Chapter 3

Models of dynamical systems

Dynamical systems can be modelled from different viewpoints. This chap-
ter summarises the main notions. Each of the succeeding chapters uses one
of these models for fault diagnosis and fault-tolerant control.

3.1 Fundamental notions

Fault-tolerant control is based on models. These models have to describe the nomi-
nal as well as the faulty system. The following introduces the different models which
can be used for fault-tolerant control, starting with the definition of a system as a set
of interconnected components, and introducing faults as events which prevent the
system components to perform the function they have been designed for.

Dynamical systems. A system is a set of interconnected components. Each of the
components has been chosen (or designed) by the system engineer so as to achieve
some function of interest. A function describes what the design engineer expects
the component to perform, independently of how it is performed. A component
performs some function because it has been designed so as to exploit some physical
principles, which in general are expressed by some relationships between the time
evolution of some system variables. Such relationships are called constraints, and
the time evolution of a variable is called its trajectory.

The components are interconnected by energy or information flows. Energy flows
characterise physical systems, which are called “process”. Information flows char-
acterise information and control systems.

To illustrate these notions, consider for example a tank. “Storage”, which is the
function classically associated with it, refers to a special operating mode in which
the input and the output flows are both equal to zero. In that mode, the mass in the

44 3. Models of dynamical systems

tank stays constant, which indeed justifies the “storage” denomination. However,
many different functions could be assigned to a tank, for example the decoupling
(smoothing) of the output flow from some variations of the input flow. This example
shows that the notion of function is not univoque, unless the function is understood
through the mathematical expression of the constraint that it introduces. In the tank
example the tank function would be the “integration” one, since the associated con-
straint is
PO — 40) - a0t

where h(t) is the level of the liquid contained in the tank at time ¢ and ¢;(t) and
go(t) are the inflow and outflow at time ¢.

Controlled systems. Some of the components may have been introduced with the
aim of controlling the process, i.e. being able to choose, between all the possible
system trajectories, the one which will bring some expected result (cf. Fig. 3.1).
Those components which allow to impose the trajectory of a given variable (or to
influence the trajectory of a given variable) are called actuators. They establish some
constraint between the variables of the process and some control variable, which is
called ““control signal”.

Actuators » Process » Sensors

Plant

A

Control algorithm

Fig. 3.1. Controlled system

For example, the function of an input valve is to control the input flow in some
tank. An analog input valve is associated with the constraint

qi(t) = ku(t)/ Ap(t),

where k is some constant parameter, u(t) is the control signal and Ap(¢) is the
differential pressure on both sides of the valve. Note that, as it is seen from the
expression of the constraint, the input valve actually controls the input flow only
when the differential pressure Ap(t) is controlled (or fixed) by another means. In

ractice, the signal w(¢) controls the ratio IO
p g (t) NZVID)

If instead of a continuous valve an on-off valve is used, a different constraint is
associated, namely

U(t) = 0= qi(t) =0
ut) = 1= g =a

)

3.1 Fundamental notions 45

where « is a given constant and 0, 1 are two logic values which stand for the control
signals “closed valve” or “open valve”, respectively.

Actuators may be driven (i.e. control signals may be generated) by human op-
erators or by control algorithms. In both cases, closed-loop control demands some
information about the actual values of some system variables to be known. Sensors
are components which are designed so as to provide this information. An example
of such a component is a level sensor, whose function is to provide an image of the
actual level in the tank. An analog sensor is associated with the constraint

y(t) = h(t) + (),

where y(t) is the signal provided by the sensor at time ¢ and (¢) is some stochastic
process which models the measurement noise, e.g. with normal distribution N (0, o).
A discrete sensor is associated with a constraint expressed by a set of rules, an
example of which is given in the following table

h(t) € [0,6f = yt)=0
h(t) € (Bl = ylt)=a
h(t) € [BAl = wylt)=0b
h(t) € >v = yt)=c,

where a, b, c and «, 3,y are given constants.
Thus a controlled system is a quadruple

<process, actuators, sensors, control devices and algorithms>.

Example 3.1 Single-tank system

Consider the following controlled system
<(tank, output pipe), input valve, level sensor, level controller>.

e Component 1: Tank

Function: integration
: dh
Constraint: % =qi(t) — qo(t)

e Component 2: On-off input valve
Function: control the input flow
Constraint: g;(t) = a ifu(t)=1

qi(t) =0 ifu(t)=0

e Component 3: Output pipe
Function: deliver the output flow

Constraint: qo(t) = k+/h(t) where k is some parameter (the output pressure is supposed
to be known).

e Component 4: Analog level sensor
Function: provide an image of the actual level in the tank
Constraint: y(t) = h(t) + £(t), e ~ N(0,0)

46 3. Models of dynamical systems

e Component 5: On-off control algorithm
Function: regulate the level in the tank
Constraint: if y(¢) < ho — r then u(t) = 1,
if y(t) > ho + r then u(t) = 0, where ho and r are given constants. O

Faults. Systems are designed in order to achieve some objectives. Normal opera-
tion is an operating mode in which the system’s objectives are achieved. Normal
operation is defined as the simultaneous occurrence of two situations:

1. The components perform properly the functions they have been assigned. This
means that they really behave as the designer expected when he designed them,
i.e. the constraints they apply to the system variables are the nominal ones.

2. The variables occuring in the component constraints have values in some do-
main that are compatible with the system’s objectives.

From this, it follows that two kinds of faults can be distinguished. Internal faults
change the constraints describing the components. External faults are associated
with variables whose value does not allow to achieve the system’s objectives. It
can be noticed that internal faults refer to the system’s state while external faults
refers to the system objectives. Indeed, healthy systems might be unable to achieve
the objectives they have been assigned, as the result of inadequate input signals or
strong disturbances. On the contrary, faulty systems might still be able to achieve
their objective through fault accommodation procedures.

Example 3.2 Internal faults of the tank

Consider the single-tank system. Examples of internal faults are the following:

e Process fault: The tank is leaking.
Then the description of Component 1 introduced in Example 3.1 is replaced by:
Component 1: Leaking tank
dh(t) _ .

Constraint: =5~ = ¢;(t) — go(t) — qi(t) where g;(t) is some (unknown) leakage flow.

e Actuator fault: The input valve is blocked open.
Then Component 2 is described by:
Component 2: Blocked-open input valve
Constraint: ¢;(t) = « whatever the value of u(t).

e Sensor fault: The measurement noise has improper statistical characteristics.
Then Component 3 is described by:
Component 3: Level sensor
Constraint: y(t) = h(t) + (t) withe ~ N (0, X) (instead of N (0, ¢)). O

Example 3.3 External fault of the tank

Component 4 defined in Example 3.1 is a control algorithm whose function is to regulate the
level in the tank, the objective being to keep h(t) within the interval (ho — r, ho + r) for any

3.2 Modelling the system architecture 47

initial value of the level which belongs to this interval. Note that this objective is expressed
in terms of two inequality constraints:

h(t) S ho —|— '

h(t) Z ho -
The control signal generated by this algorithm is the input of Component 2 (the actuator)
which delivers an input flow « if y(¢) < ho — r holds. It is easily seen that even in the

absence of any internal fault, the system objective cannot be achieved for output flows go(¢)
which satisfy, in some time interval (¢1, t2), the relation

ta

/QQ(t)dt > h(tl) + a(tg — t1) —ho + .
t1

One can also notice that in the presence of a leakage in the tank (internal fault), the system
objective may still be achieved provided that the above inequality does not hold when go (%)
is replaced by qo(t) + ¢i(¢). O

3.2 Modelling the system architecture

Generic component models describe the system architecture, by describing the sys-
tem components and their interconnection. For example, sensors, actuators, unitary
process devices are elementary components, but higher level ones can be built from
their interconnection. A set of interconnected components can be seen, at a higher
hierarchical level, as one single complex aggregated component. For example, the
aggregation of a tank, an input valve, an output pipe, a level sensor and a regulator
(with consistent connection between them) is a high-level component, namely the
single-tank system. Thus, components can be considered at any level in the system
hierarchical decomposition, and any subsystem (including the whole system itself)
can be considered as a component.

Therefore, the system architecture can be described by instantiating a generic
component model, at any level of the system hierarchical description. The aim of
the generic component model is to provide a common formal modelling frame for
every system component, so as to perform systematic manipulations for the purpose
of fault diagnosis and fault-tolerant control design. It is not intended to describe the
behaviour of the variables which are associated with the component (this is the aim
of the behaviour model), but the services that the component provides, seen from the
user viewpoint. In that context, the user is either another component or the human
operator.

Services. A component S is first described by the list of the services that it provides
to its users, S = {s;,7 € Is}. A service s; is a transformation of some consumed
variables (cons;) into some produced variables (prod;), that is performed by the

48 3. Models of dynamical systems

component according to a given procedure (proc;), either in a systematic way, or
only upon some specific request (rqst;).

For example, a tank consumes input and output mass flows, and produces a stored
mass, using an integration procedure (note that the output flow is indeed an input
variable for the integration procedure), thus providing an integration service (whose
behaviour model is h(t) = ¢;(t) — go(t)). This transformation does obviously not
need to be requested. On the contrary, the measurement service of a sensor consumes
(an often neglected amount of) energy from the outside world and produces a signal
which is the image of the measured variable, by means of the transducer, at each
system clock pulse which requests the sensor analog to digital converter operation.

In general, the transformation procedure needs some resources (res;) to be avail-
able, and it may be enabled or disabled at different times (enable;). Therefore, the
description of a service is a 6-tuple

s; = {cons;, prod;, proc;, rqst;, enable;, res;} (3.1
For example, the integration service of the tank is defined by the 6-tuple

cons = {gi(t), go(t)}

prod = {h(t)}

proc: h(t) = ¢;(t) — qo(?)

rqst = 1 (which means that it is always true)
enable = 1

res = {tank, input pipe, output pipe}

Versions. Some components exhibit built-in fault tolerance possibilities, which
means that they are still able to provide some services even if the associated re-
sources are faulty and no longer available. This is only possible if there are different
means to perform the same transformation, among which at least one does not use
the faulty resources. In that case, the service is said to exist under several versions,
where each version is a 6-tuple like (3.1), which can be used indifferently for the
same purpose. It is worth noting that all the versions of the same service share the
same request, and produce the same output value, but they cannot be simultane-
ously enabled, and at least one among the input signals, procedures and hardware
resources is different from one version to another one. Moreover, since several ver-
sions might be able to provide the same result at a given time, there is the need for
a mechanism which enables only one of them when the request for the service is
issued.

For example, consider a sensor which includes two redundant transducers to mea-
sure the same variable. Let

yl(t) = x(t) +€1(t), El(t) ~ N(0,0’l)
yg(t) = I’(t) -+ 62(t), Eg(t) ~ N(O, 0'2)

be the two measurement equations, where z(t) is the unknown variable to be mea-
sured, y;(t),i = 1,2 are respectively the two transducers output, and &;,5 = 1,2

3.2 Modelling the system architecture 49

are the measurement noises, with the two Gaussian distributions N (0, 0;),7 = 1, 2.
The measurement service of this sensor could obviously be provided under different
versions, namely

‘ Version ‘ Procedure ‘
y(t) = 22 () + 25 v2(0)
2 y(t) = n(t)
3 y(t) = y2(b)

where version 1 could be the nominal one, version 2 could be used when transducer
2 is faulty, and version 3 would be used when transducer 1 is faulty.

Use-modes. Not all the services provided by a component are enabled at any time.
For that reason, subsets of services are gathered into use-modes, whose evolution is
described by an automaton, which shows the possible transitions from one use-mode
to another one, and the conditions under which these transitions are fired.

For example, a typical controller could be described by three use-modes, namely
Off, Initialise, On, whose content (services) and evolution (automaton) are given in
the following table:

Mode Possible transitions | Enabled services

off To_Initialise, To_On

On To_Off, To_Initialise | Compute_control, Display_set_point
Initialise | To_Off, To_On Enter_set_point, Display_set_point

Building systems from components. As already mentioned, systems (or sub-
sytems) are high-level components, which are built by the aggregation of lower level
ones, following a bottom-up approach. Whatever the component level, its generic
model includes its use-mode automaton, and the services which are available in
each use-mode. Systematic aggregation procedures are defined in order to compose
the generic models of low-level components and obtain the generic models of high-
level ones.

Fault tolerance analysis. A use-mode is associated with one or several objectives
that the component or system must achieve. At any time, the current use-mode de-
fines the current objective, and the enabled services (requests for other services are
rejected). The system fault tolerance results from the fact that, in spite of the failure
of some resources, the services which are necessary to achieve the objectives of the
current use-mode still exist (under at least one version).

50 3. Models of dynamical systems

3.3 System behaviour — basic modelling features

Variables. A first question which arises is to select those variables which are of
interest to describe the system behaviour. Process components generally introduce
power and energy variables, while control systems introduce control and informa-
tion signals. Therefore, the system variables to be considered are all quantities which
are constrained by system components (process, actuators, sensors, control and es-
timation algorithms). Note that for systems that obey the Markov property, there is
a minimal set of variables which summarise the whole past history of the system
untill time ¢ (the state variables). The evolution of the state at time ¢ only depends
on its value at time ¢ and on the values of the input at time ¢.

Once the system variables are defined, a second question is to decide about the set
of values they can be assigned. Quantitative variables take their values in a subset of
the real numbers (which is totally ordered, and provided with the four classical oper-
ations), while qualitative variables take their values in a given finite set of symbols,
which may be ordered or not. It can be useful to define variables whose values are
the segments of some partition of the real line. The coarser the partition, the coarser
the granularity of the variable. A symbol is often associated with each segment of
the partition, e.g. small, medium, large. Abrupt transitions from one value to another
one can be avoided using fuzzy segments instead of crisp ones.

Time. The most classical time variable takes its values in the set of positive real
numbers (continuous time). In discrete time systems, the set of positive integers (or
any set isomorphic to that one) is used when sampled data systems are considered.
This time representation is called synchronous since practical sampling systems are
driven by a clock. On the contrary, in event driven systems, time is considered only
at each event occurence.

Constraints. The evolution of the system is described by a set of constraints which
apply to the system variables. The constraints can be classified according to what
they represent and to the form they take.

What constraints represent. In the basic modelling step, each system component
is described by its own (local) constraints, and the overall system formed by the in-
terconnection of the components is described by the concatenation of all constraints.
In further steps, it may be interesting to solve some constraints and to summarise
them within a more compact model.

Example 3.4 Single-tank system

For example, the tank associated with an input pump and an output pipe is a three component
system described by the three local constraints

3.3 System behaviour — basic modelling features 51

Tank: A (t) =qi(t —qo()
My : Pump: () =a.u
Pipe: kA /
where u(t) is the control signal, and « and k are two parameters. More condensed models
may be created as follows

Tank + pump: A (t) = a.u(t) — qo (t)
Pipe: (t) = k+/h(t)
My { Tank + pipe: h(t) = qi (t) — k/h

Pump: qi (t) = a.u(t)

My

Mz <[Tank+pump+pipe: h(t) = a.u(t) — ky/h

Note that the last model uses the minimal number of variables (but it condenses the three
components into one single constraint). In fact, & (¢) is the system state: the knowledge of
h (to) and of the input u(7), 7 € [to, t] is the only knowledge that is necessary to produce
h(t) for any time ¢. O

The form constraints take. According to the different descriptions of the variables
and of time, the constraints have different forms:

e The evolution of continuous variables (whose values are in the set of real num-
bers) can be described in continuous or in discrete time. Continuous time de-
scriptions basically use algebraic and differential equations and transfer func-
tions (Laplace transform). Discrete time descriptions are useful when computer
controlled systems are considered, since the data are sampled at a constant rate
by the system clock. They basically use algebraic and difference equations, and
transfer functions (based on z-transform). Continuous-variable models will be
described in Section 3.4.

e The evolution of qualitative (or symbolic) variables is best described using
discrete-event models such as automata, Petri nets, sets of rules. Such models
will be described in Section 3.6. Fuzzy variables (and models) can be used when
it is wished to avoid abrupt transitions from one qualitative value to another one.

e In many real life systems, continuous variables and qualitative variables co-exist.

Example 3.5 On/off-temperature control system

For example, an on/off temperature control system would be described by the continuous
model

do
— =—al+5b
a0
when the heater is on, and by the model
do
b
at ~

when the heater is off (0 is the temperature to be controlled, and a, b are system parameters).
The time evolution of such a system is described not only by the temperature (which is a

52 3. Models of dynamical systems

continuous variable) but also by the heating mode (on/off) which is a qualitative one. Such
systems are described by so-called “hybrid models”, which will be developed in Section 3.7.
O

3.4 Continuous-variable systems

In continuous-variable systems, the input, state and output variables are defined for a
continuum of values in IR. Two types of signals can enter such systems: continuous-
time or discrete-time signals. For the first, the independent variable ¢ is continuous,
and thus such signals are defined over a continuum of time values. Discrete-time
signals, on the other hand, are only defined over a time variable &, which belongs to
a discrete set. A continuous-time (discrete-time) system processes continuous-time
(discrete-time) input signals and generates a continuous-time (discrete-time) output.
Models for these two classes of systems are presented next.

Continuous-time model. A quite general state-space model for a continuous-time
continuous-variable nonlinear system can be written as

O~ g, u), d), =0) == (2
y(t) = (), ulb), dit), 63)

where x € IR”, u € IR™, y € IRP denote the state vector, the vector of known input
signals, and the vector of measured output values. d € IR™¢ stands for the vector of
unknown input signals or disturbances acting on the process. The functions g and
h are respectively IR"-valued and IRP -valued and they are assumed to be smooth.
A model of the form (3.2), (3.3) can be obtained by using physical laws to describe
the considered process.

Example 3.6 Single-tank model

A continuous-valued signal u(t) is considered instead of a binary one like in Example 3.4.
Introducing the pipe constraint into the tank model and assuming a noise free measurement
of the level yields

%Stt) = —k\/h(t) + au(t) (34
y(t) = h(1), (3.5)

which has the form indicated above with d(¢) = 0. O

Linear time-invariant systems can be used to describe the behaviour of a nonlinear
system of the form (3.2), (3.3) around a specific set-point. Linearisation around a
point of operation Z, &, d is obtained by introducing & = — =, & = u — u,
d=d—dand Yy = y — y by performing the Taylor expansion

3.4 Continuous-variable systems 53

dx _ 89(.’%,'&,&) ~ 89(53717’7&) ~ 8g(iaﬂaa)~
e oz 2t o 4T a @
__ Oh(m,u,d)_ Oh(z,u,d)_ Oh(z,u,d)-
v = oz Tt T aw YT aa ¢
to obtain a set of linear equations (see Appendix 1)
dx(t ~
% = Ay #(t)+ Baa(t)+ Eyqd(t), #(0) =z (3.6)
9t) = Cua(t)+ Dya(t) + Ey e d(t), (3.7)

where the variables (t), u(t), y(¢) and d(t), are defined as above, and A ¢, B, . . .
are matrices of appropriate dimensions with constant entries in IR. In the sequel,
x(t) is used instead of &(t) following the tradition of linear systems theory.

Example 3.6 (cont.) Single-tank system

Let ho denote the nominal level around which the tank is normally operated. The nominal
control signal uy is obtained by looking for the steady state solution of (3.4) at h = ho, which
yields uo = kv/ho/a. Define h(t) = h(t) — ho and @(t) = u(t) — uo. A straigthforward
computation yields

A~ Bhe) + i) (38)
gty =), 3.9)

where 8 = k/(2v/ho). In the sequel, h(t), @(t) and §(t) are replaced by h(t), u(t) and
y(t) respectively, keeping in mind that the latter represent discrepancies with respect to their
nominal value. O

Discrete-time model. Discrete-time models can be used to model sampled-data
systems. All signals are assumed to be sampled synchronously at a fixed sampling
period 7. The traditional theory of sampled-data systems relies on the assumption
that the input signals are constant over Ts. This holds true for the control variables,
as the output of digital to analog converters has this property. It is, however, an
approximation for disturbances and faults.

By integrating the state Eq. (3.6) over one sampling period, the following discrete-
time model can be deduced from (3.6), (3.7)

x(k+1) = Ax(k)+ Bu(k)+ E,d(k), =(0) =z
y(k) = Cux(k)+ Du(k)+ E,d(k),
where k (actually standing for £7) denotes the discrete-time instants,
A = exp(AnTs)
Ts
B = / exp (Actt) Bctdt.
0

E, is defined in a similar way as B. Furthermore, the relations C=C.;, D=D,
E,=E, . hold.

54 3. Models of dynamical systems

Example 3.6 (cont.) Discrete-time model of the single-tank system

Letting ¢ = exp (—375) and

Ts
v = / a exp (—pt)dt = %(1 —exp (—0Ts)),
0
the discrete-time model deduced from (3.8), (3.9) is written as
h(k+1) = ¢h(k) + yu(k)

y(k) = h(k). O

Stochastic disturbances and measurement noise. For discrete-time stochastic
models, measurement noise and stochastic disturbances possibly acting on the state
variables are described by stochastic sequences (cf. Appendix 2). A discrete-time
state-space model for the system then takes the form

x(k+1) = Ax(k)+ Bu(k)+ E,d(k)+w(k), x=(0)=x
y(k) = Cua(k)+ Du(k)+ E,d(k) +v(k).

The only new notations are v(k) and w(k). They are samples of white noise se-
quences with zero mean and covariance matrix

w(k) Coonl Q@
E K ol) (w(t) o(0))1 - <% o) ke

Fault model. Fault signals are usually separated into two classes: additive and non-
additive (or multiplicative) faults. Additive faults appear as additional terms in the
state equations of a linear time-invariant system. For stochastic models, they result
in changes of the mean value of the measured signals only. Multiplicative faults
correspond to changes in the parameters of the state equations, namely changes in
the entries of the matrices A.;, B, C.:, D, for a continuous-time model (or A,
B, C, D for a discrete-time model) or changes in the variance of the stochastic
disturbance and noise.
A continuous-time linear system subject to additive faults can thus be modeled by
dx(t)
T = Act .Cl?(t) —+ Bct u(t) —+ Ew,ct d(t) + Fw7ct f(t), IE(O) =Xy
Yy(t) =Cux(t)+ Doy u(t) + Ey e d(t) + Fy o f(2).

The type of faults that are accounted for in the above model include sensor faults,
actuator faults, and some component faults.

A continuous-time model subject to non-additive faults can be written as

d:fl—it) = Act (B)w(t) + B (a)u(t)’ w(O) =z

y(t) = Ceo(0)z(t) + Der (O)ult),

3.5 System structure 55

where the entries in the different matrices are smooth functions of the parameter
vector 8. Under healthy working conditions, the relation 8 = 0 and in faulty con-
ditions the relation 8 # 6 hold. An example of multiplicative fault is an abnormal
change in the armature resistance of a DC motor.

Example 3.6 (cont.) Single-tank system

Consider again the continuous-time model (3.8), (3.9), and assume the process can be
subject to sensor and actuator faults denoted respectively fs and f,. Equations (3.8), (3.9)
are modified as follows to account for such faults:

dn(t)
i~ = —Ph(t)+oult) + afa(t)

y(t) = h(t)+ fs(t).

Assume now that a leakage at the bottom of the tank occurs. To account for this phe-
nomenon, (3.4) becomes

%it) = —km - kleak(t) V h(t) + au(t) . (3.10)

If Eq. (3.10) is linearised around the nominal level /¢ and the nominal parameter kcqr,0 = 0,
the fault appears to be additive in the linear approximation. Indeed, the latter can be written
as

dh(t)

5= —Bh(t) + au(t) — mkleak(t) . o

3.5 System structure

Detailed behaviour models are seldom available in the first phases of system de-
sign, and/or are very expensive to develop, especially when complex processes,
with hundreds of variables, are considered, and simpler models have to be used.
In such situations, structural models provide an interesting approach to the system
analysis, since they only need a very primitive level of knowledge about the system
behaviour.

Structural model. The structural model of a system is an abstraction of its be-
haviour model. For continuous-variable systems, the behaviour is described by a
set of algebraic and differential equations. Analysing the structure of these equa-
tions resumes to analysing the links which exist between variables and parameters,
independently on the form of the underlying equations.

For example, consider a system described by Ohm’s law

uw—Ri=0. @3.11)

The structural model associated with this system says: “There exists one constraint
(call it ¢), which links two variables (u, i) and one parameter (R)”. It is represented

56 3. Models of dynamical systems

by a bi-partite graph (C, Z, A) where C is the set of constraints, Z the set of vari-
ables or parameters, and A the set of edges between C and Z or, equivalently, by
this graph’s adjacency matrix, as shown on Fig. 3.2, where bars represent constraints
and circles represent variables or parameters.

Fig. 3.2. Structure of Ohm’s law

Structural properties. Structural properties of a system are properties of its struc-
ture graph. Two systems which have the same structure are said to be structurally
equivalent. This is possible, since the structure of a set of constraints is independent
of the nature of these constraints, of the variables, and of the value of the parame-
ters. Indeed, the structural model would be the same if, instead of Eq. (3.11), Ohm’s
law was expressed by a look-up table, or if another system, which obeys e.g. the
numerical model u(i% + 3i + 1) = R, was considered.

Since structural properties are properties of the structure graph, they are obviously
shared by all the systems which have the same structure. Thus, structural properties
are properties of a system which are independent of the values of its parameters.

Known and unknown variables. Two kinds of variables appear in the system
constraints, namely the known and the unknown ones. Therefore, the set of variables
Z is decomposed into two subsets Z = X U K. Control and measurement signals
are known variables, while the systems states are unknown. Known variables obey
measurement equations, which are introduced in the structural model. Assuming the
voltage u is measured by a sensor whose output is y;, the previous system obeys the
two constraints

u—Ri = 0
yi—u = 0

and, dropping the parameter R, its structure becomes

L [[w]i]
c 1 1|1 |
mq 1 1 ’

3.6 Discrete-event systems 57

which shows that all the unknown variables in the system can be computed, since
u can be computed from y; by using the measurement equation m; (this is sym-
bolised by the bold 1), and therefore ¢ can be computed from y; and w. Structural
observability is indeed one of the properties that structural analysis allows to study.
This is of course only a potential property, since constraints m, and ¢ might be more
complex ones, and the numerical computations might be impossible in some partic-
ular cases (change, for example, constraint m; into y; (1 — u) = 1 and suppose that
the known value of y; is zero!).

Faults. When faults occur, the system components do not any longer obey the equa-
tions which define their nominal behaviour. Therefore, a given fault mode is de-
scribed in structural analysis by the subset of constraints which do no longer hold
when this fault occurs. These constraints are said to be violated. For example, the
short circuit of the previous resistor is described by constraint ¢ being violated when
the nominal value of R is used, while a malfunction of the voltage sensor would be
described by constraint m; being violated.

3.6 Discrete-event systems

From a global viewpoint, some dynamical systems can be seen as systems whose
signals switch from one value to another one rather than changing their value con-
tinously. In fault diagnosis, systems with discrete measurements occur naturally in
the process industry where alarm messages represent discrete information, because
the alarm can only be alerted or not and, hence, the corresponding signal is only
known to exceed a given threshold or not. As the dynamical behaviour of such sys-
tems is described by events denoting the switches of the signal from one discrete
value to the next, these systems are called discrete-event systems.

v(k) | Discrete-event system | w(k)
(k)
2

Fig. 3.3. Discrete-event dynamical system

Discrete-valued signals. Due to the symbolic nature of the input, state and output,
the symbols v, z and w are used for them. The discrete value sets are enumerated
such that

v € N,={1,2,..,M}

z € N,={1,2,..,N}

w € Ny=1{1,2,..,R}

58 3. Models of dynamical systems

hold (Fig. 3.3). Every change of the symbolic value of v, z or w is called an event.
For example, if the state jumps from the value j to the value 7, a state event denoted
by e;; occurs. In Fig. 3.4 the events e13 and e3> are marked.

Sosimul

|
45 6k

o N W

|
0 1

Fig. 3.4. Symbolic signal values and event sequence

The model that will be introduced now describes in which order the events oc-
cur but it says nothing about the temporal distance of these events. The sequences
of discrete values that the input, state or output assume for a time horizon kj, are
denoted by

V(0...kp) (v(0), v(1), v(2), ..., v(kn))
Z(0...kp) (2(0), 2(1), 2(2), ..., 2(kn))
WQO...kn) = (w(0), w(l), w(2), .., wlky)).

In diagnosis, &, denotes the current time instant and V(0 ... kp,) and W (0 ... k) the
measured sequences to be processed.

Deterministic automata. A standard form for describing discrete-event systems is
the deterministic automaton

A = (NZ7 va Nu)a Ga H; ZO)7

which has the set of states V,,, the input set V;, and the output set \V,,,. G and H are
the state transition function and the output function, which determine the successor
state or output in the following way:

z(k+1) = G(z(k), v(k)), z(0) = 2o (3.12)
w(k) = H(z(k), v(k)). (3.13)

2o is the initial state. k denotes the place that the input, state and output values have
in the corresponding sequence.

Obviously, for a given initial state 2o and input sequence V(0 ... kj,) the state
and output sequences Z(0...kp) and W (0... k) can be generated by applying
Egs. (3.12) and (3.13) kj, times. The automaton is deterministic because the ini-
tial state and the input sequence unambiguously determine the state and output se-
quence.

3.6 Discrete-event systems 59

Non-deterministic automaton. In the non-deterministic automaton
N(Nm M)a Nwa L,, ZO)

the functions G and H of the deterministic automaton are replaced by the be-
havioural relation L,,

Ly : N, XNy xN, xN, € {0,1}

which for every given state z(k) and input v(k) describes which successor state
z(k+1) can be assumed while generating the output w(k). Hence, the dynamical
behaviour of the automaton is described by all 4-tuples for which

Ly (2(k+1), w(k), z(k), v(k)) =1 (3.14)

holds. Equation (3.14) replaces Eqgs. (3.12), (3.13) of the deterministic automaton.
Obviously, for zg and V' (0... k) the sequences Z (0 ... kp,) and W (0 ... ky) are not
unique.

If the probabilities with which the automaton assumes the different 4-tuples on the
left-hand side of Eq. (3.14) are known, instead of the non-deterministic automaton
a stochastic automaton

S = (N,, Ny, Nw, L, Prob(z(0)))
can be used to describe the discrete-event system. The behavioural relation

L:N, xNyxN, xN, — [0,1]

L(, w, 2, v) = Prob (2,(1) =2, w,(0) =w | 2,(0)==2, v,(0) = v)
describes the probability that the automaton steps from state z towards state z’ while

generating the output w if it gets the input v. Hence, a probability measure can be
associated with each state sequence Z and output sequence W.

Model of a faulty discrete-event system. In order to describe the behaviour of a
discrete-event system under the influence of faults, the fault f (k) is introduced as an
additional discrete-valued input. The fault may change over time and, thus, generate
the sequence

F(0...kp) = (f(0), f(1),..e; f(Kn)).
The additional input f extends the stochastic automaton, which becomes
S= (Nza Nv> Nf» va L, Prob (ZO))

with Ny denoting the set of possible fault values. The behavioural relation L is now
a function of five arguments:

L(z' w, 2z, f,v) =
Prob (2,(1) = 2/, wp(0) =wl2p(0) =2, f,(0)=f, v,(0)=v) .

Example 3.7 Discrete-event model of the two-tank system

The question whether a given system should be dealt with as a continous-variable or a
discrete-event system depends not only on its properties but also on the task to be solved

60 3. Models of dynamical systems

high

medium

low

low medium high

Fig. 3.5. Stochastic automaton describing the tank system for faulty
pump (gp = 0)

with the model. If for the two-tank system the tank levels should simply remain in a “high”
region, it is sufficient to distinguish the levels “high”, “medium” and “low” and to describe
the behaviour of the system as a switching among these qualitative levels. The graph of the
stochastic automaton describing this behaviour is depicted in Fig. 3.5. The automaton state
z = 1 corresponds to the tank state (h1, ho)’, where both tank levels are “low”, i.e. do not ex-
ceed a given threshold. The other states are defined in a similar way as illustrated by Fig. 3.5.
The automaton graph is drawn for faulty pump (no inflow to Tank 1) which makes the input
useless. The output w = 1 denotes a small and w = 2 a large outflow from Tank 2. The labels
of the arcs describe the outflow together with the probability with which the state transition
described by the arc occurs. The automaton says, for example, that if the tank system is in
state 6 (h; is high, h2 medium) then it assumes next one of the states 5, 2 or 3 and that it goes
from state 6 towards state 2 while generating the output w = 2 with the probability 0.4. All
paths through the automaton symbolise a possible state sequence Z and define an associated
output sequence W. O

3.7 Hybrid systems

For many technological systems both continuous and discrete phenomena play im-
portant roles. The mixture of discrete and continuous signals and discrete and con-
tinuous forms of the models used is typical for supervisory control tasks and plays a
particular role in diagnosis and fault-tolerant control. As the system possesses both
real-valued and discrete-valued signals, combinations of differential equations and
automata have to be used for its description (Fig. 3.6).

The main problem in dealing with hybrid systems result from the different range
of the signals. The transition between these different ranges are represented by quan-

3.7 Hybrid systems 61

U ~ . . Y.
> Continuous-variable >
subsystem
Injector Quantiser
A
u Discrete-event e
d subsystem L

Fig. 3.6. Hybrid dynamical system

tisers and injectors. The quantiser transforms a real-valued signal into a sequence
of symbols, where the real-valued signal or signal vector is denoted by a lower-case
letter like y or w and the corresponding quantised signals by [y] or [u]. If, in the
simplest case, the quantiser decides to which real interval of a given set of inter-
vals the current value y(t) belongs, the value of the quantised signal [y(t)] at the
same time instant ¢ is the number of the corresponding interval. Clearly, this inter-
val can be associated with symbolic names like “normal”, “high” or “low”, which
give a semantic signal value. As long as the signal does not leave a given interval,
the quantised value remains the same. Hence, a continuous change of y(t) is trans-
formed into a sequence of discrete changes of [y(t)], where the quantiser does not
only determine the symbolic value of the signal but also the time instants at which
these symbolic values change.

The injector carries out the inverse mapping. Its input is a symbolic signal like
[u], which is associated with a real-valued signal u. The relation between [u] and u
can be either deterministic where every symbolic value is associated with a unique
real value or non-deterministic where the associated real value is randomly selected
from a given set of signal values or may vary within this set as long as the symbolic
value does not change. In any case, the injector is the interface between symbolic
and real-valued signals.

A standard structure of hybrid systems is shown in Fig. 3.6. The system has con-
tinuous input and output (u. and y.) as well as discrete input and output (u4 and
ya4), where the attribute “discrete” refers to the signal value. In addition to that, the
system may be considered as a discrete-time system where all signals are known
only at given sampling time instants.

Quantised systems, which are considered in Chapter 9 represent an important
class of hybrid systems. These systems exhibit principal phenomena that charac-
terise hybrid systems.

62 3. Models of dynamical systems

3.8 Links between the different models

Since different models can be built in order to describe the same system, there must
be some relations between them. The aim of this section is to present and discuss
those relations.

Relation among the models. The most important difference of the models intro-
duced so far concerns the value set of the signals. Continuous-variable descriptions
refer to signals with real signal values whereas discrete-event models use signals
with discrete signals values. The question which model is appropriate for a particu-
lar application depends upon the question whether the continuous movement of the
system or a sequence of discrete events generated by the given system have to be in-
vestigated for solving the given task. Therefore, a given system may be considered
simultaneously as a continuous system or a discrete system if different problems
have to be solved.

For example, a tank system has to be considered as a continuous system if the level
of the tank or a concentration of a certain substance in the liquid filling the tank has
to be controlled. Level or concentration controllers measure the numerical value of
the level or the concentration with a given sampling rate and fix the control input
to be applied at the next time instant. The same tank system may be considered
as a discrete-event system if it is part of a batch process. Then a certain recipe
is realised by imposing a discrete control sequence on the tank where the control
command opens or closes valves to fill or empty the tank, heat or cool the liquid
etc. The controller, which is usually a programmable logic controller reacts only on
events, which are generated if the liquid or the temperature crosses given thresholds.
The temporal distance of these events is of minor importance and, therefore, not
described by the model.

Architecture and functions. Although functional models have not been developed
in this chapter, it may be worth to discuss the link between architecture and func-
tion. The architecture model describes the system as a network of interconnected
components. The reason why a given component belongs to the system is that it has
been chosen to perform a specific function, in a given system operating mode. Thus,
each service of a component is associated with a given function the component is
expected to fulfil in some operating mode. For example, the “open” service of valve
V, in the tank example is associated with the function “increase the level in Tank
T5” when the level in Tank 77 is higher than the level in Tank 75 and higher than
the level of the connecting pipe.

Architecture and behaviour. Components provide services which transform con-
sumed variables into produced variables, according to some given procedure. Vari-
ables which are processed by services may be quantitative or qualitative. In any
case, the procedures which describe the services of a component are nothing else

3.8 Links between the different models 63

than constraints which link the values of the variables associated with this compo-
nent. The temporal behaviour of these variables is thus defined once the procedures
are given. Note that these procedures introduce algebraic and differential constraints
for quantitative variables and discrete-event models for qualitative variables.

Example 3.8 Different models of the tank system

For example, the “open” service of valve V12 considered above introduces an algebraic con-
straint between the flow from tank 73 to tank 75 and the two levels A1 and ho

qi2 = k(u)\/ h1 — h2 if hl 2 max (h12, hg)
qi2 = 0 if max (hhhz) S h12
qi12 = —k(u)v h1 — he if ho > max (hiz, h1),

where k(u) is some coefficient which depends on u, the opening position of the valve, while
the “close” service introduces the constraint

qi2 = 0, Vhl,hg.

Also note that since the set of services (i.e. the set of constraints, and therefore the be-
haviour model) depends on the system operating mode, the generic component model directly
introduces a hybrid model for the system description. In the valve example, three operating
modes should be considered to describe the behaviour model, namely

valveisopen and max (h1,h2) < hi2

thengia = 0
valveisopen and hi > max (hiz, h2) or ha > max (hi2,h1)

then q12 = sign (hl — hz)k(u) \/ ‘h1 — h2|
valve is closed
then q12 = 0.

If the functions are considered, two different operating modes have to be associated with the
situation g12 # 0, namely

valveisopen and hi > max (hiz2, h2)

then q12 = k(u) v/ h1 — h2 and level hs increases
valveisopen and hg > max (hi2,h1)
then g1z = —k(u) v/ ha — h1 and level hy decreases.

It can be checked that a discrete-event model of this system can be built by considering the
following events

e1: valve V12 opens

eo: valve V5 closes

es: both levels hi1 and ho become lower than A2
ea: hq becomes higher than max (h12, h2)

e5: ha becomes higher than max (hi2,h1) O

Behaviour and structure. The link between the behaviour model and the structural
model is obvious, since the structural model is nothing but an abstraction of the
behaviour model. In each operating mode, there is a set of constraints C which link
the values of the system variables Z = X U K. The structure of these constraints is

64 3. Models of dynamical systems

directly represented by the set of edges A in the bi-partite graph (C, Z, A) whose
nodes are respectively C and Z.

Example 3.9 Structure of a valve in different operation modes

In the valve example, the are two different structure associated with the four different operat-
ing modes which appear on the hybrid description of the system behaviour:

e Structure 1: If the valve is open and max(hi, h2) < hiz or if the valve is closed, the
following relation holds:

Lo llm | v | n |]
C1 1

C2 1

Constraint ¢; expresses that the control w is known, and constraint ca expresses that the
flow q12 is also known (since g12 = 0).

e Structure 2: If the valve is open and h1 > max (hiz, h2) or he > max (hi2, h1),
Lo m {ne | | o]
C1 1
c2 1 1 1 1

where constraint c; expresses that the control w is known, and constraint c2 expresses the
relation between the flow g12, the control u, and the two levels hiand he. O

3.9 Exercises

Exercise 3.1 Model of ship dynamics
Using the notation from Section 2.2, the dynamic model of a ship is

ws = blmws+ ngwg) + b6
1/'1 = w3twy

noo= Y

y2 = 9

ys = 0

1. Derive a linear model in state-space form, linearising about the point of operation
w3 = Wo, 775:1/107 5:50
2. Find also the model for the special case

@3=0, ¥=0, 6§=0.0

3.9 Exercises 65

Exercise 3.2 Model of industrial actuator

A block diagram of an industrial actuator is shown in Fig. 3.7. It consists of the following
components:

o DC motor with input current ¢ and motor speed n

e power drive with known current command ¢com

e gear with gear ratio N efficiency 7 and output angle 0
e unknown load torque Q;.

Measurements are 6,,, the angle after the gear and n,,, the shaft speed at the motor.

91]1

gear

Fig. 3.7. Block diagram of actuator with additive faults - open loop

The faults concern

e fp — position sensor fault
e f, —tachometer fault
e f; —actuator fault.

With z = (n,0)’, v = icom, d = Qu, f = (fi, fn, o), Y = (Nm, Om)’, the actuator has
the following state-space representation

d
am = Ax+Bu+ E.,d+ F.f (3.15)
y = Cz+Fuf.
1. Show that

A—<1ﬁ 0>
~ 0

and determine the remaining matrices in the state-space model.
2. Show that the system transfer function (Laplace domain) is

x(s) = (sI—A) " (Bu(s) + Eud(s) + Fuf(s))
y(s) = C(sI—A) (Bu(s) + Exd(s) + Fo f(s)) + Fy f(s).
3. Using the shorthand notation
Yy(s) = Hyu(s)u(s) + Hya(s)d(s) + Hyy f(s),
determine the three transfer function matrices H ., H 4 and H ;. Verify what is ap-
parent from the block diagram,
1

)= Tta

(kqMicom(s) + Qu(s) + kqnfi(s)) + fn(s). O

66 3. Models of dynamical systems

Exercise 3.3 Discrete-time model of industrial actuator
The following parameters apply to the industrial actuator explained in Exercise 3.2:
ky = 0.5Nm/A, 7= 0.8, N = 100, I;or = 2 - 107 kgm?, o = 10~* Nms/rad.

1. Determine the numerical transfer function matrices H ., H ,q, H , ¢. Find the values
of gains and the location of poles and zeros.

2. Make a discrete-time model using a sampling time of 2 ms. Note values of gains,
discrete-time (z-plane) poles and zeros in the discrete-time model.

3. Determine the steady-state properties of the change in measurement values when step-
wise faults and disturbance are applied. Faults or load steps appear one at a time and are
not simultaneously present. O

Exercise 3.4 Industrial actuator with speed control

Figure 3.8 shows an actuator with speed control, a limit in the maximum current from the
power drive and measurement of motor current ¢,,. The speed controller is
tcom = Kkt(nret — N). The power drive has a gain of 1 in the linear range |i| < imax,

otherwise ¢ = imax Sign (icom)

0111

Fig. 3.8. Actuator with angular velocity feedback

1. Write a dynamic model of the actuator in the form

d
E (Z) = Ael < Z > +Bclnref +E.’E,CZQZ +F1‘,le

Nm
n
O = Cu (9) + D nrer + Ey,lel + Fy,cl.f
im
and determine the elements of all parameter matrices A.;, By, ... in the model.

2. Implement a simulation of the continuous-time model of the actuator of Fig. 3.8. Use
k: = 1.0 As/rad and ¢max = £20 A in the current limiter block in the simulation.

3. Validate that the responses to step-wise changes in reference, load torque and fault sig-
nals and compare with those of the theoretical model. O

3.10 Bibliographical notes 67

Exercise 3.5 Model of a coffee machine

Describe the steps to produce a coffee with milk by means of a coffee maschine by a deter-
ministic automaton. How can this automaton be extended to hybrid model if the differential
equations describing the continuous processes are associated to some of the automaton states?
O

3.10 Bibliographical notes

Modular and object-oriented models have been developed to describe architectures of auto-
mated systems [2], [110], [165]. Such models are used in the description and the validation of
real-time and distributed systems [253], and specific tools, like state charts have been devel-
oped to describe their real-time operation [90]. Generic component models are architecture
models, first developed for the description of intelligent sensors and actuators [225], [230].
They have been used for the interoperability analysis of distributed architectures [1], [9], [11],
[30]. There exists a bridge between SyncCharts and generic component models, which pro-
vides a means of analysing both the system architecture and its associated real-time behaviour
[8].

Behaviour models based on “first principles” describe the power exchanges and transfor-
mations which take place in a process. Bond graphs, first developed in [197], describe power
as the product of an effort (e.g. voltage, pressure, force) and a flow (e.g. current, volume flow,
velocity), and use a graphical representation to describe the exchanges of power between
different components of a process. They provide a unified modelling approach for different
engineering disciplines, since power is a concept which is shared by all of them. Bond graph
modelling has been further developed in [112] and [252], and recently extended to thermal
and chemical engineering in [251]. Bond graph models are used for simulation and control
design, as well as for the design of fault detection and isolation algorithms [247].

For an introduction into the wide field of system identification, the reader is referred to the
monographs [132], [221] and [261].

Good introductions to discrete-event systems are [39] and [148].

