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Preface

Soon after the first sequences of proteins and nucleic acids became available
for comparative analysis, it became apparent that they can play a key role for
reconstructing the evolution of life. The availability of the sequence of several
proteins prompted the birth of the field of molecular evolution, which aims
at both the reconstruction of the biochemical history of life and the under-
standing of the mechanisms of evolution at the molecular level through the
analysis of the macromolecules of existing organisms. These ambitious goals
can only be accomplished within a wide interdisciplinary approach that com-
bines together experimental techniques of molecular biology, bioinformatics
and mathematical modeling. Indeed, the huge amount of data made available
in recent years by genome sequencing projects is demanding simultaneous
skills on these three approaches.

At its beginnings, the study of molecular evolution was almost entirely
based on the analysis of macromolecular sequences. More recently, progress
in structural biology has opened the possibility of using also structural
information in evolutionary studies. It now appears that a paradigm shift
is taking place within the field of molecular evolution, from coding symbols
(sequence) to coded meanings (structure and function). This book investigates
such a structural approach at different levels of biological organization, i.e., of
molecules, networks and populations, showing that their understanding can
significantly contribute to elucidate the mechanisms of evolution and to recon-
struct its course. Synergies between experimental, theoretical, computational,
and statistical approaches are expected to widen our understanding of the
processes and pathways of molecular evolution. However, relevant fields such
as those dealing with the structure and thermodynamics of biomolecules, gene
networks, and the mechanisms of molecular biology are not fully integrated
into the field of molecular evolution yet, and these missings links are becoming
increasingly evident.

The central goal of the present tutorial book is to stimulate this inte-
gration by bringing these different disciplines together. The idea of such a
book emerged during the interdisciplinary workshop Structural approaches to
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sequence evolution: Molecules, networks, populations that we organized at the
Max-Planck-Institut fiir Physik komplexer Systeme in Dresden (Germany) in
July 2004. The book collects a series of tutorial chapters written by experts
from different scientific communities, most of whom have participated in the
workshop.

As this workshop was the birthplace of the present book, the editors wish
to express their sincere gratitude to the Max-Planck-Institut fiir Physik kom-
plexer Systeme for hosting and financing it. In particular, they would like
to thank Dr. Sergej Flach (head of the conference programme) for his very
helpful support and Mrs. Mandy Lochar (conference secretary) for her very
efficient organization.

Madrid, Ugo Bastolla
Darmstadyt, Markus Porto
Milano, H. Eduardo Roman

Cambridge, April 2006 Michele Vendruscolo
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Mbolecules: Proteins and RNA
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Modeling Conformational Flexibility
and Evolution of Structure:
RNA as an Example

P. Schuster and P.F. Stadler

In this chapter, RNA secondary structures are used as an appropriate toy
model to illustrate an application of the landscape concept to understand
the molecular basis of structure formation, optimization, adaptation, and
evolution in simple systems. Two classes of landscapes are considered
(1) conformational landscapes mapping RNA conformations into free energies
of formation and (2) sequence—structure mappings assigning minimum free
energy structures to sequences. Even without referring to suboptimal confor-
mations, optimization of RNA structures by mutation and selection reveals
interesting features on the population level that can be interpreted by means
of sequence-structure maps. The full power of the RNA model unfolds when
sequence-structure maps and conformational landscapes are merged into a
more advanced mapping that assigns a whole spectrum of conformations to
the individual sequence. The scenario is complicated further — but at the
same time made more realistic — by considering kinetic effects that allow for
the assignment of two or more long-lived conformations, together with their
suboptimal folds, to a single sequence. In this case, molecules can be designed,
which fulfil multiple functions by switching back and forth from one stable con-
formation to the other or by changing conformation through allosteric binding
of effectors. The evolution of noncoding RNAs is presented as an example for
the application of landscape-based concepts.

1.1 Definition and Computation of RNA Structures

RNA sequences form structures under appropriate conditions consisting of
aqueous solution at sufficiently low temperatures, approximately neutral pH,
and ionic strength. In most of the sufficiently well studied examples RNA
folding occurs in two steps [1,2] (1) the formation of a flexible so-called sec-
ondary structure requiring monovalent counterions and (2) the folding of the
secondary structure into a rigid 3D-structure in the presence on divalent ions,
especially Mg® [3] (for an exception see [4]). Experimental determination
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of full spatial RNA structures is a hard task for crystallographers and NMR
spectroscopists [5,6]. Prediction of 3D-structures is also an enormously com-
plex problem and at least as demanding as in the case of proteins [7]. RNA
secondary structures, however, in contrast to protein secondary structures,
have a physical meaning as folding intermediates and are useful tools in the
interpretation and prediction of RNA function. In addition, conventional RNA
secondary structures (Sect.1.1.1) can be represented as (restricted) strings
over a three-letter alphabet and they are accessible, therefore, to combinatorial
analysis and other techniques of discrete mathematics [8-10]. The discreteness
of secondary structures allows for straightforward comparisons of the spaces of
sequences, structures, and conformations and provides the insights into flexi-
bility and robustness of RNA molecules. Moreover, RNA secondary structures
and lattice protein models are at present the only biological objects for which
conformational landscapes and sequence—structure maps can be computed and
analyzed in complete detail. Therefore, this contribution will be exclusively
dealing with them.

1.1.1 RNA Secondary Structures

A conventional RNA secondary structure! is a listing of base pairs that can
be visualized by a planar graph. The nodes of the graph are nucleotides of
the RNA molecule, ¢ € {1,2,...,n} numbered consecutively along the chain
(Fig.1.1). The edges of the graph represent bonds between, nodes which
fall into two classes: (1) the backbone, {i— (i +1) Vi = 1,...,n — 1}, and
(2) the base pairs. The two ends of the sequence (5'- and 3’-end) are chem-
ically different. The backbone is completely defined for known n and hence
a secondary structure is completely determined by a listing of base pairs, 5,
where a pair between 7 and j will be denoted by ¢ — j. For a conventional
secondary structure, the base pairs fulfil three conditions:

1. Binary interaction restriction. An individual nucleotide is either involved
in one base pair or it is a single nucleotide forming no base pair.

2. No nearest neighbor pair restriction. Base pairs to nearest neighbors, ¢ = j
with y =4 —1 or j =14+ 1 are excluded.

3. No pseudoknot restriction. Two base pairsi — j and k = [ withi < j,i < k
and k < [ are only accepted if either i < k <l < jori < j <k <1 are
fulfilled — the second base pair is either enclosed by the first base pair or
lies completely outside (Fig. 1.1).

Condition 1 forbids the formation of base triplets or higher interactions
between nucleotides. Condition 2 is required for steric reasons because stereo-
chemistry does not allow for pairing geometries between neighboring nucleo-
tides. As we shall mention later, this condition is even more stringent in the

! “Conventional” means here that the structure is free of pseudoknots (Condition 3).
Some other definitions include certain or all classes of pseudoknots.
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1 2 3 4 5 6 7 8 9 10 11 12 n-1

n
50t D-3-3-5-5-5-995905 5D end

Fig. 1.1. Definition of RNA secondary structures. Each nucleotide inside the seq-
uence forms two backbone bonds to its neighbors, the two nucleotides at the ends,
1 and n, are connected to one neighbor (topmost drawing: nucleotides are shown as
spheres, the 3'-end is represented by an arrow). Each nucleotide can stay unpaired
or form one (and only one) base pair to another nucleotide. In the circular represen-
tation of structures (left-hand side of the drawings in the middle and at the bottom),
base pairs appear as lines crossing the circle. The upper secondary structures has
no pseudoknot. The structure at the bottom contains a pseudoknot, which is easily
recognized by crossings of lines in the circular representation. On the right-hand side
of the two structures, we show the conventional drawings of secondary structures as
they are used by biochemists and molecular biologists. Parentheses representations
(see text) are shown below the two structures

sense that hairpin loops with less than three single nucleotides do not occur
in real structures. Condition 3 is mainly a technical constraint, because the
explicit consideration of pseudoknots impedes mathematical analysis of struc-
tures substantially and makes actual computations much more time consum-
ing [11].
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Throughout this chapter, it will be convenient to identify a secondary
structure by its set of base pairs (2. More abstractly, we consider (2 as an
arbitrary matching on {1,...,n}. In other words, we shall sometimes relax the
conventional no-pseudoknot Condition 3 and insist only that each nucleotide
takes part in at most one base pairs (Condition 1).? Furthermore, let T be
the set of unpaired bases, which is the subset of {1,...,n} that is not met by
the matching (2.

The graphic representation of secondary structures is fully equivalent to
other representations that we shall not discuss here except two, the adjacency

matrix®
1 ifi,j € Q,
A :{aij:aji:{ iaj{la"'an}}7 (1'1)

0 otherwise,

and the parentheses notation, which will be used later on to calculate base pair
probabilities and compute distances between structures, respectively. In this
notation, single nucleotides, i € 7, are represented by dots and base pairs by
parentheses (Fig.1.1). Structures are strings of length n over the three-letter
alphabet, {., (,)} with the restrictions that the number of left parentheses, “(,”
has to match exactly the number of right parentheses, “),” and no parenthesis
must be closed before it had been opened. The no-pseudoknot restriction
guarantees that left and right parentheses are assigned according to the rules
of mathematics. Colored parentheses are required for the correct assignment
in the presence of pseudoknots (bottom plot in Fig. 1.1).

Three classes of elements occur in structures (1) stacks, (2) various kinds
of loops, and (3) external elements (Fig. 1.2). Stacks are arrays of consecutive
base pairs in which the two strands run in opposite direction:

5-end -+ — i —i+1—4i4+2 — - 3-end
I I I
Send - — j —j—1—j—2— - 5-end.

Loops are commonly classified by the number of closing base pairs:*

(1) A loop of degree one has one closing base pair and is commonly called a
hairpin loop.

(2) Loops of degree two are bulges or internal loops depending on the posi-
tioning of the two closing pairs. In bulges, the closing pairs are neighbors

2 Wherever confusion is possible we shall be precise and use S for conventional
secondary structures and 2 for the generalization.

3 Here the backbone is excluded from the adjacency matrix but its makes no dif-
ference when it is considered too because the backbone does not change in super-
positions of the structures discussed here.

4 Each stack neighboring the loop ends in a pair is called a closing pair of the loop.
The number of closing base pairs is easily determined: Imagine the loop as a circle
and count all base pairs whose nucleotides are members of this circle.
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P
jn'j hairpin loop "11.1‘] %{r:[:)m
| B .
stack free | stack
end|  joint
R Thy | T | R
free end o a 5 Tes and
stack |
hairpin loop
hairpin loop
hairpin

stack s

[ e
free i free
end i end

Fig. 1.2. Elements of RNA secondary structures. Three classes of structural
elements are distinguished: (1) stacks (indicated by nucleotides in dark color),
(2) loops, and (3) external elements being joints and free ends. Loops fall into
several subclasses: Hairpin loops have one base pair, called the closing pair, in the
loop. Bulges and internal loops have two closing pairs, and loops with three or more
closing pairs are called multiloops

without a single nucleotide in between while they are separated by single
bases on both sides in internal loops. Algorithmically, two stacked adjacent
base pairs are treated as an interior loop without unpaired bases. Higher
degree loops have three or more closing pairs and are called multiloops.

(3) Flexible substructures are free ends and parts of the nucleotide chain that
join two modules of structure.
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As indicated in Fig.1.2 it is important for calculations of free energies that
the individual substructures are independent in the sense that the free energy
of a substructure is not changed by changes in the pairing pattern of another
substructure.

It will turn out useful to introduce the notion of acceptable structures,
which are a subset of the conventional structures [12]. Two restrictions are
introduced that eliminate structures of high free energies, which are commonly
well above the energy of the open chain (a) Condition 2 in the definition of
secondary structures is made more stringent in the sense that base pairs to
next nearest neighbors are also excluded, and hence the base pairs with the
shortest distance along the sequence are i — i + 3, and (b) isolated base pairs
are excluded implying that the shortest stacking regions consists of at least
two base pairs formed by neighboring bases.

1.1.2 Compatibility of Sequences and Structures

A sequence X = (zyxo---x,) over an alphabet A with s letters is com-
patible with the matching 2 if {i = j} € (2 implies that x;x; is an allowed
base pair. This situation is expressed by x;x; € B. For natural RNAs, we
have A = {a;} = {A,C,G,U} (or {A,T,G,C} for DNA) and B = {3;; =
a; —a;} = {AU,UA, GC,CG,GU,UG}. We denote the set of all sequences
that are compatible with a structure {2 by

Cl={X|{i-j} e = xz; €B}. (1.2)

Clearly, for each i € T we may choose an arbitrary letter from the nucleic
acid alphabet A, while for each pair we may choose any of the p base pairs
contained in B. For a given structure we have, therefore,

C[92]] = M1, (1.3)

compatible sequences.

The problem has a relevant inverse too: How many structures are com-
patible with a given sequence X7 The set of these structures comprises all
possible conformations, i.e., the minimum free energy structure together with
the suboptimal structures. The computation of this number is rather involved
and has to use a recursion that has some similarity to the computation of the
minimum free energy structure (Sect. 1.1.4). It can be also obtained as the par-
tition function [13] in the limit of infinite temperature, T — oo (Sect.1.1.6).
A simpler estimate is possible in terms of the stickiness of the sequence,

p(X) =2 3 pi(X)p;(X) with p;(X) = mle) and p;(x) = )

n
Bi;eB

(1.4)
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[1.j-1] [i+1.k]
———0—------- —— - —o—o—l
1 2 3 i k-1 k k+1
< j-1 > < k-j >

Fig. 1.3. Basic principle of recursions for secondary structures. The property of a
sequence with chain length n is built up recursively from the properties of smaller
segments under the assumption that the contributions are additive: The property
for the segment [1, k + 1] is identical with that of the segment [1, k] if the nucleotide
Zr+1 forms no base pair. If it forms a base pair with the nucleotide z; the segment
[1,k + 1] is bisected into two smaller fragments [1,j — 1] and [j + 1, k]. The solution
of a problem can be found by starting from the smallest segments and progressing
successively to larger segments. This procedure leads either to a recursion formula
(1.6,1.7) or it can be converted into a dynamic programming algorithm as in the
case of minimum free energy structure determination

where n;(X) and n;(X) are the numbers of nucleotides «; and «; in the
sequence X, respectively, and n = Zaie 4 ni(X), the chain length of the
molecule.

On the basis of the assumption of additive contributions from structure
elements, the properties associated with secondary structures can be com-
puted in recursive manner from smaller to larger segments (Fig.1.3). It is
straightforward to enumerate, for example, all possible secondary structures
for a given chain length n, s,, by means of a recursion [14,15]. For a minimal
length for hairpin loops, nyp, > A, one finds [12,16]:

m—A\ m—1
Sm+1 = Sm + Z Sj—1°"Sm—j5 = Sm + Z SjSm—j—1
j=1 J=A
with sp=s1=---=s,=1. (1.5)
For a (random) sequence X with nucleotide composition (p1, ..., ps), the prob-

ability that two nucleotides form a base pair is given by the stickiness p(X).
Insertion into the recursion leads to [17]:

m—X\

Sm4+1(D) = sm(p) +p Z 55-1(p) - sm—j(p)

with  so(p) = s1(p) =--- = sa(p) =1, (1.6)
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and s,(p) yields a rough estimate of the number of structures that are com-

patible with the sequence X. The recursion and the estimate can be extended
to a restriction of the length of stacks, ng > o [12]:

Sm-l-l(p) = Em+1(p) + ¢m—1(p) 5

Ema1(p) = sm(p) + Z_ r(p) - Sm—r—1(p)

k=A+20—-2
[(m—A+1)/2]
Pm+1(p) =p Z Em-2k41(p) - " (1.7)
k=o—1
with so = s1 = +++ = sx420-1 =1, ¢g = ¢1 = -+ = Y¥rj120-3 = 0, and
9 =521 == E)t20-1 = 1. Performing the recursion up to m+1 =n

provides us with a rough estimate for the numbers of secondary structures.

Physically acceptable suboptimal structures exclude hairpin loops with
one or two single nucleotides and hence A = 3. Since suboptimal conforma-
tions need not fulfil the criterion of negative free energies, no restriction on
stack lengths is appropriate. For a minimum hairpin loop length of A = 3 and
o = 1 we find the numbers collected in Table 1.1. The numbers of suboptimal
structures become very large at moderate chain length n already. The expres-
sions given here become asymptotically correct for long sequences. In order to
provide a test for smaller chain lengths, we refer to one particular case where
the number of suboptimal structures has been determined by exhaustive enu-
meration: The sequence

AAAGGGCACAGGGUGAUUUCAAUAAUUUUA

with n = 30 and p = 0.4067 has 1,416,661 configurations and the estimate by
means of the recursion (1.7) yields a value s30(0.4067) = 1.17 x 10° for A = 3
and o = 1 that is fairly close to the exact number.

Table 1.1. Estimates on the numbers of suboptimal structures, s»(p) with A = 3
and o = 1 and p(X) being the stickiness of sequence X

Chain length Stickiness p(X)
(n) 1.0 0.5 0.375 0.25
10 65 21.4 14.3 8.6
20 1.07 x 10° 7,403 2,778 787.8
50 1.82 x 10*®  1.27 x 10'?  8.52 x 10'° 2.57 x 10°
100 6.32 x 10?2  2.09 x 10*¢  8.05 x 10?* 5.81 x 10%°

200 2.07 x 10 1.55 x 10°® 1.95 x 10°° 8.06 x 10*3
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1.1.3 Sequence Space, Shape Space, and Conformation Space

The analysis of relations between sequences and structures is facilitated by
means of three formal discrete spaces (1) the sequence space being the space
of all sequences of chain length n, (2) the shape space meant here as the space
of all secondary structures that can be formed by sequences of chain length
n, and (3) a conformation space containing all structures that can be formed
by one particular sequence of chain length n.

Sequence Space

The sequence space is a metric space of cardinality k™ with x being the size
of the alphabet. In addition to natural molecules built from the four-letter
alphabet, {A, T, G,C} for DNA and {A,U,G,C} for RNA, sequences over
three-letter, {A, U, G} [18] and two letter, {D, U}® [19], alphabets were found
to form perfect catalytic RNA molecules. Accordingly, we shall discuss also
non-natural alphabets. The Hamming distance dy (X1, X2), defined as the
number of positions in which two aligned sequences differ,® fulfills the three
requirements of a metric on sequence space:

dH(Xth) =0 5 (18&)
dH(Xl,XQ) = dH(X27X1) 5 and (18b)
dH(Xl,Xg) S dH(Xl,XQ) + dH(XQ,Xg) . (18C)

The Hamming metric corresponds to choosing the single point mutation as
the elementary move in sequence space.

Shape Space

The shape space comprises all possible secondary structures of chain length n.
The number of structures is given by recursion (1.6) with p = 1, or the recur-
sion (1.7) with p = 1, in case physically meaningful restrictions are applied to
the lengths of hairpin loops (nip) or stacks (ng). It is also straightforward to
define a distance between structures. Several choices are possible (Sect. 1.2.1),
we shall make use of two of them because they correspond to move sets that are
important in kinetic folding of RNA (1) the base pair distance, dp (5, S;), and
(2) the Hamming distance between the parentheses notations of structures,
du(S;,S;), (Fig.1.4). The Hamming distance between structures is simply
the number of positions in which the two strings representing the secondary
structures differ whereas the base pair distance is twice the minimal number

® Because of weak bonding in the A — U pair adenine has been replaced by D being
2,6-diamino-purine in these studies.

5 Unless stated otherwise we shall consider here binary end-to-end alignments of
sequences with equal lengths.
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ST A N A I 1)) .-

S, - (OO CCC .. 1)) ))))) .. dn(S,S) = 2
9]

Sy - CCCCCCCCC ... )N ... |é ;,
S, s

ST O ))))-))))) ..
dp(S1,S2) =2 dp(S2,S3) =2

Sy - CCCCC (... 1)) “—>c—>
Sy - CCCCCEUCL ... 1)) dp(S1,53) = 4

Fig. 1.4. Two measures of distances between secondary structures. The Hamming
distance between parentheses notations of secondary structures is shown in the upper
plot. Base pair opening and base pair closure contribute dg = 2, but simultaneous
opening and closing, corresponding to a shift of one or more nucleotides, leads also
to the same distance and the three structures are equidistant in shape space with
Hamming metric. If we use the base pair distance instead, we find also dp = 2 for
opening or closing of a base pair, but now the shift move is not in the move set and
the two contributions for opening and closing add up to dp =4

of base pairs that have to be erased and formed to convert one structure into
the other.” Figure 1.4 shows the difference between the two distances in a
sequence of two consecutive steps (1) a base pair is removed in going from Sy
to Sa, and (2) a base pair is closed, which involves one of the two nucleotides
that formed the pair in S7, in the step from S, to S3. In base pair distance, we
have dp(S1,S3) = dp(S1,52) + dp(S2,53) = 4, but in Hamming distance we
find di(S1,53) = du(S1,S2) = du(Sa, S3) = 2. The interpretation is straight-
forward: The base pair distance corresponds to a set of two moves, base pair
opening and base pair closure, whereas the Hamming distance corresponds
to a larger move set that involves, in addition to single base pair operations,
(synchronous) shifts of one or more base pairs resulting in the migration of a
bulge, internal loop or other structural element.

Conformation Space

The conformational space refers to a single sequence (X) and contains all
structures that are compatible with X. Accordingly, it is a subspace of shape
space:

ClX]={R|X € C[{2]} . (1.9)

" To make the two measures of distance comparable base pair distances are multi-
plied by factor 2 since base pair involves two nucleotides.
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AG [kcal/mole]
>

VATAWAN
[2]
©

S2

o —— % —_— 5

tIJ‘\-t-s.-\-t-t*\-s.-\-t-t-x’L\l
AL Ll A

Minimum free energy structure Suboptimal structures Kinetic structures

Fig. 1.5. Three notions of structures. The mfe-structure is shown as the only rel-
evant conformation on the left-hand side corresponding in a formal sense to the
zero temperature limit (im7" — 0). In the middle, we show the set of suboptimal
structures as it is considered at equilibrium and temperature 7" in form of the par-
tition function. The notion of the equilibrium structure implies the limit of infinite
time (lim¢ — o0). On the right-hand side, we show the barrier-tree of a molecule
which exemplifies a situation that is encountered, for example, in RNA switches.
At finite time we may find one or more long-lived conformations in addition to the
mfe-structure

The conformation space is of particular importance for kinetic folding of RNA.
In addition, it represents the structural diversity of conformations that is acc-
essible from the ground state {2y on excitation. The two move sets discussed
in the context of a measure of distance on shape space are also relevant for
conformational space since are tantamount to elementary moves in kinetic
folding of RNA [20-22]. In Fig.1.5, we show by means of a real example
how the notion of RNA structure is extended to account for suboptimal fold-
ings and kinetic effects. Conventional RNA folding assigns the minimum free
energy (mfe) structure to the sequence. As we have seen above many subopti-
mal structures accompany the mfe-structure and contribute to the molecular
properties in the sense of a Boltzmann ensemble. The partition function is
the proper description of the RNA molecule at thermodynamic equilibrium
or in the limit of infinite time. At finite time (Fig.1.5; energy diagram on
the right-hand side showing an RNA switch) the situation might be different
and the RNA molecule may have one or more long-lived metastable confor-
mation in addition to the mfe-structure. Then the actual molecular structure
depends also on initial conditions and on the time window of the observation.
The transitions between long-lived states are determined by the activation
energies, which are shown in the construct of a barrier tree.®

8 The barrier tree is a simplification of the conformational energy landscape and
will be discussed in Sect. 1.2.2.
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1.1.4 Computation of RNA Secondary Structures

Computation of secondary structures with minimum free energies [23] is
based on the same principle as shown for counting the numbers of structures
(Fig.1.3). First, the free energies of the smallest possible substructures are
taken or computed from a list of parameters, then a dynamic programming
table of free energies is progressively completed by proceeding from smaller
to larger segments until the minimum free energy of the whole molecule is
obtained. Backtracking reveals the structure. The conventional approach is
empirical and uses the free energies and enthalpies of RNA model compounds
to derive the parameters for the individual structural elements. These ele-
ments correspond to the substructures shown in Fig. 1.2 at sufficiently high
resolution for sequence specific contributions.

As an example, we show the free stacking energy of a cluster of GC-pairs
in Fig. 1.6, which is obtained from three free stacking energy parameters for
the GC-pairs interacting at different geometries. On total, 21 different free
stacking energy parameters are required for the six base pairs. To be able
to compute the temperature dependence, 21 stacking enthalpy parameters
are required in addition. Loops are taken into account with loop size depen-
dent parameters and hairpin loops, bulges, internal loops, and multiloops are
treated differently. Other parameters consider nucleotides stacking on top of
regular stacks, especially stable configurations, for example tetraloops® with
specific sequences, end-on-end stacking of stacks, etc. Stacks are (almost) the
only structure stabilizing elements, because base pair stacking is a contri-
bution with substantial negative free energy. Further structure stabilization
comes from single bases stacking on stacks called “dangling ends” and some

3’end 5'end
+ G CT
-3.30
G C
-2.40
C G
-3.30
C G
-3.40
41 G C v
5’'end 3’end

Fig. 1.6. The stacking parameters for the interaction between GC base pairs. Free
energies of stacking are given for the three different interaction geometries (the first
and the third paired pairs are identical). Values are given in kcal mol™'. Additivity
is assumed and therefore, we obtain a free energy of interaction of AG = —12.40
kecalmol ™ for the stack of five pairs

91t is common to indicate the size of small hairpin loops by special wording:
“triloops” are hairpin loops with three single nucleotides in the loop, “tetraloops”
have four, and “pentaloops” five singles bases.
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other sequence specific contributions. Loops are almost always destabilizing
because of the entropic effect of the ring closure that freezes degrees of internal
rotation.

Listings of parameters, which are updated every few years, can be found
in the literature [24-27]. These parameters enter an energy function F(X; (2)
that assigns a unique free energy value to every substructure and provides the
tool for completing the entries in the dynamic programming table. Several
software packages are available and web servers make secondary structure
calculations easily accessible for everybody (see, for example, the Vienna RNA
package and the Vienna RNA server [28,29]).

1.1.5 Mapping Sequences into Structures

The numbers of physically accessible structures obtained from the recursion
(1.7) are compared in Table 1.2 with the actual numbers of minimum free
energy structures computed by means of a folding routine. To this end, all
sequences of a chain length n were folded, grouped with respect to structures,
and enumerated. The numbers refer to structures without single base pairs.
Exhaustive folding of entire sequence spaces was performed for five different
alphabets: GC, UGC, AUGC, AUG, and AU. As follows directly from the
table, the mapping 2 = f(X) is many-to-one in all five alphabets. The set of
sequences that form a given matching 2, the preimage of {2 in sequence space

G[2] = f71(R) = {X|f(X) =92}, (1.10)

is turned into a graph, the neutral network G, by connecting all pairs of
nodes with Hamming distance one by an edge. Global properties of neutral
networks are derived by means of random graph theory [30]. The characteristic
quantity for a neutral network is the degree of neutrality A, which is obtained
by averaging the fraction of Hamming distance one neighbors that form the
same minimum free energy structure, Ax = Nr(j}/(n (k—1)) with N being
the number of neutral one-error neighbors, over the whole network, G[{2]:

- 1
AR = 0] XEZC;[Q] Ax (1.11)

Connectedness of neutral networks is, among other properties, determined by
the degree of neutrality [31]:

connected if XA > Aer

not connected if A < Aer, (1.12)

With probability one network is {

where Aoy = 1 — g~ 1/ (5=1)

Computations yield A., = 0.5, 0.423, and 0.370 for the critical value in two-,
three-, and four-letter alphabets, respectively.
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Table 1.2. Comparison of exhaustively folded sequence spaces

Chain length ~ Number of sequences Number of structures
(n) on 4 sn(1) GC  UGC AUGC AUG AU

7 128 1.64 x 10% 2 1 1 1 1 1

8 256 6.55 x 104 4 3 3 3 2 1

9 512 2.62 x 10° 8 7 7 7 3 1
10 1,024 1.05 x 106 14 13 13 13 5 3
12 4,096 1.68 x 107 37 35 35 36 14 8
14 1.64 x 10*  2.68 x 107 101 83 89 93 31 20
16 6.55 x 10*  4.29 x 10° 304 214 246 260 72 44
18 2.62 x 10° 6.87 x 1010 919 582 735 180 96
20 1.05 x 106 1.10 x 1012 2,741 1,599 2,146 504 232
25 3.36 x 107 1.13 x 101 44,695 18,400 1,471
30 1.07 x 10° 1.15 x 10'® 760,983 218,318 21,315

The values are derived through exhaustive folding of all sequences of chain length
n from a given alphabet. The numbers refer to actually occurring minimum free
energy structures (open chain included) without isolated base pairs and are directly
comparable to the total numbers of acceptable structures s, (1) with A = 3 and 0 = 2
as computed from the recursion (1.7) [12]. The parameters are taken from [25]

Random graph theory predicts a single largest component for noncon-
nected networks, i.e. networks below threshold, that is commonly called the
“giant component.” Real neutral networks derived from RNA secondary struc-
tures may deviate from the prediction of random graph theory in the sense
that they have two or four equally sized largest components. This deviation
is readily explained by nonuniform distribution of the sequences belonging to
G[Si] in sequence space caused by specific structural properties of Sy [32,33].
In particular, sequences that fold into structures, which allow for closure of
additional base pairs at the ends of the stacks, are more probable to be formed
by sequences that have an excess of one of the two bases forming a base pair
than by those with the uniform distribution: x¢ = x¢ and xa = xy. In case
of GC-sequences, the neutral network is then depleted from sequences in the
middle of sequence space and we find two largest components, one at excess
G and one at excess C.

In Table 1.3 we show, as an example, computed values of the degree of neu-
trality, A[S] in neutral networks derived from tRNA-like cloverleaf structures
with different stack lengths of the hairpin loops. The most striking feature
of the data is the weak structure dependence of A[S] with a family: For a
given alphabet the cloverleafs Sy, Sy, S3, and Sy, have almost the same A
values irrespective of the stability of the corresponding folds. Because of the
shorter stack lengths in S7, So and S3 and the weakness of the AU pair no
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Table 1.3. Degree of neutrality in different nucleotide alphabets

Structure * Nucleotide alphabet
GC UGC AUGC AUG AU
St 0.05+0.03 0.26 £0.07 0.28 £ 0.06 - -
So 0.06 £ 0.03 0.26 & 0.07 0.28 = 0.06 0.22 +0.05 -
Ss 0.06 +0.03 0.254+0.07 0.29 +0.06 0.21 4+ 0.06
Sy 0.07+£0.03 0.254+0.06 0.31 +0.06 0.2040.06 0.07 4+ 0.03

The values for the degree of neutrality, X, were obtained by sampling 1,000 random
sequences folding into the four cloverleaf structures with different stack sizes®
using the inverse folding routine [28].  The following cloverleaf structures were used:

S1i e (e D)) (et DDDDD IS vt DI ..
Sor (L (e 20000 (Lt DDDDD IS vt )I))) 00 ...
531 (O (e 22230 (CCCCanennn DDDDD IS e 2333)) )0 . ...
Sat L CCCCCC I L L DODDDD IS ... 233300000 ...

AU-sequences forming these structures were obtained by inverse folding. The
same was found for S; in case of AUG-sequences. Considering the fact that
Aer decreases from two to four-letter alphabets, we see that neutral networks
in two-letter sequence spaces (A ~ 0.06 and A, = 0.5) and four-letter seq-
uence spaces (A ~ 0.3 and A\, = 0.37) must have very different extensions,
the former being certainly non connected and whereas the latter come close
to threshold.

The extension of neutral networks can be visualized also by evaluating the
lengths of neutral path. A neutral path connects pairs of neighboring neutral
sequences of Hamming distance dy = 1 for single nucleotide exchanges or
dy = 1,2 for base pair exchange with the condition that the Hamming distance
from a reference sequence increases monotonously along the path. The path
ends when it reaches a sequence, which has only neutral neighbors that are
closer to the reference sequence. Table 1.4 compares the degree of neutrality
and the length of neutral path for GC and AUGC sequences of chain length
n = 100 with the expected result: Networks in AUGC space extend through
whole sequence space whereas GC networks sustain neutral path of roughly
only half of this length. The table also contains comparisons with constrained
molecules that were cofolded with one or two fixed sequences. The three values
demonstrate the influence of multiple constraints on neutrality, which lead to a
decrease in both, degree of neutrality and length of neutral path, and provide
an explanation why the (almost unconstrained) ribozymes of Schultes and
Bartel [35] stay functional along very long neutral paths whereas functional
tRNAs, which have to fulfil multiple constraints, tolerate only very limited
variability in their sequences.
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Table 1.4. The lengths of neutral paths through sequence space

Molecule Alphabet Degree of neutrality Neutral path length
) dn (Xo, Xr)

Single fold GC 0.08 ~45

Single fold AUGC 0.33 >95

Cofold with one sequence AUGC 0.32 75

Cofold with two sequences AUGC 0.18 40

The degree of neutrality, A, and the mean lengths of neutral paths through sequence
space, du(Xo, X¢) (with Xo being the initial and X; the last sequence), is compared
for three examples (1) folding of (stand alone) AUGC sequences of chain lengths
n = 100, (2) cofolding of AUGC sequences of chain lengths n = 100 with a single
fixed sequence, and (3) cofolding of AUGC sequences of chain lengths n = 100
with two single fixed sequences. The values represent averages over samples of 1,200
random sequences. The value for the path length in GC sequence space with n = 100
is an estimate from Fig. 10 in [34].

The existence of neutral networks and neutral paths in real RNA mole-
cules has been demonstrated by several experimental studies on selection of
RNA molecules with predefined properties (e.g., [36,37]). Several theoretical
investigations were also dealing with random pools of RNA sequences [38-41]
and showed, for example, that natural RNA molecules have lower free folding
energies than the average of random energies thus demonstrating the effect of
evolutionary selection for stable structures.

1.1.6 Suboptimal Structures and Partition Functions

Algorithms for the computation of suboptimal conformations have been
developed and two of them are frequently used [42,43]. As we have already
seen from our estimate, the numbers of suboptimal states are very large and,
moreover, they increase exponentially with chain length n. The latter of the
two algorithms [43] has been designed for the calculation of all conformations
within a given energy band above the mfe and adopts a technique originally
proposed for suboptimal alignments of sequences [44]. The algorithm starts
from the same dynamic programming table as the conventional mfe conforma-
tion but considers all backtracking results within the mentioned energy band.
As indicated in Fig. 1.5, the set of structures, mfe and suboptimal conforma-
tions {Sp, S1, S2,. ..}, is ordered since their free energies, {€g, €1, 2, ...} fulfill
the relation eg < &7 <eéeg....

At equilibrium and temperature 7', the individual conformations form a
Boltzmann ensemble that contains a structure S; with the Boltzmann weight
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v; = gjexp(—(g; — €9)/RT)/Q(T), where R is the Boltzmann constant for
one mole, R = Ny, - kg, and Q(T) is the partition function'’

= Zgi exp(—(e; — €0)/RT) . (1.13)

Instead of having a structure with a set of defined base pairs, the ground state
is now described by a temperature-dependent linear combination of states
where the weighted superposition of base pairs gives rise to base pairing prob-
abilities p;;(X,T) which are the elements of the matrix

P(X,T) Z’ykA Sk) or pi;(X,T) nyk a;;(Sk), (1.14)

which is a Boltzmann weighted superposition of the adjacency matrices (1.1)
of the individual structures with the following properties: In the limit 7" — 0,
the base pairing probabilities converge to the base pairing pattern of Sy (for
a nondegenerate ground state, €9 < £1) as described by the adjacency matrix
A(Sp) and in the limit T — oo all (micro)states have equal weights and the
partition function converges to the total number of all conformations of the
sequence X. An elegant algorithm that computes the partition function Q(T")
directly by dynamic programming is found in [13]. It has been incorporated
into the Vienna RNA package [28].

1.2 Design of RN A Structures

The design of RNA molecules boils down to finding sequences that fold
into molecules with predefined structures and properties. Consequently, an
algorithm is needed that computes sequences that fold into predefined mfe
structures. The required procedure thus corresponds to an inversion of the
conventional folding procedure.

1.2.1 Inverse Folding

Given a sequence X, the folding problem consists in finding a matching 2
that minimizes an energy function E(X;(2) and (if desired) satisfies other
constraints, such as the no-pseudoknot condition. In Sect. 1.1.4, we have seen
that the folding problem for pseudoknot-free secondary structures is easily
solved by means of dynamic programming.

In the inverse folding problem, we have the same energy function E and the
same constraints, but we are given the structure {2 and search for a sequence

1% Sometimes different microstates S; with the same free energy e; are lumped
together to form one “mesoscopic” state in the partition function and then the
factor g; accounts for this degeneracy.
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X that has (2 as an optimal structure. We denote the set of solutions of
the inverse folding problem by f~!(£2). Note that f~!(2) may be empty,
since there are logically possible secondary structures that are not formed as
minimum energy structures of any sequence.

Just as the folding problem can be regarded as an optimization problem
on the energy landscape of a given sequence, we can also rephrase the inverse
folding problem as a combinatorial optimization problem. To this end, we
consider a measure D(f21, (2) for the structural dissimilarity of two RNA
secondary structures {21, {25. A variety of such distance measures have been
described in the literature [28,45-48]. Since we will be interested here only
in the sequences of equal length, we may simply use the cardinality of the
symmetric difference of (2 or in (2:

D(Ql,(b) = ’(QlUQQ)\(QlﬁQQ)‘. (1.15)

Clearly, sequence X folds into structure §2, if and only if =(X)=D(£2, f(X))=
0. Hence, inverse folding translates into minimizing D over all sequences. We
know a priori that solutions to the inverse folding problem must be compatible
with the structure:

i) cClel. (1.16)

It is straightforward to modify this approach to search, for instance, for seq-
uences in which the ground state is much more stable than any structural
alternative [28]: Let F(X; £2) be the energy of structure {2 for sequence X, and
let G(X) be the ensemble free energy of sequence X, which can be computed
by McCaskill’s algorithm [13]. Sequences with the desired property minimize

[n

(X) = B(X;2) — G(X) = —RT Inyx(2), (1.17)

where vx (£2) is the probability of structure {2 in the Boltzmann ensemble of
sequence X.

It has been found empirically [28] that this combinatorial optimization
problem is easily solvable by means of adaptive walks. Starting from a ran-
domly chosen initial sequence Xg, we produce mutants by exchanging a
nucleotide at the unpaired positions 7" or by replacing one of the six pair-
ing combinations by another one in a pair in 2. A mutant is accepted if the
cost function Z(X) decreases. In a more sophisticated version, implemented
in the program RNAinverse, a significant speedup is achieved by optimizing
parts of the structure individually. This reduces the number of evaluations
of the folding procedure for long sequences. A more sophisticated stochastic
local search algorithm is used in the RNA-SSD software [49].

1.2.2 Multiconformational RNAs

Figure 1.5 indicates that the energy surface of a typical RNA sequence has
a large number of local minima with often high energy barriers separating
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different basins of attraction. Thus non-native conformations can have energies
comparable to the ground state, and they can be separated from the native
state by very high energy barriers. Stable alternative conformations have been
observed experimentally for a variety of RNA molecules [50-53].

Alternative conformations of the same RNA sometimes determine com-
pletely different functions [54, 55]. SV11, for instance, is a relatively small
molecule that is replicated by Q@ replicase [56,57]. It exists in two major
conformations, a metastable multicomponent structure and a rod-like con-
formation, constituting the stable state, separated by a huge energy barrier.
While the metastable conformation is a template for Qg replicase, the ground
state is not. By melting and rapid quenching the molecule can be reverted from
the inactive stable to the active metastable form [58]. Another, particularly
impressive, example is a designed sequence that can satisfy the base-pairing
requirements of both the hepatitis delta virus self-cleaving ribozyme and an
artificially selected self-ligating ribozyme, which have no base pairs in com-
mon. This intersection sequence displays catalytic activity for both cleavage
and ligation reactions [35].

To deal with multiple conformations, we consider a collection of struc-
tures (matchings) (21, (22, ..., 2 on the same sequence X. The fundamental
question in this context is whether there is a sequence in

Cl1, 2,...,2%] = () Cl%2] (1.18)

and if so, what is the size of this intersection of sets of compatible sequences.
To answer this question, it is useful to consider the graph ¥ with vertex set
{1,...,n} and edge set Ule 02;.

Generalized Intersection Theorem

Suppose B C A x A contains at least one symmetric pair, i.e., xy € B implies
yx € B. Then

(1) Clf2y,..., 2] # 0 if U is bipartite.
For k = 2, ¥ is a disjoint union of paths and cycles with even length, and
hence always bipartite.

(2) The number of sequences that are compatible with all structures can be
written in the form

|C[21, 2o,..., 2] = 11 F(1), (1.19)

components 1 of ¥

where F'(v) is the number of sequences that are compatible with the
connected component ).
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(3) For the biophysical alphabet holds: ; C[f2;] # 0 if and only if U is a
bipartite graph.
In particular, for the case of bistable sequences, k = 2, we can express the
size of the intersection explicitly in terms of Fibonacci numbers

F(Py) = 2(Fib(k) + Fib(k + 1)) = 2Fib(n + 2) (1.20)
F(Cy) = 2(Fib(k — 1) + Fib(k + 1)), (1.21)

where P and C} are path and cycle components of U with k vertices.

For a proof of these propositions see [31, 59]. Interestingly, for two struc-
tures there is always a nonempty intersection C[{2;] N C[{2]. In contrast, the
chance that the intersection of three randomly chosen structures in nonempty
decreases exponentially with sequence length [60]. Recently, an alternative
attempt has been made to extend the design aspect of the intersection theorem
to three or more sequences [61].

Given a collection of alternative secondary structures, we can again ask
the inverse folding or sequence design question. For simplicity, we restrict our-
selves to two structures 21 and (25 here. For example, one might be interested
in sequences that have two prescribed structures 2, and (2, as stable local
energy minima with roughly equal energy, and for which the energy barrier
between these two minima is roughly AFE. It is not hard to design a cost
function Z(X) for this problem. In [59], the following ansatz has been used
successfully:

2(X) = B(X, 1) + BE(X, 2y) = 2G(X) + ¢ (B(X, 1) — E(X, 2,))”
+C(B(X, 21, 92,) — AE)? . (1.22)

Here, B(X, {21, {2;) is the energy barrier between the two conformations (2,
(25, which can be readily computed from the barrier tree of the sequence X.

1.2.3 Riboswitches

The capability of RNA molecules to form multiple (meta)-stable confor-
mations with different function is used in nature to implement so called
molecular switches that regulate and control the flow of a number of bio-
logical processes. Gene expression, for example, can be regulated when the
two mutually exclusive structural alternatives correspond to an active and
in-active conformation of the transcript [62]. Mechanistically, one fold of
the mRNA, the repressing conformation, contains a terminator hairpin or
some other structural element, which conceals the translation initiation site,
whereas in the alternative conformation the gene can be expressed [63]. The
switching between two competing RNA conformations can be triggered by
molecular events such as the binding of a target metabolite.

The best-known example of such a behavior are the riboswitches [64].
These are autonomous structural elements primarily found within the 5'-UTRs
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of bacterial mRNAs, which, upon direct binding of small organic molecules,
can trigger conformational changes, leading to an alteration of the expression
for the downstream located gene. Their general architecture shows two modu-
lar units [65], a “sensor” for a small metabolite and a unit which “interprets” the
signal from the “sensor” unit and interfaces to those RNA elements involved in
gene expression regulation. The size of the “sensor”-unit ranges typically from
70 to 170 nucleotides, which is unexpectedly large compared with artificial
aptamers obtained by in vitro directed evolution experiments. Riboswitches
regulate several key metabolic pathways [66,67] in bacteria including those
leading to coenzyme Bis, thiamine, pyrophosphate, flavin monophosphate,
S-adenosylmethionine, and a couple of important amino acids. The search
for additional elements is ongoing, e.g., [68,69]. Riboswitches and engineered
allosteric ribozymes [70, 71] demonstrate impressively that RNA is indeed
capable of maintaining and regulating a complex metabolic state without the
help of proteins.

1.3 Processes in Conformation, Sequence,
and Shape Space

Kinetic folding and evolutionary optimization of RNA molecules are consid-
ered as stochastic processes, in particular as constrained walks in conformation
and sequence and/or shape space. We present a brief overview of the basic
concepts and then consider the evolution of noncoding RNA molecules as one
actual and particular interesting example.

1.3.1 Kinetic Folding

Kinetic folding of RNA molecules can be understood and modeled as a sto-
chastic process in RNA conformation space. The process corresponds to a
time-ordered series of secondary structures, a trajectory

Qo—>91—>02—>“~—>QT, (123)

where initial and target structures, {2y and 27, may be chosen at will. Com-
monly, 29 = O and 2p = Sy are used corresponding to the open chain
and the mfe-structure, respectively. Individual trajectories (1.23) may con-
tain loops, i.e., the same structure may be visited two or more times. In
general, it is of advantage to define the target conformation as an absorbing
state. Leaving the target state unconstrained causes the trajectory to ap-
proach a thermodynamic ensemble in the sense that it visits the individual
conformations with frequencies according to the Boltzmann weights. For prac-
tical purposes, the time required to fulfil the condition of ergodicity, however,
is prohibitively long. Basic to the stochastic process is a set of moves that
defines the allowed transitions between conformations. In the simplest case, it



24 P. Schuster and P.F. Stadler

Fig. 1.7. The shift move in kinetic RNA folding. The shift move is a combina-
tion of base pair opening and base pair closure that occurs simultaneously. The
requirement for an allowed shift move is that it takes place within one substruc-
ture element, bulge, internal loop or multiloop. Shifts involving free ends are also
considered legitimate

contains base pair closure and base pair opening according to the conventional
secondary structure rules (Conditions 1-3). Such a move set corresponds to
the base pair distance, dp, as metric in shape space (Fig.1.4). It turned out
to be important to introduce also a shift move (Fig.1.7) since the trajecto-
ries approach the target much faster then [20]. If the move set is extended to
simultaneous shifts of as many nucleotides as possible within a given substruc-
ture element, the set has the Hamming metric between parentheses notation
of structures, du(S;, S;) (Fig. 1.4), as proper measure of distance.

The stochastic process (1.23) can also be described by a master equation
for the probabilities of the ensemble: P (t) is the probability to observe the
conformation Sy at time ¢. The time derivatives fulfil the equation

de m—+1 m—+1 m—+1
= 2 (Pa®) = Pui(t) = > kuPr = P Y i
i=0 i=0 i=0
with £=0,1,...,m+1 and 17— k € move set, (1.24)

where we assume that the open chain conformation O is not part of the sub-
optimal conformations, St,...,.S,,. The transition probabilities are computed
from the free energies of the conformations

Pi(t) = ki Py(t) = Py(t) e~ (9x=9:)/CET) /53 (1.25)
Pki(t) = k]“ Pk(t) = Pk(t) e_(gi_gk)/(gRT)/Ek 5 (126)
m—+1
with X = Y exp(—(g; —g:)/(2RT)) .
1=0,i#j

To avoid the necessity of additional parameters the free energies are taken
from the suboptimal foldings. Calibration of the time scale occurs through
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Fig. 1.8. Construction of barrier trees. The set of suboptimal conformations is
related by a move set as shown in the left-hand part of the sketch. The barrier tree
is derived from the set of suboptimal structures by eliminating all conformations
except local minima of the free energy surface and minima connecting saddle points
of lowest free energy. We remark that the set of local minima depends on the choice
of the move set, although important local minima are very unlikely to be changed
on physically meaningful alterations of the move set

adjusting the folding kinetics of a model system to the experimental data.
Although it is straightforward to solve the master equation (1.24) by means
of an eigenvalue problem, practical difficulties arise from the enormously high
number of suboptimal conformations determining the dimensionality of the
system [72].

A simplification of full kinetic folding is introduced in the form of “bar-
rier trees” (Fig.1.8). All suboptimal conformations that do neither represent
a local minimum of the conformational energy landscape nor a lowest energy
transition state between two local minima are neglected. The remaining bar-
rier tree can be used to simulate kinetic folding by means of conventional
Arrhenius kinetics. The results are often in astonishingly good agreement with
the exact computations based on (1.24). Cases of less satisfactory agreement
can be predicted [72].

1.3.2 Evolutionary Optimization

Evolution of RNA molecules based on replication, mutation, and selection in
constant environment can be described by an ODE [73]:

d.’L'i i .
a :kaQkixk—$i¢(t), i=1,...,m,
k=1

o(t) =D frxn(t). (1.27)
k=1

Herein the concentrations of individual RNA sequences are denoted by z; =
[X;] and Q;; are the elements of a mutation matrix whose elements, in the
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simplest case of the uniform error rate assumption, can be expressed by an
(average) error rate p per site and replication.

Qi = p™me ) (1 prm e Xa) (1.28)

The mutation probability thus is only a function of the error rate and
the Hamming distance dg(X;, X;) between the two sequences involved. The
results of the analysis of replication—mutation kinetics have been presented
and discussed extensively [74-77] and we dispense here from repeating them.
Kinetic differential equations refer to infinite population size and accordingly,
a different description is required for the study of finite size effects on evo-
lutionary optimization. In addition, population dynamics is considered as a
process taking place exclusively in sequence space and structural properties
enter the model as parameters only.

Replication and mutation of RNA molecules leading to selection in con-
fined populations have indeed been studied also in finite populations. The best-
suited stochastic methods for modeling the system are multitype branching
processes [78]. A simplified version of the branching trajectories in replication
and mutation is shown in Fig.1.9. As expected, the mean value of the sto-
chastic process coincides with the deterministic solution [80]. The standard
deviation, however, can be enormous as we shall see in detail later.

To simulate the interplay between mutation acting on the RNA sequence
and selection operating on phenotypes, here RNA structures, the sequence—
structure map has to be an integral part of the model [81-83]. The simula-
tion tool starts from a population of RNA molecules and simulates chemical
reactions corresponding to replication and mutation in a continuous stirred
flow reactor (CSTR) by using Gillespie’s algorithm [84,85]. In target search
problems, the replication rate of a sequence Xj is chosen to be a function
of the Hamming distance between the mfe-structure formed by the sequence,
Sk = f(Xk) and the target structure S,

1

fulSe. 87) = — + du(Sk, St)/n’

(1.29)

which increases when Sy approaches the target (o is an adjustable parameter
that was commonly chosen to be 0.1). A trajectory is completed when the
population reaches a sequence that folds into the target structure. Accordingly,
the simulated stochastic process has two absorbing barriers, the target and the
state of extinction. For sufficiently large populations (N > 30 molecules), the
probability of extinction is very small, for population sizes reported here,
N > 1,000 it has been never observed.

A typical trajectory is shown in Fig. 1.10. The mean distance to target of
the population decreases in steps until the target is reached [82,83,86]. Individ-
ual (short) adaptive phases are interrupted by long quasi-stationary epochs.
To reconstruct the optimization dynamics, a time-ordered series of structures
was determined that leads from an initial structure Sy to the target structure
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Fig. 1.9. Evolutionary optimization as a multitype branching process. The sketch
in the upper part shows only replication acts that lead to mutation. A full genealogy
is a time ordered series, which records all individual replication acts, for example
Xoy.o oy, Xo, Xay ooy Xay Xy oo oy ooy X1, X7 leading to target. The population size
is either constant (Moran model [79]) or it fluctuates around a constant value (flow
reactor: N £ +/N), and hence every replication act has to be compensated by the
elimination of one molecules that is tantamount to the end of some trajectory in the
system. The sketch on the bottom illustrates the reconstruction of the optimization
run by means of a “relay series”

St. This series, called the relay series, is a uniquely defined and uninterrupted
sequence of shapes. It is retrieved through backtracking, that is in opposite
direction from the final structure to the initial shape (see the lower part of
Fig.1.9). The procedure starts by highlighting the final structure and traces
it back during its uninterrupted presence in the flow reactor until the time of
its first appearance. At this point, we search for the parent shape from which
it descended by mutation. Now we record time and structure, highlight the
parent shape, and repeat the procedure. Recording further backwards yields
a series of shapes and times of first appearance, which ultimately ends in the
initial population.!’ Usage of the relay series and its theoretical background
allows for classification of transitions [83,87]. Inspection of the relay series on
the quasistationary plateaus allows for a distinction of two scenarios:

(1) The structure is constant and we observe neutral evolution in the sense
of Kimura’s theory of neutral evolution [88]. In particular, the number of

1Tt is important to stress two facts about relay series (1) the same shape may
appear two or more times in a given relay series. Then, it was extinct between
two consecutive appearances. (2) A relay series is not a genealogy, which is the
full recording of parent—offspring relations a time-ordered series of genotypes.
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Fig. 1.10. A trajectory of evolutionary optimization. The topmost plot presents
the mean distance to the target structure of a population of 1,000 molecules. The
plot in the middle shows the width of the population in Hamming distance between
sequences and the plot at the bottom is a measure of the velocity with which the
center of the population migrates through sequence space. A remarkable synchro-
nization is observed: At the end of a quasi-stationary plateau an adaptive phase of
the migration to target is initiated that is accompanied by a drastic shrinking of the
population width and a jump in the population center. A mutation rate of p = 0.001
was chosen, the replication rate parameter is defined in (1.29), and initial as well as
target structure is shown in Table 1.5

neutral mutations accumulated is proportional to the number of replica-
tions in the population, and the evolution of the population can be under-
stood as a diffusion process on the corresponding neutral network [89].

(2) The process during the stationary epoch involves several structures with
identical replication rates and the relay series reveal a kind of random
walk in the space of these neutral structures.
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The diffusion of the population on the neutral network is illustrated by the
plot in the middle of Fig.1.10 that shows the width of the population as a
function of time [86,90]. The population width increases during the quasi-
stationary epoch and sharpens almost instantaneously after a sequence had
been formed that allows for a continuation of the optimization process. The
scenario at the end of the plateau corresponds to a bottle neck of evolution.
The lower part of the figure shows a plot of the migration rate or drift of the
population center and confirms this interpretation: The drift is almost always
very slow unless the population center “jumps” from one point in sequence
space to the other point where the sequence initiating the new adaptive phase
had appeared. A closer look at the figure reveals the coincidence of the three
events (1) beginning of a new adaptive phase, (2) collapse-like narrowing of
the population spread, and (3) jump-like migration of the population center.

Table 1.5 collects some numerical data obtained from repeated evolu-
tionary trajectories under identical conditions.'? Individual trajectories show
enormous scatter in the time or the number of replications required to reach

Table 1.5. Statistics of the optimization trajectories

Population Number of Real time from Number of
Alphabet size runs start to target replications (107)

(V) (ngr) Mean value o Mean value o
AUGC 1,000 120 900 +1, 380 — 542 1.2 +3.1-0.9
2,000 120 530 +880 — 330 1.4 +3.6 — 1.0
3,000 1,199 400 4670 — 250 1.6 +4.4—-1.2
10,000 120 190 4230 — 100 2.3 +5.3—-1.6
30,000 63 110 +97 — 52 3.6 +6.7 - 2.3

100,000 18 62 +50 — 28 - -

GC 1,000 46 5,160 415,700 — 3,890 - -
3,000 278 1,910 45,180 — 1,460 7.4 +35.8 —6.1

10,000 40 560 +1,620 — 420 - -

The table shows the results of sampled evolutionary trajectories leading from a
random initial structure S; to the structure of tRNAP™, St as target. * Simulations
were performed with an algorithm introduced by Gillespie [84,85,91]. The time unit
is here undefined. A mutation rate of p = 0.001 per site and replication was used.
The mean and standard deviation were calculated under the assumption of a log-
normal distribution that fits well the data of the simulations * The structures St

and St were used in the optimization:

St (G [CCTRTEDDD RPN )X 00 )) . (e )
St (o (e 2))) . (et M) v )ODDDEODDDDD I

12 Tdentical means here that everything was kept constant except the seeds for the
random number generators.
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the target. The mean values and the standard deviation were obtained from
statistics of trajectories under the assumption of a log-normal distribution.
Despite the scatter three features are unambiguously detectable:

(1) The search in GC sequence space takes about five time as long as the
corresponding process in AUGC sequence space in agreement with the
difference in neutral network structure discussed above.

(2) The time to target decreases with increasing population size.

(3) The number of replications required to reach the target increases with
population size.

Combining items (2) and (3) allows for a clear conclusion concerning time and
material requirements of the optimization process: Fast optimization requires
large populations whereas economic use of material suggests to work with
small population sizes.

1.3.3 Evolution of Noncoding RNAs

In recent year, there has been mounting evidence that noncoding RNAs in fact
dominate the regulatory networks of the cell (see, e.g., [92-96] for reviews).
Unlike protein coding genes, noncoding RNA (ncRNA) gene sequences do
not exhibit a strong common statistical signal that separates them from
their genomic context. Consequently, a reliable general purpose computational
gene-finder for noncoding RNA genes has remained elusive, see e.g., [97]. Most
classes of the currently known noncoding RNAs, however, are characterized
by a common, evolutionarily very well conserved, secondary structure, while
at the same time their sequence is rather variable. This feature can be under-
stood as a consequence of stabilizing selection acting (predominantly) on the
secondary structure, while the sequence remains (mostly) free to diffuse on
the neutral network.

Diffusion in sequence space, i.e., Kimura’s neutral theory [88], in fact, forms
the conceptual basis of phylogenetic inference. It is important to notice, how-
ever, that substitution rates differ dramatically between unpair regions and
base-paired regions, since sequence positions that form conserved base pairs
are highly correlated. This effectively restricts the diffusion process to the
neutral network [89]. Corresponding stochastic models of sequence evolution
are described, e.g., in [98-101]. The phase package [102,103] implements such
a model and is specifically designed to infer phylogenies from RNAs that have
a conserved secondary structure, including rRNAs.

Structural conservation in the presence of sequence variation is also the
basis of recent comparative genomics approaches toward RNA gene finding.
The first tool of this type, grna [104] is based upon an SCFG approach to asses
the probability that a pair of aligned sequences evolved under a constraint for
preserving a secondary structure. The program RNAz [105] uses two indepen-
dent criteria for classification: a z-score measuring thermodynamic stability of
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individual sequences, and a structure conservation index obtained by compar-
ing folding energies of the individual sequences with the predicted consensus
folding. Both quantities measure different aspects of stabilizing selection for
RNA structure.

In the remainder of this section, we give a brief overview of the evolu-
tionary patterns of the most prominent RNA families. For a recent, much
more detailed review, we refer to [106]. Similar to protein-coding genes, most
ncRNAs appear in multiple paralogous copies in the genome. Unlike protein
coding genes, however, some classes of ncRNAs appear to be associated with
a large number of pseudogenes, this is in particular true for tRNAs and small
nuclear RNAs.

Ribosomal RNA sequences are probably the most widely used source of
data in molecular phylogenetics: rRNAs are abundant, very well conserved,
and therefore easy to access experimentally. Because of concerted evolution,
usually, there are no divergent paralogues despite the fact that rRNA genes,
in higher eukaryotes at least, typically are arranged in large tandem-repeated
clusters. It may not come as a surprise, however, that divergent paralogues of
both SSU [107,108] and LSU [109] do occur in some lineages.

Multiple copies of functional tRNA genes, the existence of numerous
pseudogenes, and tRNA-derived repeats are general characteristics of tRNA
evolution [110]. Comparative sequence analysis of transfer RNA by means
of statistical geometry provides strong evidence that transfer RNA sequences
diverged long before the divergence of archaea and eubacteria [111]. Indeed, in
a sample of tRNAs for very diverse organisms, those with the same anticodon
rather than those from the same organism form coherent subtrees. Models
for the origin of tRNA from even simpler components are discussed, e.g.,
in [112-114].

Like rRNAs and tRNAs, there are typically multiple genomic copies of
the spliceosomal snRNAs. Surprisingly, the copy numbers in the genome vary
significantly between even closely related species. The mechanism generating
this pattern remains unclear at present.

The absence of small nucleolar RNAs (snoRNAs) from bacterial genomes
suggests that snoRNPs arose in the archaeal and eukaryotic branch after the
divergence of the bacteria. SnoRNAs fall into two structurally distinct classes,
box C/D and H/ACA snoRNAs, that guide two different types of chemical
modifications of rRNAs and some other ncRNAs, see e.g., [115] for a review.
The numerous box C/D and H/ACA snoRNAs of Archaea and Eukarya are
likely to have arisen through duplication and variation of the guide sequence
[116]. A recent case study of the evolution of the vertebrate Ul7/El, E2,
and E3 snoRNAs [106] shows that divergent paralogues of snoRNAs have
been produced throughout vertebrate evolution. Most vertebrate snoRNAs are
encoded in introns. Interestingly, paralogues often reside in adjacent introns
of the same gene. In some cases at least, these copies appear to be subject to
concerted evolution.
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MicroRNA evolution follows a pattern on its own. The mature microRNA
is only about 22nt long. It is processed from a thermodynamically very
stable stem-loop structure of about 70-80nt in length. Frequently, tandem
duplications seem to lead to poly-cistronic transcripts [117]. In contrast to
rRNA, tRNAs, and snRNAs, divergent paralogues appear to be the rule rather
than the exception for microRNAs. Consequently, most microRNAs that can
be traced back to the vertebrate ancestor are present in 2-4 paralogues copies
that are remnants of the vertebrate-specific genome duplications. Interest-
ingly, it has been found that tandem-duplications typically predate the non-
local duplication events [118]. The origin of microRNAs remains unknown.
As yet, no microRNA with homologues in both animals and plants has been
described so far, although the microRNA processing machinery in animals
and plants is clearly homologous. In [119] it has been argued that microRNA
could easily arise de novo since stem-loop structures resembling pre-miRNAs
are very abundant secondary structures in genomic sequences. A recent study
on the evolution of animal miRNAs showed that a large number of novel
microRNAs appeared in early vertebrates and in placental mammals, while
the rate of annotation is otherwise much lower.
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Gene3D and Understanding
Proteome Evolution

J.G. Ranea, C. Yeats, R. Marsden and C. Orengo

Gene3D is a database of protein sequence families. The families have been
created through clustering the proteome sequences of over 200 species, includ-
ing more than 15 eukaryotes, and totalling over 750,000 proteins (as derived
from UniProt [1]). Each family is then further subclustered on the basis of seq-
uence similarity. Using remote homologue detection methods, we have been
able to assign structures — based on the CATH [2] and Pfam [3] databases —
to a majority of these sequences. This allows a high resolution view of the
functions and evolution of specific protein families, as well as the evolution of
a species’ gene content.

As can be seen from the numbers of proteins involved, the scale of the
protein annotation problem is far greater than can be dealt with per manu.
To describe all these proteins with the highest possible accuracy, it is necessary
to accurately characterise and comprehend the evolution of variant functions
from single ancestral sequences.

Central to this effort is the modular theory of protein evolution. As the first
structures of proteins were solved in the late 1960s, it became swiftly apparent
that several of these structures were made up from smaller substructures [4];
furthermore, these substructures appeared in varying contexts and in proteins
of varying function [5] (see Table 2.1). It was proposed that these substructures
(‘domains’) are the true units of protein evolution.

The use of such units in evolution allows two methods of generating novel
functions. First, the traditional concept of stepwise mutation still applies to
the individual domains. Second, multidomain proteins can obtain new func-
tions through the recombination, subtraction or addition of new domains.
Recent work by various researchers (i.e. Ponting, Teichmann, Koonin and
Aravind to name a few) has indicated that domain shuffling is one of the
driving forces behind evolution, and can underlie processes such as the gene-
ration of antigenic diversity in pathogens [6] or the diversification of transcrip-
tion regulation [7].
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Table 2.1. Top ten most frequent domain assignments in each kingdom and in total

Archea

Bacteria

Eukaryota

In All

P-loop containing
nucleotide
triphosphate
hydrolases

NAD(P)-binding
Rossman-like

Transferase
(methyltransferase)

Winged helix
repressor DNA
binding

CBS domain

Electron transport

Oxidoreductase

Photoreceptor

ABC transporter

Spore coat protein
polysaccharide
biosynthesis protein

P-loop containing
nucleotide
triphosphate
hydrolases

NAD(P)-binding
Rossman-like

Winged helix
repressor DNA
binding

Classic zinc finger

Immunoglobulins

P-loop containing
nucleotide
triphosphate
hydrolases

Periplasmic-binding Transferase
(phosphotransferase) Rossman-like

protein-like I

Homeodomain-like

BPD transport
system inner
membrane
component
Transferase
(methyltransferase)
Binding proteins

Oxidoreductase

ABC transporter

domain 1

Laminin

Fibronectin type I

Phosphorylase
kinase domain I

Membrane spanning
alpha helix pairs

Nuclear protein

Cadherins

P-loop containing
nucleotide
triphosphate
hydrolases

Classic zinc finger

Immunoglobulins

NAD(P)-binding

Winged helix
repressor DNA
binding

Homeodomain-like

Transferase
(phosphotransferase)
domain I

Phosphorylase
kinase domain I

Periplasmic-binding
protein-like

Laminin

Further support has come from investigations into whole genome seq-
uences, for instance by Teichmann et al. [8] and by Gerstein [9]. These sug-
gest that around 70% of all proteins are multidomain and that this figure is
only slightly higher in eukaryotes over prokaryotes. We have extended these
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Fig. 2.1. Approximation of the percentage of multidomain proteins in approxi-
mately 200 genomes. The z-axis indicates the proportion of multidomain proteins
found in a genome; the y-axis indicates the proportion of species (expressed as a
percentage) that have the proportion of multidomain proteins. The data have been
split into three sets — archaea (16 species), bacteria (162 species) and eukaryotes
(16 species) — and binned into ranges of 5%. Although each specific value may not
be correct it can be assumed that the overall graph shows the correct shape and
range (unpublished work by C. Yeats, UCL)

observations to over 200 species through using the data available in Gene3D
(see Fig. 2.1). Furthermore, the Gene3D data shows (see Fig. 2.2) that around
50% of identified domains in these genomes belong to around 219 universal
(found in eukaryotes, prokaryotes and archaea) domain families [10]. In con-
trast, only about 10% of proteins are universal. This provides a strong indi-
cation that much of the variation between species comes from the shuffling of
common components to provide new functions, rather than the introduction
of novel components.

Examination of the distribution of identified domains has shown that they
follow a power-law behaviour; i.e. a few families account for most domains
(see Fig. 2.3), while many families account for the remainder. Other estimates
have concluded that half of all discovered domain sequences will belong to
around 1,500 structural families (reviewed by Grant et al. [11]). Hence, by
careful characterisation of the individual families, as well as understanding
the effects of their various recombinations, it should be possible to predict the
functions of most proteins from sequence.
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CATH Domain Distribution

Universal in 3 Kingdoms, stdev=9.679
Universal in 2 Kingdoms, stdev=3.245
Universal in 1 Kingdom, stdev=6.319
Not Universal, stdev=10.653

Gene3D Family Distribution

Universal in 3 Kingdoms, stdev=1.237
Universal in 2 Kingdoms, stdev=4.577
Universal in 1 Kingdom, stdev=8.221

Not Universal, stdev=12.727

Fig. 2.2. (Top) Kingdom distribution of domain families in Gene3D. A domain is
regarded as universal in a kingdom if it is found in over 70% of species. (Bottom)
Kingdom distribution of protein families in Gene3D. These statistics are calculated
in the same manner as in (7Top), except that the units measured are entire proteins
rather than domains. As can be seen protein families are far less likely to be common
or widespread than protein domains
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Fig. 2.3. The length distribution of NewFam families compared to CATH. The
length distributions of CATH domains and NewFam domains are binned and plotted
on the same axis. The size distributions are very similar, suggesting that NewFams
do approximately represent single domains

Hand-in-hand with understanding the modular nature of proteins has been
the creation of tools for the identification of related domains and the transfer
of functional information. On top of this information, databases are being
built that catalogue and describe domain families and attempt to predict
the function of newly identified proteins. Gene3D is one of these databases;
others are described later. At its heart, Gene3D uses a protocol called PFscape
(see later). PFscape is a benchmarked automated process that derives and
assigns information from two manually curated databases to an automatically
clustered set of proteins. Novel sequences can then be annotated through
comparison to these described clusters.

As mentioned earlier, a major issue in the analysis of genomic sequence is
the sheer volume of data. A typical bacterial genome will consist of around
4,000 genes, whereas eukaroytic genomes can range from 5,000 to at least
40,000 genes. Currently there are over 200 genomes in Gene3D, comprising
a total of over 750,000 unique proteins. Hence, PFscape has been designed
to have the advantages of a high-throughput automated procedure and the
accuracy of annotation of a manual expert-based procedure, and enables the
production of regular updates of the genome annotation.

This information is presented through the Gene3D website.! The web
resource allows browsing of individual genomes, and viewing domain and
functional annotations for the families. These include links to CATH [12] or
Pfam [3] domains that have been assigned to these families.

! www.biochem.ucl.ac.uk/bsm/cath/Gene3D
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2.1 Protein Family Clustering

Several protocols have recently been developed to attempt to classify proteins
into families and to determine their domain structure. These all aim to
deal with large numbers of proteins in a fully automated fashion. Examples
are: SYSTERS [13], ProtoNet [14], ADDA (automatic domain decomposition
algorithm) [15] and ProDom [16]. A short description is provided of each so
as to allow comparison to PFscape.

2.1.1 SYSTERS

Underlying SYSTERS is a two-step algorithm that clusters sequences acc-
ording to their similarities as determined by exhaustive Smith—Waterman
searches [17]. This algorithm takes advantage of the observation that the
tree structure of single-linkage clustered proteins tends to show several dis-
tinct groupings towards the leaves that rapidly merge into ‘superfamilies’ at
a certain point towards the trunk of the tree. This is believed to capture the
evolutionary radiation of domain families.

The first step of the algorithm is to cluster the proteins into a single link-
age tree using E-values. All sequence similarities with an E-value of above
0.05 were regarded as being of infinite distance. The unrelated subtrees are
connected using an artificial overall root node with weight infinity. Then an
automatic approach is used to determine the maximum change in family size
while moving down from leaf to root. This has been shown to often accurately
capture the largest grouping of genuinely related sequences. Step two employs
a graph theory-based algorithm, derived from Hartuv et al. [18], to parse the
superfamily tree into subclusters. This method generates 158,153 protein fam-
ilies, of which approximately 40,000 contain more than one sequence, from a
starting set of around 1.1 million sequences.

2.1.2 ProtoNet

ProtoNet uses a bottom-up clustering method based on E-values from an all-
against-all BLAST search. At each step, the two most related clusters are
merged together to create a hierarchical tree of clusters. This is an extremely
large tree, which contains many biologically incorrect or irrelevant clusters.
So a second algorithm, which determines the most stable size of a cluster, is
employed to condense these clusters into a realistic set. Using this approach
on approximately 110,000 sequences created a tree of 28,000 clusters.

2.1.3 ADDA

ADDA (automatic domain decomposition algorithm) is based around a global
maximum likelihood model for the likely domain composition of a protein



2 Gene3D and Understanding Proteome Evolution 43

based on its pairwise alignments to other proteins. These are determined using
BLAST. Having delineated the likely domains, these are clustered using a
method that carries out pairwise profile-profile comparisons of nearest neigh-
bours. If two subclusters are found to be unrelated, an edge to the family is
formed, and otherwise they are merged.

2.1.4 ProDom

ProDom is based on an algorithm originally developed by Sonnhammer and
Kahn [19] and extended to become mkdom2 by Gouzy et al. [20]. Tt is a
greedy algorithm that assumes that the smallest protein present in a sequence
database consists of a single domain. It then identifies all homologous regions
and removes these from the sequence database. Hence each fragment is dealt
with in turn until all have been clustered or removed. The problem with this
method is that it assumes that the sequence database is very clean and does
not contain fragment sequences or mispredictions. This approach clustered
750,000 sequences into 186,000 clusters of at least two proteins.

2.2 The PFscape Method

PFscape uses the TribeMCL of Enright et al. [21] algorithm to create the
initial multilinkage clusters. Using the genomes of 90 bacteria, 14 eukaryota
and 16 archaea, 112,464 gene families were created, of which 50,219 included
more than one member. This is in line with the results obtained from other
clustering methods. The clustering results were benchmarked against a man-
ually validated dataset of structurally characterised proteins obtained from
CATH; this allowed the derivation of optimum parameters for TribeMCL.
The consistency of the results was confirmed by examining families for which
each sequence’s domain architecture could be fully annotated using Pfam and
CATH. For at least 70% of the families, over 90% of the members show identi-
cal domain architectures. For the remainder, the variances are usually slight.
The clusters were then functionally annotated using information extracted
from COG [22], GO [23] and KEGG [24].

The PFUpdate protocol [10] is employed for the inclusion of new genomes.
Each protein from the new genome is searched against all the sequences previ-
ously in Gene3D. The protein is then assigned to the cluster that contains the
sequence that showed the highest similarity, provided that the overlap of the
two proteins is above 80% and the E-value is below 0.001. At the end of this
process, any clusters that have been altered (whether expanded or reduced by
error correction) are blasted against each other again and re-clustered using
multilinkage clustering. At present, around 75% of the protein sequences from
new bacterial genomes and 60% from archaeal genomes can be assigned to
existing clusters in Gene3D.
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2.3 The NewFams

Whilst Pfam and CATH combined manage to typically assign at least one
domain to around 60-80% of proteins within a genome they only describe
around 40-60% of amino acids encoded [10]. Hence, it is clear that
there are many remaining regions of suitable size and composition as to encode
unidentified domains.

Using the assumption that a region of undescribed complex amino acid
sequence greater than 40 residues in length is likely to encode a domain,
a protocol was developed [10] to identify these regions and to cluster them
together. This has created a set of 40,000 putative domain families, termed
‘NewFams,” that are likely to represent protein structures; work is currently
underway to validate and describe as many of these as possible. It is im-
portant to note that the protocol for building these families are likely to
miss homologues and hence that several NewFams may represent a single
domain.

Incorporating the NewFams into the annotation process should allow a
more highly resolved view of protein evolution and functional adaptation.
This can be achieved, for example, by identifying GO terms that associate
with particular NewFams, or by identifying protein familes that have diverged
through the introduction of an undescribed region. Of note, the 6,000 biggest
CATH, Pfam and NewFam domain families account for over 80% of sequenced
residues (see Fig. 2.4), discounting protein sequences with no apparent homo-
logy to any other sequence (‘singletons’).
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Fig. 2.4. Coverage of the protein universe by Gene3D: the percentage of residues
in Gene3D that are matched, at least once, by CATH, Pfam and the NewFams.
For both graphs the cumulative coverage provided each family is shown, with the
families ordered by size on the z-axis
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2.4 Describing the Proteome

As discussed in the Introduction to this chapter, the genome sequencing
projects of the last ten years have created a large and diverse dataset. With
over 200 genomes sequenced, the variation between whole genomes can now
be approached in a generalised statistical manner. In this section, we will
describe some examples of the ways that this data can be exploited through
Gene3D.

Since Gene3D is based around whole genome sequences, it is possible to
generate a frequency of occurrence profile for each superfamily. The profiles
can then be compared and correlated with each other or with other extant
data. These investigations have clarified the evolutionary restraints on the
development of bacterial genome complexity and provide models that can
allow us to predict the effect of increasing or decreasing bacterial genome size.

Furthermore, since the Gene3D clusters have been annotated through
structural domain assignment, it is possible to detect more remote relation-
ships than are possible through sequence comparison. Indeed, it has often
been shown that two very similar structures can show little more than ran-
dom sequence similarity to each other. Hence, using Gene3D has the addi-
tional benefit that it is possible to derive relationships between clusters due
to shared domain architectures, despite a lack of sequence evidence. This also
allows better curation and validation of the Gene3D clusters.

The first study presented focuses on the identification of the genetic deter-
minants of genome complexity variation in prokaryotes. Genome complexity
can be measured simply by counting the number of ORF's [25]. In prokaryotes,
a strong correlation is found between their genome and proteome sizes, and
the genomes tend to consist of only a few genetic elements; hence, prokaryotes
strongly conform to this assumption and should show easily discernible trends
linking their protein content and genome complexity [26]. Additionally, from
a simple statistical point of view, the high number of sequenced prokaryotic
species, as compared to eukaryotes, increases the significance of observed
phenomena.

The genome complexity of an organism reflects the balance of disparate
selective pressures working over time. Gene duplication and lineage-specific
gene loss seem to be the key processes determining bacterial genome size,
followed by horizontal gene transfer [27-29]. All these genetic changes that
finally shape the genome size and content are caused by the sum of more
primary processes, which have taken place at the lower level of gene fam-
ily rearrangements. Therefore, it is reasonable to suppose that gene family
evolution (expansions and contractions of the families) and genome size vari-
ation have been interdependent events in evolution [30]. The genome size
is not related to phenotype or lineage in prokaryotes. For example, bacte-
ria with a broad range of phenotypes and lifestyles can have similar genome
sizes, and diversity in genome size has been observed for bacteria belong-
ing to relatively narrow phylogenetic groups [31]. Furthermore, the smallest
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genomes are usually derived from bacteria with larger genomes through a
process called evolution by reduction [26,32]. Therefore, contrary to what is
generally thought, the most complex genomes do not correspond with the
most evolved prokaryotes. All these facts point to other evolutionary mecha-
nisms being needed to explain the relationship between superfamily evolution
and variation in genome complexity.

2.5 Superfamily Evolution and Genome Complexity

To determine general genetic mechanisms involved in the development of
bacterial complexity, the occurrence of each CATH domain superfamily was
calculated for 100 prokaryotic species (85 eubacteria and 15 archaea) and
assembled into trans-species occurrence profiles. The correlation between
genome sizes, measured in number of ORFs, and superfamily occurrences
was then calculated using Spearman’s rank correlation coefficient [33]. Super-
families for which domain occurrence was highly correlated with genome
size (Spearman coefficient > 0.7) were selected, and are referred to as size-
dependent superfamilies (Table 2.2). The superfamilies for which occurrence
had very low correlation with genome size (Spearman coefficient < 0.2) were
also selected, and referred to as size-independent superfamilies (Table 2.2).

This approach allowed us to distinguish those superfamily domains that
exhibit a frequency of occurrence that is dependent on genome size. We also
wished to identify which of these domains represented general molecular mech-
anisms or functions present in the majority of organisms. For this, we selected
all those domains that occurred in greater than 70% of bacterial species; these
were termed the universal domains (Table 2.2).

The universal domains were divided into two groups, depending on
their genome-size correlation coefficient: the size-independent and the size-
dependent sets. The sum of the size-independent superfamily domains occur-
rences shows a flat slope with respect to the increasing genome size (Fig. 2.5a)
[34]. In the size-dependent group, three different trends or correlation models
were distinguishable. These were the linearly (Fig.2.5b), the power-law-like
(Fig.2.5¢), and the logarithmically distributed superfamilies (Fig. 2.5d) [30].

All these groups were functionally annotated using the COG database,
PFAM domain annotations and literature searches. This revealed signifi-
cant functional tendencies for the size-independent superfamily group and
two of the three size-dependent superfamily subgroups. The size-independent
superfamilies are mainly involved in information storage and processing func-
tions, with a significant proportion of the functional annotations associated
with translation, ribosomal structure and protein synthesis (Fig.2.6) [34].
In the size-dependent set, the linearly distributed superfamilies are primar-
ily associated with metabolism. While the power-law-like distributed super-
families are, for a significant percentage, involved in basic and ancestral
mechanisms of gene regulation and signal transduction (Fig.2.6). In the
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Fig. 2.5. Four major types of superfamilies distributions: (a) size-independent
superfamilies; (b) size-dependent, linearly distributed superfamilies; (c) size-
dependent, power law distributed; and (d) size-dependent, logarithmically distri-
buted. ORFs occurrence (y-axis) is plotted against genome size (z-axis, also
expressed in number of ORFs)

remaining size-dependent set, the logarithmically distributed superfamilies,
no single functional tendency was found and, since they represented a small
proportion of the superfamilies, they are not shown in Fig. 2.6 [30].

The analysis of common superfamily domains shared by all bacterial
species allows us to identify their general features, which are common to all
the prokaryotes. As discussed above, domain shuffling is prevalent in bacte-
ria, and so universal genes are few in number. Furthermore, as first suggested
by Chothia [35], half of all domains will be accounted for by a small num-
ber of domain families. Previously, studies have tended to focus on clustering
genes by function in order to investigate the rules governing genome com-
plexity [36,37]. In Sect. 2.6, we will further show why considering universal
superfamily domains as the basic units for both evolution and analysis is a
key paradigm for the identification and characterisation of the general deter-
minants of genome complexity.

2.6 Superfamily Evolution and Functional Relationships

It can be argued that these universal domain superfamilies represent common
functions that are used by all organisms. In this case, it might be expected that
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Fig. 2.6. Functional distribution of the (a), (b) and (c) types of superfamilies
(see Fig.2.5) in the 25 functional subcategories in the COG database. The COG
categories one letter codes are as follows: J, translation, ribosomal structure and
biogenesis; A, RNA processing and modification; K, transcription; L, replication,
recombination and repair; B, chromatin structure and dynamics; D, cell cycle control,
cell division, chromosome partitioning; Y, nuclear structure; V, defense mecha-
nisms; T, signal transduction mechanisms; M, cell wall/membrane/envelope
biogenesis; N, cell motility; Z, cytoskeleton; W, extracellular structures; U, in-
tracellular trafficking, secretion and vesicular transport; O, post-translational
modification, protein turnover, chaperones; C, energy production and conversion; G,
carbohydrate transport and metabolism; E, amino acid transport and metabolism;
F, nucleotide transport and metabolism; H, coenzyme transport and metabolism;
I, lipid transport and metabolism; P, inorganic ion transport and metabolism; Q,
secondary metabolites biosynthesis, transport and catabolism; R, general function
prediction only; S, function unknown. The broader classes in which the 25 functional
categories are grouped are also indicated

grouping superfamilies by molecular function would give clearer trends than
grouping by genome size. However, it is important to note that two unrelated
genes in separate lineages with a similar functional annotation should be
considered as separate molecular technologies. This is because they will be
fundamentally different in the details, even though the overall biochemical
reaction may be highly similar. This will lead to the two proteins behaving
differently in different physicochemical environments. In contrast, when two
genes or domains belong to the same superfamily, it indicates that they share
structural, sequence and functional characteristics [38]. Hence, it would be
expected that the members of a superfamily show shared and related behav-
iours. In contrast, two unrelated technologies that have been grouped on the
bases of a similar function may show no shared behaviour.
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Fig. 2.7. Analysis of 385 superfamily domains annotated as metabolic domains
in the COG database: (a) total number of metabolic genes (y-axis) versus genome
size (z-axis) in 100 bacteria species; (b) size correlation coefficient values (y-axis)
for each of 385 superfamily domains displayed against their universal percentages
(z-axis). Subplots in the left side show three examples of superfamilies with different
size correlation and universal values

To prove and illustrate this assumption, we selected all the superfami-
lies annotated as metabolic domains in the latest COG database (385 super-
families), and displayed their respective size correlation coefficient values
against their universal distribution percentages throughout all species (see
Fig.2.7). This plot shows that an important percentage of metabolic super
families have low correlation with size (206, 54%, superfamilies have a size
correlation below 0.5). For example, the Mannitol specific EII domain and
the Ferredoxin domain show correlations with size of 0.19 and 0.34, respec-
tively. If size-dependent superfamilies are grouped with the size-independent
ones, the resulted sum also shows a size-dependent profile (Fig.2.7a). In this
case, the size-dependent superfamilies hide the neutral behaviour with respect
to genome size variation of the rest of size-independent domains. Hence, as
argued above, proteins grouped by function do not necessarily show shared
behaviour.

2.7 Limits to Genome Complexity in Prokaryotes

The regulatory and metabolic subdivisions, the power-law and linearly dis-
tributed superfamilies respectively, represent an important percentage of all
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Fig. 2.8. Optimum size determination and bacterial size distribution comparison.
(a) Number of ORFs (y-axis) calculated from metabolic (black line) and regula-
tory (white circle line) distribution models versus genome size (z-axis). (b) ORFs
marginal increment (y-axis) estimated from the derivatives of metabolic (black line)
and regulatory (white circle line) functions calculated in function of the genome size
(z-axis)

size-dependent superfamilies (90% of all size-dependent and universal do-
mains). Therefore, they are the subdivisions most likely to contribute to gen-
eral trends in the whole prokaryote sample. Fitting the distributions of these
two types of superfamilies to regression lines showed that the functions cross
when the genome size reaches 10,500 ORFs (Fig.2.8a). This suggests that
when bacterial size increases above this value, regulatory complexity exceeds
metabolic complexity.

These results indicate that regulation could be a primary restriction to
increasing complexity in bacterial genomes, an observation in agreement with
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Bird’s 1995 hypothesis [25], which proposes that increasing complexity is
limited by the increasing logistical problems in distinguishing signal from
noise [30].

2.8 The Bacterial Factory

To a certain extent, the cell can be considered to be like a factory. Simplisti-
cally, the cell can be seen as a manufacturer of functional elements (normally
proteins), which then carry out the metabolic reactions to maintain and repro-
duce the cell; this is equivalent to the production of goods to generate income.
We can also consider the means of regulating production (i.e. management of
production) as being costs for the cell. Through this analogy a similarity can
be seen between optimum bacterial complexity and the optimum production
level, giving maximum profit, in a factory.

In a factory, the total profit is the difference between total revenue and
total cost, and the marginal profit is the additional profit derived from the
production of one additional unit. Consequently, the optimum size of a fac-
tory, giving maximum total profit, is reached at a production level where the
marginal revenue from producing an additional unit is equal to its marginal
cost. Above this point, the marginal cost to produce an additional unit is
higher than its marginal revenue [39]. One major reason for the existence
of an optimum size in productive systems is the fact that any linear incre-
ment in production complexity is usually associated with a larger increment
in the associated management cost [40,41]. This behaviour can be used as
an analogous model to describe the behaviour of the universal size-dependent
superfamilies in bacteria.

An increase in metabolic complexity provides bacteria with new enzymes
to exploit the environment and thus it is reasonable to equate metabolism
with bacteria factory revenue, and the increasing regulatory system with the
associated management cost. We can compare the effects that increases in
genome complexity have on the marginal increases in metabolic and regu-
latory systems by calculating the derivatives of metabolism and regulation
as a function of genome complexity (Fig.2.8b). The point at which these
two marginal increments match (metabolism/regulation) identifies a statisti-
cal optimum for bacterial genome size (Fig.2.6b). In other words, a point at
which ‘maximum profit’ is realised since bacteria get the maximum metabolic
variability for minimal regulation cost [30]. As indicated, the optimum size
is hence calculated to be roughly 4,800 ORFs — remarkably similar to the
genome size of the model prokaryote Escherichia coli.

Overall, these results clearly suggest that increasing complexity is not free
of cost in bacteria; the more complex a genome becomes the more difficult it
is to manage it. Because this regulatory cost increases more steeply than the
linear increment in metabolic revenue it finally offsets any advantage gained
by increasing the number of metabolic genes. It is reasonable to believe that
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bacteria achieve an optimum reproductive balance before the increasing reg-
ulatory complexity overburdens the cellular system [30].

2.9 Conclusions

Not all the protein superfamilies have contributed in the same way to genome
expansion in prokaryotes. In fact, we have identified four different behaviours
relative to genome size. First, there are the superfamilies that do not con-
tribute to, and are unaffected by, genome size — the size-independent superfam-
ilies. Second, there are three types of size-dependent behaviour displayed: the
linearly, the power-law, and the logarithmically distributed superfamilies. The
functional analysis of these four groups unravelled specific functional trends for
the size-independent superfamilies and two of the three size-dependent groups.
It was observed that the size-independent superfamilies are mainly involved in
translation and protein biosynthesis. And within the size-dependent set, the
linearly distributed domains are involved in metabolism, while the power-law
distributed superfamilies are involved in genetic regulation [30, 34].

The universal size-dependent superfamilies represent universal molecular
technology shared by all prokaryotes to perform their metabolic and regula-
tory processes. Comparison between the regulatory and metabolic subdivisions
from this universal and size-dependent set led to models that provide rational
explanations for such concepts as the ‘genome complexity limit’ or ‘genome
optimum size’ in a prokaryote. These findings imply that all prokaryotes have
used similar molecular technology to optimise their reproductive efficiency.
This common ‘molecular technology’ defines common limits to prokaryote
genome expansion, since the regulatory cost expands much quicker than the
metabolic revenue in these organisms.

However, achieving maximum complexity is not a selective pressure.
Rather there is a balance between selection for maximum metabolic diver-
sity, which makes energy available to the cell, against selection for a minimal
regulatory system, which costs the cell energy. These forces work within the
framework of maximally exploiting the environment whilst maintaining mini-
mum cellular doubling time [30,42].

The investigations discussed above were all based on using the pro-
teome structure information captured by the clustering mechanisms under-
lying Gene3D. An advantage of Gene3D is that the protein data is based on
whole genome sets, allowing analysis of the natural protein universe. Clear
advances have been made in describing the evolution of the bacterial protein
repertoire and the forces that drive it. Gene3D also describes eukaryotes and
archaea, and we hope to extend these investigations to them. Gene3D is sim-
ple to view and interrogate through its website, and the underlying data is
freely available.
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The Evolution of the Globins:
We Thought We Understood It

A .M. Lesk

Protein crystallography achieved its first results in the late 1950s with the
structure determinations of sperm whale myoglobin and human haemoglobin.
These gave us our first glimpse of the structural changes that take place dur-
ing protein evolution. Many other structures of proteins in the globin family
have continued to reveal interesting and important details of the coordinated
divergence during evolution of amino acid sequences and protein structures
and functions.

The history of investigations of globin evolution can be divided into stages
that correspond to the availability of structures of progressively more highly
diverged sets of molecules. The earliest work dealt exclusively with mam-
malian globins [1]. (Because the divergence of myoglobin from haemoglobin
occurred early in the vertebrate lineage, it would be more appropriate to
regard this early work as dealing exclusively with vertebrate globins — a
relatively restricted group nevertheless.) When additional structures, includ-
ing invertebrate and plant globins, became available, Lesk and Chothia [2]
analysed their architecture, asking the question of how such different amino
acid sequences could be compatible with the same basic folding pattern. All
the structures then available are now classified as ‘full-length’ globins, typi-
cally ~150 residues long.

Recently, a new family of globins has been discovered that are substan-
tially shorter, containing as few as 109 residues. Globins from Chlamydomonas
eugametos, Paramecium caudatum and Mycobacterium tuberculosis are mem-
bers of the new sub-family of truncated globins. They require a reopening of
the questions, supposedly “answered” in previous studies limited to full-length
globins, of what are the variable and conserved features of globin structures.

Sperm whale myoglobin, a typical full-length globin, contains 9 helices,
labelled A to H. Truncated globins retain most but not all of the helices of
the standard globin fold. A notable exception is the loss of the N-terminus
of the F helix. The F helix contains the crucial iron-linked histidine. Trun-
cated globins show a shortening of the A helix and of the region between
the C and D helices. Of the 59 sites involved in conserved helix-to-helix or
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helix-to-haem contacts in full-length globins, 41 of them appear, with conserved
contacts, in all three truncated globins studied. The structures of the helix—
helix interfaces, conserved in full-length globins, are in most cases similar in
truncated globins as well, with the notable exception of the interface between
B and E helices. This interface has an unusual crossed-ridge structure in full-
length globins but a more common structure in truncated globins. The globin
structures continue to offer an illuminating case study in protein evolution.

3.1 Introduction

Once upon a time, Lesk and Chothia [2] wrote a paper describing the struc-
tural variations in the globin structures then known. That study treated nine
full-length globins, all of ~150 residues in length. All were from metazoa,
including vertebrates, invertebrates and plants. The basic conclusions were
that

1. The principal determinants of the three-dimensional structure of the
globins are the approximately 59 residues that are involved in the packing
of helices and in the interactions between the helices and the haem group.

2. Although mutations of the buried residues keep the sidechains non-polar,
these residues vary both in amino acid identity and size.

3. With the exception of some residues near the ends of the helices, most of
the helices in globins have geometries close to that of a standard o-helix.

4. In the nine globins studied, the total volume of the residues that form the
interfaces between homologous helices varies by up to 57%.

5. Shifts in relative position and orientation of homologous pairs of packed
helices may be as much as 7A and 30°. (At the time, these changes in
residue volume and geometry of pairs of helices in contact were large,
relative to the general expectation, which had been based on the much
greater similarity of structures of mammalian globins.)

6. Five helix packings occur, with extensive interfacial contact, in all globins
studied: A/H, B/E, B/G, F/H and G/H.

7. Differences in the residues at homologous helix interfaces can be related
qualitatively to differences in relative geometry of the helices.

8. The geometries of the nine haem pockets are very similar: the shifts in the
packings produced by mutations are coupled so as to maintain the same
relative geometry for the residues that form the haem pocket.

9. Despite the change in volume of residues at helix interfaces, and the rela-
tive shifts and rotations of the helices packed, there is substantial con-
servation of the reticulation of the residues; that is, homologous residues
tend to make homologous contacts.

The results of this paper remained valid for additional globin structures that
emerged over the years — until recently. In the new century, a novel class of
shorter globin structures has appeared, with sizes as small as 109 residues [3-5]
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Table 3.1. Truncated globins of known structure

Species of origin PDB  Number of Ligand Resolution Ref.
code residues A
Chlamydomonas eugametos 1dly 164 CN™ 1.8 3]
Paramecium caudatum 1dlw 116 - 1.54 (3]
Mycobacterium tuberculosis 1lidr 136 0o 1.90 [7]

(see Table 3.1). Known as truncated globins (although the residues lost are not
exclusively from the chain termini), they are distant relatives of globins from
multicellular organisms. Truncated globins have been implicated in diverse
functions, including detoxification of NO and photosynthesis.

The purpose of this article is to reopen the question of what fundamen-
tally characterises the globin fold, and specifically to ask to what extent the
conclusions of previous work retain validity.

3.2 Coordinates and Calculations

The coordinates of three truncated globins (see Table 3.1) are available from
the Protein Data Bank [6].

3.3 Results

3.3.1 Description of Secondary and Tertiary Structure
of Full-Length (~150—Residue) Globins

Globins show a characteristic folding pattern based on o-helices that cre-
ates a pocket into which the haem binds (see Fig.3.1). Typical full-length
globins, such as sperm whale myoglobin, contain 8 or 9 helices: A, B, C (a 319
helix), D, E, F (split in mammalian globins into two consecutive helices, F’
and F), G and H. The F and E helices contain the proximal and distal histi-
dines, respectively — the histidines that interact with the haem group. These
two helices form the mouth of the haem pocket. Many globins lack the D helix.

The structural framework is created and stabilised by contacts between
pairs of helices. Full-length globin structures share five major common helix
contacts: A/H, B/E, B/G, F'F/H and G/H. Many contain some or all of the
following minor helix contacts: A/E, E/H, C/G and B/D. These are minor
both in the sense of the extent of buried surface area in the contact and in the
extent of the conservation of the appearance of the contacts in globins from
different species.



Fig. 3.1. The structure of sperm whale myoglobin, a typical full-length globin. The
labels of the helices, in alphabetic order in appearance in the chain, are shown. The
atoms of the haem group are shown as large spheres. The sidechains of the proximal
and distal histidines are shown in ball-and-stick representation

Table 3.2. Helix assignments in sperm whale myoglobin and truncated globins

A/ A B C D E F/ F G H’ H
Imbo —  3-18 20-36 37-43 51-58 58-78 82-87 87-96 100-119 124-149
1dlw - -7 827 29-34 - 3752 -~ 6369 75-92 96-107 109-114
1dly - -7 825 29-32 - 3752 - 6369 76-94 97-110 111-117
lidr  2-10 14-20 21-39 42-46 - 50-67 - 76-82 87-106 108-120 120-126

Imbo = sperm whale myoglobin; 1dlw = P. caudatum globin; 1dly = C. eugametos
globin; 1lidr = M. tuberculosis globin, A chain

3.3.2 Description of Secondary and Tertiary Structure
of Truncated Globins

Table 3.2 contains the helix assignments of the truncated globins and, for
comparison, sperm whale myoglobin.

None of the three truncated globins contains a D helix. Surprisingly, the
F helix is shortened in the truncated globins, although the proximal histidine
retains its position to bind the iron (see later). The A helix is also shortened.
In C. eugametos and P. caudatum globins (1dly and 1dlw), the chain begins at
the residue corresponding to residue 10 in sperm whale myoglobin. In contrast,
M. tuberculosis globin (1dlr) contains an N-terminal extension. Although the
A helix in M. tuberculosis globin (1lidr) is no longer than that in P. caudatum
globin (1dlw) and C. eugametos globin (1dly), the N-terminal extension con-
tains a separate additional helix called the A’ helix. In the truncated globins,
the H helix is split into two parts, H and H.

3.3.3 Alignment

It is relatively easy to align the three truncated globins with one another.
Figure 3.2 shows that the conformations of P. caudatum globin (1dlw) and C.
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Fig. 3.2. Superposition of mainchains of P. caudatum globin (1dlw) (solid lines)
and C. eugametos globin (1dly) (broken lines)

Fig. 3.3. Superposition of mainchains of M. tuberculosis globin (1idr) (solid lines)
and C. eugametos globin (1dly) (broken lines)

eugametos globin (1dly) are rather similar. Figure 3.3 compares the conforma-
tions of M. tuberculosis globin (1idr) and C. eugametos globin (1dly). These
are also rather similar except for the chain termini and the region between
the E and F helices.

Alignment of truncated and full-length globins is harder but possible.
Figure 3.4 shows a structural alignment of sperm whale myoglobin (1mbo)
and P. caudatum globin (1dlw). The sequence alignment appears in Fig. 3.5.
The pairwise percentages of identical residues in this sequence alignment are
shown in Table 3.3.

The three truncated globins are fairly close relatives; all are very distant
relatives of sperm whale myoglobin (1mbo).



Fig. 3.4. Superposition of sperm whale myoglobin (1mbo) (solid lines) and
C. eugametos globin (1dly) (broken lines)
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Fig. 3.5. Sequence alignment of truncated globins and sperm whale myoglobin. The
top line shows the helices in sperm whale myoglobin

Table 3.3. Pairwise percentages of identical residues in the structure derived
sequence alignment of sperm whale myoglobin (1mbo) with the three truncated
globins

1lmbo 1dlw 1dly lidr
Sperm whale myoglobin Imbo 100 12 8 10

P. caudatum globin 1dlw 100 39 36
C. eugametos globin 1dly 100 40
M. tuberculosis globin  lidr 100

3.4 Helix Contacts

3.4.1 Geometry of Inter-Helix Contacts

The basis of the globin structure is the interactions of packed helices, and of
the contacts of the protein with the haem group. Chothia and co-workers [7,8]
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analysed the general principles of the packing of a-helices in globular proteins.
They found that the structures of most helix—helix interfaces are described by
a ridges-into-grooves model: Sidechains on the surfaces of helices form ridges
protruding from the helix surface. Ridges may form from residues separated by
four positions in the sequence (most common), three positions, or one position.
In tertiary structures of proteins, helices tend to pack so that ridges on the
surface of one helix pack into grooves of the other. Because ridges formed
from different sets of residues have different angles with respect to the helix
axis, different combinations of ridge—groove structures produce different inter-
axial angles in packed helices. For example, the most common packing — 7 +4
ridges from both helices — corresponds to an inter-axial angle of 2 ~ —40°.
The ridges-into-grooves model explains the distribution of inter-axial angles
observed in o-helical proteins.

The angle 2 is defined as follows: Determine the axis of each helix, and the
line perpendicular to both axes. Project the axes onto the plane perpendicular
to this line. Then {2 is the angle, within the plane, between these projections.
By convention, {2 < 0 if the near helix is rotated clockwise relative to the
far helix [7]. {2 suffices to define the relative geometry of helices that form
face-to-face packings. (If the interface is formed by the end of one or both
helices, the angle between the helix axes is reported as the angle 7.)

Although many helix packings in globins follow the ridges-into-grooves
model, globins are unusually rich in helix packings of non-standard structure.
In the B/E and G/H contacts of full-length globins, ridges that contain a
notch (arising from a sidechain smaller than its neighbours along the ridge)
pack so that a ridge from one helix crosses over a ridge from the other, at the
notch. (The observation of this unusual structural feature in the corresponding
helix packings of phycocyanin was adduced as evidence for the evolutionary
relationship between globins and phycocyanins [9].)

3.4.2 Pairs of Helices Making Contacts

Of the five major helix contacts in normal-length globins: A/H, B/E, B/G,
F/H and G/H, all but the F/H contact appear in the truncated globins.
(P. caudatum (1 dlw) contains an F/H contact.)

In addition to the five major contacts conserved in full-length globins,
other contacts occur sporadically among them: A/E, C/G, B/D and E/H.
These do not appear among truncated globins. The truncated globins contain
an A/B contact, not observed in typical full-length globins. Table 3.4 shows
the relative geometry of the helices packed in sperm whale myoglobin and the
truncated globins.

In the analysis of full-length globins, it was observed that the pattern of
residue-residue contacts tends to be conserved. That is, if two residues are in
contact in the helix interface of one globin, the two homologous residues in
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another globin are also likely to be in contact, even if the sizes of the residues
have changed substantially, and even if the changes are not complementary.!

Such conservation of the reticulation of the residues is among the most
well-preserved structural feature of distantly related proteins. It forms the
basis for the ability of the program DALI to recognise very distantly related
proteins [10].

Of the 59 positions described in [2] as common positions involved in the
packing of helices and in the interactions between the helices and the haem
group in at least 7 of the 9 full-length globins then studied, 41 make contacts
to the same helix or the haem in all three truncated globins, and 4 (E19, G9,
H15 and H20) make contacts to the same helix or the haem in two of the
three truncated globins. Of the other 14 positions, 7 are in the A helix, which
is deleted in P. caudatum globin (1dlw) and C. eugametos globin (1dly); 1 is
in the BC corner, which shows a 1-residue deletion in the truncated globins;
3 are involved in a shift of partners in the B/E contact; 1 is involved in a
truncation of the C-terminus of the E helix and 2 are in the part of the F
helix lost in the truncated globins.

3.4.3 Structures of Helix Interfaces in Truncated Globins,
Compared to Those in Sperm Whale Myoglobin

Of the five common helix interfaces observed in full-length globins, the B/G
and F/H contacts are i + 4/i + 4 packings, the A/H contact is formed from
i+ 1 ridges on the A helix packed against i + 4 ridges on the H helix and the
B/E and G/H contacts have crossed-ridge structures [2].

3.4.4 The B/G Interface

The B/G interfaces in sperm whale myoglobin and those of the truncated
globins share a similar structural pattern. In the B/G interface of sperm
whale myoglobin (Fig.3.6), a ridge on the surface of the G helix created by
the sidechains of residues 106Phe-110Ala-114Val-118 Arg packs into a groove
between ridges on the surface of the B helix created by the sidechains of
residues 24His-281le-32Leu and 31Arg-35Ser. This is a typical i +4/i +4 pack-
ing, and an inter-axial angle of 127.2°.

In the B/G interface of P. caudatum globin (1dlw) (Fig.3.7), a ridge on
the surface of the G helix created by the sidechains of residues 84His-88Ala-
92Ala packs into a groove between ridges on the surface of the B helix created
by the sidechains of residues 15Val-19Phe and 22Asn-26Asp. This interface
has the same i +4/i +4 packing, and similar values of the inter-axial distance

! Complementary mutations preserve the sum of the volumes of the residues in
contact, and are the exception rather than, as was once believed, the rule.
Complementary mutations are a special case of correlated mutations; correlated
mutations in general do not preserve the sum of the volumes of residues in contact.
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Fig. 3.6. B/G helix interface in sperm whale myoglobin (Imbo). B helix residues
in solid lines and G helix residues in broken lines

Fig. 3.7. B/G helix interface in P. caudatum globin (1dlw). B helix residues in solid
lines and G helix residues in broken lines

and angle and only somewhat smaller buried surface area. It is consistent with
the overall sequence alignment, in that residues 110-114-118 of sperm whale
myoglobin (1mbo) correspond to 84-88-92 of P. caudatum globin (1dlw), and
residues 28-32 of sperm whale myoglobin (1mbo) correspond to 19-23 of P.
caudatum globin (1dlw).

3.4.5 The A/H Interface

In full-length globins, the A/H interface involves an ¢ + 1 ridge from the A
helix packing against an ¢ +4 ridge from the H helix. In the truncated globins,
the shortness of the A helix makes the contact shorter, leaving a much smaller
interface (Fig.3.8). The surface area buried by the A/H contact in truncated
globins is ~60% of that buried in the A /H contact of sperm whale myoglobin.
Indeed, it may be that the requirements of an A/H interaction limit the extent
to which N-terminal truncation can occur. This was noted by Pesce et al. [3].
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Fig. 3.8. The A and H helices of sperm whale myoglobin (1mbo) (solid lines) and
C. eugametos globin (1dly) (broken lines). The structures are superposed on the H
helix, the axis of which is vertical

Fig. 3.9. Van der Waals slices through the B/E contact in sperm whale myoglobin
(Imbo). In this and the next picture, the axis of the B helix is vertical and the B
helix residues are shown in solid lines. The axis of the E helix is oblique and the E
helix residues are shown in broken lines

(In 1966, at a CIBA Foundation discussion, Francis Crick asked about the
structure of sperm whale myoglobin: ‘... it is very unclear to me why you
cannot chop-off one or two helices; for example, why shouldn’t you chop-off
the first length of helix? If you did chop it off what would the molecule look
like? Would it fall to pieces? Would it be just a bit unstable? Or would it be
more or less the same? [11)’. Now we know.)

3.4.6 The B/E Interface

In full-length globins, the B/E contact has the unusual crossed-ridge struc-
ture (Fig. 3.9). However, the values of inter-axial radius and angle are similar
to those expected for a standard i £+ 4/i + 4 contact. The B/E contacts in
truncated globins have similar inter-axial distances and angles to the B/E
contacts of full-length globins. However, surprisingly the B/E interfaces in
truncated globins contain the standard ¢ 4+ 4/i 4 4 packing, rather than the
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Fig. 3.10. Van der Waals slices through the B/E contact in C. eugametos globin
(1dly)

unusual crossed-ridge structure (Fig.3.10). These are the first examples of
B/E interfaces in globins with a regular ¢ +4/i + 4 packing.

The author, in a talk the title of which — ‘Protein structures that might
exist but don’t’ — is now seen to contain an erroneous assumption [12], noting
the very similar inter-axial distances and angles in the F/H contact in lupin
leghaemoglobin, which has a common i+4/i+4 packing, and the B/E contacts
in several other globins, which have crossed-ridge structures (see Fig. 4 of [2]),
proposed as a protein design challenge the engineering of a globin with an
i+4/i+4 B/E interface. Although no protein engineer took up this challenge,
the new structures show that this is indeed possible.

In sperm whale myoglobin, the ridge crossing occurs at the opposition of
residues 25Gly and 65Gly (Fig.3.9). Comparing the relative positions and
orientations of the B/E contacts in sperm whale myoglobin and C. eugametos
globin (Fig.3.11) with the alignment of the sequences, note that the residue
25Gly in sperm whale myoglobin corresponds to 16Val in C. eugametos globin,
and 65Gly in sperm whale myoglobin corresponds to 42Arg in C. eugametos
globin.

3.5 Patterns of Residue—Residue Contacts
at Helix Interfaces

We have mentioned the tendency of patterns of residue-residue contacts in
proteins to be conserved. In globins, comparisons of the structures of helix
interfaces showed that in each helix—helix interface, roughly half the inter-
residue contacts are preserved, in the sense that if two positions are in contact
in one globin, homologous residues at these positions are likely to be in contact
in other globins. Typically half the contacting pairs, those at the centre of
the contact interface, are common to all globins studied. Individual globins
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Fig. 3.11. Comparison of relative geometry of B and E helices in sperm whale
myoglobin (1mbo) and C. eugametos globin (1dly). Sperm whale myoglobin is shown
in solid lines and C. eugametos globin in broken lines. The molecules have been
superposed on the B helix, the axis of which is vertical in the picture. The shift
in relative position and orientation of the E helix with respect to the B helix is no
greater than that described in homologous helix contacts that have similar packing
patterns at their interfaces (see Fig. 6 of [2])

supplement these common contacting pairs with additional contacts that vary
from molecule to molecule.

Figure 3.12 shows the inter-residue contacts at the B/G interface in the
nine globins studied in previous work [2] and, superposed, the inter-residue
contacts at the B/G interfaces in the three truncated globins. These results
show that the pattern of contacts in the truncated globins is entirely normal.
The sets of conserved contacts appear, and the additional peripheral contacts
observed in truncated globins appear in full-length globins also.

In contrast, the inter-residue contacts at the B/E interface, which in trun-
cated globins has a normal ¢+4/i+4 ridge/groove structure in contrast to the
crossed-ridge structure of full-length globins, show a very different pattern of
inter-residue contacts (see Fig.3.13).

3.5.1 The G/H Interface

In full-length globins, the G/H contact has an unusual crossed-ridge structure,
giving it a somewhat unusual inter-axial angle of {2 = —20°. In truncated
globins, the G/H interface is similar, both in inter-axial angle, and in the
crossed-ridge structure. Unlike the B/E interface, the G/H interface shares
the unusual structure with the full-length globins. It is not unreasonable to
suggest that the unusual crossed-ridge structure is required to achieve the
unusual inter-axial angle of the G/H interface, unlike the more common inter-
axial angle achieved by the B/E interface, which is consistent with either the
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Fig. 3.12. The pattern of residue-residue contacts in the B/G interfaces of
full-length (light gray) and truncated (black) globins. The grey background is a
copy of Fig.8a of [2] and shows the contact patterns in the full-length globins:
How = human haemoglobin, o-chain; HB = human haemoglobin, B-chain; Eot = horse
haemoglobin, o-chain; Ef = horse haemoglobin, B-chain; W = sperm whale myo-
globin; L = lamprey globin; G = glycera globin; C = Chironomus erythrocruorin;
Lg = lupin leghaemoglobin. The oblique lines indicated the residues making con-
tacts; the width of these lines in the original (light grey) figure reflects the number
of full-length globins in which homologous contacts are observed. Fully dark are
the residue-residue contacts in truncated globins: 1dly = ..., 1dlw = — — —,
lidr = —- —- —
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Fig. 3.13. The patterns of residue-residue contacts in the B/E interfaces of full-
length and truncated globins. (Top) The crossed-ridge structure of the B/E contact
in sperm whale myoglobin (Swmb) and Horse haemoglobin, o-chain. (This repro-
duces part of Fig. 9a of [2].) (Bottom) The normal i +4/i =+ 4 ridge/groove structure
in truncated globins: 1dly = ...... ,ldlw = ———, lidr = — - — - —
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common i + 4/i £+ 4 ridge—groove structure or with the unusual crossed-ridge
structure.

3.6 Haem Contacts

With some significant differences, the haem-binding residues are conserved. In
the previous investigation of full-length globins, it was found that residues at
15 positions make contact with the haem in seven or more of the nine globin
structures studies (Table 6 of [2]). In 14 of these cases, the homologous residue
makes contact with the haem in the three truncated globins.

3.7 The Tunnel

In full-length globins the O2 binding site is blocked, and the molecules must
partially unfold to permit ligand entry and exit. In contrast, in the truncated
globins there are channels linking the ligand binding site to the surface of the
molecule. In M. tuberculosis globin (1idr), the tunnel has one branch entering
the molecule between the AB and GH inter-helical regions, and a second
branch between the G and H helices [13].

What mutations were required to create the tunnel in truncated globins?
Several structural features contribute to the blocking of the tunnel in sperm
whale myoglobin. These include

1. A mutation from 94V in M. tuberculosis globin to 107I in sperm whale
myoglobin; this position is in the middle of the G helix, and is part of the
B/G contact.

2. A mutation from 151 in M. tuberculosis globin to 14W in sperm whale
myoglobin, and also a change in position of helix A.

3. The contacts between residues 29V, 59V, 62F and 98L in M. tuberculosis
globin are replaced by residues 281, 72L, 69L and 111I in sperm whale
myoglobin. These residues are homologous except for position 32F in
M. tuberculosis globin that is really aligned to 28I in sperm whale myo-
globin.

4. Residues 106G and 17D in M. tuberculosis globin are replaced by 119H
and 16K in sperm whale myoglobin.

3.8 Conclusions

Study of distantly related proteins is a way to ask Nature to tell us what is
essential for a protein folding pattern. The idea is that those features of the
structure conserved throughout the family are essential to create the common
topology, and those features that vary within the family are nonessential.
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A difficulty with this approach is that one is always dealing with a finite
set of structures. It may be possible to determine the common features of
the structures available, but if at some future date (even 25 years later) new
related structures appear, the extended family may have fewer common fea-
tures than one had previously concluded. This is the problem which structural
genomics projects are aimed at ameliorating.

The truncated globins are recognisable members of the family. They pos-
sess many but not all the common features derived from comparisons of full-
length globins.

The conclusions of the earlier work were that the globin fold is created
and stabilised by a common set of helix-helix and helix-haem contacts. Most
but not all of the conserved positions in these internal interfaces are retained
in the truncated globins.

The most striking structural differences between the full-length and trun-
cated globins are the re-conformation of the N-terminal part of the F helix
(keeping the proximal histidine in position to bind the iron but losing the
F-helix/H-helix contact), the loss or re-conformation of the N-terminal part
of the A helix, shortening of the CD region and the change in structure of the
B/E helix contact, from a crossed-ridge structure in full-length globins to a
standard i 4+ 4/i + 4 ridge-groove packing in the truncated globins.

Do we know now what the minimal components of a globin are? It is known
that a 108-residue peptide corresponding approximately to the central exon of
horse myoglobin binds haem and must therefore retain some of the structure
of the haem pocket [14]. It has been suggested that a small fragment of the
globin fold is homologous to part of colicin A [15]. The story may not yet be
over.
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The Structurally Constrained Neutral Model
of Protein Evolution

U. Bastolla, M. Porto, H.E. Roman and M. Vendruscolo

The observation that protein sequences accumulate substitutions in time at
an almost regular rate [1] created a great interest in molecular evolution, sug-
gesting that substitutions in protein sequences can be used as an effective
‘molecular clock’ for estimating the time elapsed from the last common ances-
tor among genes [1-5]. This approach opened a new avenue for reconstructing
the tree of life by analyzing the sequences of orthologous genes, whose evo-
lutionary tree coincides with the tree of the species containing them. The
practical importance of the study of molecular evolution became therefore
evident as a way to reconstruct natural histories.

In addition, the molecular clock hypothesis sparked a lively debate about
the mechanisms of molecular evolution. Kimura [6,7] and King and Jukes [8]
proposed that most substitutions in protein sequences are fixed in evolving
populations not because they offer a selective advantage but, rather, because
they are effectively neutral and therefore invisible to natural selection. The
‘neutral theory’ could account for the regular rate in time of the accumula-
tion of amino acid substitutions. It failed, however, to predict correctly other
features of the evolutionary process, among which the variance of the number
of substitutions [9].

One is now starting to understand the reasons for this apparent limitations
of neutral theories, thanks to the recent progress in structural biology. This
progress has begun to make possible the use of structural information in evo-
lutionary studies, starting with the pioneering works of the Vienna group on
the RNA model [10-12] (see also the chapter by Schuster and Stadler in this
book), whereas the study of molecular evolution was initially almost entirely
based on the analysis of macromolecular sequences [3,4,7]. It appears that a
paradigm shift is taking place in the field of molecular evolution, from cod-
ing symbols (sequence) to coded meaning (structure and function). This book
investigates this new approach at several levels of biological organization.

In this chapter, we review some results that were obtained through app-
roaches in which the structural stability of the native state of proteins is taken
explicitly into account as a constraint on the evolutionary process [13-30], and
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in particular through the Structurally Constrained Neutral (SCN) model of
protein evolution [31,32].

We will also show that several results of SCN simulations can be ratio-
nalized and rederived analytically by considering a vectorial representation
of protein sequences and structures. In this approach, protein sequences are
represented as hydrophobicity profiles HPs [33] and protein structures are
represented through the principal eigenvector (PE) of the contact matrix
[34-37]. As we have shown that the optimal HP and the structural profile
are strongly correlated [38], an ‘optimal’ HP can be derived, i.e. the profile
best compatible with a given protein structure. In simulations of SCN evolu-
tion, sequence vectors move around this optimal one. This scheme provides
us with a framework that can be used to predict, by analytical calculations,
site-specific conservation due to structural constraints and site-specific amino
acid distributions [39,40].

4.1 Aspects of Population Genetics

First of all, we need to state some terminology. A mutation is a microscopic
event in which the sequence of a gene is altered in a single individual. At the
population level, a substitution is a macroscopic event in which the repre-
sentative, or wild-type, gene changes as a result of the fixation of a mutant
gene.! Natural selection mediates this transition from the microscopic to the
macroscopic level. In physical sciences, a similar role is played by statistical
mechanics, which explains macroscopic phenomena in terms of the behaviour
of their microscopic components. One of the aims of this chapter is to explore
this analogy further.

Three main factors influence the fixation of a mutant allele in a population:
the size of the population, M; the selective effect of the mutation, measured
through its fitness relative to the wild-type, s; and the rate at which mutations
occur, measured in mutations per gene and generation, pu.

4.1.1 Population Size and Mutation Rate

In most of this chapter, we will consider the limit of very small mutation rates,
Mp < 1, as it is customary in classical population genetics. For My < 1,
the time scale for the appearance of a new mutant (1/4) is much larger than
the time scale for fixation of a neutral allele, which spans on the average
M generations. This limit implies that the population is fairly homogeneous
genetically, and at any generation there is at most one mutant arising. This
has been termed the ‘blind-ant’ regime [41] because the population can only
test a very small neighbourhood in genotype space at any time. The opposite
regime, M > 1, is assumed to hold in the ‘quasispecies’ model [42,43], which

! Fixation of a mutation takes place when all individuals in the population are
descendent of one individual bearing that allele.
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considers infinite population sizes (concerning this regime, see the chapters by
Jain and Krug and by Lézaro in this book).

To justify the choice of the blind-ant regime, we note that the mutation
rate in mammalian genomes was estimated to be 5 x 1072 per nucleotide
per year [3], which, for a species with generation time of two years and a
protein of 600 nucleotides (i.e. 200 amino acids) yields y = 6 x 1076, An even
smaller value of 1 would have resulted by considering that many mutations
are synonymous. For a population of effective size M = 10° (already a quite
large estimate)? one obtains My = 0.6. Although this value is not so small,
numerical studies reveal that the results valid in the blind-ant regime continue
to be valid qualitatively for Mu of order one (see Sect.4.1.5).

It has been argued that the opposite regime of large My is valid for RNA
viruses (see the chapter by Lézaro in this book), which have very high muta-
tion rates, of the order of one nucleotide per genome per year [44], correspond-
ing to g &~ 107!, Their effective population size is, however, quite reduced
because of the bottlenecks that the population suffers when transferred from
one host to the other (in these cases, the effective population size essentially
coincides with the population at the bottleneck [4]).

4.1.2 Natural Selection

The other relevant parameter for the evolutionary dynamics is the difference
in fitness between competing alleles. Since reproduction is inherently stochas-
tic, there is a chance that the less fit allele is fixed even starting as a single
individual. Different stochastic models of the reproductive process give qual-
itatively similar results. We illustrate them through the Moran’s birth and
death process [45]. According to this model, the probability that a mutant
allele B with fitness F(B), arising as a single individual in a haploid® popu-
lation of size M, substitutes the wild-type A with fitness F'(A), is given by

1 — of(B)=1(A)
1 — MUF(B)—F(A)]

Pix(A— B) = (4.1)
where f(z) = log[F'(z)] with x = A, B. We will define in the following s =
f(B)— f(A). Notice that if |M s| is small there is a significant probability that
even deleterious mutations (s < 0) are eventually fixed in the population.
Berg et al. [46] and Sella and Hirsh [47] have recently noticed that the
above formula has an interesting analogy with the stochastic processes used
to simulate statistical mechanical systems, since it satisfies the condition of

2 The effective population size is the effective number of breeding adults in a
population after adjusting for diverse factors, including reproductive dynamics.
The effective population size is usually much less than the actual number of living
or reproducing individuals [7].

3 Haploid organisms carry one single copy of each chromosome, in difference to
diploid organism carrying two copies of each chromosome.
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detailed balance, m(A) P(A — B) = n(B) P(B — A), with respect to a
stationary distribution w(A) that is analogous to a Boltzmann distribution in
statistical physics (see the chapter by Lissig in this book). If the mutation
process satisfies detailed balance with respect to a stationary distribution
Tmut (A), as it is assumed in many models of molecular evolution [4], then the
stationary distribution of the substitution process is

T(A) = %wmut(A) MFA) (4.2)
This equation is formally identical to a Boltzmann distribution in statisti-
cal physics if one identifies the logarithmic fitness f(A) as the energy and the
population size M as the inverse temperature (Z is a normalization constant).
Smaller populations evolve at higher temperature, in the sense that the evo-
lution is more dominated by stochastic events, and their mean fitness is lower
than for corresponding larger populations.

The above result is valid for the small mutation rate regime. It is interest-
ing that a formal analogy between evolving systems and statistical mechanical
systems can be derived also for the quasi-species regime, where the infinite
population limit is considered. In this case, the mutation rate u, considered
to be vanishingly small in the previous approach, plays the role of the tem-
perature [48,49]. For a treatment of this subject (see Chap. 14 by Jain and
Krug).

4.1.3 Mutant Spectrum

We now go back to classical population genetics. It is customary to divide
mutations into four classes, depending on their fitness effect (for a deeper
discussion of this topic, see Chap. 13).

1. Strongly deleterious mutations: Ms < —1. These mutations decrease sig-
nificantly the fitness of the individuals carrying them and they are soon
removed from the population through purifying selection.

2. Nearly neutral mutations: —log(M) < Ms < log(M). The fitness effect
of these mutations is of the same order of importance as are reproductive
fluctuations, and their fate is determined both by selection and by ran-
dom drift [50,51] (see also the chapter by Ohta in this book). Deleterious
mutations in this range have a non-vanishing probability to lead to sub-
stitutions. The detailed balance condition, satisfied by several models of
the substitution process, including the one presented above, implies that
the frequency of mildly deleterious and mildly advantageous substitutions
must be equal on average [47], as also previously noted by several authors,
which is in contrast with the emphasis of some studies on mildly deleteri-
ous substitutions. The advantageous compensatory substitutions play an
important role in the dynamics of viral populations, as discussed in the
chapter by Lazaro in this book. For small |M s, the average time required
for fixation of these substitutions is of the order of the population size M.
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3. Neutral mutations: They have negligibly small effects on the fitness,
M s =~ 0 and can spread in the population through random genetic drift.
The probability of fixation of a neutral mutation is 1/M, and the expected
time for fixation is of order M.

4. Advantageous mutations: Ms > 1. These mutations are efficiently fixed
in the population through natural selection with probability close to one,
and the time for fixation increases only logarithmically with the population
size as log(M)/s.

This classification is useful for distinguishing between different evolutionary
scenarios, as advantageous, neutral and nearly neutral mutations can lead
to substitutions. In the early years of population genetics, the emphasis was
placed on the positive selection of advantageous mutations as the dominant
force acting on the substitution process [52]. However, the accumulation of pro-
tein sequences eventually changed this view. To explain the very high amount
of heterozygosity found in natural populations, as well as the molecular clock
hypothesis, at the end of the 1960s Kimura [6] and King and Jukes [8] proposed
that most substitutions are selectively neutral. This hypothesis, provocative
and controversial at that time, lead to a simple mathematical model of the sub-
stitution process that will be discussed in Sect. 4.1.4. The neutral model is now
considered by many as the null model of molecular evolution, and distinguish-
ing positive selection from a neutral background is the subject of a vast area
of evolutionary sequence analysis [53,54]. Subsequently, Ohta and Kimura [50]
introduced the concept of nearly neutral substitutions, and Ohta [51] proposed
that most substitutions belong to this class.

As more specifically discussed in the chapter by Ohta in this book, there are
testable differences between neutral and nearly neutral substitutions, in partic-
ular: (a) The rate of nearly neutral substitutions, especially non-synonymous
ones, is expected to decrease with population size.* This dependence can
explain the discrepancies observed between various mammalian groups in the
substitution rates per generation [55]. (b) The presence of nearly neutral sub-
stitutions implies that compensatory substitutions must be positively selected.
This might explain the surprisingly high level of positive selection detected
recently [54] using the McDonald and Kreitman test [53]. (¢) In nearly neutral,
but not in neutral, evolution, macromolecular properties are expected to be
less optimized in smaller populations. Studies of endosymbiotic bacteria, which
have small effective populations because of the bottleneck in the transmission
from one host to its offsprings, have predicted that r-RNA molecules coded
in the genomes of endosymbiotic bacteria have lower thermodynamic stabil-
ity [56] and that their proteins are less stable with respect to misfolding [57].
These findings are consistent with the high expression of chaperones, which are
proteins that assist the folding of other proteins, observed in endosymbiotic

4 In principle, also the neutral substitution rate should decrease with the population
size since the condition for a mutation to be neutral is Ms = 0. This effect,
however, is usually neglected in mathematical models.
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bacteria [58], and that can favour fitness recovering in a bacterial population
subject to strong bottlenecks [59] (see Chap. 7).

4.1.4 Neutral Substitutions

The neutral theory of Kimura is based on the assumption that the fitness ef-
fect of a mutation with respect to the wild-type, s, has a bimodal distribution,
with the most likely effects corresponding either to strongly disadvantageous
(Ms < —1) or to neutral mutations (Ms ~ 0). Advantageous mutations are
not considered because they are expected to be rare, at least for proteins
that maintain the same function and evolve in the rather stable cellular envi-
ronment [60]. The neutral theory therefore applies to families of orthologous
proteins, whose evolutionary tree coincides with the species tree, and whose
function and structure is expected to be conserved in evolution. On the other
hand, paralogous proteins, which diversified after an event of gene duplica-
tion specializing into different functions (as for instance myoglobin and the
two hemoglobin chains), undergo several positively selected substitutions in
the process of developing a new function, as it is witnessed by the acceleration
of the substitution rate after gene duplication [3]. Nearly neutral mutations
are not considered for the sake of mathematical simplicity. From the point
of view of the neutralist—selectionist controversy that was discussed for sev-
eral decades in the molecular evolution literature, nearly neutral substitutions
were often considered on the same ground as strictly neutral one, despite the
differences discussed in the previous section.

In Kimura’s model, neutral mutations undergo a diffusion process that in
the population genetics literature receives the name of ‘random genetic drift’.
The rate at which neutral mutations occur in individual genes is pa, where
1 is the mutation rate and z is the probability that a mutation is neutral.
This probability is considered to be independent of population size M, even
though, strictly speaking, the condition that a mutation is neutral is s < 1/M.
The connection between the population size and the substitution rate lays at
the heart of the nearly neutral theory and distinguishes it from the original
neutral theory.

The number of neutral mutations arising in one generation is therefore
M px and, since the probability that one of them substitutes the wild-type is
1/M (all the M genes have the same selective value), the neutral substitution
rate per generation is given by

E[S:]
t

= px (4.3)

and it is independent of M. Here, S is the number of accepted neutral muta-
tions in a time interval ¢. This provides a sort of molecular clock, in agreement
with the earliest empirical observations [7], but in worse agreement with the
so-called generation time effect (see the chapter by Ohta in this book).
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Another assumption, which we call the ‘homogeneity hypothesis’, is that
the neutral mutation rate z(A),” which in principle may be different for
all sequences A, is constant throughout evolution, x(A) = x. As shown
later, this hypothesis implies that the number of neutral substitutions has
a Poissonian distribution in the low mutation limit My < 1. The popula-
tion, as we mentioned above, is fairly homogeneous in this limit and there
is at most one mutant arising at each generation. The number of mutations
taking place in time ¢ in an individual lineage is a Poissonian variable with
mean value pt. For a population, the number of mutations is the sum of M
Poissonian variables, and it is still Poissonian with mean M ut. The probabil-
ity that one of these mutants become fixed is the product of the probability
that the mutation is neutral, x, times 1/M. Since at every generation there is
at most one mutant, the probability of n out of m mutants becoming fixed is
(n) (z/M)™ (1—x/M)™". Therefore, the probability that there are n neutral
substitutions within a time interval ¢ is given by
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As one can see, the result is a Poissonian variable with average value pxt. The
homogeneity hypothesis seems at first sight very plausible since the neutral
fraction x results from the average over a large number of sites in a gene.
If the evolving sites are uncorrelated, the law of large numbers implies that the
fluctuations of x vanish. However, as we shall see later, stability constraints
introduces global correlations between the sites of protein coding genes, so
that the homogeneity hypothesis is violated in models that take into account
such stability constraints.

4.1.5 Beyond the Small M Regime: Neutral Networks

In the next sections, we shall consider the small My limit (the blind-ant
regime). In this regime, the substitution process can be represented through
the evolution of a single wild-type sequence. It should be emphasized that
this set-up does not correspond to a one-individual population, but rather
to a large population with a small mutation rate p < 1/M, so that most
individuals have the same genotype. The population maintains the wild-type
genotype until one of the possible neutral mutations is fixed. One time step
in this set-up corresponds to the typical time for the fixation of a neutral
mutation, M.

® We adopt a notation in this chapter where bold-face mathematical symbols such
as A indicate vectors (sequences) or matrices, whereas A; indicates the i-th com-
ponent of A.
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When the mutation rate is not small, however, the fate of a genotype
depends not only on its fitness F(A), as indicated in (4.2) but also on the
fitness of its neighbours in sequence space that can be connected to it through
point mutations. An important quantity in this regime is the mutation load,
i.e. the fraction p(1 — z(A)) of offsprings of individuals with genotype A
that undergo lethal mutations. If the homogeneity hypothesis does not hold
and x(A) fluctuates in sequence space, the population dynamics may favour
genotypes with large neutrality fraction z(A) and hence small mutation load.
The parameter that controls whether this is the case is the product Mu. As
discussed earlier, a population with very small M can be represented through
a single effective sequence evolving in the blind-ant regime. In the opposite
limit of very large My (the quasi-species regime [42]), the distribution of the
population in sequence space can be obtained analytically for a neutral model
in which all viable sequences have the same fitness F'(A).

The result can be cast into a simple form [41]: Define the neutral connec-
tivity matrix (A, A’) to be 1if A and A’ are two viable sequences that can be
connected through one point mutation and 0 otherwise. This matrix describes
a neutral network of viable sequences interconnected through point mutations
[10]. The stationary distribution of the fraction of individuals with genotype
A, p(A), has to satisfy the stationarity condition p(A) =", p(A’) z(A’, A)
and therefore it is proportional to the component of the PE of the neutral con-
nectivity matrix for genotype A. This component constitutes a sort of effective
neutral connectivity of sequence A and it is positively correlated with the frac-
tion of neutral neighbours x(A) (see Sect.4.4.1). Therefore, sequences with
large x(A) are more populated, and the mutation load is reduced.

Van Nimwegen et al. [41] simulated population dynamics on a neutral
network (A, A’), obtained from the predicted folding properties of a small
RNA molecule. They found that the blind-ant regime is a good approximation
up to Mu ~ 10 and the large Mp regime is approached at Mpu = 200.
Similar results were obtained by Wilke [61] using the neutral network obtained
through the predicted folding thermodynamic properties of a model protein.
We argue that the value of Mpu at which the cross-over of the two regimes
takes place depends on the correlation length of z(A) in sequence space, /.
In fact, in neutral evolution the population occupies a region in sequence space
around the wild-type with radius of order M p mutations [45]. If this radius is
smaller than ¢, then all values of z(A) in the population are fairly similar and
the small differences in the mutation load can not be fixed in the population.

For animal and plant populations, characterized by small mutation rate
and effective population sizes of tens of thousands of individuals, My is of
order one and one would expect that the blind-ant regime is still a good
approximation to the neutral dynamics. On the contrary, viral populations
have large Mu, compatible with the cross-over region towards the quasi-
species regime.

We end this section with a summarizing comparison between the two
limiting regimes of population genetics. Population genetics models can be
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simplified in two opposite regimes: very small (blind-ant regime) and very
large (quasi-species regime) M p. In both cases, a formal analogy with statisti-
cal mechanical systems can be established. For M < 1, when the population
is fairly homogeneous, the negative of the logarithmic fitness plays the role
of the energy function and the inverse of the population size plays the role of
temperature. For Mu > 1, when the population is very spread in sequence
space, a combination of the negative of the logarithmic fitness with a muta-
tion term plays the role of the energy and the mutation rate plays the role of
temperature [48,49] (see the chapter by Jain and Krug in this book). As the
simulations by van Nimwegen et al. [41] and by Wilke [61] show in this case,
even when mutant alleles are completely neutral under the point of view of
the fitness, they may not be neutral under the point of view of mutation resis-
tance. In the following, only the small M p regime will be examined, since this
is the relevant regime for many biological populations, most notably higher
eukaryotes.

4.2 Structural Aspects of Molecular Evolution

4.2.1 Neutral Theory and Protein Folding Thermodynamics

The thermodynamic stability of the native state is a strong constraint on
molecular evolution, and a consequence of the more general requirement
of maintaining the biological function [62]. The native state of a protein
must be stable with respect to both unfolding and misfolding [63]. How-
ever, the stability against unfolding and stability against misfolding are anti-
correlated [57,64]. Therefore, natural selection cannot achieve simultaneously
the optimal value for both stability requirements and has to trade off between
them.

Natural selection eliminates mutations that reduce folding stability and
favors the fixation of more stable proteins. Nevertheless, natural proteins are
only marginally stable against unfolding [65], and it is not difficult to engi-
neer protein mutants to improve their stability. Moreover, a large number of
mutations do not alter significantly the measured thermodynamic stability or
the function of the protein. In the framework of the neutral theory of mole-
cular evolution [6], these results can be interpreted, assuming that changes
increasing folding stability are selectively neutral above some specific thresh-
olds. According to this hypothesis, the threshold values are most frequently
realized in protein evolution, because they correspond to an overwhelming
portion of sequence space. This framework provides a possible explanation for
the relatively low stability of native states of proteins [22] and for the fact
that the observed amino acid occurrences are very close to the ones predicted
from nucleotide occurrence frequencies [66, 67].
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4.2.2 Structural Conservation and Functional Changes
in Protein Evolution

It has since long been established that protein structures evolve much more
slowly than protein sequences [68,69]. Methods of protein structure prediction
on the basis of sequence homology are therefore quite successful [70]. Algo-
rithms for comparing protein structures typically reveal distant evolutionary
relationships between proteins having low sequence similarity [68]. Although
these observations can be attributed to both sequence divergence and struc-
ture convergence, careful analysis of specific cases and more accurate meth-
ods for detecting sequence homology [71] suggest that sequence divergence
beyond the limits of detectable homology is rather common (see e.g. [72] and
the chapter by Dokholyan and Shakhnovich in this book). This prevalence
of structural conservation has made it possible to create databases in which
protein structures are classified into distinct structural groups with the same
overall architecture (folds) [68,73,74]. For example, proteins classified in the
same fold in the FSSP database [68] show a distribution of sequence iden-
tity comparable to that of random pairs of sequences [69]. Nevertheless, other
indicators of structural changes often show a regular behaviour. For instance,
within a given fold, the root mean square deviation between homologous pro-
teins increases as sequences diverge [75].

Protein function, instead, is not as much conserved as the underlying struc-
ture, making its prediction rather difficult [76]. New functions are often created
through gene duplication followed by differential regulation and recruitment
of one of the copies to a new function [3]. In the transition to a new func-
tion, proteins accumulate substitutions, which may be fixed through positive
selection, in a process that usually does not change significantly the overall
fold.

Despite these general rules, several examples of proteins with detectable
homology and yet different folds have been provided [77]. In these cases, the
evolutionary changes are usually mediated through large scale mutations, such
as insertion or deletions of entire secondary structure elements and circular
permutations. As a consequence, the concept of protein fold has been recon-
sidered, and it has been suggested that insertions or deletions of secondary
structure elements can provide a mechanism to connect many known folds [78].
Significant similarities between folds previously classified as distinct, possibly
pointing at distant evolutionary relationships, were identified by Orengo and
colleagues through an algorithm of protein structure comparison at the level
of secondary structure [79] (see also the chapter by Ranea et al. in this book).
In the majority of cases, however, point mutations and insertions or deletions
of single residues do not seem to have produced evolutionary transitions to
different protein folds. Therefore, in particular in the evolution of proteins
that retain their function, the concept of protein fold can still be considered
useful.



4 The SCN Model of Protein Evolution 85
4.2.3 Models of Molecular Evolution with Structural Conservation

Structural stability was first considered in models describing the molecular
evolution of RNA structures [10]. Schuster and co-workers described neutral
networks in sequence space, associated to specific macromolecular structures
(see also the chapter by Schuster and Stadler in this book).

In this view, structurally constrained molecular evolution proceeds along
neutral networks, whose properties have a large impact on the evolutionary
process. Schuster et al. showed that, in the case of some common RNA sec-
ondary structures, the neutral networks are dense in sequence space, and
that networks of different common structures can be connected through a
small number of point mutations [10]. These results suggest a view of RNA
structural evolution as adaptation through neutrality, in which evolution pro-
ceeds along a neutral network until a crossing point to a fitter structure is
found [11,12].

Inspired by these studies, several authors introduced models of protein evo-
lution with structural conservation. In this section, we shortly review some
of these models. These models differ in the way the molecular structure is
represented and the requirement of thermodynamic stability of the target
structure is implemented. In the case of RNA, efficient algorithms can deter-
mine, approximately but reliably, the secondary structure of minimal energy
for a given sequence [80]. Equivalent algorithms do not exist for protein ter-
tiary structures. Therefore, several groups represented protein structures as
self-avoiding walks on the simple cubic or square lattice, studying them by
means of Monte Carlo simulations. The idea behind this approach is that
qualitative properties of the evolution of lattice models can be transferred
to real proteins. Other groups also adopted simplified off-lattice representa-
tions of protein structures, which were studied through effective energy func-
tions, analogous to those used for lattice models. The two approaches usually
yield qualitatively similar results. One should also distinguish between the
approaches that impose only the requirement that the target structure has
minimal energy, from those that further require that the energy landscape is
well correlated. In the latter, all structures that are very different from the
native one are energetically separated by a large energy gap from it, therefore
favouring stability against misfolding.

Bornberg-Bauer and co-workers [13, 14] studied lattice polymers by
imposing the condition that, for sequences in the neutral network, the energy
of the target structure should be lower than that of all alternative structures,
thus following closely the original RNA model. They studied the struc-
tures on a two-dimensional lattice and represented the sequences by a two-
letter (hydrophobic-polar) code. Such a simplified protein model is amenable
to exact enumeration of both conformations and sequences, and enabled
Bornberg-Bauer and co-workers to establish that in the case of lattice proteins,
neutral networks are disconnected in sequence space. They also discovered that
these neutral networks are centred around the so-called prototype sequence,
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which is the sequence of maximal stability for a given structure, both mutat-
ionally and thermodynamically. Furthermore, these studies indicated that
protein structures can be changed through point mutations, analogously to
what was previously found for the RNA model.

Babadje et al. [15] adopted simplified representations of real protein struc-
tures, evaluating how well test sequences fit the target structure through a
measure (the Z-score [81]) of the energy difference with respect to a set of
alternative structures. They found that protein sequences can diverge almost
as much as random pairs of sequences despite maintaining a high compatibility
with the original structure.

Shakhnovich and Gutin [16] proposed an evolutionary model in which
selection for fast folding is imposed in the framework of a lattice model, but
without requiring the conservation of a particular structure. Later, Dokholyan
and Shakhnovich [17] extended this approach considering sequences of fixed
composition for which the target structure was required to have low energy.
Evolution was modelled as a Monte Carlo process in sequence space, and large
entropy barriers were found to separate clusters in sequence space. Mirny
and Shakhnovich [18] analysed amino acid conservation in five of the most
populated protein folds, identifying structural features correlated with con-
servation.

Dokholyan and Shakhnovich [19] modelled the process of gene duplication
followed by structural divergence, showing that it can account for some of the
statistical features of observed protein folds, most notably the almost power
law distribution of the number of proteins per fold, and in addition that the
model provides useful predictions concerning protein function (see also the
chapter of Dokholyan and Shakhnovich in this book).

Goldstein and colleagues [20,21] used lattice polymers to study a fitness
landscape where the fitness of protein structures is given by their foldability,
a concept borrowed from the spin-glass model of protein folding. They found
that foldability can vary broadly, where structures with similar and large fold-
abilities are clustered together in structure space. When the selective pressure
is increased, evolutionary trajectories become increasingly confined to ‘neutral
networks’, where the sequence can be significantly changed while a constant
structure is maintained. In a subsequent work, Taverna and Goldstein [22]
showed that the marginal stability of proteins is a direct consequence of the
hypothesis that changes in stability are neutral above some threshold and also
of the high dimensionality of the sequence space.

Bussemaker et al. [23] obtained the interesting prediction that, in the lat-
tice model they studied, the stability of small proteins is rather insensitive
to random mutations. Tiana et al. [24] performed an exhaustive study of the
effects that single mutations have on the stability of the native structure of
a lattice protein, simulating the folding dynamics through a Monte Carlo
approach. They classified protein sites into three types according to their
robustness to mutations: ‘green’ sites, where mutations do not produce any
relevant effect on stability (typically at the surface of the structure), ‘yellow’
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sites for which the structure is slightly modified and ‘red’ sites (typically at
the core of the structure) where mutations have a disruptive effect.

Parisi and Echave [25,26] studied the impact of structural conservation on
protein evolution, in a similar spirit to the SCN model that will be described
in next section; the main difference is that they did not impose conditions
on the stability of alternative structures. They simulated site-specific amino
acid transition matrices, which were used in the calculation of the likelihood
of families of protein sequences given their phylogenetic tree. In this way,
they showed that the use of structural information can improve notably the
likelihood of evolutionary models, and their ability to distinguish between
different phylogenies.

Xia and Levitt [27,28] used a two-dimensional lattice model and performed
an exhaustive enumeration of the space of all sequences and the space of
all structures. They found that, when evolution is dominated by mutation,
the preference of the prototype sequence is not strong enough to offset the
huge size of sequence space, so that most native sequences are located near
the boundary of the fitness region and are marginally compatible with the
native structure, in agreement with the results by Taverna and Goldstein [22].
On the other hand, when evolution is dominated by recombination events,
the evolutionary preference for the prototype sequence is strong enough so
that most native sequences are located near the centre of sequence—structure
compatibility.

Aita et al. [29] identified amino acid sequences that fold into a target struc-
ture, imposing that the energy of the target must be much lower than that
of alternative structures. They found that the neutral networks of different
structures are separated by 5-30 mutations in sequence space, with separa-
tion increasing with the required threshold stability. Bloom et al. [30] studied
the impact of random mutations on the stability of a wild-type structure,
and found that the probability that a protein retains its structure declines
exponentially with the number of mutations.

4.3 The SCN Model of Evolution

The SCN model is based on the observation that evolution conserves pro-
tein structure much more than protein sequence (see e.g. [68,69]). It assumes
that all mutations that maintain protein stability above a predefined thresh-
old are selectively neutral, and all other mutations are strongly deleterious,
thus resulting in a neutral model. These assumptions are consistent with the
observation that many mutations do not significantly modify the activity of a
protein and its thermodynamic stability, while mutations that improve sub-
stantially protein functionality are rare [60].
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4.3.1 Representation of Protein Structures

In the SCN model, the structure of a protein of N residues is represented
through an NV x N contact matrix C. This matrix is defined as Cj; = 1 if
sites ¢ and j are in contact, and C;; = 0 otherwise. Two sites are considered
in contact if any two of their heavy atoms are closer than a given cut-off
distance, which we take as 4.5A. The effective free energy associated to a
sequence of amino acids A in the configuration C is, in this type of approach,
assumed to have the form of a sum of pairwise contact interactions,

E(A,C) =) CyU(A; Aj), (4.5)

i<j

where A; labels one of the 20 amino acid types and U is a 20 x 20 symmetric
interaction matrix, so that U(a,b) is the interaction energy between amino
acids a and b when in contact. A useful choice for the latter is the matrix
derived in [82] in such a way to assign high thermodynamic stability to the
native states of a large set of monomeric proteins [83].

Three remarks need to be made here: (a) The effective energy parameters
take implicitly into account the effect of the solvent and they depend on
temperature, thus they express free energies rather than energies. (b) The
effective energy of a structure is defined with respect to a completely extended
reference structure where no contacts are formed and which sets the zero of
the energy scale. (¢) The chain entropy sN is not included into the effective
energy, as it is constant for constant chain length N.

4.3.2 Stability Against Unfolding

The stability of the native state against unfolding can be estimated from
the negative of the native contact energy, —E(A, C*), neglecting changes of
conformational entropy with the protein sequence. In the SCN model, we
impose that —F(A, C*) is larger than a positive threshold — E}y,, for sequences
A belonging to the neutral network.

As an alternative measure of stability, one can also use the Z-score of the
native energy, Z(A, C*) [81,84], which gives the difference between the energy
of sequence A in configuration C* and its average energy in a set of alternative
configurations, {C}, in units of the standard deviation of the energy

E(A’ C*) - <E(A7 C)>{C}

Z(A,C*) = .
V(A C)?) o) — (B(A,C))i,

(4.6)

When a sequence A folds into a structure C*, the corresponding Z-score is
negative and very large in absolute value. This measure is, however, better
suited for estimating the stability against misfolding (see Sect. 4.3.3).
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4.3.3 Stability Against Misfolding

For a given sequence A, the energy landscape is defined to be well correlated
if all configurations of low energy are very similar to the configuration of
minimal effective energy, C*. Structure similarity is measured by the overlap
q(C, C*), which counts the number of contacts that two structures have in
common. This number is normalized by the maximal number of contacts, so
that g ranges between zero and one. In a well-correlated energy landscape,
the inequality

E(A,C)— E(A,C*

o Z alA) (- 4(C.C). (47)
with a large a(A) holds. This inequality indicates that the energy gap between
the ground state C* of sequence A and any alternative structure C, measured
in units of the ground state energy, is larger than a quantity «(A) times the
structural distance 1 — ¢(C,C*). The dimensionless quantity «(A), which
is the largest quantity for which the above inequality holds, can be used to
evaluate the folding properties of sequence A. For random sequences, the
lowest energy configurations are structurally different and have similar energy,
hence a(A) is close to zero. In this case, the energy landscape is rugged,
the folding kinetics is very slow, and the thermodynamic stability is low.
In contrast, computer simulations of well-designed sequences have shown that,
when «(A) is large, the folding kinetics is fast and the stability with respect
to changes in the energy parameters as well as mutations in the sequence is
very high [16,31]. In the SCN model, we impose that «(A) is larger than a
positive threshold iy, for sequences A belonging to the neutral network.

Further, it is assumed that the ground state structure C* coincides with
the target structure defining the neutral network. Indeed, in all the simulations
performed using the SCN model, it was never found a sequence whose ground
state structure was different than the target one and simultaneously had a
sufficiently large energy gap. Therefore, imposing a well-correlated energy
landscape through a condition on the normalized energy gap makes it very
difficult to change the native structure into a new structure, which is also sta-
ble against misfolding. This result agrees qualitatively with the simulations of
Aita et al. [29]. It illustrates the difference between RNA and proteins, since it
is in contrast with the findings of Schuster et al., who showed that the neutral
networks of two different RNA secondary structures can be separated by just
one point mutation [10].

4.3.4 Calculation of a(A)

Candidate structures for a protein sequence were generated from all possible
alignments of the sequence with structures in the PDB. This procedure is
called gapless threading. To speed up the computation, we considered a non-
redundant subset of the PDB in which proteins with homologous sequences



90 U. Bastolla et al.

are excluded [85]. About 10° alternative structures were obtained for proteins
of 100 amino acids, with this number decreasing for longer proteins. The
energy function correctly assigns the lowest energy to the native structure for
most proteins of known structure, and it generates a well-correlated energy
landscape in which structures very different from the native have high energy
gaps, so that «(A) is large.

Most of the computer time of these simulations is spent in the calculation
of a(A’) for all possible point mutants of the actual sequence A. To speed
up this calculation, we note that «(A) is obtained from the configuration
C with the highest destabilizing power, i.e. the highest value of the energy
gap divided by the structural distance from the native configuration. This
structure changes through evolution, but it is expected that the set of high
scoring structures remains the same for neighbouring sequences. Therefore,
for each actual sequence, we store a sufficiently large number of configurations
with the highest destabilizing powers (typically 50, see [86]), and we compute
their destabilizing power in the mutated sequences A’. This procedure may
slightly overestimate a(A’), since not all configurations are used, but the
fraction of sequences for which a(A’) crosses the acceptance threshold is below
0.1% [86].

One drawback of the computation of a(A) based on gapless threading
is that the number of alternative structures generated in this way decreases
with the length of the sequence, N. Therefore, the actual value of «(A) is
overestimated for longer sequences. This is not a significant problem when,
as here, one is interested in comparing values of «(A) for different sequences
of the same length. Nevertheless, it can be convenient, in particular for long
chains, to evaluate «(A) using a different method [87]. This method estimates
the minimal energy for non-native structures through a theoretical prediction
based on the random energy model (REM) [88,89],

EREM(A) ~ NC<U>A —OUAV 2NC log(mN) y (48)

where N, is the number of native contacts, (U)a and oy, a are the mean and
standard deviation of the interaction energy for all possible contacts, native
and non-native ones, within sequence A, and my is the number of independent
contact matrices for a protein of length N, satisfying physical constraints of
hard core repulsion, hydrogen bonding and compactness. The minimal energy
estimated in this way, Frepm(A), is in very good agreement with the minimal
non-native energy found by threading, Epin(A) ~ (1.00340.009) Egrgm (A) —
(0.0016£0.0012), when my is set equal to the number of structures generated
through threading, with a correlation coefficient » = 0.96 [87]. Using this
estimate, one can evaluate the normalized energy gap as

, B E(A, C*)—NC<U>A+UU,A\/2NC10g(mN)
A= E(A,C)(1 - ) )
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The number of alternative structures my is expected to increase exponentially
with chain length as
log(my)~ AN + B. (4.10)

The parameters have been approximately estimated as A ~ 0.1 and B =~ 4 in
such a way that the minimal energy coincides with the one evaluated through
threading for short chains (N < 50) and the estimated minimal effective
energy is higher than the native energy for most proteins in the PDB [87].
Finally, one sets ¢y = 0.1 as the typical overlap between unrelated structures,
disregarding the length dependence of this quantity.

4.3.5 Sampling the Neutral Networks

The neutral network of a given protein structure is defined as the set of seq-
uences A for which the stability against both unfolding and misfolding, mea-
sured through F(A,C*) and a(A,C*), respectively, exceed predetermined
thresholds, chosen as 98.5% of the values of those parameters for the wild-
type sequence in the PDB. The threshold chosen enforces conservation of the
thermodynamic stability of the native structure C*. We verified that the quali-
tative behaviour of the model does not change in the range between 95% and
100% of the values for PDB sequences.

The SCN algorithm [31,32] explores the neutral network of a given protein
starting from its PDB sequence A; = Appp and iterating the following proce-
dure: At iteration n, (a) the number X (A,,) of viable neighbours of sequence
A, is computed, and (b) the sequence A, ;1 is extracted randomly among all
the viable neighbours of A,,. In this way, we generate a stochastic process that
explores the neutral network. This process looses rather quickly the memory
of the initial sequence. The total number of viable point mutations, X (A),
expresses the local connectivity of the neutral network. This number is nor-
malized by the total number of attempted mutations, X.,% thus obtaining
the fraction of neutral neighbours, z(A) = X(A)/ X € (0,1].

4.3.6 Fluctuations and Correlations in the Evolutionary Process

In contrast with the homogeneity assumption of Kimura’s neutral model, the
SCN model shows that stability constraints produce a broad distribution of the
fraction of neutral neighbours x(A). This distribution P(z) is shown in Fig. 4.1

5 We impose conservation of the starting cysteine residues in the sequence, and
do not allow that other residues mutate into cysteine. These requirements are
imposed because a mutation that changes the number of cysteine residues by
one would leave the protein with a very reactive unpaired cysteine that would
most likely affect its functionality and would be therefore rejected with very high
probability. The maximum number of attempted mutations is therefore Xiot =
18(N — Neys), where N is the number of residues and Ncys is the number of
cysteine residues in the starting sequence.
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Fig. 4.1. Probability distribution P(z) of the fraction = of neutral neighbours for
myoglobin, as obtained by the SCN model (adapted from [90])
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Fig. 4.2. Auto-correlation function C(n) = C(z(Ak), z(Ak4n)) of neutral connec-
tivities for sequences separated by n substitutions for myoglobin, as obtained by the
SCN model (adapted from [86])

for the neutral network of myoglobin (PDB id. 1a6g). Other proteins yield
qualitatively the same results. Besides this distribution being very broad, the
fraction of neutral neighbours is strongly auto-correlated along a trajectory. In
Fig. 4.2, we show the auto-correlation function C(z(Ayg), x(Aktn)) of x(Ay),
defined as

m

1 m—n
— > w(Ag) 2(Agyn) — 7
k=1
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C(x(Ak)ax(Ak-‘rn)) = (411)
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where the mean value Z = (1/m) >~ (Aj) and the variance 02 = 22 — 7°
are calculated over the whole trajectory. Our results show that the auto-

correlation decays exponentially as
C(x(Ar),2(Aksn)) = exp(—n/l;), (4.12)

with £, of the order of three substitutions [90] and, as we shall see, it has
important consequences on the statistics of the substitution process.

Broad fluctuations and strong auto-correlations of the neutral connectivity
are a general feature of the SCN model, and distinguish it from the standard
neutral model by Kimura. They have a rather simple explanation. Defining
x;(A) as the fraction of neutral neighbours when mutation occurs at site 4,
one has z(A) = Zivzl x;(A)/N. If the fraction of neutral neighbours at differ-
ent sites are not correlated, their mean x(A) is expected to have fluctuations
vanishing as 1/v/N. The broad distribution of z(A) that we found indicates
that this is not the case. In fact, there are significant positive correlations
between almost all pairs of variables z;(A) and z;(A) [90]. These correlations
are induced by the fact that the x;(A) at each site are significantly corre-
lated with some global variable, for instance, the mean fraction of neutral
neighbours z(A). This is shown in Fig. 4.3 for the case of myoglobin, defining

o %zm: (%(Ak) —Z:“i) (JU(Ak) —f) . (113)
k=1 @ O

The figure shows that all the correlations C; are positive and significant (they
were computed from order of 10° sequences, with significance threshold of
order 10~?), and moreover, they are positively correlated with the robustness
of site i to mutation, measured by 7; [90].

Therefore, sequences with large x(A) are more rebust to mutation at all
sites. As also found by Bornberg-Bauer for prototype sequences [13], and as
we will discuss in next section, these more robust sequences have higher ther-
modynamic stability, so that mutations applied to them produce more often
other stable sequences. Figure 4.3 goes one step further, and shows that there
are some sites with small Z; that are less tolerant to mutations both in gen-
eral and in mutationally robust sequences (the correlation between z;(A) and
2(A) is minimal for these sequences). The structural determinants of strong
structurally constrained sites will be investigated in the next section.

4.3.7 Substitution Process

Amino acid substitutions within the SCN model are controlled by two inde-
pendent events: Random mutations, described by a Poissonian process, and an
acceptance process, which consists in testing whether the sequence is viable.
The acceptance probability for a mutation that takes place in a protein of
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Fig. 4.3. Comparison between cross-correlations and conservations for myoglobin.
The fraction of neutral mutations at site ¢, T;, is shown on the abscissa, and the
correlation between z; and the overall neutral connectivity =, C;, is shown on the
ordinate. The dashed horizontal and vertical lines indicate one standard deviation
from the mean (full horizontal and vertical lines). Additionally, horizontal and verti-
cal lines at the threshold of 1.5 standard deviations below the mean are also shown.
The sites above the threshold for both quantities are shown as full circles, the sites
below the threshold for both quantities are shown as full squares, whereas the sites
that are above the first threshold but below the second, or vice versa, are shown as
open circles (adapted from [86])

sequence A is given by the neutral connectivity z(A). As a result of the
broad distribution of this variable, the resulting substitution process is not
Poissonian. For a given evolutionary trajectory (i.e. for a given sequence of
neutral connectivities {2(A1),2(Az),...}) one can compute the probability
that the number S; of accepted mutations in a time interval ¢ equals n. This
probability is the product of the Poissonian probability that k& mutations take
place in the time interval ¢, times the conditional probability that n of these
are accepted,

P{S;=n}= > e (”t)|m Pace(njm) (4.14)

m:

where the conditional acceptance probability of n mutations out of m is

given by
n+1

Poec(nm) = (Hx(AQ) ST —=an™. (4.15)

{m;} =1
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Here, the {m;} are all integer numbers between zero and m — n satisfying
nJrZ;l:ll m; = m. The probability that a mutation is accepted is thus z(A),
as long as the protein sequence is A1, x(As) as long as the sequence is As
and so on.

If all sequences have the same fraction of neutral neighbours z(A) = =z,
(4.14) coincides with (4.4), and the number of substitutions in a branch of
length t, Sy, is a Poissonian variable with mean ptz and the substitution rate
equals pz, as in Kimura’s model. If the variance of the neutral connectivity
is not zero, the moments of the substitution distribution can be computed
in the long-time limit using the central limit theorem. Define 7; as the time
interval between the i-th and i 4+ 1-th substitutions. The 7; are independent
variables with exponential distribution and expectation values E[r;] = 1/ux,
E[r?] = 2/pa2. If S, is large, we can apply the central limit theorem to the

mean value Zf;l 7:/St, finding

S [
‘ 1 2B 122B?
S — |1+ —=+-——| ~1t, 4.16

;T tW? [ VSt 2 S } ( )
where z is a normalized Gaussian variable, and

—1:(1—e_1/£m>71 E_l +sz. (4.17)
1/x 1/x

E[r?]

i

~ E[r;]

The normalized variance B? is larger than one because (a) the distribution
of z is broad, so that E[1/2?] > E?[1/z] and (b) trajectories are correlated
(the term [1 — exp(—1/¢,)]"" tends to one if the correlation length ¢, tends
to zero). The first two moments of S; can be calculated as

~ M
E[S)] ~ e (4.18)
21 2 21/,
R(t) = E[Sté[si 5 p2 (1 — 7334;/ ) : (4.19)

The normalized variance R(t) is called the ‘dispersion index’. Notice that if
the substitution process is Poissonian one has R = 1. The asymptotic value
of the dispersion index for large time is R(t — oo) = B2, which is larger than
one due to the broad fluctuations and time correlations of x. Therefore, the
substitution process is overdispersed. For small ¢, when the process probes only
one sequence, the substitution process is expected to behave as a Poissonian
process with R(t — 0) = 1.

We compared the above predictions to the expectation values calculated
from the probability defined in (4.14). The values of the neutral connectivities
were obtained from the evolutionary trajectories {z(A;),z(A3),...} simu-
lated with the SCN model (details of the calculation are given in [90]). Aver-
ages along an evolutionary trajectory are indicated with angular brackets (-),
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Fig. 4.4. Statistical properties of the substitution process of myoglobin, showing
the average number of substitutions (S:) divided by wut (circles), the normalized
mutation variance R, (t) (squares), the normalized trajectory variance R, (t) (trian-
gles) and the normalized total variance R(t) = R, (t) + Rz (t) (diamonds)

whereas averages over evolutionary trajectories are indicated with an over-
line -. The mean and the normalized variance of the number of substitutions
are shown in Fig. 4.4 for the case of myoglobin. In the plot, we distinguish the
normalized mutation variance

1 2 TQN2
Rult) = == (t7) - 507) (4.20)

the normalized trajectory variance

R.(t) = (W . @2) : (4.21)

(5)

and the normalized total variance (the dispersion index) R(t) = R,,(t)+ R, (t).
Notice that if (A) = x, one obtains R, (t) = 1 as for all Poissonian processes,
and the normalized trajectory variance R, (t) = 0. From the plot, it is also
clear that most of the overdispersion comes from R,(t), i.e. from the variance
between different evolutionary trajectories, which can generate rather different
substitution rates.

The quantitative agreement of the dispersion index R(t) of the SCN process
with the prediction (4.19) is quite good as far as the long-time limit is
concerned, but the temporal dependence is not well captured by this first-
order approximation. The dispersion index of the SCN process is compatible
with empirically obtained dispersion indices, which are usually in the range
1.5-5 [9,50,91]. Hence, these observed dispersion indices may be to a large
extent due to the correlations present in the evolutionary process both in space
and in time [90]. This result provides a mechanistic explanation of the fluctu-
ating neutral space model proposed by Takahata to account for the observed
statistics of the substitution process [92].
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Here, we should notice a difference between the results shown in Fig. 4.4
and those presented in [86]. In [86], we reported that the average substitution
rate (S¢)/t decreases in time in the SCN model, tending to the asymptotic
value pl/z. Recently Ho et al. [93], analyzing protein sequences, observed an
apparent decrease of the substitution rate through time that would match
qualitatively the SCN prediction. However, in obtaining the results pre-
sented in [86], we sampled the initial sequences of the evolutionary trajec-
tories with equal probability. This procedure is not entirely consistent, since
the time spent at sequence A is proportional on the average to 1/x(A),
so that the process spends more time in sequences with small neutral con-
nectivity x. Taking this into account, we have sampled the initial sequence
A; with probability proportional to 1/x(A;). The initial rate is therefore

fol P(x) (1/z) (px)dz/ fol P(z) (1/z) dz, which is equal to the final rate p1/z,
so that the rate is now constant in time. Figure 4.4 refers to this new sam-
pling protocol. This does not modify significantly the normalized variances
presented in Fig. 10 of [86], which was obtained with homogeneous sampling.
Therefore, the results of [86] cannot explain the empirical observations of non-

constant rate by Ho et al. [93].

4.4 Site-Specific Amino Acid Distributions

The reconstruction of phylogenetic trees from sequence alignments requires the
use of a model of protein evolution [4,94] (see also the chapters by Xia and by
Lio et al. in this book). In this context, the effects of both the mutational and
the selection processes on protein folding and function must be taken into
account. It is well known for instance that the local environment of a pro-
tein site within the native structure influences the probability of acceptance
of a mutation at that site [95]. Nevertheless, such a view, which is based on
structural biology, has a relatively limited impact on studies of phylogenetic
reconstruction, where the corresponding models usually rely on substitution
matrices that do not consider the structural specificity of different sites. The
most used substitution matrices, such as JTT [96], are obtained by extrapo-
lating substitution patterns observed for closely related sequences, and they
have low performances when distant homologs are concerned [97].

To account for selection at the protein level, it is necessary to consider
site-specific amino acid distributions within a protein family [98]. The use
of site-specific substitution matrices improves substantially maximum likeli-
hood methods for reconstructing phylogenetic trees [99-103]. In the studies
mentioned above, site-specific constraints are obtained either through simula-
tions of a protein evolution model or by fitting the corresponding parameters
within a maximum likelihood framework. As we will discuss in the following,
it is possible to deduce from the SCN model an analytical expression for site-
specific amino acid distributions with no adjustable parameters. The resulting
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distributions are in very good agreement with model simulations and with
site-specific amino acid distributions obtained from the PDB [39,40].

Sites in the same protein evolve in a correlated way, because they undergo
global stability constraints. However, Maximum Likelihood approaches become
almost computationally unfeasible unless one assumes that sites evolve inde-
pendently. Here, we will define a mean-field protein evolution model with
independent sites that reproduces with great accuracy the results of the SCN
model with global stability constraints. The price to pay for this simplifica-
tion is that we shall consider an effective selection process that depends on
the mutation process. At the mean-field level, mutation and selection, that
are independent processes in the Darwinian framework, become effectively
entangled.

4.4.1 Vectorial Representation of Protein Sequences

The interaction matrix U in (4.5) can be written in its spectral form as
U(a,b) = ZZO:1 o ul® (@) ul® (b), where €, are the eigenvalues, ranked by
their absolute value, and u(® are the corresponding eigenvectors. The main
contribution to the interaction energy is given by ¢; u(*) (a) u™) (b), which has
a correlation coefficient 0.81 with the elements U(a,b) and a negative eigen-
value €;. It is well known that hydrophobic interactions constitute the most
significant contribution to pairwise interactions in proteins, the components
of the main eigenvector are strongly correlated with experimental hydropathy
scales [104,105]. By considering only this main component, one can define an
effective energy function, H(A, C), which provides a good approximation to
the energy, (4.5), as

— =1 Y Cij h(Ai) h(A;). (4.22)

The vector h(A) = u”(A) is denoted as the Hydrophobicity Profile (HP)
of sequence A [38]. This is an N-dimensional vector whose i-th component is
given by h(A;) = uM(4;). The 20 parameters h(a) = u")(a), obtained from
the PE of the interaction matrix, are called interactivity parameters, and are
reported in Table 4.1.

Table 4.1. Interactivity scale used in this chapter and presented in [38]

A R N D C Q E G H I
0.1366 0.0363 —0.0345 —0.1233 0.2745 0.0325 —0.0484 —0.0464 0.0549 0.4172
L K M F P S T W Y \Y%

0.4251 —0.0101 0.1747 0.4076 0.0019 —0.0432 0.0589 0.2362 0.3167 0.4083
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4.4.2 Vectorial Representation of Protein Folds

A convenient vectorial representation of protein structures may be derived
from the PE of the contact matrix C, which we denote as c. The latter max-
imizes the quadratic form },, Cj; ¢; ¢; with the condition ), c? = 1. In this
sense, ¢; can be interpreted as the effective connectivity at site 4, since sites
with large ¢; are in contact with as many as possible sites j with large c;. All
the components of ¢ have the same sign, which, by convention, is taken as
positive. Moreover, if the contact matrix represents a single connected graph,
as is the case for single-domain globular proteins, the information contained in
the PE is in most cases sufficient to reconstruct the whole contact matrix [37],
and consequently the full three-dimensional structure [106].

4.4.3 Relation Between Sequence and Structure

The constraint of thermodynamic stability predicts that there should be a
correlation between the vectorial representations of protein sequences and
structures.

For a given protein fold, we define the optimal HP, denoted as hg, as
the vector that minimizes the approximate effective free energy, (4.22), under
the constraints that its mean hydrophobicity, (h) = N71 3", hopt(A;), and its
mean square value, (h?) = N~ 37 h2  (A;), are kept fixed.” These constraints
imply that the mean and standard deviation of non-native interactions is also
kept fixed, so that the normalized energy gap, (4.9), is also kept large. From the
property of the PE that it maximizes Zij C,j c; ¢; with the conditiony", ¢Z =1,
it is clear that hepy is strongly correlated with ¢ [38]. In this formulation, (h)
and (h?) are parameters not determined by the native structure, and they
should guarantee a large normalized energy gap (in fact, in the approximation
given by (4.22), the mean and mean square contact interactions that enter into
the calculation of a(A) by (4.8) are (U) = € (h)? and (U?) = €2 (h?)?).

The optimal HP represents an analytical solution to the problem of
sequence design for the effective energy function (4.22), and thus an app-
roximate solution for the energy function, (4.5). In the SCN evolutionary
model, mutations are accepted whenever the effective free energy and the
normalized energy gap overcome predefined thresholds. Thus, the optimal HP
is not expected to be ever realized during evolution, since they correspond to a
negligible volume in the neutral network. However, thermodynamically stable
sequences compatible with the given fold are expected to have HP values not
too different from the optimal one. This is indeed observed in simulations of
the SCN model. The mean correlation coefficient between the PE of the fold
and the HP of the sequences generated through SCN simulations is typically
0.45, which is significant. The HP averaged over all sequences compatible with

" Here, we denote by angular brackets the average over all positions in a given
protein sequence or structure.
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a given fold, [h] ovop: COrrelates much more strongly with the PE of that fold
(and hence with the optimal HP), with a correlation coefficient larger than
0.95 for all of the studied folds [38]. These results show that one can recover
the optimal HP through an evolutionary average of the HPs compatible with
the protein fold.

Protein families represented in the FSSP [68] and in the PFAM [107] data-
bases show qualitatively similar results. The correlation between the PE of the
fold and the HP of individual sequences compares well with what was found
in SCN simulations. The average HP over aligned sequences from the same
protein family correlates more strongly with the PE than individual HPs: The
average correlation coefficient is 0.58 for FSSP families and 0.57 for PFAM
families [38]. This correlation is however much weaker than the analogous one
for SCN protein families, which is 0.96. There are several explanations for this
weaker correlation. First, this can be due to functional conservation, which
plays an important role in protein evolution and is not represented in the
SCN model. Part of the discrepancy can be also attributed to the approxi-
mate character of the effective energy function used to test the thermodynamic
stability. Furthermore, real protein families are much smaller than SCN fam-
ilies, for which we generated of the order of 10% sequences. To test for such
an effect, the average HP has been also computed using only few hundreds
of SCN sequences, i.e. of the same order of magnitude as in FSSP or PFAM
families. As a result, the correlation between the average HP and the PE was
found to be reduced to values comparable to those observed for the FSSP and
the PFAM sequence databases [38].

4.4.4 The PE as a Structural Determinant
of Evolutionary Conservation

As showed by Bornberg-Bauer [13], thermodynamic stability and mutational
stability are correlated. Sequences that are more stable can also bear a larger
number of mutations. Bornberg-Bauer called the sequence of maximal muta-
tional stability the prototype sequence of a fold, and showed that it has also
maximal thermodynamic stability. In our model, the optimally stable sequence
can be predicted analytically to have a HP that correlates very strongly with
the PE. Sequences close to the optimal one, in the sense that they have a large
correlation coefficient r(h(A), ¢), are therefore expected to bear a large num-
ber of mutations and to have larger neutral connectivity x(A). We verified this
prediction using the SCN families. Although there is a significant correlation
between the two quantities, the scattering of the data is very large. Thus in
Fig. 4.5, we plot z(A) averaged over protein sequences that have r(h(A),c)
in the same bin of width 0.02, as obtained for mesophilic rubredoxin (PDB
id. 1iro). Sequences close to the optimal one have a very large fraction of
neutral neighbours, as expected.

Thus, the relation r(h(A),c) between PE and HP explains a significant
part of the sequence variation of the overall mutational stability z(A). As we
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Fig. 4.5. Mean fraction of neutral neighbours (z(A)) as a function of the correlation
coefficient 7(h(A), c) between the vectorial representations of sequence h(A) and
structure c¢ for mesophilic rubredoxin (error bars indicate the standard deviation of
the mean)

will see in the next section, the PE explains also a large part of the site-specific
variation of mutational stability, with sites having PE components that are
smaller or larger than the mean being more conserved through evolution.

4.4.5 Site-Dependent Amino Acid Distributions

The SCN model of protein evolution generates trajectories in sequence space
for which the resulting HP fluctuates around the optimal HP, the latter being
strongly correlated with the PE of the protein fold’s contact matrix [38]. This
remarkable feature can be used to compute analytically the site-specific dis-
tribution of amino acid occurrences 7;(a), where ¢ indicates a protein site and
a one of the 20 amino acid types [39].

To derive an analytical expression for m;(a), the correlation coefficient
between the PE c of the native contact matrix and the evolutionary aver-
age of the hydrophobicity vector, [h]_, is assumed to be exactly 1, yielding
that the two vectors are linearly related as

(1] oy = > mi(a) h(a) = A(ei/(c) = 1) + B, (4.23)
{a}

where the sum over {a} is over all amino acids, and

[P =
A\ @@ e P Mewd 429

In the above equations, two kinds of averages have been introduced: The
angular brackets, denoting the average over the N sites of the protein,
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(f) = N=t3", f;, where the corresponding standard deviation is denoted as
o} = (f*) = (f)?, and the square brackets, denoting site-specific evolutionary
averages, [fi]evol = (ay Tila) f(a).

Equations (4.23) and (4.24) represent the conditions that the stationary
distributions ;(a) have to fulfil in order to guarantee a perfect correlation
between PE and the average HP. Assuming that these conditions are the
only requirement that the m;(a) have to meet, we require that the m;(a) are
the distributions of maximum entropy having the given average values. It is
well known that the solution of this optimization problem are Boltzmann-like
(exponential) distributions, characterized by an effective ‘temperature’ |3;|~*
that, in this context, varies from site to site and measures the tolerance of site
i to accept mutations over very long evolutionary times,

exp[—fi h(a)]

mi(a) = Sy XD Be (@] (4.25)
with the constraint, (4.23),
Zexp[—ﬁi h(a)][h(a) — A(c;/{c) — 1) — B] =0. (4.26)

{a}

Equation (4.26) states an analytical relation between the ‘Boltzmann pa-
rameter’ 3; and the PE component c¢;, given the two evolutionary para-
meters A and B. This equation indicates that §; equals zero if ¢;/{c) =
1+ A7Y( > {ay 1(a)/20— ([n] evol)), and that 3; becomes negative for larger ¢;
and positive for smaller ¢;. The relationship between §; and ¢; is expected to
be almost linear in the range |cl/<c> - 1‘ < 1. In addition, 3; tends to minus
infinity when the average hydrophobicity at site i, [hi]cvol’ tends to the max-
imally allowed value, and to plus infinity when the average hydrophobicity at
site 4 tends to the minimum allowed value.

Equation (4.26) has a simple qualitative interpretation. Positions with
large eigenvector component ¢; are buried in the core of the protein structure
and are therefore with high probability occupied by hydrophobic amino acids
(positive h(a)), having a large and negative ;. Conversely, surface sites with
small ¢; are more likely occupied by polar amino acids (negative h(a)), having
large and positive ;. Intermediate sites are the most tolerant to mutations,
having a small |3;| corresponding to high substitution temperature.

The distributions derived here refer to very long evolutionary times, when
memory of the starting sequence has been lost. We recall the three assumptions
that have been made for deriving the site-specific distributions: (a) The first
assumption is that selection on folding stability can be represented effectively
as a maximal correlation between the HP of sequences compatible with a given
fold and the optimal HP of that fold, the latter nearly coinciding with the PE.
This assumption follows directly from an approximation of the effective free
energy function with its principal (hydrophobic) component, (4.22). (b) The
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second assumption is that the average of the HP of selected sequences over
very long evolutionary times has a correlation coefficient of unity with the PE,
i.e. all other energetic contributions average out. (¢) The third assumption is
that this correlation is the only relevant property of the site-specific amino
acid distributions, indicating that these distributions are the distributions of
maximum entropy whose site-specific averages have correlation one with the
PE, thus fulfilling the stability requirement. From these three assumptions, the
Boltzmann form of the amino acid distributions follows in a straightforward
manner. To compute the site-specific Boltzmann parameters, however, one
still needs to determine the positional mean and standard deviation of the
site-specific HPs. These quantities depend on the mutation process and the
selection parameters. They were computed directly from the data in such a
way that the analytical prediction does not contain any free parameter.

The agreement between the predicted site-specific amino acid distributions
and those observed in SCN simulations is very good [39], showing that this
analytical approach reproduces quantitatively the statistics of the much more
complex SCN process.

Boltzmann distributions have a long history in studies of protein struc-
ture and evolution. Structural properties of native protein structures, as for
instance amino acid contacts, have been assumed to be Boltzmann-distributed
[108], and Boltzmann statistics for structural elements was predicted in sta-
ble folds of globular proteins [109]. Our work points out to a complementary
explanation for such distributions.

Shakhnovich and Gutin [110] proposed a model of sequence design through
Monte Carlo optimization, which produced a Boltzmann distribution in
sequence space. A mean-field approximation of this model [17,111] results
in site-specific amino acid distributions of the form

m;i(a) o< exp[—0 ¢i(a)], (4.27)

formally similar to (4.25). There are, however, three important differences
between the present formulation and (4.27). First, (4.27) was derived as a
mean-field approximation to a Boltzmann distribution for entire sequences,
whereas (4.25) was derived from the relationship between average hydropho-
bicity at a given site and the PE component. Second, in (4.27), the Boltzmann
parameter (3 is the same for all sites, whereas (3;, obtained here from the PE,
changes along the protein structure. Third and most important, to compute
(4.27), aligned families of natural proteins were used in [17,111], whereas
the present computation only requires the PE and two empirical values, the
average and the standard deviation of the HP.

In [100,101], Goldstein and co-workers assumed that the site-specific dis-
tributions of physico-chemical amino acid properties have a Boltzmann form.
From this assumption they derived a protein evolution model to be used in
phylogenetic reconstruction within a maximum likelihood framework. Since
the properties that were used in these studies are hydrophobicity and amino
acid size, the proposed distributions are a general case of those discussed here.
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However, differently from [100, 101], here we classify sites according to the
PE component, which is a structural indicator strongly correlated with con-
servation, and we compute the Boltzmann parameters analytically, whereas
in [100,101] they are fitted using a maximum likelihood framework.

4.4.6 Sequence Conservation and Structure Designability

We have shown that there is a direct relationship between a structural indica-
tor, the PE, and site-specific measures of long-term evolutionary conservation
that imposes limits to divergent evolutionary changes. This relationship also
provides a link between the topology of a fold and its designability.

One convenient measure of the amino acid conservation at a given site is
given by the rigidity, defined in terms of m;(a) as

exp|—20; h(a
R; = Z [ria)]” = Zotap P20 1) 7 -
@ {2y expl=5: hla)}

The value R; = 1 means that the same amino acid is present at site ¢ in
all sequences, leading to complete conservation and 3; 1= 0. In general, the
rigidity decreases with increasing temperature |3;| 1. One can use (4.26) and
(4.28) to compute the rigidity directly from the PE.

A standard information-theoretic measure of site-specific sequence conser-
vation is given by the entropy of the amino acid distribution

S ==Y _mi(a)log[mi(a)] =10g [Z(B:)] + Bi [Mi]eyer » (4.29)
{a}

(4.28)

where Z(3;) = > (a} exp[—f; h(a)]. The entropy attains its maximum value,
S; =1og(20), at ; = 0, and it decreases with increasing |3;|. Predictions of the
entropy based on a different approach, (4.27), using aligned protein families
have been obtained in [17,111].

An important property of the entropy is that its exponential, exp(S;), pro-
vides an estimate of the average number of amino acid types acceptable at
site ¢ over very long evolutionary times. Assuming that the amino acid dis-
tributions at different sites are independent from each other, the exponential
of the sum of all site-specific entropies, exp(,; S;), gives an estimate of the
region of the sequence space compatible with a given fold. The size of this
region represents the designability of the fold. Although the independence
assumption is a clear oversimplification, the estimate of designability that can
be obtained should be a valuable approximation, and the present approach
allows to connect it explicitly to a topological feature of the protein native
structure [112,113].

Kinjo and Nishikawa [114] have recently pointed out the existence of a
strong relationship between hydrophobicity and the main eigenvector of sub-
stitution matrices derived from protein alignments with various values of the
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sequence similarities of the aligned proteins. They considered the eigenvector
corresponding to the largest eigenvalue (in absolute value) of the substitution
matrices. For high sequence similarities (above 35%), this eigenvector indi-
cates the propensity of the amino acid to mutate over short evolutionary times
(mutability). For low sequence identities (below 35%), corresponding to long
evolutionary times, this eigenvector is very strongly correlated with hydropho-
bicity. This correlation is easily understood in the light of the results presented
here. In fact, Kinjo and Nishikawa used Henikoffs’ method [115] for deriving
substitution matrices from observed frequencies of aligned amino acids at sites
with various PE values. In the present notation, these substitution matrices
can be indicated as M (a,b) ~ log [(m;(a) m;(b))/(mi(a))(mi(b))], where the
angular brackets denote positional average. In other words, these substitution
matrices measure the tendency of two residue types a and b to co-occur at
the same sites. The relationship between large time substitution matrices and
hydrophobicity gives therefore independent support to the results discussed
here.

4.4.7 Site-Specific Amino Acid Distributions in the PDB

We tested how the predicted site-specific distributions compare to those
obtained from a representative subset of the PDB [39]. For this compari-
son, we considered a non-redundant subset of single-domain globular proteins
in the PDB, with a sequence identity below 25% [85]. Globular folds were
selected by imposing that the fraction of contacts per residue was larger than
a length-dependent threshold, N./N > 3.5 4+ 7.8 N~1/3. This functional form
represents the scaling of the number of contacts in globular proteins as a func-
tion of chain length (the factor N ~1/3 comes from the surface to volume ratio),
and the two parameters are chosen so as to eliminate outliers with respect
to the general trend, which represents mainly non-globular structures. Single-
domain folds were selected by imposing that the normalized variance of the PE
components is smaller than a threshold, (1 — N(¢)?)/(N{(c)?) < 1.5. In fact,
multi-domain proteins have PE components that are large inside their main
domains and small outside them (the PE components would be exactly zero
outside the main domains if the domains would not share contacts). There-
fore, multi-domain proteins are characterized by a larger normalized variance
of PE components with respect to single-domain ones. It has been verified
that the threshold of 1.5 is able to eliminate most of the known multi-domain
proteins and very few of the known single-domain proteins.

In [39], we selected 404 sequences of less than 200 amino acids, and classi-
fied sites according to the value of ¢;/{c) into bins, where (¢) denotes the aver-
age over a single structure. For each bin, the observed distributions 7, /(. (a)
were fitted with an exponential function of the hydrophobicity parameters,
e, /ey (@) o< exp[—P, /ey h(a)]. As in the case of the SCN simulations, the
interactivity scale derived from the effective free energy function, (4.22), was
used. The exponential fit was sufficiently good, and yielded the observed
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Boltzmann parameters 3., () as a function of the normalized PE components,
ci/{c).

Next, one can calculate the predicted Boltzmann parameters f3., /(. from
the relation

> {ay N(a) exp[=Bc, /() h(a)] B

Y P[P0 B@)] 7|

ci/(c) =1+ A1 (4.30)

where A and B are defined as the analogous terms in (4.24), and the averages
indicated by the square brackets in (4.24) now denote, instead of the evolu-
tionary averages over a protein family, the average over all sites with ¢;/(c) in
the same bin, even belonging to different structures, whereas angular brackets
in (4.24) now denote the average over all values of ¢;/{c) weighted with the
number of sites in the bins.

The observed Boltzmann parameters are compared in Fig. 4.6 to the pre-
dictions of (4.30). The agreement is remarkable, as the predictions do not

involve any adjustable parameter, since A and B are calculated from the
PDB data [39].
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Fig. 4.6. ‘Boltzmann parameter’ 3., (. as a function of the normalized PE compo-
nent ¢;/(c) (symbols) obtained by analysing a subset of 404 non-redundant single-

domain globular structures. The continuous line shows the analytical prediction,

(4.30), obtained using the mean hydrophobicity ([h] PDB) = 0.128 and the variance
2

([h] I <[h] PDB)2 = 0.009 as obtained from this set. The dashed part of the
curve indicates the forbidden area ¢; < 0. The inset exemplifies the numerically
obtained — In[r(a)] vs. hydrophobicity h(a) of amino acid a (symbols), as obtained
for 2.45 < ¢;/{c) < 2.5, yielding via a linear fit (shown as line) a value of § = —4.53
for this bin (adapted from [39])
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4.4.8 Mean-Field Model of Mutation plus Selection

Despite the good agreement with observations, the predicted distributions
do not take into account the mutation process acting at the DNA level, but
consider that all mutations from one amino acid to another are equiprobable.
To incorporate the DNA level into the SCN scheme, we represent protein
evolution at site 7 as an effective stochastic process with transition matrix

T(a,b) = P,(a,b) Pax.i(a,b) (4.31)

for a substitution from a to b # a. The first factor represents the mutation
process, and it is the same at all positions, and the second one represents the
site-specific neutral fixation of mutations that conserve thermodynamic stabil-
ity. Results from the SCN model show that, for what concerns the stationary
distribution, the fixation term can be written as

Py i(a,b) = min {1, exp (—f; [h(b) — h(a)])} , (4.32)

where the Boltzmann parameter 3; takes the value that fulfils (4.23). The
larger the absolute value of [; is, the larger is the fraction of mutations that
are eliminated by negative selection for protein stability and the larger is the
mutational load.

The stationary distribution of the complete transition matrix has now the
form 7(a, 5) o< wg(a) exp[—0F h(a)], where wg(a) satisfies the equations

0= Z min {exp [-5 h(b)],exp [ h(a)]}
{b},b#a
x [wg(a) Py(a,b) —wg(b) P,(b,a)] , (4.33)

for all final amino acid states b. If the mutation matrix satisfies the detailed
balance equation, w(a) P,(a,b) = w(b) P,(b,a), which is called ‘reversibility’
in the molecular evolution literature, then the stationary distribution of the
mutation plus fixation process becomes

_ w(a)exp[-B;h(a)])
> oy w(a') exp [—fi h(a')]’

where w(a) is the stationary distribution of the mutation process, which is
also the stationary distribution of the protein evolution process at sites where
B equals zero (no mutations are rejected).

Within this more general context, the case w(a) = 1, which corresponds
to P,(a,b) = 1/20, is the mutational model that was adopted in the previ-
ous subsection. Despite its simplicity, it provides already a surprisingly good
prediction of the observed amino acid frequencies. If we adopt a reversible
mutational model at the nucleotide level, we find

wla) o< Y f(m) f(n2) f(ns), (4.35)
)

codons(a

(4.34)

mi(a)
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where f(n) is the stationary frequency of the four nucleotides A, T, G and C.
Using uniform nucleotide frequencies, f(n) = 1/4 (or, in other words, w(a)
proportional to the number of codons) improves the prediction by 40% when
measuring the similarity using the Jensen-Shannon (JS) divergence [40], with-
out introducing any free parameter. By fitting the nucleotide frequencies,
we can further improve significantly the prediction by 30% with only three
free parameters [40]. The optimal nucleotide frequencies are f(T) = 0.24,
f(A) =0.31, f(C) =0.19 and f(G) = 0.26. Notice that the optimal nucleotide
frequencies violate Sueoka’s parity 2 rule f(A) = f(T) and f(C) = f(G) [116],
hinting at an asymmetric distribution of coding sequences on the two DNA
strands [117].

Note that the site-specific mean hydrophobicity now depends on the
parameters of the mutation process, so that

| i) wl) epl-Gib@]
S = Y 105) R A

Therefore, the selection parameters [3;, defined implicitly by the above equa-
tion, also depend on the parameters of the mutation process. This looks at
first sight in contradiction with the Darwinian paradigm according to which
selection and mutation are independent forces. However, the contradiction is
only apparent, as shown by the fact that the predicted distributions agree
very well with simulations of the SCN model with mutations at the DNA
level [117], for which the Darwinian paradigm holds. In the SCN model protein
sites evolve in a correlated way as a result of global stability constraints. The
effective model presented here is a mean-field model in which sites evolve inde-
pendently, which constitutes a considerable simplification, in particular with
respect to the task of evaluating likelihoods. The price to pay is that the selec-
tion parameter has to be computed self-consistently as the result of the mean
hydrophobic environment created by other residues, in which the mutation
process enters. For instance, when mutations favour the T nucleotide, that in
second codon positions mostly codes for hydrophobic amino acids, the § para-
meter vanishes at hydrophobic positions with large ¢;/{c), whereas, with the
opposite mutation pattern, the § parameter vanishes at hydrophilic positions
with small ¢;/{c). Therefore, mutation and selection, although independent
processes at a mechanistic level, become effectively entangled in the mean-field
model. Accordingly, the mutation load, i.e. the fraction of mutants eliminated
by negative selection, depends on the mutation bias [117], and so do the prop-
erties of protein folding thermodynamics: When the bias favours hydrophobic
mutations, the balance between stability with respect to unfolding and stabil-
ity with respect to misfolding shifts towards the former [57,117]. In this way,
the mutation process has a deep influence on the properties of proteins.
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4.5 Conclusions

We have described how the conservation of protein structures influences the
statistical properties of the evolutionary process by reviewing results that
were obtained by using the SCN model. We have given particular emphasis to
the effects of structure conservation on the topology of the neutral networks
in sequence space and on the correlations during evolutionary trajectories,
including the mutual effects on connected structural sites. Additionally, we
have explained how the site-specific distributions of amino acids can be derived
from the SCN model are consistent with those obtained from an analytically
solvable mean-field model.

As illustrated by the results that we discussed, the inclusion of structure
conservation in evolutionary models represents a powerful source of insight
into the rules that determine molecular evolution. With the advent of struc-
tural genomics initiatives and the constant advances in computer technology,
the range of applications of this approach is expected to expand considerably
in the future.
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5

Towards Unifying Protein Evolution Theory

N.V. Dokholyan and E.I. Shakhnovich

5.1 Two Views on Protein Evolution

There are many proposed models for protein domain evolution. The main
contention [1], however, is between divergent [2] and convergent [3] mod-
els of evolution. Divergent evolution proposes that there was an ancestor to
all domains that we see today and consequently all domains are historically
related to each other. Convergent evolution claims that chance is largely res-
ponsible for the appearance of new kinds of domains. Convergent evolution
explains the prevalence of certain types of structures by stating that those
structures are more favorable and are often recycled for different functions.
The distinction between convergent and divergent evolution is neither abstract
nor purely academic. If divergent evolution is the primary model responsible
for the appearance of new domains, then it is possible to reconstruct lineages
of domains, follow structural change, and predict contextual functional ranges
that occur due to well-defined evolutionary pressures. However, if convergent
evolution is the main driving force behind the appearance of new structures
and functions, in principle there should be no discernable structure—function
relationship. An important step in understanding evolution is the quantifica-
tion of dominant evolution scenario(s) as theoretical background for derivation
of the structure—function correlation. Here, we describe recent advances in this
direction.

5.2 Challenges in Functionally Annotating Structures

To outline the steps that are needed to create a theory of structure—function
correlation, we would like to first outline the challenges in doing so. First, we
have a problem of finding the “atomic unit” of functionality in proteins. This
atomic unit is commonly taken to be a protein domain. This is so because
domains can be both structurally sound and functional outside the protein
that they are a part of. The most common ways of finding protein domains rely
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heavily on personal “intuition” [4] and are often points of vigorous debate [5,6].
However, such an atomic unit must be agreed upon if a theory of structure—
function relation is to succeed. An atomic unit is integral to addressing the
structure—function correlation because of the need to “compare” these units.
If we pick incorrect atomic units, comparisons will be plagued by problems
like “flow of structure” and overlapping sets of nonunique functions.

The determination of the function for a hypothetical protein is currently
based on three strategies [7]. The first strategy is based on finding sequence
similarity to known proteins. Even at low sequence similarities, there may
be a set of conserved amino acids constituting an active site or a conserved
hydrophobic core [8-11]. In the case of a conserved active site, similar amino
acids may indicate the function of a hypothetical protein. The second strategy
involves the search for protein surface cavities using sequence and structural
similarities to protein with known function. As in the first strategy, the extent
of the success of this methodology depends strongly on the conservation of
local sequence and structural motifs. In addition, the second strategy relies
on the knowledge of the protein structure. The driving assumption for these
strategies is the possible similarity of the active sites between proteins sharing
the same or similar function [12,13]. Also, there have been several mechanisms
proposed to search for local functional motifs by comparison to libraries of
three-dimensional structural templates [13-15] and the analysis of the physi-
cal properties of protein surfaces. Teichmann and Thornton [7,16] described
two examples of correct functional annotation of hypothetical proteins: the
HdeA protein from FEscherichia coli [17] and the protein corresponding to
gene 226 from Methanococcus janaschii [18,19]. Finally, the third strategy is
based on the crystalographic studies of the bound cofactors in the native pro-
tein structure. The main limitation of this strategy is that it requires experi-
mental reconstruction of the three-dimensional structures of protein-ligand
complexes. The efforts to annotate function exclusively based on structure
and sequence, as discussed above, are complicated by the fact that different
sequences may fold into similar structures [4] but have different functions.
A notable example of functional diversity inside a structurally homologous
family is the case of the P-loop NTPases. The structures of RecA (2reb) [20]
and adenylate kinase (2ak3) [21] proteins are similar. Both are alpha and beta
proteins. Both contain P-loop topology. Both are placed in the same SCOP
family [4]. Yet, their functions are quite distinct. RecA is a DNA repair pro-
tein, while the adenylate kinase is a transfer protein transferring phosphate
groups from AMP to ADP.

The problem is further complicated when some clearly homologous genes,
found through high scoring sequence comparison, fold into the same structure,
but perform different functions depending on the genome they are expressed
in. For example, two sequence homologues of an alpha/beta hydrolase share
more than 75% sequence identity. Yet, the E. coli version has the function
of a serine-activating enzyme, while the human homologue is a lysosomal
carboxypeptidase [22].
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Another challenge in understanding the structure—function relationship in
protein domains is that it is difficult to define quantitatively the metric of the
“function space.” While structural relationships between protein domains are
easily quantifiable, so that several good measures of it exist — Z-score [23-25]
and RMSD, the distance in functional space is poorly defined. A way to
address this crucial issue is by using a hierarchical description of protein func-
tionality and probabilistic models that aim to quantify functional proximity
based on dominating functional annotations.

Finally, the idea of understanding the protein function from individual
characteristics is exacerbated by some puzzling findings where evolution can-
not be easily traced. These findings were attributed most often to conver-
gent evolution. For example, Ponting and Russel [26] describe the case of the
Ser/His/Asp catalytic triad [27], which has been identified in five completely
different protein folds. These folds apparently do not share any common ances-
tor based on extensive sequence similarity searches. Therefore, these folds are
not considered homologous, yet their functions are the same and the catalytic
triad is also strikingly similar.

5.3 The Importance of the Tree of Life

Along with creating methods for measuring sequence, structure, and metabolic
pathway variability, we also have to create a way to describe the context
(see [9]) for each sequence and structure. A hierarchical description of the
context exists now and is referred to as the “tree of life” [28,29]. The tree of
life describes the most probable divergence of organisms (or most parsimonious
way to describe their interrelationship based on multiple sequence alignment
of a single ubiquitous protein). An example of a tree based on this principle
of parsimony was constructed in the mid-1970s by Woese and collaborators
who used SSU rRNA molecule as a molecular chronometer. On the basis of
this information, most trees of life are now drawn [30-33]. SSU rRNA is used
because it is widespread in organisms and its structure is highly conserved [33].

There is, however, considerable debate about the precision of the phylogeny
predicted by a tree drawn purely on rRNAs alone. This dissention stems partly
from the fact that other genes give believably different trees for the same
set of organisms [34-42]. Further, apparently different trees can be produced
by naturalistic methods of traditional phylogeny [43-45]. It has been noted
that due to the existence of lateral transfer — a phenomenon where genes
are transferred via a plasmid or vector or some other method other than
divergence to another organism — nets should be used instead of trees to
represent interrelationships between organisms [46]. Indeed, the building of
an accurate tree of life or a net of life is very important, both because it
is an interesting academic challenge and because it is a necessary part in
understanding the context of the structure—function relationship elucidation
of such aspects as functional pressure on domain evolution.
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5.4 Building the PDUG

To consider sequence, structure, and function [47] information in a unified,
systematic way, Shakhnovich et al. [48] defined both gene families and fold
families (sequence and structure homologies) quantitatively using the Protein
Domain Universe Graph (PDUG) [49]. The PDUG is a graph where nodes
are sets of closely related sequences folding into well-defined domains [50,51]
and edges are connections between the nodes that are based on structural
similarity (Fig.5.1), while sequence identity between any pair of sequences
belonging to different nodes is less than 25%. To build the PDUG, Dokholyan
et al. [49] took all sequences from NRDBI0 [52] and all structural domains
from HSSP [51]. Shakhnovich et al. [48] further used BLAST [53] sequence
homology to detect all sequences in NRDB90 with more than 25% sequence
identity to each HSSP domain. That set of sequences was combined into a
single gene family. Using cross-indexing between Swiss-Prot [54] and InterPro
[55] all equilogs (different sequences with the same function) belonging to every
gene family were identified. Those equilogs are further used to reconstruct the
functional flexibility score (FFS; see [6]).

Using this PDUG formalism, it is possible to explore global correlations
between sequence, structure, and function determinants. For example, we can
define a gene family based on micro-evolutionary considerations: the PDUG
represents on many evolutionary scales the variability accessible to a given

PDUG ‘ Gene ontology
Gene families ‘
i (ID>25%) Functional

Equilogs

Flexibility
Score

Fig. 5.1. A diagram of the scaled organization and intrinsic properties of the PDUG.
The PDUG is built hierarchically: first, domains’ structural similarities are compared
to each other and from this information the structural graph is created. All the
sequences from NRDB with more than 25% identity to the original sequence of each
domain on the PDUG are collected into a gene family. All the equilogs (sequences
with the same function) matching the gene family are collected and used to create
a probabilistic GO tree from which the FFS is calculated using (5.1)
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gene upon mutation, whether that variability is in sequence, function, or
structure space. Unlike other definitions of gene families [50,56], the definition
proposed by Shakhnovich et al. [48] is local, i.e., with respect to a particu-
lar gene. The gene family of a gene is, therefore, all the immediate sequence
neighbors inside a PDUG node. Similarly, the fold family of a structure is
all the structural neighbors of that domain on PDUG (Fig.5.1). By defining
the cutoff value for the sequence or structure comparison, it is possible to
control the variability for that gene, thus implicitly controlling the allowed
evolutionary divergence time on which structure—function determinants are
calculated. This approach turns out to be invaluable in gleaning new insights
into structure—function correlation, coevolution, and definition of important
properties in the PDUG.

5.5 Properties of the PDUG:
Power Laws on Very Different Evolutionary Scales

The properties of the PDUG have been recently addressed in several works
[49,57,58]. The properties of the PDUG largest cluster were determined [49].
The size of the largest cluster in the PDUG and random control graph were
determined and compared as a function of the structural similarity score Zyin
[49] defined by FSSP [24]. The random control graphs were constructed by
maintaining the same number of proteins and connections as in the actual
PDUG, but reshuffling the connections between the nodes. Control random
graphs represent an evolution process without any driving force, i.e., any node
can be connected to another node by chance. Dokholyan et al. [49] found
a pronounced transition of the size of the largest cluster in the PDUG at
Zmin = Z. ~ 9. Random graphs featured a similar transition, but at a higher
value of Z,in = Z. ~ 11. The distribution of cluster sizes depends significantly
on whether Zy;, > Z. or Zyin < Z. for both the PDUG and random graphs.
It was also observed that the probability density P(M) of cluster sizes M for
both the PDUG and random graphs followed a power-law at their respective
Z.: P(M) o< M~25. The observed power-law behavior of P(M) is simply
a consequence of criticality at Z. as it is featured prominently both for the
PDUG and random graphs. The power-law probability density of cluster sizes
is a generic percolation phenomenon that has been observed and explained in
both percolation [59,60] and random graph theories [61].

To define more concretely the structural properties of the PDUG,
Dokholyan et al. [49] computed the probability P(k) of the number of edges
per node k taken at Z,i, = Z. for individual clusters. It is known that P(k)
distinguishes random graphs from various graphs observed in science and tech-
nology [61]. In stark contrast with the equivalent random graph, the PDUG is
scale-free with P(k) oc k=16 with a high degree of statistical significance
(p-value less than 10~%). The power law fit of P(k) is most accurate at Z ~ Z,.,
and noticeably deteriorates above and below Z.. Similar calculations were also
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performed on the number of equilogs inside each PDUG node and the num-
ber of sequence members coding for individual domains [48]. These measures
represent three different levels of evolutionary divergence and characterize the
topology of the PDUG. Strikingly, it was discovered that not only do all these
values similarly follow a power-law, but they also obey the same exponent
P(k) o< k=16 This behavior turns out to be the fingerprint of divergent evolu-
tion and these data will help differentiating between the histories of divergent
and convergent evolution, as well as building proper evolutionary models.

The power-law fit at Z,;, > Z. quickly becomes meaningless as the range
of values of connectivity k rapidly diminishes as greater Z,;, lead to mostly
disconnected domains. At Z,in < Z. the power law fit also becomes prob-
lematic in the whole range of k because at large values of k (50-100) P(k)
shows some nonmonotonic behavior that can be interpreted as a maximum
at large k (the data are insufficient to conclude that with certainty). How-
ever, the remarkable property of a maximum P(k) at k = 0 i.e., dominance
of orphans remains manifest at all Z,,;, values. This is in striking contrast
with random graph that is not scale-free at any value of Z,;, and where
P(k) allows almost perfect Gaussian fit with maximum at higher values of k.
This power-law behavior also turns out to be in contrast to that generated by
convergent evolution models (see [8]). The criterion for selecting cutoff value
based on transition in the giant component also turns out to be highly useful
in determining proper functional clusters (see [10]).

It is worth noting that the exponent —1.6 in the connectivity distribu-
tion was recently corrected and is suggested to be closer to —1.0 [57]. The
correction arises from the consideration of the exponential finite size effects,
which significantly contribute to the power-law regime [62,63]. In addition,
recent examination of the origin of the scale-free properties of the PDUG sug-
gested that the PDUG is not modular, i.e., it does not consist of modules with
uniform properties. Instead, it was found the PDUG to be self-similar at all
scales [57].

5.6 Functional Flexibility Score:
Calculating Entropy in Function Space

Shakhnovich et al. [48] defined the function determinant of a gene family as
entropy in function space. When this measure is calculated in the context of
the PDUG, the Gene Ontology (GO) [24] is utilized to define the functional
variability (functional flexibility score or FFS) of a set of genes. The FFS
is a measure of the total amount of information needed to describe all the
functionality of a gene family. Interestingly, the FFS statistically correlates
with the logarithm of the total number of sequences in a gene family [48].
Contrary to merely counting the number of members in a gene family, the FFS
appears to be a more robust (with respect to possible bias in the databases,
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as well as uneven sampling of phylogeny) measure of gene family diversity
because it normalizes on the number equilogs, i.e., sequences that diverged far
enough to represent functionally diverse proteins. The FFS is a characteristic
of both the sequence topology of the PDUG as well as a functional determinant
of neighborhoods.

To calculate functional entropy, all sequences were combined into a single
set [48]. These sequences were then matched to InterPro [55] equilogs, pro-
teins with different sequences but the same function. The complete GO tree
was further reconstructed from the annotations of equilogs and the number
of equilogs of the family, which is assigned a particular functional annota-
tion normalized by total number of annotations at each level, is calculated
(Fig.5.1). Thus it is possible to calculate the average amount of information
per level needed to fully describe the function of each gene family using the
following equation [48]:

FSS = —m Z Z pilog(p:) - (5.1)

! ief{nodes on level i}

Here, Max(L) is the maximal number of levels of annotation, the summation
is taken over all levels [ and over all nodes i filled by the gene family on the
GO tree, and p; is the fraction of the family that is annotated with function .

5.7 Lattice Proteins and Its Random Subspaces:
Structure Graphs

How important is the observation of power law in the organization of the
PDUG? Is it a generic feature of proteins as compact polymers or a result of
their evolutionary selection? To address this question, Deeds et al. [64] turned
to a simple yet exact lattice model of compact 27-mers, whose fully compact
conformations have been fully enumerated to yield 103,346 conformations. The
structural comparison between all pairs of compact structures can be carried
out in a similar way to the DALI method by calculating the number of native
contacts that two conformations have in common. Then the lattice structure
graph (LSG) is constructed in a similar way to the PDUG [64]. The evaluation
of the node connectivity distribution for the complete lattice graph all 103,346
structures and various randomly selected (in a manner consistent with the
convergent evolution scenario) subgraphs, as well as subgraphs of the 3,500
most designable lattice structures, yielded LSGs that feature Gaussian rather
than power-law distribution of p(k), in sharp contrast with the real PDUG.
These results suggest the evolutionary origin of power-law degree distribution
in the PDUG.
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5.8 Divergence and Convergence Explored:
What Power Laws Tell Us about Evolution

To advance toward a resolution of the debate distinguishing convergent and
divergent evolution, Deeds et al. [65] explored the predictions of convergent
models. The simplest such model assumes that nodes are discovered com-
pletely randomly — that is, the likelihood of adding a particular node has
nothing to do with the number of structural neighbors it has. In this class
of convergent models, as organisms evolve and speciate, nodes were added to
each proteome randomly, producing organisms whose structural domains rep-
resent a random subset of the existing protein domains taken from all organ-
isms. As with the entire PDUG, one can create a network from the structural
similarity between the domains within a particular proteome, and under this
type of convergent model, the resulting graph would be a random subgraph
of the PDUG. Thus, unbiased convergence leads to the null hypothesis that
proteome-specific subgraphs will be random subgraphs of the extant protein
universe.

Given a template graph of Ny nodes with a distribution of edges per node
described by py, (k), the average distribution of edges per node in a subgraph
of N nodes chosen completely randomly should follow:

ManNO

pn(k)=C| > (;) (ﬁ))k (1 - ]]\Z)k (5.2)

s=k

where Maxky, is the maximally connected node in the template graph and C'
is taken to normalize py (k). This expression is similar in justification to those
used in percolation theory to estimate the behavior of scale-free networks
when a fraction of nodes are eliminated [66-68]. It is clear from the theory
that the degree distributions of random subgraphs exhibit a power-law region
that persists for a characteristic length at each subgraph size. Deviations to
higher k’s in subgraphs constitute an exponential tail to the distribution,
indicating that random subgraphs are very unlikely to contain nodes with
connectivity greater than this value. The maximum k in random subgraphs is
thus a “fingerprint” of random subgraphs of a given size.

On the basis of the understanding of the behavior of random subgraphs,
(5.2), Deeds et al. [65] turned to actual proteomes to determine whether they
represented random subgraphs of the PDUG. The authors created the organ-
ismal subgraphs using homology to determine which of the domain structures
in the PDUG occur in each organism. For each subset of nodes found in each
proteome, Deeds et al. [65] calculated the degree distributions for these sub-
graphs.

In addition, Deeds et al. [65] performed a power-law regression on the
degree distributions for the subgraphs of 59 fully sequenced bacterial pro-
teomes, all of which were well fit by a power law. This raises the possibility
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that these subgraphs may indeed be random; however, the maximum & in the
organismal subgraphs was considerably larger than that observed in arbitrary
random subgraphs of the same size. The probability that organismal PDUGs
are random subgraphs of the complete PDUG was estimated by comparison
of their actual maximum k with distribution of maximum k& in random sub-
graphs based on (5.2). Such probability was found to be extremely low in most
organisms except few smallest ones where it reached about 0.01.

This finding suggests that the null hypothesis corresponding to a conver-
gent evolution model is highly unlikely and, thus, that unbiased models have a
low likelihood of explaining protein structural evolution. Even given the inabil-
ity of convergent models to explain this behavior, it is not necessarily clear that
this nonrandomness could be observed in a divergent model similar to those
that have been proposed [49,69]. To explore this possibility, Deeds et al. [65]
modified an earlier model described in detail by Dokholyan et al. [49] to in-
clude speciation (Fig.5.2). Simulations of the speciation model that included
generation of 3,500 model proteins and four organisms were performed, with
speciation occurring after 1,000 and 2,000 steps, and then the degree distrib-
utions of the subgraphs in each organism were compared to that of the overall
graph produced by the model. For ten realizations of the model, the model
organism subgraphs exhibited power-law degree distributions that deviated
to larger maximum k than expected at random. The p-values for the model

.................

speciation

Organism B

Mvererrenesnnne structural Hreerernnennes <
similarity

Fig. 5.2. A diagram of the speciation model. The PDUG evolves from all nodes
belonging to one organism, and after a specified gene duplication event, an organism
A undergoes speciation to create two organisms B and C with identical graphs.
All the new nodes, however, are added to one organism or the other, given that
the duplication events that give rise to new nodes will only occur within a single
proteome. After the proteomes evolve independently for a number of steps, speciation
occurs again, and so on
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subgraphs indicated that the bulk of these graphs did not have a high probabil-
ity of being random (although the probabilities were higher than observed for
the actual organisms). Although this model is certainly not detailed enough
to explain the evolution of real protein structures, it does demonstrate that
a simple, dynamic process can produce model organism subgraphs that are
similar to those observed in real organisms and that with careful modeling
the debate between convergence and divergence can be resolved. Most impor-
tantly, these data show that convergent evolution is highly unlikely and that
divergence is probably the dominating force in protein domain evolution.

5.9 Context Is Important

The above examples describing differences in function for the same protein
between different genomes (see [2]) show that understanding the structure—
function correlation involves buttressing structure information with “contex-
tual” information. We see that functionality may vary for the same struc-
ture depending on the genome, or the metabolic pathway. This is intuitively
understandable if we look at structure-function correlation from an evolu-
tionary standpoint [7,22, 26,70, 71]. Domains that were put under different
evolutionary pressures (which in our case translates directly into being in a
different context) evolve different functions. Consequently, we think that to
understand the relationship between structure and function, it is not enough
only to enumerate the possibilities, but it is also necessary to understand the
progression that has led to the state of protein domain universe as we observe
it now.

In a recent work, Shakhnovich [72] has demonstrated that using phylo-
genetic information it is possible to dramatically and quantitatively improve
functional annotation. He introduced, besides the structural similarity mea-
sure (Z-score) and the functional similarity (FFS), a measure of phylogenetic
distance (P) and presented a 3-dimensional landscape in (Z, FFS, P) space.
Dramatically, this landscape was found to be well-shaped. This finding points
out that pronounced structure—function correlation is observed only for do-
mains that are phylogenetically close, while for phylogenetically distant do-
mains correlation between structure and function (i.e., between Z and FFS)
essentially vanishes. This study shows clearly that “context” information, such
as the origin and phylogenetic history of a protein domain, in some cases may
influence the precise function of the gene more than the structure.

5.10 Not All Functions Are Created Equal
and Neither Are Structures

With the PDUG and the newly developed techniques, it is possible to perform
structure—function studies on a global scale capturing evolutionary relation-
ships that are not easily revealed by anecdotal studies alone. An interesting
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problem to address is the coevolution of gene family size, functionality,
and structure. For example, we can ask whether some functions require
smaller gene families than others by computing correlations between partic-
ular functionality and the FFS. Since the FFS reflects the size of the gene
family, this is equivalent to asking whether there is any bias in the kind of
function performed by domains encoded by large gene families versus small
ones. Previous research has shown that some functionalities may allow many
analogous functions increasing the FF'S of the family, while others tend to have
stricter requirements. For example, some functions such as the kinase activity
have varied specificities within a relatively small number of sequence muta-
tions, [73] while others such as globins have much less functional flexibility
despite, in some cases, substantial sequence divergence [74]. Another example
is the eightfold (8/«) barrel structure, first observed in triose-phosphate iso-
merase, occurs ubiquitously in nature. It is nearly always an enzyme and most
often involved in molecular or energy metabolism within the cell. This extreme
example of the “one fold-many functions” paradigm illustrates the difficulty
of assigning function through a structural genomics approach for some folds.
Another example is the beta-propeller fold that appears as a very fascinating
architecture based on four-stranded antiparallel and twisted beta-sheets, radi-
ally arranged around a central tunnel. Similar to the 8/a-barrel (TIM-barrel)
fold, the beta-propeller has a wide range of different functions. Some proteins
containing beta-propeller domains have been implicated in the pathogenesis of
a variety of diseases, such as cancer, Alzheimer’s, Huntington’s, Lou Gehrig’s
diseases, arthritis, familial hypercholesterolemia, retinitis pigmentosa, osteo-
genesis, hypertension, and microbial and viral infections. While some studies
exist that suggest that gene families encoding enzymes and enzymatic folds
are larger [75,76], they do not provide us with an overall picture, if one exists,
of general biases. Such biases may reveal important evolutionary pressures
that determine the codependence of structure and function.

Shakhnovich et al. [48] computed the FFS of all domains on the PDUG
and in turn assigned a functional category at the first level of GO (Fig.5.1). It
was found that as the FFS of the domain increases, the percentage of enzymes
in the bin decreases, and consequently the percentage of domains with signal
transduction activity increases. Other functions remain relatively constant, at
least to the first approximation of these data. These results point to the ten-
dency of larger gene families (tests were also done directly between gene family
size and FFS with the same results) to encode domains with signal transduc-
tion activity and less diverse gene families to encode domains with enzymatic
activity. These results are unexpected in the light of the studies mentioned
above [75-77] and more research has to be done in this area to understand
the biological reasons and evolutionary mechanisms that have enabled us to
observe these trends. However, the obvious avenue of research from here would
involve the determination of the interdependency between the allowed func-
tional diversity for the gene family and the particular function.
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An approach to begin addressing this question is to look at physical char-
acteristics of the structure. From a physical perspective, the potential of a
gene to obtain new function may depend on its ability to accept mutations
without destroying the three-dimensional structure of a protein domain that it
encodes. The PDUG enables us to begin testing such hypothesis. As mentioned
before, we know from some studies that some folds such as TIM-Barrels [75]
and beta-propellers [77] encode large sequence families that are functionally
diverse. However, until now, no specific structural characteristic could be iden-
tified that corresponded to the allowed functional diversity. Using the PDUG
and the FFS, it was possible to attribute functional diversity to structure,
which is supported with previously reported results of different functional
categories having different FFS [78]. For example, most o+ (3 protein domains
are involved in binding functions such as DNA binding, ATP grasp, and FAD
binding activity.

These results could mean that transcription factors are not as selective
as once thought and that noise in form of nondeleterious mutations to the
fold may give rise to the necessary transcriptional noise in the expression of
proteins. Of course, this finding sheds no light on the intrinsic qualities of all
alpha proteins versus « + (3 proteins that enables the latter to support more
sequences. It also says nothing about what biological mechanisms and pres-
sures enabled separations between commonly used folds and orphans. Clearly
coevolution of structure and function occurs.

5.11 Concluding Remarks

The presented overview provides strong evidence that methodologies based on
the use of the PDUG work in a variety of applications. Such an approach makes
it possible to address from a unique single prospective such seemingly dis-
connected issues as character of protein domain evolution, structure—function
relationship, relation between structural and functional properties of proteins,
and certain properties of genes that they encode. We are confident that the
PDUG approach is likely to yield further important fundamental unifying
insights into structural genomics, evolution, and structural biology.
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A Twenty-First Century View of Evolution:
Genome System Architecture, Repetitive
DNA, and Natural Genetic Engineering

J.A. Shapiro

It is essential for nonbiologists to understand that evolutionary theory based
on random mutation of autonomous genes is far from the last word on how
genomes have changed in the course of biological evolution. The last 50 years
of molecular genetics have produced an abundance of new discoveries and
data that make it useful to revisit some basic concepts and assumptions in
our thinking about genomes and evolution. Chief among these observations
are the complex modularity of genome organization, the biological ubiquity
of mobile and repetitive DNA sequences, and the fundamental importance
of DNA rearrangements in the evolution of sequenced genomes. This review
will take a broad overview of these developments and suggest some new ways
of thinking about genomes as sophisticated informatic storage systems and
about evolution as a systems engineering process.

6.1 Introduction: Cellular Computation and DNA
as an Interactive Data Storage Medium

Cells are amazingly capable and sophisticated information processors. If we
simply reflect on the incredible complexity and reliability of each cell divi-
sion cycle, encompassing hundreds of millions of biochemical reactions and
morphogenetic events, then we can only wonder at the control regimes that
keep cellular just-in-time production facilities operating properly in the face
of changing environments and damage. For example, a fast-growing E. coli
cell replicates its DNA at a speed of almost 2,000 base-pairs per second with
a final precision of better than one error per 10° nucleotides incorporated [1].

One of the keys to a twenty-first century vision of how genomes operate
is to think about DNA as a data storage medium. Genomic storage operates
over three different time scales that may be defined in terms of cellular and
organismal generations:

1. Many organismal generations. Genetic storage in local DNA sequences
and long range chromosome structure
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2. Multiple cell generations. Epigenetic storage in covalent modifications and
stable chromatin configurations

3. Within a single cell cycle. Computational storage in meta-stable nucleo-
protein complexes.

These three time scales reflect the different ways that DNA interacts with the
rest of the cell as it carries out computations and decision making. Cellular
computations involve evaluation of multiple internal and external inputs. In-
puts include the replication status of the genome, where the cell is in the cell
cycle, what nutrients are available, what intercellular signaling molecules are
present, and what other cells are touching the cell surface. Some situations
require fast responses, such as a change in the nutritional environment or the
detection of genome damage. Other situations result in longer term cellular
differentiations, characterized by the formation of chromatin configurations
(epigenetically stable complexes of DNA with protein and RNA heritable
through multiple cell generations [2]). Certain conditions involve restructur-
ing of genomic DNA molecules, either as part of the normal life cycle [3-6]
or in response to a crisis situation [7-9]. When DNA restructuring occurs in
DNA that is heritable through mating or vegetative reproduction, enduring
evolutionary changes are the consequence.

6.2 Genome System Architecture and Repetitive DN A

Genomes contain many different kinds of functional information organized
through the use of multiple codes, not just the triplet (three base) code for
amino acids in proteins. In addition to coding sequences determining the pri-
mary structures of RNA and protein molecules (these may be considered as
genomic data files), there is information for other essential processes:

1. Packaging DNA molecules within the nucleoid of prokaryotic cells or the
nucleus of eukaryotic cells

2. DNA replication and transmission of genome copies to progeny cells

3. Repair of DNA damage

4. DNA restructuring.

Without effective genome packaging, replication, transmission, and repair, no
cell-based life form could reproduce. Without DNA restructuring, no organism
could evolve.

Our current understanding of how coding sequence expression (data file
access) and other essential genome processes operate is based upon the revolu-
tionary genetic studies of protein synthesis and genome reproduction carried
out by Jacob and colleagues on the operon and replicon theories in the 1950s
and 1960s [10,11]. These studies defined a new class of genome component that
was unknown to classical genetics: signals written into the DNA that are recog-
nized by other cellular molecules and which affect only the DNA carrying the
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signal. These cis-acting signals are fundamentally different from any classical
definition of a gene. They serve to format coding sequences and genome archi-
tecture in the same way that generic bit strings format the encoded informa-
tion in electronic data storage media and guide the computational hardware to
the right data files and indicate the appropriate routines to apply. In an analo-
gous fashion, cis-acting signals in the genome direct cellular hardware to form
functional nucleoprotein complexes to carry out tasks such as transcription,
replication, DNA distribution to daughter cells, and DNA rearrangements [12].
Since they are generic and work at many locations, cis-acting signals belong
to the repetitive component of the genome [13]. By applying an informatic
perspective, we can appreciate the functional relevance and interconnections
of genome formatting features that have proved difficult to understand within
the mechanistic conceptual framework of classical genetics.

Employing the informatic metaphor, it is possible to argue that each
genome has a characteristic “system architecture,” in much the same way
that different computer systems do [13,14]. The taxonomically specific sys-
tem architecture includes elements such as

1. Transcription signals used to regulate expression of particular coding seq-
uences as RNA copies

2. Signals for genome transmission (origins of DNA replication, centromeres
for aligning and distributing chromosomes during cell division, and telom-
eres for completing replication at the ends of linear DNA molecules)

3. Signals for recombination and DNA rearrangement

4. Signals for compacting the genome with protein and RNA to form parti-
cular chromatin structures

5. Signals for attaching the genome to particular cellular or nuclear struc-
tures.

From the genome system architecture perspective, it is possible for two genomes
in different species to have identical coding sequences but distinct sets of cis-
acting signals and different genome system architectures. The result of different
architectures would almost certainly be germ-line reproductive incompatibility
and, quite probably, distinct patterns of coding sequence expression leading to
phenotypic and ecological diversity. The major determinants of genome system
architecture are the repetitive elements in the genome, such as the long head-
to-tail tandemly arrayed repeats that flank the centromeres of most eukaryotic
chromosomes [15], telomere repeats that permit the replication of chromosome
ends [16], and dispersed repeats that contain many signals for transcription,
chromatin organization, and nuclear localization [13,17].

There is an extensive literature on the effects that repetitive DNA can exert
on coding sequence expression. These effects include countless experiments
with dispersed repeats that can migrate from one location to another in the
genome (mobile genetic elements; [18-21]). There is also a growing number of
studies of so-called “position effect” phenomena, where the expression of a par-
ticular genetic locus depends upon its location relative to dense concentrations
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of repetitive elements that are labeled “heterochromatic” because they can be
seen in the microscope as chromosome regions that stain differently from the
normal (or “euchromatic”) regions of the chromosome [22,23]. Of particular
importance are trans position effects where repetitive element arrays affect the
expression of genetic loci on different chromosomes [22]. From a mechanistic
point of view, we now explain these dosage-dependent genome-wide effects as
due to titration of a limited supply of heterochromatin-binding proteins [23].
From an organizational point of view, trans position effects tell us that the
whole genome is a single integrated system, regulated both in cis and trans
by networks employing DNA repeats, in which segments on different DNA
molecules communicate with each other.

It has been evident for a long time that repetitive DNA is a more discri-
minating indicator of hereditary relationships than coding sequences. For
example, as long as 25 years ago, it was possible to construct a phylogeny
of primates by examining the distribution of restriction endonuclease cutting
sites in tandem repeats of “alpha satellite” DNA at centromeres [24]. More-
over, each order of mammals can be distinguished by its content of highly
repeated short interspersed nucleotide elements (SINEs) dispersed throughout
the genome at between 10* and 10° copies per haploid genome (data tabu-
lated in [25]). Plant species can also be distinguished by their centromeric
repeats [13], and closely related “sibling” Drosophila species differ markedly
in their content of both tandem satellite arrays and dispersed repeats [26,27].
Indeed, we use repetitive microsatellite DNA for forensic DNA analysis to
determine relationships between individuals [28]. In other words, the repeti-
tive component of the genome is far more taxonomically specific than coding
sequences. This conclusion is consistent with a key role for repetitive DNA in
evolutionary diversification.

6.3 Genomes and Cellular Computation:
E. coli lac Operon

In trying to understand how the genome serves as an information storage
system, it is helpful to look at simple phenomena that have been subject to
exhaustive detailed analysis for several decades. One of the most thoroughly
understood genomic computation and decision-making systems is the classic
case of the E. coli lac operon [10]. This system operates at short time scales.
Readers unfamiliar with the lac operon can best inform themselves through
a simple internet search that will turn up several basic descriptions of the
system. For more detailed molecular or computational descriptions, they can
consult reviews such as [29] or [30]. The lac system has been analyzed in logical
circuit terms by Setty et al. [31], and it is useful to note in that paper how
much more precise the natural system is than the synthetic constructs.

In regulating transcription of the lac operon, precise control results from
a series of highly integrated molecular interactions that allow E. coli cells
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to distinguish between two sugars and execute the following nontrivial algo-
rithm: “IF lactose is available AND IF glucose is not available AND IF the
cell can synthesize beta-galactosidase and lactose permease, THEN transcribe
lacZYA from the lac promoter.” These molecular interactions are typical of
the processes that occur in all cells to carry out information processing. They
can be stated in the form of Boolean propositions, for the operations involving

Lac Operon Products

1. LacY + lactose (external) — lactose (internal)

2. LacZ + lactose — allolactose (minor product)

3. Lacl 4 lacO — Lacl-lacO (repressor bound, lacP inaccessible)

4. Lacl + allolactose — LaclI-allolactose (repressor unbound, lacP accessible)

Glucose Transport Components and Adenylate Cyclase

5. ITAGlc-P + glucose(external) — ITAGlc + glucose-6-P (internal)

6. ITAGlc-P + adenylate cyclase(inactive) — adenylate cyclase(active)
7. Adenylate cyclase(active) + ATP — cAMP + P~P

Transcription Factors
8. Crp + cAMP — Crp-cAMP
9. Crp-cAMP + CRP — Crp-cAMP-CRP
10. RNA Pol + lacP — unstable complex
11. RNA Pol + lacP + Crp-cAMP-CRP — stable transcription complex

Partial Computations
No lactose — lacP inaccessible (3)
Lactose + LacZ(basal) + LacY(basal) — lacP accessible (1,2, 4)
Glucose — low ITAGle-P — low cAMP
— unstable transcription complex (5, 6, 7, 10)
No glucose — high ITAGlc-P — high cAMP
— stable transcription complex (5, 6, 7, 8, 9, 11)

It is important to note that information processing involves metabolic
enzymes in the bacterial cytoplasm and transport proteins in the bacterial
membrane as well as DNA binding regulatory proteins and diffusible cyto-
plasmic molecules that serve as signals representing distinct environmental
conditions. Thus, there is no single separate class of information processing
molecules (i.e., no Cartesian dualism in the E. coli cell). Informatics is incor-
porated into functional cellular molecules (e.g. the glucose transporter), and
a single node in the cellular computation network may have nonlinear micro-
processing functions. In this regard, the components of the lac operon system
are paradigmatic for all cellular control regimes.

Another paradigmatic feature of the lac operon system is the role of weak
interactions, specific binding, and cooperativity to assemble and stabilize
nucleoprotein complexes essential for carrying out the molecular computa-
tions. This is seen in the formation of the complex needed to block access of
the lac promoter signal to the transcriptional apparatus (Boolean proposition
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Fig. 6.1. DNA repression loop formed by interaction between Lacl repressor mole-
cules and two operators flanking the promoter region for initiating lac operon trans-
cription

3 earlier). Graphically, this cooperativity can be seen in a cartoon of the
repressor—DNA complex (Fig.6.1). The looped repression complex depends
on a series of cooperative protein—-DNA binding events involving internal
repeats within two different palindromic operator sequences and four separate
DNA-binding domains of individual Lacl repressor chains as well as protein—
protein binding events between the four different copies of Lacl. Any one of
these interactions would be unstable, but together they form a complex that
prevents lac operon transcription when inducer is not present.

The use of multiple cooperative interactions in cellular networks is a funda-
mental reason that genomes and protein structures are full of repetitive com-
ponents. In turn, repetition in DNA and proteins means that specific logical
operations arise through combinations of basic circuit elements (e.g., complex
regulatory regions in DNA, intra- and intermolecular interactions between
protein domains). In addition, the phenomenon known as “allostery” means
that binding one ligand can alter the shape and behavior of a molecule, thus
affecting its binding to other ligands. The allosteric properties of proteins and
nucleic acids confer communication and processing capabilities on individual
molecules and constitute the structural basis of how cellular network nodes
act as complex microprocessors. Cooperative interactions between allosteric
molecules thus endow cellular computing networks with combinatoric com-
plexity as well as the Fuzzy Logic precision [32] that comes from the integra-
tion of multiple layers of approximation.
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Working up from the details of a single basic cellular information-processing
example leads us to a number of areas that are ripe for formal analysis and
in silico simulation. It is important for the information scientists, mathemati-
cians, and physicists who do this work to bear in mind that the principles
underlying cellular analog computing may well be different from those that
operate in electronic digital computers. For example, the direct participation of
DNA in formation of nucleoprotein complexes suggests that it may not be use-
ful to apply Turing’s concepts of separate “machine” and “tape” [33] to cellular
computations. Although such a fundamental difference does not invalidate the
informatic metaphor, it does mean that we will have to be careful in applying
existing computational models to cells.

Combinatorics, fuzzy logic models, and principles learned from linguistics
and semiotics may all serve as key guides to a formal description of cellu-
lar information-processing networks. By the same token, bioinformatics that
goes beyond the parsing of large databases has the potential to lead us to
novel computing paradigms that may prove far more powerful than the Turing
machine-based digital concepts we now use. To anyone who becomes familiar
with the molecular details of cell biology, it is clear that no human contrivance
operates with the degree of complexity, the efficiency, or the reliability of living
cells. Thus, it is reasonable to argue that cells employ control regimes of great
sophistication beyond our existing technologies.

6.4 New Principles of Evolution:
The Lessons of Sequenced Genomes

Genome sequence analysis is one of our most important guides to disentan-
gling how cellular systems operate and how function changes in the course of
evolution. Here, we find abundant support for the general principles deduci-
ble from cases like lac. In particular, repetition, reuse, and combinatorics have
proven to be fundamental in protein and whole genome evolution.

The insights from genome sequences have altered our thinking about the
evolution of individual molecules, particularly proteins, as well as the evolution
of overall genome structure. We have obtained abundant evidence that protein
structures evolve by iterating, shuffling, and accumulating substructures called
“domains,” each comprising one of a finite sets of structural elements [34-37].
Figure 6.1 illustrates the different domains of the Lacl repressor as shaded
blocks. Moreover, genome sequences establish that protein families character-
ize individual taxa from bacteria through mammals. These families have their
own phylogenetic structures and clearly evolved by iteration of existing coding
sequences, not by de novo appearance of each family member [38,39].

In addition, there are emerging patterns in genome structure that exist at
hierarchical levels beyond the coding sequences (data files) determining indivi-
dual protein and RNA products. We find that expression systems evolve by
combining coding sequences, regulatory signals, and chromatin markers into
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higher order complexes that persist and diversify in the course of evolution [2].
At even higher levels of organization, we find that genomes contain extensive
chromosome segments (syntenic regions) that may be duplicated at various
locations within the genome [40,41] and scrambled into new combinations
during evolution [39].

6.5 Natural Genetic Engineering

All the preceding whole-genome sequence discoveries require mechanisms for
rearranging DNA segments of all size classes as basic evolutionary processes.
What do we know about the capacity of cells to carry out such natural ge-
netic engineering? An important clue is the discovery that our own genomes
are at least 43% composed of DNA segments that can move from one location
to another [35]. Two classes of transposable or mobile genetic elements have
been recognized from the work of Barbara McClintock and her molecular
followers [18-21, 42, 43]: DNA transposons move exclusively at the level of
DNA molecules, while retrotransposons and other retroelements move by
means of an RNA intermediate that can be reverse-transcribed into genomic
DNA [21,44-46].

McClintock discovered mobile genetic elements in the first instance be-
cause they mediated chromosome rearrangements. Molecular analysis has con-
firmed that the same mechanisms that lead defined segments of DNA to move
from one location to another (transpose) can also mediate both large- and
small-scale rearrangements. There appears to be something of a molecular
division of labor: DNA elements mediate rearrangements of large segments
(Fig. 6.2), while retroelements mobilize smaller segments, generally not larger
than several kilobases in length (Fig. 6.3).

The mechanisms underlying these rearrangements are just the kind of
processes needed to explain the patterns of genome conservation and scram-
bling found by comparing whole genome sequences. The transposable elements
(TEs) mediating genome rearrangements operate in natural populations
[4,48,50-52]; they can execute key evolutionary processes in the laboratory,
like exon shuffling [53]; and there is abundant documentation from sequence
analysis that TE-based mechanisms have in fact been used in genome evolu-
tion [17,49,54-56].

An especially illuminating example of natural genetic engineering is the
mammalian immune system. This system is important for several reasons.
First, because of its medical implications, it has been the subject of intense
investigation, and we know a great deal about how it operates and how it is
regulated. Second, the evidence is quite convincing that the natural genetic
engineering functions in our immune system arose from DNA transposons and
cellular repair functions [5,57,58]. Third, and most important, the immune
system is a system whose normal functions include ensuring rapid protein
evolution of molecules for recognizing foreign invaders. In other words, our
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Fig. 6.2. Some of the rearrangements mediated by DNA transposons. Well-
documented DNA rearrangements were carried out by the transposition systems
of replicative or cut-and-paste DNA transposons (double-headed arrows). Often the
structures of rearranged DNA generated by either mechanism are the same. These
examples are based largely on the rearrangements described in [47], and by Engels
(see, http://engels.genetics.wisc.edu/Pelements/HELhtml). The web site includes
an animation of P factor-mediated duplication/deletion events. Note that DNA
transposons have at least two ways of duplicating a sequence flanked by copies
of the element: either a transposed duplication at a new genetic site or a tandem
duplication at the original site. Both sorts of duplications are found in sequenced
genomes, especially in loci encoding large paralogue families

immune systems have evolved to evolve. This example (or counter-example)
of evolved evolvability demonstrates that there can be no theoretical obstacle
to evolving capacities to improve the evolutionary process. This means that
we should expect evolutionary processes to show the same degree of sophisti-
cation, complexity, and efficiency as other biological functions. The operation
of nonrandom and adaptive mechanisms for restructuring DNA molecules in
evolution should not be a surprise. Indeed, we should expect evolutionary
processes to be specific and efficient because all existing organisms are survi-
vors of repeated evolutionary competitions, and those organisms that are best
at adapting their genomes to new conditions are most likely to have won those
competitions.

The task of immune system cells (lymphocytes) is to produce a virtu-
ally infinite array of antigen-recognition proteins starting with a finite set of
germline DNA coding elements. Accomplishing this task requires the lympho-
cytes to create genetic diversity in just the right DNA locations to encode
unpredictable protein sequences at the appropriate protein locations. This
localized diversification task is efficiently completed by a consecutive process
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Fig. 6.3. Retrogene formation and retrotransduction of exons. The diagram sum-
marizes how the reverse transcription and integration activities of LINE elements
can create processed intron-free integrated cDNA copies of any cellular mRNA
(“retrogenes”) or can integrate DNA copies of exons located downstream of an
active LINE element after read-through transcription (“retrotransduction”). See [49]
for more details

of five highly regulated DNA rearrangements occurring at defined locations
in the genome to generate an indeterminate set of DNA segments encoding
the antigen-binding sites of immunoglobulin and T cell receptor molecules.
The details of this process have been described in reviews and in the litera-
ture version of this Chap. [59]. For purposes of this volume, it is sufficient to
summarize some basic features:

1. DNA rearrangements occur at specific sites in the genome because they are
demarcated by repetitive DNA signals. Some of these signals are directly
involved in DNA cleavage and rejoining, while other signals control tran-
scription that is linked to DNA changes.

2. Although immune system rearrangements occur at well-demarcated loca-
tions, the actual sequences produced are highly flexible. This means that
junctions of regions encoding antigen-binding domains can have many
different restructured sequences. In some cases, the lymphocytes can even
insert de novo synthesized DNA segments (i.e., with no germ-line tem-
plate) into these junctions.
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3. The DNA rearrangement process normally occurs only in cells destined
to produce antibodies or T cell receptors and follows a highly determined
series of rearrangements. Both intracellular signals, such as the ability to
produce a particular immunoglobulin chain, and extracellular signals, such
as lymphokine-directed transcription, regulate these DNA restructuring
processes.

Altogether, the immune system provides one case where cells display a strik-
ing degree of control over DNA restructuring. Additional examples are found
in other developmental DNA rearrangements [3,4,60]. Lymphocytes further
illustrate the potential cells have to turn natural genetic engineering activi-
ties on and off in response to internal and external signals. They demonstrate
how DNA rearrangements can be at one and the same time highly specific,
directed by DNA sequences or transcriptional activity, and yet flexible,
using untemplated nucleotides and variable internucleotide linkages to enhance
combinatorial diversity. The mixture of specificity and flexibility enables
the immune joining system to produce extraordinary protein diversity (on
the order of 10'? combinations) while conserving antibody chain structures.
By integrating specificity and flexibility, immune system engineering optimizes
the chance to produce a functional antibody molecule with an indeterminate
specificity.

It is highly significant that the degree of cellular control over natural
genetic engineering exemplified by lymphocytes and other developmental sys-
tems is not an isolated or even unusual case. Experimentation with a number
of different TE systems has shown that they can be activated temporarily
by response to particular conditions. The conditions are quite varied, ranging
from blockage of normal chromosome separation during early embryonic devel-
opment [42] to osmotic and other physical stresses associated with protoplast
regeneration [61] to oxidative starvation stress during “adaptive mutation”
[62-66] to mating outside the normal breeding group causing “hybrid dysgen-
esis” [50,51,67,68].

In the case of hybrid dysgenesis, it is especially worth noting that the DNA
changes typically occur during the development of the germ line [69]. This has
profound implications for the evolutionary success of massively restructured
genomes. When change occurs during germ line development, cells that have
undergone multiple DNA rearrangements have several offspring that produce
multiple gametes. As a consequence, natural genetic engineering after hybrid
dysgenesis can lead to the appearance of more than one individual progeny
carrying similarly altered genomes. These progeny thus constitute a small
interbreeding population that can transmit the massively restructured genome
to future generations.

In addition to control over when and in what situations natural
genetic engineering functions become active, there are a variety of examples
where mobile elements display various degrees of targeting specificity in the
genome (Table 6.1). In some cases, we know the molecular basis for targeting.
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Table 6.1. Specificity of natural genetic engineering functions

Example

Observed specificity (mechanism)

Mating type cassette switching
(S. cerevisiae)

Immune system V(D)J joining

Immune system somatic
hypermutation
Immune system class switching

Budding yeast (S. cerevisaea)
retroviral-like elements
Tyl-Ty4

Budding yeast retroviral-like
element Tyl

Budding yeast retroviral-like
element Ty5

Fission yeast (S. pombe)
retroviral-like elements Tf1 &
T2

Murine Leukemia Virus (MLV)

HIV
Drosophila P-factors

Drosophila P-factors

R1 and R2 LINE element
retrotransposons

Localized, directional gene conversion
(HO endonuclease cleavage initiates
homology-dependent recombination) [70]

Cleavage at specific recombination signal
sequences (RSSs); flexible joining by
nonhomologous end joining (NHEJ) functions
(recognition of RSSs by RAG1+-2
transposase) [5,58]

5" exons of immunoglobulin determinants
(transcriptional specificity) [6]

Lymphokine-controlled choice of switch
regions (promoter activation) [6]

Strong preference for insertion upstream of
RNA polymerase III initiation sites
(protein—protein interaction of integrase with
RNA polymerase III factors) [71,72]

Preference for insertion upstream of RNA
polymerase II initiation sites rather than
exons [73]

Strong preference for insertion in
transcriptionally silenced regions of the yeast
genome (protein—protein interaction of
integrase with Sir4 silencing protein) [74-76]

Insertion almost exclusively in intergenic
regions (>98% for Tfl); biased towards Polll
promoter-proximal sites, 100-400 bp
upstream of the translation start; preference
for chromosome 3 [77-79]

Preference for insertion upstream of
transcription start sites in human
genome [80, 81]

Preference for insertion into actively
transcribed regions of human genome [81]

Preference for insertion into the 5’ end of
transcripts [82]

Targeting (“homing”) to regions of
transcription factor function by incorporation
of cognate binding site; region-specific [83-86]
Insertion in arthropod ribosomal 28S coding
sequences (sequence-specific endonuclease,
reverse transcription) [87,88]

Table continues on next page
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Table 6.1. Continued

Example Observed specificity (mechanism)

HeT-A and TART retrotrans-  Insertion at Drosophila telomeres [89]
posons

Group I homing introns Site-specific insertion into coding sequences

(DNA based) in bacteria and eukaryotes (sequence-specific
endonuclease) [90]

Group II homing introns Site-specific insertion into coding sequences

(RNA based) in bacteria and eukaryotes (RNA recognition

of DNA sequence motifs, reverse
transcription) [91,92]

Connections between DNA rearrangement specificity, on the one hand, and
transcriptional control or chromatin formatting functions, on the other, are
particularly significant for the following reason. Most biologists recognize that
signal transduction networks can direct transcriptional and chromatin format-
ting activities to particular regions or sites in the genome. Thus, connecting
these activities to the operation of mobile elements establishes a readily under-
stood molecular mechanistic basis for cellular control networks to target DNA
rearrangements in response to internal and external signals. The targeting
does not have to be (and in many cases is known not to be) rigidly determin-
istic. In this way, targeting may enhance the probability of adaptively useful
genome changes without preventing the flexibility that is necessary to cope
with unpredictable challenges.

6.6 Conclusions:
A Twenty-First Century View of Evolution

On the basis of discoveries about genome system architecture and natural
genetic engineering, it is now possible to formulate a series of basic concepts
that lead to viewing evolution as something akin to a systems engineering
process:

1. Genomes are formatted by repetitive elements and organized hierarchi-
cally for multiple information storage and transmission functions.

2. Major evolutionary steps occur by DNA rearrangements carried out by
sophisticated cellular natural genetic engineering systems operating non-
randomly.

3. Significant evolutionary changes can result from altering the repetitive
elements formatting genome system architecture, not just from altering
protein and RNA coding sequences.
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4. Cellular regulation of natural genetic engineering activities makes evolu-
tionary change responsive to biological inputs with respect to timing and
location of DNA rearrangements.

These basic ideas about the role of cell-regulated natural genetic engineering
of genome system architecture have implications for how we think about the
evolutionary process, and previous articles have discussed some of these [12—
14]. In the context of this volume, it is worthwhile to emphasize how natural
genetic engineering (a) can increase the efficiency of searching for genome
configurations that encode functional complex systems and (b) can favor the
elaboration of hierarchic system architectures.

In the immune system, for example, natural genetic engineering takes exist-
ing functional coding modules and assembles them into new combinations.
Since the rearranged DNA segments already have functionality, the potential
of the newly assembled genomic structure for adaptive utility is greater than
for a structure resulting from random changes. The same is true of other exam-
ples of natural genetic engineering. For example, insertion of a mobile element
containing a package of integrated transcription and chromatin-formatting sig-
nals can place an existing coding region under novel controls. In this way, a
working product can be expressed under conditions where it was previously
absent (see [93]). The evidence is quite solid that this process has taken place
during evolution [17,49,54]. Similarly, insertion of a DNA segment encoding a
functional domain is more likely to add new capabilities to a protein than are
random changes in sequence or addition of random polypeptide components.
Domain addition is commonly used in laboratory engineering of proteins.

Acquisition of new DNA regulatory regions and protein domains are
examples of engineering a new system by arranging known components in
new combinations. The rearrangement process can always be followed, as it
often is in human engineering, by fine-tuning or modification of individual
components (microevolution). Here again, the immune system is instructive.
A similar “rearrangement-followed-by-fine-tuning” sequence of events occurs
in the immune system with targeted “somatic hypermutation” of the exons
encoding antigen-binding domains of immunoglobulins [5, 6].

The ability to regulate DNA rearrangements in time and location within
the genome also adds significantly to the evolutionary efficiency of genome
restructuring. By making sure that genomes in normally reproducing organ-
isms are stable and that the genomes of cells under stress are mutable,
networks activating natural genetic engineering functions provide heredi-
tary variability when it is most needed [7]. Episodic activation of genome
restructuring functions means that multiple changes can occur when complex
rearrangements may be required to meet adaptive needs. Since they result
from a common activation event, different genetic changes are not indepen-
dent but coordinated. Episodic activation of genome restructuring functions
further predicts that evolutionary change will be inherently intermittent and
punctuated rather than continuous (cf. [94]).
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Targeting of genetic change has potential advantages. It can limit change to
regions where it is needed, as in restricting somatic hypermutation in B cells to
exons for antigen binding domains, and can prevent damage to functional cod-
ing elements, as in the targeting of retrotransposon insertions to the upstream
regions of genetic loci (Table 6.1). Restricting retrotransposon insertion sites
thus enhances the potential for a constructive regulatory change. In yeast,
selections for increased protein expression most commonly produce mutant
strains carrying just such retrotransposon insertions [93]. Although virtually
every mobile element displays some degree of target selectivity, there have
been no careful studies of how selectivity may influence the ability of the
element to make useful changes. Now that experimenters are learning how to
target mobile elements (see Table 6.1 and [75,91,92,95]), the time is ripe to
investigate whether enhanced targeting alters their ability to generate adap-
tive changes.

In addition to increasing the efficiency of genome restructuring in response
to challenge, the action of natural genetic engineering systems also imparts
structural characteristics to genomes. Duplication and rearrangement of geno-
mic segments can involve DNA sequences in the megabase range [56,96]. So
natural genetic engineering has the potential to facilitate the establishment
and amplification of higher order genomic subsystems, as has clearly occurred
in the evolution of homeodomain complexes [97]. This tendency to amplify pro-
gressively larger subsystems may help explain the hierarchic nature of genome
coding [2].

Another result of change by natural genetic engineering is the tendency for
genomes to accumulate dispersed copies of repeats. This tendency is usually
explained by the “selfish DNA” hypothesis [98,99]. However, the selfish DNA
view does not take into consideration the well-documented functional infor-
mation found in all classes of repetitive DNA elements [13]. Since dispersed
repeats influence both coding sequence expression and physical organization of
genomes, an alternative functionalist hypothesis must be entertained: namely,
that repeat distribution reflects the establishment of a system architecture
required for effectively integrated genome functioning.

6.7 Twenty-First Century Directions
in Evolution Research

It appears from this discussion that a distinct twenty-first century view
of evolution can stimulate research at the interface between experimental
observation-based biology and mathematical analysis of complex systems.
That was the objective of the present symposium. The ideas presented here
are consistent with molecular genetics but are quite different from conven-
tional evolutionary theory. Whether they prove to be predictive or not remains
unknown until tests have been performed.
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Experimental tests of evolutionary ideas can take two forms. One kind
of test involves experimentation in the wet lab with evolving organisms. In
most cases, these experiments will utilize microbes, such as bacteria and
yeast, as the test organisms because microbes have the most easily manipu-
lated genomes and because rare changes can be sought in large populations.
Tests of evolutionary concepts need to ask questions that go beyond the stan-
dard mutation studies that examine changes at specific genetic loci. In partic-
ular, experimentalists should begin to examine how more complex multilocus
systems arise in genomes. To see what mutational or natural genetic engi-
neering processes are involved in system evolution, we need to devise effective
selections that require the coordinated action of multiple genetic loci. Can
these arise, for example, by the concerted insertion of DNA transposons in
bacteria or retrotransposons in yeast, as suggested by the observations of
Errede et al. [93] and Peaston et al. [100]?

A second form of evolutionary test requires simulated evolutionary
processes, such as genetic programming [101]. Using simulated evolution mod-
els, computer scientists can determine whether the presence of mobile for-
matting repeats speeds up the evolutionary process, as suggested by their
prominence in genomes. In addition, simulated evolution can examine how
different evolutionary operators, modeled upon natural genetic engineering
systems, influence the structure of the evolved programs. To achieve success,
programs that accomplish real tasks, such as robotic control [102] will have
to be subjected to evolutionary modification. Moreover, various programming
languages or higher-level formalisms (e.g. object-oriented programming) will
have to be used to find the most suitable evolutionary model, and devising
operators modeled on genomic systems will require close collaboration between
computer experts and molecular geneticists.

The preceding sketch of new experimental approaches in vivo and in silico
should make it clear how alternative fundamental concepts of evolution open
up new methods of scientific exploration. The integration of biology and infor-
mation sciences in the twenty-first century will lead us to ask questions that
could not have been imagined in the middle of the twentieth century.
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Genomic Changes in Bacteria:
From Free-Living to Endosymbiotic Life

F.J. Silva, A. Latorre, L. Gémez-Valero, and A. Moya

7.1 Introduction

Symbiosis is the association between two or more distinct organisms during
at least one part of their lifecycle. Although this term is sometimes used in
a narrower sense, it includes for most authors a set of different situations
such as mutualism, parasitism and commensalism. Mutualism is defined as an
association in which both partners derive benefit from living together. Para-
sitism is an association in which one of the partners benefits, while the other
is harmed. Finally, commensalism is an association in which one of the two
members benefits while the other is neither harmed nor obtains an advantage.
In most cases, the association is established between a pluricellular eukaryote
and a microorganism such as a bacterium or unicellular fungus. These micro-
bial symbionts establish either facultative or obligate associations with their
hosts. In the latter, the symbionts are always required to be together.

The terms endosymbiosis and endosymbionts are applied to those sym-
bionts that live inside their hosts (the other partner in the association). This
association may also be narrower when the endosymbiont lives inside the host’s
cells. Endocytobiosis is the term applied to intracellular symbiosis [1].

Many bacterial species have been reported to be able to infect and produce
a pathogenic effect on insects. The pathogenic relation between the spore-
forming bacterium Bacillus thuringiensis and many species of lepidoptera,
coleoptera or diptera is well-known, but there are many other parasitic or
pathogenic relations involving species of the genera Clostridium, Serratia,
Pseudomonas, Photorhabdus, Wolbachia, etc. There are also many mutual-
istic associations between insects and microorganisms, and in most of them
the endosymbiont adapted to live intracellularly in a specialized host cell
called mycetocyte when it contains a fungal endosymbiont, and bacteriocyte
when it contains a bacterial symbiont. These cells are derived from different
parts and tissues of the insect such as fat body or Malpighian tubules and
form organs called mycetome or bacteriome depending on the endosymbiont
type. Bacteriocyte-associated endosymbionts have been described in many
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Table 7.1. Examples of bacteriocyte-associated endosymbionts of insects

Endosymbiont species Bacterial group Host (Insect Host (Common
order) name)
Buchnera aphidicola g-Pro Hemiptera Aphids
Carsonella ruddii® g-Pro Hemiptera Psyllids
Baumannia cicadellinicola®  g-Pro Hemiptera Sharpshooters
Portiera aleyrodidarum® g-Pro Hemiptera Whiteflies
Tremblaya princeps® b-Pro Hemiptera Mealybugs
Wigglesworthia glossinidia  g-Pro Diptera Tsetse flies
Sodalis glossinidius g-Pro Diptera Tsetse flies
Blochmannia floridanus® g-Pro Hymenoptera Carpenter ants
Sithopilus oryzae primary g-Pro Coleoptera Weevils
endosymbiont (SOPE)
Nardonella® g-Pro Coleoptera Weevils
Blattabacterium sp. Flavobacterium  Dictyoptera Termites
Blattabacterium sp. Flavobacterium  Dictyoptera Cockroaches

g-Pro, gamma-proteobacteria; b-Pro, beta-proteobacteria
#Taxonomic name designation is Candidatus.

insect orders such as hemiptera (aphids, psyllids or whiteflies), diptera (tsetse
flies), hymenoptera (carpenter ants), dictyoptera (termites or cockroaches) or
coleoptera (weevils) (Table 7.1).

Bacteriocytes are differentiated cells produced during insect development
that harbour bacterial endosymbionts (Fig.7.1). In some species, the pres-
ence of the bacterial symbiont is required for differentiation of the bacterio-
cyte. In others, however, the bacteriomes are formed before being inhabited
by the endosymbionts [1]. Each bacteriocyte contains a large number of bac-
terial cells. The control of this number in the aphid endosymbiont, Buchnera
aphidicola, is probably carried out by its own bacteriocyte. Not only have
degenerating bacteria been observed inside bacteriocytes, but it has recently
been demonstrated that the most abundant transcripts of the B. aphidicola
bacteriocytes encode invertebrate type lysozymes [2]. These enzymes probably
control bacterial number by degrading cell walls and lysing bacteria.

Bacteriocyte endosymbionts are typically maternally inherited. Several
types of transmission have been described (see [1,3] for a review). In ants and
parthenogenetic aphids, oocytes are infected by invasive bacteria that leave
the bacteriomes and penetrate through the ovary [4], whereas in viviparous
aphids the developing embryos may also be infected by bacteria released from
mother bacteriocytes. In some beetle species such as those from the genus
Sitophilus, there is no transmission from the bacteriome to the ovary, since
endosymbionts are permanently in the ovaries and in the female germ cells.
Finally, the means of transmission of Wigglesworthia glossinidia in tsetse flies
is not transovarial, since transmission apparently takes place in the milk glands
through which the mother feeds the developing larvae.
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Fig. 7.1. Bacteriocytes of the aphid Cinara cedri. Electron microscopic image of a
semithin serial section of 1.5 um from C. cedri. Parts of two cells are observed sepa-
rated by the cell membrane (M). Primary bacteriocyte (up) containing B. aphidicola
cells (1). Secondary bacteriocyte (down) containing the secondary endosymbiont
(R-type) (2). Other abbreviations: rough endoplasmic reticulum (RER); mito-
chondria (m); vacuole (v)

One of the most important characteristics affecting sequence evolution in
endosymbionts is the reduction of the effective population size because of the
small number of cells that are usually transmitted to the insect offspring. The
number of endosymbiont cells transmitted to each sexual egg has been esti-
mated in several B. aphidicola strains, ranging from 850 to 8,000 [5]. This
bottleneck population structure makes endosymbiont sequences evolve com-
pletely differently than those from free-living bacteria.

Obligate maternal transmission has been reported in several bacterial
endosymbionts [3]. This produces the coevolution of the host and bacterial
lineages. However, there are also several examples in which endosymbiont
and host phylogenies do not coincide. For example, it used to occur with the
so-called secondary endosymbionts (maternally inherited but without sharing
a long evolutionary history with their hosts as primary endosymbionts do),
which in several insects may infect other individuals, species or even more
phylogenetically distant taxa [6,7]. The case of the genus Wolbachia, an intra-
cellular gram-negative bacterium, which is found in association with a variety
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of invertebrate species, including insects, mites, spiders, terrestrial crustaceans
and nematodes, is an example of wide taxonomic distribution.

The nature of the associations between several insect species such as aphids,
carpenter ants or tsetse flies with bacterial species such as B. aphidicola,
Blochmannia floridanus and W. glossinidia, respectively, are mainly nutritional
[8-10]. These bacteria compensate for the deficient diet of the insects, syn-
thesizing several compounds such as amino acids and vitamins (Fig.7.2). On
the other hand, these endosymbionts are unable to live outside the host cell
because they have lost many capabilities for carrying out a free life and they
require many different types of compounds obtained from the host cytoplasm,
including several nucleotides, amino acids and vitamins.

An appealing topic in evolutionary biology is the consequences that a
change in lifestyle produces in an organism. The ancestors of many bacter-
ial obligate mutualists were probably free-living bacteria with the ability to
infect insects and in some way benefit from that. At the beginning they were
possibly parasites or commensalists but with time evolved to a mutualistic
condition. This review will discuss several of the most important changes that
the genome of these organisms experienced during the transition to the new
way of life, and afterwards its adaptation to this type of life. These changes
may be summarized as:

1. Changes in the pattern of sequence evolution.

2. Drastic reduction of the genome size with a strong tendency to lose genes
and to lose DNA| the former being associated to the loss of many metabolic
capabilities.
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Fig. 7.2. Comparative analysis of the number of genes involved in several func-
tional categories. Genome abbreviations: B. aphidicola strains (BAp, BSg and BBp);
BI. floridanus (bfl), W. glossinidius (wgl); E. coli K12 (eco)
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3. Changes in the chromosomal rearrangement rates and the loss of the para-
sexual phenomenon with the loss of an efficient system for recombination,
and the ability of acquired foreign DNA sequences.

7.2 Genetic and Genomic Features
of Endosymbiotic Bacteria

7.2.1 Sequence Evolution in Endosymbionts

The comparative analysis of the bacterial genes and genomes has revealed sev-
eral features that may probably be applied to all or most of the endosymbiont
lineages. They are: (1) the increase in the AT content, (2) the acceleration of
the substitution rates, (3) the loss of the synonymous codon bias selected in
other organisms to increase the translation efficiency and (4) the change in
the amino acid composition of the proteins.

Increase in the AT Content

The average base composition in bacterial genomes is very variable, ranging
in the complete sequenced genomes from 22.5% to 72.1% GC content (see a
selection of genomes in Table 7.2). In general, the GC content of intracellular
bacterial symbionts is lower than that of extracellular bacteria [11]. A similar
result was also reported for the GC content of obligate symbionts (includ-
ing pathogen, mutualist or intracellular bacteria) when compared to those
of free living bacteria [12]. These two classification systems do not overlap
completely because some host-associated bacteria do not live intracellularly.
To be completely sure that the increase in AT content is associated with the
shift to intracellularity or obligate host-associated life, it is very important
to compare each endosymbiont lineage with its closest free-living relative.
These independent comparisons may permit us to know whether the decrease
in endosymbiont GC content is a general feature exhibited in any bacterial
group.

The first insect endosymbionts analysed and compared with phylogenet-
ically related bacterial species belonged to the gamma-proteobacteria. The
comparison of the composition of a small number of genes revealed that
in most cases coding and ribosomal RNA genes presented lower GC con-
tent in the endosymbionts. The complete genome sequences of the insect
endosymbionts B. aphidicola, W. glossinidia and Bl. floridanus [8-10,13,14]
showed that they were among the bacterial species with the lowest genome GC
contents (from 22.5% to 27.4%, see Table 7.2). Although endosymbiont phylo-
genies are difficult and controversial [10,15-18], we know that species belong-
ing to the genera Escherichia, Salmonella or Yersinia, which are their closest
relatives, contain higher GC contents (48-52% GC). Thus, the hypothesis that
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Table 7.2. GC content and genome size in a selected group of complete genomes
(sorted by increase GC content)

Species Group Size GC Host OI Comments
(Mb) (%)
Wigglesworthia glossinidia g-Pro 0.70 22.5 1 Yes Mutualist
Mycoplasma mobile 163 K Firm 0.78 25.0 F - Pathogen
Buchnera aphidicola BBp g-Pro 0.62 25.3 I Yes Mutualist
Ureaplasma parvum Firm 0.75 25,50 H — Pathogen
Buchnera aphidicola BAp g-Pro 0.66 26.2 I Yes Mutualist
Buchnera aphidicola BSg g-Pro 0.64 26.3 I Yes Mutualist
Clostridium tetani E88 Firm 2.87 27.0 H - Pathogen
Blochmannia floridanus g-Pro 0.71 274 I Yes Mutualist
Onion yellows phytoplasma OY-M  Firm 0.86 27.7 P — Pathogen
Rickettsia prowazekii str. Madrid E  a-Pro 1.11 29.0 H Yes Pathogen
Mycoplasma genitalium G-37 Firm 0.58 31.7 H — Pathogen
Wolbachia (end. of Brugia malayi)  a-Pro 1.08 34.2 N Yes Mutualist
Wolbachia (end. of D. melanogaster) a-Pro 1.27 35.2 1 Yes Pathogen
Bacillus thuringiensis ser. konkukian Firm 531 354 I - Pathogen
Haemophilus influenzae Rd KW20  g-Pro 1.83 38.0 H — Pathogen
Chlamydia trachomatis D/UW-3/CX Chla 1.04 40.0 H Yes Pathogen
Mycoplasma pneumoniae M129 Firm 0.82 40.0 H — Pathogen
Photorhabdus luminescens g-Pro 5.69 42.8 I/N — Pathogen/
Mutualist
Vibrio cholerae O1 biovar eltor g-Pro 4.03 470 H - Pathogen
Yersinia pestis CO92 g-Pro 4.83 480 H — Pathogen
Escherichia coli K12 g-Pro 4.64 50.0 H - Commensal
Escherichia coli O157:H7 g-Pro 5.5 50.0 H — Pathogen
Salmonella typhimurium LT2 g-Pro 4.95 52.0 H - Pathogen
Mycobacterium leprae TN Acti 3.27 578 H - Pathogen
Xanthomonas campestris g-Pro 5.08 64 P - Pathogen
Mycobacterium tuberculosis Acti 44 65.6 H — Pathogen
Pseudomonas aeruginosa PAO1 g-Pro 6.26 67.0 H — Pathogen
Ralstonia solanacearum GMI1000 b-Pro 5.81 69.0 P - Pathogen
Thermus thermophilus HB8 Dei-Ther 2.12 69.5 - - —
Nocardia farcinica IFM 10152 Acti 6.29 70.7 H - Pathogen
Streptomyces avermitilis MA-4680  Acti 9.12 720 - — -
Streptomyces coelicolor A3(2) Acti 9.05 721 - — -

g-Pro (gamma-proteobacteria), Firm (Firmicutes), a-Pro (alpha-proteobacteria),
Chla (Chlamydiae), b-Pro (beta-proteobacteria), Acti (Actinobacteria), Dei-Ther
(Deinococcus-Thermus), end (endosymbiont). I (insect), F (fish), H (human),

P (plant), N (nematode), OI (Obligate intracellular).

a GC richer ancestor of these endosymbionts experienced an overall tendency
to increase its AT content after the shift to endosymbiosis is possible. Natural
selection is acting against this tendency by avoiding, to a variable degree, a
high reduction in the gene GC content. However, when the gene is inacti-
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vated, the effect of natural selection disappears and the tendency to increase
AT content becomes stronger. This is the situation observed in B. aphidi-
cola, in which, when a gene is inactivated, a degenerative process produces
its reduction in size and in GC content. A correlation between both para-
meters has been detected in B. aphidicola, where, on average, finally reaches
47% of the initial gene GC content [19], which is around 15% GC content for
non-coding regions.

In other gamma-proteobacterial endosymbionts such as Carsonella ruddii
(psyllid endosymbiont), the GC content may be even smaller. Thus, the GC
content of a 37kb genome segment was as low as 19.9%, with most of the
coding genes with GC contents smaller than 20% and even ribosomal genes
with very low values (33.1% and 35.6% for 23S and 16S, respectively) [20].

However, there are exceptions to this situation in gamma-proteobacteria,
with the peculiarly high GC content of the primary endosymbiont of the weevil
Sitophilus oryzae (SOPE), which presents an average value of 54% [11]. This
exception, however, may be associated with the fact that it is in a preliminary
stage of adaptation to intracellular life and, for that reason, both GC content
and genome size are high and large [15]. In fact, in a comparison of the GC
content of two genes in several gamma-proteobacteria, secondary endosym-
biont GC contents were intermediate between those from free-living bacteria
and those from primary endosymbionts [21]. Another exception to the general
rule of low GC content is the beta-proteobacteria primary endosymbiont of
mealybugs. It presents in 65kb a high 57% GC content with all coding genes
with values higher than 52% [22]. Because many beta-proteobacteria have
even higher GC contents, a comparison with a close relative will be necessary
to determine whether this bacterium is, or is not, an exception for this feature.

The analysis of the previous results leads to the general assumption that
endosymbionts, especially intracellular endosymbionts, have low GC contents,
and to conclude that their ancestors probably presented an equilibrium in the
genome GC content, which was broken when the shift to intracellularity or
host-association occurred. From that moment the tendency of the genes and
genomes was to increase their AT content. Several hypotheses have been put
forward to explain the low GC content of the endosymbionts. First, a mu-
tational bias favouring higher rates of mutation from GC nucleotides to AT
nucleotides would increase the AT content if mutations were fixed by genetic
drift and natural selection were unable to avoid fixation, at least in non-
essential genes or degenerate sites. The small effective population size of B.
aphidicola, with strong bottlenecks in each aphid generation and the preven-
tion of the recovery of wild type phenotypes by recombination (a phenomenon
known as Muller’s ratchet), would produce an increase in the rate of nucleotide
substitution, especially those changes leading to the misincorporation of A and
T nucleotides [3,11,23]. A neutral explanation for the AT mutational bias may
be related to the loss of several DNA repair genes, for example those correct-
ing the deamination of cytosine which, if left uncorrected, will render an uracil
and finally thymine [3]. A selective explanation was also proposed recently,
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based on the higher energy cost and the limited availability of G and C over
A and T in the obligate pathogens and symbionts [12]. The authors proposed
that the higher fitness of the AT rich individuals would produce the selection
of a general mutation bias, not the particular selection of each GC to AT
substitution.

Acceleration of the Substitution Rates

The first wide comparative study on nucleotide substitution rates between
endosymbiont and free-living bacteria showed the existence of an accelerated
evolution for the former [23]. The analysis of the 16S rDNA of five indepen-
dently derived endosymbiont clades (Buchnera, Wigglesworthia, Wolbachia
and endosymbionts of mealybugs and whiteflies) showed, in every case, faster
evolution in endosymbionts than in free-living relatives. The same relative rate
test applied to coding genes in Buchnera showed an even higher acceleration
in non-degenerate sites. The main difference in the rate of evolution when
comparing the divergence of five coding genes between E. coli and Salmonella
and two distant B. aphidicola strains was the extremely large increase in the
non-synonymous substitution rate during the evolution of endosymbionts [23].
This accelerated evolutionary rate was also observed to be a characteristic of
other very distant symbiont species such as mutualist fungi or bacterial en-
dosymbionts of molluscan, insects or oligochaetes hosts [24-26].

Comparison of evolutionary rates between endosymbionts and free-living
bacteria shows marked differences regarding the evolution of synonymous and
non-synonymous sites. Thus, the number of synonymous substitutions per
site (Ks) in B. aphidicola is homogeneous among loci, which contrasts with
the heterogeneity found in free-living bacteria. In addition, the estimation of
the synonymous substitution rate showed a slight increase (over twofold) in the
endosymbiont over E. coliin genes with a low codon bias [27]. These differences
are extremely high when comparing the rates of non-synonymous substitutions
for the genes of B. aphidicola with those of free-living bacteria [13,27,28].

The explanation for the comparatively higher rates of substitution in
endosymbionts, especially at the non-synonymous sites, was attributed to the
unusual population structure of these organisms [23]. The strict vertical trans-
mission to the host offspring, with a probable complete asexuality of the bac-
terial population due to the division in subpopulations and to the probable
loss of efficient systems for competence and recombination [29,30], and with
continuous bottlenecks in the population size at each aphid generation [5],
would favour the fixation of slightly deleterious mutations. Recently, it has
been proposed that these high evolutionary rates would be mainly due to an
enhanced mutation rate and to a relaxation of purifying selection [31].

Loss of the Codon Usage Bias

Many bacterial species show a selected codon usage bias throughout the
genome. The strength of the selected codon usage bias varies substantially
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among species, and in 30% of the genomes examined, there was no signif-
icant evidence that selection had been effective [32]. This group includes
obligate intracellular parasites or endosymbionts, such as species in the gen-
era Buchnera, Wigglesworthia, Rickettsia, Mycoplasma or Chlamydia. Several
deeper analyses of endosymbiont lineages have been carried out, finding
very little variation of the synonymous codon usage across the genome in
W. glossinidia, regardless of whether the genes have high or low expression
levels [33]. On the contrary, a slight residual codon bias was detected in the
three B. aphidicola genomes within the leading and the lagging strands [34].
Finally, it was recently reported that codon usage differs between strands of
replication and between putative high and low expression genes in five insect
endosymbiont genomes [35]. The strength of a general codon usage bias is cor-
related with several factors such as the number of rRNA operons and tRNA
genes in the genome, or the level of expression of the genes. These results
are consistent with the hypothesis that species exposed to selection for rapid
growth have a more strongly selected codon usage bias [32].

Change in Amino Acid Composition of the Proteins

The bias to increase AT content in the endosymbiont coding genes has a strong
effect on protein composition. When compared with free-living relatives, B.
aphidicola proteins show many differences in the frequency of GC-rich encoded
amino acid such as Val, Ala or Gly and AT-rich encoded amino acids such
as Ile, Asn or Ser, which are decreased and increased, respectively [27,36].
A parsimonic reconstruction of amino acid substitutions in four B. aphidicola
strains, although putatively affected by homoplasy, suggested that in the early
evolutionary stage of the lineage after the divergence from free-living enterics,
a high number of amino acid replacements increasing AT took place. In its
recent evolution, however, replacement of AT or GC-rich encoded amino acids
is taking place at a similar rate, or there may even be those decreasing AT in
a high number [27]. However, because the frequency of AT rich amino acid is
very high in the current B. aphidicola proteins, the former observation already
shows the higher tendency of GC encoded amino acids over AT encoded to
mutate.

The bias to a high frequency of AT rich amino acids is also observed
in other insect endosymbionts such as W. glossinidia [9] or Bl. floridanus
[10]. The case of the psyllid endosymbiont C. ruddii is especially remark-
able, because in the analysis of 32 polypeptide sequences containing an
ortholog in B. aphidicola, R. prowazekii and E. coli, 50% of the residues con-
sisted of the five AT-rich encoded amino acids (Phe, Ile, Lys, Asn and Tyr),
which contrasted with the situation of E. coli (22.3%) but also with that of
R. prowazekii (29.4%) and B. aphidicola (29.3%) [20].

The comparison of the amino acid changes between F. coli and the genomes
of W. glossinidia, B. aphidicola and Bl. floridanus has shown that variation
in amino acid usage strongly correlates with GC content and the putative
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expression level of genes, and that selection against costly amino acids in high
expression genes is a secondary factor that explains amino acid usage [35].

The high frequency of some positively charged amino acids (especially
Lys) has produced an extreme increase in the isoelectric point (pI) of the
proteins (average values of 9.84, 9.6 and 8.9 for W. glossinidia, B. aphidicola
and Bl. floridanus) over those of E. coli or H. influenzae (pI = 7.2) [8-10].
A comparative analysis of the orthologous E. coli and BI. floridanus protein
pls has shown that most E. coli proteins with pls ranging from 4 to 10 have
an ortholog in Bl. floridanus, with a higher pl in a tendency, which reaches
around 10.5 in the most extreme cases [10]. However, natural selection is acting
against this change in some proteins, with 20% of the Bl. floridanus proteins
presenting a difference of pl against E. coli smaller than 0.5.

Amino acid substitutions are also producing a negative effect on protein
folding. The high expression levels of genes encoding chaperones, especially
GroEL protein, may counteract this negative effect. In fact, the amino acid
substitution rate of chaperones is very low in endosymbionts, and it has been
experimentally demonstrated that the GroEL protein may act as a buffer
against the effect of deleterious mutations [37]. Intracellular bacteria contain
more hydrophobic proteins as a result of the increase in AT-rich encoded
amino acids. It also makes them less stable against misfolding [38].

7.2.2 Reductive Evolution: DNA Loss and Genome Reduction
in Obligate Bacterial Mutualists

One of the most interesting features of the obligate intracellular bacteria of
insects was the extremely small size of their genomes with the five complete
sequenced genomes reported to date being smaller than 800 kb (Table 7.2). In
addition, other genome sizes estimated by pulsed field electrophoresis revealed
a similar situation with the 680 kb of Baumannia cicadellinicola, the intracel-
lular endosymbiont of sharpshooters [39], and the even more extreme situation
of several B. aphidicola strains with sizes as small as 450kb [40]. These small
genomes are apparently derived from bac