Chapter 6

Fault diagnosis of
continuous-variable systems

This chapter provides solutions to the fault detection, isolation and estima-
tion problems when the model of the supervised process is either a deter-
ministic or a stochastic continuous-variable system. The chapter considers
faults that can be modelled as additive signals acting on the process. The
solution of these problems leads to a diagnostic system which is separated
in two parts: a residual generation module and a residual evaluation mod-
ule. Particular attention is paid to the link between these two parts when
using stochastic models.

6.1 Introduction

Continuous-variable models (or analytical models) consist of sets of differential or
difference equations. They can be deduced by application of the laws of physics,
chemistry etc. to the supervised and/or controlled process. The external variables
entering these equations are called inputs. One distinguishes control inputs, which
are known and can be manipulated, from disturbances which cannot be manipu-
lated. The disturbances that are not measured are called unknown inputs. Besides,
imperfections in the model and measurement noise may be represented by stochastic
processes (or sequences) appearing as additional inputs. When such random input
is used, one speaks about stochastic models, as opposed to deterministic models. In
this chapter, the design of fault detection, isolation and/or estimation systems for
processes described by deterministic or stochastic continuous-variable models with
unknown input will be solved. Such systems are made of two parts as already indi-
cated in Chapter 1: a residual generation module and a residual evaluation module
(or decision system) (Fig. 6.1).
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Fig. 6.1. Structure of a fault diagnosis system

The residuals are signals that, in the absence of faults, deviate from zero only due
to modelling uncertainties, with nominal value being zero, or close to zero under
actual working conditions. If a fault should occur, the residuals deviate from zero
with a magnitude such that the new condition can be distinguished from the fault free
working mode. The role of the decision system is to determine whether the residuals
differ significantly from zero and, from the pattern of zero and non-zero residuals,
to decide which are the most likely fault effects, and in turn, which component(s)
could be the origin of a fault. When the diagnostic system is used in a fault-tolerant
controller, as described in Chapters 1 and 7, details in the diagnostic task will depend
on the type of faulty device and on the way the faulty condition could be treated.

Sensor faults can often be handled through estimating the faulty output signal
using an estimator based on other available measurements less the one isolated as
faulty. Observability of the reduced system is naturally required in this case. For this
type of sensor fault, the diagnostic system needs only to perform fault detection and
isolation to determine which measured signals should be disregarded. For an actua-
tor fault which does not cause a complete loss of command, a remedial action could
be to modify the control signal to the set of actuators by an increment computed in
such a way that the fault is compensated. In this case, an estimate of the fault signal
is needed.

The fundamental notion on which residual generation for continuous-variable sys-
tems rests is analytical redundancy. Analytical redundancy relations are equations
that are deduced from an analytical model, which solely use measured variables as
input. Analytical redundancy relations must be consistent in the absence of a fault,
and can thus be used for residual generation. A simple example is given to introduce
this notion, before considering more formal developments in subsequent sections.
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Example 6.1 Residuals for the ship autopilot

Consider the following part of the ship autopilot example (see Section 2.2). The turn rate ws
and the heading angle 1) are related through

P (t) = ws (1) 6.1)

Let us neglect the effect of waves and assume that the measurements can only be affected by
a bias. Hence sensor faults are represented by additive signals and the measurement equations
can be written:

Ym (t) = Y @)+ fu(t) (6.2)
wsm () = ws(t)+ fu(t) (6.3)

where the index m denotes measured quantities, and fy (¢), f. (t) are the potential biases.
Since most supervision systems are implemented as a software, only sampled data are avail-
able. They are linked through the following discrete model deduced from (6.1):

Y (k+1) =v (k) +ws (k)Ts, (6.4)

where T’ stands for sampling period. By considering the equation error, r, resulting from
(6.4) when the variables are substituted by their measured value, the following expression is
obtained:

T(k) = Ym (k) — Ym (k - 1) — W3m (k - 1)Ts- 6.5)

This quantity has the properties expected for a residual. Indeed, introducing (6.2), (6.3) into
(6.5) yields

r(k) = fy (k) = fu (k= 1) = fo (k = DTs.

This shows that, in the absence of a fault (namely when fy (k) = fy (k—1) = fo (k—1) =
0), 7(k) is zero. Upon occurrence of a bias in the measurement of w3 say at time ko, r(k)
takes a constant non-zero value for all k& > ko. Finally the appearance of a bias on the
measurement of ¢ at time instant ko shows up as a spike at time ko, but has no permanent
effect on r. Both faults thus affect r and this signal is zero in the absence of fault. Hence it
can be named a residual signal. For decision making, it suffices to compare the residual to a
specified threshold. The latter should be chosen in such a way that biases that appear to be
significant for the considered application are detected.

When measurement noise is significant, comparison to a simple threshold might not be
practicable, because the change in the mean of the residual due to the fault can be hidden by
the effect of the noise on the residual. This noise needs to be taken into account as described
in the following two discretised “noisy” versions of (6.2), (6.3):

Ym (k) = D (k) + fy (k) + vy () (6.6)
wam (k) = ws(k)+ fo (k) + v (k), (6.7)
where vy, (i), v, (i),% = 1,2, ... are mutually uncorrelated white noise sequences with vari-
ance E(v},(k)) = Qy and E(v2(k)) = Q.. respectively.
Substituting (6.6) and (6.7) into (6.5) yields:

r(k) = fo (k) = fo (k=1) = fo (k= )T + vy (k) — vy (k = 1) —ve (k = D)Ts.
(r(1),...,r(k)) is now a random sequence which must be evaluated by suitable algorithms.

Only its mean value is equal to zero in the absence of fault. O

The difference of treatment between deterministic and stochastic models is re-
flected in the organisation of the chapter: Sections 6.2 to 6.5 deal with the first
class of models and 6.7 to 6.8, with the second one. Analytical redundancy relations
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(ARR) based on a deterministic model were already addressed in the previous chap-
ter. Structural models were used for their determination. The link with this chapter
is the object of Section 6.2 were the principle of the determination of ARR from a
deterministic nonlinear state-space model is presented. Next, the particular case of
deterministic linear state-space model is considered in Section 6.3, and a complete
algorithm is provided for the design of parity relations (a specific type of analyti-
cal redundancy relations). A more formal presentation of parity relations for fault
detection, isolation and estimation is then presented in Section 6.4 from a linear
input-output model of the supervised process. The method of Sections 6.2 to 6.4 as-
sures perfect insensitivity (or decoupling) of the residuals to an unknown input. This
can only be achieved when the number of unknown input signals is lower than the
number of measured output signals. When this condition does not hold, approximate
decoupling of the residual with respect to the unknown input can be obtained by an
optimisation approach. This is the objective of Section 6.5. A presentation of algo-
rithms aimed at detecting changes in the mean of a stochastic random sequence is
given in Section 6.7. These tools are used as parts of the systems for fault detection,
fault isolation and fault estimation based on stochastic models that are described in
Section 6.8.

6.2 Analytical redundancy in nonlinear deterministic systems

6.2.1 Logical background

Analytical redundancy can be seen as a tool for obtaining conditions, based on avail-
able measurements, that are necessarily fulfilled when the supervised system works
in a specific operating mode. In order to illustrate the principle of analytical redun-
dancy, consider deterministic systems described in normal operation by state and
measurement equations

.’B(t) = g(w(t)v u(t)v d(t)v 97 t) (68)
y(t) = h(z(t),u(t).d(?),0,t), (6.9)
where € IR™ is the state vector, which is not available, u € IR™ is the control
input vector, d € IR™4 is an uncontrolled deterministic vector (disturbance). 6 is a
parameter vector which is considered to be known, and y € IRP is the measurement

vector. Let Hg be the situation corresponding to normal operation, and H1 = —Hj
some faulty situation. The following logical statements are true

Ho <= [&(t) = g(z(t), u(t),d(t),0, )] Ay (t) = h(x(t),u(t), d(t),0,1)]
Hy = [2(t) # g(z(t),u(t),d(t),0(1)] V [y(t) # h(z(t), u(t), d(t),0(t))] .

The violation of equality constraints that results from faults may be described in
two ways:

o In the first option, faults are assumed to result from parametric variations, which
is represented as
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0r(t) #0 <= 05(t) =0+ f(t), £(t) # 0,

where 0 (¢) stands for the parameter vector associated with the faulty system.
e In the second option, no hypothesis is made about the origin of the discrepancy,
which is just represented as an additive vector

[@(t) # g(a(t), u(t), d(t),0(1)] V [y(t) # h(z(t), u(t), d(t),0(t))]
<~
3 (far Fy) #(0,0) :

[2(t) = g(x(t), u(t), d(t),0(t) + £, (t)]

v [y(t) = h(=z(t), u(t), d(t),0(t)) + f,(t)] -

In both cases, the normal and the faulty system are represented using some "fault
vector" f(t) where normal operation is associated with f(¢) = 0. Most often, the
preliminary analysis of the system has identified a set of faults that are likely to
occur, and that the FDI system to be designed should detect, isolate and estimate.
When such knowledge is available, it results in the logical statement

1€l :H;, < f(t):fi(%t)?“),

where H; denotes the i*" fault situation, I = {1,2,---,n} where n is the number
of possible fault modes, and the knowledge available about each fault is modelled
by the possible time evolution of the vector f which depends on some unknown
parameters 7; (fault estimation therefore directly refers to the estimation of these
parameters).

6.2.2 Analytical redundancy relations with no unknown inputs

Introducing the fault vector f(t) in the state and measurement equations, and setting
d(t) = 0, for all ¢ one gets !

(t) = g(a(t), u(t), f(¢)) y(t) = h(z(t),u(t), £(1)), (6.10)

where, since € is known, the dependency of the state and measurement equations
on the parameter is no longer made explicit, and time invariant systems are con-
sidered in order to shorten the notations. It turns out that from (6.10), it is possible
to construct residuals, i.e. quantities which can be computed in real time from the
available data, and whose behaviour is different under the different situations H
and H;. Such residuals are obtained from a two step construction:

Step 1: Derivation of the outputs. Assuming that all functions are differentiable
with respect to their arguments, it is possible to construct the derivative y(¢) of the
output signal y(t):

oh , . oh , . Ooh
= 52 a0+ 5 Ca) + 52

! The same symbols g and h as in (6.8), (6.9) are used by an abuse of notation

y(t) () ()
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Replacing @(t) by its value, one gets
oh oh oh
WO = 5o Ogla(t)uld). £(0) + 5, (a0 + 57

= hu(z(t),a ), 7)),

where @(Y) (¢) is a short notation for (w, u'(t))/. Iterating this process until some
order of derivation ¢ (to be determined later), and assuming the existence of all
required derivatives, one obtains

g (1) = H (2(2), a(1). £ (1)) ©.11)

which is a set of (¢ + 1) p equations - or constraints - (the dimension of g(@ (t)),
where the different variables have the following dimensions: = € IR™, a9 (t) €
IR (a+1)xm ]_"(q) (t) € IRUFTD>X"s The known variables are (9 and @(%) while the

unknown variables are . f(q) (t) has a particular status, since it is known (equal to
zero) when Hj is true, while it is unknown when H; is true.

() (1)

Example 6.2 Redundancy in a nonlinear system

The variable ¢ is omitted below. Applying the above procedure with s = 2 to the system

1 _ —z1 Faitu+ fi
i?g —2$2+f2

y = xz1+f3
gives
y = —mi+astut+fit+fs
o= xl—5x§—u—f1+296’2f2+1l+f1+f3~

(6.11) is thus a system of three equations

Y 1+ f3 )
g(2) = 7 = —x1+a3tut fi+ fa ) B .0 (6.12)
ij 1 —bx3 —u— fi +2xafe +Uu+ f1 + f3

Step 2: Elimination of the state. Assume that (¢ + 1) p > n and the Jacobian
6[;;(-) is of rank n. Note that the first condition gives a lower bound on the order
of derivation that is necessary in establishing (6.11). It follows that (6.11) can be

decomposed into
g0\ [ Hh (2059077 0)
0 Hy (20,0 1), 7 (1))

where the first subsystem is of dimension n and allows to compute x(t) (at least
locally) as a function of the other variables

=0 6.13)
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2(t) = ¢(G0 (1), @ (1), £V(t))

(this results from the implicit function theorem). Replacing x(t) by its value in the
second subsystem, which is of dimension (¢ + 1) p — n, one obtains a system that
is equivalent to (6.11)

2(t) = o(gw (), @), £ 1) (6.14)
0 = v ,a" @), F ), (6.15)
where
r(y' (), a0, 77 (1)
= Y1) — Hi (6(58,(0), 0 (0), 7 (1), 4 (1), 7 (1).
The set of constraints (6.15) is seen to contain only inputs, outputs and fault signals

(along with their derivatives). It is called an analytical redundancy relations (ARR)
associated with the pair (g, h) and r (g9, (9, f(q)) is called the residual vector.

Remark 6.1 Link to structural approach

A structural condition for ARR to exist is that (6.11) is overconstrained with respect to the
unknowns (t) i.e. there is a matching which is complete with respect to x(¢). Decompos-
ing the set of constraints (6.11) into matched (index m) and non-matched ones (index nm)
yields (6.13), where the matched subsystem has n constraints while the non-matched sub-
system has (¢ + 1) p — n constraints. From the interpretation of matchings in the previous
chapter, «(t) is computed in the matched subsystem, as a function of the other variables

0] <g§£f{> (t), @' ?(t), f(q) (t)) and replacing x(t) by its value in the non-matched subsystem

gives the redundancy relations. O

Example 6.2 (cont.) Redundancy in a nonlinear system

Step 2 is now applied to (6.12). The state (x1, 1‘2)/ can be computed from the first two
equations of (6.12) leading to the equivalent system

T = y—f3
w2 = ®Vity—fsi-u—f—fs .
0 = G-y+fs+5U+y—fa—u—fi—fa)+u+t.. (6.16)

--~+f1+2(\/2'/+y*f3fuff1*f:s)fz*ﬂ*f'l*f'&

where the third equation is seen to depend only on the available inputs and outputs and on the
faults. O
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6.2.3 Unknown inputs, exact decoupling

When unknown inputs are present, a state-space model of the system takes the form?
w(t) = g(x(t),u(t),d(t), f(t)) (6.17)
y(t) = h(zt), u(t),d(t), f(1)).

Applying the same technique as above leads to
g = 8 (2(). 29 0),d" (1), 7 1)) - (6.18)

Under the condition that (¢ + 1) p > n + (¢ + 1) ng4 and the Jacobian

OH()  OH()
i

is of rank n + (¢ + 1) ng both the state and the unknown inputs can be eliminated,
leading to the equivalent system

(1) @), a9 @), £ 1))
(d(q)@)) B (¢d<y$z><t>7a<q><t>,f(”(t)) ©1%
0 = rEY®,a?0), 7w, (6.20)

where (6.20) are the analytical redundancy relations, which are independent of the
unknown inputs, hence the name "exact decoupling” which is given to this approach.
Note that exact decoupling is possible only if the structural graph of system (6.18)

is overconstrained with respect to both the unknowns « and d\?.

6.2.4 How to find analytical redundancy relations

There are several procedures by which ARR can be found. They all rest on the elim-

ination of x(t) (and a“ (t) when unknown inputs are present), either by starting
with (6.8) and (6.9) or by establishing first (6.11).

Elimination procedures fit the nature of the functions g and h. When all functions
are linear, projection approaches are well suited: this is the parity space approach
which will be described in Section 6.3. Most often, nonlinear models involve poly-
nomial functions (because polynomials can approximate any smooth nonlinear fun-
tion). There are, basically, three elimination techniques for polynomial functions.
All three require the components of the state to be eliminated according to some
selected order. Elimination theory rests on Euclidean division and derivation. Grob-
ner bases uses Euclidean division and the computation of so called S-polynomials.
Characteristic sets (also called Ritt’s algorithm) rest on Euclidean division and
derivation. The state is directly eliminated from the system (6.8) (6.9), and ARR
with minimum derivative order can be obtained.

2 Again the same functions g and h as above are used by an abuse of notation.
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6.2.5 ARR-based diagnosis

Fault detection. In the absence of unknown inputs, or when exact decoupling is
possible, the following logical statements hold

(6.10) <= (6.14),(6.15) = r@Dt),a @), 7)) =0
(6.17) <« (6.19) = r(g @), a @), 1) =0

From (6.21) it follows that in both cases necessary conditions for normal system
operation are given by

Ho = r(@P(t),a'?(t),0) =0

(6.21)

Therefore, fault detection immediately follows from

r(g D (t),ul?D(t),0) #0 = H,.

Remark 6.2 Non detectable faults

Note that (g (t), @ ? (t),0) = 0 does not imply Mo since the condition expressed by
the analytical redundancy relation is only necessary. In fact, (g (t), a'?(t),0) = 0 is
to be read: Ho is not falsified by the observations, or in other terms "it is not impossi-
ble that the system is healthy". In fact, special fault values that are not detectable through
analytical redundancy could exist. They correspond to nonzero values of f(t) that yield

r(g@(t),a @ (1), f (1) =0.0

Example 6.2 (cont.) Redundancy in a nonlinear system
The redundancy relation in (6.16) writes
J+5y+4y —4du—1
= f1*2(\/y+y*f3*u*f1*f.3) fo+4fs+ fi +5f5 + fa.

Therefore, the residual is
r(7,3%,0) = §j + 55 + 4y — du — @
and the fault detection rule is

G+5)+4y —du—0£0=Hy. O

Fault isolation. Fault isolation is approached in a similar way, by the design of
so-called structured residuals. Assume it is possible to separate the set of faults 1
into two subsets I and I5 such that I = I} U I5. Set

F6) = (£, L@ )

where only f; (t) (f1,(t)) is nonzero upon occurrence of a fault in I; (I3). If the
set of residuals can also be separated in two subsets
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TQ@(S) (), ﬁ(s)({;)’ f(s)(t))

so that (a) r; is insensitive to faults in /5 but sensitive to faults in I; while (b) 75
is insensitive to faults in I; but sensitive to faults in I5, then, as shown below, it is
possible to distinguish between the occurrence of a fault from the class I or I5. The
logical expressions corresponding to these assumptions are

r(5) (5, 1) (1), 7 () = ( (g (0,27 0.7 7 0) ) (622)

@ TEnFO=fimn =01 L m@@.a0,79w) =0
iely: f,t)= fz (ni, t) # ro () (1), u®) (t), F) (1)) # 0
o) Jieh: f,(t)=Ff(ni,t) # N (7 (t), ul) (t), FE () #0
Vielr: fr,(t)=f;(mt)= ro (g (1), al) (1), F9) (1)) = 0.

There are four possible situations (logical 0 means » = 0 while logical 1 means
7 # 0 ) and the following conclusions are true.

’ 1 ’ To ‘ Conclusion ‘
0 0 | Hp is not falsified (no fault is detected)

0 1 | Hp is falsified by a fault ¢ € I

1 0 | Hy is falsified by a fault ¢ € I;

1 1 | Hp is falsified by a fault ¢ € I; and a fault j € I

Therefore, under (6.22), it is possible to isolate a fault within the subset /7 or
within the subset I5. By designing several partitions of the set of faults into two
classes it is obviously possible to isolate faults within smaller subsets that result
from the intersections of all these partitions.

Remark 6.3 Non isolable faults

Only a limited number of partitions into two classes enjoying property (6.22) can be obtained
for a given system. Therefore, it may happen that whatever the partition such that (6.22)
holds, two given faults, say ¢ and j are always in the same class. These faults always have the
same effect on the analytical redundancy relations, and therefore they are not isolable from
each other, which means that every FDI conclusion will contain "the fault is either ¢ or j (or
both)". O

Example 6.3 Two-tank system

In Example 5.40, the set of constraints associated with the two-tank system components wrote

Pump: qgp = u.f(h1)

Tank 1: hi = % (qr — qL — q12)
Tank 2: he = i (q12 — q2)

Pipe between tanks (h1 > h2):  qi2 = k1\/ hi — h2
Output pipe: q2 = kav/'ha

Outflow measurement: gm = km.qo.
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The state-space equations are
< hl > _ *%\/h17h2+—f(21>.U7%.qL
ha % hi —ha — %\/E
and the measurement equation is

Derivating once the output gives

(6.23)

Gm = kmka (ha) " ha (6.25)
. _ k k
dm = kmka (h2) 1/2 (Zl Vhi—ha— ZQ\/hz) .

From (6.24) and (6.25) the two states hy and ho can be computed

dm 2
ho = (kmkz ) (6.26)
hi = g (1+1+dm)?).

Derivating once again gives
(hy — h2) "2 VR (hy — ha) — (h2) ™2 ha (hy — ha)'/?
ha ’

where replacing h1, ha, hl, ha by their values taken from (6.26), (6.23) and (6.24) — (6.25)
gives the redundancy relation

Gm =

T(qm7 qma q’ma ’LL, qL)
= Vha(hi = h2)""? Gm — h1 + ha + (ha) " ha (h1 — h2) = 0 (6.27)
and the leakage detection rule

r(qm7qmaijm7u7 0) 7& 0 = qL 7é OD

6.3 Analytical redundancy relations for linear deterministic
systems — time domain

Let us consider the following continuous-time state-space model

x(t) Ax(t)+ Bu(t)+ E,d(t) + F, f(t), =(0)=mz9, (6.28)
y(t) = Cux(t)+ Du(t)+ E,d(t)+ F,f(t),

where € IR™ denotes the state vector, u € IR™, is the vector of measured input
signals, y € IRP is the vector of measured plant output signals, d € IR™ and
f € IR™ are vectors of unknown input signals. f represents the faults one wishes
to detect, while d are unknown disturbances that should not be detected.

The aim is to solve the following problem.
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Problem 6.1 (Design of linear analytical redundancy relations)

Given a model of the supervised process of the form (6.28), determine, if possible, a
set of linear relations between the measured inputs and outputs and their derivatives
up to a certain order, say q, such that,

e in the absence of fault,

q q
> WD)+ W ul(t) =
i=1 i=1

where z()(t) denotes the it" derivative of z(t) and Wi W, are n. X p
and n, X m matrices of real elements, n, being the number of relations (to be
determined),

e in the presence of a fault,

q q
S Wy () + > W ul(t) #0
=1 =1

Such relations are a particular kind of analytical redundancy relations called
parity relations.

In order to solve this problem, let us consider the successive time derivatives of y
up to order ¢:

y(t) = Cx(t)+ Du(t)+ E,d(t) + F,f(t)

y(t) Ci(t)
CAx(t) + CBu(t) + Du(t) + CE, d(t)
+E, d(t)+ CF, f(t)+ F, f(t),

(6.29)

where the last equality is deduced by substitution of (6.28) for @(¢). By iterating
this process, the following expression for the ¢*" derivative of y is obtained:

y () = CA%(t) + CAVBu(t) + ...+ CBuli™Y(t) + Dul@ () +
+CAYVE,.d(t)+...+ CE,d " V() + E,d9(t) +

+CAYVE, ft)+...+CF, f V) + F, f ). (6.30)
The above set of equations can be concatenated into the expression
§D(t) = O2(t) + Tug @ (t) + Taqd” (1) + Ty f'7, 6.31)
where 7(9 (t) = ( ( Ya(t) ...y () ) and @9 (t), z_i(q)(t), f(Q) (t) have a sim-
ilar form with w(t), d(t) and f substituted for y(¢),
D 0 0 o 0
CB D 0 e 0

CcCA™'B ... ... CB D
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and a similar definition holds for the block Toeplitz matrices T'y 4, Ty, With re-
spectively E, and E, or F';, and F'; substituted for D and B.
If there exists a value of ¢ such that

rank( O T4, ) <(¢+1)p,

the left nullspace of (O T'z,) is not empty. The dimension of this subspace, say
n,, is given as n, = (¢ + 1)p — rank ( O T4, ) Let Wbean, x (¢+ 1)p

matrix of which each row is a basis vector for this subspace. Multiplying (6.31) on
the left by W results in the following equality

W:l](q)(t) _ WTu)q,a(Q) (t) = WTf,q}(q) (1), (6.32)

since W has been specifically computed to eliminate the terms in x(¢) and a" (t).
Equation (6.32) describes n,. analytical redundancy relations. Indeed, in the absence
of fault, the right hand side is equal to zero, and it is normally different from zero in
the presence of a fault.

In order to implement such relations, and thus to compute the quantity

r(t) = Wyl (t) - WT, u?(t), (6.33)

it is necessary to evaluate the derivatives that appear in the above relation. Such sig-
nals are highly sensitive to noise, so that filtered estimates of the derivatives have to
be used. One approach is to resort to a so-called state variable filter, which amounts
to implementing the scheme of Fig. 6.2. Such a filter is used for each component of
y(t) and u(t). Letting z(t) denote the input of such a filter, the 7*" integrator output
provides the i*" filtered derivative of z, zj(f). This filter corresponds to the analog
simulation of the observability canonical state-space representation for the relation

! (s).

s94arps@=b + ...+ aqz
By taking this filter into account, (6.33) can be rewritten in the frequency domain as

ri(s) = (Wy(s)y(s) + Wa(s)u(s))/ps(s), (6.34)

where

q
=0

zp(s) =

with W ;, the matrix made of columns i p + 1 to (¢ + 1)p of W, W, (s) is defined
similarly with WT',, , substituted for W and

pr(s) =57+ a4V 4. +a,

Vector 7 is called a parity vector. It has generally different directions and magni-
tudes in the presence of the different fault modes. The n, dimensional space of all
such vectors is called the parity space, and any linear combination of the rows of
(6.33) is called a parity relation.
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Fig. 6.2. Block diagram of a third-order state variable filter

The procedure for designing and implementing parity relations is now sum-
marised.

Algorithm 6.1 Parity relations for deterministic linear systems

Given: A linear state-space model of the form (6.28) and a suit-
able order of derivation ¢

Compute off-line: 1. Matrices O, T q 4, T, 4
2. Abasis W for the left null space of (O T4 )

3. State space filters for the estimation of the derivatives of
y and u up to order g.

At each
time instant:
1. Acquire the new data y(¢), u(t).

2. Compute 7 ¢(t) from (6.34).
Result: A residual vector r ¢(t) for an increasing time horizon.

An alternative approach to determine analytical redundancy relations can be de-
duced from the input-output model of the supervised process, namely in the fre-
quency domain. It directly results in relations involving the filtered derivatives of
the measured signals. By extension this method is called the (generalised) parity
space approach. It is the object of the next section. Fault isolation can be handled in
the linear case in a similar way as for the nonlinear case. The detailed treatment of
this issue is deferred to Section 6.4.3.

Example 6.4 Parity relations for the ship

A linearised model of the ship example can be written as

(2) = Cr () () (D) o
(o) = o)) (o ) () (0 ) o
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when linearisation around ws = 0 is considered. Here §, the rudder angle, is a known input,
while w,,, the wave disturbance, is an unknown input.
Straightforward computations yield the following expression for (6.31) with ¢ = 1:

W3m 1 0 0 0
Ym B 1 ws 0 0 5
W3m o by 0 P b 0 )
Ym 1 0 0 0
1 0 1 0 0 O fo
0 0 W 01 0 O fo
. 6.37
+ 0 1 ( W )+ 0 0 1 0 fo 637)
1 0 0 0 0 1 Fo

The block matrix (O T g4,1) takes the form:

1 0 1 0
0 1 0 0

T,,) =
(O Tan) bpp 0 0 1
1 0 1 0

A basis vector for the one-dimensional left nullspace of this matrix can be written
W=(10 0 -1).

Expression (6.32) then yields
W3m — Ym = fu — fo.

Hence a residual can be computed according as:
r7(5) = (wam(s) — s¥m(s))/(s +a), (6.38)

where a is a design parameter to be adjusted according to the noise level. This expression is
a particulat case of the more general form (6.52) for a residual for the ship example. Further
discussion of the proposed residual is provided in Section 6.4. O

6.4 Analytical redundancy relations for linear deterministic
systems — frequency domain

In this section, the problems of fault detection, fault isolation and fault estimation
are solved using the parity space approach to residual generation, from an input-
output model of the supervised system. An alternative method would be to design
observer-based residual generators, which yields similar filters, as indicated in the
bibliographical notes. The observer-based approach will be used in the section on
diagnosis systems design from a stochastic model, so that the reader will be ac-
quainted with both methods.
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6.4.1 Fault detection

Consider again a system described by a linear continuous-time state-space model of
the form

@(t) = Ax(t)+ Bu(t)+E.d(t)+F, f(t), x(0) ==

y(t) = Cx(t)+ Du(t)+ E,d(t) + F,f(t), (6.39)
where © € IR™ denotes the state vector, u € IR™, is the vector of measured input
signals, y € IRP is the vector of measured plant output signals, d € IR™® and
f € IR™ are vectors of unknown input signals. f represents the faults one wishes

to detect, while d are unknown disturbances that should not be detected.
Such a model can also be written in terms of transfer functions:

y(s) = Hy (s)yuls) + Hya (s)d(s) + Hyo ()2(0) + Hyp (5)£(s),  (6.40)

where

H,,(s) C(sI-A)'B+D
H,,(s) C(sI - A)!

H,(s) = C(sI-A'E,+E,
H,(s) = C(sI-A)'F,+F,.

As indicated in Fig. 6.1, a residual generator is a filter with input « and y. As su-
pervision of linear time-invariant systems is addressed here, the class of considered
filters will be restricted to linear time-invariant systems of the following form

2(t) = A.z(t)+ B.,u(t)+ B, y(t), z(0) = zg
rit) = Cp,z(t)+ Dy, u(t)+Dryy(t) 6.41)

or, in transfer function form, assuming zero initial conditions:

u(s
r(s) = Viu(s)u(s) + Vo (5)y(s) = (Viu (s) Viy(s)) ( yES; > .(6.42)
The problem of residual generator design for fault detection based on a determi-
nistic model can be stated as follows:

Problem 6.2 (Residual generator design for fault detection based on a deter-
ministic model)

Given a model of the supervised process of the form (6.39) or (6.40) determine a
stable linear time-invariant system (6.41) or (6.42) such that:

o In the absence of fault (f(t) = 0 for all t), the output signal r(t),t > 0 asymp-
totically decays to zero for any input u(t), d(t),t > 0 and any initial conditions
x(0), z(0).

o 1(t) is affected by f(t).
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The first condition assures that, after a transient due to the effect of initial condi-
tions, the residual is almost equal to zero. The second condition is a fault detectabil-
ity® condition. The output 7 () is affected by f(¢) when the transfer matrix between
f(s) and 7(s) obtained by combining (6.40) and (6.42) is non-zero. A time do-
main definition of this notion is somewhat more cumbersome, hence we defer it to
Section 6.8.2.

Quite often, each component of the vector f(t) corresponds to a different fault.
The detectability condition is then defined component-wise. One distinguishes the
following notions:

Definition 6.1 (Weak detectability)
The it" fault (fi(t) # 0 for allt > to) is weakly detectable if there exists a stable
residual generator such that r(t) is affected by f;(t).

In the literature weak detectability is also referred to as detectability.

Definition 6.2 (Strong detectability)

A fault f; is strongly detectable if there exists a stable residual generator such that
r(t) reaches a non-zero steady-state value for a fault signal that has a bounded final
value different from zero.

6.4.2 Solution by the parity space approach

In order to determine the conditions to be fulfilled by V',.,,(s) and V.., () for (6.42)
to be a residual generator, (6.40) is substituted for y(s) in (6.42):

r(s) = Veu(s)u(s) + Vi (s) (Hyu (s)uls) + Hyz (s)2(0)
+Hyq(s)d(s) + Hyy (s)f(s))

= (Vouls) + Vi (5)Hyu (5) Vry<s>Hyd<s>><”(S)>

+Viy (8)H ys (8)2(0) + Vi (s)H yp (5) F(5) (6.43)

Figure 6.3 illustrates this residual generator.
Fulfilment of the first condition in Problem 6.2 requires:

(Viru(s) + Viry (s)Hyu (5) Vi (s)Hya(s)) = O (6.44)

together with the asymptotic stability of V., (s) H ,; (s). Since, in healthy working
mode, the plant is normally stabilised by an appropriate controller, the latter con-
dition amounts to requiring the stability of the filter. This can be guaranteed by an

3 This notion should not be confused with the detectability of a linear system or a pair
(C, A); indeed, the latter notion depends on the map from state to measured output, while
the fault detectability is an input(i.e. fault)/output(i.e. residual) property.
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——> H(9)

f(s) y(s)

lr(s)

Fig. 6.3. Structure of residual generator in the parity space formulation

appropriate choice of the denominator of V', (s) and V., (s). Therefore, concen-
trate now on the way to achieve (6.44). The question of fault detectability will be
addressed once the class of all filters that fulfil (6.44) is characterised.

Notice that (6.44) can be rewritten:

H,, H
(Vg (5) Vieu(s) | 7 (5) Hyals)) _ (6.45)
I o
For any filter, the least common multiple of the denominators of the entries of
V .y (s) and V., (s), p(s) can be determined. Using p(s), the left most matrix in
(6.45) can be written:

(Viy(s) Viul(s))
p(s)
where V.., (s) and V., (s) are suitable polynomial matrices. Hence, the whole class

of filters that meet (6.45) can be obtained by characterising the set of polynomial
matrices (V,y(s) V,u(s)) that fulfil:

(Viry (8) Viyuls)) =

, (6.46)

5 5 Hy,(s) Hya(s)
vV, Vo Y Y =0. 6.47
(Viy(s) Viu(s)) ( T p (6:47)
This is the set of polynomial matrices that lie in the left nullspace of
H,, H
H(s) = | Hr (&) Huals)) (6.48)
I 0

This space is denoted Nz, (H (s)). Its dimension is equal to the difference between
the number of rows of H (s) and its rank, namely
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dim(NL(H(s))) =m+p— rank H(s) =m+p— (m+ng) = p — ng,

where m is the number of inputs, p the number of outputs, and n, the number of
unknown inputs (disturbances). It has been assumed that H ,,,, (s) and H 4 (s) have
full column rank*. Notice that the number of plant output signals must be larger than
the number of disturbances for the left nullspace to be non-zero.

One way to characterise the set of polynomial matrices (VTy(S) Vm(s)) that
meet (6.47) is to determine an irreducible polynomial basis, for the rational vector
space N7 (H(s)). Further, let F'(s) be a matrix of which the rows make such an
irreducible polynomial basis, then any suitable matrix (V,,(s) V,u.(s)) can be
obtained by combinations of the rows of F'(s), namely

(Viy(s) Viu(s)) = Q(s)F(s), (6.49)
where Q(s) is an arbitrary polynomial matrix with appropriate number of columns.

A general parametrisation of the family of residual generators is obtained from
(6.49). Substitution of (6.49) into (6.46) yields

(Viy (5) Viuls)) = %

Introducing this expression into (6.42) finally results in

r(s) = LEFE) ( y(s) > , (6.50)

p(s) u(s)

The choice of the matrix Q(s) and the polynomial p(s) depends on the specification
of the diagnosis problem. Typically the residual generator should ensure filtering of
high frequency disturbances which always exist, even though they were not consid-
ered in the model, and adequate properties at low frequencies. Sometimes, precise
information on the frequency range of the fault is available, and Q(s)/p(s) can be
designed to perform appropriate filtering.

Remark 6.4 Link with parity relations deduced from the state-space model

Equation (6.34) clearly has the same form as (6.42) and, by construction, it fulfils the first
condition of problem 6.2 provided py(s) has all its roots in the open left-half plane. Hence
there exist a matrix Q(s) and a polynomial p(s) for which (6.34) and (6.50) are identical. O

Modelling uncertainty. Although modelling uncertainties have not been intro-
duced here, they can be accounted for a posteriori when F'(s) has several rows.
Q(s) is then used to select appropriate rows in F'(s). To explain the idea, let
F,(s),i = 1,---,n, denote the i*" row of F(s), and consider the scalar residu-

als
i B (w6
l() p(s) <U(S)> ]-v 9 T

* The notion of rank considered here is the normal rank computed as maxs rank H(s)
where the maximum is taken over all complex values of s.
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By performing a simulation of all these filters with actual plant measurements as
input, one may compare how significantly the actual residuals r;(t), i = 1, ..., n,
deviate from zero in the absence of fault, once the transient due to initial conditions
has vanished. This reflects the effect of modelling errors on the residuals. Besides,
by using faulty data obtained with a simulation or corresponding to actual plant
measurements it is also possible to compare the actual sensitivities to faults. A kind
of “signal to noise ratio” could be defined for each residual as

P O

t1+T ’
Jo el ()2t

(6.51)

where r!'(t) denotes the residual obtained with the measurement associated to the
faulty mode, and r/'F" corresponds to the fault free situation. 7" is a user defined
horizon, ¢y and ¢; are time instants associated to faulty and fault free data sequences.
Matrix Q(s) should then be chosen to select the components of (s) for which the
“signal-to-noise ratio” is significantly larger than 1.

Computational aspects. The problem of finding an irreducible polynomial basis
for N, (H (s)) can be transformed into the determination of a similar basis for a
polynomial matrix instead of the rational matrix H (s). It suffices to notice that

H(s) = H(s)/h(s),

where h(s) is the least common multiple of all denominators. An irreducible poly-
nomial basis for H (s) is also an irreducible polynomial basis for H(s), and vice-
versa. Numerically stable algorithms for the computation of an irreducible poly-
nomial basis are available in the literature, and they have been programmed in the
polynomial toolbox of MATLAB.

The symbolic tools Maple and Mathematica can calculate a basis for the left
nullspace of H(s). The Maple command nullspace basis applied to the matrix
H'(s) will provide the row basis given in analytical form. Calculation of a basis
is not unique, so the result can be expanded or reduced by a polynomial fraction as
desired. The result is not necessarily irreducible, either, but the reduction to an irre-
ducible basis is usually straightforward once a factorisation is made of the entries in
the nullspace basis®.

Example 6.4 (cont.) Parity relations for the ship

A model of the form (6.40) can be easily deduced from the linear state-space model for the
ship example. The following transfer matrices are obtained when sensor faults are considered,

and when state and sensor noise are neglected:
1
— 0
5—b
). = (i
s(s—bm) s

_b
Hy.(s) = ( 5757“ ) y Hya(s) = (
(s—bn1)s

5 The Maple symbolic mathematics engine is a stand-alone product. It is also a part of
the MATLAB Symbolic Toolbox. MATLAB 8, Maple®and Mathematica@are registered
trademarks of their respective owners.

W= =
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and H ,; = I>. In the above expressions,

z(t) = (ws(t) v()

y(t) = (wsm (t) ¥m (1))
dit) = ww(t)
ult) = 6(t)

Ft) = (fu(t) fo(®)

hold. It is assumed that 7, is negative, so that the ship is stable. H y (s) is not asymptotically
stable however, due to the integrator linking speed and position. We shall see below what
slight modification must be introduced in the theory to handle the pole at the origin.

The matrix H (s) takes the form:

b

s — b}?l 11 1 bs s(s—bm)
Hs)=| —> - L )1=——tfi |3 (s —bm)

s(s—b S s(s—b

1( 7]1) 0 ( 771) s(s—bm) 0

The last matrix corresponds to H (s). An irreducible basis for its left nullspace can be
calculated, or found by inspection, to be

F(s)=(1 —s 0).
Thus, any vector of rational functions of the form

(@ —sq(s) 0)’

p(s)  p(s)
where p(s) is an arbitrary polynomial with roots in the left half plane and ¢(s) is an arbitrary
polynomial with degree less than p(s), fulfils condition (6.45). Candidate residual generators
have the form:

a(s) sq(s)
r(s) = —%wsm(s) — P (8). (6.52)
O =) S
Notice that, by setting ¢(s) = 1, one recovers (6.38) with p(s) = s + a.
Substituting the model equations for w3(s) and ¥ (s) yields
q(s) b

r(s) = L prole) wuls)

T s(0) + £o(s)

_sq(s) b s W (8) 1 " 1 )
p(s) <3(5 - bn1)§( )+ 5 + s(s—bm) 2(0) + 51/1(0) +ful ))

_a(s) a(s) ¢y 84(8) ¢
= S)w(O) ) fu(s) (5) fu(s).

In order to assure that the residual asymptotically vanishes, two solutions are possible:

p(

e Introduction of a derivative action in g(s), so that ¢(s) = sg(s) and the term involving
1(0) in the above equation is null at steady state.
e Modification of (6.52) by adding a correction term associated with the initial position
(supposed to be measured correctly). This yields
q(s) q(s) 5q(s)
r(s) = =<9 (0) + =< w3m(s) — Ym(s
e A O R TO R
or, after substitution of w3, (s) and ¥, (s) in terms of the model equations:
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q(s) 59(s)
r(s) = =< ful(s) — fuw(s). (6.53)
(5) = 25 1u(6) 5(5)

The first solution also introduces a derivative action in the transfer functions between f,,(s)
and r(s), and between fy(s) and r(s). Hence step like faults do not have any steady state
effect on the residual. On the other hand, in (6.53), ¢(s) can be chosen so that a step-like fault
fw has a steady state effect on r, but a step like fault in f,, can only influence temporarily

r due to the zero at the origin in ‘21((:)). Application of the theory below will indicate that,

indeed, fault f, is strongly detectable, but f;, is only weakly detectable. O

Example 6.5 Parity relations — ship with three output measurements

Some useful observations can be made later from the above example but using an additional
instrument to measure the ship heading. This third instrument is taken to be independent of
the other two. This is a realistic case since redundant heading instruments are required for
most merchant ships.

With two independent heading angle measurements

y2(s) = ¥l (5)

and

ys(s) = i) (s),
the matrix H (s) takes the form:

bs s(s—bm)
&) — 1 b (s —bm)
HE) = = | o (s — bm)

s(s—bn) O

The nullspace basis for H (s) is computed to be

(= 1 0 0
(= o0 1 0 )
This means a family of candidate residual generators exist, which have the form

w3m (8)

()__(Tl 1 0 0) W (s)
TR\ 001 0 )| R0
a(s)

The relation between components of the residual vector 7 (s) to faults f(s) and wave distur-
bance w,, is

nes) = q—% (-1 )+ £06))
3 (A @+12e).

It is evident that all elements of the residual are decoupled from the wave disturbance, which
was the intention.
Forming a third residual using the plain difference between heading angle measurements

ra(s) = P (s) — 2 (s),

ra(s)
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which would be a straightforward choice as an output parity equation, is indeed possible, but
since this would be a linear relation between the two residuals already defined, this would not
add to the information contained in the residual vector. O

Fault detectability. To deduce theoretical results on fault detectability, the expres-
sion of the residual in the presence of faults must be determined. Substituting (6.45)
into (6.43) yields

r(s) = Viy(s)Hye (s)2(0) +Vr1/( JH 5 (s)f(s) (6.54)

= Vo (s)H +ZVry (s)fi(s),

where H, ;(s) denotes the i*" column of H  (s). It can be shown that a necessary
and sufficient condition for detectability of the i*" fault is:

Vo (s)Hj(s) #0, (6.55)
where V., (s) also fulfils
Vi (s)Hya (s) = 0. (6.56)

The latter condition comes from the second entry in (6.44). For (6.55) and (6.56)
to be simultaneously verified, one should not be able to express H, ;(s) as a linear
combination of the columns of H 4 (s). In other words, there cannot exists any

non-zero polynomial set ag(s), a1($), -+, an,(s) such that:

o () HY () + 0 (5)H Ly () + -+ + an, () H4(s) = 0
This condition is fulfilled when

rank (Hyq (s) ;f(s)) > rank H 4 (s), (6.57)
where

rank A(s) = max rank A(s)

S

denotes the normal rank of the rational matrix A(s). In the latter expression, the
“rank”-operation in the right hand side acts on a matrix of complex numbers ob-
tained for a specific value of s. It can thus be evaluated in the standard way. (6.57) is
actually a necessary and sufficient condition for the 7*" fault to be weakly detectable.

To determine a test for strong fault detectability, substitute the model (6.40) for
y(s) in the parametrisation of the class of residual generators (6.50)

r(s) ; o d(s)

f(s)
_ QLF([) ( Hy; (s) )f(s), (6.58)

Il
L)
O
!
S
/N

H,,(s) Hya(s) Hw(s)) u(s)
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where the second equality accounts for the fact that F(s) is a basis for the left
nullspace of H (s). The transient term due to x(0) was not considered as its effect
vanishes when ¢ tends to infinity. Strong detectability of the fault f; is thus achieved
if there exists some polynomial p(s) and polynomial matrix Q(s) such that

Q(s)F(s) b (s)
p(s) (0]

As p(0) is necessarily chosen non-zero to assure asymptotic stability of the filter,
and Q(s) can be chosen arbitrarily, a necessary and sufficient condition for strong
fault detectability is

F(s) ( 3«8(5) )

Notice that this expression may be different from F'(0)

£ 0. (6.59)
s=0

£0. (6.60)
s=0

!

¢ (0
yf (0) and, hence,

substitution by s = 0 must be performed after computation of the matrix product.

Example 6.6 Detectability - ship with two output measurements
To check that fault ffbl) is detectable, (6.57) is applied as follows

rank(} (1)>>rank< )

Similarly, the inequality

rank (} (1)> > rank (

ensures that fff) is detectable. Condition (6.60) is now used to check strong fault detectabil-
ity. For fault ffpl) it yields

W= =

@[ =

—
i
I
V)
=
=
o
I
—

s=0

Thus fault fi}l) is strongly detectable. For fault ff) one gets

1 —-s 0|1 =0,

s=0

which indicates that ff) is not strongly detectable, as was expected. O

The procedure for residual generator design can be summarised as follows.
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Algorithm 6.2 Residual generator design with the parity space method
Given: A model of the supervised system in the form (6.40).

Computation:
1. Compute matrix H (s) as defined by (6.48).

2. Determine an irreducible polynomial basis for
Np(H(s)), and let F(s) be the matrix whose rows
make such a basis. If F(s) = O, the problem has no
solution.

3. Design the filter ?((:)) as a low-pass or a band-pass filter

which possibly selects appropriate rows in F'(s) accord-
ingto SNR;,i=1,---,3 (cf. (6.51)).

4. Check for weak or strong fault detectability as needed.

Result: A residual generator in the form (6.50).

6.4.3 Fault isolation

For fault-tolerant control, faults should not only be detected, but also be isolated,
namely the faulty components should be determined. The problem of residual gen-
erator design for fault detection and isolation based on a deterministic model can be
stated as follows.

Consider a system described by a continuous-time linear state-space model of the
form

&(t) = Ax(t)+ Bu(t ZFJ z(0) = x
y(t) = Cx(t)+ Du(t) + ZFJ (6.61)
where f; € IR™3,j = 1,...,ny represent the faults that must be detected and

isolated. In terms of transfer functions, (6.61) can be written as

ny

y(s) = Hyu (s)u(s) + Hy, (s +ZHny ), (6.62)

H,, (s)=C(sI -A)'B+D, H,, (s)=C(sI - A)™*
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Hyy,(s) = C(sI — A)"'Fi + Fi.

Problem 6.3 (Residual generator design for fault detection and isolation based
on a deterministic model)

Given a model of the supervised process of the form (6.61) or (6.62), determine a
set of ny stable linear time-invariant filters described by

zZo(t) = A.ze(t)+ Bouu(t) + By y(t), z:0) =z, (6.63)
ro(t) = Crzeze(t)+ Dyyou(t)+ Dryey(t), €=1,...,n5
or, in transfer function form, assuming zero initial conditions,
ro(8) = Vi p(s)u(s) + Vg e(s)y(s), t=1,...,ny, (6.64)
such that the following conditions are met.

o 1(t) asymprotically decays to zero for any u(t) and any
Fi0), i=1, . g, j £ t>0.
o 14(t) is affected by fo(t).

In this problem statement, the ¢ residual can only be affected by the ¢*" fault,
and not by the others. The table below represents this situation when ny = 3.

Table 6.1 Effects of the faults on the residuals

A rarars
T1 X 0 0
T2 0 X 0
T3 0 0 X

A “x” in Table 6.1 indicates that the fault in the corresponding column affects the
residual of the corresponding row.

The faults that do not affect the /*" residual can be seen as unknown inputs to
which this residual should not be sensitive. Hence, to design a residual generator
that output 7y, it suffices to use the solution of the problem of residual generation
for fault detection in which vector d is replaced by (f7 ... fy_y Foy1---frn,) - nf
such problems should be solved for £ = 1,...,ny in order to obtain the n filters
that make a solution to the fault isolation problem.

From the conditions for fault detectability, the following conditions can be de-
duced for the above scheme to work:

rank (H,yz,(s) Hyy,(s)) > rank Hy, (s) (6.65)
forall 4, j=1,...,np, £#j.
A suficient condition for (6.65) to hold is
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Y ng<p, (6.66)
j = 17 nyg
J#L
where p is the number of measured output signals (dimension of y).
When condition, (6.65) is not met, the diagonal structure of Table 6.1 cannot be
obtained, and one should attempt to group the fault vectors in different classes and
to generate residuals that are affected by a specific fault class and not by the others.

The table below illustrates one way to perform such a grouping, in a situation where
ny = 3 and two residual generators are designed.

Table 6.2 Effects of the faults on the residuals — non-diagonal structure

A

1 X X 0

T2 X 0 X

In the situation of Table 6.2, all three faults can be distinguished as the combination
of r1 and r reacts differently to each fault. However, simultaneous faults cannot be
isolated because they affect both residuals in all cases.

Example 6.7 Isolability - ship with three output measurements

For the ship with one rate measurement and two heading measurements (Example 6.5), a
residual generator is achieved, which was decoupled from the disturbance,

1 Jus(s)
(:28 ) :< oo ) e | (667
s fi(f)(s)

This residual generator has the properties shown in Table 6.2. O

Sensor fault isolation in a fault-tolerant control setting. If it has been detected
that one out of a set of faults is present, but it has not been possible to isolate which
fault is actually present, and this was due to the design of the residual generator
specification, alternatives are available on the fault-tolerant setting because the su-
pervisory system has control of the input signals to the plant. Similar to system
identification, where a dedicated test signal is applied to obtain the optimal infor-
mation about a particular parameter, a dedicated test signal can be applied on the
control input to help confirm particular hypotheses. This procedure can help reduce
time to diagnose and therefore time to reconfigure a controller.

Example 6.8 Dedicated test signal for isolation — ship steering

If two identical rate sensors are available in the ship steering example, and the residual gener-
ator was designed to be insensitive to the wave disturbance, it is not possible to isolate faults
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fL and 2. In a fault-tolerant control setting, employ active test signal generation to isolate
the fault once it has been detected that one of the rate sensor units is defect. Define a dedicated
test signal

5(t) =4(t), t C [0, T,
which is applied immediately after the hypothesis of
{fs@vEZm}#0

is confirmed. Observe a-priori the response in the non-faulty condition

w3“(t) = go (6(1), U(1)), t C [0, 7]

note that the function g.,, is not calculated, the angular rate is merely recorded and stored.
Calculate the correlations

t

corsi(t) = %/wgec(T)wém (T)dr
0
t

corai(t) = % / W2, (Pwh, (7)dr
0
t

corsa(t) = %/wg“ (T)wiy, (7)dr.
0

These correlation signals with appropriate normalisation make it straightforward to determine
which hypothesis is the most likely. O

6.4.4 Fault estimation

The isolation schemes signify which fault is present but do not assess the magnitude
of the fault. Fault estimates are needed in certain fault accommodation approaches
as was indicated in Section 6.1. This notion is defined as follows.

Definition 6.3 (Fault estimation)
Fault estimation is the ability to estimate the magnitude of a fault f,(t) and its time
history.

Combining (6.42) and (6.58), the link between the fault vector f(s) and the resid-
ual 7(s) is seen to be

Hj (s)

0 > f(s), (6.68)

r(s) = Veul)uls) + Vi (s)y(s) = =02 (

where it is assumed that initial conditions have vanished. Letting
F(s) = (Fi(s) Fa(s)),
where F'1(s) has p columns and F'5(s) has m columns, Eq. (6.68) can be written

Q(s)F1(s)

r(s) = Vruls)u(s) + Vi (5)y(s) = =5

Hy; (s)f(s).  (6.69)
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On the other hand, Eq. (6.54) yields the following relation when the transient due
to the inital conditions is neglected

T(S) = Vry (S)Hyf (S)f(S),

hence
_ Q(s)F1(s)
Vo (s) = o6) (6.70)
As a compact notation, introduce H ,f(s) by
F
Hoy(6) = Vo () Hy () = D a0,

If it is possible to determine a suitable left inverse to H ,.(s), say G(s), an esti-
mate of f(s) would be

F(s) = G(s)r(s) = G(s)(V ruls)u(s) + Vi (s)y(s))- (6.71)

Left inverse transformation. If the polynomial matrix H ,¢(s) is square, then the
estimate f(s) = H :fl(s) where the 7j-th element of H T_,fl, call it h;; is the usual
inverse
h _ 1
909 = Get(H, , (5))
where M j;(s) is the determinant of the matrix formed by H,;(s) after deleting
row j and column i.
If H, f(s) is non-square, with [ rows and ns columns, then, there exists a left
pseudo-inverse G(s) of H,f(s) if and only if

rank (H,¢(s)) = ny,

(1) (M i(s)),

where the normal rank is considered. G(s) is given as

G(s) = (H};(s)H ,f(s) " Hyp(s). (6.72)
The pseudo-inverse has the property

G(s)H,s(s)=1

with I, being the unity matrix of dimension n.

nyf

Remark 6.5 Causality of solution

To be able to implement the filter Eq. (6.71), G(s) V ru(s) and G(s) V -y (s) must be proper
and stable transfer functions. This may not be true when G (s) is computed as above. A mo-
dified procedure can be found in the literature (see the bibliographical notes for this chapter).
O

Fault estimation after isolation. A necessary condition to be able to compute the
above rational estimate, based on a pseudo inverse transformation, is that the rank
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of the H,; matrix is equal to the number of faults to be estimated. As the number
of faults is often larger than the number of independent residuals, it is necessary
to take advantage of the results of the fault isolation to limit estimation of faults to
those that the isolation algorithm found to be present in the system.

Assume the subset of the fault vector f,, i € [J, ..., k] has been determined nec-
essary to estimate by the isolation algorithm. The above general expressions then
hold for the entries of the transfer function matrices that relate to f;, i € [4, ..., k].

Assume a single fault has been determined present. Then, a single column in
H , ¢(s) needs to be considered. The result for this simplest case can be formulated
as follows.

Given the stable residual generator

7(s) = Viyu(s)uls) + Viry (s)y(s))
and a transfer function model relating this residual to faults
r(s) = Hys(s)f(s).

Assume that the isolation procedure indicates that fault number ¢ is present, and let
the i" column of H, ¢ (s) be

where h;(s) is a polynomial vector with entries h;;(s) and 7(s) is the least common
denomination of the entries of h;(s).

)

Theorem 6.1 (Single fault estimation)

~ Lo
On the condition that m(s) and h;(s) = Y hji(s)? are stable polynomials, an
j=1

estimate of f;, fz is given by:
Fils) = (Ri(s) hi(s)) " ha(s)'r(s). (6.73)

This estimator is causal when deg 1(s) = max deg h;;(s). This is easily proved
by direct computation of the pseudo inverse in Eq. (6.73):

(ha(s) hi())"" ha(s) = # (Bii(s), oo Fis(s)) - (6.74)
; h’ji(s)

If the above condition on the degree is not met, a low pass approximation for the
fault estimate can be obtained by multiplying the denomination of Eq. (6.74) by
(s + )P, where a € IR*and §3 is chosen so that all entries in Eq. (6.74) are causal.

Example 6.9 Fault estimation - ship with three output measurements

Fault estimation following isolation for the ship with three output measurements results from
the residual generator obtained in Example 6.7

m=( 3 1) 1)

W [—w |
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Fault 1 isolated: The estimate of fault number 1 is

fr =5 () + 7a(s)).

Since this filter is not causal, a low-pass filtered approximation for the rate gyro fault is
needed, where « € IR

fi= Wra) (r1(s) + 7r2(s)) . (6.75)

Fault 2 isolated: The estimate of fault number 2 is
f 2 =T1(8).

Fault 2 isolated: The estimate of fault number 3 is
f 3 = r2(s).

It should be noted that an erroneous isolation will give gross errors in the fault estimate.
In an implementation, the above fault estimators would run in parallel. Once a particular
fault is isolated, the estimate can be rapidly provided. O

Alternative methods to fault estimation. In cases, where the above algebraic ap-
proach to fault estimation fails, asymptotic estimation of faults may be achievable
using an observer on an augmented system, where the state is augmented by the
fault(s) to be estimated (modelling faults to be constant):

d [ = B A F, x B ;
a\s) =~ lo o))t u®
y(t) = (C F)(jﬁ)

A necessary condition for an asymptotically stable estimator to exist is that the

pair
A F,
(5 5) e =)

is observable. Observer-based methods are covered extensively in the literature (see
the bibliographical notes for references).
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In summary the procedure for estimating the magnitude of a fault is as follows:

Algorithm 6.3 Fault estimation

Given: A model of the supervised process of the form (6.40) and a residual
generator of the form (6.42)

Compute:

1. The transfer matrix H, (s) relating residuals to faults
2. Aleftinverse to H,¢(s)

3. An estimator of the form (6.71), possibly after appropriate filtering of
the left inverse in order to obtain a causal and stable estimator for all
faults.

Result: A causal and stable fault estimator based on the measurements of w(s)
and y(s).

6.5 Deterministic model — optimisation-based approach

6.5.1 Problem statement

The above methods were based on algebraic or polynomial manipulations, and re-
lied on the ability to achieve exact decoupling from disturbances and from input
to the residual. When this is not possible, the influence d(t) and w(t) have on the
residual competes with that generated by faults f(¢). If the effects of input and
disturbance on the residual are non-zero, we do not obtain

(Vra(8) V(8 L yu(5) vry(s)Hyd<s>>( Z(()) ) —0  ©76)
for all u(s) and d(s) and
rs) = (Vo) + Vi) Hyuls)  Vey(5)Hya(s)) ( o )
+V oy ($)H 5 (8) F(8) + Vyy(s) H yy(s)z(0) (6.77)

is strictly speaking not a residual generator according to the definition.

The purpose of this section is to find ways to relax the requirement on exact de-
coupling for the residual generator. Instead, some optimal approximation should be
obtained in the sense that the design shall satisfy certain criteria.

The design objectives should be to

1. Provide a sufficient suppression of disturbances d seen from the residual,
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2. Maximise the sensitivity 7 of the residual with respect to all or a to a selected
set of faults in f.

3. Make the residual signal sufficiently insensitive to variations in the input signal
u.

4. Provide the designer with tools to enter a specification of the desired perfor-
mance.

Formulating the design objectives as performance indices will enable a rigorous
treatment. From the condition Eq. (6.76), perfect decoupling of disturbance requires

Voy(s)Hyq(s) = 0.
Insensitivity to input requires the model to fulfil
Viu(8) + Vi (s)H yy(s) =0
and both are subject to the constraint that sensitivity to faults is not vanishing

Vo (s)H yp(s) # 0

Norms and gains. In order to treat the relaxed condition, it is not required that the
right-hand sides are exactly zero, but we wish to obtain minimal values subject to
constraints like stable systems and causal realisation of filters. In order to formulate
adequate optimisation problems, recall the definitions of the vector norm and the
matrix norm induced by a vector norm: Let x € IR™. Then the vector p-norm of x
is

and

[@]o = max |-

Further, let A = (a;;) € IR™*™ and € IR™. The matrix norm induced by a vector
p-norm is defined as

A
|Al, = sup |Azly
z#0 |w|p

In particular, when p = 2, oo,

|Al2 = \/m =ad(A)
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and

| Al = max Z ;] (maximum absolute row sum),

where Ay ax is the largest eigenvalue, and & is the largest singular value.

It is noted that an induced norm can be viewed as a mapping from a vector space
C" equipped with a norm ||, to a vector space C" with a norm || ,. The induced
norms have the interpretation of input/output amplification gains.

Let H(jw) € C™*" be a stable transfer function, i.e. with all poles strictly in the
left half plane. Then the 2-norm is

1 2
|H |5 = trace (—/ H(jw) H'(—jw) dw)
2 J_ o
and the oo norm
H|,, = max 7 (H(jw)).
An important result is that

H {15 < [HI% |£; = maxa(H(jw))* |£]3

since

HIE = o [ F R i) H) )

< g [ rEiofe
= [HIZIfE

which shows |H |C2>o is the upper bound for the signal power transmitted from input
to output of the transfer function H (s).

Formulation as an optimisation problem. The first property of a relaxed residual
generator should be minimisation of the effect of disturbances in the residual.

A direct minimisation of the effect the disturbance has on the residual is expressed
in the induced norm

|V 1y (s) Hya(s)d(s)]; 2

min Ji = min = min L rylS H S
» d » | (5)@ ‘,Ty | ’tj( ) l/d( )|oo
subject to

Voy(s)Hys(s) # 0.

The constraint prevents the trivial solution V., (s) = 0.
The signal power comprised in the residual caused by the disturbance over the
power generated by faults should be minimised, hence a feasible index could be
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max J9 = max
V., V.

vry<s>Hyf<s>f<s>|§> .
|V oy () H ya(s)d(s)]5 |d|+0

The interpretation of this index is to maximise the signal over noise ratio in the
residual, using the total power, i.e. over all frequencies. This index cannot be easily
optimised. If we, however, make a slight modification to the optimisation criterion,
standard tools are available.

As a general tool for optimisation, the standard setup formulation is widely used
in robust and optimal control theory and is widely supported by computer aided
design tools. Hence it is advantageous to describe the optimisation problem in the
standard setup formulation.

Application of the standard methods require a specific formulation of the problem,
which is first illustrated using manipulation on the block diagram in Fig. 6.4 for the
case, where the objective is to find a polynomial matrix F'(s) such that a signal e(s)
is insensitive to a disturbance d(s)

e(s) = (H:a(s) — F(s)Hya(s)) d(s).

6.5.2 Solution using the standard setup formulation

We introduce first the basic notion of the standard estimation setup and the standard
estimation problem, which have a direct bearing on design of residual generators.

Definition 6.4 (Standard estimation setup)

Let a system be given by input vector (known and unknown input) d € IR™ | state
vector x € IR™, an auxiliary output z € IR' and measured output vector y € IRP
with state-space equation

&(t) = Az(t) + E,d(t)
z(t) = C,x(t) + E.d(t) (6.78)
y(t) = Cyx(t) + Eyd(1)

and, ignoring initial conditions, represented in the Laplace domain by

z(s) = H4(s)d(s)

6.79
y(s) = Hya(s)d(s) ©7)
where
A E, _
H.4(5) = ( c. E ) =C,(sI-A)'E, +E, (6.80)
A E, _
Hyi(s) = < ¢, E, ) =Cy(sI - A)'E, + E,. (6.81)
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latl sz(s)
d(s)
y(s)
> Hy(s) >
d(s) i e(s)
- HZd(s) ——————
A +
Z(s) o 7
o Ha(9) il
F(s) |=
d(s) ——» H,y(s) -I — e(s)
2s) > H,y(s) 0 y(s)
F(s) |

Fig. 6.4. Manipulation of the block diagram to arrive at a standard
problem formulation. The upper two diagrams are equivalent, the lower
is the representation used to determine F'(s) by standard methods.

Problem 6.4 (Standard estimation problem)

Let z(s) be an estimate of z(s). Denote the difference by e.(s) = z(s) — 2(s).
For the system defined by the standard problem setup (6.79), determine a stable
transfer function matrix F(s) to provide an estimate of the auxiliary output given
the measured output,

2(s) = F(s)y(s) (6.82)
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subject to a suitable norm of the estimation error, |e,(s)| being less than a chosen

gain factor
sup lez(s)| < < sup [Ha(s) — F(s)Hya(s)| <7, (6.83)
F(s) F(s)

where the norm can be of types Hs or H for instance.

Equation (6.83) follows from expanding the estimation error:

e:(s) = z(s)—2(s)
— 2(s) - F(s)y(s)
= (H.q(s) — F(s)Hyq(s))d(s). (6.84)

Remark 6.6

Different filtering and estimation problems can be easily formulated within this general es-
timation framework. The state can be estimated using C', = I, and E. = O. The input
can be estimated using C, = O and E, = I;;. The estimation setup will be used later for
residual generation. O

Standard H5 and H . methods that find the minimum of function according to the
selected norm can also be applied to find a suitable F'(s) transfer function matrix
for the estimation problem. Use of widely available software for this purpose (for
example the MATLAB . toolbox) requires formulation in what is referred to as the
standard system setup and standard problem in robust control.

Definition 6.5 (Standard system setup)

Let a system be described in the Laplace domain by the transfer function matrix
P(s), and four vectors, input u(s) € C™, auxiliary input d(s) € C™4, auxiliary
output e(s) € C™=and measured output y(s) € CP. Input and output are related
through P(s) € CPtme)x(m+na) 4

e(s) | . d(s) _ P.i(s) Peyu(s) d(s)
<y®>P0<M@> (%N)PMQ><M®>

Let the transfer function matrix F(s) € C™*P be a feedback controller for the
system, between y and u,

u(s) = F(s)y(s)

Using this setup and utilising solutions for two fundamental optimisation prob-
lems in the design of residual generators, the H ., sub-optimal control problem and
the Hz sub-optimal control problem.

Problem 6.5 (H., suboptimal control)

Given a system in form of the standard system setup of Definition 6.5. Design a
stabilising controller F(s) such that the norm of the closed-loop transfer function
Tq(s) from auxiliary input d(s) to auxiliary output e(s) is lower than a specified
bound ~y:
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sup |Teal . <7 & sup d(Tea(jw)) <7,
F F(jw)

where & denotes the largest singular value.

The H, norm gives the maximum sinusoidal gain of the system (energy gain or
induced Lo system gain).

Problem 6.6 (7{ sub-optimal control problem)

Given a system in form of the standard system setup in Definition 6.5. Design a sta-
bilizing controller F'(s) such that the Ha norm of the closed-loop transfer function
T.q(s) from auxiliary input d(s) to auxiliary output e(s) is minimised.

The standard estimation problem of Fig. 6.4 can be formulated in the standard setup.
The generalised system P(s) then takes the form

- sz(s) —I
P(s)= < Hy(s) O >

Note that there is no feedback through the system since P, (s) = O.

6.5.3 Residual generation

The above result can be applied in connection with detection, isolation and estima-
tion of faults. We aim at making 2(s) a residual signal. We investigate two prob-
lems. The first is to suppress disturbances as well as possible. The second is to make
a balanced optimisation, where the fault signature is preserved in the residual while
disturbances are suppressed to the extent possible. Both results follow from appro-
priate formulation of the standard problem. The strategy is to select an auxiliary
output z(s) and give it the properties that the residual should have. This means the
formulation of z(s) is directly a specification of the residual. In designing the es-
timate 2(s) to track z(s) as closely as possible, according to a given criterion, a
sub-optimal estimator is obtained for the ideal residual. The accuracy with which
the specification is met is seen in the choice of the optimisation coefficient .
The basic residual generator will have the form

7(s) = F(s)(y(s) = Hyu(s)u(s)). (6.85)

The design problem is to determine the operator F'(s).

Remark 6.7 Relation to parity space formulation
The residual generator Eq. (6.43) had as prerequisite, following from Problem 6.2, that

Viu+ VryHyu =0

hence



6.5 Deterministic model — optimisation-based approach 227

7(s) ry()y(s) + Vruu(s)
ry(8)Y(8) = Viry(s)H yuu(s)
Vi (s)(y(s) — Hyu(s)u(s)).
Comparison with Eq. (6.85) shows that finding the solution F'(s) in the standard setup is
equivalent to determining the operator V., (s). O

%
%

In the design, two requirements have to be combined.

Residual generation with specification on fault sensitivity and disturbance sup-
pression. The goal is now to have the residual replicating a fault through a specified
dynamical relation while the disturbance should be suppressed as far as possible.
Therefore, we include the fault vector f(s) in the system description and define the
auxiliary output z(s) to be dependent only of the fault vector:

y(s) = Hya(s)d(s) + Hys(s)f(s)
z(s) = H.(s)f(s)
z(s) = Viyls)y(s)

e.(s) = z(s)—z(s)

The selection of the auxiliary output reflects directly the properties that the residual
should have. H .4 = O is chosen because we wish to interpret d(s) as a disturbance
and decouple it from the residual. The specification of H . (s) is a design choice.
There may not exist a solution V', (s) for all arbitrary specifications, so H . ¢(s) is
the key design parameter.

The performance that should be achieved is that the residual follows z(s) as close
as possible, hence the relation

|H.f(s) = Viy(s)Hyp(s)] o < s

should hold, where ~, characterises the desired fault sensitivity (or tracking) per-
formance. Simultaneously, the effect of the disturbance should be below a certain
level, hence

(Viry () Hya(s)] o <

where ~, is a measure of robustness with respect to input effects. Combining the
two, the physically motivated optimisation problem yields:

|(=Viry(s)Hya(s)) (H.p(s) = Viyy(s)Hys(s))], <7 (6.86)
Since

Z(S) - Vru(s)y(s)
= (H:5(s) = Viy(s)Hys(s)) f(s) = Viy(s)Hya(s)d(s)
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Eq. (6.86) is equivalent to

sup IZ(jw)—Vry(jw)y(jw)|2<7© sup Iez(jw)\g .
d(jw)
Fljw)

d d(jw) ) d
<p>¢0 ‘( FGw) )|, (p);éﬂ 2

The residual generation design problem is illustrated in Fig. 6.5. The upper di-
agram in the Figure depicts the residual generator with both specifications H .4
and H . given. In formulating the requirement that disturbance feed-through to the
residual should be minimal, H .4 = O is specified in the setup shown in the lower
part of Fig. 6.5.

In the standard setup, the residual generator design has the following form:

Problem 6.7 (Residual generation with specification on fault sensitivity and
disturbance suppression)

Given an LTI system with input u(s), unknown input (disturbances) d(s) and faults
£ (s) and let input-output relations of the system be described by (H ., H yq, Hy f).
Introduce an auxiliary variable z(s) and specify a transfer function matrix H ¢
and a real number ~y,. Let z(s) = H . f(s). Determine V ,.,, such that the maximal
deviation between %(s) = V ., y(s) and z(s) is bounded by s:

2(s) = 2(s)] < s (6.87)
The solution to this problem of residual generation design has the following form:

1. Define the standard problem setup:

aux.input : d(s) «— ( d(s) >

f(s)
input : u(s) < r(s)
aux.output : e(s) —e.(s) = z(s) —r(s)
output : y(s) — y(s)
O H.(s I
P(s) ( £(s) )

F(s) = Viy(s)

2. Use software that solves the standard problem to determine a solution in form
of a stable transfer function V', () that satisfies the inequality

‘ez|2

).

2

sup

(7)

which is equivalent to finding a solution to

<7
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1y(s) y(s)

(d(:)) ——[( 0 Hys) —I\[——>e

|\ (Hya(s) Hy(s)) 0 > y(s)

Fig. 6.5. Residual generator depicted in a standard setup formulation
with specifications H .y and H .4 in the upper part of the figure. H .4
is specified as zero in the design problem shown in the lower part of
the figure.

’( ~ViHyq H.p— V. Hyy )‘OO <7

If a result exists, which is not guaranteed, the result is strong in the sense it provides
the residual generator with optimal weighting between suppression of disturbances
and specified sensitivity to faults.

In practice it is worthwhile to start a design with investigating the extent to which
disturbances can be suppressed using the disturbance suppression problem. When
insight in the problem has been gained, continue with supplying a specification to
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the problem and iterate until a suitable compromise has been found between distur-
bance suppression and fault tracking.

Fault detection. When the purpose is to design a pure fault detection filter, a sen-
sible way to specify H ,;(s) is to require that it is a row vector with nonzero causal
and stable entries. When a residual vector is sought the specification becomes:

rank (H .f(jw)) <1

Yw; j :
wijw 7 2 { Vi : hi(jw) # 0,

where h; (jw) stands for the i*" column of H , ¢ (jw) and zy, are the zeros of H . ¢(s).

Fault isolation. If the number of faults to be isolated is 72y and simultaneous faults
can occur, H . #(s) has to fulfil the requirement:

rank H.;(s) = ny,

where, as usual, the normal rank is considered.

When simultaneous faults are not considered, a vector z of size [ is sufficient
to isolate 2! — 1 faults by considering suitable coding sets. This translates into the
following specification for matrix H . ;(s). To isolate n; faults, choose a matrix
H . ;(s) such that:

rank H.¢(s) > logy(ns+1)
rank (h;(s)h;(s)) = 2 with i=1, .., np#j j=1, .. ny

Fault estimation. Fault estimation can be obtained by specifying H .¢(s) = I. In
this case,

Z(s) = I1f(s)

and

e(s) = z(s) — z(s).
In the ideal situation, where no disturbance exists, this specification aims at assuring
that 2 tracks the fault f by guaranteeing that

sup 7|2 — Z‘Q
/2

When disturbances do exist, a trade-off is made between fault tracking and insen-
sitivity of Z to the disturbance. The block diagram to specify fault estimation from
the solution to a standard problem is shown in Fig. 6.6.

<.

Design considerations. In connection with using Hs or H, optimisation to design
the residual generator, a weight function can further be included in the setup to some
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d(s) . . | 48(9
f(s)
I
-1 va(q)
i L u(s)
Ty(s)
> Hyd(s)
F(S) -
[7%()))% - ) onpb—=
‘ (s)
my(s) = | (Hya(s) Hy(s)) 0 yls)
F(s)

Fig. 6.6. If a solution F'(s) exists, fault estimation is obtained by
solving the standard problem using the specification H .4 = O,
H.;=1.

advantage of the designer. The weight function W (s) can be applied to specify the
frequency range(s), where detection, isolation or estimation should be obtained most
effectively. The way to include a weight matrix in the design is to modify the P(s)
system matrix to

(0 wh., ) -w
(Hu Hy) O

The weighting matrix specifies in which frequency ranges a designer emphasises to
meet the bound v and where it can be relaxed.

The main issue in using the standard setup to obtain sub-optimal residual genera-
tors of the different classes described above is the selection of a proper specification

P(s) =
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H . /(s). Whereas the optimisation itself is left to the software tools available, good
results are only obtained if a good specification is provided. An iterative design
method has proved useful in practice.

Algorithm 6.4 Residual generator design

1. Formulate problem: Formulate the relevant version of the standard setup
for the problem.

2. Design specification: Specify an initial qualified guess on the specification
H ,;(s). The specification needs to be bounded from below, otherwise, the
optimal solution willbe F' = O and H .y = O.

3. Solve problem: Find the function F'(s) in the residual generator

7(s) = F(s)(y(s) — Hyu(s)u(s)),

where F'(s) is the best obtainable solution to the problem given the speci-
fication H . s (s).

4. TIterate until converged: Continue until the value of + obtained has con-
verged.

5. Iterate in specification: Based on this residual generator, specify a new
H ,;(s) and repeat the design.

The procedure usually requires very few iterations.

6.6 Residual evaluation

Given a residual generator for the deterministic case, i.e. there are only insignificant
random disturbances or measurement noise, the purpose of this section is to find a
method for residual evaluation that will determine whether a fault is present.

Residual - general case. Let a set of residuals obtained from structural analysis
have the form » = (r1,79, ...,7,) . Consider one of these residuals

Tj(t) :pj(ki,cz-,t) k; € K(j),ci S C(j), j=1...n, (6.88)

where p; is of the form in which the constraints in C (/) were formulated: linear,
nonlinear, tabular, quantised, logical or hybrid. As it is useful to categorise known
variables into the natural categories input u, measured y, and parameters 6, the
parity relation is written as

ri(t) = p;(wi, yi, 0iy cir t) iy yi, 0 € K9 ;e C9 j=1,..,n. (6.89)

The parity relations implemented for residual generation would not be the true sys-

tem constraints ¢; nor the true parameters 6; but would be estimates of those, ¢;, 6;,
respectively.
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In order to shape the signatures of faults in the residuals or suppress noise, filtering
of the raw parity relation Eq. (6.89) will usually take place, and also the filtered
version is a residual,

t
’I"j(t) = / ’Ll}j(t — T)pj(ui,yi,ﬂi,éi,T)dT, ] = ]., Ny (690)
0

where w;(t — 7) is the impulse response of the filter applied to parity relation j.
Further, the vector of residuals could be constructed as a linear combination of
the elements from the above residuals, Eq. (6.90),

Tl(t)
riy=w| : |, (6.91)

Tn(t)
where W € IR™*™ det(W) # 0.

Uncertainty. In real life, ¢; # ¢;, and éi # 6,, hence r;(t) could be nonzero
even though there was no violation of a constraint in relation j, Ve¢; € C @) . ci =
0. In particular, actuator demand and disturbances could drive the residual away
from zero when parameters and constraints are not exactly equal to those of the real
object. In order to make residual evaluation under such uncertainty, it is necessary
to accept that a residual can have some deviation from zero even in the no-fault
case. However, the effect on r;(¢) has to be bounded, hence p;(u;, ¥, 0;,¢é;, t) is
bounded,

LTI case. If the object for diagnosis is linear and time-invariant (LTT), the residual
generator could be LTI with a frequency representation

r(s) = Hyu(s)u(s) + Hyq(s)d(s) + Hyf(s)f(s) (6.93)

being an explicit function of input, disturbances and faults.
In an ideal case, residual generation is perfect and we have H,,(s) = O and
H,.;(s) = O. Residual evaluation then reduces to investigating the properties of

r(s) = H,f(s)f(s). (6.94)
In the general case, still with an LTI system, model uncertainty and unmodelled
dynamics will give rise to H,,(s) # O and H,4(s) # O. Residual evaluation

need then be made such that false alarms are avoided from control input u(¢) and
disturbances d(¢) within the normal range.

6.6.1 Evaluation against a threshold

Validating that no fault is present is equivalent with checking that the residual vector
is zero. Validating the presence of a fault means checking whether the residual is or
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has been different from zero. The two hypotheses and the associated condition on
the residual vector are
Ho(0,t) :  no fault is present x| =0

6.95
H1(f;,t;) : fault f; was present since time ¢;  ||r(¢)]| # 0,t > t;, (6.5)

where ||r|| is an appropriate norm of the residual.

Test function. For generality, introduce a test function ¢(r(t)), which provides a
measure (norm) of the residual’s deviation from zero. Some common test functions
are the following

e Absolute value
o(rj(t)) = |r;(t)]. (6.96)

e An approximation to the two-norm of the residual vector

1

2

ol = 7 [ IoPar) (697)
t—T

e Square root of filtered absolute value, squared,

1
2

t
(s () = ( / W (t — ) |r (7)] d7> . (6.98)
0
o Filtered mean square value of signal

o0 = W) (1)~ k[ rmrin) ar. 659

where wg ) (t) is the impulse response of a filter used particularly for evaluaton
of residual j. In this context, the test function given in Eq. (6.96) is considered
further.

Threshold function. The next step in residual evaluation is to determine a threshold
function & (t) for evaluation of the test function ¢(t). &(t) should have the properties

no fault: vVt >0, f(t)=0: (r(t)) < (1)
weakly detectable fault: 3t >tg: f(t) #0: o(r(t)) > o(t)
strongly detectable fault: V¢ >t; >tg: f(t) #0,t >to: @(r(t)) > &(t)

LTI case. In the ideal LTI case, Eq. (6.94), &(t) could be chosen constant and as
close to zero as allowed by practical values of bias and noise in the residual.

In the non-ideal case, Eq. (6.93) applies and input and disturbances have some
feed-through to the residual. With the test function (t) = ||r;(¢)||, , the threshold
need be determined such that

[P
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®;(t) = sup  (p(r;(t)))
1=0,ud|j<

is achieved in the time domain. The fact that total power calculated in the time
domain and in the frequency domain are equal is used to determine the theshold
function,

IrGlE = o [ rir-ento = Jim_ [ 0P = o]

From Eq. (6.93), the residual is given in the frequency domain. Component 5 of the
residual is

ri(5) = (Hru(s)u()? + (Hya(s)d(s)Y + (Hp(5)E(s) .
With k control inputs

IriGe)ll, < [He(e)u(w)|S + [Hra(io)d (o) (6.100)
k
< ST G fus (o)l + [ Hra(w)d (o) ||
=1

for all admissible w and d. The first term in the right hand side is a gain times input
power. The second is the maximal contribution to the residual from disturbances.
Let the effect of disturbances on the residual be bounded by

[H,q(jw)d(jw)[|Y) < 65, (6.101)

then @(t) should be chosen as the time-varying function

k
Di(t) = Zﬁi\lui(t)llﬁﬂfﬁ) (6.102)
B = |He(w)) L.

This threshold is a function of maximal gains from control inputs to residual and
of the maximum gain from disturbances to residual. It is often referred to as a time-
varying threshold in the literature. The term adaptive threshold has also been used.

If the time-varying threshold Eq. (6.102) is too conservative, a dynamic bound
could be specified as

k t
Bi(t) = ( / hUD (t — 7)ug (T )d7> + €4, (6.103)
0

=1

where iszul ) is an estimate of the maximum (envelope) of impulse response functions
from input ¢ to residual j for a given model uncertainty.

Example 6.10 Ship example (LTI case)
Assume the ship was LTI,

ui(s) =  ws(s)+wul(s)+ fuls) = —

s—bm
B(S) + F(5) = 2 ((5) + wa(s)) + fuls)

0(8) + ww(s) + fu(s) (6.104)

y2(s)
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the design model was

. b

ws(s) = —0
) s — bii
. 1.
bs) = Laas)
and a residual generator is chosen as
RO = ) -l = (= L) 5(6) 4 () + £ol)
1 1 3 P b’l71 o l;ﬁl w w
T ST T
ra(s) = 1o (swe(s) — i (s) = T Fuls) = T ul)
With no faults
Gl < |t = || ol + Gl
' 2= |l jw — b jw—i)ﬁl o 2 Y >
and
[ri(ll, < B 161l + llww (Gw)l (6.105)
Hl Jobm jw+ b || e '
b jw ‘
D1 (t = - — — o(t + lww (Jw)]| oo (6.106)
1(t) [ . LI )l + [lww (G
with [lww (jw)l| o < Ba,
oi(t) = | TN 60, + Ba = Bu (D), + Ba. (6.107)
mm
In real time, we evaluate
I (@)ly < Bu l6)]]5 + Ba (6.108)
using Eq. (6.97) as an approximation to the two norm. O
General case. In the general case, if the parity relation is bounded by
cp(pj(ui,yi,éi,éi,t)) < aj(us, ¥, t) A0 < a(ug, y;,t) < 0. (6.109)
The threshold function can obviously be chosen as
D;i(t) > a(ui, yirt) (6.110)
If more detailed information is available, e.g.
k
aj(ui, yirt) < Bo+ Y Bji uil (6.111)
i=1

such information should be utilised when specifying the threshold, in this case as

k
P;(t) = PBo + Zﬂji |uil -

=1

(6.112)
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Return to normal. The above procedure tested for the change H, to H;. When
a fault has been detected, ¢(r;(t)) > ®;(t) => HU) = H;, change to normal is
usually made with a hysteresis, y : p(r;(t)) < y®;(t) = HY) = H,. A common
choice of hysteresis is v C [0.5, 0.8].

If a fault is only weakly detectable in residual j, but strongly detectable in other
residuals, Vj : ¢(r;(t)) < v®;(t) = HU) = Hj should be used.

It is obvious that simulation and tests in the real environment some engineering
judgement need be employed before good choices can be made of the timevarying
threshold function @ (t) and of the hysteresis .

This leads to algorithms for deterministic change detection,

Algorithm 6.5 Test against time-varying threshold

Given: A residual r; = p;(us, yi, 0;,¢;, t) and the object for diagnosis as-
sumed in the no-fault condition.

1. Determine a test function ¢(r(¢)) according to Egs. (6.96) to (6.99).

2. Determine a threshold function ®;(¢) :for the LTI case according
to Eq. (6.102), for the general case according to Eq. (6.109) or
Eq. (6.102) when scecific information is available.

Iniitialise: H") = H,.
Do:
1. Calculate p(r;(t)) and &, (1).
If HU) = Hy,Vj -.
If o(r;(t)) > ®;(t) set hypothesis to H) = H].
Else:
If o(r;(t)) < v @;(t) for V;j set hypothesis to H) = H].

Example 6.11 Time-varying threshold for ship

Let the ship’s true constraints be:

c1: wz= bnws+ bnzws +bd
C2: ?/1 = w3twy

my . Y1 = 1/J

me: Y=

(6.113)

And let a model used for design be
C1: w3 = i)ﬁlwg -+ 35
Ce:  ¥= ws (6.114)
mi: oy1= Y
me: Y2 =

Using the model for design, a residual generator is suggested as
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- d, _ dnp
1 - %tyl at Y1 (6.115)
T2 = Y2 -

then, the real residual will vary with input and

ri(t) = (b — bin)ws + bnswd + (b= )(t) + Fwu(t)
’r‘z(t) = 0

@] < [ BTl + Dol ] + [b = ] 18] + | S0

sup

< Bilyil+ Bs |yi| + 1 16] + Ba < 210 + Ba. O

6.7 Stochastic model — change detection algorithms

6.7.1 Introduction

To be able to solve the problem of fault detection, isolation and/or estimation that
will be stated precisely in a stochastic framework below, a prerequisite is needed on
sequential change detection algorithms. It is known that fault detection (and isola-
tion or estimation) systems are made of two parts, a residual generator and a decision
system. When the residual generator is designed on the basis of a linear stochastic
model, residual evaluation reduces to the problem of detecting a change in the mean
of a normally distributed random sequence, which can be achieved by sequential
change detection algorithms. Therefore, this topic is considered before addressing
successively fault detection, isolation and estimation in the case of additive faults.

6.7.2 Sequential change detection: the scalar case

Introduction. The sequential change detection algorithms are first derived in the
simple case of processing a sequence of independent random variables with prob-
ability density function depending on a scalar parameter #. The situation where 6
is the mean of a Gaussian distribution is used to illustrate the theory, since this is
the problem encountered for residual evaluation. As the sequential algorithms will
be used to process residuals, the above theory has to be generalised to be able to
detect changes in the mean of sequences of Gaussian vectors, which is done in a
subsequent paragraph.

Problem statement. Consider a sequence of independent random variables z(i),
i1 =1, 2, ..., with probability density function py(z) depending upon one scalar
parameter #. Before an unknown change time, kg, 6 is equal to 6y. At time kg, it
changes to 6§ = 6 # 0. The problem is to detect the change time, and possibly



6.7 Stochastic model — change detection algorithms 239

estimate the value of the change in the parameter. No a priori knowledge of the
distribution of the change time is assumed. 6y is known by hypothesis, and two
situations are considered for 61, namely #; known and #; unknown. The first case
yields the so-called cumulative sum (CUSUM) algorithm, the second the so-called
generalised likelihood ratio (GLR) algorithm.

Both algorithms rely on a fundamental concept, namely the log-likelihood ratio
of an observation z, which is defined as:

Pe, (Z )
s(z) =1n ()’ (6.116)

The name comes from the fact that the likelihood function of the observation z is by
definition equal to the probability density pg(z) of the underlying random variable
evaluated at z. The likelihood function is thus a deterministic function of 6.

The log-likelihood ratio has the following fundamental statistical property:

Ey,(s) = /DO s(2) pg, (2)dz < 0, (6.117)
Ey, (s) = /00 s(z) pg, (2)dz > 0. (6.118)

Ey, (Ep,) denotes expectation of s(z) under the distribution associated to pg, (%)
(pe, (2)). This property can be easily understood from the following example. As-
sume that pg(z) is a Gaussian distribution and that the parameter 6 is the mean of
this distribution, which will be denoted .

0.4

0.351

0.051

%

Fig. 6.7. Two Gaussian probability density functions with mean
po = 0 and 1 = 2, and with the same variance 62 = 1

Consider Fig. 6.7. When the random variable z has p,,, (z) (p,, (z)) as probability

density function, its realisations are most often in the “neighbourhood” of g (141).

Take the realisation z; for instance. Clearly g“l—g < 1. As z; is most probably
o \~1

obtained when the random variable z has p,,(z) as probability density function,

this illustrates that the logarithm of “1—8 is on the average negative when z has

p
Pug
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Puo (%) as probability density function. The property described by (6.117), (6.118)
is exploited in the next section to provide an intuitive derivation of the CUSUM
algorithm.

Derivation of the CUSUM algorithm. The problem stated in the previous section,
with 8; known, is addressed. Consider the cumulative sum:

k

2 (D)
Cumulative sum: S(k) = Zs(z(z)) = Zln MI—ZZ_). (6.119)

i=1 i=1 Peo (2(7)

In this expression, and in the remaining part of this section, k& denotes the present
time instant. From (6.117) and (6.118), S(k) is expected to exhibit a negative drift
before change, and a positive drift after change. This is illustrated in Fig. 6.8 and
6.9.

N w2 o

) | ”l U “\\I“H‘\Lh“” M ‘h“ J |‘\‘H i‘l |
“ ’\ ‘H W ‘ ” H [ ] H‘ 7 |

o

0 200 400 600 800 1000

Fig. 6.8. Realisation of a sequence of independent random variables
with distributions depicted in Fig. 6.7. Time on the z-axis is expressed
in number of samples.

In Fig. 6.8, a realisation of a sequence of independent random variables with dis-
tribution pg, (z) before k = 500 and py, (z) after & = 500 is depicted. Here pyg, (2)
and py, () correspond to the Gaussian distributions p,,,(2) and p,, (z) of Fig. 6.7.
Figure 6.9 gives the evolution of S(k), which behaves as expected. The difference
between S(k) and the minimum value of S(j), 1 < j < k yields relevant informa-
tion on the change. Hence the following decision function g(k) is considered

g(k) = S(k) —m(k) (6.120)

with m(k) = minj<;<j S(j). The stopping time (also called alarm time), k, is
the time instant at which g(k) crosses a user defined positive threshold &. The fault

occurrence time, kg, can be estimated as the time instant ko at which S(k) has
changed from negative to positive slope. It is formally expressed by

l%o = argmin 1<;j<x, S(j).
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200
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-800r
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000O 200 400 600 800 1000

Fig. 6.9. Evolution of S(k) for the sequence of Fig. 6.8, as a function
of time in number of samples

The expression of the cumulative sum (6.119) can easily be computed for the distri-
butions considered in Fig. 6.7, as shown in the example below.

Example 6.12 Change in the mean of a Gaussian sequence

Remember that the Gaussian probability density function for a random variable with mean p
and variance o is

1 2
pu(z) = oz exp (—%) . (6.121)

The resulting likelihood ratio for detecting a change in the mean from g to w1 is

P (2) _ o ((z —m)* (2= uo)2> ‘

Do (%) 202 202

Hence straightforward computations yield the following expression for the log-likelihood
ratio s(z):

2(p1 — po)z + (g — i) 1 — po fo + 1
s(z) = 952 =" (z i ) . (6.122)
Figure 6.9 has been obtained by substituting (6.122) (with z = z(1)) for s(z(¢)) in (6.119),

which yields the algorithm depicted in the block diagram of Fig. 6.10. Notice that the signal

to noise ratio #—*¢ appears in (6.122), and it is thus automatically accounted for in the

testing procedure. O

Example 6.13 Change in the mean and variance
If both mean and variance change after a fault, the following relation

Puy (2) ) exp <_ (z — M1)2 n (z — p0)2>

2 2
2071 204

Puo (2) U_l

holds and the log-likelihood ratio is
2 2
s(z):ln@+(z o) —(Z ‘ul)A

o1 20(2, 20%
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This general case is shown in the literature but not considered further in this context. O

(/‘1 - /10)/02
Z(k) (/1’1 +/uo)/2 l
— O~
» X » Comparator [—»
+ . h+ m(k)
+

Fig. 6.10. Block diagram for the CUSUM test (6.119), (6.120), (6.122)

Remark 6.8 Mean and variance of cumulative sum increments

The mean j, and the variance o2 of the cumulative sum increments (6.122) will be needed
at a latter stage. They can be computed in a straightforward way from (6.122). Indeed,

_ _ _ (w1 = mo)®
when  p = pio, Euo(2) = pio and ps = Euo (s(2)) = gz
IRY
when 4= Bu() =g and = By (a(2) = L0

2
o2 = (HI—MO) O
S 0_2

A more formal derivation of the CUSUM algorithm which is helpful for the sub-
sequent description of the GLR algorithm is now presented. It is called the off-line
statistical derivation, and it is based on the following re-formulation of the problem.

Problem 6.8 (Off-line statistical formulation) Consider the sequence of indepen-
dent random variables z(1), ..., z(k) with probability density function pg(z) de-
pending on one scalar parameter 6. Choose at time instant k between the hypothe-
ses:

Ho.'t9:90 for 1SZ§]€
Hi:0 =0y for 1 <i<ky—1and@ =0, forky <i <k, wherethe
time instant kq is unknown.

From classical results in hypothesis testing due to Neyman and Pearson, it is
known that tests to decide between H( and 7{; that are optimal in some sense are
based on the log-likelihood ratio between both hypotheses. As kg is unknown, let j
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be an hypothetical change time. The log-likelihood ratio between H, and H; with
ko = 7 is given as

-1 k
Tpon (D] Tpes (2(0))

Af(j) = ———— : (6.123)
[ Ipo.(=(0)
i=1
The independence between the random variables z(i), ¢ = 1, ... k was used to

express A¥(j) in terms of the marginal probability density function pg (2(i)). From
(6.123), the following cumulative sum of log-likelihood ratios is deduced:

Zl Po(2(1)) (6.124)

iy Do, (2(i

As the change time is unknown, the standard statistical approach consists in re-
placing it by its maximum likelihood estimate, namely, in looking for the value of
J that maximises the numerator in (6.123). This is also the value of j that max-
imises (6.124). The log-likelihood ratio between Hy and H; is thus estimated by
maxi<j<i S ]k The result due to Neyman and Pearson invoked above actually states
that the optimal decision function for Problem 6.8 is

"~ P (2(0) -

o) = 5, 2 ) (6:12)

and the optimal test consists of the following decisions.

if g(k)<h accept Ho

6.126
if g(k) >h accept H;. ( )

The way optimality is understood here involves several concepts. The reader should
consult the reference section for precisions on this topic.
When H; is accepted, an estimate of the change time is provided by:

7 k
ko = argmax 1<j<k, S]-,

where k,, is the alarm time, namely the value of & for which g(k) crosses the thresh-
old h.
The decision functions (6.120) and (6.125) are identical. Indeed, with reference

to Fig. 6.9, Z In ]; 061 ((Zz((?)) is maximum when all the successive likelihood ratios
which correspond to a positive slope on average are considered. This is precisely
the way (6.120) was obtained.

An efficient way to implement the CUSUM algorithm is to use its recursive form.
From (6.120) and Fig. 6.9 or from (6.125), and from the fact that the threshold h
is positive, it is seen that only the contributions to the cumulative sum that add up
to a positive number must be taken into account in order to determine the decision

function. It justifies the following recursive computation of this function:
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g(k) = max(0, g(k — 1) + s(z(k))). (6.127)

To obtain an estimate of the fault occurrence time, the number of successive ob-
servations for which the decision function remains strictly positive is computed as:

N(k) =Nk —1)1yg-1)>0y + 1, (6.128)

where 1,y is the indicator of event x, namely 1(,; = 1 whenxistrue,and 1(,; =0
otherwise. An estimate for the fault occurrence time is then given as

ko = ko — N(kq), (6.129)

where k, is the stopping or alarm time.

Example 6.12 (cont.) Change in the mean of a Gaussian sequence

Considering again the detection of a change in the mean of a Gaussian sequence, (6.127)
together with (6.122) yields:

g(k) = max(0, g(k — 1) + % ((z(k) - #))) (6.130)

which must be introduced in the decision logic (6.126). O

Remark 6.9 Two-sided CUSUM algorithm

Quite often, both positive and negative changes in the mean of a Gaussian sequence with
mean pio and variance o2 have to be detected. Letting 3 denote the magnitude of this change,
the following two-sided CUSUM algorithm can be used for this purpose.

gt(k) = max (0, g (k—1)+ 2(k) — po — g) (6.131)
g (k) = max (0, g (k—1)—2z(k)+ po — g) . (6.132)

An alarm is generated when either g™ (k) or g~ (k) reaches the threshold h = ho? /3. Notice
that the factor #1-*¢ that appears in (6.130) has been cancelled from the decision functions

g" (k) and g~ (k) in (6.131) and 6.132). Equivalently, it is now included in the threshold h.
The expression for g~ (k) is deduced from (6.130) by looking for a positive change in the
mean of the sequence —z(i),7s = 1,2,....0

Parameter tuning for the CUSUM algorithm. In this section, the focus is on the
case of a change in the mean, p, of a Gaussian sequence.

Normally, the data associated to hypothesis Hg correspond to a fault free work-
ing mode. Hence parameter po can be estimated from a set of experimental data
obtained in the absence of fault by taking the empirical mean of these data. The
variance o2 can also be estimated in this way. The estimates are denoted /iy or 52,
respectively.

There are thus two design parameter left in the CUSUM algorithm, ~A and p;.
Indeed, although the algorithm was derived under the hypothesis that ; is known,
this is seldom the case in practice. Nevertheless, the algorithm proved to be useful
even when p; is replaced by an approximate value.
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The choice of the threshold / results from a compromise between the mean delay
for detection and the mean time between false alarms. Exact computation of these
quantities is involved, but approximate expressions and bounds are available. Both
quantities can be determined from the so-called average run length (ARL) function
defined as

L(p) = By (ka)

for the example of the detection of a change in the mean of a Gaussian sequence
with variance o2. The ARL function is thus the expected value of the alarm time
instant when the data are distributed according to the normal probability density
function with mean y and variance o2. It is a function of the mean x. When p = pg
(data recorded in healthy conditions), the value of the ARL function L(g) is equal
to the mean time between false alarms, 7'. On the other hand, L(pq) gives the mean
delay for detection. An approximation for the ARL function in the situation were
changes in the mean of a Gaussian sequence have to be detected is given by the
following expression ([5], page 219)

L(us) = (6.133)

Sh S Sh S 2
exp | =2 (H praeete )| 142 (2 41166 s
o2 O o? Os 2p3

for g # 0, where s and o are the mean or the standard deviation of the increments
of the cumulative sum, respectively, as computed in Remark 6.8.
The mean time for detection, 7 can be estimated as

. 2 ) 2
—i <%) -y (%) , (6.134)

where 0 = p1 — po and the estimated mean time between false alarms is obtained

as
T:i(—w>=ﬁ< ﬂQ). (6.135)

S0

202 202

When g (or equivalently 3) is not known, it can be replaced by a user specified
value such as the most likely magnitude of the change. A simple way to determine
the test threshold from (6.134) or (6.135) is to plot 7 and T as a function of h.
To this end, considering (6.134) for instance, %
(p1 jfo)z

is substituted for p, and

is substituted for o in (6.133). Knowing the desired value for 7 or T, one
then determines from the plot an appropriate value for h. Alternatively, standard
approaches such as the secant method can be used to solve the nonlinear equations
(6.134) and (6.135).

Quite often, one can provide a minimum value of the change for which one wishes
the algorithm to generate an alarm. Let (3,,;, denote this value. It is then advisable to
choose ji11 = fig + 2fmin. Indeed, let pj, (2) and pjy+23,.., () denote the Gaussian
probability density functions with respective mean i and [ig + 28min and with
variance o2, It is easy to check that pg,(2) = Pjo+28umm (2) is achieved for z =
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10 + Bmin. Thus any sequence of values of z greater than jig + O, On average will
Pig+26min (%)
Ppg (=)

alarm will be triggered after some time for such a sequence.

yield a sequence of positive log-likelihood ratio In on average, and an

Remark 6.10 Effect of an error on 1

The objective of this remark is to illustrate that the CUSUM algorithm for detection of a
change in the mean of a Gaussian sequence can detect changes even when p1 is overesti-
mated. To this end, let us consider Fig. 6.11.

0.4 1000
0.35(
800f
0.3}
0.25¢ 600k
0.2}
0.15 4007
0.1t
200f
0.05}
0 0
-5 10 0 200 400 600 800 1000

(b)

Fig. 6.11. (a) Gaussian probability density functions with actual
(continuous line) and overestimated means (dash-dotted line), (b)
evolution of the recursive CUSUM decision functions computed with
the exact (continuous line) and approximated likelihood ratios
(dash-dotted line) for the data sequence of Fig. 6.8

In the left hand figure, the density functions represented by continuous lines correspond
to the actual data, which have mean o = 0 before the change and mean ;1 = 2 after the
change. Fig. 6.8 represents a data sequence which was generated from these density functions.
The evolution of the recursive CUSUM decision function tuned with po = 0 and p1 = 2
obtained by processing the data of Fig. 6.8 is plotted as a continuous line in Fig. 6.11(b). Let
us now process the same data with a CUSUM algorithm tuned with a mean value after change
equal to 3 (instead of 2). The resulting decision function is represented by the dash-dotted line
in Fig. 6.11(b). One notices that, when the value of 1 in the function g(k) is higher than the
real u, the decision function still increases on average upon occurrence of a change, however
the slope of the decision function is lower than with the correct value of 1. To understand this
phenomenon, let us look again at Fig. 6.11(a), where the Gaussian density function with mean
equal to 3 is plotted with a dash-dotted line. Let po(z), p2(z) and ps(z) denote the density
functions with mean 0, 2 or 3, respectively. After the change in the mean, a typical data
sample from the actual data sequence, says Z will have a value in the neighbourhood of 2. The
associated values of the density functions are represented by the points A (p2(2)), B(p3(Z))
or C (po(Z)), respectively. The contribution to the CUSUM decision function associated to Z

is equal to 2 QEZ) when the correct tuning is used, and to 2 3%;

Both values are clearly larger than one, but 28 < 5252 which explains the lower slope of

the CUSUM decision function when p; is overestimated. O

when the p; is overestimated.
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The configuration and the implementation of the CUSUM algorithm to detect
changes in the mean of a Gaussian sequence can be summarised as follows:

Algorithm 6.6 CUSUM algorithm for detection of a change in the mean of a Gaus-
sian sequence

Given:
1. A set of experimental data {z(1), ..., 2(N)} obtained
in fault free working mode.

2. f, corresponding to twice the minimum magnitude of the
change to be detected or to the most likely magnitude of
this change.

3. A specified mean time for detection or a specified mean
time between false alarms.

Initialisation: 1. Determine jig and 62 from {z(1), ..., z(N)}.
2. Choose h to meet either the specified mean time for de-

tection or the specified mean time between false alarms
from (6.134) or (6.135).

At each
sample time:
1. Acquire the new data z(k).
2. Compute g(k) by (6.130) and N (k) by (6.128).
3. If g(k) > h, issue an alarm, provide an estimate of the

change occurrence time 12:0 by (6.129) and reinitialise the
decision function to 0.

Result: A sequence of alarm time instants k, and estimated

change occurrence times kg, for increasing time horizon
k.

The reinitialisation after an alarm allows one to check whether the change in the
mean persists as time elapses. More on this issue will be said when the algorithm
will be used for fault detection applications.

Example 6.12 (cont.) Change in the mean of a Gaussian sequence

From the first 500 data samples plotted in Fig. 6.8, the following estimates were obtained
fio = 0.0445 &% = 0.946.

Letting 8 = 2 yields ji1 = 2.0445. Figure 6.12 gives the mean detection delay and the mean
time between false alarms as a function of the threshold h, computed from (6.134) and (6.135)
were the estimated values are substituted for ji0, pu1 and 2. The threshold A = 10 gives an
estimated mean time between false alarms larger than 10° while assuring an estimated mean
detection delay lower than 6 samples. Figure 6.13 gives a zoom of the decision function in the
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vicinity of the change time (namely time 500). The alarm will be issued at time 503 which
corresponds to a detection delay of three samples (of the order of magnitude of the estimated
one). O

(a) (b)

Fig. 6.12. Estimated mean detection delay in number of samples, as a
function of h (a) and mean time between false alarms expressed in
multiples of 10° samples as a function of & (b)

294 49 498 500 502
Fig. 6.13. Zoom on the decision function resulting from the recursive
algorithm for the data of Fig. 6.8

Another option regarding the choice of 6; (the value of the parameter after
change) consists in replacing it by the most likely value computed a posteriori from
experimental data. This leads to the generalised likelihood ratio algorithm described
in the next section.

Deriviation of the generalised likelihood ratio algorithm. The problem can be
stated in a similar way as for the off-line derivation of the CUSUM algorithm (cf.
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Problem 6.8), except that #; is unknown. By the same reasoning as above, the log-
likelihood between hypotheses Hg and H;, with an hypothetical change time j, can
be computed as

21 po, (22)) (6.136)
iy o, (2(i

For a given time instant k, it is a function of both j, the change time, and 61, the value
of the parameter 6 after the change. The standard statistical approach to estimate
(6.136) is to replace j and #; by their maximum likelihood estimates. The latter are
obtained by solving the following double maximisation problem:

(ko,0,) = arg {lrgax max Sf(@l)} ) (6.137)

<j<k

where kq denotes the estimate of the change time. The GLR decision function takes
the form:

g(k) = max, max Sk(ﬁl) (6.138)

The configuration and the implementation of the algorithm can be summarised as
follows:
Algorithm 6.7 GLR algorithm, scalar parameter

Given:

1. A sequence of data z(1), ..., z(k) with probability density
function py(z) depending on the scalar parameter 6.

2. A threshold h.
Compute: g(k) using (6.136), (6.138).
Decide to 1. accept Hg if g(k) < h.

2. accept Hy if g(k) > h.

Remark 6.11 Maximum and supremum
Rigorously, the symbol max S]"C (61) should be replaced by sup Sf (61) (which gives the
1 01

least upper bound of SJ'-C (61) with respect to 61). The reason is that the maximum may only
be reached when 6, tends to infinity in pathological cases. However, for engineering purpose,
there is no difference between “max” and “sup”’; hence only the “max” operation will be used
here. O

The maximisation in (6.138) is performed over all possible past time instants. As
time elapses, the considered time span increases which induces an increasing search
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duration for finding the optimum. To avoid that problem, the fault occurrence time
is restricted to the last M time instants in practice. This amounts to assuming that
the delay for detection is lower than M so that faults can be detected in M sampling
periods at most. The actual decision function obtained from (6.138) is thus:

— k
glk) = max  max 55 (61). (6.139)

Example 6.12 (cont.) Change in the mean of a Gaussian sequence

In this particular case, it is possible to find an explicit expression for i1 (k, 7), the maximum
likelihood estimate of 41 at the present time instant k, assuming that the fault occurred at
time instant j. Indeed, from (6.122), S f(ul) takes the following form:

k

k M1 — Mo . o + pi1

S} (m) = B3t Z (z(z) - T) (6.140)
=]

In order to maximise this expression with respect to 11, one has to take the derivative of

SJ’-“ (1) with respect to p1 and equate that expression to zero:

" k . _
85‘] (p1) o % Z (Z(Z) . HO‘;'/JI) _ k .;"’1 (/“0-2:”'0) —0. (6.141)

Equation (6.141) yields:

k
. . 1 Z ,
i=j

Substituting this expression for 11 in (6.140) results, after straightforward computations, in:

k

PEOE HO)] . (6.143)

i=j

1 1

SF(fu (k, 5)) = k= 1

Hence the GLR decision function can be written:

x 2
1 1
k)= — —_ i) — . 6.144
9k) = 505 meX T lz (2(3) Ho)] (6.144)
i=j
If H; is accepted in the above GLR algorithm, at the alarm time k,, the estimated change
occurrence time is given as:

ka ?
) 1 LS
_ 1 N O 14
kO arg{ 20-2 ka—l\ﬁ?}éjgka ka - .7 + 1 [ P (Z(Z) MO)] (6 5)
i=j

Parameter tuning for the generlised likelihood ratio algorithm. An experi-
mental approach will be considered here to adjust these parameters. Although the
method is described with reference to Example 6.12, it can be generalised easily
to other types of changes than jumps in the mean of a Gaussian sequence. First
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M should be chosen larger or equal to the acceptable detection delay. Next, the
threshold should be determined on the basis of healthy and faulty process data. A
computation of the decision function based on a set of healthy data allows one to
determine the typical range of values of this function in the absence of fault, and to
set the threshold in such a way that false alarms are avoided (or the time between
false alarms is acceptable) . This choice can then be validated by processing data
obtained in faulty working mode, and checking that detection is achieved. Should
experimental data corresponding to a faulty behaviour not be available, a simulator
could possibly be used to obtain data that could be used as a substitute. An iterative
adjustment of the horizon M and the threshold & may be needed to obtain the right
compromise between false alarm rate and detection delay. Indeed, the lower M, the
lower h has to be chosen in order to achieve detection in the window [k — M +1, k].
Decreasing the detection delay thus increases the false alarm rate. For the evalua-
tion of the GLR decision function (6.144) required in the above procedure, empirical
estimates (1o and 62 should be substituted for o and 0.

Reinitilization. Again the particular case of a change in the mean of a Gaussian
sequence is considered here. The reinitialisation allows one to detect a new change
in the mean. The mean value of the data after change is thus considered as the new
value of 1. This reinitialisation could use fij (kq, 12:0) as an estimate of the mean
after the change occurred. However, if the delay for de}ection is short (one or a few
samples), very few data are used to compute fi1(k,, ko), and this estimate of the
mean might be poor when the noise on the data is significant. It is the reason why
the reinitialisation is based on a data set of fixed length obtained by collecting addi-
tional data. Here the length of the data set is chosen equal to M, but an additional
parameter different from M might be introduced. It should be determined in such a
way that a reliable estimate of the mean after change is obtained. More on this can
be found in the appendix on random variables and stochastic processes, where the
statistics of the empirical mean is studied.

With this in mind, the global GLR algorithm to detect a change in the mean of a
Gaussian sequence can be summarised as follows.
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Algorithm 6.8 GLR algorithm to detect and estimate changes in the mean of a
Gaussian sequence

Given:
1.

2.
Initialisation:
1.

5.

6.

At each
sampling time:
R1.

R2.

R3.

Reinitialisation:
1.
2.
3.

Result:

A setof data {z(1), ..., 20(No)} under hypothesis H
andaset {z1(1), ..., 21(IN1)} under hypothesis H;.

An acceptable maximum detection delay.

Choose M larger than or equal to the maximum detection
delay.

Determine fig and 62 from {2o(1), ..., 20(No)}.
Compute the decision function g(i),i = M + 1,..., Ny
for the data set {zo(1), ..., z0(No)} by us-
ing (6.144) and choose the threshold h so that
g(i) <h,i=M+1,..., No.

Compute the decision function
g(@), i=M+1,..., Ny for the data set
{z1(1), ..., z1(N1)} by (6.144) and the estimated
change magnitude by (6.142). Check that the fault is
detected and that the delay for detection is acceptable for
the estimated change magnitude.

Possibly iterate on the choice of M and h.

Acquire M — 1 data samples.

Acquire the new data z(k).
Compute g(k) from (6.144).

If g(k) > h , generate an alarm; provide the alarm time
instant k, = k , the estimate of the change occurrence
time ko by (6.145) ; and compute [i1 (ko, ko) by (6.142).

Collect a set of M data from time I%o to l%o + M —1.
Compute the new value of iy from these data.

Restart the on-line algorithm from k = ko + M onwards
(step R1).

A sequence of alarm time instants k,, estimated change
occurrence times ko and mean signal values fi1 (kq, ko)
for increasing time horizon k.
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Example 6.12 (cont.) Change in the mean of a Gaussian sequence

Consider again the data of Fig. 6.8. Let the set z(1), ..., z(NNo) be made of the first 500
samples while z(1), ..., z(IN1) consists of samples 400 to 1000. One gets, as before,
fio = 0.0445, 5% = 0.9455. Figure 6.14 (left) gives the value of the GLR decision func-
tion obtained by processing the sequence z(1), ..., z(NNo) with a window M of length 10
samples. A threshold above 15 appears to be suitable in this case. Hence, h is set to 20. Run-
ning the algorithm on the set z(1), ..., z(IN1), one observes that an alarm is generated at
time 105 (Fig. 6.14 (right)). The estimate of the change magnitude is 2.69, and the estimate
of the change occurrence time is 103, while the actual change occurred at the 101°* sample
in that set. Due to the noise on the signal, the estimate of the change magnitude is in error by
30%. This could be partly alleviated by increasing the threshold, so that more data are used
to estimate the fault magnitude; this would increase the detection delay however. O

120

Fig. 6.14. Two GLR decision functions

6.7.3 Sequential change detection: the vector case

The previous discussion dealt with detection of changes in a scalar signal. In the
fault detection applications, the signal to be processed is issued by a residual gener-
ator, and it is generally a vector signal. The combined information comprised in this
vector should be considered in our algorithm. Since fault detection will be reduced
to the detection of changes in the mean of a Gaussian vector sequence, the solution
to the following problem will be needed.

Problem 6.9 (Detection of a change in the mean of a Gaussian vector sequence)
Consider a sequence of n.-dimensional random vectors z(1), ..., z(k) that are
independent and distributed as N'(u, Q), where Q is known, as well as the nominal
value for p, pg. Choose between the following two hypotheses:

Ho : L(2(7)) = N (g, Q), i=1,...,k
H1 : From time instant 1 up to an unknown time instant ko, z(i), i = 1,... ko —1
is distributed as:
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L(2(i)) = N (o, Q) (6.146)
while for time instants i > kq:

£(2(0)) = N, Q) (6.147)
with py 7 .

Beside detecting the possible change in the mean, one should also estimate its time
of occurrence, and possibly its magnitude.

When p; is known, the detection algorithm is a direct generalisation of the
CUSUM algorithm. In the second situation which is considered in this paragraph,
the change in @ has known direction but unknown magnitude. This yields a GLR
algorithm. Finally, the situation, where g, is replaced by a dynamical profile of
change will be considered, as this is a result needed at a later stage.

1 known - CUSUM algorithm. By using the expression of the probability density
function of a n-dimensional Gaussian vector z with mean g and variance Q

R S A (VSN P
(gﬁ)ndethXp( 5 (2 Q (2 u)>, (6.148)

the following expression is obtained for the log-likelihood ratio associated to the
above problem.

pu(z) =

s(2(k)) = In e Z))

PRER)
= ) ) Q7 () — ) g () — ) @ (3(K) — o)
= (m—m) Q7" (z(k) - %(Ho + m)) (6.149)

This loglikelihood ratio is scalar, so the recursive computation of the CUSUM deci-
sion function can be performed in a similar way as for the scalar case (cf. (6.127))

g(k) = max(0, g(k — 1) + s(z(k))). (6.150)

The alarm or stopping time, k,, is the smallest time instant at which g(k) crosses a
given threshold.

Known direction of change - GLR algorithm. Let pt; be of the form
My = po+I'v,

where I is a known vector, and v is an unknown scalar change magnitude. Substitut-
ing this expression for £¢; in (6.149) allows one to deduce the following expression
of the cumulative sum .S J’?(z/), where j denotes an hypothetical value of the change
time ko,
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SEw) = le “;;OF”(Z)) 6.151)
- fj@mwrﬂww—uw—gfﬁo*r).
i=j
Equating —4—— Sk( ) to zero yields
asgy(u) - ZF’ o)~ (k—j+1) I Q'I'y

- (k—j+1)F’Q_1 (Zf—uo) (k- j+1)I'Q'I'v (6.152)
_

with Z = 1= ]+1Zz

Hence, the max1mum likelihood estimate of v at time k, assuming the fault oc-
curred at time j is obtained from (6.152) as

o T'QTNZE - )
I/(k, ]) = 1 .
rqQ-—r
Substituting (6.153) for v into (6.151) finally yields the GLR decision function in
a similar way as (6.144) was deduced from (6.142) and (6.143)

p— k 7, y = — 9 *
gk) = L S Si(o(k, j)) el (k—j+1)

(f/(k, HI'Q! (Zf - uo) - %ﬁ(k, j)ZF’Q—lr)

The estimated fault occurrence time upon acceptance of hypothesis H; at time in-
stant k, is given as

(6.153)

ko = arg{ka—MH-ﬁ)éjgk@ (ke —j+1)-

. (f;(ka, N Q! (Zf - uo) - %ﬁ(ka,j)QF’Qll")}.

Known dynamical profile of change - CUSUM algorithm. There is a need to
generalise the previous result by replacing I'v by a time-varying change direction,
as this is precisely the situation which is encountered when detecting additive faults
in linear systems. This leads to the following modified version of Problem 6.9.

Problem 6.10 (Change detection, known dynamical profile of change)
Consider a sequence of n,-dimensional random vectors z(1), ..., z(k) that are
independent and distributed as N (u, Q), where Q is known, as well as the nominal
value for p, pg. Choose between the following two hypotheses:
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Ho:L(2() =N(ko, Q) i=1,...,k

Hy : From time instant 1 up to an unknown nme instant ko, z(3), i =1, ..., kg1
is distributed as
L(z(i)) = N(no, Q) (6.154)
while for time instants i > ky:
L(2(i)) = N(po + pli — ko), Q), (6.155)

where p(i — ko) is a known vector profile which is non-zero only for i > ky.

Beside detecting the possible change in the mean, one should also estimate its
time of occurrence.

The cumulative sum for this problem setting, with j as an hypothetical value for
ko, is given as

gk Zlnpu0+p )(())

D TR
S
= 3 (a0~ o= pli = ) Qa0 — o — pli =) ) +
Z*i .
52 (2(0) = 1o)' Q71 (2(0) — o)

k
= 2P Q7(2() — o) ——Zp ) Q' p(i—j)
) (6.156)

and the decision function, obtained in a similar way as for the scalar case, is given
as (cf. (6.125))

_ k
g(k) = max, S;

with ,S’j’-C as in (6.156).
This algorithm can be written in a recursive form ([5], pp. 283-284):

g(k) = max(0, S(k)) (6.157)

N(k) = N(k-1) 1{g(k—1)>0} +1 (6.158)

S(k) = S(k—1)1yp-1)>0) +p(N(k) = 1) Q™' (2(k) — po) —
—0.5p(N(k) = 1) Q 'p(N(k) —1). (6.159)

N (k) is thus the number of observations after the last time instant for which the
decision function g was null. Notice that this algorithm requires the hypothesis
p(0) # 0, which is included in the problem statement, otherwise the decision func-
tion would always remain equal to zero.
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Example 6.14 Data exhibiting a dynamical profile of change

The aim of this example is to illustrate the type of vector signal on which the above algorithm
can be applied. Consider a vector signal made of two components, z1 and z2. Suppose that
the dynamical profile of the change in z; (22) can be modelled as the step response to a first

order system with transfer function %2~ (22-). In other words, the sequence z; (i), i =
1,2,...,5 =1, 2, takes the form
2j (i) = 27 (i) + ps,j (i — ko) Lis ko1 (6.160)

where
L(21 (1)) = L(23 (i) = N(0,0.025),

hold and ps ; (¢), which is tabulated below for £ = 0, ..., 9, 7 = 1, 2, are the step responses

(hence the index s) associated to 29'5'5 and Zi’é 5. Figure 6.15 gives a realisation of the
sequence (6.160) for ko = 20. O

25

0 10 20 30 40
Fig. 6.15. Realisation of the vector sequence (6.160)

The superimposition of the deterministic step response and the stochastic se-
quence is clearly visible. To apply algorithm (6.157)-(6.159) to detect the change
in the sequence, one should take p;(¢) = ps ;(¢ +1),¢ =10,1,2...,j=1,21n
order to assure that p(0) be nonzero.
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Table 6.3 First 10 values of the dynamical profile of the change

‘ ps,l ‘ ps,2 ‘

¢

0 0 0

1 | 0.5000 | 1.4000
2 | 0.7500 | 1.8200
3 | 0.8750 | 1.9460
4 1 0.9375 | 1.9838
5 | 0.9688 | 1.9951
6 | 0.9844 | 1.9985
7 1 0.9922 | 1.9996
8 1 0.9961 | 1.9999
9 | 0.9980 | 2.0000

Known dynamical profile of change up to an unknown constant - GLR algo-
rithm. Yet a more general situation occurs when the form of the dynamical profile
of change is known, but its magnitude is not known.

Problem 6.11 (Change detection, known dynamical profile of change up to an
unknown constant)

Consider a sequence of n,-dimensional random vectors z(1), ..., z(k) that are
independent and distributed as N'(u, Q), where Q is known, as well as the nominal
value for p, pg. Choose between the following two hypotheses:

HOZ'C(Z(Z')):N(H(M Q) i=1,...,k

H, : From time instant 1 up to an unknown time instant ko, z(i),

i =1, ..., kg — 1is distributed as:

L(z(1)) = N(po, Q) (6.161)
while for time instants i > kg

L(=2(1) = N(pg + p (i — ko)v, Q), (6.162)

where p (i — ko) is a known vector profile which is non-zero only for i > ky,
ko is an unknown time instant, and v is an unknown scalar.

Beside detecting the possible change in the mean, one should also estimate its
time of occurrence and its magnitude v.

The cumulative sum for this problem setting, with j as an hypothetical value for
ko, is given as

Pp, + p (i—jyw(2(0))
Zl =(0)

P, (2
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k 5 k
= v p—3) QT (=) —po) = 5D p(-9) Q- ))

(6.163)

Similar computations as for the case of a constant direction of the parameter change
yield the following maximum likelihood estimate of v at time k, assuming the fault
occurred at time 7,
k
> p(i—5) Q7" (2(i) — o)

ok, ) = =5

Y -5 Q' p(i—])

1=y

(6.164)

and

- k
g(k) = ppmax _ max Si(v)

k
{o(k, j)Zi) (i =) Q" (2(i) — ko)

L a9 k
RIS B iy @ - ). (6.165)
i=

max
k—M+1<j<k

The estimated fault occurrence time upon acceptance of hypothesis H; at time
instant k, is given as

N 92 ke
7V(ka> J) Zi)(Z*J)I Q*lﬁ(ifj) . (6.166)

Parameter setting for the CUSUM algorithm. For the CUSUM algorithm asso-
ciated to a known vector g, the expressions of the ARL function (6.133) remains
valid in the vector case. It suffices to replace us and o by:

i(”l — 1) Q" (11 — o)

2
2 _ / —1
o = (=) Q7 (1 — o),
where the plus or the minus sign are chosen according to the value of p, the expected
value of z(7) (cf. Remark 6.8). The mean time for detection and the mean time
between false alarms can respectively be estimated as

Hs =
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I -1
2_ 1 ((lﬁ ) QQ (1 — Ho)) —i (% ﬁ'Q_lﬁ> : (6.167)
where 8 = py — p
j: -7 <_ (g — No)/ Q2_1 (y — No)) . (6.168)

In order to evaluate the above expressions, given a set of experimental data recorded
in fault free condition and a change magnitude 3, the empirical mean and variances
fto and Q should be substituted for p, and Q. These empirical estimates should
also be used for the implementation of (6.149)-(6.150).

The algorithm for the vector parameter case is thus similar to the scalar case,
namely

Algorithm 6.9 CUSUM algorithm for Gaussian vector sequence, step-like change
(i1 known)

Given:

1. Asetof experimental data {z(1), ..., 2(N)} obtained in fault
free working mode.

2. (3, corresponding to twice the minimum magnitude of the
change to be detected or to the most likely magnitude of this
change.

3. A specified mean time for detection or a specified mean time
between false alarms.
Initialisation:
1. Determine fi, and Q from {z(1), ..., z(N)}.
2. Choose h to meet either the specified mean time for detection
or the specified mean time between false alarms from (6.167) or
(6.168).
At each

sample time:
1. Acquire the new data vector z (k).

2. Compute g(k) by (6.150).

3. If g(k) > h, issue an alarm and reinitialise the decision func-
tion to 0.

Result: A sequence of alarm time instants k, and estimated change oc-
currence times kg, for increasing time horizon k.
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When the dynamical profile of the change is accounted for (as in (6.155)), the study
of the properties of the algorithm such as mean delay for detection and mean time
between false alarms becomes much more difficult. The difficulty stems from the
fact that the increments in the cumulative sum of log-likelihood ratios are not iden-
tically distributed. Therefore, an experimental approach for setting the design pa-
rameters is proposed in the algorithm below.

Algorithm 6.10 CUSUM algorithm for Gaussian vector sequence, known dynami-
cal profile of change

Given:

1. A setof data {z¢(1), ..., z0(Ng)} under hypothesis Hg
and aset {z1(1), ..., z1(N1)} under hypothesis H;.

2. A dynamical profile of change p(i) # 0, i > 0.

Initialisation:
1. Determine fi, and Q from {zo(1), ..., 2zo(No)}.
2. Compute the decision function ¢(i),i = 1,..., Ny for the

data set {zo(1),...,20(Ng)} by (6.157) — (6.159) and
choose the threshold £ so that
g(i) < h,i=1,..., Np.

4. Compute the decision function g(i), ¢ = 1, ..., Ny for the
data set {z1(1), ..., 21(N1)} by (6.157) — (6.159); check
that the fault is detected and that the delay for detection is
acceptable.

6. Possibly iterate on the choice of h.
At each
sampling time:
R1. Acquire the new data z(k).
R2. Compute g(k) from (6.157) - (6.159).
R3. If g(k) > h, generate an alarm by setting k, =k
and provide an estimate of the change occurrence time as
ko — N(k,) by (6.158).
Reinitialisation:
1. Reset g(k,), N(kq), and S(k,) to zero in (6.157) — (6.159).
2. Restart the recursive algorithm with (step R1).

Result: A sequence of alarm time instants %, and estimated fault oc-
currence times kg, for increasing time horizon k.

Remark 6.12 Reinitialisation procedure
The reinitialisation may depend on what one wishes to detect. Here it is assumed that one
wishes to check whether the observed change remains present. By reinitialising the algorithm
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as proposed, repeated alarms will occur as long as the change is present in the signal. Another
option for reinitialisation is to change the sign of the loglikelihood ratio which amounts to
changing the sign of the last two terms in (6.159) and to reset all variables to zero as indicated
is step 1 of the reinitialisation. In this way a return to normal will generate an alarm.

The proposed reinitilisation policies require that the dynamical profile of change does not
asymptotically vanish. Should this not hold, one should resort to a GLR algorithm as illus-
trated in the ship example in Section 6.8.4 O

An example of application of this algorithm in the framework of a fault detection
system is given in Section 6.8.2.

GLR algorithm Here also an experimental approach is used to set the design pa-
rameters. The algorithm is only presented for a change characterised by a dynamical
profile with unknown magnitude.

Algorithm 6.11 GLR algorithm, known dynamical profile but unknown change
magnitude

Given:

1. Asetofdata {z¢(1), ..., z0(No)} under hypothesis H( and
aset{z1(1), ..., z1(N1)} under hypothesis H;.

2. A dynamical profile of change p(i), i > 0.

Initialisation:

1. Choose M larger than or equal to largest admissible detection
delay.

2. Determine fi, and Q from {zo(1), ..., zo(No)}.

3. Compute the decision function g(i), t = M + 1, ..., Ny for
the data set {zo(1), ..., 2o(No)} by (6.164), (6 165)) and
choose the threshold h so that gi) <h,i=M+1, ..., No.

4. Compute the decision function g(i), i =M + 1, ..., Ny for
the data set {z1(1), ..., z1(Ny)} by (6.165) and the esti-
mated change magnitude by (6.164); check that the fault is de-
tected and that the delay for detection is acceptable given the
estimated change magnitude.

5. Possibly iterate on the choice of M and h.

6. Acquire M — 1 data samples.
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At each
sampling time:
R1. Acquire the new data z(k).

R2. Compute g(k) from (6.164), (6.165)

R3. [If g(k) > h, generate an alarm; provide the estimate of
the change occurrence time, kq , by (6.166), and the esti-
mated change magnitude ©(k, kg) computed by (6.164).

Reinitialisation:
1. Collect a set of M data from time ]AC() to 12:0 + M — 1.

2. Compute  the  estimated change  magnitude
U(ko + M — 1, ko) for these data by (6.164).

3. Restart the recursive algorithm from &k = lAco + M on-
wards with step R1. Notice that the mean value to be
subtracted from z(7) in (6.164), (6.165) should now be
fuo + (ko + M — 1, ko)p(i — ko)  (cf. Remark 6.13
below).

Result: A sequence of alarm time instants k,, estimated change
occurrence times ko and change magnitudes 2(k, ko).

Remark 6.13 Reinitialisation for GLR algorithm

e The reason for collecting a set of M data to estimate ﬁ(l%o + M -1, I%o) is to assure
a sufficient precision of the change magnitude so that updating the mean of the signal is
performed properly.

e After reinitialisation, (6.164) and (6.165) should be replaced in step R2 by the following
expression which accounts for the estimated mean of the signal after change

D pG—5) Q7 (2(6) — fro — 9p(i — ko))
ok, j) = =

(6.169)

> bi—5)Q pli—j)

Q

=
>

N
Il

k—M+1<j<k

max {ﬂ(k, J’)Zﬁ (i—5)' Q" (2(i) — frg — 9p(i — ko)) —

’” Zp ) Q™ p(z—a)} (6.170)

where # stands for o(ko + M — 1, ko). O

The method will be illustrated in Section 6.8.3, as a part of a fault detection and
estimation system.
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6.8 Stochastic model — Kalman filter approach
After a presentation of the model of the supervised process, the problems of de-

tection, isolation and estimation of additive faults in a stochastic system will be
successively considered in this section.

6.8.1 Model

Let us consider a system described by a linear discrete-time model of the form

z(k+1) = Aax(k)+ Bu(k) + Fed(k) + Fy £(k) + w(k)
x(0) = x (6.171)
y(k) = Cuz(k)+ Du(k)+ Eqd(k) + Ef f(k) +v(k),

where € IR", u € IR™, y € IRP are respectively the state vector, the vector of
known input signals and the vector of measured output signals, w is the vector of
state noise, v denotes the measurement noise. w(k) and v(k) are samples of vector
white noise sequences with zero mean and covariance matrix:

w(k) ol Qe Q.
EK v(k))“"“)”(@)](% QU>5’“

x( is a stochastic vector with mean m and variance Il uncorrelated with the
state and measurement noise sequences. Finally, d € IR™ is a vector of unknown
input signals or disturbances (deterministic or stochastic with non-zero mean), and
f € IR™ is a vector of unknown input signals representing the faults to be detected.
The faults are said to be additive, since they enter linearly in the model as additional
input.

Such a model can also be written in terms of a single vector white noise sequence,
with variance equal to the identity matrix by considering the factorisation

Qu Qo) _( B ) (p D).
Q.. @ ) \p

A sample of this sequence will be denoted €(k), hence the index in B, and D..
It is a n.-dimensional random vector, where n. is the rank of the variance of
(w(k)" wv(k)')’, generally equal to n + p. The state-space model (6.171) can thus
be rewritten as

x(k+1) = Ax(k)+ Bu(k)+ Fq.d(k)+ Fy f(k) + Bee(k)

z(0) = x (6.172)

y(k) = Cuz(k)+ Du(k)+ Eqd(k) + Ef f(k) + D.e(k).
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6.8.2 Fault detection

Problem statement. Fault detection amounts to determining whether the supervised
process is working in a normal (or healthy) operating mode. The problem can be
stated as follows.

Problem 6.12 (Fault detection)
Given

e a model of the process of the form (6.171) or (6.172)
e a sequence of measured process input and output
(y(3), w(i))1<i<k,
where k denotes the current time instant.

Choose between the following two hypotheses:

Ho: healthy operating condition,
‘H1: faulty operating condition.

The quality of a fault detection system is measured in terms of detection delay
and time between false alarms. A typical objective is to minimise the mean delay
for detection of a change subject to a fixed false alarm rate before the change time.

To achieve this goal, the task is usually divided into two parts: residual generation
and residual evaluation. Each of them is addressed successively in the following
subsections.

Residual generation. As in the deterministic case, the residual generators are filters
with input signals u and y, belonging to the following class of linear time invariant
systems

zk+1) = A,z(k)+ B,,u(k)+ B, y(k), z(0) = zo
r(k) = C,;z(k)+ Dyyu(k)+ D,yy(k) (6.173)

or, in transfer function form, after taking the z-transform of the above equations and
assuming zero initial conditions:

r(z) = Vi (2u(z)+ Ve (2)y(z) (6.174)
(Veu (2) Vi (2) (“(z) ) |

The problem of designing a residual generator can be stated as follows.

Problem 6.13 (Residual generator design for fault detection)
Determine a stable linear time-invariant filter (6.173) or (6.174) such that:

1. The sequence of output values r(k), k = 1, 2, ... is a zero mean white noise
vector sequence (which is not affected by uw and d), once the transient due to
initial conditions has vanished.
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2. In the presence of a fault (f(k) # 0 for all k > ko), the mean of r(k) is
different from zero for at least some k > k.

As w and d are arbitrary signals, they cannot affect r for the latter to be a white
noise sequence. To define rigorously what is meant by this statement, notice that the
global system made of the supervised process and the residual generator, obtained
by combining Egs. (6.172) and (6.173), is seen to have as input signals u, d, f, €,
and state (x z)’. Hence the residual at time k can be considered as a function of the
above input and the initial state, namely:

T’(k) = 7‘(/{7 u, da .fv €; Ty, Zo).

Saying that the residual is not affected by w and d means that, for any two distinct
input sequences u! (k), u?(k) and d* (k), d*(k),k =1,2,...,

r (kv ’U,1, da f7 €; Lo, ZO) =r (kv ’U,2, d7 .fa €; T, ZO)
and
r (k7 u, d17 .f7 €; Lo, ZO) =r (k7 u, d27 f’ €; Lo, ZO) )

whatever the initial state and the other input sequences.

One way to solve the problem is to design a filter which meets the first condition
and then to check whether the second requirement is fulfilled. In order to maximise
the chances for this second condition to hold, one should make sure that, when
imposing condition 1, no useful information contained in vy is lost. Only the in-
formation corrupted by an unknown input should be cancelled. A filter that meets
the latter condition, together with the first condition of Problem 6.13 is called an
innovation filter for reasons that will be clarified in the next subsection.

To construct a residual generator, one will first solve the innovation filter design
problem below. Next fault sensitivity of the filter output will be checked to see
whether condition 2 is met in Problem 6.13. In the affirmative, the innovation fil-
ter is a residual generator. The issue of fault sensitivity is the object of a specific
subsection.

Problem 6.14 (Innovation filter design)
Determine a stable linear time-invariant filter (6.174) with the least number of out-
put signals such that, in the absence of fault (i.e. f(k) = 0 for all k):

1. The sequence of output values v(k), k = 1, 2, - - - is a zero mean white noise
vector sequence which is not affected by w and d, once the transient due to
initial conditions has vanished.

2. No information on the fault contained in y is lost, except if it is affected by the
unknown input vector d.

An observer-based approach will be used to solve the Problem 6.14.
Two situations have to be distinguished, namely the absence of unknown input
(E4 = O and F; = O) and the presence of unknown input.
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No unknown input. In this situation the design of an innovation filter amounts
to the design of a steady state Kalman filter. Such a filter provides a predic-
tion of the output y(k), y(k), given the data up to time k& — 1, namely, given
u(i), y(i), i =1, 2, ..., k — 1. The output prediction error, (k) = y(k) — g(k)
is called the innovation in standard Kalman filter literature, because it consists of the
new information contained in y(k), which was not available in y(1), ..., y(k—1).
The innovation sequence is known to be a white noise sequence not affected by u
(once the transient due to initial conditions has decayed to zero). Hence it fulfils
condition 1 of Problem 6.14. Besides, the information about f contained in the se-
quence of data is also contained in the innovation sequence. For this reason, the
innovation is said to be a sufficient statistics for the fault vector f. Thus condition 2
of Problem 6.14 is also fulfilled by the innovation sequence, and hence the latter is a
suitable candidate as a residual sequence. It is the fact that the innovation sequence
meets conditions 1 and 2 of Problem 6.14 that justifies the name innovation filter.

To state the design procedure precisely, let us introduce the notion of a regular
quadruple (A, B, C, D).

Definition 6.6 (Regular quadruple (A, B, C, D))
(A, B, C, D) is regular if the matrix

—=zI+A B
C D

has full row rank for all z on the unit cycle (z = exp(jw), w € R).

It is assumed below that the pair (C, A) is detectable, and (A, B., C, D,) is
regular.

Remark 6.14 Uncorrelated state and measurement noise sequences

In the particular case where the sequence w (k) and v (k) are uncorrelated (which amounts to
B.D. = 0O), the above regularity assumption can be replaced by the classical requirement
that the pair (A, B.) has no uncontrollable mode on the unit circle. O

Under such hypotheses, the equations for the steady state Kalman filter can be
written as

@(k+1) = Aik)+ Bu(k) — K(y(k) — Ca(k) — Du(k)),
2(0) = & (6.175)
r(k) = y(k) - Cé(k) - Dufk),

where the filter gain K is given by
K =—-(APC' +Q,,)(Q,+CPC"), (6.176)

P being the symmetric semi-positive definite solution of the following discrete al-
gebraic Riccati equation
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P = APA - (APC'+Q,,)Q,+CPC)!.
-(CPA'+Q.,,) +Q,. (6.177)

Fig. 6.16 illustrates the state-space implementation of the innovation filter.

if (%) iw (k) iv (k)

w(k) z(k+1)= Az (k)+ Bu(k)+ F; f(k)+ w(k) y (k)

y (k)= Cx(k)+ Du(k)+ F; f (k) + v (k)

z(k+1)=(A+KC)z(k)+(B+ KD)u(k) - Ky (k) (k)

> r(k)=y(k)— Cz(k)— Du(k)

Fig. 6.16. Block diagram of the supervised system together with the
innovation filter

In a transfer function form, this filter is described by

r(z) = Ve (2u(z) + Ve (2)y(2)
= (~C(:I-A—-KC)"(B+KD)-Dju(z) + (6.178)
+(CI-A-KC) 'K+ 1)y(2).

If the pair (C, A) is not detectable, it is still possible to design an innovation filter
by extracting the observable part of system (6.172) and designing a Kalman filter for
this observable subsystem. Notice that this approach can also be considered when
(6.172) is detectable but not observable, if one wishes to obtain a residual generator
with the lowest possible order.

Remark 6.15 Time varying Kalman filter

To assure coherency with Sections 6.3 and 6.4 and to ease the study of the sensitivity to the
fault, a steady state Kalman filter is considered above. This implies that whiteness of the
sequence (k) is only reached after the transient has vanished. A white noise sequence can
be generated from time k = 0, if a (time-varying) Kalman filter is used instead of a steady
state Kalman filter. Equation (6.175), (6.176) and (6.177) are then replaced by

&(k+1) = Aa(k)+ Bu(k) — K(k)(y(k) — C&(k) — Du(k))
(0) = mg (6.179)
r(k) = y(k) - Ca(k) — Du(k),
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where the filter gain K (k) is given by

K(k) = —(AP(K)C' +Q,,)(Q, + CP(K)C') ™, (6.180)
P (k) being the solution of the following discrete Riccati equation
P(k+1) = AP(kA —(AP()C' +Q,,)(Q,+CP[K)C)™"
(CP(kK)A' +Q.,,) +Q., P(0)=1II, (6.181)

For implementation purpose, it is interesting to separate the equations of the Kalman filter in a
two-stage update procedure at each sampling time: a measurement update and a time update.
The approach is the object of the following remark. This implementation of the Kalman filter
allows one to handle missing measurements in a straightforward way. O

Remark 6.16 Handling missing measurements

The measurement update consists in taking into account the new information brought by
an additional measurement, say y(k), in order to compute &(k|k), the best estimate (in the
least square sense) of x(k) given w(i),y(3),s = 1,2,---, k. The latter is deduced from
u(k), y(k) and from & (k) the best prediction of (k) given w(4),y(i),t =1,2,---, k — 1.
The time update then uses the plant model in order to predict the state evolution one step
ahead.

An additional hypothesis is needed to use the algorithm below: the variance of the measure-
ment noise, @, should be positive definite and diagonal. Thus, @, = diag (qv,1 -+ Gu,p)s
where q,; > 0,4 = 1,---,p. The "diagonality" condition can be enforced by a suitable
change of output variable when @, is positive definite. It suffices to set y, (k) = Q. */?y(k),
so that the variance of y (k) is the p X p identity matrix.

The following notations are introduced in the algorithm below: ¢; and d; denote respec-
tively the 7" row of C and D.
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Algorithm 6.12 Measurement and time update for the innovation filter

Initialization: Set P(0) = IT,,2(0) = my.
At each
sampling time:
1. Measurement update.
Set Po(k) = P(k), zo(k|k) = z(k).
For i = 1 up to p, compute P;(k|k) ™' = Pi_1(k) ™! + cici/qu.i-
Set P(k|k) = P,(kl|k).
For ¢ = 1 up to p, compute
Kyi(k) = P(klk)ci/qu.
zi(klk) = Zia(klk) + Kypi(k)(yi(k) — cie(k) — diu(k)).
Set &(k|k) = &p(k|k).
2. Time update.
Compute successively

K;(k) = PKKC'Q,"
P(k+1) = AP(kKA' +Q, -Q,,(Q, +CP(k)C)'Q,,
—AK ;(k)Qy, — Qu, K (k) A’
Ag(klk) + Q,,,(Q, + CP(K)C') ™"
(y(k) — Ca(k) — Du(k)).

z(k+1)

3. Computation of the residual.
For i = 1 up to p, compute the components of the residual vector

rik) = ya(k) — s (k) — dou(k)).

Result: Residual vector r(k) for increasing time horizon k.

When a measurement is missing, it suffices to skip the corresponding measurement update,
namely to skip the corresponding value of index ¢ in the "for" loops. O

With unknown input. In this case, the design of an innovation filter consists of a
two step procedure. First a reduced system having no unknown input is extracted
from the original system. Then a steady state Kalman filter is designed for this sub-
system and the candidate residual signal is nothing but the innovation associated
to this filter. As above, to check whether the innovation sequence is a residual, its
sensitivity to the fault vector f has to be verified, which is the object of the next
subsection.

The idea behind the extraction of the subsystem will first be sketched in the case,
where E; = O (no unknown input affecting y). Next a complete algorithm will
be provided to solve Problem 6.14. The justification of this algorithm is relatively
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involved, and the interested reader is invited to consult the bibliography for the
proofs.

To extract a subsystem which has not d as input, let x,; denote the state of this
subsystem and set
Tsup(k) = Mx(k), (6.182)

where IT is an ng,, X n matrix (with ng,, < n) to be determined. By multiplying
the first Eq. (6.172) by IT on the left, and by taking (6.182) into account, one gets

Top(k+1) = IHAxz(k)+ IIBu(k) + ITF.d(k)
+ITF; f(k) + II B.e(k). (6.183)
If the following relations are imposed
ITA = AIl +BC (6.184)
IIF; = O, (6.185)

where A and B are unknown matrices to be determined, then (6.183) can be written

as

Tk +1) = Awzg (k) + B (y(k) — Du(k) — Ey f(k) — D e(k))
+ITBu(k)+ IIF; f(k) + IIB€e(k) (6.186)

by using (6.182) and the output of Eq. (6.172) (in which E; is assumed to be null).
Introducing the abbreviations

B = IIB-BD
F; = IIF;- BE;
B. = IIB.-BD.

into (6.186) yields
Zoup(k +1) = Az (k) + Bu(k) + By(k) + F; f(k) + B.e(k). (6.187)

This system has no unknown input d as could be expected by imposing (6.185).
To design a Kalman filter based on the state Eq. (6.187) when f = 0, the part of the
measurement y which depends on x,;, ©w and € only should be determined. This
is achieved by defining the signal y,,; as

Youp (k) = My(k) = MCxz(k) + M Du(k) + M D, e(k), (6.188)
where M is unknown. Imposing

MC = LII, (6.189)
(6.188) becomes

Youp (k) = Lasyy (k) + M Du(k) + M D, e(k), (6.190)

which has the required form.
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Now, provided (L, A) is detectable, and (A, B., L, M D,) is regular, a Kalman
filter can be designed for the subsystem (6.187), (6.190), when f = 0

sk +1) =  Adgy (k) + Bu(k) + By(k) — K (Youp
—L&gu(k) — M Du(k)), (6.191)

where

K.y, =—(AP,wL +B.D. M) (MD.D.M' + LP,;, L')!
with Pg,; the symmetric semi-positive definite solution of

P., = APu,A - (AP,,L'+B.D,M') (MD, D.M’

+LP, L) (LPsubA/ + MD, BL) +B.B.

id(k) if(k) iw(k) iwc)

u (k)
z(k+1)= Az (k) +(BiF4 Fy)|d (k)| + w (k)
wlh £ b y (k)
(k) g
y (k)= Cz(k)+ (DO Ey)| d (k)| + v (k)
T &)
L a/\:sub(k +1) = (Z—’_ -K;ubL) isub(k) + (-E+ KsubMD)
wll) +(B Ko M)y (# -,

Fig. 6.17. Block diagram of the supervised system together with the
innovation filter in the presence of unknown inputs

The associated output reconstruction error is given by
(k) = Yoy (k) — LEgup (k) — M Du(k). (6.192)

which can be evaluated from the available data. It can be checked that it fulfils the
conditions for an innovation sequence. Indeed, the state estimation error, &, (k) =
Tsub(k) — Zsup(k), verifies the following equation obtained by subtracting (6.191)
from (6.187):



6.8 Stochastic model — Kalman filter approach 273

jfsub(lC + 1) - (A + Ksub L) j:sub (k) + Ff f(k)
n (Be + Ky MDE) e(k). (6.193)

This error is clearly not affected by d and u, and so is the associated innovation
r(k) = L&y (k) + M D, €(k). Condition 1 of Problem 6.14 is thus fulfilled. To
assure that the maximum amount of information on the fault has been kept (condi-
tion 2 of Problem 6.14), x ,,,;, should have the largest possible dimension (11 should
have the largest possible number of rows). The implementation of the innovation
filter is summarised in the block diagram of Fig. 6.17

The design of an innovation filter essentially amounts to solving the set of nonlin-
ear algebraic Egs. (6.184), (6.185), (6.189). Despite the nonlinearity, an algorithm
based only on linear algebraic operations can be derived. It is presented below in the
general situation, where E 4 # O.
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Algorithm 6.13 Innovation filter design for a system with unknown input

Given:
Compute:

Result:

1.

A system of the form (6.172).

Determine the integer n,;, together with full row rank and full col-
umn rank matrices I" and @ respectively such that

—zln,, + Asub Bsup | r —2I,+A F; B.
Csub Dsub B C Ed D6

& O
o I, )

The Algorithm 6.14 presented below can be used to com-
pute ngyup, I and . The ngyp-dimensional subsystem
(Asuby Bsuby, Csuby, Dsup) has no unknown input. Let pg,,; de-
note the number of rows of C,;.

Design a Kalman filter for the following reduced system:

Toup(k+1) = Agp@sus (k) + B u(k) — T2 y(k)
+Bup €sup(k)
Tsup(0) = Tsubo
Your(k) = Tay(k) = Coup Toup(k) + Dyup u(k)
+Dgup €sup(k),

where €g,,(k) is a sample of a white noise sequence with variance
equal to the identity matrix,

r r
r— 11 12
I';y I'xs
with I'y1, I'1o, I'91, I'9g respectively ng,p X 1, Ngup X P,

Psub X N and pgyup X p -dimensional matrices,

By, = I'nB+TyD,

D,y = TIauB+TIyD.

The resulting innovation qualifies as a residual.
An innovation filter for system (6.172).
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Here is the algorithm to be used in step a).

Algorithm 6.14 Computation of ngyp, I', @

Initialisation: Let

7 — *In Onxnd ,W: A Fd .
Op><n Opxnd (& Ed
Set

Z'=Z W'=W M=1I,,, andN=1I,,,.

Compute:
a. While Z* is not full column rank, do

1. perform a singular value decomposition of Z*,

. Xz 0\ [ Vg
Z:(UQU%)(S o)(vi)’

and compress the columns of Z* by computing the right
hand side of the first equality below:

(Z; 0)=2z" (Vlz/* VQL) = (UYL 2, 0).
2. Let (W} W3) =W* (Vll V%) .
3. Find the highest rank full row rank matrix L satisfying

LW =0 as follows. Perform a singular value decompo-
sition of

Yw: O Vi
Wi Wi = (Uly; Uhy;) : i)
o R 0O 0)\ Vi
Noticing that
1 1
U 2* , O
one gets L = U%’VS'

4. LetZ*=LZ W*=LW,,M=LM,
N =NVL., enddo.
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b. Determine an invertible matrix 7" such that

(0]

where the dimension of I is obviously equal to rankZ*. Such a matrix
can be computed as follows:

r_ ((ZzVz)" 0 U%
o I vi. |’

where the notations are the same as for the singular value decomposition
of Z* above, except that V. = V z- and V7. does not exist since Z*
has full column rank now.

¢. SetI'=T-M, &=N,

Asub _ —FW@, Bsub -r Be ]
Csub Dsub De

The above design procedure may fail in different ways:

sub

o When the dimensions of I" and @ are such that is a square matrix, the

sub
obtained subsystem has no output, and hence no Kalman filter can be designed
and no residual generator can be obtained. This typically occurs when ng > p.

e When

2I+Ague Bsw

Csub Dsub
has full generic rank, but it looses rank for z = exp(—jw), w € IR, then it is not
possible to design a residual generator as the regularity assumption needed for
the design of the Kalman filter is not fulfilled. ©

e When the regularity assumption ceases to be met due to B, = O, Dy, = O
or due to

—zI + Asub B sub

Csub D sub
having not full generic rank, the design is more involved and the reader is referred
to the bibliography for this case.

Example 6.15 Innovation filter design for the ship example
Let us consider the linearised augmented ship-steering model described by combining the
wave model and the ship-steering system

6 Fulfilment of this condition can be checked by computing the zeros of system
(Asuby Bsub, Csub, Dsyp) and by verifying that none of them lies on the unit circle.
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Towl 2,00 —og 0 0 Twl 0 1
Tw2 1 0 0 0 Tow2 0 0
= 0 w
o3 0 0 by 0 ws | Tl w %o "
P 1 0 1 0 P 0 0
Twl
W3m, o 1 0 1 0 Tw2 fw Vw
(¢m>_(0 0 0 1) ws +<fw)+(vw>'
¥
A sampled-data model of this system has been obtained at a sampling rate of 0.5H z.
The resulting equations are:
Twt (k+1) —0.1281  —0.6365 0 0 Zw1 (k)
ZTw2 (k+1) _ 0.9945 0.1106 0 0 Zw2 (k)
ws (k+1) N 0 0 0.0000 0 ws (k)
P (k+1) 0.9945 —0.8894 0.0500 1.0000 ¥ (k)
0
w0 sty wik) (6.194)
0.0500 '
0.0975
Twil (k‘)
W3m (k’) o 1 0 1 0 Tw?2 (k‘)
Yvm(k) ) L0 0 0 1 ws (k)
¥ (k)
fo (k) ) ( v, (k) )
+ + . (6.195)
( fu (k) vy (k)

The covariance matrix of the state noise w (k) can be evaluated by the sampling procedure
described in Appendix 2. It yields

0.0015 0.0056 0.0019 0.0056
0.0056 0.0322 0.0077 0.0322
0.0019 0.0077 0.0024 0.0077
0.0056 0.0322 0.0077 0.0322

The measurement noise sequence is characterised by a covariance matrix given as

0.0001 0
@ = < 0  0.005 > '

State and measurement noise are supposed to be uncorrelated, hence Q ,,, = O.

The considered input signal §(¢) is a sine wave with period 207 seconds.

Figure 6.18 gives the evolution of the sampled output signals in healthy working mode
(first 300 samples), when a 0.1 deg/s bias on the turn rate w3 (k) is added (from sample 301
to sample 600), and when this bias disappears bringing the system back to healthy working
mode (sample 601 to 900) In other words, a step-like fault f., occurs between sample 301
and 600.

From the above model, the following Kalman filter is deduced ’.

7 The gain of this filter can be computed by MATLAB function dlge for instance.
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Fig. 6.18. Sampled output sequence of ship model in healthy and
faulty working modes; ws,, as a function of sample number
(continuous line), ¥, as a function of sample number (dash-dotted

line)
Zwr1 (b +1) —0.1281 —0.6365 0 0 B (k)
Ew2 (k+1) | 0.9945  0.1106 0 0 Zwa (k)
O3 (k+1) N 0 0 0.0000 0 ws (k)
D (k+1) 0.9945  —0.8894 0.0500 1.0000 o (k)
0 —0.3265 —0.4544
N 0 5(k) 0.6710  0.0067
0.0500 0.0000  0.0000
0.0975 0.6880  0.0119
l'w1 (k)
wgm(k‘) _ 1 0 1 0 xwz (k)
Y (k) 0 0 0 1 @3 (k)
w<k>
(6.196)
The innovation is computed from
T (k)
w;;m(k:) 1 0 1 0 fwg (k‘)
k) = — . 6.197
() ( U (K) ) < 00 0 1 ) &3 (k) (6.197)
¥ (k)

The innovation sequences for the data of Fig. 6.18 is plotted in Fig. 6.19. The change in the
mean of the innovation sequence due to the fault is visible. However, such a change cannot
be detected by comparing the signals to a simple threshold. O

The existence of a filter that meets the conditions in Problem 6.14 does not guar-
antee that the filter output (namely the innovation) is useful for fault detection. It
should be affected by f in order to meet the second condition of Problem 6.13, and
thus to be suitable as a residual. This issue is addressed in the next subsection.
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Fig. 6.19. Innovation sequences computed by (6.196), (6.197) from
the data of Fig. 6.18; first component (continuous line); second
component (dash-dotted line)

Sensitivity to faults or fault detectability. There are several ways to define the
sensitivity of an innovation signal to a fault f or, equivalently, the detectability of a
fault by a given innovation signal.

In a similar way as for the deterministic case, an innovation filter for system
(6.172) is said to be fault sensitive if its output is affected by f. Equivalently, the
fault is said to be detectable in this case.

If the transfer function from f to = is left invertible, then the innovation filter is
strictly fault sensitive.

It can be shown that system (6.172) has a (strict) fault sensitive innovation filter
which solves Problem 6.14 if and only if every innovation filter solution of Prob-
lem 6.14 is (strictly) fault sensitive. Thus (strict) fault sensitivity is a property of
the supervised system (6.172), and it does not depend upon the choice of innovation
filter. Therefore, (strict) fault sensitivity of (6.172) will be referred to in the sequel.

Assuming the pair (Csyp, Asup) resulting from the design procedure is observ-
able, the following necessary and sufficient conditions for sensitivity can be ex-
ploited.

System (6.172) is fault sensitive if and only if ®:

3 < Fy ) ¢ Ker(I). (6.198)
Ey

System (6.172) is strictly fault sensitive if and only if system (Asup, F' ¢ subs Csubs
Ey oup), where

Fi., F
Foub \ _p T (6.199)
Ef sub E;

is left invertible.

8 The image (space) (X)) of a linear transformation associated to the n x m matrix X
is the set of all vectors ¢ in IR™ that equal X u for some u in IR™. The kernel (or null
space) Ker(X) of a linear transformation associated to the n X m matrix X is the set of
all vectors w in IR™ that fulfil Xu = 0
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Yet another notion is strong fault sensitivity, which is typically considered for
scalar faults. As for a deterministic residual, the innovation signal is strongly fault
sensitive when it reaches a non-zero steady state value for a step-like fault, f(k) =
f 1{k>ky}» fOr any constant non-zero f. This property can be checked a posteriori
by computing the steady state gain of the transfer function between fault f and
innovation 7 and verifying that it has at least one non-zero entry.

Remark 6.17 Comments on strong fault detectabilty

In a deterministic framework, necessary and sufficient conditions for the existence of a resid-
ual generator which is strongly fault sensitive for a given system have been developed [187].
The corresponding fault is said to be strongly detectable. It is unclear whether the innovation
signal computed as the output of the filter (6.175) (or as the innovation of a Kalman filter for
the subsystem in step 2 of the algorithm 6.13) is necessarily strongly fault sensitive, when a
strongly detectable fault is considered. O

Distribution of the residual vector and residual evaluation. For proper choice
of the residual evaluation method, it is necessary to analyse the statistical distribu-
tion of (k). For the sake of simplicity, the situation, where x, v(k), w(k), k =
0, 1, ..., are normally distributed is considered. Then, the residual has asymptoti-
cally (as k tends to infinity) a Gaussian distribution with known variance and with
zero mean or non-zero mean, depending on whether f(k) asymptotically vanishes
or not assuming the fault is strongly detectable. The normal distribution results from
the linearity of the filter and the supervised process.

In order to characterise this distribution, let us consider the situation, where there
is no unknown input, and hence the residual generator is given by (6.175). The
reasoning below also applies to the Kalman filter designed for the system given
in step 2 of the algorithm 6.13, but the notations are more cumbersome. The
first two moments of the distribution of 7(k) can be computed as follows. Let
&(k) = x(k) — @(k). Then classical results on steady state Kalman filters pro-
vide the following expression for the mean and the variance of (k) in the absence
of fault:

lim B(@(k) = 0
lim B(@(k)&(k)) = P,

with P given as the semi-positive definite solution of (6.177). By substituting the
second equation of (6.172) (with E; = O) for y(k) in the expression of (k)
(6.175), the residual can be written as

r(k)=Cz(k)+ E; f(k) + D, €(k). (6.200)
When f (k) vanishes as k tends to infinity, one deduces from (6.200) with f (k) = 0:

Tm = kILHioE(T(k)) =0

Q. = lim E((r(k)—rn) (r(k) —ry)’) =CPC'+ D D..

k—oo
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If, on the contrary limy_, o, f(k) = f # 0, the residual mean is non-zero. It can be
obtained from the transfer function between f(z) and r(z) deduced from (6.172)
and (6.178), namely V., (2) (C (2I — A)"'Fy + Ejy). Indeed, the mean of the

residual is nothing but the steady state value of the residual for f(k) = f. Thus,
T = lm E(r(k) = Ve, (1) (C(I - A)"'Fy + Ey) f.

Stability of the supervised system is implicitly assumed when writing this expres-
sion. The variance of the residual is unchanged, since the fault signal is considered
as deterministic.

The problem of fault detection thus amounts to deciding between the following
two hypotheses

Ho: L(r(k)) =AsN(0, Q,) (6.201)
Hi: L(r(k))=AsN (V,, (1) (CI—-A)"'F;+Ef) f,Q,), (6.202)
where the notation £ (r(k)) denotes the distribution of r(k), and
L(r(k)) =AsN(a, X)

indicates that this distribution is normal with mean a and variance X as k tends
to infinity. Notice that the residual must be strongly sensitive to fault f for the
distributions under H and H to be different.

The asymptotic character of (6.201), (6.202) is due to the effects of initial condi-
tions and filter transients upon occurrence of a fault. Neglecting such transients, and
assuming that f is known, one can recast the above problem as the following test of
hypotheses.

Problem 6.15 (Test of hypotheses: transient not accounted for)
Given a sequence of residual vectors v(1), ..., r(k), obtained as the output of filter
(6.175), choose between the following two hypotheses at the current time instant k:

Ho: L (r(7)) = N(0, CPC' + D, D’E)for 1<i<k
H1: From time instant I up to an unknown time instant ko,v(i), i =1, ..., ko—1
is distributed as

L (r(i)) = N(0, CPC' + D. D’E)
while for time instant i > kg
L(r@)=N(V.,Q1)CI—-A)'F;+E;)f, CPC'+D.D.).

This problem is of the form of a change detection in the mean of a Gaussian vector
sequence ( Problem 6.9) with z(i) replaced by (i), uy = 0, @ = CPC'+ D, D.
and gy =8 = (V,,(1)C(I — A)"'F; + Ey) f. Hence, the CUSUM algorithm
based on a step-like change can be used for residual evaluation, with f taken as twice
the minimum magnitude of the fault to be detected or as the most likely magnitude

of this fault. The complete fault detection system is depicted in Fig. 6.20.
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Fig. 6.20. Fault detection system

Remark 6.18 >-test

In some applications, particularly in the area of predictive maintenance, the delay for de-
tection may not be a crucial factor, and one may resort to an off-line approach to solve a
simplified version of the above hypotheses testing problem. The most recent data over a slid-
ing window [k — M + 1, k] are considered, and the time instant kg is set to 1, which amounts
to considering that the change has affected all elements of the batch of data. The method to
solve this hypotheses testing problem relies on the x?-test which is presented in the appendix
for a scalar data set. O

When stating the above hypotheses testing problem, the transient of the system
and the residual generator upon occurrence of a fault are not taken into account.
This may significantly affect the detection delay. If a priori knowledge on the fault
sequence f(i), ¢ = ko, ko + 1, ... is available, the performance of the detection
system can be improved by introducing a suitable dynamical profile of change in
the CUSUM algorithm.

Most commonly, step-like changes in the fault sequence are considered, namely
f(z) = q z‘ = 1,2,..., ko —1 (6.203)
fG@ = f i = ko

or, in a compact way, f(i) = f {i>ko}» Where f is a constant vector.

Due to the linearity of the system (6.172) and the filter (6.175), the residual se-

quence can be written as

r(k) = ro(k) + p (k, ko), (6.204)

where ro(k) is the value of the residual in the absence of fault, and p (k, ko) is
the contribution to r(k) of a fault occurring at time ko < k. In the case of a step-
like fault considered above, p(k, ko) can be computed easily; it only depends on
the difference k — ko, and hence, is written with an abuse of notation p(k, ko) =
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p(k — ko). For the sake of simplicity, only a scalar fault sequence is considered.
Then, p (k — ko) = p (k — ko)f, where p (k) is the response of system (6.172),
(6.175) to a fault signal of the form (6.203) with f = 1, for u(k) = 0, d(k) = 0
and €(k) = 0 for all £ > 0, and for zero initial conditions. It coincides with the step
response of the system with transfer function V., (2) (C(2I — A)™' Ey + Fy).
The hypotheses testing problem when taking into account the dynamical profile of
the change can be written as

Problem 6.16 (Test of hypotheses: transient accounted for)
Given a sequence of residual vectors v(1), ..., r(k), obtained as the output of filter
(6.175), choose between the following two hypotheses at the current time instant k

Ho: L(r(i)) = N(0, CPC' + D.D.) for1 <i <k,
H1: From time instant I up to an unknown time instant ko, (),
1=1, ..., ko — 1 is distributed as

L (r(i)) = N(0, CPC' + D. D)) (6.205)
while for time instant i > ko,
L(r(i) =N(p(i—ko)f, CPC'+ D_.D.). (6.206)

This problem is in the form of Problem 6.10. (6.205), (6.206) precisely have the
form (6.154), (6.155) with r(i) replacing z(i), CPC' + D, D" replacing Q, p (i —
ko) f replacing p(i — ko) and g, = 0. The CUSUM algorithm based on a known
dynamical profile of change can thus be applied with p(k) = p (k) f, where f is
taken as twice the minimum magnitude of the change to be detected or as the most
likely magnitude of this change.

Remark 6.19 Delay in dynamic profile
In the statement of problem 6.10, p(j) is supposed to be different from zero for 5 > 0. This
hypothesis is not verified when the transfer function V ., (2) (C (2 —-A)'E;+ F f) has

no direct feedthrough term. In this case, one should use p(k) = p(k — 7) f, where 7 denotes
the minimum delay in the n, elements of the mentioned transfer function. O

Notice that strong fault sensitivity is no more a required property of the residual
in order to achieve fault detection, when the dynamical profile of the change is
accounted for. Indeed, it suffices that the distributions (6.205), (6.206) be different
for some time interval. Checking that the fault subsists by reinitialisation of the
CUSUM algorithm is however impossible when the residual is not strongly fault
sensitive.

Remark 6.20 Fault sequence

The choice of a step-like fault sequence can be made without loss of generality. Indeed, other
signal forms could possibly be represented as the step response of a linear system, and this
linear model could be included in the state-space Eqgs. (6.171). O
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Example 6.15 (cont.) Ship example

The CUSUM algorithm based on the knowledge of the dynamical profile of change will be
used to detect the occurrence of fault f,,. In order to determine the dynamical profile of the
change to be used in the algorithm, it suffices to consider the response of the system made of
Egs. (6.194), (6.195), (6.196), (6.197) to a step-like fault f.,, keeping all other input signals
equal to zero and starting with zero initial conditions. This corresponds to the step response of
the transfer function V., (z) = (C (2I —A)'E;+ F f) with respect to the first input.

Given the specifications, one decides that the smallest bias on w3 to be detected is
0.025 deg/s. f., is set to twice this value, which yields 0.05 deg/s. A step of magnitude
0.05 deg/s is thus applied as signal for f.,. The vector dynamical profile of change with
respect to fault f., , 0.05 p,,, is plotted in Fig. 6.21.

0.1

0.05[\

-0.1
0 50 50 100 150 200

Fig. 6.21. Dynamic profile of change for fault f,,; first component of
0.05 p.,; (continuous line); second component (dash-dotted line)

The evolution of the CUSUM decision functions for detection of f., g, is plotted in
Fig. 6.22. The indicated threshold (dashed line) has been set on the basis of the value of the
decision function for the first 300 samples (healthy working mode). The reinitialisation policy
is the reset procedure indicated in the description of the algorithm. One notices the repeated
threshold crossing of the decision function g.,, while the fault is present (from sample 300 to
600). O

6.8.3 Fault estimation

In this section, a model of the form (6.171) in which ny = 1 is considered. Be-
sides, it is assumed that step-like faults of unknown magnitude occur. Thus a scalar

sequence f(i), i = 1,2, ... of the form (6.203) with an unknown constant f is
assumed.

The problem can be stated as:

Problem 6.17 (Fault estimation)
Given

1. a model of the process of the form (6.171) subject to a scalar step-like fault
sequence f(i) = fl{>y,} of unknown magnitude f.
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20

Fig. 6.22. CUSUM decision function resulting from application to the
innovation sequence of Fig. 6.19 of the CUSUM algorithm based on
the known dynamical profile of change (Fig. 6.21)

2. a sequence of measured process input and output values:

(y(4), u(i))gigk )

where k denotes the current time instant.
Choose between the following two hypotheses

Ho: healthy operating condition,
‘H1: faulty operating condition.

When H; is selected, an estimate of the fault occurrence time, /%0, and of the fault
magnitude, f, should be provided.

As for the fault detection problem, a two step procedure is used to solve this prob-
lem. The first step, namely the residual generation, is the same for both problems.
For residual evaluation, a generalised likelihood ratio algorithm is used to obtain an
estimate of the fault magnitude. Indeed, given the specific fault model, the residual
evaluation reduces to Problem 6.16 in which f is unknown. Hence, it is of the form
of Problem 6.11. (6.205), (6.206) precisely have the form (6.161), (6.162) with r(4)
replacing z(i), CPC’ + D, D’ replacing Q, f replacing v and p1, = 0. The GLR
algorithm based on a known dynamical profile of change but an unknown fault mag-
nitude can thus directly be used to process the residual vector in order to obtain an
on-line solution to Problem 6.17.

Example 6.15 (cont.) Ship example

Let us again consider the innovation sequence depicted in Fig. 6.19. Instead of using a
CUSUM algorithm, we now perform a GLR algorithm on this sequence. A dynamical profile
of change has to be provided. It can be computed as for the CUSUM algorithm and one gets
a profile similar to Fig. 6.21 except that the minimum fault magnitude is not accounted for.
Thus to obtain the dynamical profile p..,, the signal f,, which is used is a step function with
unit magnitude instead of the magnitude of 0.05 deg/s used previously.

M is chosen as 50. This allows one to determine a quite precise estimate of the fault
magnitude in the reinitialisation procedure. Given the values of the decision function obtained
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for the first 300 data, which correspond to the set {zo(1), - - -, 20(No)}, and given its values
upon occurrence of the fault, the threshold h is set to 30. The evolution of the GLR decision
function is plotted in Fig. 6.23. Each time the threshold is crossed, an alarm is generated, and
the decision function remains equal to zero until enough data are available for estimating the
fault magnitude in a reliable way. The recursive algorithm restarts at ko + M.

40

30F---=-q---———p-——————-

20

10

O0 500 1000

Fig. 6.23. GLR decision function resulting from application to the
innovation sequence of Fig. 6.19 of the algorithm with known
dynamical profile of change

Note that successive changes separated by less than M samples cannot be handled properly.
For the considered data, an alarm is generated at time instants 308 and 606. The estimated
change times are 300 and 601 while the actual changes occur at 301 and 601. All numbers
should be multiplied by the sampling period to obtain time in seconds. The estimates of
the change magnitude used for reinitilisation are respectively 0.1020 for the positive change
and —0.1073 for the negative change (disappearance of the fault). Remember that the actual
change magnitude is 0.1 in both cases. Notice that the estimate of the change magnitude
plotted in Fig. 6.24 converges relatively fast after occurrence of a fault. Hence the horizon
M could possibly be chosen smaller for this situation, yet this value is used to make the
convergence of the estimate visible in the plot.

0.4

0.2

0.4 ‘
0 500 1000

Fig. 6.24. Estimate of the change magnitude resulting from
application to the innovation sequence of Fig. 6.19 of the GLR
algorithm with known dynamical profile of change
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6.8.4 Fault isolation

Up to now the plant model used in the stochastic framework only contained one
single (possibly vector) fault to be detected. However, most often several faults may
affect the behaviour of the supervised process, and one should not only detect them,
but also isolate the faulty components. An appropriate model to describe the process
then takes the form

z(k+1) = Ax(k)+ Bu(k +ZFJZ )+ B.e(k)
z(0) = xo (6.207)

y(k) = Cx(k)+ Du(k +ZEZfZ )+ D, e(k),
where, for the sake of simplicity, scalar faults f;, ¢ = 1, ..., ny are considered.

One way to detect and isolate a single fault, say f,, is to design a residual which
is only sensitive to that fault and to evaluate it in an appropriate way. This can
be achieved by recasting the problem as a fault detection problem for a specific
system with unknown input. Obviously, the unknown input vector must be made
of the faults not to be detected, and thus the model takes the form (6.171) with
d=f1, ., fa1, fat1, - s fnf]/ and f = f,. One can now proceed as in the
section on fault detection (and estimation) to build a system that detects, isolates
and possibly estimates fault f,.

If each fault must be detected and isolated, one solution is to solve n ¢ fault de-
tection (and estimation) problems of the form just mentioned. This yields a bank
of residual generators, each one being affected by a single fault. The table below
represents the situation when ny = 3.

Table 6.4 Effects of the faults on the residuals

R
rq X 0 0
o 0 X 0
T3 0 0 X

where a x indicates that the fault in the corresponding column affects the residual
of the corresponding row. Each residual can be processed individually by a GLR
algorithm or a CUSUM algorithm, according as an estimate of the fault magnitude
is needed or not.

From the conditions for fault detectability, the following necessary conditions can
be deduced for the above scheme to work

rank ((Hyy, (s) Hyy, (s))) > rank H g, (s) (6.208)
forall ¢, j=1,...,ns £F#7,
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where H ,,(2) is the transfer matrix between f, and y°. A necessary condition
for (6.208) to hold is ny < p, where p is the number of measured output signals
(dimension of y).

When it is not possible to design residual generators in such a way that each
residual is only sensitive to a single fault, it is still possible to achieve fault isolation
provided the zero entries in the table characterising the effect of the faults on the
residual have a different pattern in each column. However, only a diagonal structure
such as in Table 6.4 allows isolation of multiple simultaneous faults.

Remark 6.21 Accounting for correlation between residual vectors
Since the different residual vectors are built on the basis of the same stochastic model, they
are generally correlated. Hence the residual evaluation should ideally be carried out on the
stacked residual vector

r(k)=( ri(k)  r2k) .. T R) ).
The problem can then be written in the form of a multiple hypotheses testing. The interested
reader is referred to [179], [114] for the algorithms to be used. O

Example 6.15 (cont.) Ship example

Faults on both the rate sensor and the angular position sensor are now considered. Figure 6.25
depicts the measurement signals obtained when step-like faults with magnitude 0.1 deg/s
and 0.5 deg are respectively introduced on ws,, between time instant 301 and 600 and on
m between time instant 900 and 1200. All time data are expressed in number of sampling
periods.
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0 500 1000 1500

Fig. 6.25. Angular rate and heading measurements

In order to achieve fault isolation, two residual signals are generated, one being sensitive to
fw, the other to f,,. To this end, consider the sampled-data ship model (6.194), (6.195). If a
Kalman filter is designed for this system using only the first measurement equation in (6.195),
the resulting residual will only be affected by f.,. Such a filter cannot be designed because
the resulting system is not detectable. However, there is no need to estimate the whole state

9 rank H(z) stands for the normal rank of matrix H (z); it can be computed as

max, rank H(z)
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to generate a residual; it suffices to design a Kalman filter for the first 3 state equations in
(6.194) and the first measurement equation. This filter takes the form:

Fw1 (k+1) —0.1281 —0.6365 0 Zw1 (k)
w2 (K+1) = 0.9945 0.1106 0 Tz (k)
ws (k+1) 0 0 0.0000 ws (k)
0 —0.6760
+ 0 (k) + 0.8104
0.0500 0.0000
Zw1 (k)
wam (k) = (1.0 1) [ o (k) (6.209)
ws (k)
The innovation is computed from
Zw1 (k)
Tws (k) =wsm (k) — (1 0 1) Tw2 (k) (6.210)
ws (k)

It is plotted in Fig. 6.26 (a). A significant change in the mean of this signal is visible when
the fault on w3 is present.

| 1
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Fig. 6.26. Residual affected by f., (a) or fy (b) only

The design of a residual generator for detection and isolation of f; is based on the model
made of Eqgs. (6.194) and (6.195). This system is detectable and the innovation, r, of the
Kalman filter based on the above model is affected by fault f,; as can be seen in Fig. 6.26 (b).
However, the latter fault is not strongly detectable.

Hence for evaluation of residual 7, one has to resort to the GLR algorithm, since it is not
possible to detect fault disappearance by successive reinitilisation of a CUSUM algorithm.
The latter option is possible for evaluation of r.,, however. Figure 6.27 represent the GLR de-
cision function obtained by processing the residual sequence of Fig. 6.26 (a) and the CUSUM
decision function obtained by processing the residual of Fig. 6.26 (b). Repeated alarms are
issued by the CUSUM algorithm, the first occurring at time 300, the last one at time 597.
In this time interval, the CUSUM decision function crosses its threshold every 5 samples on
the average. Appearance and disappearance of the fault on the angular rate measurement can
thus be detected and isolated. As far as the GLR decision function of Fig. 6.27 (a) is con-
cerned, it reaches its threshold at time 904, and the estimated fault occurrence time of f, is
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900 (actual value 901). The estimated fault magnitude based on the residual in the time win-
dow [900 949] is 0.449, which is in error by 10 %. After reinitialisation, the GLR algorithm
detects fault disappearance at time 1203 and it provides instant 1201 as the estimate of the
change occurrence time, namely the correct time instant. The estimated change magnitude is
—0.618 which is in error by 23 %.

15 50
40
10 - 30
20
10 W
500 1000 1500 % 500 1000 1500
(a) (b)

Fig. 6.27. CUSUM decision function and GLR decision function
resulting from evaluation of 7y, (a) and 7., (b)

6.9 Exercises

Exercise 6.1 Residual generator for position actuator

Consider the system in Fig. 3.8 and parameters given in Exercise 3.3. There is no measure-
ment noise in the exercise.

1. Implement a candidate residual generator. Use the parity equations

e(s) = ym(s) —9(s),
where
1

- Sliot +

71(s) (kqnim(s)),

and
52(5) = 3= (2m(9)).

Investigate the properties of these potential residual generators by applying step changes
on either of the faults.

2. Consider further the possible fault in the shaft speed sensor. Investigate experimentally
whether all three faults can be detected and isolated.

3. Derive the transfer function matrix H ¢ (s) and use this to explain the observations. O
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Exercise 6.2 Residual generation using the parity space approach
This exercise deals with residual generator for the industrial actuator. Refer to Fig. 3.7. The
disturbance is @);. The input is icom. The measurements are n,, and 6,,.

1. Determine the transfer function matrices H . (s) and H yq4(s).

2. Write the transfer function matrix

H(S) — ( HZ/U(S) Hyd(s) )

I o
3. Write H (s) in the form
1 =

where H is a polynomial matrix.
4. Determine the rank of H (s).
5. Determine the nullspace of H l(s).

6. From the nullspace of H ,(s), determine residual generator(s)
7(s) = Vru(s)u(s) + Viry(s)y(s)
that make the residual independent of unknown input. Verify this property by showing
that

Vry(S)Hyd =0.
7. Determine the relation

7(3) = Vo (5) Hoys () = %ff(s)

and determine which of the three faults f;, f,, and fy are detectable. O

Exercise 6.3 Residual generation for single-axis satellite
In continuation of Exercise 5.3 this exercise deals with residual generation for the single axis
satellite.

A state-space model for the single axis is given by

T = %(kul + kuz + wo)
i‘z = X1
o = T1+h
Y2 = w2+ fa
ys = T2+ f3
ya = kiui+ fa
ys = koua + f,
where 1 is the angular velocity, x2 the angle of the satellite and nominal parameters are
I = 14.33 kgm®

ki =k =05.

There are two input signals, u; and uz to actuators 1 and 2, respectively. There is one
unknown input d. The magnitude of d is not known prior to the launch of the satellite, but it
is known that d is constant over time.

There are five measurements: y1 measures the state z1, y2 and y3 measure the state 2. Y4
measures the actual torque from actuator 1, y5 measures the actual torque from actuator 2.
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1. Determine the transfer function matrices H ., (s) and H y4(s).

2. Determine the transfer function matrix

H(S) _ ( Hyu(s) Hyd(s) )

I o
3. Write H (s) in the form
1 =

where H is a polynomial matrix.

4. Determine the rank of H (s).

5. How many independent residual generators can be expected that are independent of input
u(s) and of disturbances d(s).

6. Find the left nullspace of H (s).

7. Determine a residual generator based on the nullspace. O

Exercise 6.4 Properties of residual generators for single-axis satellite
This exercise is a continuation of 6.3.

1. Determine the response of the residual vector to the additive faults on y; to ys by calcu-
lating
7(s) = Viry(s)Hys(s) f(s).
2. Determine which of the above faults are detectable and which are strongly detectable.
3. Determine which of above faults can be isolated.
As pure differentiation or integration are not feasible in the presence of measurement

noise, a filter is applied on one of the residuals. Investigate the features of two proposed
residual generators. Both have the form

1 S
ri2(s) = oy ay1(s) - H—am(s)
r23(s) = y2(s) —ya(s).

Version a has o = 0.01, version b has o« = 10.
4. Discuss the properties of the two residual generators (detectability, strong detectability,

isolability). Apply a fixed threshold on either set of generators to detect if a fault is
present and verify your results by simulation. O

Exercise 6.5 Residual generator design - optimisation method

This exercise addresses the position servo from Exercise 3.2, Fig. 5.35. The exercise is to
design residual generators based on the standard setup used in robust control. It is assumed
that only a single fault can appear at a time.

1. Formulate the FDI problem for the system as a standard problem. Identify the matrices
that need to be selected in connection with the design.

2. Design residual generators for fault detection using the standard setup and standard de-
sign methods.
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3. Design a residual generator for fault isolation and fault estimation using the standard

setup and standard design methods. O

Exercise 6.6 Residual generator with an explicit specification

This exercise addresses the position servo from Exercise 3.2, Fig. 5.36.
Assume the load possess a dominant disturbance above 0.5 rad/s.

1. Formulate a specification H .4(s) and H . (s) for the design.

2. Formulate the fault detection and isolation problem for the system as a standard problem.
Identify the matrices that need to be selected in connection with the design.

3. Design residual generators for fault detection sing the standard setup and standard design

methods.

4. Design a residual generator for fault isolation and fault estimation using the standard

setup and standard design methods. O

Exercise 6.7 Covariance of LP filter output - input is band limited noise

Given a low-pass filter with the state-space representation
z(t) = —ax(t)+ aw(t)
y@) = x(t)

with input w(t), a band-limited random signal generated by

dw(t) = —Bw(t)dt + 02~/28 du(t).

1. Represent the filter in the form
dz(t) = Az(t) + Bdv(t).

2. Let the covariance matrix be

oe{(3 ) (=0 0}

a ¢
c b )

Calculate the covariance @ as the solution to the Lyapunov equation

AQ+ QA+ BS,B' =0.
3. Show that the variance ony , 05, is
2 o 2

U'y = mﬂ'w

6.211)

and determine the value of the pole « required to obtain a desired value of af, given o2,

O
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Exercise 6.8 Change detection for industrial actuator

Given a simulation model and residual generators based on parity equations, this exercise

deals with detection of faults in the presence of measurement noise and random disturbances.
Let a noise specification for n,,, 6,,, and i, be given by the autocorrelation function

Rii(7) = o2ePiltl
where
Nm: op=3rad/s FB=10
Om: o0p=0.0lrad (=2
im: i =02A B =10

The noise sources are not correlated.

1. Implement a simple threshold (level) detector on the two residuals from the parity equa-
tions. Investigate whether you can detect
a) a step change of 0.015 rad in the position sensor
b) a step change of 0.15 A in the power drive current.

2. Design a scalar CUSUM detector of change in mean value. Test for the hypothesis that
a fault is present an reflected in the a mean value change of the values given above.

3. Design a detector for the position sensor fault that has a time to detect of 2.5 s. Determine
the average time between false alarms. Increase the specified time to detect to 10 s and
determine the new average time between false alarms.

4. Investigate experimentally (by simulation) whether the two faults can be detected.

5. Verify the time to detect and the false alarm rates using different seeds of your measure-
ment noise generators.
Note 1: The results on time to detect and mean time between false alarms assume white
noise statistics of the log-likelihood test quantity s(k). When s(k) in not white, the
statistical results are only approximate figures that can only be used as guidelines for
design. O

Exercise 6.9 GLR change detection design
As a continuation of Exercise 6.7, design a GLR estimator.

Design a scalar GLR based detector. Investigate the limits of faults that can be detected
and find the threshold on the decision function that gives a time to detect of 2.5 s for a fault
of similar magnitude as in Exercise 6.7. O

Exercise 6.10 Change detection for single-axis satellite
Referring to 6.3, measurements are subject to measurement noise. A state-space model for
the single axis is given by:

T1 = %(km + kus + d)
To = X1

yi = x1+ fi+w

Y2 = x2+ fot+we

ys = T2+ fz+ws

ya = kiui+ fa

ys = kouz + fs,
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where d is an unknown disturbance. The noise specification for w1, we and w3 are given by
the autocorrelation function

R“(T) = 0’ e —Bilrl
where
wi: o1 =2-10"*rad/s F=10
we: o9=1-10"2rad 6 =10
ws: o3=2-10"3rad 6 =10.

The three noise sources are uncorrelated.
Consider two residuals that are supposed used to detect a fault f in the measurement 5.

riz(k) = TZyl )+ y2(0) — y2(k) (6.212)

roz(k) = yz(k)—ys(k)

where 7" is the sampling time of the measurements. Assume the sampling time is 7" = 1 s.

1. Calculate the variance of 712 and 723 above.
It is desired to design a change detector such that faults larger than 2 - 102 rad on 2
are detected after max. 10 s (10 samples). This is not possible due to the large variance
of the noise w3 on ys3.

2. Determine which variance y3 should have in order to meet the average time to detect
as specified. Design a low-pass filter on 723 that will reduce the variance as required.
Note that the ARL function is derived on the assumption of a white residual. As you are
violating this assumption, validation by simulation is required at a later stage.

3. Design a set of scalar-based change detection algorlthms for the case the fault on y2 has
a magnitude of 2 - 107 rad and the change is a step. Verify that the desired time to
detect can be obtained. O

Exercise 6.11 Vector-based change detection for single-axis satellite
1. Determine the fault signature in the residual vector assuming a fault on y» appears as a
step.

2. Design a vector-based change detection algorithm for the case the fault on y2 has a
magnitude of 2 - 1072 rad and appears as a step. Discuss the properties of the vector-
based change detection compared with the set of scalar algorithms. O

Exercise 6.12 Residual generation in a Luenberger observer
Consider the following linear time invariant system

(=) = (% 5)(5)(%)
(1 0)<2>+f3

Y
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fi
where ¢ = ( e > is the state, f = fo is the fault vector (f = 0 <= normal
T2
f3

operation) and y is the measured output.

1. Define the parameters k1 and k2 of a Luenberger observer
2:’1 _ 0 1 21 kl N
N z1
= 1 0
g ( ) ( ) )

which has the following property: in the absence of faults, the estimation error

Z1 — X1
Z2 — X2
converges to zero with a dynamics associated with the two eigenvalues A1 = A2 = —5.

Determine the transfer function between the residual » = y — ¢ and the fault vector f
under the form

r=Gi(s)f1 +G2(s)f2 + G3(s) f3. O (6.213)

Exercise 6.13 Static and dynamic redundancy

Consider the following system composed of 4 components: process, sensor 1, sensor 2, sen-
sor 3.

Sensor 1 |——— yi(t)

u(®) | Process | #(1)
" state ) Sensor 2 [—— (1)

Sensor 3 —— y3(1)

Fig. 6.28. System with three sensors

It is assumed that it can be described by the following linear time invariant model

i‘l(t) _ 0 1 l‘l(t) 0
(w)) - (—2 —3>(xz<t>>+<1)“(“
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1 (1) B 1 0 o (f) 1 0 00 2 8

Yo (t) = 11 o ) 01 0 0 A

ys (1) 2 1 0 0 1 0 o
where

t
wiy=( =W
i) (t)
characterises the state of the process component, u(t) is the control input,
v (t)
y@) = v2(t)
ys (t)

is the vector of all measurements and

fi(®)

is the fault vector.

What is the association between the faults f;, 7 = 1,2, 3, 4 and the system components.
Is the state  (¢) observable?
Is there any static redundancy in this system? What are the detectable / isolable faults?

Eall e

Assume that during a given period of time, only sensor y; is operational (for example,
y2 and y3 are disconnected for maintenance). Is it still possible to estimate the state ? to
detect and isolate the faults? O

6.10 Bibliographical notes

The parity relations that were initially studied in [44],[79] and [135] are functions of a sliding
window of the most recent sensor output and actuator input values. The idea used to develop
parity relations in the time domain was extended to the frequency domain. This has lead to
the so-called generalised parity relations [260] which do not necessarily involve only the data
of a sliding window. Later this distinction between parity relations and generalised parity
relations tended to disappear. The presentation given here is in the line of [187], [188]. A
way to assure causality and stability of a filter involving the inverse of a transfer matrix can
be found in [113]. A thorough study of the parity space approach to residual generation can
also be found in [78]. The equivalence between observer-based and parity space approaches
is developed in [166] for instance. Further results on the design of residual generators in the
frequency domain can be found in [113].

The systematic computation of analytical redundancy relations for polynomial nonlinear
models is developed in [238] and [278]. Details on elimination theory may be found in [49]
and [218]. Grobner bases used in Buchberger’s algorithm [27], details and definitions can be
found in [46]. The reader is referred to [81] for details as the use of characteristic sets.
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A comprehensive reference to fault diagnosis treated as an optimisation problem is [168].
Earlier research results, that relate to the presentation in this book, were published in [56] and
[57]. The book [43] has a chapter devoted to this subject. The design of fault diagnosis filters
using the standard setup presented in this book originates in [184] and [242].

More information on threshold detection can be found in the classical presentation of this
subject of [54] and, for later results, in [48] and [104].

The observer-based approach for residual generation has been the object of numerous stud-
ies, cf. to the book [194] for an introductory treatment and references on early works in this
area. [43] provides more recent developments on the topic as well as a very complete list of
references.

The non-sequential and sequential algorithms for change detection in signals are described
in details in the book [5]. The result of Nieman and Pearson, on the optimality of tests based
on the likelihood ratio between two hypotheses can be found in Section 4.2.2 of [5]. The prop-
erties of sequential algorithms deduced from the ARL function are investigated in Chapter 4
of [5]. A heuristic approach for choosing the design parameters of the GLR algorithm for
detection of changes in the mean is presented in [198]. An alternative to the GLR algorithm,
which is less time-consuming, is presented in [180].

A numerically stable algorithm to extract the observable part of a given system can be
found on page 220 of [42]; it can be used as a first step to design a residual generator based
on a Kalman filter for an unobservable system. The design of a residual generator based on
a Kalman filter for a system subject to unknown input and additive faults is adapted from
[181]. An alternative approach to compute an innovation sequence is to use parity relations
and to filter the obtained residual by an appropriate whitening filter. This method has been
considered in [198] for instance. It was not possible to examine here the question of robust-
ness with respect to modelling uncertainties of the statistical approach to fault detection. A
valuable reference to study this question is [168].

System identification based methods for fault detection, estimation and isolation have not
been considered in this chapter but they have also proved useful in many applications. They
can be separated in two classes: methods based on explicit parameter estimation and methods
based on statistics (such as the statistical local approach). An introduction to the first class of
methods can be found in [97] and [99]. For the second class, the reader is referred to [277]
and [5].

Active fault detection and isolation has been briefly mentioned in this chapter. The problem
of determining an optimal input signal to distinguish between different models (representing
healthy and faulty modes) for a given process has been the object of a thorough study in
[34] and [175]. [177] suggested novel ways to achieve active fault isolation while a plant is
running.

For more information on the material in the appendix on random variables and stochastic
processes, the reader can consult [4], [109] or [192] for instance. In particular the approach
for sampling a linear stochastic differential equation is borrowed from pages 147-151 of [4].





