Chapter 9

Diagnosis and reconfiguration
of quantised systems

Quantised systems are continuous-variable systems whose sensor and actu-
ator signals can only be accessed through quantisers that produce symbolic
state or event sequences. Hence, quantised systems have a discrete-event
behaviour. This chapter shows how quantised systems can be represented
by stochastic automata and how state observation, diagnostic and control
problems can be solved. First a stochastic automaton is set up so as to
represent the discrete-event behaviour of the quantised system completely.
Second the given analysis and design problems are solved for the automa-
ton by means of the methods that have been developed in Chapter 8.

9.1 Introduction to quantised systems

9.1.1 Supervision of hybrid systems

The preceding chapters have considered either continuous-variable systems, which
have real-valued signals and can be described by differential or difference equa-
tions, or discrete-event systems, which have signals with symbolic values and can
be described by automata, Petri nets or similar models. This chapter is devoted to an
important class of systems, in which both continuous and discrete phenomena have
to be taken into account. Such systems are called hybrid systems.

The mixture of discrete and continuous signals and discrete and continuous forms
of the models used is typical for supervisory control tasks and plays a particular role
in diagnosis and fault-tolerant control. Nevertheless, hybrid systems have attracted
substantial interest only during the last ten years and only preliminary results are
available for their supervision and control.
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Fig. 9.1. Quantised system

Structure of quantised systems. The main problems in dealing with hybrid sys-
tems result from the different ranges of the signals. These problems are investigated
in this chapter for quantised systems depicted in Fig. 9.1. The relation between the
different signal ranges are represented by quantisers and injectors. The quantiser
transforms a real-valued signal into a sequence of symbols, where the real-valued
signal or signal vector is denoted by a lower-case letter like w or y and the cor-
responding quantised signals by [u] or [y], respectively. If, in the simplest case,
the quantiser decides to which real interval of a given set of intervals the current
value y(t) belongs, the value of the quantised signal [y(t)] at the time instant ¢ is
the number of the corresponding interval. This interval can be associated with sym-
bolic names like “normal”, “high” or “low”, which give a semantic signal value. As
long as the signal does not leave a given interval, the quantised value remains the
same. Hence, a continuous change of y(¢) is transformed into a sequence of dis-
crete changes of [y(¢)], which shows that the quantiser can be used as an interface
between real-valued and symbolic signals.

The injector carries out the inverse mapping. Its input is a symbolic signal like
[e], which is associated with a real-valued signal e. An example is given in Fig. 9.1,
where the injector associates to a symbolic fault [e] the real-valued fault input e.

The relation between [e] and e can be either deterministic where every symbolic
value is associated with a unique real value or non-deterministic where the associ-
ated real value is randomly selected from a given set of signal values or may vary
within this set as long as the symbolic value does not change. In any case, the injec-
tor is the interface from symbolic to real-valued signals.

Reasons for introducing quantisers and injectors. The question why quantisers
or injectors occur in the system has many answers:

o Measurement uncertainties: Many physical quantities cannot be precisely mea-
sured as, for example, the biomass concentration in bioreactors, substance con-
centrations in the liquid or the gaseous phase, the temperature in cement kilns or
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blast furnaces. Then, quantisers are introduced as a representation of systematic
measurement errors.

e Alarms: The abnormal behaviour of industrial plants is signalled by means of
alarm messages, which represent quantised signal values.

e Discrete actuators: Many industrial actuators can only be switched among a set
of discrete values rather than be varied continuously. For example, gas burners
are used in an on/off mode. This fact necessitates the introduction of an injector
that transforms discrete values [u] into the associated real input values u.

e Discrete control: Many industrial processes are controlled by programmable
logic controllers, which react on quantised measurements by prescribing discrete
input values. For example, the controller of an elevator does not know the lift
position precisely, but has only the information between or at which floor the lift
currently is.

e Switching system dynamics: The system dynamics switches if the input or state
exceeds certain bounds. An example is given by the tank system described in
Section 10.1 where the dynamical properties depend on whether the liquid levels
are above or below the height of the connecting pipes. According to this quanti-
sation of the levels k1 and ho the equations given on page 506 are valid in one
of the four possible configurations of existing or nonexisting flows through the
upper valves. Here, signal quantisation occur internally in the system. If brought
into the hybrid system structure depicted in Fig. 3.6, the discrete-event part of the
tank model switches the continuous model among the four different equations.

These arguments show that quantised systems occur naturally in the engineering
practice. However, in addition to the situations described above, injectors or quan-
tisers may be deliberately introduced for the following reasons:

e Uniformity of the system description: The mixture of differential equations for
the continuous-variable part and automata for the discrete-event part makes the
model of hybrid systems very complex. Therefore, it is reasonable to deal with
all signals uniformly as discrete-valued signals by introducing additional injec-
tors and quantisers. The considerable simplification of observation and diagnostic
problem due to this uniformity of the signals will become obvious in Sections 9.5
and 9.6.

¢ Information reduction: If the control aim concerns a global assessment of the
system behaviour, it is reasonable to use models that have direct reference to
these assessments. In the diagnostic problem considered in Section 9.6 the faults
occurring in the system changes the behaviour qualitatively. Therefore, quantised
information about the system behaviour is sufficient to identify the fault.
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e Reference to heuristic models: The experience of human operators refers to sub-
sets of the signal space rather than to specific signal values. Hence, this knowl-
edge considers continuous-variable systems as systems with quantised signal
spaces.

Quantised systems in fault-tolerant control. For systems subject to faults an ad-
ditional motivation comes from the fact that faults are, in general, quantised phe-
nomena. Obvious examples of faults concern broken wires, a leakage in a pipe, or a
valve that is stuck open or closed. However, even if the fault concerns a change of
some parameter, the controlled system will show an abnormal behaviour only if the
parameter change is large enough and cannot be compensated by the control loops
installed. Hence, also in this case a quantisation of the parameter changes into faulty
and non-faulty ones is reasonable.

In Fig. 9.1 the fault is, therefore, described by its qualitative value [e], which is
transformed into the actual real-valued fault parameter or fault signal by an injector.
Diagnosis has only to find the qualitative value [e] rather than the real value e.
Compared with the diagnosis of discrete-event systems investigated in Chapter 8
the qualitative value [e(ky,)] of the fault corresponds to a symbolic fault f(kj,) that
occurs at the given time kj,. Therefore, in the following, the qualitative fault [e] will
alternatively be denoted by the fault symbol f.

In summary, in many practical situations the relevant information used in super-
visory control is included in the quantised signal. The introduction of the injectors
and the quantisers aims at reducing the information and, in this way, at simplifying
the control task. It follows the guideline:

Many process supervision tasks can be solved with reasonable effort only if as
much information about the system as possible is ignored.

If a more global information about the system is sufficient to solve a given task,
then this global information should be used rather than the more detailed one. In the
quantised system approach the resolution of the injector and the quantiser can be
used to adapt the “granularity” of the information used by the supervisor to the task
to be solved.

9.1.2 The quantised system approach to supervisory control

A quantised system represents a dynamical system with real-valued signals that can
only be measured through quantisers (Fig 9.1). Instead of the real-valued input u (k)
and output y(k) only the quantised signal values [u (k)] and [y(k)] are available. All
tasks that will be considered in this chapter should be solved by using the quantised
signals only.

With respect to the general hybrid system shown in Fig. 3.6, the discrete-event
subsystem is missing here. This simplification is made in order to emphasise the
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main problems that occur in the situation that a continuous-variable system has to be
supervised by using symbolic information only. It will be shown that the quantised
system can be described by a discrete-event model, which includes the continuous-
variable subsystem together with the quantisers and injector. Therefore, the exten-
sion to hybrid systems can obviously be made by combining this discrete-event
model of the quantised system with the model of the discrete subsystem.

The way how process supervision tasks can be solved for quantised systems will
be explained in this chapter by considering two important problems: the observa-
tion of the quantised state of the system and the diagnosis of faults. The following
presents the problems to be solved together with a brief outline of the way of solu-
tion, which will be explained in Sections 9.5 and 9.6. The quantised systems con-
sidered here are discrete-time systems where the time k refers to the k-th sampling
time.

State observation. State observation concerns the problem of determining the in-
ternal state of a dynamical system from the input and output measurements. For
continuous-variable systems the main idea is to use a LUENBERGER observer that
determines an approximation & of the continuous state . However, the applica-
tion of these results is possible only if the systems input and output are measured
quantitatively and if the model has the form of differential or difference equations.

For the quantised system, only symbolic input and output information is available,
but a similar state observation problem can be posed. The measurement information
yield the sequence of quantised input values

[U(0... k)] = ([w(0)]; .., [u(kn)])

and the sequence of quantised output values

[Y(0...kn)] = ([y(0)], ..., [y(kn)])-

Due to the more abstract measurement information the task is to reconstruct the
qualitative state [«] rather than the real-valued state . The observation problem can
be stated as follows:

Problem 9.1 (Observation problem for quantised systems)
Given: Sequence of quantised input values.
Sequence of quantised output values.
Model M of the quantised system.
Find: Current qualitative state [x(kp)].

The algorithm presented in Section 9.5 estimates the probability
Prob([z(kn)] | [U(0 .. kn)], [Y (0... k)

that the qualitative state has the value [x(k;)] under the condition that the given
input and output sequences occurred. The current qualitative state belongs to the set

X (kp, | kn) = {[x(kn)] - Prob([z(ka)] | [U(0 ... kp)], [Y (0. kn)]) > 0}, (9.1)
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Fig. 9.2. State observation of quantised systems

where the notation X (ky, | k) means that the state at time k, is reconstructed for
given qualitative input and output sequences up to time ky,.
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Fig. 9.3. Diagnosis of quantised systems

Process diagnosis. The diagnostic task for quantised systems concerns the problem
of finding the symbolic fault value f from the quantised measurement sequences:
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Problem 9.2 (Diagnostic problem for quantised systems)
Given: Sequence of quantised input values.
Sequence of quantised output values.
Model M of the quantised system.
Find: Fault f(ky) = [e(kp)].

The algorithm presented in Section 9.6 estimates the probability

Prob(f (kn) [[U(0... k)], [Y (0. kn)])

that a fault f(kp,) = [e(kp)] has occurred provided that the quantised system with
qualitative input sequence [U (0 ... k)] has produced the qualitative output sequence
[Y(0... kx)]. In on-line applications, this task is solved for increasing time horizon
kr = 1,2, ... and leads to the set

Flkn | k) = {F (k) = Prob(f(kn) | [U(0... k), [¥Y (0. ka)]) > 0} (9.2)

of fault candidates.

9.2 Quantised systems

9.2.1 Continuous-variable system

The core of a quantised system is the continuous-variable discrete-time system
w(k+1) = g(x(k) u(k), =(0)ecX (9.3)
y(k) = h(z(k), u(k)) 9.4)

with input vector u € IR™, output vector y € IR" and the vector of the internal
state x € IR™. &y C IR™ is the set of initial states that the system can assume. If
x(0) is known, this set is a singleton. However, as the state x is not measurable, Xy
is usually a subset of the state space IR™.

It is assumed that for any initial state (0) € Xy and input sequence

UQ...kp) = (u(0),u(1), ..., u(kp))

Egs. (9.3), (9.4) generate a unique state and a unique output sequence
X(0...kp) = (x(0),2(1), ..., x(kn))
Y(O..kn) = (¥(0),y(1), ... y(kn)),

which are considered over the time interval [0, k).
If the system is linear, Egs. (9.3), (9.4) have the form

x(k+1) = Ax(k)+ Bu(k), xz(0) € A} 9.5)
y(k) = Cxz(k)+ Du(k) 9.6)
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with matrices A, B, C and D of appropriate dimensions. Then, explicit solutions
are known:
k-1
x(k) = Afz(0)+ ) A"''Bu(i)
i=0
k—1
y(k) = CA*z(0)+> CA*"'"'Bu(i) + Du(k).
i=0
Faults occurring in the system are described by an additional input signal e(k) €
IRP, which for the time horizon kj, is given by the sequence

EQO...kp) = (e(0),e(1), ..., e(kp)) .
Accordingly, the state-space model has to be extended to become
z(k+1) = g(xz(k),u(k),e(k)), =(0)e Xy 9.7)
y(k) = h(z(k), uk),e(k)). 9.8)

For any given input and fault sequences U and F this system is assumed to generate
unique state and output sequences X and Y.

9.2.2 Quantisation of the signal spaces

The continuous-variable system is considered in quantised signal spaces. The quan-
tisers introduce partitions of the signal spaces IR™ and IR" into a finite number
of disjoint sets Q,(v) (v € N, = {0,1, ..., M}) and Qy(w) (w € N, =
{0,1, ..., R}), where Q,(v) or Q,(w) denote the set of input values u or out-
put values y with the same quantised values v or w. The mapping invoked by the
quantiser is symbolised by [-]:

[ul=v <= wuec9,[) 9.9)
Y =w <= yeg,(w). (9.10)

The numbers v or w are called the quantised values or the qualitative values of
the input or output, respectively, and [u] or [y] the qualitative input or qualitative
output.

The sets Q,,(v) (v # 0) and Q,(w) (w # 0) are assumed to be bounded while
Q.(0) and Q,(0) are the unbounded “remaining” subsets of IR™ or IR", respec-
tively.

For discrete input or output, the quantisation is equivalent to the enumeration of
the discrete signal values. For the tank system introduced in Section 2.1 the input
Pos(V7) has two values, which are denoted by 1 and 0: [Pos(V7)] € {0,1}.

In order to get a concise model of the quantised system, it is reasonable to in-
troduce a quantisation of the state space IR™ into the partitions Q,(¢) (¢ € N, =
{0,1, ..., N}) with

2] =¢ < @€ Q.(0).
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The number ¢ of the partition Q,(¢) to which the current state a belongs is called
the qualitative state (although it is, more precisely, the qualitative value of the state).
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Fig. 9.4. Partition of a two-dimensional state space of the tank system

Figure 9.4 shows an example for the partition of the two-dimensional state space
of the tank system. The grey region includes all states = (hy, ha)’" with the same
qualitative value [x] = 7. The two-dimensional state space outside the nine parti-
tions constitutes the unbounded partition Q;(0).

A consequence of the introduction of the quantiser is the fact that no distinction
can be made between different input, state and output values that belong to the same
region Q,(v), Q.(¢) or Q,(w). In an application, the regions have to be chosen
in such a way that it does not matter for the solution of the process supervision
task which real-valued input, state or output of a given region really occurs. The
input or output quantisation may be given by practical circumstances, for example,
by the sensor locations. The state quantisation can usually be arbitrarily chosen,
which gives the possibility to adapt this quantisation to the dynamical phenomena
that occur in the system.

Fault injector. The injector shown in Fig. 9.1 transforms the qualitative fault value
[e] into a real-valued signal e. This transformation can be considered as the inverse
operation of quantisation. Every qualitative value f = [e] is associated with a par-
tition Q. of the signal space IRP of the fault signal e. As only the qualitative fault
value f is assumed to be known, the fault signal e is only known to belong to the
partition Q.(f):

el =f <= ec.(f)

In the example considered in the following section the leakage in a tank is de-
scribed by the flow constant ¢y of a hole which is partitioned into two intervals.
The first inverval represents a very small leakage that is considered as negligible
(faultless) and the second interval corresponds to the fault.
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Fig. 9.5. Two-tank system with quantised level measurement

Example 9.1 Quantised two-tank system

Consider the tank example introduced in Section 2.1 and assume that the sensors give only
quantised information (Fig. 9.5). That is, the sensors merely signal whether the liquid level is
above or below their position. The result is a quantised measurement information for the tank
levels hi and h2 and the outflow qas of Tank 2. The quantisation intervals are summarised in

Table 9.1.

Table 9.1 Signal quantisation

[h]=1 if Om <hs<02m S LS2=0

] =2 if 02m <hy <0.4m & LS2=1ALS1=0
] =3 if 0.4m <hy <0.6m S LS1=1

[ha) =1 if Om <hs<0.1m S LS4=0

[ha] =2 if 0.lm < hy < 0.2m S LS4=1ALS3=0
[ha] =3 if 0.2m < hs < 0.6m S 1S3=1

[gre] =1 if 01/min < gy < 31/min

l[gv] =2 if 31/min < gy < 61/min

l[gm] =3 if 61/min < gpr < 101/min

With this quantisation, the input and output of the tank system have the signal values sum-
marised in Table 9.2. The two quantised level measurements [h1] and [h2] yield the partition
of the output space. Every region [(h1, h2)] € {1, 2, ..., 9} corresponds to one combination
of quantised values for [h1] and [h2]. In the following either the quantised level measurement

[(h1, h2)] or the quantised outflow [gas] is used as quantised output. O
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Table 9.2 Quantised input, output and faults of the tank system

‘ Symbol ‘ Value set ‘ Meaning
Inputs
[Va2] {1,2} Connecting valve closed for [Vi2] = 1, open for [Vi3] = 2
[up] {1,2} Pump off for [up] = 1, nominal velocity for [up] = 2
Outputs
[h1, h2) {1,2,...,9} | Quantised level of the tanks
[gnr] {1,2,3} Quantised outflow of Tank 2
Fault
[er] | {1,2} | No leakage for [cz] = 1, leakage for [c1] = 2

9.2.3 Behaviour of quantised systems

In the succeeding investigations the main ideas of modelling quantised systems and

observing the qualitative state of such systems will be explained without reference

to possible faults. Therefore, the faultless system (9.3), (9.4) will be considered.
The behaviour of the quantised system is the set of all I/O pairs

(U0 .. kn)], [Y (0. kn)])

that are consistent with the system dynamics and the signal quantisation. As the
qualitative input and output are considered, the behaviour is also referred to as the
qualitative behaviour of the system (9.3), (9.4):

Byt (k) = {([U(0 ... kp)], [Y(0... k)]) : Egs. 9.3), 9.4) hold}.  (9.11)

As all measurements are qualitative, the initial state of the system is considered on
the qualitative level of abstraction as well. This is why all the following investiga-
tions concern the set of those qualitative I/O pairs that the quantised system can gen-
erate for a qualitatively given initial state. If the qualitative initial state (0) = [x(0)]
is precisely known, Xy = Q,(¢(0)) holds. If the qualitative initial state is unknown,
the set A} is the union of several state partitions Q,(¢) or Xy = IR™ holds.

In order to get a better imagination of the qualitative behaviour By, note that for
the elements of the I/O sequences the relations

[wk)] e N, = {0,1,.. M} (9.12)

y(k) eN, = {0,1,.., R} (9.13)
and, hence,

[U(0...kp)] € NP = Ny x Ny x o x Ny (9.14)

[Y(0...kp)] € N = Ny x Ny x .. x N, (9.15)

hold, where the Cartesian products on the right-hand side include the given sets
kp+1 times. Consequently, the qualitative behaviour is a subset of the Cartesian
product of N+ and N
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Bauai(kn) € N s N1 9.16)

The number of elements of this product is ((M +1) - (R+1))*#* If, for exam-
ple, only 3 qualitative input and 4 qualitative output signals are considered and the
time horizon is k;, = 4, this number is 160, 000. The behaviour Bqua1(kh) selects
for a given time horizon kj, those elements out of this large set, which are consis-
tent with the system. How large this number of elements is depends on the system
properties. If the system were deterministic (which it is generally not as described
below), it would generate a unique output sequence [Y (0 ... kp,)] for every given in-
put sequence [U (0 ... kp, )] and initial state. In the given example, 243 different input
sequences [U (0...4)] exist, which lead to the same number of elements of Bguai(4)
for every initial state.

If later a faulty system is concerned, the behaviour is represented by all triples
([U],[E],[Y]) that are consistent with the system (9.7), (9.8), the quantisers and
the injector. It is given by

Bqual(kh) -
(U0 .. k)], [E(O0 ... k)], [Y (0 ... k)]) = Eq. (9.7), 9.8) hold}. (9.17)

Non-determinism of the qualitative behaviour. An important issue is the fact
that it is impossible to predict the qualitative output sequence of a quantised sys-
tem unambiguously for given qualitative initial state and qualitative input. The set
Bguai (kr) includes, in general, more than one element ([U],[Y]) with the same
qualitative input sequence [U]. The reason for this is given by the fact that the sys-
tem (9.3), (9.4) may start from any initial state x(0) with the given qualitative value
¢(0) = [x(0)] and may obtain any input sequence U which is only described by
the qualitative sequence [U]. For these sets of initial states and input sequences, the
resulting output sequences Y yield, in general, different qualitative sequences [Y].
This phenomenon is referred to as the non-determinism of the qualitative behaviour.

0 0.2 h,inm 0.4 0.6

Fig. 9.6. Sets of states reached by the tank system for qualitative
initial state £ (0) € Q(7)
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Example 9.2 Non-determinism of the qualitative behaviour of the tank system

The reason why the qualitative behaviour is non-deterministic is illustrated by Fig. 9.6, which
shows the set of state trajectories X of the tank system for the initial quantised set of states
[(h1,h2)'] = 7. At time k = 0 the tank system may assume any state in the region 7
of the partitioned state space, because the initial state is only qualitatively known. For time
k = 1,2, 3, the system may be in any state of the succeeding regions, which were determined
for constant input [V12] = 2 and [up] = 2. The important point is that these regions overlap
with more than one state partition. Hence, the system generates different qualitative state
trajectories

[(X] = ([z(0)], [z (V)] [#(2)]; [2(3)], ),

for example

(X(0..3)] = (7,8,8,8)
(X(0..3)] = (7,4,4,4)
[X(0..3)] = (7,5,8,8)
[X(0...3)] (7,8,9,9)

and, hence, different output trajectories. If, for example, the output is identical to the second
level ha, the quantised output sequences are

[Y(0..3)] = (3,3,3,3)
[Y(0..3)] = (3,2,2,2)
Y(0..3)] = (3,23,3),

where the output y = ho with three qualitative values has been used. Figure 9.7 shows a
graphical representation of the set of qualitative state sequences.

o0 o0o0o0ggn o o0o0ooggn
xggJ AN n g nnnnnnin
e J0O0OU00OU0OU 7R 00000000
g0 00000000 000000000
5000000000 g0 R0d00dnononoan
4000000000 e 000000000
sy U0 UU0U00000 gy U0 U0UOUOOOO
2000000000 22000000000
1100000000 1100 000o0o0o0anu
0 10 seconds 30 40 0 10 seconds 30 40
o O0o0oogugn o O0mnnnnnnil
xeeJgougoooonnm xR U0OD0OO00OOO
7B U0U00OD0O0O0000U 7R U0O00O0O000OOO0
g0 00000000 000000000
s JUUJURRRO0 35000000000
40D 00000 e4000000O00O0OO0
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Fig. 9.7. Four quantised trajectories of the tank system for the same
quantised initial state [zo] = 7 and constant input [Vi2] = 2, [up] = 2
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This example shows that the non-determinism occurs because a bundle of trajectories has
to be considered rather than a unique trajectory. This bundle starts in the common qualitative
state [xo] = 7 and has a common qualitative input sequence. The trajectories of this bundle
generate different qualitative sequences [Y'] and, hence, the qualitative output sequence can-
not be predicted unambiguously for given qualitative input sequence and qualitative initial
state.

&
level 1
e

25 3 35 ) 05 1 2 25 3 35

15 2 15
time in minutes. time in minutes.

Fig. 9.8. Two different quantised trajectories of the tank system
starting in the same quantised initial state [zo]

Figure 9.8 shows how this non-determinism becomes obvious in experiments with the tank
system. In contrast to Fig. 9.7, Fig. 9.8 shows the two quantised tank levels rather than the
enumerated state. The two parts of the figure concern two experiments, in which the ini-
tial liquid levels are qualitatively the same, but differ quantitatively. The thin lines show the
quantitative tank behaviour. Obviously, the resulting qualitative trajectories are different.

This phenomenon has a direct consequence concerning the assertions that an experienced
human operator can make about the tank system. If asked about the qualitative tank levels at
time £ = 1 under the assumption that the qualitative initial state is 7, the operator can only
predict a set of qualitative levels rather than a unique one. This is, because the operator has
merely the qualitative knowledge that Tank 1 has initially a low level k1 and Tank 2 a high
level h2. The uncertainty of the knowledge about the future tank level is not based on insuffi-
cient knowledge about the dynamics of the system under consideration but on the uncertainty
of the initial levels in both tanks resulting from the quantised information available. O

The example makes it obvious that the quantised system behaves like a stochas-
tic process. The initial state x(0) can be assumed to be chosen randomly among
all initial states with the given qualitative value ((0) = [«(0)]. In a more general
experiment, also the input sequence U can be chosen randomly among all input
sequences with a fixed qualitative value [U]. For each of these initial states and in-
put sequences the system generates a unique qualitative output sequence [Y'], but
since the initial state and the input vary from experiment to experiment so do the
qualitative output sequences. No unambiguous prediction of [Y'] can be made, but
some probabilistic prediction is possible. Such a prediction will be considered in
Section 9.4, where a stochastic automaton will be set up that generates a probability
distribution for all the qualitative output values generated by the quantised system.
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9.2.4 Stochastic properties of quantised systems

In the following, the set X of initial states x( considered is assumed to be qualita-
tively given. That is, it is the union of one or more state partitions @ (¢). The initial
state is assumed to be randomly distributed over Xy. Under these circumstances,
consider the probability

Prob([Y (0... k)] | [U(0... k)], Xo)

with which the qualitative output sequence [Y'] occurs for a given qualitative input
sequence [U] and qualitatively given initial state set X;. This probability charac-
terises how often the I/O pair ([U], [Y']) occurs if the probability of the occurrence
of [U] and, moreover, the probability of the initial state 2(0) € X} are known. Note
that the dependency of Prob([Y (0... k)] | [U(0... ky)], Xo) upon x(0) is given
implicitly by Eqgs. (9.3) and (9.4).

To better understand the meaning of this probability, assume that the initial
state (0) is known to belong to one state partion QQ,((p) for given (y. Then
Prob([Y (0... k)] | [U(O... kp)], Xo) says how often [Y] occurs for a given input
sequence [U] if many experiments are made with the system starting in the same
initial state y € Ap. If a specific I/O pair ([U],[Y]) never occurs, because the
system cannot follow the qualitative output sequence [Y'] for the qualitative input
sequence [U] and for some initial state x(0) € X), then

Prob([Y (0... kp)] | [U(0... k3)], Xo) = 0

holds. Other I/O pairs may occur with different frequencies, which lead to positive
probability values.

If this probability should be determined, the “experiments” considered just now
have to be investigated in more detail. Since [U] is the input to the quantised sys-
tem whereas [Y'] describes the effect of this input together with the initial state, the
input U and the initial state «(0) have to be varied from experiment to experiment
within the given sets of qualitatively equivalent input sequences and initial states.
As the frequency, with which a certain output sequence Y occurs, also depends on
how often a certain input sequence U and initial state 2(0) is chosen, the probabil-
ity distribution of these variables have to be fixed. This can be done, in principle,
in an arbitrary way. To understand the following investigations, it can be assumed
that uniform probability distributions are used. Then every value x(0) that belongs
to the set Ay occurs with the same probability. The same holds for the input se-
quences. However, the following investigations are valid for arbitrary probability
distributions.

The experiments to be made have to bring the system in the chosen initial state
2(0) and to determine the qualitative system trajectory [Y (0... kp,)] for the chosen
input sequence U (0 ... ky,). After all experiments have been made, the relative fre-
quencies of the occurrence of the different qualitative output sequences [Y'] give the
(approximate) value of the probability Prob([Y (0... k)] | [U(0... k)], Xo) to be
found.

With this probability, the qualitative behaviour of the quantised system defined in
Eq. (9.11) can be expressed in the form
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Bqual (kn) (9.18)
= {[U0 ... kp)), [Y(0... k)] : Prob([Y (0... k)] | [U(0 ... kp)], Xo) > 0}.

As the number of elements of Byyai (k) is very large (cf. Section 9.2.3), it is not
possible to graphically illustrate the probability of the I/O pairs. However, it is often
more interesting to know with which probability a specific qualitative output value
[y(kn)] occurs. This probability can be obtained as boundary probability

Prob([y(kn)] | [U(0... kx)], Xo) (9.19)
- > Prob([Y(0...kn)] | [U(0... kn)], Xo)
[Y(0...ky —1)]

= Z PI"Ob([y(O)],..., [y(kh>] ‘ [U(O"-kh>]’XO)7
[y (O)], ., [y(kn —1)]

where the summation is made over all elements [y(k)] of the output sequence with
the exception of the last element [y (ky,)]. This probability is depicted in Fig. 9.9 for
the tank system with y = @ = (hy, hy)’. This figure summarises the information
given by the four state sequences depicted in Fig. 9.7 and associates these sequences
with the probability of their occurrence. The darker the rectangles are, the higher
is the probability. White rectangles show that the corresponding qualitative output
value cannot occur at the corresponding time instant.
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Fig. 9.9. Statistical properties of the tank system

Markov property. The probability considered so far concerns sequences of quali-
tative input and output values of arbitrary time horizon kj,:

Prob([y(0)], [y(D)], ., [y(ka)] [ [w(0)], [w(D)], ..., [u(kn)], Xo)-

As these sequences may be arbitrarily long, it is impossible to store all the probabil-
ity distributions,

Prob([y(0)] | [u(0)], X0)
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Prob([y(0)], [y(D)], .. [y(kn)][ [w(0)], [u(1)], .., [w(kn)], Xo)

for all arguments. Therefore, it is interesting to known whether it is possible to de-
termine these probability distributions recursively, where the probability distribution
obtained for the time horizon kj, is determined from the probability distribution for
the time horizon k; — 1. Similarly, the probability considered in Eq. (9.19) should
be determined from the probability of the output [y(k — 1)].

Such recursive representations are possible, if the system possesses the Markov
property. Then a transition probability p,, exists with which the probability for time
kj, can be obtained from the probability of time k — 1.

In general, dynamical systems possess the Markov property with respect to the
state x although this property does not hold with respect to the output y. This be-
comes obvious from Eq. (9.3),

2(k+1) = g(@(k), uk),  (0) € Xo

where the state transition is represented by the function g. This equation says that
the state at time k41 can be unambiguously determined from state (k) without the
knowledge of the states x(k — 1), (k — 2) etc. occurring in the further history of
the system. In a probabilistic setting, the probability of the state transition is one for
the pair of states (x(k + 1), x(k)) that occur in this equation together with the input
u(k) and it is zero for all other pairs.

For the quantised system, the state  is replaced by the qualitative state [x]. The
Markov property would make it possible to represent the probability Prob([x(k+
1)]) in dependence upon Prob([x(k)]). Then the relation

Prob([x(k+1)]) = g(Prob([z(k)]), Prob([u(k)])) (9.20)

would hold for some function g. However, in general, a quantised system does not
possess the Markov property and, hence, such a recursive representation does not
exist. This has severe consequences for the solution of the modelling task which
will be investigated in the next section:

As the quantised system does not possess the Markov property with respect to the
quantised input, state and output signals, every model that possesses the Markov
property, can only be an approximate representation of the quantised system.

Example 9.3 Violation of the Markov property by the tank system

In order to explain why generally quantised systems do not possess the Markov property,
Fig. 9.10 shows the movement of the initial set of states X of the tank system in the quantised
state space for the constant input [V12] = 2 and [up] = 1. Since the qualitative initial state is
assumed to be [z(0)] = 3,
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Fig. 9.10. Discussion of the Markov property of the quantised system

XO - Qz (3)a

the initial state & (0) lies in the partition denoted by Xo. The sets X1 and X are the sets of
successor states (1) and x(2) that can be obtained by the model given in Section 2.1. Ob-
viously, [z(1)] € [X1] = {5,6,8,9} and [z(2)] € [X2] = {4, 5, 8} hold. These results are
obtained from a quantisation of the trajectory bundle of the continuous-variable system (9.3)
that starts in the partition Q(3).

Now consider what a qualitative model of the form (9.20) can do. As the input is constant,
the system can be considered as autonomous with the simpler model

Prob([z(k+1)]) = §(Prob([x(k)]))
For k£ = 0 and Prob([x(0)]=3) = 1 the function g yields

Prob([z(1)]=8) = 0.11, Prob([z(1)]=9) = 0.06
Prob([z(1)]=5) = 0.78, Prob([z(1)]=6) = 0.05

which is related to the relative overlap of the set X1 with the partitions Q. (5), Q,(6), Q(8)
and Q(9) (for a detailed analysis cf. Section 9.4). For k& = 1 the function g has to determine
Prob([z(k+1)]) by using this result only. As this function does not know that the system
has started at £ = 0 in the set Q- (3), it assumes that the state can lie anywhere in the sets
Q.(5), Q4(6), Q4(8) and Q,(9) whose union

[X1] = Q2 (5) U Qx(6) U Q2(8) U Q:(9)

is depicted in medium grey in Fig. 9.10. Therefore, the function g concerns the mapping of
this set, which results in the light grey set in Fig. 9.10 which conservatively overapproximates
the true set Xo = g(g(Xo)) denoted by g([X1]). The light grey set intersects with the re-
gions 4, 5, 8 and 9 of the partitioned state space. Consequently, g yields a positive probability
Prob([z(2)] =9) > 0 although the set X2 does not intersect with Q,(9) and, hence, the
correct result is Prob([z(2)]=9) = 0.

The reason for the “error” in the calculation with the model 9.20 is the missing Markov
property. The example demonstrates that with the additional knowledge about [2(0)] the de-
termination of [z (2)] is better compared to the determination based on the information about
[x(1)] only. In contrast to this, the Markov property requires that this additional knowledge
has no effect. O
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9.3 A behavioural view on the process supervision problems for
quantised systems

As the Fig. 9.2 and 9.3 show, the observation and the diagnostic methods have access
to the I/O pair [U(0... k)] and [Y (0 ... kp,)] of the quantised system. The observa-
tion problem is solved by looking for qualitative states [x(kp,)] for which the given
I/O pair may occur. In general, the solution will not be unique but represents a set
Z(kp, | kp) of such qualitative states. The diagnostic problem is solved by searching
for all faults f(kj,) for which the given I/O pair may occur. It yields the set F (k)
of fault candidates.

Note that in both problems, the distinction between input and output is of no im-
portance. Both sequences included in the I/O pair together provide the information
about the current movement of the quantised system used when solving the obser-
vation or diagnostic task. It has only to be known which I/O pairs may occur and
which I/O pairs may not occur. It is just the information provided by the behaviour
Bgua of the quantised system. Any model of the quantised system used when solving
the observation or diagnostic task should provide this information.

[U] x [Y]

B

qual

*C

Fig. 9.11. Behaviour By,

The behaviour Bqual(kh) for given time horizont k;, has a nice graphical inter-
pretation, because it is a subset of the Cartesian product of the sets of sequences
[U(0... k)] and [Y(0... kp)] (cf. Eq. (9.16) and Fig. 9.11). Qualitative I/O pairs
([U(0... k)], [Y (0... k)]) for which the relation

([U(0...kn)], [Y(0... kp)]) € Bgua(kn)

is valid are called consistent with the quantised system. For example, the I/O pair
symbolised by the point A is consistent with the quantised system whereas the I/O
pair C'is inconsistent.

State observation of quantised systems. From the behavioural viewpoint, the ob-
servation problem consists in determining those qualitative state sequences

[(X(0... kn)] = ([ (0)], [2(1)], .., [@(kn)])

that may occur for the measured input sequence [U (0 ... k)] and may produce the
measured output sequence [Y (0 ... k1, )]. Then the I/O pair is called consistent with
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Fig. 9.12. Consistency-based observation and diagnosis

the behaviour that occurs for the initial state (; = [(0)] and (p is a possible quali-
tative initial state and [x(k},)] a possible qualitative state at time ky,.

In more detail, assume that, as in Fig. 9.12, three different behaviours are given,
which represent the quantised system for three different qualitative initial states
Xo = Q:(C01), Xo = Qu(Co2), and Xy = Q. ({p3). If the measured /O pair
corresponds to point A, it is consistent with Bguai1, which implies that the qualita-
tive initial state is found to be (p;. If C' or D are measured, the qualitative initial
state (g2 or (p3 are uniquely determined. The point B illustrates that the observation
problem may not have a unique solution. The I/O pair represented by B is consis-
tent with two behaviours and, hence, the quantised system may have one of the two
qualitative initial states (o1 and (ps.

Fault diagnosis of quantised systems. The same way of solution is used for the
diagnostic problem with the only difference that the quantised system is now sub-
ject to the fault sequence E. Then, the behaviours Bguai1, Bquaiz and Bguas used in
Fig. 9.12 show the sets of triples

([U0...kp)], [E(0... kp)], [Y(0... kp)])

that are consistent with the quantised system for three different qualitative initial
states. In the graphical representation, the behaviour is now a subset of the set of
such triples.

The measured I/O pair ([U], [Y']) includes the first and the third element of the
triple ([U], [E],[Y]) describing the behaviour of the faulty system. To solve the
diagnostic problem it has to be checked whether the measured pair is consistent
with some triple in the sense that the measurements are identical with the first and
the third element of the triple. Then a possible fault sequence is given by the second
element [E] of this triple for the initial state {(0) to which the behaviour belongs.
That is, the diagnostic task is solved by testing the consistency of the measured I/O
pair with the behaviour of the quantised system. This illustrates consistency-based
diagnosis of quantised systems.

Way of solution for both problems. The development of a solution to the ob-
servation and the diagnostic problems consists of two major steps. First, a suitable
representation of the quantised system has to be found. Section 9.4 will show that
a stochastic automaton is such a suitable representation and that the automaton can
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be determined from the description of the quantised system by means of Egs. (9.3),
(9.4) together with the quantisers. Second, methods that use this model and the ob-
served input and output sequences must be elaborated in order to solve the state
observation or the diagnostic problems. As the model used is a stochastic automa-
ton, the methods developed in Chapter 8 can be applied for these purposes. As the
results obtained for the stochastic automaton should be used for the quantised sys-
tem, the automaton has to satisfy some completeness requirements, which will be
developed in the sequel.

Requirement on the model. The behavioural view on the supervision problems to
be solved shows that the model of the quantised system has to provide the behaviour
Bqual(kh) of the quantised system for the relevant time horizon kj,. Therefore, any
model that describes the qualitative behaviour Bqua can be used. The model of the
hybrid system given by Eqs. (2.1) — (2.3) together with the description of the quan-
tisers given in Table 9.1 provides such a representation of the qualitative behaviour
Bqual~

Quantised system

By (k)

Model M(k,) of the

quantised system

Observation algorithm

i (2]

Fig. 9.13. A behavioural view on the observation problem

However, this hybrid representation of the quantised system leads to very complex
observation and diagnostic algorithms because it combines differential equations
with inequalities or logical formulae that describe the quantisers. Therefore, a more
compact model will be introduced in Section 9.4 which has the form of a stochas-
tic automaton whose state, input and output correspond directly with the quantised
state, quantised input and quantised output of the given system. Instead of the be-
haviour B, the supervision problems will be solved by means of the behaviour
M of the stochastic automaton, which likewise depends on the qualitative initial
state and the fault occurring in the quantised system (cf. Fig. 9.13). This model di-
rectly refers to the qualitative versions of the input, state and output and is called
qualitative model.

As both the observation and the diagnostic methods are based on a consistency
check for a given I/O pair and the model, the model has to represent all 1/O pairs
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that may occur for the given quantised system, i.e. it has to be complete according
to the following definition.

Definition 9.1 (Completeness)
A model with the behaviour M that satisfies the relation

M(kp) 2 Bgua(kn) (9.21)
for all ky, is called complete.

Complete models include all I/O pairs for a given time horizon &, that are consis-
tent with the quantised system.
From Eq. 9.21 it follows that there may exist pairs

(V0. k), WO . k) € M(kn)
V(0. k), WO .. k) & Bawaalkn)

which are consistent with the model but not with the quantised system. These pairs
are called spurious. Their existence is a typical phenomenon encountered in quali-
tative modelling. The reason for the existence of spurious solutions is given by the
fact that the qualitative model should be less complex than the precise model. Hence,
it has to ignore some information about the properties of the quantised system. In
particular, the qualitative model has the Markov property to provide a recursive rep-
resentation of the behaviour M whereas the quantised system does not possess the
Markov property.

The importance of the completeness of the model used for state observation and
fault diagnosis is given by the following corollary:

A model is suitable for solving the state observation problem or the diagnostic
problem if and only if it is complete.

Fig. 9.14. Diagnosis with complete models

For a complete model with behaviour M an I/O pair like C' in Fig. 9.14, which is
not consistent with M, is also not consistent with Bgyai:

(U, [Y]) & M(kn) = ([U],[Y]) & Baua (kn)- ©.22)

This has a direct consequence for the observation problem. Assume that By, is the
behaviour for Xy = Q,({y) and that the measured I/O pair corresponds to the point
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C'. Then the inconsistency of the I/O pair C with M implies the inconsistency of C
with Bgy, and it is known that the initial state cannot have been in Xy: 2o ¢ Xp. On
the other hand, an I/O pair like A, which is consistent with B, is also consistent
with M and again the result obtained for M corresponds to the result that would be
obtained for Byyar.

Different results are obtained for I/O pairs that lie within M but not in B, like
the pair B (spurious I/O pairs). Obviously, B is consistent with M but inconsistent
with the quantised system. As a consequence, the sets of qualitative initial states or
fault candidates that are obtained by a supervision algorithm that uses the model
M are supersets of the solution sets that would be obtained if By, were used as
representation of the quantised system. The fact that a superset of the solution is
obtained rather than the precise solution, is the “price” for using the simple model
M rather than the more complex representation of the quantised system by the
behaviour Byuai. The more spurious solutions exist, the more qualitative initial states
or fault candidates occur in the solution set that should not occur there. Hence, the
precision of the solution decreases. It is, therefore, the aim of modelling to find a
model that satisfies the completeness requirement (9.21) with the smallest possible
set of spurious solutions.

9.4 Discrete-event models of quantised systems

9.4.1 Modelling problem

From the point of view of the diagnostic algorithm that only has access to the qual-
itative I/O sequences, the input and output of the quantised system switch from one
discrete value to another when time proceeds. Hence, the quantised system behaves
like a discrete-event system. In more detail, Section 9.2.4 has shown that the quan-
tised system is non-deterministic and can be considered as a stochastic process. The
model used for diagnostic purposes has to describe this stochastic process.

As the qualitative behaviour is non-deterministic, the model has to be non-
deterministic.

This section shows how a model can be obtained that satisfies the completeness
requirement (9.21).

To state the modelling problem more formally, denote the model input by v(k),
the model output by w(k) and the behaviour of the model by M. The solution to the
modelling problem will be explained for the faultless system (9.3), (9.4) and later
extended to faulty systems. For given initial state ¢(0) and given input sequence

V(0...kp) = (v(0),v(1),v(2), ..., v(kn))
the model generates the output sequence
0200...kp) = (w(0),w(1),w(2), ..., w(kp)).
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The model behaviour M (k) = {(V(0...kp), £2(0... kx))} includes all I/O pairs
with time horizon kj, that the model may produce. Since the model should be a
representation of the quantised system, its input and output can assume the same
values as the qualitative input and qualitative output signals of the quantised system:
v(k) € Ny, w(k) € N,,.

Moreover, the model state  is interpreted as the qualitative state [x] of the system
and, hence, ¢ € NV, holds. This choice of the model state is very important because
it makes it possible to associate with each model state a qualitative system state. In
particular, for the initial state the relation

¢(0) = [=(0)] (9:23)

is valid.

As the considerations of Section 9.3 have shown, the completeness of the model is
a fundamental requirement. The following sections show how stochastic automata
can be found that provide a complete description of the quantised system.

9.4.2 Representation of autonomous quantised systems by stochastic
automata

This and the next sections investigate how a quantised system can be described by
a stochastic automaton (8.12)

S = (-A/aw-/\/uw/\/;/» La Prob(z(()))) (924)

whose state, input or output sets are identical to the sets of qualitative states, quali-
tative input values or qualitative output values, respectively. The modelling problem
is to find the behavioural relation L such that the automaton S is a complete model
of the quantised system. Then, the automaton is also called an abstraction of the
system (9.3), (9.4).

Qualitative modelling of autonomous quantised systems. First, an autonomous
quantised system (u = 0) is considered whose qualitative state can be measured
([y(k)] = [x(k)]). The continuous-variable part of this system is given by

z(k+1) = g(zk)), z(0) € X (9.25)
ylk) = x(k). (9.26)
The quantised system should be described by the stochastic automaton
S, = (N, G, Prob(z2(0)))

where G denotes the state transition probability (cf. Eq. (8.18) for w = 0).

As the set of automaton states coincides with the set NV, of qualitative states of
the system 9.25, in the graphical representation each partition of the state space is
associated with an automaton state. This is illustrated by Fig. 9.15 for the quantised
tank system with 9 state partitions.
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Fig. 9.15. Definition of the automata states for the quantised tank
system

Completeness of the qualitative model. In order to illustrate the meaning of the
completeness of the obtained model, use the model for a prediction of the qualitative
behaviour of the quantised system for the time horizon [0, k5] by determining the
state trajectory of the automaton. Assume that the qualitative initial state [x(0)] of
the quantised system has been measured. Then the initial probability distribution of
the automaton is given by

>0 if z=[xg] forsome x; € Xp

=0 else.

Prob(z(0) = 2) {

The future state trajectory can be determined by Eq. (8.24), which for the au-
tonomous automaton reads as

Prob(Z(0...kp)) = G(z(kp) | 2(kp, — 1)) - G(z(kp, — 1) | z(krn — 2))  (9.27)
- G(z(1)] 2(0)) - Prob(z(0)).
The behaviour of the automaton includes all state trajectories that occur with non-
vanishing probability:
M(kp) = {Z(0...kp) : Prob(Z(0...kp)) > 0} (9.28)

) :
= {(2(0),2(1), ... 2(kn)) : (9.29)
Prob(z(0 )) >0
G(z(k+1)]|2(k)) >0fork=0,1,...kp, — 1}.
Due to the one-to-one relation between the qualitative states of the quantised sys-

tem and the automaton states, the state trajectories of the automaton can be inter-
preted directly as qualitative state trajectories of the quantised system:

Z(0... k) = [X(0... k)] (9.30)

The completeness requirement of the model claims that if the qualitative state tra-
jectory
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[X(0... kn)] = ([2(0)]=2(0), [e(1)]=2(1), ..., [x(kn)]=z(kn))
can be generated by the quantised system, the trajectory
Z(0...kp) = (2(0), 2(1), ..., z(kp))

has to belong to M (k).

Unfortunately, Eq. (9.30) is not valid for all Z(0... k;). The completeness rela-
tion (9.21) implies that the quantised system may not generate all qualitative state
trajectory that belong to the set M (ky,), but there may be some state trajectories Z
that the quantised system cannot follow. These are the spurious state sequences of
the model.

Abstraction of the stochastic automaton. The initial state probability distribution
Prob(z(0)) and the state transition relation G of the automaton have to be chosen
so that the model is complete. The question how to find such an automaton for a
given quantised system is answered in the following lemma:

Lemma 9.1 (Complete model of the autonomous quantised system)
A stochastic automaton S, = (N, G, Prob(2(0))) is a complete model of the au-
tonomous quantised system if and only if the following conditions are satisfied:

G(Z'|z) > 0 <= Prob([z(1)]=2"][z(0)]=2) >0 (9.31)
Prob(z(0) =z2) > 0 forall z=[zg], ®o € Xop. (9.32)

A stochastic automaton that satisfies these requirements is called an abstraction of
the autonomous quantised system.

Equation (9.32) ensures that the automaton states, which correspond to possi-
ble qualitative initial states, have a non-vanishing probability. If [2(0)] is known,
Prob(z(0)) is chosen according to

1 for z(0) = [x(0)]

. (9.33)
0 otherwise.

Prob(z(0)) = {

If [(0)] is not known, the condition (9.32) can be satisfied by associating a positive
probability with all possible qualitative initial states. That is, if a set Z(0) C N, is
available which is known to include the true value of [x(0)], the relation

Prob(z(0) = z) > 0 forall z € Z(0)

has to be satisfied.
In order to determine the function G(2’ | z), the value of

Prob(f(1)]=7' | [2(0)] =2)

is determined for all possible combinations of z and 2z’ by means of the state-space
model (9.25) of the continuous-variable system and the definitions of the quantiser.
To do this, assume that the initial state =(0) is uniformly distributed over the sets
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Q.(z) and determine the probability that [x(1)] = 2z’ holds for given z and z’.
For linear systems x(k + 1) = Aax(k) with rectangular partitions this can be done
by mapping the corner points of the set Q,(z) by applying the matrix A and by
determining the intersection of the resulting set with Q(z’). For nonlinear systems
the conditional probability (9.31) can be approximately determined by mapping a
grid of initial states and “counting” those points (1) that fall into the set Q.(2').
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Fig. 9.16. Abstraction of a stochastic automaton describing the
autonomous tank system

Example 9.4 Abstraction of the autonomous tank system

Consider the tank system for the same configuration as in Fig. 9.10. Figure 9.16 shows the
map of the set Xo = Q,(3) of initial states towards the set X1 = g(Xo) which includes all
successor states (1). In order to determine the transition probability, the set X1 has to be
decomposed into the sets X1,1, X1 2, X1,3 and X1 4 where the relations

X1,2 = X1N9:(8), X13=X1N09:(9)
X111 =X1NQ(5), X1,4 = X1 N Q4(6)

hold. Then it is determined which initial states (0) lead to a state (1) € X1,1. The set
of such states is denoted by Xo,1. The same is done for x(0) that yield successor states in
X1,2, X1,3 or X1 4, which are summarised into the sets Xo,2, Xo,3 or Xo 4, respectively. That
is, the trajectories are followed in reverse direction leading to the decomposition of the set
Q. (3) into the disjoint sets Xo,1 to Xo,4. Then the transition probability can be determined
as the quotient of the areas of these sets, which are given by the measure A(-) of these sets:

Prob([z(1)]=5| [#(0)]=3) = AA((XXO;))
Prob([x(1)]=6 | [£(0)]=3) = A/\%ES)
A Xo,2)

Prob(fz(1))=8] [2(0)]=3) = e
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Prob([z(1)]=9 | [2(0)]=3) =

More precisely, these areas are the Lebesgue measures of the sets.

These steps have to be performed for all partitions Q,(2), 2 € N,. Note that this investi-
gation includes only the behaviour of the continuous-variable system for one time step (i.e.
from £ = 0 towards £k = 1), although the automaton can be used later to generate state
trajectories Z(0 ... kp) of arbitrary length k. O

Reasonable choice of the state transition probability. Equation (9.31) claims that
whenever the quantised system can perform a state transition from the qualitative
state z towards the qualitative state 2’ then the automaton has to be able to perform
the same state transition. As the automaton should not be used only to generate
a complete behaviour but also to predict the probability with which the I/O pairs
occur, the transition probability is chosen as follows:

G(z' | z) = Prob([z(1)]=2" | [£(0)]=2). (9.34)

Then, Eq. (9.27) gives an estimate of the probability with which a given state trajec-
tory Z is generated if the quantised systems is at k¥ = 0 in a given qualitative initial
state [2(0)] = zo. This probability is only an estimare and not the true probability,
because the relation (9.21) is, in general, not satisfied with the equality sign and
the spurious trajectories are predicted with non-vanishing probability. Hence, some
non-spurious trajectories must be associated with imprecise probability measures. !

Often, instead of the probability of the whole state trajectory Z the probability of
a certain qualitative state [x (k)] is to be predicted. Equation (8.32), which simplifies
for the autonomous case to the recursive relation

Prob(z(k+1)) = Z G(z(k+1) | z(k)) - Prob(z(k)),
z2(k)EN
can be used to determine Prob(z(k+1)) for the given time horizon k = 0, ..., kj, —
1. The result gives an estimate of the probability with which the qualitative state
[x(k)] = z(k) is assumed on any state trajectory that the quantised system may

generate for the given qualitative initial state. The completeness property of the
qualitative model implies that only qualitative states of the set

Z(k) = {[z(k)] : Prob(z(k)=[=(K)]) > 0}

can be assumed or, vice versa, that the quantised system is known not to assume any
qualitative state [ (k)] for which the relation

Prob(z=[x(k)]) =0
holds.

! Even if, under very restrictive conditions, the relation (9.21) were satisfied with the equal-
ity sign, the stochastic automaton would yield merely an estimate rather than the true
probability distributions.
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Example 9.5 Prediction of the qualitative state of the tank system

Figure 9.17 shows the qualitative state trajectory of the tank system that has been generated
by means of the qualitative model. The grey rectangles show with which probability the given
qualitative state is assumed at the corresponding time instants. White rectangles say that it is
impossible that the quantised tank system assumes the corresponding qualitative state for the
time instant k considered. The completeness of the model implies that the qualitative states
assumed by the tank system during the trajectories depicted in Fig. 9.7 are associated with
a non-vanishing probability (grey box) in Fig. 9.17. The probabilities obtained by means of
the qualitative model differ from the true values depicted in Fig. 9.9 because the stochastic
automaton is only an approximate model of the quantised system. O

state z
S e o s e
o |
s [
o [
F OO
o |
o |
(o ]|
o |
o |
o o |

0 3 steps 6 9

Fig. 9.17. Qualitative state trajectory of the tank system predicted by
means of the qualitative model

Abstraction algorithms. The determination of the right-hand side of Eq. (9.34) is
a numerical problem of its own. The main difficulty lies in the determination of the
set X of successor states (1) for a given set Xy = Q,(z) of initial state x(0).
Several methods have been elaborated.

The simplest method uses a grid of N points distributed uniformly over the set
Q.(z) and determines the set of successor states x(1). Then the number AN/’ of

states with the same qualitative value [x(1)] = 2’ is obtained and the probability
approximated by the relative frequency as follows:
N/

/ ~
Prob ([w(1)] = =' | [2(0)] = ) ~ -
The larger the number N the better is this approximation. However, even for a low
dynamical order v = dim(x) a very large number of grid points have to be used to
get a reasonable approximation.

The main problem of applying this method is the fact that the completeness of
the model cannot be ensured. The reason for this is given by the fact that even for
a large number of grid points not all state transitions z +— 2z’ are found. Hence, the
algorithm yields
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Prob ([@(1)] = 2’| [x(0)] = ) = 0

even if the state transition z — 2’ is possible for the quantised system.
A complete model can be obtained by an abstraction method that uses a Lipschitz
condition for the function g. Accordingly, a constant L is determined such that

lg(x) —g(@)l| <Lllx— ']

holds for all ¢, ' € Q,(z). The main idea of this abstraction method is to map a
subset Q C 9, (z) which results in the set

Q' = {z(1) | z(1) = g(x(0)),z(0) € Q}

of successor states. Instead of determining Q’, a superset Q' can be found by map-
ping the center point ¢ of Q into the point ¢’ = g(c) and by using the Lipschitz
constant L for determining an upper bound of the distance that any point (1) may
have from the center ¢’. If Q,(2) is partitioned into sufficiently small sets Q, the
union of the sets Q' found in this way is a reasonable approximation of X;. The ad-
vantage of this method with respect to the point-mapping method described above
results from the fact that a superset of &7 is found and, hence, no qualitative state
transition is missed. The model obtained in this way is complete.

If the function g has specific properties, simpler algorithms can be used. For ex-
ample, if g is linear

g(x) = Aw,

and the quantiser includes a rectangular partitioning of the state space, it is sufficient
to map the corner points of Q. (z) by multiplying them by the matrix A. The points
obtained are the corner points of X (cf. Fig. 9.16).

9.4.3 Extensions to quantised systems with input and output

The abstraction method explained in the preceding section for autonomous systems
should be extended now for systems with input and output. A stochastic automaton

S = (Ny, Nu, Ny, L, Prob(z(0)))

is used whose state, input and output sets are identical to the sets of qualitative
states, qualitative input and qualitative output values of the quantised system. The
behavioural relation L and the initial state probability have to be chosen according
to the following theorem.
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Theorem 9.1 (Complete model of the quantised system)
A stochastic automaton is a complete model of the quantised system if and only if
the following conditions are satisfied:

Lz w|z,0v)>0
<= Prob([z(1)] = 2/, [y(0)] = w | [£(0)] = z, [u(0)] = v) >0 (9.35)
Prob(z(0)=z2) > 0 forall z= [xo] xo € Xp (9.36)

Like in the autonomous case (cf. Eq. (9.34)), L is best chosen according to

L(z';w | z,v) = Prob([z(1)] = 2/, [y(0)] =w | [x(0)] = 2, [w(0)] = v). (9.37)

Note that the right-hand side of Eq. (9.35) can be determined by means of the
state-space model (9.3), (9.4) of the continuous-variable system and the definitions
of the quantisers. The initial state (0) and the input «(0) are distributed over the
sets Q. () or Q,,(v) and the task is to determine the probability that [2(1)] = 2’ and
[y(0)] = w holds for given z, v, z’ and w. An approximation of L can be obtained
by mapping a grid of initial states for selected input values and “counting” those
points x(1) or y(0) that fall into the sets Q,.(2’) or Q, (w), respectively.

This abstraction step can be explained by again using Fig. 9.16. As now different
output values belong to different values of L, the decomposition of the sets X
and X into the sets X¢ 1 ...Xo4 or X1 1...X 4, respectively, has to be refined.
All these sets have to be further decomposed according to the output [y] that the
system produces when it moves from the set X ; towards the set X ;. The resulting
partitions are “numbered” by the output w, which leads to the notations X ;(w) or
X1,i(w) and the relations

Xoi = Uwen, Xo,i(w)

X1 = Uwen, X1i(w)
holds. Furthermore, the state transitions have to be considered for all the possible
input values v. Therefore, the “departure” sets X ; and the “arrival” sets X ; de-
pend on the input v, which is symbolised by the additional argument: X ;(v,w) and
X1,i(v,w). Then the behavioural relation L can be determined for the state transi-

tion starting in the qualitative state 3 and ending in the qualitative states 5,6, 8 or 9
as follows:

L(w,5]3,v) = Prob([y(0)] = w, [z(1)] =5 | [2(0)] = 3, [u(0)] = v)

/\(XOJ(U, w))
AMQ2(3))
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L(w,6]3,0) = Prob(ly(0)] = w, [x(1)] = 6 | [£(0)] = 3, [u(0)] = v)

)\(XOA(’U, ’LU))
A2x(3))

9.4.4 Representation of faulty quantised systems

The abstraction method developed so far can be used to find a complete model for
the faulty quantised system. The description of the stochastic automaton has to be
extended so as to refer to the fault as an additional input (cf. Fig. 9.1):

S = (N, Ny, N, ¢, L, Prob(2(0))). (9.38)

The behavioural relation L(z’,w | z,v, f) has to satisfy the condition (9.35) for
given fault f:

L(z' w | 2,0, f) (9.39)
= Prob([z(1)] =2/, [y(0)|=w | [£(0)] =z, [u(0)] =, [e] = f).

0.6f
S
£
[aY}
=
0.2 &
%ge
0.1f =
/eakage
07 L L L L
0 0.2 h1 inm 0.4 0.6

Fig. 9.18. Set of states of the tank system reached with and without
fault

Example 9.6 Model of the faulty tank system

For the tank system, a stochastic automaton has been obtained by means of the abstraction
method explained in this section. Figure 9.18 shows the set of states reached by the faultless
and by the faulty system for k¥ = 1 when starting in £(0) € Q,(3) for the input signals
[Vi2] = 2 and [up] = 2. In the faultless case the region overlaps with the regions 5, 6, 8 and
9 of the partitioned state space.

In this example, the quantised outflow [gas] of Tank 2 is considered as output. The automa-
ton graph for the faultless case and for the above input is shown in Fig. 9.19. The vertices
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Fig. 9.19. Automaton graph of faultless tank system ([c.] = 1) for the
input [Vi2] = 2 and [up] = 2

Fig. 9.20. Automaton graph of faulty tank system ([cz] = 2) for the
input [Vi2] = 2 and [up] = 2
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correspond to the quantised states shown in Fig. 9.15. The colour and thickness of the edges
denote the different quantised output values, from thin black for [gas] =1 to thick light grey
for [gar] = 3. The edge labels refer to the probability of the transition.

For a leakage [cr] = 2 the qualitative behaviour of the tank system changes considerably,
which can be seen from the difference between the automaton graphs for the faultless and the
faulty systems in Figs. 9.19 and 9.20. O

The fault f = [e(k)] is used here as an additional (unknown) input to the quan-
tised system. In general, some information about the frequency of the change of this
signal is known and should be used during the diagnosis. Like for the stochastic au-
tomaton (cf. Fig. 8.9 on page 388) a fault model is used to represent this information
(Fig. 9.21).

Fault model

[e(R)]
Injector
l e(k)

u(k) Continuous-variable Y
system

Y=

Quantiser Quantiser

[u(h)] [y(k)]
\ \
Fig. 9.21. Quantised system with fault model

The fault is assumed to be the output of the stochastic automaton
Sy = Ny, Gy, Prob(£(0))) (9.40)

which is called the fault model. The transition relation Gy describes the fault-state
transition probability

Gy :Nf XNf — [0,1]

Gy(f"| f) = Prob([e(1)]=f" | [e(0)]=f) , 9.41)
which is the conditional probability that the fault changes from [e(0)] = f towards
[e(1)] = f’ within one time step. The a-priori probability distribution over the initial
fault set is given by Prob(f(0)).

The combination of the stochastic automaton, which represents the quantised sys-
tem, with the fault model is depicted in Fig. 9.22. It is a stochastic automaton
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Fault model
S
L 1)
u(k) Model of the w(k)
quantised system
S
Fig. 9.22. Model of the quantised system combined with the fault
model
S = (Nz, N, Ny, L, Prob(3(0))) (9.42)
whose state set is given by the Cartesian product
N: =N, x Ny (9.43)

and whose behavioural relation L can be obtained from L and G ¢ according to the
relation

L, f w2 f,v) =Lz \w |z f,v) - G¢(f' | f) (9.44)

with z, 2 € N,, v € Ny, w € N,y and f, f € Ny (cf. Egs. (8.42) — (8.44)). This
model will be used later for solving diagnostic tasks.

9.5 State observation of quantised systems

9.5.1 Observation method

This section deals with the state observation problem for quantised systems given
in Section 9.1.2. The task is to find the current qualitative state [z (k)] for the
measured sequences of input values

[U(0... kn)] = ([w(0)]; ..., [w(kn)])
and output values
[Y(0...kn)] = ([y(0)]; -, [y(kn)))-
The model S used for solving this problem is the stochastic automaton
S = (Ng, Nu, Ny, L, Prob(2(0)))

introduced in Eq. (9.24). Therefore, the observation problem can be solved by di-
rectly applying the observation method developed in Section 8.3 where

V(0...kp) isreplacedby [U(0...kp)]
W(0... kn) [Y(0... k). (9.45)
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The automaton state z(k) describes the qualitative value [z (k)] of the system state
x. Equations (8.64) — (8.66) yield

> L(kp) - Prob([x(kp)] | kn—1)
[x(kn+1)]

S>> L(kn) - Prob([z(kn)] | kn—1)
[ (kn)], [@(kn+1)]

Prob([z(kn)] | kn) = (9.46)

(kn =0,1,...)
with
ST L(kp—1) - Prob([x(kp!—!1)] | kp—2)
[z(kn—1)]
> L(kp!=1) - Prob([x(kp—1)] | kn—2)
[@(kn)], [z (kn—1)]

Prob([x(kp)] | kn—1)

(kn=1,2,..) (9.47)

Prob([z(0)] | —1) := Prob([x(0)]), (9.48)
where the abbreviation

L(kh) = L([w(kfb+1)]7 [y(kh)] | [-’E(k‘h)], [u(kh)])

has been used. The set

describes all current qualitative states [z (k)] that the observation method provides.

9.5.2 Discussion of the result

The recursion relations (9.46) — (9.48) have been obtained by using the rela-
tions (8.64) — (8.66) developed for the stochastic automaton, where the abbrevia-
tion (8.50)

Prob(z(kn) | k) := Prob(z(ks) | W(0...kp), V(0... kp))

had been used. Therefore, it is reasonable to expect that Prob([x(ky,)] | k) which
occurs in Egs. (9.46) — (9.48) is likewise an abbreviation of the probability

Prob([@(kn)] | [U(0... k)], [¥ (0. k)

with which the qualitative state [x] can be assumed by the quantised system pro-
vided that the quantised system has generated the I/O pair ([U (0 ... k)], [Y (0 ... kp)))-
However, this conjecture is not true, because the stochastic automaton used to solve
the observation problem is only a complete but not a precise model of the quantised
system. Therefore, the result obtained by the observation method can only be an
approximation of the probability to be found:

Prob([x(kp)] | krn) = Prob([x(kp)] | [U(0... k)], [Y(0...kx)]).  (9.50)
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As a consequence, the set Z(ky, | kj,) obtained from Eq. (9.49) need not coincide
with the solution set of the observation problem defined in Eq. (9.1):

X (kn | kn) = {[z(kn)] = Prob(fa(kn)] | [U(0 ... k)], [Y (0...ky)]) > 0}.

However, due to the completeness of the model the set Z is know to be a superset
of X:

Z(kn | kn) 2 X(kn | kp) . (9.51)

Theorem 9.2 (Observation of quantised systems)

If the stochastic automaton S is a complete model of the quantised system, the
qualitative state [x(kp,)] of the quantised system belongs to the set Z(ky, | kn)
described by Eq. (9.49), where Prob([x(kp)] | kn) is given by Egs. (9.46) —
(9.48).

For the application, this theorem yields the following conclusions:

Corollary 9.1 (Observation result for the quantised system)
o The quantised system is known to be in some qualitative state
[@(kn)] € Z(k | kn)

and not to be in any state [x (k)] & Z(ky | kp).
e Prob([x(kr)] | kr) is an estimate of the probability with which the quantised
system assumes the state [x(kp,)].

A-priori knowledge about the initial state. An a-priori probability distribution
Prob([x(0)]) has to be known to initialise the observation method. As for the
stochastic automaton, it is most important to ensure that

Prob([x(0)]) > 0

holds for the true qualitative initial state [(0)], which is unknown. If nothing is
known about [x(0)], a good choice of the a-priori probability distribution is the
uniform distribution over the set \V, of all qualitative states

Prob([x(0)]) = 1/(N + 1) for all [x(0)] € Ny,

where NV +1 is the number of qualitative states defined by the state quantiser.

Consistent I/0 pairs. It has been discussed in detail in Section 8.3.3 that state
observation problems can be solved for stochastic automata only if the measured
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I/O pair is consistent with the automaton. The same holds true here for the quan-
tised system. However, this does not pose any problems, because the model is set
up to be a complete abstraction of the quantised system. Therefore, any I/O pair that
the quantised system may generate is consistent with the stochastic automaton used
in the observation method. Consequently, the denominators occurring in Egs. (9.46)
and (9.47) are positive in each recursion step. If they become zero, either the a-priori
knowledge about the initial state was wrong, the measurements has been perturbed
by some disturbances and, hence, became inconsistent with the model or, for some
reason, the qualitative model is not complete. If the qualitative model has been ob-
tained by the abstraction method given in Section 9.4 the latter situation can only
occur if the continuous-variable state-space model (9.3), (9.4) is wrong.

9.5.3 Observation algorithm

In the observation algorithm the following abbreviations are used:

h([x(kn)])
= Y L(kn) - Prob([z(kn)] | [U(0...kx — )], [Y(0... kp — 1)])
(@ (k1)

pr([x(kn)]) = Prob([z(kn)] | [U(0... k)], [Y(0... kn)])
pr([®(kn+1)]) = Prob([x(kp+1)] | [U(0... kn)], [Y(0... kn)])
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Algorithm 9.1 Observation algorithm for quantised systems

Given: Complete model S of the quantised system.
A-priori initial state probability Prob([x(0)]).
Initialise:  p,.([x]) = Prob([z(0)])
kn = 0.

1. Measure [u(kp)], [y(kn)].

2. Forall [x] € N, determine
h(lz]) = 3z L], [y(kn)] | [], [u(kn)]) - pr([2]).
3. If ) iz M([]) = 0 holds, stop the algorithm (inconsistent I/O

pair or wrong initial state distribution).

4. Forall [z] € N, determine py([z]) = M
h([z])
(]
5. Forall [x] € N, determine

> L] [y (k)] | (], [u(kn)]) pr(2])
@]

> h(lz)

(@]

6. Determine Z(ky, | kp) = {[x] : pr([x]) # 0}.

pr([®]) =

7. kp:=k,+1
Continue with Step 1.

Result:  pg([x(kp)]) = Prob([x(kp)] | [U(O...kp)], [Y(0...kn)]) and
Z(ky, | kp,) for increasing time horizon &, .

Example 9.7 State observation of a tank system

The observation algorithm is now applied to the two-tank system described in Section 2.1
in the quantised configuration given in Section 9.4. On the left-hand side of Fig. 9.23 the se-
quence [U (0 ... kp,)] of measured quantised input signals is shown. The upper sequence corre-
sponds to the valve position [V12] (open or closed) and the lower to the quantised pump input
[up]. The right-hand side of this figure shows the measured output sequence [Y (0... kp)],
where the output corresponds to the quantised outflow [gas] of Tank 2. The task is to deter-
mine from these sequences the quantised states [x (k)] at each time instant k, =0, 1, ... for
unknown initial state set Xj.

On the left-hand side of Fig. 9.24 the observation result obtained by the above algo-
rithm is shown. The grey boxes depict the probability distributions Prob([z (k)] | kn) for
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Fig. 9.23. Quantised input and output sequences used to solve the state
observation problem
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Fig. 9.24. Observation result (left) and state sequence of the
considered experiment (right)

kyn = 0,1, ... for the 9 different quantised states. For comparison, the state sequence of the
experiment for which the output sequence was obtained is shown on the right-hand side of the
figure. It can be seen, that the observation result is nonzero in the states of the “real” sequence
at all times. Note that the state sequence obtained in this experiment is not the only possible
one yielding the measurements of Fig. 9.23. However, the observation result is guaranteed to
cover all possible sequences. O

9.6 Diagnosis of quantised systems

9.6.1 Diagnostic method

This section deals with the diagnosis of quantised system. To solve the problem
given in Section 9.1.2, the fault [e(ky,)] has to be determined for the measured se-
quences of qualitative input values

[U(0... k)] = ([w(0)], ..., [u(kn)])
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and qualitative output values
[Y(0...kn)] = ([y(0)); -, [y(kn)))-

The model of the faulty quantised system used here is given by the automaton
S = (Nz, Ny, Nu, L, Prob(2(0)))

defined in Section 9.4.4. Therefore, the diagnostic problem can be solved by directly
applying the diagnostic method developed for stochastic automata in Section 8.4
after

V(0...kp) isreplacedby [U(0...kp)]
W(O...kn) [Y(0...kp)].

With these substitutions, Egs. (8.91) — (8.93) yield the following result:
Prob([e(kh)] | k’h)
>.  L(kn) - Gy(kn) - Prob([e(kn)], [ (kn)] | kn — 1)

[e(kp+1)]
_ ket o)
Y. L(kn) - Gy(kn) - Prob([e(kn)], [z (kn)] | kn — 1)
[e(kp)] [e(kp+1)]
[z(kn)],[2(kpt1)]

(kn =0,1,..) 9.52)
with
Prob([e(kn)], [ (kn)] [ kn — 1)
> L(kn—1)-Gy(kn — 1) - Prob(le(kn — 1)], [x(kn — 1)] | kn —2)
_ letkn D] [=(kn—1)]
> L(kn—1)-Gg(kn — 1) - Prob(le(kn — 1)), [x(kn — 1)] | kn —2)

[eCkp)].[e(ky —1)]
(k)] [@(kn—1)]

(kn,=1,2,...) (9.53)

Prob([z(0)],[e(0)] | — 1) := Prob([e(0)]) - Prob([(0)]) (9.54)
and the abbreviation

L(ky) := L([z(kn+1)], [y(kn)] | [z(kn)], [w(kn)], [e(kn)]) - (9.55)

9.6.2 Discussion of the result

Like in the observation algorithm, Prob([e(kp)] | kp) determined by these equa-
tions is not identical to the probability distribution of the current fault [e(ky,)], but it
is an approximation:

Prob([e(kn)] | kn) ~ Prob(fe(kn)] | [U(0 ... k)], [Y (0 ... kn))).

The set of faults for which Prob([e(kp,)] | k) > 0 holds is a superset of the set of
fault candidates that would be obtained if the hybrid model of the quantised system



488 9. Diagnosis and reconfiguration of quantised systems

were used to solve the diagnostic problem that may really occur in the quantised
system.

Theorem 9.3 (Diagnosis of quantised systems)
If the stochastic automaton S is a complete model of the quantised system, the
fault that occurs in the quantised systems belongs to the set

f(k’h) = {[e(k’h)] : Prob([e(kh)] ‘kﬁh) > 0}, (9.56)
where Prob([e(kp)] | kn) is described by Egs. (9.52) — (9.54).

Note that the algorithm does not include a simulation of the system behaviour.
The main idea is to determine the probability with which the system has made the
state transitions that are necessary to produce the currently measured output for the
currently measured input.

Corollary 9.2 (Diagnostic results for the quantised system)

o The quantised system is known to be subjected to some fault f € F(kp).

o Fault detection: If fo & F(ky) holds, the quantised system is known to be
subjected to some fault (where fy denotes the faultless system).

o Fault identification: If F (k) = {f;} is a singleton, the system is known to be
subjected to fault f; provided that the occurring fault belongs to the set F.

As long as F(kp,) has more than one element, the probability Prob(f | k) de-
scribes an approximation of the probability that the fault f occurs.

Diagnosability of quantised systems. The results on diagnosability of stochastic
automata apply directly to the quantised system if the automaton represents a com-
plete model. The quantised system is diagnosable whenever the automaton is diag-
nosable. That is, if the fault is diagnosable from the less precise model it can also be
diagnosed from the precise representation given by the continuous-variable model
together with the quantisers and the injector.
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9.6.3 Diagnostic algorithm

These results lead to the following diagnostic algorithm in which [U] and [Y'] de-
note the sequences [U(0... kp)] and [Y (0 ... ky)] of length kj, + 1. The following
abbreviations are used:

h(le(kn)], [&(Fn)])

>

L(kn) - Gy (kn) - Prob([w(kn)] | [U(0... kn = 1)}, [Y(0... kn — 1)])

le(knt1)] [z (kptl)]
pille(kn)), [@(kn)]) = Prob(e(kn)], [(kn)] | [U(0... kn)], [V (0. k)

pr(le(kn+1)], [x(kn+1)])
= Prob([e(kn+1)], [x(kn+1)] | [U(0... k)], [Y (0. kn)])

Algorithm 9.2 Diagnosis of quantised systems

Given:

Initialisation:

Complete model S of the quantised system.

Fault model Sy.

Initial state probability distribution Prob([z(0)]).
Initial fault probability distribution Prob([e(0)]).
pr([e], [x]) = Prob([e(0)] = f)- -Prob([x(0)] = z) for all
feNyandze N,
kn = 0.

Measure the current input [u (k)] = v and output
[y(kn)] = w.

For all [e] € N} and [z] € N, determine

h(lel. ) = Xje) ) L. (k)] | ). [e], fulks)])-
- Gy(le]|le]) - pr([e], [2]).

I 3" (¢],j) Pr([e]; [x]) = O holds, stop the algorithm (inconsis-

tent I/O pair or wrong initial distributions).

For all [e] € Nj and [x] € N, determine
[

pi(le], [x]) = the]—m])

h(le], [])

le],[=]
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5. Forall [e] € Ny and [x] € N, determine
pr(lel; [2]) =
> L], wlfz), [ukn)]. [e]) - Gs(le] | [e]) - pr(le], [2])

fe) 2]
> h(le][z])

(e}, [x]
6. Determine Prob([e(kn)] | k) = >, pr([e], [z]).

7. Determine F(ky) according to Eq. (9.56).

8. kp:=kp+1
Continue with Step 1.

Result:  Prob([e(kx)] | kxn) and F(kyp,) for increasing time horizon kj,.

Example 9.8 Diagnosis of a quantised tank system

To demonstrate this diagnostic algorithm, the tank system of Section 2.1 is considered as a
quantised system. On the left-hand side of Fig. 9.25 the sequence [U (0 ... k)] of measured
quantised input values is shown. The upper sequence corresponds to the valve position [V12]
and the lower to the quantised pump input [up]. The right-hand side of this figure shows the
measured output sequence [Y (0... ks )], which describes to the quantised outflow [gas] of
Tank 2. The task is to determine from these sequences the unknown quantised fault [e(k)] =
[cL] at each time instant kj, =0, 1, ..., for unknown initial state set Xo. The fault is assumed
to be constant during the experiment, so that the fault model (8.95) can be used.

On the left-hand side of Fig. 9.26 the diagnostic result is depicted. It is shown how the
probability distribution Prob([e(k#)] | kn) changes for kj, = 0,1, .... Initially both faults
have the same probability. The probabilities change with increasing time horizon kj. After
8 steps, the measured sequences are only consistent with the model for the faultless case
[e] = 1, showing that no leakage occurred in this experiment. The case [e] = 2 corresponding
to a leakage in Tank 1 is excluded. O

9.6.4 Reconfiguration in case of sensor or actuator failures

If sensor or actuator failures are not included in the fault set F, the diagnostic Algo-
rithm 9.2 stops in Step 3 as soon as a faulty sensor or actuator causes that the denom-
inator 1, 1.y h([€], [#]) to become zero. In this case, the faulty sensor or actuator
can be isolated by using the observer schemes introduced in Section 8.7. Further-
more, the diagnostic algorithm can be automatically reconfigured as described in
Section 8.7.2. This is illustrated by the following example.

Example 9.9 Automatic reconfiguration of diagnosis

The automatic reconfiguration of diagnosis is shown using the example of the two-tank system
of Section 2.1. Actuators are the valve V12 which can be either closed or opened and the pump
P which can be switched on with up =up,nom or switched off with up =0. As plant fault, a
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Fig. 9.25. Quantised input and output sequences available for fault
diagnosis
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Fig. 9.26. Diagnostic result (left) and observed states (right)

leakage in the left tank is considered. The levels in both tanks are measured by means of the
discrete level sensors at the positions leading to the state-space partition shown in Fig. 9.4.
For simplification, the discrete level sensors at Tank 1 are treated as quantised level sensor 1
and those at Tank 2 as quantised level sensor 2. The sampling time is T's = 10s.
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Fig. 9.27. Quantised input sequence (left) and faulty interval
measurements of level sensor 1 (right).
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Fig. 9.28. Sequence of the true quantised liquid levels in the left and
right tank, respectively.

In an experiment, the quantised input sequence shown on the left-hand side of Fig. 9.27
has been applied to the tank system. This yields the sequences of quantised tank levels shown
in Fig. 9.28. Instead of the correct output shown on the left-hand side of the second figure,
sensor 1 yields the sequence shown on the right-hand side of the first figure. It can be seen that
from time k£ = 10 onwards, the sensor yields the measurement value [0, 0.2) independently
the actual level in the left tank.
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Fig. 9.29. Diagnostic result for the plant fault (left) and denominators
of the blocks of the generalised observer scheme (right).

To the measured sequences, the generalised observer scheme shown in Fig. 8.23 is ap-
plied. Furthermore, two blocks for actuator supervision as shown in Fig. 8.27 are used. That
is, besides the diagnostic result, the four signals D7 (k), D5 (k), D' (k) and D2 (k) are
determined, which correspond to the denominators of the diagnostic blocks without Sensor
1, Sensor 2, Actuator 1 (valve) or Actuator 2 (pump), respectively. The diagnostic result is
shown on the left-hand side of Fig. 9.29. The values of the four denominators are shown on
the right-hand side of the figure, where a black bar indicates a nonzero denominator.

From the left-hand side of Fig. 9.29, it can be seen that until £ =09 the diagnostic algorithm
works correctly and that the faultless case is isolated for unknown initial plant fault after a
few steps. At k=10, when Sensor 1 breaks down, the denominator D(s) of the main diag-
nostic block becomes zero. The diagnostic block yields no further diagnostic results which is
indicated by the white bars from k=10 onwards The rlght -hand side of the figure shows that
at k = 10, two other denominators, namely D3 (k) and Di!(k), also become zero indicating
that neither a valve fault nor a failure of in Sensor 2 could have caused the inconsistency with
the model of the main diagnostic block. After a few more steps at k = 14, the measured se-
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quences also become inconsistent with the model that has no regard of the pump input. This
indicates that Sensor 1 must be faulty because the only block which is still consistent with
the measurement sequences is the block of the generalised observer scheme that does not use
the information of Sensor 1.

Having identified the faulty component, the diagnostic system is reconfigured so that only
Sensor 2 is used for diagnosis. Such a diagnostic block is already included in the generalised
observer scheme. The probabilities of the plant faults determined by this block are shown on
the left-hand side of Fig. 9.29 from time k = 14 onwards. Note that the new diagnostic block
implicitly performs a state observation of the level in Tank 1.

At time k =18, a leakage occurs in the left tank and is present until the end of the experi-
ment. It can be seen that after some time, this plant fault is identified. However, the reconfig-
ured diagnostic system has a lower performance because it obtains less information due to the
loss of Sensor 1. If Sensor 1 was still operating, the leakage could be detected already at time
k =19 when the level in the left tank decreases for a closed connecting valve, cf. Fig. 9.27
(left) and Fig. 9.28 (left). The reconfigured scheme is slower but allows that the diagnosis can
be continued though the original diagnostic block could no longer be used from time k£ =10
onwards. O

9.6.5 Extensions and application examples

Diagnosis of transient faults. The diagnostic problem dealt with so far concerned
the task to find the current fault f (k) by using the measured I/O pair. The solution
to this problem is not appropriate if the fault is apparent in the measurements only
after some time delay. Transient faults, which vary quickly in time, represent such
faults, where the moment of the fault occurrence lies several time instants before the
effects of the fault become measurable.

To understand the difference with respect to the diagnostic problem tackled until
now, remember that the fault is described by the sequence

and that until now only the last element of this sequence has to be found. If the fault
becomes “visible” from the measurements only after some time delay, at time kj, the
task to be solved is to find all possible sequences F'(0 ... k) and to decide whether
these sequences include faults f(k;, — k) # fo that occurred k time instants ago,
where fj again denotes the faultless operation mode of the system.

As a consequence, the problem has to be posed in such a way that all possible fault
sequences F'(0 ... k) have to be found for which the measured 1/O pair ([U], [Y])
belongs to the system behaviour Bqya (k) of the quantised system. Then it is known
that the sequence F'(0 ... k) can have happened and, consequently, the faults occur-
ring in this sequence may have occurred at the corresponding time instants.

The diagnostic method explained in this chapter can be extended to solve this
problem. The main idea remains the same but the summation occurring in the for-
mulas have to be made over all possible fault sequences F'(0... ky,).

Diagnosis of discrete-event quantised systems. This chapter concerned discrete-
time quantised systems, whose continuous-variable core can be described by the
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Egs. (9.3), (9.4) with given sampling time. However, another viewpoint can be
adopted concerning the temporal quantisation. If a continuous-time system is con-
sidered, the quantiser may not only determine the current qualitative state, but it
may also identify the time instants at which these qualitative values change. Then
the continuous-time continuous-variable system “moves” whenever its output tra-
jectory y(t) crosses a border between two adjacent output space partitions Q,,(7)
and Q, (7). A change of the qualitative value [y] is called an event.

The main ideas described in this chapter can be used to diagnose discrete-event
quantised systems. Then, the stochastic automaton describes the sequence of dis-
crete events generated by the quantised system. The diagnostic algorithm can be
directly applied if the interface between the quantised system and the algorithm is
modified such that the I/O sequences are composed of events rather than of qualita-
tive input and output values obtained by sampling.

Although the main ideas are the same, the results may differ considerably. The
reason for this is given by the fact that stochastic automata of discrete-event quan-
tised systems have no information about the temporal distance of the events, but this
temporal distance may be decisive for the diagnosability.

Therefore, timed discrete-event models as, for example, semi-Markov processes
have to be used. Such models can be set up in a similar way as described in Sec-
tion 9.4 if the probability of the occurrence of events are evaluated also with re-
spect to their occurrence times. The diagnostic algorithm presented for stochastic
automata can be extended to this kind of models.

Application examples. The methods described in this chapter have been applied to
different laboratory experiments and practical problems.

e Diagnosis of a batch process: The example used to illustrate the methods
throughout this chapter presents a hybrid system with switching dynamics.

o Diagnosis and fault-tolerant control of a neutralisation process: Many impor-
tant signals that occur in the process industry are not precisely measurable or even
immeasurable. A neutralisation process has been used to demonstrate the appli-
cability of the observation and diagnostic methods. The fault-tolerant control of
a part of this process is described in Section 10.2.

o Diagnosis of an H, compressor: For large industrial compressor systems, no
quantitative model (9.3), (9.4) is available. By approximating the behavioural re-
lation by the relative frequency with which the system under consideration has
changed its qualitative state during its operation over several years, a stochastic
automaton as qualitative model of the compressor system has been obtained and
used for on-line diagnosis.

o Diagnosis of the power stage of a diesel engine: Automotive systems have quick
dynamics and, hence, rather strong real-time constraints for diagnosis. The quan-
tised system approach has the advantage of reducing the information available
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to that which is necessary to solve the diagnostic task. Dealt with as a discrete-
event quantised system, the power stage of a diesel engine has successfully been
equipped with a diagnostic module.

Example 9.10 Diagnosis of the air path of a diesel engine

Growing demands on automobiles in terms of reliability, economy, and safety necessiate
severe improvements of automated on-board diagnosis. To guarantee low emission levels
the diagnosis of the injection, compression, and combustion plays a key role. This example
concerns the qualitative diagnosis of the air path of a diesel engine with a single turbo charger
(Fig. 9.30).

Container

Exhaust gas recirculation

Compressor

Turbine

Exhaust pipe

Fig. 9.30. Air path of a diesel engine

The air path consists of the following components (Fig. 9.30):

e Hot-wire air flow meter (HFM): Measurement of the incoming air flow.
e Compressor: Compression of the incoming air flow.

e Intercooler: Cooling of the compressed air to increase the density.

e Container: Blending of the compressed air with parts of the waste gas.
e Cylinder: Combustion of the fuel and airmix from the container.

e Exhaust gas recirculation valve (EGR valve): Control of the percentage of the recirculated
exhaust gas.

e Turbine: Driving the compressor; equipped with a variable turbine geometry (VTG).

e Exhaust pipe: Channelling of the waste gas to the outside.

The air path is subject to the input signals nr (engine speed), mr (fuel flow per stroke),
Agcr (effective area of the EGR valve) and Ay (effective area of the turbine). The fol-
lowing output signals can be measured: ¢; (incoming air flow), p2 (pressure in the container)
and 7% (temperature in the container). The continuous-variable state-space model (9.3), (9.4)
has seven state variables, four input and three output signals (Fig. 9.31).
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Fig. 9.31. Block diagram of the air path

The special structure of the air path results in a strong coupling among the different system
states. The recirculated exhaust gas affects the airmix that streams into the engine by changing
its temperature, pressure, and oxygen content. In turn, the airmix influences the exhaust gas
that is leaving the engine. A second feedback is realised through the turbo charger. It couples
the input air flow with the exhaust gas flow.

Faults that occur in the components of this system influence the emission, which is subject
to legal restrictions. Therefore, the sensor and actuator faults listed in the table below have
to be considered for diagnosis. The diagnostic task is to detect faults in the air system and to
identify the faults f; throught fo by using measurement sequences of the sensors and input
sequences to the actuators mentioned above.

| Fault | Fault description

fo Faultless operation

f HFM offset +0,02 kg/s

fo HFM breakdown 0,0001 kg/s
f3 HFM drift -20

fa EGR blocked close

fs EGR blocked open

fe Ts-sensor drift +30

fr Ts-sensor drift -30

fs p2-sensor drift +30

fo p2-sensor drift -30

The airpath is considered as a quantised system. For all measured signals, a parition of the
signal space is introduced. For example, for the air flow g1 six regions starting from "very
low" up to "maximum" are distinguished after the discretisation (Fig. 9.32). The dark or light
rectangles indicate in which interval the signal g lies at the respective time instant. As can
be seen in the figure, the trajectories of the signal ¢; for the two fault cases fo and f3 can be
distinguished easily in spite of the rough discretisation.

For the evaluation of the diagnostic method, the input signals from test series with an
experimental car have been used. In the tests the EGR valve was closed, which was adopted
as a modelling assumption.

The qualitative model has been determined by the abstraction algorithm explained in Sec-
tion 9.4.

Results. The results obtained by diagnosing the different faults are briefly presented in the
following. It has turned out that the faults fa, fs — fo are very easy to be diagnosed and
therefore the attention is focused on the remaining faults. The diagnostic result describes the
probability for the occurrence of each fault, which is marked by the intensity of the bars in
the following diagrams.

Figure 9.33 shows the diagnostic result for the faultless case fo. The faultless operation is
unambigously recognised. After starting the diagnosis at time O the faultless case is the most
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likely one but the faults f; and f3 cannot be excluded. The higher initial probability of the
faultless case is given to the diagnostic system because it is assumed that the system normally
works without any faults. After a short time of diagnosing, the fault f; is excluded. During
the time span from one to two seconds the signals from the air path coincide as well with the
faultless model as with the model for the fault f3. After two seconds the probability for the
fault f5 decreases continuously and the diagnostic system shows the correct result: no fault
is present in this experiment.

The figure illustrates the fact that the diagnostic result is obtained by accumulating the
information included in the measurement sequences. After about 2.5 seconds, the diagnostic
algorithm has sufficient information for determining the faultless case unambiguously.

If the air path is affected by the fault fi, the faults fo, f1 and f5 are stated possible when the
diagnosis starts (Fig. 9.34). The higher probability of fo is due to the higher initial probability
explained above. During the diagnosis the probability of f3 decreases continuously and the
probability of f; increases accordingly. At 1.9 seconds a measurement has occurred that is
impossible in the faultless case. Therefore, the faultless case is excluded and the diagnostic
system returns the correct result.

Evaluation of the results. The presented qualitative diagnostic method allows diagnosing
faults that, in general, cannot be diagnosed by signal-based methods. The qualitative approach
means that the behaviour of the air path is modelled as coarse as possible so that many details
can be ignored but the faulty behaviour can still be distinguished from the nominal behaviour.
Thereby the unavoidable uncertainties of the model are taken into account and the air path
can be modelled in a simple manner. O

These examples show that difficulties in the measurement of important output sig-
nals are not the only reason for using the quantised system approach to the diagnosis
of continuous-variable systems. If the system has a hybrid dynamics, the method to
use a discrete-event abstraction as the model for diagnosis has the advantages to
deal with a unique discrete-event system and to use recursive algorithms that can be
applied in real time.

9.7 Fault-tolerant control of quantised systems

9.7.1 Reconfiguration problem

As the actions to be made in fault-tolerant control refer to severe changes of the con-
trol input and possibly include switches to new sensors or actuators, the quantised
system approach is particularly reasonable for these steps. The discrete-event model
of the plant has direct reference to the discrete decision variables to be found. This
fact will become obvious in this section. In a more elaborate form, this method is
illustrated by its application to the neutralisation process described in Section 10.2.

The control problem considered here concerns the following situation. Assume
that a fault has appeared in the plant and a diagnostic algorithm has found this fault.
As the diagnosis takes some time, the system has moved from its nominal operation
point to another point, because the nominal controller is applied to the faulty system.
This situation occurs, in particular, if a sensor or an actuator fails, because then
the control law is restricted to that part of the plant-controller interface that is still
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working. The control to be found requires the reconfiguration of the control loop,
because the controller can have access only to the faultless sensors and faultless
actuators.

In this situation a fault-tolerant controller has first to move the system state back
into the nominal operation point and then to stabilise the system in this point. There-
fore, the control algorithm consists of two steps:

1. A discrete controller has to be found that moves the operation point back into
the nominal one.

2. A new continuous controller has to be found that stabilises the faulty system in
the operation point.

The first controller has, usually, discrete input and output signals, because the op-
eration point has to be moved through a large part of the state space, which does not
necessitate precise numerical measurements. The stabilising controller is a feedback
controller of the faulty system, which can be designed by well known controller de-
sign methods after the available actuators and sensors have been identified and the
reconfigurability investigated (cf. Chapters 4 and 5). The following concentrates on
the first part of the fault-tolerant control algorithm.

Main idea. As the movement of the operation point requires broad changes of
the input, the quantised systems approach is reasonable for the solution of this task
even if the plant has continuous inputs and outputs. Hence, quantisers are introduced
deliberately for continuous-variable signals. This step facilitates a uniform discrete-
event view on the system, which may have both discrete and continuous inputs and
outputs.

A discrete-event model is abstracted by the methods described in Section 9.4.
For the explanation of the main idea of the control design for this model, a non-
deterministic automaton is sufficient, because the extension to stochastic automata
is straightforward. The automaton can be graphically interpreted by the automa-
ton graph. The directed edges of the graph show which state transitions among the
quantised states the system can perform, where the edge label ([u], f) denotes the
quantised control input and the fault under which this transition occurs. By using
this representation, the control problem can be formulated as a graph search prob-
lem. A path from the vertex representing the current qualitative state has to be found
towards one of those vertices that represent the claimed operation point. This path
may include only those edges that are valid for the current fault, which is assumed to
be given by the diagnostic algorithm. The labels belonging to the edges in the path
signify which control actions have to be used. The sequence of this control actions
represents the solution to the control problem.

This method will be explained now in more detail. It is applied in Section 10.1.3
to reconfigure the controller of a three-tank system.
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9.7.2 Graph-theoretic formulation of the control problem

Since a diagnostic algorithm can only find the fault after the system under consid-
eration has sufficiently changed its behaviour and, thus, left its nominal state, the
qualitative initial state [x(0)] is different from the required state and assumed in the
following to be arbitrary, but known. The problem is to find a controller

[u(k)] = kq([2(K)], f) (9.57)

such that the operation point is moved from the current point [2(0)] into one opera-
tion point included in the set Z4;p,

Zaim(f) = {[z] | Control specifications are satisfied} C N. (9.58)

These points are selected so as to satisfy the given specifications on the closed-loop
system under the faulty conditions. Note that the controller (9.57) uses the quantised
information about the current state  and represents a qualitative state feedback.
More restrictive control laws like a qualitative output feedback

[w(k)] = kq([y (k). )

can be found in a similar way.

A graph-theoretic interpretation of this problem can be obtained as follows. At
time & = 0 the quantised system is in the qualitative initial state zo = [z(0)],
which is represented by the vertex of the automaton graph with the same name. The
controller (9.57) has to be chosen such that the system arrives at the set Zaim (f)
and remains there. That is, the quantised system together with the controller has to
be qualitatively stable.

Graph-theoretic characterisation of qualitative stability. The qualitative stabil-
ity can be tested by the automaton graph G of the closed-loop system. Assume that
the controller (9.57) is already known. Then the non-deterministic automaton

Nc = (NzaNfa ch ZO)
of the closed-loop system has the state transition relation

Lc(zvf) = Ln(za kq(’z?f)a f)

where L, is the state transition relation of the non-deterministic automaton of the
plant subject to fault f. The graph G of this automaton can be obtained from the
automaton graph of the plant by deleting all edges (z;, z;) whose labels ([u], f) do
not satisfy the control law (9.57) with [z (k)] = z;.

For the stability analysis the set of vertices Zain is replaced in the graph G, by
anew vertex zaim. All edges (z, z’) starting in some vertex z € Za;, and going to
some 2z’ € Za;p, are replaced by an edge (2, zaim ). In this way a new graph denoted
by GL(N., L) is obtained. The reconfiguration problem is solved if the conditions
given in the following theorem are satisfied:
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Theorem 9.4 (Qualitative stability)
A qualitative controller (9.57) solves the control problem, if the graph G'.(N., EL)
satisfies the following three conditions:

1. The graph G., has no strongly connected vertices.

2. There are no self-circles around any vertex z # zAim.

3. The vertex zaim is the only end vertex of G... That is, zaim is the only vertex
that has no outgoing edge.

The conditions appearing in the theorem have been proved to be necessary and suf-
ficient for the qualitative stability of the quantised closed-loop system provided that
the qualitative model is complete. Hence, the reconfiguration problem can be for-
mulated as follows:

Reconfiguration problem: Find a controller (9.57) such that the reduced
automaton graph G (N, E.) of the closed-loop system satisfies the three

zr~c

conditions given in Theorem 9.4.

9.7.3 A reconfiguration method

First, some notions from graph theory have to be recalled. It is assumed that in
the automaton graph there is at most one edge between a predecessor state and a
successor state. This assumption can be satisfied by lumping parallel edged together,
where the labels are combined accordingly.

A subgraph T' (N, &) of G(N,, E) with & C £ is called a spanning tree if any
pair of its vertices z; and z; are connected and if T" has no cycle. Two vertices
z; and z; are called strongly connected if there exists a path from z; towards z;
and a path from z; towards z;. A subgraph G;(N.;,&;) of G is called a strongly
connected component if all vertices of \V,; are strongly connected. The graph that
results after replacing every strongly connected component by a new vertex is called
the condensed graph.
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Algorithm 9.3 Solution of the reconfiguration problem by means of a qualitative

model

Given: Automaton graph G(N, &),

Goal set Zp;m.

. Determine the graph G’ (N, ') by replacing the set of vertices Za;m, by the

single vertex zaim.

. Determine the condensed graph G(N,, ) of G/ (N, ') by first determin-

ing all strongly connected components G; of G’ and second replacing G; by
hyper vertices.

For all strongly connected components GG; determine a spanning tree 7;.
Using the condensed graph and the spanning trees, construct a new graph
GrewWN., Enew) With Gy = GUTLUT,U---UT, where s is the number
of strongly connected components.

. Determine the control law k4(z, f) as follows: For every vertex z € N/ and

every fault f, select the qualitative output [u] associated with the edge (z, z’)
in the graph Geqp-

Result: Qualitative controller (9.57).

The strongly connected components GG; can be constructed using a depth-first-
search algorithm whose complexity is linear with respect to the number of vertices.
For each vertex of the condensed graph there exists a spanning tree 7;. Such trees
can be found by Tremaux and Tarjan’s algorithm whose complexity is linear. Each
vertex z # z; of graph G’ will be transferred to the vertex z; of G, using spanning
tree ;. Then, for each vertex z; there exists a path to the desired vertex Zx;y, in the
condensed graph G.

The result is the mapping &, of the controller (9.57), which can be represented by
a table and which can be easily implemented.

9.8 Exercises

Exercise 9.1 Selection of reasonable state-space partitions

Consider an autonomous first-order discrete-time system. Under what conditions on the state
partitions does the system map one state set precisely into another state set with the conse-
quence that the quantised system can be described by a deterministic automaton?

Can this determinism be retained if the system has an input by appropriately partitioning
the input space? O
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Exercise 9.2 Determinstic discrete-event behaviour of an undamped oscillator
Consider an undamped oscillator described by the state-space model

(2)=(2 () (zo)=(=).

Show that the sampling time can be chosen such that the oscillator has a deterministic
discrete-event behaviour in a state space where both state variables x1 and x2 are indepen-
dently partitioned.

Does this result hold if the oszillator is damped (where the damping factor § replaces the
zeros in the system matrix)? O

Exercise 9.3 Quantised tank system

Consider a two-tank system in a state space, whose partitioning distinguishes merely between
a full and an empty tank. At time ¢ = 0 both tanks are filled. An outlet valve of the right tank
is open. Set up a simple second-order state-space model and use the abstraction algorithm to
get a non-deterministic or a stochastic automaton describing the quantised tank system.

Extend the model, if the left tank has a pump, which can be switched on and off and
which produces an inflow into the left tank that is twice as large as the outflow from the right
tank. How do you have to extend the automaton to cope with this extension of the quantised
system? O

Exercise 9.4 Spring-mass system

Consider a damped spring-mass system. A fault reduces the mass be the factor two. Draw
the movement of the system in the faultless and the faulty case and decide whether this fault
can be diagnosed by only measuring quantised values of the mass position. O

9.9 Bibliographical notes

Results on the diagnosis of quantised systems have been obtained in two fields. The prob-
lem of abstracting discrete-event representations for quantised systems has been investigated
as a step for the analysis of hybrid systems or for the verification of discrete controllers.
The publications [138], [141] and [153] have shown that quantised systems have, in general,
a non-deterministic qualitative behaviour and do not possess the Markov property. Hence,
they cannot be represented precisely by any model that possesses the Markov property like
stochastic automata.

Methods for abstracting discrete-event representations of discrete-time or discrete-event
quantised systems have been proposed in [118], [138], [141], [153], [117], [201], [204],
[246]all of which aim at finding complete models in the sense defined in Section 9.4. [204]
showed that by using different definitions of the model state, a hierarchy of discrete abstrac-
tions can be obtained, which generate different numbers of spurious solutions.

In the field of computer-aided modelling the abstraction problem has been considered in
[136] and [262] with the aim to find deterministic discrete-event representations, which, ac-
cording to [138] is possible only for a very small class of quantised systems. There are only
preliminary results concerning the question how to partition the signal spaces in order to
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obtain abstractions with a small number of spurious solutions, cf. [153], [147], [115]. A con-
nection of the stochastic automaton as discrete-event description of quantised systems and
the Frobenius-Perron operator is given in [158].

On the other hand, the diagnosis of quantised systems is based on methods for diagnosing
discrete-event systems described by automata, which have been elaborated in [128], [157],
[211] and [210]. The complete solution to the diagnostic problem for stochastic automata
given in [157] is the basis for the results reviewed in Section 8.4. First results for quantised
systems have been described in [125] and [156]. In [63] it is shown that discrete-event rep-
resentations of quantised systems can be used for diagnosis if and only if they are complete.
This reference also gives an example to demonstrate that different models can be used for
the same quantised system all of which are complete but differ concerning the number of
spurious solutions and, hence, yield diagnostic results of different precision.

The solution to the state observation problem for the quantised system is based on the
solution to the observation problem for stochastic automata. This problem has been dealt
with only by a few authors, for example in [157] and [191].

The extensions to transient faults is described in [216].

The diagnosis of discrete-event quantised systems has be developed in [63] and [143],
where the latter reference presents a method that takes the temporal event distances into
account. The corresponding abstraction methods, which transforms the continuous-variable
description of the system into a discrete-event model, are developed in [60] and [142].

Theorem 9.4 has been proved in [140]. The problem how to partition the state space in
order to avoid the non-determinsm on the quantised system level and to get a deterministic
automaton as the precise qualitative model of the quantised system is still open [147].

Application examples of fault diagnosis of quantised systems are presented in [156] (neu-
tralisation process), [124] (H> compressor), [61], [62] (diesel injection system) and [64],
[174] (air path of a diesel motor), which is summarised here as Example 9.10.

The reconfiguration method described in Section 9.7 has been first published in Chapter 12
of [3].





