.2 Hypoplastic Model for Granular Materials

Solution of (8) and (9) is less straightforward for the hypoplastic model for
granular materials. In this case, the pyknotropy factor is defined as

fd =
(
e− ed
ec − ed

)α

, (23)

where ec and ed are characteristic void ratios which evolve with the mean
stress according to

ec
ec0

=
ed
ed0

= exp
[
−
(

3p
hs

)n]
. (24)

It follows from (23) and (24) that the pyknotropy factor of a hypoplastic
model for granular materials is constant along any line defined by

e = (const.) exp
[
−
(

3p
hs

)n]
, (25)

which leads after time differentiation to

ė

e
=
n

hs
tr T̊

(
3p
hs

)(n−1)

(26)

By combining (26) with (14) and (7) we have

tr
−→
D
(

1 + e
e

)
= γ

n

hs
tr
−→
T
(

3p
hs

)(n−1)

. (27)

We see that the value of the scalar multiplier γ of a hypoplastic model for
granular materials depends on the void ratio, so also on the actual value of
the pyknotropy factor fd. To solve (27) and (8) for

−→
D and fd, we extract

−→
D

from (8) so we have

−→
D = γ(L−1 :

−→
T ) − fd(L−1 : N). (28)

Combination of (28) and (27) yields the first equation relating fd and γ which
reads

γ = −
(
1+e
e

)
trB

G− (
1+e
e

)
trC

fd, (29)

with

B = L−1 : N, (30)
C = L−1 : T, (31)

G =
n

hs
tr
−→
T
(

3p
hs

)(n−1)

. (32)
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The second necessary equation is found by taking norm of (28). Because
‖−→D‖ = 1 we have

1 = ‖B‖2f2d + ‖C‖2γ2 − 2(B:C)fdγ. (33)

Combination of (29) and (33) yields an implicit equation for fd

fd =

√√√√√
⎡⎣‖B‖2 +

(
‖C‖ ( 1+e

e

)
trB

G− (
1+e
e

)
trC

)2

+
2(B:C)trB

(
1+e
e

)
G− (

1+e
e

)
trC

⎤⎦−1

, (34)

where (from (23))
e = f (1/α)d (ec − ed) + ed. (35)

Therefore, for hypoplastic model for granular materials explicit formulation
for

−→
D , fd and γ cannot be found. Equation (34) may be, however, solved

numerically. We search for corresponding e and fd, while taking into account
that also fs (and, therefore, also L and N which include fs in present de-
velopments) changes with e. Results are demonstrated graphically in Sect. 5.

5 Graphical Representation

Graphical representation of outlined equations for limit states is described in
detail by Gudehus and Maš́ın [10]. State limits of both hypoplastic models
for clays and for granular materials may be expressed by a graph relating

−→
D

and
−→
T . For axisymmetric states we define in Rendulic plane angles ψσ and

ψε̇ according to Fig. 3. Special directions in the Rendulic plane of strain rate

2

ye

e r

ea
.

.
1d

i

c

-c
-i

-d

atan 1/ 2

Fig. 3. Definition of angle ψε̇ for axisymmetric states in Rendulic plane of ε [10].
Angle ψσ is defined accordingly in the Rendulic plane of σ
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Fig. 4. ψσ–ψε̇ plots for the hypoplastic model for clays (a) and hypoplastic model
for granular materials (b)

Table 1. Parameters of a hypoplastic model for granular materials [5]

soil ϕc (◦) hs (MPa) n ed0 ec0 ei0 α β

Zbraslav sand 31 5,700 0.25 0.52 0.82 0.95 0.13 1.00
Toyoura sand 30 2,600 0.27 0.61 0.98 1.10 0.18 1.00
Hochstetten sand 33 1,500 0.28 0.55 0.95 1.05 0.25 1.50
Schlabendorf sand 33 1,600 0.19 0.44 0.85 1.00 0.25 1.00
Hostun sand 31 1,000 0.29 0.61 0.91 1.09 0.13 2.00
Karlsruhe sand 30 5,800 0.28 0.53 0.84 1.00 0.13 1.05
Ottawa sand 30 4,900 0.29 0.49 0.76 0.88 0.10 1.00
Ticino sand 31 5,800 0.31 0.60 0.93 1.05 0.20 1.00
SLB sand 30 8,900 0.33 0.49 0.79 0.90 0.14 1.00

Table 2. Parameters of a hypoplastic model for clays

soil reference ϕc (◦) λ∗ κ∗ N r

London clay [8] 22.6 0.11 0.014 1.375 0.4
Beaucaire marl [12] 33 0.057 0.007 0.85 0.4
Pisa clay [9] 21.9 0.14 0.005 1.56 0.2
Bothkennar clay [9] 35 0.119 0.002 1.344 0.05

space are denoted by “i” and “−i” (for isotropic compression and extension),
“c” and “−c” (for isochoric compression and extension) and “d” and “−d”
(for extension with εa=0 and εr=0, respectively). ψσ versus ψε̇ plots for both
models are shown in Fig. 4. Parameters used for simulations with a hypoplas-
tic model for granular materials follow from [5] (Table 1), parameters of a
hypoplastic model for clays have been compiled from different publications
(see Table 2 for references).

The second plot used to characterise limit state conditions relates ψσ with
a function of the pyknotropy factor fd at limit states. Suitable quantities follow
from the formulation of pyknotropy factors of the two models considered ((10)
and (23)). The influence of pyknotropy for the model for granular materials
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Fig. 5. ψσ–OCR and ψσ–re plots for the hypoplastic model for clays (a) and hy-
poplastic model for granular materials (b)

is characterised by a relative void ratio re defined as

re =
e− ed
ec − ed , (36)

whereas the degree of over-consolidation for the model for clays may be char-
acterised by over consolidation ratio (OCR), defined as

OCR =
p∗e
p
. (37)

Graphs relating ψσ with re for the model for granular materials and ψσ

with OCR for the model for clays are in Fig. 5.

6 Conclusions

As pointed out in Sect. 1, limit state conditions are important aspects of soil
behaviour which must be predicted by advanced constitutive models. The
chapter presented mathematical derivation for SOM (limit) states of the two
hypoplastic constitutive models. It has been shown that the hypoplastic model
for clays allows for an explicit formulation of limit state conditions. The ex-
pression for limit state conditions may be evaluated also for a hypoplastic
model for granular materials. In this case, however, the analytical solution of
the problem is not available and governing equations must be solved numer-
ically. An experimental check of the limit state loci predicted by the models
is a matter of further research. Presented derivations are important for incor-
porating structural effects into hypoplastic models, as demonstrated in [9] by
formulating a hypoplastic model for structured clays.
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Appendix 1

The mathematical structure of the hypoplastic model for clays is discussed in
detail in [8]. The constitutive equation in rate form reads

T̊ = fsL : D + fsfdN‖D‖, (38)

where

L = 3
(
c1I + c2a2T̂ ⊗ T̂

)
N = L :

(
−Y m

‖m‖
)

T̂ :=
T

trT
. (39)

1 is the second-order identity tensor and I is the fourth-order identity tensor,
with components

(I)ijkl :=
1
2

(1ik1jl + 1il1jk) . (40)

In (38), the functions fs(trT) (barotropy factor) and fd(trT, e) (pyknotropy
factor) are given by

fs = − trT
λ∗

(
3 + a2 − 2αa

√
3
)−1

fd =
[
− 2trT

3pr
exp

(
ln (1 + e) −N

λ∗

)]α
,

(41)
where pr is the reference stress 1 kPa. The scalar function Y and second-order
tensor m appearing in (39) are given, respectively, by

Y =

( √
3a

3 + a2
− 1

)
(I1I2 + 9I3)

(
1 − sin2 ϕc

)
8I3 sin2 ϕc

+
√

3a
3 + a2

, (42)

in which

I1 := trT I2 :=
1
2

[
T : T − (I1)

2
]

I3 := detT

and

m = − a

F

[
T̂ + T̂∗ − T̂

3

(
6 T̂ : T̂ − 1

(F/a)2 + T̂ : T̂

)]
, (43)

in which

T̂∗ = T̂ − 1
3

F =

√
1
8

tan2 ψ +
2 − tan2 ψ

2 +
√

2 tanψ cos 3θ
− 1

2
√

2
tanψ,

(44)

tanψ =
√

3‖T̂∗‖ cos 3θ = −
√

6
tr
(
T̂∗ · T̂∗ · T̂∗

)
(
T̂∗ : T̂∗

)3/2 . (45)
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Finally, the scalars a, α, c1 and c2 appearing in (39)–(43), are given as func-
tions of the material parameters ϕc, λ∗, κ∗ and r by the following relations:

a =
√

3 (3 − sinϕc)
2
√

2 sinϕc
, α =

1
ln 2

ln
[
λ∗ − κ∗
λ∗ + κ∗

(
3 + a2

a
√

3

)]
, (46)

c1 =
2
(
3 + a2 − 2αa

√
3
)

9r
, c2 = 1 + (1 − c1) 3

a2
. (47)

The model requires five constitutive parameters, namely ϕc, λ∗, κ∗, N and r.

Appendix 2

This appendix summarises mathematical formulation of a hypoplastic model
for granular materials [16].

The model assumes the following stress-strain relation:

T̊ = fsL : D + fsfdN‖D‖, (48)

with

L =
1

T̂ : T̂

(
F 2I + a2T̂ ⊗ T̂

)
, (49)

N =
Fa

T̂ : T̂

(
T̂ + T̂∗

)
, (50)

where 1 is a second-order unity tensor, Iijkl = 1
2 (1ik1jl + 1il1jk) is a fourth-

order unity tensor and

trT = T : 1, T̂ = T/trT, T̂∗ = T̂ − 1/3, (51)

a =
√

3 (3 − sinϕc)
2
√

2 sinϕc
, F =

√
1
8

tan2 ψ +
2 − tan2 ψ

2 +
√

2 tanψ cos 3θ
− 1

2
√

2
tanψ,

(52)
with

tanψ =
√

3‖T̂∗‖, cos 3θ = −
√

6,
tr
(
T̂∗ · T̂∗ · T̂∗

)
[
T̂∗ : T̂∗

]3/2 . (53)

The scalar factors fs and fd take into account the influence of mean pressure
and density

fs =
hs
n

(ei
e

)β 1 + ei
ei

(−trT
hs

)1−n [
3 + a2 − a

√
3
(
ei0 − ed0
ec0 − ed0

)α]−1

, (54)

fd =
(
e− ed
ec − ed

)α

. (55)
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The characteristic void ratios – ei, ec and ed decrease with the mean pressure
according to the relation

ei
ei0

=
ec
ec0

=
ed
ed0

= exp
[
−
(−tr T

hs

)n]
. (56)

The model requires eight parameters: φc, hs, n, ed0, ec0, ei0, α and β.
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10. D.Maš́ın and G. Gudehus. Graphical representation of rate independent consti-
tutive relations for saturated clays. State limites of saturated soils (in prepara-
tion), 2006.
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1 Introduction

Since the pioneering works of the School of Cambridge, Schofield and Wroth
[17], much progress was made in modelling the behaviour of soils and soft rocks
in the framework of hardening plasticity. Models such as those of Lade [6]
and Nova and Wood [13] can describe the behaviour of remoulded clay or
freshly deposited sand with remarkable accuracy even under complex loading
histories. Nova [10], Kavvadas et al. [5] and Rouainia and Wood [16] proposed
models for cemented soils or soft rocks. Hueckel and Ma [3] coupled the effects
of chemistry to those of mechanics to describe the overall behaviour of clay
when subject to loading and to structural changes due to chemical attack.
Recently, Nova et al. [14] produced a comprehensive chemo-mechanical model
for soft rocks, capable of describing interesting features such as softening–
hardening transition or the occurrence of compaction bands under certain
circumstances.

Despite these progresses, certain type of soils, characterized by high void
ratios and fragile bonds, exhibit special features of behaviour that cannot be
easily dealt with even by the most recent and sophisticated models. To this
class of soils belong artificial materials such as cemented residues of heavy
metal production. For instance Jarofix, a mixture of jarosite (hydrated ferric
sulphate rich in heavy ions that may be easily leached away) lime and cement,
is a material characterized by very high porosity (more than 70%) and strong
but brittle bonds. The experimental behaviour of Jarofix, as reported by
Arroyo et al. [1], shows the occurrence of compaction-dominated instabilities.
A similar type of behaviour was also observed on a clayey silt, artificially pro-
duced by sedimentation as a residue of the washing of the Ticino silty gravel
at Lonate [15]. When sedimented and naturally dried such a material must
be removed by excavation. Having a very porous structure and brittle bonds,
the stability of the fronts poses serious problems and may be cause of worker
casualties.
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Because of the complexity of their behaviour, the modelling of such mate-
rials is a formidable task. In order to get at least a qualitative insight, a very
simple basic model is employed here to understand which should be the basic
structure of a constitutive model capable of describing the observed insta-
bilities. With the aim of describing more and more sophisticated phenomena
with an ever increasing will of quantitative accuracy, in fact, the structure of
the modern constitutive models has become more and more complex and the
number of constitutive parameters has increased from the original 5 upto 200.
It is therefore difficult to understand what is the effective role of each of those
parameters.

In this chapter, we go back to the original simplicity with the aim of
highlighting which is the role played by the various factors that influence the
mechanical behaviour of bonded geomaterials. The original Cam Clay model
is first reformulated in terms of strain hardening plasticity. The effects of the
existence of intergranular bonds are then taken into account by introducing a
single parameter that varies with the plastic strains experienced. It is shown
that, depending on the value of some constitutive parameters, softening can
occur at very low stress levels giving rise to temporary instabilities. However,
hardening can be reactivated for larger strains until failure is achieved at a
stress level which is typical for unbonded soils.

2 Reformulation of Cam Clay as a Strain Hardening
Model

The mechanical behaviour of soils depends on the loading they have experi-
enced in their previous (geologic or recent) history. The concept of overcon-
solidation ratio was in fact introduced to delineate between virgin loading
and recompression in confined loading conditions (oedometric). This concept
was successively extended by introducing the notion of yield locus. This is a
surface in the effective stress space that encloses a region, called elastic do-
main. Soil behaviour for stresses within this region is reversible (elastic), while
permanent strains are generated by stress increments directed outwards the
current yield locus. As the maximum preconsolidation pressure increases in
an oedometric test by increasing the vertical loading, the yield locus evolves
and the size of the elastic domain becomes larger and larger with increasing
plastic strains.

The first (and simplest) constitutive law capable to cope with this was the
so-called Cam Clay model [17]. For the scopes of this chapter this model is
here reformulated in terms that are more convenient from the standpoint of
hardening plasticity theory.

To make things simple, only axisymmetric stress states are considered.
The most convenient stress variables in this case are:

p′ ≡ 1
3
(σ′a + 2σ′r), q = σ′a − σ′r, (1)

where the indices a and r stand for axial and radial. The corresponding strain
variables are consequently



Modelling of Bonded Soils with Unstable Structure 131

εv = εa + 2εr, εd =
2
3

(εa − εr) . (2)

The yield locus in the stress plane (and positive q) is assumed to be given
by

f = q +Mp′ ln
(
p′

pc

)
= 0. (3)

The parameter pc controls the size of the elastic domain and depends on
the amount of plastic strains experienced. In the simplest version of the model,
it depends on volumetric plastic strains, only. To find this relation explicitly,
it is possible to make reference to the bilogarithmic expression proposed by
Butterfield [2] that links the variation of void ratio, e, to that of the isotropic
pressure in a purely isotropic test

ln(1 + e) = ln(1 + e0) − λ′ ln(pc) (4)

from which one can derive the volumetric strain rate as a function of the
increment of pc:

−ė
1 + e

= ε̇v = λ′
ṗc
pc
. (5)

In a similar way we can assume that, upon unloading, the recovered elastic
strain rates are given by

ε̇ev = κ′
ṗc
pc
, (6)

so that the dependence on pc of the plastic volumetric strain rates can be
derived

∂pc
∂εpv

=
pc

(λ′ − κ′) . (7)

Equation (7) is the hardening law.
For a generic stress increment, volumetric as well as deviatoric strains take

place. As in the original Cam Clay model, in the elastic domain, it is assumed
that no recoverable shear strain is possible (i.e. the elastic shear modulus is
assumed to be infinitely large). As far as volumetric strains are concerned, (6)
is taken as valid for any load increment (it is necessary to assume that below
a certain isotropic pressure, p0, the bulk modulus is constant, however).

It is further assumed that plastic strain rates can be derived from a plastic
potential g:

ε̇pv = Λ
∂g

∂p′
, ε̇pd = Λ

∂g

∂q
, (8)

where Λ is a non-negative variable known as plastic multiplier. Equation (8)
gives the flow rule.

If g coincides with f (associate flow rule), by defining the stress ratio η as

η ≡ q/p′, (9)

and the dilatancy d as

d ≡ ∂εpv
∂εpd

, (10)
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it is straightforward to derive from (3) that

η + d = M. (11)

This relation is known as stress–dilatancy relationship.
In general, however, the expression of the yield locus and that of the plastic

potential differ (non-associate flow rule). To make things simple, we assume
here that the yield locus equation is characterized by a parameterm < M , i.e.:

f = q +mp′ ln
(
p′

pc

)
= 0. (12)

The value of Λ, for a given stress increment, can be derived by taking into
account that plastic strains can occur only if f = 0 before and after the stress
increment has occurred. Thus

df = 0 =
∂f

∂p′
dp′ +

∂f

∂q
dq +

∂f

∂pc
dpc. (13)

From (3), (8), (11) and (12), one can eventually derive that

Λ =
(m− η)dp′ + dq
mp′(M − η) (λ′ − κ′). (14)

By choosing convenient values for M,m, λ′ and k′, it is possible to simu-
late soil behaviour in axisymmetric tests. From a qualitative point of view, the
agreement between calculated and experimental data is very good, especially
for normally consolidated clay specimens. For such a material, it can be shown,
for instance, that the behaviour is non-linear and irreversible from the very
beginning of the loading process. The maximum stress ratio reached in drained
and undrained tests is the same. In drained tests the volumetric strains are
positive, i.e. compactive, and the rate of them decreases with increasing devia-
toric strain rates until an asymptotic value of the void ratio is reached (critical
state). Correspondingly, in undrained tests the pore water pressure increases
until an asymptotic value is achieved, again at the critical state. For overcon-
solidated clay specimens, the agreement is less good, because of the extreme
simplicity of the elastic law assumed and of the shape of the yield locus.

The model can predict anyway several features of the observed behaviour
of overconsolidated clay, such as the difference between lightly and heavily
overconsolidated clays, the variation of the Skempton parameter Af at failure
with the overconsolidation ratio, the occurrence of a peak in deviatoric stresses
in drained tests on heavily overconsolidated clay specimens and so on. Cam
Clay was the first model capable to treat in a unified framework isotropic
and shear loading, drained and undrained tests, normal consolidation and
overconsolidation.

The assumption of non-normality allows the occurrence of a peak in an
undrained test to occur in the hardening regime. Since in such a test

ε̇v = ε̇ev + ε̇pv = k′
ṗ′

p′
+ Λd = 0 (15)



Modelling of Bonded Soils with Unstable Structure 133

from (14) and (11) one can derive that the stress path is given by

ln
p′

pc0
=
η

m

(
1 − k′

λ′

)
. (16)

A peak in q occurs when

η

m
=

1
1 − k′

λ′
. (17)

Equation (17) is the equation of a straight line passing through the origin that
is called instability line [7]. Equation (17) gives also a simple mean to calibrate
the value of the parameter m.

Many geomaterials after an initial compacting phase exhibit some dila-
tancy. This can be modelled by assuming that hardening depends on both
volumetric and deviatoric plastic strains. The hardening rule is modified as
in Nova [9]

ṗc =
pc

λ′ − k′ {ε̇
p
v + ξε̇pd} . (18)

The physical meaning of ξ is that of the absolute value of the dilatancy at
failure in drained tests. In fact when

d+ ξ = 0, (19)

a state at which hardening (or softening) cannot occur any longer is reached
(limit state).

From the definition of d and (11) we can derive that the stress ratio at
limit state is given by

ηf =M + ξ. (20)

The value of Λ is modified via (12) and (18) as

Λ =
(m− η)dp′ + dq
mp′(M − η + ξ)

(λ′ − κ′). (21)

When η = ηf , Λ therefore tends to infinity (failure). On the other hand,
when η =M and consequently d = 0 we can derive from (6) that in undrained
tests p′ should not change at this stress ratio level. This means that the stress
path either ends at this point (if ξ = 0) or has a vertical tangent (if ξ > 0). For
values of η larger than M the stress path tends therefore towards the positive
sense of axis p′. The zero dilatancy line (usually considered as the critical
state) coincides therefore with the so called phase transformation line [4].

Finally, since

Λ =
m dp′

p′ + dη

m(M − η + ξ)
(λ′ − κ′), (22)
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an asymptotic state (η̇ = 0) is reached in undrained loading when

η = ηu =M +
κ′

λ′
ξ. (23)

It is worth nothing therefore that according to this elementary model
drained failure and the asymptotic undrained state do not coincide and the
latter is reached for a smaller stress ratio value.

3 Modelling of Bonded Soils

Most natural soils are characterized by diagenetic bonds which can be de-
stroyed by sampling and/or remoulding. In order to model the behaviour of
such materials it is necessary to modify the constitutive law presented so far.

From a macroscopic viewpoint, the existence of such bonds is essentially
reflected by the occurrence of a non-zero tensile strength. Moreover, the size
of the “initial” elastic domain is not only controlled by the maximum past
pressure but also by the degree of cementation.

To make things as simple as possible, we disregard here the tensile strength
and take account of the size increase of the elastic domain, only. We can
therefore define

pc = pm + ps, (24)

where ps plays exactly the same role of pc for an unbonded soil, while pm
is a new parameter that takes account of the intergranular bonding degree.
Depending on the mechanical and environmental (i.e. chemical) conditions,
the value of pm can remain constant, increase (diagenesis) or decrease (weath-
ering). In general

pm = pm
(
εpij , ϑk

)
, (25)

where εpij are plastic strains, while ϑk indicates a set of non-mechanical para-
meters (e.g. temperature, time, solute concentration, . . .). Figure 1 shows the
yield locus for a bonded soil in the compression quadrant of the axisymmetric
plane.

The occurrence of plastic strains can be associated to the breaking of the
bonds. Therefore the value of pm must decrease with increasing plastic strains.
For the sake of simplicity we assume here, in a way analogous to (7), that

∂pm
∂εpd

= −ρ∗mpm, (26)

that is more or less equivalent to say that the number of bonds that break
when plastic strains take place is proportional to the total bond number. The
parameter ρ∗m controls the rate of bond degradation.

From (8), (13), (18), (24) and (26), one can derive that

Λ =
(m− η)dp′ + dq

H
, (27)
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q h= M

ps pc p�pm

Fig. 1. Yield locus for a bonded soil

where

H = − ∂f
∂pc

(
∂pc
∂ps

∂ps
∂εpv

∂g

∂p′
+
∂pc
∂ps

∂ps
∂εpd

∂g

∂q
+
∂pc
∂pm

∂pm
∂εpd

∂g

∂q

)

=
mp′

pc

(
ps(M − η + ξ)

λ′ − κ′ − ρ∗mpm
)

(28)

is the hardening modulus. This can be conceived as the sum of two com-
ponents. The first one is linked to the plastic volumetric strain and can be
positive (hardening) or negative (softening), depending on the sign of the vol-
umetric strains, as is the original Cam Clay model. The second is instead
linked to bond degradation and it is always negative.

Defining for the sake of brevity

ρs =
1

λ′ − κ′ , (29)

the overall value of H depends on the mutual relation between ρsps and ρ∗mpm.
Note that at the beginning of the shear phase the first term between parenthe-
ses can be smaller than the second. Soil can be therefore in a softening state;
at a later state, however, pm decreases while ps increases so that hardening
can be reached again.

This is an unusual situation, but it can actually occur. Consider first, for
the sake of simplicity, a p′ constant test on a soft rock for which it is assumed
the validity of the normality rule (m =M) and ξ = 0.

Assume that, after isotropic consolidation, the stress state is within the
elastic domain, as in Fig. 2. The first loading phase (AB) occurs within the
elastic domain and, for the very simple elastic law assumed, neither axial
nor volumetric strains take place. At B the specimen yields. For convenient
values of the constitutive parameters, H is negative, i.e. the specimen softens
under axial strain increase. The occurrence of both volumetric and deviatoric
plastic strains, governed by the flow rule, makes ps increasing while pm is
decreasing, so that the absolute value of H decreases. For a convenient value
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Fig. 2. (a) Stress path in a constant isotropic pressure test; (b) Calculated deviatoric
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Fig. 3. (a) Axial strains in a constant cell pressure test on a specimen of Calcarenite
di Gravina; (b) Volumetric strains (data after [8])

of the axial strain (point C) the hardening modulus becomes zero. This point
is associated with a horizontal tangent of the deviatoric stress–strain law. For
larger strains the hardening modulus becomes positive and the deviator stress
can increase, until a threshold value associated to critical state is eventually
achieved (point D). Figure 3 (after [8]) shows the experimental results (in a
constant cell pressure test) in which a clear instability phenomenon followed
by hardening is shown.

If the stress state is on the yield locus already after isotropic consolidation,
softening starts at the very beginning of the yield phase (Fig. 4), so that
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Fig. 4. Deviatoric strains (a) and hardening modulus (b) in a constant isotropic
pressure test with an initial stress state belonging to the yield surface
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Fig. 5. Calculated stress paths (a) and deviatoric strains trends (b) obtained in
undrained compression tests for different initial values of the ratio χ

negative q values are associated to increasing shear strains. This behaviour
cannot be captured by means of an ordinary triaxial apparatus, since the
test is actually displacement controlled. It is likely that a non-uniformity in
the stress and strain state of the specimen take place, for instance, with the
formation of local compaction band. When strains are larger, part of the bonds
are destroyed so that pm is smaller and the material experiences hardening
again.

A fully strain controlled test as undrained compression is of particular
interest. Figure 5 shows the trend of the effective stress path for m 	= M and
different initial values of the ratio

χ =
ρ∗mpm
ρsps

. (30)

We can note that for small values of χ, the behaviour is similar to that of
a normally consolidated soil, while for high values of χ the concavity of the
stress path changes sign and a remarkable increase in pore water pressure
takes place. Note in passing that the use of non-normality allows the peak in
q for a stress ratio smaller than the critical state to be modelled. It is very
interesting to note that in the undrained test, despite softening takes place,
the stress–strain law does not give signs of instability. From (15) we can in
fact derive that the tangents to the stress path and the deviatoric stress–strain
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curve are given by

dp′ = − M − η
k′h+ (M − η)(m− η)dq, (31)

dε1 = − k′

M − η
dp′

p′
=

k′/p′

k′h+ (M − η)(m− η)dq. (32)

For negative values of h ( but small in absolute value) they are both
positive. An apparent hardening behaviour takes place, therefore. However, if

h = − (M − η)(m− η)
k′

(33)

at constant axial stress, an arbitrary decrease of p′, and a corresponding in-
crease of u, can occur. At the same time, axial strain increases.

This result can explain the rather awkward behaviour observed on some
Jarofix specimens, as shown in Fig. 6. After having been consolidated to
400 kPa, the drainage was closed. As soon as deviatoric strains were applied,
a remarkable increase of the pore water pressure was observed. After a while,
the control of the test was regained.

An initially similar type of behaviour was observed on Lonate silt. The
concavity of the stress path is always directed in the sense of positive p′, what
is very unusual. With a convenient set of parameters (ξ 	= 0), however, it is
possible to reproduce this behaviour in an acceptable way, Fig. 7.

Finally, the effect of χ on the behaviour in oedometric tests can be inves-
tigated. Figure 8 shows the predicted stress paths and vertical stress–strain
curve for different initial values of χ. For high values of it the stress path makes
a curl that corresponds to a peak in the stress–strain curve. As shown by Nova
(2003) this phenomenon is associated to the formation of a compaction band.
Of course, for such materials, in order to get the calculated behaviour, full
strain control is necessary.
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metric tests for different values of the ratio χ

4 Conclusions

Bonded soils with large initial porosity show unusual behaviour when tested
in either drained or undrained conditions. The transition from the elastic
to the elastoplastic regime can be characterized by a temporarily unstable
behaviour, followed by a new hardening phase. In undrained tests, the pore
water pressure can increase unlimitedly for certain values of the stress ratio.
In the oedometer, loss of control of a load controlled test is possible with the
formation of a compaction band.

To model the behaviour of such materials, at least from a qualitative point
of view, a small modification of the original Cam Clay model is sufficient. It
is enough to assume that hardening depends on two competing “mechanism”:
compaction and shear.

Compaction is responsible for hardening. Shear strains can at the same
time cause hardening of the unbonded fabric and softening of the bonds.
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These are in fact assumed to be reduced in number as long as shear strains
increase.

The comparisons sketched in this chapter show that with such a simple
modification, several features of this unusual behaviour can be captured: insta-
bility followed by hardening, large pore water pressure increase in undrained
tests, formation of compaction bands in oedometric tests. The key factor is
that the hardening modulus can be negative at the very beginning of the shear-
ing process. Despite that, the deviator stress can be increased in undrained
conditions. The chosen hardening rules, moreover, tend to progressively erase
the effect of bond breaking, while they emphasize hardening due to soil com-
paction. Hardening then follows softening (and not vice versa) and initial
instability is followed by a regular and more usual soil behaviour.
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480

3. Hueckel T, Ma CM (1991) Plasticity of saturated clays under combined me-
chanical and environmental loads. In: Desai CS et al. (eds) Constitutive Laws
for Engineering Materials, ASME, New York, pp 53–56

4. Ishihara K, Tatsuoka F, Yasuda S (1975) Undrained deformation and liquefac-
tion of sand under cyclic stresses. Soils Foundations 15(1): 29–44

5. Kavvadas M, Anagnostopoulos A, Kalteziotis N (1993) A framework for the
mechanical behaviour of cemented Corinth marl. Proceedings of Geotechnical
Engineering of Hard Soils–Soft Rocks, Balkema, Rotterdam, pp 577–583

6. Lade PV (1977) Elastoplastic stress–strain theory for cohesionless soil with
curved yield surfaces. Int. J. Solids Struct. 13: 1019–1035

7. Lade PV (1992) Static instability and liquefaction on loose fine sandy slopes. J.
Geotech. Eng. 118: 51–71

8. Lagioia R, Nova R (1995) An experimental and theoretical study of the behav-
iour of a calcarenite in triaxial compression. Géotechnique 45(4): 633–648
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C. Tamagnini∗, D. Mašin†, D. Costanzo#, and G. Viggiani¶
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1 Introduction

The directional character of the mechanical response of fine-grained soils, i.e.,
its dependence on the loading direction, has been the subject of several stud-
ies throughout the last decades, including both experimental and theoretical
investigations. On the experimental side, some pioneering contributions were
provided in the early seventies, see e.g., [17, 37]. Notable examples of more
recent contributions can be found in [2, 3, 11,28].

On the theoretical side, a major improvement of classical plasticity as
applied to clays has been provided by the introduction of the so-called nested-
surface kinematic hardening theories of plasticity, originating from the works
of Prevost [24], Mroz et al. [21], and Hashiguchi [14]. These latter studies were
essentially motivated by the need of improving available design approaches for
those practical applications where soil is subject to cyclic loading conditions,
e.g., earthquake and offshore engineering. Later studies on shear banding in
soils as a bifurcation problem [25,27] showed the need to take into account the
incrementally nonlinear character of the material response – i.e., a dependence
of soil tangent stiffness on the strain rate direction, see, e.g., [8, 32] – and
motivated the development of a class of constitutive theories which depart
from the framework of plasticity and rather can be seen as a generalization of
Truesdell theory of hypoelasticity [34]. A distinctive feature of this approach
is the absence of any kinematic decomposition of strain rates into reversible
and irreversible parts. An important example in this respect is provided by
the theory of hypoplasticity, as defined by Kolymbas [15], see also [16].

More generally, it turns out that a proper description of soil behavior as
a function of loading direction not only is useful for modeling the response of
geotechnical structures to cyclic loading or for analyzing localization phenom-
ena, but it is also a key ingredient in the analysis of any geotechnical structure
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where different zones of soil experience widely different stress-paths, both in
size and direction, e.g., deep excavations and tunnels. This has been demon-
strated in a number of practical applications, e.g., [10, 29,35,36].

The objective of this work is to assess the performance of some advanced
constitutive models in reproducing the incremental behavior of a soft, nor-
mally consolidated clay as observed in laboratory tests performed along a
number of different stress-paths, all originating from a common initial state
(stress-probes). Two particular classes of inelastic models have been selected
for the comparison. On the one hand, the three-surface kinematic hardening
model proposed in [30, 31] has been chosen as a representative of advanced
soil plasticity approaches. On the other hand, three different versions of hypo-
plasticity have been considered: the CLoE model [5]; the clay K–hypoplastic
model recently proposed by [18], and an enhanced version of this last model,
embedding the concept of intergranular strain [23] as an additional internal
state variable. Finally, the classical modified Cam-Clay model [26] has been
also considered for reference. The results obtained from a large program of
stress-probing tests on a soft normally consolidated clay [7] are used herein
both for the calibration of the five models, and as a benchmark for the eval-
uation of the models performance.

The details of the experimental program and a complete account of the ex-
perimental results are given in [7], and will be only briefly recalled herein. The
results obtained from standard isotropic or triaxial compression and exten-
sion tests, starting from an isotropic state, have been used for the calibration
of the models. The assessment of models performance has been carried out
with reference to a different set of data, obtained from axisymmetric stress-
probing tests starting from an anisotropic initial stress state. Predicted and
observed directional responses are compared in terms of incremental response
envelopes, as defined in [33], which provides a global picture of the models
performance over a wide range of loading directions.1

2 Experimental Program

The material tested (Beaucaire Marl) is a low plasticity silty clay coming
from southern France. The tests were performed on reconstituted material,
prepared by thoroughly mixing known quantities of natural soil with distilled
water, to a water content approximately equal to 1.5 times the liquid limit.
The slurry was then consolidated in a large consolidometer up to a nominal
vertical effective stress of 75 kPa. Full details of the experimental procedures
employed in the testing program are given in [7].

All tests were carried out using a Bishop and Wesley-type triaxial cell,
with fully automated feedback-control. Standard soil specimens, 38.1 mm
in diameter and 76.2 mm high, were used in all the tests. Axial load was
1 In the following, the usual sign convention of soil mechanics (compression positive)

is adopted throughout. In line with Terzaghi’s principle of effective stress, all
stresses are effective stresses.
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measured by means of an internal load cell. Cell and pore water pressures
were measured by means of pressure transducers. Assessments of system scat-
ter showed that stresses could be resolved and controlled to within 0.5 kPa.
Axial displacements were measured by means of an external LVDT, with a
10 mm range, and an external proximity transducer having a 2 mm range.
Internal and external strain measurements were found to be equivalent to all
practical purposes, and reliable down to a minimum axial strain of 0.05%.
Volume changes were measured by means of an Imperial College-type volume
gauge, with a 50mm3 range and a resolution of 0.035% in terms of volume
strain. The overall accuracy of volume strain measurements, also depending
on possible temperature effects and the stiffness of drainage lines, was eval-
uated to be approximately 0.05%. This figure also applies to radial strains,
which were not directly measured, but rather computed from axial and volume
strains.

The testing program consisted of 20 drained stress probes (including two
backup tests), starting from a common initial stress state and pointing in
different directions in the triaxial plane. Two different initial stress states
were considered: the first one (state A) is located on the isotropic axis at mean
stress p = 150 kPa; the second one (state B) is characterized by the same value
of p and a deviator stress q = 60 kPa. Both states A and B were reached upon
stress-controlled consolidation along a constant q/p path (q/p = 0 for state
A, q/p = 0.4 for state B). Each stress probe from an initial state (σa0, σr0) is
described by the following parametric equations:

Δσa : = σa − σa0 = Rσ sinασ (1)√
2Δσr : =

√
2σr − σr0 = Rσ cosασ, (2)

where Rσ = ‖Δσ‖ denotes the norm of the stress increment, and ασ repre-
sents its direction in the Rendulic plane of stress increments (Δσa :

√
2Δσr,

see Fig. 1a). Each stress probe was continued up to a Rσ value correspond-
ing either to a “failure” state, or to a prescribed maximum value of the cell
pressure.

2 2

Re

(a) (b)

Dsr

Dsa

Rs

as

ae

Der

Dea

Fig. 1. Response envelope concept: (a) input stress probes; (b) output strain enve-
lope
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Table 1. Details of the experimental stress-probing program, after [7]

test initial ασ αpq
σ test initial ασ αpq

σ

# state (deg.) (deg.) # state (deg.) (deg.)

Tx124 A 0 303.69 Tx118 B 0 303.69
Tx128 A 35 0.00 Tx115 B 35 0.00
— — — — Tx130 B 46 21.91
Tx121 A 90 71.57 Tx132 B 90 71.57
Tx126 A 126 90.00 Tx119 B 126 90.00
— — — — Tx116 B 154 104.49
Tx123 A 180 123.69 — — — —
Tx127 A 215 180.00 Tx134 B 215 180.00
— — — — Tx129 B 226 201.91
Tx122 A 270 251.57 Tx117 B 270 251.57
Tx125 A 305 270.00 Tx113 B 305 270.00

All probes were carried out under stress control, applying a constant rate
of the stress increment norm approximately equal to 2.5 kPa h−1. Note that
for each initial state, the testing program included as particular cases con-
vnetional triaxial, constant p and isotropic, compression and extension paths.
The loading directions ασ prescribed for each probe are listed in Table 1.
The stress probe direction in the q : p plane, αpq

σ , calculated from the stress
invariant increments Δp and Δq as:

Δp =
1
3

(Δσa + 2Δσr) ; Δq =Δσa −Δσr (3)

sinαpq
σ =

Δq√
(Δp)2 + (Δq)2

; cosαpq
σ =

Δp√
(Δp)2 + (Δq)2

(4)

is also reported in the same table. A picture of the stress paths originating
from the initial state B in the q:p plane is shown in Fig. 2.

3 Constitutive Models Considered

3.1 3-SKH Model

The 3-SKH model is an advanced example of the kinematic hardening plastic-
ity models for soils. It can be considered an evolution of the classical modified
Cam-Clay model [26] and the two-surface kinematic hardening model pro-
posed in [1]. The main feature of the model consists in the introduction of an
additional kinematic history surface – as defined in [30], see Fig. 3 – motivated
by experimental findings about the influence of the recent stress history on
soil behavior [2]. The general formulation of the 3-SKH model is given in [31].
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3.2 CLoE Hypoplastic Model

The hypoplastic model CLoE originates from the pioneering work of Chambon
and Desrues on strain localization in incrementally nonlinear materials [4, 9].
The constitutive equation is given, in rate-form, by:

σ̇ = A(σ)ε̇ + b(σ) ‖ε̇‖ . (5)

The first term on the right-hand side yields an incrementally linear response,
while the second accounts for incremental nonlinearity via a linear dependence
on the norm of the strain rate tensor. To keep the formulation as simple as
possible, the set of state variables is limited to the stress tensor σ.

The two constitutive tensors A and b appearing in (5) are homogeneous
functions of degree one of the stress tensor, for which no explicit expression is
assumed. Rather, A and b are obtained via an interpolation procedure based
on the assigned material responses at some suitably defined image points,
located along special loading paths (basic paths). These are selected among
those stress-paths that are experimentally accessible by means of conventional
laboratory tests. Details on the mathematical formulation of the material
response for the basic paths and on the interpolation procedure are given in [5].

3.3 K–Hypoplastic Models for Clays

The basic formulation of K–hypoplasticity for rate-independent fine-grained
soils has been recently developed in [18]. The model combines the mathemati-
cal structure of K–hypoplastic models for granular soils – see e.g., [38] and ref-
erences therein – with key concepts of critical state soil mechanics through the
notion of generalised hypoplasticity [22]. The constitutive equation is given,
in rate-form, by:

σ̇ = fsL : ε̇ + fsfdN ‖ε̇‖ . (6)

Explicit, closed-form expressions for the two tensors L(σ) and N(σ) and
for the scalar functions fs(p) and fd(p, e) are provided in [18]. It must be
noted that, although (5) and (6) appear quite similar, a major difference of
K–hypoplasticity as compared to CLoE stems from including void ratio in the
set of state variables for the material through the pyknotropy factor fd [13].
This allows the critical state concept to be incorporated in the model response.

The K–hypoplastic model provided by (6) can predict the behavior of
fine-grained soils upon monotonic loading at medium to large strain levels.
An enhanced version has been also proposed in [18] to improve the model
performance in the small-strain range and for cyclic loading conditions. The
constitutive equation for the enhanced model reads:

σ̇ = M (σ, e, δ,η) : ε̇, (7)

where M is the fourth-order tangent stiffness tensor of the material, η :=
ε̇/ ‖ε̇‖ denotes the strain rate direction, and the additional state variable δ is
a symmetric second-order tensor called intergranular strain [23].
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Let ρ := ‖δ‖ /R be a suitable normalized magnitude of δ, R being a scalar
model parameter, and

δ̂ =
{

δ/‖δ‖ for δ 	= 0
0 for δ = 0 (8)

denote intergranular strain direction. The fourth-order tangent stiffness tensor
M is calculated from the constitutive tensors tensors L and N defined in (6)
and the intergranular strain direction δ̂ via the following interpolation:

M = [ρχmT + (1 − ρχ)mR]fsL+B, (9)

where:

B :=
{
ρχ(1 −mT )fsL : δ̂ ⊗ δ̂ + ρχfsfdN ⊗ δ̂ (δ̂ : ε̇ > 0).
ρχ(mR −mT )fsL : δ̂ ⊗ δ̂ (δ̂ : ε̇ ≤ 0)

(10)

The evolution equation for the intergranular strain tensor δ is given by

δ̇ =

{(
I − δ̂ ⊗ δ̂ρβr

)
: ε̇ (δ̂ : ε̇ > 0)

ε̇ (δ̂ : ε̇ ≤ 0)
. (11)

In (9)–(11), χ, mT , mR, and βr are material constants. Full details of the
mathematical structure of the model are provided in [18].

3.4 Calibration of the Models

When comparing the performance of different constitutive models in predict-
ing the observed directional response of the material, a particular care must be
taken in the proper selection of the procedure adopted for their calibration. In
the present case, this task is somewhat facilitated by the fact that all the con-
stitutive models considered, with the only exception of the CLoE hypoplastic
model, incorporate the basic principles of critical state soil mechanics, and
thus some of the material constants share the same physical meaning.

In order to separate the data used for the calibration of the different mod-
els and the data used for the evaluation of their performance, the material
constants of the five models have been determined from the results of the
stress probes starting from the isotropic initial state A. This is also consistent
with the procedure typically used in practical applications, where most of
the experimental data provided by the site investigation refer to isotropically
consolidated, drained, or undrained triaxial tests.

For some of the constitutive models considered, the available data from
stress probes at point A do not provide enough information to calibrate all the
relevant constants. This is the case, for example, of the material parameters
controling the response of the 3-SKH model and the enhanced K–hypoplastic
model in the very small strain range. In such cases, the choice has been made to
evaluate such material constants based on the experience gathered in previous
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experimental investigations on similar soils. Although such a choice necessarily
introduces a certain degree of subjectivity in the comparative evaluation of
the models response, it can still be considered acceptable to our purposes,
considering that the typical range of variation of such parameters for different
soils is relatively limited, and the model response is not very sensitive to their
variation, see e.g., [6, 23].

The calibration procedures are fully detailed in [20]. The resulting sets of
material constants adopted for each model are reported in Tables 2 and 3.
For the meaning of each constant and the initial values of the state variables
adopted in the simulations, the reader is referred to [20].

Table 2. Material constants adopted for MCC, 3-SKH and K–hypoplastic models

material constant MCC 3-SKH K–hypo (standard) K–hypo (enhanced)

N 2.245 – – –
λ 0.097 – – –
κ 0.017 – – –
M 1.33 1.33 – –
G (MPa) 5.0 – – –
N∗ – 0.85 0.85 0.85
λ∗ – 0.057 0.057 0.057
κ∗ – 0.004 0.007 0.007
A – 653.0 – –
n – 0.71 – –
m – 0.27 – –
T – 0.24 – –
S – 0.16 – –
ψ – 1.0 – –
φc (deg) – – 33.0 33.0
r – – 0.4 0.4
mR – – – 3.5
mT – – – 3.5
R – – – 10−4

βr – – – 0.2
χ – – – 6.0

Table 3. Material constants adopted for CLoE model

ϕc c χca yca yrc pfc pref εv,ref λc ϕe

(deg.) (kPa) (–) (–) (–) (–) (kPa) (–) (–) (deg.)

34.0 0 0.17 0.055 3.1 0 147.26 0.0 183.34 33

χd χc χm2 ye pfe mc me n ω
(–) (–) (–) (–) (–) (–) (–) (–) (–)

−1.0 −0.1 −0.05 0.011 0.02 −0.2 0.0 −0.2 0.36
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4 Observed vs. Predicted Response

In the following, the response of reconstituted Beaucaire Marl to the stress
probing program detailed in Table 1 and the predictions of the different mod-
els described in Sect. 3 are depicted using the so-called incremental strain re-
sponse envelope, as defined in [33]. Such a representation directly follows from
the concept of response envelope – first proposed in [12] – by replacing stress
and strain rates with finite-size stress and strain increments. In the general
case, an incremental strain response envelope (RE, hereafter) is a “surface” in
a six-dimensional space. However, for the particular loading conditions con-
sidered, the most natural choice is to represent the section of the REs in
the plane of work-conjugated strain increment quantities, (Δεa,

√
2Δεr), see

Fig. 1b. The size of each strain increment vector defining the RE can be di-
rectly interpreted as a directional secant compliance of the material, for the
associated loading direction and stress increment magnitude.

Figures 4 and 5 show the computed REs for all the model considered at
small to medium stress increment levels (Rσ = 20, 30, 40, and 50 kPa), and at
medium to large stress increment levels (Rσ = 50 and 90 kPa), respectively.
The corresponding experimental REs are also shown on the top left corner of
both figures.

For small to medium stress increment levels, the experimental REs indi-
cate that the softest response is associated to those paths which are charac-
terized by a large deviatoric component (e.g., tests Tx119 and Tx113). As
Rσ increases, the envelopes progressively shift upward to the left, due to the
fact that the initial state is closer to the critical state line for axisymmetric
compression than to the corresponding line for axisymmetric extension. For
η = 0.4 loading paths (Tx130 and Tx129), the material response is softer
when the probe points in the direction of continued loading, and stiffer upon
unloading (i.e., upon full stress path reversal with respect to the consolida-
tion history). In fact, this last path corresponds to the stiffest response of
the material. A direct consequence of the above observations is that the ex-
perimental REs are markedly nonsymmetric about the origin of the strain
increment space.

The predictions of the different models considered appear, from a qualita-
tive standpoint, all in fair agreement with the salient features of the experi-
mental response discussed earlier. The only notable exception is represented by
the predictions of CLoE model upon η = 0.4 loading paths, where – contrary
to experimental evidence – no significant difference between secant stiffnesses
in compression and extension is observed. From a quantitative standpoint,
however, all models appear to significantly underpredict the secant stiffness
of the material. The REs predicted by the two elastoplastic models have a
convex shape, except for the expected, yet minor irregularity of the Modified
Cam-Clay envelopes, close to neutral loading in extension. The REs of the
two K–hypoplastic models, and (to a much lesser extent) those of CLoE show
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Fig. 4. Experimental vs. simulated strain response envelopes for Rσ = 20, 30, 40,
and 50 kPa

some degree of nonconvexity in a region located around the η = 0.4 loading
direction. This feature is also shown by the two largest experimental REs, al-
though such an observation is based on the results of one single stress-probe.

At large stress increment level (Rσ = 90 kPa, Fig. 5), both the elastoplas-
tic and the K–hypoplastic models provide response envelopes which appear
in fairly good agreement with the experimental results, both from a quali-
tative and a quantitative point of view. On the contrary, CLoE significantly
underestimates soil stiffness for loading paths close to deviatoric compression
(Tx116 and Tx119).
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Fig. 5. Experimental vs. simulated strain response envelopes for Rσ = 50 and 90 kPa

5 Concluding Remarks

The comparative evaluation of the performance of different constitutive mod-
els in their application to the quantitative solution of practical engineering
problems is a very complex task, which typically requires the consideration
of a number of key issues, such as: the capability of reproducing the relevant
experimental response; the relative complexity of the calibration procedures;
the number and nature of the internal state variables describing the effects of
previous loading history; the availability of robust and accurate algorithms for
their numerical implementation in FE codes, etc. In this paper, the attention
is focused on the qualitative and quantitative agreement between experimen-
tally observed response and model predictions at the element level.



154 Tamagnini et al.

In standard practice, the comparison between model predictions and ex-
perimental results is typically done with reference to a limited number of
conventional stress paths, whereas the response of the material for different
loading conditions is extrapolated in a more or less reasonable way. This can
be quite sufficient to assess the model performance in practical applications,
whenever the problem at hand is such that most of the soil affected by the im-
posed loading conditions undergoes very similar stress paths, and one of such
paths is included among those explored in the laboratory testing program.
Unfortunately, this is only seldom the case in many important applications
where an accurate prediction of soil–structure interaction processes and of
the displacement field around the structure is required. Notable examples in
this respect are provided by deep excavations and shallow tunnels to be real-
ized in urban environments, as in such cases, different zones of soil experience
widely different stress-paths, both in size and direction, and the quality of
numerical predictions crucially relies on the ability of the constitutive model
adopted for the soil to accurately reproduce the material response along all
such loading paths.

In this paper, an attempt is made to evaluate the response of different
advanced constitutive models for fine-grained soils in more general terms,
considering their predictive capabilities over a quite wide range of loading
conditions. While the strain response envelopes plotted in Figs. 4 and 5 provide
a clear qualitative picture of the performance of the five models considered, a
more quantitative comparison of model predictions has been presented in [20]
by introducing a suitable scalar measure of the “distance” between model
responses and experimental results. Based on such a comparison, the best
performance overall appears to be provided by the enhanced K–hypoplastic
model and the 3-SKH model, at both small and large strain levels.

As compared to its enhanced version, the performance of the standard
K–hypoplastic model is still reasonably good, mainly because the loading
programs considered involve only a very limited number of stress reversals.
For the application to monotonic (or quasimonotonic) loading conditions, the
standard K–hypoplastic model may therefore represent a valid alternative to
more complex formulations. On the contrary, the performance of CLoE model
appears quite poor as compared to the other elastoplastic or hypoplastic mod-
els, particularly for those loading paths involving a significant increase in mean
stress. This is not surprising, considering that CLoE is a first-generation hypo-
plastic model, in which the stress tensor is the only state parameter. For this
reason, the mathematical structure of CLoE does not allow to properly dis-
tinguish normally consolidated and overconsolidated states, and to correctly
describe critical state failure conditions. While CLoE has demonstrated its
capability of accurately modeling the response of coarse-grained soils along
mainly deviatoric loading paths, see e.g., [5], these limitations obviously make
it unfit to model the behavior of soft clays. An attempt to modify the current
version of CLoE in order to improve its performance for normally consolidated
clays has been recently presented by [19].
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It is worth noting that even the predictions of the classical Cam-Clay
model for those paths which point outside the initial yield surface are quite
good, and essentially equivalent to those obtained with 3-SKH model. This is
to be expected, as the soil considered in this study was in a (almost) normally
consolidated state.

Both the enhanced K–hypoplastic model and the 3-SKH model are char-
acterized by a relatively limited number of constants, most of which are linked
to standard features of clay behavior. In fact, all the constants appearing in
these two models can be determined by means of standard laboratory tests,
with the only exception of those controling the stiffness of the material at
very low strain levels. Of course, the above considerations also apply to the
simpler standard K–hypoplastic model for clays, which possesses only five con-
stants, just like the classical Modified Cam-Clay. On the other hand, CLoE
model requires a much wider pool of experimental data to determine the
relatively large number of constants. Moreover, as CLoE constants typically
control more than one specific feature of the material response, they cannot
be determined independently. Rather, they have to be found by means of a
complex calibration procedure which has to be implemented numerically in
a suitable calibration code. This represents a second, major drawback of the
CLoE model as compared to the more recent K–hypoplastic models for clays.
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Géotechnique, 51(3):245–255, 2001



156 Tamagnini et al.

7. D. Costanzo, G. Viggiani, and C. Tamagnini. Directional response of a recon-
stituted fine–grained soil. Part I: experimental investigation. Int. J. Num. Anal.
Meth. Geomech. (in print), 2006

8. F. Darve. The expression of rheological laws in incremental form and the main
classes of constitutive equations. In F. Darve, editor, Geomaterials: Constitutive
Equations and Modelling, pages 123–148. Elsevier, Amsterdam, 1990

9. J. Desrues and R. Chambon. Shear band analysis for granular materials: the
question of incremental non–linearity. Ingenieur–Archiv, 59:187–196, 1989

10. R.J. Finno, I.S. Harahap, and P.J. Sabatini. Analysis of braced excavations with
coupled finite element formulations. Comput. Geotech. 12:91–114, 1989

11. J. Graham, M.L. Noonan, and K.V. Lew. Yield states and stress-strain relation-
ships in natural plastic clay. Can. Geotech. J., 20:502–516, 1983

12. G. Gudehus. A comparison of some constitutive laws for soils under radially
symmetric loading and unloading. In Wittke, editor, 3rd Int. Conf. Numer.
Methods Geomech., Aachen, pages 1309–1324. Balkema, Rotterdam, 1979

13. G. Gudehus. A comprehensive constitutive equation for granular materials. Soils
Found. 36(1):1–12, 1996

14. K. Hashiguchi. Two– and three–surface models of plasticity. In V International
Conferance of Numerical Methods in Geomechanics, pages 285–292, Nagoya,
Japan, 1985. Balkema, Rotterdam

15. D. Kolymbas. An outline of hypoplasticity. Arch. Appl. Mech. 61:143–151, 1991
16. J. Lanier, D. Caillerie, R. Chambon, and G. Viggiani. A general formulation of

hypoplasticity. Int. J. Numer. Anal. Methods Geomech., 28:1461–1478, 2004
17. P.I. Lewin and J.B. Burland. Stress-probe experiments on saturated normally
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1 Introduction

In computer science, abstraction is defined as the ability of a program to
ignore some aspects of the information that it is manipulating, i.e. the ability
to focus on the essential. Modern programming styles, such as object oriented
programming, support high levels of abstraction on the basis of modularity
and structure.

In constitutive modelling, the concepts of structure and modularity can
be applied as well. The elastoplastic double hardening model by Vermeer [22]
or its successor, the Hardening Soil (HS) model by Schanz et al. [20] are only
two examples. Here the main modules are an elastic kernel and two plastic
hardening mechanisms: A shear hardening mechanism and a cap hardening
mechanism.

Abstraction is an important issue in constitutive modelling, too: “The
art of successful modelling is to include just enough detail for the implied
simplification to be reasonable for for the particular application.” (Muir Wood
[12]) The appropriate level of abstraction or simplification, however, is difficult
to determine. Although it primarily depends on design requirements and the
soil type, it also depends on the analysis type (i.e. drained or undrained), load
type (i.e. cyclic or monotonic), boundary conditions and many more.

Especially in engineering practise where robust and easy to apply models
are needed, the appropriate level of abstraction can sometimes not be met due
to a lack of suitable models. Two new models that tentatively close this gap
are proposed in this paper. Using the concept of modularity, they are both
based on the well known HS model as implemented in the finite element code
Plaxis. The new modules are a small strain formulation and an advanced shear
hardening formulation for cyclic modelling and improved monotonic deviatoric
modelling.
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An illustration of the new modules’ mode of operation is given by means
of simple element tests. Two case studies of large navigable locks at the end
of this paper then proof their value also for engineering practise.

2 Model Formulation

2.1 The Hardening Soil Model in a Nutshell

The original HS model was developed by Schanz [19] and Schanz et al. [20]
on the basis of the Double Hardening model by Vermeer [22]. Thus, the HS
model comprises also ideas by Kondner and Zelasko [8], Duncan and Chang [6],
Ohde [13] and Rowe [15]. Standard lab tests as triaxial and oedometer tests
spin off the model’s basic characteristics. In drained triaxial tests soils exhibit
a hyperbolic stress–strain relation during primary loading, where unloading
and reloading can be approximated with a linear function. Therefore the HS
model introduces a first yield surface that separates between deviatoric pri-
mary loading and unloading/reloading. The evolution of this cone type yield
surface is such that it is in accordance with the hyperbolic shape of the stress–
strain relation as first formulated by Kondner and Zelasko(1963) [8] and sub-
sequently applied by Duncan and Chang [6] in their hypoelastic model. The
deviatoric shape of the yield surface is chosen coherent to the applied Mohr-
Coulomb failure criterion. In triaxial compression it reads

fs12 =
1
E50

(σ1 − σ2)
qa − (σ1 − σ2) − 2(σ1 − σ2)

Eur
− γps, and

fs13 =
1
E50

(σ1 − σ3)
qa − (σ1 − σ3) − 2(σ1 − σ3)

Eur
− γps,

(1)

where qa is the asymptotic deviatoric stress and γps is the hardening parame-
ter. Since associated plasticity is an unrealistic assumption for most geoma-
terials an additional plastic potetial of the form

gs12 =
(σ1 − σ2)

2
− σ1 + σ2

2
sinψm, and

gs13 =
(σ1 − σ3)

2
− σ1 + σ3

2
sinψm

(2)

is introduced. Here the mobilized dilatancy angel ψm is defined according to
Rowe’s stress dilatancy theorie [15]

sinψm =
sinϕm − sinϕcs

1 − sinϕm sinϕcs
, (3)

where, ϕcs is the critical state friction angel and the mobilized friction angel
ϕm is calculated to

sinϕm =
σ1 − σ3

σ1 + σ3 − 2c cotϕ
. (4)
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When simulating primary oedometric loading with the cone-type yield surface
only, the model acts too stiff. Thus, a second cap-type yield surface of the form

fc =
q2

α2
− p2 − p2p (5)

with the material constant α and the pre-consolidation measure pp is intro-
duced. This cap-type yield surface allows then to distinct between primary
volumetric loading and full elastic unloading/reloading. Both yield surfaces
are shown in Fig. 1 in principal stress space and in p−q space.

Material parameter input to the model can be separated into strength and
stiffness parameters. Strength parameters are the friction angel ϕ, cohesion c
and the dilatancy angel ψ. Material stiffness is defined at a reference stress
state pref by three different moduli: Eoed, the tangent oedometer loading mod-
ulus which controls mainly the evolution of the cap type yield surface and so
the state parameter pp. E50, the secant stiffness at 50% of the ultimate triaxial
strength, which controls mainly the evolution of the cone type yield surface or
the state variable γps. The elastic constants in the area enclosed by the two
yield surfaces is given by the unloading/reloading Young’s modulus Eur for
complete deviatoric unloading and the Poisson’s ratio νur. An Ohde [13] type
power law with exponent m is used to adjust the specified reference stiffness
values to the calculated stress state.

2.2 Module I: A Small Strain Overlay Model

Soil stress–strain behaviour is highly non-linear. The maximum soil stiffness
can be solely observed at low strain levels, e.g. strains ≤10−6. From there on,
stiffness decays so rapidly with almost purely elastic straining that it can not
be measured in standard laboratory tests without using bender elements or
other specialized equipment such as LVDTs.

-s2-s2
-s3-s3

-s1-s1

q

p

Fig. 1. Yield surfaces of the HS model for cohesionless soil. Left: Cap- and cone-
type yield surfaces in principal stress space with the cone being in its ultimate
Mohr-Coulomb failure criterion position. Right: p–q cut through the yield surfaces
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The small strain overlay model is a module to include small strain stiffness
in many elastoplastic models. The extension of the HS-model with the small
strain overlay model is in the following referred to as the HS-Small model.
Parameter input that is particular to the HS-Small model is discussed at the
end of this section. Only an abridged description of the small strain overlay
model can be given here. For a detailed model description it is therefore
referred to [2].

The small strain overlay model assumes that the decay of small strain
stiffness is primarily related to either break up of bonding forces or frictional
forces exceeding their elastic limit. Small strain stiffness decay can thus be
observed whenever the inter-particle forces in an assembly are reorganized
and concentrated. This happens either in primary loading or within a load-
ing history upon a change in load path. As a measure for the disturbance
of inter-particle forces the proposed overlay model thus tracks the material’s
monotonic deviatoric strain history. Strain history is treated as a second or-
der surface in principal strain space. To avoid any possible singularities of the
second order surface, a volumetric 1 strain is superimposed to the deviatoric
history strain. A geometrical interpretation of second order surfaces in some
basic tests is shown in Fig. 2. Here, the small deviatoric strains have been am-
plified to the power of 103 in order to visualize the distortion of the volumetric
1 strain component, which is a perfect sphere in this representation.

From the strain history Hi st step i and the actual deviatoric strain in-
crement Δei+1 in step i+ 1, determination of the elastic material stiffness is
as follows. First, the actual deviatoric strain history is calculated as

Hi+1 = (Ti)T(Hi + 1)Ti +Δei+1 − 1, (6)

e1e1

e3

e2e2
e3

Fig. 2. Strain history interpreted as second order surface in strain space.
Left: Triaxial extension. Right: Simple shear
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where Ti is a transformation matrix that partially or fully resets strain history
upon changes in the loading path. The scalar measure γi+1

Hist for the monotonic
strain history is then defined as:

γi+1
Hist =

√
3
‖Δei+1χi+1‖

‖Δei+1‖ with χi+1
k = nT

(k)(H
i+1 + 1)n(k) − 1, (7)

where ‖ . . . ‖ denotes the Hilbert-Schmidt norm ‖A‖ = √
aijaij and n(k) are

the principal directions of strain increment Δei+1. In a geometric context, (7)
is the projection of the strain history onto the actual loading direction.

The magnitude of the overall monotonic strain γi+1
Hist is related to shear

stiffness by an approach of Santos and Correia. Based on many test data for
sands and clays, Santos proposed in his PhD Thesis [17] two analytical ex-
pressions for the upper and lower bounds of normalized stiffness–strain curves.
Santos and Correia [18] fitted these two boundary curves with the hyperbolic
function

G(G0, γ0.7) =
G0

1 + a γ
γ0.7

, (8)

where G is the actual shear modulus, G0 is the initial shear modulus at very
small-strains, γ is the applied monotonic shear strain, and γ0.7 is the shear
strain at which the shear modulus has been reduced to 0.7G0. A best fit of
the two boundary curves is obtained for a = 0.385 as shown in Fig. 3.

The proposed degradation curve reaches far into the plastic material do-
main. In the plastic domain however, stiffness degradation is modelled by
material hardening. Therefore, a lower cut-off in the stiffness strain curved is
defined at the elastic unloading/reloading shear modulus Gur defined as

Gur =
Eur

2(1 + νur)
(9)

G/G0 [-]

g/g0.7 [-]

1.0

0.8

0.6

0.4

0.2

0.0
10-3 10-2 10-1 100 101 102 103

Fig. 3. Normalized stiffness degradation curves G/G0 over γ/γ0.7 according Santos
and Correia. The hyperbolic curve defined within (8) (bold) is shown between its
experimentally derived upper and lower bounds. A best fit is obtained for a = 0.385
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with the elastic constants Eur and νur. Thus, Gur is the shear modulus in
complete deviatoric unloading. The additional model parameters for the small
strain formulation are then G0, the elastic small strain shear modulus, and
the threshold value γ0.7 in primary loading. In order to obey Massing’s rule,
this threshold value is internally doubled during unloading/reloading.

2.3 Module II: Double Hardening Bounding Surface Plasticity

An advanced shear hardening module based on the bounding surface plasticity
concept by Dafalias [5] is proposed in this section. In combination with the
HS-Small model, this new module allows for improved state dependent, or
unified modelling as well as cyclic modelling. Although the existing model is
altered extensively, the new model is in the following referred to as the HS-
Bound model. Additional parameter input is needed to specify the material’s
initial- and critical state, its phase transition, and its cyclic characteristics.

Incorporating the principles of Wood et al. [23], the new shear hardening
module allows for unified soil modelling based on the state parameter defined
by Been and Jefferies [1]

ψ = e− ecs = e− (erefcs − λln(
p

pref
)), (10)

where λ and erefcs are material constants that define a straight critical-state
line in e − ln(p) space. Whenever enough test data is available, the user can
alternatively switch to the modified critical state line proposed by Li and
Wang [9]

ψ = e− ecs = e− (erefcs − λc( p
pref

)ξ) (11)

which is a straight line in e− ( p
pref )ξ space.

Material stiffness is now defined as function of stress (Ohde), strain (small
strain overlay model), and the distance db between the actual stress ratio and
its image on the bounding surface. The yield surface of the model is a Drucker-
Prager cone that is allowed to harden kinematically and isotropically. Figure 4
shows the model surfaces in principal stress space. The deviatoric shapes of the
critical(c)-, bounding(b)-, and dilatancy(d) surface are all defined according
Papadimitriou and Bouckovalas [14] as

g(Θ, cc,b,d) =
2cc,b,d

1+cc,b,d

2 − 1−cc,b,d

2 cos(3Θ)
−
(

1 + cc,b,d

2
+

1 − cc,b,d
2

cos(3Θ)
)
,

(12)

where Θ is the Lode angle and cc,b,d gives the ratio of extent in triaxial
compression Mc and triaxial extension Me for the respective surface.

For a given material state ψ and known critical state M c the deviatoric
extents Mb and Md of the bounding- and dilatancy surfaces, respectively, are
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Bounding surface

Critical state surface

Dilatancy surface

Yield surface

S3

S1

S2

S3

S1

S2

Fig. 4. Left : Bounding surface with cap in principal strain space. Only the high-
lighted cap portion is active. Right : View inside the model onto yield-, dilatancy-,
critical-, and bounding surface

defined as

Mb =M c + kb〈−ψ〉
Md =M cek

dψ
, (13)

where kb and kd are material parameters related to material strength. How-
ever, the user is not expected to specify these internal parameters. Instead,
a user interface is provided that converts the standard strength and stiffness
parameters known from the original HS model to the new internal calculation
parameters. For stiffness and dilatancy parameters this is done by iterative
calculations of triaxial and oedometer tests.

Not specifing an explicit plastic potential surface, dilatancy is defined in
close agreement to Li and Dafalias [10] in multiaxial stress–strain space as

D =
dεpkk√

2
3depijde

p
ij

= Add, (14)

where A is an internal material parameter and dd is the distance between the
actual stress ratio and its image on the dilatancy surface.

For a description of the used mapping rule and hardening laws it is referred
to Papadimitriou and Bouckovalas [14] or Manzari and Dafalias [11] since their
equations have been only slightly modified. A new feature of the proposed
shear hardening mechanism is the implementation of a stress ratio memory
surface and a sweep out of memory function for near failure states of stress. For
a description of these important feature for cyclic modelling and a complete
model description it is referred to an upcoming publication.

3 Element Tests

The additional features of the new models can be best identified in element
tests. Hence, before applying them to boundary value problems as done in
Sect. 4, they are first used in triaxial and oedometer tests.
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3.1 Small Strain Triaxial Tests

The tests by Rivera and Bard [4] on dense sand comprise static and cyclic
(repeated) triaxial loading. In the calculation of the tests presented in Fig. 5
plastic straining has been suppressed. Thus, the small strain overlay is here
used as a stand-alone model. Active hardening mechanisms would further
decrease stiffness with straining. However, for reasonable material hardening
this stiffness decrease can be neglected in the small strain range. For a more
detailed discussion on this topic see Benz et al. [2].

In the calculation of the tests by Rivera and Bard it turns out that the
model’s ability to capture differences between virgin- or monotonic loading
and re- or cyclic loading is essential. As shown on the right hand side of
Fig. 5, Masing’s rule is fulfilled, too.

3.2 Various Tests on Dense and Loose Hostun Sand

Several drained triaxial and oedometer tests on dense and loose Hostun sand
are shown in Fig. 6 and Fig. 7. All tests have been either performed at the
Laboratoire 3S (the former Institute of Mechanics IMG) in Grenoble or at
the Institute of Geotechnical Engineering of Stuttgart University (IGS). Both
models, the HS-Small and the HS-Bound model can reproduce the test results
reasonably well. However, for the HS-Small model two sets of parameters have
to be provided. One set for dense sand and one set for loose sand (Table 1).
Apart from the initial void ratio, a single set of parameters is sufficient with the
HS-Bound model. Peak and residual strength is then in good agreement with
the test data. The concept of unified or state dependent modelling improves
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Fig. 5. Triaxial test by Rivera and Bard (in Biarez and Hicher [4]) and its simulation
with the small-strain overlay model (G0,ref = 125 MPa at pref = 100 kPa, γ0.7 =
2e−4). Left : secant stiffness in respect to last reversal point. Right : hysteresis loop
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Table 1. Parameters for dense and loose Hostun sand

Eref
50 Eref

oed Eref
ur c ϕ ψ Gref

0 γ0.7 m νur

[MPa] [MPa] [MPa] [kPa] [◦] [◦] [MPa] [−] [−] [−]

sand(D) 36.0 30.0 90.0 0.0 42 14 150 2e−4 0.50 0.20
sand(L) 12.0 16.0 60.0 0.0 34 0 62.5 1e−4 0.65 0.20

E3 E2

AA

fill

boulder clay

lower sand

Fig. 8. Finite element model of the navigable lock Uelzen I. Vertical displacements
are measured in extensometers E2 and E3 next to the lock

also the volumetric behaviour of the HS-Bound model compared to this of the
HS-Small model considerably.

Results of the HS-Bound model in cyclic calculations are shown in Fig. 7.
Here an oedometer test and a cyclic triaxial experiment by Tan [21] are mod-
elled in reasonably good agreement with the test data from dense Hostun sand.

4 Boundary Value Problems

4.1 Case Study I: Lock Uelzen I – Settlements

The Elbe Side Canal connects the Mittelland Canal with the river Elbe. The
difference in elevation between the Mittelland Canal and the river Elbe of
61 m is divided between the Lock Uelzen and the ship lift Scharnebeck. The
Lock Uelzen I with a chamber length of 185 m, a width of 12 m and a lift of
23 m went into operation in 1976. In Fig. 8, a finite element model of the lock
Uelzen I with the lock in the middle and the economising basins on the left
hand side is presented. The following case study concentrates on the vertical
displacements and settlements of the lock due to filling and draining the lock
chamber.
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Table 2. Soil parameters Uelzen

γsat k Eref
50 Eref

oed Eref
ur c ϕ ψ Gref

0 γ0.7 m

[kNm−3] [m(days)−1] [MPa] [MPa] [MPa] [kPa] [◦] [◦] [MPa] [−] [−]

upper fill 21.0 drained 48.0 40.0 144 0 35.0 5.0 166 5e−4 0.50
medium fill 21.0 drained 42.0 35.0 126 0 32.0 2.0 194 3e−4 0.50
lower fill 20.0 drained 36.0 30.0 108 0 30.0 0.0 166 3e−4 0.50

boulder clay 21.5 drained 20.0 16.0 62.0 26 33.0 10.0 105 3e−4 0.80
lower sand 19.0 drained 104 90.0 320 0 43.0 13.0 500 3e−4 0.60
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Fig. 9. Vertical settlements in Section A–A due to lock operation

Boulder clay and a lower sand layer present the subsoil at the location.
The boulder clay is of semi-solid consistency. The lower sand layer consists of
fine to semi grained sand. The strength and density of the sand is remarkably
high. Cone resistance qc is up to and over 100 kNm−2. Soil parameters used
in the following calculations are given in Table 2. These parameters have been
carefully calibrated i.e. by an back analysis of an excavation right next to the
existing lock [7].

From extensometer measurements on both sides of the lock it can be seen
that the displacements due to lock operation are nearly elastic. Displacements
below 1 mm are measured at the lock’s base due to the 23 m water level rise
in the lock during operation. Calculated displacement profiles along Section
A–A (Fig. 8) are given in Fig. 9. Using the parameters given in Table 2, the
original HS model overestimates the vertical displacements by far. These by
the HS-Small and HS-Bound models fit the measurements better.
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Fig. 11. Finite element mesh of the Suelfeld lock excavation

However, the HS-Small is not adequate to additionally accumulate the
small plastic deformations during lock operation. Here a model with advanced
shear hardening mechanisms as implemented in the HS-Bound model is to be
used. Figure. 10 shows the calculated cyclic response in 25 consecutive oper-
ation cycles. A relatively low tolerated numerical error and a well calibrated
model are the prerequisites for such calculations. The calculation of many cy-
cles is thus a costly task. However, a cycle skipping algorithm in the form of
this proposed in Benz et al. [3] can mitigate this problem. Once, the charac-
teristics of the accumulation curve is established, a pseudo-time viscous law
could be used for the further calculation, too.

4.2 Case Study II: Lock Suelfeld – Excavation

The Suelfeld navigable lock on the Mittelland canal is adapted to the new ship
generation [16]. For this purpose a new structure is currently built in the place
of the southern lock chamber. The excavation is fully housed by diaphragm
walls (Fig. 11). The time this paper is written, the excavation works have been
finished.
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Table 3. Soil parameters Suelfeld

γsat k Eref
50 Eref

oed Eref
ur c ϕ ψ Gref

0 γ0.7 m
[kNm−3] [m(day)−1] [MPa] [MPa] [MPa] [kPa] [◦] [◦] [MPa] [−] [−]

sand 20.5 8.6e+0 40.0 38.0 300 0 37.5 7.5 375 3e−4 0.55
silty clay 21.5 8.6e−4 8.5 6.0 23.0 30 32.0 10.0 50.0 3e−4 0.90
boulder clay 21.5 8.6e−3 8.5 6.2 27.0 6 28.0 6.0 42.0 3e−4 0.70
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Fig. 12. Computed settlements of the existing lock

At the building site overconsolidated glacial deposits overlie the Lias
bedrock: clayey silt, sand and boulder clay. The cohesive layers–silt and boul-
der clay – were characterized using laboratory tests on undisturbed samples.
The soil parameters given in Table 3 have been further refined in a back analy-
sis of the existing lock. Measured vertical displacements of the existing lock
during operation are compared to these from finite element analysis (Fig. 12).
Only the HS-Small model could provide reasonable results here. The HS-
Bound model has not been used in the Suelfeld calculation, yet.

A geotechnical measurement program has been established in order to
measure (a) wall deformations, (b) deformations and pore pressure of the ad-
jacent soil masses, (c) forces in anchors and struts, and (d) the excavation
bed heave. In order to predict the excavation behaviour and the interaction
between the excavation and the neighbouring structures, finite element analy-
sis were performed using the Plaxis code. In Fig. 13 the computed horizontal
displacements in the end-of-excavation stage are presented.

The measured maximum horizontal displacement in the section shown in
Fig. 13 is 18 mm. The maximum displacement calculated by the HS-Small
model in this section is 16 mm. The calculated displacement field over hight
is also similar to the measured one. This good agreement is encountered also
in the comparison between computed and measured anchor-forces presented
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in Fig. 14. The original HS model on the other hand gives too large dis-
placement up to 54 mm. The calculated displacement field and anchor-forces
are also not in such good agreement as these calculated by the HS-Small
model.
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5 Conclusions

By a modular extension of the hardening soil (HS) model, two new models
with increased complexity have been developed. The HS-Small model adds a
small strain stiffness formulation to the functionality of the original HS model.
The HS-Bound model adds the same small strain formulation but improves
also the shear hardening mechanism of the original HS model. The major
difficulty with more complex models is usually parameter selection. Since all
HS models are meant for use in engineering practice, they all use the same
established set of parameters. The few additional parameters needed for the
more advanced models can be extracted from laboratory test data.

Increased model complexity comes along with reduced abstraction. As
shown in element tests and in boundary value problems, this tentatively in-
creases the engineers ability to model real soil behaviour. In some analysis
this might not be necessary, in others it might. Accumulation of plastic strain
in cyclic loading is an example were more complex but still easy to use soil
models such as the HS-Bound model are urgently needed. Although model
complexity should be always chosen according to the problem it is used in,
incorporation of small strain stiffness into numerical analysis can be made
a general recommendation in serviceability design. Yet, the HS-Small model
enables also the practical working engineer to do so.
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99–112

2. Benz T, Vermeer PA, Schwab R (2005) A small strain overlay model. Int. J.
num. Anal. Methods Geomech. submitted

3. Benz T, Schwab R, Vermeer PA (2005) On the numerical modelling of quasi-
static cyclic problems. In: Proc. 11th Int. Conf. IACMAG (Turin, Italy)

4. Biarez J, Hicher PY (1994) Elementary Mechanics of Soil Behaviour.
A.A.Balkema, Rotterdam

5. Dafalias YF (1986) Bounding surface plasticity, I: mathematical foundation and
hypoplasticity. J. Engng. Mech., ASCE 112(9): 966–987

6. Duncan JM, Chang CY (1970) Nonlinear analysis of sterss and strain in soil. J.
Soil Mech. Found. Div. ASCE 96: 1629–1653

7. Kayser J, Schwab R (2002) Continuous model validation for a large navigable
lock. In: Magnan (ed) Proc. Int Symp Ident and Det of Soil and Rock Para for
Geotech Design (Paris). Presses de l’ENPC, Paris, pp 557–564

8. Kondner RL, Zelasko JS (1963) A hyperbolic stress strain formulation for sands.
In: Proc. 2nd Pan Am. Int. Conf. Soil Mechods Found. Engng. (Brazil), vol. 1.
pp 289–394

9. Li XS, Wang Y (1998) Linear representation of steady-state line for sand. J.
Geotech. Geoenviron. Engng., ASCE 124(12): 1215–1217

10. Li XS, Dafalias YF (2000) Dilatancy for cohesionless soils. Géotechnique 50(4):
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Elastic Visco-Plastic Models
for the Time-Dependent Stress–Strain
Behaviour of Geomaterials

J.-H. Yin

Department of Civil and Structural Engineering, The Hong Kong Polytechnic
University, China
cejhyin@polyu.edu.hk

Abstract. Five elastic visco-plastic (EVP) models for the time-dependent stress–
strain behaviour of clayey soils are introduced in the paper. The relations, features
and applications of these EVP models are presented and discussed. Methods for
determining all model parameters are briefly described. Typical measured and sim-
ulated time-dependent stress–strain relationships of clayey soils are compared and
discussed.

1 Introduction

Generally speaking, the stress–strain behaviour of all geomaterials is non-
linear, irreversible and time-dependent. Geomaterials are natural earth ma-
terials including soils and rocks. The time-dependence of the stress–strain
behaviour may be ignored under certain conditions, for example, for hard
rocks, stiff soils, and sandy soils under low stress levels, but may be signif-
icant for these geomaterials under higher deviator stress levels. The time-
dependence of the stress–strain behaviour of soft clayey soils and soft rocks
is often too significant to be neglected in many cases. Analysis of geotech-
nical structures directly and indirectly with these geomaterials needs a good
understanding and constitutive modelling of the time-dependent stress–strain
behaviour of these materials. Many researchers, for example, Bjerrum [2],
Graham et al. [3], Leroueril et al. [4] and Yin [8] among others, studied the
time effects on the stress–strain behaviour of soils based on odometer and tri-
axial test results. A number of constitutive models have been suggested for the
time-dependent stress–strain behaviour of soils and rocks. Most models are
based on the elastic visco-plastic (EVP) modelling framework of Perzyna [5,6].
The five EVP models introduced in this paper were originally developed for
clayey soils. One of the models has been extended and applied for a soft
rock. All the EVP models have great potential to be extended and used for
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describing the time-dependent stress–strain behaviour soft rocks. However,
the presentation, calibrations and applications of these models in this paper
are still referred to clayey soils.

2 A Classic 1-D EVP Model for 1-D Straining Condition

Bjerrum [2] suggested a conceptual time line model for modelling the delayed
compression in 1-D straining (oedometer) condition. Yin and Graham [11,12]
defined the “equivalent time”, which may be called Bjerrum-Yin-Graham’s
“equivalent time”, and other concepts such as “instant time” lines and “ref-
erence time” lines for 1-D applications (see Fig. 1). In the classis model, log-
arithmic fitting functions are used.

2.1 Instant Time Line (or κ-line)

The instant time line is used to define instantaneous strains. These are as-
sumed to be elastic in this EVP modelling, not elastic–plastic as assumed for
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example by Bjerrum [2]. Strains on the instant time line can be expressed

εez = εezi +
κ

V
ln
(
σ′z
σ′zi

)
(1)

where σ′zi is a reference vertical effective stress with corresponding vertical
strain εezi. In (1), V = 1+e0 is the specific volume, where e0 is void ratio. The
ratio κ/V is a material parameter used in the same way as in the Cam-Clay
models. Equation (1) can be used to fit test data in an overconsolidated range
or in unloading/reloading stages of loading. This allows the parameter κ/V
to be easily determined from fitting test data (see Fig. 1).

2.2 Reference Time Line (or λ-line)

The reference time line is:

εrz = εrz0 +
λ

V
ln
(
σ′z
σ′z0

)
, (2)

where εrz0 is the vertical strain at effective stress σ′z = σ′z0. In (1), εrz0, λ/V and
σ′z0 are three material parameters. The superscript “r” is used here denoting
the reference time line. The reference time line becomes an elastic–plastic
compression line as that in the Cam-Clay models [12]. The term λ/V is similar
to that used in the Cam-Clay models for defining the elastic–plastic line in
isotropically consolidated specimens in a normally consolidated stress range.
The parameter σ′z0 can be taken as a preconsolidation effective pressure σ′zc
with the corresponding strain εzc, although another point may also be taken.
In fact, the two values εrz0 and σ′z0 determine a point at which the λ-line passes
through, for example, point (i+1)′′ in Fig. 1b. In this way, the λ-line provides
a reference for counting creep time or for calculation of the “equivalent time”
which will be discussed later in this section. The later section will describe
how the three parameters εrz0, λ/V and σ′z0 can be determined.

2.3 Creep Compression Strain

Creep strains can be described by

εvpz =
ψ

V
ln
(
t0 + te
t0

)
, (3)

where ψ/V and t0 are two material parameters. Note that (3) uses equivalent
time te defined from the reference time line in Fig. 1b and not the time inter-
val corresponding to the real duration of loading. In this way, ψ/V becomes
a material constant, and not a parameter, like, the secondary coefficient of
consolidation Cαε that varies with overconsolidation ratio (Yin and Graham
1990). Note that (3) is still defined at te = 0.
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Consider a creep test loaded elastically in Fig. 1 from point i to point (i+1)′′

and then allowed to creep to point (i+1) under constant mean effective stress
σ′z(i+1). Here we have chosen point (i + 1)′′ to be on the reference time line.
The rationale is the same as that we chose the origin of a coordinate system.
If point (i+1)′′ is selected to be on the reference time line, creeping from point
(i + 1)′′ to (i + 1) takes place with the equivalent time te, which is equal to
the real creep duration t since loading from point i to point (i+1)′′ takes zero
time due to pure elastic compression. Fitting (3) to creep test data allows the
two parameters ψ/V and t0 to be determined. The model has been developed
in terms of effective stresses and therefore relates to the fundamental stress–
strain behaviour of the soil skeleton.

2.4 Equivalent Time

“Equivalent Time” was defined by Yin and Graham [11,12] for creep behaviour
under 1-D straining in an oedometer. Here it is explained for creep behaviour
under the isotropic stressing shown in Fig. 1. As discussed previously, when a
creep test is loaded from point 3 to point (i+1)′′ in Fig. 1 and then allowed to
creep to (i+1) under constant stress σ′z(i+1), the “equivalent time” te between
(i + 1)′′ and (i + 1) is equal to the load duration t. Differentiating (3) gives
the creep rate at point (i + 1)

εvpz =
ψ

V

1
t0 + t

=
ψ

V

1
t0 + te

. (4)

Equation (4) indicates that constant equivalent time te lines are also lines of
constant visco-plastic strain rate.

Now consider what would happen to creep rate if (i+1) had been reached
by a different path or different loading history, say an unloading and reloading
sequence. The “equivalent time” concept says that the creep rate at point
(i+1) for any loading path or history is the same as that obtained by creeping
from (i + 1)′′ on the reference time line for an “equivalent time” te as in (4).
In fact, using the “equivalent time” te, the creep rate is dependent on the
stress/strain rate (σ′z, εz) only. If the creep rate can be calculated using (4)
for any loading path, the total creep strain can also be calculated using (3)
for any loading path. In this way, creep behaviour in an over-consolidated or
unloading/reloading stress range can be described by the single equation as
shown in (3).

Based on these concepts, a general 1-D elastic visco-plastic (1-D EVP)
constitutive model for time-dependent stress–strain behaviour of clays has
been derived as follows:

dεz
dt

=
κ/V

σ′z

dσ′z
dt

+
ψ/V

t0
exp

[
−(εz − εrz0)

V

ψ

](
σ′z
σ′z0

)λ/ψ

. (5)

Equation (5) is a general 1-D EVP relationship for any 1-D compression
loading, including unloading and reloading. This model is called classic
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1-D EVP model in this paper as simple logarithmic fitting functions are used.
This model has been verified by comparing predicted results to measured
results [11,12].

3 A 1-D EVP Model Using a Non-Linear Creep
Function for 1-D Straining Condition

The logarithmic function has a limitation that may cause serious error for
estimation of the long-term settlement. This limitation is that, when the time
is infinite, the settlement (or strain) is infinite. This is certainly incorrect.
Results of long-term creep tests have showed that the relationship of creep
strain (or void ratio) vs. log(time) is not a straight line [4]. The slope of creep
strain vs. log(time), commonly denoted as Cαε (coefficient of “secondary”
consolidation), decreases with time. Thus, the use of logarithmic function
may over-estimate the creep settlement. Overcoming the limitation of loga-
rithmic function is of practical and academic importance to both engineers
and researchers. Yin [9] suggested a new non-linear logarithmic mathematical
function with a limit for fitting the non-linear creep behaviour of soils. This
section presents a new 1-D EVP model using this non-linear creep function.
Using the non-linear creep function with a limit, the final creep strain under a
constant load reaches a limiting value in the σ′z, εz-coordinate when the time
is infinite. The limit time line is a line of all final creep strain and is assumed
to have the same slope λ/V in the log σ′z, εz-space.

This non-linear logarithmic creep function [9] is expressed as

εvpz =

ψ0
V

ln
t0 + te
t0

1 + ψ0

V εvpzl
ln t0+te

t0

=

ψ0
V

1 + ψ0

V εvpzl
ln t0 + te

t0

ln
t0 + te
t0

=
ψ

V
ln
t0 + te
t0

,

(6)
where

ψ

V
=

ψ0/V

1 + ψ0

V εvp
zl

ln t0+te
t0

. (7)

In (6) and (7), ψ0/V, t0 and εvpzl are three constant parameters from oe-
dometer creep tests. Again, t0 has a unit of time but it is not a real time, but
a parameter. If considering ln[(t0 + te)/t0] together as a variable, (6) is in fact
a hyperbolic function. Consequently, a new general 1-D elastic visco-plastic
model with a creep limit (denoted as 1-D EVP) is derived as⎧⎨⎩ ε̇z = κσ̇′

z

V σ′
z

+ g(σ′z, εz) for (σ′z, εz) above the limit timeline

ε̇z = κσ̇′
z

V σ′
z

for (σ′z, εz) below the limit timeline
, (8)
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where

g(σ′z, εz) =
ψ0
V t0

⎛⎝1 +
εrz0 + λ

V ln σ′
z

σ′
z0

− εz
εvpzl

⎞⎠2

exp

⎧⎨⎩ V

ψ0

εrz0 + λ
V ln σ′

z

σ′
z0

− εz
1 +

(
εrz0 + λ

V ln σ′
z

σ′
z0

− εz
)/
εvpzl

⎫⎬⎭ . (9)

It is noted that there is a condition in (8). If the state point (σ′z, εz) is above
the limit time line, the behaviour is EVP and the first equation in (8) shall
be used. If the state point (σ′z, εz)is below the limit time line, the behaviour
is purely elastic and the second equation in (8) shall be used.

4 A 3-D EVP Model as Extension of the Classic 1-D
EVP Model and the Modified Cam-Clay Model

The above 1-D EVP models are of great significance not only for direct appli-
cations in 1-D deformation/consolidation analysis [13], but also as a basis for
extension to 3-D EVP modelling of the stress–strain behaviour [14]. Yin and
Graham [14] developed the classic 1-D EVP model into a classic 3-D EVP
model based on the work of Perzyna [5, 6] and the Modified Cam-Clay [7].

According to the work by Perzyna [5,6], total strain rates ε̇ij are the sum
of elastic strain rates ε̇eij and visco-plastic strain rates ε̇vpij :

ε̇ij = ε̇eij + ε̇vpij , (10)

where sub-indexes i = 1, 2, 3 and j = 1, 2, 3. The elastic strain rates ε̇eij in
(10) are related to effective stress rates σ̇′kl by

ε̇eij = Cijkl σ̇
′
kl, (11)

where Cijkl is a fourth order compliance tensor with sub-indexes k = 1, 2, 3
and l = 1, 2, 3. Summation is implied if two sub-indexes of two items are the
same. If the elastic deformation of the soil is assumed to be isotropic there
are only two constants (or moduli), for example, an elastic shear modulus Ge

and an elastic bulk modulus Ke.
Similar to the flow rule by Perzyna [5,6], Yin and Graham [14] suggested

that visco-plastic strain rates ε̇vpij in (1) be calculated from the following as-
sociated flow rule:

ε̇vpij = S
∂F

∂σ′ij
, (12)

where S is a scaling function. F is referred to as a “flow surface function” [14].
Yin and Graham [14] suggested a method for determination of the scaling
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function S using the 1-D EVP model [11, 12] serving as an “evolution law”
and an elliptic flow surface.

According to Yin and Graham [14], the EVP constitutive relationship
under an isotropic stressing condition (q = 0, p′ = p′m) can be expressed as

ε̇vm = ε̇evm + ε̇vpvm =
κ/V

P ′
m

ṗ′m +
ψ/V

t0
exp

[
−(εvm − εepvmo)

V

ψ

](
pm
pm0

)λ/ψ

,

(13)
where κ/V, ψ/V, t0, λ/V, p′m0 and εepvmo are five constants, the definition and
determination of which have been discussed in Yin and Graham [14]. In (13),
the total strain rate ε̇vm is equal to the sum of elastic strain rate ε̇evm and
visco-plastic strain rate ε̇vpvm under isotropic effective stress p′m. In (13), ṗ′m is
the mean effective stress rate in isotropic stress condition; and V is specific
volume of soil.

In (13), the visco-plastic strain rate ε̇vpvm under isotropic stressing condition
(q = 0, p′ = p′m) is

ε̇vpvm =
ψ/V

t0
exp

[
− (εvm − εepvm0)

V

ψ

](
p′m
p′m0

)λ/ψ

(14)

=
ψ/V

t0
exp

{[
− (εvm − εepvm0) +

λ

V
In
(
p′m
p′m0

)]
V

ψ

}
.

In (12), the “flow surface function” F is selected to be the same as the
potential function used in the modified Cam-Clay model:

F = p′2 − p′p′m +
q2

M2
c

= 0, (15)

where the mean effective stress p′ = (σ′11+σ
′
22+σ

′
33)/3 (p′ is a stress invariant);

Mc is the slope of the strength envelope in compression andMc = 6 sinφ′/(3−
sinφ′) (φ′ is friction angle). The value of p′m is the mean effective stress value
at which the flow surface locus meets the p′-axis as shown in Fig. 1a. The
subscript “m” stands for a state of isotropic stressing, that is, q = 0. The
generalised deviator stress q (a stress invariant) is defined as

q =

√
3
2
SijSij , Sij = σ′ij − δijp′, δij = 1 for i = j

or δij = 0 for i 	= j.
It is assumed by Yin and Graham [14] that the visco-plastic volume strain

rate ε̇vpv in (p′, q)- space (q > 0) is equal to the visco-plastic strain rate ε̇vpvm
under the corresponding isotropic stressing condition (q = 0, p′ = p′m), that is
ε̇vpv = ε̇vpvm. Thus the scaling function S can then be determined as

S =
ψ/V

t0
exp

{[
− (εvm − εepvm0) +

λ

V
In
(
p′m
p′m0

)]
V

ψ

}
1

|2p′ − p′m|
. (16)
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Using S in (16) and an isotropic elastic model for the elastic strain rates ε̇eij ,
the general 3-D EVP constitutive model is

ε̇ij =
(

1
2Ge

Sij +
1
Ke
p′δij

)
+ S

∂F

∂σ′ij
. (17)

It has been approved that when the viscosity of the soil is zero, that is, let
ψ/V = 0, the above 3-D EVP model becomes the modified Cam-Clay model.
The 3-D EVP model is considered to be an extension of the modified Cam-
Clay model for describing the time and strain rate effects on the stress–strain
behaviour.

5 A Refined 3-D EVP Model Using More General Flow
Surfaces on (q, p′)-Plane

It is noted that the failure of geomaterials follows better to the Mohr-
Coloumb’s criterion and the shapes of the flow surfaces (or yield surfaces)
in q−p′-plane may be different for different soils. Therefore it is necessary to
refined Yin and Graham’s 3-D EVP model for wide applications. Using the
Mohr-Coloumb’s criterion and a more general flow surface function, a refined
3-D EVP model is derived for modelling the time-dependent behaviour of
clayey soils [10].

The flow surface may not be an elliptic surface passing through the original
point with q = p′ = 0. This note introduces a flow surface consisting of two
parts [1], that is, f1 and f2, as shown in Fig. 2 for EVP modelling. This flow
surface is more general than the elliptic surface, which is only a special form
of the proposed flow surface. The f1 is the part of the flow surface within the
strength envelope line for normally or lightly over-consolidated behaviour and
is expressed by

F = f1
p′2

β2
− 2p′p′m

(1 + β)β2
+
t2

M2
c

+
(

1
β2

− 1
)

p′2m
(1 + β)2

= 0. (18)

The f2 is the other part of the flow surface above the strength envelope
line for heavily over-consolidated behaviour and is expressed by

F = f2 = p′2 − p′p′m +
t2

M2
c

= 0. (19)

Equation (19) is in fact an elliptic surface (part) passing through the origin.
The t in (18) and (19) is

t = q
(1 +K) − (1 −K) (r/q)3

2K
. (20)
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The value of p′m is the mean effective stress value at which the flow surface
locus meets the p′-axis as shown in Fig. 2a. The subscript “m” stands for a
state of isotropic stressing, that is, t (or q) = 0. The stress t in (18) and
(19) is related to the generalised deviator stress q (a stress invariant) and the
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third stress invariant r as expressed in (20). The deviator stress q is
defined as

q =

√
3
2
SijSij , Sij = σ′ij − δijp′, δij = 1 for i = j

or δij = 0 for i 	= j.

The stress invariant r is expressed as r =
(
9
2SijSjkSkl

)1/3.
This note focuses on modelling normally consolidated or lightly over-

consolidated clays with the flow surface F = f1 in (18). Using (12), visco-
plastic volume strain rate ε̇vpv and deviator strain rate ε̇vps can be expressed
as {

ε̇vpv = S ∂F
∂p′

ε̇vps = S ∂F
∂q

, (21)

where the “dot” represents differentiation with respect to time. It is known

that the total deviator strain εs is defined as εs =
√

2
3EijEij , where Eij =

εij − 1
3δijεv, δij = 1 for i = j or δij = 0 for i 	= j. In the triaxial state,

εs = 2
3 (ε1 − ε3). Using (18)

∂F

∂p′
=
∂f1
∂p′

=
2p′

β2
− 2p′m

(1 + β)β2
(22)

and

∂F

∂q
=
∂f1
∂t

∂t

∂q
=

2t
M2

c

∂t

∂q
=

2t
M2

c

1
2K

[(1 +K) + 2(1 −K)r3/q3]. (23)

It is noted that for triaxial compression, since r = q, using (18), t = q. Thus,
(23) can be written as

∂F

∂q
=

2q
M2

c

3 −K
2K

. (24)

For triaxial extension, since r = −q, then t = q/K. Thus, (23) can be written
as

∂F

∂q
=

2q
M2

c

3K − 1
2K2

. (25)

For both triaxial compression and extension shear conditions, using (21), (22),
(24) and (25), (21) can be rewritten as⎧⎨⎩ ε̇

vp
v = S

(
2p′

β2 − 2p′
m

(1+β)β2

)
ε̇vps = S 2q

M2
c
f(K)

, (26)

where f(K) = (3−K)/2K for triaxial compression and f(K) = (3K−1)2K2

for triaxial extension.
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Table 1. Values of all parameters in the refined 3-D EVP model

Mc 1.265 K/V 0.018
K 0.75 ψ/V 0.0025
β 1.3 t0 (min) 1440
Ke = p′/(K/V )(kPa) 55.56 p′ λ/V 0.0792
Ge = 0.23Ke(kPa) 12.8 p′ p′mo (kPa) 15.2

εep
vm0 0

The visco-plastic strain rate ε̇vpvm under isotropic stressing condition (q = 0,
p′ = p′m) is the same as that in (26) on the flow surface, that is, the condition
ε̇vpv = ε̇vpvm. Thus, the scaling function S related the flow surface f1 can then
be determined as

S =
ψ/V

t0
exp

{[
− (εvm − εepvm0) +

λ

V
ln
(
p′m
p′m0

)]
V

ψ

}
1(

2p′
β2 − 2p′

m
(1+β)β2

) . (27)

Using (27) for S, the refined 3-D EVP model can be written in the same
format as that in (17) [10].

The above refined 3-D EVP model has been calibrated using data of tests
on a Hong Kong marine clay (HKMC). A summary of the values of all para-
meters is given in Table 1.

The calibrated refined EVP model was used to predict the time-dependent
stress–strain behaviour of the HKMC under triaxial stress conditions. Figure 3
shows the measured and predicted results for one consolidated undrained test
sheared at a constant deviator stress rate q̇ = 30 kPah−1. It is seen from the
figure that the predicted deviator stress is higher than the measured data for
strain from 0 up to 8% but very close to the measured data when strain is
larger than 8%. The predicted porewater pressure is closer to the measured
results compared to the deviator stress. The effective stress path (ESP) is
close to the measured one at initial part and the final part, but deviated from
the measured one in the middle part.

From the comparative study, it is found that the refined EVP model can
simulate well, in general, the time-dependent stress–strain behaviour, for ex-
ample, time and strain rate effects. Some discrepancies between predicted
results and measured results are observed. Generally speaking, the compar-
ison shows that the refined model is promising, but further refinement and
verification are recommended.

6 A More General 3-D EVP Model for both Normally
and Over-consolidated Clayey Soils

The above two 3-D EVP models has limitations in modelling over-consolidated
soil behaviour. Yin et al. [16] developed a more general 3-D EVP Model for
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both normally and over-consolidated clayey soils. A new loading surface con-
sisting of two parts of f1 and f2 is proposed. The f1 is the part of the loading
surface within the critical state line in p′−q plane for normally or lightly
overconsolidated behaviour and is expressed by

F = f1 =
p′2

β2
− 2p′p′m

(1 + β)β2
+

q2

M2g2(θ)
+

1 − β
(1 + β)β2

p′2m = 0, (28)

where M = 6 sinφ′(3 − sinφ′) is the slope of failure line in p′−q plane, and
p′m is the mean effective stress value at which the loading surface in (28)
intercepts the mean effective stress p′-axis in p′−q plane. β in (28) is a pa-
rameter controlling shear shape in p′−q plane. After investigating results of
some undrained compression and extension triaxial tests, the authors have
found that the stress paths for compression and extension tests are different.
Therefore, the authors suggest that β is a function of stress Lode angle, and
it may be empirically determined by β = 1

5 [6 + sin (3θ − π/2)].
The f2 is the part of the loading surface above the critical state line in p′−q

plane. It is for the behaviour of heavily overconsolidated soil and is expressed
by

F = f2 = p′
[
1 +

1
n− 1

(
q

Mg(θ)p′

)n]
− p′0, (29)

where p′0 is the mean effective stress value at which the loading surface in (29)
intercepts the mean effective stress p′-axis in p′−q plane. The n in (29) is a
parameter.

The 1-D EVP model using the non-linear creep function in (8) has been ex-
tended for the time-dependent stress–strain behaviour under isotropic stress-
ing and is used an evolution law in the general 3-D EVP model. Thus, the
general 3-D EVP constitutive relationship in a general stress state is written
as

ε̇ij =
1

2G
ṡij +

κ

3V
ṗ′

p′
δij +

ψ0
V t0

(
1 +

εrvm − εvm
εvpvml

)2

exp
{

εrvm − εvm
[1 + (εrvm − εvm)/εvpvml]

V

ψ0

}
1

|∂F/∂p′|
∂F

∂σ′ij
. (30)

This 3-D EVP model has a total of ten parameters, i.e. κ/V , λ/V, ψ0/V, εrvm0,
p′m0, t0, ε

vp
vml,M, β and n. All the ten parameters can be determined by a multi-

stage isotropic consolidation test and undrained (or drained) triaxial tests (at
least one in the normally consolidated range for β and one in the heavily
over-consolidated range for n).

The model has been calibrated using data of tests on a HKMC. The cali-
brated model is then used to simulate the strain-rate dependent stress–strain
behaviour of the same HKMC with different over-consolidation ratios (OCRs).
A comparison of the measured and simulated results is shown in Fig. 4.



188 J.-H. Yin

0

0.2

-0.2

0.4

-0.4

0.6

-0.6

0.8

1

-0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 21.8

p�/s�c

q
/s

� c

Compression

Extension

CS-line

CS-line

-700

-600

-500

-400

-300

-200

-100

0

100

300

400

500

0 5 10 15 20

ea (%)

OCR = 1
OCR = 2
OCR = 4
OCR = 8

OCR = 1

OCR = 2

OCR = 4

OCR = 8

OCR = 1

OCR = 2

OCR = 4

OCR = 8

OCR = 1  s0� = 400, sc� = 400 kPa
OCR = 2  s0� = 100, sc� = 200 kPa
OCR = 4  s0� = 100, sc� = 400 kPa
OCR = 8  s0� = 100, sc� = 800 kPa

Test

Test

Predicted

Predicted

Compression

Extension

Hong Kong marine deposits

Hong Kong marine deposits

(a)

200

q 
(k

P
a)

(b)

Fig. 4. Comparison between measured and predicted results of CIU tests for over-
consolidated HKMC, (a) axial strain vs. deviator stress and (b) effective stress paths
normalized with respected to preconsolidation pressure σ′

c



Elastic Visco-Plastic Models 189

7 Summary and Conclusions

A total of five EVP models for the time for the time-dependent stress–strain
behaviour of clayey soils have been introduced in the paper. The key points
in the modelling approach, relations, features and applications of these EVP
models are presented and discussed. Methods for determining all model para-
meters are briefly described. Typical measured and simulated time-dependent
stress–strain relationships of clayey soils are compared and discussed.

It is found from the study that all EVP models can consider viscosity ef-
fects on the stress–strain behaviour of clayey soils under given conditions (1-D
straining, 1-D stressing or 3-D stress states). These models have limitations
in certain cases. Improvements are being made. The basic concepts and EVP
modelling approaches provide a wide and useful framework for modelling the
time-dependent stress–strain-strength of geomaterials.
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1 Introduction

In the present paper monotonic and cyclic shearing of a cohesionless gran-
ular layer is numerically investigated using a micro-polar hypoplastic con-
tinuum approach. The constitutive equations for the stress and the couple
stress are non-linear tensor-valued functions and based on the concept of hy-
poplasticity [17]. The model was formulated by Tejchman [18], Tejchman and
Gudehus [22], who extended a non-polar hypoplastic model proposed by Gude-
hus [9] and Bauer [2] within a micro-polar continuum or so-called Cosserat
continuum. Due to the presence of a characteristic length in the form of the
mean grain diameter and by taking into account a polar parameter, the model
can simulate the formation of patterns of shear zones with a certain thickness
(e.g. [11, 15, 16, 19, 20]). Finite element calculations show that the thickness
of the localized zones does not depend upon the mesh discretization if the
size of the finite elements in the shear zone is small enough. However, the
initial density, the pressure level and the boundary conditions can have a sig-
nificant influence on the thickness of the localized zone [4, 10, 14, 18]. For the
present study of monotonic and cyclic shearing, numerical calculations are
carried out for quasi-static shear deformations of an infinite strip of a micro-
polar hypoplastic material located between two parallel rigid plates with rough
boundaries and a constant normal pressure. Attention is paid to the influence
of the shear amplitude and the number of cycles on the evolution of the void
ratio across the height of the shear layer. With respect to the boundary condi-
tions for an infinite shear layer the results are independent of the co-ordinate
in the direction of shearing.
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2 Micro-Polar Hypoplastic Material Model

Following Eringen [7] a micro-polar continuum is characterized by the macro-
displacement field ui and micro-rotations or so-called Cosserat rotations ωci
(i = 1, 2, 3). The rate of deformation and the rate of curvature are defined as
ε̇ij = ∂u̇i/∂xj+εkijω̇ck and κ̇ij = ∂ω̇ci /∂xj , respectively, where εijk denotes the
permutation tensor. The velocity gradient ∂u̇i/∂xj can be decomposed into
the symmetric part Dij = (∂u̇i/∂xj + ∂u̇j/∂xi)/2 and the skew-symmetric
partWij = (∂u̇i/∂xj−∂u̇j/∂xi)/2. Hence the strain rate ε̇cij can alternatively
be represented as ε̇cij = Dij +Wij −W c

ij where Wij denotes the macro-spin
and W c

ij = −εkijω̇ck denotes the micro-spin or so-called Cosserat spin. In
the following, it is assumed that state of a granular body is determined by
the current void ratio e, the non-symmetric stress tensor σ and the couple
stress tensor μ. The evolution of these state quantities are described in the
present paper using a hypoplastic constitutive model proposed by Tejchman
and Gudehus [22], wherein the components of their objective rates have the
following representations:

σ̊ij = fs
[
â2ε̇ij + (σ̂klε̇kl + μ̂klκ̇kl)σ̂ij + fdâ(σ̂ij + σ̂dij)

√
ε̇klε̇kl + κ̇klκ̇kl

]
, (1)

μ̊ij = fsd50
[
â2 κ̇ij + â2μ̂ij

(
σ̂klε̇kl + μ̂klκ̇kl + fdac

√
ε̇klε̇kl + κ̇klκ̇kl

)]
, (2)

ė = (1 + e)ε̇kk. (3)

σ̂ij , σ̂
d
ij , μ̂ij and κ̇ij are the components of the normalized quantities of the

stress, the deviatoric part of the stress, the couple stress and the rate of
curvature, respectively, which are defined as

σ̂ij =
σij
σkk

, σ̂dij = σ̂ij − δij
3
, μ̂ij =

μij
d50σkk

and κ̇ij = d50 κ̇ij .

Herein δij denotes the Kronecker delta and d50 is the mean grain diameter,
which enters the constitutive model as the internal length. The influence of
the mean pressure and the current void ratio on the incremental stiffness, the
dilatancy behaviour and the peak stress ratio are taken into account with the
stiffness factor fs, i.e.

fs =
hs
n

(
1
c21

+
1
3
− 1
c1
√

3

(
ei0 − ed0
ec0 − ed0

)α)−1 (ei
e

)β (1 + ei)
ei

(
−σkk
hs

)1−n

(4)
and the density factor fd, i.e.

fd =
(
e− ed
ec − ed

)α

. (5)

Herein α, β, n an hs are constitutive constants. In (4) and (5) the current void
ratio e is related to the maximum void ratio ei, the minimum void ratio
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ed and the critical void ratio ec. These limit void ratios decrease with
an increase of the mean pressure σkk, i.e. ei/ei0 = ed/ed0 = ec/ec0 =
exp[−(−σkk/hs)n], where ei0, ed0, ec0 are the corresponding values for σkk = 0.
Factors â and ac in (1) and (2) are related to critical states, i.e. ac is assumed
to be ac = â−1 (Tejchman and Gudehus 2001) and â depends on the so-called
angle of internal friction ϕc and the normalized stress deviator, σ̂d, according
to (Bauer 1995):

â−1 = c1 + c2
√
σ̂dklσ̂

d
kl

[
1 −

√
6σ̂dklσ̂

d
lmσ̂

d
mk/(σ̂

d
klσ̂

d
kl)

3/2
]

(6)

with c1 =
√

3/8(3 − sinϕc)/ sinϕc and c2 = (3/8)(3 + sinϕc)/ sinϕc. It
can be noted that for the special case of purely coaxial and homogeneous
deformations starting from an initially symmetric stress tensor or for d50 → 0
there are no polar effects, i.e. μij = μ̇ij = 0, W c

ij = Wij , ε̇cij = Dij and
σij = σji, so that the present micro-polar hypoplastic model is reduced to the
non-polar one given by Gudehus [9] and Bauer [2], i.e.

σ̊ij = fs
[
â2Dij + σ̂ij(σ̂klDkl) + fdâ(σ̂ij + σ̂dij)

√
DklDkl

]
, (7)

ė = (1 + e)Dkk . (8)

It follows from (7) that functions fs, â and fd are the same for the micro-polar
and non-polar version. Therefore, coaxial and homogeneous deformations are
sufficient for the adaptation of the constants involved in these functions.

Altogether the constitutive model includes ten constants, which can be
calibrated based on the data of standard element tests and simple index
tests [2, 12]. For the numerical calculations presented in the present paper
the following quantities are used: ϕc = 30◦, ei0 = 1.3, ed0 = 0.51, ec0 =
0.82, n = 0.5, hs = 190MPa, α = 0.3, β = 1.0, d50 = 0.5mm, ac = â−1.

3 Plane Shearing under a Constant Vertical Pressure

For the numerical simulation of cyclic shearing of an infinite granular layer
located between two parallel rigid plates under plane strain conditions the
micro-polar hypoplastic model was implemented in a finite element program
[13, 18]. Linear shape functions for displacements and the Cosserat rotation
were used. With an updated Lagrange formulation large deformations are
taken into account. The initial height of an element was chosen to be five times
the mean grain diameter d50, which was found to be sufficiently small to ensure
that the predicted thickness of the localized zone was mesh independent. With
respect to the case of plane strain only three degrees of freedom remain for
each element node, i.e. u1, u2 and ωc3, and the non-zero static quantities
within the element are σ11, σ22, σ33, σ12, σ21, μ31 and μ32 with respect to the
co-ordinate system in Fig. 1. For a micro-polar material the behaviour under
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Fig. 1. Modeling of a plane infinite granular shear layer under constant vertical
stress σ22: (a) section of the granular layer between parallel plates with rough sur-
faces, (b) degrees of freedom u1, u2 and ωc

3, stress components σ11, σ22, σ33, σ12, σ21

and couple stress components μ31 and μ32 in a micro-polar continuum approach
with respect to the Cartesian co-ordinate system

plane shearing is influenced by width of the granular layer in the direction of
shearing [4]. Only in the case of an infinite shear layer the field quantities are
independent of the co-ordinate in the direction of shearing, i.e. ∂(·)/∂x1 = 0 .
In the finite element simulation this property is modeled using displacement
and rotating constraints, i.e. for nodes with the same vertical co-ordinate x2
the displacements and micro-rotations must be the same. As a consequence of
the symmetry condition the width of the horizontal section of the shear layer
chosen for the numerical simulation is arbitrary. In order to simulate very
rough surfaces of the rigid bottom and top plates without sliding and rotating
of particles against the bounding structure, relative interface displacements
and micro-rotations are set equal to zero. Quasi-static shearing was initiated
by horizontal node displacements prescribed along the top of the layer, while
the nodes at the bottom were kept fixed. The first shear displacement is
assumed to be large enough so that shear localization occurs and a stationary
state is almost reached for both monotonic and cyclic shearing. The dilatancy
of the top layer perpendicular to the direction of shearing is not locked, i.e.
vertical displacements are a result of the constant vertical stress σ22 applied to
the top of the layer and the dilatancy behaviour of the material under shearing.

3.1 Behaviour Under Monotonic Shearing

For an initial height of the shear layer of 20 mm, an initially homogeneously
distributed void ratio of e0 = 0.6 and a constant vertical pressure of σ22 =
−100 kPa, the numerical results are shown in Fig. 2 and 3 for different horizon-
tal shear displacements u1T prescribed at the top of the layer. Herein the nor-
malized quantities are defined as: σ∗ij = σij/hs, μ∗ij = μij/(hsd50), κ̇∗ij = κ̇ij .

In contrast to the classical non-polar continuum the velocity field, the
stress rate field and the couple stress rate field are non-linearly distributed
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Fig. 2. Distribution of: (a) horizontal displacements, (b) Cosserat rotations,
(c) void ratio and (d) rate of curvature for u1T = 0.5 (short-dash curve), u1T = 1.0
(dashed curve), u1T = 2.0 (dot-dash curve), u1T = 10.0 (solid curve)

across the height of the layer. The shear stresses σ12 and σ21 are different,
which means that the stress tensor is non-symmetric. It was also proved an-
alytically by Bauer and Huang [4] that polar effects appear within the shear
layer from the beginning of shearing even for the case of an initially isotropic
stress state and initially zero couple stresses. For larger shearing a localiza-
tion of the shear strain can be observed in the middle of the layer and leads
to a displacement field with an S-shape (Fig. 2a). A similar behaviour was
observed in experiments with sand specimens in a ring shear apparatus [8].
The Cosserat rotation and the rate of curvature are only significant within
the localized zone (Fig. 2b,d) while the couple stress can also be pronounced
outside the localized. The increase of the void ratio is experimentally evi-
dent and can be explained with the tendency of a dense granular materials to
dilate under shearing. The boundaries of the localized zone are characterized
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Fig. 3. Distribution of (a) stresses and (b) couple stresses across the height of the
shear layer for u1T/h0 = 1.0. Evolution of (c)the void ratio in the middle of the
layer, i.e. at x2/h0 = 0.5 (solid curve), at x2/h0 = 0.75 (short-dash curve), and at
x2/h0 = 1.0 (long-dash curve) and (d) the stress components and couple stress in
the middle of the layer

by high gradients of the void ratio and the rate of curvature (Fig. 2c,d). The
extreme value of the Cosserat rotation occurs in the middle and it increases
with an increase of shearing. With an increase of shearing the thickness of the
localized zone increases as well. Thus, the thickness of the localized zone is not
a material constant. In this context it should be noted that the tendency of
the localized zone to increase or to decrease is influenced by the specification
of the model. While the Cosserat rotation continuously increases (Fig. 2b),
the increase of the void ratio (Fig. 2c) is limited. This is also shown in Fig. 3c
for the evolution of the void ratio at x2/h = 0.5. At the beginning of shearing
the void ratio in the middle of the layer slightly decreases and then increases
and tends towards a pressure dependent stationary value called critical void
ratio. For large shearing the stress and couple stress components also lead to
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stationary values (Fig. 3c) as it is required in the concept of critical state soil
mechanics, which is embedded in the present hypoplastic model. By applying
the definition of critical states, i.e. σ̊ij = 0, μ̊ij = 0 and ė = 0, to the constitu-
tive equations (1)–(3) the following relations for critical states can be derived
(Huang 2000):

fd =

√
||ε̇c||2 + λ||κ̇||2√
||ε̇c||2 + ||κ̇||2

, (9)

||σ̂d|| =
â||ε̇c||√

||ε̇c||2 + λ||κ̇||2
, ||μ̂|| =

γ||κ̇||√
||ε̇c||2 + λ||κ̇||2

, (10)

(
||σ̂d||
â

)2

+
( ||μ̂||
λ2ac

)2

= 1 (11)

with

λ =
1

â(ac − â) , γ =
1

ac − â , λ2 =
√

â

ac − â .

It follows from (11) that the stress tensor and couple stress tensor in stationary
states are coupled except for states with κ̇ = 0. From Fig. 2d it follows that
κ̇ = 0 appears in the middle of the localized zone. Thus the relations in (9)
and (10) reduce to fd = 1, and ||σ̂d|| = â, respectively. Herein a value of
fd = 1 means that the void ratio is equal to the critical one, i.e. e = ec,
as it is also obtained for the non-polar model [3]. However, for states in the
neighborhood of the center of the localized zone ||κ̇|| 	= 0 and therefore fd > 1
or equivalently e > ec. In other words, for the present micro-polar model the
void ratio in a stationary state can be greater than the value of the critical
void ratio ec, which can also be detected in Fig. 3c. In this context it can be
noted that with the modified version by Huang et al. [15] the factor fd = 1
is fulfilled in critical states independent of the rate of curvature, so that the
void ratio in the localized zone does not exceed the critical value.

3.2 Behaviour Under Cyclic Shearing

In order to investigate the behaviour under plane cyclic shearing calculations
were performed with two different initial densities, i.e. an initially medium
dense state with e0 = 0.6 and an initially loose state with e0 = 0.9, and
two different shear amplitudes, i.e. u1T/h0 = ±1 and u1T/h0 = ±0.01. In all
calculations an initial height of h0 = 20 mm and a constant vertical pressure is
considered. The material is first compressed with the pressure p = −500 kPa,
which is applied at the top of the layer, and then subjected to shearing in
one direction up to an almost stationary stress state at u1T/h0 = −1. Herein
u1T denotes the horizontal displacement of the top of the layer. Afterwards,
the direction of shearing is repeatedly changed with a prescribed horizontal
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displacement amplitude at the top. For more details about the numerical
procedure used the reader is referred to Tejchman and Bauer [21].

The results obtained for an initial void ratio of e0 = 0.6 (e = 0.582 after
consolidation) and a shear amplitude of u1T/h0 = ±1 are shown in Figs. 4–7.
Figure 4 shows the evolution of normalized stress components σ∗ij = σij/hs
and the normalized couple stress μ∗32 = μ32/(hsd50) close to the middle of the
layer against the normalized horizontal displacement of the top û1T = u1T/h.
At the beginning of shearing the amounts of the stresses increase and reach a
peak value within a small horizontal shear deformation with the exception of
the vertical stress σ22, which is prescribed to be constant. After the peak the
amounts of the shear stresses and the couple stress decrease and tend towards a
stationary value for larger shearing. During reversal shearing the shear stresses
and the couple stress change their sign and reach a stationary value again.
The stress–displacement curves are closed where the extreme values of the
stresses decrease with the number of cycles. In this context, it can be noted
that the amount of the pronounced stress peak during the first loading is not
reached again when cyclic shearing is continued. The normal stresses remain
almost constant except right after changes of the shear direction (Fig. 4c,e).

With the exception of the horizontal shear stress σ12 and the vertical
stress σ22 the stresses and the couple stress are distributed in a non-linear
way across the height of the shear layer as shown in Fig. 5a for a state after
the first shearing and in Fig. 5b for a state after six full shear cycles. Only the
shear stress σ12 and the vertical stress σ22 are independent of the vertical co-
ordinate x2, which results from the requirement of equilibrium. A comparison
of the state quantities after the first shearing (Fig. 5a,c,e) with those after
six full shear cycles (Fig. 5b,d,f) qualitatively shows a similar distribution but
quantitatively a significant increase of the width of the localized zone. In
particular, the thickness of the shear zone is about 14 times the mean grain
diameter d50 after the initial shearing and it is 18 times d50 after six full
shear cycles. Thus, the thickness of the shear band is not a material constant
and in the case of an initially dense specimen it increases with the number
of cycles. The numerical investigations show that the growth in thickness is
almost finished within the first three cycles.

A section of the deformed shear layer is shown for different states in Fig. 6.
At the end of each shear motion (Fig. 6b,d,e) the displacement field shows an
S-shape similar to the one obtained for a monotonic shearing. However, when
the top plate returns to the initial position, i.e. u1T = 0 (Fig. 6c), the hor-
izontal displacements shows a zig-zag distribution across the height of the
localized zone. Thus the memory of the preceding shearing is not completely
swept out in this state. A comparison of Fig. 6b with Fig. (6e) indicates that
the thickness of the localized zone grows with the number of cycles. In par-
ticular the thickness is about 14 ∗ d50 after the initial shearing and 18 ∗ d50
after six full shear cycles.

Figure 7 shows the evolution of the void ratio in four elements along the
height of the layer from the bottom (x2/h0 = 0.03) up to the symmetry plane
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Fig. 6. Section of a plane infinite layer subjected to cyclic shearing. Deformed finite
element mesh: (a) initial state, (b) after the first shearing, (c) in the reversed initial
state, (d) after the first full reversed shearing, (e) after the sixth shear cycle
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in the middle of the layer (x2/h0 = 0.5) versus the shear displacement u1T/h0
at the top. It is clearly visible that close to the boundaries of the shear layer
the void ratio decreases with the number of cycles (Fig. 7a,b). Within the
localized zone (Fig. 7c,d) the void ratio slightly decreases right after a change
of the shear direction but then strongly increases as a result of dilatancy. After
several cycles a closed stationary loop round the so-called critical void ratio is
reached. Although the local change of the void ratio is significant, the mean
value across the height of the shear layer is less pronounced. In particular the
mean value after the first shearing is e = 0.63 and the mean value after six
shear cycles is e = 0.633. Therefore the mean value of the void ratio is not
a relevant quantity to represent the dilatancy in the localized zone when the
shear layer is higher than the shear band thickness. This may be of importance
for the evaluation of experiments and the calibration of constitutive models.

The results obtained for an initially loose state, i.e. for an initial void
ratio of e0 = 0.9 (e = 0.837 after consolidation), and a shear amplitude
of u1T/h0 = ±1 are shown in Fig. 8. The void ratio globally decreases and
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Fig. 8. Cyclic shearing for e0 = 0.9 and u1T/h0 = ±1. Evolution of e in the shear
layer at: (a) x2/h0 = 0.03, (b) x2/h0 = 0.2, (c) x2/h0 = 0.3 and (d) x2/h0 = 0.5



Micro-Polar Effects under Monotonic and Cyclic Shearing 205

(a)

0.5

0.3

0.03

e
(b)

0.5

0.03

e

u1T / h0u1T / h0

0.8

0.7

0.6

0.5
-1.2 -0.8 -0.4 0 -1.2 -0.8 -0.4 0

0.582

0.9

0.837

0.8

0.6

0.7

Fig. 9. Cyclic shearing for u1T/h0 = ±0.01 and (a) e0 = 0.6, (b) e0 = 0.9.
Evolution of e in the shear layer at x2/h0 = 0.03, 0.2, 0.3, 0.5

that the contractancy is most pronounced in the first shearings. Close to the
boundaries of the layer the compaction increases (Fig. 8a) with the number of
cycles while in the middle the the compaction is limited (Fig. 8d). Although a
small compaction also takes place at the beginning of each reversal shearing,
it again disappears due to dilatancy with advanced shearing, i.e the void ratio
in the middle of the layer tends towards the pressure-dependent critical value
of ec ≈ 0.75 . A comparison of Fig. 7d with Fig. 8d shows that the critical void
ratio is independent of the initial void ratio as it is assumed in the concept of
critical state soil mechanics.

Further investigations by Tejchman and Bauer [21] indicate that the ques-
tion as to whether the mean value of the void ratio across the shear layer
increases or decreases strongly depends on the magnitude of the shear ampli-
tude. After an initial shearing of u1T/h0 = −1 the behaviour under a small
shear amplitude of u1T/h0 = ±0.01 is demonstrated in Fig. 9a for e0 = 0.6
and in Fig. 9b for e0 = 0.9. Independently of the initial void ratio the material
only behaves in a contractant way and with an increasing number of cycles
the void ratio tends towards the pressure dependent minimum value. Thus
for very small cyclic shear amplitudes the material becomes generally denser,
while for larger shear amplitudes and an initially dense state the void ratio
may increase.

4 Conclusions

Monotonic and cyclic shearing of an infinite granular layer located between
two parallel plates was investigated using a micro-polar hypoplastic continuum
approach. In contrast to a non-polar continuum the distribution of the state
quantities across the height of the layer for a micro-polar hypoplastic contin-
uum becomes nonlinear from the beginning of shearing. For larger shearing
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the deformation is localized in the middle of the shear layer. As a result of
dilatancy the void ratio increases and it tends towards the critical value. If
the shear layer is higher than the thickness of the localized zone, the mater-
ial becomes denser outside the localized zone, i.e. beyond the localized shear
zone, the void ratio decreases in the granular layer with each shear cycle. The
thickness of the localized zone is not a material constant. With an increase of
the number of shear cycle, the thickness of the shear zone increases. It should
be noted that a direct comparison of the numerical results with experiments
is still outstanding because in experiments only the global volume change of
the specimen is usually recorded. The experimental measuring of local volume
changes is very expensive and relevant data are thus a rarity. Cyclic shearing
locally leads to significant volume changes within the shear layer depending
on the initial density and the magnitude of the shear amplitude. For very
small cyclic shear amplitudes the material becomes generally denser, while
for larger shear amplitudes and an initially dense state the void ratio may
increase.
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1 Introduction

The strain localization is a classical mode of failure of geomaterials. Numer-
ical simulations of this phenomena need a specific approach to overcome the
practical problem of mesh size dependence. Several technics have been devel-
oped recently, among others, models with internal length like nonlocal models
( e.g., [17]) or second gradient models (e.g., [16, 20]). Then, one restores an
objectivity of computations and it becomes significant to study the postlocal-
ization regime.

A preliminary question is the representability of such computations. What
is the validity which can be given to a simulation or, in other terms, is a
solution of a limit conditions problem unique, and if not, is it possible to
quantify the variation between solutions? The aim of this paper is to explore
this question. We use the framework of local second gradient models [6, 14].
The constitutive law (the classical part) is an elasto-plastic model initially
developed for a rock [13]. We will study some key points as the onset of
localization, pattern and orientation of deformation bands.

Afterward, we will explore by a simple constitutive parametric study, the
kind of postlocalization responses which can be obtained, depending on the
characteristics of the model used: strain hardening or strain softening. We
will compare these preliminary results with some experimental observations
of geomaterial behavior, and more precisely make a parallel with the brittle
regime and brittle–ductile regime of failure that is observed when the mean
stress level change.1

1 In the following, the usual sign convention of mechanics (compression negative)
is adopted throughout.
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2 Local Second Gradient Model

Local second gradient models belong to a particular subclasses of models with
microstructure which descend from pioneer works of [8, 12, 15, 19]. They use
an enriched kinematic description of the continuum, with respect to classical
continua. In addition to the displacement field ui, a second-order tensor, the
so-called microkinematic gradient vij , is introduced. Particular subclasses of
enriched models introduce a constrain on the microkinematic field. For exam-
ple, Cosserat models can be viewed as a microstructured model for which the
microstrain is vanishing, i.e., the symmetric part of the tensor vij is zero. In
the same spirit, (local) second gradient models assume that the microkinetic
gradient is equal to the displacement gradient

vij = ∂ui/∂xj , (1)

where xj is the spatial coordinate. Such models have been developed recently
for geomaterials [5, 6, 14] and metals [10].

For local second gradient models, the virtual work principle can be sum-
marized as follow, [12]: for every virtual displacement field u∗i kinematically
admissible∫

Ω

(
σijε

∗
ij +Σijk

∂2u∗i
∂xj ∂xk

)
dv =

∫
Ω

Giu
∗
i dv +

∫
∂Ω

(
tiu

∗
i + Tij

∂u∗i
∂xj

)
ds,

(2)

where σij is the Cauchy stress, ε∗ij is the virtual macro strain, Σijk is the dual
static variable associated to the second gradient of the virtual displacement, so
called double stress. Gi is the body force by unit volume, ti is the traction force
by unit surface and Tij is the double force by unit surface. More conveniently,
the virtual work of external forces can be rewritten using the normal derivative
Dui = nk∂ui/∂xk on the boundary (here, assumed to be regular)∫

Ω

(
σijε

∗
ij +Σijk

∂2u∗i
∂xj∂xk

)
dv =

∫
Ω

Giu
∗
i dv +

∫
∂Ω

(piu∗i + PiDu∗i ) ds, (3)

where pi and Pi are two independent variables which can be prescribed on
the boundary.

For such a class of models, the balance equations and boundaries conditions
yield:

∂σij
∂xj

− ∂2Σijk

∂xj ∂xk
+Gi = 0, (4)

σijnj − nknjDΣijk − DΣijk

Dxk
nj − DΣijk

Dxj
nk +

Dnl
Dxl

Σijknjnk − Dnj
Dxk

Σijk = pi,

(5)

Σijknjnk = Pi, (6)
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where Dq/Dxj denotes the tangential derivatives of any quantity q:

Dq
Dxj

=
∂q

∂xj
− njDq. (7)

More details on the theoretical aspects can be found in [6]. The numerical
treatments and the development of a finite element for this kind of model
is detailed in [14]. The element has been implemented in the F.E.M. code
Lagamine, initially developed in Liège, Belgium. It has been chosen to write
the constitutive relation in two independent parts. A classical part links the
strain rate to the rate of deformation, it is decoupled from the second gradi-
ent part which links the double stress rate to the rate of second gradient of
displacement. The classical relation is detailed in Sect. 3. The second gradi-
ent part has been chosen as simple as possible, i.e., a linear elastic isotropic
relation with only one parameter:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇
Σ111
∇
Σ112
∇
Σ121
∇
Σ122
∇
Σ211
∇
Σ212
∇
Σ221
∇
Σ222

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D 0 0 0 0 D/2 D/2 0
0 D/2 D/2 0 −D/2 0 0 D/2
0 D/2 D/2 0 −D/2 0 0 D/2
0 0 0 D 0 −D/2 −D/2 0
0 −D/2 −D/2 0 D 0 0 0
D/2 0 0 −D/2 0 D/2 D/2 0
D/2 0 0 −D/2 0 D/2 D/2 0

0 D/2 D/2 0 0 0 0 D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂v̇11
∂x1
∂v̇11
∂x2
∂v̇12
∂x1
∂v̇12
∂x2
∂v̇21
∂x1
∂v̇21
∂x2
∂v̇22
∂x1
∂v̇22
∂x2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(8)

where v̇ij is the material time derivative of vij and
∇
Σijk is the Jaumann double

stress rate.

3 Constitutive Law

The classical part of the law used in this work is an elasto-plastic law inspired
from the model published by Holcomb and Rudnicki [13] for a rock (Tennessee
marble), itself issues from the constitutive framework of Rudnicki and Rice
[18]. The law has been simplified a little bit in order to reduce the number of
parameters, in particular, we assume a vanishing cohesion because we believe
that it has not a qualitative influence for the aim of this study.

It is a nonassociated model where the yield surface and the plastic potential
are smooth, depending on the first and second stress invariants, and linear
with respect the first one (Drucker-Prager type surfaces). The surfaces can
evolve with the accumulated plastic shear strain.
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We define, from the Cauchy stress σij , the equivalent shear stress τ as:

τ =
√

(1/2)sij sij , (9)

where the repeated subscript implies the summation and where sij = σij−σ δij
is the deviatoric stress, δij being the Kronecker delta, and σ = 1/3 tr(σij) the
mean stress. The accumulated plastic shear strain is defined as:

γp =
∫ √

2depijde
p
ij , (10)

where depij = dεpij − 1/3 depδij is the deviatoric part of the plastic strain
increment and dep = tr(dεij) is the plastic volumic strain increment.

The yield surface is defined by

F = τ + σμ(γp), (11)

μ is a friction coefficient function of the accumulated plastic shear strain.
The consistency condition implies that

dF = dτ + μdσ −Hdγp = 0, (12)

where H = −σ.∂μ/∂γp is a hardening parameter, positive for a strain hard-
ening and negative for a strain softening. This relation can also be wrote as:

dγp =
1
H

(
sij
2τ

+
1
3
μ δij

)
dσij . (13)

The plastic potential is defined as:

G = τ + σβ(γp), (14)

β is a dilatancy coefficient function of the accumulated plastic shear strain.
The flow rule can be expressed as:

dεpij = dλ
∂G

∂σij
, (15)

where dλ is a positive term, which in fact, due to the expression of γp in (10)
is equal to dγp. So, the plastic strain can be expressed as:

dεpij =
1
H

(
sij
2τ

+
1
3
βδij

)(
skl
2τ

+
1
3
μδkl

)
dσkl (16)

and also decomposed in two parts:⎧⎨⎩
depij = 1

2
sij

τ dγp

dep = βdγp.
(17)
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The functions μ and β are defined by:

μ(γp) = (h0 − h∞)γ0 atan (γp/γ0) + h∞ γp, (18)

β(γp) = β∞ − β∞ − β0
1 + (γp/c0)2

, (19)

such that H(γp = 0) = −h0σ, H(γp = ∞) = −h∞σ, β(γp = 0) = β0 and
β(γp = ∞) = β∞. γ0 and c0 are constitutive parameters. h0 is (generally)
positive in order to have a strain hardening at the beginning of the loading,
but h∞ can be either positive to have a law which is always hardening, or
negative to have a softening regime. Illustration of the constitutive relation is
given in Fig. 1.

The elastic part of the law is assumed to be linear and isotropic and can
be written as:

dσij = [G(δikδjl + δilδjk) + (K − 2/3G)δijδkl] dεekl, (20)

where superscript “e” denotes the elastic part of the strain and K and G are
the bulk modulus and the shear modulus, respectively. That can be decom-
posed in two parts: ⎧⎨⎩

dsij = 2Gdeeij

dσ = Kdee.
(21)

And finally, we have assumed as usual that the total strain is the sum of
the plastic strain and the elastic strain: dεij = dεpij + dεeij .

The law has been implemented in the finite element code Lagamine by
an implicit backward Euler method and subtime increments. We used the
Jaumann rate of the Cauchy stress tensor to compute the stress increment
during a time step.

For the following computations, we have adopted the parameters given in
Table 1. They do not correspond to a specific material but seem reasonable.

t

gp

(-s )

s  = constant

m, b

g p
b0

b•
b

mh•>0

h•<0

h0

h•>0

h•<0

Fig. 1. Schematic illustration of the response of the law for a constant mean stress
case (left) and illustration of the nonassociated aspect of the law: μ �= β (right)
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Table 1. Values of the constitutive parameters of the classical part of the law

parameter value unit

G 23.1 GPa
K 50 GPa
h0 1,000
h∞ −30 or +5
γ0 5 × 10−4

β0 0.01
β∞ 0.4
c0 5 × 10−4

4 Nonunicity of Solutions

4.1 Theoretical Analysis

We focus here on the loss of uniqueness of solutions by emergence of solutions
with strain localization, i.e., deformation bands. The bifurcation theory which
consists to exhibit conditions for existence of a deformation band (e.g., [2,18])
can be extended to local second gradient models. It appears that bifurcation
condition for such models, at least when classical law and second gradient
law are decoupled, is the same than for classical models but it introduces in
addition a size effect [4].

The classical law used here is a bilinear rate law, and, assuming a small
strain hypothesis, the bifurcation condition can be expressed as [5]:

det(Kijkl nj nk) ≤ 0, (22)

where Kijkl is the constitutive tensor which links the stress rate to the rate of
deformation (for simplicity, we neglect the additional terms introduced by the
Jaumann rate), and ni is a unit normal vector to the incipient deformation
band.

As there is a continuous evolution of the stiffness modulus during the ac-
cumulation of plastic strain in the model used here, the first possibility to
satisfy the previous criterium corresponds to a vanishing determinant. How-
ever, the full domain where the bifurcation condition is satisfied corresponds
to a negative determinant. In consequence, the orientation of the deformation
band can be nonunique but belongs to a limited fan of orientations. If we call
θ the angle between the normal vector to the band and the most compressive
principal stress, and θc the critical orientation corresponding to the minimum
of det(Kijkl nj nk), then if det(Kijkl nj(θc) nk(θc)) < 0, there exist two ranges
on each side of θc for which det(Kijkl nj(θ) nk(θ)) ≤ 0.

Unlike the classical models, local second gradient models introduce an
internal length. In the bifurcation theory, one searches solutions for which the
additional rate of deformation inside the incipient band has the form Δε̇ij =
(ginj + gjni)/2 where gi is an arbitrary vector which gives the kinematic
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inside the band. Due to the second gradient law, this vector has an harmonic
form gi(α) = g0i sin(α/ξ), where α is the position across the band and ξ is a
specific length [4]. The latter depends on the modulus of the constitutive law
and can be viewed as an indicator of the band thickness. It appears that when
det(Kijkl nj(θ) nk(θ)) = 0, the band has an infinite thickness, and a finite
thickness if the determinant is strictly negative. In consequence, theoretically,
the bifurcation onset for local second gradient models is not different from
one for the underlying classical models. However, there is a size effect which
delays the onset of localization.

We illustrate these results on a plane strain compression path in Fig. 2.
In direction 3, a stress of 106 Pa is imposed, the direction 2 corresponds to
the plane strain direction and direction 1 to the direction of compression.
Two cases are illustrated, on the left, the case h∞ = −30 which means a
softening regime after an initial hardening regime, and on the right, the case
h∞ = +5 which means a law exhibiting always strain hardening. Due to the
nonassociated aspect of the law, the first onset where the bifurcation condition
(22) is satisfied, is in the hardening regime (indicated by a star in Fig. 2a, c).
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Fig. 2. Response of the law for a plane strain compression loading path (small
strain assumption) with a softening regime, h∞ = −30 (a), and no softening regime,
h∞ = +5 (c). Compression stress σ1 and volumic strain εv versus the strain in
direction 1, ε1, are plotted. The characteristics of the bifurcation analysis are shown
in the lower part. The range of possible orientation θ of the band and the specific
length ξ corresponding to the critical angle θc (b) and (d) are plotted versus ε1.
The star in (a) and (c) corresponds to the first onset of possible localization



216 P. Bésuelle and R. Chambon

At this onset, the specific length, which should be considered as an indicator of
the incipient band thickness, is infinite. This length decreases quickly during
the subsequent loading and becomes more or less constant (Fig. 2b, d). This
limit value is depending, among others, on the second gradient law modulus
which has been choose here at D = 5 × 105 Pa m2, and more precisely is
proportional to the square root of D. It can be adjusted, so, length values are
essentially qualitative in this present work. As far as the band orientation is
concerned, at the first possible onset of bifurcation, the orientation is unique,
but a range of orientation is possible in the subsequent loading. The critical
orientation θc corresponds to the middle of this range.

The specific length ξ is itself dependent on the band orientation angle θ.
The specific length plotted in Fig. 2b, d corresponds to the critical angle θc,
and is the minimum of ξ on the range of possible orientations. The evolution of
ξ with respect to the band orientation angle θ is shown in Fig. 3 for three steps
of loading on the previous plane strain path. On the limits of the orientation
range, the length tends toward infinity. There is also here a size effect which
tends to limit the range of possible orientations.

4.2 Numerical Examples

A numerical specimen has been created with a 1-m width and a 2.5-m height.
It has been tested on a plane strain compression path. A normal pressure of
106 Pa is imposed on the lateral surfaces and an axial displacement is imposed
at the top of the specimen (Fig. 4).

To illustrate the bifurcation condition (22), which indicates that the strain
localization becomes possible after a first onset, some solutions of the specimen
response in term of resulting force versus the relative specimen shortening are
shown in Fig. 5. Three localized solutions with a unique shear band through
the specimen are presented. The first one is initiated in the hardening regime
(i.e., H > 0), the band induces a global softening and clearly the peak of
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Fig. 3. Evolution of the specific length ξ with respect to the band orientation angle
θ for three steps of the plane strain path (case with h∞ = −30)
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Fig. 4. Limit conditions of the plane strain compression. P is a constant normal
pressure and u is a vertical imposed displacement
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Fig. 5. Example of responses of a numerical specimen in a plane strain compression
(case with h∞ = −30). One solution is the homogeneous one, but localization can
occur (1, 2, and 3). The first localized solution is initiated in the hardening regime
(H > 0), whereas the two others in the softening regime. The star shows the first
theoretical onset of bifurcation

this response is due to the strain localization. The two others solutions are
initiated in the softening regime.

The localized solutions have been found using a so-called directional re-
search algorithm. It consists, when in a time step of the computation, a full
Newton–Raphson method is used to solve the linearized problem, to initiate
the method with a random nodal values field. The algorithm has been used
initially for classical models [7] and then for second gradient models [4, 5].
More details can be found in these references.
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Fig. 6. Example of responses of a numerical specimen in a plane strain compression
(case with h∞ = −30, D = 3 × 105 Pam2, and a specimen height of 3m). One
solution is the homogeneous one, but localization can occur with one or several
bands. The postlocalized solution is governed by the number of bands

An other example of nonuniqueness of the solutions of the problem is
illustrated in Fig. 6. The number (and also the position) of deformation bands
is not imposed by the limit conditions. After the random initiation, one obtains
solutions with one or two bands. The response in the postlocalized regime is
governed by the number of deformation bands, the most softening solution
being the one band solution.

5 Postlocalisation Responses

It seems interesting to explore the effect of the constitutive model on the
postlocalization response, what kind of response we are able to obtain? We
have studied here only the effect of the parameter h∞. If this one is positive,
then the law is always a strain hardening one and if it is negative, there is a
softening regime after an initial strain hardening one. We did not change the
other parameters of the model, in particular, we keep the parameters related
to the plastic volume variation. Homogeneous and a localized solutions are
shown in Fig. 7 for four values of h∞ : +5, 0,−10,−30. For the four localized
solutions, one observes a global decrease of the axial force at the onset of
localization, even if sometimes this drop is very small. Then, for h∞ = +5
and 0, one observe a global force increase in the localized solutions, and for
h∞ = −10 and −30, a global force decrease of the response. For these two
last cases, the zone of strain localization remains the same during the loading
history, but for the two first cases, one observes a nonpersistence of the zone of
localization, this zones change abruptly and several times during the specimen
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Fig. 7. Examples of responses of a numerical specimen on a plane strain compression
path (the homogeneous solution and one localized solution) for several values of h∞:
(a) h∞ = +5, (b) h∞ = 0, (c) h∞ = −10, (d) h∞ = −30

loading. This volatility appears on the evolution of the resulting force as small
peaks. It can be interpreted as an effect of “saturation” of the shear band and
it becomes more favorable to localize elsewhere than to continue to activate
the current band.

These results have a strong similitude with the experimental observations
on soft porous rocks or sands. For example, in experimental axisymmetric
triaxial compression tests controlled by the rate of axial shortening, which are
classical tests in rock mechanics, it is well known that the porous rock behavior
changes with the level of confining pressure (e.g., [1,3]). For the low confining
pressure, the behavior is generally called brittle and the failure is characterized
by a strong decrease of the axial force and the presence of a few deformation
bands. For high confining pressure, in the brittle–ductile transitional regime,
it can be observed, after the strain localization, an increase of the axial force
and a large number of deformation bands. Moreover, the evolution of the axial
force presents also several small peaks which are generally associated with a
high level of acoustic emission events and explained by an apparition of some
new deformation bands. An illustration of such a behavior is given in Fig. 8,
at two levels of confining pressure on a porous sandstone. More or less similar
loading force evolutions can be observed in sand specimens. For example in
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Fig. 8. Responses of two Rothbach sandstone specimens tested in compression with
axisymmetric conditions at 5 and 130MPa confining pressure, corresponding to a
brittle behavior and a brittle–ductile transition, respectively (from [3])

plane strain compression on prismatic sand specimens, a brittle type response
is observed for initially dense samples and a ductile type response in initially
loose samples (e.g., [9]).

6 Conclusion

If models with an internal length like local second gradient models resolve the
problem of mesh size dependence, the uniqueness of solution is not necessarily
restored. In fact, there is no reason to restore the uniqueness. If one considers
this question from the experimental point of view, it is known that the post
localization regime is rarely reproducible, even with the best care as possible
for preparing a specimen and performing a test. This nonrepeatability is prob-
ably induced by a large part to some microstructural details in the material
which make that for a given specimen, localization will occur earlier or latter,
in this zone and not elsewhere, with one shear band or several, etc. These
details cannot be captured with constitutive models and it is our opinion that
we have to make the comparison between the numerical nonuniqueness and
the experimental nonrepeatability.

Therefore, we showed that postlocalized behaviors observed experimen-
tally like the brittle regime or the brittle–ductile transition can be simulated.
For example, the resulting axial force applied during a plane strain compres-
sion of a numerical specimen can, after localization, decrease but also increase,
depending on the constitutive parameters. We showed also, and this confirms
the theoretical predictions, that the localization can occur with a strain hard-
ening model and that the softening is not necessarily for that. However, the
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localization with a strain hardening model seems numerically more difficult
to obtain than with a softening model. To overcome this point we had to
use meshes with preferential orientations to favor the strain localization. We
observed with hardening models a non persistence of the areas of strain local-
ization, it is probably influenced by some numerical parameters (time step,
mesh, etc.), but it seems significant and once again it is not so far from ex-
perimental observations. In a porous sandstone, in the brittle–ductile regime,
Fortin et al. [11] have observed by location of acoustic events the deactivation
of existing bands and activation of new deformation bands during axisymmet-
ric compression tests.
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1 Introduction

Many of the materials handled by industry each year are of a granular or
particulate nature. These include pharmaceutical powders, chemical pellets,
agricultural grains, coals and other minerals, sands and gravels. In recent
years, the discrete element method (DEM) [3] has been used extensively to
investigate the behaviour of granular solids subjected to a variety of loading
conditions. However, the majority of the numerical computations were often
not validated or compared with experimental results and there is a question
as to whether DEM is capable of producing quantitative predictions rather
than only qualitative representation of a particulate assembly. It is thus useful
to verify DEM calculations and to investigate the relative importance of the
DEM input parameters for producing satisfactory predictions.

This paper describes two physical experiments and the corresponding
DEM computations of a densely packed granular medium subjected to com-
pression and penetration. These two loading conditions were studied because
they are frequently encountered in many situations where a boundary sur-
face from an object (such as a machine or a geotechnical structure) contacts
with a granular solid. The experiments consisted of an instrumented Perspex
cylinder filled with granular solids. The first experiment was to compress the
solid vertically under nearly K0 (zero lateral deformation) condition and the
second was to insert a cylindrical rod into the granular medium. The mechan-
ical response of the granular system and the load transfer to the containing
walls, the bottom platen and the penetrating rod were observed. The experi-
ments were simulated closely using DEM and a detailed comparison between
experiment and computation was made.

Both spherical (glass beads) and non-spherical (corn grains) particles
were studied. Spherical particles have a tendency to rotate more than non-
spherical particles and can be expected to exhibit quite different behaviour
from non-spherical particles, so it is important to study both systems. The
required mechanical and geometrical properties for the particles were measured
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carefully in laboratory tests for use in DEM computations. The sensitivity of
DEM prediction to the key input parameters was also explored. The results
show that DEM can produce quantitative predictions of the system studied,
and that whilst it is important to use the correct particle stiffness parameter
when attempting to predict the deformation response of a granular assembly,
this may not be so important for producing satisfactory prediction of the force
transmission in a dense quasi-static system.

2 Calibration Experiments

The confined compression test (Fig. 1) was designed to investigate the me-
chanical response of a granular material under vertical loading and the load
transfer to the containing walls [10]. A load was applied to a granular assem-
bly contained in the cylinder through a top platen driven by an INSTRON
machine at a constant displacement rate of 1.5 mm min−1. The applied load
and vertical displacement were measured using the INSTRON machine. The
force transmitted to the walls was measured using four pairs of strain gauges
equally spaced around the cylinder walls in both circumferential and axial
directions. The vertical force transmitted to the bottom platen was measured
by the bottom load cell. The lateral pressure ratio K and the wall friction co-
efficient μ can be approximately evaluated using (1) where σV is the average
vertical stress, σH is the horizontal stress and τ is the average shear stress, as
expressed in (2).

K =
σH
σV
, μ =

τ
σH
, (1)

σV =
2(FT + FB)

πD2(1 + εθ)2
, σH =

2tEw(εθ + νwεa)
D(1 − ν2w)

, τ =
FT − FB

π Dh(1 − εV)
. (2)

Acrylic cylinder
(Wall thickness=3.33 mm)

145 mm
Bottom platen

Strain gages

Top view
Bottom load cell

140 mm

Strain gages
380 mm

Top platenFT

FB

Acrylic platform

Side view

Attached to an INSTRON machine

Fig. 1. Confined compression test setup
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In (2) D, t, Ew and νw are the diameter, thickness, Young’s modulus and
Poisson’s ratio of the cylinder, respectively; εθ, εa are the average hoop
strain and axial strain of the cylinder at the measurement points, respec-
tively; FT, FB are the applied load at the top platen and the measured force
at the bottom platen, respectively; εV is the mean vertical strain and h is the
height of the granular solid.

The penetration test was designed to evaluate the resistance of granular
bulk to penetration of a moving object and the dynamic force transmission
to a contact surface. The experimental design is depicted in Fig. 2. The force
and displacement of a rod were monitored using an INSTRON machine as
the rod was pushed into granular bulk at a constant displacement rate of
50 mm min−1.

3 Discrete Element Model

Discrete element method is an increasingly popular numerical technique for
simulating moving particles [3]. It is based on the use of an explicit numerical
scheme in which the interactions between a finite number of particles are mon-
itored contact by contact and the motion of the particles is modelled particle
by particle. The particles are rigid but deform locally at the contact points by
means of an overleap (soft contact method). Newton’s equations of motion for
each particle effectively replace the equilibrium equations used in continuum
mechanics, and the model of inter-particle contacts replaces the constitutive
model. The essential feature of this approach is that each particle is modelled
separately, so the integrated behaviour of the mass should be accurately rep-
resented, without the need for control tests to establish constitutive models
for the bulk behaviour. In this paper, a Hertz–Mindlin no-slip [13] contact
model with damping and a frictional slider in the tangential direction is used,
as shown schematically in Fig. 3.

The DEM calculations were performed using both the EDEM code [4]
and the PFC3D code [6]. The reason was to compare the outcomes of
two independent DEM codes using exactly the same problem configura-
tions. The numerical samples were prepared by filling a cylindrical container
(diameter=145 mm, length=300 mm) with 3,591 glass beads and 4,608 corn

Grain bulk

Container

Force acting on
the rod

F

Spherical cap

Cylindrical rod:
diameter = 25 mm
length = 232.5 mm 

Fig. 2. Rod penetration: test setup and rod dimensions
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i j

Spring

Dash-pot

Slider

Dash-pot
Spring

Fig. 3. Non-linear spring and dashpot contact model with a tangential slider

 
4-sphere corn

(a) (b)

(c)

6-sphere corn

10.11 mm

6.69 mm

X

Z Z

Y

9.11 mm

Front view Side view

Geometry of 4-sphere corn particle

Fig. 4. Representations of corn grains using overlapping spheres

grains in each set of computations. Particle size variation was not considered
in the numerical calculations. The corn particle was represented using over-
lapping spheres [5] to match the measured average major, intermediate and
minor dimensions. A number of shape representations are possible as shown in
Fig. 4 and a 4-sphere representation (Fig. 4c) was chosen mainly because us-
ing increasing number of spheres to represent each particle leads to additional
computational cost. The particles were positioned in layers starting from the
base, at 1.01 d centre to centre in a regular pattern with an initial velocity of
2.56 m s−1 (where d = major diameter of the particle). They are then allowed
to fall under gravity to achieve the initial filled state. The initial velocity corre-
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sponds to the drop height of 335 mm used in the experiments where the parti-
cles were placed in a sieve at a height of 335 mm and allowed to “rain” through
the sieve into the cylinder. This approximate particle generation scheme saves
considerable computational effort, but may influence the numerical outcome
since it is known that particle packing can have significant influence on bulk
behaviour. The effect of this approximation was explored using different ini-
tial particle positions and will be discussed later. The particles were deemed
to have settled down when the kinetic energy of the system approached zero
(<10−8 J) and the mean unbalanced force approached zero (<10−5 N). After
achieving the filled state, the confined compression was simulated by adding
a top platen and the rod penetration was simulated by adding a rod, both
moving at a displacement rate of 50 mmmin−1.

The boundary surfaces (the cylinder, the loading platen and the rod) were
tessellated using triangular elements employing techniques common to finite
element meshing [8,9]. This method allows any complex boundary surfaces to
be represented relatively easily whilst maintaining computational efficiency in
contact detection. Example snapshots for the confined compression and rod
penetration DEM models are shown in Fig. 5.

Input parameters for the glass beads and the corn grains are listed in
Tables 1 and 2, respectively. The elastic modulus was determined from the
single particle compression test assuming Hertzian contact. For the case of
non-spherical corn, the two orthogonal curvatures at the point of contact were
required and these were measured using a laser scanner. The particle–surface
static friction coefficient was measured from a three-particle sliding test. A
drop test apparatus was devised to determine the Particle–surface resultant
coefficient of restitution. For non-spherical particle, the impact results in a
more complex trajectory involving particle rotation, all of which need to be
determined carefully to evaluate the restitution coefficient accurately. Details
of these characterisation tests can be found in Chung et al. [1, 2].

Fig. 5. Example snapshots of confined compression and rod penetration
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Table 1. Input parameters for glass beads

parameter values unit

density 2,530 kg m−3

diameter 10 mm
Young’s modulus 41 GPa
Poisson’s ratio 0.22
friction coefficient

particle–particle, particle–wall 0.24
restitution coefficient 0.79

Table 2. Input parameters for corn grains

parameter values unit

density 1,220 kg m−3

mass 0.427 g
major dimension 10.11 mm
intermediate dimension 9.11 mm
minor dimension 6.69 mm
Young’s modulus 1,660 MPa
Poisson’s ratio 0.40
friction coefficient

particle–particle, particle–wall 0.34
restitution coefficient 0.59

3.1 Confined Compression: Experiment and Modelling

Figure 6a, b compare the load–displacement responses between DEM compu-
tation and four confined compression tests for glass beads and corn grains,
respectively. The overall trend of increasing stiffness as vertical load increases
is as expected. Although each physical test followed the same filling procedure,
the results show that at the initial stage when the forces are small, the loading
response can vary significantly from test to test. This suggests that the natural
variation in initial packing in each experiment can give significantly different
loading response at low confining pressures. After this initial confinement (say
after 150 N vertical force), the loading responses were largely parallel to each
other, indicating that each test assembly converged to a repeatable loading
response at higher confining pressures. The DEM predicted response appears
to be stiffer. This is partly because the DEM model does not take into ac-
count the flexibility of the cylindrical walls (which was necessary to achieve a
measurable strain to determine the loading condition). Adjusting for the addi-
tional vertical deformation deduced from the strain gauge readings was found
to account for a significant part but not all of the mismatch between experi-
ment and computation. The stiffer numerical prediction was further explored
in [2].

Figure 7 shows the force transmission onto the bottom platen during com-
pression. Both the experimental and numerical results show the force acting
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Fig. 6. Load–displacement response during confined compression

on the bottom platen increases linearly with the applied vertical force. The
physical tests show that only 50% of the applied load reached the bottom
platen for the glass beads compared with 65% for the corn grains. Although
the wall friction coefficient μ for corn is some 40% larger than for glass beads,
the lateral pressure ratio K for corn is significantly smaller, such that the
product μK is smaller (1), giving a smaller share of the load acting on the
cylindrical walls for the case of corn grains.
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Fig. 7. Force transmission onto bottom during compression

The DEM prediction (hold case) is in excellent agreement with experi-
ments for the corn grains but significantly overpredicts the force on the bottom
platen for the glass beads. Further DEM calculations to explore the influence
of initial particle generation arrangements have been conducted separately,
showing that the DEM predictions are more sensitive to how the spherical
glass beads are filled than non-spherical corn particles. In particular, one
glass beads computation with a randomly generated initial particle positions
gives a close match with the experiments, also shown in Fig. 7a. A plausi-
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ble explanation is that uniform spheres have the tendency to form crystalline
structure and are more sensitive to initial packing but such sensitivity is less
significant for “real” particles which are predominantly non-spherical. The
approximate layered initial particle positions to simulate the filling process
may have contributed to this occurrence. A systematic investigation of the
influence of initial packing on the loading behaviour can be found in [2].

Figure 8 shows the normal wall pressure distribution on the cylinder at
the end of filling. This pressure distribution may be compared with the
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Fig. 8. Normal wall pressure distribution at the end of filling
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one-dimensional theory of Janssen for silo wall pressure [7, 11]:

Pn =
Dγ
4μ

(1 − e−z/z0) +KqTe−z/z0 , (3)

z0 =
D

4μK
, qT =

4FT
πD2

, (4)

where K is the lateral pressure ratio, μ is the wall friction coefficient, γ is
the bulk density, z0 is Janssen reference depth and qT is the mean vertical
pressure that may be applied at the top boundary (z = 0). The predicted K
and μ can be calculated from an unbiased best fit of the boundary forces in the
DEM results, the results give K = 0.71, μ = 0.004 and K = 0.67, μ = −0.12
for glass beads and corn grains, respectively. The friction best fit bulk differs
significantly from the input values, which is probably a result of the dynamic
filling process. The parameters K and μ are important in the silo design and
their values under vertical compression will be explored further. Using the
best fit parameters from the DEM calculation, the Janssen equation matches
very well with the evaluated normal pressures from contact forces.

Figure 9 shows the development of the normal wall pressures during ver-
tical compression for both materials. The effect of vertical compression can
be evaluated from the extended Janssen equation with the inclusion of an
applied vertical stress at z = 0 (3). These are also plotted in Fig. 9 for com-
parison, usingK and μ derived from DEM results. The increase of normal wall
pressure during vertical compression matches the Janssen equation reasonably
well away from the boundaries. Since Janssen is a one-dimensional theory that
does not take into account the top and bottom boundary conditions, there is
significant mismatch towards the boundaries.

Dividing the vertical traction with the normal pressure at any given point
on the wall gives an indication of the “mobilised friction coefficient” at that
point. Figure 10a shows that the mobilised wall friction at the five calculation
positions are within the range of 0.07–0.17 for the glass beads, significantly
smaller than the input particle–wall friction coefficient of 0.24. This is in agree-
ment with previous studies [12] showing significantly smaller macroscopic fric-
tion than the inter-particle microscopic friction for a spherical assembly. For
the corn grains, a higher mobilised friction coefficient is achieved with values
of 0.21–0.31 when the vertical force is close to 1,000 N (this compares with
input friction coefficient of 0.34). One reason may be that since corn grains
are much softer than glass beads, they generate sufficient slip displacement
against the wall, resulting in a larger friction mobilisation. The tendency for
perfect spheres to rotate more as compared to non-spherical particles may
be one main reason also contribute to the much smaller macroscopic friction.
Circumferential traction acting on the cylinder was also evaluated and found
to be relatively small, as expected in an axisymmetric system.

The lateral pressure ratio K was evaluated from the experimental data
using (1) and plotted against the DEM prediction in Fig. 11. The experimental
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Fig. 9. Normal wall pressure distribution during compression

results are reasonably repeatable for each material, showing a trend of the K
value increasing and reaching a stable value of ∼0.4 for glass beads and ∼0.35
for corn grains, with a larger scatter for the glass beads. It should be noted
that the evaluation of lateral pressure ratio K is only approximate here since
the mean vertical stress was calculated from the average of top and bottom
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platen forces (2) and the normal pressure came from measurement at the
strain gauge level in the experiment and from boundary forces in the DEM
simulations. The DEM prediction for the corn computation is in excellent
agreement but for the sphere assembly, DEM predicts a much larger K value
of ∼0.62. The over-prediction of K value matches the finding from previous
studies for 2D circular disks [12].
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3.2 Rod Penetration: Experiment and Modelling

The load–displacement responses for the rod penetration into glass beads and
corn grains are shown in Fig. 12. These computations were performed with
particle shear modulus G decreased to 0.01G to reduce computational ef-
fort. In addition, for the glass beads computation, a further computational
advantage was gained by increasing the density ρ to 1, 000ρ. Density scaling
has been used successfully in previous studies (e.g. [14]). The measured force
fluctuated significantly during penetration into each material, but the average
trend is repeatable with the corn grains giving a larger resistance to penetra-
tion. The DEM results also fluctuated in a seemingly similar fashion and show
a good quantitative match with the experiments in each material.
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3.3 Influence of Input Parameters

Further calculations were conducted to explore the sensitivity of the input
parameters on the numerical outcomes. One other objective was to investigate
the methodology for reducing DEM computational time since the calculation
time step is inversely proportional to

√
G/ρ, where G is the shear modulus

and ρ is the density of particles. Due to space constraint, only the influence
of particle stiffness is discussed here. The rest can be found in [2].

DEM computations were conducted with particle shear modulus reduced
to 10−2G, 10−3G and 10−4G. For the load–displacement response in confined
compression which is strongly dependent on the bulk stiffness of the assembly,
reduced particle stiffness results in a softer response as expected. Figure 13
shows the force acting on the bottom platen during vertical compression for



Confined Compression and Rod Penetration 237

0

100

200

300

400

500(a)

(b)

0 200 400 600 800
Top force (N)

0 200 400 600 1000800
Top force (N)

F
or

ce
 o

n 
bo

tto
m

 p
la

te
n 

(N
)

F
or

ce
 o

n 
bo

tto
m

 p
la

te
n 

(N
)

Test_1

Test_3

DEM results_G

DEM results_0.01G

Glass beads

0

200

400

600

800

Test_1

Test_3

DEM results_G

DEM results_0.01G

Corn grains

Fig. 13. Effect of shear modulus on predicted response for confined compression

the cases of full stiffness and 100 times smaller stiffness. The results show
that when particle stiffness is reduced by 100 times, the proportion of the
applied force transmitted to the bottom platen reduced by ∼10% for glass
beads and there is no noticeable difference in the results for corn grains. The
results show that for this confined quasi-static system, reducing the particle
stiffness by a few orders may have only secondary effects on the load transfer
mechanism.
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4 Conclusions

Discrete element modelling of confined compression and rod penetration into
a spherical and a non-spherical granular assemblies have been presented. The
physical experiments were performed with care, including which include direct
laboratory measurements of the key DEM input parameters. Comparisons
have been made between the numerical results and the experiments.

The study has shown that for the corn grains, the DEM predictions
are in good agreement with the experiments for all cases except the force–
displacement response. This provides some verification that DEM is capable
of producing quantitative predictions. The results also suggest that very ac-
curate representation of the particle shape may not be necessary to produce
satisfactory predictions and capturing the key linear dimensions of a particle
may be adequate.

The DEM results for the spherical glass beads were not always in quanti-
tative agreement with the experiments. DEM predictions have been found to
be more sensitive to how the spherical glass beads are filled than non-spherical
corn particles. The spherical assembly appears to be more sensitive to initial
packing structure resulting from how the particles are generated initially. The
sensitivity of DEM computations to initial packing structure needs further
study.

The sensitivity of DEM prediction to the stiffness parameter was also
explored. It has been found that reducing the particle stiffness by a few or-
ders only has secondary effects on the load transmission in the quasi-static
assembly. Since contact forces propagate through the granular assembly to
transmit to the boundary surfaces, the development of the force chains and
the internal states of stress and strain within the assembly is important and
is being investigated.
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imental work and to Drs John Favier and Carol Plouffe for their advice and
discussion about this project.

References

1. Chung YC, Ooi JY, Favier JF (2004a) Measurement of mechanical properties
of agricultural grains for DE models. 17th ASCE Engineering Mechanics Con-
ference, Newark, USA, 8 pp

2. Chung YC (2006) Phd Thesis, University of Edinburgh, UK



Confined Compression and Rod Penetration 239

3. Cundall P, Strack OA (1979) A discrete numerical model for granular assemblies.
Geotechnique, 29: 47–65

4. DEM Solutions Ltd (2005) EDEM discrete element code. Beta Version, Edin-
burgh, UK (http://www.dem-solutions.com/ )

5. Favier JF, Abbaspour-Fard MH, Raji AO, Kremmer M (1999) Shape repre-
sentation of axi-symmetrical arbitrary particles in discrete element simulation
using multi-element model particles. Eng. Comput., 16: 467–480

6. Itasca Consulting Group, Inc. (2003) PFC3D– Particle Flow Code in 3 Dimen-
sion. Version 3.0, Minneapolis, USA

7. Janssen HA (1895) Versuche über getreidedruck in silozellen. Z. Vereines
Deutscher Ingenieure, 39: 1045–1049

8. Kremmer M, Favier JF (2001a) A method for representing boundaries in discrete
element modelling: Part I – Geometry and contact detection. Int. J. Numeri.
Methods Eng., 51: 1407–1421

9. Kremmer M, Favier JF (2001b) A method for representing boundaries in discrete
element modelling: Part II – Kinematics. Int. J. Numer. Methods Eng., 51: 1423–
1436

10. Masroor SA, Zachary LW, Lohnes RA (1987) A test apparatus for determin-
ing elastic constants of bulk solids. SEM Spring Conference on Experimental
Mechanics, Houston, USA, 553–558

11. Ooi JY, Rotter JM (1990) Wall pressures in squat steel silos from finite element
analysis. Comput. Struct., 37: 361–374

12. Rotter JM, Holst, JMFG, Ooi JY, Sanad AM (1998) Silo pressure predictions
using discrete element and finite element analyses. Phil. Trans. R. Soc. Lond.
A, 356: 2685–2712

13. Tsuji Y, Tanaka T, Ishida T (1992) Lagrangian numerical simulation of plug
flow of cohesionless particles in a horizontal pipe. Powder Technol., 71: 239–250.

14. Zhang L (2003) PhD Thesis, Aston University, UK



Application of Discrete Element Method
to Geomechanics

M. Jiang∗,†, H.-S. Yu∗

∗ Department of Geotechnical Engineering Tongji University, Shanghai, China
mingjing.jiang@nottingham.ac.uk
† School of Mathematics, University of Manchester, UK

Abstract. This chapter introduces recent application of the Distinct Element
Method (DEM) to geomechanics. Different contact laws were introduced and used
to investigate the noncoaxiality of granular materials, effective stress in unsaturated
soils, bonding effect in natural soils and penetration mechanism in granular ground.
The study shows that DEM is a promising tool to solve some difficult problems not
only in fundamental geomechanics but also in complex boundary value problems in
geotechnical engineering.

1 Introduction

Soils consist of particles, macropores, micropores, pore fluids (air, water, oth-
ers), assembled possibly with interparticle bonding to form a fabric. Although
soils are in essence a kind of discrete materials, they have been traditionally
treated as continuum material in theoretical, constitutive modelling and nu-
merical analyses within continuum mechanics. This method plays important
role and is widely used in geotechnical engineering. However, the behaviour
of soils is so complex that, although some general features are agreed upon,
no particular model or theory has received universal acceptance yet.

Two types of ways have been used to consider the discrete feature of soils.
The first method is to revise the available continuum models or theories by
introducing additional laws which reflects the change of microstructure of
soils, such as fabric [32], or by improving existing constitutive laws based
on the available micromechanical studies on soils [29]. The method is usu-
ally employed by continuum constitutive modellers. In contrast, the second
method treats soils as an assembly of discrete materials directly, while its
macroscopic–microscopic responses under loading are obtained analytically,
numerically or experimentally. This method is widely used by micromechani-
cal researchers [5, 6, 10,28].

In this latter method, the Distinct Element Method (DEM) becomes
more and more popular, which is a numerical simulation technique originally
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developed for dry granular materials by Cundall and Strack [10]. The main
feature of DEM is that complex responses of an assembly of discrete mate-
rials can be controlled by very simple contact laws at interparticle contacts.
For example, the Mohr–Coulomb criterion is used to control shear behav-
iour at contacts for dry granular materials. DEM has been used for exam-
ining several aspects of soil behaviour. Table 1 provides some application of
DEM to fundamental geomechanics. Table 1 shows that DEM has been used
in granular mechanics [30], creep theory [35], anisotropy of clay [33], particle
crushing [7, 26], strain localization [1, 14] and dynamic behaviour or lique-
faction of sands [25, 27]. To illustrate if these topics are still interesting to
modern georesearchers, Table 2 presents main topics in this workshop (Mod-
ern Trends in Geomechanics workshop, 26–29 June 2005, Vienna, Austria).
Table 2 shows that these topics are all discussed in this workshop. In addi-
tion, many researchers in this workshop discuss four other aspects in geome-
chanics: constitutive modelling, unsaturated soils, natural soils and bound-
ary value problems. All the topics reflect the trends in geomechanics in the
21st century.

Table 1. Some application of DEM to fundamental geomechanics

topics features of the study investigators

granular
mechanics

examining failure criteria of granular
material; standard contact laws for
granular material

Thornton (2000)
[30]

creep
theory

examining the theory of rate
processes; contact laws
incorporating creep theory

Kuhn and
Mitchell [35]

anisotropy
of clay

examining the mechanism of
anisotropic behaviour of clay;
contact laws incorporating repulsive
force

Anandarajah (2000)
[33]

particle
crushing

examining the mechanism of particle
fracture and crushing; contact laws
for cementation incorporated in
PFC3D

McDowell and
Harireche (2002);
Cheng et al.
(2003) [7, 26]

strain local-
ization

examining the mechanism of shear
banding process; standard contact
laws or that incorporating rolling
resistance for granular material

Bardet and
Proubet (1991);
Iwashita and Oda
(1998, 2000) [1,14]

dynamic
behav-
iour or
liquefac-
tion

regularly-packed disk assemblies
considering motion of pore water or
randomly-packed disk assemblies
using the “quasi-pore pressure”
method

Kiyama et al.
(1994); Ng and
Dobry (1994)
[25,27]
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Table 2. Main topics in this workshop (Modern Trends in Geomechanics workshop,
26–29 June 2005, Vienna, Austria)

topics presenters

granular
mechanics

Bolton M, Borja R, Doanh T, Harris D, Hill J, Huang A-B,
Jiang MJ, Lade P, McDowell G, Ooi J, Spencer T,
Tagmanini C, Viggiani C, Wu W, Yu H-S

creep theory Gudehus G, Yin J-H.
anisotropy Bolton M, Doanh T, Shao J-F, Wu W
particle crushing Bolton M, McDowell G, Vardoulakis I
strain localization Bauer E, Bolton M, Borja R, Chambon R, Darve F
dynamic

behaviour or
liquefaction

Bauer E, Bolton M, Huang A-B, Niemunis A, Zhang J-M

constitutive
modelling

Bolton M, Collins I, Darve F, Gens A, Gudehus G, Harris D,
Herle I, Houlsby, Jiang MJ, Lade P, Niemunis A, Nova R,
Puzrin AM, Selvadurai APS, Shao JF, Shen ZJ,
Tagmanini C, Viggiani C, Wu W, Yin J-H, Yu H-S

unsaturated soils Gens A, Jiang MJ, Molenkamp F, Shen ZJ, Yu H-S
natural soils Bolton M, Huang A-B, Jiang MJ, Nova R, Shen ZJ, Yu H-S
boundary value

problem
Bolton M, Harris D, Jiang MJ, Moore I, Ponter A, Salgado

R, Shen ZJ, Spencer T, Yu H-S, Zhang J-M
others Bolton M, Cristescu ND, Dafalias Y, Jiang MJ, Ooi J,

Ponter A, Selvadurai APS, Shao JF, Sheng Y, Sikora Z,
Triantafyllidis T, Vermeer P

The main objective of this chapter is to introduce the application of DEM
to these latter four aspects in geomechanics. The introduction is limited to
those related to the first author’s two postdoctoral fellowships in Canada and
UK. After introducing the DEM code developed by the first author, we shall
present its application to noncoaxiality of granular materials, effective stress in
unsaturated soils, bonding effect in natural soils and penetration mechanism
in granular ground. We shall mainly introduce the target, contact models and
main results in each application. The reader is referred to the references for
their further detail.

2 Discrete Element Method (DEM)

The two-dimensional (2-D) DEM code used has techniques similar to those
proposed by Cundall and Strack [10]. The code was first developed in Canada
[19–21] and improved further in UK [16–18,23,24] by the first author and his
co-workers, namely NS2D hereafter. Each particle of the soil mass is a rigid
disk that is identified independently with its own mass, m, moment of inertia,
I0 and contact properties as illustrated in Figs. 1, 4 and 8 later. The total



244 M. Jiang, H.-S. Yu

(a) (b)

Normal direction Tangential direction

Spring

Divider

Dashpot Spring
Divider

Dashpot

Slider

Fig. 1. Standard contact models of two rigid disks used in DEM for examining
noncoaxial continuum model

unbalanced force for motion F (m)
i (i represents x or y direction) and moment

M0 acting on each particle are computed and then used to estimate the in-
stantaneous acceleration of each particle, a, based on Newton’s second law.
The acceleration a is used to calculate velocities and then displacements in
the x and y directions. This is repeated at each time increment until the sim-
ulation is stopped. For each particle, the normal and tangential contact forces
for motion, denoted by F (m)

n and F (m)
s , respectively, are summed up over the

p neighbours, giving:

∂2xi
∂t2

=
1
m

p∑
r=1

F
(m)r
i ;

∂2θ

∂t2
=

1
I0

p∑
r=1

Mr
0 . (1)

In the NS2D code, F (m)
n is calculated by a function fn

F (m)
n = fn(Fn, Dn, Rn), (2)

where Fn is the normal contact force calculated from the overlaps of particles.
Dn is the normal damping force andRn is the normal bonding strength that re-
sults from capillary water (CW) for unsaturated soil or from cementatious ma-
terial for natural soils. Note that Rn is always zero for dry granular material.
A typical function in (2) for unsaturated or natural soils can be expressed as

F (m)
n = Fn +Dn −Rn, (3)

which is termed as “translational-axis method” for bonded material [20, 24].
F
(m)
s is determined by

F (m)
s = Fs +Ds, (4)

where Fs is the tangential contact force and Ds is the tangential damping
force. Ds = 0 stands in the case that Fs exceeds the peak shear strength F peak

s
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for contacts with intact bonds or residual shear strength F resid
s for contacts

without intact bonds.
F peak
s (F resid

s ) can be described by a function fps (frs )

F peak
s = fps (Fn, tanϕμ, Rt); F resid

s = frs (Fn, tanϕμ), (5a,b)

where tan ϕμ is called the interparticle friction coefficient. Rt is the tangential
bonding strength that results from CW for unsaturated soil or from cemen-
tatious material for natural soils. Typical functions in (5) for dry granular
material and natural soils can be respectively expressed as

F peak
s = Fn tan ϕμ = F resid

s for dry granular material, (6a,b)

F peak
s = Fn tan ϕμ +Rt;F resid

s = Fn tanϕμ for natural soils (6c,d)

Equation (6) are the Mohr–Coulomb criterion. If two particles are separated
due to normal tension force in excess of Rn, then F (m)

n = 0, F (m)
s = 0.

Damping, as well as frictional sliding, is used in DEM analyses to dissipate
energy due to the dynamic formulation of the model.

The strain tensor is obtained by the position change of rigid boundaries
as follows:

εij = Δhi/hj , (7)

where Δhi is the deformation of specimen in i direction and hj is total length
of specimen in j direction at time t.

The stress tensor is defined on the rigid boundaries as follows:

σij = (
∑

fi)/hj , (8)

where fi is the contact force acting on the boundary with the normal direction
as i. In addition, a unit of length (m) is implicitly included in (8) in the
direction vertical to the plane.

Because NS2D is a 2-D DEM code, the density of specimen is described
in term of planar void ratio ep by

ep = (A−Ag)/Ag, (9)

where A and Ag are the total area of the specimen and the sum of the area
of all grains (disks), respectively.

NS2D can form an assembly of particles according to its grain size distri-
bution. The number of particles of each specific radius was calculated in the
DEM by

N(i) =
P(i)

rs(i) · P
·N, (10)

where N(i) is the total number of particle i with specific radius r(i) and P(i)
is weight percentage of particle i. N is total number of particles of different
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radii used in the DEM analyses. Parameter s is 2 for disk. P is a variable
obtained by

P =
np∑
i=1

P(i)

rs(i)
, (11)

where np is the type number for particles.
We shall in Sect. 3 introduce the application of NS2D to geomechanics,

which are related to the four topics in this workshop.

3 Application of DEM to Geomechanics

In this section, we shall present the application of DEM to noncoaxiality of
granular materials, effective stress in unsaturated soils, bonding effect in nat-
ural soils and penetration mechanism in granular ground. We shall introduce
each application by its target, contact model and main results

3.1 Noncoaxiality of Granular Materials

Noncoaxiality means the noncoincidence of the principal stress tensor and
the principal plastic deformation-rate tensor, a known feature of granular
material. Since granular materials are inherently discrete with particle rotation
and a grain length scale, we shall examine if these features can be included in
a noncoaxial continuum model. The detailed information can be found in the
references [17,18].

Given a randomly packed assembly composed of particles of different sizes,
a novel kinematic variable, the “averaged micropure rotation-rate” (APR),
denoted by ωc

3, was proposed as follows [17]

ωc
3 =

1
N

N∑
k=1

θ̇p =
1
N

N∑
k=1

[
1
rk

(
θ̇k1r

k
1 + θ̇k2r

k
2

)]
, (12)

where the summations are over the N contacts in the mass body, by counting
each contact k, which is shared by two particles of radii rk1 and rk2 , the angular
velocity θ̇k1 and θ̇k2 . The common radius is rk = 2rk1r

k
2

/
(rk1 + rk2 ). ωc

3 can also
be expressed in terms of a sum over particles instead of contacts [21]. It is
a kinematic variable generally related to particle rotations and particle sizes,
which does not appear in classical continuum mechanics yet. But, it can be
unified with kinematic variables in standard continuum mechanics, see later.

In standard continuum mechanics, the Eulerian velocity field v is con-
sidered. The deformation rate Dij and the spin tensor Wij are then defined
by

Dij =
1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
; Wij =

1
2

(
∂vi
∂xj

− ∂vj
∂xi

)
, (13a,b)
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where vi denotes the velocity components, with i or j = 1, 2 in the 2-D case.
We propose a tensor Rij as follows:

Rij =
∂vi
∂xj

+ e3ijωc
3, where e3ij =

[
0 1
−1 0

]
, (14a,b)

which leads to the symmetric (skew-symmetric) tensor dij (wij) by

dij =
1
2
(Rij +Rji); wij =

1
2
(Rij −Rji) (15a,b)

Relationships amongst Dij , Wij , dij and wij can be obtained from (13)–
(15)

dij = Dij ; wij =Wij + e3ijωc
3 (16a,b)

which shows that dij indeed is deformation rate tensor. wij is a frame indif-
ferent tensor composed of both Wij and ωc

3, even though none of then is an
objective continuum variable. When ωc

3 = 0, the tensor wij will reduce toWij .
We shall present a new noncoaxial continuum model for granular material

[17], which is based the unified double-slip plasticity model [36] and the dij
and wij . The unified kinematic equations governing the velocity field proposed
by Harris (1995) are

(D11 +D22) cos
(
ν + ξ

2

)
= [(D11 −D22) cos 2ψσ + 2D12 sin 2ψσ]

× sin
(
ν − ξ

2

)
, (17a)

2 (ϑ+W12) sin
(
ν + ξ

2

)
= [(D11 −D22) sin 2ψσ − 2D12 cos 2ψσ]

× cos
(
ν − ξ

2

)
, (17b)

where the quantities ν and ξ are material parameters, and ϑ is an angular
velocity which may be given a number of physical interpretations. Dij and
Wij are the deformation rate tensor and the spin tensor respectively as shown
in (13). The principal stress inclination ψσ is defined as the angle of major
principal stress axis to x-axis, in terms of Cauchy stress tensor σij

ψσ =
1
2

arctan
(

2σ12
σ11 − σ22

)
. (18)

The new continuum model was proposed in essence by identifying the
quantity ϑ in (17) with ωc

3. By further choosing ν = φ, the angle of internal
friction, ξ = φ−2χ where χ is a dilatancy parameter, and (15), the new model
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for a class of dilatant materials, becomes

(d11 + d22) cos (φ− χ) = [(d11 − d22) cos 2ψσ + 2d12 sin 2ψσ] sinχ, (19a)

2w12 sin (φ− χ) = [(d11 − d22) sin 2ψσ − 2d12 cos 2ψσ] cosχ, (19b)

or further reduced for incompressible materials,

d11 + d22 = 0; 2w12 sinφ = (d11 − d22) sin 2ψσ − 2d12 cos 2ψσ (20a,b)

Equations (19b) or (20b) show that, generally, the constitutive equations
for granular materials presented here are noncoaxial due to the presence of
wij . Since the original unified plasticity model is called the double-slip model
and now is extended by ωc

3, the new model may be called the “double-slip and
rotation-rate model” (DSR2 model).

The NS2D was used to carry out tests to verify the DSR2 model, since no
geolab technology is available to measure ωc

3 yet. The contact model used is a
standard contact laws shown in Fig. 1. This simple contact model consists of
a normal (tangential) contact model to resist traction (shear) force. They are
similar in their principle: both include a spring reflecting an elastic behaviour
of the contact before failure and a dashpot that allows energy dissipation
and quasi-static deformations in DEM analyses. The normal contact model
includes a divider to simulate the fact that no traction force is transmitted
through the contact when the particles are separated. The tangential contact
model includes a slider that provides the contact a shear resistance controlled
by the Mohr–Coulomb criterion.

The granular material used has a distribution of particle size shown in
Fig. 2a. The material is composed of discs with a maximum diameter of
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Fig. 2. Distribution of grain size used in DEM verification on noncoaxial models
(a); boundary conditions in simple shear stage (b)
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9.0 mm, and a minimum diameter of 6.0 mm, an average grain diameter
d50 = 7.6mm and uniformity coefficient d60/d10 = 1.3. For simplicity, sim-
ple shear tests were simulated for the verifications, in which the specimens
are regarded to be “incompressibile”, i.e. their volume change is zero under
shear. The incompressibility is targeted by (a) selecting specimens that in-
ternally tends to perfect plasticity with its dilatancy–contractancy close to
zero; (b) controlling boundary condition that the volumetric strain rate is
zero under shear. The samples were prepared by the under-compaction tech-
nique [19], which efficiently provided homogeneous loose/medium-dense sam-
ples (ep = 0.32/0.30). The boundary condition in the simple shear stage is
shown in Fig. 2b. The particle-wall friction coefficient was set to a value of 0.5,
the same value as the interparticle friction coefficient, followed by simple shear
under constant volume. The top and bottom rigid walls were vertically fixed,
but moved horizontally by following the side rigid walls which rotated with
rotation rate θ̇. Monotonic and cyclic simple shear tests were carried out with
different variations of θ̇. Using (13), (16), (20b) and theoretical description of
velocity field under simple shear, the theoretical APR predicted by the DSR2

model may be written:

APR =
(

cos 2ψσ

2 sin φ
+

1
2

)
θ̇, (21)

which, as well as ωc
3, can be obtained in the DEM tests [18].

Figure 3a provides the APRs measured and predicted by the DSR2 model
for the medium-dense specimen in the monotonic DEM tests, and their respec-
tive average values for all specimens deduced from all the monotonic DEM
tests. For the predicted values, φ = 30◦ was used in (21), which is very close
to that measured in experiments on granular materials. Figure 3a shows that
although there is very slight difference between the predicted and measured
APRs, a good agreement appears between these quantities during the DEM
tests. Both of them are positive, and decrease slightly with the shear strain
in the tests. Good agreement is also observed between the predicted and the
measured APRs in the tests on all the other specimens of different density.
For conciseness, the average values of the predicted and the measured APRs
are provided in Fig. 3a to represent these results. Again, a good agreement is
evidently observed in Fig. 3a between the predicted and the measured values.

Figure 3b presents the APRs measured and predicted by the DSR2 model
in the cyclic DEM simple shear tests on loose/medium-dense specimens. Fig-
ure 3b shows that there is also a good agreement between these predicted and
measured quantities in the DEM tests. They are both periodic, varying be-
tween 0.0025 and −0.0025 rad s−1 with the same period during cyclic shear
tests on the different specimens. Hence, the numerical results in Fig. 3 con-
firm that: (a) DSR2 model is a reasonable extension of the unified double-slip
plasticity model; (b) DEM is a useful tool in examining the noncoaxiality of
granular mateials.
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Fig. 3. The APRs measured and predicted by noncoaxial models (DSR2 model) for
the medium-dense specimen, and their respective average values for all specimens
in the all monotonic DEM simple shear tests (a); the measured and the predicted
APRs in the cyclic DEM simple shear tests on loose/medium-dense specimens (b)

3.2 Effective Stress in Unsaturated Soils

One of long-term arguable topics in unsaturated soils is the existence and
applicability of effective stress [13,15]. We shall here introduce micromechan-
ically defined effective stress and its verification by DEM from the viewpoint
of strength. In the definition, the interparticle force due to CW is composed of
two components: one due to suction and the other due to the surface tension
which is missing in unsaturated soil mechanics.

Equation (8) is widely used in geolabs to measure stresses. This stress ten-
sor is equivalent to net stress (σij − ua) used in unsaturated soil mechanics
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Fig. 4. Contact model for CW [20]

because the pore air pressure ua is used as a reference pressure and is effec-
tively zero in many practical problems. In contrast, in micromechanics on dry
granular media, there are several expressions of the stress tensor, and contro-
versies still exist on such topics as the asymmetry [2,6,11]. We consider three
symmetric average stress tensors with all defined within the volume V :

σij =
1
V

N∑
k=1

Rk

p∑
c=1

lciT
c
j ; σij =

1
V

M∑
a=1

T a
i l

a
j ; σij =

1
V

2M∑
a=1

xai T
a
j (22a,b,c)

where T c
i and lcj are the contact force vector and the contact orientation vector

at contact c of particle k. Rk is the radius of particle k. N is the number of
particles in V and p is the number of contacts on particle k [10]. M is the
number of contacts in V . T a

i and laj are the contact force vector and the
contact orientation vector at contact a in V [8]. xai defines the coordinates of
contact a referenced to the particle centroid [31].

Nevertheless, the average stress tensors in (22) are all equivalent to that
by computing the forces exerted upon the peripheral particles along the as-
sembly’s boundary S.

σij =
1
V

∑
β∈S

T β
i l

β
j . (23)

Based on (22)–(23) and the concepts proposed by one of the authors [22],
two new stress tensors have been defined by Jiang et al [16, 21]. The first
one is defined as the stress tensor in (22) or (23) when T c

i (T a
i or T β

i ) is the
interparticle force due to both load and CW, then σij = σ′′ij . It is termed gen-
eralized effective stress (GES) and denoted by σ′′ij here to distinguish it from
the effective stress σ′ij used in saturated soil mechanics. The second one is
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defined as the stress tensor in (22) or (23) when T c
i (T a

i or T β
i ) is equal to

interparticle force solely due to CW, then σij = σij(eq). It is termed the GES
due to suction (GESS) here to follow the habit in geomechanics. The GES
due to suction indeed should be referred to as the GES due to CW since the
interparticle force component due to the surface tension is included, based on
the theoretical work by Fisher [12]. The stress σij(eq), in principle, is similar to
other terms, such as “normal stress”, “equivalent effective stress”, “effective
boundary stress” etc. used in the literature to describe the effect of suction on
shear strength. We use a subscript “eq” in σij(eq) to note that GESS is simi-
lar to “equivalent effective stress” in essence. Note that both GES and GESS
are defined explicitly in terms of interparticle forces via (22) or (23) here.
More importantly, interparticle force due to CW is a theoretical solution [12],
composed of components due to both the suction and the surface tension. We
shall next introduce DEM examination on the strength envelopes of unsatu-
rated soils described in different stress tensors, since no geolab technology is
available for this task yet.

The contact model used for unsaturated soils is illustrated in Fig. 4, which
was proposed by Jiang et al. [21]. It also consists of a normal (tangential) con-
tact model to resist traction (shear) force. Compared with the standard model
in Fig. 1, the normal contact model introduces additionally a bond element to
represent the action of CW whereas the tangential contact model includes a
CW slider. No traction/repulsive force is transmitted when the CW bond is
broken and the particles are separated. The tangential contact model includes
two sliders that provide the contact a shear resistance controlled by the Mohr–
Coulomb criterion, with one component linked to the CW and the other to
the load. The introduction of the CW slider comes from the fact that the in-
terparticle force due to CW increases the normal contact force at contact and
thus consequently its shear resistance. Note that the CW bond is recoverable
after its breakage, i.e. the CW bond recovers once particles contact again. The
introduction of the CW bond and slider will lead to mechanical performance
at the contact as elasto-brittle-plastic in normal and elasto-plastic in shear
directions [21].

The particle assemblies of grain size distributions shown in Fig. 5 were
used. They are fine-sized materials of the same mean diameter d50 as
0.0078 mm, but of different uniformity coefficients d60/d10 as 1.3 for Distrib-
ution A and as 1.8 for Distribution B. A series of biaxial compression tests
were carried out on the unsaturated granulates under different suctions and
different confining stress. Note that, during the tests, the disappearance of
manusci is simulated [21].

The peak shear strength envelopes described by net stresses (total stress
over air pressure), i.e. the stresses defined in (8), are plotted in Fig. 6a, which
are deduced from the biaxial compression tests on material A. Figure 6a shows
that, for the material with zero suction (Su), the shear strength envelope
almost passes through the origin, confirming that the material is cohesion-
less. The peak shear strength envelopes move parallel to each other with the
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increase of Su in the direction of increasing peak shear strength. A nonlinear
relationship is observed between the deduced apparent cohesion and Su in
Fig. 6b, which is in agreement with the observations from experiments.

The peak shear strength envelope described by the GES are illustrated in
Fig. 7a, which are deduced from the same tests on material A as in Fig. 6.
Figure 7a indicates that there appears to be a unique peak strength envelope
for all the tests on the same material, even with different consolidation stress
or different suction (Su). In addition, the peak friction angle deduced from this
envelope is equal to 27.4◦, very close to that deduced from the zero-suction
envelope (26.5◦) for the same material shown in Fig. 7a. In addition, Fig. 7b
provides the peak strength envelope described by GES, deduced from 12 tests
on material B. Figure 7b demonstrates that the results obtained from material
B support the observations made for material A. Furthermore, Fig. 7 shows
that there is also a unique residual shear strength envelope for each material
if it is described in terms of GES. These observations seem to support the
existence of “effective stress” for unsaturated soils [3] in controlling the shear
strength. However, it is easy to realize that there is a difference between
the original definition [3] and the definition given via (22) or (23). Since the
applicability of the principle of effective stress has been debated for a long
time [13, 15], it is beyond the purpose of this chapter to give any comments
on the topic here. Hence, Figs. 6 and 7 show that DEM is a useful tool in
examining the effective stress in unsaturated granular materials.

3.3 Bonding Effect in Natural Soils

Natural soils are sometimes named as “problematic soil”, since their me-
chanical behaviour are evidently distinct from the reconstituted soils usu-
ally employed in laboratory. Their peculiar behaviour results from their
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microstructure which is mainly characterized with bonding materials between
particles or aggregates (bonds) and fabric. In this subsection, we shall present
our most recent DEM application to natural sands: the link between the yield-
ing and bond breakage; the Coop and Willson criteria on weak bonding and
strong bonding [9]. The reader is referred to the reference [24] for further de-
tail and other information. We chose DEM, because no geolab technology is
available to measure bond information quantitatively and continuously yet.

The contact model used for bonds in natural soils is shown in Fig. 8, which
was proposed by Jiang et al. [20, 24]. In comparison to the standard contact
model in Fig. 1, the bond contact model introduces irrecoverable rigid-plastic
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bond elements into the normal and tangential directions, respectively. Unlike
the recoverable CW bond shown in Fig. 4, the bond here is irrecoverable, i.e.
the bond will never recover its strength once the bond breaks. The rigid bond
element is set to be parallel with divider (slider) in the normal (tangential)
contact model to produce tension (shear) resistance, which represents the
main action of bonding materials. The introduction of the bonds will lead to
mechanical performance at the contact as elasto-brittle-plastic in both normal
and shear directions [20,24].
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The DEM material used has a distribution of particle size shown in Fig. 2a.
The samples were prepared by the under-compaction technique [19] at very
loose (planar void ratio ep = 0.34), loose (0.32), medium-dense (0.30) and
dense (0.28) states, followed by bonding at contacts with different bonding
strength. Isotropic consolidation tests were carried out on these bonded ma-
terial, by following the procedure in laborotory [24].

For the first target in this subsection, Fig. 9a presents the variation of
planar void ratio ep with applied mean stress σ′m, whereas Fig. 9b provides
the broken contact ratio as a function of σ′m, for the very-loose DEM materials
of the bonding strength R = 0, 1, 5, 10, 20, 30 MN. The broken contact ratio is
the proportion of the initially-bonded contacts that have been broken and can
be regarded as a damage index of the bond breakage. The numerical curve
obtained for the very-loose unbonded material in Fig. 9a provides a reference
curve (normal compression line, NCL) for the other DEM tests. This numerical
reference curve shows three features: there is a significant reduction in void
ratio (ep) against σ′m when the pressure is relatively small (< 0.4MPa); once
σ′m exceeds this value, the rate of void ratio reduction becomes smaller; this is
true until the pressure is close to 10 MPa when the void ratio reduction rate
increases again. The second feature in the DEM data comes from that that
there is a little space for the assembly to be compacted further as it arrives
at a relative dense state. The third feature of the numerical reference curve
appears to be unusual. This peculiar feature is largely due to the fact that
overlap between particles is excluded from calculating ep by (9). Nevertheless,
such ignorance does not affect the difference between bonded and unbonded
materials.
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contact ratio

The bonded materials in Fig. 9a shows that the gross-yielding stress is well
defined in light of volumetric strain (also known as preconsolidated pressure
in the geotechnical community). They are able to go in part of the ep − σ′m
space that is not accessible to the unbonded material. At a given consolidation
pressure, their void ratio is generally larger than unbonded counterpart. The
preyield deformation is small; deformation increases abruptly if consolidation
pressure is larger than the yield stress. Given a void ratio, the gross-yielding
stress increases with the bonding strength. These are in agreement with the
recent understanding on natural soils.
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Micromechanically, Fig. 9b shows that the yielding can also be well defined
for the samples in terms of breakage of bonds (the most-gradient point on the
curve) for bonded specimens, which namely the microyielding hereafter. There
is no or few bond breakage when σ′m is smaller than the microyielding stress.
Once σ′m exceeds the microyielding stress, a large amount of bonds break. By
comparing Fig. 9a with Fig. 9b, with the help of the dotted lines 1–5 in Fig. 9,
it is observed that the microyielding stress appears to be equal to or slightly
smaller than the respective gross yielding stress. Hence, the DEM results con-
firm that the gross yielding of natural sands must be related to bond breakage.

For the second target in this subsection, Fig. 10 provides schematic rep-
resentation of the factors that might influence the effect of inter-particle ce-
menting on the compression behaviour of a natural sand, proposed by Coop
and Willson [9]. Figure 10 shows that a yield point in compression may be
above (outside) or below (inside) NCL. The former one is termed as strong
bonding (s), while the latter as weak bonding (w). They believe that whether
the bonding is weak or strong depends on three factors, which, if regardless
of particle breakage/crushing, are:

(a) The amount and strength of the cement deposited, with a smaller amount
clearly being present for the weak bonding while a larger amount for the
strong bonding, as indicated in Fig. 10a;

(b) The position of NCL. The same yield stress may be regarded as strong
bonding if NCL is inside it, or weak bonding if NCL is outside, as shown
in Fig. 10b;

(c) The initial density. A denser bonded material, even though it has the
higher yield stress in compression, may show the weak mode of behaviour,
whereas a looser bonded material of the lower yield stress may show the
strong mode, as demonstrated in Fig. 10c.

Figure 11 presents the variation of ep with σ′m in the isotropic DEM com-
pression tests, showing the three factors influencing the effect of bonds on the
compression behaviour. Note that all materials are of the same coefficient of
interparticle friction as μ = 0.5, except specifically stated below. It can be
seen:

(a) In Fig. 11a that the DEM medium-dense material predicts a weak bonding
behaviour at bonding strength R =1 MN but a strong bonding behaviour
at R = 10 MN. This confirms the first Coop and Willson criterion con-
cerned with the amount and strength of the cement.

(b) In Fig. 11b that the response of the two unbonded very loose materials
shows that NCL of μ = 0.5 (NCL1 in the figure) is well above that of
μ = 0.2 (NCL2 in the figure), which is reasonable since larger μ pro-
duces larger resistance against compaction under a give pressure. The two
bonded DEM medium-dense materials, which have R = 1 MN for μ = 0.5
(Material 1) and R = 1.5 MN for μ = 0.2 (Material 2), respectively, pre-
dict almost the same gross yielding stress, with the compression curves
approaching their own NCL after yielding. In addition, the gross yielding
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stress of the two bonded materials lies between NCL1 and NCL2, indi-
cating that Material 1 should be regarded as a weak bonding since NCL1
is outside it, while Material 2 a strong bonding since NCL2 is inside it.
This confirms the second Coop and Willson criterion concerned with the
position of the intrinsic NCL.
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(c) In Fig. 11c that the very-loose bonded DEM material, even though it has
the lower yield stress in compression, shows the strong mode of behav-
iour, whereas the medium-dense bonded material of the higher yield stress
shows the weak mode (these two bonded materials both have R = 1 MN).
Hence, Fig. 11c confirms the third Coop and Willson criterion concerned
with initial density.

Figures 10 and 11 show that DEM is a useful tool in examining the bonding
effect in natural soils.

3.4 Penetration Mechanism in Granular Ground

The cone-penetration test is an insitu test in geotechnical engineering, in
which a cone-shaped penetrometer is pushed into the ground at a constant
rate. The resistance on the cone tip is measured and is then related to soil
classification and soil properties. However, the penetration mechanism is still
not very clear, due to the complex of the boundary-value problem which
involves: (a) large relative sliding on the soil-penetrometer interface; (b) large
deformation of the soil; (c) the high gradient of the field variables around
the penetrometer, and (d) the soil involved undergoing an complex stress-
path which is evidently different from that representative of the conventional
laboratory tests. We shall introduce some plane-strain penetration mechanism
in granular material using DEM, which is described in terms of displacement
path and stress field. The detailed observation can be found in the reference
[23]. We use DEM, because it can capture the aforementioned four features
easily.

The contact mode used is a standard contact laws shown in Fig. 1. The
material used is composed of 20 types of disks with a maximum diameter
of 3.525 mm, a minimium diameter of 2.25 mm, an average grain diameter
d50 = 2.925mm and uniformity coefficient d60/d10 = 1.25 [23]. Take advantage
of the geometric symmetry of the problem, only half of the ground and half of
the penetrometer are considered in the analyses. The target ground consists
of 10,000 particles with planar void ratio of about 0.24, and has a depth and
width as 16R and 17.5R, respectively, where R represents the half-width of
the penetrometer. The multi-layer under-compaction method [19] was used
to generate the ground. After the ground is generated, half of a standard
penetrometer with its radius asR = 18mm and its apex angle as 60◦, is formed
over the ground, as shown in Fig. 12. The penetrometer is described with three
rigid walls, i.e. a frictional wall to simulate penetrometer tip, vertical frictional
and frictionless walls to simulate penetrometer sleeves. The effect of tip-soil
friction is to be clarified by choosing different frictional coefficient μ between
the tip (or frictional sleeve) and particles. For simplicity, a perfectly-smooth
(P-S) and a perfectly-rough (P-R), i.e. μ = 0 and μ = tanφμ, respectively,
are considered. The penetrometer is pushed downward at 2mms−1 (around
0.1 R s−1). The K0 boundaries are used reduce possible boundary effects [23].
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Figure 13 provides the tip resistances (qc) and their normalized values by
the initial vertical stress (qc/σv0), measured continually during the penetra-
tion in both P-R and P-S cases. Figure 13a shows that qc increases with pene-
tration depth with its initial gradient larger than the latter one in both cases.
At the same depth, the P-R leads to qc larger than the P-S as expected.
Figure 13b shows that qc/σv0 initially increases, then decreases, and finally
approaches a constant with depth. This is in agreement with that observed in
centrifuge modelling [4].
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Figure 14 presents the displacement paths of the grid nodes on lines 1–3
(see Fig. 12). The vertical displacement is shown on an amplified scale in the
figure. Figure 14 shows that:

(a) The final positions of the nodes on line 1 are all above their initial posi-
tions in both the perfectly-rough (P-R) and perfectly-smooth (P-S) cases.
The nodes of X/R > 2 move upward and sideward, and their final position
moves down with X/R. In contrast, those grid nodes of X/R ≤ 2 initially
moves downward and then upward while moving sideward (“hook” shape),
and their final position moves up with X/R. The tip-soil friction shows
evident influence on the displacement path of the nodes of X/R ≤ 2,
with the P-R leading to a larger downward displacement than the P-S.
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Furthermore, the P-R leads to a smaller upward displacement within
X/R ≤ 6 but a larger upward displacement for X/R ≥ 6 than the P-S.

(b) On line 2, the final positions of the nodes are all above their initial po-
sitions in both P-R and P-S cases except for those nodes of X/R ≤ 1.
In addition, the final position of the nodes moves up with the increas-
ing of X/R until X/R = 4, then moves down with X/R. The nodes of
X/R ≤ 9 show “hook” shape displacement path, while the grid nodes
of X/R > 9 undergo only upward and sideward motions. The magnitude
of downward motion is as large as about R for the node at X/R = 1,
and decrease greatly with the increasing of X/R. Again, the tip-soil fric-
tion shows evident influence on the displacement path of the nodes of
X/R ≤ 2. Generally, the P-R leads to a smaller upward displacement
within X/R ≤ 6 but a larger upward displacement X/R ≥ 6 than the P-S.

(c) The behaviour of grid nodes on line 3 is similar to that on line 2. However,
all the nodes show evidently larger downward motions. The final positions
of the grid nodes of X/R ≤ 3 are all below their initial positions in both
the P-R and P-S cases, while others are above the corresponding initial
positions. The “hook” shape range is up to X/R = 11 and moreover the
nodes of X/R = 1 move only downward and sideward.

Figure 15 provides the distributions of major and minor principal stress
vectors during the tests. In the figure, the maximum major stresses are plotted
by a vector of a constant length in order to illustrate the distributions clearly,
although the maximum major stress differs in the perfectly-rough (P-R)
and perfectly-smooth (P-S) cases and changes with penetration depth.
Figure 15 shows that

(a) The penetration has great effect on the stress distribution in the area near
the penetrometer, where high gradient of stresses including the values and
directions is observed as expected. The maximum stresses occur near the
tip, with its major principal stress nearly perpendicular to the tip;

(b) In the area close to the penetrometer, all the major principal stresses tend
to be in a direction to the penetrometer centre. In the area far from the
penetrometer, the penetration effect is very small, and hence the principal
stresses are prodominatly controlled by the self-gravity with the major
principal stress in the vertical directon as expected.

(c) The stresses beneath the tip point are larger in the P-R than in the P-
S. This is consistent with the observation in Fig. 14 that the P-R leads
to larger downward motion of the particles beneath the tip point than
the P-S. In addition, the major principal stress near the tip has a larger
inclination to Y -axis in the P-R than in the P-S, probably due to the
shear force on the tip which is induced by the tip-soil friction.

Figures 13–15 show that DEM is also a useful tool to some complex bound-
ary value problems in geotechnical engineering.
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4 Concluding Remarks

This chapter introduced recent application of the DEM to geomechanics,
which is limited to the work related to the first author’s two postdoctoral
fellowships in Canada and UK and which are concerned with main topics in
this workshop. It can be drawn from these application examples that:

(a) DEM is a numerical simulation technique that treats soils as an assem-
bly of discrete materials, and can efficiently provide their macroscopic–
microscopic responses under loading. The behaviour of assemblies can be
controlled rigorously by very simple contact laws at interparticle contacts.

(b) One of the key issues on DEM is the contact laws at interparticle con-
tacts. Different contact laws have been introduced and are found useful
for investigating noncoaxiality of granular materials, effective stress in un-
saturated soils, bonding effect in natural soils and penetration mechanism
in granular ground.

(c) DEM is a very promising tool to solve some problems not only in fun-
damental geomechanics but also in complex boundary value problems in
geotechnical engineering, which are difficult to solve by other geomethods.

Acknowledgements

The authors thank the EPSRC, UK with grant number GR/R85792/01;
NSERC, Canada, for the financial support of the first author during his two
postdoctoral fellowships. The contributions to the work in this article from
Prof. Serge Leroueil and Prof. Jean-Marie Konrad, Department of Civil Engi-
neering, Laval University, Canada; Dr. David Harris, School of Mathematics,
The University of Manchester, UK are greatly appreciated.

References

1. Bardet J.P. and Proubet J. (1991). A numerical investigation of the structure
of persistent shear bands in granular media. Géotechnique, 41: 599–613
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1 Introduction

This chapter presents recent developments made by the author in providing an
understanding of micromechanics of yielding and plastic hardening of granular
materials and the role of particle crushing in determining the constitutive
behaviour. It will be shown that there is nothing “special” about soil; breakfast
cereals and pasta have normal compression lines similar to soil. The role of
particle crushing is demonstrated with discrete element modelling (DEM) as
well as experimental data, and a theory of fractal crushing is shown to be
consistent with hardening of yield surfaces for sands. A constitutive model
based on micromechanics incorporating particle crushing is presented, and
some deficiencies in the model are highlighted. The role of particle crushing
in creep is also discussed.

2 Yielding and Normal Compression

2.1 Experimental Data

Figure 1 shows plots of voids ratio against the logarithm of vertical effective
stress for sands which have been one dimensionally normally compressed. Be-
yond the yielding region (2) a linear normal compression line emerges over
approximately one decade of stress. Yield might conveniently be taken to re-
late to the point of maximum curvature on the plot. Questions which arise are:
Is yield the onset of particle crushing and can we learn anything about yield-
ing and normal compression from other (non-geotechnical) materials? Fig-
ure 2 shows samples of breakfast cereals (cornflakes, rice krispies) and pasta.
Samples of these materials were subjected to oedometer tests in a 150-mm
diameter oedometer. The normal compression plots are shown in Fig. 3 [25]
and compared with oedometer tests on silica sand [18]. The shape of the par-
ticle size distribution which emerges for pasta, for example, compares well
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with that for silica sand, though the particle sizes and stress levels are dif-
ferent [25]. The question arises as to whether particle strength could be a
suitable normalizing parameter for effective stress.

Particles of the materials in Fig. 2 were therefore subjected to single parti-
cle crushing tests between flat platens, in order to measure the tensile strength.
The same was performed on the silica sand particles relating to Fig. 3 [18].
McDowell [17] has shown that the number of tests required to quantify
strength sufficiently accurately depends on the variability of the material.
For a true Weibull modulus [34] of 3, we can be 95% certain that the mea-
sured mean strength is within 13% of the true value with 30 tests. Confidence
limits on the mean are obtained from Student’s t-distribution, and those for
the variance are obtained from the χ2-distribution [17]. This analysis explains
why some authors (e.g. [3]) found a size effect on average strength, but little
variability in strength for a given size; Billam [3] only performed 10 tests, for
example. If it is assumed that the particle–platen contact area is negligible
and that bulk fracture occurs within the particle, it is possible to integrate
maximum tensile stress over the volume of the particle, so that the probability
of survival Ps(d) for a particle of size d under a characteristic stress σ = F/d2

where F is the diametral force applied and d is the distance between the
platens, is given by

Ps (d) = exp [− (d/d0) (σ/σ0)
m] , (1)

where σ0 is the stress corresponding to a survival probability of 37% for parti-
cles of a reference size d0, and is approximately equal to the average strength,
and m is the Weibull modulus which decreases with increasing variability in
strength. This gives a size effect on average strength such that

σ0 ∝ d−3/m. (2)

It should be noted that for some materials, such as railway ballasts [14],
surface fracture rather than bulk fracture may dominate so that the size effect
becomes

σ0 ∝ d−2/m. (3)

In addition, (1) is based on the assumption that the material is homogeneous
and isotropic. Furthermore, (1) states that particles subjected to a very low
stress have a high chance of survival. It is possible that a threshold stress may
exist, below which no particles break. In this case the survival probability for
a given size might be given by

Ps = exp
[
−
(
σ − σu
σ0

)m]
, (4)

where σu is the threshold stress. Figure 4 shows the normal compression curves
in Fig. 3 re-plotted with stress normalized by 37% strength σ0. It can be seen
that yielding occurs in the region σ/σ0 ≈ 0.1–0.3. This is consistent with
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the observation that discrete element models [4] show columns of strong force
such that the macroscopic stress to cause yield should be much less than the
average particle strength. Now it seems appropriate to ask whether DEM can
also demonstrate whether particle crushing is the origin of yield and normal
compression. McDowell [18] showed that yield stress for silica sand reduced in
proportion to average particle strength, which increased with reducing particle
size. Using DEM, it should be possible to show that yield corresponds to
particle breakage and that normal compression arises from crushing.

2.2 Discrete Element Modelling

Figure 5 shows agglomerates of bonded balls used to model particle fracture
using the software program PFC3D [10] – details of the model parameters are
given in McDowell and Harireche [23]. Agglomerates are created by bond-
ing balls in regular arrays and then removing balls to give a more random
geometry and to simulate flaws. Single agglomerates were crushed between
flat platens to determine model parameters which gave the correct average
strength and variability in strength, comparing with experimental data by
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McDowell [18] for silica sand. Figure 6 shows the result of a normal com-
pression test on 159 agglomerates of 0.5-mm diameter. The sample was not
compacted initially – which explains the stress fluctuations at low stress levels.
Yielding is seen to occur at a volumetric (axial) strain of about 30%, which
corresponds to the onset of bond fracture. Increasing the bond strength by a
factor of 2 [24].

Figure 7 shows Fig. 6 re-plotted with stress normalized by 37% strength in
addition to the equivalent plot for an aggregate of 13 agglomerates of 1-mm
diameter, having a lower 37% strength. It can be seen that the yield stress
is proportional to agglomerate strength. A similar normal compression curve
has been obtained for DEM of an oedometer test on railway ballast [15], and
it has been shown that beyond yield on the linear normal compression line, a
constant value of coefficient of earth pressure at rest K0 emerges, consistent
with Jâky’s [11] equation. Harireche and McDowell [9] also showed that bond
breakage provides the mechanism for irrecoverable volume change under cyclic
loading.

The question is now posed as to what provides the mechanism for plastic
hardening under triaxial conditions.
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3 Mechanics of Plastic Hardening

McDowell and Bolton [21] proposed the following work equation for aggregates
subjected to one-dimensional plastic compression (elastic terms were neglected
for simplicity):

σ′
de

1 + e
= − ΓdS

(1 − μ)Vs (1 + e)
, (5)

where σ′ is the applied macroscopic stress, e is voids ratio, S is surface area, Vs
is volume of solids, Γ is surface energy and μ is a friction constant representing
the proportion of plastic work dissipated in friction. If the plot of e against ln
σ′ is linear for a soil subjected to plastic compression, then

de = −λdσ′

σ′
, (6)

where λ is the plastic compressibility index. In this case (5) predicts

dσ′ ∝ dSm, (7)

where Sm is the surface area per unit mass of solids or “specific surface”.
Since the lateral earth coefficient K0 in one-dimensional normal compression
is found to be constant according to Jâky [11], then the mean effective stress
p′ is proportional to σ′ and if the isotropic normal compression and one-
dimensional normal compression lines are parallel in e − ln p′ space, then
it follows from (7) that the total increase in surface area per unit mass is
linearly proportional to the change in preconsolidation pressure p′0, defined
as the value of p′ at the point of intersection of a standard κ-line (after [32])
with the isotropic normal compression line in e− log p′ space

ΔSm ∝ Δp′0. (8)
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An alternative approach is to consider the fractal distribution of particles
which evolves during the one-dimensional compression of an initially uniformly
graded aggregate of grains [21, 22]. If the smallest particle size is ds, and the
fractal dimension of the sample is 2.5, then the total surface area of the sample
per unit mass Sm is given as [21]

Sm ∝ d−1/2
s . (9)

If linear elastic fracture mechanics applies, then it is expected that the smallest
particle size is related to the applied macroscopic stress according to the
equation

σ′
√
ds ∝ σ′0

√
d0, (10)

where d0 is the initial particle size in the uniformly graded sample and σ′0 is
the yield stress of the aggregate [21]. In this case (9) and (10) combine to give

Sm ∝ σ′ ∝ p′0, (11)

assuming the isotropic normal and one-dimensional normal compression lines
are parallel in e–log p′ space. Equation (11) is similar to (8), but would ap-
pear to predict an initial yield stress for a compacted sample given the initial
surface area, but this is not the case because the initially compacted sample
will not be fractal. Nevertheless, (11) does reinforce the expectation that the
change in surface area per unit mass of sample should be a linear function
of the preconsolidation pressure. Equation (5) also implies a proportional re-
lationship between increase in surface area and plastic work done on the soil
sample. Thus the work of McDowell and Bolton [21] implies that suitable
plastic hardening parameters are increase in surface area per unit mass, pre-
consolidation pressure p′0, and plastic work per unit mass or per unit initial
sample volume. Based on their work, it is expected that these hardening pa-
rameters should be linear functions of one another, and related to the plastic
reduction in voids ratio. This chapter now examines whether this hypothesis
is valid for samples of silica sand subjected to plastic compression under a
range of stress paths in the triaxial apparatus [27]. If the hypothesis is cor-
rect, it should be possible to establish a state boundary surface inside which
all strains can be assumed to be elastic and isotropic, and such that the size
of a yield surface relates to the surface area per unit mass and plastic work
done per unit initial sample volume.

Figure 8 shows some of the stress path tests on a silica sand described by
McDowell et al. [27]. Samples have been subjected to different stress paths
to points on an assumed modified clay state boundary surface with isotropic
preconsolidation pressures of both 30 and 40 MPa. Figure 9 (the key for the
target points refers to the figures in [27]) shows the actual obtained state
boundary surface, which has an equation

q

p′0
= 0.8

p′

p′0
[2 ln (p′0/p

′)]1/2 , (12)
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with a critical state constant M = 1.2. Figure. 10 shows that a satisfactory
relationship is not obtained between Hardin’s breakage factor Br [8] and the
preconsolidation pressure p′0, when plotted on linear scales. Figures 11 and 12
show that suitable hardening parameters are preconsolidation pressure p′0, in-
crease in surface area per unit mass Sm, and plastic work per unit volumeW p,
and these can be assumed to be linear functions of one another in agreement
with the theory proposed, though clearly the idea of shear hardening makes
it difficult to generate models within a critical state framework. McDowell
et al. [27] found that the value of the ratio of total plastic work done per unit
sample volume to increase in total sample surface area per unit volume was
typically 0.04 J cm−2 or 400 J m−2. The surface energy Γ of rocks is typically
25 J m−2 [21] so that the ratio of total plastic work to energy dissipated in
fracture is typically 400/25 = 16. This result indicates that most of the plastic
work must be dissipated in friction. The result is not so surprising, since it
has been pointed out by Thornton et al. [33] that discrete element simula-
tions of the impact of agglomerates show that during the fracture of a single
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agglomerate, the energy dissipated by bond rupture is only a fraction of
the initial work input, and this is because of frictional dissipation at slid-
ing particle contacts during the fracture process. The question then arises as
to whether the surface area term in the work equation proposed by McDowell
and Bolton [21]

qδεq + p′δεv =Mp′δεq +
Γd S

Vs (1 + e)
(13)

is appropriate. The surface area term is clearly necessary, because only then
is it possible to relate plastic reduction in voids ratio to the increase in surface
area of the sample, which has been shown to be a suitable hardening parame-
ter. It may be possible to improve the consistency of (13) by modifying either
the frictional dissipation term or the fracture term. Macroscopic models for
crushing aggregates are the subject of Sect. 4.

4 From Micromechanics to Continuum Mechanics

If the relative proportion of plastic work dissipated in fracture and friction in
(13) is taken to be a function of stress ratio, i.e.

Energy dissipated in fracture
Energy dissipated in friction

= F (η) , (14)

then the fracture term in (13) can be written

Γd S
Vs (1 + e)

=Mp′δεq [F (η)] . (15)

The rationale for this approach is that during isotropic plastic compression,
most of the plastic work might be dissipated in fracture, with little particle
rearrangement occurring. At a critical state, infinite shear strains occur at
constant volume. At a critical state, therefore, all plastic work is dissipated in
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friction. The work equation (13) can now be re-written

qδεq + p′δεv =Mp′δεq [1 + F (η)] . (16)

We now examine a simple set of functions F (η) [16] which generate a conve-
nient family of yield loci. If (16) is re-written as a stress–dilatancy rule

η +
d εv
d εq

=M [1 + F (η)] , (17)

then for the isotropic case, we require δεv/δεq = ∞, hence F (η) = F (0) = ∞.
At a critical state, η = M, δεv/δεq = 0, hence we require F (η) = F (M) = 0.
A simple function which satisfies these requirements is

F (η) =
M − η
η

. (18)

It can be seen that when (18) is substituted into (14), for the isotropic case
η = 0 and energy is dissipated solely in fracture, whilst at a critical state
η = M and energy is dissipated solely in the frictional rearrangement of
grains. Substituting (18) into (17) gives rise to the stress–dilatancy rule

d εv
d εq

=
M2 − η2

η
, (19)

which differs from the Modified Cam clay stress–dilatancy rule (Roscoe and
Burland, 1968) by a factor of 2. Equation (19) can be re-cast as a work equa-
tion

qδεq + p′δεv =
√

(p′ δεv)
2 + (Mp′ δεq)

2 + pqδεvδεq (20)

This work equation is similar to that quoted by Miura et al. (1984) for sands
in a particle-crushing stress region. The equation of the yield surface can be
found by applying the normality principle and integrating to give (McDowell,
2002b)

η = M
√

2 ln (p′0/p′). (21)

Coincidentally, (21) is identical to that proposed by Murata et al. (1987),
based on experimental results for sand. It is easy to see how a whole family
of yield surfaces can be generated. If we choose

F (η) =
Ma − ηa
ηa

, (22)

then by substituting (22) into (17), assuming the normality principle applies,
and integrating

η =M [(a+ 1) ln (p′0/p
′)]

1
a+1 . (23)

This is the same family of yield surfaces as proposed by Yu [35] for the
CASM model using Rowe’s [31] stress–dilatancy rule and the state parameter
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concept [2]. The family of yield surfaces is shown in Fig. 13. All yield loci
are drawn for the same preconsolidation pressure, which has been taken to
be 1 MPa. The Cam clay and Modified Cam clay yield surfaces are shown in
bold type for comparison. For non-associated flow models, the yield surface
can be defined as [19]

η = N [(a+ 1) ln (p′0/p
′)]

1
a+1 , (24)

where N is the stress ratio corresponding to the peak value of q/p′0, and the
plastic potential can be defined as

η = M
[
(b+ 1) ln

(
p′p/p

′)] 1
b+1 , (25)

where p′p is the value of p′ at q = 0 for the plastic potential through the
current point on the yield surface in stress space and b controls the flow rule.

Equations (24) and (25) make it easy to generate simple yield surfaces and
with a versatile flow rule. Figures 14 and 15 show how the parameter b can
be used to change the flow rule. This approach, based on micromechanics,
is useful. However, the assumed micromechanics must be incorrect as Sect. 3
demonstrated that most of the plastic work done is dissipated in friction – even
in isotropic tests. This means that it is necessary to replace theMp′δεq term in
(13) or re-define surface energy so that it includes frictional dissipation which
occurs during the fracture process. If the latter approach is adopted, then
Mp′dεq in (13) relates to the sliding of broken fragments and ΓdS/Vs(1 + e)
relates to the energy dissipated during the fracture process, which also includes
frictional sliding. In this case, the micromechanical approach adopted will be
useful in generating continuum models.
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Fig. 15. Yield locus with N = 0.8, a = 2; flow rule with M = 1.2, b = 4

5 Creep

The chapter now examines whether particle crushing might be responsible for
creep in granular materials. The creep of granular materials subjected to one-
dimensional compression only is examined [20]. It is well known that granular
materials creep under constant effective stress [12, 13] such that creep strain
is proportional to log time

ε = C log t/t0, (26)
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where t0 is the time from which creep strains are measured. The question
arises as to whether the equation of a linear normal compression line

e = ec − λ ln (σ/σc) (27)

could be consistent with (26) for a granular material subjected to creep at
constant stress under one-dimensional conditions, if the micro mechanical ori-
gin of creep is particle crushing. The stress σc is simply a stress on the normal
compression line, and voids ratio ec is the voids ratio at that applied stress.
If a sharp yield point can be defined for a compacted sand, then these values
could be taken to relate to first yield. McDowell and Bolton [21] proposed
that the mechanism for plastic hardening was fractal crushing, such that the
current macroscopic stress should be proportional to the average strength of
the smallest particles σs in the aggregate: These particles continue to crush
under increasing stress levels, becoming statistically stronger and filling voids.
Thus, an aggregate should be in equilibrium with a voids ratio ec under an
applied stress σc, with

σc = kσs. (28)

The constant k is independent of particle size, because as the smallest
particle size reduces, the smallest particles are in self-similar geometrical con-
figurations. Further compression can only occur if the stress level increases
above σc or if the average strength of the smallest particles σs decreases. It is
the fracture of the smallest particles which gives the reduction in voids ratio,
because even once a wide distribution of particle sizes has formed, if some
large particles break, there are no available voids for the large fragments to
fill. Substituting (28) into (27) gives:

e = ec − λ ln (σ/kσs) . (29)

It is well established in the materials literature [1,5] that ceramics exhibit
time-dependent strength. This is caused by slow crack growth as moisture in
the environment interacts with flaws in the material. The end result is that
for a tensile test on a ceramic specimen, if the standard test used to measure
the tensile strength σTS takes a time t(test), then the stress which the sample
will support safely for a time t is given by the equation(

σ

σTS

)n

=
t (test)
t

, (30)

where n is the slow-crack growth exponent. Data for n are very limited, but
n is 10–20 for oxides at room temperature; for carbides and nitrides, n can be
as large as 100 [1]. It is now possible to examine the effect of the dependence
of σs on time at constant stress level in (29). If σs0 is the average particle
strength which could be measured at time t = t0, then the average strength
σs after a time t, according to (30) would be

σs = σs0 (t0/t)
1/n
. (31)



The Role of Particle Crushing in Granular Materials 285

y = −0.0026Ln(x) + 0.0021
R2 = 0.9958

−0.030

−0.025

−0.020

1 10 100 1,000 10,000 100,000
Time (s)

−0.015

−0.010

S
tr

ai
n

−0.005

0.000

Fig. 16. Creep of pasta [26]

Substituting (31) into (29) gives

e = ec − λ ln (σ/kσs0) − λ

n
ln (t/t0) . (32)

Hence the reduction in voids ratio Δe as a function of time after time t0 is
simple

Δe =
λ

n
ln (t/t0) =

2.3λ
n

log10 (t/t0) , (33)

so that the log time effect is observed and the creep coefficient in (26) is given
as

C =
2.3λ
n

1
1 + e0

, (34)

where e0 is the initial voids ratio. McDowell [20] showed that typical values
of λ and n in (34) were consistent with data by Leung et al. [13] for one-
dimensional compression of sand at high stress levels. In addition, Feng (2004)
pointed out that the creep coefficient C is often found to be proportional to
the compressibility index Cc(= 2.3λ) for a given soil, which is consistent with
(34). In addition he pointed out that typical values of C/Cc found in the lit-
erature are consistent with (34) for typical values of n. Figure 16 shows the
log-time relationship in (26) is also observed for creep of pasta subjected to
one-dimensional compression [26], and that this creep is consistent with parti-
cle crushing, as shown by the change in the particle size distribution in Fig. 17.

6 Conclusions

It has been shown that the onset of particle crushing appears to be the origin
of yield. Yield is a gradual process but for one-dimensional compression, the
point of maximum curvature of the normal compression line in e– log σ′ space
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appears to be a suitable of definition of yield, and the use of e– log σ′ space
appears useful since it will give rise to bilinear plots with well–defined yield
points for overconsolidated materials (the one-dimensional compression of an
elastic array of spheres might give rise to what might resemble a normal comp-
ression line for a crushable aggregate in e– log σ′ space, but the unloading
curve would be the same as the loading curve, which is not observed for
crushable aggregates). Particle crushing appears to be give rise to normal
compression lines for non-geotechnical granular materials, so there is nothing
“special” about soil.

Change in surface area of particles appears to be a suitable plastic hard-
ening parameter for granular materials, as shown by experimental data for
triaxial tests, and it appears to be a linear function of preconsolidation pres-
sure, in agreement with a proposed theory of fractal crushing. Plastic work
also seems to be a useful hardening parameter, though this makes the devel-
opment of critical state models difficult, and more work is required in this
area.

DEM is a useful tool for exploring the role of particle crushing in granular
materials and has been shown to shed light on the micromechanics of yield
and normal compression.

It has been shown to be possible to develop simple continuum models
based on micromechanics incorporating particle crushing, though further work
is required in defining energy terms for frictional dissipation and fracture.

The time dependence of particle strength has been shown to give rise to
realistic creep behaviour and to predict the correct relationship between the
plastic compressibility index and creep coefficient.

It would therefore appear that particle crushing plays a fundamental role
in determining the constitutive behaviour of granular materials.
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assemblies. Géotechnique 29, No. 1, 47–65

5. Davidge, R.W. (1979) Mechanical behaviour of ceramics. Cambridge: Cambridge
University Press

6. Feng, T.-W. (2004) Discussion on: Micromechanics of creep of granular materi-
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1 Introduction

In brittle geomaterials like rocks and concrete, damage by nucleation and
growth of microcracks is an essential mechanism of deformation and failure.
The induced damage not only affects the mechanical properties of materials,
but also the flow and conductivity properties. The variation of permeability
with the growth of microcracks is one of the most significant phenomena to be
taken into account in many engineering applications, for example, the storage
of nuclear wastes, the stability of rock slopes, and hydraulic dams, and the
long term durability of concrete structures.

A number of constitutive models have been proposed for the description
of induced damage in geomaterials (we do not give an exhaustive list of these
models here). They can be roughly separated into two classes: phenomeno-
logical models and micromechanical models. Generally, the advantage of the
micromechanical models remains in the possibility to account for physical
mechanisms involved in material damage. However, the numerical implemen-
tation of these models in view of engineering application is not easy and the
associated computation procedure is usually time-consuming. On the other
hand, the phenomenological models provide with simple and unified mathe-
matical formulations. These models can be easily implemented in a computer
code and then used as a powerful tool for engineering analyses. However, some
assumptions and concepts used in the phenomenological models, for instance
the effective stress concept, are not clearly based on physical backgrounds.
On the other hand, various approaches have been proposed for the estimation
of permeability in fractured media, involving empirical and statistical inves-
tigations [2–4, 7–9, 12, 14, 15, 17]. However, these investigations are generally
performed for a given distribution of fractures in rocks, and they are not cou-
pled with the evolution of mechanical behaviors of materials. There are very
few studies on the coupled modeling of mechanical damage and permeability
evolution.
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In the first part of this work, we propose to develop a new anisotropic
damage model for brittle rocks essentially subjected to compressive stresses.
The proposed model will be based on the relevant micromechanics analyses,
in order into take into account main physical mechanisms involved in the mi-
crostructure scale. In the second part, the mechanical model is extended to
the description of variation of permeability due to growth of microcracks. The
variation of permeability is then directly associated with the mechanical dam-
age of material. Throughout the chapter, the following notations for tensorial
calculations will be used:

(−→a ⊗−→
b )ij = aibj , (A · −→b )i = Aijbj , (A : B) = AijBji, (−→a · −→b ) = aibi.

2 Formulation of the Damage Model

In this chapter, it is assumed that rocks are submitted to compression-
dominated stresses. The crack density remains small and the interaction
between microcracks can be neglected before the onset of coalescence of
microcracks. The initial behavior of materials is isotropic and the anisotropy
is fully induced by preferential distribution of microcracks.

2.1 Free Enthalpy and Constitutive Equations

In brittle materials like rocks, damage by nucleation and growth of mi-
crocracks is the essential dissipation mechanism. Plastic deformation due
to dislocation-like sliding can be neglected. Macroscopic irreversible strains
are developed due to residual opening and mismatch of microcracks dur-
ing loading–unloading process. Consider now a representative volume element
(RVE) of the cracked material. The volume of RVE is noted by Ω. The RVE is
composed of an elastic solid matrix, which is weakened by a number of sets of
microcracks in different directions. The RVE is submitted to a uniform stress
field σ on its boundary. For the simplicity of mathematical formulation, we
first consider a single family of N similar microcracks inside the RVE, oriented
in the direction defined by the unit normal vector −→n . In the same family, all
the cracks have the same geometrical form. The vector of displacement jump
on each microcrack is defined as follows:

−→
b = −→u + −−→u −, (1)

where −→u + and −→u − are, respectively, the displacement vector on the two
opposite faces of the crack. The macroscopic strain tensor of the REV can be
determined by

ε = S0 : σ +
1
2
N

Ω

∫
Γ+

(
−→
b ⊗−→n + −→n ⊗−→

b )ds. (2)
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Γ+ denotes the crack face with the positive normal unit vector −→n . S0 is the
initial elastic compliance tensor of undamaged material. In the case of penny-
shaped cracks, the unit normal −→n is constant along the crack surface and
the vector

−→
b is taken as the average displacement jump over the crack. The

elastic free enthalpy can be expressed as:

wc =
1
2
σ : S0 : σ +

N

Ω
(σ · −→n ) · −→b (πr2). (3)

The variable r denotes the radius of microcracks. According to the fundamen-
tal work by Kachanov [6], the displacement jump can be decomposed into a
normal component and a shear component. The two components can be re-
lated respectively to the normal stress and shear stress vector applied to the
crack: −→

b = β(−→n · σ · −→n )−→n + γ [σ · −→n − (−→n · σ · −→n )−→n ] . (4)

The two coefficients involved in (4) are given by Kachanov [6]:

β =
16(1 − ν20)

3E0

r

π
, γ =

2
2 − ν0 β. (5)

E0 and ν0 are, respectively, the initial Young’s modulus and Poisson’s ratio
of undamaged material. According to (4), the normal displacement jump is
proportional to the normal stress applied to the crack. As the normal dis-
placement jump must be positive (opened cracks) or zero (closed cracks), the
following closure condition of crack have to be prescribed:{

(−→n · σ · −→n ) > 0, opened cracks

(−→n · σ · −→n ) ≤ 0, closed cracks.
(6)

By introducing this closure condition and the relation (4) into (3), the free
enthalpy function becomes:

wc =
1
2
σ : S0 : σ + ωh

{
(1 − ν0

2
) < −→n · σ · −→n >+ −→n

+ [(σ · −→n ) − (−→n · σ · −→n )−→n ]
}
· (σ · −→n ). (7)

The bracket 〈x〉+ defines the positive cone of the normal stress. The variable ω
denotes the crack density associated with the family of microcracks oriented in
the direction −→n and h is the elastic compliance of crack, respectively defined by

ω =
Nr3

Ω
, h =

16(1 − ν20)
3E0(2 − ν0) . (8)

Let’s denote Shom the fourth order effective elastic compliance tensor of
cracked material, the free enthalpy function (7) can be rewritten as wc =
(1/2)σ : Shom : σ. The effective elastic compliance tensor is the expressed as
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follows:

Shom = S0 + ωh {(−→n ⊗−→n )⊗̄δ + δ⊗̄(−→n ⊗−→n ) + c(−→n ⊗−→n ⊗−→n ⊗−→n )} . (9)

The coefficient c is equal to c = −ν0 for the opened crack and c = −2
for the closed crack. The free enthalpy function (7) and the effective elastic
compliance tensor (9) are obtained for the brittle material containing one
set of microcracks. This result should be extended to the material containing
cracks with arbitrary distributions. This can be done using the assumption
of noninteraction between microcracks. The overall free enthalpy of cracked
material is obtained by the addition of the contributions from each set of mi-
crocracks. To do this, let us define a continuous crack density function, noted
by ω(−→n ), to represent an arbitrary distribution of microcracks in the space
orientation. The macroscopic free enthalpy can be obtained by the integra-
tion of the function (7) over all the space orientations on the surface of unit
sphere, denoted by S2. This surface is decomposed into two complementary
but nonoverlapped subdomains, respectively, the subdomain S2+ correspond-
ing to the orientations of opened cracks and the subdomain S2− corresponding
to the orientations of closed cracks [11]. Thus, we have:

Wc =
1
2
σ : S0 : σ +

h

4π

∫
S2+

ω(−→n )(1 − ν0
2

)(σ · −→n ) < −→n · σ · −→n >+ −→n dS

+
h

4π

∫
S2

ω(−→n ) {(σ · σ) : (−→n ⊗−→n ) − σ : (−→n ⊗−→n ⊗−→n ⊗−→n ) : σ}dS.

(10)

In general loading condition, the integral form (10) of the free enthalpy can
not be analytically evaluated. A numerical integration procedure has to be
employed. In this chapter, a Gauss-type method is chosen for the numeri-
cal integration on the surface of the unit sphere [1]. Therefore, the surface
of the unit sphere is discretized in a limited number of orientations P . The
kth orientation is defined by the unit vector −→n k and associated to the weight
coefficient λk. The free enthalpy function (10) is then approximated by

Wc =
1
2
σ : S0 : σ + h

(
1 − ν0

2

) P1∑
k=1

λkωk(σ · −→n k) < −→n k · σ · −→n k >+ −→n k

+ h
P∑

k=1

λkωk
{
(σ · σ) : (−→n k ⊗−→n k) − σ : (−→n k ⊗−→n k ⊗−→n k ⊗−→n k) : σ

}
.

(11)

In this equation, P1 denotes the number of orientations corresponding to
opened cracks. According to this approximation, the effective elastic compli-
ance tensor (9) can be extended to an arbitrary distribution of microcracks:
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Shom = S0 + h(2 − ν0)
P1∑
k=1

λkωk(−→n k ⊗−→n k ⊗−→n k ⊗−→n k)

+h
P∑

k=1

λkωk

{−→n k ⊗−→n k)⊗̄δ + δ⊗̄(−→n k ⊗−→n k)

−2(−→n k ⊗−→n k ⊗−→n k ⊗−→n k)

}
. (12)

2.2 Crack Propagation and Damage Evolution

In the framework of thermodynamics, the damage evolution law is determined
by the formulation of a dissipation potential in the space of the conjugated
force associated with the damage tensor. However, the conjugated damage
force is usually a complex function of applied stresses and it is not easy to
give a simple physical interpretation. This renders difficult the experimental
identification of the damage law. In rock mechanics, as most laboratory tests
are performed in stress-controlled or strain-controlled conditions, it appear
simpler to formulate the damage evolution law directly in the stress or strain
space. Therefore, in the present work, a direct approach is preferred in order
to facilitate the experimental determination of the damage evolution law. The
damage evolution is directly related to the crack propagation criterion which
is based on the fracture mechanics. According to extensive experimental data
from triaxial compression tests on brittle rocks [10,16], the crack propagation
is controlled by both the normal stress and shear stress applied to the crack.
The crack growth is caused by increasing shear stress while the compressive
normal pressure has a role of preventing the initiation and growth of microc-
racks. Different crack propagation criteria can be determined from laboratory
data. Based on linear fracture mechanics, the real crack is replaced by a fic-
tive crack which is subjected to an equivalent tensile force. The fictive crack is
propagating in mode I. The equivalent tensile force is a function of the normal
stress and shear stress applied to the real crack. For the sake of simplicity, the
following linear function is used in the present work:

F (σ,−→n , r) =
√
r [σn + f(r) |−→τ |] − Cr ≤ 0, (13)

σn = −→n · σ · −→n , −→τ = (σ · −→n ) · (δ −−→n ⊗−→n ). (14)

In this criterion, σn is the normal stress applied to crack surfaces and, −→τ
denotes the shear stress vector applied to the crack. This shear stress is gen-
erated by the macroscopic deviatoric stress and represents the driving force
for the crack propagation. The term with the normal stress allows us to take
into account the pressure sensitivity of frictional materials. The parameter
Cr denotes the material resistance to crack propagation, which is physically
equivalent to the critical toughness (KIc) in fracture mechanics. f(r) is a
scalar valued function controlling the kinetics of crack propagation. It plays
the similar role as the hardening–softening function in plastic models. The
expression of this function may be determined from relevant numerical results



294 J.J. Zhou et al.

of micromechanical models and from numerical fitting of experimental data.
The general form of the function must, however, satisfy certain requirements.
For small crack extents, it should decrease, reflecting the relaxation of local
tensile stress as the crack grows away from the source; as the crack length
becomes large enough to interact with the stress fields of other nearby cracks
f(r) increases or reaches an asymptotic value. The first effect causes initially
stable growth and the second marks the onset of accelerated crack interaction
producing damage localization and macroscopic failure. The following simple
function having these basic features is here used:⎧⎪⎨⎪⎩

f(r) = η
(rf
r

)
, r < rf

f(r) = η, r ≥ rf .
(15)

The parameter rf is the critical crack radius for instable propagation of mi-
crocracks, and η is a parameter of model. By putting r = r0 in (13), we obtain
the damage initiation surface in stress space. Similarly, by putting r = rf in
(13), the macroscopic failure surface in stress space can be determined. There-
fore, the stress levels at the onset of damage growth and at the macroscopic
failure state can be entirely determined for any loading paths. The values of
the three parameters involved in the criterion (13) can be determined from
the stress–strain curves obtained from triaxial compression tests. For exam-
ple, the onset of damage initiation is identified as the point of a stress–strain
curve where the linear relationship is lost. The failure state is determined as
the pick stress of the stress–strain curves.

3 Determination of Permeability Variation

3.1 Damage Induced Dilatancy

According to the closure condition of microcracks (5), the crack is closed un-
der a compressive normal stress. The normal displacement jump vanishes.
However, in geomaterials like rocks and concrete, actual crack surfaces are
not smooth and contain different kinds of asperities. The roughness of crack
surface depends on the microstructure of material (grains and cementation).
Due to these asperities, a normal aperture can take place during the rela-
tive shear sliding along the crack surfaces. This normal aperture generates
a macroscopic volumetric dilatancy, which is commonly observed in brittle
geomaterials. Further, in closed cracks, the shear sliding is governed by the
local friction law, for instance the Mohr–Coulomb law. The friction law gener-
ally induces a hysteretic behavior during the loading–unloading process. As a
consequence on the macroscopic behavior, hysteretic loops are observed dur-
ing unloading–reloading cycles. However, this hysteretic phenomenon is not
studied in this work.
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Let’s denote the normal aperture of cracks in the orientation −→n by e(−→n ).
It is a constant (in average sense) for a penny-shaped crack. Therefore, the
tensor of damage-related irreversible strains in the constitutive equations can
be determined by the integration of normal aperture over all the space orien-
tations:

ε = Shom : σ + εr, εr =
1
4π

∫
S2

N

Ω
e(−→n )(−→n ⊗−→n )(πr2)dS. (16)

The evolution of the normal aperture is associated to the rate of damage
evolution. It is assumed that the normal aperture increment is proportional
to the increment of average crack radius, that is, de = χ dr, with χ being
a proportionality coefficient depending on the geometrical roughness of the
crack faces. In general, the proportional coefficient χ should be a function of
damage state. However, in the present work, only a constant value is used as
a simplified case of the model.

3.2 Estimation of the Permeability Variation

The permeability of a cracked medium is composed of two parts; the initial
permeability k0 due to initial porosity, and the crack enhanced permeability
kc. The total permeability is given by k = k0 + kc. In this work, a simplified
case is considered. It is assumed that all cracks are embedded in a porous
medium and then connected to the pore networks. In real situations, a certain
number of cracks may be hydraulically isolated and do not contribute to
the variation of permeability. Therefore, this assumption should lead to an
overestimation of the real permeability variation. The crack permeability is
essentially due to the crack aperture and evolves with crack propagation.
The average crack aperture is associated to the crack radius. Therefore, the
crack permeability directly depends on the microcrack distribution, which is
determined using the anisotropic damage model presented in Sect. 3.1. As
the microcrack distribution is orientation-dependent, the crack permeability
induces an anisotropic character of fluid flow.

Consider now a RVE of rock mass, composed of a porous matrix and a
random distribution of microcracks, subjected to a uniform pressure gradient
on the boundary. If all the cracks are fully interconnected to make a flow
network, the RVE can be assumed to be a homogeneous, anisotropic porous
medium. It obeys to the Darcy’s law, the apparent flow velocity −→v of fluid is
related to the macroscopic pressure gradient ∇p through a linking symmetric
tensor k called the permeability tensor:

−→v = −k
μ
∇p = − (k0 + kc)

μ
∇p. (17)

The parameter μ is the dynamic viscosity of fluid.
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The present study is now focussing on the determination of crack perme-
ability. The crack permeability tensor kc is regarded as a function of the crack
orientation −→n , average radius variation r(−→n ) and average aperture e(−→n ). For
the set of cracks in the given orientation −→n , the fluid flow velocity is assumed
to be described by the Navier–Stokes equation for laminar flow between two
parallel plates:

−→v c(−→n ) = − λ

12
1
μ
e(−→n )2(δ −−→n ⊗−→n )(∇p)c. (18)

(∇p)c is the local pressure gradient applied to the crack. δ denotes the second
order unit tensor. The positive scalar λ, less than the unity, is introduced to
take into account the fact that every part of a crack does not work as a conduit.
But some parts may be left as dead end. When λ = 1, the classic cubic law is
recovered [13]. However, it is important to point out that the use of Navier–
Stokes equation for flow in cracks represents a quite strong assumption. The
validity of this equation for fluid flow between rough surfaces of crack is not
proved. It is used here for the sake of simplicity because it provides with a
first approximation to real flow regime. The local pressure gradient may be re-
lated to the macroscopic gradient by an appropriate localization law [5]. In this
model, we have used a simplified law by assuming that (∇p)c = δ·∇p. This im-
plies that the local pressure gradient is also uniform and equals to the macro-
scopic one. Therefore, local deviations of pressure gradient are neglected. By
analogy to the Voigt’s bound of elastic compliance tensor of a cracked material,
this simplification should correspond to the upper bound of crack permeability.

The macroscopic fluid velocity −→v is determined from the average of local
crack velocity −→v c over the related volume:

−→v = −k0

μ
∇p+

1
Ω

∫
Ω

−→v cdΩ = −k0

μ
∇p+

1
Ω

∫
Ωc

−→v cdΩc. (19)

Ωc denotes the volume occupied by the microcracks. According to the anisotropic
damage model presented in Sect. 3.1, the volume occupied by the set of cracks
in the orientation −→n may be expressed by dΩc(−→n ) = N.e(−→n ).πr(−→n )2. The
total crack volume can be obtained by integration over all the space orienta-
tions. Therefore, the macroscopic velocity can be rewritten as:

−→v = −k0

μ
∇p+

N

Ω
1
4π

∫
S2

−→v c(−→n )e(−→n )πr(−→n )2dS. (20)

Introducing (18) into (20), the macroscopic flow velocity is finally expressed by

−→v = −k0

μ
∇p+

(
− 1
μ

)
λ

12
N

Ω
1
4π

∫
S2

e(−→n )3πr(−→n )2(δ −−→n ⊗−→n )dS · ∇p. (21)
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Comparing (21) with the macroscopic Darcy law (17), the macroscopic crack
permeability tensor can be determined as follows:

kc =
λπ

12
N

Ω
1
4π

∫
S2

e(−→n )3r(−→n )2(δ −−→n ⊗−→n )dS. (22)

By using the same numerical integration method as that used for the cal-
culation of effective elastic compliance tensor, the components of the crack
permeability can be approximated by

kc =
λπ

12
2N
Ω

P∑
k=1

wke(−→n k)3r(−→n k)2(δ −−→n k ⊗−→n k). (23)

4 Numerical Simulations

The proposed coupled model contains nine parameters, which can be de-
termined from a series of triaxial compression tests with different confining
pressures. The initial elastic constants of intact material, E0 and ν0, are de-
termined from the linear part of stress–strain curves. The parameters involved
in the crack propagation criterion; r0, rf , η, and Cr; can be identified draw-
ing the damage initiation surface (initial yield surface) for r = r0 and the
failure surface for r = rf in the conventional p − q stress plane. The damage
initiation surface is determined from the stress level where the linearity is
lost while the failure surface is obtained from the peak stresses. The normal
dilation parameter χ and the crack number involved in the RVE can be es-
timated from the nonlinear responses of the axial and radial strains during
a triaxial compression test. Finally, the roughness coefficient of crack faces
λ can be determined from experimental data on the increase of permeability
during a triaxial compression test. The proposed model is applied to a typ-
ical brittle rock, sandstone. For this material, the typical values of model’s
parameters are as follows: E0 = 20, 300MPa, ν0 = 0.26, r0 = 3×10−3 m, rf =
9× 10−3 m, Cr = 1.06MPa

√
m, η = 9.75× 10−3, N = 6.3× 106, χ = 0.0005,

λ = 0.083.
Figure 1 shows the simulation of two triaxial compression tests. There is

a good agreement between the numerical simulations and experimental data.
The proposed anisotropic damage describes the main features of mechanical
behaviors of typical brittle rocks such as nonlinearity, volumetric dilatancy,
and pressure dependency. For the determination of the variation of perme-
ability due to crack growth, an isotropic initial permeability is assumed. Fur-
ther, in each orientation, the number of microcracks remains the same but
the average crack radius is different. The average radius of cracks in each
orientation is explicitly determined by the propagation criterion and the aver-
age normal aperture is determined using the dilatancy coefficient. Numerical
predictions of the variations of permeability in the axial direction during a
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Fig. 1. Simulation of a triaxial compression test with (a) 5MPa (b) 20 MPa con-
fining pressure (the continuous lines are numerical simulations)

triaxial compression test are shown in Fig. 2 for different confining pressures.
Unfortunately, experimental data on the permeability variation are not avail-
able for this rock under such test conditions. It is then impossible to give a
quantitative comparison. However, from the qualitative point of view, these
are qualitatively in agreement with experimental data obtained in brittle rock
materials, mentioned in the first part of the chapter.
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Fig. 2. Variation of the axial permeability due to crack propagation in triaxial
compression tests with different confining pressures

5 Conclusions

An anisotropic damage model is proposed by taking into account the variation
of permeability due to growth of microcracks. The formulation of the model
is based on micromechanical analysis and experimental evidences from brittle
materials like rocks and concrete. The damage evolution is determined from
the crack propagation condition. By assuming fully connected microcracks,
the permeability variation due to crack growth is explicitly coupled with the
evolution of mechanical damage of material. The roughness of crack faces is
taken into account. The proposed model is able to describe the main features
of mechanical behaviors of brittle materials and the coupling with hydraulic
flow. The simulations given by the proposed model are qualitatively in agree-
ment with experimental data. However, it is a progressing but promising work,
extensive experimental validation will be necessary to check the performance
of the model. Some extensions could also be introduced, for example consid-
ering a partial crack connectivity, to improve the performance of the model.
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Abstract. We develop a physics-based slope failure initiation model that considers
deformation and strain localization based upon three-phase continuum mixture the-
ory for variably saturated porous media. The spatial and temporal variations in pore
pressures needed to drive the slope stability model are simulated with a recently de-
veloped integrated hydrology model (InHM). To capture unsaturated soil response,
the slope model has been formulated in the context of a three-phase material that
explicitly accounts for the effect of the suction stress. The coupling of InHM to a
rigorous slope stability model makes it possible, for the first time, to quantitatively
investigate at the field-scale the nonintuitive interplay between fluid and hillslope
processes that control hydrologically driven slope failure initiation.

1 Introduction

Landslides occur when earth material moves rapidly downslope after failing
along a shear zone. Debris flows are differentiated from landslides by the
pervasive, fluid-like deformation of the mobilized material. The formation of
debris flows most often occurs as a result of a landslide partially or completely
mobilizing into a debris flow. A physics-based characterization of debris flow
initiation is important because of the rapid and destructive nature of these
events.

A comprehensive physics-based model, known as InHM, was recently de-
veloped [5] and tested [3, 6] to simulate fully coupled near-surface hydrologic
response. InHM can be employed to calculate subsurface fluid pressures in
variably saturated soils. These fluid pressures can, in turn, be used to predict
solid deformation and slope movement, as well as calculate several indicators
of impending slope failure.

Also recently, a mechanical model for partially saturated soils has been
formulated that utilizes nonlinear continuum mechanics applied to a three-
phase solid–water–air material [1,2]. This mechanical model satisfies the three



304 R.I. Borja et al.

master balance laws: mass, linear momentum, and energy, and, furthermore,
elucidates the role of entropy inequality on the development of specific consti-
tutive laws for a soil skeleton exhibiting nonlinear irreversible responses. The
model uses an effective Cauchy stress tensor motivated by principles of ther-
modynamics, as well as the Cam-Clay theory of critical state soil mechanics
in which the yield function depends not only on the effective stress but also
on the suction stress.

The objective of this paper is to demonstrate how these recently
developed hydrologic response and solid deformation models may be inte-
grated to study the physics of hydrologically driven slope failure initiation in
variably saturated porous media. The procedure consists of sequential com-
putational modeling in which the physics-based model InHM is first used to
calculate the pore pressure response, which is then supplied to the deforma-
tion model to predict the solid deformation and stress responses. The latter
responses may be used to predict slope failure initiation using different sta-
bility indicators.

2 Integrated Hydrology Model

The comprehensive InHM was designed to quantitatively simulate fully cou-
pled near-surface hydrologic response. The important and innovative
characteristics of InHM include (i) adaptive temporal weighting and time step-
ping, (ii) robust and efficient solution methods with the solution precision and
mass-balance error stipulated by convergence tolerances, (iii) solution of one
system of discrete equations with spatially variable properties and boundary
conditions that requires no iteration between separate surface and subsurface
models and no artificial boundary conditions, and (iv) no a priori assumption
of a specific hydrologic-response mechanism. InHM is capable of simulating
each of the hydrologic-response mechanisms: groundwater discharge, subsur-
face stormflow, Horton and Dunne overland flow. Infiltration and exfiltration
rates are determined in space and time by spatially variable subsurface prop-
erties, spatially and temporally variable subsurface pressure-head gradients,
and spatially and temporally variable surface water depths. The flow of water
in both the surface and subsurface continua is therefore intimately coupled.
The governing equations are discretized in space using the control volume FE
method. Each coupled system of nonlinear equations in an InHM simulation is
solved implicitly using Newton iteration. Efficient and robust iterative sparse
matrix methods are used to solve the large sparse Jacobian systems. Subsur-
face flow, in 3D variably saturated porous medium and inside macropores, is
calculated by

∇ · faq ± qb ± qe = fv
∂φSw
∂t

, (1)

where q is the Darcy flux, qb is a specified rate source/sink, qe is the rate of
water exchange between the subsurface and surface continua, φ is porosity, Sw
is degree of saturation, t is time, fa is the area fraction associated with each
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continuum, and fv is the volume fraction associated with each continuum.
The Darcy flux is given by

q = −krw ρwg
μw

k · ∇(ψ + z), (2)

where krw is the relative permeability, ρw is the density of water, g is the
gravitational acceleration, μw is the dynamic viscosity of water, k is the in-
trinsic permeability vector, z is the elevation head, and ψ is the pressure head
(note, ψ is less than zero above the water table, zero at the water table, and
greater than zero below the water table). The transient flow of water on the
land surface (fully coupled to the subsurface) is estimated by the 2D dif-
fusion wave approximation of the depth-integrated shallow water equations,
with surface water velocities calculated with a 2D form of the Manning wa-
ter depth/friction discharge equation. The subsurface fluid pressures [passed
(x, y, z, t) to the slope stability model] are calculated by

pw = ρwgψ. (3)

3 Solid Deformation Model

We consider a three-phase mixture of solid, water, and air phases and write
balance of mass for each constituent as

dρα

dt
+ ραdiv(ν) = −div(wα), (4)

where d(·)/dt is a material time derivative following the solid phase motion,
ν is the solid phase velocity, ρα is the partial mass density of constituent
α (= s, w, a for solid, water, and air, respectively), and wα is the Eulerian
relative flow vector of the α constituent relative to the solid phase (ws = 0,
by definition).

Introducing Kα as the bulk modulus of the α constituent, then (1) can be
re-written as

dφα

dt
+
φα

Kα

dpα
dt

+ φαdiv(ν) = − 1
ρα

div(wα), (5)

where φα is the volume fraction, pα is the intrinsic pressure, and ρα is the
intrinsic mass density of the α constituent (note: ρα = φαρα).

Balance of linear momentum for each constituent may be expressed as

div(σα) + ραg + hα = ρα
dανα

dt
, (6)

where σα is the partial Cauchy stress tensor, g is the gravity acceleration
vector, hα is the volume–density force vector exerted by the other constituents
on the α constituent, να is the velocity of the α constituent, and dα(·)/dt is
the material time derivative following the α constituent. Summing (6) for all
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the three constituent phases gives

div(σ) + ρg =
∑

α=s,w,a

ρα
dανα

dt
, (7)

where σ = σs+σw+σa is the total Cauchy stress tensor, and ρ = ρs+ρw+ρa

is the total mass density of the mixture.
LetK be the kinetic energy per unit volume and I the total internal energy

per unit volume of a three-phase mixture. The first law of thermodynamics
may be written as

K̇ + İ = P, (8)

where P is the mechanical power per unit volume and the superposed dot,
(·), denotes a material time derivative relative to the mixture taken as a
whole. Using balance of mass and balance of linear momentum, we obtain the
following expression for the rate of change of internal energy:

İ =
∑

α=s,w,a

σα : dα, (9)

where dα is the rate of deformation tensor for the α constituent. Assuming
Ks = inf (incompressible solid grains, which is a reasonable assumption for
soils), (9) can be converted into the form

İ = σ′ : d + İ ′, (10)

where d is the solid rate of deformation tensor,

σ′ = σ + [Srpw + (1 − Sr)pa]1, (11)

is a Cauchy effective stress tensor conjugate to d and analogous to that pro-
posed by Schrefler [4], and İ ′ consists of additional terms not associated with
the deformation of the solid phase. The effective Cauchy stress tensor σ′ dif-
fers from the total Cauchy stress tensor σ by an isotropic pore pressure equal
to the average of the intrinsic pore water and pore air pressures weighted ac-
cording to the degree of saturation Sr. Thus, the total Cauchy stress tensor
lends itself to the additive decomposition

σ = σ′ − [Srpw + (1 − Sr)pa]1. (12)

This form may be used to develop the matrix equation for the finite element
problem.

4 Finite Element Model

The finite element matrix equation for the solid deformation model takes the
form

FINT(d,pa,pw) = FEXT, (13)
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where FEXT is the nodal external force vector induced by gravity load, and
FINT is the internal nodal force vector induced by the solid matrix displace-
ment vector d and the prescribed pore water and pore air pressure vectors
pw and pa, respectively. Specifically, the internal nodal force vector FINT is
obtained from the total Cauchy stress tensor {σ} through an equation of the
form

FINT =
∫
V

BT{σ} dV, (14)

where B is the strain–displacement transformation matrix. From (12), the
functional relationship FINT = FINT(d,pa,pw) is evident.

Using an uncoupled solution strategy, the vectors pw and pa may be de-
termined from the hydrology model (for near-surface conditions the pore air
pressure is nearly atmospheric, so pa = 0 is typically assumed in this case).
The vector FEXT is constant for quasi-static loading; thus, the slope deforma-
tion response d is driven exclusively by the prescribed temporal variations of
pw. To better elucidate the overall global algorithm, an outline of the solution
is presented in Fig. 1.

Putting (13) in residual form gives

R(d) = FEXT − FINT(d,pa,pw). (15)

We then want to dissipate the residual nodal force vector R by finding the
response vector d̄ at each time instant in the solution. Here we utilize New-
ton’s method to find the roots of the nonlinear equations, and construct the

solve F INT (d, pa, pw) =FEXT

stability checks: 
(a) det(A) = 0? 
(b) det(cep) = 0?
(c) det[sym(cep)] = 0? 

output plots:

next time step

InHMp pinput pa and pw

time step loop

(a) deformed mesh
(b) contours of stability indicators  

Fig. 1. Algorithm for hydrologically driven finite element deformation analysis of
slopes
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InHM element Solid deformation element

Pore pressure node Displacement node

Fig. 2. Interfacing InHM with the solid deformation model

consistent tangent operator as

R′(d) = −F ′
INT(d,pa,pw) = −∂FINT/∂d. (16)

Asymptotic quadratic convergence of the iterations can be expected from
Newton’s method provided that a consistent algorithmic tangent operator
R′(d) is used.

The integrated hydrology model InHM generates spatial and temporal
descriptions of calculated pore water pressures within the slope using conven-
tional finite element approximations. Figure 2 shows a finite element used by
InHM, an eight-node brick element with a trilinear interpolation of the pore
water pressure field. The standard numerical integration for this element is a
2× 2× 2-point Gauss rule in the interior of the element, denoted by the sym-
bol ×. In the solid deformation model we adopt a similar level of interpolation
so that the interpolated pore water pressures at the Gauss points can be used
directly to evaluate the total stresses in the solid deformation model. Note
that mesh locking is not engendered by the same level of interpolation for the
pore water and solid displacement fields since the present approach entails an
uncoupled analysis. By constraining motion in the out-of-plane direction, the
brick element shown in Fig. 2 may be used for plane strain loading conditions
as well.

5 Numerical Example

For preliminary numerical investigations we consider a simple example con-
sisting of a variably saturated slope deforming in plane strain. The slope has
horizontal and vertical dimensions of approximately 50 and 30 m, and is in-
clined at an angle of about 30◦, see Fig. 3. The domain is spatially discretized
using 527 constrained brick finite elements described in Sect. 4. Each element
consists of nodes with horizontal and vertical displacement degrees of free-
dom, as well as pore water and pore air pressure degrees of freedom. The pore
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Fig. 3. Undeformed and deformed meshes (all coordinates in meters)

air pressure is assumed to remain equal to atmospheric everywhere within the
slope, but the spatial distribution of the pore water pressure has been calcu-
lated by InHM and is used to drive the deformation model. For purposes of
deformation analysis all nodes supporting the bottom of the slope are assumed
to be pinned to the bedrock.

The soil is modeled as an elastoplastic material yielding according to the
modified Cam-Clay theory and enhanced to accommodate the effect of suction
on the yield condition. The mathematical framework of the constitutive model
is based on a three-phase solid–water–air mixture formulation presented by
Borja [1]. For the record, the material parameters used in the present analysis
are the same as those used by Borja [1].

The numerical simulation of the problem consists of two steps. The first
step consists of establishing the initial condition, whereas the second step
consists of calculating the deformation produced by the imposed changes in
the pore water pressures. The initial state is characterized by a bilinear pore
water pressure distribution in the vertical direction. The ground water table
marking the position of zero pore pressures is located at a depth of 2.5 m below
the slope. Below the ground water level the pore water pressure increases
hydrostatically; above the ground water table tensile pore water pressures
(i.e., suction stresses) exist in the slope, as generated by InHM. For purposes
of describing the prevailing initial yield condition, the soil is assumed to be
normally consolidated everywhere.

The second step of the simulation consists of raising the ground water
table elevation by about 0.9 m. This has the effect of saturating an initially
unsaturated zone, as well as increasing the pore water pressures everywhere
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Fig. 4. Shear strain distribution (in decimals) after water table rise

in the slope. Figure 4 depicts the distribution of the shear strains in the do-
main after the water table rise, clearly indicating a significant shear strain
concentration within a sub-region of the slope where the unsaturated zone
has become saturated. This shear strain distribution agrees with a high dis-
placement gradient forming in the vicinity of the water table rise. The vertical
displacements are one order of magnitude smaller than the horizontal displace-
ments. However, due to the imposed displacement boundary conditions where
the deformations are constrained at both the top and bottom of the slope,
the maximum deformations occur at about the mid-height of the slope.

6 Closure

We have developed a physics-based slope failure initiation model that con-
siders deformation and strain localization based upon three-phase continuum
mixture theory for variably saturated porous media. The spatial and tempo-
ral variations in pore pressures needed to drive the slope stability model can
be simulated with a recently developed InHM. To capture unsaturated soil
response, the slope model has been formulated in the context of a three-phase
material that explicitly accounts for the effect of the suction stress. The cou-
pling of a rigorous slope stability model to a hydrology model will make it
possible for the first time to quantitatively investigate at the field-scale the
nonintuitive interplay between fluid and hillslope processes that control hydro-
logically driven slope failure initiation. Work is currently in progress to apply
the modeling approach to an experimental catchment that has experienced
slope failure.



Slope Failure Initiation 311

Acknowledgments

The first author acknowledges the support of National Science Foundation
Grant No. CMS-0201317. The second author is currently supported by an
Erwin-Schroedinger Fellowship provided by the Austrian Science Fund (FWF)
during his visit to Stanford University. The third and fourth authors have
benefited from their long and ongoing collaboration with Joel VanderKwaak
and partial support from the National Science Foundation Grant No. EAR-
0409133.

References

1. Borja, R.I. 2004. Cam-Clay plasticity. Part V: A mathematical framework for
three-phase deformation and strain localization analyses of partially saturated
porous media. Comput. Methods Appl. Mech. Engrg. 193, 5301–5338

2. Borja, R.I. 2006. On the mechanical energy and effective stress in saturated and
unsaturated porous continua, Int. J. Solids Struct. 43, 1764–1786

3. Loague, K., C.S. Heppner, R.H. Abrams, J.E. VanderKwaak, A.E. Carr, and
B.A. Ebel. 2005. Further testing of the Integrated Hydrology Model (InHM):
Event-based simulations for a small rangeland catchment located near Chick-
asha, Oklahoma. Hydrol. Process. 19, 1373–1398

4. Schrefler, B.A. 1984. The finite element method in soil consolidation (with ap-
plications to surface subsidence), Ph.D. Thesis, University College of Swansea,
C/Ph/76/84

5. VanderKwaak, J.E. 1999. Numerical simulation of flow and chemical transport in
integrated surface-subsurface hydrologic systems. Ph.D. Dissertation, University
of Waterloo, Waterloo, Ontario, Canada

6. VanderKwaak, J.E. and K. Loague. 2001. Hydrologic-response simulations for
the R-5 catchment with a comprehensive physics-based model. Water Resour
Res 37, 999–1013



A Survey of Some Mathematical Results
for Highly Frictional Granular Materials

G.M. Cox, N. Thamwattana and J.M. Hill

University of Wollongong, Australia
gcox@uow.edu.au

Abstract. Recently the authors have exploited the notion of a highly frictional
granular material to derive analytical solutions for certain problems. Generally, we
use the term highly frictional granular material to refer to those materials which
possess an angle of internal friction such that the trigonometric sine of the angle of
internal friction is close to unity. There are many granular materials for which this
is the case, such as black and brown coal and limestone powder. For such materials
formal perturbation solutions can be derived for which the zeroth-order solution
corresponds to an angle of internal friction precisely equal to 90◦, while the full
perturbation solution applies to a larger range of angles of internal friction. In this
paper, we present a survey of the ideas and the theory underlying highly frictional
granular materials and catalogue the major solution types which are available for
such materials. We illustrate some of the recent results obtained by using these
analytical solutions to model the problems of determining the stress and velocity
distributions in a gravity flow hopper, and the stress profiles beneath a stockpile
and within a stable rat-hole.

1 Introduction

Modelling granular materials is an area that still provides an unlimited source
of interesting challenges and problems, as it has done for many years. This
is due to the diversity of material properties and material behaviour that
granular materials can exhibit, which often cause some surprising physical
behaviour under seemingly simple conditions. In this paper, we present a sur-
vey of some recent results for those granular materials termed highly frictional
granular materials. These results have been obtained by the authors for the
classical Coulomb-Mohr continuum theory of granular materials, and applied
to the three granular problems of determining the stress and velocity distri-
butions in a gravity flow hopper, and the stress profiles beneath a stockpile
and within a stable rat-hole.

We use the term highly frictional granular material to refer to any granular
material which has the property that the value of the trigonometric sine of the
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angle of internal friction is close to unity. Examples of such materials include
black and brown coal and limestone powder (see, for example, Australian
Standard [1], Sture [2], Perkins [3, 4] and Perkins and Gui [5]). The major
issue here is not the actual magnitude of the angle of internal friction in
relation to π/2, but rather the proximity of the sine of the angle in relation
to unity, noting that even a value of 64 degrees gives a value close to one,
namely sin 64◦ = 0.9. We emphasize that the limiting value φ = π/2 does not
necessarily correspond to the case of infinite friction, but rather inter-particle
slip may still occur due to the alternative possibility of slip under zero normal
traction (see, for example, the discussion given by Lynch and Mason [6]). For
further discussion on highly frictional granular materials, we refer the reader
to Cox et al. [7] and Thamwattana et al. [8].

In the following section, we state the basic equations governing the stress
and velocity distributions for two-dimensional plane strain and axially sym-
metric steady quasi-static flow according to the classical Coulomb-Mohr con-
tinuum theory for granular materials for the stress distribution and the
non-dilatant double-shearing theory (Spencer [9, 10]) for the velocity field.
Some recently determined exact solutions of the governing equations are sum-
marized in Sect. 3, while applications of some of these solutions are illustrated
graphically in Sects. 4–6 for the three problems of determining the stress and
velocity profiles for gravity flow in a hopper, and the stress profiles beneath
a stockpile and within a stable rat-hole, respectively.

2 Basic Equations

In this section we state the basic equations governing the stress and velocity
distributions according to the classical Coulomb-Mohr continuum theory for
the stress field, and the non-dilatant double-shearing theory for the velocity
field. In particular, we consider both two-dimensional plane strain and axially
symmetric equations for the three problems considered, where it is only the
boundary conditions that distinguish between each problem.

2.1 Two-Dimensional Plane Strain Equations

For steady quasi-static plane strain gravity flow, the equilibrium equations,
in the usual rectangular Cartesian coordinates (x, y) shown in Fig. 1a, are
given by

∂σxx
∂x

+
∂σxy
∂y

= 0,
∂σxy
∂x

+
∂σyy
∂y

= ρg, (1)

where g is the acceleration due to gravity and ρ is the bulk density, both
assumed constant, while σxx, σxy and σyy denote the non-zero physical com-
ponents of the Cauchy stress tensor. Assuming the usual stress decomposition

σxx = −p+ q cos 2ψ, σyy = −p− q cos 2ψ, σxy = q sin 2ψ, (2)
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Fig. 1. Coordinates for (a) plane strain and (b) axially symmetric problems

where p and q are the stress invariants given by

p = −1
2
(σxx + σyy), q =

1
2
{(σxx − σyy)2 + 4σ2xy}1/2, (3)

and ψ is the angle between the direction of the maximum principal stress and
the x-axis, in the direction of increasing θ, which can be expressed as

tan 2ψ =
2σxy

σxx − σyy , (4)

then the Coulomb-Mohr yield condition can be written in the form

q = p sinφ+ c cosφ, (5)

where c is the cohesion and φ is the angle of internal friction of the material,
both assumed constant. Thus, (1)–(5) constitute the governing equations for
the stress distribution for steady quasi-static plane strain gravity flow.

To determine the associated velocity distribution, we assume the non-
dilatant double-shearing theory (Spencer [9, 10]), which states that if u(x, y)
and v(x, y) are the non-zero physical components of the velocity vector in the
x and y directions, respectively, then under steady quasi-static plane strain
flow the velocity components satisfy

∂u

∂x
+
∂v

∂y
= 0,

(
∂v

∂x
+
∂u

∂y

)
cos 2ψ −

(
∂u

∂x
− ∂v

∂y

)
sin 2ψ = sinφ

(
∂v

∂x
− ∂u

∂y
− 2Ω

)
, (6)

where Ω is defined by

Ω = ψ̇ = u
∂ψ

∂x
+ v

∂ψ

∂y
. (7)

Thus, for a known stress distribution, the above equations constitute the gov-
erning equations for the associated velocity distribution for steady quasi-static
plane strain gravity flow.

Now, in the limit of φ = π/2, Thamwattana and Hill [11] show that the
governing equations for the stress distribution reduce to the single second



316 G.M. Cox et al.

order non-linear partial differential equation

∂2h

∂x2
− 2h

∂2h

∂x∂y
+ h2

∂2h

∂y2
= 0, (8)

where h = cotψ. Further, if the stream-function χ(x, y) is defined by

u(x, y) =
∂χ

∂y
, v(x, y) = −∂χ

∂x
, (9)

so that (6)1 is automatically satisfied, then (6)2 becomes

∂2χ

∂x2
− 2h

∂χ2

∂x∂y
+ h2

∂2χ

∂y2
=
∂h

∂x

∂χ

∂y
− ∂h

∂y

∂χ

∂x
, (10)

which is a second-order linear partial differential equation governing the as-
sociated velocity distribution for φ = π/2.

2.2 Three-Dimensional Axially Symmetric Equations

In terms of the cylindrical polar coordinates (r, ϕ, z) defined in Fig. 1b, the
equilibrium equations for steady quasi-static axially symmetric gravity flow
are given by

∂σrr
∂r

+
∂σrz
∂z

+
σrr − σϕϕ

r
= 0,

∂σrz
∂r

+
∂σzz
∂z

+
σrz
r

= ρg, (11)

where σrr, σrz, σzz and σϕϕ denote the non-zero physical components of the
Cauchy stress tensor, which admit the representation

σrr = −p+ q cos 2ψ, σzz = −p− q cos 2ψ, σrz = q sin 2ψ, (12)

where the invariants p and q are defined by

p = −1
2
(σrr + σzz), q =

1
2
{(σrr − σzz)2 + 4σ2rz}1/2, (13)

and ψ is given by

tan 2ψ =
2σrz

σrr − σzz . (14)

We note that physically ψ is the angle the direction of the maximum principal
stress makes with the r-axis, in the direction of increasing θ, and the Coulomb-
Mohr yield condition can be expressed in the form (5). We also note that in
axial symmetry we need to make an additional assumption regarding the hoop
stress σϕϕ. Here we assume the particular Haar-von Karman regime such that
the hoop stress is equal to the maximum principal stress, so that

σϕϕ = −p+ q. (15)

We comment that Cox, Eason and Hopkins [12] state that the plastic regimes
which agree with the Haar-von Karman hypothesis will give rise to solutions
that are most likely to be of the greatest significance to axially symmetric
problems. Further, the heuristic Haar-von Karman principle states that under
an axially symmetric condition the hoop stress is equal to either the maximum
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or the minimum principal stress, where here we assume the former. We note
that this choice differs from the traditional view (see Jenike [13, 14], Spencer
[15]), in which more physically realistic results for converging flow are believed
to be produced by assuming the hoop stress is equal to the minimum principal
stress, while (15) is believed to be more applicable for diverging flow. However,
here we adopt (15) in order to make analytical progress, but we emphasize
that the results produced upon assuming (15) satisfy the necessary physical
condition that the rate of work is non-negative, as detailed in Cox et al. [16].
As such, we adopt (15) and we keep in mind that the results obtained may not
be as physically applicable as those obtained when the hoop stress is equal to
the minimum principal stress. Thus, for steady quasi-static axially symmetric
gravity flow, the governing stress equations are given by (5) and (11)–(15).

Again, assuming the non-dilatant double-shearing theory as formulated
by Spencer [9, 10], the associated velocity distribution for steady quasi-static
axially symmetric flow is given by

∂u

∂r
+
∂v

∂z
+
u

r
= 0,(

∂v

∂r
+
∂u

∂z

)
cos 2ψ −

(
∂u

∂r
− ∂v

∂z

)
sin 2ψ = sinφ

(
∂v

∂r
− ∂u

∂z
− 2Ω

)
, (16)

where u(r, z) and v(r, z) are the non-zero physical components of the velocity
vector in the r and z directions, respectively, and Ω is defined by

Ω = ψ̇ = u
∂ψ

∂r
+ v

∂ψ

∂z
. (17)

Thus, for given ψ, the governing equations for the associated velocity distrib-
ution for steady quasi-static axially symmetric gravity flow are given by (16)
and (17).

Thamwattana and Hill [11] show that in the limit of φ = π/2 the govern-
ing stress equations reduce to the second-order non-linear partial differential
equation

∂2h

∂r2
− 2h

∂2h

∂r∂z
+ h2

∂2h

∂z2
− 1
r

(
∂h

∂r
− h∂h

∂z

)
= 0, (18)

where h = cotψ, and with the stream-function χ(r, z) given by

u(r, z) =
1
r

∂χ

∂z
, v(r, z) = −1

r

∂χ

∂r
, (19)

then from (16) and (17) we may deduce the second order linear partial differ-
ential equation

∂2χ

∂r2
− 2h

∂2χ

∂r∂z
+ h2

∂2χ

∂z2
− 1
r

(
∂χ

∂r
− h∂χ

∂z

)
=
∂h

∂r

∂χ

∂z
− ∂h

∂z

∂χ

∂r
, (20)

the solution of which determines the associated velocity distribution for
φ = π/2.
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3 Exact Solutions

In this section we list some of the numerous exact solutions to the governing
equations for plane strain flow (8) and (10) and for axially symmetric flow
(18) and (20). For further details of these solutions and their derivation, we
refer the reader to Thamwattana and Hill [11] and McCue, Johnpillai and
Hill [17].

3.1 Plane Strain Exact Solutions

Stress Solutions

Using Lie symmetry methods, the governing stress partial differential equa-
tion (8) remains invariant under certain one-parameter groups, which in turn
reduce (8) to an ordinary differential equation. The various functional forms
for h(x, y) are given by

1. h = f(y), 2. h = f(x), 3. h = −x+ f(y − x2/2),
4. h = yf(x− a log y), 5. h = f(x) − y/x, 6. h = f(y − log x)/x,
7. h = − log x+ f(y/x− log x), 8. h = xaf(y/xa+1), (21)

where f denotes an arbitrary function to be determined by solving the result-
ing ordinary differential equation. Each functional form in (21) gives rise to a
family of solutions, which are presented in Table 1. We note that throughout
this paper, a, b, C1, C2, C3 and C4 denote arbitrary constants while I(s), I1(s)
and I2(s) denote the three integrals defined, respectively, by

I(s) =
∫ s

t−1/2et/2dt+ C1,

I1(s) =
∫ s

t−1/3et/3dt+ C1, I2(s) =
∫ s

t−2/3et/3dt+ C1, (22)

and s is a parameter. We note that these integrals can be expressed in terms
of error functions, gamma functions and incomplete gamma functions, but it
is more convenient for our purposes to use (22).

Velocity Solutions

For each of the functional forms for h(x, y) given in (21), with the corre-
sponding solution in Table 1, there exists at least one functional form for
χ(x, y) which is also invariant under the one-parameter group and in turn
reduces the linear partial differential equation (10) to an ordinary differential
equation. Generally this particular stream-function is easier to solve for. We
present the various functional forms for χ(x, y) in Table 2, where we note that
for each h(x, y), there are at least two possible forms for χ(x, y). Here, we do
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Table 1. Exact solutions of (8) for the eight families of (21)

h(x, y) family solution for f

1. h = f(y) f = C1y + C2

2. h = f(x) f = C1x + C2

3. h = −x + f(ξ), ξ = y − x2/2 ξ = (f + log |C1f − 1|)/C1 + C2

4. h = yf(ξ), ξ = x − a log y ξ = a(log[f2 + C2
1 (1 + af)])/2 + C2

+
2 − a2C2

1

C1(4 − a2C2
1 )1/2

×
[
arctan

(
2f + aC2

1

C1(4 − a2C2
2 )1/2

)
− π

2

]
5. h = f(x) − y/x f = C1/x + C2x

2

6. h = f(ξ)/x, ξ = y − log x f = −2 + s1/2e−s/2I(s)/2

ξ = −1

2
log s +

1

4

∫ s

t−1/2e−t/2I(t)dt + C2

7. h = − log x + f(ξ), ξ = y/x − log x f = −ξ − 1 + s−1/2e−s/2I(s)/2

ξ = −1

4

∫ s

t−3/2e−t/2I(t)dt + C2

8. h = f(y)/x f = C2s
1/2es/2

(a = −1) y = −C2I(s)/2
8. h = f(ξ), ξ = y/x f = C2I(s)

(a = 0) ξ = C2[2s−1/2es/2 − I(s)]

8. h = xf(ξ), ξ = y/x2 f = C2[2s−1/2es/2 − I(s)]

(a = 1) ξ = −C2[2s−1/2es/2 + (1 − s)I(s)/s]/2

8. h = x2f(ξ), ξ = y/x3 f = C2[2s−1/2es/2 + (1 − s)I(s)/s]

(a = 2) ξ = −C2[2(s − 2)s−3/2es/2 + (3 − s)I(s)/s]/3

not present all the corresponding solutions to each functional form of χ(x, y),
but rather we present only the solutions for the functional form of 8 (i) (from
Table 2), for the four values of a = −1, 0, 1 and 2, and some of these solutions
are used to determine the stress and velocity distributions for the three gran-
ular problems examined in Sects. 4–6. In particular, Table 3 states the exact
parametric solutions for a = −1, 0, 1 and 2 corresponding to the functional
forms of h(x, y) = xaf(ξ) and χ(x, y) = xbg(ξ), where ξ(x, y) = y/xa+1.

3.2 Axially Symmetric Exact Solutions

Stress Solutions

On examining the governing partial differential equation (18) using Lie sym-
metry methods we may deduce the following six functional forms for h(r, z)

1. h = f(r), 2. h = zf(r), 3. h = f(r) − z/(r + a),
4. h = f(z + log r)/r, 5. h = − log r + f(z/r − log r),

6. h = raf(z/ra+1), (23)

which on substitution reduce (18) to an ordinary differential equation, and
each functional form gives rise to the families of solutions presented in Table 4.
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Table 2. The corresponding functional forms of χ(x, y) for the eight families of (21)

h(x, y) family corresponding χ(x, y) families

1. h = f(y) (i) χ = bx + g(y)
(ii) χ = (b + f(y))x + g(y)
(iii) χ = exg(y)

2. h = f(x) (i) χ = by + g(x)
(ii) χ = yf(x) + g(x)
(iii) χ = eyg(x)

3. h = −x + f(ξ) (i) χ = g(ξ)
ξ = y − x2/2 (ii) χ = exg(ξ)

(iii) χ = −x2/2 + g(ξ) +
∫

f(ξ)dx

4. h = yf(ξ) (i) χ = ybg(ξ)
ξ = x − a log y (ii) χ = log y + g(ξ)

(iii) χ = y log[yf(ξ)] + yg(ξ)
5. h = f(x) − y/x (i) χ = g(x)

(ii) χ = ey/xg(x)
(iii) χ = yf(x)/x − y2/(2x2) + g(x)

6. h = f(ξ)/x (i) χ = xbg(ξ)
ξ = y − log x (ii) χ = log x + g(ξ)

(iii) χ = g(ξ)/x

7. h = − log x + f(ξ) (i) χ = xbg(ξ)
ξ = y/x − log x (ii) χ = −(log2 x)/2 + g(ξ) +

∫
f(ξ)/x dx

8. h = xaf(ξ) (i) χ = xbg(ξ)
ξ = y/xa+1 (ii) χ = log x + g(ξ)

(iii) χ = xag(ξ), a �= −1
(iv) χ = (log[xf(y)])/x + g(y)/x, a = −1

Table 3. Exact solutions of (10), for h(x, y) = xaf(ξ), χ(x, y) = xbg(ξ) and
a = −1, 0, 1 and 2

a ξ(x, y) = y/xa+1 g(ξ)

−1 −C2I(s)/2 s−b/2(C3e
s/2 + C4)

0 C2[2s−1/2es/2 − I(s)] s−b/2(C3I(s) + C4)

1 −C2[2s−1/2es/2 + (1 − s)I(s)/s]/2 s−b/2(C3[2es/2 − s1/2I(s)] + C4)

2 −C2[2(s − 2)s−3/2es/2 s−b/2(C3[2s1/2es/2 + (1 − s)I(s)] + C4)
+(3 − s)I(s)/s]/3

Velocity Solutions

For each of the six functional forms in (23) for h(r, z) (where the correspond-
ing solutions are stated in Table 4) there is at least one functional form each
for χ(r, z) for which (20) is left invariant by the same one-parameter group
and which in turn reduces the linear partial differential equation to an or-
dinary differential equation. These functional forms for χ(r, z) are presented
in Table 5. Again, we do not present all the corresponding solutions to each
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Table 4. Exact solutions of (18) for the six families of (23)

h(r, z) family solution for f

1. h = f(r) f = C1r
2 + C2

2. h = zf(r) f = η′(r)/η(r)
η(r) = C2Ai(C1r) + Bi(C1r),
where Ai and Bi are Airy functions

3. h = f(r) − z/(r + a) f = [C1 + C2(3r2 + 8ar + 6a2)r2]/(r + a)

4. h = f(ξ)/r, ξ = z + log r f = s1/3e−s/3I1(s)/3

ξ =
1

3
log s − 1

9

∫ s

t−2/3e−t/2I1(t)dt + C2

5. h = − log r + f(ξ), f = −ξ − 1 − s−1/3e−s/3I2(s)/3
ξ = z/r − log r

ξ = −1

9

∫ s

t−4/3e−t/3I2(t)dt + C2

6. h = f(z)/r f = C2s
1/3es/3

(a = −1) z = −C2I2(s)/3
6. h = f(ξ), ξ = z/r f = C2I1(s)

(a = 0) ξ = C2[3s−1/3es/3 − I1(s)]

6. h = r2f(ξ), ξ = z/r3 f = C2[3s−2/3es/3 − I2(s)]

(a = 2) ξ = −C2[3s−2/3es/3 + (2 − s)I2(s)/s]/3

6. h = r3f(ξ), ξ = z/r4 f = C2[3s−1/3es/3 + (1 − s)I1(s)/s]

(a = 3) ξ = −C2[3(s − 3)s−4/3es/3 + (4 − s)I1(s)/s]/4

Table 5. The corresponding functional forms of χ(r, z) for the six families of (23)

h(r, z) family corresponding χ(r, z) families

1. h = f(r) (i) χ = bz + g(r)
(ii) χ = zf(r) + g(r)
(iii) χ = ezg(r)

2. h = zf(r) (i) χ = zbg(r)
(ii) χ = log z + g(r)
(iii) χ = z log[zf(r)] + zg(r)

3. h = f(r) − z/(a + r) (i) χ = g(r)

(ii) χ = ez/(r+a)g(r)
(iii) χ = zf(r)/(a + r) − z2/[2(a + r)2] + g(r)

4. h = f(ξ)/r (i) χ = rbg(ξ)
ξ = z − log r (ii) χ = log r + g(ξ)

(iii) χ = g(ξ)/r

5. h = − log r + f(ξ) (i) χ = rbg(ξ)
ξ = z/r − log r (ii) χ = −(log2 r)/2 + g(ξ) +

∫
f(ξ)/r dr

6. h = raf(ξ) (i) χ = rbg(ξ)
ξ = z/ra+1 (ii) χ = log r + g(ξ)

(iii) χ = rag(ξ), a �= −1
(iv) χ = (log[rf(z)])/r + g(z)/r, a = −1
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Table 6. Exact solutions of (20), for h(r, z) = raf(ξ), χ(r, z) = rbg(ξ) and
a = −1, 0, 2 and 3

a ξ(r, z) = z/ra+1 g(ξ)

−1 −C2I2(s)/3 s−b/3(C3e
s/3 + C4)

0 C2[3s−1/3es/3 − I1(s)] s−b/3(C3I1(s) + C4)

2 −C2[3s−2/3es/3

+(2 − s)I2(s)/s]/3 s−b/3(C3[3es/3 − s2/3I2(s)] + C4)

3 −C2[3(s − 3)s−4/3es/3 s−b/3(C3[3s2/3es/3 + (1 − s)I1(s)] + C4)
+(4 − s)I1(s)/s]/4

functional form of χ(r, z), but rather we state in Table 6 only the exact para-
metric solutions corresponding to 6(i) (from Table 5) for a = −1, 0, 2 and 3.
We note that these solutions are new, and have not been presented elsewhere.

4 Gravity Flow in Hoppers

In this section we present stress and velocity profiles according to some of
the exact solutions presented in Sect. 3 for gravity flow of granular materi-
als through two-dimensional plane strain wedge and axially symmetric cone
hoppers. In particular, we utilize the solution 8(a = 0) in Table 1, and the cor-
responding velocity solution in Table 3, for the wedge hopper, while solution
6(a = 0) in Table 4, with corresponding velocity solution in Table 6, is applied
to the cone hopper. We note that solution 8(a = 0) in Table 1 was the first
derived exact solution of (8) with two arbitrary constants, as detailed in Hill
and Cox [18].

For both wedge and cone hoppers b = 0, which results in C4 being elimi-
nated when u and v are determined according to (9) and (19), respectively. As
such, we require only three boundary conditions; two for the stress (symmetry
about vertical axis and Coulomb friction along the hopper walls) and one for
the velocity (assigning radial velocity along vertical axis). For further details
of the boundary conditions see [16,18,19].

Figures 2 and 3 show the variation of ψ and ru vs. θ for two-dimensional
plane strain wedge and axially symmetric cone hoppers, respectively. We note
each figure contains numerically determined profiles for three values of the
angle of internal friction φ, where the numerical solution for φ = π/2 corre-
sponds precisely to the appropriate exact solution for φ = π/2. For details of
the numerical solutions see [16, 18, 19]. We also note that the exact solutions
applying for φ = π/2 provide reasonable estimates to the numerical solution
for smaller values of φ.

Further, the exact parametric solutions 8(a = 0) in Table 1, with the cor-
responding velocity solution in Table 3, for a wedge hopper, and solution
6(a = 0) in Table 4, with corresponding velocity solution in Table 6, for a
cone hopper, have been utilized as the zeroth-order terms in a perturbation
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scheme in powers of 1− sinφ, as detailed in Cox et al. [16] and Thamwattana
and Hill [22]. These perturbation solutions extend the range of validity for
which the solutions provide a reasonable estimate. For example, Fig. 4 shows
the comparison of the solutions according to the perturbation solution, the
zeroth-order solution (φ = π/2) and a full numerical solution, where overall
the perturbation solution provides a better estimate than the zeroth-order
solution. We also note that these perturbation solutions becomes more accu-
rate for steeper hopper walls.

5 Beneath Stockpiles

Here we present profiles for the stress distribution beneath two-dimensional
plane strain parabolic and axially symmetric cubic stockpiles according to
some of the exact solutions presented in Sect. 3. In particular, we utilize the
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solution 8(a = 1) in Table 1 for the parabolic stockpile, while solution 6(a = 2)
in Table 4 is applied to the cubic stockpile. These solutions were first utilized
in Thamwattana and Hill [20].

The stockpiles are assumed to contain an inner rigid region and an outer
yield region, where the exact solutions hold in the outer yield region while
the stresses are extended continuously into the inner rigid region in a natural
manner. Further, the stress field is assumed to satisfy a free surface condition
on the top surface of the outer yield region and a symmetric condition about
the vertical axis. For full details see [20].

Figures 5 and 6 show the stress profiles for two-dimensional plane strain
parabolic and axially symmetric cubic stockpiles, respectively. In the outer
yield region the profile corresponds to the appropriate exact solution, namely
8(a = 1) in Table 1 or 6(a = 2) in Table 4, while the profile in the inner rigid
region is obtained by extending the stress solution continuously inwards as
detailed in [20]. We note that these profiles are non-unique.
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6 Stable Rat-Holes

In this section we present profiles for the stress distribution within stable two-
dimensional plane strain parabolic and axially symmetric cubic rat-holes, as
given by the exact solutions 8(a = 1) in Table 1 and 6(a = 2) in Table 4,
respectively. Thamwattana and Hill [21] utilize these solutions, and for full
details of the rat-hole problem we refer the reader to [21].

As detailed in [21], we assume stable rat-holes have formed within a stock-
pile or hopper, and that the granular material is at the limiting point of yield
and contained between vertical boundaries. Further, the material is assumed
to be resting on a rigid base with an infinitesimal central outlet while the up-
per surface of the rat-hole is assumed to be stress free. We note that Coulomb
friction at the boundaries is only satisfied in an average sense. Figure 7 shows
the resulting stress profiles for a two-dimensional plane strain parabolic and
an axially symmetric cubic rat-hole, respectively.
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1 Introduction

The problem of constructing constitutive equations (often called flow rules or
kinematic equations in the context of plasticity models) capable of describing
the deformation and flow of granular materials has proven to be one of the
most intractable and controversial problems in continuum mechanics, with
little consensus as to which model, or class of models, is best suited for the
task. For dense packings, granular materials exhibit solid-like behaviour. Each
grain is in contact with several others, each contact is non-impulsive, of finite
duration and the dominant interactions are by way of slip, rolling and rotation.
We shall consider two classes of model for this regime, each utilising the
concept of a yield condition, namely elastic- (or rigid-) plasticity (flow rules)
based upon a plastic potential and the class of so-called physically based
kinematic equations. Other types of model, for example, hypo-plasticity in
which there is no yield condition and in which both the elastic and irreversible
parts of the deformation are combined into a single set of equations, will not
be considered here.

The well known elastic–plastic model incorporating a yield condition and
plastic potential is used extensively in geotechnical and civil engineering in the
context of irreversible but pre-failure deformations. Physically based flow rules
have been used mainly in the context of post-failure rigid-plastic flow. There
is a vast literature on the elastic–plastic model and we will not attempt to re-
view it, except to say briefly that the original suggestion that methods of metal
plasticity (pressure independent yield condition), Hill [1] could be transferred
to problems of soil mechanics was made by Drucker and Prager [2], by the in-
corporation of a pressure dependent yield condition. The extension to history
dependent physical parameters (strain, work or density hardening/softening)
by Drucker et al. [3], provided a sufficiently realistic framework whereby
theoretical predictions could be compared with experimental results on pre-
failure deformations. Using the yield function as the plastic potential (asso-
ciated flow rule) allows only one parameter to model two physical quantities



330 D. Harris

(internal friction and dilatation), whereas for real soils, the magnitude of the
latter is rather less than that of the former and this gave rise to the adoption
of distinct yield and plastic potentials (non-associated flow rules), Mroz and
Szymansk [4]. Yield conditions for granular materials may be grouped into
two types, one in which yield and flow is independent of the intermediate
principal stress (the so called Mohr–Coulomb type material) and those for
which it depends on all three principal stresses (for want of a better name,
we shall refer to these as standard materials). The model presented here is
applicable to both types of material.

Physically based kinematic equations in which modes of flow, usually
shear, dilatation/consolidation and rotation, are specified relative to an under-
lying stress field in which frictional and other resistances have been exhausted,
have been considered by a number of authors, among which we may mention
Mandel [5], Geniev [6], de Josselin de Jong [7, 8], Spencer [9, 10], Mehrabadi
and Cowin [11] and Anand [12]. Such an approach has the advantage that
the flow may be visualised as being made up of a number of distinct contri-
butions, each contribution bearing a clear physical relationship both to the
other modes and to the underlying stress field (via the Coulomb yield di-
rections). Each model varies in the choice and nature of the modes of flow
and also their relationship to the stress field. Thus, Geniev [6] considered a
single shear mode aligned along one of the two Coulomb yield directions, de
Josselin de Jong [7] considered two shear modes together with an undeter-
mined spin on two slip directions which have orientations bounded by the
Coulomb yield directions. Spencer considers two shear modes one in each of
the Coulomb yield directions together with the spin of the principal axes of
stress, Mehrabadi and Cowin [11] consider two dilatant shear modes on the
Coulomb yield directions together with the spin of the principal directions of
stress, while Anand [12] considers two dilatant shears in two arbitrary slip di-
rections, together with the spin of the principal axes of stress. Various names
have been associated with the modes of flow, for example, shearing, sliding
and free rotation. In this paper we use the following terminology, the shearing
modes are called ‘slip’ and the rotational modes are called ‘spin’. We shall
refer to a model comprising two slip modes and a spin mode as a ‘double slip
and spin’ model.

There are theoretical difficulties associated with both types of model. Thus,
if the inertia terms are retained in the equations of motion and transient flows
in two space dimensions considered, both the non-associated flow rule and the
double-shearing model are linearly ill-posed for the Cauchy initial value prob-
lem, see Pitman and Schaeffer [13], Schaeffer [14] and Harris [15, 16]. In fact,
for transient planar deformations, any model for which the velocity character-
istic directions (slip directions) do not coincide with the stress characteristic
directions suffers loss of hyperbolicity for such flows and is linearly ill-posed
(for example, we may cite all non-associated flow rules, de Josselin de Jong [8],
Anand [12]). Any model which uses the spin of the principal axes of stress
to ensure coincidence of the slip and Coulomb yield directions is also linearly
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ill-posed (for example, Spencer [9], Mehrabadi and Cowin [11]). Thus, the
double-shearing model is ill-posed due to the way in which the spin of the
principal axes of stress is incorporated into the constitutive formulation.

The present author, Harris [17], has shown that the plastic potential model
may also be considered to have a physical basis, in the case of planar flows,
comprising two equal strength dilatant shear slip modes together with a spin
mode. For an associated flow rule, the direction of the shear modes (slip lines)
coincide with the Coulomb yield directions, for a non-associated flow rule, the
slip lines are distinct from the Coulomb yield directions. For an associated
flow rule, the spin is arbitrary, while for a non-associated flow rule, the spin
may be identified with half the vorticity. The dilatant double-shearing model
and the plastic potential model may also be combined into a single model,
as demonstrated in Harris [18], governed by a common set of equations. The
present paper extends this work.

It is the author’s contention that the reason for the lack of success in
constructing a continuum model for the flow and deformation of granular
materials lies in the following explanation. The space averaged response to
loading by forces of these essentially discrete systems in which the grains
have finite size cannot be encompassed in a standard continuum formulation
of strain, deformation rate and symmetric stress tensor. In particular, for
transient flows, the averaged grain rotation fields in a standard continuum
are inadequate for the description of the kinematics. Ultimately, this is the
reason for the loss of hyperbolicity of post-failure rigid-plastic models and the
consequent linear ill-posedness of many models of granular materials.

In this paper, we further develop a model proposed in Harris and Grekova
[19], which has a domain of well-posedness (namely, isochoric flows). We postu-
late a general three-dimensional constitutive equation, which for planar flows
comprises double slip and spin. The model allows for both non-coaxial and
coaxial flow and we demonstrate that a non-coaxial dilatant shear may, under
some simple assumptions, evolve into a coaxial simple shear. There is some ev-
idence in the literature, see for example Roscoe [20], Savage and Lockner [21],
that such flows are indeed initially non-coaxial, tending to coaxiality as the
accumulated strain increases.

For the model presented here, non-coaxiality is closely associated with
transient or unsteady flows i.e., there is some quantity associated with the
flow which is time dependent. It is thus necessary to follow the history of
the flow in order to determine the non-coaxiality, proceeding directly to as-
ymptotic steady state conditions, as is common practice in plasticity theory,
will lead to some indeterminacy. In particular, a completely quasi-static defor-
mation or flow, and here is meant both translational and rotational loading,
will not determine the non-coaxial behaviour. Most experiments performed in
geotechnical engineering are carefully controlled to ensure both quasi-static
conditions and the coincidence of the principal axes of stress and deformation-
rate (although many experiments terminate with an uncontrolled transient
event called ‘failure’ of the specimen). However, real granular materials in the
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field are not subject to such careful control, and small departures from steady-
state conditions may allow non-coaxiality to develop. It may also be stated
that many discrete element method discrete element method (DEM) and other
numerical simulations are also carried out under strictly controlled quasi-static
conditions. Also, time dependent space averaging of micro-mechanical quan-
tities to obtain bulk average quantities is a very difficult process to carry out.

2 Mathematical Model

Consider a deformation or flow of a body B comprising granular material and
which at time t occupies a region of space R. Let Oxi, i = 1, 2, 3, denote a
set of rectangular Cartesian co-ordinate axes. We shall utilise a continuum
model with an enhanced kinematic structure which will enable the modelling
of the averaged rotation-rate of a representative volume element (RVE) by two
distinct types of spin, namely that which is called vorticity in fluid mechanics
and that which we shall call the intrinsic spin. The latter intuitively arises
out of an equivalent rigid rotation of the RVE and the inertia associated
with this additional type of spin results in a balance of angular momentum
enabling the Cauchy stress to be non-symmetric. Its inclusion is effectively
due to the fact that the finite grain-size prevents taking the limit of space
averages of physical quantities as the magnitude of the volume tends to zero
(in a standard continuum, this limit is taken, and the resulting limiting value
of the inertia is zero). It should be carefully noted that we deliberately refrain
from incorporating the concept of couple stress into the continuum.

Let v = (vi) denote the Eulerian velocity field, Γ =
(

∂vi

∂xj

)
denote the ve-

locity gradient tensor and denote the symmetric (the deformation-rate tensor)
and anti-symmetric (the spin tensor, which is related to the vorticity) parts
of Γ by d = (dij) and s = (sij), respectively. The continuum also possesses an
extra kinematic variable, a vector, Ω, called the intrinsic spin. We shall not
distinguish notationally between the vector Ω and its dual representation as
an anti-symmetric second-order tensor. Define the objective anti-symmetric
tensor ω by

ω = st − Ω, (1)

which we shall call the Cosserat spin tensor. It is a measure of the spin of the
material in the neighbourhood of a point relative to the point body spin at
that point.

The continuum also possesses an extra material parameter, a second-order
symmetric tensor I, called the moment of inertia density tensor. Intuitively,
the moment of inertia of a representative volume element (RVE), which may
contain several grains and on which the informal continuum averaging is based,
is incorporated in the continuum model because the finite size of the grains
implies the volume of RVE cannot be reduced to zero and hence the rotational
inertia does not reduce to zero. The intrinsic spin Ω then represents the spin of
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the (possibly non-unique) triad of the principal directions of inertia. Finally,
let ρ denote the bulk density.

Let σ = (σij) denote the (possibly non-symmetric) Cauchy stress tensor.
Define the general deviatoric stress by

τ = σ − 1
3

(trσ) I (2)

and the Mohr–Coulomb or planar deviatoric stress by

τ = σ − 1
2

(trσ) I, (3)

where in the latter σ denotes a planar tensor, which deviatoric stress is
required should be clear from the context. Denote the symmetric and anti-
symmetric parts of the stress and deviatoric stress by σs, σa, τ s, τa respec-
tively. One effect of introducing the moment of inertia and intrinsic spin is
that it has been shown to regularise both the double-shearing model and
the (non-associated) plastic potential model for isochoric flows, Harris and
Grekova, [19]. Linear ill-posedness, in this context, is concerned with the
growth of perturbations of solutions, for example the growth of large inertia
from approximately quasi-static conditions, in the limit of vanishingly short
wave lengths. The moment of inertia density is small when measured on a
macroscopic length scale and σa, sa may both be small. For many purposes, it
may be possible to neglect them. However, given a prescribed solution of the
model, these quantities play a crucial role in suppressing the growth of large
perturbations, in other words they have a stabilising effect on the model. A
well-posed model may, of course, still allow unstable solutions. The Cosserat
spin ω itself, may not, in general be small, but its evolution is governed by
the small quantities σa and I.

We now consider the form of the constitutive equations and consider a
three-dimensional formulation, extending the work of Ostrowska-Maciejewska
and Harris [22]. Suppose that the constitutive equation comprises two tensor
valued functions, one for the symmetric part and one for the anti-symmetric
part of the stress and objective kinematic tensors. The symmetric part of the
constitutive equation is postulated to be of the form

d = λs
[
AI +Bτ s + C (τ s)2

]
+D (ωτ s − τ sω) , (4)

where A,B,C,D,E are functions of the invariants I1 = tr(σ), J2 = tr(τ2),
J3 = tr(τ3). In particular we may take

d =λs
∂g

∂σs
+D (ωτ s − τ sω) , (5)

where g = g (I1, J2, J3) denotes an arbitrary plastic potential function. Non-
coaxiality of σs and ds is provided for by the term D (ωτ s − τ sω) and the
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function D may be fitted to experimental data, however, later we shall im-
pose some mathematical restrictions on D which will, effectively, determine
it. We have written the constitutive equation in a form suitable for a standard
material, but it is easily seen to be applicable to a planar flow of a Mohr–
Coulomb material by restricting the tensors to be planar. Equations governing
three-dimensional flows of Mohr–Coulomb materials may then be generated
by standard methods, see for example Cox et al. [23], Spencer [10]

We shall restrict attention to the symmetric part of the constitutive equa-
tion, and leave the anti-symmetric part to a future publication.

3 Planar Flow

Consider a planar deformation or flow to take place in the Ox1x2, plane. It is
convenient to define, for future use, planar stress invariants by

p = −1
2

(σ11 + σ22) , q =
1
2

[
(σ11 − σ22)2 + (σ12 + σ21)

2
]1/2

, (6)

r =
1
2

(σ12 − σ21) , s = σ33. (7)

The angle ψ that the greater principal direction of σs makes with the x1-axis
is given by

tan 2ψ =
σ12 + σ21
σ11 − σ22 (8)

and this gives the following representation for the stress components

σ11 = −p+ q cos 2ψ, σ22 = −p− q cos 2ψ, (9)

σ12 = r + q sin 2ψ, σ21 = −r + q sin 2ψ. (10)

In this section, we first specialise the symmetric part of the constitutive equa-
tion to the case of planar flow and then consider a representation of the stress
tensor for such flows.

3.1 Symmetric Part of the Constitutive Equation

For planar deformation or flow, assuming that the Ox3 is a principal direction
of stress, (4) reduce to

d11 = λs
[
A+Bτ11 + C

(
τ211 + τ212

)]
+ 2Dω12τ21, (11)

d22 = λs
[
A+Bτ22 + C

(
τ222 + τ212

)]− 2Dω12τ21, (12)

d12 = λsBτ12 −Dω12 (τ11 − τ22) , (13)

A+Bτ33 + Cτ233 = 0. (14)
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The multiplier λs may be eliminated from the first three equations to obtain

(d11 − d22) sin 2ψ − 2d12 cos 2ψ = −2β (s21 −Ω) , (15)
d11 + d22 = α [(d11 − d22) cos 2ψ + 2d12 sin 2ψ] , (16)

where
α =

A− C det s
Bqσ

(17)

and β = 2Dqσ, so α, β are dimensionless and α depends only on g. Using
standard methods, Harris [15], the characteristic equation for these equations
may be shown to be

(a+ cos 2ψσ)m2 + (2 sin 2ψσ)m+ (a− cos 2ψσ) = 0, (18)

where
a =

α+ β
1 + αβ

. (19)

Thus, the planar equations are hyperbolic provided −1 < a < 1.

3.2 Yield conditions

Suppose now, that the yield condition governing the symmetric part of the
stress, which may be written f(p, q, s) <= 0 for an isotropic material, is such
that the stress equilibrium equations together with f = 0 form a hyperbolic
set of equations, then we define the angle of internal friction by

sinφ = −fp
fq
, (20)

where the subscripts p and q denote partial differentiation with respect to the
planar stress invariants p and q, respectively. We shall further suppose that
the magnitude of the dilatation does not exceed that of the internal friction,
from which it follows that −1 < α < 1 and we may define the dilatancy angle
ν by

sin ν = α = −gp
gq
. (21)

We now make the assumption that the stress and velocity characteristics co-
incide, i.e. a = sinφ. In this case, it then follows necessarily that −1 < β < 1
and so we may define a non-coaxiality angle χ by sinχ = β. Thus, assuming
coincident stress and velocity characteristics

sinχ =
sinφ− sin ν

1 − sinφ sin ν
. (22)

There are two reasons for ensuring that the stress and velocity character-
istic directions coincide, one physical, the other mathematical. In the case
of the Coulomb yield criterion, the stress characteristics coincide with the
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Coulomb yield directions, while the velocity characteristics coincide with the
slip lines. Physically, it is appropriate for the yield and slip curves to coincide.
Mathematically, it can be shown, Harris [15] that if the velocity and stress
characteristics do not coincide then the governing equations are linearly ill-
posed when the inertia terms are included in the equation of motion and in
this case the Cauchy initial value problem for the model cannot be solved, i.e.
the equations cease to be evolutionary.

For simplicity, in the remainder of the paper we shall assume that the
components of σs satisfy the Coulomb–Mohr yield condition

q ≤ p sinφ+ c cosφ, (23)

where φ denotes the angle of internal friction, c denotes the coefficient of
cohesion and φ and c are material constants.

In addition, the components of σa are assumed to satisfy a yield condition
of the form

g (σa,M) ≤ 0, (24)

where M is a material parameter which we shall call the rotational yield
strength. We shall refer to this as the rotational yield condition. For planar
deformations, the simplest such yield condition is

2r = εM0, (25)

where

ε =

⎧⎨⎩
+1 if σ12 > σ21,
0 if σ12 = σ21,
−1 if σ12 < σ21

(26)

and M0 is a material constant. This corresponds as closely as possible to the
concept of perfect plasticity in a standard continuum.

3.3 One Parameter Representation of the Stress

Consider a simple experiment in which the material is constrained to undergo
a dilatant shear on planes parallel to the x1-axis. We shall suppose, following
the example worked through in detail by Spencer [24], that the value of σ22 is
prescribed, say σ22 = −σ. We envisage the body is loaded up from a state in
which σ12 = 0 and from which state σ12 is increased monotonically. σ11 then
takes whatever value is required to maintain the stress-state at yield. Then

σ = p+ q cos 2ψ (27)

together with the yield condition gives

p =
σ − c cosφ cos 2ψ
1 + sinφ cos 2ψ

, (28)

q =
σ sinφ+ c cosφ
1 + sinφ cos 2ψ

(29)



Double-Slip and Spin: Dilatant Shear in a Reduced Cosserat Model 337

from which

σ11 =
−σ (1 − sinφ cos 2ψ) + 2c cosφ cos 2ψ

1 + sinφ cos 2ψ
, (30)

σ12 + σ21 = 2
(σ sinφ+ c cosφ) sin 2ψ

1 + sinφ cos 2ψ
. (31)

The last equation, together with (25) gives

σ12 =
(σ sinφ+ c cosφ) sin 2ψ

1 + sinφ cos 2ψ
+ εM, (32)

σ21 =
(σ sinφ+ c cosφ) sin 2ψ

1 + sinφ cos 2ψ
− εM, (33)

where the ambiguity in sign is removed by consideration of the sign of the
spin.

4 Non-Cosserat Models

In order to compare the new model with existing models, three types of model
for a classical continuum are written here

4.1 Plastic Potential Model

dij = λ̇
∂g

∂σsij
, (34)

where g denotes the plastic potential function, λ̇ is a scalar multiplier. For
planar flows the equations may be written

(a) equation for dilatancy

d11 + d22 = sin ν [(d11 − d22) cos 2ψ + 2d12 sin 2ψ] , (35)

where the dilatancy parameter ν is defined by (21)
(b) equation for coaxiality of d, σ

(d11 − d22) sin 2ψ − 2d12 cos 2ψ = 0. (36)

4.2 Double-Shearing Model

(a) Equation for dilatancy

(d11 + d22) cos (φ− χ) = sinχ [(d11 − d22) cos 2ψ + 2d12 sin 2ψ] (37)

where φ is the angle of internal friction and χ is a dilatancy parameter.
(b) Equation for non-coaxiality of d, σ

2
(
ψ̇ − s21

)
sin (φ− χ) = cosχ [(d11 − d22) sin 2ψ − 2d12 cos 2ψ] , (38)

where the superposed dot denotes the material derivative.
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4.3 Double-Sliding Free-Rotating Model

The dilatancy equation is identical to the double-shearing model, and so we
only state the condition of non-coaxiality,

2 (Ω − s21) sin (φ− ν) = cos ν [(d11 − d22) sin 2ψ − 2d12 cos 2ψ] , (39)

where the quantity Ω is to be regarded as an undefined and indeterminable
rotation-rate. This equation is a consequence of the assumptions underlying
the double-sliding free-rotating model, but care must be taken in discussing
it. It is not one of the equations governing the model because the unknown
Ω renders it indeterminate, however, it is intended to represent the physical
reality of the indeterminate nature of the response of a granular material to
loading. It should be noted that for the above equation, together with the
dilatancy equation, the stress and velocity characteristics would coincide. De
Josselin de Jong [8] replaces the above equation with the requirement that
the rate of working in the two Coulomb yield directions both be non-negative.
This condition merely restricts the magnitude of the non-coaxiality between
the stress and deformation-rate tensors, but does not determine it. It also has
the consequence that the slip directions no longer coincide with the Coulomb
yield directions, the orientation of the slip directions being arbitrary, but
bounded by the Coulomb yield directions.

5 Reduced Cosserat Model

In this section, we write down the complete set of governing equations for the
reduced Cosserat model.

(a) Linear momentum

ρ (∂tv1 + v1∂1v1 + v2∂2v1) = ∂1σ11 + ∂2σ21 + ρF1,
ρ (∂tv2 + v1∂1v2 + v2∂2v2) = ∂1σ12 + ∂2σ22 + ρF2,

(40)

where F1, F2 denote the body force components.
(b) Rotational momentum

ρI (∂tΩ + v1∂1Ω + v2∂2Ω) − 2r − ρG = 0, (41)

where I denotes the moment of inertia density and G denotes the body
couple.

(c) Coulomb yield condition

q ≤ p sinφ+ c cosφ. (42)

(d) Rotational yield condition
2r = εM0. (43)
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(e) Continuity
∂tρ+ v1∂1ρ+ v2∂2ρ+ ρ∂1v1 + ρ∂2v2 = 0. (44)

(f) Dilatancy

(d11 + d22) = sin ν [(d11 − d22) cos 2ψ + 2d12 sin 2ψ] . (45)

(g) Intrinsic spin/noncoaxiality equation

2 (Ω − s21) sinχ = [(d11 − d22) sin 2ψ − 2d12 cos 2ψ] , (46)

where Ω denotes the intrinsic spin and s21 denotes the spin component.

6 Dilatant, Rotational Shear

We shall assume that the material parameters φ, c, I and M0 are constant.
On the other hand we shall allow the angle of dilatancy ν to vary and in this
sense the model is not one of perfect plasticity. We deal with a rate indepen-
dent material under quasi-static conditions of loading. We further suppose the
stress components and the deformation to be homogeneous in space. There
are no body forces or couples. Thus σij = σij (t). We suppose that the flow is
that of dilatant shear

v1 = αx2, v2 = β (t)x2, Ω = Ω (t) (47)

subject to the initial conditions

α > 0, β (0) = β0, Ω (0) = Ω0. (48)

The material cannot indefinitely dilate or densify, hence, we must assume
that |β (t)| is, in some sense a decreasing function of t, β (t) → 0 (or at least
a function which oscillates between dilatation and compaction). We note in
passing that the material does not behave symmetrically with respect to these
two possibilities, as the material densifies and the void fraction decreases,
the limit to the elastic deformation of the grains and the constraint of non-
overlap means that the maximal density at a given ambient pressure is a
“hard” constraint, whereas as the material dilates, the void fraction increases
and ultimately the grains separate from each other and the model ceases to be
valid, in this sense dilatation is a “soft” constraint. The case β = 0 corresponds
to simple shear and then ν = 0. It seems reasonable to suppose that α > |β0|.
In summary, there are three cases, β > 0 corresponding to dilatation, β = 0
corresponding to isochoric flow and β < 0 corresponding to consolidation.
Finally, we note that whereas simple shear satisfies the equations of motion
identically, dilatant shear does not, and in assuming quasi-static conditions
we assume that the inertia terms are negligible.
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6.1 Non-Coaxial Flow

For the dilatant, rotational shear given in (47), the deformation-rate and spin
tensor components are

d11 = 0, d22 = β, 2d12 = α, 2s21 = −α (49)

and the constitutive equations may be written[
a11 a12
a21 a22

] [
β
α

]
=
[

0
−2Ω sinχ

]
, (50)

where

a11 = 1 + sin ν cos 2ψ,
a12 = − sin ν sin 2ψ,
a21 = sin 2ψ,
a22 = sinχ+ cos 2ψ.

The linear algebraic equations (50) have a unique solution for α and β unless

cos 2ψ = − sinφ. (51)

In terms of φ and ν

Case 1. If cos 2ψ = − sinφ then the solution is

Ω = 0,
β

α
=

sin ν cosφ
1 − sin ν cosφ

. (52)

Case 2. If cos 2ψ 	= − sinφ then the solution may be written as

α = −2Ω (sinφ− sin ν)
cos2 ν

1 + sin ν cos 2ψ
sinφ+ cos 2ψ

, (53)

β = −2Ω sin ν (sinφ− sin ν)
cos2 ν

sin 2ψ
sinφ+ cos 2ψ

. (54)

We also note that
β

α
=

sin ν sin 2ψ
1 + sin ν cos 2ψ

(55)

and so the relationship between α and β depends upon the stress as well as
ν. However, we may obtain the following limiting cases

(1) Let cos 2ψ → − sinφ, sin 2ψ → cosφ and Ω → 0, simultaneously, then
cases (1) and (2) are consistent in the sense that α becomes arbitrary and
that

β

α
→ sin ν cosφ

1 − sin ν cosφ
. (56)
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(2) Let cos 2ψ → − sinφ, sin 2ψ → cosφ and ν → φ then again α becomes
arbitrary and in this case

β

α
→ tanφ. (57)

Finally, (53) may be written

Ω

α
= − cos2 ν

2 (sinφ− sin ν)
sinφ+ cos 2ψ
1 + sin ν cos 2ψ

(58)

giving the ratio of the intrinsic spin to the spin in terms of the stress and
showing clearly that Ω = 0 if and only if sinφ+ cos 2ψ = 0, unless φ = ν,
in which case, the intrinsic spin Ω is arbitrary.

6.2 Coaxial Flow

As stated earlier, there is some experimental evidence to suggest that pre-
failure deformation of granular materials is non-coaxial, but that as the strain
increases, the principal axes of stress and deformation-rate rotate into coinci-
dence, Roscoe [20], Savage and Lockner [21]. For this reason, we now consider
coaxial flow. For dilatant shear, the Cosserat spin equation (46) becomes

2 (Ω − s21) sinχ = − (β sin 2ψ + α cos 2ψ) . (59)

The condition of coaxiality is attained if the solution of the equations govern-
ing the model is such that the left- and right-hand sides of the above equation
separately become equal to zero. It should be noted that we ascribe the prop-
erty of coaxiality to the solution and not to the governing equations. There
are two possibilities to consider.

Case 1. Suppose that the intrinsic spin is indeed equal to half the vorticity

Ω = s21 = −1
2
α (60)

then the flow is also coaxial

(d11 − d22) sin 2ψ − 2d12 cos 2ψ = 0. (61)

This is irrespective of the value of the quantity χ given in equation (22) and
the case where φ 	= ν corresponds to a non-associated flow rule. The flow rule
now reduces to

(1 + sin ν cos 2ψ)β − (sin ν sin 2ψ)α = 0, (62)
(sin 2ψ)β + (cos 2ψ)α = 0 (63)

and there are non-trivial solutions provided

cos 2ψ = − sin ν. (64)
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Hence
ψ =

π
4

+
ν

2
(65)

and
cot 2ψ = −β

α
= − tan ν. (66)

If ν = 0 then we obtain the classical coaxial solution for incompressible ma-
terials

ψ =
1
4

π. (67)

Case 2. Alternatively, we may consider the case of full dilatancy, i.e. φ = ν.
This case corresponds to an associated flow rule and it turns out that Ω− s21
is arbitrary, since now χ = 0. For dilatant shear, from equations (62), (63)

cot 2ψ = −β
α

= − tanφ. (68)

As a special case, we have metal plasticity (φ = ν = 0) which corresponds to
omitting all internal friction, dilatation and intrinsic spin from the model.

6.3 Stress in terms of flow parameters

We summarise the above results for the stress variable ψ.

Case 1. For the incompressible case ν = 0 and so necessarily, β = 0 and

cos 2ψ = −
(

1 +
2Ω
α

)
sinφ. (69)

Thus the principal stress direction depends on the ratio of the intrinsic spin
to the spin strength. We have the following classical stress solutions:
• In the case of non-coaxial flow with Ω = 0

ψ =
π
4

+
φ

2
. (70)

This solution corresponds to that of the double-shearing model and in that
model it is an unstable solution. We shall see later that it is also unstable
for (69).

• The case of coaxial flow Ω = − 1
2α gives

ψ =
π
4
. (71)

This solution corresponds to the classical plastic potential model. In the
case of a pressure dependent yield condition this solution is unstable if the
inertia terms are incorporated
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• For (69), there is a restriction on the magnitude of the ratio of the intrinsic
spin to the spin strength, given by

−1
2

(1 + cscφ) ≤ Ω

α
≤ 1

2
(cscφ− 1) . (72)

Case 2. In the case of contractant or dilatant flow, ν 	= 0 and

cos 2ψ = −α sinφ cos2 ν + 2Ω (sinφ− sin ν)
α cos2 ν + 2Ω sin ν (sinφ− sin ν)

. (73)

• In the case of non-coaxial flow with Ω = 0 we again have

ψ =
π
4

+
φ

2
(74)

and so the stress is independent of the dilatation in non-coaxial flow.
• In the case of coaxial flow Ω = − 1

2α gives

cos 2ψ = − sin ν (75)

and so the stress does depend upon the dilatation in coaxial flow.
• In the case of (73), the restriction on the magnitude of the ratio of the

intrinsic spin to the spin strength is

−1
2

cos2 ν
1 − sin ν

1 − sinφ
sinφ− sin ν

≤ Ω

α
≤ 1

2
cos2 ν

1 − sin ν
1 + sinφ

sinφ− sin ν
. (76)

Regarding α as fixed and given and φ to be a known constant, the equations
determine ψ in terms of Ω and ν.

6.4 Density

Since trd is constant the density ρ is homogeneous and may be considered as
a function of any one of the following variables, ρ = ρ (t) , ρ (β) , ρ (ν). We shall
suppose that the history of the density is a sequence of intervals in which ρ
is either monotonically increasing or decreasing. In the case of dilatant shear,
(44) becomes

∂tρ+ ρβ = 0. (77)

Since the density cannot indefinitely decrease or increase we shall assume
the existence of a critical density, denoted by ρc (which will in general be
dependent upon the pressure p) such that ρ → ρc as β → 0. If the initial
density ρ0 > ρc then the material dilates (β > 0), while if ρ0 < ρc, the material
consolidates (β < 0). The volumetric strain may be defined as

e =
∫ t

0

trddτ =
∫ t

0

β dτ (78)
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but this integral is intractable, so consider instead∫ ρ

ρ0

dρ′

ρ′β
= −

∫ t

0

dτ. (79)

Considering ρ as a function of β, we shall assume the inverse function exists,
β = β (ρ), then since β = 0 in the asymptotic simple shear, we assume the
simple relation

β = k (ρ− ρc) , (80)

where k is a material parameter.∫ ρ

ρ0

dρ′

ρ′ (ρ′ − ρc) = −k
∫ t

0

dt. (81)

The evolution of the density is governed by the equation

ρ (t)
ρ0

=
ρc

ρ0 − (ρ0 − ρc) exp (−kρct) . (82)

Thus, at t = 0, ρ (0) = ρ0 and as t→ ∞, ρ→ ρc. The asymptotic simple shear
is thus reached asymptotically as t→ ∞.

7 Anti-Symmetric part of the flow

Exact rotationally quasi-static conditions give, in the absence of body couples,
that σ12 = σ21 and Ω = constant. For dilatant shear, the balance of rotational
momentum equation (41), in the absence of body couples, becomes

ρI
dΩ
dt

= σ12 − σ21 (83)

subject to Ω = Ω0 when t = 0, i.e.,

Ω = Ω0 + ε
M0

I

∫ t

0

1
ρ
dτ (84)

and hence we obtain

Ω (t) = Ω0 +
εM0

Iρc

[
t− ρ0 − ρc

kρcρ0
[1 − exp (−kρct)]

]
. (85)

This equation remains valid until the time t = T at which ω(T ) = 0. From
this time onwards, determined by the equation

kT −
(

1
ρc

− 1
ρ0

)
[1 − exp(−ρckT )] +

kIρc
εM0

(
Ω0 +

1
2
α

)
= 0 (86)
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Here, ε = 0 and the flow remains coaxial. In this simple example, the flow
becomes coaxial before the critical density ρc is reached. If the initial data
corresponds to the classical “double-shearing” type solution, ω = s21, then
this flow is unstable, and the flow evolves to a classical “coaxial” type solu-
tion, corresponding to ω = 0 at finite time. In summary, ρ evolves towards a
known ρc and ω evolves to zero, corresponding to coaxial flow, with coaxial-
ity being attained at finite time and the critical state density being attained
asymptotically.

8 Conclusions

We have presented a three-dimensional constitutive equation in tensorial form
comprising frame-indifferent quantities which is such that:

• it has, as a special case an arbitrary plastic potential model
• it has the ability to exhibit both coaxial and non-coaxial behaviour, the

physical origin of the non-coaxiality being ascribed to the existence of two
types of spin, the vorticity and the intrinsic spin

• for planar flows the modes of flow comprise double slip and spin, with
coincident stress and velocity characteristics (i.e. coincident slip lines and
Coulomb yield directions)

• in the case of a dilatant shear, some simplifying assumptions concerning
the model show that it is possible to exhibit an initially non-coaxial dila-
tant, rotational shear which becomes coaxial after a finite time and which
tends asymptotically to a critical state density. This behaviour is consis-
tent with experimental data
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1 Introduction

Strength calculations form a basic component of geotechnical design. There
are essentially two versions of such calculation in current use. Classical meth-
ods based on Coulomb’s method and the slip circle methods, rely upon a
limited set of kinematically admissible slip surface mechanisms, the Mohr–
Coulomb yield condition and an energy dissipation balance equations that
makes use of overall equilibrium conditions. At yield, it is generally assumed
that no volume change occurs during relative movement across the slip surface,
i.e. a non-associated flow rule is implicitly assumed. With the development
of limit analysis, the full power of the upper and lower bound limit theorems
became available, providing general methods with a secure and well under-
stood theoretical background. However, for such theorems to strictly apply,
the material needs to satisfy the maximum work principle and, in turn, this
implies convexity of the yield condition and an associated flow rule. Yield con-
ditions for soils are usually convex and, for the instantaneous yield surface, the
plastic strain rate vector may well be associated; critical state soil mechanics
and many other constitutive equations adopt this assumption. But where the
limit state is concerned, i.e. states of stress at which indefinite plastic flow
occurs with no significant change in internal state, the plastic strain rate is
associated, at best, with the yield surface and certainly not with the locus
of limit states. Mohr–Coulomb and related conditions do not model the yield
condition but are loci of limit states.

This problem is, of course, well known, and limits the applicability of the
limit theorems to the evaluation of limit states in soil structures. In fact,
the exact solution to the limit state for an associated flow rule provides the
absolute maximum load that exists for which there is an equilibrium state of
stress that lies within the yield surface. If, at the limit state, the flow rule is
non-associated, the limit load must necessarily be less.

In recent years the emphasis has increasingly turned towards computa-
tional methods that rely upon the limit theorems. These provide, assuming
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an associated flow rule, strict upper and lower bounds to the limit load using
the kinematics of the displacement finite element method, Kim et al. [6], for
upper bounds and stress finite elements for lower bounds, Merifield et al. [9].
The procedure is the same in both cases. The relevant limit theorem is posed
as a programming problem, to which an appropriate programming method,
such as linear programming, is applied.

In parallel with these developments, limit analysis and the extension to
variable loading, shakedown analysis, has been applied to structural design
and life assessment, particularly for severe thermal loading. For example, the
methods used for the assessment of the remaining life of high temperature
power plant [1], rely upon a sequence of simplified calculations, many of which
have their origins in limit and shakedown analysis. The problems in this field
are of a different nature. There is no difficulty over the convexity of yield or
the association of the flow rule. However, the range of material behaviour that
needs to be taken into account is much wider than classical plasticity; high
temperature creep occurs, internal damage takes place leading to rupture,
reverse cycles of plasticity are unavoidable leading to consideration of low
cycle fatigue. Hence classical limit and shakedown calculations have limited
use, other than for producing useful reference solutions. The type of methods
that prove efficient for limit analysis are not particularly relevant for these
more demanding problems.

These considerations have led to the search for methods of greater general-
ity, particularly those that may be implemented within standard finite element
codes. This has resulted in the development of the Linear Matching Methods.
The basis of such methods may be understood from the following example.
Simple lower bound limit state calculations can be constructed by the follow-
ing procedure. First, a linear elastic solution is calculated. In regions of the
structure the stress is then found to exceed yield. However, if the local Young’s
modulus is increases, the local stresses may be expected to decrease. By scal-
ing of the resulting stress distribution a lower bound limit load can be found.
This idea forms the basis of the Reduced Modulus Method of Marriot [8], the
Elastic Compensation Method of Boyle et al. [3] and a variety of methods by
Seshadri [14]. They all have in common the notion that non-linear material
behaviour may be simulated by linear solutions where the linear moduli vary
in space. This idea has been developed into the Linear Matching Method, a
simple and powerful method for addressing a range of design related calcu-
lations involving both plasticity and creep behaviour (see, for example [4]).
The method is essentially an upper bound programming method where, at
each iteration, conditions of both compatibility and equilibrium are satisfied
and the error in the current solution arises from inconsistencies between the
linear solution and the non-linear material behaviour. For a range of yield
conditions, strict convergence conditions can be derived for shakedown [11].
Linear Matching Methods have been developed for all stages of the R5 life
assessment method of British Energy [1] and are currently being introduced
into practice.
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In this paper, the application to limit and shakedown limits for the
Drucker–Prager yield condition is discussed. The nature of the matching con-
dition needs to be adapted in this case and monotonic convergence cannot be
proven. However, we find in practice that convergent solutions may still be
obtained. Further, as an equilibrium stress field is generated at each iteration,
the method may be applied to limit state solutions with a non-associated
flow rule, allowing a direct comparison with solutions for an associated flow
rule. The particular problem of primary interest is the shakedown limit for
rolling contact of a semi-infinite solid, where current programming methods
are difficult to apply.

In Sect. 2, a formal discussion of the Linear Matching Method for shake-
down analysis is given, together with sufficient conditions for convergence for
an associated flow rule. Application to the Drucker–Prager condition is then
discussed. A new matching procedure is adopted that makes use of the equi-
librium stress distributions generated by the linear solutions. This produces
a method that generally converges in a stable manner. Numerical examples
for both limit analysis and shakedown are given and compared with known
analytic solutions.

2 Upper Bound Shakedown Theorem

Consider an isotropic, homogeneous elastic–perfectly plastic body, V , bounded
by the surface S. In a fixed Cartesian space, let ui(x, t) = 0 and λPi(x, t)
denote the displacements and the applied cyclic loads over Su and ST , com-
plementary parts of S, respectively, where x is a position vector, t is the time
and λ is a positive load parameter. The convex yield condition and associated
flow rule are given by

f(σij) ≤ 0, (1)

ε̇pij = Λ̇
∂f

∂σij
, f(σij) = 0, (2)

where Λ̇ is a plastic multiplier.
For a typical cycle, 0 ≤ t ≤ Δt, consider a class of kinematically admissible

plastic strain rate histories ε̇cij with a corresponding displacement increment
fields Δuci and associated compatible strain increment,

Δεcij =
1
2
(
Δuci,j +Δucj,i

)
. (3)

The strain rate history ε̇cij , which need not be compatible, satisfies the
following condition:

Δt∫
0

ε̇cij dt = Δεcij . (4)
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The kinematic shakedown theorem, due to Koiter [7], states that shake-
down will not occur for a load parameter λcUB defined by any kinematically
admissible plastic strain cycle as follows:

λs ≤ λcUB =

Δt∫
0

∫
V

σcij(t) ε̇
c
ij(t) dV dt

Δt∫
0

∫
V

σ̂ij(t) ε̇cij(t) dV dt
, (5)

where σ̂ij(t) denotes the linear elastic solution to the problem for λ = 1 and
λcUB is an upper bound to the value of load parameter λs at shakedown.

3 The Linear Matching Method

The linear matching method involves the derivation of a sequence of linear
problems, each producing a kinematically admissible strain rate history, so
that the upper bound λcUB monotonically reduces and converges to the least
upper bound associated with the class of displacement fields under consider-
ation. We assume that the associated flow rule (2) may be inverted, so that
the stress at yield σpij corresponding to a plastic strain rate ε̇pij is uniquely
defined

σpij = σij(ε̇
p
ij). (6)

We define a suitable class of linear viscous materials expressed in terms of
a quadratic potential U(ε̇Lij) or, equivalently, by a complementary potential
U(σLij),

ε̇Lij =
∂U

∂σLij
, σLij =

∂U

∂ε̇Lij
, U + U = σLij ε̇

L
ij . (7)

To describe the process we assume that an initial kinematically admissible
strain rate history ε̇iij is known with a corresponding upper bound λiUB. We
seek a new kinematically admissible strain rate history ε̇fij so that the corre-
sponding upper bound λfUB ≤ λiUB with equality only when ε̇fij = ε̇iij . This is
achieved by defining a linear material so that the both the flow rule (6) and
the linear material (7) give rise to same stress state for ε̇iij , i.e. if

ε̇iij = ε̇pij = ε̇Lij , then σpiij = σLiij , (8)

where the superscript i refers to quantities derived from ε̇iij and superscript L
refers to quantities related by the linear relationship (7). This may be achieved
by suitable choice of the linear material coefficients, which become functions
of both space and time. With constants so chosen, a linear problem may be
defined for strain rate history ε̇fij and stress history

σfij = λiUBσ̂ij + ρfij , ε̇fij =
∂U

∂σfij
, (9)
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where ρfij is a constant residual stress field. Imposition of the conditions that

the accumulated strain Δεfij =
Δt∫
0

ε̇fij dt be compatible and that ρfij is in

equilibrium with zero loads on ST , results in a linear problem that yields
Δεfij and ρfij , and hence ε̇fij from (9). With suitable restrictions on the linear
material, discussed later, then λfUB ≤ λiUB. An initial solution may be found by
choosing arbitrary values for the linear material constants, usually constants in
time and space, so that an initial kinematically admissible strain rate history
may be found to begin the process. Repeated application of the procedure then
produces a sequence of monotonically reducing upper bounds that converge
to the exact solution, if all the linear problems may be evaluated exactly.
When the linear solutions are provided by the minimum of the rate form
of the potential energy for a chosen class of displacement fields, the upper
bound converges to the least upper bound. Hence a finite element method can
be derived so that the upper bound converges to the minimum upper bound
corresponding to the class of displacement fields defined by a finite element
mesh geometry.

The sufficient condition for convergence may be expressed either as a re-
striction on U(ε̇Lij) or U(σLij). In terms of strain rates, the following extended
inequality must be satisfied [11];

U(ε̇fij) − U(ε̇iij) −
∂U

∂ε̇iij
(ε̇fij − ε̇iij) ≥ (σpfij − σpiij )ε̇fij ≥ 0, (10)

where the second inequality is the maximum work principle. In this inequality
ε̇iij is the matching strain rate and ε̇fij is any other strain rate. This inequal-
ity is equivalent to the statement that the surface described by U = Constant,
that forms a tangent to the yield surface at the matching point, otherwise co-
incides with or surrounds the yield surface in stress space. This later condition
provides a simple graphical understanding of the restriction that is generally
easier to apply.

Hence the application of the linear matching method relies upon the fol-
lowing assumptions:

(A) A class of linear materials may be found that are capable of being matched
to any point on the yield surface. Hence the class of strain rates that are
described by the linear material must at least include all strain rates given
by the associated flow rule. Conversely, the strain rates generated by the
linear solutions must correspond to the plastic strain rates associated with
some point on the yield surface.

(B) The matching condition must be achievable, i.e. when the linear strain
rate is matched to the plastic strains, the range of material constants
must be such that the stresses may also be matched.

(C) The sufficient condition for convergence must also be satisfied.

For a given yield condition the choice of a suitable class of linear ma-
terials is usually straightforward. For example, for the von Mises yield con-
dition, all the conditions are satisfied by an incompressible linear material.
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In this case contours of constant U coincide with the yield surface. For yield
conditions that depend upon both the von Mises effective stress σ and the
hydrostatic pressure p the position becomes more complicated. Parrinello and
Ponter [10] investigated a class of Drucker–Prager yield conditions with a cap
where continuous curvature of the yields surface is allowed so that the strain
rate uniquely defines the stress at yield. However, convergence was slow and
the method is inapplicable to the Drucker–Prager yield condition.

f(σ, p) = (σ + p tanφ′ − c′) = 0. (11)

The solution to this problem is discussed in Sects. 4 and 5.

4 Shakedown Limits for the Drucker–Prager Yield
Condition

The associated flow rule for yield condition (11) yields the constraint

ε̇pv
ε̇
p = tanψ, ψ = φ′. (12)

Consider the class of linear isotropic materials given by

U =
1
2

1
3μ

{
σ2 +

(p− pL)2

g(νL)

}
, (13)

where

ε̇
L

=
∂U

∂σ
=

1
3μ
σ and ε̇Lv =

∂U

∂p
=

(p− pL)
K

. (14)

Here (σ, ε̇) denote the von Mises effective stress and strain rate and (p, ε̇v)
are the hydrostatic stress and rate of volume change. The linear moduli are
given by the shear modulus μ, bulk modulus K and Poison’s ratio νL.

In this situation neither condition A nor B is satisfied. Solution to the
linear problem generally will yield strain rates that do not satisfy (12). The
sufficient condition for convergence is not satisfied except for the special case
of φ′ = 0 and νL ∼= 0.5. In the following, we describe an alternative iterative
process that overcome these problems [2].

5 Linear Matching Method for the Drucker–Prager
Yield Condition and a Non-Associated Flow Rule

In this case, zero volume change at yield is assumed, so that ψ = 0 in (12).
The class of linear materials are chosen as in (13) and (14). As before, sup-
pose an initial kinematically admissible strain rate history ε̇iij is assumed
known. As such histories will be generated by solutions of linear problem
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U = const.

tan f�
pL

p
c�

y = 0 s

f�

e

Fig. 1. Linear matching for Drucker–Prager yield condition and non-associated flow
rule

where compressibility may occur we assume ε̇iv = ε̇ikk 	= 0. However, the con-
verged solution must satisfy the condition ε̇v = 0 and this implies from (14)
that p = pL. This suggests the inclusion in the iterative process of pi, the
hydrostatic pressure corresponding to the current linear solution. Consider
therefore an iterative process where the matching conditions are given by

ε̇
L

= ε̇
i
=
∂U

∂σ
=

1
3μ
σ =

1
3μ
σp,

i.e. μ =
σp

3ε̇
i

(15)

and
pL = pi = (λσ̂ikk + ρikk)/3, (16)

where now σp = c′ − pi tanφ′. This matching condition is shown in Fig. 1.

6 Linear Matching Method for the Drucker–Prager
Yield Condition and an Associated Flow Rule

The method may now be extended to the Drucker–Prager yield condition with
an associated flow rule

ε̇pv
ε̇
p = tanφ′. (17)

In this case we identify pi with the pressure at yield. Hence, the matching
point on the yield surface is given by

σp = c′ − pi tanφ′, pp = pi = (λσ̂ikk + ρikk)
/
3 (18)
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and the associated plastic strains are given by

ε̇
p

= ε̇
i
, ε̇pv = ε̇

i
tanφ′. (19)

This yields the following equations for μ and pL:

ε̇
p

=
1
3μ
σp, ε̇pv =

1
3μg(vL)

(pp − pL). (20)

Hence, by substituting (18) and (19) into (20)
μ = (c′−pi tanφ′)

3ε̇
i and

pL = pi

(
1 +

2(1 + vL) tan2 φ′

9(1 − 2vL)

)
− 2

9(1 − 2vL)
c′ tanφ′. (21)

This matching condition is shown schematically in Fig. 2. Note that νL may
be chosen arbitrarily. The value of νL = 0.35 was chosen for the calculations
described later.

The upper bound (5), in the case when the strain rate history consists of
a sequence of m discrete strains Δεrij at times tr, is given by,∫

V

m∑
r=1

σryε(Δε
r
ij) dV +

∫
V

m∑
r=1

pryεv(Δε
r
ij) dV = λcUB

∫
V

m∑
r=1

σ̂ij(tr)Δεrij dV ,

(22)
where σ = σp = σry and p = pp = pry, given by (18). For consistency with
the flow rule (17), ε̇pv = ε̇

p
tanφ′ is treated as a derived quantity. Hence (22)

ceases to be a strict upper bound, except at convergence when (17) is satisfied
exactly.

U = const.

tan f�
pL py

p

c�

f�= y

se
en

e

f�

Fig. 2. Linear matching for the Drucker–Prager yield condition and the associated
flow rule
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7 Examples

All the solutions given here were generated by an implementation of the
method into the commercial finite element code ABAQUS.

7.1 Limit Analysis

Consider the two-dimensional indentation problem shown in Fig. 3 for which a
slip line solution for the Mohr–Coulomb solution is known [13]. The Drucker–
Prager yield condition and the Mohr–Coulomb condition are identical for two
dimensional plane strain problems, once account has been taken of the flow
rule. The following solutions are given for the corresponding Mohr–Coulomb
values (c, φ).

The converged solutions for the limit pressure λP/c are shown in Fig. 4 in
the two cases. The Prandtl solution is included for comparison. The solution
for the non-associated flow rule gives a lower value, as expected, although
significant differences only occur for φ > 35◦.

For a non-associated flow rule there is a question of whether the solution
is unique. Figure 5 shows the convergence of λP/c′ with the number of it-
erations for a range of values of the linear Poisson’s ratio νL. In each case,
the progress to convergence varies significantly, but all solutions converge to
the same value, indicating, for this problem at least, a unique solution is de-
fined by the method. The same phenomenon was shown by all other solutions
discussed here.

Uniform
pressure

6

1 9

Fig. 3. Finite element mesh for indentation problem, eight-noded quadrilateral
elements
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Fig. 4. Comparison of limit load solutions for the indentation problem of Fig. 3
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Fig. 5. Convergence for a range of νL for a non-associated flow rule and φ′ = 100.
Indentation problem of Figs. 3 and 5

7.2 Shakedown Solutions for Rolling Contact

Consider the problem shown in Fig. 6 where a circular region of radius a on a
half space is subjected a Hertzian distribution of normal pressure of P/2πa2.
The loaded area passes, repeatedly along a straight line, the x axis, and a
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Fig. 6. Rolling and sliding contact problem

Fig. 7. Finite element mesh for problem of Fig. 6: 1,200 eight-noded brick elements,
42 time instants.

frictional traction is generated in the direction of travel with a coefficient of
friction f , as shown. In this case all surfaces perpendicular to the direction
of travel suffer the same deformation modes; the finite element mesh consists
of a single layer of elements in the (y, z) plane, as shown in Fig. 7, where the
displacement on the front and back surface are constrained to be identical,
a facility available in ABAQUS. The history of elastic stresses experienced
by Gauss points within the finite element mesh corresponds to a sequence of
positions of the centre of the pressure region relative to the mesh. The elastic
problem has a known analytic solution, Hamilton [5], and the number and
positions of the load instants were increased until there were no change in the
converged solution.

The variation of the shakedown limit with friction co-efficient for both an
associated and non-associated flow rule are shown in Fig. 8. The solution for
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Fig. 8. Comparison of the shakedown limits for the problem of Fig. 6 for the
Drucker–Prager yield condition and for associated and non-associated flow rules

φ′ = 0, the von Mises yield condition, corresponds closely to the semi analytic
solution by Ponter et al. [12]. Again, the solution for the non-associated flow
rule is slightly less than for the associated flow rule.

8 Conclusions

The linear matching method is a simple and flexible method for the solution
of complex shakedown problems. For the Drucker–Prager yield condition, the
method derived by Ponter and Engelhardt [11] needs to be adapted by in-
cluding the hydrostatic pressure generated by the linear solutions into the
matching condition. A sufficient condition for convergence is no longer avail-
able, but fully convergent solutions were obtained for the problems discussed
in this paper.
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On Recent Analytical Results for Advective
Transport in Fluid-Saturated Porous Media

A.P.S. Selvadurai∗
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Montréal, Canada
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Abstract. This paper reviews analytical solutions that have been developed re-
cently for the theoretical modelling of the classical problem dealing with advective
transport of a chemical species in a fluid-saturated porous medium. The advective
Darcy flow results from a hydraulic potential, which is responsible for the transport
process. The analytical solutions play an important role in providing benchmarks
against which the accuracy of computational developments can be assessed. The pa-
per provides a catalogue of solutions that involve advective transport dealing with
initial boundary value problems and certain advective–diffusive transport problems
that can be formulated as one-dimensional initial value problems.

1 Introduction

The topic of groundwater-borne transport of hazardous materials, contami-
nants and other chemical substances including fertilizers and pesticides is of
considerable interest to geoenvironmental engineering. Invariably the discus-
sions concerning these topics ultimately reduce to the assessment of the risk
to human health and the environment, although the means of assessing such
risks eventually centers round the estimation of the levels of concentration of
the chemicals and hazardous materials that will be encountered at a particular
location at a particular time. The basic mechanisms of waterborne transport
of either a chemical or a hazardous substance in a porous geologic medium
are complex, and the processes responsible for the transport are governed by
the physico-chemical characteristics of the porous medium, the chemical com-
position of the species that is being transported, the variability of the fluid
transport properties of the porous medium, the capacity for natural attenua-
tion and the complete coupling between chemical, hydraulic, mechanical and
thermal characteristics of the system. The literature dealing with the topic
of contaminant transport in fluid-saturated porous media is extensive and no
attempt will be made to provide a comprehensive bibliography of the subject.
Important developments concerning this topic can be found in the articles and

∗William Scott Professor and James McGill Professor
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volumes by Lindstrom et al. [16], Barenblatt et al. [3], Philips [20], Bear and
Bachmat [4], Appelo and Postma [1], Banks [2], Lichtner et al. [15], Sun [28],
Bedient et al. [5], Ingham and Pop [14], Domenico and Schwartz [8], Mas-
sel [17], Charbeneau [6], Ingebritsen and Sanford [13], Zheng and Bennett [34]
and Selvadurai [23].

The basic transport process governing transport of a chemical species
through a non-deformable porous medium under isothermal conditions can be
described in terms of the idealizations that can be attributed to advective and
diffusive phenomena. In the advective process, the chemical species is trans-
ported through the pore space of the non-deformable medium through the
velocity of the fluid saturating the pore space. The flow velocity is character-
ized by a Dupuit-Forchheimer-type hydraulic conductivity that is related to
average velocity in the pore space. This in turn can be related to the area
averaged hydraulic conductivity as expressed by a Darcy-type hydraulic con-
ductivity. The velocities in the porous medium are assumed to be such that
the hydraulic potential consists of only the pressure and datum components
of the Bernoulli potential. The process of diffusion of the chemical species
within the pore space of the porous medium is dependent on the gradient
of the concentration of the species and is governed by Fick’s law. In addi-
tion to these basic transport processes, the movement of the chemical can
also take place as a result of hydrodynamic dispersion that is governed by
the fluid velocities in the pore space. All three processes can occur simul-
taneously during the transport of the chemical and the dominancy of any
single process is usually related to the velocities within the pore space of the
porous medium. For example, when the flow velocities are zero, the chemical
movement must take place through diffusion and similarly, when the flow ve-
locities are large, the advection processes and hydrodynamic dispersion effects
can dominate. The extent to which the separate processes can influence the
transport process can be estimated by appeal to the non-dimensional Peclet
Number (Pe = ‖v‖h/D, where ‖v‖ is a flow velocity norm within the region,
h is a characteristic length associated with the region and D is the diffusion
coefficient. When the Peclet number is generally greater than unity, the advec-
tive phenomena will be dominant. Under such circumstances, the movement
of the chemical species within the porous medium can be adequately described
by the classical advection equation. Even under the simplifications offered, the
classical model for advective transport does not take into consideration the
influences that could take place as a result of chemically-induced alteration
of the fluid transport characteristics of the porous medium. The basic formu-
lation can account for processes such as natural attenuation that can exert
a considerable influence on the decay of the concentration of chemicals and
contaminants as they migrate through a porous medium [10,33].

The solution of any practical problem dealing with the migration of
chemicals and contaminants in fluid-saturated porous media has to use an
approach that involves computational schemes. The development of compu-
tational schemes for the solution of transport processes that include both
advective and diffusive processes has been the subject of extensive research
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during the past three decades. The computational approaches to the class of
problems involving diffusion-dominated transport processes in porous media
is relatively well established [7, 19, 34, 35]. The computational treatment of
the class of problems where the advective transport processes dominate are
less routine. Specially in situations that involve advective transport processes
with sharp discontinuous fronts in the concentration profile, the computa-
tional approaches give rise to phenomena such as numerically induced diffu-
sion, oscillations in the solution that propagate in directions opposite to the
migration of the front, negative concentrations in the solution and other unde-
sirable effects. Some aspects of the inaccuracies present in the computational
approaches are given by Gresho and Lee [11], Hughes and Brooks [12], Vich-
nevetsky and Bowles [29], Noorishad et al. [18], Wendland and Schmid [32],
Wang and Hutter [30], Selvadurai and Dong [27] and Dong and Selvadurai [9].
While unconditional stability and accuracy of the computational schemes such
as the Streamline Upwind Petrov–Galerkin, Least-Squares, Taylor–Galerkin,
Modified Least Squares and other variations of these methods cannot be as-
sured, they can be combined with suitable mesh- and time adaptive schemes
to produce reliable computational results for advection-dominated transport
processes that contain even discontinuous concentration fronts. The accuracy
of these computational schemes should be continually assessed by appeal to
comparisons with known analytical solutions. The traditional approach for
achieving this objective is through the use of relatively straightforward so-
lutions applicable to one-dimensional problems. The analytical results that
involve multi-dimensional problems of both fluid flow and advective trans-
port are rare and are continually being developed. This paper presents cer-
tain analytical results that provide useful benchmarks for the calibration of
computational schemes for advection-dominated transport of a chemical or
contaminant species in a fluid-saturated porous medium. In particular atten-
tion is focused on (i) the advective transport in a plane sector region subjected
to a constant hydraulic potential and constant chemical concentration on the
same surface, (ii) advective transport from a prolate spheroidal cavity, the
boundary of which is subjected to a constant hydraulic potential and chemical
concentration and (iii) the advective-diffusive transport of a plug of chemi-
cal in a one-dimensional element which is considered to be of finite length
with respect to the advective flow but of infinite length with respect to the
advective-diffusive transport processes. In all these cases, the analytical solu-
tion is developed in exact closed form. This presents a considerable advantage
in exercises that involve calibration of the accuracy of the currently available
computational approaches for the solution of advection-dominated transport
of chemicals and other contaminants in the fluid-saturated geosphere.

2 Governing Equations

We consider a fluid-saturated porous medium in which steady flow is estab-
lished under a reduced Bernoulli hydraulic potential ϕ(x). The average veloc-
ity of the fluid in the pore space is defined by v(x). The average flow velocity in
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the pore space is related to the gradient of the flow potential through Darcy’s
law. Assuming that the porous medium exhibits hydraulic isotropy we have

v(x) = −k∇ϕ, (1)

where k is the Dupuit-Forchheimer hydraulic conductivity measure, which
is related to the conventional Darcy hydraulic conductivity k̃ through the
porosity n∗ (i.e. k = k̃/n∗). We consider pore fluids that are incompressible
for which

∇ · v = 0 (2)

and assuming spatial homogeneity of the porous medium, the partial differ-
ential equation governing the flow potential is Laplace’s equation

∇2ϕ(x) = 0. (3)

The partial differential equation (3) is subject to the conventional Dirich-
let, Neumann or Robin type boundary conditions applicable to partial dif-
ferential equations of the elliptic type. The uniqueness of solutions of the
resulting boundary value problems is well established [21, 31]. We now con-
sider the transport of the chemical (or the contaminant) that moves with the
fluid in the pore space without affecting either the permeability characteris-
tic of the porous medium or the physical and flow characteristics of the fluid
that transports the chemical (or the contaminant). This is an important ide-
alization that permits the development of the classical advective transport
equation. We define C(x, t) as the concentration of the chemical measured
per unit volume of the pore space. Alternatively, the concentration C̃ mea-
sured per unit volume of the entire porous medium is given by C̃ = C n∗. We
consider the presence of both advective and diffusive transport processes in
the porous medium with the advective flux defined in terms of an advective
flux and a diffusive flux, the latter dependent on a Fickian law of diffusion.
Considering conservation of mass of the chemical species it can be shown that
the advection-diffusion equation is given by

∂C

∂t
+ ∇ · (vC) −D∇2C = −ζC, (4)

where ζ accounts for the attenuation of the chemical, through natural or other
means, as it migrates through the porous medium. The partial differential
equation (4) governing advective-diffusive transport is subject to an appropri-
ate boundary conditions and an initial condition. The uniqueness of solution
of the resulting initial boundary value problem can also be proved [23–26].
Equations (3) and (4) form the weakly coupled set of partial differential equa-
tions that govern the advective-diffusive transport problem. In this sense, the
potential problem can be solved completely independent of the advective-
diffusive transport problem. While development of generalized results for the
governing partial differential equations is certainly possible, it is more prudent
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to examine specific solutions that will be of benefit to the assessment of the
accuracy of computational schemes that have been proposed for the solution,
in particular of advection-dominated transport problems.

3 Advective Transport from a Plane Crack

We consider a porous medium occupying the two-dimensional plane annular
domain a ≤ r < b, 0 < θ < 2π, where r and θ refer to the plane polar
coordinate system. Potential flow is induced in the medium by subjecting the
region to the boundary conditions

φ(r, 0) = φ0; φ(r, 2π) = 0 (5)[
∂φ

∂r

]
r=a

= 0;
[
∂φ

∂r

]
r=b

= 0. (6)

The advective transport in the porous medium is induced by subjecting the
region to the following boundary and initial conditions:

C(r, 0, t) = C0 H(t); C(r, θ, 0) = 0, (7)

where H(t) is the Heaviside step function of time and C0 is the boundary
concentration. The solution of the potential problem is sought from the general
solution for Laplace’s equation (3) subject to the boundary conditions (5) and
(6). The general solution of (3) takes the form [21]

φ(r, θ) = A ln r+Bθ ln r+Cθ+D+
∞∑

n=1,2

[
Anr

n +
Bn

rn

]
[Cn sinnθ +Dn cosnθ] ,

(8)
where A,B, . . . , An, Bn.., etc., are arbitrary constants. The required solution,
however, reduces to the simplified result [21,22]

φ(r, θ) = φ0

(
1 − θ

2π

)
. (9)

Correspondingly, the advective transport equation takes the form

∂C

∂t
+
kφ0
2πr2

∂C

∂θ
= −ζ C. (10)

The solution of (10) can be obtained quite conveniently by employing a
Laplace transform approach; this gives

C(r, θ, t) = C0 exp (−ζτ(η)) H [t− τ(η)] , (11)

where
τ (η) = 2πa2η2θ/kφ0; η = r/a. (12)
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Fig. 1. Advective transport from the boundary of a plane crack in the absence of
attenuation
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Fig. 2. Advective transport from the boundary of a plane crack-in the presence of
attenuation

We illustrate the results for the concentration distribution derived from this
solution by considering a quadrant of the domain of interest. The radius of
the obstacle a = 4m, the domain is defined by x ∈ [0, 50m) and y ∈ [0, 50m)
and the transport and decay parameters chosen for the computations include
the following: kϕ0 a2 ≈ 4π(days)−1; ζ = 0.0005(day)−1. The Fig. 1 illustrates
the chemical distribution within the region of interest when there is no nat-
ural attenuation present and the results in Fig. 2 consider the effects of the
attenuation parameter.

4 Advective Transport from a Spheroidal Cavity

Analytical solutions that deal with three-dimensional advective transport in
porous media are important to the validation of computational schemes that
can ultimately be used for the solution of practical three-dimensional prob-
lems in contaminant and chemical transport in fluid-saturated porous media.
Such solutions are, however, rare and can be developed only for a very limited
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number of cases. The advective transport from a spheroidal cavity, either
oblate or prolate, is one such example. We consider a porous medium of in-
finite extent that is bounded internally by a prolate spheroidal cavity. The
formulation is referred to the prolate spheroidal coordinate system (α, β, γ),
where parametric surfaces α = const., say α0, β = β0, and γ = γ0, form a
triple orthogonal confocal family of prolate spheroids, hyperboloids of two
sheets and meridional half-planes, respectively. The prolate spheroidal cavity,
which corresponds to α = α0, is subjected to a constant hydraulic potential
ϕ0 and the far field potential is assumed to be zero. The potential equation
(3) takes the form

∇2ϕ(α, β) =
(
∂2

∂α2
+
∂2

∂β2
+ cothα

∂

∂α
+ cotβ

∂

∂β

)
ϕ(α, β) = 0 (13)

which is subject to the boundary condition

ϕ(α0, β) = ϕ0 (14)

and the regularity condition, ϕ(α, β) → 0, as α → ∞. This allows for the
development of an exact closed form result for the potential distribution within
the porous medium:

ϕ(α) =
ϕ0

ln ξ0
ln ξ; ξ =

(
coshα+ 1
coshα− 1

)
; ξ0 = ξ(α0). (15)

This simplified form of the hydraulic potential results in an advective trans-
port equation of the form

∂C

∂t
+

2 kφ0
c2p sinhα(sinh2 α+ sin2 β) ln ξ0

∂C

∂α
= −ζC. (16)

The solution of the advective transport equation is subject to the boundary
and initial conditions

C(α, β, t) = C0H(t); C(α, β, 0) = 0, (17)

where H(t) is the Heaviside step function of time. The solution of (16) can be
obtained by applying Laplace transform techniques and the exact closed form
solution for the time-dependent distribution of chemical concentration within
the porous medium is given by

C(α, β, t)
C0

= exp [−ζ Ωp (α, β, λ)] H [ t− Ωp (α, β, λ)] , (18)

where

Ωp(α, β, λ) =
c2p ln ξ0
6kϕ0

[
cosh3 α− cosh3 α0

−3 cos2 β {coshα− coshα0}
]
. (19)
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In (19)

cp =
√
a2p − b2p; ξ =

(
coshα+ 1
coshα− 1

)
; ξ0 = ξ(α0) (20)

and the trigonometric and hyperbolic functions can be expressed in terms
of the normalized cylindrical coordinates ρp = r/ap and ηp = z/ap. The
availability of an exact closed-form solution for the initial boundary value
posed by (16) and (17) is a considerable advantage for the calibration of
computational developments. The solution is also versatile to the extent that
sharp fronts can be encountered in the chemical transport profile regardless
of the value of ζ, the attenuation parameter. As an example consider the case
where the initial condition for the advective transport problem is changed
from the first equation of (17) to the following:

C(α, β, t) = C0{H(t) − H(t− t∗)} (21)

implying that the boundary of the prolate spheroidal cavity is subjected to
chemical concentration only for a finite period 0 ≤ t ≤ t∗. The exact analytical
solution for the chemical concentration distribution within the porous medium
is given by

C(α, β, t)
C0

= exp [−ζ Ωp (α, β, λ)]

× {H [ t− Ωp (α, β, λ)]− H [t− t∗ − Ωp (α, β, λ)]} .
(22)

Figure 3 illustrates the migration of the chemical front at different time inter-
vals, and calculated for the following spatial variables ηp = z/ap; ρp = r/ap
and for the system parameters chosen such that, 6kϕ0/(a2p− b2p) ≈ 4(days)−1

,

ζ ≈ 0.005(days)−1
, t∗ = 200days, ap = 8m and bp = 1m. The results of the

chemical migration patterns indicate that the effect of advective transport
and the natural attenuation is to decrease the spatial distribution of chemical
concentration as the front migrates from the original source. The chemical con-
centration profiles also display the characteristic sharp front associated with
the transport problem with boundary conditions of the type (17) and (20)
involving the Heaviside step function of the time-dependent concentration. It
should also be noted that the result (18) can be regarded as a fundamental
solution that can be used in conjunction with a superposition technique to
determine the chemical concentration profiles corresponding to any arbitrary
time-dependency in the concentration that is uniformly applied to the entire
boundary of the prolate spheroidal cavity.

The basic approach can also be applied to determine the chemical con-
centration in the porous medium that is internally bounded by an oblate
spheroidal cavity. When the boundary of the cavity is subjected to a con-
stant potential ϕ0 and a chemical concentration with strength C0 and a time
dependency in the form of a Heaviside step function

C(α, β, t)
C0

= exp [−ζΩ0 (α, β, μ)] H [ t− Ω0 (α, β, μ)] , (23)
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Fig. 3. Advective transport from the boundary of a prolate spheroidal cavity due
to a boundary chemical dosing of finite duration and constant attenuation

where

Ω0(α, β, μ) =
b20(1 − μ2) cot−1(sinhα0)

3kϕ0

×[sinh3 α − sinh3 α0 + 3 cos2 β)(sinhα− sinhα0)], (24)

sinhα0 =
μ√

1 − μ2 ; μ =
a0
b0
< 1. (25)

For details of these developments the reader is referred to Selvadurai [23,25].
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5 Advective-Diffusive Transport with Time-Dependent
Flow Velocity

In almost all developments dealing with the classical advective transport equa-
tion, it is assumed that the advective velocities can be functions of the spa-
tial coordinates as determined by the solution of Laplace’s equation (3). In
general, the flow velocities can exhibit time-dependency due to a variety of
effects including hydraulic potentials that can vary with time, compressibility
of either the pore fluid or the porous skeleton and poroelastic effects in the
system. When there is no compressibility in the system, time-dependency in
the flow velocities can result from time dependency in the boundary poten-
tial. A simple instance of such a situation is the conventional one-dimensional
falling head test that is used to determine the hydraulic conductivity char-
acteristics of porous media. In such a test, the velocity is uniform over the
length of the sample but the velocity will decay exponentially with time. Here
we consider the advective-diffusive transport problem applicable to a one-
dimensional problem resulting from the movement of a plug of chemical that
is located within a porous column of finite length, which is subjected to flow
velocity that is uniform but varies exponentially with time. In terms of the
advective flow problem, the porous column is assumed to be a finite domain,
whereas in terms of the advective-diffusive transport problem the region is as-
sumed to be infinite. We consider the problem of a porous column of length l
that is subjected to an initial hydraulic head H0 as shown in Fig. 4. The chem-
ical is located within the porous column and occupies the region x ∈ (−a, a).
As the hydraulic head diminishes, the velocity in the porous column will vary
exponentially with time. We can formulate an initial value problem defined
by the partial differential equation

∂C

∂t
+ v0 exp (−λt)∂C

∂x
= D

∂2C

∂x2
;x ∈ (−∞,∞); t > 0, (26)

Reservoir
Valve

Datum

Porous
medium

Chemical
at concentration C0

x
i

H0

Fig. 4. Advective diffusive transport in a porous column
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where
v0 = kH0/l; λ = k/l. (27)

The PDE (26) is solved subject to the initial condition

C(x, 0) = C0 [H(x+ a) − H(x− a)] ; x ∈ (−∞,∞). (28)

The solution to the problem can be obtained [26] in exact closed form as
follows:

C(x, t)
C0

=
1
2
erf

(
−x+ a+ v0

{1−exp (−λt)}
λ

2
√
Dt

)

−1
2
erf

(
−x− a+ v0

{1−exp (−λt)}
λ

2
√
Dt

)
; x < v0t, (29a)

C(x, t)
C0

=
1
2

erfc

(
x− a− v0 {1−exp (−λt)}

λ

2
√
Dt

)

−1
2
erfc

(
x+ a− v0 {1−exp (−λt)}

λ

2
√
Dt

)
; x < v0t. (29b)

Figure 5 illustrates the time dependent advective-diffusive transport of the
plug of chemical located within the porous column. The analogous initial
boundary value problem where the chemical dosage takes place at the surface
of the porous column can only be solved using a computational approach. In
the calculations we set v0 ≈ 2mday−1;λ ≈ 0.2 (days)−1 and a = 5m, and
the diffusivity parameter is altered to examine its influence on the chemical
profile.

6 Concluding Remarks

The computational modelling of the advective transport of chemicals and
contaminants in porous media presents a challenge particularly in instances
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where the concentration distribution has a discontinuous profile. The accuracy
of computational methods such as the Streamline Upwind Petrov–Galerkin,
Taylor–Galerkin, Least Squares, Modified Least Squares, etc., needs to be
tested against analytical results that will involve spatial-and time-dependent
advective velocity distributions. To date many of the calibration exercises are
restricted to the one-dimensional problem involving constant velocity. This
paper outlines certain analytical solutions that have been recently developed
for the plane and axisymmetric problems of advective transport and one-
dimensional problems involving time-dependent advective velocities. These
solutions have been recently applied to test the accuracy of a Modified Least
Squares technique for the study of the advective transport problem that also
includes time- and mesh-refining algorithms. The analytical results provided
the benchmarks that were necessary for the validation of the computational
scheme. The results of these investigations will be presented in future work.
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1 Introduction

Geomechanics is a challenging discipline mainly because the formation of ge-
omaterials and their engineering behaviour are so diversified and complex.
As such, there is really nothing unusual when different soil behaviours are
observed. From this point of view, the word “unusual” used in the title only
means unconventional in the context of this paper. It is for the same rea-
son that we can state that no single constitutive model can capture all the
different types of behaviour of one type of soil, not saying the behaviour of
different soils. The objectives of this paper are to illustrate using laboratory
testing data some of the unconventional types of behaviour observed and to
point out the difficulties in modelling these behaviours using the existing con-
stitutive models. The types of behaviours to be discussed include liquefaction
of dense sand, pre-failure strain softening in strain path testing and strain
softening and hardening in the post-failure region, instability of sand under
drained conditions, the path dependent undrained behaviour and the reversed
strain rate effect on loose sand. Some of the behaviours have not been reported
in the literature before and therefore, may have not been considered in the
existing constitutive models. There are two issues that need to be addressed
on the fundamental level. (1) Whether these unusual behaviours are the true
characteristics of geomaterials. The validation can be done by conducting fur-
ther experimental studies and by using constitutive models. If the so-called
unusual behaviours can be modelled by constitutive models, it will not only
support the validity of the data, but also help in understanding the physi-
cal meanings and mechanisms that govern the behaviours. (2) The unusual
behaviours are the true characteristics of geomaterials. However, the exist-
ing constitutive models cannot be used to model these behaviours properly.
In this case, the data will pose a challenge to the existing constitutive mod-
els and help in the development and verification of constitutive models for
geomaterials.
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2 Liquefaction of Dense Sand

Static liquefaction of sand is often associated with the undrained behaviour of
loose sand, as shown in Fig. 1. As the behaviour shown in Fig. 1 is affected by
both the void ratio of the soil and the confining stress, the state parameter,
ψ, has been proposed by Been and Jefferies [3] to describe the effect of both
factors. For liquefaction to occur under undrained conditions, ψ has to be
positive. Within the normal stress range, ψ can only be positive for very loose
sand. However, the void ratio of the sand that can liquefy in an undrained
triaxial test is often larger than the in- situ void ratio of the soil encountered
in most projects and in practice flow slide can take place in soils that will not
liquefy in the laboratory [4]. Apparently, liquefaction under undrained con-
ditions does not offer the interpretation to all the failure mechanisms. There
should be other mechanisms that can explain the flow slide or liquefaction of
relatively dense sand, or in other words, whether soil that have negative ψ
value could possibly liquefy [10,18].

It should be noted that “undrained” specifies only a special drainage con-
dition at the boundary. In general, the boundary condition can either be
partially drained by allowing the specimen to have either volumetric contrac-
tion or dilation. Both conditions can be modelled by strain path testing as
dεv/dε1 > 0 for contraction and dεv/dε1 < 0 for dilation. An undrained con-
dition is a special case when dεv/dε1 = 0. When we take the general drainage
condition into consideration, liquefaction of sand depends not only on the
void ratio of the soil and the stress level applied, but also on the drainage
conditions, or in other words, the strain path imposed.

Under the general strain path-controlled conditions, even dense sand can
liquefy in the same way as loose sand does under the undrained condition. One
example is shown in Fig. 2 where strain softening has occurred for a dense sand
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Fig. 2. Strain softening of dense sand along strain path with dεv/dε1 = −0.67

when it is sheared along a dεv/dε1 = −0.67 path. In this case, the state
parameter cannot be used to describe the liquefaction behaviour of the sand
anymore. To model the liquefaction (or strain softening) behaviour under
general conditions, one more parameter is required to specify the drainage
condition. The strain increment ratio, (dεv/dε1)i or (dεv/dεs)i can be used
as such a parameter. A subscript “i” is used to specifically indicate that
it is the strain increment ratio imposed, not the strain increment ratio or
the dilatancy ratio manifested during a drained test, which can be denoted
as (dεv/dεs)d. It should be pointed out that whether liquefaction or strain
softening can occur or not depends on the difference between (dεv/dεs)i and
(dεv/dεs)d, not on the absolute value of (dεv/dεs)i or (dεv/dεs)d as discussed
by Chu et al. [15, 16] in details. Therefore, liquefaction or strain softening
is not dependent on whether the soil is contractive or dilative. This is an
important mechanism that has yet to be fully understood. Without reflecting
this mechanism in a constitutive model, the model may not be able to describe
the strain softening behaviour as shown in Fig. 2 properly.

One would argue whether a condition with an imposed (dεv/dεs)i exists
in practice. In fact, some slope failure mechanisms relating to dεv/dε1 < 0 or
the non-undrained conditions have been identified by the National Research
Council [32]. Two failure mechanisms are reproduced in Fig. 3. In Mechanism
B (Fig. 3a), the void ratio of the sand in a slope can redistribute within a
globally undrained sand layer. In this case, some soil elements along the slope
will become looser, that is, undergoing volumetric dilation. It is the soil that
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(a)

Looser

Denser

(b) Effective stresses
reduced: Cracking

Sand loosened
by outward
flow

Sand with
High pore pressure

Fig. 3. (a) Mechanism B by NRC [32]: Situation for void redistribution within a
globally undrained sand layer; (b) Mechanism C by NRC [32]: Situation for failure
by spreading of excess pore pressure with global volume changes

undergoing dilation would fail first. It has been observed in the laboratory and
the field that the water contents in the soils along a slip surface are higher
than the adjacent areas [21]. In Mechanism C (Fig. 3b), some portions of the
slope can be loosened, i.e. undergoing dilation, due to the spreading of the
excess pore water pressure. The above two mechanisms are supported by some
centrifuge testing results and case studies presented by Boulanger and Truman
[7], Adalier and Elgmal [1] and Sento et al. [36]. The possibility of flow slide
occurring in medium loose or dense soil or in other word, dilating soil, is also
observed in several case studies. Been et al. [4] argued that the Nerlerk berm
failure case might have occurred for dilating sand, as the state of the sand lies
below the critical state line, that is, the state paraments is negative. Several
other cases of flow slide failure in dilating sand have also been presented
by Been et al. [5]. Casagrande [8] has also described one case that prior to
liquefaction and flow of large masses of rather dense granular talus in the
Alps, brooks emerging from the toe of the talus deposits stop flowing. Based
on Casagrande’s suggestion, Fleming et al. [21] have classified flow failure
into contractive and dilative types. The Salmon Creek landslide in Marin
Country, California, which exhibited dominantly dilative transformation from
solid landslide to liquid debris flow, was used by Fleming et al. [21] to illustrate
the different criteria that can be used in the field to distinguish contractive
and dilative behaviour.

3 Post-Failure Strain Softening and Hardening of Sand

Before we discuss strain softening behaviour, it is important to distinguish
different types of strain softening. Strain softening behaviour in sand can be
classified into three different types [17]. The first type is the strain softening
observed in a conventional drained triaxial test on dense sand. This type of
strain softening is often used to explain the effect of dilation on the behaviour
of dense sand [28]. However, the studies of Hettler and Vardoulakis [23] and
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Chu et al. [15] have shown that this type of strain softening is merely a result
of non-homogeneous deformation caused by the end constraints, not a true
material behaviour.

The second type of strain softening is the so-called banding softening [17].
It occurs under plane-strain or three-dimensional loading conditions as a
result of shear bands. However, unlike the shear bands that occur under
axisymmetric conditions, the shear bands observed under plane-strain or
three-dimensional conditions is a material response, not a result of imperfect
boundary conditions.

The third type of strain softening is what is shown in Fig. 1 or Fig. 2. This
type of strain softening is a real material behaviour. As the strain softening
occurs before the stress state reaches the failure line, it has been called the
pre-failure strain softening [15].

It should be pointed out that an undrained test is a strain path controlled
test with dεv/dε1 = 0. A drained triaxial test is a stress path test with
dσ′3 = 0. Strain softening is a behaviour that is likely to manifest along a
strain path rather than stress path. This is because strain softening is defined
as a behaviour where the shear stress (or resistance) starts to reduce with
further shearing (for discussion on the definition of strain softening, see [15]).
When a stress path is controlled, the stress components cannot change freely.
Thus the strain softening tendency, if any, cannot develop freely. This explains
why it is rare to observe strain softening behaviour in stress path controlled
tests within the homogeneous deformation region (or without the presence of
shear bands). In a strain path test, it is the strains, not the stresses that are
controlled. Hence, strain softening, if any, can develop freely. For this reason,
Chu et al. [15] have proposed the use of strain path testing method to study
the strain softening behaviour. Under strain path control, strain softening as
a material behaviour can occur even for dense sand as shown in Fig. 3.

If the strain softening observed in a drained test for dense sand is not a
material behaviour, then will strain softening occur as a material behaviour in
the post-peak, i.e. post-failure region? The answer is yes. Post-failure strain
softening can occur if certain strain paths are imposed.

Figure 4 shows the stress–strain curves obtained from two triaxial tests
conducted on dense sand. In conducting the two tests, the laboratory recon-
stituted specimens were first sheared to failure along a drained path with an
effective consolidation stress of 300 kPa. Once failure was attained, a strain
path in the form of dεv/dε1 was imposed. At failure, the (dεv/dε1)f obtained
was −0.54. When dεv/dε1 = −0.25 was imposed, strain hardening behaviour
was manifested in the post-failure region, as shown in Fig. 4. On the other
hand, when dεv/dε1 = −0.67 was imposed, strain softening occurred in the
post-failure region. It needs to be pointed out that the occurrence of strain
hardening or softening is not related to whether a soil is in dilation or con-
traction. The soil specimens in both tests were in dilation. The studies of Chu
et al. [15, 17] have shown that the occurrence of post-failure strain softening
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Fig. 4. Post-failure strain hardening and softening behaviour of dense sand
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where (dεv/dε1)i is the strain increment ratio imposed, (dεv/dε1)f is the fail-
ure strain increment ratio the soil would manifest under a completely drained
condition. The condition of perfectly plastic response, in fact, corresponds to
the response of a drained triaxial test (with free-end), in which both q and
(dεv/dε1)f remain constant at the failure values with continuous shearing [13].
Therefore, strain softening behaviour is controlled by the difference between
(dεv/dε1)i and (dεv/dε1)f , not (dεv/dε1)i or (dεv/dε1)f alone.

The effective stress paths of the above two tests together with other similar
tests are also plotted in Fig. 5. It can be seen that when strain softening
occurs, the effective stress path travels down along the failure line, whereas
when strain hardening occurs, the effective stress path moves away from the
failure line. As can be seen from Fig. 4, the stress–strain curve reached a new
peak during the strain hardening process under dεv/dε1 = −0.25. The stress–
dilatancy relationship during the post-failure strain hardening behaviour can
be modelled as [15]:
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where K and m are experimentally determined constants. For the soil tested,
K = 2.9 and m = 0.42. The first term of (2) is the Rowe’s stress dilatancy
equation [34]. Therefore, (2) can be considered as an extension of Rowe’s stress
dilatancy theory.

The post-failure strain softening has distinct physical meanings. The post-
failure strain softening causes irrecoverable loss in shear strength. After strain
softening, the failure line shrinks or becomes lower than the original failure
line [15]. In other words, the effective friction angle or the effective cohesion
of the strain softened soil will reduce. It should be pointed out that the stress
state of soil after post-failure strain softening does not approach the critical
state. This is different from what is assumed in the critical state soil mechanics.
For this very reason, the critical state soil mechanics framework will no longer
be adequate to be used to describe the stress–strain behaviour manifested
under strain path testing. In this case, a more general state, the so-called
asymptotic state [14], can be used instead. The asymptotic state is defined as
a state where both the mobilised stress level (q/p′) and the dilatancy ratio
of the soil (−dεv/dε1) become constant. The critical state is a special case of
asymptotic state.

For some conventional constitutive models, the compliant matrix will be
set to infinity when the failure state is reached so that large plastic strain will
develop. However, the above test data indicate that after the conventionally
defined failure state is reached, it is still possible for soil to manifest strain
hardening or softening behaviour in the post-failure region depending on the
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drainage conditions or strain paths imposed in the post-failure region. How
to model the post-failure strain hardening and softening behaviour of soil is
another challenge to constitutive modelling.

4 Instability under Drained Conditions

The failure of loose granular soil slopes is often considered to be triggered by
instability or static liquefaction occurring under undrained conditions. The
term instability refers to a phenomenon where plastic strain develops rapidly
under a given load or stress. Liquefaction is one type of instability. According
to Chu [10,11], Chu and Leong [12], instability and strain softening are closely
related. Strain softening and instability are the different magnifications of the
same mechanism. Take the undrained test shown in Fig. 1 as an example.
This test was conducted on loose sand under a deformation-controlled loading
condition and strain softening occurred in this test. If the test were conducted
under a load-controlled loading condition with other conditions remain the
same, the specimen would become unstable at about the same point where
strain softening has occurred. The test data of such a test are shown in Fig. 6.
The test was conducted under a load-controlled deformation model. When
the stress state reached point B (Fig. 6a), the specimen physically collapsed.
This is also indicated by the sudden increases in the axial strain and the pore
water pressure as shown in Fig. 6b, c. Therefore, instability has occurred at
point B in this undrained test for loose sand. It needs to be pointed out that
the test conditions for the test shown in Fig. 1 are different from those for
the test shown in Fig. 6. Therefore, a direct comparison may not be made.
Nevertheless, the comparison of the two tests has clearly indicated that the
same soil may exhibit different stress–strain behaviours by merely changing
the loading conditions without changing the stress paths and other testing
conditions. When a soil is sheared in a deformation-controlled loading mode,
progressive type of failure, i.e. strain softening may develop. However, when a
soil is sheared in a load-controlled loading mode, the soil element can collapse
suddenly, i.e. instability will occur. For more discussions on the differences
between tests conducted in a deformation-controlled and a load-controlled
loading mode, see Chu [10,11] and Chu and Leong [12].

So far, instability has been studied almost exclusively under undrained con-
ditions. However, there are cases where instability occurred under essentially
drained conditions. In a recent reanalysis of the Wachusett Dam failure in
1907, Olson et al. [33] concluded that the failure was mainly triggered by sta-
tic liquefaction that occurred under completely drained conditions. Through
laboratory model tests, Eckersley [20] observed that the pore water pressure
increase observed during failure of a gentle granular soil slope is a result,
rather than the cause of flow slide. In other words, the flow slide took place
under an essentially drained condition.
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Fig. 6. Instability observed in undrained test on loose sand

Instability behaviour of sand along a drained, constant shear stress path,
or the so-called CSD path [2], has been observed experimentally. The results
of a typical CSD test, DR7, are shown in Fig. 7. The loose sand specimen (with
a void ratio ec = 0.945) was firstly sheared to point A along a drained path
(Fig. 7a). The deviator stress at point A is q = 150 kPa. On the constant q
path, the confining stress was reduced at a rate of 1 kPa min−1, which results
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in a stress path moving from point A to point B (Fig. 7a). There were little
axial and volumetric strain developments until point B where both axial and
volumetric strains started to develop at a faster rate, as shown in Fig. 7b, c.
This can be seen more obviously from Fig. 7d which shows that the axial
strain rate shot up at point B, indicating an unstable behaviour. Using point
B, the instability line can be determined as shown in Fig. 7a. With further

0

50

100

150

200

250

300

0 100 200 300

p', Mean effective stress (kPa)

q,
 D

ev
ia

to
r 

st
re

ss
 (

kP
a)

DR7, ec = 0.945

CSL
B

IL

A

(a)

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120
t, Time (min)

s
3,

 C
on

fin
in

g 
st

re
ss

 (
kP

a)

0

1

2

3

4

5

6

7

8

9

A
xi

al
 o

r 
vo

lu
m

et
ric

 s
tr

ai
n 

(%
)

ea

s3

ev

A

B

BA

BA

(b)

Fig. 7. Instability of loose sand under a drained condition with reduction in con-
fining stress



Unusual Soil Behaviour and its Challenge to Constitutive Modelling 387

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300

p ', Mean effective stress (kPa)

A
xi

al
 o

r 
vo

lu
m

et
ric

 s
tr

ai
n 

(%
)

B A

B A

(c)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 20 80 100

t, Time (min)

de
a/

dt
, 

S
tr

ai
n 

ra
te

 (
%

/m
in

)

A B

(d)

6040

ea

ev

Fig. 7. Continued

reduction in the confining stress, the stress path moved further towards the
CSL. However, at this stage the axial and volumetric strain rates had increased
to such an extent that the testing system could not catch up to maintain q to
be constant. It needs to be pointed out that the pore water pressure did not
change during the whole test. Therefore, the instability in the form of a rapid
increase in plastic strains is observed under a fully drained condition.

Although under undrained conditions, instability will not occur for dilative
sand, under drained conditions the similar type of instability behaviour has
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been observed to occur for dilative sand. In this case, instability occurs at a
higher sress ratio, i.e. a higher instability line. The gradient of the instability
line increases with density. See Chu et al. [18] for detail.

When we describe a slope as unstable, we mean either the slope is col-
lapsing or its movement is accelerating rapidly. Therefore, in the geotechnical
context, the word instability should be defined to include both a runaway type
and a jump in the strain rate type of behaviour. For this purpose, instability
has been defined in this paper to refer to a behaviour in which large plastic
strains are generated rapidly. For large plastic strain to develop, the soil must
be in a yielding state. Therefore, yielding is the necessary condition for insta-
bility. This has been explained by Lade [27] for the instability occurring for
loose sand under undrained conditions. The instability line, in fact, is defined
based on the yielding conditions [16, 27]. As such, the zone of instability is
defined regardless of the drainage condition. This explains why instability can
occur under both undrained and drained conditions as long as the stress path
leads the stress state into the zone of instability.

Although yielding is a necessary condition for instability to occur, it is
not sufficient. In other words, plastic yielding does not necessarily cause a
soil specimen to become unstable. Yielding means the development of a large
strain for a small change in stress. It does not imply that the specimen will
become unstable which is characterised by a sudden increase in the strain in-
crement rate, dε1/dt (see Fig. 7d). Therefore, we cannot assume that yielding
is automatically the condition for instability. Whether instability can occur
along a given stress path needs to be established separately.

As instability is characterised by a time-rate behaviour and cannot be
judged by yielding alone, it may therefore be necessary for the constitutive
models that will be used to model instability to consider time effect. Fur-
thermore, the occurrence of instability is related to a load-controlled loading
condition. Hence, instability may have to be modelled as a boundary value
problem, rather than a pure element behaviour. The experimental data pre-
sented above can also serve to show that plastic yielding, especially instability,
can occur along an “unloading” path. As this could not be predicted by con-
ventional plasticity as explained by Jefferies [25], the data could be useful in
verifying the predictive ability of some constitutive models.

5 Non-Unique Undrained Behaviour

Triaxial tests have often been used to simulate the stress paths encountered
by soil elements in the field. Four typical types of stress paths, as shown
in Fig. 8, have been identified and modelled in triaxial tests [6, 24, 29]. The
changes in the axial and lateral stresses that are required in modelling the
four typical stress paths in triaxial tests are explained in Table 1. Paths AC
and LE are for compression load with the principal stress in the vertical di-
rection and paths AE and LC are for extension load with the principal stress
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Table 1. Four typical total stress paths

type axial
stress, σa

lateral
stress, σr

dq/dp α

axial compression (AC) dσa > 0 dσr = 0 3 0
lateral extension (LE) dσa = 0 dσr < 0 −3/2 0
axial extension (AE) dσa < 0 dσr = 0 3 90
lateral compression (LC) dσa = 0 dσr > 0 −3/2 90

in the horizontal direction. The geotechnical problems that can be simulated
by the above stress paths are discussed in Holtz and Kovacs [24]. For geotech-
nical design involving soils with a very low permeability such as soft clay, an
undrained condition is often assumed. In this case, the stress paths shown in
Fig. 8 represent the total stress paths. One fundamental question which needs
to be addressed is whether the undrained behaviour is affected by the total
stress paths. The answer to this question will have important practical impli-
cations. If the undrained behaviour of soil is total stress path dependent, it will
mean that the undrained shear strength determined along one type of total
stress path may not be applicable to problems involving other types of
total stress paths. Bishop and Wesley [6] and Law and Holtz [29] studied
this problem for normally consolidated (NC) natural clay by conducting a
series of triaxial K0 consolidated undrained compression (CK0UC) and ex-
tension (CK0UE) tests along different total stress paths. Based on the results,
they concluded that the undrained behaviour of NC clay did not seem to be
affected by the total stress paths as long as the principal stress direction is
the same [6, 24, 29]. Their studies, however, showed that the results obtained
from the CK0UC and CK0UE tests were different. This is expected as the
principal stress directions, α, in the two tests were different. The value of α
was 0o for the CK0UC tests and 90◦ for the CK0UE tests.
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As part of a study on the undrained behaviour of loose sand, some
undrained tests on laboratory reconstituted sand were conducted by following
different total stress paths. Surprisingly, the results show that the total stress
path does affect the undrained behaviour of sand. This is different from the
studies of Bishop and Wesley [6] and Law and Holtz [29] for clay.

A series of CK0UC and CK0UE tests were conducted on loose MT spec-
imens by following two different types of total stress paths: AC and LE for
CK0UC tests and AE and LC for CK0UE tests, respectively [22]. The re-
sults of one pair of tests, Tests KoMT6 and KoMT9, are presented in Fig. 9.
The specimens used for the two tests had the same initial void ratio of 0.852
and the consolidated void ratios were 0.826 for KoMT6 and 0.824 for Test
KoMT9. The effective stress paths obtained from the two tests are shown in
Fig. 9a, which are obviously different. Nevertheless, both effective stress paths
approach the same CSL at the end of the tests. The slope of the CSL on the
extension side is Mcs = 0.97. The stress–strain curves and the pore pressure
changes obtained from the two tests are shown in Fig. 9b, c, respectively. The
pore pressure generated and the maximum deviator stress obtained in the test
along the LC path (KoMT9) are higher than that in the test along the AE
path (KoMT6).

Similar behaviour was obtained from the series of CK0UE tests conducted
along both the AE and LC paths over a range of void ratios [22]. The test
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data unambiguously indicate that the effective stress path obtained from an
undrained test is affected by the total stress paths used for the undrained test
even when the principal stress direction is fixed.

It needs to be pointed out that the differences in the undrained behav-
iour shown in Fig. 9 are not due to the testing errors such as membrane
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penetrations. In fact, by assuming the soil to be a cross-anisotropic media,
it can be shown analytically that the effective stress paths resulting from
undrained tests conducted along different total stress paths are different.

If we assume a soil to be a cross-anisotropic elastic material, then the
stress–strain relationship under the trixial condition can be written as [26]:(

Δεa
Δεh

)
=
( 1

Ea

−2νha
Eh−νah

Ea

1−νhh
Eh

)(
Δσ′a
Δσ′h

)
, (3)

where εa is axial strain; εh is horizontal strain; σ′a is effective vertical stress;
σ′h is effective horizontal stress, Ea, Eh is Young’s modulus in the axial and
horizontal directions, respectively; νah, νha is Poisson’s ratio for the effect of
axial strain on horizontal strain and Poisson’s ratio for the effect of horizontal
strain on vertical strain, and νhh is Poisson’s ratio for the effect of horizon-
tal strain on complementary horizontal strain. Under undrained conditions,
Δεv = Δεa + 2Δεh = 0. Using (3) we have:

Δσ′h =
Eh

2Ea

(2νah − 1)Δσ′a
1 − νha − vhh , (4)

when 1 − νha − νhh 	= 0. As Δq = Δσ′a − Δσ′h, (4) can be re-written as:

Δσ′h =
Eh(2νah − 1)

2Ea(1 − νha − νhh) − Eh(2νah − 1)
Δq = AΔq, (5)

where

A =
Eh(2νah − 1)

2Ea(1 − νha − νhh) − Eh(2νah − 1)
.

For undrained triaxial tests along AC (or AE) paths, dσh = 0. Hence:

Δu = −Δσ′h = −AΔq. (6a)

For undrained triaxial tests along LE (or LE) paths, dσa = 0. Hence,

Δu = −Δσ′a = −(1 +A)Δq. (6b)

The total stress paths followed in AC (or AE) and LE (or LC) tests are

LE (or LC) path : Δp = −2
3
Δq, (7a)

AC (or AE) path : Δp =
1
3
Δq. (7b)

Using (6) and (7), the change in effective mean stress can thus be calculated
as:

LE (or LC) path : Δp′LC = Δp− Δu =
(

1
3

+A
)

Δq, (8a)

AC (or AE) path : Δp′AE = Δp− Δu =
(

1
3
−A

)
Δq. (8b)
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Equation (8) indicates clearly that the effective stress paths followed in the
undrained tests conducted along different total stress paths are different. This
is derived by merely assuming the soil is a cross-anisotropic elastic material.
The differences in the effective stress paths may be more pronounced for cross-
anisotropic plastic materials. Therefore, the differences in the stress–strain
behaviour and the effective stress paths between undrained tests conducted
along different total stress paths are a result of anisotropic soil behaviour.
This anisotropic behaviour is observed for both sand and clay [6, 29] when
the principal stress direction rotates from 0◦ (i.e. compression) to 90◦ (i.e.
extension). However, the anisotropic behaviour due to the change in total
stress paths for a fixed principal stress direction is obvious only for the sand
tested in this paper, but is not obvious for the undisturbed NC clay tested
by Bishop and Wesley [6] and Law and Holtz [29]. In fact, the difference
in the stress–strain curves and the effective stress paths can also be seen in
Bishop and Wesley’s [6] data, and the difference follows the same trend as that
observed in this paper. It is only because the difference is small that Bishop
and Wesley [6] considered that the stress–strain curves and the effective stress
paths were “almost identical” for the NC clay tested. In general, the stress–
strain behaviour and the effective stress paths obtained in undrained tests can
be affected by the total stress paths used in conducting the undrained tests.

6 Reversed Strain Rate Effect on Loose Sand

Unlike for clay, the effect of strain rate on the stress–strain behaviour of sand
has not been well studied. This is reflected by the small number of papers
that can be found in the literature, e.g. Casagrande and Shannon [9], Seed
and Lundgren [35], Whitman and Healy [37] and Yamamuro and Lade [38].
There are even fewer studies on the effect of strain rate on loose sand. One
reason for the luck of study on the effect of strain rate on sand is probably
because of the perception that strain rate does not affect granular soil as much
as it does on cohesive soils. Most of the studies on the strain rate effect of
sand appear to indicate that the trend of influence for sand is similar to that
for clay, i.e. the higher the strain rate, the higher the peak deviator stress in
both drained and undrained tests. However, there are a few exceptions. Nash
and Dixon [31] have presented some undrained test results on sand to show
that the magnitudes of deviator stress and deformation moduli decrease with
increasing strain rate. Similar observations have also been made by Whitman
and Healy [37].

The strain rate effect on the Changi sand in Singapore has been studied.
The results of four undrained tests on loose sand are shown in Fig. 10. The four
specimens were prepared using the moist tamping method with void ratios in
the narrow range of 0.880–0.882. Therefore, the specimens can be considered
identical. The four tests were conducted using four different strain rates of
0.002, 0.02, 0.2 and 2.0mmmin−1. It can be seen from Fig. 10 that the stress–
strain curve is strongly affected by the strain rate and the higher the rate,
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Fig. 10. Results of undrained tests on loose sand at four different strain rates

the lower the deviator stress and the higher the pore pressure generation.
Therefore, a reversed strain rate effect has been observed. As the results are
rather unusual, the repeatability has been check. A series of drained tests
on the same loose sand were also conducted using the four different strain
rates [30]. The strain rate effect on the drained behaviour is consistent with
that on undrained. Therefore, the reserved strain rate effect shown in Fig. 10
is a true material behaviour.
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How should the reversed strain rate effect be explained? Whitman and
Healy [37] speculated that it could be due to membrane penetration errors.
However, we have checked this not to be the case. One plausible explanation
may be offered as follows. As the slower the strain rate, the higher the peak
deviator stress, it suggests that the ageing effect in sand may be even larger
than the rate effect. One contribution to the ageing effect is the formation
of silicic acid gel at the surface of the sand particles as a result of chemical
interaction between water and silica, as suggested by Denisov and Reltov [19].
Further studies are required on this topic.

7 Concluding Remarks

Owing to the complexity and diversity in the formation and stress–strain be-
haviour of geomaterials, some unusual soil behaviour has been observed and
presented in this paper. These include: liquefaction of dense sand, pre-failure
strain softening along strain path and strain softening and hardening in the
post-failure region, instability under drained conditions, the path dependent
undrained behaviour and the reversed strain rate effect on loose sand. Some
of those unusual behaviours cannot be properly modelled by the existing con-
stitutive models yet. In this case, the data pose a challenging to the existing
constitutive models and help in the development and verification of constitu-
tive models for geomaterials. On the other hand, if the unusual behaviours can
be modelled by constitutive models, it will not only support the validity of the
data, but also help in understanding the physical meanings and mechanisms
that govern the behaviours. Only by achieving a thorough understanding of
the general behaviour of soil, can we be able to model the soil behaviour prop-
erly and use it in the prediction of the performance of geotechnical facilities
and structures.
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Abstract. This paper explores the histotropic effects of loosely compacted and K-
overconsolidated Hostun RF sand in the triaxial plane. Several series of compression
and extension undrained tests are performed on samples subjected to anisotropically
K-overconsolidation with constant effective stress ratio paths from different initial
stress states. The analysis is focused on the observed effective stress paths. To min-
imize the effect of variation of density on the observed undrained behaviour, nearly
identical void ratios before the final monotonic undrained shearing are required for
all tested samples.

Experimental results show some effects of histotropy : A large pseudo-elastic
domain, a unique and strongly inclined pseudo-elastic response, the directional de-
pendency of the initial inclination of the effective stress paths, the progressive ap-
pearance of dilatancy and the evolution of the undrained behaviour from the partial
static liquefaction of loose sand to the completely stable state typical of dense sands,
while being relatively loose at the beginning of undrained shearing. This paper of-
fers some new insights into the mechanism of the histotropy created by simple linear
stress paths in the classical triaxial plane. The effectiveness of using hyperelasticity
to simulate the pseudo-elastic response of presheared sand is highlighted.

1 Introduction

Since the early date of soil mechanics, the two forms of anisotropy, inherent
and induced, have been recognized as difficult challenges to the geotechnical
community. Much experimental and theoretical research has been devoted to
these problems, trying to capture the essential features, since natural soil,
under the vertical action of gravity during sedimentation, possesses these two
components.

Concerning induced anisotropy, the first past experimental studies are
often restricted to isotropically consolidated materials and standard com-
pression triaxial preshear, due to experimental difficulties, Poorooshasb et
al. [29,30], Tatsuoka et al. [33], Ishihara et al. [17–19], Vaid et al. [35] among
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others. Newly designed machines are constructed to better simulate the grav-
itational direction of natural soil: The simple shear device, Arthur et al. [1],
the hollow cylinder apparatus, Hight et al. [14], the plane strain machine, Tat-
suoka et al. [34] and the true triaxial machine, Lanier [25], etc. to cite a few.
New experiments showed the key role of the direction of the consolidation and
the subsequent alteration of the mechanical properties of the soil by the first
stress loading. The previous strain histories seem to be related to the induced
anisotropy.

Despite decades of relevant experimental research, many aspects of the
induced anisotropy are still elusive, many questions are still open: how to
quantify the effects of induced anisotropy? how to characterize the evolution
of material properties? can one have a clear-cut explanation on the role of
previous preloading histories?

The purpose of this paper is to study the effects of the induced anisotropy
created by simple linear stress paths from different initial stress states in
the classical triaxial plane. New experimental observations from an extensive
programme on loosely compacted and anisotropically overconsolidated Hostun
RF sand are presented, leading to histotropy, a specialized form of induced
anisotropy.

2 Normally Consolidated Behaviour

Standard Hostun RF sand is used in this experimental program. Its physi-
cal properties can be found in Flavigny [11]. Very loose and contractive sand
samples were prepared with a modified moist tamping and undercompaction
method. This preparation technique was inspired by the early works of Bjer-
rum et al. [2] and Ladd [22]. The details of the experimental procedure are
given in [7, 9, 16].

The triaxial test results were interpreted in terms of the deviatoric stress
q = σ′a − σ′r and the effective mean pressure p′ = (σ′a + 2σ′r)/3 , where σ′a and
σ′r are the effective axial and radial stresses. The attention of this paper is
focused on the stress paths, examined in the classical q − p′ plane.

The undrained behaviour of very loose and normally consolidated Hos-
tun RF sand was previously studied mainly by Canou [3], Meghachou [28],
Konrad [20], Ibraim [16]. Isotropic consolidation procedure is conducted in all
studies, and anisotropic consolidation along constant stress ratio paths, noted
anisotropic K-consolidated paths with K = σ′r/σ

′
a, is rarely performed.

Figure 1 gives a fairly accurate image of the undrained behaviour of virgin
isotropic consolidated (a) and anisotropic consolidated (b) sand in compres-
sion and in extension. Within the range of studied initial confining pressures,
partial static liquefaction is systematically observed for all normally consol-
idated samples even for the largest explored K = 0.35 values. This partial
static liquefaction is characterized by a progressive drop from the deviatoric
stress peak qpeak and a large loss of effective mean pressure resulting from a
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Fig. 1. Effective stress paths for normally consolidated Hostun RF loose sand. (a)
Isotropically (b) anisotropically consolidated

continuous rising of pore pressure under undrained shearing. Complete static
liquefaction can be observed only in compression for smaller values of initial
confining pressure or a stress reversal at large strains will always liquefy the
samples. The perpendicular intersection of the effective stress paths with the
hydrostatic axis indicates initial isotropic sand samples.

The stress–strain undrained behaviour exhibits a pronounced peak at rel-
atively low to very low axial strain, depending on the value of K, and a post-
peak stress reduction to a small residual value at large strains corresponding
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to the steady state of deformation [6,21]. The static liquefaction is essentially
an instability phenomenon of very loose and normally consolidated sand, in
the sense of Hill [15]. In the case of monotonic solicitation in the triaxial plane,
it is equivalent to a decrease of deviatoric stress.

These studies show that the Lade’s instability concept [24], defined ini-
tially for isotropically consolidated sand in compression, is corroborated in
triaxial extension and even generalized to sand subjected to an initial positive
anisotropic stress state. Nevertheless, this concept is strongly influenced by
the monotonic consolidation history.

It should be noted that the shapes of the effective stress paths are geomet-
rically similar, when normalized by the initial effective mean pressure. The
normalized behaviour suggests the use of these shapes as the yield surface in
the elastoplasticity framework [24]. Recently, several analytical equations for
the yield surface of sand have been proposed and verified against experimental
responses of isotropic and anisotropic consolidated sand, Imam et al. [31].

3 Overconsolidated Behaviour

The undrained behaviour of very loose and K-overconsolidated Hostun RF
sand is reported recently in [10]. It tends to corroborate the compression
behaviour of lightly overconsolidated Hostun sand investigated by Di Prisco
et al. [4], Matiotti [27], Gajo et al. [12], and on Toyoura sand by Ishihara
et al. [18]. To clarify the effects of induced anisotropy generated by constant
effective stress ratio paths, two main ideas are behind the experimental works
of [10]:

1. To facilitate the study of the effects of previous preloading strain his-
tories, all anisotropic K-overconsolidated histories must lead to a same
anisotropic stress state before undrained shearing. One scalar parame-
ter, the usual overconsolidation ratio OCR = p′max/p

′
c, characterizes the

overconsolidated state.
2. To highlight only the effects of previous deviatoric strain histories, nearly

similar void ratio is required before the final undrained loading. This extra
requirement is needed to minimize the well-known effects of density on the
observed undrained behaviour.

To aid the visual interpretation, typical effective stress paths of the
undrained tests following an anisotropic K-overconsolidation history is por-
trayed in Fig. 2. The experimental results on isotropically (anisotropically)
overconsolidated samples in compression and in extension are given in Fig. 3a,
b. The numbers near qpeak (hollow circle) in these figures indicate the OCR val-
ues. Concerning isotropically overconsolidated sand, partial static liquefaction
is still observed, in compression and extension, even for the largest explored
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Fig. 2. Schematic illustration of the histotropic effects on anisotropically K-
overconsolidated sand

OCR values of 8. Globally, isotropic overconsolidation enhances markedly the
undrained shear strength with a deviatoric stress peak in compression consid-
erably larger than that in extension. As the OCR increases, the effective stress
paths of isotropic overconsolidated samples move outward with an asymmetric
enlargement with respect to the isotropic axis.

New experimental findings emerge in Fig. 2 and 3b as the histotropic effects
for anisotropically K-overconsolidated sand:

3.1 Directional Dependency of the Initial Gradient

From the initial anisotropic stress state A, a unique non-vertical initial gra-
dient of the effective stress paths for each K-overconsolidation history is ob-
tained. This initial gradient seems to relate solely to the direction of the
previous stress history. The strong inclination towards the positive p′ axis
indicates an induced anisotropy created by the previous K-overconsolidation
history, with a greater stiffness in the vertical direction, Graham et al. [13].

3.2 Pseudo-Elastic Response

All effective stress paths are strongly inclined towards the positive p′ axis
and follow a common highly non linear curve up to deviatoric stress peak,



404 T. Doanh et al.

−40

−20

0

20

40

60

I-CO

I-EO

1
1.4

2

4

8

1
2

4
8

Undrained failure

D
ev

ia
to

r 
st

re
ss

 (
kP

a)

−50

0

50

100

150

200(b)

(a)

0 20 40 60 80 100 120

1

2
4

8

12

1

2
4 8

12

KB-CO

KB-EO

24

PT

Undrained failure

D
ev

ia
to

r 
st

re
ss

 (
kP

a)

Mean effective pressure (kPa)

0 2010 4030 6050
Mean effective pressure (kPa)

Fig. 3. Effective stress paths for overconsolidated Hostun RF loose sand. (a) Isotrop-
ically (b) anisotropically consolidated

in compression as well as in extension, independent of OCR attained dur-
ing the K-overconsolidation process before the final undrained shearing. This
common boundary is observed for two anisotropic K-overconsolidation his-
tories, KB and KC (K = 0.50 and 0.35). Since the initial anisotropic stress
state A is situated inside the past maximum yield surface generated by the
K-overconsolidation history, the first section AB or AB′ is the pseudo-elastic
response of the overconsolidated and loose sand. This pseudo-elastic domain
has a very large size, nearly up to qpeak, from B to B′.
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3.3 Progressive Appearance of Dilatancy

A pronounced protuberance of the effective stress path with a very sharp bend
is observed in compression (the direction of consolidation) while that in exten-
sion is left nearly unchanged. The descending part BC or B′C′ after the sharp
bend moves equally upwards with increasing OCR. This part characterizes the
undrained instability behaviour of loose sand. The length of this descending
part seems to link with the OCR or the induced anisotropy. The smaller the
OCR, the longer the softening part of the stress path. As the OCR increases,
the onset of the undrained instability is initiated at a stress state closer to the
phase transformation (PT) line [26], [33] where dilatancy appears even if the
relative density before undrained shearing indicates a relatively loose state.
The effective stress paths move up again, CD or C′ D′, after the appearance
of the dilatancy.

3.4 Evolution of the Undrained Behaviour

Depending on the anisotropic consolidation ratio K and on the OCR reached
during K-overconsolidation, the undrained compression behaviour of samples
evolves from instability for low OCR and high K ratio to complete stability
for high OCR and low K, via a behaviour of temporary instability for inter-
mediate preshearing levels for medium OCR and K. This evolution of the soil
behaviour as a function of the K-overconsolidation history is similar to that
due to the variation of the isotropic consolidation pressure (barotropy), where
the behaviour of dense sand evolves from stable behaviour at low confining
pressures to instability at very high pressures through temporary instability
at medium confining pressures, [24, 36]; or that due to the well-known varia-
tion of the void ratio (pyknotropy). Static liquefaction, usually associated to
loose sands, occurred for all isotropic overconsolidation levels in compression
and extension in this study.

Note that for practical purposes, a linear correlation between qpeak and
OCR in a logarithmic scale was found with different coefficients for each
anisotropic consolidation level K. This correlation may be used to estimate
roughly the undrained strength. The Lade’s instability lines [24], and the
Sladen’s collapse surface [32], based on the deviatoric stress peak, clearly de-
pend on the previous preloading history. These concepts are not intrinsic like
the failure envelope.

4 Drained Presheared Behaviour

To uncouple the observed behaviour of deviatoric and isotropic stresses, a par-
ticular preloading history is extensively explored. It consists simply of a stan-
dard drained deviatoric preshear cycle, either in compression or in extension,
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from an initial isotropic stress state A in Fig. 2. This series is designed to
highlight only the effects of previous preloading deviatoric strain histories,
since the same returning stress state remains isotropic. A detailed analysis of
the experimental works is already reported in [7]. The experimental results of
compressive and extensive drained presheared series are shown in Fig. 4a, b.
Cross symbols give the magnitude of the drained preshear cycle in triaxial
compression.
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The newly observed experimental hints of the histotropy effects in Sect. 3
are still valid, driven now by previous deviatoric strain histories: a unique
initial inclination of the effective stress paths assessing its dependency only
on the direction of previous history; a unique and strongly inclined pseudo-
elastic response towards the positive p′ axis; the progressive appearance of
dilatancy in a single PT line as a function of the magnitude of axial prestrain-
ing; the concept of the PT line developed for dense sand seems to apply for
loose presheared or overconsolidated sand; and finally, the evolution of the
undrained behaviour from the classic partial static liquefaction of loose sand
to the completely stable state typical of dense sands, while being relatively
loose at the beginning of undrained shearing.

This linear preshear series assesses the well-known importance of the
direction of the preloading and the subsequent loading: a same (opposite)
subsequent direction always gives a stiffer (softer) behaviour. Moreover, a
continuous evolution of the soil behaviour is obtained.

5 Pseudo-Elastic Response of Presheared Sand

Experimental investigations onK-overconsolidation series suggest a very large
pseudo-elastic domain which can comprise the whole past maximum yield sur-
face of the previous K-overconsolidation history. Letting aside the directional
dependency of the initial gradient of the effective stress paths, the curved
pseudo-elastic response seems to be an interesting challenge. Inside the cur-
rent mainstream of the non-associated elastoplasticity framework, the usual
incremental isotropic hypoelasticity cannot be used to describe the observed
behaviour. The elastic strain increment is expressed as :

ε̇ij =
İ1
9K
δij +

ṡij
2G
, (1)

where I1 = σkk, sij = σij − (I1/3)δij is the deviatoric stress, K the elastic
volumetric modulus and G the elastic shear modulus depending on the first
and/or the second stress invariant. The effective mean pressure increment
remains unchanged during the undrained loading since the volumetric strain
increment ε̇v is :

ε̇v = ε̇kk =
ṗ

K
= 0. (2)

If the elastic component depends now on I1 and sij :

εij =
I1
9K
δij +

sij
2G
, (3)

then the volumetric strain increment is written as:

ε̇v =
1
K2

(ṗK − K̇p) (4)
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and the effective mean pressure increment can change during the undrained
loading, since the elastic volumetric modulus K is not infinite:

ṗ =
p

K
K̇. (5)

For the sake of simplicity, we choose a classical isotropic hyperelastic com-
ponent, proposed by Lade and Nelson [23]. It has the form of (3) with the
Young modulus defined as:

E =Mpa

[(
I1
pa

)2

+R
J2
p2a

]m
(6)

with J2 = sijsij/2, R = 6(1 + ν)/(1 − 2ν),K = E/3(1 − 2ν) and pa is the
reference atmospheric pressure. A constant Poisson’s ratio ν is assumed. M
and m are dimensionless constitutive parameters. The analytical equation of
the pseudo-elastic response as the effective stress paths can be found in [7]
using the incompressibility condition:

p = p0

⎡⎢⎢⎢⎣
(

3p
pa

)2

+
R

3

(
q

pa

)2

(
3p0
pa

)2

+
R

3

(
q0
pa

)2

⎤⎥⎥⎥⎦
m

. (7)

This equation represents a symmetric conical surface with respect to the
hydrostatic axis, and gives the initial gradient of the effective stress paths
under undrained conditions in the pseudo-elastic domain. As expected, this
isotropic hyperelastic model always gives a vertical initial slope independently
of the OCR level during theK-overconsolidation and a common curved elastic
response for all effective stress paths. This hyperelasticity component associ-
ated with a transverse elasticity can capture the inclined initial gradient of
the observed effective stress.

This simple isotropic hyperelastic component is used within the exist-
ing non-associated elastoplasticity framework with mixed kinematic harden-
ing mechanism. This model with isotropic elasticity is described in [8]. An
isotropic mechanism having a large range of the pseudo-elastic domain is asso-
ciated to a kinematic deviatoric mechanism taking into account the presheared
history. Figure 5 gives an example of the theoretical response in the case of
compressive drained preshear. While a simple hyperelastic model without any
reference to anisotropy gives a correct pseudo-elastic response when compar-
ing to experimental data, many other experimental features are currently not
supported in this model.

Table 1 summarizes the relevant experimental effects of the histotropy on
the undrained behaviour of loosely compacted and presheared sand into a
comprehensive checklist to facilitate the comparison between the theoretical
simulations and the experimental observations.
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Fig. 5. Undrained behaviour of compressive presheared samples: theoretical and
experiments

Table 1. Checklist for histotropic effects on loose and presheared sand

features

directional dependency of the initial gradient of stress paths
highly curved pseudo-elastic response
evolution of undrained behaviour
progressive appearance of dilatancy phenomenon
asymptotical stabilization of undrained strength

6 Conclusions

This paper has presented new experimental evidence of histotropy on loosely
compacted and anisotropically K-overconsolidated Hostun RF sand. Several
simple linear stress paths are used to explore the effects of histotropy. From
an initial stress state in the triaxial plane, induced anisotropy is generated
by K-overconsolidation with different overconsolidation ratios, or by isotropic
consolidation followed by standard drained triaxial preshear, either in com-
pression or in extension, up to a desired value of axial strain or deviatoric
stress. Subsequent undrained compression and extension triaxial tests with
nearly identical void ratios at the beginning of the undrained shearing were
conducted to better clarify the effects of previous deviatoric strain histories
on the mechanical behaviour.
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The observed highly curved pseudo-elastic response, which is one of the
main features of this experimental work, can be analytically expressed using
simple hyperelasticity without any reference to anisotropy. The progressive
appearance of the dilatancy phenomenon due to the previous deviatoric strain
histories and the directional dependency of the initial gradient of the effective
stress paths constitute a difficult challenge, in our opinion, in constitutive
modelling.
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9. Finge, Z Contribution à l’étude du comportement non drainé des sables lâches
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doctorat, Université scientifique et médicale de Grenoble, 1992.

29. Poorooshasb, H.B., Holubec, I., Sherbourne, A.N. Yielding and flow of sand
in triaxial compression: Part 1. Canadian Geotechnique Journal, 3(4):179–190,
1966.

30. Poorooshasb, H.B., Holubec, I., Sherbourne, A.N. Yielding and flow of sand in
triaxial compression: Part 2 and 3. Canadian Geotechnique Journal, 4(4):376–
397, 1967.

31. Reza Imam, S.M., Mordenstern, N.R., Robertson, P.K., Chan, D.H. Yielding
and flow liquefaction of loose sand. Soils and Foundations, 42(3):19–31, 2002.

32. Sladen, J.A., D’Hollander, R.D., Krahn, J. The liquefaction of sands, a collapse
surface approach. Canadian Geotechnique Journal, 22(4):564–578, 1985.

33. Tatsuoka, F., Ishihara, K. Yielding of sand in triaxial compression. Soils and
Foundations, 14(2):63–76, 1974.

34. Tatsuoka, F., Sonoda, S., Hara, K., Fukushima, S., Pradhan, T.B.S. Failure
and deformation of sand in torsional shear. Soils and Foundations, 26(4):79–97,
1986.

35. Vaid, Y.P., Chung, E.K.F., Kuerbis, R.H. Preshearing and undrained response
of sands. Soils and Foundations, 29(4):49–61, 1989.

36. Yamamuro, J.A., Lade P.V. Static liquefaction of very loose sands. Canadian
Geotechnical Journal, 34(6):905–917, 1997.



Incremental Nonlinearity in Phenomenological
and Multiscale Constitutive Relations

F. Nicot∗ and F. Darve†
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1 Introduction

The emergence of numerical methods such as the finite element method in
the 1970s pointed out the paramount importance of developing proper con-
stitutive relations that could be used to describe the mechanical behavior of
the materials involved and thus provide more realistic computations. During
this period, many phenomenological constitutive relations were proposed. A
general view can be obtained from the international workshops providing an
objective comparison of the major models, in use at the time, based on a
benchmarking procedure: one held in Grenoble in 1984 (see [18]) and one in
Cleveland in 1987 (see [39]). Roughly speaking, very few of these models were
able to predict the response paths to nonproportional loading paths, and all
of them required a refined calibration procedure with many (i.e., more than
15) constitutive parameters to be determined. It was concluded that microme-
chanical considerations were needed to obtain more physically based models.

In order to successfully build such multiscale models, it was necessary to
develop new statistical tools that were properly adapted to granular media.
Many papers were devoted to this essential step [26, 28, 30, 31, 35, 36, 40, 41].
Today it is possible to geometrically characterize a granular assembly through
a statistical description of contacts (see, for example, [6–9]. The averaging
procedure necessary to go from the local intergranular forces to the stress
tensor has been widely discussed [4,10,25,27,42]. The localization method for
deducing a local displacement field from the strain tensor is more controversial
and the solution, as a rule, is not unique. Finally the local force–displacement
relation can be stated as a simple elastic–plastic interaction. The complex
macroscopic behavior comes from the multiplicity of intergranular contacts in
various mechanical states (from elasticity to plasticity).

Thus, these micromechanical investigations now provide clear arguments
that shed light on various basic points underlying the phenomenological re-
lations such as incremental nonlinearity, singular flow rules, yield surfaces,
hardening, instabilities, etc. The question of incremental nonlinearity has
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been widely discussed, for example by Darve [13,16]. Briefly, as soon as there
are plastic irreversibilities, the relation between the incremental strain and
the incremental stress is nonlinear and homogeneous of degree one for rate-
independent materials. The existence of an elastoplastic tensor – which is the
gradient of the incremental tensorial constitutive function and depends on
state variables (and memory parameters) and on the direction of the incre-
mental stress – can be deduced. This directional variation of theelastoplastic
tensor characterizes incremental nonlinearity, raising an essential question: is
the incremental nonlinearity continuous or discontinuous? For classical elasto-
plastic relations with a single plastic potential, the constitutive model is sim-
ply bilinear and characterized by one elastic tensor (in “unloading”) and one
elastoplastic tensor (in “loading”). In the case of multiple plastic mecha-
nisms, the relation becomes incrementally piecewise linear with “tensorial
zones” [13, 14]. Finally, for thoroughly incrementally nonlinear relations, the
incremental nonlinearity can be considered as “continuous” with respect to the
incremental stress direction. In this chapter, after recalling the phenomenolog-
ical description of incremental nonlinearity, a multiscale model [32–34] is care-
fully checked with respect to its possible incrementally nonlinear character,
forming the microscopic basis of the discussion on incremental nonlinearity.

2 Brief Presentation of the Phenomenological
and Multiscale Models

2.1 The Incrementally Nonlinear Relation

The incremental constitutive equation for rate-independent media relates dσ
and dε by a tensorial function Fh, which depends on the previous stress–strain
history through state variables and memory parameters h

dε = Fh

(
dσ
)

or dσ = F−1
h

(
dε
)
. (1)

Because of the rate-independence condition, Fh and F−1
h are homogeneous

functions of degree 1 (for positive values of the multiplicative parameter).
Euler’s identity for homogeneous functions implies dε = ∂Fh

∂(dσ)dσ or dσ =

∂F−1
h

∂(dε)dε. Thus

dε =Mh

(
dσ
)
dσ or dσ = Nh

(
dε
)
dε, (2)

where both four-order tensors Mh and Nh are homogeneous functions of de-
gree 0. Finally:

dε = Mh

(
u
)
dσ or dσ = Nh

(
ν
)
dε (3)

with u = dσ/
∥∥dσ∥∥ and ν = dε

/∥∥dε∥∥. Let us consider Taylor’s series expan-
sions for Mijkl

Mijkl

(
u
)

=M1
ijkl +M2

ijklmnumn +M3
ijklmnpq umn upq + · · · (4)
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and restrict the study to the first two terms. The general expression of the
incrementally nonlinear second-order constitutive relations is thus given by

dεij =M1
ijkldσkl +

1∥∥dσ∥∥M2
ijklmn dσkl dσmn (5)

Taking into account three other assumptions:

– relation (5) is orthotropic
– the shear moduli are incrementally linear
– there are not any “crossed” terms in relation (5)

we obtain in the orthotropic axes⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎣dε11
dε22
dε33

⎤⎦ = Ah

⎡⎣dσ11
dσ22
dσ33

⎤⎦+ 1

‖dσ‖Bh

⎡⎣ (dσ11)
2

(dσ22)
2

(dσ33)
2

⎤⎦ ,
dε23 = 2G1 dσ23,
dε31 = 2G2 dσ31,
dε12 = 2G3 dσ12.

(6)

Let us introduce now “generalized” triaxial paths (two constant lateral
stresses in fixed principal axes), “generalized” Young’s moduli and “general-
ized” Poisson’s ratios along these paths

Ei =
(
∂σi
∂εi

)
σj ,σh

(σj , σk constant lateral stresses),

V j
i = −

(
∂εj
∂εi

)
σj ,σk

.

By distinguishing triaxial compressions (dσi > 0, index “+”) from triaxial
extensions (dσi < 0, index “−”) in axial direction i, one can introduce both

matrices H
+

and H
−

defined by

H
+

=

⎡⎢⎢⎢⎢⎣
1

E+
1

−V 1+
2

E+
2

−V 1+
3

E+
3

−V 2+
1

E+
1

1
E+

2
−V 2+

3

E+
3

−V 3+
1

E+
1

−V 3+
2

E+
2

1
E+

3

⎤⎥⎥⎥⎥⎦ (7a)

and

H
−

=

⎡⎢⎢⎢⎢⎣
1

E−
1

−V 1−
2

E−
2

−V 1−
3

E−
3

−V 2−
1

E−
1

1
E−

2
−V 2−

3

E−
3

−V 3−
1

E−
1

−V 3−
2

E−
2

1
E−

3

⎤⎥⎥⎥⎥⎦ . (7b)
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Finally by an identification procedure, we obtain

A =
1
2

(
H

+
+H

−)
and B =

1
2

(
H

+ −H−)
. (8)

Relations (6)–(8) define the incrementally nonlinear model considered through-
out this chapter.

For analytical calculus, the “octo-linear” model is extensively used. It is
defined by ⎡⎣dε11

dε22
dε33

⎤⎦ = Ah

⎡⎣dσ11
dσ22
dσ33

⎤⎦+Bh

⎡⎣ |dσ11|
|dσ22|
|dσ33|

⎤⎦ (9)

all other relations in (6)–(8) being the same. The octo-linear constitutive re-
lation is incrementally piecewise linear in eight “tensorial zones”. It can be
viewed as the linear interpolation between the responses to the generalized
triaxial paths, while the incrementally nonlinear relation is a quadratic inter-
polation. More details can be found in [13,14,16].

2.2 The MicroDirectional Model

Phenomenological approaches aim to directly formulate the observed phenom-
ena in an appropriate and sometimes sophisticated mathematical formalism.
They differ basically from multiscale approaches, which attempt to analyze
and derive macroscopic properties from a local description of the medium.
Such approaches can make use of homogenization techniques; an abundant
literature deals with this subject, see for instance [29] for a thorough review.
Other methods take advantage of numerical modeling such as the Discrete
Element Method [1, 3, 11, 12, 23], and more recently [5, 24]. The term “mul-
tiscale” means that this range of methods was developed to account for the
microstructure of granular media.

The microdirectional model belongs to the class of multiscale approaches
and was initially developed to describe the behavior of snow, modeled as an
assembly of ice particles [32,33]. Fundamentally, this model is based on a ho-
mogenization procedure within a representative volume element (RVE), which
is assumed to contain a “sufficient” number of spherical grains (or contacts).
In this approach, the location of each grain is ignored and only contact di-
rections are accounted for; the probability that some contacts exist in a given
direction is investigated and local variables are averaged in each direction of
the physical space, so that directional local variables are introduced. The ho-
mogenization procedure can be resolved in three stages: first, a kinematical
localization procedure assesses the directional average displacement field d−̂→u
in terms of the macroscopic strain tensor dε; then, local constitutive equa-
tions are introduced to relate both kinematic and static directional average
variables; and finally a static averaging procedure is built to infer the macro-

scopic stress tensor dσ from the distribution of directional average forces d
−̂→
F
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between neighboring particles in contact. The complex macroscopic behavior
comes from the multiplicity of intergranular contacts in various mechanical
states (from elasticity to plasticity).

2.3 The Macroscopic Stress Tensor

Considering a representative volume element located around a given pointM ,
the macroscopic stress tensor σ is computed from the local contact forces

−→
F c

between each pair of particles in contact in the RVE. The averaging procedure
necessary to go from the local intergranular forces to the stress tensor has been
largely discussed [10,27,42], and now it seems well established that σ and

−→
F c

can be related by the Love formula of homogenization:

σij =
1
νe

∑
c

F c
i l

c
j , (10)

where F c
i is the ith component of the contact force

−→
F c, lcj is the jth component

of the branch vector
−→
lc joining the centers of particles in contact on contact

c, and the sum is extended to all the contacts occurring in volume νe.
Equation (10) is expressed under a discrete formalism, but it can be ex-

tended to a continuum one by integrating over all the contact directions−→n (θ, ϕ) = cosϕ−→x 1 + sinϕ cos θ−→x 2 + sinϕ sin θ−→x 3, where (−→x 1,
−→x 2,

−→x 3) con-
stitutes a direct Cartesian frame of the physical space. Defining ωe (θ, ϕ) =
ω (θ, ϕ) νe the number of contacts oriented along a given direction, it
follows [34]:

σij =
∫ ∫

[o;π]2

2rg ω(θ, ϕ)F̂i(θ, ϕ)nj(θ, ϕ) sinϕ dθ dϕ, (11)

where rg denotes the mean radius of the sphere-shaped grains and
−̂→
F is the

average of all contact forces
−→
F c associated with contacts oriented in the di-

rection −→n .

2.4 The Strain Localization Relation

The strain localization relation is inferred from the assessment of the strain
energy increment on the one hand from macroscopic variables (σ,dε), and on

the other hand from the average local variables (
−̂→
F (θ, ϕ),d−̂→u (θ, ϕ)), where

−̂→u (θ, ϕ) is the directional kinematic variable linked to
−̂→
F (θ, ϕ). Thus, if the

representative volume element is macrohomogeneous [21] it can be shown that
the kinematic average local field can be deduced from the macroscopic strain
tensor as follows [34]:

dûi(θ, ϕ) = 2rg dεij nj(θ, ϕ). (12)
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2.5 Local Constitutive Relations

The local behavior is described properly using a contact mechanical model
relating both the local normal force F n

c and the local tangential force F t
c to

both the local normal relative displacement unc and the local tangential relative
displacement utc. Many models have been proposed in the literature [2], the
simplest one being the elastic–plastic model, which introduces a normal elastic
stiffness kn and a tangential elastic stiffness kt, both constant, and a local
friction angle ϕg. The following local constitutive incremental relations can
be inferred:

dF n
c = kn dunc , (13a)

d
−→
F t

c = min
{∥∥∥−→F t

c + kt d−→u t
c

∥∥∥ , tanϕg (Fn
c + kn dunc )

}
· · · · · ·

×
−→
F t

c + kt d−→u t
c∥∥∥−→F t

c + kt d−→u t
c

∥∥∥ −−→
F t

c. (13b)

Furthermore, granular assemblies are not able to sustain local tensile
stress. This is a fundamental feature of this type of material. The following
condition is therefore added

Fn
c > 0. (14)

It will be assumed hereafter that (13)–(14) also apply to the directional aver-

age variables −̂→u (θ, ϕ) and
−̂→
F (θ, ϕ).

3 Physical Bases of Incremental Nonlinearity

3.1 Phenomenological Description of Incremental Nonlinearity

As recalled in the introduction and formalized by (3), the question of incre-
mental nonlinearity corresponds to the directional variation of the constitutive
tensor M (or respectively N) with the direction of the incremental stress (or
respectively the incremental strain). The existence of constitutive tensors M
and N and their variations only with the directions of dσ and dε are di-
rect consequences of the rate-independence assumption. Relations (3) can be
viewed as general canonical expressions of elastoplastic relations. Then spe-
cific assumptions were proposed to express this directional variation ofM with
u(u = dσ/||dσ||), either continuously (i.e., thoroughly incrementally nonlinear
relations) or discontinuously (i.e., incrementally piecewise linear relations). In
this last case, the constitutive relation is linear inside a finite number of hy-
percones in the six-dimensional dσ space. These adjacent hyper-cones have
the origin of dσ space as a common apex. They have been called “tensorial
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zones” [13,14]. From a physical point of view, Hill has shown that monocrys-
tals with a finite number of sliding planes exhibit an incrementally piecewise
linear mechanical behavior [19,20,22]. If one wishes to roughly generalize this
reasoning to granular media with a very high number of intergranular sliding
directions, one obtains an incrementally nonlinear behavior. This is essentially
the reason why we developed incrementally nonlinear constitutive relations for
geomaterials in the 1980s. However, in this chapter we will see that a proper
micromechanical investigation sheds new light on this question.

It is difficult to find discriminating experiments to clarify this point of in-
cremental nonlinearity. One way is to try to determine the response-envelopes
(in Gudehus’s sense [17]). At a given stress–strain state, incremental probing
stresses with the same norm (||dσ|| = const) are applied in all stress directions.
The extremities of the incremental strain responses form a diagram which is
called the “response-envelope” [17]. If the behavior is incrementally piece-
wise linear, the response-envelopes are constituted by arcs of ellipses (whose
centers are the incremental strain origin), while in the incremental nonlinear
case the diagrams have no simple analytical equation. The experimental re-
sults in Fig. 1 were obtained by Royis and Doanh [38], who compared their
results with those given by the octo-linear model and the nonlinear model.
After an initial isotropic compression, a drained triaxial loading test is simu-
lated in axisymmetric conditions, and then a stress probe test is performed.
A stress increment d−→σ in all directions with the same norm is imposed, and
the strain response d−→ε is computed. Even if the agreement is good, the only
proper conclusion is that a classical elastoplastic relation (incrementally bilin-
ear) would describe such diagrams with difficulty since it considers only two
arcs of centered ellipses.

In conclusion, while experiments have shown the behavior of geomateri-
als to be incrementally nonlinear, the phenomenological description of such
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constitutive relation and the incrementally nonlinear relation [38]
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a behavior is quite natural when using a proper directional variation of the
constitutive tensor with respect to the incremental stress (or strain) direc-
tion. The ultimate reason for this type of behavior remains hidden, as do its
essential parameters, in this phenomenological modeling scheme. Both these
questions are now considered through a micromechanical investigation.

4 MicroMechanical Description
of Incremental Nonlinearity

4.1 Incremental Formulation of the Microdirectional Model

Let us restrict our analysis to axisymmetric conditions. Denoting (x1) the
axial axis of the cylinder-like specimen and ignoring as a first approximation
the change in the microstructure, it can be shown that constitutive relations
can be expressed in the following incremental form [16]:

dσ1 = A11 dε1 +A12 dε2, (15)
dσ2 = A21dε1 +A22 dε2. (16)

We only detail the first term A11

A11 =
3

2Ngr2g

ρo
ρg

π∫
0

{
2rg

(
kn cos3 ϕ+ ktn cos2 ϕ sinϕ+ ktt cosϕ sin2 ϕ

)
ωe(ϕ)

1 − ε1 − 2ε2

+

(
F̂n(ϕ) cosϕ+ F̂t(ϕ) sinϕ

)
ωe(ϕ)

(1 − ε1 − 2ε2)
2

⎫⎬⎭ cosϕ sinϕ dϕ

(17)

with ktt = kt, ktn = 0 in the elastic regime, and ktt = 0, ktn = tanϕg kn in
the plastic regime.

4.2 Micro-Mechanical Discussion

In its fundamentals, the microdirectional model can be regarded as an associ-
ation of multiple elastic–plastic bodies; each body, related to a given contact
direction, takes into account the behavior of contacts in this direction. As
described by (13a) and (13b), the frictional contact model shows full incre-
mental linearity, in respectively the elastic and plastic domains. However, at
a given stress state, after a given loading history, contacts will not be in the
same state: some of them are in a plastic state (plastic contacts), and the
other contacts are in an elastic state (elastic contacts). Within a directional
approach, it is advantageous to conventionally extend the notion of the elas-
tic or plastic state to the contact directions. Equation (17) reveals that the
unique source of nonlinearity comes from the terms ktt and ktn, the value of
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which depends on the mechanical state of contacts in direction −→n (ϕ). Non-
linearity may therefore only occur during transition from the elastic regime
to the plastic regime, and conversely. The state of the directions is likely to
change as a function of the direction of the loading. Only a few directions
are likely to evolve from an elastic state toward a plastic state, because the
mechanical state of such directions must be near the plastic limit. On the
contrary, as a function of the direction of the local incremental force, sev-
eral plastic directions may recover an elastic state. This can thoroughly be
investigated from an analytical point of view. For this purpose, let us define
the elastic index rel of plastic directions which recover an elastic state after a
strain probe; if Npl denotes the initial number of plastic directions and Npl(α)
denotes the number of plastic directions just after an incremental loading of
direction α, rel is expressed as

rel =
Npl −Npl(α)

Npl
. (18)

To go further, let us particularize the loading path. After an axisymmetric
drained triaxial loading, a strain probe of direction αε and of norm de is
imposed: dε1 = de sinαε and dε2 =

√
2
2 de cosαε. Let us consider a plastic

direction −→n (ϕ). For this direction,
∣∣∣F̂t∣∣∣ = tanϕgF̂n, and this plastic direction

recovers an elastic state if∣∣∣F̃t + kt dũt
∣∣∣ < tanϕg

(
F̃n + kn dũn

)
. (19)

If we denote sε the sign of cosϕ sinϕ (ε1 − ε2) and sα the sign of
√

2 sinαε −
cosαε, it can be shown [16] that (19) gives

sα

(
sε |cosϕ sinϕ| − kn tanϕg

kt
cos2 ϕ

)
< · · ·

kn tanϕg
kt

cosαε∣∣√2 sinαε − cosαε

∣∣ . (20)

As a consequence, the plastic direction defined by the angle ϕ recovers
an elastic state after a strain probe defined by the angle αε if we have:
sαsε |cosϕ sinϕ| − kn tanϕg

kt
cos2 ϕ < kn tanϕg

kt

cosαε

|√2 sinαε−cosαε| . Let us now con-

sider the function χ defined by

χ (αε) =
kn tanϕg
kt

sα cosαε∣∣√2 sinαε − cosαε

∣∣ .
It can be shown that the function ψ(ϕ) = sε |cosϕ sinϕ| − kn tanϕg

kt
cos2 ϕ,

which is continuous over the range [0; π], has a minimum (denoted Min) and a
maximum (denoted Max) over the range of plastic directions. Thus, if, when
sα = 1, χ (αε) > Max or when sα = −1, χ (αε) < Min, the index rel is
equal to 1.
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if Min < χ(αε) < Max whatever sα, then 0 < rel < 1;
if, when sα = 1, χ(αε) < Min or when sα = −1, χ(αε) > Max,

then rel = 0; the strain probe does not affect the state of the plastic directions.
In light of this analysis, it can be concluded that the change in the number

of plastic directions, characterized by the index of elasticity, depends explic-
itly on the loading direction. This makes it possible to conclude that globally
the tangent stiffness matrix depends on the strain probe direction. The in-
cremental nonlinear character is all the more pronounced since the domain
containing plastic directions is extended. The purpose of the following section
is to confirm these results from numerical investigations.

4.3 Numerical Investigation

The previous axisymmetric loading path was simulated and then Gudehus
response-envelopes [17] were built. At a given loading state defined by η =
q
p = 3 σ1−σ2

σ1+2σ2
= 0.705, a strain probe test is performed. A strain increment d−→ε

in all directions with the same norm is imposed, and the stress response d−→σ
is computed. Constitutive parameters used in this simulation are reported in
Table 1.

We analyze how tangent stiffness matrix A evolves as a function of strain
probe direction αε. Without altering the generality of the investigation, only
term A11 is considered. Over the range [0; 2π], the tangent stiffness matrix
depends on the direction of strain increments, which is clear evidence of incre-
mentally nonlinear behavior (Fig. 2). In addition, a strong correlation between
the elasticity index and A11 can be pointed out in Fig. 2. It is worth noting the
outstanding analogy between the incrementally nonlinear model [13] and the
microdirectional model. Even though both these models differ in their basic as-
sumptions, they are within the continuity of Hill’s multislip theory [19,20,22];
for a certain class of materials such as metals, which can be considered as a
set of element crystals, preferential sliding directions exist. For the incremen-
tally nonlinear model, this character is contained in the canonical constitutive
equations written on the macroscopic scale [13]. For the multiscale model this
character comes from an idealized description of granular assemblies based
on the distribution of contact directions. The directional character can be
regarded as a straightforward physical consequence of the micromechanical

Table 1. Axisymmetric triaxial test: constitutive parameters and initial conditions

initial
isotropic stress

(MPa)

initial void
ratio

kn (kN m) kt (kN m) ϕg (◦)

0.125 0.66 15,708 6830 15
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Fig. 2. Correlation between the elastic index rel and the tangent stiffness matrix

description at the local level. This is an outstanding aspect of the microdirec-
tional model, which brings a microstructural basis for the incremental nonlin-
earity of granular material behavior.

5 Concluding Remarks

Throughout this chapter we have attempted to discuss one outstanding feature
of the constitutive behavior of granular materials, namely their incrementally
nonlinear character. For this purpose, two types of models were considered:
the first one is the incrementally nonlinear model, which is essentially a phe-
nomenological model; the second one is the microdirectional model, built from
a multiscale approach. These two models have clearly pointed out the incre-
mentally nonlinear character of granular materials. It is quite remarkable that
these two models, which are basically different in their approaches, highlight
both this outstanding aspect of granular masses. In addition, the microdirec-
tional model, which is micromechanically based, gives rise to an interpreta-
tion of the origin of this property; it appears that this feature (as far as the
rolling motion of particles can be omitted) is related to the dependence of the
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mechanical state of each contact (in the elastic or plastic regime) with respect
to the direction of local loading. We should emphasize that the rolling of par-
ticles, responsible to a large extent for the so-called “buckling” effect [37],
could constitute another microstructural source of incremental nonlinearity.
If this property can be finally regarded as a basic ingredient of the incremen-
tally nonlinear model, it stands rather as a consequence of the description of
contacts in the case of the microdirectional model.
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1 Introduction

A substantial accumulation of irreversible strains in soils may appear due to
cyclic loading even at relatively small amplitudes. After a large number of
cycles the long-term serviceability of structures may be endangered. Under
poorly drained conditions, in place of the usual densification, excessive pore
pressure is generated. It may lead to soil liquefaction and eventually to a loss of
the overall stability. The accumulation effects described by high cycle models
refer to a large number (>103) of small to moderate total strain amplitudes
(<10−3). The phenomenon of accumulation has been described by a high-cycle
explicit model. Laboratory testing of high cyclic behaviour is very laborious
and therefore most explicit models in the literature are focussed on a very
specific practical application only. Compared to them the presented high-cycle
model of sand is attempted to be more comprehensive. The performance of
the model in calculations of (differential) settlements of shallow foundations
is demonstrated.

A cycle (=loop) can be conveniently decomposed into a cumulative part
and a resilient part using a hodograph, Fig. 1. We usually speak of strain and
stress cycles but the term cycle can be generalized to any state variable (scalar
or tensorial) �. Having plotted the path �(t) we define the average value �av

to be the centre of the smallest hypersphere that encompasses all �(t) within a
single period T . Alternatively, �av can be defined as the middle point between
the two most distant states (much easier numerical implementation). The
amplitude of a scalar variable is defined as �ampl = max | � − �av |. A more
elegant concept of the tensorial strain amplitude is introduced in Sect. 3. It
describes not only the size but also the polarization and the ovality of a cycle.

It turns out that (See notation in Appendix A) Dacc depends strongly on
several subtle properties of soil and not on stress and void ratio only. Two new
state variables are therefore proposed: the cyclic preloading gA which memo-
rizes the amount of fatigue preloading and the back polarization π memorizing
the recent orientation of cycles (weighted by their size), see Sects. 2.3 and 3.2.
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e2

e2

e1

e1
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D1

D2

D2

Dacc

Dacc

Fig. 1. A hodograph is a trajectory of D(t) ≈ ε̇ parametrized with time t, analo-
gously to the strain path ε(t). The rate of accumulation can be easily identified as
a drift rate (denoted with arrow) of the average strain upon a cycle. Note that the
strain rate is an exactly periodic function D(t) = D(t+NT ) whereas the strain ε(t)
is not. The distinction between the cycles encompassing some area (out-of-phase
cycles (=OOP) , above) and the open-curve cycles(in-phase cycles (=IP), below)
will be of importance

Displacements of structures due to cyclic loading of subsoil are often pre-
dicted using settlement formulas, e.g. [11, 28]. The settlement s(N) after N
cycles is extrapolated from the residual settlement s1 after the first cycle. Var-
ious empirical functions, e.g. s(N) = s1N

C or s(N) = s1(1 + C lnN) with a
material constant C, were proposed in the literature. In this paper, we argue
that the accumulation depends on numerous factors, see Sect. 2, which are
too complicated to be lumped together into a single parameter s1. Moreover,
most of the popular settlement formulas are self-contradictory (inconsistent),
as demonstrated in Appendix B.

1.1 Accumulation as a Phenomenon

The phenomenon of accumulation manifests itself as a summation of small
residual strains (pseudo-creep) or residual stresses (pseudo-relaxation). For
the two-dimensional case it is shown schematically in Fig. 2. If stress cycles
are applied, Fig. 2a, we observe cyclic pseudo-creep and if strain cycles are
applied, Fig. 2b, we obtain cyclic pseudo-relaxation. Many laboratory tests
are mixed-controlled, so both, pseudo-relaxation and pseudo-creep, may occur
simultaneously, Fig. 2c. The unspecified term accumulation seems, therefore,
to be a convenient notion covering the cyclic pseudo-relaxation as well as
the cyclic pseudo-creep. In order to understand accumulation in this general
sense (independently of the technical aspect how an experiment is controlled)
we have to introduce a constitutive relation (at this place let it be slightly
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Dacc measured

Dacc measured

T1
T1 T1

T2
T2 T2

ε2 ε2 ε2

ε1 ε1 ε1

Dacc = Dacc m. Dacc = −E−1 :  Tacc m. Dacc = −E−1 :  Tacc m. + Dacc m.

Tacc measured
Tacc measured

prescribed

prescribed

(a) (b) (c)

Fig. 2. (a) Stress cycles (= all stress components are prescribed and the stress loop
is perfectly closed) leave residual strains. (b) Strain cycles leave residual stresses.
(c) Mixed control tests leave both residual stresses and residual strains. Pure ac-
cumulation (not superposed by monotonic loading) is considered and therefore Dpl

can be disregarded. The superscript �m. stands for ‘measured’

simplified compared to (2))

T̊ = E : (D − Dacc), (1)

wherein T̊ is the Zaremba-Jaumann rate of the Cauchy stress, D denotes the
total stretching, E is a pressure-dependent (hypo)elastic stiffness and Dacc

would be the rate of strain accumulation cyclic loading if the experiment were
fully stress-controlled. The notation is explained in Appendix A. We have good
reasons to express both the intensity of cyclic loading and the accumulation
in terms of strain (i.e. of strain amplitude and of strain accumulation rate,
respectively). Note, however, that imposing strain (amplitude) we preclude
direct observation of strain (accumulation) as a material response. Therefore
(1) is indispensable already for the evaluation of laboratory tests, Fig. 2. The
actually measured response of the material is denoted by superscript m.

1.2 The High-Cycle Approach

Two computational strategies are usually followed for dealing with the cyclic
loading:

– An implicit calculation of accumulation
– An explicit calculation (or a high-cycle) of accumulation.

The conventional (= implicit) constitutive models describe each loop proceed-
ing by small strain increments. The accumulation of stress or strain appears
as a by-product resulting from the fact that the strain or stress loops are
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not perfectly closed (accumulation is “implied”). Quite sophisticated (e.g.
endochronic [39] or multi-surface constitutive models [3, 4, 21]) are usually
required. However, their practical applicability is limited by the number of
cycles, say N = 1, 000, because inevitable cumulative errors (inaccuracies
in the constitutive model and numerical problems resulting form its imple-
mentation) become dominant. The high-cycle model proposed in this paper
follows the other strategy (known also as N-type formulation). Explicit mod-
els [1,2,8,12,14,16–18,30,32,34–37,40,44] are similar to the viscoplastic ones
in which in place of time t the number N of cycles is used. The accumulation
of strain due to a package of ΔN cycles of a given amplitude is predicted
directly. For example, an increment of ΔN = 25 cycles with the amplitude
εampl = 10−4 results in an irreversible strain DaccΔN wherein Dacc is given
by the explicit formula (5). As we shall see, this is the essential equation of the
presented model. The explicit strategy is explained in the following flowchart
and by Fig. 3:

1. Calculate the initial stress field (from self weight and all monotonic loads)
in soil. To obtain a realistic initial stress one should use a good model for
monotonic loads (not an elastic one)

2. Calculate implicitly two first load cycles (for reasons discussed further
in text) recording the strain path ε(t) in the second one (=first regular
cycle) at each integration point. The size of the amplitude is of great
importance so one should use a good model for hysteretic behaviour and
small-strain nonlinearity (e.g. multi-surface plasticity or, as we do, the
extended hypoplasticity [25])

3. Evaluate the strain amplitude. In general case it is a fourth-order tensor
Aε discussed in Sect. 3. The size of the amplitude is assumed constant over
subsequent cycles until it is recalculated in a control cycle. In fresh plu-
viated samples a clear (up to 15%, [42]) stiffening is of soil is observed
during the first 100-1,000 cycles. Such conditioning phase should be con-
sidered in the hysteretic model and in this phase the amplitude should be
reevaluated more frequently than afterwards.

e

t , N
irregular cycle

updated amplitude

explicit
accumulation
line

2 e ampl 
strain amplitude

eav

recording cycle control cycle

Fig. 3. The basic idea of explicit calculation of the cumulative deformation
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4. Find the accumulation rate Dacc of strain using the explicit formula (5).
In the subsequent cycles only the general trend of the accumulation is
calculated. This trend is depicted with the thick line in Fig. 3.

5. Find the Zaremba-Jaumann stress rate from the constitutive equation

T̊ = E : (D − Dacc − Dpl) (2)

and the stress increment ΔT = T̊ΔN caused by a package of ΔN cycles
(= a single increment of the fatigue load). The number of cycles N is
treated as a continuous time-like variable so the material “rate” of � is
understood as its increase “per cycle”

�̇ = d � /dN (3)

in the explicit-model context. The Zaremba-Jaumann rate should also be
understood “per-cycle”. The presence of the conventional plastic strain
rate Dpl in (2) and the advantage of (2) over (1) is explained in Sect. 1.3.

The FE program redistributes stress in the course of equilibrium iteration, in
effect of which Dacc leads to settlements or to pseudo-relaxation, depending
on the boundary conditions.

1.3 Need for Plastic Strain Rate Dpl

At first it might seem surprising that the plastic stretching Dpl caused by
monotonic loading and the cumulative stretching Dacc are treated separately
in (2). Indeed, from the physical point of view they cannot be distinguished.
The decomposition of the irreversible strain rate into Dpl and Dacc is forced by
the explicit strategy of calculation. Implicit models need not such separation.

To understand the usefulness of Dpl it is instructive to consider a simple
1-dimensional rod made of a tension cut-off material and fixed at both ends.
During a cooling process (=thermic shrinkage) tensile stress may occur. How-
ever, since no tension is allowed for, the plastic strains are indispensable. In
other words, a constitutive model of the form Ṫ = E(D − Dthermic − Dpl)
is required because Ṫ = E(D − Dthermic) would lead to contradiction with
the tension cut-off assumption. At first, one could expect that unlike the
thermic deformation, the fatigue loading does not require plastic strains be-
cause pseudo-relaxation nudges the stress inward the yield surface. Inferring
from element tests, the stress paths could not surpass e.g. the Matsuoka and
Nakai [19] yield surface in the process of pseudo-relaxation because the flow
rule m points to the outside of the yield surface, Fig. 7, and therefore the
relaxation T̊

acc
= −E : Dacc tends inwards. However, the absence of Dpl does

lead to severe problems in FE calculations! Tension or excessive stress ratios
may appear if cyclic loading is superposed by a simultaneous monotonic load-
ing which enforces a plastification. Even in boundary value problems under a
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purely fatigue loading but with a strongly inhomogeneous spatial distribution
of the accumulation rate (1) can inflict excessive shear or tensile stresses. For
example, it is the case if an element that experiences little or no direct fatigue
loading itself had a strongly loaded neighbour. The plastic rate Dpl would be
indispensable in the weakly loaded element to ensure the compliance with the
large deformation outside.

The Matsuoka and Nakai [19] yield condition (M–N) with the associated
flow rule is used to calculate Dpl. First the accumulation rate Dacc and the
elasto-cumulative predictor

T + E : (D − Dacc)ΔN, (4)

should be determined. If a return mapping onto the yield surface is neces-
sary then it must be accompanied by a plastic deformation. The procedure is
identical as in elasto-plastic algorithms. The isotropic hypoelastic stiffness E
with a constant Poisson’s ratio (≈0.2) and with a pressure dependent Young
modulus (∼(p/patm)2/3) is used in (2) and in (4). The hyperelasticity is not
obligatory in the explicit formulations but it is of great importance, e.g. [24],
for implicit models.

1.4 Strain Amplitude vs. Stress Amplitude

We have chosen to express the magnitude of a cycle in terms of strain εampl

rather than of stress T ampl for three reasons. First, T ampl does not provide
precise information about very large amplitudes. From T ampl alone one can-
not distinguish between the cycles that are just touching the yield surface
and those which penetrate the plastic region, Fig. 4. They have the same
stress amplitude but very different strain amplitudes and cause different ac-
cumulations. Second, a usage of T ampl would require a reformulation of fp

p

q
q

e

q

e

2qA
ampl

2qA
ampl

A B

2qB
ampl

2qB
ampl

2eA
ampl

2eB
ampl

Fig. 4. Unsymmetric stress-controlled cycles. The large cycles A (solid line) which
encounter the yield surface (double line) are poorly described by the stress amplitude
qampl
A alone. The stress path B (dotted line) which approaches only the yield surface

without touching it has almost the same stress amplitude qampl
B ≈ qampl

A but the
respective strain amplitudes are quite different and so are the rates of accumulation
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regular cycle (5–6–7–8). In the irregular stress-controlled cycle the strain amplitude
εampl
irreg is too large. In the irregular strain-controlled cycle the stress amplitude is too

small and, which is more important, the average stress changes from qav ini to qav

(Sect. 2.5) making it stronger barotropic (p-dependent). This would be nu-
merically disadvantageous. Third, T ampl vanishes at the limit Tav = 0, hence
the phenomenon presented in Fig. 6 could not be described.

The amplitude evaluated from the first, so-called irregular cycle may be
untypical. As illustrated in Fig. 5a, the strain amplitude obtained from the ir-
regular stress-controlled cycle is too large. Moreover irregular strain-controlled
cycles, Fig. 5b, commenced at qav ini may strongly affect the average stress,
qav ini → qav. The subsequent pseudo-relaxation is much slower.

As already mentioned, the high-cycle models are dedicated to problems
with a large number of relatively small amplitudes, εampl < 5×10−3. For large
amplitudes alternating plasticity may occur and the rate of strain accumula-
tion Dacc (including direction m) depends essentially on the asymmetry of the
strain loop. In such case the description given by (6) and (7) becomes inaccu-
rate. Similarly, for stresses in the vicinity of the yield surface, even relatively
small strain cycles may cause the progressive failure which is an accumulation
much faster than the one described by (7). For these reasons the FE routine
should control whether the yield surface is encountered during the implicit cal-
culation (item 2 in the flowchart in Sect. 1.2) or not. If so, (7) is not applicable
and the residual strain Dacc should be found from direct extrapolation. This
means that the estimation (5) is replaced by Dacc = Daccm − E−1 : T̊

accm
,

wherein the recorded residuals are denoted with superscript �m, cf. Fig. 2c.



434 A. Niemunis et al.

2 Explicit Formula for Dacc

The essential element of the presented model is the explicit formula (5). Before
presenting details of this semi-empirical equation let us consider the advantage
of expressing the general notion of accumulation with Dacc and not with the
stress rate T̊

acc
, let alone the accumulated pore pressure. Our argument for

Dacc is based on an experiment. Fig. 6 shows that Dacc need not vanish with
the effective stress, i.e. for T = 0. The pore pressure build-up would be even
a worse choice because it describes merely the isotropic pseudo-relaxation.

Experiments [27,38,41–43] show that Dacc depends on a number of factors
which can be treated independently and which can be combined into the
following multiplicative form

Dacc = m fampl ḟN fp fY fe fπ. (5)

The scalar functions fampl, ḟN , fp, fY , fe and fπ describe the influence of the
strain amplitude εampl, the number of cyclesN , the average mean pressure pav,
the average stress ratio, the void ratio e, and the change of the polarization of
the strain loop, respectively. The unit tensor m expresses the flow rule. The
validity of the above empirical formula has been checked within the range of
all performed tests. The amplitudes were varied within the range 5 × 10−5 <
εampl < 5 × 10−3 and the average stresses between 50 ≤ pav ≤ 300 kPa for
triaxial compression as well as for triaxial extension. The components of (5)
are discussed in the following sections.

2.1 Direction of Accumulation m

The accumulation Dacc has a volumetric portion but also a significant devia-
toric component [35,42]. Since the ratio between the deviatoric and the volu-
metric accumulation has been observed to be almost constant for a given stress
Tav, Fig. 7, it seems reasonable to define a kind of flow rule m(Tav) = Dacc.
The unit tensor m points in the direction of accumulation in the strain space.
The coaxiality between Dacc and T is analogous to the coaxiality of Dpl and
Tav in the plasticity theory. The direction m has been found independent of
the void ratio e, of the amplitude εampl and of the polarization Aε, etc. The
flow rule may slightly vary with increasing number of cycles N , Fig. 7, but
this fact has been disregarded in the present version of the model. Judging by
the triaxial tests presented in Fig. 7, the direction of accumulation m is well
approximated by the associated flow rule

m ∼ −1
3
(p− q2

M2p
)1 +

3
M2

T∗ (6)

from the modified Cam-clay model [31] with the Roscoe’s invariants p, q and
the critical state line inclined at M = 6 sinϕc

3±sinϕc
. The experiments [42] show

that the accumulation is dilative beyond the critical state line, |q/p| > M ,
which is in accordance with (6).
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Fig. 6. Experimental evidence that the accumulation of strain continues also at van-
ishing effective stress T = 0. Left : the pore pressure build up and dissipation and the
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from the experiments by Shamoto [33]. During cyclic loading under undrained con-
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undergo a latent densification in the liquefied stage, i.e. for T = 0
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2.2 Influence Factor fampl of the Amplitude

The rate of accumulation depends essentially on the amplitude which enters
(5) via fampl. The factor fampl describes the influence of the size εampl of
the amplitude (= scalar value). For IP-cycles εampl = ‖εampl‖ and for OOP-
cycles εampl = ‖Aε‖, see Sect. 3. Fig. 8 shows that the accumulation rate is
proportional to the square of the strain amplitude. This proportionality is
valid up to εampl = 10−3. A few tests with very large amplitudes show that
the accumulation rate remains almost constant above this limit. Therefore we
propose

fampl =

⎧⎨⎩
(

εampl

εampl
ref

)2

for εampl ≤ 10−3,

100 otherwise,
(7)
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wherein the reference amplitude is εampl
ref = 10−4. Equation (7) has been found

valid for the range 5 × 10−5 < εampl < 5 × 10−3.
According to some literature [15,32,41] the volumetric portion εampl

P of the
amplitude has less influence on the rate of accumulation than the deviatoric
one εampl

Q (see Appendix A for definition of isomorphic components). How-
ever, reinterpretation of our earlier tests with the careful consideration of the
membrane penetration effect [22] has revealed that εampl

P and εampl
Q contribute

equally(!) to the accumulation and need not be treated separately. Hence,

εampl =

√(
εampl
Q

)2
+
(
εampl
P

)2
can be directly substituted into (7).

2.3 Cyclic History Factor fN

The rate of accumulation depends strongly on the cyclic preloading, i.e. on
the number of cycles applied in the past, on their polarization and the size.
Figure 9 shows the compaction curves of three triaxial samples which have
different densification rates ė (rates of change of the void ratio e) passing
through the same void ratio e = 0.629. The average stress and the amplitude
are identical so that the only reason for the observed difference can be the
cyclic preloading which renders the accumulation slower.

In order to consider the cyclic preloading two additional state variables
have been introduced: the scalar gA for the number of cycles N and their size
εampl and the tensor π for the recent polarization. Both state variables are
phenomenological, i.e. we do not investigate whether they are related to the
number of grain contacts and their directional distribution, the spatial fluctu-
ation of stress, internal systems of shear bands etc. The major disadvantage
of non-physical state variables is that they cannot be directly measured. They
must be estimated by their effects. In particular, the initial in situ value of gA

can be correlated [28] to the liquefaction potential [38]. The discussion of π is
deferred until Sect. 3 and we continue with the scalar state variable gA here.
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as a function of the number of cycles

In tests on freshly pluviated samples, the cyclic history (number and size
of all applied cycles) is known and one can determine exactly how the number
of cycles slows down the accumulation rate. For strain cycles of constant
amplitude, the increase of the total strain accumulated after N cycles see,
Fig. 10, can be well approximated by the empirical formula

fN = CN1 [ln (1 + CN2N) + CN3N ] or in rates (8)

ḟN = CN1

[
CN2

1 + CN2N
+ CN3

]
(9)

with three material constants CN1, CN2 and CN3 (the latter is important for a
large number of cycles only). Equation (8) is an already purified curve without
the concurrent effects due to changes in the void ratio, stress, etc.
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2.4 Miner’s Rule and the State Variable gA

Although the rate of accumulation depends strongly on the number N of
cycles in the past it is not a good idea to treat N as a new state variable.
Doing so the product of fampl and ˙fN given by (7) and (9) would severely
contradict the Miner’s rule [20].

Originally the Miner’s rule pertains to the fatigue of metals and generalizes
the Wöhler’s curve. The Wöhler’s SN-curve shows the number Nf of uniaxial
cycles with a stress amplitude S = T ampl

1 = const that causes failure. The
Palmgren–Miner’s rule describes an analogous condition for several blocks of
cycles with constant amplitudes within each block. Suppose we have n blocks
of cycles. In the i th block the number of actually applied cycles is Ni and
their amplitude Ai is constant. Suppose also that we know the numbers Nfi

of cycles to failure for each amplitude Ai. The Miner’s rule excludes failure if
inequality

n∑
i=1

Ni

Nfi
< 1 (10)

is satisfied. The Miner’s rule implies that:

– the sequence of application of constant-amplitude blocks is of no impor-
tance,

– the periodic strain loop can be decomposed into several convex loops (e.g.,
using the so-called rainflow algorithm). These convex loops can be applied
sequentially as separate blocks with constant amplitudes.

It is controversial whether sands obey the Miner’s rule very rigorously.
However, in one case the inconsistency between (9) and the Miner’s rule is
unacceptable, namely for a combination of a package of N1 cycles with εampl

(1)

and a package of N2 cycles with almost vanishing amplitude εampl
(2) ≈ 0. The

total accumulation should be independent of the sequence of application of
these packages because it does not matter whether we do nothing after or
before the actual loading with εampl

(1) > 0. The vanishingly small cycles should
have no effect at all. However, (9) unwisely disregards the sizes of amplitudes
in the past.

A state variable memorizing the number of cycles together with their am-
plitudes is therefore required. Though a simple concept [32] of using the prod-
uct

(
εampl

)2
N instead of N in (9) obeys the Miner’s rule, it is in conflict with

(7), cf. [27]. The variable gA, proposed in the following, is a compromise so-
lution. We consider the product of fampl and ḟN denoting it as ġ = fampl ḟN .
Functions fampl and ḟN are further on given by (7) and (9). Note that only a
part of ġ depends on N namely ġA = famplCN1CN2/(1 +CN2N). Integrating
ġ with respect to N one obtains

g =

=gA︷ ︸︸ ︷
famplCN1 ln (1 + CN2N) +

=gB︷ ︸︸ ︷
famplCN1CN3N . (11)
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The idea is to reformulate (9) replacing N by gA. For this purpose we solve
gA = gA(N) for N and substitute the result into the expression for ġ, viz.,

ġ = famplCN1CN2 exp
(
− gA

CN1fampl

)
+ famplCN1CN3, (12)

wherein fampl refers to the current amplitude and gA contains the information
about the amplitudes in the past and the respective numbers of cycles. By this
expedient the Miner’s rule is satisfied at the limit of very small amplitudes
and (9) remains valid for the special case of εampl = const.

A numerical simulation of the accumulation caused by two blocks of cycles
with different amplitudes and applied in different sequences gives almost the
same total accumulation, so it is in agreement with the Miner’s rule and with
the experiment, see Fig. 11.

Presumably apart from the cyclic preloading the static preloading [6] is
also of importance and should be investigated in future.

2.5 Empirical Factors fp and fY for Stress and Factor
fe for Void Ratio

The rate of accumulation depends on the average stress ratio T̂av = Tav/(Tav),
on the average mean stress pav and the void ratio e. It turns out that one can
treat these effects separately and use the product fY fp fe of the respective
functions. As it might be expected, the rate of accumulation increases with
the stress obliquity T/T, especially if the yield surface is approached. This
dependence, Fig. 12, can be approximated by

fY = exp(CY Ȳ
av)withCY ≈ 2, (13)

wherein

Ȳ =
Y − 9
Yc − 9

, Y = −I1I2
I3

and Yc =
9 − sin2 ϕc
1 − sin2 ϕc

. (14)
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Fig. 11. Numerical calculation and experimental verification of the Miner’s rule
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is based on the function by Matsuoka and Nakai. The stress invariants I1, I2, I3
are functions of T̂av defined in Appendix A and the critical friction angle is
denoted by ϕc.

The accumulation rate becomes smaller(!) with pav. The experimental re-
sults, Fig. 13, can be approximated by

fp = exp
[
−Cp

(
pav

patm
− 1

)]
, (15)

wherein patm = 100 kPa and the material constant is Cp ≈ 0.43. The validity
of (13) and (15) has been tested for 50 ≤ pav ≤ 300 kPa. Of course, loose sands
can be easier compacted than dense ones. This is confirmed by experimental
results, Fig. 14, which can be approximated by

fe =
(Ce − e)2

1 + e
1 + eref

(Ce − eref)2 (16)
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with the material constants eref = 0.874 and Ce = 0.54. The factors fp and
fe cannot [27] be described using the ’distance to the critical state line’ in
the e − ln p diagram. For a given void ratio e, sand contracts faster under
monotonic shearing when p is larger. Under cyclic loading it is vice versa, see
Fig 15.

2.6 Sensitivity of Dacc

In the previous sections we have presented various factors that influence the
rate of accumulation. They have been examined in the laboratory and, one by
one, approximated by simple formulas. A legitimate question is whether all
these factors are really necessary in the model, because the determination
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Table 1. Summary of the factors fi and a list of the material constants Ci for the
tested sand

function Mat. constants typical range remarks
of response

fampl =

(
εampl

ε
ampl
ref

)2

or (7) εampl
ref 10−4 0. . . 100

ḟN = CN1CN2
1+CN2 N

+ CN1CN3 CN1 3.4 × 10−4 (0.1 . . . 0.2) 10−3 0 < N < ∞
CN2 0.55
CN3 6.0 × 10−5

fp = exp
[
−Cp

(
pav

patm
− 1

)]
Cp 0.43 1.5 . . . 0.02 50 ≤ p ≤ 300 kPa

patm 100 kPa

fY = exp
(
CY Ȳ av

)
CY 2.0 1 . . . 7.4 0 < Ȳ < 1.1

fe = (Ce−e)2

1+e
1+eref

(Ce−eref )
2 Ce 0.54 1 . . . 0

eref 0.874

fπ = 1 + Cπ1

[
1 −

(−→
Aε :: π

)]
Cπ1 4.0 1 . . . 4 quickly declines

π + Δπ = R : π with (24) Cπ2 200

of the material constants requires a considerable effort.1 Table 1 summa-
rizes the presented results showing the expected variability of the functions
fampl, ḟN , fp, fY , fe and fπ for the typical range of input parameters.

Evidently, all presented factors may strongly influence the rate of accumu-
lation and therefore their incorporation into the model seems justified.

3 Out-of-Phase Cycles and Polarization

We distinguish between in-phase (=IP) strain cycles and out-of-phase (=OOP)
cycles. The IP-cycles can be defined by the equation

ε = εav + εamplf(t), (17)

wherein εampl contains the amplitudes of the individual components, i.e.
(εampl)ij = (εij)ampl. All components of ε given by (17) oscillate together
according to the same scalar periodic function, e.g. f(t) = sin(t) which is
varying between −1 and 1. IP-cycles that have only one non-zero eigenvalue
of εampl are termed uniaxial, otherwise they are multiaxial.

The out-of-phase (=OOP) cycles cannot be expressed by (17), e.g.

ε(t) = εav +

⎛⎝ εampl
11 sin(t) 0 0

0 εampl
22 sin(t+ θ) 0

0 0 0

⎞⎠ . (18)

1 In the continuation of this work we intend to facilitate the determination of the
material constants giving correlations to the angularity, asperity and to the grain
size distribution.
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Due to the phase shift θ 	= nπ, the OOP strain loop (18) encloses some area in
the strain space (the shadowed area(s) in Fig. 2). The shape of a strain cycle
is of importance for the accumulation (similar effect is known in the fatigue
analysis of metals [7, 29]).

The rate of accumulation depends on the orientation of the strain loop
(=polarization) and its ovality (=shape). It is also important how many di-
mensions of the strain space are penetrated by the OOP strain cycle.

Practical cases involving OOP cycles are not rare, e.g. Rayleigh waves,
moving vehicles, etc. Even during conventional cyclic triaxial tests with a
constant cell pressure OOP cycles may (unintentionally) occur due to the
variable dilatancy. Unfortunately, OOP cycles cannot be performed easily in
the laboratory and they are rarely addressed to in the literature [5, 41].

Our goal is to incorporate the information about the shape and the po-
larization of the strain loop into the novel tensorial definition of the strain
amplitude Aε. It is based on tests performed in the triaxial cell with periodic
changes of both, lateral and axial stress. Moreover, several special tests have
been done using an extended direct simple shear (DSS) device [41].

3.1 Tensorial Amplitude Aε

The OOP cycles produce more accumulation than the IP cycles of the same
size, e.g. the accumulation caused by the loop (18) with the phase shift θ = 90◦

is larger than the accumulation due to an IP loop of the size max(εampl
11 , εampl

22 ),
see Fig. 16. According to several DSS and triaxial tests [41], the accumulation
caused by two-dimensional harmonic OOP cycles is equivalent to the total
effect of the orthogonal IP cycles into which the strain loop could be de-
composed. In particular, the accumulation caused by two-dimensional cycles
(18) could be estimated using fampl ∼ (εampl

11 )2 +(εampl
22 )2. Analogously, for an
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Fig. 16. Circular strain loops generate approximately twice faster accumulation
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OOP cycle

ε(t) = εav +

⎛⎝ εampl
11 f11(t) ε

ampl
12 f12(t) ε

ampl
13 f13(t)

εampl
21 f21(t) ε

ampl
22 f22(t) ε

ampl
23 f23(t)

εampl
31 f31(t) ε

ampl
32 f32(t) ε

ampl
33 f33(t)

⎞⎠ (19)

with six harmonic functions fij(t) = sin(ωt + θij), i.e. with a common pe-
riod 2π/ω but with various phase shifts θij , the size of the amplitude can be
evaluated from the norm of the matrix composed of the amplitudes, i.e.

εampl =
√
εampl
ij εampl

ij . (20)

Note that εampl
ij denotes the amplitude of the ijth component of strain, εampl

ij =
max |εij(t) − εavij | and not the ijth component of a “tensorial amplitude”.

Now, a generalization of (20) for arbitrary periodic functions fij is pro-
posed, i.e. the oscillations need not be harmonic. Moreover, if the accumula-
tion is investigated using the FE method then the analytical form (19) is not
known. Suppose, we are given a strain loop in form of a sequence of discrete
strains ε(tk), k = 1, . . . ,M recorded by an FE program at a Gauss point. In
order to formulate a suitable definition of the tensorial amplitude Aε we keep
in mind the following observations:

– The shape of the strain cycle, Fig. 16, influences the accumulation rate.
– The orientation (= polarization) of the cycle in the strain space is of

importance, Fig. 17. A sudden change of the polarization may increase the
rate of accumulation [41].

– The strain states upon a cycle need not be coaxial and therefore the paths
ε(t) are six-dimensional.

– The size of the six-dimensional strain path must be described by six extents
(further called spans).
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Fig. 17. After a sudden change of polarization Aε the rate of accumulation leaps
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Fig. 18. A change of the circulation of the cyclic strain path does not affect the
accumulation

– Polarization cannot have a sign, i.e. it has a direction but no sense of the
direction.

– A change of circulation has no effect. Figure 18 does not show any change of
the accumulation rate after the circulation was changed from the clockwise
� to the counterclockwise �,

From a recorded cycle ε(tk) with k = 1, . . . ,M we may determine the
pair of the two most distant points, say ε(ta) and ε(tb). The span of the
cycle is quantified by its size 2R(6) = ||ε(ta) − ε(tb)|| and its orientation
r(6) = (ε(ta) − ε(tb)). The upper index �(i) corresponds to the maximum
possible number of dimensions of the loop, e.g. the original strain path (before
flattening) can be at most six-dimensional, ε(6) = ε. In order to find the second
longest span the strain loop is projected onto the hyperplane perpendicular to
r(6). It results in the flattened strain trajectory ε(5) = ε(6) − r(6) : ε(6) ⊗ r(6)

which has at most five dimensions. The span of the flattened trajectory can
be determined analogously and described by R(5) and r(5). The flattened loop
is subject to the subsequent projection, this time along r(5), etc. Of course
R(6) ≥ R(5) ≥ . . . ≥ R(1) holds.

The tensorial amplitude Aε is proposed to be defined as the following sum:

Aε =
6∑

i=1

R(i) r(i) ⊗ r(i) (21)

collecting all spans.2 Briefly speaking, the described method consists in a
gradual degeneration of the strain path in order to determine its spans. The
sense of the direction of r(i) is of no importance, which is obvious from (21). For
numerical efficiency the calculation can be aborted if the size of the subsequent

2 An analogous definition using the one-four-th of the perimeters P (i) of the loops
instead of the radii R(i) lead to a worse approximation of the experiments.
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Projection of  e (t)  from 3D to 2D 

Projection of  e (t)  from 2D to 1D

Fig. 19. The directions ri and the sizes R(i) of the strain loop

span is negligible (say less than 10% of the largest span). Projections from a
three-dimensional path to the one-dimensional path are shown in Fig. 19.

From the above algorithm a list of radii R(6) ≥ R(5) ≥ · · · ≥ R(1) and a
list of mutually orthogonal orientations: r(6), r(5), . . . , r(1) are obtained. Sub-
stituted into (21) they constitute the tensorial amplitude. The amplitude Aε

is a four-th order tensor which has the eigenvalues R(i) and the corresponding
eigentensors r(i).

The normalized amplitude

Aε = Aε/||Aε|| (22)

is called polarization and the norm

εampl = ||Aε|| =
√(
R(6)

)2 +
(
R(5)

)2 + · · · + (
R(1)

)2 (23)

is the scalar amplitude. For harmonic cycles of type (19), definition (23) sim-
plifies to (20). This has been demonstrated in [26].

3.2 Back Polarization π and Function fπ

If a package of cycles with the amplitude A(1)
ε is directly followed by another

package with the amplitude A(2)
ε with the same polarization, i.e. A(1)

ε :: A(2)
ε =

1, no correction of the accumulation rate is needed (fπ = 1) except for fampl.
However, if the polarization has changed then the above product may become
significantly smaller (in the extreme case A(1)

ε :: A(2)
ε = 0) and then the rate

of accumulation is increased (fπ > 1), Fig. 17. The function fπ which enters
(5) takes this effect into account.

Let us introduce the four-th rank back polarization tensor π which repre-
sents the polarization in the recent history of cyclic deformation. The rate of
accumulation is proposed to be a function of the angle α = arccos(Aε :: π)
between the current polarization Aε and π, Fig. 20.

The product 0 ≤ π :: Aε ≤ 1 reflects the degree of adaptation of the soil
structure to the current polarization. During cycles with Aε = const the tensor
π is evolving, asymptotically approaching the current polarization, π → Aε.
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Fig. 20. Evolution of π can be seen as a rotation in six-dimensional space

Since both π and Aε are unit tensors the evolution of π is a kind of rotation
diminishing the angle α, Fig. 20.

The angle α is proposed to evolve according to

α̇ = −Cπ2 α (εampl)2 (24)

meaning that the rate of change of α is proportional to −α and to the square
of the amplitude. The constant Cπ2 is positive so the back polarization indeed
tends towards the current polarization, π → Aε. In order to update π we
rotate it,

π + Δπ = R :: π, (25)

by the angle Δα = α̇ΔN , wherein the rotation operator is defined by

R = (cos Δα− 1)(μ ⊗ μ + ν ⊗ ν) + sin Δα(ν ⊗ μ − μ ⊗ ν) + J (26)

and where μ = Aε+π and ν = Aε−π denote mutually orthogonal tensors
constructed on the hyperplane perpendicular to the rotation axis. J denotes
the eigth-th rank identity tensor.

An increase in the rate of accumulation can be described by the factor

fπ = 1 + Cπ1(1 − cosα). (27)

The material constants Cπ1 and Cπ2 can be determined from an increased
accumulation rate due to a rapid change of polarization, Fig. 17. The presented
tests have been carried out in our multiaxial direct simple shear (DSS) device.
Its novelty lies in a possibility of the lower end plate to move (cyclically) along
an arbitrary horizontal trajectory, [41].

Let us begin a DSS test applying a large number of ε13-cycles, Fig-
ure 17. At first the back polarization tensor π is undetermined but accord-
ing to (24) it must tend asymptotically (with N) to the stationary value
π = Aε corresponding to fπ ≈ 1. After several hundred cycles π may be
expected to have reached this asymptotic value. Then the polarization Aε

of the applied loading is rapidly rotated, whereas π is left unchanged. In
Fig. 17 the ε13-shearing is followed by the orthogonally polarized ε23-shearing.
This change of polarization corresponds to α = 90◦. According to (27) the
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rate of accumulation of the axial strain recorded during the test must in-
crease fπ = (1 + Cπ1)-times with respect to the rate of accumulation under
the previous ε13-cycles. Knowing this increase one can determine Cπ1. Fur-
ther, it can be seen from Fig. 17 that the additional rate of accumulation
declines with N vanishing completely after several hundred cycles. The solid
curve corresponding to ε23-cycles becomes parallel to the dashed curve of
ε13-cycles. The constant Cπ2 can be found fitting the measured curve fπ(N)
with fπ(N) = 1+Cπ1

[
1 − cos

(
α0 exp

[−Cπ2(εampl)2(N −N0)
])]

for N ≥ N0,
wherein N0 is the number of cycles prior to the rapid change of polarization.
This formula can be easily derived integrating α̇ from (24) with respect to N
and substituting the result (i.e. α) into (27).

For in situ soils subject to a vertical cyclic preloading π may be initiated
with

π = Aε = r ⊗ r, (28)

wherein r corresponds to the vertical compression. The spectrum of π is
{0, 0, 0, 0, 0, 0, 0, 0, 1} and the non-zero eigenvalue corresponds to the pre-
scribed eigenvector r. Another extreme example could be a fresh sand fill
with a perfectly isotropic structure, i.e. with no privileged direction of cyclic
strain. The corresponding back polarization

πiso =
1
3
J (29)

can be obtained integrating the dyadic product r ⊗ r over all directions in
the strain space and dividing the result by the surface of the six-dimensional
hypersphere.

4 Deformations Delayed by Pore Water

Let us consider a saturated soil stratum of height H in an axisymmetric
average state subject to fast cyclic shearing (due to a shear wave caused by
an earthquake). Our constitutive relation can be simplified to{

Ṫv
Ṫh

}
=
[
Evv Evh

Ehv Ehh

]
·
{
Dv −Dacc

v −Dpl
v

Dh −Dacc
h −Dpl

h

}
, (30)

wherein the indices �h and �v denote the horizontal and the vertical compo-
nents, respectively. Large H and high frequency of cyclic loading may hamper
the dissipation of the excess pore water pressures ugen generated by pseudo-
relaxation of the effective stress T. For simplicity we treat soil as if it were
practically undrained. Assuming homogeneity in the horizontal direction we
have Dh = 0 and due to the equilibrium condition in the vertical direction
the total vertical stress must remain constant, i.e.

Ṫv − u̇ = 0 (31)
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Let us subdivide the whole volume of soil into thin horizontal layers I =
1, . . .M of equal heights. The accumulation rate of pore water pressure com-
pensates the pseudo relaxation to keep the total stress constant

u̇genI = ṪvI = EvvI(0 −Dacc
vI ) + EvhI(0 −Dacc

hI ). (32)

This process is isochoric and therefore using Dh = 0 we can conclude that
Dv = 0 which is already set in the above equation. Note that generation
of pore pressure as such occurs immediately because no water transport is
necessary. It may give a false impression that the excess pore pressure may
also spread immediately. Actually, spreading of the excess pore pressure is
similar to consolidation. This is not instantaneous because the volumetric
deformations (=transport of pore water) do take place. The pore pressure
requires volume changes in order to spread because it causes a monotonic
change in the effective mean stress which involves change in volume (and flow
of water).

The bulk stiffness Kw of water does not appear in the solution for the
strain rate ε̇. Admittedly, the strain rate Dv depends also on Kw i.e. on the
deformation of water and soil grains but this is a purely reversible portion of
settlement which disappears during the dissipation of the excess pore pressure.
Therefore it has been neglected.

4.1 Stress and Strain Rates During Reconsolidation

Although the pore pressure build up and dissipation occur simultaneously we
consider them as if they acted sequentially, in each period of cyclic excitation.
The rate of pore pressure dissipation (usually negative) is denoted as u̇diss.
During the (re)consolidation the stress is transferred from water to the soil
skeleton while satisfying equilibrium condition (31). This process is governed
by the well known dissipation equation

∂udiss
∂t

= cv
∂2udiss
∂2x

wherein cv =
kEvv

ρwg
. (33)

The reconsolidation results in a pore pressure rate u̇ = Ṫv, a vertical strain
rate Dv and an effective horizontal stress increment Ṫh (seepage forces are
neglected). They can be easily found from the following equation system:{

Ṫv = u̇diss
Ṫh

}
=
[
Evv Evh

Ehv Ehh

]
·
{
Dv

0

}
. (34)

Again we have assumed that the reconsolidation is elastic and the problem is
homogeneous in the horizontal direction, Dh = 0. As the solution one obtains

Ṫh =
Ehvu̇diss
Evv

and Dv =
u̇diss
Evv

. (35)
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4.2 Corrections for Stress and Plastic Strain

Numerically, after a fast application of a large package of cycles the resulting
effective stress may lie outside the elastic range (despite concurrent consol-
idation). In such case a return mapping of stress onto the yield surface is
necessary. Not only a correction of stress but also a correction of strain must
accompany this mapping. The plastic strain rate Dpl 	= 0 cannot be neglected.

Assuming Dpl = 0 we actually compute an elasto-cumulative predictor
Te of stress T. If our predictor lies outside the yield surface, say Coulomb
pyramid, say T e

v/T
e
h < Ka or T e

v/T
e
h > Kp, we have to calculate the correction

cT = Ṫ− Ṫe of the stress rate and the correction cD = D−De of the strain
rate. Due to the homogeneity in xh we have cεh = 0. It is convenient to assume
correction cTv = 0 because the pore pressure need not be corrected, cu = 0.
Therefore cTh = KaT

e
v − T e

h .
Let us subtract by sides

Ṫ = E : (D − Dacc − Dpl), (36)
Ṫe = E : (De − Dacc) (37)

and express the plastic strain rate by Dpl = λ̇m, wherein the flow rule m is
known. The unknown plastic multiplier λ̇ has to be determined. The resulting
system of equations{

0
cTh

}
=
[
Evv Evh

Ehv Ehh

]
·
{
cεv − λ̇mv

0 − λ̇mh

}
(38)

for soil can be easily solved and the corrections can be added to T e
h and to

De.
If a soil layer is liquefied (the effective stress vanishes, T = 0) then the

accumulation term Dacc cannot generate an additional pore pressure u̇gen be-
cause according to (31) the effective stress would be positive (tension). The
pressure dependent stiffness vanishes so the effective stress rate Ṫ = 0 is un-
coupled from the deformation rate. However, assuming a small residual stiff-
ness and performing computing the necessary corrections mapping the tensile
effective stress to the vertex of the Coulomb pyramid a latent accumulation
of deformation can be calculated, as discussed in Fig. 6.

5 Examples of FE-Calculation

The presented model has been implemented into an FE program Abaqus as
a user material subroutine. Remarks on this implementation can be found
in [26]. Two boundary value problems will be presented here: settlement of a
strip foundation under a pulsating vertical load and differential settlement of
a pair of strip foundations on a non-uniform subsoil.
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5.1 Settlement of a Strip Foundation

We simulate a centrifuge model test (under increased gravity of 20 g), Fig. 21.
In this test [9] a strip foundation (with a prototype width b = 1m) was placed
without embedment on a freshly pluviated dense fine sand (#s = 2, 66g/cm3,
emin = 0.575, emax = 0.908, d50 = 0.21mm, U = d60/d10 = 1.95, ID ≈ 0.90)
and cyclically loaded between 4% and 47% of the static bearing capacity of
345 kN. The vertical load was chosen as Qav = 88.7 kN, Qampl = 75.1 kN and
the frequency was 0.44 Hz. Several load–settlement curves generated by the
cycles 1–100, as well as the cycle 500, . . . are plotted in Fig. 22 (prototype
scale). The vertical displacement amplitude was sampl = 0.8mm and the ac-
cumulated settlement after N = 105 cycles was s = 7.3 cm.

The sand used in the centrifuge test was similar (but not identical) to the
laboratory sand described in this paper. Therefore several material constants
CN1 = 1.21 · 10−3, CN2 = 0.39, CN3 = 5.7 · 10−5, Ce = 0.52 and eref = 0.908
have been determined in additional tests. The remaining constants are as-
sumed equal to the ones of the laboratory sand, see Table 2. The hypoplastic-
ity constants in Table 3 have been determined from standard laboratory tests
except formT ,mR and βR which had been taken from the literature [10,23,25]
and then slightly adjusted to improve the simulation of the second cycle of
the centrifuge test (estimation of amplitude).

The FE-calculation was commenced from the geostatic stress with K0 =
0.43. The initial cyclic history has been assumed gA = 0 because the centrifuge
test was performed on freshly pluviated sand. Only a half of the 18.10×7.70 m
subsoil (prototype dimensions) has been discretized taking advantage of the
symmetry. Quadrilateral eight-nodal elements have been used with reduced
integration and an hourglass mode control.

Sand
jc = 32.8�
g = 16 kN/m3

ID = 0.90c

t

s ampl =
75.1 kPa s av =

88.7 kPa 

b/2 = 0.5 m

7.70 m

9.05 m

s

s

Fig. 21. Geometry of the prototype and soil parameters of the centrifuge test
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Table 2. Material constants of the accumulation model for the ‘centrifuge sand’

εampl
ref CN1 CN2 CN3 Cp pref CY Ce eref

(–) (–) (–) (–) (–) (kPa) (–) (–) (–)

10−4 1.21 × 10−3 0.39 5.7 × 10−5 0.43 100 2.0 0.52 0.908

Table 3. Material constants of the hypoplastic model used in the implicit steps

ϕc hs ν n ed0 ec0 ei0 α β R mR mT χ βR

(◦) (MPa) (–) (–) (–) (–) (–) (–) (–) (–) (–) (–) (–) (–)

32.8 150 0.2 0.40 0.575 0.908 1.044 0.12 1.0 10−4 6.5 3 6 0.1

Figure 23a presents the resulting field of the strain amplitude εampl. The
field of the numerically obtained settlements s after 100,000 cycles is presented
in Fig. 23b, in particular the settlement of the foundation is s = 7.5 cm. The
calculated settlement s(N) is compared to the measured test values in Fig. 24.
The calculated and measured curves are in a fairly good agreement At the be-
ginning of the simulation some discrepancy between measured and calculated
data was caused by an inaccurate prediction of the residual settlement after
the irregular cycle. Discussion of this discrepancy is irrelevant in this paper
because the implicit model is responsible for it.

The numerical performance of the presented model is satisfactory. The
mesh dependence becomes noticeable only for relative coarse discretizations
(less than 100 elements). In order to allow for the utomatic time incrementa-
tion the number of cycles N has been set to be identical to the ‘step-time’ in
the pseudo-creep mode. It is recommended to begin calculations in the pseudo-
creep mode from a small increment (we have started with ΔN = 0.01). The
time step is promptly increased to ΔN = 500 cycles or more.
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Fig. 23. (a) Field of strain amplitude εampl, (b) Field of accumulated settlement
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5.2 Differential Settlement of a Pair of Strip Foundations

In this section we investigated a problem of differential settlement of two
strip foundations of the width 1 m each subject to identical loading. The axial
distance between the foundations is 6m, Fig. 25. In order to obtain differential
settlements the generation of the initial fields of stress and void ratio involves
statistics, i.e. a random (but spatially correlated) subsoil is generated and
subject to monotonous and cyclic loading (plane strain). Only the void ratio
is assumed inhomogeneous. The spatial variability of the void ratio field e(x)
has been described by the following isotropic autocorrelation function:

Cij = σ2 exp
(
−||xi − xj ||

θ

)
with σ =

1
2
(emax − emin). (39)

We assume emax = 1.0, emin = 0.6, the average void ratio is ē = 0.8. Three
correlation lengths have been tried out θ = 0.5m, 2.0m and 20m. We are
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Fig. 25. BVP and FE mesh for two strip foundations

using 1,098 elements with four Gauss points per element, which results in a
(4, 392 × 4, 392) covariance matrix. In order to obtain an autocorrelated void
ratio field the matrix C is subject to spectral decomposition

C = Φ · Λ · ΦT (40)

with n eigenvalues collected in Λ = diag{λ1, . . . , λn} and with an orthogonal
matrix Φ composed of eigenvectors (in columns). Finally, the field e(x) is
generated with

e′(x) = ē+
n∑

i=1

r
[−1,1]
i

1
2

√
λiΦi, (41)

wherein r[−1,1] = 2r[0,1] − 1 is a uniform variate (random real number with
constant probability density function) from the range [−1, 1].

The void ratio fields have been generated using the user initial stress and
the user initial state routines of Abaqus. More than 30 stochastic fields e(x)
with corresponding stress fields T(x) have been generated using (41). Exam-
ples of void ratio fields are presented in Fig. 26. Although equally loaded (at
first monotonically and then cyclically) the foundations exhibit a differential
settlement Δs which for each calculation is normalized by the mean settlement
s̄.

The calculation reveals that the autocorrelated fields e(x) imply an almost
linear relation between Δs/s̄ calculated after monotonic loading on one hand
and Δs/s̄ obtained in the process of cyclic accumulation (after 105 cycles) on
the other hand, Fig. 27.

It can be seen from Fig. 27 that the settlement s̄ due to cyclic loading is ac-
companied by a three times larger differential settlement Δs than in the static
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Fig. 26. Void ratio distributions generated using different correlation lengths θ
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case. An explanation of this effect is the fact that the cyclic accumulation is
proportional to the square of the strain amplitude, see Eq. 7, whereas the sta-
tic settlement is approximately proportional to the load i.e. to the amplitude.
Therefore cyclic accumulation is a short-range phenomenon (involves the soil
volume only in the vicinity of the foundation). The probability of finding an
extreme dense zone of sand under one foundation and an extreme loose zone
under the other one is therefore higher in the case of cyclic loading.
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Appendix A

Vectors and tensors are distinguished by bold typeface, for example T,v or in
sans serif font (e.g. E). The symbol · denotes multiplication with one dummy
index (single contraction), e.g. the scalar product of two vectors can be written
as a · b = akbk. Multiplication with two dummy indices (double contraction) is
denoted with a colon, e.g. A : B = tr(A ·BT) = AijBij , wherein trX = Xkk

reads trace of a tensor. The superscript �T denotes transposition.
Analogously we may define double colon :: to quadruple contraction with

four dummy indices. Two fourth order identity tensors with symmetrization
Iijkl = 1

2 (δikδjl + δilδjk) and without symmetrization Jijkl = δikδjl are used.
The brackets || || denote the Euclidean norm. The deviatoric part of a tensor
is denoted by an asterisk, e.g. T∗ = T − 1

31trT, wherein (1)ij = δij stands
for the Kronecker’s symbol. The operator ()ij extracts the ij-th component
from the tensor in brackets. Permutation symbol is denoted by eijk. Dyadic
multiplication is written with ⊗, e.g. (a⊗ b)ij = aibj or (T⊗ 1)ijkl = Tijδkl.
Positively proportional quantities are denoted by a tilde, e.g. T ∼ D. Normal-
ized quantities are denoted by an arrow and tensors divided by their traces are
denoted with a hat, for example D = D/||D|| and T̂ = T/trT. The sign con-
vention of general mechanics with tension positive is obeyed. The superposed
dot, �̇, denotes the material rate (with respect to N) and the superposed
circle �� denotes the Zaremba-Jaumann rate (finite rotations are accounted
for).

The effective Cauchy stress T, the stretching D and the total deformation
is expressed by the logarithmic strain ε = lnU is used throughout the text (b
denotes the right stretch tensor). Generally, it would be inaccurate to interpret
D as a time derivative of the strain ε given by (48). In the axisymmetric case,
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alternatively to the popular Roscoe’s variables:

p = −(T1 + T2 + T3)/3; q = −T1 + (T2 + T3)/2, (42)

εv = −(ε1 + ε2 + ε3); εq = −2
3
(ε1 − 1

2
(ε2 + ε3)), (43)

Dv = −(D1 +D2 +D3); Dq = −(2D1 −D2 −D3)/3, (44)

the ‘normalized’, or isomorphic variables [23]

P =
√

3p, Q =

√
2
3
q, (45)

εP =
1√
3
εv εQ =

√
3
2
εq, (46)

DP =
1√
3
Dv DQ =

√
3
2
Dq (47)

are used. The isomorphic variables preserve orthogonality and distance. Note
that P 2 = ||131trT||2; Q2 = ||T∗||2 and D2

P = ||131trD||2; D2
Q = ||D∗||2 hold.

In the six-dimensional space the isomorphic components of strain are

{ε11, ε22, ε33,
√

2ε12,
√

2ε13,
√

2ε23} and

{T11, T22, T33,
√

2T12,
√

2T13,
√

2T23}.

The Matsuoka-Nakai [19] inequality −I1I2/I3− (9− sin2 ϕc)/(1− sin2 ϕc) ≤ 0
with the critical friction angle ϕc is used throughout this paper as the yield
criterion. It is formulated using the basic invariants of the stress tensor: I1 =
trT, I2 = [T : T − (trT)2]/2 and I3 = det T.

Quantifying the OOP-cycles (Sect. 3) one should account for the rotation of
the principal strain axes within a cycle but disregard the rigid body rotation.
This is done if the strain ε is calculated with respect to the material frame
of reference. In the presented model the logarithmic strain is defined with
respect to the initial material configuration (usually K0-state) as

ε = lnU = RT · lnV · R, (48)

wherein V and U denote the left and the right stretch tensor and R is the
rotation tensor appearing in the polar decomposition of the deformation gra-
dient. We had to ‘unrotate’ the total strain because it is defined as lnV in
the FE program Abaqus.

Appendix B

Working with a typical settlement formula

s(N) = s1f(N), (49)
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one assumes that the information about the cyclic history can be obtained
from the residual settlement after a single cycle, usually from s1 after the first
one. The derivative of s(N) with respect to N describes the settlement per
cycle, e.g. the settlement due to the Kth cycle is

sK =
ds(N)
dN

∣∣∣∣
N=K

= s1f ′(K). (50)

Of course, in order to be objective, the predicted settlement due to a given
cycle should not depend on how we count cycles (i.e., which cycle we call “the
first”). Therefore, beside fitting the experimental observation, the function
f(N) must satisfy the objectivity criterion:

s′(N) = s1f ′(N) = sMf ′(N −M) (51)

in which sM is the settlement due to an arbitrarily chosen cycle No. M (be-
cause someone may considerM as the ‘first’ cycle). Substituting sM from (50)
into (51) the objectivity condition takes the form

f ′(N) ≡ f ′(M)f ′(N −M) (52)

it can be shown that the widely used functions f(N) = NC or f(N) =
1+C log(N), cf. [11,28], do not satisfy this condition. An objective (consistent)
settlement formula is

s(N) = s1
1
C

[1 − exp(−CN)] , (53)

wherein C is a positive material constant. Indeed, one can conclude from (52)
that f ′(N) has the form

f ′(N) = exp(−CN). (54)

After integration of f ′(N) with respect toN with the initial condition f(0) = 0
we arrive at (53).
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Verformungsentwicklung von Böden unter zyklischen Beanspruchungen. In
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1 Introduction

The occurrence of parallel and conjugated shear bands is frequently observed
and well documented in several papers in the field of geotechnical engineering
(retaining walls, slopes) and in the field of geology (faults, plate boundaries).
Referring to geotechnical engineering the development of shear band systems
is linked with the theory of plastic limit state in a half space which was
introduced by Rankine in 1856 [39]. A loosening due to an extension of the
granular material evokes shear stresses inside the soil mass and thus leads
to a reduction of the horizontal stresses. The ratio of the horizontal and the
vertical stress decreases from the value K0 at rest

K0 =
σh0

σv
(1)

to the value Ka

Ka =
σha

σv
, (2)

where Ka is the active earth pressure coefficient. This appears in case where
the loosening is increased until the active plastic limit state is reached the
soil mass fails and a system of conjugated shear bands develops. The shear
bands are inclined to the direction of minor principle stress with the angle of
Coulomb [7]:

ϑC = ±(45◦ + ϕ/2), (3)

where ϕ denotes the friction angle of the soil. Equation (3) satisfies the
Coulomb hypothesis that the direction of the shear band coincides with the
direction of the plane, where the ratio of shear stress and normal stress reaches
a maximum. Roscoe [41] shows for dilative material that the orientation of a
shear band against the direction of minor compressive stress as:

ϑR = ±(45◦ + ψ/2), (4)
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where ψ denotes the dilatancy angle of the soil. A significant number of re-
searches have investigated theoretically and experimentally the appearance of
a single shear band [1,7,10,16,31,33,37,41,44,46,49,56] descriptions of systems
with shear bands are rare. Valdoulakis [21] mentioned that for the orienta-
tion of the shear bands every angle between the solution of Roscoe (4) and
Coulomb (3) is possible while Vermeer [22] summarized results of direct shear
tests and biaxial tests [2,3,8,12] with respect to the dependence of the inclina-
tion of shear bands on particle sizes of sand, pointing out that Coulomb-type
shear bands, with the angle of inclination ϑC appear in experiments with fine
grained sand and Roscoe-type shear bands, with the angle of inclination ϑR,
develop in experiments with coarse sand. Referring to the inclination of the
shear bands Vermeer [49] summarized experimental results of Arthur et al. [3]
whereupon shear bands in biaxial test are inclined to the direction of minor
compressive stress by an angle which averages the inclinations proposed by
Coulomb and Roscoe and which reads as follows:

ϑA = ±(45◦ + (ϕ+ ψ)/4). (5)

It is clear that the granulometry of the material plays a crucial role for
the development of the shear bands, but how is the distance between the
shear bands influenced? Bransby and Milligan [5] performed model tests on
the deformation of soil behind flexible and rigid retaining walls. By means
of radiography it was found that the failure of the soil behind the wall is
accompanied by the development of a system of parallel shear bands which
are inclined to the direction of minor principle stress by the angle proposed
by Roscoe [41]. Based on the experimental data of Bransby and Milligan,
Lesnièwska and Mróz [21, 22] calculated analytically the spacing of parallel
shear bands behind flexible retaining walls. The results of their calculation
agree with the magnitudes of the shear band spacing that has been extracted
from the radiographs taken by Bransby and Milligan. Further examples of
shear banding can be found in the research on numerical simulation of shear
band patterns as done by Mühlhaus and Aifantis [32], Tejchman and Wu [45]
or Nübel and Karcher [35]. Poliakov et al. [38] investigated the dependence
of shear band formation on dynamic soil parameters. They simulated systems
of shear bands numerically by the finite difference method, applying pure
shear on a square sample of an elasto-plastic material. They introduced a
non-dimensional parameter B, defined as follows:

B =
σvp

Gdynvbc
(6)

where σ denotes the confining pressure, Gdyn the dynamic shear modulus and
vP/vbc is the ratio of the p-wave velocity vp and the loading velocity vbc. They
postulated that the factor B controls the behavior of the shear band system.
In particular, changing the various parameters does not affect the results as
long as B is kept unchanged: both the evolution and the spacing of the shear
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bands depend on this parameter. An increase in B leads to an increase in
shear band spacing and vice versa. The latter is explained by Poliakov et al.
as follows: when a shear band forms, this process is accompanied by a decrease
in stress inside and an increase in stress outside the band. This increase in
stress inhibits the formation of a new shear band adjacent to the former one.
The stress difference propagates through the material with the p-wave velocity.
Hence a large value of B, synonymous with a large p-wave velocity, leads to
widely separated shear bands.

Additional information in literature with reference to a specific shear band
spacing is rare although patterns of localization zones have been observed in
further geotechnical experiments [4,13,24,26,42] and as a result of numerical
modelling of the localization phenomena [27,30,35,36,38,45].

In the field of geology the mechanical behavior of the earth’s crust and the
interaction between the brittle crust and the ductile substratum have been
investigated intensively by means of experiments and numerical simulations
[18,31,33,47,48]. In a series of experiments in a sand-box McClay [26–28,34,36]
and McClay and Ellis [29, 30] studied the deformation of the earth’s crust
under various strains and compared the results with the geometry of shear
band patterns that have developed in situ under similar boundary conditions.
In all experiments the ductile lower crust of the earth was simulated by the
use of a rubber membrane whereas the brittle crust was modelled by a layer
of granular material as, e.g. sand.

All mentioned investigations have in common that the general deformation
of the soil mass has been investigated but the influence of specific material
properties or boundary conditions on the geometry of the developing shear
band systems has not been determined yet. In the geotechnical literature the
theoretical and experimental investigation of shear banding in granular mate-
rials is mainly concentrated on the description of the localization phenomena
in dense specimens. This limitation is based on findings whereupon a con-
centration of shear strains in narrow bands can solely be observed in dense
materials that show hardening followed by softening whereas in loose granu-
lar media the sand mass deforms homogeneously until the residual strength
of the material is reached. Han and Vardoulakis [17] performed biaxial tests
on saturated fine grained sand with different initial densities in order to study
the stress–strain behavior of the material. They observed the development of
shear bands that were inclined by the Coulomb angle ϑC in sand specimen
with a medium density between D = 0.76 and D = 0.52 whereas only a homo-
geneous deformation of the sample could be detected in samples with a loose
density of D = 0.19. Contrary to these experiments Desrues et al. [11] show
that strain localizes in loose specimen that have been loaded in a triaxial cell.

An comprehensive study with series of sand-box extension experiments has
been carried by the authors [52, 53] where the influence of the granulometric
properties, the dynamic soil parameters, the stress level and the geometry
of the specimens on the spacing and the inclination of the localization zones
was studied. The following parameters have been varied: (a) the height and
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width of the specimen (the length was kept constant, i.e. 50 cm), (b) the
stress level (using centrifuge testing up to 15 g), (c) the velocity of loading,
(d) the dynamic shear modulus of the material, (e) the initial relative density,
(f) the grain size distribution (uniformity U , d50, max. grain size, etc.) For
further details on the investigated parameter variations the interesting reader
is referred to Wolf [51].

2 Experimental Set-Up and Data Acquisition Methods

2.1 Experimental Set-Up and Model Preparation

Figure 1 shows a schematic picture of the experimental set-up. A sample of
granular material is placed on a rubber membrane that is linked to a fixed wall
on the one side and a movable wall on the other side. By displacing the movable
wall the rubber membrane is stretched and, neglecting friction between the
rubber and the bottom plate, a linear displacement distribution and thus a
constant strain inside the membrane can be assumed. Consequently, the strain
is applied to the granular sample by the rubber membrane.

Results of similar experiments [18, 19] suggest that special attention has
to be paid in order to achieve a uniform strain distribution inside the rubber
membrane. In order to achieve this requirement and with respect to a good
reproducibility of the experiments, a special mechanism has been designed
that provides a linear displacement of the rubber membrane during any state
of the experiment. The satisfaction of the uniform strain in the rubber has to
be proven also in model tests under increased gravity where friction between
rubber membrane and bottom plate is significantly increased. A sketch and a
photograph of the device including this mechanism are shown in Fig. 1. The
mechanism consists of metal bars (1) which are connected by a scissors mecha-
nism (2) and which slide on steel rods (3) parallel to the displacement direction
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Fig. 1. (a) Simplified model of the experiment, (b) schematic view, (c) photograph
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of the movable wall. The rubber membrane (4) lies on a glass bottom plate (5)
and is fastened at the fixed wall (in the right of the figure), the movable wall
(6) and the metal bars (1). The specimen is surrounded by plexiglass walls
which are fixed at a frame (7), providing a small gap for the membrane to be
fixed at the bars. The movable wall and the scissors mechanism are displaced
by a step motor (8). The strain distribution inside the rubber membrane can
be controlled during the experiments by observing a mesh that is drawn on
the bottom side of the membrane through the glass plate.

Geometrical Constrains

The length of the specimen in its initial state is 50 cm, a displacement of
20 cm can be applied by the device resulting to a cumulative horizontal strain
of the entire specimen of 40%. The maximum height of the sample is 30 cm.
The width of the device has been chosen to 20 cm in order to minimize the
influence of friction between the sample material and the side walls while
providing the possibility of evaluating the experiments with X-ray technique
by the available X-ray source. This choice was met after variations of the
specimens width between 10 and 30 cm and observation of the arch shape of
the shear bands at the top of the specimen as well as the quality of the X-ray
photos taken during the tests.

Homogeneity of the Applied Strain

As already mentioned special attention has to be paid in order to ensure a
homogenous distribution of the strain inside the rubber membrane during
the sand-box experiments. The evaluation of the rectangular meshes that are
drawn on the bottom sides of the rubber membranes confirms that the appli-
cation of the scissors mechanism provides constant strain conditions along the
displacement direction of the movable wall. Furthermore the elongation of the
membrane perpendicular to the stretching direction is inhibited. These find-
ings are supported by the Digital Image Correlation (DIC) evaluation of the
digital pictures taken of the bottom side of the rubber membrane during the
stretching process. In order to reduce friction between the rubber sheet and
the glass plate, which mainly causes irregularities with respect to the strain
distribution, the contact surface is prepared with talcum powder in natural
gravity and with silicone oil during ng-experiments. In addition the thickness
of the rubber membrane is increased from d = 1mm to d = 2mm during the
experiments in increased gravity. Possible assumptions whereupon the spacing
of the developing shear bands my be influenced by the distance of the metal
bars which fix the rubber membrane have been disproved by additional exper-
iments in which the rubber membrane has been fixed not at any but at every
second steel bar. These experiments show corresponding results with respect
to the spacing and the inclination of the shear bands (for further details the
interesting reader is referred to Wolf [51]).
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Method of Specimen Preparation

As detected by several researchers [6, 20, 24, 43, 47, 50] the density of the pre-
pared specimen, and thus the mechanical properties of the material, are heav-
ily dependent on the sample preparing method and on the composition of the
material. In our experiments, the material is pluviated into the device with a
hopper and different sieves. The sieves and the distance between them and the
actual surface of the specimen are chosen with respect to the desired density,
the spacing varies between 10 and 30 cm, respectively. Using this method, we
obtain a density inside the quartz sand specimen for values of D (relative
density) between D = 0.4 and D = 1.0.

2.2 Data Acquisition and Measurement Technique

Two different measurement techniques have been used for the determination
of the distance between shear bands and their inclination. Due to difficulties
of analyzing processes inside the sample with simple optical measurements,
a mobile X-ray system is used to portray differences in density of the in-
vestigated granular material and thus to identify zones of shear localization
within the entire sample width. By evaluating single pictures that are taken
at defined stages of the experiment with a specific software, the shear band
spacing as well as the shear band inclination can be determined with a high
accuracy of 0.1 mm and 0.1◦, respectively. In order to analyze the deforma-
tion of the soil mass on the sides of the specimen an additional technique
of optical image analysis called “DIC” has been used. During the last years,
DIC has been applied to the evaluation of displacements and strains of gran-
ular materials by several researchers [34,40,50,51,53]. The working principle
of DIC is illustrated in Fig. 2. The method requires a series of digital pic-
tures of the object, each taken from the same position within a certain time
or displacement increment (Fig. 2a). By means of DIC the displacement of
small areas of the soil mass (interrogation windows) are determined and dis-
played in a vector plot (Fig. 2b). On the basis of the vector field strains can
be calculated (Fig. 2c). For a detailed description of the method see [53]. The
experiments under natural gravity are recorded with a charge-coupled device
(CCD)-camera providing a maximum image rate of 12 frames per second,
the CCD matrix has a resolution of 1280 × 1024 pixel. We recorded images
with a frequency of 0.5 Hz, taking into account the displacement velocities of
the movable wall of 2.87mmmin−1 in natural gravity the displacement incre-
ment between two images is equivalent to 0.096 mm per image. The centrifuge
experiments are recorded with a simple compact CCD camera with a CCD
resolution of 1152 × 864 pixel. The size of the interrogation window has been
chosen under the specific requirement of the size of the area of interest, the
required precision and the required number of vectors (resolution).
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‘Area of interest’ Interrogation window

Displacement vectors
Strain field(b) (c)

t t + Dt

DIC-Software

(a)

Fig. 2. Working principle of DIC

3 Experimental Programme and Results

3.1 First Series of Experiments

The experimental investigation comprises several steps. In the first series of
experiments the material, the geometry of the specimen and the granulometry
of the materials has been varied in order to obtain an idea of the significant
parameters affecting the shear band spacing under extensional load. In this
paper only the summary of the results of this series will be given. For more
details the interesting reader is referred to [52,53].

Investigated Materials and Their Parameters

For the variation of the material quartz sand, artificial particles (urea resin)
chilled iron grid and glass beats have been used in our experiments. The
investigated materials and their properties are summarized in Table 1.

The localization of deformation develops spontaneously with uniformly
distributed shear bands over the entire length of the specimen at amounts of
strain between 2 and 6% depending on the material. The failure zones remain
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(a)

(c) (d)

(b)

Fig. 3. Radiographs of four stages in the development of the shear band system
with increasing horizontal strain: (a) εxx = 10%; (b) εxx = 20%; (c) εxx = 30%;
(d) εxx = 40%. Identical shear bands are numbered

active and planar during the entire process of straining. Additional shear zones
do not develop, not even at high amounts of strain (up to 40%, see Fig. 3).
Supplementary strain after the localization is accumulated predominantly in
the existing failure zones. In all experiments the inclination of the shear zones
decreases with increasing strain while the distance between shear bands re-
mains almost constant throughout the tests. The blocks rotate towards the
moving wall (“bookshelf mechanism”).

Influence of Granulometric Parameters

The average grain size diameter d50 hardly influences the spacing between
the localization zones. Its influence on the thickness dSB of the shear band
is verified and amounts at the beginning of the formation between 7 and
13 times the size of d50. Furthermore the maximum grain size diameter is
corresponding to a larger distance between the shear bands independent on
the ratio of uniformity.

In a granular material with a high coefficient of uniformity the mechanical
behavior and the material parameters related to the maximum grain size
govern the shape of the developing shear bands A very interesting point is
the appearance of conjugate shear band systems in tests with coarse material
and with a highly non-uniform sand (Fig. 4). Whereas the sand with higher
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Direction of straining

Conjugate
shearband

d50 = 0,35 mm d50 = 0,89 mm d50 = 1,58 mm(a) (b) (c)

Fig. 4. Radiographs for two quartz sands with three different average grain sizes in
the development of the shear band system: (a) d50 = 0.35 mm; (b) d50 = 0.89 and
(c) d50 = 1.58 mm

non-uniformity produces only a few less distinctive conjugate shear bands,
the ones in coarse sand are clear and make the same angle to either side of
the vertical. The size of the d50 grain diameter seems to be very decisive for the
appearance or not of the conjugated shear bands.

Influence of the Initial Height

The spacing of the shear zones is linearly dependent on the initial height of
the specimens [39,41,51–53].

Influence of the Dynamic Parameters

The shape of the shear band system is independent of the rate of loading. The
strong dependency of the shear band pattern on dynamic material parameters
as proposed by Poliakov et al. [38] in the form the dimensionless parameter
B has not been confirmed by our experimental investigations [51].

3.2 Second Series of Experiments

The second series of experiments was performed in order to investigate
the influence of the stress level on the spacing between the shear bands.
All experiments have been performed with quartz sand (Siligran�), owning
an average grain size of d50 = 0.35 mm and a coefficient of uniformity of
U = d60/d10 = 1.5. The grain size was in the range of 0.1–0.71 mm, the fric-
tion angle ϕ = 39.8◦, the angle of dilatancy, ψ = 14.5◦ and the grain density
ρs = 2.64 g cm3. Sand-box experiments on quartz sand with varying densities
and geometry were performed. Some specimens are tested in increased gravity
in the Bochum Geotechnical Centrifuge. While keeping all geometrical dimen-
sions and soil properties constant, the magnitude of the gravity level has been
varied up to 15 g in order to investigate the influence of the g-level and thus
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the magnitude of the bulk density on the shape of the developing shear band
pattern. For comparison reasons experiments with both heights of 10 and 15
cm have been performed.

Influence of Stress Level

In the increased stress field it is also observed that the shear band inclination
ϑ decreases linearly with increasing horizontal strain, the spacing a between
the shear bands remains almost equal compared to the amount of strain-
ing. With respect to the shear band inclination it is of particular importance
that the principal stresses remain vertical and horizontal as numerical calcu-
lations have shown. The diagram shows that independent of the gravity level
all experiments owning the same height in initial state have almost the same
spacing and the same inclination. The proportionality between initial height
and shear band spacing is also verified with the centrifuge tests (Fig. 5). The
optical evaluation of the radiographs in Fig. 3 leads to the conclusion that the
determining deformation mechanism is “bookshelf-deformation” as described
for example by Mandl [23]. Following this model, at the initial state all local-
ization zones are inclined to the horizontal by the angle ϑ, two adjacent shear
zones surround a block and are spaced at the distance a (Fig. 5a). With in-
creasing horizontal strain the blocks rotate towards the direction of stretching,
the angle ϑ decreases while the spacing a remains constant.

3.3 Third Series of Experiments

Sand-box experiments on quartz sand with varying initial densities and a
constant geometry were performed. The stress–strain behavior of the model
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Fig. 5. (a) Definition of the distance a between two adjacent shear bands, the
inclination ϑ, the width of the block b and dSB the thickness of a shear band; (b)
experimental results referring to shear band inclination ϑ and shear band spacing a
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material is determined by performing triaxial extension tests with initial den-
sities corresponding to those of the sand-box experiments.

Triaxial Extension Tests

The stress–strain behavior of granular materials is mainly influenced by the
prevailing stress level and the density of the material. Results of pre-tests as
well as experimental results in literature suggest that not only the density but
also the applied stress path affects the stress–strain response of the material.
In case of triaxial extension the vertical stress can be decreased while keeping
the confining stress constant or the radial stress is increased whereas the ax-
ial stress remains unchanged. As the measurement of stresses is not possible
during the sand-box tests the experiment has been modelled numerically by
means of a hypoplastic constitutive law [55] in order to determine the develop-
ment of the stresses inside the specimen and thus to find out which of the two
stress paths described earlier fits best to the stress state during the sand-box
experiments [53]. The results of the modelling show that the stress along the
stretching direction of the rubber membrane σ1 decreases immediately after
the displacement of the movable wall has been started and reaches a constant
value corresponding to an active horizontal stress as described by Rankine
(cf. (2)). The horizontal stress perpendicular to the displacement direction σ2
remains constant, the vertical stress σ3 shows only a slight decrease due to the
small reduction of the height of the sample with the beginning of the material
loosening, which can be neglected at a first stage. The fact that two principle
stresses σ2 and σ3 remain almost constant whereas one stress σ1 decreases
indicates that the stress state in the sand-box experiments can be described
most suitably in triaxial extension test by keeping the cell pressure constant
and decreasing the axial load. (For the behavior of the material in the sand
box case is more suitable to use biaxial rather than triaxial test results.)

Figure 6 displays the results of the triaxial extension tests that have been
performed on dry quartz sand. Each curve in Fig. 6 represents a specific rel-
ative density between Dmin = 0.40 and Dmax = 1.05 which is similar to the
relative density of a group of sand-box experiments. The results in Fig. 6 with
respect to the mobilized friction angle show that higher initial densities lead to
a more brittle material behavior close to the peak and a sand sample of lower
relative density shows a drawn-out plateau around the peak. The magnitude
of the peak friction angle decreases with falling relative density whereas the
magnitude of the shear strain at the peak of the stress–stress-curve increases
(see Table 2). The composition of the volumetric strain versus the shear strain
in Fig. 6b reveals a dependence of the volumetric response of the material on
the relative density. All curves show dilative behavior after a certain amount
of shearing where the volumetric strain rate increases with increasing density.
This dependence is reflected in the angle of dilatancy ψ which is defined as
the gradient of the volumetric strain versus the shear strain and which can be
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Table 2. Friction angle, dilatancy angle, shear strain and theoretical shear band
inclinations at the peak in dependence of the specimen’s relative density

relative density friction angle dilatancy angle shear strain
D ϕpeak ψpeak γTriax

Peak

[−] [deg] [deg] [%]

1.05 39.8 14.5 5.67
0.84 36.6 10.6 6.87
0.69 35.0 7.8 8.24
0.55 33.3 5.3 8.96
0.40 31.1 2.8 9.70
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Fig. 6. (a) Mobilized friction angle ϕ and (b) volumetric strain εV, both versus
shear strain γ
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calculated as follows [15]:

ψ = arctan
[
εvol
γ

]
= arctan

[
ε1 + 2ε3
ε1 − ε3

]
. (7)

Around the peak of the stress–strain curve the volume of the specimen in-
creases uniformly and thus the dilatancy angle reaches a constant value. The
volumetric strain at the peak of the stress–strain curve is marked with a star in
Fig. 6b. The corresponding dilatancy angles at the peaks of the stress-strain
curves in dependence of the specimens’ relative density are summarized in
Table 2.

Sand-box Experiments with Different Densities

As the influence of the stress level has already been investigated [53] it was
of interest to perform sand-box experiments with varying initial densities.
The work is mainly concentrated on the performance of experiments in nat-
ural gravity but some experiments were carried out under increased gravity.
By means of these tests it shall be explored whether possible changes in the
granular packing of samples with a lower density due to the increasing of the
stress-level influence the spacing and the inclination of the developing shear
bands. If a certain amount of horizontal strain is applied to the specimen a
system of shear bands develops, which is uniformly distributed over the en-
tire length of the specimen. It is important to mention that all shear bands
develop simultaneously. Figure 7 shows the results of the performed sand-box
experiments with varying initial relative densities of the specimens in natural
as well as in increased gravity. In both diagrams the shear band spacing a
and the shear band inclination ϑ are displayed versus the applied horizontal
strain εxx. Different symbols characterize different initial densities. It can be
concluded from Fig. 7a and b that independent of the initial density of the
specimen the spacing of the shear bands remains almost constant throughout
the whole straining process. As far as the experiments in natural gravity are
concerned distinct differences in the shear band spacing with respect to the
density of the specimens can be detected although it is clearly visible that the
deviation from the average value increases with decreasing density. A notice-
able tendency whereas the shear band inclination decreases with decreasing
relative density of the specimen can be recognized.

3.4 Determination of the Localization Strain

In order to determine the horizontal strain and shear strain at the time when
the shear bands appear, a method is used which was presented by the au-
thors [53] and is based on the DIC-evaluation of the digital photographs of the
granular structure at the sides of the specimens. By means of DIC the shear
strain on side of the specimens is calculated for different amounts of applied
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Fig. 7. Shear band spacing and shear band inclination in dependence of the relative
density (a) in natural gravity (b) in increased gravity

horizontal strain, subsequently a path is defined perpendicular to the devel-
oping shear bands. The calculated magnitudes of shear strain are extracted
along this path for different quantities of applied horizontal strain and are
displayed versus the corresponding horizontal strain in a diagram as exem-
plarily shown in Fig. 8. The point of localization can be determined exactly if
the shear strain γ is plotted versus the corresponding horizontal strain εxx at
different positions inside and between the developing shear bands as displayed
in Fig. 8a. The positions are marked in Fig. 8a with respective symbols. Both
groups of curves show an observable kink, before and behind the kink the
relationship between shear strain and horizontal strain is linear. The kinks
denote the transition from a homogenous deformation of the specimen to the
accumulation of the strains inside the shear bands and the reduction of the ac-
cumulation between the localization zones, respectively. Both segments of the
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Fig. 8. (a) Development of the shear strain along a section defined perpendicular
to the developing shear bands at different amounts of applied horizontal strain εxx,
(b) Exact determination of the localization point

curves can be approximated by straight lines, the intersections of the lines cor-
relate with the horizontal strain εxx,loc and the shear strain γloc at the point of
localization. The evaluation of the curves in Fig. 8b results in εxx,loc = 3.20%
and γloc = 3.40%, respectively. This method of evaluation of the digital im-
ages is first introduced by Wolf [51, 53] where the evaluation of the digital
images for all the experiments has been carried out and given in tables.

Influence of the Density on the Shear Band Spacing

The results with respect to the determination of the localization strains from
the sand-box model tests indicate clearly that the applied horizontal local-
ization strain εxx,loc as well as the shear strain at the point of localization
γloc are dependent on the initial density of the specimen. The localization
strain εxx,loc increases from εxx,loc = 3.30% for a relative density of D = 1.04
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up to a magnitude of εxx,loc = 7.42% for D = 0.55. The magnitude of the
shear strain at the localization point for D = 1.05 amounts to γloc = 3.40%
which is in the same order of magnitude as εxx,loc. The localization shear
strain increases up to γloc = 11.17% for a relative density of D = 0.55. The
dependence of the localization strains on the density of the model material
indicates that higher amounts of shear strain have to be evoked inside a looser
sample in order to make a localization of deformation in a shear band possi-
ble. Furthermore it can be concluded from the experimental results that the
deviation from the average localization strains increases with decreasing den-
sity of the model material. It has been shown that significant differences can
be identified in Fig. 7a,b whereup on the shear band spacing increases with
decreasing relative density of the specimen. The change of the spacing comes
along with an increasing deviation of the shear band spacing from the average
value when a specimen with a low density is tested. The growing deviation
with decreasing density results in the situation that some experiments with a
relatively low density show smaller distances than specimens that have been
prepared with a comparatively high density. The change of the deviation is
attended by observations during the performance of the sand-box experiments
whereupon the distribution of the shear band spacing is much more irregular
if specimens with relatively low densities are tested than during experiments
with dense specimens. With respect to the results of the triaxial extension
tests these findings lead to the conclusion, that the deviation of the spacing of
the localization zones from the average value increases the more the distinct
softening and hardening behavior of a dense soil vanishes. Table 3 summarizes
the shear band spacing aØ in dependence of the relative density averaged over
all experiments associated with one density and averaged over the applied hor-
izontal strain. If the average distance is plotted versus the relative density, a
linear relationship between both variables can be identified and therefore the
change of the shear band spacing a can be correlated to change of the relative
density of the specimen. As far as the influence of the stress–strain behavior
of the material is concerned a change of the relative density causes a change
of a variety of parameters as, e.g. the magnitude of the friction angle ϕ, the
dilatancy angle ψ or the shear strain γpeak at the peak of the stress–strain
curve. For this reason it is not possible to correlate a change of the shear
band spacing or the shear band inclination with a single parameter but with

Table 3. Average values of the shear band spacing in dependence of the relative
density D

relative density, average shear band
D [–] spacing, aØ [mm]

1.00 17.39
0.85 21.91
0.70 20.12
0.55 20.98
0.40 21.93
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the “global” property density. By means of radiography it has been shown
that the shear band spacing increases linearly with decreasing relative density
within the investigation range, hence the change of the shear band spacing is
directly correlated with the change of the density.

4 Summary of the Parameters Affecting
the Shear Banding

It has been shown that the shear band formation in the sand-box extension
experiment depends linearly on the height of the specimen but the stress level
does not influence the spacing of the shear bands. The softening behavior of
the non-cohesive material after reaching the peak friction angle depends from
the initial density. The softening gradient with respect to the shear strain
seems to be one of the important parameters governing the spacing between
the shear bands [21,22,51]. This gradient depends on the stress ratio in a real
three dimensional regime (stresses σ1, σ2, σ3). which can be formulated with
the factor b, determined as:

b =
σ2 − σ3
σ1 − σ3 (8)

with σ1 being the highest, σ3 the lowest and σ2 the medium principal stress
resp. The post peak behavior of the mobilized angle of friction with respect
to the shear strain shows a strong dependency on the factor b. The triaxial
compression is corresponding to the value of b = 0 and the triaxial extension to
the value b = 1, respectively. The biaxial experiment shows values of b between
0 and 1. The stress–strain behavior of the material under biaxial conditions
shows a stronger degradation of the mobilized angle of friction than under
triaxial conditions [9,14]. In Fig. 9b the comparison of the mobilized angle of
friction between biaxial experiments on sand and the theoretical approaches
using non-local theories is presented [25] where in Fig. 9a the schematic view of
the degradation of the angle of friction in the post peak domain is presented.
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Fig. 9. (a) Degradation scheme for the angle of friction in the post peak regime,
(b) experimental results and simulations of biaxial tests [25]
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Fig. 10. Geometry of the kinetics of the shear band system

From the observations and from the experimental results (X- ray and DIC)
of the deformation mechanisms after the appearance of the shear bands in the
sand specimen was the “bookshelf”- mechanism, where the shear bands are di-
lating and the sand blocks between them compressed [51]. A first approach on
the kinematics is given in [51] and the scheme of this mechanism is presented
in Fig. 10. The applied energy in the system due to the rubber stretching is
transferred to the movement of the rotating blocks, which deform also elasti-
cally and to the shear band dilation as well as to the deformation of the wedges
at the bottom corner of the rotating blocks (see Fig. 10) where energy is dissi-
pated. It can be shown that the application of energetic approaches (i.e. max.
dissipation energy, etc.) lead to the determination of the shear band spacing.
For further details the interesting reader is referred to Wolf [51] but further
approaches are still needed for the correct problem description.
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4. Bolton, M.D., Stewart, D.I., Powrie, W. (1988): The design of deep in-situ
walls. In: Proceedings of the International conference on Centrifuge 88, Corte
JF (Ed). Balkema: Rotterdam, 405–414

5. Bransby, P.L., Milligan, G.W.E. (1998): Soil deformations near cantilever sheet
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1 Introduction

Acceleration waves play an important role in the theoretical analysis of solids
as their existence and properties are closely related to well-posedness, sta-
bility, bifurcation and shear band formation. These issues have been studied
mainly under the assumption of incremental linearity of the constitutive equa-
tion [1,8,11–13,21]. Under this assumption, the acceleration wave analysis and
the method of characteristics lead to the same equation for the wave speeds,
which allows us to apply the acceleration wave approach to such issues as
well-posedness and stability. Little is known for incrementally nonlinear con-
stitutive equations. As it may entail qualitative changes in the analysis, theo-
retical studies with incrementally nonlinear models attract more attention in
recent years [2, 4, 5, 10,16–18,25].

The main feature of an incrementally nonlinear solid compared to a linear
one is that the spectrum of the speeds of acceleration waves is continuous.
The spectrum of the characteristic wave speeds is continuous as well but is
described by different equations. Thus, the connection between the existence
of acceleration waves and hyperbolicity of the dynamic equations is no longer
valid. The question therefore arises as to whether these two spectra are iden-
tical and whether this connection can be re-established.

In the present paper, we study acceleration waves with a fairly general
hypoplastic constitutive equation. We consider plane acceleration waves, cal-
culate wave speeds and investigate their dependence on the stress state. The
aim of this study is, on the one hand, to generalize the nonlinear shear band
analysis by Wu [25] to the dynamic case, i.e. to the acceleration wave prop-
agation, and, on the other hand, to perform the wave speed analysis by the
characteristic method along the lines of Osinov [14], and then to compare the
results.
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2 Constitutive Equation

Hypoplastic constitutive relations constitute a class of incrementally nonlinear
tensorial relations between the stress rate and the strain rate developed for the
description of the plastic behaviour of granular materials. The hypoplasticity
theory may be viewed as an alternative to elasto-plasticity theories as it was
devised without the introduction of yield surface, flow rule and without the
decomposition of the deformation into an elastic and a plastic part.

A review of hypoplastic constitutive equations can be found in the re-
cent paper by Wu and Kolymbas [24]. Some advanced versions of hypoplastic
constitutive models have been proposed to describe different behaviour, e.g.
critical state [6] and viscosity [7]. In the present paper, however, a simple
constitutive equation is used. This has some merits in that the wave analysis
is largely simplified and the outcome can be easily extended to other refined
models.

Consider the following constitutive equation proposed by Wu and Kolym-
bas [22]:

T̊ = L(T) : D + N(T)‖D‖. (1)

Here T̊ is the Jaumann derivative of the stress tensor defined as

T̊ =
dT
dt

+ TW − WT, (2)

where d /dt stands for the material time derivative. D and W are the rate of
deformation tensor and the spin tensor, respectively,

D =
1
2

[
∂v
∂x

+
(
∂v
∂x

)T ]
, W =

1
2

[
∂v
∂x

−
(
∂v
∂x

)T ]
(3)

and v(x) is the velocity field. L(T) : D and N(T) in (1) are isotropic tensor-
valued functions. L is a fourth-order tensor and the colon ‘:’ denotes the inner
product between two tensors, ‖ · ‖ stands for a norm and is defined by ‖D‖ =√

D : D.
The wave analysis will be carried out for constitutive equation (1). For

numerical calculations the following constitutive equation is used [23]:

T̊ = C1(trT)D + C2
(T : D)T

trT
+
(
C3

T2

trT
+ C4

T∗2

trT

)
‖D‖, (4)

where C1, . . . , C4 are material constants, and T∗ = T−I trT/3. The following
material constants typical of Karlsruhe dense sand are used in the numerical
calculations: C1 = −106.5, C2 = −801.5, C3 = −797.1, C4 = 1077.7.

In the further analysis we will use the notion of failure surface defined in
the framework of hypoplasticity as follows. A material element with a stress
T is said to be at failure if there exists a strain rate D 	= 0 such that T̊ = 0,
that is

L(T) : D + N(T)‖D‖ = 0. (5)
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Dividing (5) by ‖D‖ and equating the norm of D/‖D‖ to unity, we arrive at
the equation

tr
(
L−1(T) : N(T)

)2
= 1. (6)

Stress states satisfying (6) form a surface in the stress space called failure
surface [23].

3 Acceleration Waves

An acceleration wave is defined as a propagating surface S(x, t) = 0 of weak
discontinuity [8]. This means that a field variable (in our case the velocity
and the stress field) is continuous across the surface S, but the spatial and
temporal derivatives exhibit a jump, as schematically shown in Fig. 1. Using
brackets [[ ]] to denote a jump of a function across a surface, we thus have[[

∂v
∂x

]]
=
(
∂v
∂x

)+

−
(
∂v
∂x

)−
	= 0,[[

∂v
∂t

]]
=
(
∂v
∂t

)+

−
(
∂v
∂t

)−
	= 0,

(7)

[[v]] = v+ − v− = 0, (8)

where the superscripts + and − stand for v immediately before and behind S.
To simplify the matter we restrict our analysis to plane waves. The velocity

and stresses in such waves depend on only one spatial Cartesian component,
say x1, and time. We consider initial stress states with T13 = T23 = 0 in
order to allow for the existence of waves with only two nonzero components
of velocity

v1 = v1 (x1, t), v2 = v2 (x1, t), v3 = 0. (9)

S

+-

(∂v/∂x1)-
(∂v/∂x1)+

Fig. 1. Discontinuity of the velocity gradient across the surface S
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With the above assumptions, constitutive equation (1) can be written out for
the components T11 and T12 as (cf. [14])

dT11
dt

= η1
∂v1
∂x1

+ η2
∂v2
∂x1

+ η3‖D‖,
dT12
dt

= η4
∂v1
∂x1

+ η5
∂v2
∂x1

+ η6‖D‖,
(10)

where the coefficients η1, . . . , η6 depend on the material constants C1, . . . , C4

and the stress state T, and

‖D‖ =

√(
∂v1
∂x1

)2

+
1
2

(
∂v2
∂x1

)2

. (11)

The constitutive equations for the components T22 and T33 are not given here
because they will not appear in the subsequent analysis.
It is convenient to specify the direction of wave propagation with respect to
the principal axes of the instantaneous stress tensor. For this purpose, an
angle α is introduced as shown in Fig. 2. The components of the stress tensor
in the coordinate system (x1, x2, x3) and therefore the coefficients ηi are then
functions of the principal stresses T1, T2, T3 and the angle α

ηi = ηi (T1, T2, T3, α) , i = 1, . . . , 6 (12)

and are continuous across the surface S. Constitutive equations (10) written
for the jumps across the surface S read[[

dT11
dt

]]
= η1

[[
∂v1
∂x1

]]
+ η2

[[
∂v2
∂x1

]]
+ η3[[‖D‖]],[[

dT12
dt

]]
= η4

[[
∂v1
∂x1

]]
+ η5

[[
∂v2
∂x1

]]
+ η6[[‖D‖]].

(13)

Dx1

x1

T2

T1

a

0

90∞-a

S
x2

Fig. 2. Definition of the angle α of the wave propagation direction. T1 and T2

are the principal stresses. The inclination angle of the surface S is given by the
complementary angle 90◦ − α
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Besides the constitutive relations, the equation of motion is needed

div T + f = #
dv
dt
, (14)

where # is density, and f is mass force, both of which are continuous across S.
For the plane waves considered here, the equations of motion for the jumps
are written as [[

∂T11
∂x1

]]
= #

[[
dv1
dt

]]
,[[

∂T12
∂x1

]]
= #

[[
dv2
dt

]]
.

(15)

Making use of the fact that the stresses and velocity are continuous across
S, that is, [[

∂

∂t
+ (c+ v1)

∂

∂x

]]
= 0, (16)

where c is the propagation speed of an acceleration wave relative to the ma-
terial, we obtain [[

d
dt

]]
= −c

[[
∂

∂x

]]
. (17)

From (17) and (15) we have[[
dT11
dt

]]
= c2#

[[
∂v1
∂x1

]]
,

[[
dT12
dt

]]
= c2#

[[
∂v2
∂x1

]]
. (18)

The combination of (13) and (18) leads to the following equations for the wave
speed c:

η1

[[
∂v1
∂x1

]]
+ η2

[[
∂v2
∂x1

]]
+ η3[[‖D‖]] = c2#

[[
∂v1
∂x1

]]
,

η4

[[
∂v1
∂x1

]]
+ η5

[[
∂v2
∂x1

]]
+ η6[[‖D‖]] = c2#

[[
∂v2
∂x1

]]
.

(19)

To gain perspectives, the above equations can be recast in the following matrix
notation:

(A − c2#I)B [[g]] = b (‖g+‖ − ‖g−‖) (20)

with

A =
(
η1 η2
η4 η5

)
, B =

(
1 0
0
√

2

)
, b =

(−η3
−η6

)
. (21)

The vector g with components

g1 =
∂v1
∂x1

, g2 =
1√
2
∂v2
∂x1

(22)

represents the components of the strain tensor D, and its length ‖g‖ =
(g21 + g22)

1/2 is equal to the norm of D, see (11). The matrix A contains the
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coefficients of the linear terms in (19) and can be related to the acoustic tensor
in linear constitutive models, while the vector b comprises the coefficients of
the nonlinear terms.

The analysis of acceleration waves is equivalent to finding nontrivial solu-
tions, i.e. [[g]] 	= 0, of the system of linear equations (20). Assuming a certain
value for the difference ‖g+‖ − ‖g−‖ on the rhs of (20), a solution [[g]] can
always be found provided that the matrix (A− c2# I)B is nonsingular. This,
however, does not necessarily mean that the chosen c is a possible wave speed:
the solution [[g]] must satisfy an additional geometrical condition (the triangle
condition)

‖[[g]]‖ ≥ ∣∣‖g+‖ − ‖g−‖∣∣. (23)

In other words, in the (g1, g2)-plane it must be possible for the solution vector
[[g]] to connect in some way two concentric circles whose radii differ by the
prescribed value ‖g+‖ − ‖g−‖. This condition is illustrated in Fig. 3.

Recapitulating the findings in the investigation of the shear band formation
problem [25], we introduce a ratio

ξ =
‖[[g]]‖

‖g+‖ − ‖g−‖ . (24)

In order to avoid a negative denominator, in the following we consider ξ2. The
above condition (23) can be rewritten as

ξ2 ≥ 1. (25)

We plot ξ2 versus c in Fig. 4 for different stress states, starting close to the
center of the octahedral plane (for reference see Fig. 5) and moving towards the
failure surface. Figure 4a corresponds to a stress state close to the hydrostatic
state with trT = −1,000 kPa. The quantity ξ2 is finite for all values of c except
for two poles where ξ2 → ∞. Checking the condition ξ2 ≥ 1 graphically in
Fig. 4a, we see that the spectrum of possible wave speeds is continuous and

(a) (b)

|g+| − |g−||g+| − |g−|

g+
g−

x

g
g

Fig. 3. The triangle condition (23) is fulfilled in (b) and violated in (a): the length
of the solution vector, ‖[[g]]‖, in (a) is too small to connect the concentric circles
with radii ‖g−‖ and ‖g+‖
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consists of two intervals [c1, c2] and [c3, c4] situated around the poles. The
boundary values c1, . . . , c4 of the two intervals can be found by solving the
equation

ξ2(c2) = 1. (26)

This is a fourth-order algebraic equation in c2, which in the generic case gives
four real non-negative solutions.
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c2 c3
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cc4c1

x2
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c4 cc1=0

(d)

x2

Fig. 4. Ratio ξ2 versus c for various stress states (see Fig. 5 for reference). (a)
Four real roots and two separate intervals. (b) A double real root, the transition
to flutter ill-posedness. (c) Two real roots, flutter ill-posedness. (d) One zero root,
shear banding

T3T2

d

a
b

T1

c

Fig. 5. Stress states from Figs. 4 and 10 on the octahedral plane trT = −1, 000
kPa. The closed curve shows the failure surface described by (6)
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The condition ξ2 → ∞ or, equivalently, ‖g+‖−‖g−‖ = 0 leads to a linear
system

(A − c2# I)B [[g]] = 0 (27)

instead of (20). This system is also obtained with b = 0, that is, if the nonlin-
ear term in constitutive equation (1) is dropped. Thus, the two wave speeds
corresponding to the singularities of ξ2 are found from the equation

det
[
(A − c2# I)B

]
= 0. (28)

4 Flutter Ill-Posedness and Shear Banding

The investigation of the dependence of admissible wave speeds c on the stress
state reveals interesting features. As the stress state changes from a nearly
hydrostatic state in Fig. 4a towards the failure surface in Fig. 4b–d, the central
branch of the curve ξ2(c) moves upward. In Fig. 4b the local minimum reaches
the border ξ2 = 1, resulting in the merging of the two intervals (c2 = c3). This
stress state corresponds to the onset of what is called flutter ill-posedness (or
flutter instability [1, 19]) when two wave speeds become complex-conjugate.
Note that the notion of flutter instability or ill-posedness has been used for
incrementally linear constitutive equations, where an initially finite perturba-
tion grows exponentially with time [9,20]. In case of incremental nonlinearity,
however, the existence of complex conjugate wave speeds does not necessarily
mean instability or ill-posednesss. The relation between them will be investi-
gated in the next sections.

As the stress state moves further away from the hydrostatic axis, Fig. 4c,
the solutions c2, c3 to (26) become complex and disappear from the real axis
leading to one large interval of wave speeds between the remaining real solu-
tions c1, c4. For a stress state near the failure surface, Fig. 4d, the left branch
of the curve eventually crosses the border ξ2 = 1. The lower boundary c1 of
the admissible wave speeds becomes zero, corresponding to a nonpropagating
discontinuity, or shear banding.

Real solutions c to (26) are presented in Fig. 6 in polar plots, in which
the distance to the origin corresponds to the value of the wave speed and
the angle α shows the direction of wave propagation, see Fig. 2. The wave
speeds for which the triangle condition (25) is fulfilled are gray-shaded. The
plots (a),(b),(d),(f) correspond to the stress states marked in Fig. 5. Two
additional plots (c) and (e) are inserted in between to illustrate particular
features that arise on a stress path from nearly hydrostatic state towards
the failure surface. In Fig. 6a we observe two separate spectra for all values
of α. In the principal stress directions (α = 0◦ and 90◦) the left interval
shrinks to one single (real) number and, correspondingly, the curve ξ2(c) in
the vicinity of this pole shrinks to a Dirac-like function. Flutter ill-posedness
is reached in (b), where the boundaries c2 and c3 coalesce. This happens
for a wave propagation direction α lying close to 45◦. The angle range of
flutter ill-posedness increases with the further deviation towards the failure
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Fig. 6. Polar representation of the wave speeds for various stress states
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surface, see (b–d). In (c) we observe a degenerate case for α = 0, where both
intervals shrink to single values, thus resembling two discrete solutions that
are obtained in the linear case (27).

In Fig. 6e one can already anticipate the reduction of c1 to zero, giving
rise to shear banding in Fig. 6f. This occurs at an angle αs which lies in the
vicinity of 30◦ and depends slightly on stress. The inclination angle of a shear
band, 90◦ − αs, is shown in Fig. 7 on the octahedral plane, which is identical
with the results obtained by Wu [25].

In order to find the regions in the stress space where flutter ill-posedness
and shear banding take place, we scan all possible propagation directions α at
each stress state inside the failure surface on the octahedral plane, and calcu-
late the wave speeds. In Fig. 8, we plot the surfaces of first occurrence of flutter
instability and shear banding and compare them to the failure surface. The
surface of shear banding coincides with the one obtained in a previous work
by Wu [25] for the same constitutive equation. Flutter instability occurs much

15

30

45

60
90� - as [�]

Fig. 7. Inclination of a shear band, 90◦ − αs, versus Lode angle [26]

T3

T1

T2

Fig. 8. Surfaces of flutter ill-posedness (dotted), shear banding (dashed) and failure
surface (solid)
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earlier than shear banding. The latter generally occurs prior to homogeneous
failure. Note that the failure surface is valid for the general three-dimensional
case, while flutter ill-posedness and shear banding are obtained here for a
special case of two-component waves (9).

5 Characteristic Wave Speeds

A different way to evaluate wave speeds is to find the characteristics of the
governing system of equations [14,15]. Since the constitutive relation is incre-
mentally nonlinear, we should first linearize the term ‖D‖ in (10) to obtain
a locally linearized quasi-linear system. This can be done by taking the lin-
ear terms in the Taylor expansion of ‖D‖ in the vicinity of D0 	= 0. For the
two-component waves defined by (9), the linearization gives

‖D‖ =
g01

‖D0‖
∂v1
∂x1

+
g02√

2 ‖D0‖
∂v2
∂x1

+ . . . (29)

with
‖D0‖ =

√
(g01)2 + (g02)2, (30)

where the components g1, g2 are defined by (22).
The linearized constitutive equations together with the equations of mo-

tion can be written in the matrix form

∂U

∂t
+ C

∂U

∂x1
= 0, (31)

where
U = (v1, v2, T11, T12) (32)

is the column vector of the unknown functions and

C =

⎛⎜⎜⎝
v1 0 −1/# 0
0 v1 0 −1/#

−κ1 −κ2 v1 0
−κ3 −κ4 0 v1

⎞⎟⎟⎠ (33)

is the matrix of the system. In this system, the coefficients κ1, . . . , κ4 depend
not only on the current stress state but also on the point of linearization D0.
The slopes λ = dx1/dt of the characteristic curves are found from the equation

det(C − λI) = 0, (34)

where I is the unit matrix. Expansion of the determinant (34) shows that the
four roots λ are determined by the expression

(λ− v1)2 = c2, (35)
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Fig. 9. Definition of the angle ψ

where
c2 =

1
2#

[
(κ1 + κ4) ±

√
(κ1 − κ4)2 + 4κ2κ3

]
. (36)

The difference λ− v1 gives the wave speed relative to the material.
As mentioned earlier, the coefficients κ1, . . . , κ4 depend on the point of

linearization D0. As is evident from (29), these coefficients do not depend on
‖D0‖ but only on the ‘direction’ D0/‖D0‖, which can be specified by an angle
ψ shown in Fig. 9. This angle determines the instantaneous deformation of an
infinitesimally thin layer in a plane wave. The direction of the wave propaga-
tion with respect to the principal axes of the stress tensor is determined by
the angle α as defined earlier in Fig. 2. Given the principal stresses T1, T2, T3,
we can write κi = κi(α,ψ) and examine the wave speeds c in (36) as functions
of the angles α and ψ (cf. [14,15]). For a given α, the wave speed spectrum is
continuous through the dependence on ψ.

For stress states close to the hydrostatic axis, the squared wave speed in
(36) is real and positive for both plus and minus signs in front of the square
root, so that there exist four characteristic curves and, correspondingly, two
real positive wave speeds. This situation is shown in Fig. 10a. With the devia-
tion from the hydrostatic axis towards the failure surface, there exist ψ’s such
that (36) gives two pairs of complex-conjugate values and thus no character-
istics, Fig. 10b,c. This signifies the local loss of hyperbolicity of the system of
dynamic equations and is conventionally referred to as flutter instability [19].
In the vicinity of the failure surface, the lowest wave speed vanishes and then
becomes imaginary, Fig. 10d. This also results in the loss of hyperbolicity and
in ill-posedness of the dynamic problem. Since the wave speed vanishes before
it becomes imaginary, this type of ill-posedness is referred to as stationary
discontinuity [8, 19].

6 Identity of the Two Wave Speed Spectra

As is well-known, for incrementally linear constitutive equations the speeds
of acceleration waves coincide with the speeds calculated as the slopes of
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Fig. 10. Wave speeds versus angle ψ obtained from the evaluation of characteristic
curves for the same stress states as in Figs. 4, 5

the characteristic curves (surfaces). In the present case, the wave speed spec-
tra obtained with these two approaches are continuous and determined by
different equations: by (19) together with the triangle condition (23) for ac-
celeration waves, and by (36) for the characteristic wave speeds. In Fig. 10 the
minima and maxima of each speed curve are marked by dotted lines. These
values bound the speed intervals, and it turns out that they coincide with
the maxima and minima c1, . . . , c4 in Fig. 4. In this section, we prove that
for a constitutive equation in the form (1) the two wave speed spectra – for
acceleration waves and for the characteristics – are identical.

Consider system (19) for the wave speed c in the acceleration waves ap-
proach. Assume the values of ‖D‖ and c to be prescribed, whereas c is such
that the matrix (A − c2# I)B is nonsingular. Solving the system for [[g]] and
substituting the solution into the triangle condition (25), we obtain

Λ2
1(c) + Λ2

2(c) ≥ Λ2
0(c), (37)

where

Λ1(c) = det
(−η3

√
2 η2

−η6
√

2 (η5 − c2#)
)
,

Λ2(c) = det
(
η1 − c2# −η3
η4 −η6

)
, (38)

Λ0(c) = det
(
η1 − c2#

√
2 η2

η4
√

2 (η5 − c2#)
)
.
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Inequality (37) expresses the triangle condition in terms of c only and thus
allows us to verify immediately whether a given value of c is the speed of an
acceleration wave. If the matrix (A − c2# I)B is singular, the corresponding
c is obtained from the condition

Λ0(c) = 0. (39)

For the proof of the identity of the speed spectra we need the connection
between the coefficients η1, . . . , η6 in (19) and κ1, . . . , κ4 in (33). Taking into
account the linearization (29), this connection can easily be found

κ1 = η1 + s1η3, κ2 = η2 +
1√
2
s2η3,

κ3 = η4 + s1η6, κ4 = η5 +
1√
2
s2η6,

(40)

where

s1 =
g01

‖D0‖ , s2 =
g02

‖D0‖ (41)

are components of a unit vector s : s21 + s22 = 1. Simple calculations show that
the characteristic equation (34) viewed as an equation in c = λ − v1 can be
reduced to

s1Λ1(c) + s2Λ2(c) = Λ0(c). (42)

Now we can proceed to the proof. Assume that for a given point of lin-
earization determined by s1, s2, the characteristic wave speed is c, that is, c
obeys (42). With the use of this equation we obtain

Λ2
1 + Λ2

2 − Λ2
0 = Λ2

1 + Λ2
2 − (s1Λ1 + s2Λ2)

2 = (s2Λ1 − s1Λ2)
2 ≥ 0. (43)

This shows that (37) is satisfied, and therefore c is also the speed of an accel-
eration wave.

Now assume that c is the speed of an acceleration wave and satisfies (37).
This inequality means that the length of the vector Λ = (Λ1, Λ2) is greater
than or equal to |Λ0|. Obviously, one can alway find a unit vector s = (s1, s2)
such that the scalar product of Λ and s is equal to Λ0. The characteristic
equation (42) is then satisfied, and therefore c is also the characteristic wave
speed. The components of s give the linearization point corresponding to this
wave speed.

It remains to consider the special case (39). If an acceleration wave speed
satisfies (39), one should merely take s normal to Λ, and the characteristic
equation (42) reduces to (39). Conversely, if for a given point of linearization
s it turns out that the characteristic wave speed c is such that (39) is true,
the acceleration wave criterion (37) is satisfied. This completes the proof.
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7 Conclusion

The difference in the propagation of acceleration waves in incrementally lin-
ear models (such as elasto-plastic models) and nonlinear ones (such as the
hypoplastic model considered here) is that in the former case the spectrum of
the wave speeds is discrete, while in the latter case it is continuous. Moreover,
for incrementally nonlinear constitutive equations the speeds of acceleration
waves and the characteristic wave speeds are described by different equations.
In contrast to incremental linearity, the correspondence between the two spec-
tra is not readily available. It is proved that for a constitutive relation in the
form (1) the two spectra of the wave speeds turn out to be identical. The
equivalence of the two analyses – the acceleration waves approach and the
characteristics method – in the sense of wave speeds is thus re-established.
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Abstract. The effects of plastic or nonplastic fines on the static and cyclic strength
of sand have been a subject of laboratory studies for many decades. These studies
have not lead to a consensus as to how fines can affect the behavior of sand. Earlier
studies have mostly been limited to tests on reconstituted specimens. Some of the
controversies stem from the concerns that reconstituted specimens may not be able
to duplicate the soil fabric in the field. The authors used Laval sampler to retrieve
high quality samples in silty sand in Central Western Taiwan, following the proce-
dures reported earlier. A test site was developed in Yuan Lin County where standard
penetration test (SPT), seismic piezocone (SCPTU) and field Vs measurements were
performed in addition to Laval sampling. A series of monotonic and cyclic triaxial
tests were conducted on natural and reconstituted Sand specimens. Laboratory Vs

measurements were taken on the triaxial specimens using bender elements. With
these data, the authors were able to evaluate the static and cyclic characteristics of
YLS. This paper describes the results from Yuan Lin test site studies and discusses
their implications in the assessment of liquefaction potential for the silty sand in
this region.

1 Introduction

Field test results such as the N value from standard penetration test (SPT),
cone tip resistance (qc) from cone penetration test (CPT) or shear wave ve-
locity (Vs) have been used to assess the liquefaction potential for sand under
the framework of simplified procedure [13]. The simplified procedure uses an
empirical correlation between the cyclic resistance ratio (CRR) and the field
test results as the principal criterion to determine if the soil is potentially liq-
uefiable. The available CRR correlation curves have been developed through
field observations. These CRR correlations basically provide a clean sand base
curve and a suggested procedure to account for fines (soil particles passing
#200 sieve) content. There appears to be a general consensus that, for a given
field test value, the corresponding CRR increases with fines content, regard-
less of what field test method is chosen. Whether this increase is caused by an
increase of liquefaction resistance or a decrease of field test value is not clear.
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Natural sand often contains fines. The effects of plastic or non-plastic fines on
the behavior of sand have been a subject of geotechnical research for many
decades. These research activities however, have mostly been limited to cyclic
shearing tests on soil samples in laboratory. The laboratory studies have not
lead to a consensus as to whether fines can increase or decrease the undrained
strength or cyclic resistance of sand as described by Polito [11]. Serious ques-
tions have been raised as to the validity of laboratory tests on reconstituted
silty sand samples due to the differences in soil fabric [5]. On the other hand,
systematic studies on the effects of fines on N, qc or Vs have rarely been re-
ported. With these drawbacks, Youd et al. [13] emphasized that the CRR
corrections based on fines contents should be used with engineering judgment
and caution.

The Chi Chi earthquake (ML = 7.3,MW = 7.6) of September 21, 1999
triggered extensive soil liquefaction in Central Western Taiwan. The major-
ity of the sand deposit in this region had significant amounts of fines. When
performing back analysis of sand liquefaction potential in this region, the
selection of field test method, its CRR correlation and the associated fines
content corrections could lead to significantly different results. The factor of
safety (FS) against liquefaction from SPT was consistent higher than that
from CPT, which in term was higher than that according to shear wave veloc-
ities [6, 10]. The research work described herein represents part of the efforts
in an attempt to resolve some of the controversies and to provide analysis
procedures that reflect the characteristics of local soils.

Sand is a typical silty fine sand commonly found in Central Western Tai-
wan. A geotechnical test site was established as part of the postearthquake
research efforts to improve our understanding of the engineering properties of
the silty sand in this region. Laval and conventional piston samples along with
a series of in situ tests that included SPT, seismic piezocone penetration test
(SCPTU), and borehole suspension compression and shear wave logging (P–S
logging) were performed at the test site. With the undisturbed samples and
field test data from the same test site, it was possible to evaluate the static
and cyclic behavior of the silty sand from this region, in its natural state.

2 The Yuan Lin Test Site

Yuan Lin township (see Fig. 1) which was part of Chang-hua County located
at approximately 20 km north west of the epicenter of Chi Chi earthquake. Ex-
tensive soil liquefaction occurred in Yuan Lin during Chi Chi earthquake. The
boreholes and test locations were distributed within a circle of 10 m diameter
as shown in Fig. 2. The ground water table was at 2.6 m deep at the time
of field testing/sampling. Figures 3 and 4 describe the soil profiles according
to SPT and SCPTU obtained at the test site. Sieve analyses on the split-
spoon samples showed that the fines (particles passing #200 sieve) content
of the soil at Yuan Lin test site could range from 5% to as much as 100%.



Static and Cyclic Behavior of a Silty Sand 505

T'ai-tung

T'ai-nan

T'ai-chung

TAIPEI

Chi-lung

Chung-hua

Ma-kung

Pescadores Yuan Lin

North

Hua-lien

Philippine
Sea

StarifLuzon

Taiw
an

Stra
it

Taiw
an

Stra
it

Kao-hsiung

0

0

30

30

60 km

60 ml

The island of
Matsu and Quemoy
are not shown

CHINA

Su-ao

Fig. 1. Location of Yuan Lin test site

Piston sample  +
PS  logging  -2

North

LS-3

LS-2 LS-1

SPT-2

SCPTU-C

SCPTU-B

SCPTU-A

SPT-3

SPT-1

10
m

 d
iam

et
er

SPT1: donut hammer
SPT2: free fall hammer
SPT3: safety hammer

Piston sample +
PS logging -1

SPT:
SCPTU:
LS:

standard penetration test
seismic cone penetration test with pore pressure
Laval sampling

Fig. 2. Distribution of boreholes and test locations at Yuan Lin test site



506 A.B. Huang and Y.T. Huang

0 20 40

Limits, %

LLW

0 50 100

Energy efficiency, %

0

5

10

15

20

25

D
ep

th
, 

m

0 10 20 30

N
(blows/30 cm)

SPT1
SPT2
SPT3

PL

0 50 100

Fines content, %
(passing #200 sieve)

Fig. 3. SPT profiles at the Yuan Lin test site

-200 0 200 400 600

U2
kPa

0 100 200 300

Vs
m/s

0

5

10

15

20

D
ep

th
, 

m

0 10 15

qc
MPa

0.0 2.5 5.0

Rf
%

2

IC

3 45

Fig. 4. SCPTU profiles at the Yuan Lin test site



Static and Cyclic Behavior of a Silty Sand 507

The natural water contents of the split-spoon samples were often higher than
their corresponding liquid limits, indicating that the soil was rather sensitive.

3 Laval Sampling and Field Packaging

Taking undisturbed or high quality samples in cohesionless soils has always
been a difficult if not impossible task. The available reports on the undisturbed
sampling in sand have mostly been limited to the ground freezing method. By
freezing the ground water, the sand particles and their matrix were fixed in the
frozen ground. The sand samples were taken by coring and remained frozen
until laboratory shearing test. The process of ground freezing is time consum-
ing and prohibitively expensive. Konrad et al. [8] reported their success in
obtaining undisturbed silty sand samples form below the ground water table
without freezing. The Laval sampler was developed at Laval University [9],
originally for taking high quality samples in sensitive clay. A 200 mm diameter
and 500 mm high sample could be obtained with the Laval sampler. Figure 5
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shows a schematic view of the Laval sampler. In order to prevent soil structure
damage during transportation for low cohesion sand (sand with low fines con-
tent), Konrad et al. [8] developed a method to freeze the Laval sample above
ground. The soil, while it is still in the sampling tube, is gradually frozen from
top of the sample by dry ice. Bottom drainage is provided to allow excess pore
water to be drained due to water volume expansion during freezing. Figure 6
depicts a record of time versus expelled water volume and temperature mea-
sured at the bottom of a soil sample taken at the Yuan Lin test site. For this
particular sample, complete frozen was accomplished within 24 h.

A total of nine Laval samples were taken in three boreholes at the test site.
In each borehole, the Laval samples were taken at 3.5–4.0, 6.0–6.5 and 11.0–
11.5 m. Laval samples taken at 11m, with fines contents less than 20% were
frozen on the ground surface before shipping. The rest of the Laval samples had
fines contents well in excess of 40%, there was no risk of significant disturbance
and thus were not frozen. The nonfrozen Laval samples were covered by a layer
of wax and plastic wrap. Upon arrival in the laboratory, the nonfrozen Laval
samples were stored in a sealed moisturized container.

4 Physical Properties of Yuan Lin Sand

The origin of YLS was the central mountain range that lied on the east side
of Taiwan. Weathered sedimentary and metamorphic rocks on steep slopes
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were eroded by rainfall and transported by rapidly flowing streams before
deposition on the west plain, to a thickness of several hundred meters.

The physical properties of soil samples taken from different boreholes at
the same depth range were rather uniform in terms of water content, plasticity
and gradation. Representative physical properties taken from three of the
Laval samples are shown in Table 1. The corresponding grain size distribution
curves are depicted in Fig. 7. The reference void ratios of YLS with three

Table 1. Physical properties of Laval samples

depth, m borehole FC, % PL, % LL, % sample emin emax e

LS 0.94
3.32–3.80 LS1 43 14 21 WS 0.86 1.27 0.87

MT 0.86
LS 0.97

5.90–6.41 LS2 89 19 31 WS 1.01 1.69 0.78
MT 0.81
LS 0.93

10.98–11.40 LS3 18 14 25 WS 0.85 1.29 0.91
MT 0.93

LS: Undisturbed Laval sample
MT: Reconstituted specimen by moist tamping
WS: Reconstituted specimen by water sedimentation
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different fines contents (FC) were determined following the related ASTM
standards. The emin (maximum density) was determined according to ASTM
D4253 method 1 A using a standard 152.4 mm inside diameter compaction
mold (total volume = 2, 830 cm3). The dry sand placed in the compaction
mold was subjected to a surcharge of 14 kPa, and then electromagnetically
vibrated under a 60 Hz frequency for 8 min. The emax (minimum density) was
obtained according to ASTM D4254 method C, using a 2,000 glass graduated
cylinder. Approximately 1,000 g of dry sand was placed in the glass cylinder
and then plugged with a stopper. The total volume under the loosest state
was determined according to the height of the sand after swiftly tipping the
cylinder upside down twice. It should be noted that none of the above ASTM
standards were applicable for sand with fines in excess of 15%. The values of
emin and emax are included in Table 1.

A series of X-ray refraction tests were performed on the same samples
described in Table 1. The results as shown in Table 2 had distinct differences
in mineral contents between coarse (retained on #200 sieve) and fine (pass-
ing #200 sieve) particles. The coarse particles had much higher contents of
quartz. The fines were predominantly muscovite and clinochlore. The scanning
electron microscope (SEM) photos depicted in Fig. 8 show that YLS particles
were mostly subangular, and the fines were flaky.

4.1 Triaxial Specimen Preparation

A series of static and cyclic triaxial tests were performed on YLS soil samples
retrieved from the Yuan Lin test site. All triaxial tests started with the Laval
samples (LS). For the frozen LS, the 500 mm high Laval samples were first
cut into three sections using a band saw, each with a height of 170 mm. Four,
70 mm diameter specimens were then cored from the section. Upon coring
the specimen height was trimmed down to 140 mm by hand. A small slot
of 1.5 mm wide, 12 mm long and 5 mm deep was cut at the top and bottom
of the trimmed specimen to give room for the insertion of bender elements.
The specimen was kept frozen during this preparation stage. Thawing of the
specimen took place after the specimen was seated in the triaxial cell, under a
confining stress of 20 kPa and a cell water temperature of 5◦C. The pore water
under a controlled temperature of 8–10◦C was forced to enter the specimen

Table 2. Mineral contents of YLS

mineral FC = 18% FC = 43% FC = 89%
Coarse, % Fine, % Coarse, % Fine, % Coarse, % Fine, %

quartz 62.28 19.15 69.83 27.93 66.38 11.78
clinochlore 15.76 37.98 14.65 27.90 13.01 36.38
muscovite 14.43 39.28 12.09 39.98 12.06 50.77
feldspar 7.52 3.59 3.43 4.19 8.55 1.06
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Coarse (retained on #200 sieve) Fine (passing #200 sieve)

Fig. 8. SEM photos of the YLS

from the bottom under a back pressure of 10 kPa. The thawing process lasted
approximately 1 h. The amount of water absorbed by the specimen and the
change of specimen height were monitored during the thawing process.

For the nonfrozen LS, the 170 mm sections were cut by a wire saw. Four,
70 mm diameter and 140 mm high triaxial specimens were trimmed by hand
using a wire saw and a knife, from each section. Slots on top and bottom of
the specimens were cut to give room for the bender elements.

The triaxial specimen taken from Laval samples was saturated under the
back pressure overnight. B values obtained after saturation had a minimum
value of 0.99. Upon saturation, the specimens were isotropically consolidated
under an effective confining stress (σ′c) of 100 kPa. Because of the relatively
high compressibility of the soil specimens and absorption of water in the thaw-
ing process (for the frozen specimens), the amounts of pore fluid coming in
and out of the specimens were recorded. At the end of triaxial test, the whole
specimen was used to determine the water content. The postconsolidation
water content or void ratio (e), to be used in the following analysis of test
data, was back calculated from the end-of-the-test water content measure-
ment. Upon the triaxial tests on undisturbed specimens, soil specimens cut
from the same Laval sample (i.e., same borehole and depth) were dismantled
and mixed together to make the reconstituted specimens.

The triaxial tests were performed on the YLS specimens with three types of
fines contents shown in Table 1. These included the LS and specimens reconsti-
tuted specimens made by MT and WS methods. The MT and WS specimens
were made in an attempt to match the void ratio of the corresponding LS. In
most cases, however, the reconstituted specimens had void ratios lower than
those of the Laval samples.
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5 Monotonic Triaxial Shearing Tests

A Wykeham–Farrance triaxial apparatus was used in the monotonic consoli-
dation and triaxial shearing tests. An internal load cell was used to monitor
the axial force imposed on the specimen and an externally mounted LVDT was
used to measure the axial deformation. All specimens were isotropically con-
solidated under 100 kPa effective confining stress. The specimens were sheared
monotonically in an undrained condition by axial compression to strains well
in excess of 20% to reach or be close to critical state [2]. For the tests per-
formed, all specimens developed positive excess pore pressure during shearing.
The LS specimens had the highest peak deviator stress even when their void
ratios were higher than those of MT and WS specimens. The peak deviator
stress of the LS specimen with 18% FC was 64% and 37% higher than those
LS specimens with 43% and 89% FC, respectively. Among the reconstituted
specimens, the MT specimens generally had lower peak deviator stress. This
is consistent with earlier findings (e.g., [5]).

The relationships among deviator stress, excess pore pressure and axial
strain, as well as the effective stress paths in terms of q(= (σ′v − σ′h) and p′(=
(σ′v + 2σ′h)/3) from all the consolidated undrained triaxial tests are depicted
in Figs. 9 and 10. A straight line was fitted to the data set of (p′, q) that
corresponded to the critical state of each triaxial test as shown in Fig. 10.
The slope of this fitted line referred to as Ms was approximately 1.36. The
Ms(= 6 sinφ′s/(3 − sinφ′s)) should correspond to interparticle friction angles
(φ′s) of 34◦.

6 Shear Wave Velocity Measurements
and Cyclic Triaxial Tests

Bender elements of the type described by Dyvik and Madshus [3] were installed
in the top and bottom platens of the cyclic triaxial cell, each projecting 3 mm
into the soil specimen. The shear wave velocity, Vs was measured using the
bender elements after the specimen was consolidated, prior to the cyclic triax-
ial test. A single sinusoidal pulse with a frequency of 7–10 kHz and amplitude
of ±10 V was applied in the bender element tests. The determination of the
shear wave travel time followed a procedure suggested by Kawaguchi et al. [7].

Figure 11 plots the relationship between fines content and Vs according to
bender element measurements. The results in Fig. 11 show that for the spec-
imens from Laval samples, Vs decreases by no more than 20% as the fines
contents change from 18% to 89%. It is likely that the fine grains of YLS
are softer under small strains. The reconstituted specimens had lower Vs than
those of the Laval samples, in spite of the fact that the reconstituted specimens
had lower void ratios than those corresponding Laval samples. Among the re-
constitute specimens, those made by MT had the lowest Vs. The Vs of YLS was
at least 30% lower than that of angular Ottawa sand with similar void ratio
and under 100 kPa confining stress, as reported by Hardin and Richart [4].
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Upon Vs measurement, the soil specimen was then subjected to a cyclic
deviator stress, σd in axial direction at 0.1 Hz. Three to five cyclic triaxial tests
were performed with various σd/2σ′c values. Fig. 12 depicts the cyclic triaxial
test results on YLS in terms of deviator stress ratio (σd/2σ′c) versus number of
cycles. The cyclic strength of LS specimens decreased by approximately 20% as
the fines content increased from 18% to 89%, under similar postconsolidation
void ratio, e.

Following the cyclic triaxial test, the drainage valves were open to release
the excess pore pressure. The amount of pore fluid expelled from the specimen
and duration of pore fluid drainage were recorded. The results are plotted in
Fig. 13 in terms of expelled water volume versus square root of time. The
coefficient of consolidation (cv) inferred from these drainage curves showed
that for fines contents of 18% and 43%, cv was on the order of 10−4 m2 sec−1.
The cv was lowered by one order of magnitude as the fines content increased
to 89%.
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7 Implications in Liquefaction Potential Assessments

The laboratory and field test data described above offered an opportunity to
evaluate some of the commonly used simplified procedures in soil liquefaction
assessment. The cyclic resistance ratio from triaxial test ((CRR)tx) was de-
fined as the σd/2σ′c that produced an axial strain of 5% in double amplitude
in 20 cycles (Nc) of uniform load application. A reduction factor of 0.9 was
applied to infer the field cyclic resistance ratio (CRR) or CRR = 0.9(CRR)tx.
The correlation between CRR from cyclic triaxial tests on Laval samples and
normalized cone tip resistance (qc1N ) was compared with that proposed by
Stark and Olson [12]. This comparison is shown in Fig. 14. The qc1N was de-
termined according to cone tip resistance (qc) from the test site (shown in
Fig. 4) at the same depth level as the Laval samples and normalized with re-
spect to the atmospheric pressure based on the effective overburden stress.
The limited test data did show that for similar CRR, the corresponding qc1N
decreased with fines content. The CRR-qc1N correlations from the Laval sam-
ples generally fell to the left of those proposed by Stark and Olson [12] for
comparable fines contents. In the case of YLS, the above described laboratory
tests showed that the cv values were similar for fines contents of 18% and
43%. Thus, the decrease of qc1N as FC changed from 18% to 43% should be
attributed to the lower strength of YLS as the FC increased to 43%. As the FC
further increased to 89%, the difference in cv and thus partial drainage should
also be responsible for the lower qc1N . For the range of FC, the qc1N values
varied by more than 300% whereas the CRR differed by no more than 20%.
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The establishment of the relationship between CRR and Vs was based on
the cyclic triaxial tests and measurements using the bender element on the
same soil specimen. The Vs1 is the same as Vs for the data presented herein
since all tests were performed with σ′h = σ′v = 100 kPa. Fig. 15 shows a plot of
CRR versus Vs1 from tests on Laval samples and reconstituted specimens, and
their comparison with the correlations proposed by Andrus and Stokoe [1].
For a given CRR, the Vs1 values were generally smaller than those suggested
by Andrus and Stokoe [1]. Unlike CPT however, there was no significant
differences in the CRR-Vs1 correlation as FC increased from 18% to 89%. This
is consistent with the fact that the amounts of decrease in cyclic strength and
Vs were both on the order of 20% as FC increased from 18% to 89%.

8 Concluding Remarks

The experience gained in this study indicates that it is practical to retrieve
high quality silty sand samples. For low cohesion silty sand, the sample can
be effectively frozen above ground to minimize disturbance during transporta-
tion. The laboratory cyclic and monotonic triaxial tests did show that the
shear strengths of undisturbed samples were significantly higher than those
of reconstituted specimens.

For YLS, the commonly used CRR-qc1N and CRR-Vs correlations may be
conservative in assessing the soil liquefaction potential, especially in the case
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of fines content adjustment. Because of the uncertainties involved in the use
of the simplified procedures, and feasibility of taking good quality samples,
it may be advisable to follow the sampling and laboratory testing method in
assessing the soil liquefaction potential for silty sands.
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Abstract. Pile foundations have been used in construction for thousands of years
but only in the last few decades has there been significant progress in the technology
of pile installation. This progress on construction has not been matched by progress
in the analysis and design of these foundation elements. This is in large part due to
considerable difficulties in analyzing both pile installation and the response of piles
to various types of loadings rigorously. Given these difficulties, the profession has
in general used relatively crude design approaches. This is likely to change due to
pressures from different directions, particularly the progress in code design (the push
toward load and resistance factor design in geotechnical engineering requires a much
better grip on all the factors that need to be considered in calculating pile resistances
and what the uncertainties in quantities and analyses are, requiring sounder analyt-
ical frameworks) and economics (materials costs have started to rise, a trend that, if
continued, would make it more economically interesting to have optimal designs). In
this paper, we examine the design process for axially loaded nondisplacement piles
with a focus on assessing the strength of the underlying analysis. We will show that,
for these types of piles, design can be placed on a theoretical basis.

1 Introduction

While piles have been used literally for millennia, many aspects of piling are
not to this day modeled with much rigor. Pile installation, particularly in the
case of driven piles, cannot yet be simulated accurately. Laterally loaded piles
are designed using a semiempirical technique – the p–y method – which is
used almost universally. While more meaningful advances have taken place
in axially loaded pile analysis, these advances have not been sufficiently inte-
grated with current knowledge of soil mechanics or tied in a fundamental way
with the process by which the tens of pile types in existence are installed in
the ground. In this paper, we examine the analytical basis for calculating the
base and shaft resistances of nondisplacement piles.

The analysis of axially loaded piles appears on first examination to be one
of the simplest in geomechanics. The total load carried at the pile head, we
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learn as undergraduate students, is simply the summation of base and shaft
resistances:

Q = Qb +Qs. (1)

The base and shaft resistances, in turn, are simply the multiplication of
shaft and base areas, As and Ab, by the respective unit resistances qb and qs:

Qb = Abqb (2)

and

Qs =
n∑

l=1

qsiAsi, (3)

where i is a soil layer index, and the summation is over the number n of layers
crossed by the pile.

The separation of pile resistance in shaft and base resistance is a simpli-
fication of the problem, albeit a perfectly acceptable one in most cases. So,
up to this point, we would be justified in thinking that this is indeed an easy
problem. All we would need to do to proceed is to determine these unit re-
sistances and the problem would be solved. However, the processes used to
determine pile unit resistances are far from well developed.

As load on the pile head is gradually increased, the pile settlement in-
creases. This proceeds until a load is reached at which the pile would tend to
plunge. This load is known as the plunging or limit load. Given this, a question
that arises is how to define the pile base and shaft resistances. Are they the
values corresponding to the limit load or those associated with a particular
value of pile settlement? There is uncertainty among both practitioners and
academics as to how to define pile resistance.

If resistance is used in the classical sense of the word, then it must be
associated with an ultimate limit state (ULS), one associated with potentially
severe consequences for the supported structure. The plunging of the pile is
clearly an ULS but pile settlements beyond a certain limit would also lead
to ULSs. So a resistance defined based on a certain level of settlement is
also possible. Since there is some confusion in the literature regarding this,
the practice we follow is to use the term limit resistance for the maximum
resistance that can be reached; i.e., the limit shaft resistance is the maximum
shaft resistance and the limit base resistance is the maximum base resistance.
When both the limit shaft and limit base resistance are reached, the pile
reaches its limit resistance and plunges. Ultimate resistance, on the other
hand, is a conventional load associated with an ultimate limit state, but not
necessarily a maximum resistance. The most obvious example of an ultimate
resistance is the load leading to a pile settlement equal to 10% of the pile
diameter, which is favored internationally as an ultimate load criterion. This
load has the added advantage that, for the factors of safety typically used in
practice, it both separates safe designs from potentially unsafe designs and
avoids serviceability limit states.

Now that we have defined precisely what is meant by resistance, we can
address its estimation or determination. We will separate soils in sands, clays
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and transitional soils. In sands, pile resistances can be calculated using drained
analysis with soil represented as a frictional material. In clays, pile resistances
have typically been estimated using undrained analysis, with the soil modeled
as a frictionless, Tresca-like material. Transitional soils, which appear often
enough in piling practice, are materials with intermediate behavior, in which
partial drainage may be an issue either at the site investigation stage (such as
in the interpretation of cone penetration tests) or the pile design stage. Fabric
or structure may play a significant role in partially drained soil response.
Although extremely interesting and important, we will not discuss transitional
soils in this paper.

Piles are typically grouped in two main categories: displacement and
nondisplacement piles. An ideal nondisplacement pile is installed in the soil
such that a volume of soil is replaced by the pile (which is in mechanics terms
an equal volume of a much stronger, stiffer material, typically concrete) with-
out causing disturbances or changes in the stress or deformation states at any
point of the surrounding soil. The classical example of a nondisplacement soil
is a drilled shaft (bored pile). Drilled shaft installation does cause changes in
the surrounding soil; however, these changes are fairly small if installation is
done with proper care. Additionally, it is possible to model, even if simply, the
effects of the installation on the soil. Displacement piles, in contrast, are piles
installed in the ground without any soil removal. This type of pile acquires its
space by displacing soil from space it originally occupied, a large deformation
process that is challenging to model.

2 Base Resistance

2.1 Sand

Limit Base Resistance

Ideally, the limit base resistance of piles in sand would be calculated from
a large deformation analysis that would accurately compute the compressive
stresses on the pile base as the pile is pushed through the soil. These analyses
have become viable but are still challenging, and more so in the case of sands.

Limit base resistance may also be estimated using cavity expansion analy-
sis. The analysis of Salgado and Prezzi [30] assumes a simplified mechanism to
relate the pile base resistance to cylindrical cavity limit pressure. As argued by
Salgado et al. [32], the existence of this relationship is intuitive in that a cylin-
drical pile, when pushed through the soil, does expand a cylindrical cavity in
it, and is backed up by experimental evidence from calibration chamber tests
(e.g., Houlsby and Hitchmann [11]) that show a clear dependence of cone tip
resistance qc, a proxy for pile limit base resistance, on lateral effective stress.
Figure 1 shows the mechanism used to calculate limit base resistance, which
is obtained by considering the rotation of major principal stresses from the
horizontal direction associated with cylindrical cavity expansion outside the
transition zone T to a subvertical direction on the cone face. The cylindrical
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Fig. 2. Cone resistance (a proxy for qbL) versus effective lateral stress and relative
density for sand with critical-state friction angle equal to 29◦ and 36◦; pA = reference
stress (= 100 kPa = 0.1 MPa ≈ 1 tsf).

cavity expansion analysis and the stress rotation analysis used to compute qbL
are detailed in Salgado and Prezzi [30] and Salgado and Randolph [31].1 An
illustration of the values this analysis produces is provided in Fig. 2 for two
extreme values of the critical-state friction angle.

Ultimate Base Resistance

Lee and Salgado [16] performed finite element analyses using ABAQUS to
obtain the base resistances of nondisplacement piles in sand. They analyzed
piles with three different lengths – 5, 10, and 20 m – and a fixed radius of
60 cm, embedded in normally consolidated sand with relative densities of
1 The program CONPOINT can be used to perform this analysis.
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30, 50, 70, and 90%. Sand parameters were those in Table 1, considered fairly
representative of silica sands commonly found in the field. The axisymmetric
problem was modeled using eight-noded quadrilateral elements, with interface
element of zero thickness at the pile–soil boundary following the Coulomb
friction law. The boundaries of the domains were placed far from the pile to
minimize boundary effects. The pile was elastic, and the soil, elastic–plastic
following a stress–strain model modified after Fahey and Carter [6] with a
nonlinear form of Drucker–Prager criterion to model failure and postfailure
response.

Unit pile base resistance qb, normalized with respect to qc (which is ap-
proximately the same as the limit unit base resistance qbL), is shown in Fig. 3
as a function of relative settlement s/B (s = settlement, B = pile diameter)
for different pile lengths and for the relative densities of 30% and 90%. Cone
resistance qc was estimated using CONPOINT for various values of relative
density (DR) and stress state. The s/B versus qb/qc curves for 90% relative
density lie noticeably below those for very loose sand because limit base resis-
tance, which depends mostly on shear strength, increases at a higher rate with
increases in relative density than the load associated with a given settlement,
which depends on stiffness.

Table 2 shows qb/qc for s/B = 5% and 10% obtained from the analysis.
Values of qb/qc fall within the 0.07–0.13 range for s/B = 5% and within the

Table 1. Basic properties of Ticino Sand (after [10]), the sand used in the base
resistance analysis of Lee and Salgado [16]

D10

(mm)
D50

(mm)
Gs U φc

(◦)
emax emin γmax

(kN m−3)
γmin (kN m−3)

0.36 0.54 2.623 1.5 34.8 0.922 0.573 16.68 13.65
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Fig. 3. Normalized base load–settlement curves in terms of qb/qc and s/B for
nondisplacement piles
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Table 2. Values of qb/qc for nondisplacement piles obtained from FEM analysis

pile length (m) DR (%) qb/qc (s/B = 5%) qb/qc (s/B = 10%)

30 0.13 0.21
50 0.10 0.17

5 70 0.09 0.14
90 0.07 0.12

30 0.12 0.20
50 0.10 0.16

10 70 0.09 0.14
90 0.08 0.13

30 0.11 0.19
50 0.10 0.16

20 70 0.09 0.15
90 0.08 0.13

Table 3. Observed and recommended values of qb/qc for nondisplacement piles

author(s) DR

(%)
qb/qc for
s/B = 5%

qb/qc for
s/B = 10%

Franke [8] – – 0.2
Jamiolkowski and Lancellotta [14] – 0.2 –
Ghionna et al. [10] 50 0.09–0.14 0.11–0.19

90 0.07–0.10 0.10–0.14
Salgado [29] – – 0.15
Mayne and Harris [19] – – 0.26
Teixeira and Albiero [42] – 0.18 0.20
Simonini [36] – 0.09 0.17

0.12–0.21 range for s/B = 10%. The values are in general agreement with
those observed in the field and laboratory (Table 3).

Figure 4 illustrates the influence of relative density on the normalized base
resistance qb/qc. The effect is substantial, with qb/qc decreasing with increas-
ing relative density. This justifies the presentation of qb/qc values for different
relative densities in Table 2. The value of qb/qc at s/B = 10% is 0.19–0.21
for DR = 30%, whereas it is 0.12–0.13 for DR = 90%. The qb/qc ratio can be
approximated reasonably well by the following equation:

qb,10%
qc

= 0.23 exp (−0.0066DR) . (4)

Equation (4) indicates that the qb/qc ratio decreases with increasing DR.
Alternatively, it expresses the fact that larger settlements are required for
soils with higher relative densities to reach a unit base resistance equal to a
set percentage of qc. The results also offer some insight into why most pile
design methods that calculate qb by multiplying qc by a certain constant (e.g.,
0.2 for 10% relative settlement, according to Franke 1989) also place an upper
limit (usually in the 4.5–5 MPa range) on possible values of qb. The results
of the present analysis indicate that when piles are embedded in very dense
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Fig. 4. Normalized unit base resistance versus relative density

sand layers, a value of qb, chosen irrespective of relative density (for example,
qb = 0.2 qc, as proposed by Franke [10]) would yield an excessively large base
resistance. Placing a limit on qb (e.g., 5 MPa) serves a purpose in that case,
but if the qb/qc values of Table 2 are used for design, there is no need for
setting an upper limit on qb.

The effect of pile length (i.e., confinement at pile base level) and overcon-
solidation on qb/qc was also studied. The effect of pile length on qb/qc was
found to be small because qb and qc depend on initial confining stress in a
similar way. The effect of K0 on qb/qc was found to be inconsequential.

2.2 Clay

Limit Base Resistance

The ratio of net unit pile base resistance to undrained shear strength in clay
has traditionally been taken as 9. This follows from early versions of the
bearing capacity equation,

qgrossbL = ssudsuNcsu + q0 (5)

with shape and depth factors ssu and dsu proposed by Skempton [37] and
Meyerhof [20,21]; for foundations with D/B ≥ 2.5, (5) was taken as:

qgrossbL = 9su + q0 (6)

It is common in pile design in clay to work with net limit unit bearing
capacity qnetbL . With the assumption that the pile self-weight divided by its
cross-sectional area approximately balances q0, we arrive at the value of 9
for the ratio qnetbL /su. Recent research, however, suggests that 9 may be too
low. Martin [18] found a value of approximately 9.3 for this ratio from lower
bound analysis. He also determined that this number is essentially the same
regardless of the rate of undrained shear strength increase with depth. Sal-
gado et al. [34] showed, using limit analysis of circular foundations ranging in
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depth from zero to depths typical of piles, that the unit base capacity keeps
increasing with depth beyond the D/B value of 2.5 used to obtain the earlier
estimates of 9 for qbL/su. Their lower bound values for unit base resistance
in clays is as high as 11 for D/B = 5, with upper bound as high as 13.75
for the same relative depth. It should be noted that the boundary conditions
utilized did not account for the constraining effect of shaft resistance on base
resistance (by which the soil on the sides of the pile, in order to move up with
respect to the pile as the pile is pushed down, must overcome friction with the
pile), suggesting the actual values could be higher. On the other hand, limit
analysis may not capture well the confined flow mechanism that is operative
for deep foundations (which, incidentally, justifies the use of cavity expansion
analysis to analyze such problems). A different approach, by Yu et al. [46], ar-
rives also at higher values for qnetbL /su (typically in the 10–12 range for realistic
conditions). Hu et al. [13] conducted a large strain finite element analysis that
produced a net limit unit base resistance equal to 12.7su for a pre-embedded
circular foundation with length to diameter ratio of 2 at a displacement of
over four pile diameters. This evidence suggests that qnetbL /su is at least equal
to 10 and potentially as high as 12–13.7.

Ultimate Base Resistance

While in the calculation of collapse loads associated with unrestrained mech-
anisms the soil stiffness does not matter, in contained plastic flow, the soil
stiffness plays an important role. Randolph et al. [25] argue that, for piles (i.e.,
for large foundation embedment), a cavity expansion mechanism is in force
for the pile base. Even if unrestrained collapse mechanisms can be achieved
in clay, the argument can be made that we are not necessarily interested in
design in the limit resistance but rather in the value of base load at a specific
value of settlement. For 10% relative settlement, Hu and Randolph [12] ob-
tained qnetbL /su values ranging from 9.3 to 9.9. In design, their average value
of 9.6 could be used.

3 Shaft Resistance

3.1 Sand

The unit shaft resistance is the product of the normal effective stress on the
soil–pile interface (σ′h = Kσ′v0) by an appropriate interface friction coefficient
(μ = tan δ). Except in the case of floating piles, shaft resistance is fully mo-
bilized along most of the pile length (except very near the base) for a pile
subjected to its ultimate load defined according to the 10% relative settle-
ment criterion. It is probably fully mobilized along most of the pile length
under service conditions for well-designed piles as well.

Mathematically, the unit limit shaft resistance qsL is written as:

qsL = Kσ′v0 tan δ (7)
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where K is the coefficient of lateral earth pressure (a function of soil state),
δ is the interface friction angle, and σ′v0 is the initial vertical effective stress.
We use the notation σ′v0 to stress that even if there may be vertical effective
stress changes at very close distances from the pile shaft, our reference for
calculating σ′h is always the initial vertical effective stress.

Equation (7) is deceptively simple. Finding appropriate values for K and δ
is not trivial, hence the vagueness with which the subject is typically treated
in the literature. Values of δ should be expressed in terms of the critical-state
friction angle φc. The argument for using φc is based on the development of
large shear strains near the pile shaft at ultimate load levels. These strains
are sufficiently large to cause a certain volume of soil near the pile to reach
critical state.2 At the ultimate load, critical state will be reached along the
pile shaft for both stiff and compressible (slender) piles.

For nondisplacement piles, given the high degree of roughness of the con-
crete placed in situ, the interlocking of the shaft with the soil is such that
shearing will take place within the soil immediately adjacent to the pile. It is
therefore appropriate to take δ = φc for nondisplacement piles. This is also
illustrated experimentally by the data of Uesugi et al. [44].

The installation of nondisplacement piles preserves to a large extent the
pre-existing stress state in the ground. Any limited unloading that may take
place is corrected by the placement of the concrete, which has enough fluidity
before setting to apply a normal stress on the soil sufficient to reestablish the
original lateral stress (in fact, Fleming et al. [9] argue that the placement of
concrete with high fluidity would even lead to an initial K slightly greater
than K0). When the pile is loaded, constant volume shearing will eventually
develop between the pile and the sand. On the way there, the sand, if dilative,
will attempt to expand but is constrained from doing so by the presence of
the pile shaft; as a result, the normal stress between the pile and sand will
increase. The result is that, for loose sands, K is close in value to K0, but, for
dense sands, K may be significantly greater than K0. The literature does not
appear to contain any analysis seeking to quantify K as a function of relative
density and stress. A relatively simple analysis is possible to illustrate how we
currently have the tools to obtain very good relationships for K.

A simple finite-element simulation of what happens in the soil as the pile is
pushed down and shearing develops along the pile soil interface can be done by
considering a disk of soil around the pile (Fig. 5), similarly to what was done
by Gens and Potts [9]. Where the pile–soil interface would be, a vertical dis-
placement is applied in increments until very large shear strains develop. The
soil is modeled using 250 eight-noded quadrilateral, axisymmetric elements.
Nodes lying in the same vertical are tied together with respect to both vertical
and horizontal movement. This means the distortion of the soil disk as the pile
is pushed down is captured by vertical shearing of the elements, which cannot
rotate nor contract or stretch in the vertical direction. The elements are able
to contract or dilate by contracting or stretching in the radial direction. The
2 Geometrically, for a circular pile, this volume would be a hollow cylinder of soil

with a thickness of barely a few times the D50 of the soil, as we will discuss later.
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Applied displacement
Both degrees of freedom tied

Axis of symmetry

QS Axisymmetric elements

D /2 = 0.25 m

10 m

Fig. 5. Finite element representation of the application of a displacement to the
side of a disc of soil representing a layer of soil around a pile

pile diameter for these analyses was 0.5 m. The sand was modeled using a
constitutive model based on work of Papadimitriou and Boukovalas [23] and
Dafalias and Manzari [5] calibrated with data for Ottawa sand from Salgado
et al. [33] and Carraro et al. [4]. The finite element program SNAC [1] was
used in all analyses.

Shear strain is highly localized next to the pile shaft. Considering the
dependence of the results on the level of discretization when a strain-softening
material is involved, the size (width) of the leftmost element was set to be no
less than the shear band thickness that would be observed in reality. Various
experimental studies (e.g., [22, 43, 45]) on shear strain localization in sand
have shown that the shear band thickness is usually in the range of 5 to
20×D50. Most of the analyses were done for a minimum element size of 10×
D50, corresponding to ∼4 mm for Ottawa sand, and for K0 = 0.4. Sensitivity
studies have shown that K/K0 decreases slightly as the element size drops
from 10 to 5 ×D50 and as K0 increases.

Figure 6 shows the evolution of the shear stress that develops with in-
creasing vertical pile displacement. The value of pile movement required for
mobilization of qsL is of the order of 4 mm (or about 0.8% of the pile diame-
ter). Note also that for loose sand (in the case analyzed here less than about
40% relative density), the final normal stress acting on the pile shaft actually
drops due to the contractive nature of the sand. From the ratio of the normal
stress at the end of shearing to σ′v0 we can obtain K, which is given as a
function of DR in Fig. 7. K is less than K0 for sands looser than about 40%
relative density but then exceeds K0, reaching a high just shy of 2.4K0, for
DR = 90% and σ′v = 50 kPa.
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3.2 Clay

Both an effective stress analysis, using (7), and a total stress analysis can be
done of the shaft resistance of a pile in clay. In the more commonly used total
stress analysis, qsL is expressed in terms of the undrained shear strength su
of the soil as:

qsL = αsu. (8)



532 R. Salgado

There has been little research done on the value of α for drilled shafts.
Skempton [39] argued that α for stiff London clay was lower than 1 due to
unloading of the clay at the walls of the shaft and remolding due to drilling
operations. He proposed at the time an average α = 0.45 for typical sizes of
drilled shafts. Reese and O’Neill [27], based on their own research on drilled
shafts installed in stiff clay in Texas, proposed α = 0.55. Most publications
simply refer to one of these values with little discussion. There is also no clear
agreement as to what su should be in (8). We will assume su in (8) to refer to
triaxial-compression, peak undrained shear strength, which may be estimated
from the Skempton [38] correlation:

su
σ′v

= [0.11 + 0.0037(PI)] OCR0.8. (9)

We can establish a simple analytical basis for determining α by examining
the problem in a conceptual way. The starting point is to recognize that clay
is weaker than the relatively rough concrete interface created by drilled shaft
installation, and so it is reasonable to assume (as did Fleming et al. [9]) that
the shearing takes place within the clay in a direction roughly parallel to the
pile shaft, so that interface effects are not a significant factor in determining
the value of α. This leaves the process of pile installation as the determining
factor for the value of α.

The coefficient α may be expressed quite generally as:

α =
su, r
su

=
σ′hds tanφr

σ′v [0.11 + 0.0037(PI)] OCR0.8 , (10)

where su, r is the residual shear strength of the clay along the shaft–soil in-
terface that develops upon loading of the pile; φr is the residual friction angle
of the clay (which is operative because the clay particles are aligned with the
direction of shearing as a result of auger action during drilling); and σ′hds is
the lateral effective stress between the pile shaft and the disturbed soil during
axial loading.

It is important to note that φr decreases with increasing effective normal
stress σ′ on the plane of shearing (because a larger normal stress forces greater
alignment of particles as they are sheared). Figure 8 illustrates schematically
the decrease in φr with increasing normal stress on the plane of shearing.
At very large stresses, φr reaches an absolute minimum, denoted by φr, min.
For very small stresses, φr approaches the critical-state friction angle φc. The
assumption that, at σ′ equal to zero, φr = φc is based on the expectation that
there would be negligible reorientation of particles in the absence of a normal
stress forcing this reorientation to happen.

Following Maksimovic [17], φr can be expressed as:

φr = φr, min +
φc − φr, min

1 + σ′
σ′
median

, (11)
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Fig. 8. Variation of φr with normal stress perpendicular to the plane of shearing

where σ′ is the normal stress on the plane of shearing, and σ′median is the
value of σ′ at which the friction angle is exactly equal to the average of the
minimum residual friction angle φres, min and φc. From a practical standpoint,
for clays containing a large smectite content, such as London clay, φc might
have to be replaced by a lower φ value in order for (11) to produce acceptable
results. The values from Maksimovic [17] used in (11) are not necessarily true
φc values. Figure 9, for example, shows data for London clay based on both
laboratory and field data. Note that the maximum value of φres at σ′ = 0
extrapolated by Maksimovic [17] from the data is of the order of 12.5–16◦,
while this clay has φc in the 20–23◦ range. For piles, the normal effective stress
on the plane of shearing to calculate φr is the lateral effective stress during
pile loading.

According to Skempton [40], the residual friction angles of kaolinite, illite,
and montmorillonite are approximately equal to 15◦, 10◦, and 5◦, respectively.
Values of the critical-state friction angle for London Clay and kaolinite are
given as 23◦ and 25◦ by Atkinson [2]. These data are combined with data from
Maksimovic [17] and Kenney [15], as reported by Maksimovic [17] in Table 4.

We must now tackle the question of how to determine σ′hds. It is difficult
to reduce the loading imposed on the soil during excavation and augering to a
simple stress path. Naturally, there will be an induced shear stress associated
with the excavation and another with the augering. On the way to critical
state, we can estimate the pore pressure generated by using the Skempton
concept of a pore pressure coefficient. For simple shear loading, this can be
expressed as a ratio a of the pore pressure generated to the applied shear
stress τ . If we assume that any changes in volume (under drained conditions)
or pore pressure (under undrained conditions) beyond the critical state, to-
wards a residual state, would happen only along the slip surface and would
thus be very small, we could neglect additional pore pressure changes to obtain
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(a) ring shear test data from Bishop [3] and (b) back-calculation of landslides, after
Maksimovic [17]

Table 4. Values of parameters needed to calculate α obtained from Maksimovic [17],
Atkinson [2] and Skempton [40]

clay type LL(%) PI (%) φc
a φres,min Δφ σ′

median (kPa)

london clay 75 45 16.3◦ 10◦ 13◦ 50

kaolinite 65 30 24b 13.4◦c 10.6◦ 55
a Not true φc but rather extrapolated φr for zero normal stress (see Fig. 9b).
b This compares well with φc = 25◦ given by Atkinson [2].
c This compares well with φc = 15◦ given by Skempton [40].

a first-order estimate of σ′h at the end of installation. The concrete would then
be poured, the excess pore pressure dissipated, and σ′h would (ideally) return
to its initial value. Finally, loading of the pile would subject the soil around
the pile to a simple shear loading. Having been presheared, its pore pressure
generation capability would now be different from that of undisturbed soil
(and represented by a pore pressure coefficient ar). Additionally, the stress
path would be capped by the residual strength envelope. The value of σ′hds
can now be calculated as:

σ′hds = σ′h0 − 2arτr = K0σ
′
v − 2arσ′hds tanφr (12)

from which σ′hds can be extracted:

σ′hds =
K0σ

′
v

1 + 2ar tanφr
. (13)

The value of K0 may be estimated from the often-used Jaky’s equation:

K0 = (0.95 − sinφ) OCRsinφ. (14)

We can now calculate α using, in succession, (14), (13), (11)3, and (10).
The value of ar can be obtained either by analytical integration of a suitable
constitutive model or from simple shear testing. A simple illustration of this
3 Note the iteration between (11) and (13).
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analysis can be done here for a stiff clay, for which the stress paths during
installation and reloading of the remolded soil would be nearly vertical, such
that we may assume for simplicity that ar = 0 and σ′hds = σ′h0.

The values of α were calculated in this manner for kaolinite for σ′v ranging
from 0 to 500 kPa. Kaolinite was chosen because its fundamental parameters
are reasonably well established. Table 4 has values for the parameters required
in the calculations. For comparison, we have also included the parameters of
London clay; although not done here, calculations of α for London clay lead to
values slightly lower than for kaolinite. As it is customary in practice to plot
α versus su, we also need to calculate the corresponding value of su to develop
such plots, which is again done using (9). For anisotropically consolidated clay
loaded in simple shear, the value of OCR associated with zero ar is likely to be
in the 3–5 range. The corresponding α values are plotted as two lines versus
su in Fig. 10. The value of α will be in this range. We also show in Fig. 10
the α values obtained from the relatively few data cases in the literature for
which reasonably accurate shaft resistance and su values are available and
for which OCR can be estimated. The theoretical curves compare well with
the data, most of which are for OCR values in the 3–9 range; however, the
values associated with low su values in the figure are associated with either
NC or lightly OC clays, and the theoretical curves are not applicable for
those conditions; hence the large difference between the theoretical and field
values.

One further consideration regards the clay content or clay fraction CF.
Skempton [40] observed that φr varies with clay content. For clay content
(clay fraction) CF less than approximately 25%, φres coincides with φc (note,
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however, that this is the φc of the clay–silt–sand soil, not that of the clay);
for clay content increasing from 25 to 52%, the residual friction angle drops
towards the φr of the pure clay. For clay content greater than 52%, the residual
friction angle remains stable at this minimum value. In order to account for the
clay content in the calculation of α, we will assume that the αmethod will only
be used when CF ≥ 25%. Based on the numbers provided by Skempton [40]
on the values of CF between which φr changes from φc of the soil mix to φr
of the pure clay, we can write the following approximate equation for φr as a
function of CF:

φr = φr|pure clay +
φc, mix − φr|pure clay

27%
[52% − CF(%)] . (15)

Values of α can now be calculated as a function of clay content. The α
of soils containing mixtures of sand, silt, and clay with more than 25% clay
would be expressed as:

α =
σ′hds tan

{
φr|pure clay +

φc,mix−φr|pure clay
27% [52% − CF(%)]

}
σ′v [0.11 + 0.0037(PImix)] OCR0.8 (16)

Studies on mixtures of clay, sand, and silt with high-quality data on the φc
of these soils are few. The presence of sand or nonplastic silt increases φc by a
few degrees. We know that the φc of most sands, nonplastic silts or mixtures of
the two encountered in practice would be in the 30–35◦ range (e.g., [33]). The
presence of clay reduces φc from that range to perhaps 28–30◦. We will take
28◦ to be the φc of a sand–silt–kaolinite mixture with 25% kaolinite, assume
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it to decrease linearly with clay content as it increases from 25 to 52%, and
assume, as before, that ar = 0 for 3 ≤ OCR ≤ 5. The PI of the soil drops
significantly as CF drops from 52 to 25%. We will assume for simplicity that
this drop occurs linearly and that the PI at 25% CF is equal to 10. We can
now illustrate the calculation of α for soils with 25 ≤ CF ≤ 52% using (16).
Plots of α versus clay content obtained in this manner are shown in Fig. 11 for
OCR = 5. Note that the plot for CF = 45% is very close to the corresponding
plot of Fig. 10. These should be considered preliminary estimates of α, which
can be refined with more elaborate determination of all the variables entering
the calculations.

4 Conclusions

If pile resistance is determined using sound mechanics from a soil model that
captures the essence of soil load response without reliance on empiricism or
direct correlations, the fundamental basis for rigorous analysis is in place. We
have shown this to be true for nondisplacement piles.

For nondisplacement piles installed in sand, the limit base resistance can
be calculated with good accuracy using a cavity expansion-based analysis. We
have shown using finite element analysis that the ratio of ultimate to limit
base resistance is in the 0.13 (for dense sand) to 0.2 (for loose sand) range. The
shaft resistance of nondisplacement piles in sand is the product of a lateral
stress ratio K by the vertical effective stress and the tangent of the critical-
state friction angle. We have shown that K lies between just under K0 for
loose sands to about twice K0 for dense sands.

For nondisplacement piles installed in clay, numerical analyses (both finite
element and limit analysis) have established accurate bounds on the values
of limit unit base resistance. The ratio of net limit unit base resistance to
undrained shear strength has been shown convincingly to be in the 10–13.5
range. The same ratio for ultimate instead of limit resistance would be less
than that; some authors suggest numbers just under 10. The shaft resistance
is most frequently calculated using the α method. We have shown that the
value of α can be determined analytically if the critical-state and residual
friction angles, as well as the relationship between the residual friction angle
and the normal effective stress on the shearing plane, are known. The analysis
can also be used to determine α for soils containing clay contents greater than
25%.
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Abstract. Wellbore instability is a critical and costly problem in the petroleum
engineering industry, which has yet to be fully understood and addressed. This is
mainly because of uncertainty in some key influential parameters, such as in situ
stress, rock strength, and other engineering operating parameters. These can lead
to wellbore stability uncertainty, and make it very difficult for the conventional de-
terministic approaches to predict the risks associated with the instability problems
during the drilling and production process. To account for the uncertainty involved
in the wellbore stability analysis, a Monte Carlo uncertainty analysis technique has
been combined with a numerical geomechanical modelling method to develop a geo-
statistical approach. This makes it feasible to assess not only the probability of
achieving a desired degree of wellbore stability at a given mud weight, but also the
effects of the uncertainty in each parameter on the stability of the wellbore. This
approach has been applied to a case study of a vertical well in deepwater. The most
influential parameters have been identified by a sensitivity analysis technique, and
the likelihood of avoiding wellbore failure in different modes is obtained across a
range of mud weights. The advantage of adopting numerical methods in this study
lies in more realistic geomechanical representations of the wellbore stability prob-
lem, and less uncertainty from numerical modelling compared with the analytical
models used in previous studies. Results of the analysis illustrate the potential of
the approach to be used as a pre-drilling design tool to predict optimal mud weight
windows for a better drilling program.

1 Introduction

Wellbore instability problems are often encountered during and after drilling
in the oil and gas industry. As a consequence of this, the borehole wall may
collapse or the circulation may be lost, which can lead to a stuck drill string
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and consequent fishing, sidetracking and reaming operations, even a complete
halt of productivity [2]. In addition to being a technical challenge, the occur-
rences of the wellbore instability related problems will significantly add to the
already high well costs. It is estimated that at least 10% of the average well
budget is used on unplanned operations resulting from wellbore instability.
This cost may approach one billion dollars per year worldwide [2, 18].

Wellbore stability issues were not seriously addressed until Bradley [4]
published his influential paper “Failure of Inclined Boreholes”, which initiated
great interest in the topic within the industry [4]. Although the application of
rock mechanics has improved drilling performance, it is still not satisfactory,
judging from the trends observed in recent years.

One of the most significant problems remaining, which handicaps the uti-
lization of the advanced geomechanical and numerical models in the wellbore
stability analysis, is the uncertainty of the key influences upon the instability,
such as rock strength, pore pressure and the magnitude and orientation of the
three principal stresses obtained in the vicinity of a drilling field. A number of
deterministic techniques have been developed to predict optimal operational
parameters such as mud weights or drilling trajectories [1, 4, 12, 17, 18, 20], in
which either for the sake of simplicity or for lack of information, it is assumed
that the geomechanical and operational parameters are the same throughout a
material domain. However, in many cases, due to the intrinsic inhomogeneous
nature of the rocks, the minimal exposure of the rock mass around a bore-
hole, and the need to extrapolate available information over a depth range,
the geomechanical parameters such as the in situ stresses, pore pressure, and
rock strength are inevitably poorly assessed, as the required data necessary to
compute their values are often not available [2, 14–16]. Furthermore, models
that describe the relationships between field measured data and the required
parameters for modelling are poorly calibrated. In some cases, technologi-
cal or operational constraints make it impossible to acquire the information
necessary to overcome these problems. An additional problem relates to the
intrinsic uncertainty or error associated with each measurement. Thus, the
uncertainty involved in the wellbore stability problem has a sense of the un-
known due to the lack of knowledge about the properties of the rock mass and
the in situ stresses rather than due to the inherent randomness in them [5].

Because of the uncertainty involved in the wellbore stability analysis, the
use of averaged values for the input parameters in the deterministic approaches
can lead to conclusions that significantly differ from the true behaviour of a
wellbore. A good understanding of the impact of these uncertainties would
definitely promote safe and economic design and help better cope with the
large uncertainties and variations. Given the potential improvements to de-
sign and the already achieved successes in resource estimation, it is technically
possible to utilize probabilistic methods to quantify the effects of the uncer-
tainties on wellbore stability predictions. Although probabilistic methods have
frequently been used in the oil industry, e.g. to estimate the expected value
of a project, their application to wellbore stability is relatively new.
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Ottesen et al. [16] presented a new statistical approach based on Quan-
titative Risk Analysis (QRA) that provides a means to assess uncertainties
in input data and defines the results in terms of the probability to achieve
a desired degree of stability as a function of mud weight [16]. McLellan and
Hawkes [14] applied a similar approach to sand production prediction, utiliz-
ing poro-elastic constitutive models [14]. Moos et al. [15] adopted and modified
QRA approach, and analyzed both the collapse pressure and the lost circu-
lation pressure to derive a mud window, both at a single depth and over an
entire open hole [15]. A common feature of these studies is that the proba-
bilistic method was utilized based on a theoretical closed form or empirical
solution to the linear elastic failure of the wellbore. This enables a simple and
quick process of geomechanical analysis so that the repetitive probabilistic
approach can be applied with limited computational resources. However, this
was achieved at a price of compromising the accuracy of the analysis, because
the analytical or empirical solutions have too many unrealistic assumptions
to represent real problems.

In this chapter, the Monte Carlo uncertainty analysis technique and a 3D
finite difference numerical modelling method were combined to address the
uncertainty involved in a wellbore stability analysis. The input parameters
whose uncertainty had a significant impact on the numerical model output
were selected by a sensitivity analysis and then treated as random in the follow
up analysis. A 3D numerical model was set up to represent the borehole and
the surrounding rocks at a certain depth. Variable combinations of the key
influential parameters, generated by the sampling process, were introduced
in the numerical simulation to observe the geomechanical response of the
wellbore. A controlling MS Visual Basic program has been developed to run
the calculations in sequence with varying rock properties and geomechanical
input parameters. The output uncertainty sensitivity analysis of the results
was performed via a standard Monte Carlo uncertainty analysis procedure to
determine the likelihood of a wellbore failure.

The probabilistic methodology developed in this chapter takes advantages
of both numerical modelling and QRA therefore, the uncertainty associated
with the wellbore stability analysis can be addressed. Furthermore, there are
less unrealistic simplifying assumptions on the geomechanical properties at
and around a wellbore in this methodology when compared with the conven-
tional deterministic analyses and the existing probabilistic approaches.

2 Uncertainty Analysis Process

It is well known that there is considerable uncertainty with most of the data
used in geomechanical analyses. Several strategies have been developed by
geotechnical engineers to deal with the uncertainty [3, 5], including passive
solutions like ignoring it, being conservative in design, using the observational
method and recent attempts to quantify the uncertainty.
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Among the large number of approaches developed for performing un-
certainty studies, the Monte Carlo analysis is preferable for this research
because it is not dependent on the underlying model and hence is more
applicable to complex geotechnical problems. Additionally, the full coverage
of each input variable and a friendly interface with a variety of sensitivity
analysis techniques allows one to not only estimate the expected value and
standard deviation but also obtain a full distribution of the output variable
[3,6,7]. Theoretically a Monte Carlo analysis may require a large sample size
(e.g. 10,000 samples) in order to approximate the original distribution well.
Consequently, the computational cost may become a critical concern. In prac-
tice, usually a sample size of less than 1,000 is sufficient to provide an accept-
able uncertainty and sensitivity analysis result [6, 8].

Before performing an uncertainty analysis, the parameters of the greatest
influence must be determined by means of a proper systematic sensitivity
study. A sensitivity study attempts to estimate how the uncertainty in the
output of a model can be apportioned to different sources of uncertainty in
the model inputs. Of a variety of sensitivity analysis techniques, the one at a
time (OAAT) technique has been chosen for its effectiveness and simplicity [8].
OAAT involves a process to screen out the influential parameters and in turn
vary them across their range of distribution with all other parameters set at
their mean value in the geomechanical modelling process. This initial analysis
gives out an idea of which parameters have the greatest influence on the chosen
performance parameter of the model, such as the deformation of wellbore wall
in this research. Once the parameters that contribute the most uncertainty
have been identified, this knowledge in turn makes it possible to determine the
amount of risk reduction that can be achieved by acquiring the data necessary
to reduce the uncertainty of any or all of the input parameters.

After examination of the influential parameters the most sensitive parame-
ters are selected and their representative distributions will be determined. The
Monte Carlo approach allows sampling of data uncertainties from the actual
distributions of the measured parameters as well as from functional forms for
these distributions such as normal or lognormal distributions. Ideally more
data should be collected for the most important parameters and an expert
should be involved to determine the distribution for the most influential pa-
rameters, the least important ones may need less field data and could involve
more subjective judgements. The distribution characteristics and ranges of
the input parameters will directly determine the quality of the uncertainty
analysis.

It is also very important in the uncertainty analysis that an appropriate
sampling technique is employed to ensure reasonable accuracy with efficiency.
Random sampling and Latin Hypercube sampling are the two most used tech-
niques for the generation of samples form the distribution of the influential
parameters. Random sampling is simple but requires a large sample size (e.g.
100,000 s) to ensure sufficient coverage of regions that have a low probability
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of occurrence. By contrast, the Latin Hypercube sampling technique can fully
cover the specified subsets with fewer samples (1,000 s or less) [9, 10], thus it
has been adopted in this research.

The subsequent sampling propagation in this study consists of four steps:

– Each sample property value is transformed into a form that can be recog-
nized by the chosen the Fast Lagrangian Analysis of Continua (FLAC)
constitutive model;

– Write the normalized data for that value to a file;
– A batch file is then generated to run all the models by obtaining randomly

the values of input parameters from the previously constructed normalized
data files;

– Finally the key results of each model execution are written to a permanent
file before the execution of the next model in the series.

A MS Visual Basic program was developed to incorporate the input data
transformation, model evaluations, and model outputs extraction into a uni-
fied program package. Both pre-processor and post-processor are unified into
this program package so that this can be used to provide normalized input
data for the numerical model and extract required results from outputs of the
numerical modelling for the uncertainty and sensitivity analysis.

3 The Application of Numerical Modelling
to Uncertainty Analysis

Traditional analytical methods have been commonly used to conduct struc-
tural designs and determine appropriate design parameters, and also have
been adopted in the previous uncertainty analysis of the wellbore instability
problems [14–16]. However, the simple mathematical models used in an ana-
lytical analysis are usually oversimplified representations of the real problem
being studied. Hence, the model employed to perform an analytical analysis
is often a key source of uncertainty due to these simplifications. For instance,
an analytical model may assume the rock to be elastic when in fact it has
a nonlinear stress–strain characteristic. This is a key drawback of the ex-
isting uncertainty studies on the wellbore instability problems, which spent
much effort to reduce the uncertainties of input parameters, whilst introduc-
ing additional uncertainty by using a simplified analytical approach in the
geomechanical models.

On the other hand, the widely used powerful numerical modelling meth-
ods usually involve a smaller number of assumptions and may represent the
complicated geotechnical engineering problems with a higher degree of accu-
racy. There are many successful examples of the applications of the numerical
methods in solving geomechanical problems, all however in the deterministic
way [13, 19]. Until recently it has been impractical to incorporate a Monte
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Carlo type approach into the numerical techniques to study the uncertainty
involved in geotechnical engineering, because of the excessive scale and com-
plexity of the problem. However recent improvements in hardware and the use
of variance reduction techniques have facilitated the feasibility to analyze the
geomechanical problems such as wellbore instability in this way in a research
context.

FLAC (ITASCA 2000) was chosen to execute the geomechincal models
for the uncertainty analysis in this research, because FLAC provides a very
powerful built-in programming language that allows the user to automatically
control the repeat modelling process of thousands of runs that a Monte Carlo
analysis needs [11].

4 Modes of Wellbore Failure

The wellbore is a cylindrical excavation loaded by ground stress and internally
supported by the fluid pressure from the special mud used in the drilling
process to remove cuttings. The mud’s density can be changed by addition
of heavy minerals (often barite), thus the fluid pressure can be adjusted. The
occurrences of wellbore failure often appears in two modes: too little support
inside the hole can lead to compressive failure, in extreme cases the sidewall
may collapse; too much internal fluid pressure can also fail the hole in tension,
and may thus cause lost circulation [17,20].

4.1 Compressive Failure of Wellbore

Compressive failure occurs wherever the wellbore stress exceeds the rock
strength and causes borehole breakout. In engineering practice, compressive
failure can be mitigated by manipulating the borehole fluid pressure (mud
weight). For example, raising the mud weight generally decreases the com-
pressive stress around the well, resulting in a decrease in breakout, whilst,
decreasing the mud weight may lead to wider breakouts. The well will be sta-
ble for finite breakouts, provided either the hole cleaning is improved, or the
mud weight can be increased and maintained to an appropriate level to con-
tain compressive failure. If the mud weight is reduced too far and breakouts
surpass a critical limit such that the remaining intact section of the wellbore
wall can no longer sustain the surrounding stress concentration the well will
eventually collapse. For a given drilling system, the limit beyond which break-
outs will jeopardize hole stability can be defined by the relationship between
the initial width of a breakout and the volume of material produced, which
is lithology dependent. It is very complicated in practice to determine such
a limit, because many factors influence the assessment. For the purpose of
numerical modelling, a criteria of the compressive failure of wellbore needs
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to be defined in geomechanical terms. To avoid the introduction of complex
fracture mechanics to calculate each possible breakout, which is practically
impossible, the case of the wellbore collapse can be simplified into a situation
that the wellbore wall deforms continuously under compressive stress until
a critical state has been reached, resulting in wellbore collapse. The failure
criteria can therefore be defined in terms of a critical compressive strain, or
the inward radial deformation. In this research, a critical radial deformation
of 10 mm has been considered as the compressive failure criteria.

4.2 Tensile Failure of Wellbore

Tensile failure due to excessive mud weight will create a hydraulic fracture
at the wellbore wall, which may propagate through the near-wellbore stress
concentration so that it can “link up” with a far-field fracture. This can form
a path into which mud is lost. Fracture propagation requires a pressure equal
or slightly in excess of the least stress, thus, lost circulation pressure is ulti-
mately controlled by the least principal stress. The fracturing initiation and
link-up pressures are functions of all three stresses and of the orientation of
the well. If the static mud weight is higher than the least principal stress but
lower than the initiation and link-up pressures, it is still possible to main-
tain circulation under ordinary circumstances. However, total lost circulation
may occur without warning if there is a sudden increase in mud pressure, for
example, due to surge, or while circulating out a kick. As rocks at and ad-
jacent to the wellbore wall are in very complicated conditions (often heavily
fissured), it is impossible to apply fracture mechanics directly in the assess-
ment of the fracturing initiation and propagation in the case of tensile failure.
In this chapter, the initiation of tensile strain is selected as the criteria for
fracturing initiation and link-up, and thus lost circulation.

5 Modelling a Vertical Well in Deepwater

In many deepwater environments, offset data from previous wells are rare,
either because there has been no previous drilling, or because the new well is
drilled in an area of the field separated by faulting from that penetrated by
previous wells [12,15,18]. Therefore, there is a large amount of uncertainty in
the acquisition of geomechanical parameters such as the rock strength, pore
pressure and the in situ stresses that are needed in analysis of the risk asso-
ciated in drilling in this challenging environment. This uncertainty makes the
operators very cautious in using the predicted collapse and lost circulation
pressures in the pre-drill design. On the other hand, it provides an ideal op-
portunity for the utilization of probabilistic approaches. A few attempts have
been made to tackle uncertainty in deepwater well stability [15]. Through
application of the methodology developed in this research to a deepwater
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wellbore, we illustrate how it is possible to utilize probabilistic analysis and
numerical methods to determine the likelihood of the desired wellbore stabil-
ity and identify the most influential factors associated with the uncertainty
in the prediction of the wellbore instability.

First, in order to represent the geometry and the geomechanical condi-
tions at a certain depth of the borehole, a 3D model is set up in FLAC3D, as
schematically shown in Fig. 1. The model consists of a slice of the cross section
of the borehole and the surrounding rock mass, in which the material proper-
ties of rocks, pore pressure, and in situ stresses can all be conveniently applied
and varied in the subsequent probabilistic studies. The horizontal domain of
the model has been selected as an area that stresses applied at boundaries can
be regarded as the far-field stresses. The vertical stress can be computed by
integrating the weight of the overburden and is directly applied to the upper
surface of the model. FLAC provides a command to apply pore pressure to
the rock, and the fluid pressure (mud weight) is exerted on the wellbore wall
as a uniform surface pressure. The Mohr–Coulomb model was used to rep-
resent the nonlinear material behaviour of rocks, though more advanced and
specific constitutive models can be developed and introduced into the numer-
ical modelling in further research. Each set of sampling data generated in the
Monte Carlo analysis will be transformed into a form that can be recognized
by FLAC, and used as new values of rock properties and geomechanical para-
meters in the FLAC modelling. Output data are monitored and selected at the
wellbore wall by extracting mechanical responses, such as deformation, stress
and strain into a file. Probabilistic analysis will be carried out once all sample
data have been put into FLAC in turn and the calculation results extracted.
In this research, for each assumed mud weight, 500 different combinations of

Borehole Meshed domain of the model 

Fig. 1. Schematic figure of the numerical model in FLAC
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the input parameters are introduced into the FLAC modelling. Five hundred
runs of the numerical simulation are carried out to give out the corresponding
distribution of the wellbore deformation. These data points are used in the
subsequent probabilistic analysis to identify the probability of the wellbore
failure.

6 Results and Discussion

6.1 Sensitivity Analysis of Input Parameters

A number of variables contribute to the uncertainty in the wellbore stability
analysis, such as the rock strength, pore pressure, the orientations and mag-
nitudes of all three principal stresses, and the fluid pressure (mud weight),
etc. Uncertainties in any of these parameters will result in uncertainties in
predictions of the wellbore instability problems. In this research, the specific
parameters that contribute the most uncertainty are determined by means of
the OAAT technique. Figure 2 presents a sensitivity plot of the relationship
between the wellbore deformation and each parameter, holding the others
fixed at mean values.

Judging from the tendency of each curve in Fig. 2, the bigger the deforma-
tion of the wellbore wall changes within the range of the studied parameter,
the more uncertainty in the wellbore stability analysis can be associated with
this parameter. As shown in Fig. 2a, the uncertainty in the vertical stress has
very little influence on wellbore deformation. The known uncertainties in the
minimum and maximum stress have relatively bigger impact on the wellbore
deformation, seen in Fig. 2b,c. Figure 2d shows that uncertainty in the rock
strength contributes much more to the uncertainties of the wellbore stability
analysis. The range of possible pore pressures, as illustrated in Fig. 2e could
lead to a large variation in the wellbore deformation. The most influential
parameter, as can be seen in Fig. 2f is apparently the mud weight. With mud
weight varying in a relatively small range, the deformation of the wellbore
changes significantly. Thus, all the parameters studied here, with the excep-
tion of the vertical stress are associated with uncertainties in the wellbore
stability analysis, and will be treated as random variables in the subsequent
geomechanical and probabilistic analysis processes. This sensitivity study ap-
proach can also be employed to isolate those parameters that most contribute
to the uncertainty of the results and provide critical information to guide de-
cisions to develop a targeted program of field measurements to reduce risk in
a cost-effective manner.

6.2 Quantification of the Risk of the Wellbore Failure

A key step in the data preparation before commencing sampling and the FLAC
modelling process is to determine the representative distributions of the in-
fluential parameters screened out by the earlier (OAAT) sensitivity studies.
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Although the representative distributions of the input parameters can be ob-
tained through measured data, in reality, such field data are often sparse and
rare, and hence not sufficient to exhibit the distribution characteristics of the
input parameters. In the previous studies, the representative distributions of
the influential parameters were given by probability distribution functions
specified by means of the minimum, the maximum, and the mean of each
parameter [15]. Similar functions are adopted in this research, as shown in
Fig. 3. They are either normal or log-normal curves depending on whether the
minimum and maximum values are symmetrical (e.g. pore pressure, and in
situ stresses) or asymmetrical (e.g. cohesion) with respect to the mean. In ei-
ther case, the functional form of the distribution is defined by the assumption
that 99% of the possible values lie between the maximum and minimum input
values.

Since the sample was generated by the use of the Latin Hypercube sam-
pling technique, we can calculate the likelihood of any range of wellbore de-
formation based on the probability distribution function and determine the
central tendency and dispersion of the output data. For more detailed infor-
mation such as the probabilities of each deformation range, the histograms
are plotted for the selected values of mud weight, as shown in Fig. 4. Figure 4
presents the histogram plots from the lower mud weight cases, in which the
wellbore fails in the compressive mode.

With the 500 varied combinations of input parameters obtained from the
sampling process, the numerical model in FLAC gives out the correspond-
ing 500 wellbore deformations. Scores of the appearance of a certain range
of deformations are counted and plotted in Fig. 4. If we take a nominal de-
formation (e.g. 10 mm in this research) as the tolerance limit, indicated by a
dotted line in Fig. 4, beyond which wellbore will collapse, we may know the
total number of the possible wellbore collapse cases, and thus the cumulative
likelihood of wellbore collapse can be obtained. As can be seen in Fig. 4, as
the mud weight increases, there are less numbers of cases of wellbore collapse.
This indicates a decreasing possibility of the compressive failure. A similar
process is applied to the analysis of the tensile failures of the wellbore (lost
circulation), as illustrated in Fig. 5. Considering rock mass near a wellbore
is normally heavily fissured and the residual tensile strength is very small,
a very small tensile stress can cause fracturing of the rock. In this research,
tensile failure is defined as wherever a tensile strain is recorded in the numer-
ical simulations.

Reflected in the histogram plots in Fig. 5, any negative value of the defor-
mation is counted as a case of tensile failure (lost circulation), also indicated
by the dotted line here. From Fig. 5, numbers of tensile failure can be found
to increase with the continuing increase of the mud weight, which indicates
an increasing probability of lost circulation.

In this chapter, instead of directly using the possibility of the wellbore
failure, uncertainties in the analysis of the wellbore stability are presented
in terms of the cumulative likelihood of avoiding wellbore collapse and lost



552 Y. Sheng et al.

P
ro

ba
bi

lit
y 

de
ns

ity
 (

pd
f)

 

P
ro

ba
bi

lit
y 

de
ns

ity
 (

pd
f)

 

Maximum horizontal stress (MPa)Material cohesion (MPa)

P
ro

ba
bi

lit
y 

de
ns

ity
 (

pd
f)

 

Minimum horizontal stress (MPa)

P
ro

ba
bi

lit
y 

de
ns

ity
 (

pd
f)

 

Pore water pressure (MPa)

P
ro

ba
bi

lit
y 

de
ns

ity
 (p

df
) 

Vertical stress (MPa)

1.8(a) (b)

(c)

(e)

(d)

1.6

1.4

1.2

1.2

1.0

1.0

0.8

0.8

0.6

0.6

0.4

0.4

0.2
0.2

0.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.0

16
.0

0

12
.5

8

13
.0

5

13
.0

2

13
.4

7

13
.9

2

14
.3

7

14
.8

2

13
.5

2

13
.9

9

14
.4

6

10
.0

00

10
.3

95

10
.7

90

11
.1

85

11
.5

80

16
.5

5

17
.1

0

17
.6

5

18
.2

0

2.
.2

5

2.
78

3.
31

3.
84

4.
37

4.
90

Fig. 3. The probability distribution functions of the input parameters



Assessment of Uncertainties in Wellbore Stability Analysis 553

N
um

be
r 

of
 d

at
a

Reduction ofthe borehole radius (mm)

Mud pressure=3.8 MPa 
Std. dev=14.02
Mean=20.3 
N=500
500 of wellbore collapse

N
um

be
r 

of
 d

at
a 

Reduction of the borehole radius (mm)

Mud pressure=4.3 MPa
Std. dev=6.70 
Mean=14.8
N=500
490 of wellbore collapse

N
um

be
r 

of
 d

at
a

Reduction of the borehole radius (mm)

Mud pressure=5.3 MPa
Std. dev=2.32 
Mean=9.0
N=500 
95 of wellbore collapse

N
um

be
r 

of
 d

at
a

Reduction of the borehole radius (mm)

Mud pressure=5.5 MPa 
Std. dev=1.95
Mean=8.24
N=500
58 of wellbore collapse

N
um

be
r 

of
 d

at
a 

Reduction ofthe borehole radius (mm)

Mud pressure=6.1MPa 
Std. dev=1.15
Mean=6.54
N=500
13 of wellbore collapse

N
um

be
r 

of
 d

at
a 

Reduction of the borehole radius (mm)

Mud pressure=6.7MPa 
Std. dev=0.7 
Mean=5.39
N=500
0 of wellbore collapse

300

250

200

100

0

150

50

300

250

200

100

0

150

50

300

250

200

100

0

150

50

300

250

200

100

0

150

50

300

250

200

100

0

150

50

300

250

200

100

0

150

50

10.0

10.0

8.0

6.0

6.00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00
21.00

6.00
6.50

5.00
5.50

7.00
7.50
8.00
8.50
9.00
9.50
10.00
10.50
11.00
11.50
12.00
12.50
13.00
13.50
14.00

6.00
6.50

5.00

4.00
4.50

5.50

7.00
7.50
8.00
8.50
9.00
9.50
10.00
10.50

12.0
14.0
16.0
18.0
20.0
20.0
24.0

10.0

20.0
30.0
40.0
50.0
60.0
70.0
80.0

20.0

15.0

25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0

90.0
100.0
110.0
120.0
130.0
140.0

Fig. 4. Histogram plots for wellbore compressive failure (lower mud pressures)



554 Y. Sheng et al.

Change in borehole radius (mm)

Mud pressure = 10.1 MPa

0 of lost circulation 

Std. dev = 0.22

Mean = 0.67

N = 500 

80

60

40

20

0

Change in borehole radius (mm)

Mud pressure = 10.6 MPa

N
um

be
r 

of
 d

at
a 

13 of lost circulation

Std. dev = 0.22

Mean = 0.43

N = 500

-.00
.11

.22
.33

.44
.55

.66
.77

.88
.99

1.10
1.21

1.32
1.43

-.42
-.28

-.14
.00

.14
.28

.42
.58

.70
.84

.98
1.12

1.26

Change in borehole radius (mm)

Mud pressure = 11.0 MPa

65 of lost circulation 

Std. dev = 0.22

Mean = 0.25

N = 500

N
um

be
r 

of
 d

at
a

N
um

be
r 

of
 d

at
a

N
um

be
r 

of
 d

at
a

N
um

be
r 

of
 d

at
a

N
um

be
r 

of
 d

at
a

Change in borehole radius (mm)

Change in borehole radius (mm) Change in borehole radius (mm)

Mud pressure = 11.1 MPa

90 of lost circulation

Std. dev = 0.22 

Mean = 0.20

N = 500

Mud pressure = 11.6 MPa

284 of lost circulation

Std. dev = 0.23

Mean = -0.03

N = 500

Mud pressure = 12.6 MPa

492of lost circulation

Std. dev = 0.24

Mean = -0.49 

-.72
-.70

-.58
-.42

-.28
-.14

-.00
.14

.28
.42

.58
.70

.84

-.70
-.84

-.98
-.58

-.42
-.28

-.14
.00

.14
.28

.42
-.70

-.84
-.98

-1.12
-1.28

-1.40
-.58

-.42
-.28

-.14
.00

.14
.28

.42.58
.70

.84

.98 -.60
-.48

-.36
-.24

-.12
-.00

.36
.24

.12
.48

.60
.72

.84

80

60

40

20

0

80

60

40

20

0

80

60

40

20

0

80

60

40

20

0

80

60

40

20

0

N = 500

Fig. 5. Histogram plots for wellbore tensile failure (higher mud pressures)



Assessment of Uncertainties in Wellbore Stability Analysis 555

circulation as a function of the mud weight at the depth of interest, as shown
in Fig. 6. The left section of the curve represents the possibility of avoiding
wellbore collapse while mud weight is kept at a lower range. While increasing
mud weight till 6.7 MPa and beyond, where there is no possibility of wellbore
collapse, the curve in Fig. 6 will turn into the measure of the likelihood of
avoiding lost circulation. The range of safe mud weights to maintain wellbore
stability lies between the wellbore collapse pressure and the lost circulation
pressure. As demonstrated in Fig. 6, the horizontal line spans the range of mud
weights that will simultaneously provide at least a 95% certainty of avoiding
both collapse and lost circulation. This is because there is a greater than 95%
certainty of avoiding collapse provided the mud weight is above 5.8 MPa. At
the same time, there is a 95% certainty of avoiding lost circulation provided the
mud weight is less than 10.7 MPa. The analysis result suggests that optimum
stability can be achieved by manipulating a static mud weight between the
lower bound value of 5.8 MPa, to upper bound value of 10.7 MPa.

The analysis carried out for the example of a deepwater well in this re-
search revealed that there were substantial uncertainties in the predictions of
the borehole instability, which can be identified by the probabilistic approach.
It may be cost-effective, given the possible benefit, to acquire the data nec-
essary to reduce those uncertainties. For example, as suggested in [15, 17],
acquisition of good leak-off test data, including a careful determination of
shut-in or fracture closure pressure, can be extremely valuable for a quantita-
tive assessment of the risk associated with raising mud weight to address hole
instabilities. The fact that the uncertainty in the predicted mud weight had
multiple sources means that considerable additional effort would have to be
devoted to improving the predictions, including the acquisition of real time
data to improve the model while the well is drilled.
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7 Conclusions

Significant uncertainties are involved in the predictions of the safe range of
mud weights appropriate to avoid wellbore stability problems due to a number
of factors, the most important of which are uncertainties in the acquisition of
the geomechanical and operational parameters. Therefore, it is only possible
to assess these uncertainties in terms of probabilistic approaches in order to
reduce the risk of later drilling problems.

The earlier discussion illustrates a new approach to predict the required
mud weights to avoid wellbore stability problems and also assess the uncer-
tainty in those predictions. The advanced features of this approach that differ
from previous methods are that it utilizes the probabilistic method in con-
junction with numerical modelling techniques which allows determination of
the uncertainties in both the collapse and the lost circulation pressures. The
uncertainty introduced by using analytical solutions to the wellbore failure
problems has been significantly reduced by employing an advanced numerical
method. This approach also provides a measure of the effects of uncertainties
in each of the input parameters on the instability predictions, thereby pro-
vides a recommendation for data acquisition that could be implemented in the
course of drilling the well to reduce the uncertainty further. Analysis of the
degree of risk to a well in deepwater illustrates the importance of knowing the
magnitudes of the in situ stresses, the pore pressure, and the rock strength.
Furthermore, they show that if it is possible to define the uncertainties in
these parameters, it is possible to use that knowledge to define uncertainties
in the predictions of required mud weights. The method can be applied over
large intervals of open hole, where the lowest mud weight to avoid collapse and
the highest mud weight to prevent lost circulation can be calculated indepen-
dently for the worst case depth in each instance. This approach can definitely
be modified and adopted in a pre-drilling design to predict the optimum mud
weight windows and reduce the risk associated with the uncertainties in the
wellbore stability problems.
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