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The observation that protein sequences accumulate substitutions in time at
an almost regular rate [1] created a great interest in molecular evolution, sug-
gesting that substitutions in protein sequences can be used as an effective
‘molecular clock’ for estimating the time elapsed from the last common ances-
tor among genes [1–5]. This approach opened a new avenue for reconstructing
the tree of life by analyzing the sequences of orthologous genes, whose evo-
lutionary tree coincides with the tree of the species containing them. The
practical importance of the study of molecular evolution became therefore
evident as a way to reconstruct natural histories.

In addition, the molecular clock hypothesis sparked a lively debate about
the mechanisms of molecular evolution. Kimura [6,7] and King and Jukes [8]
proposed that most substitutions in protein sequences are fixed in evolving
populations not because they offer a selective advantage but, rather, because
they are effectively neutral and therefore invisible to natural selection. The
‘neutral theory’ could account for the regular rate in time of the accumula-
tion of amino acid substitutions. It failed, however, to predict correctly other
features of the evolutionary process, among which the variance of the number
of substitutions [9].

One is now starting to understand the reasons for this apparent limitations
of neutral theories, thanks to the recent progress in structural biology. This
progress has begun to make possible the use of structural information in evo-
lutionary studies, starting with the pioneering works of the Vienna group on
the RNA model [10–12] (see also the chapter by Schuster and Stadler in this
book), whereas the study of molecular evolution was initially almost entirely
based on the analysis of macromolecular sequences [3, 4, 7]. It appears that a
paradigm shift is taking place in the field of molecular evolution, from cod-
ing symbols (sequence) to coded meaning (structure and function). This book
investigates this new approach at several levels of biological organization.

In this chapter, we review some results that were obtained through app-
roaches in which the structural stability of the native state of proteins is taken
explicitly into account as a constraint on the evolutionary process [13–30], and



76 U. Bastolla et al.

in particular through the Structurally Constrained Neutral (SCN) model of
protein evolution [31,32].

We will also show that several results of SCN simulations can be ratio-
nalized and rederived analytically by considering a vectorial representation
of protein sequences and structures. In this approach, protein sequences are
represented as hydrophobicity profiles HPs [33] and protein structures are
represented through the principal eigenvector (PE) of the contact matrix
[34–37]. As we have shown that the optimal HP and the structural profile
are strongly correlated [38], an ‘optimal’ HP can be derived, i.e. the profile
best compatible with a given protein structure. In simulations of SCN evolu-
tion, sequence vectors move around this optimal one. This scheme provides
us with a framework that can be used to predict, by analytical calculations,
site-specific conservation due to structural constraints and site-specific amino
acid distributions [39,40].

4.1 Aspects of Population Genetics

First of all, we need to state some terminology. A mutation is a microscopic
event in which the sequence of a gene is altered in a single individual. At the
population level, a substitution is a macroscopic event in which the repre-
sentative, or wild-type, gene changes as a result of the fixation of a mutant
gene.1 Natural selection mediates this transition from the microscopic to the
macroscopic level. In physical sciences, a similar role is played by statistical
mechanics, which explains macroscopic phenomena in terms of the behaviour
of their microscopic components. One of the aims of this chapter is to explore
this analogy further.

Three main factors influence the fixation of a mutant allele in a population:
the size of the population, M ; the selective effect of the mutation, measured
through its fitness relative to the wild-type, s; and the rate at which mutations
occur, measured in mutations per gene and generation, µ.

4.1.1 Population Size and Mutation Rate

In most of this chapter, we will consider the limit of very small mutation rates,
Mµ � 1, as it is customary in classical population genetics. For Mµ � 1,
the time scale for the appearance of a new mutant (1/µ) is much larger than
the time scale for fixation of a neutral allele, which spans on the average
M generations. This limit implies that the population is fairly homogeneous
genetically, and at any generation there is at most one mutant arising. This
has been termed the ‘blind-ant’ regime [41] because the population can only
test a very small neighbourhood in genotype space at any time. The opposite
regime, Mµ� 1, is assumed to hold in the ‘quasispecies’ model [42,43], which
1 Fixation of a mutation takes place when all individuals in the population are

descendent of one individual bearing that allele.
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considers infinite population sizes (concerning this regime, see the chapters by
Jain and Krug and by Lázaro in this book).

To justify the choice of the blind-ant regime, we note that the mutation
rate in mammalian genomes was estimated to be 5 × 10−9 per nucleotide
per year [3], which, for a species with generation time of two years and a
protein of 600 nucleotides (i.e. 200 amino acids) yields µ = 6× 10−6. An even
smaller value of µ would have resulted by considering that many mutations
are synonymous. For a population of effective size M = 105 (already a quite
large estimate)2 one obtains Mµ = 0.6. Although this value is not so small,
numerical studies reveal that the results valid in the blind-ant regime continue
to be valid qualitatively for Mµ of order one (see Sect. 4.1.5).

It has been argued that the opposite regime of large Mµ is valid for RNA
viruses (see the chapter by Lázaro in this book), which have very high muta-
tion rates, of the order of one nucleotide per genome per year [44], correspond-
ing to µ ≈ 10−1. Their effective population size is, however, quite reduced
because of the bottlenecks that the population suffers when transferred from
one host to the other (in these cases, the effective population size essentially
coincides with the population at the bottleneck [4]).

4.1.2 Natural Selection

The other relevant parameter for the evolutionary dynamics is the difference
in fitness between competing alleles. Since reproduction is inherently stochas-
tic, there is a chance that the less fit allele is fixed even starting as a single
individual. Different stochastic models of the reproductive process give qual-
itatively similar results. We illustrate them through the Moran’s birth and
death process [45]. According to this model, the probability that a mutant
allele B with fitness F (B), arising as a single individual in a haploid3 popu-
lation of size M , substitutes the wild-type A with fitness F (A), is given by

Pfix(A→ B) =
1 − ef(B)−f(A)

1 − eM [f(B)−f(A)]
, (4.1)

where f(x) = log[F (x)] with x = A,B. We will define in the following s =
f(B)−f(A). Notice that if |Ms| is small there is a significant probability that
even deleterious mutations (s < 0) are eventually fixed in the population.

Berg et al. [46] and Sella and Hirsh [47] have recently noticed that the
above formula has an interesting analogy with the stochastic processes used
to simulate statistical mechanical systems, since it satisfies the condition of

2 The effective population size is the effective number of breeding adults in a
population after adjusting for diverse factors, including reproductive dynamics.
The effective population size is usually much less than the actual number of living
or reproducing individuals [7].

3 Haploid organisms carry one single copy of each chromosome, in difference to
diploid organism carrying two copies of each chromosome.
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detailed balance, π(A)P (A → B) = π(B)P (B → A), with respect to a
stationary distribution π(A) that is analogous to a Boltzmann distribution in
statistical physics (see the chapter by Lässig in this book). If the mutation
process satisfies detailed balance with respect to a stationary distribution
πmut(A), as it is assumed in many models of molecular evolution [4], then the
stationary distribution of the substitution process is

π(A) =
1
Z
πmut(A) eMf(A) . (4.2)

This equation is formally identical to a Boltzmann distribution in statisti-
cal physics if one identifies the logarithmic fitness f(A) as the energy and the
population size M as the inverse temperature (Z is a normalization constant).
Smaller populations evolve at higher temperature, in the sense that the evo-
lution is more dominated by stochastic events, and their mean fitness is lower
than for corresponding larger populations.

The above result is valid for the small mutation rate regime. It is interest-
ing that a formal analogy between evolving systems and statistical mechanical
systems can be derived also for the quasi-species regime, where the infinite
population limit is considered. In this case, the mutation rate µ, considered
to be vanishingly small in the previous approach, plays the role of the tem-
perature [48, 49]. For a treatment of this subject (see Chap. 14 by Jain and
Krug).

4.1.3 Mutant Spectrum

We now go back to classical population genetics. It is customary to divide
mutations into four classes, depending on their fitness effect (for a deeper
discussion of this topic, see Chap. 13).

1. Strongly deleterious mutations: Ms� −1. These mutations decrease sig-
nificantly the fitness of the individuals carrying them and they are soon
removed from the population through purifying selection.

2. Nearly neutral mutations: − log(M) ≤ Ms ≤ log(M). The fitness effect
of these mutations is of the same order of importance as are reproductive
fluctuations, and their fate is determined both by selection and by ran-
dom drift [50,51] (see also the chapter by Ohta in this book). Deleterious
mutations in this range have a non-vanishing probability to lead to sub-
stitutions. The detailed balance condition, satisfied by several models of
the substitution process, including the one presented above, implies that
the frequency of mildly deleterious and mildly advantageous substitutions
must be equal on average [47], as also previously noted by several authors,
which is in contrast with the emphasis of some studies on mildly deleteri-
ous substitutions. The advantageous compensatory substitutions play an
important role in the dynamics of viral populations, as discussed in the
chapter by Lázaro in this book. For small |Ms|, the average time required
for fixation of these substitutions is of the order of the population size M .
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3. Neutral mutations: They have negligibly small effects on the fitness,
Ms ≈ 0 and can spread in the population through random genetic drift.
The probability of fixation of a neutral mutation is 1/M , and the expected
time for fixation is of order M .

4. Advantageous mutations : Ms � 1. These mutations are efficiently fixed
in the population through natural selection with probability close to one,
and the time for fixation increases only logarithmically with the population
size as log(M)/s.

This classification is useful for distinguishing between different evolutionary
scenarios, as advantageous, neutral and nearly neutral mutations can lead
to substitutions. In the early years of population genetics, the emphasis was
placed on the positive selection of advantageous mutations as the dominant
force acting on the substitution process [52]. However, the accumulation of pro-
tein sequences eventually changed this view. To explain the very high amount
of heterozygosity found in natural populations, as well as the molecular clock
hypothesis, at the end of the 1960s Kimura [6] and King and Jukes [8] proposed
that most substitutions are selectively neutral. This hypothesis, provocative
and controversial at that time, lead to a simple mathematical model of the sub-
stitution process that will be discussed in Sect. 4.1.4. The neutral model is now
considered by many as the null model of molecular evolution, and distinguish-
ing positive selection from a neutral background is the subject of a vast area
of evolutionary sequence analysis [53,54]. Subsequently, Ohta and Kimura [50]
introduced the concept of nearly neutral substitutions, and Ohta [51] proposed
that most substitutions belong to this class.

As more specifically discussed in the chapter by Ohta in this book, there are
testable differences between neutral and nearly neutral substitutions, in partic-
ular: (a) The rate of nearly neutral substitutions, especially non-synonymous
ones, is expected to decrease with population size.4 This dependence can
explain the discrepancies observed between various mammalian groups in the
substitution rates per generation [55]. (b) The presence of nearly neutral sub-
stitutions implies that compensatory substitutions must be positively selected.
This might explain the surprisingly high level of positive selection detected
recently [54] using the McDonald and Kreitman test [53]. (c) In nearly neutral,
but not in neutral, evolution, macromolecular properties are expected to be
less optimized in smaller populations. Studies of endosymbiotic bacteria, which
have small effective populations because of the bottleneck in the transmission
from one host to its offsprings, have predicted that r-RNA molecules coded
in the genomes of endosymbiotic bacteria have lower thermodynamic stabil-
ity [56] and that their proteins are less stable with respect to misfolding [57].
These findings are consistent with the high expression of chaperones, which are
proteins that assist the folding of other proteins, observed in endosymbiotic

4 In principle, also the neutral substitution rate should decrease with the population
size since the condition for a mutation to be neutral is Ms ≈ 0. This effect,
however, is usually neglected in mathematical models.
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bacteria [58], and that can favour fitness recovering in a bacterial population
subject to strong bottlenecks [59] (see Chap. 7).

4.1.4 Neutral Substitutions

The neutral theory of Kimura is based on the assumption that the fitness ef-
fect of a mutation with respect to the wild-type, s, has a bimodal distribution,
with the most likely effects corresponding either to strongly disadvantageous
(Ms � −1) or to neutral mutations (Ms ≈ 0). Advantageous mutations are
not considered because they are expected to be rare, at least for proteins
that maintain the same function and evolve in the rather stable cellular envi-
ronment [60]. The neutral theory therefore applies to families of orthologous
proteins, whose evolutionary tree coincides with the species tree, and whose
function and structure is expected to be conserved in evolution. On the other
hand, paralogous proteins, which diversified after an event of gene duplica-
tion specializing into different functions (as for instance myoglobin and the
two hemoglobin chains), undergo several positively selected substitutions in
the process of developing a new function, as it is witnessed by the acceleration
of the substitution rate after gene duplication [3]. Nearly neutral mutations
are not considered for the sake of mathematical simplicity. From the point
of view of the neutralist–selectionist controversy that was discussed for sev-
eral decades in the molecular evolution literature, nearly neutral substitutions
were often considered on the same ground as strictly neutral one, despite the
differences discussed in the previous section.

In Kimura’s model, neutral mutations undergo a diffusion process that in
the population genetics literature receives the name of ‘random genetic drift’.
The rate at which neutral mutations occur in individual genes is µx, where
µ is the mutation rate and x is the probability that a mutation is neutral.
This probability is considered to be independent of population size M , even
though, strictly speaking, the condition that a mutation is neutral is s� 1/M .
The connection between the population size and the substitution rate lays at
the heart of the nearly neutral theory and distinguishes it from the original
neutral theory.

The number of neutral mutations arising in one generation is therefore
Mµx and, since the probability that one of them substitutes the wild-type is
1/M (all the M genes have the same selective value), the neutral substitution
rate per generation is given by

E[St]
t

= µx (4.3)

and it is independent of M . Here, St is the number of accepted neutral muta-
tions in a time interval t. This provides a sort of molecular clock, in agreement
with the earliest empirical observations [7], but in worse agreement with the
so-called generation time effect (see the chapter by Ohta in this book).
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Another assumption, which we call the ‘homogeneity hypothesis’, is that
the neutral mutation rate x(A),5 which in principle may be different for
all sequences A, is constant throughout evolution, x(A) ≡ x. As shown
later, this hypothesis implies that the number of neutral substitutions has
a Poissonian distribution in the low mutation limit Mµ � 1. The popula-
tion, as we mentioned above, is fairly homogeneous in this limit and there
is at most one mutant arising at each generation. The number of mutations
taking place in time t in an individual lineage is a Poissonian variable with
mean value µt. For a population, the number of mutations is the sum of M
Poissonian variables, and it is still Poissonian with mean Mµt. The probabil-
ity that one of these mutants become fixed is the product of the probability
that the mutation is neutral, x, times 1/M . Since at every generation there is
at most one mutant, the probability of n out of m mutants becoming fixed is
(
m
n) (x/M)m (1−x/M)m−n. Therefore, the probability that there are n neutral

substitutions within a time interval t is given by

P{St = n} =
∞∑
m=n

e−Mµt (Mµt)m

m!

(
m

n

) ( x
M

)n (
1 − x

M

)m−n

= e−µxt
(µxt)n

n!
. (4.4)

As one can see, the result is a Poissonian variable with average value µxt. The
homogeneity hypothesis seems at first sight very plausible since the neutral
fraction x results from the average over a large number of sites in a gene.
If the evolving sites are uncorrelated, the law of large numbers implies that the
fluctuations of x vanish. However, as we shall see later, stability constraints
introduces global correlations between the sites of protein coding genes, so
that the homogeneity hypothesis is violated in models that take into account
such stability constraints.

4.1.5 Beyond the Small Mµ Regime: Neutral Networks

In the next sections, we shall consider the small Mµ limit (the blind-ant
regime). In this regime, the substitution process can be represented through
the evolution of a single wild-type sequence. It should be emphasized that
this set-up does not correspond to a one-individual population, but rather
to a large population with a small mutation rate µ � 1/M , so that most
individuals have the same genotype. The population maintains the wild-type
genotype until one of the possible neutral mutations is fixed. One time step
in this set-up corresponds to the typical time for the fixation of a neutral
mutation, M .

5 We adopt a notation in this chapter where bold-face mathematical symbols such
as A indicate vectors (sequences) or matrices, whereas Ai indicates the i-th com-
ponent of A.
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When the mutation rate is not small, however, the fate of a genotype
depends not only on its fitness F (A), as indicated in (4.2) but also on the
fitness of its neighbours in sequence space that can be connected to it through
point mutations. An important quantity in this regime is the mutation load,
i.e. the fraction µ(1 − x(A)) of offsprings of individuals with genotype A
that undergo lethal mutations. If the homogeneity hypothesis does not hold
and x(A) fluctuates in sequence space, the population dynamics may favour
genotypes with large neutrality fraction x(A) and hence small mutation load.
The parameter that controls whether this is the case is the product Mµ. As
discussed earlier, a population with very smallMµ can be represented through
a single effective sequence evolving in the blind-ant regime. In the opposite
limit of very large Mµ (the quasi-species regime [42]), the distribution of the
population in sequence space can be obtained analytically for a neutral model
in which all viable sequences have the same fitness F (A).

The result can be cast into a simple form [41]: Define the neutral connec-
tivity matrix x(A,A′) to be 1 if A and A′ are two viable sequences that can be
connected through one point mutation and 0 otherwise. This matrix describes
a neutral network of viable sequences interconnected through point mutations
[10]. The stationary distribution of the fraction of individuals with genotype
A, ρ(A), has to satisfy the stationarity condition ρ(A) =

∑
A′ ρ(A′)x(A′,A)

and therefore it is proportional to the component of the PE of the neutral con-
nectivity matrix for genotype A. This component constitutes a sort of effective
neutral connectivity of sequence A and it is positively correlated with the frac-
tion of neutral neighbours x(A) (see Sect. 4.4.1). Therefore, sequences with
large x(A) are more populated, and the mutation load is reduced.

Van Nimwegen et al. [41] simulated population dynamics on a neutral
network x(A,A′), obtained from the predicted folding properties of a small
RNA molecule. They found that the blind-ant regime is a good approximation
up to Mµ ≈ 10 and the large Mµ regime is approached at Mµ ≈ 200.
Similar results were obtained by Wilke [61] using the neutral network obtained
through the predicted folding thermodynamic properties of a model protein.
We argue that the value of Mµ at which the cross-over of the two regimes
takes place depends on the correlation length of x(A) in sequence space, �x.
In fact, in neutral evolution the population occupies a region in sequence space
around the wild-type with radius of order Mµ mutations [45]. If this radius is
smaller than �x, then all values of x(A) in the population are fairly similar and
the small differences in the mutation load can not be fixed in the population.

For animal and plant populations, characterized by small mutation rate
and effective population sizes of tens of thousands of individuals, Mµ is of
order one and one would expect that the blind-ant regime is still a good
approximation to the neutral dynamics. On the contrary, viral populations
have large Mµ, compatible with the cross-over region towards the quasi-
species regime.

We end this section with a summarizing comparison between the two
limiting regimes of population genetics. Population genetics models can be
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simplified in two opposite regimes: very small (blind-ant regime) and very
large (quasi-species regime) Mµ. In both cases, a formal analogy with statisti-
cal mechanical systems can be established. For Mµ� 1, when the population
is fairly homogeneous, the negative of the logarithmic fitness plays the role
of the energy function and the inverse of the population size plays the role of
temperature. For Mµ � 1, when the population is very spread in sequence
space, a combination of the negative of the logarithmic fitness with a muta-
tion term plays the role of the energy and the mutation rate plays the role of
temperature [48, 49] (see the chapter by Jain and Krug in this book). As the
simulations by van Nimwegen et al. [41] and by Wilke [61] show in this case,
even when mutant alleles are completely neutral under the point of view of
the fitness, they may not be neutral under the point of view of mutation resis-
tance. In the following, only the small Mµ regime will be examined, since this
is the relevant regime for many biological populations, most notably higher
eukaryotes.

4.2 Structural Aspects of Molecular Evolution

4.2.1 Neutral Theory and Protein Folding Thermodynamics

The thermodynamic stability of the native state is a strong constraint on
molecular evolution, and a consequence of the more general requirement
of maintaining the biological function [62]. The native state of a protein
must be stable with respect to both unfolding and misfolding [63]. How-
ever, the stability against unfolding and stability against misfolding are anti-
correlated [57,64]. Therefore, natural selection cannot achieve simultaneously
the optimal value for both stability requirements and has to trade off between
them.

Natural selection eliminates mutations that reduce folding stability and
favors the fixation of more stable proteins. Nevertheless, natural proteins are
only marginally stable against unfolding [65], and it is not difficult to engi-
neer protein mutants to improve their stability. Moreover, a large number of
mutations do not alter significantly the measured thermodynamic stability or
the function of the protein. In the framework of the neutral theory of mole-
cular evolution [6], these results can be interpreted, assuming that changes
increasing folding stability are selectively neutral above some specific thresh-
olds. According to this hypothesis, the threshold values are most frequently
realized in protein evolution, because they correspond to an overwhelming
portion of sequence space. This framework provides a possible explanation for
the relatively low stability of native states of proteins [22] and for the fact
that the observed amino acid occurrences are very close to the ones predicted
from nucleotide occurrence frequencies [66,67].
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4.2.2 Structural Conservation and Functional Changes
in Protein Evolution

It has since long been established that protein structures evolve much more
slowly than protein sequences [68,69]. Methods of protein structure prediction
on the basis of sequence homology are therefore quite successful [70]. Algo-
rithms for comparing protein structures typically reveal distant evolutionary
relationships between proteins having low sequence similarity [68]. Although
these observations can be attributed to both sequence divergence and struc-
ture convergence, careful analysis of specific cases and more accurate meth-
ods for detecting sequence homology [71] suggest that sequence divergence
beyond the limits of detectable homology is rather common (see e.g. [72] and
the chapter by Dokholyan and Shakhnovich in this book). This prevalence
of structural conservation has made it possible to create databases in which
protein structures are classified into distinct structural groups with the same
overall architecture (folds) [68, 73, 74]. For example, proteins classified in the
same fold in the FSSP database [68] show a distribution of sequence iden-
tity comparable to that of random pairs of sequences [69]. Nevertheless, other
indicators of structural changes often show a regular behaviour. For instance,
within a given fold, the root mean square deviation between homologous pro-
teins increases as sequences diverge [75].

Protein function, instead, is not as much conserved as the underlying struc-
ture, making its prediction rather difficult [76]. New functions are often created
through gene duplication followed by differential regulation and recruitment
of one of the copies to a new function [3]. In the transition to a new func-
tion, proteins accumulate substitutions, which may be fixed through positive
selection, in a process that usually does not change significantly the overall
fold.

Despite these general rules, several examples of proteins with detectable
homology and yet different folds have been provided [77]. In these cases, the
evolutionary changes are usually mediated through large scale mutations, such
as insertion or deletions of entire secondary structure elements and circular
permutations. As a consequence, the concept of protein fold has been recon-
sidered, and it has been suggested that insertions or deletions of secondary
structure elements can provide a mechanism to connect many known folds [78].
Significant similarities between folds previously classified as distinct, possibly
pointing at distant evolutionary relationships, were identified by Orengo and
colleagues through an algorithm of protein structure comparison at the level
of secondary structure [79] (see also the chapter by Ranea et al. in this book).
In the majority of cases, however, point mutations and insertions or deletions
of single residues do not seem to have produced evolutionary transitions to
different protein folds. Therefore, in particular in the evolution of proteins
that retain their function, the concept of protein fold can still be considered
useful.
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4.2.3 Models of Molecular Evolution with Structural Conservation

Structural stability was first considered in models describing the molecular
evolution of RNA structures [10]. Schuster and co-workers described neutral
networks in sequence space, associated to specific macromolecular structures
(see also the chapter by Schuster and Stadler in this book).

In this view, structurally constrained molecular evolution proceeds along
neutral networks, whose properties have a large impact on the evolutionary
process. Schuster et al. showed that, in the case of some common RNA sec-
ondary structures, the neutral networks are dense in sequence space, and
that networks of different common structures can be connected through a
small number of point mutations [10]. These results suggest a view of RNA
structural evolution as adaptation through neutrality, in which evolution pro-
ceeds along a neutral network until a crossing point to a fitter structure is
found [11,12].

Inspired by these studies, several authors introduced models of protein evo-
lution with structural conservation. In this section, we shortly review some
of these models. These models differ in the way the molecular structure is
represented and the requirement of thermodynamic stability of the target
structure is implemented. In the case of RNA, efficient algorithms can deter-
mine, approximately but reliably, the secondary structure of minimal energy
for a given sequence [80]. Equivalent algorithms do not exist for protein ter-
tiary structures. Therefore, several groups represented protein structures as
self-avoiding walks on the simple cubic or square lattice, studying them by
means of Monte Carlo simulations. The idea behind this approach is that
qualitative properties of the evolution of lattice models can be transferred
to real proteins. Other groups also adopted simplified off-lattice representa-
tions of protein structures, which were studied through effective energy func-
tions, analogous to those used for lattice models. The two approaches usually
yield qualitatively similar results. One should also distinguish between the
approaches that impose only the requirement that the target structure has
minimal energy, from those that further require that the energy landscape is
well correlated. In the latter, all structures that are very different from the
native one are energetically separated by a large energy gap from it, therefore
favouring stability against misfolding.

Bornberg-Bauer and co-workers [13, 14] studied lattice polymers by
imposing the condition that, for sequences in the neutral network, the energy
of the target structure should be lower than that of all alternative structures,
thus following closely the original RNA model. They studied the struc-
tures on a two-dimensional lattice and represented the sequences by a two-
letter (hydrophobic-polar) code. Such a simplified protein model is amenable
to exact enumeration of both conformations and sequences, and enabled
Bornberg-Bauer and co-workers to establish that in the case of lattice proteins,
neutral networks are disconnected in sequence space. They also discovered that
these neutral networks are centred around the so-called prototype sequence,
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which is the sequence of maximal stability for a given structure, both mutat-
ionally and thermodynamically. Furthermore, these studies indicated that
protein structures can be changed through point mutations, analogously to
what was previously found for the RNA model.

Babadje et al. [15] adopted simplified representations of real protein struc-
tures, evaluating how well test sequences fit the target structure through a
measure (the Z-score [81]) of the energy difference with respect to a set of
alternative structures. They found that protein sequences can diverge almost
as much as random pairs of sequences despite maintaining a high compatibility
with the original structure.

Shakhnovich and Gutin [16] proposed an evolutionary model in which
selection for fast folding is imposed in the framework of a lattice model, but
without requiring the conservation of a particular structure. Later, Dokholyan
and Shakhnovich [17] extended this approach considering sequences of fixed
composition for which the target structure was required to have low energy.
Evolution was modelled as a Monte Carlo process in sequence space, and large
entropy barriers were found to separate clusters in sequence space. Mirny
and Shakhnovich [18] analysed amino acid conservation in five of the most
populated protein folds, identifying structural features correlated with con-
servation.

Dokholyan and Shakhnovich [19] modelled the process of gene duplication
followed by structural divergence, showing that it can account for some of the
statistical features of observed protein folds, most notably the almost power
law distribution of the number of proteins per fold, and in addition that the
model provides useful predictions concerning protein function (see also the
chapter of Dokholyan and Shakhnovich in this book).

Goldstein and colleagues [20, 21] used lattice polymers to study a fitness
landscape where the fitness of protein structures is given by their foldability,
a concept borrowed from the spin-glass model of protein folding. They found
that foldability can vary broadly, where structures with similar and large fold-
abilities are clustered together in structure space. When the selective pressure
is increased, evolutionary trajectories become increasingly confined to ‘neutral
networks’, where the sequence can be significantly changed while a constant
structure is maintained. In a subsequent work, Taverna and Goldstein [22]
showed that the marginal stability of proteins is a direct consequence of the
hypothesis that changes in stability are neutral above some threshold and also
of the high dimensionality of the sequence space.

Bussemaker et al. [23] obtained the interesting prediction that, in the lat-
tice model they studied, the stability of small proteins is rather insensitive
to random mutations. Tiana et al. [24] performed an exhaustive study of the
effects that single mutations have on the stability of the native structure of
a lattice protein, simulating the folding dynamics through a Monte Carlo
approach. They classified protein sites into three types according to their
robustness to mutations: ‘green’ sites, where mutations do not produce any
relevant effect on stability (typically at the surface of the structure), ‘yellow’
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sites for which the structure is slightly modified and ‘red’ sites (typically at
the core of the structure) where mutations have a disruptive effect.

Parisi and Echave [25,26] studied the impact of structural conservation on
protein evolution, in a similar spirit to the SCN model that will be described
in next section; the main difference is that they did not impose conditions
on the stability of alternative structures. They simulated site-specific amino
acid transition matrices, which were used in the calculation of the likelihood
of families of protein sequences given their phylogenetic tree. In this way,
they showed that the use of structural information can improve notably the
likelihood of evolutionary models, and their ability to distinguish between
different phylogenies.

Xia and Levitt [27,28] used a two-dimensional lattice model and performed
an exhaustive enumeration of the space of all sequences and the space of
all structures. They found that, when evolution is dominated by mutation,
the preference of the prototype sequence is not strong enough to offset the
huge size of sequence space, so that most native sequences are located near
the boundary of the fitness region and are marginally compatible with the
native structure, in agreement with the results by Taverna and Goldstein [22].
On the other hand, when evolution is dominated by recombination events,
the evolutionary preference for the prototype sequence is strong enough so
that most native sequences are located near the centre of sequence–structure
compatibility.

Aita et al. [29] identified amino acid sequences that fold into a target struc-
ture, imposing that the energy of the target must be much lower than that
of alternative structures. They found that the neutral networks of different
structures are separated by 5–30 mutations in sequence space, with separa-
tion increasing with the required threshold stability. Bloom et al. [30] studied
the impact of random mutations on the stability of a wild-type structure,
and found that the probability that a protein retains its structure declines
exponentially with the number of mutations.

4.3 The SCN Model of Evolution

The SCN model is based on the observation that evolution conserves pro-
tein structure much more than protein sequence (see e.g. [68,69]). It assumes
that all mutations that maintain protein stability above a predefined thresh-
old are selectively neutral, and all other mutations are strongly deleterious,
thus resulting in a neutral model. These assumptions are consistent with the
observation that many mutations do not significantly modify the activity of a
protein and its thermodynamic stability, while mutations that improve sub-
stantially protein functionality are rare [60].
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4.3.1 Representation of Protein Structures

In the SCN model, the structure of a protein of N residues is represented
through an N × N contact matrix C. This matrix is defined as Cij = 1 if
sites i and j are in contact, and Cij = 0 otherwise. Two sites are considered
in contact if any two of their heavy atoms are closer than a given cut-off
distance, which we take as 4.5 A

◦
. The effective free energy associated to a

sequence of amino acids A in the configuration C is, in this type of approach,
assumed to have the form of a sum of pairwise contact interactions,

E(A,C) =
∑
i<j

CijU(Ai, Aj) , (4.5)

where Ai labels one of the 20 amino acid types and U is a 20× 20 symmetric
interaction matrix, so that U(a, b) is the interaction energy between amino
acids a and b when in contact. A useful choice for the latter is the matrix
derived in [82] in such a way to assign high thermodynamic stability to the
native states of a large set of monomeric proteins [83].

Three remarks need to be made here: (a) The effective energy parameters
take implicitly into account the effect of the solvent and they depend on
temperature, thus they express free energies rather than energies. (b) The
effective energy of a structure is defined with respect to a completely extended
reference structure where no contacts are formed and which sets the zero of
the energy scale. (c) The chain entropy sN is not included into the effective
energy, as it is constant for constant chain length N .

4.3.2 Stability Against Unfolding

The stability of the native state against unfolding can be estimated from
the negative of the native contact energy, −E(A,C∗), neglecting changes of
conformational entropy with the protein sequence. In the SCN model, we
impose that −E(A,C∗) is larger than a positive threshold −Ethr for sequences
A belonging to the neutral network.

As an alternative measure of stability, one can also use the Z-score of the
native energy, Z(A,C∗) [81,84], which gives the difference between the energy
of sequence A in configuration C∗ and its average energy in a set of alternative
configurations, {C}, in units of the standard deviation of the energy

Z(A,C∗) =
E(A,C∗) − 〈E(A,C)〉{C}√

〈E(A,C)2〉{C} − 〈E(A,C)〉2{C}
. (4.6)

When a sequence A folds into a structure C∗, the corresponding Z-score is
negative and very large in absolute value. This measure is, however, better
suited for estimating the stability against misfolding (see Sect. 4.3.3).



4 The SCN Model of Protein Evolution 89

4.3.3 Stability Against Misfolding

For a given sequence A, the energy landscape is defined to be well correlated
if all configurations of low energy are very similar to the configuration of
minimal effective energy, C∗. Structure similarity is measured by the overlap
q(C,C∗), which counts the number of contacts that two structures have in
common. This number is normalized by the maximal number of contacts, so
that q ranges between zero and one. In a well-correlated energy landscape,
the inequality

E(A,C) − E(A,C∗)
|E(A,C∗)| ≥ α(A) (1 − q(C,C∗)) , (4.7)

with a large α(A) holds. This inequality indicates that the energy gap between
the ground state C∗ of sequence A and any alternative structure C, measured
in units of the ground state energy, is larger than a quantity α(A) times the
structural distance 1 − q(C,C∗). The dimensionless quantity α(A), which
is the largest quantity for which the above inequality holds, can be used to
evaluate the folding properties of sequence A. For random sequences, the
lowest energy configurations are structurally different and have similar energy,
hence α(A) is close to zero. In this case, the energy landscape is rugged,
the folding kinetics is very slow, and the thermodynamic stability is low.
In contrast, computer simulations of well-designed sequences have shown that,
when α(A) is large, the folding kinetics is fast and the stability with respect
to changes in the energy parameters as well as mutations in the sequence is
very high [16, 31]. In the SCN model, we impose that α(A) is larger than a
positive threshold αthr for sequences A belonging to the neutral network.

Further, it is assumed that the ground state structure C∗ coincides with
the target structure defining the neutral network. Indeed, in all the simulations
performed using the SCN model, it was never found a sequence whose ground
state structure was different than the target one and simultaneously had a
sufficiently large energy gap. Therefore, imposing a well-correlated energy
landscape through a condition on the normalized energy gap makes it very
difficult to change the native structure into a new structure, which is also sta-
ble against misfolding. This result agrees qualitatively with the simulations of
Aita et al. [29]. It illustrates the difference between RNA and proteins, since it
is in contrast with the findings of Schuster et al., who showed that the neutral
networks of two different RNA secondary structures can be separated by just
one point mutation [10].

4.3.4 Calculation of α(A)

Candidate structures for a protein sequence were generated from all possible
alignments of the sequence with structures in the PDB. This procedure is
called gapless threading. To speed up the computation, we considered a non-
redundant subset of the PDB in which proteins with homologous sequences
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are excluded [85]. About 106 alternative structures were obtained for proteins
of 100 amino acids, with this number decreasing for longer proteins. The
energy function correctly assigns the lowest energy to the native structure for
most proteins of known structure, and it generates a well-correlated energy
landscape in which structures very different from the native have high energy
gaps, so that α(A) is large.

Most of the computer time of these simulations is spent in the calculation
of α(A′) for all possible point mutants of the actual sequence A. To speed
up this calculation, we note that α(A) is obtained from the configuration
C with the highest destabilizing power, i.e. the highest value of the energy
gap divided by the structural distance from the native configuration. This
structure changes through evolution, but it is expected that the set of high
scoring structures remains the same for neighbouring sequences. Therefore,
for each actual sequence, we store a sufficiently large number of configurations
with the highest destabilizing powers (typically 50, see [86]), and we compute
their destabilizing power in the mutated sequences A′. This procedure may
slightly overestimate α(A′), since not all configurations are used, but the
fraction of sequences for which α(A′) crosses the acceptance threshold is below
0.1% [86].

One drawback of the computation of α(A) based on gapless threading
is that the number of alternative structures generated in this way decreases
with the length of the sequence, N . Therefore, the actual value of α(A) is
overestimated for longer sequences. This is not a significant problem when,
as here, one is interested in comparing values of α(A) for different sequences
of the same length. Nevertheless, it can be convenient, in particular for long
chains, to evaluate α(A) using a different method [87]. This method estimates
the minimal energy for non-native structures through a theoretical prediction
based on the random energy model (REM) [88,89],

EREM(A) ≈ Nc〈U〉A − σU,A
√

2Nc log(mN ) , (4.8)

where Nc is the number of native contacts, 〈U〉A and σU,A are the mean and
standard deviation of the interaction energy for all possible contacts, native
and non-native ones, within sequence A, andmN is the number of independent
contact matrices for a protein of length N , satisfying physical constraints of
hard core repulsion, hydrogen bonding and compactness. The minimal energy
estimated in this way, EREM(A), is in very good agreement with the minimal
non-native energy found by threading, Emin(A) ≈ (1.003±0.009)EREM(A)−
(0.0016±0.0012), when mN is set equal to the number of structures generated
through threading, with a correlation coefficient r = 0.96 [87]. Using this
estimate, one can evaluate the normalized energy gap as

α′(A) =
E(A,C∗) −Nc〈U〉A + σU,A

√
2Nc log(mN )

E(A,C∗)(1 − q0)
. (4.9)
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The number of alternative structuresmN is expected to increase exponentially
with chain length as

log(mN ) ≈ AN +B . (4.10)

The parameters have been approximately estimated as A ≈ 0.1 and B ≈ 4 in
such a way that the minimal energy coincides with the one evaluated through
threading for short chains (N < 50) and the estimated minimal effective
energy is higher than the native energy for most proteins in the PDB [87].
Finally, one sets q0 = 0.1 as the typical overlap between unrelated structures,
disregarding the length dependence of this quantity.

4.3.5 Sampling the Neutral Networks

The neutral network of a given protein structure is defined as the set of seq-
uences A for which the stability against both unfolding and misfolding, mea-
sured through E(A,C∗) and α(A,C∗), respectively, exceed predetermined
thresholds, chosen as 98.5% of the values of those parameters for the wild-
type sequence in the PDB. The threshold chosen enforces conservation of the
thermodynamic stability of the native structure C∗. We verified that the quali-
tative behaviour of the model does not change in the range between 95% and
100% of the values for PDB sequences.

The SCN algorithm [31,32] explores the neutral network of a given protein
starting from its PDB sequence A1 = APDB and iterating the following proce-
dure: At iteration n, (a) the number X(An) of viable neighbours of sequence
An is computed, and (b) the sequence An+1 is extracted randomly among all
the viable neighbours of An. In this way, we generate a stochastic process that
explores the neutral network. This process looses rather quickly the memory
of the initial sequence. The total number of viable point mutations, X(A),
expresses the local connectivity of the neutral network. This number is nor-
malized by the total number of attempted mutations, Xtot,6 thus obtaining
the fraction of neutral neighbours, x(A) = X(A)/Xtot ∈ (0, 1].

4.3.6 Fluctuations and Correlations in the Evolutionary Process

In contrast with the homogeneity assumption of Kimura’s neutral model, the
SCN model shows that stability constraints produce a broad distribution of the
fraction of neutral neighbours x(A). This distribution P (x) is shown in Fig. 4.1

6 We impose conservation of the starting cysteine residues in the sequence, and
do not allow that other residues mutate into cysteine. These requirements are
imposed because a mutation that changes the number of cysteine residues by
one would leave the protein with a very reactive unpaired cysteine that would
most likely affect its functionality and would be therefore rejected with very high
probability. The maximum number of attempted mutations is therefore Xtot =
18(N − Ncys), where N is the number of residues and Ncys is the number of
cysteine residues in the starting sequence.
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Fig. 4.1. Probability distribution P (x) of the fraction x of neutral neighbours for
myoglobin, as obtained by the SCN model (adapted from [90])
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Fig. 4.2. Auto-correlation function C(n) ≡ C(x(Ak), x(Ak+n)) of neutral connec-
tivities for sequences separated by n substitutions for myoglobin, as obtained by the
SCN model (adapted from [86])

for the neutral network of myoglobin (PDB id. 1a6g). Other proteins yield
qualitatively the same results. Besides this distribution being very broad, the
fraction of neutral neighbours is strongly auto-correlated along a trajectory. In
Fig. 4.2, we show the auto-correlation function C(x(Ak), x(Ak+n)) of x(Ak),
defined as

C(x(Ak), x(Ak+n)) =

1
m− n

m−n∑
k=1

x(Ak)x(Ak+n) − x2

σ2
x

, (4.11)
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where the mean value x = (1/m)
∑m

k=1 x(Ak) and the variance σ2
x = x2 − x2

are calculated over the whole trajectory. Our results show that the auto-
correlation decays exponentially as

C(x(Ak), x(Ak+n)) ≈ exp(−n/�x) , (4.12)

with �x of the order of three substitutions [90] and, as we shall see, it has
important consequences on the statistics of the substitution process.

Broad fluctuations and strong auto-correlations of the neutral connectivity
are a general feature of the SCN model, and distinguish it from the standard
neutral model by Kimura. They have a rather simple explanation. Defining
xi(A) as the fraction of neutral neighbours when mutation occurs at site i,
one has x(A) =

∑N
i=1 xi(A)/N . If the fraction of neutral neighbours at differ-

ent sites are not correlated, their mean x(A) is expected to have fluctuations
vanishing as 1/

√
N . The broad distribution of x(A) that we found indicates

that this is not the case. In fact, there are significant positive correlations
between almost all pairs of variables xi(A) and xj(A) [90]. These correlations
are induced by the fact that the xi(A) at each site are significantly corre-
lated with some global variable, for instance, the mean fraction of neutral
neighbours x(A). This is shown in Fig. 4.3 for the case of myoglobin, defining

Ci =
1
m

m∑
k=1

(
xi(Ak) − xi

)(
x(Ak) − x

)
σxi

σx
. (4.13)

The figure shows that all the correlations Ci are positive and significant (they
were computed from order of 106 sequences, with significance threshold of
order 10−3), and moreover, they are positively correlated with the robustness
of site i to mutation, measured by xi [90].

Therefore, sequences with large x(A) are more rebust to mutation at all
sites. As also found by Bornberg-Bauer for prototype sequences [13], and as
we will discuss in next section, these more robust sequences have higher ther-
modynamic stability, so that mutations applied to them produce more often
other stable sequences. Figure 4.3 goes one step further, and shows that there
are some sites with small xi that are less tolerant to mutations both in gen-
eral and in mutationally robust sequences (the correlation between xi(A) and
x(A) is minimal for these sequences). The structural determinants of strong
structurally constrained sites will be investigated in the next section.

4.3.7 Substitution Process

Amino acid substitutions within the SCN model are controlled by two inde-
pendent events: Random mutations, described by a Poissonian process, and an
acceptance process, which consists in testing whether the sequence is viable.
The acceptance probability for a mutation that takes place in a protein of
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Fig. 4.3. Comparison between cross-correlations and conservations for myoglobin.
The fraction of neutral mutations at site i, xi, is shown on the abscissa, and the
correlation between xi and the overall neutral connectivity x, Ci, is shown on the
ordinate. The dashed horizontal and vertical lines indicate one standard deviation
from the mean (full horizontal and vertical lines). Additionally, horizontal and verti-
cal lines at the threshold of 1.5 standard deviations below the mean are also shown.
The sites above the threshold for both quantities are shown as full circles, the sites
below the threshold for both quantities are shown as full squares, whereas the sites
that are above the first threshold but below the second, or vice versa, are shown as
open circles (adapted from [86])

sequence A is given by the neutral connectivity x(A). As a result of the
broad distribution of this variable, the resulting substitution process is not
Poissonian. For a given evolutionary trajectory (i.e. for a given sequence of
neutral connectivities {x(A1), x(A2), . . .}) one can compute the probability
that the number St of accepted mutations in a time interval t equals n. This
probability is the product of the Poissonian probability that k mutations take
place in the time interval t, times the conditional probability that n of these
are accepted,

P{St = n} =
∞∑
m=n

e−µt
(µt)m

m!
Pacc(n|m) , (4.14)

where the conditional acceptance probability of n mutations out of m is
given by

Pacc(n|m) =

(
n∏
i=1

x(Ai)

) ∑
{mj}

n+1∏
j=1

[1 − x(Aj)]
mj . (4.15)
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Here, the {mj} are all integer numbers between zero and m − n satisfying
n+

∑n+1
j=1 mj = m. The probability that a mutation is accepted is thus x(A1),

as long as the protein sequence is A1, x(A2) as long as the sequence is A2

and so on.
If all sequences have the same fraction of neutral neighbours x(A) = x,

(4.14) coincides with (4.4), and the number of substitutions in a branch of
length t, St, is a Poissonian variable with mean µtx and the substitution rate
equals µx, as in Kimura’s model. If the variance of the neutral connectivity
is not zero, the moments of the substitution distribution can be computed
in the long-time limit using the central limit theorem. Define τi as the time
interval between the i-th and i + 1-th substitutions. The τi are independent
variables with exponential distribution and expectation values E[τi] = 1/µx,
E[τ2

i ] = 2/µx2. If St is large, we can apply the central limit theorem to the
mean value

∑St

i=1 τi/St, finding

St∑
i=1

τi ≈ St
1
µx

[
1 +

zB√
St

+
1
2
z2B2

St

]
≈ t , (4.16)

where z is a normalized Gaussian variable, and

B2 =
E[τ2

i ]
E2[τi]

− 1 =
(
1 − e−1/	x

)−1
(

1/x2

1/x
2 − 1

)
+

1/x2

1/x
2 . (4.17)

The normalized variance B2 is larger than one because (a) the distribution
of x is broad, so that E[1/x2] > E2[1/x] and (b) trajectories are correlated
(the term [1 − exp(−1/�x)]

−1 tends to one if the correlation length �x tends
to zero). The first two moments of St can be calculated as

E[St] ≈ µt

1/x
(4.18)

R(t) ≡ E[S2
t ] − E2[St]
E[St]

≈ B2

(
1 − 3B21/x

4t

)
. (4.19)

The normalized variance R(t) is called the ‘dispersion index’. Notice that if
the substitution process is Poissonian one has R ≡ 1. The asymptotic value
of the dispersion index for large time is R(t→ ∞) = B2, which is larger than
one due to the broad fluctuations and time correlations of x. Therefore, the
substitution process is overdispersed. For small t, when the process probes only
one sequence, the substitution process is expected to behave as a Poissonian
process with R(t→ 0) = 1.

We compared the above predictions to the expectation values calculated
from the probability defined in (4.14). The values of the neutral connectivities
were obtained from the evolutionary trajectories {x(A1), x(A2), . . .} simu-
lated with the SCN model (details of the calculation are given in [90]). Aver-
ages along an evolutionary trajectory are indicated with angular brackets 〈·〉,
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Fig. 4.4. Statistical properties of the substitution process of myoglobin, showing
the average number of substitutions 〈St〉 divided by µt (circles), the normalized
mutation variance Rµ(t) (squares), the normalized trajectory variance Rx(t) (trian-
gles) and the normalized total variance R(t) = Rµ(t) + Rx(t) (diamonds)

whereas averages over evolutionary trajectories are indicated with an over-
line · . The mean and the normalized variance of the number of substitutions
are shown in Fig. 4.4 for the case of myoglobin. In the plot, we distinguish the
normalized mutation variance

Rµ(t) =
1

〈St〉
(
〈S2
t 〉 − 〈St〉2

)
, (4.20)

the normalized trajectory variance

Rx(t) =
1

〈St〉
(
〈St〉2 − 〈St〉2

)
, (4.21)

and the normalized total variance (the dispersion index) R(t) = Rµ(t)+Rx(t).
Notice that if x(A) = x, one obtains Rµ(t) ≡ 1 as for all Poissonian processes,
and the normalized trajectory variance Rx(t) ≡ 0. From the plot, it is also
clear that most of the overdispersion comes from Rx(t), i.e. from the variance
between different evolutionary trajectories, which can generate rather different
substitution rates.

The quantitative agreement of the dispersion indexR(t) of the SCN process
with the prediction (4.19) is quite good as far as the long-time limit is
concerned, but the temporal dependence is not well captured by this first-
order approximation. The dispersion index of the SCN process is compatible
with empirically obtained dispersion indices, which are usually in the range
1.5–5 [9, 50, 91]. Hence, these observed dispersion indices may be to a large
extent due to the correlations present in the evolutionary process both in space
and in time [90]. This result provides a mechanistic explanation of the fluctu-
ating neutral space model proposed by Takahata to account for the observed
statistics of the substitution process [92].
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Here, we should notice a difference between the results shown in Fig. 4.4
and those presented in [86]. In [86], we reported that the average substitution
rate 〈St〉/t decreases in time in the SCN model, tending to the asymptotic
value µ1/x. Recently Ho et al. [93], analyzing protein sequences, observed an
apparent decrease of the substitution rate through time that would match
qualitatively the SCN prediction. However, in obtaining the results pre-
sented in [86], we sampled the initial sequences of the evolutionary trajec-
tories with equal probability. This procedure is not entirely consistent, since
the time spent at sequence A is proportional on the average to 1/x(A),
so that the process spends more time in sequences with small neutral con-
nectivity x. Taking this into account, we have sampled the initial sequence
A1 with probability proportional to 1/x(A1). The initial rate is therefore∫ 1

0
P (x) (1/x) (µx) dx/

∫ 1

0
P (x) (1/x) dx, which is equal to the final rate µ1/x,

so that the rate is now constant in time. Figure 4.4 refers to this new sam-
pling protocol. This does not modify significantly the normalized variances
presented in Fig. 10 of [86], which was obtained with homogeneous sampling.
Therefore, the results of [86] cannot explain the empirical observations of non-
constant rate by Ho et al. [93].

4.4 Site-Specific Amino Acid Distributions

The reconstruction of phylogenetic trees from sequence alignments requires the
use of a model of protein evolution [4,94] (see also the chapters by Xia and by
Liò et al. in this book). In this context, the effects of both the mutational and
the selection processes on protein folding and function must be taken into
account. It is well known for instance that the local environment of a pro-
tein site within the native structure influences the probability of acceptance
of a mutation at that site [95]. Nevertheless, such a view, which is based on
structural biology, has a relatively limited impact on studies of phylogenetic
reconstruction, where the corresponding models usually rely on substitution
matrices that do not consider the structural specificity of different sites. The
most used substitution matrices, such as JTT [96], are obtained by extrapo-
lating substitution patterns observed for closely related sequences, and they
have low performances when distant homologs are concerned [97].

To account for selection at the protein level, it is necessary to consider
site-specific amino acid distributions within a protein family [98]. The use
of site-specific substitution matrices improves substantially maximum likeli-
hood methods for reconstructing phylogenetic trees [99–103]. In the studies
mentioned above, site-specific constraints are obtained either through simula-
tions of a protein evolution model or by fitting the corresponding parameters
within a maximum likelihood framework. As we will discuss in the following,
it is possible to deduce from the SCN model an analytical expression for site-
specific amino acid distributions with no adjustable parameters. The resulting
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distributions are in very good agreement with model simulations and with
site-specific amino acid distributions obtained from the PDB [39,40].

Sites in the same protein evolve in a correlated way, because they undergo
global stability constraints. However, Maximum Likelihood approaches become
almost computationally unfeasible unless one assumes that sites evolve inde-
pendently. Here, we will define a mean-field protein evolution model with
independent sites that reproduces with great accuracy the results of the SCN
model with global stability constraints. The price to pay for this simplifica-
tion is that we shall consider an effective selection process that depends on
the mutation process. At the mean-field level, mutation and selection, that
are independent processes in the Darwinian framework, become effectively
entangled.

4.4.1 Vectorial Representation of Protein Sequences

The interaction matrix U in (4.5) can be written in its spectral form as
U(a, b) =

∑20
α=1 εα u

(α)(a)u(α)(b), where εα are the eigenvalues, ranked by
their absolute value, and u(α) are the corresponding eigenvectors. The main
contribution to the interaction energy is given by ε1 u(1)(a)u(1)(b), which has
a correlation coefficient 0.81 with the elements U(a, b) and a negative eigen-
value ε1. It is well known that hydrophobic interactions constitute the most
significant contribution to pairwise interactions in proteins, the components
of the main eigenvector are strongly correlated with experimental hydropathy
scales [104,105]. By considering only this main component, one can define an
effective energy function, H(A,C), which provides a good approximation to
the energy, (4.5), as

H(A,C)
kBT

≡ ε1
∑
i<j

Cij h(Ai)h(Aj) . (4.22)

The vector h(A) ≡ u(1)(A) is denoted as the Hydrophobicity Profile (HP)
of sequence A [38]. This is an N -dimensional vector whose i-th component is
given by h(Ai) ≡ u(1)(Ai). The 20 parameters h(a) ≡ u(1)(a), obtained from
the PE of the interaction matrix, are called interactivity parameters, and are
reported in Table 4.1.

Table 4.1. Interactivity scale used in this chapter and presented in [38]

A R N D C Q E G H I
0.1366 0.0363 −0.0345 −0.1233 0.2745 0.0325 −0.0484 −0.0464 0.0549 0.4172

L K M F P S T W Y V
0.4251 −0.0101 0.1747 0.4076 0.0019 −0.0432 0.0589 0.2362 0.3167 0.4083



4 The SCN Model of Protein Evolution 99

4.4.2 Vectorial Representation of Protein Folds

A convenient vectorial representation of protein structures may be derived
from the PE of the contact matrix C, which we denote as c. The latter max-
imizes the quadratic form

∑
ij Cij ci cj with the condition

∑
i c

2
i = 1. In this

sense, ci can be interpreted as the effective connectivity at site i, since sites
with large ci are in contact with as many as possible sites j with large cj . All
the components of c have the same sign, which, by convention, is taken as
positive. Moreover, if the contact matrix represents a single connected graph,
as is the case for single-domain globular proteins, the information contained in
the PE is in most cases sufficient to reconstruct the whole contact matrix [37],
and consequently the full three-dimensional structure [106].

4.4.3 Relation Between Sequence and Structure

The constraint of thermodynamic stability predicts that there should be a
correlation between the vectorial representations of protein sequences and
structures.

For a given protein fold, we define the optimal HP, denoted as hopt, as
the vector that minimizes the approximate effective free energy, (4.22), under
the constraints that its mean hydrophobicity, 〈h〉 = N−1

∑
i hopt(Ai), and its

mean square value, 〈h2〉 = N−1
∑
i h

2
opt(Ai), are kept fixed.7 These constraints

imply that the mean and standard deviation of non-native interactions is also
kept fixed, so that the normalized energy gap, (4.9), is also kept large. From the
property of the PE that it maximizes

∑
ij Cij ci cj with the condition

∑
i c

2
i =1,

it is clear that hopt is strongly correlated with c [38]. In this formulation, 〈h〉
and 〈h2〉 are parameters not determined by the native structure, and they
should guarantee a large normalized energy gap (in fact, in the approximation
given by (4.22), the mean and mean square contact interactions that enter into
the calculation of α(A) by (4.8) are 〈U〉 = ε 〈h〉2 and 〈U2〉 = ε2 〈h2〉2).

The optimal HP represents an analytical solution to the problem of
sequence design for the effective energy function (4.22), and thus an app-
roximate solution for the energy function, (4.5). In the SCN evolutionary
model, mutations are accepted whenever the effective free energy and the
normalized energy gap overcome predefined thresholds. Thus, the optimal HP
is not expected to be ever realized during evolution, since they correspond to a
negligible volume in the neutral network. However, thermodynamically stable
sequences compatible with the given fold are expected to have HP values not
too different from the optimal one. This is indeed observed in simulations of
the SCN model. The mean correlation coefficient between the PE of the fold
and the HP of the sequences generated through SCN simulations is typically
0.45, which is significant. The HP averaged over all sequences compatible with

7 Here, we denote by angular brackets the average over all positions in a given
protein sequence or structure.
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a given fold,
[
h
]
evol

, correlates much more strongly with the PE of that fold
(and hence with the optimal HP), with a correlation coefficient larger than
0.95 for all of the studied folds [38]. These results show that one can recover
the optimal HP through an evolutionary average of the HPs compatible with
the protein fold.

Protein families represented in the FSSP [68] and in the PFAM [107] data-
bases show qualitatively similar results. The correlation between the PE of the
fold and the HP of individual sequences compares well with what was found
in SCN simulations. The average HP over aligned sequences from the same
protein family correlates more strongly with the PE than individual HPs: The
average correlation coefficient is 0.58 for FSSP families and 0.57 for PFAM
families [38]. This correlation is however much weaker than the analogous one
for SCN protein families, which is 0.96. There are several explanations for this
weaker correlation. First, this can be due to functional conservation, which
plays an important role in protein evolution and is not represented in the
SCN model. Part of the discrepancy can be also attributed to the approxi-
mate character of the effective energy function used to test the thermodynamic
stability. Furthermore, real protein families are much smaller than SCN fam-
ilies, for which we generated of the order of 106 sequences. To test for such
an effect, the average HP has been also computed using only few hundreds
of SCN sequences, i.e. of the same order of magnitude as in FSSP or PFAM
families. As a result, the correlation between the average HP and the PE was
found to be reduced to values comparable to those observed for the FSSP and
the PFAM sequence databases [38].

4.4.4 The PE as a Structural Determinant
of Evolutionary Conservation

As showed by Bornberg-Bauer [13], thermodynamic stability and mutational
stability are correlated. Sequences that are more stable can also bear a larger
number of mutations. Bornberg-Bauer called the sequence of maximal muta-
tional stability the prototype sequence of a fold, and showed that it has also
maximal thermodynamic stability. In our model, the optimally stable sequence
can be predicted analytically to have a HP that correlates very strongly with
the PE. Sequences close to the optimal one, in the sense that they have a large
correlation coefficient r(h(A), c), are therefore expected to bear a large num-
ber of mutations and to have larger neutral connectivity x(A). We verified this
prediction using the SCN families. Although there is a significant correlation
between the two quantities, the scattering of the data is very large. Thus in
Fig. 4.5, we plot x(A) averaged over protein sequences that have r(h(A), c)
in the same bin of width 0.02, as obtained for mesophilic rubredoxin (PDB
id. 1iro). Sequences close to the optimal one have a very large fraction of
neutral neighbours, as expected.

Thus, the relation r(h(A), c) between PE and HP explains a significant
part of the sequence variation of the overall mutational stability x(A). As we
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Fig. 4.5. Mean fraction of neutral neighbours 〈x(A)〉 as a function of the correlation
coefficient r(h(A), c) between the vectorial representations of sequence h(A) and
structure c for mesophilic rubredoxin (error bars indicate the standard deviation of
the mean)

will see in the next section, the PE explains also a large part of the site-specific
variation of mutational stability, with sites having PE components that are
smaller or larger than the mean being more conserved through evolution.

4.4.5 Site-Dependent Amino Acid Distributions

The SCN model of protein evolution generates trajectories in sequence space
for which the resulting HP fluctuates around the optimal HP, the latter being
strongly correlated with the PE of the protein fold’s contact matrix [38]. This
remarkable feature can be used to compute analytically the site-specific dis-
tribution of amino acid occurrences πi(a), where i indicates a protein site and
a one of the 20 amino acid types [39].

To derive an analytical expression for πi(a), the correlation coefficient
between the PE c of the native contact matrix and the evolutionary aver-
age of the hydrophobicity vector,

[
h
]
evol

, is assumed to be exactly 1, yielding
that the two vectors are linearly related as[

hi
]
evol

≡
∑
{a}

πi(a)h(a) = A (ci/〈c〉 − 1) +B , (4.23)

where the sum over {a} is over all amino acids, and

A =

√√√√ 〈[h]2
evol

〉 − 〈[h]
evol

〉2(〈c2〉 − 〈c〉2)/〈c〉2 and B = 〈[h]
evol

〉 . (4.24)

In the above equations, two kinds of averages have been introduced: The
angular brackets, denoting the average over the N sites of the protein,
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〈f〉 = N−1
∑
i fi, where the corresponding standard deviation is denoted as

σ2
f = 〈f2〉 − 〈f〉2, and the square brackets, denoting site-specific evolutionary

averages,
[
fi
]
evol

=
∑

{a} πi(a) f(a).
Equations (4.23) and (4.24) represent the conditions that the stationary

distributions πi(a) have to fulfil in order to guarantee a perfect correlation
between PE and the average HP. Assuming that these conditions are the
only requirement that the πi(a) have to meet, we require that the πi(a) are
the distributions of maximum entropy having the given average values. It is
well known that the solution of this optimization problem are Boltzmann-like
(exponential) distributions, characterized by an effective ‘temperature’ |βi|−1

that, in this context, varies from site to site and measures the tolerance of site
i to accept mutations over very long evolutionary times,

πi(a) =
exp[−βi h(a)]∑

{a′} exp[−βi h(a′)] , (4.25)

with the constraint, (4.23),∑
{a}

exp[−βi h(a)] [h(a) −A (ci/〈c〉 − 1) −B] = 0 . (4.26)

Equation (4.26) states an analytical relation between the ‘Boltzmann pa-
rameter’ βi and the PE component ci, given the two evolutionary para-
meters A and B. This equation indicates that βi equals zero if ci/〈c〉 =
1+A−1

(∑
{a} h(a)/20−〈[h]

evol
〉), and that βi becomes negative for larger ci

and positive for smaller ci. The relationship between βi and ci is expected to
be almost linear in the range

∣∣ci/〈c〉 − 1
∣∣� 1. In addition, βi tends to minus

infinity when the average hydrophobicity at site i,
[
hi
]
evol

, tends to the max-
imally allowed value, and to plus infinity when the average hydrophobicity at
site i tends to the minimum allowed value.

Equation (4.26) has a simple qualitative interpretation. Positions with
large eigenvector component ci are buried in the core of the protein structure
and are therefore with high probability occupied by hydrophobic amino acids
(positive h(a)), having a large and negative βi. Conversely, surface sites with
small ci are more likely occupied by polar amino acids (negative h(a)), having
large and positive βi. Intermediate sites are the most tolerant to mutations,
having a small |βi| corresponding to high substitution temperature.

The distributions derived here refer to very long evolutionary times, when
memory of the starting sequence has been lost. We recall the three assumptions
that have been made for deriving the site-specific distributions: (a) The first
assumption is that selection on folding stability can be represented effectively
as a maximal correlation between the HP of sequences compatible with a given
fold and the optimal HP of that fold, the latter nearly coinciding with the PE.
This assumption follows directly from an approximation of the effective free
energy function with its principal (hydrophobic) component, (4.22). (b) The
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second assumption is that the average of the HP of selected sequences over
very long evolutionary times has a correlation coefficient of unity with the PE,
i.e. all other energetic contributions average out. (c) The third assumption is
that this correlation is the only relevant property of the site-specific amino
acid distributions, indicating that these distributions are the distributions of
maximum entropy whose site-specific averages have correlation one with the
PE, thus fulfilling the stability requirement. From these three assumptions, the
Boltzmann form of the amino acid distributions follows in a straightforward
manner. To compute the site-specific Boltzmann parameters, however, one
still needs to determine the positional mean and standard deviation of the
site-specific HPs. These quantities depend on the mutation process and the
selection parameters. They were computed directly from the data in such a
way that the analytical prediction does not contain any free parameter.

The agreement between the predicted site-specific amino acid distributions
and those observed in SCN simulations is very good [39], showing that this
analytical approach reproduces quantitatively the statistics of the much more
complex SCN process.

Boltzmann distributions have a long history in studies of protein struc-
ture and evolution. Structural properties of native protein structures, as for
instance amino acid contacts, have been assumed to be Boltzmann-distributed
[108], and Boltzmann statistics for structural elements was predicted in sta-
ble folds of globular proteins [109]. Our work points out to a complementary
explanation for such distributions.

Shakhnovich and Gutin [110] proposed a model of sequence design through
Monte Carlo optimization, which produced a Boltzmann distribution in
sequence space. A mean-field approximation of this model [17, 111] results
in site-specific amino acid distributions of the form

πi(a) ∝ exp[−β φi(a)] , (4.27)

formally similar to (4.25). There are, however, three important differences
between the present formulation and (4.27). First, (4.27) was derived as a
mean-field approximation to a Boltzmann distribution for entire sequences,
whereas (4.25) was derived from the relationship between average hydropho-
bicity at a given site and the PE component. Second, in (4.27), the Boltzmann
parameter β is the same for all sites, whereas βi, obtained here from the PE,
changes along the protein structure. Third and most important, to compute
(4.27), aligned families of natural proteins were used in [17, 111], whereas
the present computation only requires the PE and two empirical values, the
average and the standard deviation of the HP.

In [100, 101], Goldstein and co-workers assumed that the site-specific dis-
tributions of physico-chemical amino acid properties have a Boltzmann form.
From this assumption they derived a protein evolution model to be used in
phylogenetic reconstruction within a maximum likelihood framework. Since
the properties that were used in these studies are hydrophobicity and amino
acid size, the proposed distributions are a general case of those discussed here.
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However, differently from [100, 101], here we classify sites according to the
PE component, which is a structural indicator strongly correlated with con-
servation, and we compute the Boltzmann parameters analytically, whereas
in [100,101] they are fitted using a maximum likelihood framework.

4.4.6 Sequence Conservation and Structure Designability

We have shown that there is a direct relationship between a structural indica-
tor, the PE, and site-specific measures of long-term evolutionary conservation
that imposes limits to divergent evolutionary changes. This relationship also
provides a link between the topology of a fold and its designability.

One convenient measure of the amino acid conservation at a given site is
given by the rigidity, defined in terms of πi(a) as

Ri ≡
∑
{a}

[πi(a)]
2 =

∑
{a} exp[−2βi h(a)]{∑
{a} exp[−βi h(a)]

}2 . (4.28)

The value Ri = 1 means that the same amino acid is present at site i in
all sequences, leading to complete conservation and β−1

i = 0. In general, the
rigidity decreases with increasing temperature |βi|−1. One can use (4.26) and
(4.28) to compute the rigidity directly from the PE.

A standard information-theoretic measure of site-specific sequence conser-
vation is given by the entropy of the amino acid distribution

Si ≡ −
∑
{a}

πi(a) log [πi(a)] = log [Z(βi)] + βi [hi]evol , (4.29)

where Z(βi) ≡ ∑
{a} exp[−βi h(a)]. The entropy attains its maximum value,

Si = log(20), at βi = 0, and it decreases with increasing |βi|. Predictions of the
entropy based on a different approach, (4.27), using aligned protein families
have been obtained in [17,111].

An important property of the entropy is that its exponential, exp(Si), pro-
vides an estimate of the average number of amino acid types acceptable at
site i over very long evolutionary times. Assuming that the amino acid dis-
tributions at different sites are independent from each other, the exponential
of the sum of all site-specific entropies, exp(

∑
i Si), gives an estimate of the

region of the sequence space compatible with a given fold. The size of this
region represents the designability of the fold. Although the independence
assumption is a clear oversimplification, the estimate of designability that can
be obtained should be a valuable approximation, and the present approach
allows to connect it explicitly to a topological feature of the protein native
structure [112,113].

Kinjo and Nishikawa [114] have recently pointed out the existence of a
strong relationship between hydrophobicity and the main eigenvector of sub-
stitution matrices derived from protein alignments with various values of the
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sequence similarities of the aligned proteins. They considered the eigenvector
corresponding to the largest eigenvalue (in absolute value) of the substitution
matrices. For high sequence similarities (above 35%), this eigenvector indi-
cates the propensity of the amino acid to mutate over short evolutionary times
(mutability). For low sequence identities (below 35%), corresponding to long
evolutionary times, this eigenvector is very strongly correlated with hydropho-
bicity. This correlation is easily understood in the light of the results presented
here. In fact, Kinjo and Nishikawa used Henikoffs’ method [115] for deriving
substitution matrices from observed frequencies of aligned amino acids at sites
with various PE values. In the present notation, these substitution matrices
can be indicated as M(a, b) ≈ log

[〈πi(a)πi(b)〉/〈πi(a)〉〈πi(b)〉], where the
angular brackets denote positional average. In other words, these substitution
matrices measure the tendency of two residue types a and b to co-occur at
the same sites. The relationship between large time substitution matrices and
hydrophobicity gives therefore independent support to the results discussed
here.

4.4.7 Site-Specific Amino Acid Distributions in the PDB

We tested how the predicted site-specific distributions compare to those
obtained from a representative subset of the PDB [39]. For this compari-
son, we considered a non-redundant subset of single-domain globular proteins
in the PDB, with a sequence identity below 25% [85]. Globular folds were
selected by imposing that the fraction of contacts per residue was larger than
a length-dependent threshold, Nc/N > 3.5 + 7.8N−1/3. This functional form
represents the scaling of the number of contacts in globular proteins as a func-
tion of chain length (the factor N−1/3 comes from the surface to volume ratio),
and the two parameters are chosen so as to eliminate outliers with respect
to the general trend, which represents mainly non-globular structures. Single-
domain folds were selected by imposing that the normalized variance of the PE
components is smaller than a threshold,

(
1 −N〈c〉2)/(N〈c〉2) < 1.5. In fact,

multi-domain proteins have PE components that are large inside their main
domains and small outside them (the PE components would be exactly zero
outside the main domains if the domains would not share contacts). There-
fore, multi-domain proteins are characterized by a larger normalized variance
of PE components with respect to single-domain ones. It has been verified
that the threshold of 1.5 is able to eliminate most of the known multi-domain
proteins and very few of the known single-domain proteins.

In [39], we selected 404 sequences of less than 200 amino acids, and classi-
fied sites according to the value of ci/〈c〉 into bins, where 〈c〉 denotes the aver-
age over a single structure. For each bin, the observed distributions πci/〈c〉(a)
were fitted with an exponential function of the hydrophobicity parameters,
πci/〈c〉(a) ∝ exp[−βci/〈c〉 h(a)]. As in the case of the SCN simulations, the
interactivity scale derived from the effective free energy function, (4.22), was
used. The exponential fit was sufficiently good, and yielded the observed
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Boltzmann parameters βci/〈c〉 as a function of the normalized PE components,
ci/〈c〉.

Next, one can calculate the predicted Boltzmann parameters βci/〈c〉 from
the relation

ci/〈c〉 = 1 + Ã−1

[∑
{a} h(a) exp[−βci/〈c〉 h(a)]∑

{a} exp[−βci/〈c〉 h(a)]
− B̃

]
, (4.30)

where Ã and B̃ are defined as the analogous terms in (4.24), and the averages
indicated by the square brackets in (4.24) now denote, instead of the evolu-
tionary averages over a protein family, the average over all sites with ci/〈c〉 in
the same bin, even belonging to different structures, whereas angular brackets
in (4.24) now denote the average over all values of ci/〈c〉 weighted with the
number of sites in the bins.

The observed Boltzmann parameters are compared in Fig. 4.6 to the pre-
dictions of (4.30). The agreement is remarkable, as the predictions do not
involve any adjustable parameter, since Ã and B̃ are calculated from the
PDB data [39].

Fig. 4.6. ‘Boltzmann parameter’ βci/〈c〉 as a function of the normalized PE compo-
nent ci/〈c〉 (symbols) obtained by analysing a subset of 404 non-redundant single-
domain globular structures. The continuous line shows the analytical prediction,
(4.30), obtained using the mean hydrophobicity 〈

[
h
]
PDB

〉 = 0.128 and the variance

〈
[
h
]2
PDB

〉 − 〈
[
h
]
PDB

〉2 = 0.009 as obtained from this set. The dashed part of the
curve indicates the forbidden area ci < 0. The inset exemplifies the numerically
obtained − ln[π(a)] vs. hydrophobicity h(a) of amino acid a (symbols), as obtained
for 2.45 ≤ ci/〈c〉 < 2.5, yielding via a linear fit (shown as line) a value of β = −4.53
for this bin (adapted from [39])
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4.4.8 Mean-Field Model of Mutation plus Selection

Despite the good agreement with observations, the predicted distributions
do not take into account the mutation process acting at the DNA level, but
consider that all mutations from one amino acid to another are equiprobable.
To incorporate the DNA level into the SCN scheme, we represent protein
evolution at site i as an effective stochastic process with transition matrix

T (a, b) = Pµ(a, b)Pfix,i(a, b) (4.31)

for a substitution from a to b = a. The first factor represents the mutation
process, and it is the same at all positions, and the second one represents the
site-specific neutral fixation of mutations that conserve thermodynamic stabil-
ity. Results from the SCN model show that, for what concerns the stationary
distribution, the fixation term can be written as

Pfix,i(a, b) = min {1, exp (−βi [h(b) − h(a)])} , (4.32)

where the Boltzmann parameter βi takes the value that fulfils (4.23). The
larger the absolute value of βi is, the larger is the fraction of mutations that
are eliminated by negative selection for protein stability and the larger is the
mutational load.

The stationary distribution of the complete transition matrix has now the
form π(a, β) ∝ wβ(a) exp[−β h(a)], where wβ(a) satisfies the equations

0 =
∑

{b},b �=a
min {exp [−β h(b)] , exp [−β h(a)]}

× [wβ(a)Pµ(a, b) − wβ(b)Pµ(b, a)] , (4.33)

for all final amino acid states b. If the mutation matrix satisfies the detailed
balance equation, w(a)Pµ(a, b) = w(b)Pµ(b, a), which is called ‘reversibility’
in the molecular evolution literature, then the stationary distribution of the
mutation plus fixation process becomes

πi(a) =
w(a) exp [−βi h(a)])∑

{a′} w(a′) exp [−βi h(a′)] , (4.34)

where w(a) is the stationary distribution of the mutation process, which is
also the stationary distribution of the protein evolution process at sites where
βi equals zero (no mutations are rejected).

Within this more general context, the case w(a) ≡ 1, which corresponds
to Pµ(a, b) = 1/20, is the mutational model that was adopted in the previ-
ous subsection. Despite its simplicity, it provides already a surprisingly good
prediction of the observed amino acid frequencies. If we adopt a reversible
mutational model at the nucleotide level, we find

w(a) ∝
∑

codons(a)

f(n1) f(n2) f(n3) , (4.35)
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where f(n) is the stationary frequency of the four nucleotides A, T, G and C.
Using uniform nucleotide frequencies, f(n) ≡ 1/4 (or, in other words, w(a)
proportional to the number of codons) improves the prediction by 40% when
measuring the similarity using the Jensen-Shannon (JS) divergence [40], with-
out introducing any free parameter. By fitting the nucleotide frequencies,
we can further improve significantly the prediction by 30% with only three
free parameters [40]. The optimal nucleotide frequencies are f(T) = 0.24,
f(A) = 0.31, f(C) = 0.19 and f(G) = 0.26. Notice that the optimal nucleotide
frequencies violate Sueoka’s parity 2 rule f(A) = f(T) and f(C) = f(G) [116],
hinting at an asymmetric distribution of coding sequences on the two DNA
strands [117].

Note that the site-specific mean hydrophobicity now depends on the
parameters of the mutation process, so that

[
hi
] ≡

∑
{a} h(a)w(a) exp[−βi h(a)]∑

{a} w(a) exp[−βi h(a)] = A (ci/〈c〉 − 1) +B . (4.36)

Therefore, the selection parameters βi, defined implicitly by the above equa-
tion, also depend on the parameters of the mutation process. This looks at
first sight in contradiction with the Darwinian paradigm according to which
selection and mutation are independent forces. However, the contradiction is
only apparent, as shown by the fact that the predicted distributions agree
very well with simulations of the SCN model with mutations at the DNA
level [117], for which the Darwinian paradigm holds. In the SCN model protein
sites evolve in a correlated way as a result of global stability constraints. The
effective model presented here is a mean-field model in which sites evolve inde-
pendently, which constitutes a considerable simplification, in particular with
respect to the task of evaluating likelihoods. The price to pay is that the selec-
tion parameter has to be computed self-consistently as the result of the mean
hydrophobic environment created by other residues, in which the mutation
process enters. For instance, when mutations favour the T nucleotide, that in
second codon positions mostly codes for hydrophobic amino acids, the β para-
meter vanishes at hydrophobic positions with large ci/〈c〉, whereas, with the
opposite mutation pattern, the β parameter vanishes at hydrophilic positions
with small ci/〈c〉. Therefore, mutation and selection, although independent
processes at a mechanistic level, become effectively entangled in the mean-field
model. Accordingly, the mutation load, i.e. the fraction of mutants eliminated
by negative selection, depends on the mutation bias [117], and so do the prop-
erties of protein folding thermodynamics: When the bias favours hydrophobic
mutations, the balance between stability with respect to unfolding and stabil-
ity with respect to misfolding shifts towards the former [57,117]. In this way,
the mutation process has a deep influence on the properties of proteins.
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4.5 Conclusions

We have described how the conservation of protein structures influences the
statistical properties of the evolutionary process by reviewing results that
were obtained by using the SCN model. We have given particular emphasis to
the effects of structure conservation on the topology of the neutral networks
in sequence space and on the correlations during evolutionary trajectories,
including the mutual effects on connected structural sites. Additionally, we
have explained how the site-specific distributions of amino acids can be derived
from the SCN model are consistent with those obtained from an analytically
solvable mean-field model.

As illustrated by the results that we discussed, the inclusion of structure
conservation in evolutionary models represents a powerful source of insight
into the rules that determine molecular evolution. With the advent of struc-
tural genomics initiatives and the constant advances in computer technology,
the range of applications of this approach is expected to expand considerably
in the future.

Acknowledgements

UB would like to thank Peter Grassberger for interesting discussions on the
SCN model, and Maya Paczusky for interesting discussions, for the hospital-
ity offered at the Perimeter Institute (Waterloo, Canada) where part of this
chapter was written, and for pointing out an inconsistency in the previous
treatment of the substitution process.

References

1. E. Zuckerkandl, L. Pauling, in Horizons in Biochemistry, ed. by M. Kasha,
B. Pullman (Academic Press, New York, 1962), pp. 189–225

2. E. Margoliash, Proc. Natl. Acad. Sci. USA 50, 672 (1963)
3. D. Graur, W.H. Li, Fundamentals of Molecular Evolution (Sinauer,

Sunderland, 2000)
4. M. Nei, S. Kumar, Molecular Evolution and Phylogenetics (Oxford University

Press, 2000)
5. L. Bromham, D. Penny, Nat. Rev. Genet. 4, 216 (2003)
6. M. Kimura, Nature 217, 624 (1968)
7. M. Kimura, The Neutral Theory of Molecular Evolution (Cambridge University

Press, 1983)
8. J.-L. King, T.H. Jukes, Science 164, 788 (1969)
9. J.H. Gillespie, The Causes of Molecular Evolution (Oxford University Press,

Oxford, 1991)
10. P. Schuster, W. Fontana, P.F. Stadler, I.L. Hofacker, Proc. R. Soc. London

B 255, 279 (1994)
11. M.A. Huynen, P.F. Stadler, W. Fontana, Proc. Natl. Acad. Sci. USA 93, 397

(1996)



110 U. Bastolla et al.

12. W. Fontana, P. Schuster, Science 280, 1451 (1998)
13. E. Bornberg-Bauer, Biophys. J. 73, 2393 (1997)
14. E. Bornberg-Bauer, H.S. Chan, Proc. Natl. Acad. Sci. USA 96, 10689 (1999)
15. A. Babajide, I.L. Hofacker, M.J. Sippl, P.F. Stadler, Folding Des. 2, 261 (1997)
16. A.M. Gutin, V.I. Abkevich, E.I. Shakhnovich, Proc. Natl. Acad. Sci. USA 92,

1282 (1995)
17. N.V. Dokholyan, E.I. Shakhnovich, J. Mol. Biol. 312, 289 (2001)
18. L.A. Mirny, E.I. Shakhnovich, J. Mol. Biol. 291, 177 (1999)
19. N.V. Dokholyan, B. Shakhnovich, E.I. Shakhnovich, Proc. Natl. Acad.

Sci. USA 99, 14132 (2002)
20. S. Govindarajan, R.A. Goldstein, Biopolymers 42, 427 (1997)
21. S. Govindarajan, R.A. Goldstein, Procl. Natl. Acad. Sci. USA 95, 5545 (1998)
22. D.M. Taverna, R.A. Goldstein, Proteins 46, 105 (2002)
23. H.J. Bussemaker, D. Thirumalai, J.K. Bhattacharjee, Phys. Rev. Lett. 79,

3530 (1997)
24. G. Tiana, R.A. Broglia, H.E. Roman, E. Vigezzi, E.I. Shakhnovich, J. Chem.

Phys. 108, 757 (1998)
25. G. Parisi, J. Echave, Mol. Biol. Evol. 18, 750 (2001)
26. G. Parisi, J. Echave, Gene 345, 45 (2005)
27. Y. Xia, M. Levitt, Proc. Natl. Acad. Sci. USA 99, 10382 (2002)
28. Y. Xia, M. Levitt, Curr. Op. Struct. Biol. 14, 202 (2004)
29. T. Aita, M. Ota, Y. Husimi, J. Theor. Biol. 221, 599 (2003)
30. J.D. Bloom, J.J. Silberg, C.O. Wilke, D.A. Drummond, C. Adami,

F.H. Arnold, Proc. Natl. Acad. Sci. USA 102, 606 (2005)
31. U. Bastolla, H.E. Roman, M. Vendruscolo, J. Theor. Biol. 200, 49 (1999)
32. U. Bastolla, M. Porto, H.E. Roman, M. Vendruscolo, J. Mol. Evol. 56, 243

(2003)
33. R.M. Sweet, D. Eisenberg, J. Mol. Biol. 171, 479 (1983)
34. L. Holm, C. Sander, Proteins 19, 256 (1994)
35. N. Kannan, S. Vishveshwara, J. Mol. Biol. 292, 441 (1999)
36. N. Kannan, S. Vishveshwara, Prot. Eng. 13, 753 (2000)
37. M. Porto, U. Bastolla, H.E. Roman, M. Vendruscolo, Phys. Rev. Lett. 92,

218101 (2004)
38. U. Bastolla, M. Porto, H.E. Roman, M. Vendruscolo, Proteins 58, 22 (2005)
39. M. Porto, H.E. Roman, M. Vendruscolo, U. Bastolla, Mol. Biol. Evol. 22, 630;

Mol. Biol. Evol. 22, 1156 (2005)
40. U. Bastolla, M. Porto, H.E. Roman, M. Vendruscolo, Gene 347, 219 (2005)
41. E. van Nimwegen, J.P. Crutchfield, M. Huynen, Proc. Natl. Acad. Sci. USA 96,

9716 (1999)
42. M. Eigen, Naturwissenschaften 58, 465 (1971)
43. M. Eigen, J. Mc Caskill, P. Schuster, Adv. Chem. Phys. 75, 149 (1989)
44. J.W. Drake, J.J. Hollandy, Proc. Natl. Acad. Sci. USA 96, 13910 (1999)
45. R. Durrett, Probability Models for DNA Sequence Evolution, (Springer, Berlin

Heidelberg New York 2002)
46. J. Berg, S. Willmann, M. Lässig, BMC Evol. Biol. 4, 42 (2004)
47. G. Sella, A.E. Hirsh, Proc. Natl. Acad. Sci. USA 102, 9541 (2005)
48. I. Leuthauser, J. Stat. Phys. 48, 343 (1987)
49. P. Tarazona, Phys. Rev. A 45, 6038 (1992)
50. T. Ohta, M. Kimura, J. Mol. Evol. 1, 18 (1971)



4 The SCN Model of Protein Evolution 111

51. T. Ohta, Nature 246, 96 (1973)
52. R.A. Fisher, The Genetic Theory of Natural Selection (Dover, 1930)
53. J. McDonald, M. Kreitman, Nature 351, 652 (1991)
54. N.G.C. Smith, A. Eyre-Walker, Nature 415, 1022 (2002)
55. T. Ohta, J. Mol. Evol. 41, 115 (1995)
56. D.J. Lambert, N.A. Moran, Proc. Natl. Acad. Sci. USA 95, 4458 (1998)
57. U. Bastolla, A. Moya, E. Viguera, E. van Ham, J. Mol. Biol. 343, 1451 (2004)
58. S. Aksoy, Insect Mol. Biol. 4, 23 (1995)
59. M.A. Fares, M.X. Ruiz-Gonzalez, A. Moya, S.F. Elena, E. Barrio, Nature 417,

398 (2002)
60. M.C. Orencia, J.S. Yoon, J.E. Ness, W.P. Stemmer, R.C. Stevens, Nat. Struct.

Biol. 8, 238 (2001)
61. C.O. Wilke, BMC Genet. 5, 25 (2004)
62. A.R. Fersht, Structure and Mechanism in Protein Science: A Guide to Enzyme

Catalysis and Protein Folding (W.H. Freeman, 1999)
63. C.M Dobson, Nature 426, 884 (2003)
64. V.N. Uversky, Cell. Mol. Life Sci. 60, 1852 (2003)
65. K.A. Bava, M.M. Gromiha, H. Uedaira, K. Kitajima, A. Sarai, Nucl. Ac.

Res. 32, D120 (2004)
66. N. Sueoka, Proc. Natl. Acad. Sci. USA 47, 469 (1961)
67. J.R. Lobry, Gene 205, 309 (1997)
68. L. Holm, C. Sander, Science 273, 595 (1996)
69. B. Rost, Folding Des. 2, S19 (1997)
70. D. Cozzetto, A. Di Matteo, A. Tramontano, FEBS J. 272, 881 (2005)
71. S.F. Atschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller,

D.J. Lipman, Nucl. Acids Res. 25, 3389 (1997)
72. N. Nagano, C.A. Orengo, J.M. Thornton, J. Mol. Biol. 321, 741 (2002)
73. A.G. Murzin, S.E. Brenner, T. Hubbard, C. Chothia, J. Mol. Biol. 247, 536

(1995)
74. C.A. Orengo, A.D. Michie, S. Jones, D.T. Jones, M.B. Swindells,

J.M. Thornton, Structure 5, 1093 (1997)
75. C. Chothia, A.M. Lesk, EMBO J. 5, 823 (1986)
76. D. Devos, A. Valencia, Proteins 41, 98 (2000)
77. N.V. Grishin, J. Struct. Biol. 134, 167 (2001)
78. W.R. Taylor, Nature 416, 657 (2002)
79. A. Harrison, F. Pearl, R. Mott, J. Thornton, C. Orengo, J. Mol. Biol. 323,

909 (2002)
80. M. Zuker, D. Sankoff, Bull. Math. Biol. 46, 591 (1984)
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