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Modeling Conformational Flexibility
and Evolution of Structure:
RNA as an Example

P. Schuster and P.F. Stadler

In this chapter, RNA secondary structures are used as an appropriate toy
model to illustrate an application of the landscape concept to understand
the molecular basis of structure formation, optimization, adaptation, and
evolution in simple systems. Two classes of landscapes are considered
(1) conformational landscapes mapping RNA conformations into free energies
of formation and (2) sequence–structure mappings assigning minimum free
energy structures to sequences. Even without referring to suboptimal confor-
mations, optimization of RNA structures by mutation and selection reveals
interesting features on the population level that can be interpreted by means
of sequence–structure maps. The full power of the RNA model unfolds when
sequence–structure maps and conformational landscapes are merged into a
more advanced mapping that assigns a whole spectrum of conformations to
the individual sequence. The scenario is complicated further – but at the
same time made more realistic – by considering kinetic effects that allow for
the assignment of two or more long-lived conformations, together with their
suboptimal folds, to a single sequence. In this case, molecules can be designed,
which fulfil multiple functions by switching back and forth from one stable con-
formation to the other or by changing conformation through allosteric binding
of effectors. The evolution of noncoding RNAs is presented as an example for
the application of landscape-based concepts.

1.1 Definition and Computation of RNA Structures

RNA sequences form structures under appropriate conditions consisting of
aqueous solution at sufficiently low temperatures, approximately neutral pH,
and ionic strength. In most of the sufficiently well studied examples RNA
folding occurs in two steps [1, 2] (1) the formation of a flexible so-called sec-
ondary structure requiring monovalent counterions and (2) the folding of the
secondary structure into a rigid 3D-structure in the presence on divalent ions,
especially Mg2⊕ [3] (for an exception see [4]). Experimental determination
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of full spatial RNA structures is a hard task for crystallographers and NMR
spectroscopists [5, 6]. Prediction of 3D-structures is also an enormously com-
plex problem and at least as demanding as in the case of proteins [7]. RNA
secondary structures, however, in contrast to protein secondary structures,
have a physical meaning as folding intermediates and are useful tools in the
interpretation and prediction of RNA function. In addition, conventional RNA
secondary structures (Sect. 1.1.1) can be represented as (restricted) strings
over a three-letter alphabet and they are accessible, therefore, to combinatorial
analysis and other techniques of discrete mathematics [8–10]. The discreteness
of secondary structures allows for straightforward comparisons of the spaces of
sequences, structures, and conformations and provides the insights into flexi-
bility and robustness of RNA molecules. Moreover, RNA secondary structures
and lattice protein models are at present the only biological objects for which
conformational landscapes and sequence–structure maps can be computed and
analyzed in complete detail. Therefore, this contribution will be exclusively
dealing with them.

1.1.1 RNA Secondary Structures

A conventional RNA secondary structure1 is a listing of base pairs that can
be visualized by a planar graph. The nodes of the graph are nucleotides of
the RNA molecule, i ∈ {1, 2, . . . , n} numbered consecutively along the chain
(Fig. 1.1). The edges of the graph represent bonds between, nodes which
fall into two classes: (1) the backbone, {i (i + 1) ∀ i = 1, . . . , n − 1}, and
(2) the base pairs. The two ends of the sequence (5′- and 3′-end) are chem-
ically different. The backbone is completely defined for known n and hence
a secondary structure is completely determined by a listing of base pairs, S,
where a pair between i and j will be denoted by i j. For a conventional
secondary structure, the base pairs fulfil three conditions:

1. Binary interaction restriction. An individual nucleotide is either involved
in one base pair or it is a single nucleotide forming no base pair.

2. No nearest neighbor pair restriction. Base pairs to nearest neighbors, i j
with j = i− 1 or j = i+ 1 are excluded.

3. No pseudoknot restriction. Two base pairs i j and k l with i < j, i < k
and k < l are only accepted if either i < k < l < j or i < j < k < l are
fulfilled – the second base pair is either enclosed by the first base pair or
lies completely outside (Fig. 1.1).

Condition 1 forbids the formation of base triplets or higher interactions
between nucleotides. Condition 2 is required for steric reasons because stereo-
chemistry does not allow for pairing geometries between neighboring nucleo-
tides. As we shall mention later, this condition is even more stringent in the

1 “Conventional”means here that the structure is free of pseudoknots (Condition 3).
Some other definitions include certain or all classes of pseudoknots.
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Fig. 1.1. Definition of RNA secondary structures. Each nucleotide inside the seq-
uence forms two backbone bonds to its neighbors, the two nucleotides at the ends,
1 and n, are connected to one neighbor (topmost drawing: nucleotides are shown as
spheres, the 3′-end is represented by an arrow). Each nucleotide can stay unpaired
or form one (and only one) base pair to another nucleotide. In the circular represen-
tation of structures (left-hand side of the drawings in the middle and at the bottom),
base pairs appear as lines crossing the circle. The upper secondary structures has
no pseudoknot. The structure at the bottom contains a pseudoknot, which is easily
recognized by crossings of lines in the circular representation. On the right-hand side
of the two structures, we show the conventional drawings of secondary structures as
they are used by biochemists and molecular biologists. Parentheses representations
(see text) are shown below the two structures

sense that hairpin loops with less than three single nucleotides do not occur
in real structures. Condition 3 is mainly a technical constraint, because the
explicit consideration of pseudoknots impedes mathematical analysis of struc-
tures substantially and makes actual computations much more time consum-
ing [11].
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Throughout this chapter, it will be convenient to identify a secondary
structure by its set of base pairs Ω. More abstractly, we consider Ω as an
arbitrary matching on {1, . . . , n}. In other words, we shall sometimes relax the
conventional no-pseudoknot Condition 3 and insist only that each nucleotide
takes part in at most one base pairs (Condition 1).2 Furthermore, let Υ be
the set of unpaired bases, which is the subset of {1, . . . , n} that is not met by
the matching Ω.

The graphic representation of secondary structures is fully equivalent to
other representations that we shall not discuss here except two, the adjacency
matrix3

A =

{
aij = aji =

{1 if i, j ∈ Ω ,
i, j = {1, . . . , n}

0 otherwise ,

}
, (1.1)

and the parentheses notation, which will be used later on to calculate base pair
probabilities and compute distances between structures, respectively. In this
notation, single nucleotides, i ∈ Υ , are represented by dots and base pairs by
parentheses (Fig. 1.1). Structures are strings of length n over the three-letter
alphabet, {., (, )} with the restrictions that the number of left parentheses,“(,”
has to match exactly the number of right parentheses, “),” and no parenthesis
must be closed before it had been opened. The no-pseudoknot restriction
guarantees that left and right parentheses are assigned according to the rules
of mathematics. Colored parentheses are required for the correct assignment
in the presence of pseudoknots (bottom plot in Fig. 1.1).

Three classes of elements occur in structures (1) stacks, (2) various kinds
of loops, and (3) external elements (Fig. 1.2). Stacks are arrays of consecutive
base pairs in which the two strands run in opposite direction:

5′-end · · · i i+ 1 i+ 2 · · · 3′-end

3′-end · · · j j − 1 j − 2 · · · 5′-end .

Loops are commonly classified by the number of closing base pairs:4

(1) A loop of degree one has one closing base pair and is commonly called a
hairpin loop.

(2) Loops of degree two are bulges or internal loops depending on the posi-
tioning of the two closing pairs. In bulges, the closing pairs are neighbors

2 Wherever confusion is possible we shall be precise and use S for conventional
secondary structures and Ω for the generalization.

3 Here the backbone is excluded from the adjacency matrix but its makes no dif-
ference when it is considered too because the backbone does not change in super-
positions of the structures discussed here.

4 Each stack neighboring the loop ends in a pair is called a closing pair of the loop.
The number of closing base pairs is easily determined: Imagine the loop as a circle
and count all base pairs whose nucleotides are members of this circle.
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Fig. 1.2. Elements of RNA secondary structures. Three classes of structural
elements are distinguished: (1) stacks (indicated by nucleotides in dark color),
(2) loops, and (3) external elements being joints and free ends. Loops fall into
several subclasses: Hairpin loops have one base pair, called the closing pair, in the
loop. Bulges and internal loops have two closing pairs, and loops with three or more
closing pairs are called multiloops

without a single nucleotide in between while they are separated by single
bases on both sides in internal loops. Algorithmically, two stacked adjacent
base pairs are treated as an interior loop without unpaired bases. Higher
degree loops have three or more closing pairs and are called multiloops.

(3) Flexible substructures are free ends and parts of the nucleotide chain that
join two modules of structure.
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As indicated in Fig. 1.2 it is important for calculations of free energies that
the individual substructures are independent in the sense that the free energy
of a substructure is not changed by changes in the pairing pattern of another
substructure.

It will turn out useful to introduce the notion of acceptable structures,
which are a subset of the conventional structures [12]. Two restrictions are
introduced that eliminate structures of high free energies, which are commonly
well above the energy of the open chain (a) Condition 2 in the definition of
secondary structures is made more stringent in the sense that base pairs to
next nearest neighbors are also excluded, and hence the base pairs with the
shortest distance along the sequence are i i+ 3, and (b) isolated base pairs
are excluded implying that the shortest stacking regions consists of at least
two base pairs formed by neighboring bases.

1.1.2 Compatibility of Sequences and Structures

A sequence X = (x1x2 · · ·xn) over an alphabet A with κ letters is com-
patible with the matching Ω if {i j} ∈ Ω implies that xixj is an allowed
base pair. This situation is expressed by xixj ∈ B. For natural RNAs, we
have A = {αi} = {A,C,G,U} (or {A,T,G,C} for DNA) and B = {βij =
αi αj} = {AU,UA,GC,CG,GU,UG}. We denote the set of all sequences
that are compatible with a structure Ω by

C[Ω] =
{
X
∣∣{i j} ∈ Ω =⇒ xixj ∈ B} . (1.2)

Clearly, for each i ∈ Υ we may choose an arbitrary letter from the nucleic
acid alphabet A, while for each pair we may choose any of the � base pairs
contained in B. For a given structure we have, therefore,

|C[Ω]| = κ|Υ |�|Ω| , (1.3)

compatible sequences.
The problem has a relevant inverse too: How many structures are com-

patible with a given sequence X? The set of these structures comprises all
possible conformations, i.e., the minimum free energy structure together with
the suboptimal structures. The computation of this number is rather involved
and has to use a recursion that has some similarity to the computation of the
minimum free energy structure (Sect. 1.1.4). It can be also obtained as the par-
tition function [13] in the limit of infinite temperature, T → ∞ (Sect. 1.1.6).
A simpler estimate is possible in terms of the stickiness of the sequence,

p(X) = 2
∑
βij∈B

pi(X)pj(X) with pi(X) =
ni(X)
n

and pj(X) =
nj(X)
n

,

(1.4)
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Fig. 1.3. Basic principle of recursions for secondary structures. The property of a
sequence with chain length n is built up recursively from the properties of smaller
segments under the assumption that the contributions are additive: The property
for the segment [1, k +1] is identical with that of the segment [1, k] if the nucleotide
xk+1 forms no base pair. If it forms a base pair with the nucleotide xj the segment
[1, k + 1] is bisected into two smaller fragments [1, j − 1] and [j + 1, k]. The solution
of a problem can be found by starting from the smallest segments and progressing
successively to larger segments. This procedure leads either to a recursion formula
(1.6, 1.7) or it can be converted into a dynamic programming algorithm as in the
case of minimum free energy structure determination

where ni(X) and nj(X) are the numbers of nucleotides αi and αj in the
sequence X, respectively, and n =

∑
αi∈A ni(X), the chain length of the

molecule.
On the basis of the assumption of additive contributions from structure

elements, the properties associated with secondary structures can be com-
puted in recursive manner from smaller to larger segments (Fig. 1.3). It is
straightforward to enumerate, for example, all possible secondary structures
for a given chain length n, sn, by means of a recursion [14,15]. For a minimal
length for hairpin loops, nlp ≥ λ, one finds [12,16]:

sm+1 = sm +
m−λ∑
j=1

sj−1 · sm−j = sm +
m−1∑
j=λ

sjsm−j−1

with s0 = s1 = · · · = sλ = 1 . (1.5)

For a (random) sequenceX with nucleotide composition (p1, . . . , pκ), the prob-
ability that two nucleotides form a base pair is given by the stickiness p(X).
Insertion into the recursion leads to [17]:

sm+1(p) = sm(p) + p

m−λ∑
j=1

sj−1(p) · sm−j(p)

with s0(p) = s1(p) = · · · = sλ(p) = 1 , (1.6)
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and sn(p) yields a rough estimate of the number of structures that are com-
patible with the sequence X. The recursion and the estimate can be extended
to a restriction of the length of stacks, nst ≥ σ [12]:

sm+1(p) = Ξm+1(p) + φm−1(p) ,

Ξm+1(p) = sm(p) +
m−2∑

k=λ+2σ−2

φk(p) · sm−k−1(p)

φm+1(p) = p

�(m−λ+1)/2�∑
k=σ−1

Ξm−2k+1(p) · pk (1.7)

with s0 = s1 = · · · = sλ+2σ−1 = 1, φ0 = φ1 = · · · = ψλ+2σ−3 = 0, and
Ξ0 = Ξ1 = · · · = Ξλ+2σ−1 = 1. Performing the recursion up to m + 1 = n
provides us with a rough estimate for the numbers of secondary structures.

Physically acceptable suboptimal structures exclude hairpin loops with
one or two single nucleotides and hence λ = 3. Since suboptimal conforma-
tions need not fulfil the criterion of negative free energies, no restriction on
stack lengths is appropriate. For a minimum hairpin loop length of λ = 3 and
σ = 1 we find the numbers collected in Table 1.1. The numbers of suboptimal
structures become very large at moderate chain length n already. The expres-
sions given here become asymptotically correct for long sequences. In order to
provide a test for smaller chain lengths, we refer to one particular case where
the number of suboptimal structures has been determined by exhaustive enu-
meration: The sequence

AAAGGGCACAGGGUGAUUUCAAUAAUUUUA

with n = 30 and p = 0.4067 has 1, 416, 661 configurations and the estimate by
means of the recursion (1.7) yields a value s30(0.4067) = 1.17× 106 for λ = 3
and σ = 1 that is fairly close to the exact number.

Table 1.1. Estimates on the numbers of suboptimal structures, sn(p) with λ = 3
and σ = 1 and p(X) being the stickiness of sequence X

Chain length Stickiness p(X)

(n) 1.0 0.5 0.375 0.25

10 65 21.4 14.3 8.6

20 1.07 × 105 7,403 2,778 787.8

50 1.82 × 1015 1.27 × 1012 8.52 × 1010 2.57 × 109

100 6.32 × 1032 2.09 × 1026 8.05 × 1023 5.81 × 1020

200 2.07 × 1068 1.55 × 1055 1.95 × 1050 8.06 × 1043



1 Flexibility and Evolution of Structure 11

1.1.3 Sequence Space, Shape Space, and Conformation Space

The analysis of relations between sequences and structures is facilitated by
means of three formal discrete spaces (1) the sequence space being the space
of all sequences of chain length n, (2) the shape space meant here as the space
of all secondary structures that can be formed by sequences of chain length
n, and (3) a conformation space containing all structures that can be formed
by one particular sequence of chain length n.

Sequence Space

The sequence space is a metric space of cardinality κn with κ being the size
of the alphabet. In addition to natural molecules built from the four-letter
alphabet, {A,T,G,C} for DNA and {A,U,G,C} for RNA, sequences over
three-letter, {A,U,G} [18] and two letter, {D,U}5 [19], alphabets were found
to form perfect catalytic RNA molecules. Accordingly, we shall discuss also
non-natural alphabets. The Hamming distance dH(X1,X2), defined as the
number of positions in which two aligned sequences differ,6 fulfills the three
requirements of a metric on sequence space:

dH(X1,X1) = 0 , (1.8a)
dH(X1,X2) = dH(X2,X1) , and (1.8b)
dH(X1,X3) ≤ dH(X1,X2) + dH(X2,X3) . (1.8c)

The Hamming metric corresponds to choosing the single point mutation as
the elementary move in sequence space.

Shape Space

The shape space comprises all possible secondary structures of chain length n.
The number of structures is given by recursion (1.6) with p = 1, or the recur-
sion (1.7) with p = 1, in case physically meaningful restrictions are applied to
the lengths of hairpin loops (nlp) or stacks (nst). It is also straightforward to
define a distance between structures. Several choices are possible (Sect. 1.2.1),
we shall make use of two of them because they correspond to move sets that are
important in kinetic folding of RNA (1) the base pair distance, dP(Sj , Sj), and
(2) the Hamming distance between the parentheses notations of structures,
dH(Sj , Sj), (Fig. 1.4). The Hamming distance between structures is simply
the number of positions in which the two strings representing the secondary
structures differ whereas the base pair distance is twice the minimal number

5 Because of weak bonding in the A U pair adenine has been replaced by D being
2,6-diamino-purine in these studies.

6 Unless stated otherwise we shall consider here binary end-to-end alignments of
sequences with equal lengths.
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Fig. 1.4. Two measures of distances between secondary structures. The Hamming
distance between parentheses notations of secondary structures is shown in the upper
plot. Base pair opening and base pair closure contribute dH = 2, but simultaneous
opening and closing, corresponding to a shift of one or more nucleotides, leads also
to the same distance and the three structures are equidistant in shape space with
Hamming metric. If we use the base pair distance instead, we find also dP = 2 for
opening or closing of a base pair, but now the shift move is not in the move set and
the two contributions for opening and closing add up to dP = 4

of base pairs that have to be erased and formed to convert one structure into
the other.7 Figure 1.4 shows the difference between the two distances in a
sequence of two consecutive steps (1) a base pair is removed in going from S1

to S2, and (2) a base pair is closed, which involves one of the two nucleotides
that formed the pair in S1, in the step from S2 to S3. In base pair distance, we
have dP(S1, S3) = dP(S1, S2) + dP(S2, S3) = 4, but in Hamming distance we
find dH(S1, S3) = dH(S1, S2) = dH(S2, S3) = 2. The interpretation is straight-
forward: The base pair distance corresponds to a set of two moves, base pair
opening and base pair closure, whereas the Hamming distance corresponds
to a larger move set that involves, in addition to single base pair operations,
(synchronous) shifts of one or more base pairs resulting in the migration of a
bulge, internal loop or other structural element.

Conformation Space

The conformational space refers to a single sequence (X) and contains all
structures that are compatible with X. Accordingly, it is a subspace of shape
space:

C[X] = {Ω |X ∈ C[Ωi]} . (1.9)

7 To make the two measures of distance comparable base pair distances are multi-
plied by factor 2 since base pair involves two nucleotides.
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Fig. 1.5. Three notions of structures. The mfe-structure is shown as the only rel-
evant conformation on the left-hand side corresponding in a formal sense to the
zero temperature limit (lim T → 0). In the middle, we show the set of suboptimal
structures as it is considered at equilibrium and temperature T in form of the par-
tition function. The notion of the equilibrium structure implies the limit of infinite
time (lim t → ∞). On the right-hand side, we show the barrier-tree of a molecule
which exemplifies a situation that is encountered, for example, in RNA switches.
At finite time we may find one or more long-lived conformations in addition to the
mfe-structure

The conformation space is of particular importance for kinetic folding of RNA.
In addition, it represents the structural diversity of conformations that is acc-
essible from the ground state Ω0 on excitation. The two move sets discussed
in the context of a measure of distance on shape space are also relevant for
conformational space since are tantamount to elementary moves in kinetic
folding of RNA [20–22]. In Fig. 1.5, we show by means of a real example
how the notion of RNA structure is extended to account for suboptimal fold-
ings and kinetic effects. Conventional RNA folding assigns the minimum free
energy (mfe) structure to the sequence. As we have seen above many subopti-
mal structures accompany the mfe-structure and contribute to the molecular
properties in the sense of a Boltzmann ensemble. The partition function is
the proper description of the RNA molecule at thermodynamic equilibrium
or in the limit of infinite time. At finite time (Fig. 1.5; energy diagram on
the right-hand side showing an RNA switch) the situation might be different
and the RNA molecule may have one or more long-lived metastable confor-
mation in addition to the mfe-structure. Then the actual molecular structure
depends also on initial conditions and on the time window of the observation.
The transitions between long-lived states are determined by the activation
energies, which are shown in the construct of a barrier tree.8

8 The barrier tree is a simplification of the conformational energy landscape and
will be discussed in Sect. 1.2.2.
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1.1.4 Computation of RNA Secondary Structures

Computation of secondary structures with minimum free energies [23] is
based on the same principle as shown for counting the numbers of structures
(Fig. 1.3). First, the free energies of the smallest possible substructures are
taken or computed from a list of parameters, then a dynamic programming
table of free energies is progressively completed by proceeding from smaller
to larger segments until the minimum free energy of the whole molecule is
obtained. Backtracking reveals the structure. The conventional approach is
empirical and uses the free energies and enthalpies of RNA model compounds
to derive the parameters for the individual structural elements. These ele-
ments correspond to the substructures shown in Fig. 1.2 at sufficiently high
resolution for sequence specific contributions.

As an example, we show the free stacking energy of a cluster of GC-pairs
in Fig. 1.6, which is obtained from three free stacking energy parameters for
the GC-pairs interacting at different geometries. On total, 21 different free
stacking energy parameters are required for the six base pairs. To be able
to compute the temperature dependence, 21 stacking enthalpy parameters
are required in addition. Loops are taken into account with loop size depen-
dent parameters and hairpin loops, bulges, internal loops, and multiloops are
treated differently. Other parameters consider nucleotides stacking on top of
regular stacks, especially stable configurations, for example tetraloops9 with
specific sequences, end-on-end stacking of stacks, etc. Stacks are (almost) the
only structure stabilizing elements, because base pair stacking is a contri-
bution with substantial negative free energy. Further structure stabilization
comes from single bases stacking on stacks called “dangling ends” and some

Fig. 1.6. The stacking parameters for the interaction between GC base pairs. Free
energies of stacking are given for the three different interaction geometries (the first
and the third paired pairs are identical). Values are given in kcalmol−1. Additivity
is assumed and therefore, we obtain a free energy of interaction of ∆G = −12.40
kcalmol−1 for the stack of five pairs

9 It is common to indicate the size of small hairpin loops by special wording:
“triloops” are hairpin loops with three single nucleotides in the loop, “tetraloops”
have four, and “pentaloops” five singles bases.
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other sequence specific contributions. Loops are almost always destabilizing
because of the entropic effect of the ring closure that freezes degrees of internal
rotation.

Listings of parameters, which are updated every few years, can be found
in the literature [24–27]. These parameters enter an energy function E(X;Ω)
that assigns a unique free energy value to every substructure and provides the
tool for completing the entries in the dynamic programming table. Several
software packages are available and web servers make secondary structure
calculations easily accessible for everybody (see, for example, the Vienna RNA
package and the Vienna RNA server [28,29]).

1.1.5 Mapping Sequences into Structures

The numbers of physically accessible structures obtained from the recursion
(1.7) are compared in Table 1.2 with the actual numbers of minimum free
energy structures computed by means of a folding routine. To this end, all
sequences of a chain length n were folded, grouped with respect to structures,
and enumerated. The numbers refer to structures without single base pairs.
Exhaustive folding of entire sequence spaces was performed for five different
alphabets: GC, UGC, AUGC, AUG, and AU. As follows directly from the
table, the mapping Ω = f(X) is many-to-one in all five alphabets. The set of
sequences that form a given matching Ω, the preimage of Ω in sequence space

G[Ω] = f−1(Ω) .= {X|f(X) = Ω} , (1.10)

is turned into a graph, the neutral network G, by connecting all pairs of
nodes with Hamming distance one by an edge. Global properties of neutral
networks are derived by means of random graph theory [30]. The characteristic
quantity for a neutral network is the degree of neutrality λ̄, which is obtained
by averaging the fraction of Hamming distance one neighbors that form the
same minimum free energy structure, λX = N

(1)
ntr/

(
n · (κ−1)

)
with N (1)

ntr being
the number of neutral one-error neighbors, over the whole network, G[Ω]:

λ̄[Ω] =
1

|G(Ω)|
∑

X∈G[Ω]

λX . (1.11)

Connectedness of neutral networks is, among other properties, determined by
the degree of neutrality [31]:

With probability one network is
{

connected if λ̄ > λcr

not connected if λ̄ < λcr ,
(1.12)

where λcr = 1 − κ−1/(κ−1) .

Computations yield λcr = 0.5, 0.423, and 0.370 for the critical value in two-,
three-, and four-letter alphabets, respectively.
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Table 1.2. Comparison of exhaustively folded sequence spaces

Chain length Number of sequences Number of structures

(n) 2n 4n sn(1) GC UGC AUGC AUG AU

7 128 1.64 × 104 2 1 1 1 1 1

8 256 6.55 × 104 4 3 3 3 2 1

9 512 2.62 × 105 8 7 7 7 3 1

10 1,024 1.05 × 106 14 13 13 13 5 3

12 4,096 1.68 × 107 37 35 35 36 14 8

14 1.64 × 104 2.68 × 107 101 83 89 93 31 20

16 6.55 × 104 4.29 × 109 304 214 246 260 72 44

18 2.62 × 105 6.87 × 1010 919 582 735 180 96

20 1.05 × 106 1.10 × 1012 2,741 1,599 2,146 504 232

25 3.36 × 107 1.13 × 1015 44,695 18,400 1,471

30 1.07 × 109 1.15 × 1018 760,983 218,318 21,315

The values are derived through exhaustive folding of all sequences of chain length
n from a given alphabet. The numbers refer to actually occurring minimum free
energy structures (open chain included) without isolated base pairs and are directly
comparable to the total numbers of acceptable structures sn(1) with λ = 3 and σ = 2
as computed from the recursion (1.7) [12]. The parameters are taken from [25]

Random graph theory predicts a single largest component for noncon-
nected networks, i.e. networks below threshold, that is commonly called the
“giant component.”Real neutral networks derived from RNA secondary struc-
tures may deviate from the prediction of random graph theory in the sense
that they have two or four equally sized largest components. This deviation
is readily explained by nonuniform distribution of the sequences belonging to
G[Sk] in sequence space caused by specific structural properties of Sk [32,33].
In particular, sequences that fold into structures, which allow for closure of
additional base pairs at the ends of the stacks, are more probable to be formed
by sequences that have an excess of one of the two bases forming a base pair
than by those with the uniform distribution: xG = xC and xA = xU. In case
of GC-sequences, the neutral network is then depleted from sequences in the
middle of sequence space and we find two largest components, one at excess
G and one at excess C.

In Table 1.3 we show, as an example, computed values of the degree of neu-
trality, λ̄[S] in neutral networks derived from tRNA-like cloverleaf structures
with different stack lengths of the hairpin loops. The most striking feature
of the data is the weak structure dependence of λ̄[S] with a family: For a
given alphabet the cloverleafs S1, S2, S3, and S4, have almost the same λ̄
values irrespective of the stability of the corresponding folds. Because of the
shorter stack lengths in S1, S2 and S3 and the weakness of the AU pair no
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Table 1.3. Degree of neutrality in different nucleotide alphabets

Structure a Nucleotide alphabet

GC UGC AUGC AUG AU

S1 0.05 ± 0.03 0.26 ± 0.07 0.28 ± 0.06 – –

S2 0.06 ± 0.03 0.26 ± 0.07 0.28 ± 0.06 0.22 ± 0.05 –

S3 0.06 ± 0.03 0.25 ± 0.07 0.29 ± 0.06 0.21 ± 0.06 –

S4 0.07 ± 0.03 0.25 ± 0.06 0.31 ± 0.06 0.20 ± 0.06 0.07 ± 0.03

The values for the degree of neutrality, λ̄, were obtained by sampling 1,000 random
sequences folding into the four cloverleaf structures with different stack sizes a

using the inverse folding routine [28]. a The following cloverleaf structures were used:

S1: ((((((...((((........)))).(((((.......))))).....(((((.......))))).))))))....

S2: ((((((...(((((......))))).(((((.......))))).....(((((.......))))).))))))....

S3: ((((((...(((((......))))).(((((.......))))).....((((((.....)))))).))))))....

S4: ((((((...((((((....)))))).((((((.....)))))).....((((((.....)))))).))))))....

AU-sequences forming these structures were obtained by inverse folding. The
same was found for S1 in case of AUG-sequences. Considering the fact that
λcr decreases from two to four-letter alphabets, we see that neutral networks
in two-letter sequence spaces (λ̄ ≈ 0.06 and λcr = 0.5) and four-letter seq-
uence spaces (λ̄ ≈ 0.3 and λcr = 0.37) must have very different extensions,
the former being certainly non connected and whereas the latter come close
to threshold.

The extension of neutral networks can be visualized also by evaluating the
lengths of neutral path. A neutral path connects pairs of neighboring neutral
sequences of Hamming distance dH = 1 for single nucleotide exchanges or
dH = 1, 2 for base pair exchange with the condition that the Hamming distance
from a reference sequence increases monotonously along the path. The path
ends when it reaches a sequence, which has only neutral neighbors that are
closer to the reference sequence. Table 1.4 compares the degree of neutrality
and the length of neutral path for GC and AUGC sequences of chain length
n = 100 with the expected result: Networks in AUGC space extend through
whole sequence space whereas GC networks sustain neutral path of roughly
only half of this length. The table also contains comparisons with constrained
molecules that were cofolded with one or two fixed sequences. The three values
demonstrate the influence of multiple constraints on neutrality, which lead to a
decrease in both, degree of neutrality and length of neutral path, and provide
an explanation why the (almost unconstrained) ribozymes of Schultes and
Bartel [35] stay functional along very long neutral paths whereas functional
tRNAs, which have to fulfil multiple constraints, tolerate only very limited
variability in their sequences.
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Table 1.4. The lengths of neutral paths through sequence space

Molecule Alphabet Degree of neutrality Neutral path length

(λ̄) d̄H(X0, Xf)

Single fold GC 0.08 ≈45

Single fold AUGC 0.33 >95

Cofold with one sequence AUGC 0.32 75

Cofold with two sequences AUGC 0.18 40

The degree of neutrality, λ̄, and the mean lengths of neutral paths through sequence
space, d̄H(X0, Xf) (with X0 being the initial and Xf the last sequence), is compared
for three examples (1) folding of (stand alone) AUGC sequences of chain lengths
n = 100, (2) cofolding of AUGC sequences of chain lengths n = 100 with a single
fixed sequence, and (3) cofolding of AUGC sequences of chain lengths n = 100
with two single fixed sequences. The values represent averages over samples of 1,200
random sequences. The value for the path length in GC sequence space with n = 100
is an estimate from Fig. 10 in [34].

The existence of neutral networks and neutral paths in real RNA mole-
cules has been demonstrated by several experimental studies on selection of
RNA molecules with predefined properties (e.g., [36, 37]). Several theoretical
investigations were also dealing with random pools of RNA sequences [38–41]
and showed, for example, that natural RNA molecules have lower free folding
energies than the average of random energies thus demonstrating the effect of
evolutionary selection for stable structures.

1.1.6 Suboptimal Structures and Partition Functions

Algorithms for the computation of suboptimal conformations have been
developed and two of them are frequently used [42, 43]. As we have already
seen from our estimate, the numbers of suboptimal states are very large and,
moreover, they increase exponentially with chain length n. The latter of the
two algorithms [43] has been designed for the calculation of all conformations
within a given energy band above the mfe and adopts a technique originally
proposed for suboptimal alignments of sequences [44]. The algorithm starts
from the same dynamic programming table as the conventional mfe conforma-
tion but considers all backtracking results within the mentioned energy band.
As indicated in Fig. 1.5, the set of structures, mfe and suboptimal conforma-
tions {S0, S1, S2, . . .}, is ordered since their free energies, {ε0, ε1, ε2, . . .} fulfill
the relation ε0 ≤ ε1 ≤ ε2 . . . .

At equilibrium and temperature T , the individual conformations form a
Boltzmann ensemble that contains a structure Sj with the Boltzmann weight
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γj = gj exp
(−(εj − ε0)/RT

)
/Q(T ), where R is the Boltzmann constant for

one mole, R = NL · kB, and Q(T ) is the partition function10

Q(T ) =
∑
i

gi exp
(−(εi − ε0)/RT

)
. (1.13)

Instead of having a structure with a set of defined base pairs, the ground state
is now described by a temperature-dependent linear combination of states
where the weighted superposition of base pairs gives rise to base pairing prob-
abilities pij(X,T ) which are the elements of the matrix

P (X,T ) =
∑
k

γk A(Sk) or pij(X,T ) =
∑
k

γk aij(Sk) , (1.14)

which is a Boltzmann weighted superposition of the adjacency matrices (1.1)
of the individual structures with the following properties: In the limit T → 0,
the base pairing probabilities converge to the base pairing pattern of S0 (for
a nondegenerate ground state, ε0 < ε1) as described by the adjacency matrix
A(S0) and in the limit T → ∞ all (micro)states have equal weights and the
partition function converges to the total number of all conformations of the
sequence X. An elegant algorithm that computes the partition function Q(T )
directly by dynamic programming is found in [13]. It has been incorporated
into the Vienna RNA package [28].

1.2 Design of RNA Structures

The design of RNA molecules boils down to finding sequences that fold
into molecules with predefined structures and properties. Consequently, an
algorithm is needed that computes sequences that fold into predefined mfe
structures. The required procedure thus corresponds to an inversion of the
conventional folding procedure.

1.2.1 Inverse Folding

Given a sequence X, the folding problem consists in finding a matching Ω
that minimizes an energy function E(X;Ω) and (if desired) satisfies other
constraints, such as the no-pseudoknot condition. In Sect. 1.1.4, we have seen
that the folding problem for pseudoknot-free secondary structures is easily
solved by means of dynamic programming.

In the inverse folding problem, we have the same energy function E and the
same constraints, but we are given the structure Ω and search for a sequence

10 Sometimes different microstates Si with the same free energy εj are lumped
together to form one “mesoscopic” state in the partition function and then the
factor gj accounts for this degeneracy.
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X that has Ω as an optimal structure. We denote the set of solutions of
the inverse folding problem by f−1(Ω). Note that f−1(Ω) may be empty,
since there are logically possible secondary structures that are not formed as
minimum energy structures of any sequence.

Just as the folding problem can be regarded as an optimization problem
on the energy landscape of a given sequence, we can also rephrase the inverse
folding problem as a combinatorial optimization problem. To this end, we
consider a measure D(Ω1, Ω2) for the structural dissimilarity of two RNA
secondary structures Ω1, Ω2. A variety of such distance measures have been
described in the literature [28, 45–48]. Since we will be interested here only
in the sequences of equal length, we may simply use the cardinality of the
symmetric difference of Ω1 or in Ω2:

D(Ω1, Ω2) =
∣∣(Ω1 ∪Ω2) \ (Ω1 ∩Ω2)

∣∣. (1.15)

Clearly, sequenceX folds into structureΩ, if and only if Ξ(X)=D(Ω, f(X))=
0. Hence, inverse folding translates into minimizing D over all sequences. We
know a priori that solutions to the inverse folding problem must be compatible
with the structure:

f−1(Ω) ⊆ C[Ω]. (1.16)

It is straightforward to modify this approach to search, for instance, for seq-
uences in which the ground state is much more stable than any structural
alternative [28]: Let E(X;Ω) be the energy of structure Ω for sequence X, and
let G(X) be the ensemble free energy of sequence X, which can be computed
by McCaskill’s algorithm [13]. Sequences with the desired property minimize

Ξ(X) = E(X;Ω) −G(X) = −RT ln γX(Ω) , (1.17)

where γX(Ω) is the probability of structure Ω in the Boltzmann ensemble of
sequence X.

It has been found empirically [28] that this combinatorial optimization
problem is easily solvable by means of adaptive walks. Starting from a ran-
domly chosen initial sequence X0, we produce mutants by exchanging a
nucleotide at the unpaired positions Υ or by replacing one of the six pair-
ing combinations by another one in a pair in Ω. A mutant is accepted if the
cost function Ξ(X) decreases. In a more sophisticated version, implemented
in the program RNAinverse, a significant speedup is achieved by optimizing
parts of the structure individually. This reduces the number of evaluations
of the folding procedure for long sequences. A more sophisticated stochastic
local search algorithm is used in the RNA-SSD software [49].

1.2.2 Multiconformational RNAs

Figure 1.5 indicates that the energy surface of a typical RNA sequence has
a large number of local minima with often high energy barriers separating
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different basins of attraction. Thus non-native conformations can have energies
comparable to the ground state, and they can be separated from the native
state by very high energy barriers. Stable alternative conformations have been
observed experimentally for a variety of RNA molecules [50–53].

Alternative conformations of the same RNA sometimes determine com-
pletely different functions [54, 55]. SV11, for instance, is a relatively small
molecule that is replicated by Qβ replicase [56, 57]. It exists in two major
conformations, a metastable multicomponent structure and a rod-like con-
formation, constituting the stable state, separated by a huge energy barrier.
While the metastable conformation is a template for Qβ replicase, the ground
state is not. By melting and rapid quenching the molecule can be reverted from
the inactive stable to the active metastable form [58]. Another, particularly
impressive, example is a designed sequence that can satisfy the base-pairing
requirements of both the hepatitis delta virus self-cleaving ribozyme and an
artificially selected self-ligating ribozyme, which have no base pairs in com-
mon. This intersection sequence displays catalytic activity for both cleavage
and ligation reactions [35].

To deal with multiple conformations, we consider a collection of struc-
tures (matchings) Ω1, Ω2, . . . , Ωk on the same sequence X. The fundamental
question in this context is whether there is a sequence in

C[Ω1, Ω2, . . . , Ωk] =
k⋂
j=1

C[Ωj ] (1.18)

and if so, what is the size of this intersection of sets of compatible sequences.
To answer this question, it is useful to consider the graph Ψ with vertex set
{1, . . . , n} and edge set

⋃k
j=1Ωj .

Generalized Intersection Theorem

Suppose B ⊆ A×A contains at least one symmetric pair, i.e., xy ∈ B implies
yx ∈ B. Then

(1) C[Ω1, . . . , Ωk] 
= ∅ if Ψ is bipartite.
For k = 2, Ψ is a disjoint union of paths and cycles with even length, and
hence always bipartite.

(2) The number of sequences that are compatible with all structures can be
written in the form∣∣C[Ω1, Ω2, . . . , Ωk]| =

∏
components ψ of Ψ

F (ψ) , (1.19)

where F (ψ) is the number of sequences that are compatible with the
connected component ψ.
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(3) For the biophysical alphabet holds:
⋂
j C[Ωj ] 
= ∅ if and only if Ψ is a

bipartite graph.
In particular, for the case of bistable sequences, k = 2, we can express the
size of the intersection explicitly in terms of Fibonacci numbers

F (Pk) = 2
(
Fib(k) + Fib(k + 1)

)
= 2Fib(n+ 2) (1.20)

F (Ck) = 2
(
Fib(k − 1) + Fib(k + 1)

)
, (1.21)

where Pk and Ck are path and cycle components of Ψ with k vertices.

For a proof of these propositions see [31, 59]. Interestingly, for two struc-
tures there is always a nonempty intersection C[Ω1]∩C[Ω2]. In contrast, the
chance that the intersection of three randomly chosen structures in nonempty
decreases exponentially with sequence length [60]. Recently, an alternative
attempt has been made to extend the design aspect of the intersection theorem
to three or more sequences [61].

Given a collection of alternative secondary structures, we can again ask
the inverse folding or sequence design question. For simplicity, we restrict our-
selves to two structures Ω1 and Ω2 here. For example, one might be interested
in sequences that have two prescribed structures Ω1 and Ω2 as stable local
energy minima with roughly equal energy, and for which the energy barrier
between these two minima is roughly ∆E. It is not hard to design a cost
function Ξ(X) for this problem. In [59], the following ansatz has been used
successfully:

Ξ(X) = E(X,Ω1) + E(X,Ω2) − 2G(X) + ξ (E(X,Ω1) − E(X,Ω2))
2

+ζ (B(X,Ω1, Ω2) − ∆E)2 . (1.22)

Here, B(X,Ω1, Ω2) is the energy barrier between the two conformations Ω1,
Ω2, which can be readily computed from the barrier tree of the sequence X.

1.2.3 Riboswitches

The capability of RNA molecules to form multiple (meta)-stable confor-
mations with different function is used in nature to implement so called
molecular switches that regulate and control the flow of a number of bio-
logical processes. Gene expression, for example, can be regulated when the
two mutually exclusive structural alternatives correspond to an active and
in-active conformation of the transcript [62]. Mechanistically, one fold of
the mRNA, the repressing conformation, contains a terminator hairpin or
some other structural element, which conceals the translation initiation site,
whereas in the alternative conformation the gene can be expressed [63]. The
switching between two competing RNA conformations can be triggered by
molecular events such as the binding of a target metabolite.

The best-known example of such a behavior are the riboswitches [64].
These are autonomous structural elements primarily found within the 5′-UTRs
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of bacterial mRNAs, which, upon direct binding of small organic molecules,
can trigger conformational changes, leading to an alteration of the expression
for the downstream located gene. Their general architecture shows two modu-
lar units [65], a“sensor”for a small metabolite and a unit which“interprets”the
signal from the“sensor”unit and interfaces to those RNA elements involved in
gene expression regulation. The size of the “sensor”-unit ranges typically from
70 to 170 nucleotides, which is unexpectedly large compared with artificial
aptamers obtained by in vitro directed evolution experiments. Riboswitches
regulate several key metabolic pathways [66, 67] in bacteria including those
leading to coenzyme B12, thiamine, pyrophosphate, flavin monophosphate,
S -adenosylmethionine, and a couple of important amino acids. The search
for additional elements is ongoing, e.g., [68, 69]. Riboswitches and engineered
allosteric ribozymes [70, 71] demonstrate impressively that RNA is indeed
capable of maintaining and regulating a complex metabolic state without the
help of proteins.

1.3 Processes in Conformation, Sequence,
and Shape Space

Kinetic folding and evolutionary optimization of RNA molecules are consid-
ered as stochastic processes, in particular as constrained walks in conformation
and sequence and/or shape space. We present a brief overview of the basic
concepts and then consider the evolution of noncoding RNA molecules as one
actual and particular interesting example.

1.3.1 Kinetic Folding

Kinetic folding of RNA molecules can be understood and modeled as a sto-
chastic process in RNA conformation space. The process corresponds to a
time-ordered series of secondary structures, a trajectory

Ω0 → Ω1 → Ω2 → · · · → ΩT , (1.23)

where initial and target structures, Ω0 and ΩT , may be chosen at will. Com-
monly, Ω0 = O and ΩT = S0 are used corresponding to the open chain
and the mfe-structure, respectively. Individual trajectories (1.23) may con-
tain loops, i.e., the same structure may be visited two or more times. In
general, it is of advantage to define the target conformation as an absorbing
state. Leaving the target state unconstrained causes the trajectory to ap-
proach a thermodynamic ensemble in the sense that it visits the individual
conformations with frequencies according to the Boltzmann weights. For prac-
tical purposes, the time required to fulfil the condition of ergodicity, however,
is prohibitively long. Basic to the stochastic process is a set of moves that
defines the allowed transitions between conformations. In the simplest case, it
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Fig. 1.7. The shift move in kinetic RNA folding. The shift move is a combina-
tion of base pair opening and base pair closure that occurs simultaneously. The
requirement for an allowed shift move is that it takes place within one substruc-
ture element, bulge, internal loop or multiloop. Shifts involving free ends are also
considered legitimate

contains base pair closure and base pair opening according to the conventional
secondary structure rules (Conditions 1–3). Such a move set corresponds to
the base pair distance, dP, as metric in shape space (Fig. 1.4). It turned out
to be important to introduce also a shift move (Fig. 1.7) since the trajecto-
ries approach the target much faster then [20]. If the move set is extended to
simultaneous shifts of as many nucleotides as possible within a given substruc-
ture element, the set has the Hamming metric between parentheses notation
of structures, dH(Si, Sj) (Fig. 1.4), as proper measure of distance.

The stochastic process (1.23) can also be described by a master equation
for the probabilities of the ensemble: Pk(t) is the probability to observe the
conformation Sk at time t. The time derivatives fulfil the equation

dPk
dt

=
m+1∑
i=0

(Pik(t) − Pki(t)) =
m+1∑
i=0

kikPi − Pk

m+1∑
i=0

kik

with k = 0, 1, . . . ,m+ 1 and i→ k ∈ move set , (1.24)

where we assume that the open chain conformation O is not part of the sub-
optimal conformations, S1, . . . , Sm. The transition probabilities are computed
from the free energies of the conformations

Pik(t) = kik Pi(t) = Pi(t) e−(gk−gi)/(2RT )/Σi , (1.25)
Pki(t) = kki Pk(t) = Pk(t) e−(gi−gk)/(2RT )/Σk , (1.26)

with Σj =
m+1∑

i=0,i �=j
exp (−(gj − gi)/(2RT )) .

To avoid the necessity of additional parameters the free energies are taken
from the suboptimal foldings. Calibration of the time scale occurs through
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Fig. 1.8. Construction of barrier trees. The set of suboptimal conformations is
related by a move set as shown in the left-hand part of the sketch. The barrier tree
is derived from the set of suboptimal structures by eliminating all conformations
except local minima of the free energy surface and minima connecting saddle points
of lowest free energy. We remark that the set of local minima depends on the choice
of the move set, although important local minima are very unlikely to be changed
on physically meaningful alterations of the move set

adjusting the folding kinetics of a model system to the experimental data.
Although it is straightforward to solve the master equation (1.24) by means
of an eigenvalue problem, practical difficulties arise from the enormously high
number of suboptimal conformations determining the dimensionality of the
system [72].

A simplification of full kinetic folding is introduced in the form of “bar-
rier trees” (Fig. 1.8). All suboptimal conformations that do neither represent
a local minimum of the conformational energy landscape nor a lowest energy
transition state between two local minima are neglected. The remaining bar-
rier tree can be used to simulate kinetic folding by means of conventional
Arrhenius kinetics. The results are often in astonishingly good agreement with
the exact computations based on (1.24). Cases of less satisfactory agreement
can be predicted [72].

1.3.2 Evolutionary Optimization

Evolution of RNA molecules based on replication, mutation, and selection in
constant environment can be described by an ODE [73]:

dxi
dt

=
m∑
k=1

fkQki xk − xi φ(t) , i = 1, . . . ,m ,

φ(t) =
m∑
k=1

fk xk(t) . (1.27)

Herein the concentrations of individual RNA sequences are denoted by xi =
[Xi] and Qij are the elements of a mutation matrix whose elements, in the
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simplest case of the uniform error rate assumption, can be expressed by an
(average) error rate p per site and replication.

Qij = pdH(Xi,Xj) · (1 − p)n−dH(Xi,Xj) . (1.28)

The mutation probability thus is only a function of the error rate and
the Hamming distance dH(Xi,Xj) between the two sequences involved. The
results of the analysis of replication–mutation kinetics have been presented
and discussed extensively [74–77] and we dispense here from repeating them.
Kinetic differential equations refer to infinite population size and accordingly,
a different description is required for the study of finite size effects on evo-
lutionary optimization. In addition, population dynamics is considered as a
process taking place exclusively in sequence space and structural properties
enter the model as parameters only.

Replication and mutation of RNA molecules leading to selection in con-
fined populations have indeed been studied also in finite populations. The best-
suited stochastic methods for modeling the system are multitype branching
processes [78]. A simplified version of the branching trajectories in replication
and mutation is shown in Fig. 1.9. As expected, the mean value of the sto-
chastic process coincides with the deterministic solution [80]. The standard
deviation, however, can be enormous as we shall see in detail later.

To simulate the interplay between mutation acting on the RNA sequence
and selection operating on phenotypes, here RNA structures, the sequence–
structure map has to be an integral part of the model [81–83]. The simula-
tion tool starts from a population of RNA molecules and simulates chemical
reactions corresponding to replication and mutation in a continuous stirred
flow reactor (CSTR) by using Gillespie’s algorithm [84, 85]. In target search
problems, the replication rate of a sequence Xk is chosen to be a function
of the Hamming distance between the mfe-structure formed by the sequence,
Sk = f(Xk) and the target structure ST ,

fk(Sk, ST ) =
1

α + dH(Sk, ST )/n
, (1.29)

which increases when Sk approaches the target (α is an adjustable parameter
that was commonly chosen to be 0.1). A trajectory is completed when the
population reaches a sequence that folds into the target structure. Accordingly,
the simulated stochastic process has two absorbing barriers, the target and the
state of extinction. For sufficiently large populations (N > 30 molecules), the
probability of extinction is very small, for population sizes reported here,
N ≥ 1, 000 it has been never observed.

A typical trajectory is shown in Fig. 1.10. The mean distance to target of
the population decreases in steps until the target is reached [82,83,86]. Individ-
ual (short) adaptive phases are interrupted by long quasi-stationary epochs.
To reconstruct the optimization dynamics, a time-ordered series of structures
was determined that leads from an initial structure SI to the target structure
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Fig. 1.9. Evolutionary optimization as a multitype branching process. The sketch
in the upper part shows only replication acts that lead to mutation. A full genealogy
is a time ordered series, which records all individual replication acts, for example
X0, . . . , X0, Xa, . . . , Xa, Xb, . . . , . . . , XT−1, XT leading to target. The population size
is either constant (Moran model [79]) or it fluctuates around a constant value (flow
reactor: N ± √

N), and hence every replication act has to be compensated by the
elimination of one molecules that is tantamount to the end of some trajectory in the
system. The sketch on the bottom illustrates the reconstruction of the optimization
run by means of a “relay series”

ST . This series, called the relay series, is a uniquely defined and uninterrupted
sequence of shapes. It is retrieved through backtracking, that is in opposite
direction from the final structure to the initial shape (see the lower part of
Fig. 1.9). The procedure starts by highlighting the final structure and traces
it back during its uninterrupted presence in the flow reactor until the time of
its first appearance. At this point, we search for the parent shape from which
it descended by mutation. Now we record time and structure, highlight the
parent shape, and repeat the procedure. Recording further backwards yields
a series of shapes and times of first appearance, which ultimately ends in the
initial population.11 Usage of the relay series and its theoretical background
allows for classification of transitions [83,87]. Inspection of the relay series on
the quasistationary plateaus allows for a distinction of two scenarios:

(1) The structure is constant and we observe neutral evolution in the sense
of Kimura’s theory of neutral evolution [88]. In particular, the number of

11 It is important to stress two facts about relay series (1) the same shape may
appear two or more times in a given relay series. Then, it was extinct between
two consecutive appearances. (2) A relay series is not a genealogy, which is the
full recording of parent–offspring relations a time-ordered series of genotypes.
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Fig. 1.10. A trajectory of evolutionary optimization. The topmost plot presents
the mean distance to the target structure of a population of 1,000 molecules. The
plot in the middle shows the width of the population in Hamming distance between
sequences and the plot at the bottom is a measure of the velocity with which the
center of the population migrates through sequence space. A remarkable synchro-
nization is observed: At the end of a quasi-stationary plateau an adaptive phase of
the migration to target is initiated that is accompanied by a drastic shrinking of the
population width and a jump in the population center. A mutation rate of p = 0.001
was chosen, the replication rate parameter is defined in (1.29), and initial as well as
target structure is shown in Table 1.5

neutral mutations accumulated is proportional to the number of replica-
tions in the population, and the evolution of the population can be under-
stood as a diffusion process on the corresponding neutral network [89].

(2) The process during the stationary epoch involves several structures with
identical replication rates and the relay series reveal a kind of random
walk in the space of these neutral structures.
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The diffusion of the population on the neutral network is illustrated by the
plot in the middle of Fig. 1.10 that shows the width of the population as a
function of time [86, 90]. The population width increases during the quasi-
stationary epoch and sharpens almost instantaneously after a sequence had
been formed that allows for a continuation of the optimization process. The
scenario at the end of the plateau corresponds to a bottle neck of evolution.
The lower part of the figure shows a plot of the migration rate or drift of the
population center and confirms this interpretation: The drift is almost always
very slow unless the population center “jumps” from one point in sequence
space to the other point where the sequence initiating the new adaptive phase
had appeared. A closer look at the figure reveals the coincidence of the three
events (1) beginning of a new adaptive phase, (2) collapse-like narrowing of
the population spread, and (3) jump-like migration of the population center.

Table 1.5 collects some numerical data obtained from repeated evolu-
tionary trajectories under identical conditions.12 Individual trajectories show
enormous scatter in the time or the number of replications required to reach

Table 1.5. Statistics of the optimization trajectories

Population Number of Real time from Number of
Alphabet size runs start to target replications (107)

(N) (nR) Mean value σ Mean value σ

AUGC 1,000 120 900 +1, 380 − 542 1.2 +3.1 − 0.9

2,000 120 530 +880 − 330 1.4 +3.6 − 1.0

3,000 1,199 400 +670 − 250 1.6 +4.4 − 1.2

10,000 120 190 +230 − 100 2.3 +5.3 − 1.6

30,000 63 110 +97 − 52 3.6 +6.7 − 2.3

100,000 18 62 +50 − 28 – –

GC 1,000 46 5,160 +15, 700 − 3, 890 – –

3,000 278 1,910 +5, 180 − 1, 460 7.4 +35.8 − 6.1

10,000 40 560 +1, 620 − 420 – –

The table shows the results of sampled evolutionary trajectories leading from a
random initial structure SI to the structure of tRNAphe, ST as target. a Simulations
were performed with an algorithm introduced by Gillespie [84,85,91]. The time unit
is here undefined. A mutation rate of p = 0.001 per site and replication was used.
The mean and standard deviation were calculated under the assumption of a log-
normal distribution that fits well the data of the simulations a The structures SI

and ST were used in the optimization:

SI: ((.(((((((((((((............(((....)))......)))))).))))))).))...(((......)))

ST: ((((((...((((........)))).(((((.......))))).....(((((.......))))).))))))....

12 Identical means here that everything was kept constant except the seeds for the
random number generators.
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the target. The mean values and the standard deviation were obtained from
statistics of trajectories under the assumption of a log-normal distribution.
Despite the scatter three features are unambiguously detectable:

(1) The search in GC sequence space takes about five time as long as the
corresponding process in AUGC sequence space in agreement with the
difference in neutral network structure discussed above.

(2) The time to target decreases with increasing population size.
(3) The number of replications required to reach the target increases with

population size.

Combining items (2) and (3) allows for a clear conclusion concerning time and
material requirements of the optimization process: Fast optimization requires
large populations whereas economic use of material suggests to work with
small population sizes.

1.3.3 Evolution of Noncoding RNAs

In recent year, there has been mounting evidence that noncoding RNAs in fact
dominate the regulatory networks of the cell (see, e.g., [92–96] for reviews).
Unlike protein coding genes, noncoding RNA (ncRNA) gene sequences do
not exhibit a strong common statistical signal that separates them from
their genomic context. Consequently, a reliable general purpose computational
gene-finder for noncoding RNA genes has remained elusive, see e.g., [97]. Most
classes of the currently known noncoding RNAs, however, are characterized
by a common, evolutionarily very well conserved, secondary structure, while
at the same time their sequence is rather variable. This feature can be under-
stood as a consequence of stabilizing selection acting (predominantly) on the
secondary structure, while the sequence remains (mostly) free to diffuse on
the neutral network.

Diffusion in sequence space, i.e., Kimura’s neutral theory [88], in fact, forms
the conceptual basis of phylogenetic inference. It is important to notice, how-
ever, that substitution rates differ dramatically between unpair regions and
base-paired regions, since sequence positions that form conserved base pairs
are highly correlated. This effectively restricts the diffusion process to the
neutral network [89]. Corresponding stochastic models of sequence evolution
are described, e.g., in [98–101]. The phase package [102,103] implements such
a model and is specifically designed to infer phylogenies from RNAs that have
a conserved secondary structure, including rRNAs.

Structural conservation in the presence of sequence variation is also the
basis of recent comparative genomics approaches toward RNA gene finding.
The first tool of this type, qrna [104] is based upon an SCFG approach to asses
the probability that a pair of aligned sequences evolved under a constraint for
preserving a secondary structure. The program RNAz [105] uses two indepen-
dent criteria for classification: a z-score measuring thermodynamic stability of
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individual sequences, and a structure conservation index obtained by compar-
ing folding energies of the individual sequences with the predicted consensus
folding. Both quantities measure different aspects of stabilizing selection for
RNA structure.

In the remainder of this section, we give a brief overview of the evolu-
tionary patterns of the most prominent RNA families. For a recent, much
more detailed review, we refer to [106]. Similar to protein-coding genes, most
ncRNAs appear in multiple paralogous copies in the genome. Unlike protein
coding genes, however, some classes of ncRNAs appear to be associated with
a large number of pseudogenes, this is in particular true for tRNAs and small
nuclear RNAs.

Ribosomal RNA sequences are probably the most widely used source of
data in molecular phylogenetics: rRNAs are abundant, very well conserved,
and therefore easy to access experimentally. Because of concerted evolution,
usually, there are no divergent paralogues despite the fact that rRNA genes,
in higher eukaryotes at least, typically are arranged in large tandem-repeated
clusters. It may not come as a surprise, however, that divergent paralogues of
both SSU [107,108] and LSU [109] do occur in some lineages.

Multiple copies of functional tRNA genes, the existence of numerous
pseudogenes, and tRNA-derived repeats are general characteristics of tRNA
evolution [110]. Comparative sequence analysis of transfer RNA by means
of statistical geometry provides strong evidence that transfer RNA sequences
diverged long before the divergence of archaea and eubacteria [111]. Indeed, in
a sample of tRNAs for very diverse organisms, those with the same anticodon
rather than those from the same organism form coherent subtrees. Models
for the origin of tRNA from even simpler components are discussed, e.g.,
in [112–114].

Like rRNAs and tRNAs, there are typically multiple genomic copies of
the spliceosomal snRNAs. Surprisingly, the copy numbers in the genome vary
significantly between even closely related species. The mechanism generating
this pattern remains unclear at present.

The absence of small nucleolar RNAs (snoRNAs) from bacterial genomes
suggests that snoRNPs arose in the archaeal and eukaryotic branch after the
divergence of the bacteria. SnoRNAs fall into two structurally distinct classes,
box C/D and H/ACA snoRNAs, that guide two different types of chemical
modifications of rRNAs and some other ncRNAs, see e.g., [115] for a review.
The numerous box C/D and H/ACA snoRNAs of Archaea and Eukarya are
likely to have arisen through duplication and variation of the guide sequence
[116]. A recent case study of the evolution of the vertebrate U17/E1, E2,
and E3 snoRNAs [106] shows that divergent paralogues of snoRNAs have
been produced throughout vertebrate evolution. Most vertebrate snoRNAs are
encoded in introns. Interestingly, paralogues often reside in adjacent introns
of the same gene. In some cases at least, these copies appear to be subject to
concerted evolution.
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MicroRNA evolution follows a pattern on its own. The mature microRNA
is only about 22nt long. It is processed from a thermodynamically very
stable stem-loop structure of about 70–80nt in length. Frequently, tandem
duplications seem to lead to poly-cistronic transcripts [117]. In contrast to
rRNA, tRNAs, and snRNAs, divergent paralogues appear to be the rule rather
than the exception for microRNAs. Consequently, most microRNAs that can
be traced back to the vertebrate ancestor are present in 2–4 paralogues copies
that are remnants of the vertebrate-specific genome duplications. Interest-
ingly, it has been found that tandem-duplications typically predate the non-
local duplication events [118]. The origin of microRNAs remains unknown.
As yet, no microRNA with homologues in both animals and plants has been
described so far, although the microRNA processing machinery in animals
and plants is clearly homologous. In [119] it has been argued that microRNA
could easily arise de novo since stem-loop structures resembling pre-miRNAs
are very abundant secondary structures in genomic sequences. A recent study
on the evolution of animal miRNAs showed that a large number of novel
microRNAs appeared in early vertebrates and in placental mammals, while
the rate of annotation is otherwise much lower.
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