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Preface

Soon after the first sequences of proteins and nucleic acids became available
for comparative analysis, it became apparent that they can play a key role for
reconstructing the evolution of life. The availability of the sequence of several
proteins prompted the birth of the field of molecular evolution, which aims
at both the reconstruction of the biochemical history of life and the under-
standing of the mechanisms of evolution at the molecular level through the
analysis of the macromolecules of existing organisms. These ambitious goals
can only be accomplished within a wide interdisciplinary approach that com-
bines together experimental techniques of molecular biology, bioinformatics
and mathematical modeling. Indeed, the huge amount of data made available
in recent years by genome sequencing projects is demanding simultaneous
skills on these three approaches.

At its beginnings, the study of molecular evolution was almost entirely
based on the analysis of macromolecular sequences. More recently, progress
in structural biology has opened the possibility of using also structural
information in evolutionary studies. It now appears that a paradigm shift
is taking place within the field of molecular evolution, from coding symbols
(sequence) to coded meanings (structure and function). This book investigates
such a structural approach at different levels of biological organization, i.e., of
molecules, networks and populations, showing that their understanding can
significantly contribute to elucidate the mechanisms of evolution and to recon-
struct its course. Synergies between experimental, theoretical, computational,
and statistical approaches are expected to widen our understanding of the
processes and pathways of molecular evolution. However, relevant fields such
as those dealing with the structure and thermodynamics of biomolecules, gene
networks, and the mechanisms of molecular biology are not fully integrated
into the field of molecular evolution yet, and these missings links are becoming
increasingly evident.

The central goal of the present tutorial book is to stimulate this inte-
gration by bringing these different disciplines together. The idea of such a
book emerged during the interdisciplinary workshop Structural approaches to
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sequence evolution: Molecules, networks, populations that we organized at the
Max-Planck-Institut für Physik komplexer Systeme in Dresden (Germany) in
July 2004. The book collects a series of tutorial chapters written by experts
from different scientific communities, most of whom have participated in the
workshop.

As this workshop was the birthplace of the present book, the editors wish
to express their sincere gratitude to the Max-Planck-Institut für Physik kom-
plexer Systeme for hosting and financing it. In particular, they would like
to thank Dr. Sergej Flach (head of the conference programme) for his very
helpful support and Mrs. Mandy Lochar (conference secretary) for her very
efficient organization.

Madrid, Ugo Bastolla
Darmstadt, Markus Porto
Milano, H. Eduardo Roman
Cambridge, April 2006 Michele Vendruscolo
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Part I

Molecules: Proteins and RNA



1

Modeling Conformational Flexibility
and Evolution of Structure:
RNA as an Example

P. Schuster and P.F. Stadler

In this chapter, RNA secondary structures are used as an appropriate toy
model to illustrate an application of the landscape concept to understand
the molecular basis of structure formation, optimization, adaptation, and
evolution in simple systems. Two classes of landscapes are considered
(1) conformational landscapes mapping RNA conformations into free energies
of formation and (2) sequence–structure mappings assigning minimum free
energy structures to sequences. Even without referring to suboptimal confor-
mations, optimization of RNA structures by mutation and selection reveals
interesting features on the population level that can be interpreted by means
of sequence–structure maps. The full power of the RNA model unfolds when
sequence–structure maps and conformational landscapes are merged into a
more advanced mapping that assigns a whole spectrum of conformations to
the individual sequence. The scenario is complicated further – but at the
same time made more realistic – by considering kinetic effects that allow for
the assignment of two or more long-lived conformations, together with their
suboptimal folds, to a single sequence. In this case, molecules can be designed,
which fulfil multiple functions by switching back and forth from one stable con-
formation to the other or by changing conformation through allosteric binding
of effectors. The evolution of noncoding RNAs is presented as an example for
the application of landscape-based concepts.

1.1 Definition and Computation of RNA Structures

RNA sequences form structures under appropriate conditions consisting of
aqueous solution at sufficiently low temperatures, approximately neutral pH,
and ionic strength. In most of the sufficiently well studied examples RNA
folding occurs in two steps [1, 2] (1) the formation of a flexible so-called sec-
ondary structure requiring monovalent counterions and (2) the folding of the
secondary structure into a rigid 3D-structure in the presence on divalent ions,
especially Mg2⊕ [3] (for an exception see [4]). Experimental determination
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of full spatial RNA structures is a hard task for crystallographers and NMR
spectroscopists [5, 6]. Prediction of 3D-structures is also an enormously com-
plex problem and at least as demanding as in the case of proteins [7]. RNA
secondary structures, however, in contrast to protein secondary structures,
have a physical meaning as folding intermediates and are useful tools in the
interpretation and prediction of RNA function. In addition, conventional RNA
secondary structures (Sect. 1.1.1) can be represented as (restricted) strings
over a three-letter alphabet and they are accessible, therefore, to combinatorial
analysis and other techniques of discrete mathematics [8–10]. The discreteness
of secondary structures allows for straightforward comparisons of the spaces of
sequences, structures, and conformations and provides the insights into flexi-
bility and robustness of RNA molecules. Moreover, RNA secondary structures
and lattice protein models are at present the only biological objects for which
conformational landscapes and sequence–structure maps can be computed and
analyzed in complete detail. Therefore, this contribution will be exclusively
dealing with them.

1.1.1 RNA Secondary Structures

A conventional RNA secondary structure1 is a listing of base pairs that can
be visualized by a planar graph. The nodes of the graph are nucleotides of
the RNA molecule, i ∈ {1, 2, . . . , n} numbered consecutively along the chain
(Fig. 1.1). The edges of the graph represent bonds between, nodes which
fall into two classes: (1) the backbone, {i (i + 1) ∀ i = 1, . . . , n − 1}, and
(2) the base pairs. The two ends of the sequence (5′- and 3′-end) are chem-
ically different. The backbone is completely defined for known n and hence
a secondary structure is completely determined by a listing of base pairs, S,
where a pair between i and j will be denoted by i j. For a conventional
secondary structure, the base pairs fulfil three conditions:

1. Binary interaction restriction. An individual nucleotide is either involved
in one base pair or it is a single nucleotide forming no base pair.

2. No nearest neighbor pair restriction. Base pairs to nearest neighbors, i j
with j = i − 1 or j = i + 1 are excluded.

3. No pseudoknot restriction. Two base pairs i j and k l with i < j, i < k
and k < l are only accepted if either i < k < l < j or i < j < k < l are
fulfilled – the second base pair is either enclosed by the first base pair or
lies completely outside (Fig. 1.1).

Condition 1 forbids the formation of base triplets or higher interactions
between nucleotides. Condition 2 is required for steric reasons because stereo-
chemistry does not allow for pairing geometries between neighboring nucleo-
tides. As we shall mention later, this condition is even more stringent in the

1 “Conventional”means here that the structure is free of pseudoknots (Condition 3).
Some other definitions include certain or all classes of pseudoknots.
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Fig. 1.1. Definition of RNA secondary structures. Each nucleotide inside the seq-
uence forms two backbone bonds to its neighbors, the two nucleotides at the ends,
1 and n, are connected to one neighbor (topmost drawing: nucleotides are shown as
spheres, the 3′-end is represented by an arrow). Each nucleotide can stay unpaired
or form one (and only one) base pair to another nucleotide. In the circular represen-
tation of structures (left-hand side of the drawings in the middle and at the bottom),
base pairs appear as lines crossing the circle. The upper secondary structures has
no pseudoknot. The structure at the bottom contains a pseudoknot, which is easily
recognized by crossings of lines in the circular representation. On the right-hand side
of the two structures, we show the conventional drawings of secondary structures as
they are used by biochemists and molecular biologists. Parentheses representations
(see text) are shown below the two structures

sense that hairpin loops with less than three single nucleotides do not occur
in real structures. Condition 3 is mainly a technical constraint, because the
explicit consideration of pseudoknots impedes mathematical analysis of struc-
tures substantially and makes actual computations much more time consum-
ing [11].
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Throughout this chapter, it will be convenient to identify a secondary
structure by its set of base pairs Ω. More abstractly, we consider Ω as an
arbitrary matching on {1, . . . , n}. In other words, we shall sometimes relax the
conventional no-pseudoknot Condition 3 and insist only that each nucleotide
takes part in at most one base pairs (Condition 1).2 Furthermore, let Υ be
the set of unpaired bases, which is the subset of {1, . . . , n} that is not met by
the matching Ω.

The graphic representation of secondary structures is fully equivalent to
other representations that we shall not discuss here except two, the adjacency
matrix3

A =

{
aij = aji =

{1 if i, j ∈ Ω ,
i, j = {1, . . . , n}

0 otherwise ,

}
, (1.1)

and the parentheses notation, which will be used later on to calculate base pair
probabilities and compute distances between structures, respectively. In this
notation, single nucleotides, i ∈ Υ , are represented by dots and base pairs by
parentheses (Fig. 1.1). Structures are strings of length n over the three-letter
alphabet, {., (, )} with the restrictions that the number of left parentheses,“(,”
has to match exactly the number of right parentheses, “),” and no parenthesis
must be closed before it had been opened. The no-pseudoknot restriction
guarantees that left and right parentheses are assigned according to the rules
of mathematics. Colored parentheses are required for the correct assignment
in the presence of pseudoknots (bottom plot in Fig. 1.1).

Three classes of elements occur in structures (1) stacks, (2) various kinds
of loops, and (3) external elements (Fig. 1.2). Stacks are arrays of consecutive
base pairs in which the two strands run in opposite direction:

5′-end · · · i i + 1 i + 2 · · · 3′-end

3′-end · · · j j − 1 j − 2 · · · 5′-end .

Loops are commonly classified by the number of closing base pairs:4

(1) A loop of degree one has one closing base pair and is commonly called a
hairpin loop.

(2) Loops of degree two are bulges or internal loops depending on the posi-
tioning of the two closing pairs. In bulges, the closing pairs are neighbors

2 Wherever confusion is possible we shall be precise and use S for conventional
secondary structures and Ω for the generalization.

3 Here the backbone is excluded from the adjacency matrix but its makes no dif-
ference when it is considered too because the backbone does not change in super-
positions of the structures discussed here.

4 Each stack neighboring the loop ends in a pair is called a closing pair of the loop.
The number of closing base pairs is easily determined: Imagine the loop as a circle
and count all base pairs whose nucleotides are members of this circle.
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Fig. 1.2. Elements of RNA secondary structures. Three classes of structural
elements are distinguished: (1) stacks (indicated by nucleotides in dark color),
(2) loops, and (3) external elements being joints and free ends. Loops fall into
several subclasses: Hairpin loops have one base pair, called the closing pair, in the
loop. Bulges and internal loops have two closing pairs, and loops with three or more
closing pairs are called multiloops

without a single nucleotide in between while they are separated by single
bases on both sides in internal loops. Algorithmically, two stacked adjacent
base pairs are treated as an interior loop without unpaired bases. Higher
degree loops have three or more closing pairs and are called multiloops.

(3) Flexible substructures are free ends and parts of the nucleotide chain that
join two modules of structure.
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As indicated in Fig. 1.2 it is important for calculations of free energies that
the individual substructures are independent in the sense that the free energy
of a substructure is not changed by changes in the pairing pattern of another
substructure.

It will turn out useful to introduce the notion of acceptable structures,
which are a subset of the conventional structures [12]. Two restrictions are
introduced that eliminate structures of high free energies, which are commonly
well above the energy of the open chain (a) Condition 2 in the definition of
secondary structures is made more stringent in the sense that base pairs to
next nearest neighbors are also excluded, and hence the base pairs with the
shortest distance along the sequence are i i + 3, and (b) isolated base pairs
are excluded implying that the shortest stacking regions consists of at least
two base pairs formed by neighboring bases.

1.1.2 Compatibility of Sequences and Structures

A sequence X = (x1x2 · · ·xn) over an alphabet A with κ letters is com-
patible with the matching Ω if {i j} ∈ Ω implies that xixj is an allowed
base pair. This situation is expressed by xixj ∈ B. For natural RNAs, we
have A = {αi} = {A,C,G,U} (or {A,T,G,C} for DNA) and B = {βij =
αi αj} = {AU,UA,GC,CG,GU,UG}. We denote the set of all sequences
that are compatible with a structure Ω by

C[Ω] =
{
X
∣∣{i j} ∈ Ω =⇒ xixj ∈ B} . (1.2)

Clearly, for each i ∈ Υ we may choose an arbitrary letter from the nucleic
acid alphabet A, while for each pair we may choose any of the � base pairs
contained in B. For a given structure we have, therefore,

|C[Ω]| = κ|Υ |�|Ω| , (1.3)

compatible sequences.
The problem has a relevant inverse too: How many structures are com-

patible with a given sequence X? The set of these structures comprises all
possible conformations, i.e., the minimum free energy structure together with
the suboptimal structures. The computation of this number is rather involved
and has to use a recursion that has some similarity to the computation of the
minimum free energy structure (Sect. 1.1.4). It can be also obtained as the par-
tition function [13] in the limit of infinite temperature, T → ∞ (Sect. 1.1.6).
A simpler estimate is possible in terms of the stickiness of the sequence,

p(X) = 2
∑

βij∈B
pi(X)pj(X) with pi(X) =

ni(X)
n

and pj(X) =
nj(X)

n
,

(1.4)



1 Flexibility and Evolution of Structure 9

Fig. 1.3. Basic principle of recursions for secondary structures. The property of a
sequence with chain length n is built up recursively from the properties of smaller
segments under the assumption that the contributions are additive: The property
for the segment [1, k +1] is identical with that of the segment [1, k] if the nucleotide
xk+1 forms no base pair. If it forms a base pair with the nucleotide xj the segment
[1, k + 1] is bisected into two smaller fragments [1, j − 1] and [j + 1, k]. The solution
of a problem can be found by starting from the smallest segments and progressing
successively to larger segments. This procedure leads either to a recursion formula
(1.6, 1.7) or it can be converted into a dynamic programming algorithm as in the
case of minimum free energy structure determination

where ni(X) and nj(X) are the numbers of nucleotides αi and αj in the
sequence X, respectively, and n =

∑
αi∈A ni(X), the chain length of the

molecule.
On the basis of the assumption of additive contributions from structure

elements, the properties associated with secondary structures can be com-
puted in recursive manner from smaller to larger segments (Fig. 1.3). It is
straightforward to enumerate, for example, all possible secondary structures
for a given chain length n, sn, by means of a recursion [14,15]. For a minimal
length for hairpin loops, nlp ≥ λ, one finds [12,16]:

sm+1 = sm +
m−λ∑
j=1

sj−1 · sm−j = sm +
m−1∑
j=λ

sjsm−j−1

with s0 = s1 = · · · = sλ = 1 . (1.5)

For a (random) sequence X with nucleotide composition (p1, . . . , pκ), the prob-
ability that two nucleotides form a base pair is given by the stickiness p(X).
Insertion into the recursion leads to [17]:

sm+1(p) = sm(p) + p

m−λ∑
j=1

sj−1(p) · sm−j(p)

with s0(p) = s1(p) = · · · = sλ(p) = 1 , (1.6)
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and sn(p) yields a rough estimate of the number of structures that are com-
patible with the sequence X. The recursion and the estimate can be extended
to a restriction of the length of stacks, nst ≥ σ [12]:

sm+1(p) = Ξm+1(p) + φm−1(p) ,

Ξm+1(p) = sm(p) +
m−2∑

k=λ+2σ−2

φk(p) · sm−k−1(p)

φm+1(p) = p

�(m−λ+1)/2�∑
k=σ−1

Ξm−2k+1(p) · pk (1.7)

with s0 = s1 = · · · = sλ+2σ−1 = 1, φ0 = φ1 = · · · = ψλ+2σ−3 = 0, and
Ξ0 = Ξ1 = · · · = Ξλ+2σ−1 = 1. Performing the recursion up to m + 1 = n
provides us with a rough estimate for the numbers of secondary structures.

Physically acceptable suboptimal structures exclude hairpin loops with
one or two single nucleotides and hence λ = 3. Since suboptimal conforma-
tions need not fulfil the criterion of negative free energies, no restriction on
stack lengths is appropriate. For a minimum hairpin loop length of λ = 3 and
σ = 1 we find the numbers collected in Table 1.1. The numbers of suboptimal
structures become very large at moderate chain length n already. The expres-
sions given here become asymptotically correct for long sequences. In order to
provide a test for smaller chain lengths, we refer to one particular case where
the number of suboptimal structures has been determined by exhaustive enu-
meration: The sequence

AAAGGGCACAGGGUGAUUUCAAUAAUUUUA

with n = 30 and p = 0.4067 has 1, 416, 661 configurations and the estimate by
means of the recursion (1.7) yields a value s30(0.4067) = 1.17× 106 for λ = 3
and σ = 1 that is fairly close to the exact number.

Table 1.1. Estimates on the numbers of suboptimal structures, sn(p) with λ = 3
and σ = 1 and p(X) being the stickiness of sequence X

Chain length Stickiness p(X)

(n) 1.0 0.5 0.375 0.25

10 65 21.4 14.3 8.6

20 1.07 × 105 7,403 2,778 787.8

50 1.82 × 1015 1.27 × 1012 8.52 × 1010 2.57 × 109

100 6.32 × 1032 2.09 × 1026 8.05 × 1023 5.81 × 1020

200 2.07 × 1068 1.55 × 1055 1.95 × 1050 8.06 × 1043
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1.1.3 Sequence Space, Shape Space, and Conformation Space

The analysis of relations between sequences and structures is facilitated by
means of three formal discrete spaces (1) the sequence space being the space
of all sequences of chain length n, (2) the shape space meant here as the space
of all secondary structures that can be formed by sequences of chain length
n, and (3) a conformation space containing all structures that can be formed
by one particular sequence of chain length n.

Sequence Space

The sequence space is a metric space of cardinality κn with κ being the size
of the alphabet. In addition to natural molecules built from the four-letter
alphabet, {A,T,G,C} for DNA and {A,U,G,C} for RNA, sequences over
three-letter, {A,U,G} [18] and two letter, {D,U}5 [19], alphabets were found
to form perfect catalytic RNA molecules. Accordingly, we shall discuss also
non-natural alphabets. The Hamming distance dH(X1, X2), defined as the
number of positions in which two aligned sequences differ,6 fulfills the three
requirements of a metric on sequence space:

dH(X1, X1) = 0 , (1.8a)
dH(X1, X2) = dH(X2, X1) , and (1.8b)
dH(X1, X3) ≤ dH(X1, X2) + dH(X2, X3) . (1.8c)

The Hamming metric corresponds to choosing the single point mutation as
the elementary move in sequence space.

Shape Space

The shape space comprises all possible secondary structures of chain length n.
The number of structures is given by recursion (1.6) with p = 1, or the recur-
sion (1.7) with p = 1, in case physically meaningful restrictions are applied to
the lengths of hairpin loops (nlp) or stacks (nst). It is also straightforward to
define a distance between structures. Several choices are possible (Sect. 1.2.1),
we shall make use of two of them because they correspond to move sets that are
important in kinetic folding of RNA (1) the base pair distance, dP(Sj , Sj), and
(2) the Hamming distance between the parentheses notations of structures,
dH(Sj , Sj), (Fig. 1.4). The Hamming distance between structures is simply
the number of positions in which the two strings representing the secondary
structures differ whereas the base pair distance is twice the minimal number

5 Because of weak bonding in the A U pair adenine has been replaced by D being
2,6-diamino-purine in these studies.

6 Unless stated otherwise we shall consider here binary end-to-end alignments of
sequences with equal lengths.



12 P. Schuster and P.F. Stadler

Fig. 1.4. Two measures of distances between secondary structures. The Hamming
distance between parentheses notations of secondary structures is shown in the upper
plot. Base pair opening and base pair closure contribute dH = 2, but simultaneous
opening and closing, corresponding to a shift of one or more nucleotides, leads also
to the same distance and the three structures are equidistant in shape space with
Hamming metric. If we use the base pair distance instead, we find also dP = 2 for
opening or closing of a base pair, but now the shift move is not in the move set and
the two contributions for opening and closing add up to dP = 4

of base pairs that have to be erased and formed to convert one structure into
the other.7 Figure 1.4 shows the difference between the two distances in a
sequence of two consecutive steps (1) a base pair is removed in going from S1

to S2, and (2) a base pair is closed, which involves one of the two nucleotides
that formed the pair in S1, in the step from S2 to S3. In base pair distance, we
have dP(S1, S3) = dP(S1, S2) + dP(S2, S3) = 4, but in Hamming distance we
find dH(S1, S3) = dH(S1, S2) = dH(S2, S3) = 2. The interpretation is straight-
forward: The base pair distance corresponds to a set of two moves, base pair
opening and base pair closure, whereas the Hamming distance corresponds
to a larger move set that involves, in addition to single base pair operations,
(synchronous) shifts of one or more base pairs resulting in the migration of a
bulge, internal loop or other structural element.

Conformation Space

The conformational space refers to a single sequence (X) and contains all
structures that are compatible with X. Accordingly, it is a subspace of shape
space:

C[X] = {Ω |X ∈ C[Ωi]} . (1.9)

7 To make the two measures of distance comparable base pair distances are multi-
plied by factor 2 since base pair involves two nucleotides.
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Fig. 1.5. Three notions of structures. The mfe-structure is shown as the only rel-
evant conformation on the left-hand side corresponding in a formal sense to the
zero temperature limit (lim T → 0). In the middle, we show the set of suboptimal
structures as it is considered at equilibrium and temperature T in form of the par-
tition function. The notion of the equilibrium structure implies the limit of infinite
time (lim t → ∞). On the right-hand side, we show the barrier-tree of a molecule
which exemplifies a situation that is encountered, for example, in RNA switches.
At finite time we may find one or more long-lived conformations in addition to the
mfe-structure

The conformation space is of particular importance for kinetic folding of RNA.
In addition, it represents the structural diversity of conformations that is acc-
essible from the ground state Ω0 on excitation. The two move sets discussed
in the context of a measure of distance on shape space are also relevant for
conformational space since are tantamount to elementary moves in kinetic
folding of RNA [20–22]. In Fig. 1.5, we show by means of a real example
how the notion of RNA structure is extended to account for suboptimal fold-
ings and kinetic effects. Conventional RNA folding assigns the minimum free
energy (mfe) structure to the sequence. As we have seen above many subopti-
mal structures accompany the mfe-structure and contribute to the molecular
properties in the sense of a Boltzmann ensemble. The partition function is
the proper description of the RNA molecule at thermodynamic equilibrium
or in the limit of infinite time. At finite time (Fig. 1.5; energy diagram on
the right-hand side showing an RNA switch) the situation might be different
and the RNA molecule may have one or more long-lived metastable confor-
mation in addition to the mfe-structure. Then the actual molecular structure
depends also on initial conditions and on the time window of the observation.
The transitions between long-lived states are determined by the activation
energies, which are shown in the construct of a barrier tree.8

8 The barrier tree is a simplification of the conformational energy landscape and
will be discussed in Sect. 1.2.2.
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1.1.4 Computation of RNA Secondary Structures

Computation of secondary structures with minimum free energies [23] is
based on the same principle as shown for counting the numbers of structures
(Fig. 1.3). First, the free energies of the smallest possible substructures are
taken or computed from a list of parameters, then a dynamic programming
table of free energies is progressively completed by proceeding from smaller
to larger segments until the minimum free energy of the whole molecule is
obtained. Backtracking reveals the structure. The conventional approach is
empirical and uses the free energies and enthalpies of RNA model compounds
to derive the parameters for the individual structural elements. These ele-
ments correspond to the substructures shown in Fig. 1.2 at sufficiently high
resolution for sequence specific contributions.

As an example, we show the free stacking energy of a cluster of GC-pairs
in Fig. 1.6, which is obtained from three free stacking energy parameters for
the GC-pairs interacting at different geometries. On total, 21 different free
stacking energy parameters are required for the six base pairs. To be able
to compute the temperature dependence, 21 stacking enthalpy parameters
are required in addition. Loops are taken into account with loop size depen-
dent parameters and hairpin loops, bulges, internal loops, and multiloops are
treated differently. Other parameters consider nucleotides stacking on top of
regular stacks, especially stable configurations, for example tetraloops9 with
specific sequences, end-on-end stacking of stacks, etc. Stacks are (almost) the
only structure stabilizing elements, because base pair stacking is a contri-
bution with substantial negative free energy. Further structure stabilization
comes from single bases stacking on stacks called “dangling ends” and some

Fig. 1.6. The stacking parameters for the interaction between GC base pairs. Free
energies of stacking are given for the three different interaction geometries (the first
and the third paired pairs are identical). Values are given in kcalmol−1. Additivity
is assumed and therefore, we obtain a free energy of interaction of ΔG = −12.40
kcalmol−1 for the stack of five pairs

9 It is common to indicate the size of small hairpin loops by special wording:
“triloops” are hairpin loops with three single nucleotides in the loop, “tetraloops”
have four, and “pentaloops” five singles bases.
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other sequence specific contributions. Loops are almost always destabilizing
because of the entropic effect of the ring closure that freezes degrees of internal
rotation.

Listings of parameters, which are updated every few years, can be found
in the literature [24–27]. These parameters enter an energy function E(X;Ω)
that assigns a unique free energy value to every substructure and provides the
tool for completing the entries in the dynamic programming table. Several
software packages are available and web servers make secondary structure
calculations easily accessible for everybody (see, for example, the Vienna RNA
package and the Vienna RNA server [28,29]).

1.1.5 Mapping Sequences into Structures

The numbers of physically accessible structures obtained from the recursion
(1.7) are compared in Table 1.2 with the actual numbers of minimum free
energy structures computed by means of a folding routine. To this end, all
sequences of a chain length n were folded, grouped with respect to structures,
and enumerated. The numbers refer to structures without single base pairs.
Exhaustive folding of entire sequence spaces was performed for five different
alphabets: GC, UGC, AUGC, AUG, and AU. As follows directly from the
table, the mapping Ω = f(X) is many-to-one in all five alphabets. The set of
sequences that form a given matching Ω, the preimage of Ω in sequence space

G[Ω] = f−1(Ω) .= {X|f(X) = Ω} , (1.10)

is turned into a graph, the neutral network G, by connecting all pairs of
nodes with Hamming distance one by an edge. Global properties of neutral
networks are derived by means of random graph theory [30]. The characteristic
quantity for a neutral network is the degree of neutrality λ̄, which is obtained
by averaging the fraction of Hamming distance one neighbors that form the
same minimum free energy structure, λX = N

(1)
ntr/

(
n · (κ−1)

)
with N

(1)
ntr being

the number of neutral one-error neighbors, over the whole network, G[Ω]:

λ̄[Ω] =
1

|G(Ω)|
∑

X∈G[Ω]

λX . (1.11)

Connectedness of neutral networks is, among other properties, determined by
the degree of neutrality [31]:

With probability one network is
{

connected if λ̄ > λcr

not connected if λ̄ < λcr ,
(1.12)

where λcr = 1 − κ−1/(κ−1) .

Computations yield λcr = 0.5, 0.423, and 0.370 for the critical value in two-,
three-, and four-letter alphabets, respectively.
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Table 1.2. Comparison of exhaustively folded sequence spaces

Chain length Number of sequences Number of structures

(n) 2n 4n sn(1) GC UGC AUGC AUG AU

7 128 1.64 × 104 2 1 1 1 1 1

8 256 6.55 × 104 4 3 3 3 2 1

9 512 2.62 × 105 8 7 7 7 3 1

10 1,024 1.05 × 106 14 13 13 13 5 3

12 4,096 1.68 × 107 37 35 35 36 14 8

14 1.64 × 104 2.68 × 107 101 83 89 93 31 20

16 6.55 × 104 4.29 × 109 304 214 246 260 72 44

18 2.62 × 105 6.87 × 1010 919 582 735 180 96

20 1.05 × 106 1.10 × 1012 2,741 1,599 2,146 504 232

25 3.36 × 107 1.13 × 1015 44,695 18,400 1,471

30 1.07 × 109 1.15 × 1018 760,983 218,318 21,315

The values are derived through exhaustive folding of all sequences of chain length
n from a given alphabet. The numbers refer to actually occurring minimum free
energy structures (open chain included) without isolated base pairs and are directly
comparable to the total numbers of acceptable structures sn(1) with λ = 3 and σ = 2
as computed from the recursion (1.7) [12]. The parameters are taken from [25]

Random graph theory predicts a single largest component for noncon-
nected networks, i.e. networks below threshold, that is commonly called the
“giant component.”Real neutral networks derived from RNA secondary struc-
tures may deviate from the prediction of random graph theory in the sense
that they have two or four equally sized largest components. This deviation
is readily explained by nonuniform distribution of the sequences belonging to
G[Sk] in sequence space caused by specific structural properties of Sk [32,33].
In particular, sequences that fold into structures, which allow for closure of
additional base pairs at the ends of the stacks, are more probable to be formed
by sequences that have an excess of one of the two bases forming a base pair
than by those with the uniform distribution: xG = xC and xA = xU. In case
of GC-sequences, the neutral network is then depleted from sequences in the
middle of sequence space and we find two largest components, one at excess
G and one at excess C.

In Table 1.3 we show, as an example, computed values of the degree of neu-
trality, λ̄[S] in neutral networks derived from tRNA-like cloverleaf structures
with different stack lengths of the hairpin loops. The most striking feature
of the data is the weak structure dependence of λ̄[S] with a family: For a
given alphabet the cloverleafs S1, S2, S3, and S4, have almost the same λ̄
values irrespective of the stability of the corresponding folds. Because of the
shorter stack lengths in S1, S2 and S3 and the weakness of the AU pair no
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Table 1.3. Degree of neutrality in different nucleotide alphabets

Structure a Nucleotide alphabet

GC UGC AUGC AUG AU

S1 0.05 ± 0.03 0.26 ± 0.07 0.28 ± 0.06 – –

S2 0.06 ± 0.03 0.26 ± 0.07 0.28 ± 0.06 0.22 ± 0.05 –

S3 0.06 ± 0.03 0.25 ± 0.07 0.29 ± 0.06 0.21 ± 0.06 –

S4 0.07 ± 0.03 0.25 ± 0.06 0.31 ± 0.06 0.20 ± 0.06 0.07 ± 0.03

The values for the degree of neutrality, λ̄, were obtained by sampling 1,000 random
sequences folding into the four cloverleaf structures with different stack sizes a

using the inverse folding routine [28]. a The following cloverleaf structures were used:

S1: ((((((...((((........)))).(((((.......))))).....(((((.......))))).))))))....

S2: ((((((...(((((......))))).(((((.......))))).....(((((.......))))).))))))....

S3: ((((((...(((((......))))).(((((.......))))).....((((((.....)))))).))))))....

S4: ((((((...((((((....)))))).((((((.....)))))).....((((((.....)))))).))))))....

AU-sequences forming these structures were obtained by inverse folding. The
same was found for S1 in case of AUG-sequences. Considering the fact that
λcr decreases from two to four-letter alphabets, we see that neutral networks
in two-letter sequence spaces (λ̄ ≈ 0.06 and λcr = 0.5) and four-letter seq-
uence spaces (λ̄ ≈ 0.3 and λcr = 0.37) must have very different extensions,
the former being certainly non connected and whereas the latter come close
to threshold.

The extension of neutral networks can be visualized also by evaluating the
lengths of neutral path. A neutral path connects pairs of neighboring neutral
sequences of Hamming distance dH = 1 for single nucleotide exchanges or
dH = 1, 2 for base pair exchange with the condition that the Hamming distance
from a reference sequence increases monotonously along the path. The path
ends when it reaches a sequence, which has only neutral neighbors that are
closer to the reference sequence. Table 1.4 compares the degree of neutrality
and the length of neutral path for GC and AUGC sequences of chain length
n = 100 with the expected result: Networks in AUGC space extend through
whole sequence space whereas GC networks sustain neutral path of roughly
only half of this length. The table also contains comparisons with constrained
molecules that were cofolded with one or two fixed sequences. The three values
demonstrate the influence of multiple constraints on neutrality, which lead to a
decrease in both, degree of neutrality and length of neutral path, and provide
an explanation why the (almost unconstrained) ribozymes of Schultes and
Bartel [35] stay functional along very long neutral paths whereas functional
tRNAs, which have to fulfil multiple constraints, tolerate only very limited
variability in their sequences.
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Table 1.4. The lengths of neutral paths through sequence space

Molecule Alphabet Degree of neutrality Neutral path length

(λ̄) d̄H(X0, Xf)

Single fold GC 0.08 ≈45

Single fold AUGC 0.33 >95

Cofold with one sequence AUGC 0.32 75

Cofold with two sequences AUGC 0.18 40

The degree of neutrality, λ̄, and the mean lengths of neutral paths through sequence
space, d̄H(X0, Xf) (with X0 being the initial and Xf the last sequence), is compared
for three examples (1) folding of (stand alone) AUGC sequences of chain lengths
n = 100, (2) cofolding of AUGC sequences of chain lengths n = 100 with a single
fixed sequence, and (3) cofolding of AUGC sequences of chain lengths n = 100
with two single fixed sequences. The values represent averages over samples of 1,200
random sequences. The value for the path length in GC sequence space with n = 100
is an estimate from Fig. 10 in [34].

The existence of neutral networks and neutral paths in real RNA mole-
cules has been demonstrated by several experimental studies on selection of
RNA molecules with predefined properties (e.g., [36, 37]). Several theoretical
investigations were also dealing with random pools of RNA sequences [38–41]
and showed, for example, that natural RNA molecules have lower free folding
energies than the average of random energies thus demonstrating the effect of
evolutionary selection for stable structures.

1.1.6 Suboptimal Structures and Partition Functions

Algorithms for the computation of suboptimal conformations have been
developed and two of them are frequently used [42, 43]. As we have already
seen from our estimate, the numbers of suboptimal states are very large and,
moreover, they increase exponentially with chain length n. The latter of the
two algorithms [43] has been designed for the calculation of all conformations
within a given energy band above the mfe and adopts a technique originally
proposed for suboptimal alignments of sequences [44]. The algorithm starts
from the same dynamic programming table as the conventional mfe conforma-
tion but considers all backtracking results within the mentioned energy band.
As indicated in Fig. 1.5, the set of structures, mfe and suboptimal conforma-
tions {S0, S1, S2, . . .}, is ordered since their free energies, {ε0, ε1, ε2, . . .} fulfill
the relation ε0 ≤ ε1 ≤ ε2 . . . .

At equilibrium and temperature T , the individual conformations form a
Boltzmann ensemble that contains a structure Sj with the Boltzmann weight
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γj = gj exp
(−(εj − ε0)/RT

)
/Q(T ), where R is the Boltzmann constant for

one mole, R = NL · kB, and Q(T ) is the partition function10

Q(T ) =
∑

i

gi exp
(−(εi − ε0)/RT

)
. (1.13)

Instead of having a structure with a set of defined base pairs, the ground state
is now described by a temperature-dependent linear combination of states
where the weighted superposition of base pairs gives rise to base pairing prob-
abilities pij(X,T ) which are the elements of the matrix

P (X,T ) =
∑

k

γk A(Sk) or pij(X,T ) =
∑

k

γk aij(Sk) , (1.14)

which is a Boltzmann weighted superposition of the adjacency matrices (1.1)
of the individual structures with the following properties: In the limit T → 0,
the base pairing probabilities converge to the base pairing pattern of S0 (for
a nondegenerate ground state, ε0 < ε1) as described by the adjacency matrix
A(S0) and in the limit T → ∞ all (micro)states have equal weights and the
partition function converges to the total number of all conformations of the
sequence X. An elegant algorithm that computes the partition function Q(T )
directly by dynamic programming is found in [13]. It has been incorporated
into the Vienna RNA package [28].

1.2 Design of RNA Structures

The design of RNA molecules boils down to finding sequences that fold
into molecules with predefined structures and properties. Consequently, an
algorithm is needed that computes sequences that fold into predefined mfe
structures. The required procedure thus corresponds to an inversion of the
conventional folding procedure.

1.2.1 Inverse Folding

Given a sequence X, the folding problem consists in finding a matching Ω
that minimizes an energy function E(X;Ω) and (if desired) satisfies other
constraints, such as the no-pseudoknot condition. In Sect. 1.1.4, we have seen
that the folding problem for pseudoknot-free secondary structures is easily
solved by means of dynamic programming.

In the inverse folding problem, we have the same energy function E and the
same constraints, but we are given the structure Ω and search for a sequence

10 Sometimes different microstates Si with the same free energy εj are lumped
together to form one “mesoscopic” state in the partition function and then the
factor gj accounts for this degeneracy.
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X that has Ω as an optimal structure. We denote the set of solutions of
the inverse folding problem by f−1(Ω). Note that f−1(Ω) may be empty,
since there are logically possible secondary structures that are not formed as
minimum energy structures of any sequence.

Just as the folding problem can be regarded as an optimization problem
on the energy landscape of a given sequence, we can also rephrase the inverse
folding problem as a combinatorial optimization problem. To this end, we
consider a measure D(Ω1, Ω2) for the structural dissimilarity of two RNA
secondary structures Ω1, Ω2. A variety of such distance measures have been
described in the literature [28, 45–48]. Since we will be interested here only
in the sequences of equal length, we may simply use the cardinality of the
symmetric difference of Ω1 or in Ω2:

D(Ω1, Ω2) =
∣∣(Ω1 ∪ Ω2) \ (Ω1 ∩ Ω2)

∣∣. (1.15)

Clearly, sequence X folds into structure Ω, if and only if Ξ(X)=D(Ω, f(X))=
0. Hence, inverse folding translates into minimizing D over all sequences. We
know a priori that solutions to the inverse folding problem must be compatible
with the structure:

f−1(Ω) ⊆ C[Ω]. (1.16)

It is straightforward to modify this approach to search, for instance, for seq-
uences in which the ground state is much more stable than any structural
alternative [28]: Let E(X;Ω) be the energy of structure Ω for sequence X, and
let G(X) be the ensemble free energy of sequence X, which can be computed
by McCaskill’s algorithm [13]. Sequences with the desired property minimize

Ξ(X) = E(X;Ω) − G(X) = −RT ln γX(Ω) , (1.17)

where γX(Ω) is the probability of structure Ω in the Boltzmann ensemble of
sequence X.

It has been found empirically [28] that this combinatorial optimization
problem is easily solvable by means of adaptive walks. Starting from a ran-
domly chosen initial sequence X0, we produce mutants by exchanging a
nucleotide at the unpaired positions Υ or by replacing one of the six pair-
ing combinations by another one in a pair in Ω. A mutant is accepted if the
cost function Ξ(X) decreases. In a more sophisticated version, implemented
in the program RNAinverse, a significant speedup is achieved by optimizing
parts of the structure individually. This reduces the number of evaluations
of the folding procedure for long sequences. A more sophisticated stochastic
local search algorithm is used in the RNA-SSD software [49].

1.2.2 Multiconformational RNAs

Figure 1.5 indicates that the energy surface of a typical RNA sequence has
a large number of local minima with often high energy barriers separating
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different basins of attraction. Thus non-native conformations can have energies
comparable to the ground state, and they can be separated from the native
state by very high energy barriers. Stable alternative conformations have been
observed experimentally for a variety of RNA molecules [50–53].

Alternative conformations of the same RNA sometimes determine com-
pletely different functions [54, 55]. SV11, for instance, is a relatively small
molecule that is replicated by Qβ replicase [56, 57]. It exists in two major
conformations, a metastable multicomponent structure and a rod-like con-
formation, constituting the stable state, separated by a huge energy barrier.
While the metastable conformation is a template for Qβ replicase, the ground
state is not. By melting and rapid quenching the molecule can be reverted from
the inactive stable to the active metastable form [58]. Another, particularly
impressive, example is a designed sequence that can satisfy the base-pairing
requirements of both the hepatitis delta virus self-cleaving ribozyme and an
artificially selected self-ligating ribozyme, which have no base pairs in com-
mon. This intersection sequence displays catalytic activity for both cleavage
and ligation reactions [35].

To deal with multiple conformations, we consider a collection of struc-
tures (matchings) Ω1, Ω2, . . . , Ωk on the same sequence X. The fundamental
question in this context is whether there is a sequence in

C[Ω1, Ω2, . . . , Ωk] =
k⋂

j=1

C[Ωj ] (1.18)

and if so, what is the size of this intersection of sets of compatible sequences.
To answer this question, it is useful to consider the graph Ψ with vertex set
{1, . . . , n} and edge set

⋃k
j=1 Ωj .

Generalized Intersection Theorem

Suppose B ⊆ A×A contains at least one symmetric pair, i.e., xy ∈ B implies
yx ∈ B. Then

(1) C[Ω1, . . . , Ωk] �= ∅ if Ψ is bipartite.
For k = 2, Ψ is a disjoint union of paths and cycles with even length, and
hence always bipartite.

(2) The number of sequences that are compatible with all structures can be
written in the form∣∣C[Ω1, Ω2, . . . , Ωk]| =

∏
components ψ of Ψ

F (ψ) , (1.19)

where F (ψ) is the number of sequences that are compatible with the
connected component ψ.
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(3) For the biophysical alphabet holds:
⋂

j C[Ωj ] �= ∅ if and only if Ψ is a
bipartite graph.
In particular, for the case of bistable sequences, k = 2, we can express the
size of the intersection explicitly in terms of Fibonacci numbers

F (Pk) = 2
(
Fib(k) + Fib(k + 1)

)
= 2Fib(n + 2) (1.20)

F (Ck) = 2
(
Fib(k − 1) + Fib(k + 1)

)
, (1.21)

where Pk and Ck are path and cycle components of Ψ with k vertices.

For a proof of these propositions see [31, 59]. Interestingly, for two struc-
tures there is always a nonempty intersection C[Ω1]∩C[Ω2]. In contrast, the
chance that the intersection of three randomly chosen structures in nonempty
decreases exponentially with sequence length [60]. Recently, an alternative
attempt has been made to extend the design aspect of the intersection theorem
to three or more sequences [61].

Given a collection of alternative secondary structures, we can again ask
the inverse folding or sequence design question. For simplicity, we restrict our-
selves to two structures Ω1 and Ω2 here. For example, one might be interested
in sequences that have two prescribed structures Ω1 and Ω2 as stable local
energy minima with roughly equal energy, and for which the energy barrier
between these two minima is roughly ΔE. It is not hard to design a cost
function Ξ(X) for this problem. In [59], the following ansatz has been used
successfully:

Ξ(X) = E(X,Ω1) + E(X,Ω2) − 2G(X) + ξ (E(X,Ω1) − E(X,Ω2))
2

+ζ (B(X,Ω1, Ω2) − ΔE)2 . (1.22)

Here, B(X,Ω1, Ω2) is the energy barrier between the two conformations Ω1,
Ω2, which can be readily computed from the barrier tree of the sequence X.

1.2.3 Riboswitches

The capability of RNA molecules to form multiple (meta)-stable confor-
mations with different function is used in nature to implement so called
molecular switches that regulate and control the flow of a number of bio-
logical processes. Gene expression, for example, can be regulated when the
two mutually exclusive structural alternatives correspond to an active and
in-active conformation of the transcript [62]. Mechanistically, one fold of
the mRNA, the repressing conformation, contains a terminator hairpin or
some other structural element, which conceals the translation initiation site,
whereas in the alternative conformation the gene can be expressed [63]. The
switching between two competing RNA conformations can be triggered by
molecular events such as the binding of a target metabolite.

The best-known example of such a behavior are the riboswitches [64].
These are autonomous structural elements primarily found within the 5′-UTRs
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of bacterial mRNAs, which, upon direct binding of small organic molecules,
can trigger conformational changes, leading to an alteration of the expression
for the downstream located gene. Their general architecture shows two modu-
lar units [65], a“sensor”for a small metabolite and a unit which“interprets”the
signal from the“sensor”unit and interfaces to those RNA elements involved in
gene expression regulation. The size of the “sensor”-unit ranges typically from
70 to 170 nucleotides, which is unexpectedly large compared with artificial
aptamers obtained by in vitro directed evolution experiments. Riboswitches
regulate several key metabolic pathways [66, 67] in bacteria including those
leading to coenzyme B12, thiamine, pyrophosphate, flavin monophosphate,
S -adenosylmethionine, and a couple of important amino acids. The search
for additional elements is ongoing, e.g., [68, 69]. Riboswitches and engineered
allosteric ribozymes [70, 71] demonstrate impressively that RNA is indeed
capable of maintaining and regulating a complex metabolic state without the
help of proteins.

1.3 Processes in Conformation, Sequence,
and Shape Space

Kinetic folding and evolutionary optimization of RNA molecules are consid-
ered as stochastic processes, in particular as constrained walks in conformation
and sequence and/or shape space. We present a brief overview of the basic
concepts and then consider the evolution of noncoding RNA molecules as one
actual and particular interesting example.

1.3.1 Kinetic Folding

Kinetic folding of RNA molecules can be understood and modeled as a sto-
chastic process in RNA conformation space. The process corresponds to a
time-ordered series of secondary structures, a trajectory

Ω0 → Ω1 → Ω2 → · · · → ΩT , (1.23)

where initial and target structures, Ω0 and ΩT , may be chosen at will. Com-
monly, Ω0 = O and ΩT = S0 are used corresponding to the open chain
and the mfe-structure, respectively. Individual trajectories (1.23) may con-
tain loops, i.e., the same structure may be visited two or more times. In
general, it is of advantage to define the target conformation as an absorbing
state. Leaving the target state unconstrained causes the trajectory to ap-
proach a thermodynamic ensemble in the sense that it visits the individual
conformations with frequencies according to the Boltzmann weights. For prac-
tical purposes, the time required to fulfil the condition of ergodicity, however,
is prohibitively long. Basic to the stochastic process is a set of moves that
defines the allowed transitions between conformations. In the simplest case, it
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Fig. 1.7. The shift move in kinetic RNA folding. The shift move is a combina-
tion of base pair opening and base pair closure that occurs simultaneously. The
requirement for an allowed shift move is that it takes place within one substruc-
ture element, bulge, internal loop or multiloop. Shifts involving free ends are also
considered legitimate

contains base pair closure and base pair opening according to the conventional
secondary structure rules (Conditions 1–3). Such a move set corresponds to
the base pair distance, dP, as metric in shape space (Fig. 1.4). It turned out
to be important to introduce also a shift move (Fig. 1.7) since the trajecto-
ries approach the target much faster then [20]. If the move set is extended to
simultaneous shifts of as many nucleotides as possible within a given substruc-
ture element, the set has the Hamming metric between parentheses notation
of structures, dH(Si, Sj) (Fig. 1.4), as proper measure of distance.

The stochastic process (1.23) can also be described by a master equation
for the probabilities of the ensemble: Pk(t) is the probability to observe the
conformation Sk at time t. The time derivatives fulfil the equation

dPk

dt
=

m+1∑
i=0

(Pik(t) − Pki(t)) =
m+1∑
i=0

kikPi − Pk

m+1∑
i=0

kik

with k = 0, 1, . . . , m + 1 and i → k ∈ move set , (1.24)

where we assume that the open chain conformation O is not part of the sub-
optimal conformations, S1, . . . , Sm. The transition probabilities are computed
from the free energies of the conformations

Pik(t) = kik Pi(t) = Pi(t) e−(gk−gi)/(2RT )/Σi , (1.25)
Pki(t) = kki Pk(t) = Pk(t) e−(gi−gk)/(2RT )/Σk , (1.26)

with Σj =
m+1∑

i=0,i �=j

exp (−(gj − gi)/(2RT )) .

To avoid the necessity of additional parameters the free energies are taken
from the suboptimal foldings. Calibration of the time scale occurs through
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Fig. 1.8. Construction of barrier trees. The set of suboptimal conformations is
related by a move set as shown in the left-hand part of the sketch. The barrier tree
is derived from the set of suboptimal structures by eliminating all conformations
except local minima of the free energy surface and minima connecting saddle points
of lowest free energy. We remark that the set of local minima depends on the choice
of the move set, although important local minima are very unlikely to be changed
on physically meaningful alterations of the move set

adjusting the folding kinetics of a model system to the experimental data.
Although it is straightforward to solve the master equation (1.24) by means
of an eigenvalue problem, practical difficulties arise from the enormously high
number of suboptimal conformations determining the dimensionality of the
system [72].

A simplification of full kinetic folding is introduced in the form of “bar-
rier trees” (Fig. 1.8). All suboptimal conformations that do neither represent
a local minimum of the conformational energy landscape nor a lowest energy
transition state between two local minima are neglected. The remaining bar-
rier tree can be used to simulate kinetic folding by means of conventional
Arrhenius kinetics. The results are often in astonishingly good agreement with
the exact computations based on (1.24). Cases of less satisfactory agreement
can be predicted [72].

1.3.2 Evolutionary Optimization

Evolution of RNA molecules based on replication, mutation, and selection in
constant environment can be described by an ODE [73]:

dxi

dt
=

m∑
k=1

fk Qki xk − xi φ(t) , i = 1, . . . , m ,

φ(t) =
m∑

k=1

fk xk(t) . (1.27)

Herein the concentrations of individual RNA sequences are denoted by xi =
[Xi] and Qij are the elements of a mutation matrix whose elements, in the
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simplest case of the uniform error rate assumption, can be expressed by an
(average) error rate p per site and replication.

Qij = pdH(Xi,Xj) · (1 − p)n−dH(Xi,Xj) . (1.28)

The mutation probability thus is only a function of the error rate and
the Hamming distance dH(Xi, Xj) between the two sequences involved. The
results of the analysis of replication–mutation kinetics have been presented
and discussed extensively [74–77] and we dispense here from repeating them.
Kinetic differential equations refer to infinite population size and accordingly,
a different description is required for the study of finite size effects on evo-
lutionary optimization. In addition, population dynamics is considered as a
process taking place exclusively in sequence space and structural properties
enter the model as parameters only.

Replication and mutation of RNA molecules leading to selection in con-
fined populations have indeed been studied also in finite populations. The best-
suited stochastic methods for modeling the system are multitype branching
processes [78]. A simplified version of the branching trajectories in replication
and mutation is shown in Fig. 1.9. As expected, the mean value of the sto-
chastic process coincides with the deterministic solution [80]. The standard
deviation, however, can be enormous as we shall see in detail later.

To simulate the interplay between mutation acting on the RNA sequence
and selection operating on phenotypes, here RNA structures, the sequence–
structure map has to be an integral part of the model [81–83]. The simula-
tion tool starts from a population of RNA molecules and simulates chemical
reactions corresponding to replication and mutation in a continuous stirred
flow reactor (CSTR) by using Gillespie’s algorithm [84, 85]. In target search
problems, the replication rate of a sequence Xk is chosen to be a function
of the Hamming distance between the mfe-structure formed by the sequence,
Sk = f(Xk) and the target structure ST ,

fk(Sk, ST ) =
1

α + dH(Sk, ST )/n
, (1.29)

which increases when Sk approaches the target (α is an adjustable parameter
that was commonly chosen to be 0.1). A trajectory is completed when the
population reaches a sequence that folds into the target structure. Accordingly,
the simulated stochastic process has two absorbing barriers, the target and the
state of extinction. For sufficiently large populations (N > 30 molecules), the
probability of extinction is very small, for population sizes reported here,
N ≥ 1, 000 it has been never observed.

A typical trajectory is shown in Fig. 1.10. The mean distance to target of
the population decreases in steps until the target is reached [82,83,86]. Individ-
ual (short) adaptive phases are interrupted by long quasi-stationary epochs.
To reconstruct the optimization dynamics, a time-ordered series of structures
was determined that leads from an initial structure SI to the target structure
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Fig. 1.9. Evolutionary optimization as a multitype branching process. The sketch
in the upper part shows only replication acts that lead to mutation. A full genealogy
is a time ordered series, which records all individual replication acts, for example
X0, . . . , X0, Xa, . . . , Xa, Xb, . . . , . . . , XT−1, XT leading to target. The population size
is either constant (Moran model [79]) or it fluctuates around a constant value (flow
reactor: N ± √

N), and hence every replication act has to be compensated by the
elimination of one molecules that is tantamount to the end of some trajectory in the
system. The sketch on the bottom illustrates the reconstruction of the optimization
run by means of a “relay series”

ST . This series, called the relay series, is a uniquely defined and uninterrupted
sequence of shapes. It is retrieved through backtracking, that is in opposite
direction from the final structure to the initial shape (see the lower part of
Fig. 1.9). The procedure starts by highlighting the final structure and traces
it back during its uninterrupted presence in the flow reactor until the time of
its first appearance. At this point, we search for the parent shape from which
it descended by mutation. Now we record time and structure, highlight the
parent shape, and repeat the procedure. Recording further backwards yields
a series of shapes and times of first appearance, which ultimately ends in the
initial population.11 Usage of the relay series and its theoretical background
allows for classification of transitions [83,87]. Inspection of the relay series on
the quasistationary plateaus allows for a distinction of two scenarios:

(1) The structure is constant and we observe neutral evolution in the sense
of Kimura’s theory of neutral evolution [88]. In particular, the number of

11 It is important to stress two facts about relay series (1) the same shape may
appear two or more times in a given relay series. Then, it was extinct between
two consecutive appearances. (2) A relay series is not a genealogy, which is the
full recording of parent–offspring relations a time-ordered series of genotypes.
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Fig. 1.10. A trajectory of evolutionary optimization. The topmost plot presents
the mean distance to the target structure of a population of 1,000 molecules. The
plot in the middle shows the width of the population in Hamming distance between
sequences and the plot at the bottom is a measure of the velocity with which the
center of the population migrates through sequence space. A remarkable synchro-
nization is observed: At the end of a quasi-stationary plateau an adaptive phase of
the migration to target is initiated that is accompanied by a drastic shrinking of the
population width and a jump in the population center. A mutation rate of p = 0.001
was chosen, the replication rate parameter is defined in (1.29), and initial as well as
target structure is shown in Table 1.5

neutral mutations accumulated is proportional to the number of replica-
tions in the population, and the evolution of the population can be under-
stood as a diffusion process on the corresponding neutral network [89].

(2) The process during the stationary epoch involves several structures with
identical replication rates and the relay series reveal a kind of random
walk in the space of these neutral structures.
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The diffusion of the population on the neutral network is illustrated by the
plot in the middle of Fig. 1.10 that shows the width of the population as a
function of time [86, 90]. The population width increases during the quasi-
stationary epoch and sharpens almost instantaneously after a sequence had
been formed that allows for a continuation of the optimization process. The
scenario at the end of the plateau corresponds to a bottle neck of evolution.
The lower part of the figure shows a plot of the migration rate or drift of the
population center and confirms this interpretation: The drift is almost always
very slow unless the population center “jumps” from one point in sequence
space to the other point where the sequence initiating the new adaptive phase
had appeared. A closer look at the figure reveals the coincidence of the three
events (1) beginning of a new adaptive phase, (2) collapse-like narrowing of
the population spread, and (3) jump-like migration of the population center.

Table 1.5 collects some numerical data obtained from repeated evolu-
tionary trajectories under identical conditions.12 Individual trajectories show
enormous scatter in the time or the number of replications required to reach

Table 1.5. Statistics of the optimization trajectories

Population Number of Real time from Number of
Alphabet size runs start to target replications (107)

(N) (nR) Mean value σ Mean value σ

AUGC 1,000 120 900 +1, 380 − 542 1.2 +3.1 − 0.9

2,000 120 530 +880 − 330 1.4 +3.6 − 1.0

3,000 1,199 400 +670 − 250 1.6 +4.4 − 1.2

10,000 120 190 +230 − 100 2.3 +5.3 − 1.6

30,000 63 110 +97 − 52 3.6 +6.7 − 2.3

100,000 18 62 +50 − 28 – –

GC 1,000 46 5,160 +15, 700 − 3, 890 – –

3,000 278 1,910 +5, 180 − 1, 460 7.4 +35.8 − 6.1

10,000 40 560 +1, 620 − 420 – –

The table shows the results of sampled evolutionary trajectories leading from a
random initial structure SI to the structure of tRNAphe, ST as target. a Simulations
were performed with an algorithm introduced by Gillespie [84,85,91]. The time unit
is here undefined. A mutation rate of p = 0.001 per site and replication was used.
The mean and standard deviation were calculated under the assumption of a log-
normal distribution that fits well the data of the simulations a The structures SI

and ST were used in the optimization:

SI: ((.(((((((((((((............(((....)))......)))))).))))))).))...(((......)))

ST: ((((((...((((........)))).(((((.......))))).....(((((.......))))).))))))....

12 Identical means here that everything was kept constant except the seeds for the
random number generators.
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the target. The mean values and the standard deviation were obtained from
statistics of trajectories under the assumption of a log-normal distribution.
Despite the scatter three features are unambiguously detectable:

(1) The search in GC sequence space takes about five time as long as the
corresponding process in AUGC sequence space in agreement with the
difference in neutral network structure discussed above.

(2) The time to target decreases with increasing population size.
(3) The number of replications required to reach the target increases with

population size.

Combining items (2) and (3) allows for a clear conclusion concerning time and
material requirements of the optimization process: Fast optimization requires
large populations whereas economic use of material suggests to work with
small population sizes.

1.3.3 Evolution of Noncoding RNAs

In recent year, there has been mounting evidence that noncoding RNAs in fact
dominate the regulatory networks of the cell (see, e.g., [92–96] for reviews).
Unlike protein coding genes, noncoding RNA (ncRNA) gene sequences do
not exhibit a strong common statistical signal that separates them from
their genomic context. Consequently, a reliable general purpose computational
gene-finder for noncoding RNA genes has remained elusive, see e.g., [97]. Most
classes of the currently known noncoding RNAs, however, are characterized
by a common, evolutionarily very well conserved, secondary structure, while
at the same time their sequence is rather variable. This feature can be under-
stood as a consequence of stabilizing selection acting (predominantly) on the
secondary structure, while the sequence remains (mostly) free to diffuse on
the neutral network.

Diffusion in sequence space, i.e., Kimura’s neutral theory [88], in fact, forms
the conceptual basis of phylogenetic inference. It is important to notice, how-
ever, that substitution rates differ dramatically between unpair regions and
base-paired regions, since sequence positions that form conserved base pairs
are highly correlated. This effectively restricts the diffusion process to the
neutral network [89]. Corresponding stochastic models of sequence evolution
are described, e.g., in [98–101]. The phase package [102,103] implements such
a model and is specifically designed to infer phylogenies from RNAs that have
a conserved secondary structure, including rRNAs.

Structural conservation in the presence of sequence variation is also the
basis of recent comparative genomics approaches toward RNA gene finding.
The first tool of this type, qrna [104] is based upon an SCFG approach to asses
the probability that a pair of aligned sequences evolved under a constraint for
preserving a secondary structure. The program RNAz [105] uses two indepen-
dent criteria for classification: a z-score measuring thermodynamic stability of
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individual sequences, and a structure conservation index obtained by compar-
ing folding energies of the individual sequences with the predicted consensus
folding. Both quantities measure different aspects of stabilizing selection for
RNA structure.

In the remainder of this section, we give a brief overview of the evolu-
tionary patterns of the most prominent RNA families. For a recent, much
more detailed review, we refer to [106]. Similar to protein-coding genes, most
ncRNAs appear in multiple paralogous copies in the genome. Unlike protein
coding genes, however, some classes of ncRNAs appear to be associated with
a large number of pseudogenes, this is in particular true for tRNAs and small
nuclear RNAs.

Ribosomal RNA sequences are probably the most widely used source of
data in molecular phylogenetics: rRNAs are abundant, very well conserved,
and therefore easy to access experimentally. Because of concerted evolution,
usually, there are no divergent paralogues despite the fact that rRNA genes,
in higher eukaryotes at least, typically are arranged in large tandem-repeated
clusters. It may not come as a surprise, however, that divergent paralogues of
both SSU [107,108] and LSU [109] do occur in some lineages.

Multiple copies of functional tRNA genes, the existence of numerous
pseudogenes, and tRNA-derived repeats are general characteristics of tRNA
evolution [110]. Comparative sequence analysis of transfer RNA by means
of statistical geometry provides strong evidence that transfer RNA sequences
diverged long before the divergence of archaea and eubacteria [111]. Indeed, in
a sample of tRNAs for very diverse organisms, those with the same anticodon
rather than those from the same organism form coherent subtrees. Models
for the origin of tRNA from even simpler components are discussed, e.g.,
in [112–114].

Like rRNAs and tRNAs, there are typically multiple genomic copies of
the spliceosomal snRNAs. Surprisingly, the copy numbers in the genome vary
significantly between even closely related species. The mechanism generating
this pattern remains unclear at present.

The absence of small nucleolar RNAs (snoRNAs) from bacterial genomes
suggests that snoRNPs arose in the archaeal and eukaryotic branch after the
divergence of the bacteria. SnoRNAs fall into two structurally distinct classes,
box C/D and H/ACA snoRNAs, that guide two different types of chemical
modifications of rRNAs and some other ncRNAs, see e.g., [115] for a review.
The numerous box C/D and H/ACA snoRNAs of Archaea and Eukarya are
likely to have arisen through duplication and variation of the guide sequence
[116]. A recent case study of the evolution of the vertebrate U17/E1, E2,
and E3 snoRNAs [106] shows that divergent paralogues of snoRNAs have
been produced throughout vertebrate evolution. Most vertebrate snoRNAs are
encoded in introns. Interestingly, paralogues often reside in adjacent introns
of the same gene. In some cases at least, these copies appear to be subject to
concerted evolution.
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MicroRNA evolution follows a pattern on its own. The mature microRNA
is only about 22nt long. It is processed from a thermodynamically very
stable stem-loop structure of about 70–80nt in length. Frequently, tandem
duplications seem to lead to poly-cistronic transcripts [117]. In contrast to
rRNA, tRNAs, and snRNAs, divergent paralogues appear to be the rule rather
than the exception for microRNAs. Consequently, most microRNAs that can
be traced back to the vertebrate ancestor are present in 2–4 paralogues copies
that are remnants of the vertebrate-specific genome duplications. Interest-
ingly, it has been found that tandem-duplications typically predate the non-
local duplication events [118]. The origin of microRNAs remains unknown.
As yet, no microRNA with homologues in both animals and plants has been
described so far, although the microRNA processing machinery in animals
and plants is clearly homologous. In [119] it has been argued that microRNA
could easily arise de novo since stem-loop structures resembling pre-miRNAs
are very abundant secondary structures in genomic sequences. A recent study
on the evolution of animal miRNAs showed that a large number of novel
microRNAs appeared in early vertebrates and in placental mammals, while
the rate of annotation is otherwise much lower.
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2

Gene3D and Understanding
Proteome Evolution

J.G. Ranea, C. Yeats, R. Marsden and C. Orengo

Gene3D is a database of protein sequence families. The families have been
created through clustering the proteome sequences of over 200 species, includ-
ing more than 15 eukaryotes, and totalling over 750,000 proteins (as derived
from UniProt [1]). Each family is then further subclustered on the basis of seq-
uence similarity. Using remote homologue detection methods, we have been
able to assign structures – based on the CATH [2] and Pfam [3] databases –
to a majority of these sequences. This allows a high resolution view of the
functions and evolution of specific protein families, as well as the evolution of
a species’ gene content.

As can be seen from the numbers of proteins involved, the scale of the
protein annotation problem is far greater than can be dealt with per manu.
To describe all these proteins with the highest possible accuracy, it is necessary
to accurately characterise and comprehend the evolution of variant functions
from single ancestral sequences.

Central to this effort is the modular theory of protein evolution. As the first
structures of proteins were solved in the late 1960s, it became swiftly apparent
that several of these structures were made up from smaller substructures [4];
furthermore, these substructures appeared in varying contexts and in proteins
of varying function [5] (see Table 2.1). It was proposed that these substructures
(‘domains’) are the true units of protein evolution.

The use of such units in evolution allows two methods of generating novel
functions. First, the traditional concept of stepwise mutation still applies to
the individual domains. Second, multidomain proteins can obtain new func-
tions through the recombination, subtraction or addition of new domains.
Recent work by various researchers (i.e. Ponting, Teichmann, Koonin and
Aravind to name a few) has indicated that domain shuffling is one of the
driving forces behind evolution, and can underlie processes such as the gene-
ration of antigenic diversity in pathogens [6] or the diversification of transcrip-
tion regulation [7].
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Table 2.1. Top ten most frequent domain assignments in each kingdom and in total

Archea Bacteria Eukaryota In All

P-loop containing P-loop containing Classic zinc finger P-loop containing
nucleotide nucleotide nucleotide
triphosphate triphosphate triphosphate
hydrolases hydrolases hydrolases

NAD(P)-binding NAD(P)-binding Immunoglobulins Classic zinc finger
Rossman-like Rossman-like

Transferase Winged helix P-loop containing Immunoglobulins
(methyltransferase) repressor DNA nucleotide

binding triphosphate
hydrolases

Winged helix Periplasmic-binding Transferase NAD(P)-binding
repressor DNA protein-like I (phosphotransferase) Rossman-like
binding domain I

CBS domain Homeodomain-like Laminin Winged helix
repressor DNA
binding

Electron transport BPD transport Fibronectin type I Homeodomain-like
system inner
membrane
component

Oxidoreductase Transferase Phosphorylase Transferase
(methyltransferase) kinase domain I (phosphotransferase)

domain I

Photoreceptor Binding proteins Membrane spanning Phosphorylase
alpha helix pairs kinase domain I

ABC transporter Oxidoreductase Nuclear protein Periplasmic-binding
protein-like

Spore coat protein ABC transporter Cadherins Laminin
polysaccharide
biosynthesis protein

Further support has come from investigations into whole genome seq-
uences, for instance by Teichmann et al. [8] and by Gerstein [9]. These sug-
gest that around 70% of all proteins are multidomain and that this figure is
only slightly higher in eukaryotes over prokaryotes. We have extended these
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Fig. 2.1. Approximation of the percentage of multidomain proteins in approxi-
mately 200 genomes. The x -axis indicates the proportion of multidomain proteins
found in a genome; the y-axis indicates the proportion of species (expressed as a
percentage) that have the proportion of multidomain proteins. The data have been
split into three sets – archaea (16 species), bacteria (162 species) and eukaryotes
(16 species) – and binned into ranges of 5%. Although each specific value may not
be correct it can be assumed that the overall graph shows the correct shape and
range (unpublished work by C. Yeats, UCL)

observations to over 200 species through using the data available in Gene3D
(see Fig. 2.1). Furthermore, the Gene3D data shows (see Fig. 2.2) that around
50% of identified domains in these genomes belong to around 219 universal
(found in eukaryotes, prokaryotes and archaea) domain families [10]. In con-
trast, only about 10% of proteins are universal. This provides a strong indi-
cation that much of the variation between species comes from the shuffling of
common components to provide new functions, rather than the introduction
of novel components.

Examination of the distribution of identified domains has shown that they
follow a power-law behaviour; i.e. a few families account for most domains
(see Fig. 2.3), while many families account for the remainder. Other estimates
have concluded that half of all discovered domain sequences will belong to
around 1,500 structural families (reviewed by Grant et al. [11]). Hence, by
careful characterisation of the individual families, as well as understanding
the effects of their various recombinations, it should be possible to predict the
functions of most proteins from sequence.
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Fig. 2.2. (Top) Kingdom distribution of domain families in Gene3D. A domain is
regarded as universal in a kingdom if it is found in over 70% of species. (Bottom)
Kingdom distribution of protein families in Gene3D. These statistics are calculated
in the same manner as in (Top), except that the units measured are entire proteins
rather than domains. As can be seen protein families are far less likely to be common
or widespread than protein domains
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Fig. 2.3. The length distribution of NewFam families compared to CATH. The
length distributions of CATH domains and NewFam domains are binned and plotted
on the same axis. The size distributions are very similar, suggesting that NewFams
do approximately represent single domains

Hand-in-hand with understanding the modular nature of proteins has been
the creation of tools for the identification of related domains and the transfer
of functional information. On top of this information, databases are being
built that catalogue and describe domain families and attempt to predict
the function of newly identified proteins. Gene3D is one of these databases;
others are described later. At its heart, Gene3D uses a protocol called PFscape
(see later). PFscape is a benchmarked automated process that derives and
assigns information from two manually curated databases to an automatically
clustered set of proteins. Novel sequences can then be annotated through
comparison to these described clusters.

As mentioned earlier, a major issue in the analysis of genomic sequence is
the sheer volume of data. A typical bacterial genome will consist of around
4,000 genes, whereas eukaroytic genomes can range from 5,000 to at least
40,000 genes. Currently there are over 200 genomes in Gene3D, comprising
a total of over 750,000 unique proteins. Hence, PFscape has been designed
to have the advantages of a high-throughput automated procedure and the
accuracy of annotation of a manual expert-based procedure, and enables the
production of regular updates of the genome annotation.

This information is presented through the Gene3D website.1 The web
resource allows browsing of individual genomes, and viewing domain and
functional annotations for the families. These include links to CATH [12] or
Pfam [3] domains that have been assigned to these families.

1 www.biochem.ucl.ac.uk/bsm/cath/Gene3D
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2.1 Protein Family Clustering

Several protocols have recently been developed to attempt to classify proteins
into families and to determine their domain structure. These all aim to
deal with large numbers of proteins in a fully automated fashion. Examples
are: SYSTERS [13], ProtoNet [14], ADDA (automatic domain decomposition
algorithm) [15] and ProDom [16]. A short description is provided of each so
as to allow comparison to PFscape.

2.1.1 SYSTERS

Underlying SYSTERS is a two-step algorithm that clusters sequences acc-
ording to their similarities as determined by exhaustive Smith–Waterman
searches [17]. This algorithm takes advantage of the observation that the
tree structure of single-linkage clustered proteins tends to show several dis-
tinct groupings towards the leaves that rapidly merge into ‘superfamilies’ at
a certain point towards the trunk of the tree. This is believed to capture the
evolutionary radiation of domain families.

The first step of the algorithm is to cluster the proteins into a single link-
age tree using E-values. All sequence similarities with an E-value of above
0.05 were regarded as being of infinite distance. The unrelated subtrees are
connected using an artificial overall root node with weight infinity. Then an
automatic approach is used to determine the maximum change in family size
while moving down from leaf to root. This has been shown to often accurately
capture the largest grouping of genuinely related sequences. Step two employs
a graph theory-based algorithm, derived from Hartuv et al. [18], to parse the
superfamily tree into subclusters. This method generates 158,153 protein fam-
ilies, of which approximately 40,000 contain more than one sequence, from a
starting set of around 1.1 million sequences.

2.1.2 ProtoNet

ProtoNet uses a bottom-up clustering method based on E-values from an all-
against-all BLAST search. At each step, the two most related clusters are
merged together to create a hierarchical tree of clusters. This is an extremely
large tree, which contains many biologically incorrect or irrelevant clusters.
So a second algorithm, which determines the most stable size of a cluster, is
employed to condense these clusters into a realistic set. Using this approach
on approximately 110,000 sequences created a tree of 28,000 clusters.

2.1.3 ADDA

ADDA (automatic domain decomposition algorithm) is based around a global
maximum likelihood model for the likely domain composition of a protein



2 Gene3D and Understanding Proteome Evolution 43

based on its pairwise alignments to other proteins. These are determined using
BLAST. Having delineated the likely domains, these are clustered using a
method that carries out pairwise profile–profile comparisons of nearest neigh-
bours. If two subclusters are found to be unrelated, an edge to the family is
formed, and otherwise they are merged.

2.1.4 ProDom

ProDom is based on an algorithm originally developed by Sonnhammer and
Kahn [19] and extended to become mkdom2 by Gouzy et al. [20]. It is a
greedy algorithm that assumes that the smallest protein present in a sequence
database consists of a single domain. It then identifies all homologous regions
and removes these from the sequence database. Hence each fragment is dealt
with in turn until all have been clustered or removed. The problem with this
method is that it assumes that the sequence database is very clean and does
not contain fragment sequences or mispredictions. This approach clustered
750,000 sequences into 186,000 clusters of at least two proteins.

2.2 The PFscape Method

PFscape uses the TribeMCL of Enright et al. [21] algorithm to create the
initial multilinkage clusters. Using the genomes of 90 bacteria, 14 eukaryota
and 16 archaea, 112,464 gene families were created, of which 50,219 included
more than one member. This is in line with the results obtained from other
clustering methods. The clustering results were benchmarked against a man-
ually validated dataset of structurally characterised proteins obtained from
CATH; this allowed the derivation of optimum parameters for TribeMCL.
The consistency of the results was confirmed by examining families for which
each sequence’s domain architecture could be fully annotated using Pfam and
CATH. For at least 70% of the families, over 90% of the members show identi-
cal domain architectures. For the remainder, the variances are usually slight.
The clusters were then functionally annotated using information extracted
from COG [22], GO [23] and KEGG [24].

The PFUpdate protocol [10] is employed for the inclusion of new genomes.
Each protein from the new genome is searched against all the sequences previ-
ously in Gene3D. The protein is then assigned to the cluster that contains the
sequence that showed the highest similarity, provided that the overlap of the
two proteins is above 80% and the E-value is below 0.001. At the end of this
process, any clusters that have been altered (whether expanded or reduced by
error correction) are blasted against each other again and re-clustered using
multilinkage clustering. At present, around 75% of the protein sequences from
new bacterial genomes and 60% from archaeal genomes can be assigned to
existing clusters in Gene3D.
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2.3 The NewFams

Whilst Pfam and CATH combined manage to typically assign at least one
domain to around 60–80% of proteins within a genome they only describe
around 40–60% of amino acids encoded [10]. Hence, it is clear that
there are many remaining regions of suitable size and composition as to encode
unidentified domains.

Using the assumption that a region of undescribed complex amino acid
sequence greater than 40 residues in length is likely to encode a domain,
a protocol was developed [10] to identify these regions and to cluster them
together. This has created a set of 40,000 putative domain families, termed
‘NewFams,’ that are likely to represent protein structures; work is currently
underway to validate and describe as many of these as possible. It is im-
portant to note that the protocol for building these families are likely to
miss homologues and hence that several NewFams may represent a single
domain.

Incorporating the NewFams into the annotation process should allow a
more highly resolved view of protein evolution and functional adaptation.
This can be achieved, for example, by identifying GO terms that associate
with particular NewFams, or by identifying protein familes that have diverged
through the introduction of an undescribed region. Of note, the 6,000 biggest
CATH, Pfam and NewFam domain families account for over 80% of sequenced
residues (see Fig. 2.4), discounting protein sequences with no apparent homo-
logy to any other sequence (‘singletons’).

Families, ordered by size

All CATH, Pfam and NewFam
sequences

Excluding singletons
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Fig. 2.4. Coverage of the protein universe by Gene3D: the percentage of residues
in Gene3D that are matched, at least once, by CATH, Pfam and the NewFams.
For both graphs the cumulative coverage provided each family is shown, with the
families ordered by size on the x -axis
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2.4 Describing the Proteome

As discussed in the Introduction to this chapter, the genome sequencing
projects of the last ten years have created a large and diverse dataset. With
over 200 genomes sequenced, the variation between whole genomes can now
be approached in a generalised statistical manner. In this section, we will
describe some examples of the ways that this data can be exploited through
Gene3D.

Since Gene3D is based around whole genome sequences, it is possible to
generate a frequency of occurrence profile for each superfamily. The profiles
can then be compared and correlated with each other or with other extant
data. These investigations have clarified the evolutionary restraints on the
development of bacterial genome complexity and provide models that can
allow us to predict the effect of increasing or decreasing bacterial genome size.

Furthermore, since the Gene3D clusters have been annotated through
structural domain assignment, it is possible to detect more remote relation-
ships than are possible through sequence comparison. Indeed, it has often
been shown that two very similar structures can show little more than ran-
dom sequence similarity to each other. Hence, using Gene3D has the addi-
tional benefit that it is possible to derive relationships between clusters due
to shared domain architectures, despite a lack of sequence evidence. This also
allows better curation and validation of the Gene3D clusters.

The first study presented focuses on the identification of the genetic deter-
minants of genome complexity variation in prokaryotes. Genome complexity
can be measured simply by counting the number of ORFs [25]. In prokaryotes,
a strong correlation is found between their genome and proteome sizes, and
the genomes tend to consist of only a few genetic elements; hence, prokaryotes
strongly conform to this assumption and should show easily discernible trends
linking their protein content and genome complexity [26]. Additionally, from
a simple statistical point of view, the high number of sequenced prokaryotic
species, as compared to eukaryotes, increases the significance of observed
phenomena.

The genome complexity of an organism reflects the balance of disparate
selective pressures working over time. Gene duplication and lineage-specific
gene loss seem to be the key processes determining bacterial genome size,
followed by horizontal gene transfer [27–29]. All these genetic changes that
finally shape the genome size and content are caused by the sum of more
primary processes, which have taken place at the lower level of gene fam-
ily rearrangements. Therefore, it is reasonable to suppose that gene family
evolution (expansions and contractions of the families) and genome size vari-
ation have been interdependent events in evolution [30]. The genome size
is not related to phenotype or lineage in prokaryotes. For example, bacte-
ria with a broad range of phenotypes and lifestyles can have similar genome
sizes, and diversity in genome size has been observed for bacteria belong-
ing to relatively narrow phylogenetic groups [31]. Furthermore, the smallest
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genomes are usually derived from bacteria with larger genomes through a
process called evolution by reduction [26, 32]. Therefore, contrary to what is
generally thought, the most complex genomes do not correspond with the
most evolved prokaryotes. All these facts point to other evolutionary mecha-
nisms being needed to explain the relationship between superfamily evolution
and variation in genome complexity.

2.5 Superfamily Evolution and Genome Complexity

To determine general genetic mechanisms involved in the development of
bacterial complexity, the occurrence of each CATH domain superfamily was
calculated for 100 prokaryotic species (85 eubacteria and 15 archaea) and
assembled into trans-species occurrence profiles. The correlation between
genome sizes, measured in number of ORFs, and superfamily occurrences
was then calculated using Spearman’s rank correlation coefficient [33]. Super-
families for which domain occurrence was highly correlated with genome
size (Spearman coefficient ≥ 0.7) were selected, and are referred to as size-
dependent superfamilies (Table 2.2). The superfamilies for which occurrence
had very low correlation with genome size (Spearman coefficient ≤ 0.2) were
also selected, and referred to as size-independent superfamilies (Table 2.2).

This approach allowed us to distinguish those superfamily domains that
exhibit a frequency of occurrence that is dependent on genome size. We also
wished to identify which of these domains represented general molecular mech-
anisms or functions present in the majority of organisms. For this, we selected
all those domains that occurred in greater than 70% of bacterial species; these
were termed the universal domains (Table 2.2).

The universal domains were divided into two groups, depending on
their genome-size correlation coefficient: the size-independent and the size-
dependent sets. The sum of the size-independent superfamily domains occur-
rences shows a flat slope with respect to the increasing genome size (Fig. 2.5a)
[34]. In the size-dependent group, three different trends or correlation models
were distinguishable. These were the linearly (Fig. 2.5b), the power-law-like
(Fig. 2.5c), and the logarithmically distributed superfamilies (Fig. 2.5d) [30].

All these groups were functionally annotated using the COG database,
PFAM domain annotations and literature searches. This revealed signifi-
cant functional tendencies for the size-independent superfamily group and
two of the three size-dependent superfamily subgroups. The size-independent
superfamilies are mainly involved in information storage and processing func-
tions, with a significant proportion of the functional annotations associated
with translation, ribosomal structure and protein synthesis (Fig. 2.6) [34].
In the size-dependent set, the linearly distributed superfamilies are primar-
ily associated with metabolism. While the power-law-like distributed super-
families are, for a significant percentage, involved in basic and ancestral
mechanisms of gene regulation and signal transduction (Fig. 2.6). In the
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Fig. 2.5. Four major types of superfamilies distributions: (a) size-independent
superfamilies; (b) size-dependent, linearly distributed superfamilies; (c) size-
dependent, power law distributed; and (d) size-dependent, logarithmically distri-
buted. ORFs occurrence (y-axis) is plotted against genome size (x -axis, also
expressed in number of ORFs)

remaining size-dependent set, the logarithmically distributed superfamilies,
no single functional tendency was found and, since they represented a small
proportion of the superfamilies, they are not shown in Fig. 2.6 [30].

The analysis of common superfamily domains shared by all bacterial
species allows us to identify their general features, which are common to all
the prokaryotes. As discussed above, domain shuffling is prevalent in bacte-
ria, and so universal genes are few in number. Furthermore, as first suggested
by Chothia [35], half of all domains will be accounted for by a small num-
ber of domain families. Previously, studies have tended to focus on clustering
genes by function in order to investigate the rules governing genome com-
plexity [36, 37]. In Sect. 2.6, we will further show why considering universal
superfamily domains as the basic units for both evolution and analysis is a
key paradigm for the identification and characterisation of the general deter-
minants of genome complexity.

2.6 Superfamily Evolution and Functional Relationships

It can be argued that these universal domain superfamilies represent common
functions that are used by all organisms. In this case, it might be expected that
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Fig. 2.6. Functional distribution of the (a), (b) and (c) types of superfamilies
(see Fig. 2.5) in the 25 functional subcategories in the COG database. The COG
categories one letter codes are as follows: J, translation, ribosomal structure and
biogenesis; A, RNA processing and modification; K, transcription; L, replication,
recombination and repair; B, chromatin structure and dynamics; D, cell cycle control,
cell division, chromosome partitioning; Y, nuclear structure; V, defense mecha-
nisms; T, signal transduction mechanisms; M, cell wall/membrane/envelope
biogenesis; N, cell motility; Z, cytoskeleton; W, extracellular structures; U, in-
tracellular trafficking, secretion and vesicular transport; O, post-translational
modification, protein turnover, chaperones; C, energy production and conversion; G,
carbohydrate transport and metabolism; E, amino acid transport and metabolism;
F, nucleotide transport and metabolism; H, coenzyme transport and metabolism;
I, lipid transport and metabolism; P, inorganic ion transport and metabolism; Q,
secondary metabolites biosynthesis, transport and catabolism; R, general function
prediction only; S, function unknown. The broader classes in which the 25 functional
categories are grouped are also indicated

grouping superfamilies by molecular function would give clearer trends than
grouping by genome size. However, it is important to note that two unrelated
genes in separate lineages with a similar functional annotation should be
considered as separate molecular technologies. This is because they will be
fundamentally different in the details, even though the overall biochemical
reaction may be highly similar. This will lead to the two proteins behaving
differently in different physicochemical environments. In contrast, when two
genes or domains belong to the same superfamily, it indicates that they share
structural, sequence and functional characteristics [38]. Hence, it would be
expected that the members of a superfamily show shared and related behav-
iours. In contrast, two unrelated technologies that have been grouped on the
bases of a similar function may show no shared behaviour.
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Fig. 2.7. Analysis of 385 superfamily domains annotated as metabolic domains
in the COG database: (a) total number of metabolic genes (y-axis) versus genome
size (x -axis) in 100 bacteria species; (b) size correlation coefficient values (y-axis)
for each of 385 superfamily domains displayed against their universal percentages
(x -axis). Subplots in the left side show three examples of superfamilies with different
size correlation and universal values

To prove and illustrate this assumption, we selected all the superfami-
lies annotated as metabolic domains in the latest COG database (385 super-
families), and displayed their respective size correlation coefficient values
against their universal distribution percentages throughout all species (see
Fig. 2.7). This plot shows that an important percentage of metabolic super
families have low correlation with size (206, 54%, superfamilies have a size
correlation below 0.5). For example, the Mannitol specific EII domain and
the Ferredoxin domain show correlations with size of 0.19 and 0.34, respec-
tively. If size-dependent superfamilies are grouped with the size-independent
ones, the resulted sum also shows a size-dependent profile (Fig. 2.7a). In this
case, the size-dependent superfamilies hide the neutral behaviour with respect
to genome size variation of the rest of size-independent domains. Hence, as
argued above, proteins grouped by function do not necessarily show shared
behaviour.

2.7 Limits to Genome Complexity in Prokaryotes

The regulatory and metabolic subdivisions, the power-law and linearly dis-
tributed superfamilies respectively, represent an important percentage of all
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Fig. 2.8. Optimum size determination and bacterial size distribution comparison.
(a) Number of ORFs (y-axis) calculated from metabolic (black line) and regula-
tory (white circle line) distribution models versus genome size (x -axis). (b) ORFs
marginal increment (y-axis) estimated from the derivatives of metabolic (black line)
and regulatory (white circle line) functions calculated in function of the genome size
(x -axis)

size-dependent superfamilies (90% of all size-dependent and universal do-
mains). Therefore, they are the subdivisions most likely to contribute to gen-
eral trends in the whole prokaryote sample. Fitting the distributions of these
two types of superfamilies to regression lines showed that the functions cross
when the genome size reaches 10,500 ORFs (Fig. 2.8a). This suggests that
when bacterial size increases above this value, regulatory complexity exceeds
metabolic complexity.

These results indicate that regulation could be a primary restriction to
increasing complexity in bacterial genomes, an observation in agreement with
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Bird’s 1995 hypothesis [25], which proposes that increasing complexity is
limited by the increasing logistical problems in distinguishing signal from
noise [30].

2.8 The Bacterial Factory

To a certain extent, the cell can be considered to be like a factory. Simplisti-
cally, the cell can be seen as a manufacturer of functional elements (normally
proteins), which then carry out the metabolic reactions to maintain and repro-
duce the cell; this is equivalent to the production of goods to generate income.
We can also consider the means of regulating production (i.e. management of
production) as being costs for the cell. Through this analogy a similarity can
be seen between optimum bacterial complexity and the optimum production
level, giving maximum profit, in a factory.

In a factory, the total profit is the difference between total revenue and
total cost, and the marginal profit is the additional profit derived from the
production of one additional unit. Consequently, the optimum size of a fac-
tory, giving maximum total profit, is reached at a production level where the
marginal revenue from producing an additional unit is equal to its marginal
cost. Above this point, the marginal cost to produce an additional unit is
higher than its marginal revenue [39]. One major reason for the existence
of an optimum size in productive systems is the fact that any linear incre-
ment in production complexity is usually associated with a larger increment
in the associated management cost [40, 41]. This behaviour can be used as
an analogous model to describe the behaviour of the universal size-dependent
superfamilies in bacteria.

An increase in metabolic complexity provides bacteria with new enzymes
to exploit the environment and thus it is reasonable to equate metabolism
with bacteria factory revenue, and the increasing regulatory system with the
associated management cost. We can compare the effects that increases in
genome complexity have on the marginal increases in metabolic and regu-
latory systems by calculating the derivatives of metabolism and regulation
as a function of genome complexity (Fig. 2.8b). The point at which these
two marginal increments match (metabolism/regulation) identifies a statisti-
cal optimum for bacterial genome size (Fig. 2.6b). In other words, a point at
which ‘maximum profit’ is realised since bacteria get the maximum metabolic
variability for minimal regulation cost [30]. As indicated, the optimum size
is hence calculated to be roughly 4,800 ORFs – remarkably similar to the
genome size of the model prokaryote Escherichia coli.

Overall, these results clearly suggest that increasing complexity is not free
of cost in bacteria; the more complex a genome becomes the more difficult it
is to manage it. Because this regulatory cost increases more steeply than the
linear increment in metabolic revenue it finally offsets any advantage gained
by increasing the number of metabolic genes. It is reasonable to believe that
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bacteria achieve an optimum reproductive balance before the increasing reg-
ulatory complexity overburdens the cellular system [30].

2.9 Conclusions

Not all the protein superfamilies have contributed in the same way to genome
expansion in prokaryotes. In fact, we have identified four different behaviours
relative to genome size. First, there are the superfamilies that do not con-
tribute to, and are unaffected by, genome size – the size-independent superfam-
ilies. Second, there are three types of size-dependent behaviour displayed: the
linearly, the power-law, and the logarithmically distributed superfamilies. The
functional analysis of these four groups unravelled specific functional trends for
the size-independent superfamilies and two of the three size-dependent groups.
It was observed that the size-independent superfamilies are mainly involved in
translation and protein biosynthesis. And within the size-dependent set, the
linearly distributed domains are involved in metabolism, while the power-law
distributed superfamilies are involved in genetic regulation [30,34].

The universal size-dependent superfamilies represent universal molecular
technology shared by all prokaryotes to perform their metabolic and regula-
tory processes. Comparison between the regulatory and metabolic subdivisions
from this universal and size-dependent set led to models that provide rational
explanations for such concepts as the ‘genome complexity limit’ or ‘genome
optimum size’ in a prokaryote. These findings imply that all prokaryotes have
used similar molecular technology to optimise their reproductive efficiency.
This common ‘molecular technology’ defines common limits to prokaryote
genome expansion, since the regulatory cost expands much quicker than the
metabolic revenue in these organisms.

However, achieving maximum complexity is not a selective pressure.
Rather there is a balance between selection for maximum metabolic diver-
sity, which makes energy available to the cell, against selection for a minimal
regulatory system, which costs the cell energy. These forces work within the
framework of maximally exploiting the environment whilst maintaining mini-
mum cellular doubling time [30,42].

The investigations discussed above were all based on using the pro-
teome structure information captured by the clustering mechanisms under-
lying Gene3D. An advantage of Gene3D is that the protein data is based on
whole genome sets, allowing analysis of the natural protein universe. Clear
advances have been made in describing the evolution of the bacterial protein
repertoire and the forces that drive it. Gene3D also describes eukaryotes and
archaea, and we hope to extend these investigations to them. Gene3D is sim-
ple to view and interrogate through its website, and the underlying data is
freely available.
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The Evolution of the Globins:
We Thought We Understood It

A.M. Lesk

Protein crystallography achieved its first results in the late 1950s with the
structure determinations of sperm whale myoglobin and human haemoglobin.
These gave us our first glimpse of the structural changes that take place dur-
ing protein evolution. Many other structures of proteins in the globin family
have continued to reveal interesting and important details of the coordinated
divergence during evolution of amino acid sequences and protein structures
and functions.

The history of investigations of globin evolution can be divided into stages
that correspond to the availability of structures of progressively more highly
diverged sets of molecules. The earliest work dealt exclusively with mam-
malian globins [1]. (Because the divergence of myoglobin from haemoglobin
occurred early in the vertebrate lineage, it would be more appropriate to
regard this early work as dealing exclusively with vertebrate globins – a
relatively restricted group nevertheless.) When additional structures, includ-
ing invertebrate and plant globins, became available, Lesk and Chothia [2]
analysed their architecture, asking the question of how such different amino
acid sequences could be compatible with the same basic folding pattern. All
the structures then available are now classified as ‘full-length’ globins, typi-
cally ∼150 residues long.

Recently, a new family of globins has been discovered that are substan-
tially shorter, containing as few as 109 residues. Globins from Chlamydomonas
eugametos, Paramecium caudatum and Mycobacterium tuberculosis are mem-
bers of the new sub-family of truncated globins. They require a reopening of
the questions, supposedly “answered” in previous studies limited to full-length
globins, of what are the variable and conserved features of globin structures.

Sperm whale myoglobin, a typical full-length globin, contains 9 helices,
labelled A to H. Truncated globins retain most but not all of the helices of
the standard globin fold. A notable exception is the loss of the N-terminus
of the F helix. The F helix contains the crucial iron-linked histidine. Trun-
cated globins show a shortening of the A helix and of the region between
the C and D helices. Of the 59 sites involved in conserved helix-to-helix or
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helix-to-haem contacts in full-length globins, 41 of them appear, with conserved
contacts, in all three truncated globins studied. The structures of the helix–
helix interfaces, conserved in full-length globins, are in most cases similar in
truncated globins as well, with the notable exception of the interface between
B and E helices. This interface has an unusual crossed-ridge structure in full-
length globins but a more common structure in truncated globins. The globin
structures continue to offer an illuminating case study in protein evolution.

3.1 Introduction

Once upon a time, Lesk and Chothia [2] wrote a paper describing the struc-
tural variations in the globin structures then known. That study treated nine
full-length globins, all of ∼150 residues in length. All were from metazoa,
including vertebrates, invertebrates and plants. The basic conclusions were
that

1. The principal determinants of the three-dimensional structure of the
globins are the approximately 59 residues that are involved in the packing
of helices and in the interactions between the helices and the haem group.

2. Although mutations of the buried residues keep the sidechains non-polar,
these residues vary both in amino acid identity and size.

3. With the exception of some residues near the ends of the helices, most of
the helices in globins have geometries close to that of a standard α-helix.

4. In the nine globins studied, the total volume of the residues that form the
interfaces between homologous helices varies by up to 57%.

5. Shifts in relative position and orientation of homologous pairs of packed
helices may be as much as 7 A

◦
and 30◦. (At the time, these changes in

residue volume and geometry of pairs of helices in contact were large,
relative to the general expectation, which had been based on the much
greater similarity of structures of mammalian globins.)

6. Five helix packings occur, with extensive interfacial contact, in all globins
studied: A/H, B/E, B/G, F/H and G/H.

7. Differences in the residues at homologous helix interfaces can be related
qualitatively to differences in relative geometry of the helices.

8. The geometries of the nine haem pockets are very similar: the shifts in the
packings produced by mutations are coupled so as to maintain the same
relative geometry for the residues that form the haem pocket.

9. Despite the change in volume of residues at helix interfaces, and the rela-
tive shifts and rotations of the helices packed, there is substantial con-
servation of the reticulation of the residues; that is, homologous residues
tend to make homologous contacts.

The results of this paper remained valid for additional globin structures that
emerged over the years – until recently. In the new century, a novel class of
shorter globin structures has appeared, with sizes as small as 109 residues [3–5]
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Table 3.1. Truncated globins of known structure

Species of origin PDB Number of Ligand Resolution Ref.

code residues A
◦

Chlamydomonas eugametos 1dly 164 CN− 1.8 [3]
Paramecium caudatum 1dlw 116 – 1.54 [3]
Mycobacterium tuberculosis 1idr 136 O2 1.90 [7]

(see Table 3.1). Known as truncated globins (although the residues lost are not
exclusively from the chain termini), they are distant relatives of globins from
multicellular organisms. Truncated globins have been implicated in diverse
functions, including detoxification of NO and photosynthesis.

The purpose of this article is to reopen the question of what fundamen-
tally characterises the globin fold, and specifically to ask to what extent the
conclusions of previous work retain validity.

3.2 Coordinates and Calculations

The coordinates of three truncated globins (see Table 3.1) are available from
the Protein Data Bank [6].

3.3 Results

3.3.1 Description of Secondary and Tertiary Structure
of Full-Length (∼150−Residue) Globins

Globins show a characteristic folding pattern based on α-helices that cre-
ates a pocket into which the haem binds (see Fig. 3.1). Typical full-length
globins, such as sperm whale myoglobin, contain 8 or 9 helices: A, B, C (a 310

helix), D, E, F (split in mammalian globins into two consecutive helices, F′

and F), G and H. The F and E helices contain the proximal and distal histi-
dines, respectively – the histidines that interact with the haem group. These
two helices form the mouth of the haem pocket. Many globins lack the D helix.

The structural framework is created and stabilised by contacts between
pairs of helices. Full-length globin structures share five major common helix
contacts: A/H, B/E, B/G, F′F/H and G/H. Many contain some or all of the
following minor helix contacts: A/E, E/H, C/G and B/D. These are minor
both in the sense of the extent of buried surface area in the contact and in the
extent of the conservation of the appearance of the contacts in globins from
different species.
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Fig. 3.1. The structure of sperm whale myoglobin, a typical full-length globin. The
labels of the helices, in alphabetic order in appearance in the chain, are shown. The
atoms of the haem group are shown as large spheres. The sidechains of the proximal
and distal histidines are shown in ball-and-stick representation

Table 3.2. Helix assignments in sperm whale myoglobin and truncated globins

A′ A B C D E F′ F G H′ H

1mbo – 3–18 20–36 37–43 51–58 58–78 82–87 87–96 100–119 124–149
1dlw – 1–7 8–27 29–34 – 37–52 – 63–69 75–92 96–107 109–114
1dly – 1–7 8–25 29–32 – 37–52 – 63–69 76–94 97–110 111–117
1idr 2–10 14–20 21–39 42–46 – 50–67 – 76–82 87–106 108–120 120–126

1mbo = sperm whale myoglobin; 1dlw = P. caudatum globin; 1dly = C. eugametos
globin; 1idr = M. tuberculosis globin, A chain

3.3.2 Description of Secondary and Tertiary Structure
of Truncated Globins

Table 3.2 contains the helix assignments of the truncated globins and, for
comparison, sperm whale myoglobin.

None of the three truncated globins contains a D helix. Surprisingly, the
F helix is shortened in the truncated globins, although the proximal histidine
retains its position to bind the iron (see later). The A helix is also shortened.
In C. eugametos and P. caudatum globins (1dly and 1dlw), the chain begins at
the residue corresponding to residue 10 in sperm whale myoglobin. In contrast,
M. tuberculosis globin (1dlr) contains an N-terminal extension. Although the
A helix in M. tuberculosis globin (1idr) is no longer than that in P. caudatum
globin (1dlw) and C. eugametos globin (1dly), the N-terminal extension con-
tains a separate additional helix called the A′ helix. In the truncated globins,
the H helix is split into two parts, H′ and H.

3.3.3 Alignment

It is relatively easy to align the three truncated globins with one another.
Figure 3.2 shows that the conformations of P. caudatum globin (1dlw) and C.
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Fig. 3.2. Superposition of mainchains of P. caudatum globin (1dlw) (solid lines)
and C. eugametos globin (1dly) (broken lines)

Fig. 3.3. Superposition of mainchains of M. tuberculosis globin (1idr) (solid lines)
and C. eugametos globin (1dly) (broken lines)

eugametos globin (1dly) are rather similar. Figure 3.3 compares the conforma-
tions of M. tuberculosis globin (1idr) and C. eugametos globin (1dly). These
are also rather similar except for the chain termini and the region between
the E and F helices.

Alignment of truncated and full-length globins is harder but possible.
Figure 3.4 shows a structural alignment of sperm whale myoglobin (1mbo)
and P. caudatum globin (1dlw). The sequence alignment appears in Fig. 3.5.
The pairwise percentages of identical residues in this sequence alignment are
shown in Table 3.3.

The three truncated globins are fairly close relatives; all are very distant
relatives of sperm whale myoglobin (1mbo).
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Fig. 3.4. Superposition of sperm whale myoglobin (1mbo) (solid lines) and
C. eugametos globin (1dly) (broken lines)

Fig. 3.5. Sequence alignment of truncated globins and sperm whale myoglobin. The
top line shows the helices in sperm whale myoglobin

Table 3.3. Pairwise percentages of identical residues in the structure derived
sequence alignment of sperm whale myoglobin (1mbo) with the three truncated
globins

1mbo 1dlw 1dly 1idr

Sperm whale myoglobin 1mbo 100 12 8 10
P. caudatum globin 1dlw 100 39 36
C. eugametos globin 1dly 100 40
M. tuberculosis globin 1idr 100

3.4 Helix Contacts

3.4.1 Geometry of Inter-Helix Contacts

The basis of the globin structure is the interactions of packed helices, and of
the contacts of the protein with the haem group. Chothia and co-workers [7,8]
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analysed the general principles of the packing of α-helices in globular proteins.
They found that the structures of most helix–helix interfaces are described by
a ridges-into-grooves model: Sidechains on the surfaces of helices form ridges
protruding from the helix surface. Ridges may form from residues separated by
four positions in the sequence (most common), three positions, or one position.
In tertiary structures of proteins, helices tend to pack so that ridges on the
surface of one helix pack into grooves of the other. Because ridges formed
from different sets of residues have different angles with respect to the helix
axis, different combinations of ridge–groove structures produce different inter-
axial angles in packed helices. For example, the most common packing – i± 4
ridges from both helices – corresponds to an inter-axial angle of Ω � −40◦.
The ridges-into-grooves model explains the distribution of inter-axial angles
observed in α-helical proteins.

The angle Ω is defined as follows: Determine the axis of each helix, and the
line perpendicular to both axes. Project the axes onto the plane perpendicular
to this line. Then Ω is the angle, within the plane, between these projections.
By convention, Ω < 0 if the near helix is rotated clockwise relative to the
far helix [7]. Ω suffices to define the relative geometry of helices that form
face-to-face packings. (If the interface is formed by the end of one or both
helices, the angle between the helix axes is reported as the angle τ.)

Although many helix packings in globins follow the ridges-into-grooves
model, globins are unusually rich in helix packings of non-standard structure.
In the B/E and G/H contacts of full-length globins, ridges that contain a
notch (arising from a sidechain smaller than its neighbours along the ridge)
pack so that a ridge from one helix crosses over a ridge from the other, at the
notch. (The observation of this unusual structural feature in the corresponding
helix packings of phycocyanin was adduced as evidence for the evolutionary
relationship between globins and phycocyanins [9].)

3.4.2 Pairs of Helices Making Contacts

Of the five major helix contacts in normal-length globins: A/H, B/E, B/G,
F/H and G/H, all but the F/H contact appear in the truncated globins.
(P. caudatum (1 dlw) contains an F/H contact.)

In addition to the five major contacts conserved in full-length globins,
other contacts occur sporadically among them: A/E, C/G, B/D and E/H.
These do not appear among truncated globins. The truncated globins contain
an A/B contact, not observed in typical full-length globins. Table 3.4 shows
the relative geometry of the helices packed in sperm whale myoglobin and the
truncated globins.

In the analysis of full-length globins, it was observed that the pattern of
residue–residue contacts tends to be conserved. That is, if two residues are in
contact in the helix interface of one globin, the two homologous residues in
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another globin are also likely to be in contact, even if the sizes of the residues
have changed substantially, and even if the changes are not complementary.1

Such conservation of the reticulation of the residues is among the most
well-preserved structural feature of distantly related proteins. It forms the
basis for the ability of the program DALI to recognise very distantly related
proteins [10].

Of the 59 positions described in [2] as common positions involved in the
packing of helices and in the interactions between the helices and the haem
group in at least 7 of the 9 full-length globins then studied, 41 make contacts
to the same helix or the haem in all three truncated globins, and 4 (E19, G9,
H15 and H20) make contacts to the same helix or the haem in two of the
three truncated globins. Of the other 14 positions, 7 are in the A helix, which
is deleted in P. caudatum globin (1dlw) and C. eugametos globin (1dly); 1 is
in the BC corner, which shows a 1-residue deletion in the truncated globins;
3 are involved in a shift of partners in the B/E contact; 1 is involved in a
truncation of the C-terminus of the E helix and 2 are in the part of the F
helix lost in the truncated globins.

3.4.3 Structures of Helix Interfaces in Truncated Globins,
Compared to Those in Sperm Whale Myoglobin

Of the five common helix interfaces observed in full-length globins, the B/G
and F/H contacts are i ± 4/i ± 4 packings, the A/H contact is formed from
i± 1 ridges on the A helix packed against i± 4 ridges on the H helix and the
B/E and G/H contacts have crossed-ridge structures [2].

3.4.4 The B/G Interface

The B/G interfaces in sperm whale myoglobin and those of the truncated
globins share a similar structural pattern. In the B/G interface of sperm
whale myoglobin (Fig. 3.6), a ridge on the surface of the G helix created by
the sidechains of residues 106Phe-110Ala-114Val-118Arg packs into a groove
between ridges on the surface of the B helix created by the sidechains of
residues 24His-28Ile-32Leu and 31Arg-35Ser. This is a typical i±4/i±4 pack-
ing, and an inter-axial angle of 127.2◦.

In the B/G interface of P. caudatum globin (1dlw) (Fig. 3.7), a ridge on
the surface of the G helix created by the sidechains of residues 84His-88Ala-
92Ala packs into a groove between ridges on the surface of the B helix created
by the sidechains of residues 15Val-19Phe and 22Asn-26Asp. This interface
has the same i±4/i±4 packing, and similar values of the inter-axial distance

1 Complementary mutations preserve the sum of the volumes of the residues in
contact, and are the exception rather than, as was once believed, the rule.
Complementary mutations are a special case of correlated mutations; correlated
mutations in general do not preserve the sum of the volumes of residues in contact.
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Fig. 3.6. B/G helix interface in sperm whale myoglobin (1mbo). B helix residues
in solid lines and G helix residues in broken lines

Fig. 3.7. B/G helix interface in P. caudatum globin (1dlw). B helix residues in solid
lines and G helix residues in broken lines

and angle and only somewhat smaller buried surface area. It is consistent with
the overall sequence alignment, in that residues 110–114–118 of sperm whale
myoglobin (1mbo) correspond to 84–88–92 of P. caudatum globin (1dlw), and
residues 28–32 of sperm whale myoglobin (1mbo) correspond to 19–23 of P.
caudatum globin (1dlw).

3.4.5 The A/H Interface

In full-length globins, the A/H interface involves an i ± 1 ridge from the A
helix packing against an i±4 ridge from the H helix. In the truncated globins,
the shortness of the A helix makes the contact shorter, leaving a much smaller
interface (Fig. 3.8). The surface area buried by the A/H contact in truncated
globins is ∼60% of that buried in the A/H contact of sperm whale myoglobin.
Indeed, it may be that the requirements of an A/H interaction limit the extent
to which N-terminal truncation can occur. This was noted by Pesce et al. [3].
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Fig. 3.8. The A and H helices of sperm whale myoglobin (1mbo) (solid lines) and
C. eugametos globin (1dly) (broken lines). The structures are superposed on the H
helix, the axis of which is vertical

Fig. 3.9. Van der Waals slices through the B/E contact in sperm whale myoglobin
(1mbo). In this and the next picture, the axis of the B helix is vertical and the B
helix residues are shown in solid lines. The axis of the E helix is oblique and the E
helix residues are shown in broken lines

(In 1966, at a CIBA Foundation discussion, Francis Crick asked about the
structure of sperm whale myoglobin: ‘. . . it is very unclear to me why you
cannot chop-off one or two helices; for example, why shouldn’t you chop-off
the first length of helix? If you did chop it off what would the molecule look
like? Would it fall to pieces? Would it be just a bit unstable? Or would it be
more or less the same? [11]’. Now we know.)

3.4.6 The B/E Interface

In full-length globins, the B/E contact has the unusual crossed-ridge struc-
ture (Fig. 3.9). However, the values of inter-axial radius and angle are similar
to those expected for a standard i ± 4/i ± 4 contact. The B/E contacts in
truncated globins have similar inter-axial distances and angles to the B/E
contacts of full-length globins. However, surprisingly the B/E interfaces in
truncated globins contain the standard i ± 4/i ± 4 packing, rather than the
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Fig. 3.10. Van der Waals slices through the B/E contact in C. eugametos globin
(1dly)

unusual crossed-ridge structure (Fig. 3.10). These are the first examples of
B/E interfaces in globins with a regular i ± 4/i ± 4 packing.

The author, in a talk the title of which – ‘Protein structures that might
exist but don’t’ – is now seen to contain an erroneous assumption [12], noting
the very similar inter-axial distances and angles in the F/H contact in lupin
leghaemoglobin, which has a common i±4/i±4 packing, and the B/E contacts
in several other globins, which have crossed-ridge structures (see Fig. 4 of [2]),
proposed as a protein design challenge the engineering of a globin with an
i±4/i±4 B/E interface. Although no protein engineer took up this challenge,
the new structures show that this is indeed possible.

In sperm whale myoglobin, the ridge crossing occurs at the opposition of
residues 25Gly and 65Gly (Fig. 3.9). Comparing the relative positions and
orientations of the B/E contacts in sperm whale myoglobin and C. eugametos
globin (Fig. 3.11) with the alignment of the sequences, note that the residue
25Gly in sperm whale myoglobin corresponds to 16Val in C. eugametos globin,
and 65Gly in sperm whale myoglobin corresponds to 42Arg in C. eugametos
globin.

3.5 Patterns of Residue–Residue Contacts
at Helix Interfaces

We have mentioned the tendency of patterns of residue–residue contacts in
proteins to be conserved. In globins, comparisons of the structures of helix
interfaces showed that in each helix–helix interface, roughly half the inter-
residue contacts are preserved, in the sense that if two positions are in contact
in one globin, homologous residues at these positions are likely to be in contact
in other globins. Typically half the contacting pairs, those at the centre of
the contact interface, are common to all globins studied. Individual globins
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Fig. 3.11. Comparison of relative geometry of B and E helices in sperm whale
myoglobin (1mbo) and C. eugametos globin (1dly). Sperm whale myoglobin is shown
in solid lines and C. eugametos globin in broken lines. The molecules have been
superposed on the B helix, the axis of which is vertical in the picture. The shift
in relative position and orientation of the E helix with respect to the B helix is no
greater than that described in homologous helix contacts that have similar packing
patterns at their interfaces (see Fig. 6 of [2])

supplement these common contacting pairs with additional contacts that vary
from molecule to molecule.

Figure 3.12 shows the inter-residue contacts at the B/G interface in the
nine globins studied in previous work [2] and, superposed, the inter-residue
contacts at the B/G interfaces in the three truncated globins. These results
show that the pattern of contacts in the truncated globins is entirely normal.
The sets of conserved contacts appear, and the additional peripheral contacts
observed in truncated globins appear in full-length globins also.

In contrast, the inter-residue contacts at the B/E interface, which in trun-
cated globins has a normal i±4/i±4 ridge/groove structure in contrast to the
crossed-ridge structure of full-length globins, show a very different pattern of
inter-residue contacts (see Fig. 3.13).

3.5.1 The G/H Interface

In full-length globins, the G/H contact has an unusual crossed-ridge structure,
giving it a somewhat unusual inter-axial angle of Ω = −20◦. In truncated
globins, the G/H interface is similar, both in inter-axial angle, and in the
crossed-ridge structure. Unlike the B/E interface, the G/H interface shares
the unusual structure with the full-length globins. It is not unreasonable to
suggest that the unusual crossed-ridge structure is required to achieve the
unusual inter-axial angle of the G/H interface, unlike the more common inter-
axial angle achieved by the B/E interface, which is consistent with either the
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Fig. 3.12. The pattern of residue–residue contacts in the B/G interfaces of
full-length (light gray) and truncated (black) globins. The grey background is a
copy of Fig. 8a of [2] and shows the contact patterns in the full-length globins:
Hα = human haemoglobin, α-chain; Hβ = human haemoglobin, β-chain; Eα = horse
haemoglobin, α-chain; Eβ = horse haemoglobin, β-chain; W = sperm whale myo-
globin; L = lamprey globin; G = glycera globin; C = Chironomus erythrocruorin;
Lg = lupin leghaemoglobin. The oblique lines indicated the residues making con-
tacts; the width of these lines in the original (light grey) figure reflects the number
of full-length globins in which homologous contacts are observed. Fully dark are
the residue–residue contacts in truncated globins: 1dly = . . . , 1dlw = − − −,
1idr = − · − · −
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Fig. 3.13. The patterns of residue–residue contacts in the B/E interfaces of full-
length and truncated globins. (Top) The crossed-ridge structure of the B/E contact
in sperm whale myoglobin (Swmb) and Horse haemoglobin, α-chain. (This repro-
duces part of Fig. 9a of [2].) (Bottom) The normal i± 4/i± 4 ridge/groove structure
in truncated globins: 1dly = . . . . . . , 1dlw = −−−, 1idr = − · − · −
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common i ± 4/i ± 4 ridge–groove structure or with the unusual crossed-ridge
structure.

3.6 Haem Contacts

With some significant differences, the haem-binding residues are conserved. In
the previous investigation of full-length globins, it was found that residues at
15 positions make contact with the haem in seven or more of the nine globin
structures studies (Table 6 of [2]). In 14 of these cases, the homologous residue
makes contact with the haem in the three truncated globins.

3.7 The Tunnel

In full-length globins the O2 binding site is blocked, and the molecules must
partially unfold to permit ligand entry and exit. In contrast, in the truncated
globins there are channels linking the ligand binding site to the surface of the
molecule. In M. tuberculosis globin (1idr), the tunnel has one branch entering
the molecule between the AB and GH inter-helical regions, and a second
branch between the G and H helices [13].

What mutations were required to create the tunnel in truncated globins?
Several structural features contribute to the blocking of the tunnel in sperm
whale myoglobin. These include

1. A mutation from 94V in M. tuberculosis globin to 107I in sperm whale
myoglobin; this position is in the middle of the G helix, and is part of the
B/G contact.

2. A mutation from 15I in M. tuberculosis globin to 14W in sperm whale
myoglobin, and also a change in position of helix A.

3. The contacts between residues 29V, 59V, 62F and 98L in M. tuberculosis
globin are replaced by residues 28I, 72L, 69L and 111I in sperm whale
myoglobin. These residues are homologous except for position 32F in
M. tuberculosis globin that is really aligned to 28I in sperm whale myo-
globin.

4. Residues 106G and 17D in M. tuberculosis globin are replaced by 119H
and 16K in sperm whale myoglobin.

3.8 Conclusions

Study of distantly related proteins is a way to ask Nature to tell us what is
essential for a protein folding pattern. The idea is that those features of the
structure conserved throughout the family are essential to create the common
topology, and those features that vary within the family are nonessential.
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A difficulty with this approach is that one is always dealing with a finite
set of structures. It may be possible to determine the common features of
the structures available, but if at some future date (even 25 years later) new
related structures appear, the extended family may have fewer common fea-
tures than one had previously concluded. This is the problem which structural
genomics projects are aimed at ameliorating.

The truncated globins are recognisable members of the family. They pos-
sess many but not all the common features derived from comparisons of full-
length globins.

The conclusions of the earlier work were that the globin fold is created
and stabilised by a common set of helix–helix and helix–haem contacts. Most
but not all of the conserved positions in these internal interfaces are retained
in the truncated globins.

The most striking structural differences between the full-length and trun-
cated globins are the re-conformation of the N-terminal part of the F helix
(keeping the proximal histidine in position to bind the iron but losing the
F-helix/H-helix contact), the loss or re-conformation of the N-terminal part
of the A helix, shortening of the CD region and the change in structure of the
B/E helix contact, from a crossed-ridge structure in full-length globins to a
standard i ± 4/i ± 4 ridge-groove packing in the truncated globins.

Do we know now what the minimal components of a globin are? It is known
that a 108-residue peptide corresponding approximately to the central exon of
horse myoglobin binds haem and must therefore retain some of the structure
of the haem pocket [14]. It has been suggested that a small fragment of the
globin fold is homologous to part of colicin A [15]. The story may not yet be
over.
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The Structurally Constrained Neutral Model
of Protein Evolution

U. Bastolla, M. Porto, H.E. Roman and M. Vendruscolo

The observation that protein sequences accumulate substitutions in time at
an almost regular rate [1] created a great interest in molecular evolution, sug-
gesting that substitutions in protein sequences can be used as an effective
‘molecular clock’ for estimating the time elapsed from the last common ances-
tor among genes [1–5]. This approach opened a new avenue for reconstructing
the tree of life by analyzing the sequences of orthologous genes, whose evo-
lutionary tree coincides with the tree of the species containing them. The
practical importance of the study of molecular evolution became therefore
evident as a way to reconstruct natural histories.

In addition, the molecular clock hypothesis sparked a lively debate about
the mechanisms of molecular evolution. Kimura [6,7] and King and Jukes [8]
proposed that most substitutions in protein sequences are fixed in evolving
populations not because they offer a selective advantage but, rather, because
they are effectively neutral and therefore invisible to natural selection. The
‘neutral theory’ could account for the regular rate in time of the accumula-
tion of amino acid substitutions. It failed, however, to predict correctly other
features of the evolutionary process, among which the variance of the number
of substitutions [9].

One is now starting to understand the reasons for this apparent limitations
of neutral theories, thanks to the recent progress in structural biology. This
progress has begun to make possible the use of structural information in evo-
lutionary studies, starting with the pioneering works of the Vienna group on
the RNA model [10–12] (see also the chapter by Schuster and Stadler in this
book), whereas the study of molecular evolution was initially almost entirely
based on the analysis of macromolecular sequences [3, 4, 7]. It appears that a
paradigm shift is taking place in the field of molecular evolution, from cod-
ing symbols (sequence) to coded meaning (structure and function). This book
investigates this new approach at several levels of biological organization.

In this chapter, we review some results that were obtained through app-
roaches in which the structural stability of the native state of proteins is taken
explicitly into account as a constraint on the evolutionary process [13–30], and
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in particular through the Structurally Constrained Neutral (SCN) model of
protein evolution [31,32].

We will also show that several results of SCN simulations can be ratio-
nalized and rederived analytically by considering a vectorial representation
of protein sequences and structures. In this approach, protein sequences are
represented as hydrophobicity profiles HPs [33] and protein structures are
represented through the principal eigenvector (PE) of the contact matrix
[34–37]. As we have shown that the optimal HP and the structural profile
are strongly correlated [38], an ‘optimal’ HP can be derived, i.e. the profile
best compatible with a given protein structure. In simulations of SCN evolu-
tion, sequence vectors move around this optimal one. This scheme provides
us with a framework that can be used to predict, by analytical calculations,
site-specific conservation due to structural constraints and site-specific amino
acid distributions [39,40].

4.1 Aspects of Population Genetics

First of all, we need to state some terminology. A mutation is a microscopic
event in which the sequence of a gene is altered in a single individual. At the
population level, a substitution is a macroscopic event in which the repre-
sentative, or wild-type, gene changes as a result of the fixation of a mutant
gene.1 Natural selection mediates this transition from the microscopic to the
macroscopic level. In physical sciences, a similar role is played by statistical
mechanics, which explains macroscopic phenomena in terms of the behaviour
of their microscopic components. One of the aims of this chapter is to explore
this analogy further.

Three main factors influence the fixation of a mutant allele in a population:
the size of the population, M ; the selective effect of the mutation, measured
through its fitness relative to the wild-type, s; and the rate at which mutations
occur, measured in mutations per gene and generation, μ.

4.1.1 Population Size and Mutation Rate

In most of this chapter, we will consider the limit of very small mutation rates,
Mμ � 1, as it is customary in classical population genetics. For Mμ � 1,
the time scale for the appearance of a new mutant (1/μ) is much larger than
the time scale for fixation of a neutral allele, which spans on the average
M generations. This limit implies that the population is fairly homogeneous
genetically, and at any generation there is at most one mutant arising. This
has been termed the ‘blind-ant’ regime [41] because the population can only
test a very small neighbourhood in genotype space at any time. The opposite
regime, Mμ � 1, is assumed to hold in the ‘quasispecies’ model [42,43], which
1 Fixation of a mutation takes place when all individuals in the population are

descendent of one individual bearing that allele.
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considers infinite population sizes (concerning this regime, see the chapters by
Jain and Krug and by Lázaro in this book).

To justify the choice of the blind-ant regime, we note that the mutation
rate in mammalian genomes was estimated to be 5 × 10−9 per nucleotide
per year [3], which, for a species with generation time of two years and a
protein of 600 nucleotides (i.e. 200 amino acids) yields μ = 6× 10−6. An even
smaller value of μ would have resulted by considering that many mutations
are synonymous. For a population of effective size M = 105 (already a quite
large estimate)2 one obtains Mμ = 0.6. Although this value is not so small,
numerical studies reveal that the results valid in the blind-ant regime continue
to be valid qualitatively for Mμ of order one (see Sect. 4.1.5).

It has been argued that the opposite regime of large Mμ is valid for RNA
viruses (see the chapter by Lázaro in this book), which have very high muta-
tion rates, of the order of one nucleotide per genome per year [44], correspond-
ing to μ ≈ 10−1. Their effective population size is, however, quite reduced
because of the bottlenecks that the population suffers when transferred from
one host to the other (in these cases, the effective population size essentially
coincides with the population at the bottleneck [4]).

4.1.2 Natural Selection

The other relevant parameter for the evolutionary dynamics is the difference
in fitness between competing alleles. Since reproduction is inherently stochas-
tic, there is a chance that the less fit allele is fixed even starting as a single
individual. Different stochastic models of the reproductive process give qual-
itatively similar results. We illustrate them through the Moran’s birth and
death process [45]. According to this model, the probability that a mutant
allele B with fitness F (B), arising as a single individual in a haploid3 popu-
lation of size M , substitutes the wild-type A with fitness F (A), is given by

Pfix(A → B) =
1 − ef(B)−f(A)

1 − eM [f(B)−f(A)]
, (4.1)

where f(x) = log[F (x)] with x = A,B. We will define in the following s =
f(B)−f(A). Notice that if |Ms| is small there is a significant probability that
even deleterious mutations (s < 0) are eventually fixed in the population.

Berg et al. [46] and Sella and Hirsh [47] have recently noticed that the
above formula has an interesting analogy with the stochastic processes used
to simulate statistical mechanical systems, since it satisfies the condition of

2 The effective population size is the effective number of breeding adults in a
population after adjusting for diverse factors, including reproductive dynamics.
The effective population size is usually much less than the actual number of living
or reproducing individuals [7].

3 Haploid organisms carry one single copy of each chromosome, in difference to
diploid organism carrying two copies of each chromosome.
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detailed balance, π(A)P (A → B) = π(B)P (B → A), with respect to a
stationary distribution π(A) that is analogous to a Boltzmann distribution in
statistical physics (see the chapter by Lässig in this book). If the mutation
process satisfies detailed balance with respect to a stationary distribution
πmut(A), as it is assumed in many models of molecular evolution [4], then the
stationary distribution of the substitution process is

π(A) =
1
Z

πmut(A) eMf(A) . (4.2)

This equation is formally identical to a Boltzmann distribution in statisti-
cal physics if one identifies the logarithmic fitness f(A) as the energy and the
population size M as the inverse temperature (Z is a normalization constant).
Smaller populations evolve at higher temperature, in the sense that the evo-
lution is more dominated by stochastic events, and their mean fitness is lower
than for corresponding larger populations.

The above result is valid for the small mutation rate regime. It is interest-
ing that a formal analogy between evolving systems and statistical mechanical
systems can be derived also for the quasi-species regime, where the infinite
population limit is considered. In this case, the mutation rate μ, considered
to be vanishingly small in the previous approach, plays the role of the tem-
perature [48, 49]. For a treatment of this subject (see Chap. 14 by Jain and
Krug).

4.1.3 Mutant Spectrum

We now go back to classical population genetics. It is customary to divide
mutations into four classes, depending on their fitness effect (for a deeper
discussion of this topic, see Chap. 13).

1. Strongly deleterious mutations: Ms � −1. These mutations decrease sig-
nificantly the fitness of the individuals carrying them and they are soon
removed from the population through purifying selection.

2. Nearly neutral mutations: − log(M) ≤ Ms ≤ log(M). The fitness effect
of these mutations is of the same order of importance as are reproductive
fluctuations, and their fate is determined both by selection and by ran-
dom drift [50,51] (see also the chapter by Ohta in this book). Deleterious
mutations in this range have a non-vanishing probability to lead to sub-
stitutions. The detailed balance condition, satisfied by several models of
the substitution process, including the one presented above, implies that
the frequency of mildly deleterious and mildly advantageous substitutions
must be equal on average [47], as also previously noted by several authors,
which is in contrast with the emphasis of some studies on mildly deleteri-
ous substitutions. The advantageous compensatory substitutions play an
important role in the dynamics of viral populations, as discussed in the
chapter by Lázaro in this book. For small |Ms|, the average time required
for fixation of these substitutions is of the order of the population size M .
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3. Neutral mutations: They have negligibly small effects on the fitness,
Ms ≈ 0 and can spread in the population through random genetic drift.
The probability of fixation of a neutral mutation is 1/M , and the expected
time for fixation is of order M .

4. Advantageous mutations : Ms � 1. These mutations are efficiently fixed
in the population through natural selection with probability close to one,
and the time for fixation increases only logarithmically with the population
size as log(M)/s.

This classification is useful for distinguishing between different evolutionary
scenarios, as advantageous, neutral and nearly neutral mutations can lead
to substitutions. In the early years of population genetics, the emphasis was
placed on the positive selection of advantageous mutations as the dominant
force acting on the substitution process [52]. However, the accumulation of pro-
tein sequences eventually changed this view. To explain the very high amount
of heterozygosity found in natural populations, as well as the molecular clock
hypothesis, at the end of the 1960s Kimura [6] and King and Jukes [8] proposed
that most substitutions are selectively neutral. This hypothesis, provocative
and controversial at that time, lead to a simple mathematical model of the sub-
stitution process that will be discussed in Sect. 4.1.4. The neutral model is now
considered by many as the null model of molecular evolution, and distinguish-
ing positive selection from a neutral background is the subject of a vast area
of evolutionary sequence analysis [53,54]. Subsequently, Ohta and Kimura [50]
introduced the concept of nearly neutral substitutions, and Ohta [51] proposed
that most substitutions belong to this class.

As more specifically discussed in the chapter by Ohta in this book, there are
testable differences between neutral and nearly neutral substitutions, in partic-
ular: (a) The rate of nearly neutral substitutions, especially non-synonymous
ones, is expected to decrease with population size.4 This dependence can
explain the discrepancies observed between various mammalian groups in the
substitution rates per generation [55]. (b) The presence of nearly neutral sub-
stitutions implies that compensatory substitutions must be positively selected.
This might explain the surprisingly high level of positive selection detected
recently [54] using the McDonald and Kreitman test [53]. (c) In nearly neutral,
but not in neutral, evolution, macromolecular properties are expected to be
less optimized in smaller populations. Studies of endosymbiotic bacteria, which
have small effective populations because of the bottleneck in the transmission
from one host to its offsprings, have predicted that r-RNA molecules coded
in the genomes of endosymbiotic bacteria have lower thermodynamic stabil-
ity [56] and that their proteins are less stable with respect to misfolding [57].
These findings are consistent with the high expression of chaperones, which are
proteins that assist the folding of other proteins, observed in endosymbiotic

4 In principle, also the neutral substitution rate should decrease with the population
size since the condition for a mutation to be neutral is Ms ≈ 0. This effect,
however, is usually neglected in mathematical models.
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bacteria [58], and that can favour fitness recovering in a bacterial population
subject to strong bottlenecks [59] (see Chap. 7).

4.1.4 Neutral Substitutions

The neutral theory of Kimura is based on the assumption that the fitness ef-
fect of a mutation with respect to the wild-type, s, has a bimodal distribution,
with the most likely effects corresponding either to strongly disadvantageous
(Ms � −1) or to neutral mutations (Ms ≈ 0). Advantageous mutations are
not considered because they are expected to be rare, at least for proteins
that maintain the same function and evolve in the rather stable cellular envi-
ronment [60]. The neutral theory therefore applies to families of orthologous
proteins, whose evolutionary tree coincides with the species tree, and whose
function and structure is expected to be conserved in evolution. On the other
hand, paralogous proteins, which diversified after an event of gene duplica-
tion specializing into different functions (as for instance myoglobin and the
two hemoglobin chains), undergo several positively selected substitutions in
the process of developing a new function, as it is witnessed by the acceleration
of the substitution rate after gene duplication [3]. Nearly neutral mutations
are not considered for the sake of mathematical simplicity. From the point
of view of the neutralist–selectionist controversy that was discussed for sev-
eral decades in the molecular evolution literature, nearly neutral substitutions
were often considered on the same ground as strictly neutral one, despite the
differences discussed in the previous section.

In Kimura’s model, neutral mutations undergo a diffusion process that in
the population genetics literature receives the name of ‘random genetic drift’.
The rate at which neutral mutations occur in individual genes is μx, where
μ is the mutation rate and x is the probability that a mutation is neutral.
This probability is considered to be independent of population size M , even
though, strictly speaking, the condition that a mutation is neutral is s � 1/M .
The connection between the population size and the substitution rate lays at
the heart of the nearly neutral theory and distinguishes it from the original
neutral theory.

The number of neutral mutations arising in one generation is therefore
Mμx and, since the probability that one of them substitutes the wild-type is
1/M (all the M genes have the same selective value), the neutral substitution
rate per generation is given by

E[St]
t

= μx (4.3)

and it is independent of M . Here, St is the number of accepted neutral muta-
tions in a time interval t. This provides a sort of molecular clock, in agreement
with the earliest empirical observations [7], but in worse agreement with the
so-called generation time effect (see the chapter by Ohta in this book).
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Another assumption, which we call the ‘homogeneity hypothesis’, is that
the neutral mutation rate x(A),5 which in principle may be different for
all sequences A, is constant throughout evolution, x(A) ≡ x. As shown
later, this hypothesis implies that the number of neutral substitutions has
a Poissonian distribution in the low mutation limit Mμ � 1. The popula-
tion, as we mentioned above, is fairly homogeneous in this limit and there
is at most one mutant arising at each generation. The number of mutations
taking place in time t in an individual lineage is a Poissonian variable with
mean value μt. For a population, the number of mutations is the sum of M
Poissonian variables, and it is still Poissonian with mean Mμt. The probabil-
ity that one of these mutants become fixed is the product of the probability
that the mutation is neutral, x, times 1/M . Since at every generation there is
at most one mutant, the probability of n out of m mutants becoming fixed is
(
m
n) (x/M)m (1−x/M)m−n. Therefore, the probability that there are n neutral

substitutions within a time interval t is given by

P{St = n} =
∞∑

m=n

e−Mμt (Mμt)m

m!

(
m

n

) ( x

M

)n (
1 − x

M

)m−n

= e−μxt (μxt)n

n!
. (4.4)

As one can see, the result is a Poissonian variable with average value μxt. The
homogeneity hypothesis seems at first sight very plausible since the neutral
fraction x results from the average over a large number of sites in a gene.
If the evolving sites are uncorrelated, the law of large numbers implies that the
fluctuations of x vanish. However, as we shall see later, stability constraints
introduces global correlations between the sites of protein coding genes, so
that the homogeneity hypothesis is violated in models that take into account
such stability constraints.

4.1.5 Beyond the Small Mμ Regime: Neutral Networks

In the next sections, we shall consider the small Mμ limit (the blind-ant
regime). In this regime, the substitution process can be represented through
the evolution of a single wild-type sequence. It should be emphasized that
this set-up does not correspond to a one-individual population, but rather
to a large population with a small mutation rate μ � 1/M , so that most
individuals have the same genotype. The population maintains the wild-type
genotype until one of the possible neutral mutations is fixed. One time step
in this set-up corresponds to the typical time for the fixation of a neutral
mutation, M .

5 We adopt a notation in this chapter where bold-face mathematical symbols such
as A indicate vectors (sequences) or matrices, whereas Ai indicates the i-th com-
ponent of A.
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When the mutation rate is not small, however, the fate of a genotype
depends not only on its fitness F (A), as indicated in (4.2) but also on the
fitness of its neighbours in sequence space that can be connected to it through
point mutations. An important quantity in this regime is the mutation load,
i.e. the fraction μ(1 − x(A)) of offsprings of individuals with genotype A
that undergo lethal mutations. If the homogeneity hypothesis does not hold
and x(A) fluctuates in sequence space, the population dynamics may favour
genotypes with large neutrality fraction x(A) and hence small mutation load.
The parameter that controls whether this is the case is the product Mμ. As
discussed earlier, a population with very small Mμ can be represented through
a single effective sequence evolving in the blind-ant regime. In the opposite
limit of very large Mμ (the quasi-species regime [42]), the distribution of the
population in sequence space can be obtained analytically for a neutral model
in which all viable sequences have the same fitness F (A).

The result can be cast into a simple form [41]: Define the neutral connec-
tivity matrix x(A,A′) to be 1 if A and A′ are two viable sequences that can be
connected through one point mutation and 0 otherwise. This matrix describes
a neutral network of viable sequences interconnected through point mutations
[10]. The stationary distribution of the fraction of individuals with genotype
A, ρ(A), has to satisfy the stationarity condition ρ(A) =

∑
A′ ρ(A′)x(A′,A)

and therefore it is proportional to the component of the PE of the neutral con-
nectivity matrix for genotype A. This component constitutes a sort of effective
neutral connectivity of sequence A and it is positively correlated with the frac-
tion of neutral neighbours x(A) (see Sect. 4.4.1). Therefore, sequences with
large x(A) are more populated, and the mutation load is reduced.

Van Nimwegen et al. [41] simulated population dynamics on a neutral
network x(A,A′), obtained from the predicted folding properties of a small
RNA molecule. They found that the blind-ant regime is a good approximation
up to Mμ ≈ 10 and the large Mμ regime is approached at Mμ ≈ 200.
Similar results were obtained by Wilke [61] using the neutral network obtained
through the predicted folding thermodynamic properties of a model protein.
We argue that the value of Mμ at which the cross-over of the two regimes
takes place depends on the correlation length of x(A) in sequence space, �x.
In fact, in neutral evolution the population occupies a region in sequence space
around the wild-type with radius of order Mμ mutations [45]. If this radius is
smaller than �x, then all values of x(A) in the population are fairly similar and
the small differences in the mutation load can not be fixed in the population.

For animal and plant populations, characterized by small mutation rate
and effective population sizes of tens of thousands of individuals, Mμ is of
order one and one would expect that the blind-ant regime is still a good
approximation to the neutral dynamics. On the contrary, viral populations
have large Mμ, compatible with the cross-over region towards the quasi-
species regime.

We end this section with a summarizing comparison between the two
limiting regimes of population genetics. Population genetics models can be
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simplified in two opposite regimes: very small (blind-ant regime) and very
large (quasi-species regime) Mμ. In both cases, a formal analogy with statisti-
cal mechanical systems can be established. For Mμ � 1, when the population
is fairly homogeneous, the negative of the logarithmic fitness plays the role
of the energy function and the inverse of the population size plays the role of
temperature. For Mμ � 1, when the population is very spread in sequence
space, a combination of the negative of the logarithmic fitness with a muta-
tion term plays the role of the energy and the mutation rate plays the role of
temperature [48, 49] (see the chapter by Jain and Krug in this book). As the
simulations by van Nimwegen et al. [41] and by Wilke [61] show in this case,
even when mutant alleles are completely neutral under the point of view of
the fitness, they may not be neutral under the point of view of mutation resis-
tance. In the following, only the small Mμ regime will be examined, since this
is the relevant regime for many biological populations, most notably higher
eukaryotes.

4.2 Structural Aspects of Molecular Evolution

4.2.1 Neutral Theory and Protein Folding Thermodynamics

The thermodynamic stability of the native state is a strong constraint on
molecular evolution, and a consequence of the more general requirement
of maintaining the biological function [62]. The native state of a protein
must be stable with respect to both unfolding and misfolding [63]. How-
ever, the stability against unfolding and stability against misfolding are anti-
correlated [57,64]. Therefore, natural selection cannot achieve simultaneously
the optimal value for both stability requirements and has to trade off between
them.

Natural selection eliminates mutations that reduce folding stability and
favors the fixation of more stable proteins. Nevertheless, natural proteins are
only marginally stable against unfolding [65], and it is not difficult to engi-
neer protein mutants to improve their stability. Moreover, a large number of
mutations do not alter significantly the measured thermodynamic stability or
the function of the protein. In the framework of the neutral theory of mole-
cular evolution [6], these results can be interpreted, assuming that changes
increasing folding stability are selectively neutral above some specific thresh-
olds. According to this hypothesis, the threshold values are most frequently
realized in protein evolution, because they correspond to an overwhelming
portion of sequence space. This framework provides a possible explanation for
the relatively low stability of native states of proteins [22] and for the fact
that the observed amino acid occurrences are very close to the ones predicted
from nucleotide occurrence frequencies [66,67].
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4.2.2 Structural Conservation and Functional Changes
in Protein Evolution

It has since long been established that protein structures evolve much more
slowly than protein sequences [68,69]. Methods of protein structure prediction
on the basis of sequence homology are therefore quite successful [70]. Algo-
rithms for comparing protein structures typically reveal distant evolutionary
relationships between proteins having low sequence similarity [68]. Although
these observations can be attributed to both sequence divergence and struc-
ture convergence, careful analysis of specific cases and more accurate meth-
ods for detecting sequence homology [71] suggest that sequence divergence
beyond the limits of detectable homology is rather common (see e.g. [72] and
the chapter by Dokholyan and Shakhnovich in this book). This prevalence
of structural conservation has made it possible to create databases in which
protein structures are classified into distinct structural groups with the same
overall architecture (folds) [68, 73, 74]. For example, proteins classified in the
same fold in the FSSP database [68] show a distribution of sequence iden-
tity comparable to that of random pairs of sequences [69]. Nevertheless, other
indicators of structural changes often show a regular behaviour. For instance,
within a given fold, the root mean square deviation between homologous pro-
teins increases as sequences diverge [75].

Protein function, instead, is not as much conserved as the underlying struc-
ture, making its prediction rather difficult [76]. New functions are often created
through gene duplication followed by differential regulation and recruitment
of one of the copies to a new function [3]. In the transition to a new func-
tion, proteins accumulate substitutions, which may be fixed through positive
selection, in a process that usually does not change significantly the overall
fold.

Despite these general rules, several examples of proteins with detectable
homology and yet different folds have been provided [77]. In these cases, the
evolutionary changes are usually mediated through large scale mutations, such
as insertion or deletions of entire secondary structure elements and circular
permutations. As a consequence, the concept of protein fold has been recon-
sidered, and it has been suggested that insertions or deletions of secondary
structure elements can provide a mechanism to connect many known folds [78].
Significant similarities between folds previously classified as distinct, possibly
pointing at distant evolutionary relationships, were identified by Orengo and
colleagues through an algorithm of protein structure comparison at the level
of secondary structure [79] (see also the chapter by Ranea et al. in this book).
In the majority of cases, however, point mutations and insertions or deletions
of single residues do not seem to have produced evolutionary transitions to
different protein folds. Therefore, in particular in the evolution of proteins
that retain their function, the concept of protein fold can still be considered
useful.
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4.2.3 Models of Molecular Evolution with Structural Conservation

Structural stability was first considered in models describing the molecular
evolution of RNA structures [10]. Schuster and co-workers described neutral
networks in sequence space, associated to specific macromolecular structures
(see also the chapter by Schuster and Stadler in this book).

In this view, structurally constrained molecular evolution proceeds along
neutral networks, whose properties have a large impact on the evolutionary
process. Schuster et al. showed that, in the case of some common RNA sec-
ondary structures, the neutral networks are dense in sequence space, and
that networks of different common structures can be connected through a
small number of point mutations [10]. These results suggest a view of RNA
structural evolution as adaptation through neutrality, in which evolution pro-
ceeds along a neutral network until a crossing point to a fitter structure is
found [11,12].

Inspired by these studies, several authors introduced models of protein evo-
lution with structural conservation. In this section, we shortly review some
of these models. These models differ in the way the molecular structure is
represented and the requirement of thermodynamic stability of the target
structure is implemented. In the case of RNA, efficient algorithms can deter-
mine, approximately but reliably, the secondary structure of minimal energy
for a given sequence [80]. Equivalent algorithms do not exist for protein ter-
tiary structures. Therefore, several groups represented protein structures as
self-avoiding walks on the simple cubic or square lattice, studying them by
means of Monte Carlo simulations. The idea behind this approach is that
qualitative properties of the evolution of lattice models can be transferred
to real proteins. Other groups also adopted simplified off-lattice representa-
tions of protein structures, which were studied through effective energy func-
tions, analogous to those used for lattice models. The two approaches usually
yield qualitatively similar results. One should also distinguish between the
approaches that impose only the requirement that the target structure has
minimal energy, from those that further require that the energy landscape is
well correlated. In the latter, all structures that are very different from the
native one are energetically separated by a large energy gap from it, therefore
favouring stability against misfolding.

Bornberg-Bauer and co-workers [13, 14] studied lattice polymers by
imposing the condition that, for sequences in the neutral network, the energy
of the target structure should be lower than that of all alternative structures,
thus following closely the original RNA model. They studied the struc-
tures on a two-dimensional lattice and represented the sequences by a two-
letter (hydrophobic-polar) code. Such a simplified protein model is amenable
to exact enumeration of both conformations and sequences, and enabled
Bornberg-Bauer and co-workers to establish that in the case of lattice proteins,
neutral networks are disconnected in sequence space. They also discovered that
these neutral networks are centred around the so-called prototype sequence,
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which is the sequence of maximal stability for a given structure, both mutat-
ionally and thermodynamically. Furthermore, these studies indicated that
protein structures can be changed through point mutations, analogously to
what was previously found for the RNA model.

Babadje et al. [15] adopted simplified representations of real protein struc-
tures, evaluating how well test sequences fit the target structure through a
measure (the Z-score [81]) of the energy difference with respect to a set of
alternative structures. They found that protein sequences can diverge almost
as much as random pairs of sequences despite maintaining a high compatibility
with the original structure.

Shakhnovich and Gutin [16] proposed an evolutionary model in which
selection for fast folding is imposed in the framework of a lattice model, but
without requiring the conservation of a particular structure. Later, Dokholyan
and Shakhnovich [17] extended this approach considering sequences of fixed
composition for which the target structure was required to have low energy.
Evolution was modelled as a Monte Carlo process in sequence space, and large
entropy barriers were found to separate clusters in sequence space. Mirny
and Shakhnovich [18] analysed amino acid conservation in five of the most
populated protein folds, identifying structural features correlated with con-
servation.

Dokholyan and Shakhnovich [19] modelled the process of gene duplication
followed by structural divergence, showing that it can account for some of the
statistical features of observed protein folds, most notably the almost power
law distribution of the number of proteins per fold, and in addition that the
model provides useful predictions concerning protein function (see also the
chapter of Dokholyan and Shakhnovich in this book).

Goldstein and colleagues [20, 21] used lattice polymers to study a fitness
landscape where the fitness of protein structures is given by their foldability,
a concept borrowed from the spin-glass model of protein folding. They found
that foldability can vary broadly, where structures with similar and large fold-
abilities are clustered together in structure space. When the selective pressure
is increased, evolutionary trajectories become increasingly confined to ‘neutral
networks’, where the sequence can be significantly changed while a constant
structure is maintained. In a subsequent work, Taverna and Goldstein [22]
showed that the marginal stability of proteins is a direct consequence of the
hypothesis that changes in stability are neutral above some threshold and also
of the high dimensionality of the sequence space.

Bussemaker et al. [23] obtained the interesting prediction that, in the lat-
tice model they studied, the stability of small proteins is rather insensitive
to random mutations. Tiana et al. [24] performed an exhaustive study of the
effects that single mutations have on the stability of the native structure of
a lattice protein, simulating the folding dynamics through a Monte Carlo
approach. They classified protein sites into three types according to their
robustness to mutations: ‘green’ sites, where mutations do not produce any
relevant effect on stability (typically at the surface of the structure), ‘yellow’
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sites for which the structure is slightly modified and ‘red’ sites (typically at
the core of the structure) where mutations have a disruptive effect.

Parisi and Echave [25,26] studied the impact of structural conservation on
protein evolution, in a similar spirit to the SCN model that will be described
in next section; the main difference is that they did not impose conditions
on the stability of alternative structures. They simulated site-specific amino
acid transition matrices, which were used in the calculation of the likelihood
of families of protein sequences given their phylogenetic tree. In this way,
they showed that the use of structural information can improve notably the
likelihood of evolutionary models, and their ability to distinguish between
different phylogenies.

Xia and Levitt [27,28] used a two-dimensional lattice model and performed
an exhaustive enumeration of the space of all sequences and the space of
all structures. They found that, when evolution is dominated by mutation,
the preference of the prototype sequence is not strong enough to offset the
huge size of sequence space, so that most native sequences are located near
the boundary of the fitness region and are marginally compatible with the
native structure, in agreement with the results by Taverna and Goldstein [22].
On the other hand, when evolution is dominated by recombination events,
the evolutionary preference for the prototype sequence is strong enough so
that most native sequences are located near the centre of sequence–structure
compatibility.

Aita et al. [29] identified amino acid sequences that fold into a target struc-
ture, imposing that the energy of the target must be much lower than that
of alternative structures. They found that the neutral networks of different
structures are separated by 5–30 mutations in sequence space, with separa-
tion increasing with the required threshold stability. Bloom et al. [30] studied
the impact of random mutations on the stability of a wild-type structure,
and found that the probability that a protein retains its structure declines
exponentially with the number of mutations.

4.3 The SCN Model of Evolution

The SCN model is based on the observation that evolution conserves pro-
tein structure much more than protein sequence (see e.g. [68,69]). It assumes
that all mutations that maintain protein stability above a predefined thresh-
old are selectively neutral, and all other mutations are strongly deleterious,
thus resulting in a neutral model. These assumptions are consistent with the
observation that many mutations do not significantly modify the activity of a
protein and its thermodynamic stability, while mutations that improve sub-
stantially protein functionality are rare [60].
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4.3.1 Representation of Protein Structures

In the SCN model, the structure of a protein of N residues is represented
through an N × N contact matrix C. This matrix is defined as Cij = 1 if
sites i and j are in contact, and Cij = 0 otherwise. Two sites are considered
in contact if any two of their heavy atoms are closer than a given cut-off
distance, which we take as 4.5 A

◦
. The effective free energy associated to a

sequence of amino acids A in the configuration C is, in this type of approach,
assumed to have the form of a sum of pairwise contact interactions,

E(A,C) =
∑
i<j

CijU(Ai, Aj) , (4.5)

where Ai labels one of the 20 amino acid types and U is a 20× 20 symmetric
interaction matrix, so that U(a, b) is the interaction energy between amino
acids a and b when in contact. A useful choice for the latter is the matrix
derived in [82] in such a way to assign high thermodynamic stability to the
native states of a large set of monomeric proteins [83].

Three remarks need to be made here: (a) The effective energy parameters
take implicitly into account the effect of the solvent and they depend on
temperature, thus they express free energies rather than energies. (b) The
effective energy of a structure is defined with respect to a completely extended
reference structure where no contacts are formed and which sets the zero of
the energy scale. (c) The chain entropy sN is not included into the effective
energy, as it is constant for constant chain length N .

4.3.2 Stability Against Unfolding

The stability of the native state against unfolding can be estimated from
the negative of the native contact energy, −E(A,C∗), neglecting changes of
conformational entropy with the protein sequence. In the SCN model, we
impose that −E(A,C∗) is larger than a positive threshold −Ethr for sequences
A belonging to the neutral network.

As an alternative measure of stability, one can also use the Z-score of the
native energy, Z(A,C∗) [81,84], which gives the difference between the energy
of sequence A in configuration C∗ and its average energy in a set of alternative
configurations, {C}, in units of the standard deviation of the energy

Z(A,C∗) =
E(A,C∗) − 〈E(A,C)〉{C}√

〈E(A,C)2〉{C} − 〈E(A,C)〉2{C}
. (4.6)

When a sequence A folds into a structure C∗, the corresponding Z-score is
negative and very large in absolute value. This measure is, however, better
suited for estimating the stability against misfolding (see Sect. 4.3.3).
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4.3.3 Stability Against Misfolding

For a given sequence A, the energy landscape is defined to be well correlated
if all configurations of low energy are very similar to the configuration of
minimal effective energy, C∗. Structure similarity is measured by the overlap
q(C,C∗), which counts the number of contacts that two structures have in
common. This number is normalized by the maximal number of contacts, so
that q ranges between zero and one. In a well-correlated energy landscape,
the inequality

E(A,C) − E(A,C∗)
|E(A,C∗)| ≥ α(A) (1 − q(C,C∗)) , (4.7)

with a large α(A) holds. This inequality indicates that the energy gap between
the ground state C∗ of sequence A and any alternative structure C, measured
in units of the ground state energy, is larger than a quantity α(A) times the
structural distance 1 − q(C,C∗). The dimensionless quantity α(A), which
is the largest quantity for which the above inequality holds, can be used to
evaluate the folding properties of sequence A. For random sequences, the
lowest energy configurations are structurally different and have similar energy,
hence α(A) is close to zero. In this case, the energy landscape is rugged,
the folding kinetics is very slow, and the thermodynamic stability is low.
In contrast, computer simulations of well-designed sequences have shown that,
when α(A) is large, the folding kinetics is fast and the stability with respect
to changes in the energy parameters as well as mutations in the sequence is
very high [16, 31]. In the SCN model, we impose that α(A) is larger than a
positive threshold αthr for sequences A belonging to the neutral network.

Further, it is assumed that the ground state structure C∗ coincides with
the target structure defining the neutral network. Indeed, in all the simulations
performed using the SCN model, it was never found a sequence whose ground
state structure was different than the target one and simultaneously had a
sufficiently large energy gap. Therefore, imposing a well-correlated energy
landscape through a condition on the normalized energy gap makes it very
difficult to change the native structure into a new structure, which is also sta-
ble against misfolding. This result agrees qualitatively with the simulations of
Aita et al. [29]. It illustrates the difference between RNA and proteins, since it
is in contrast with the findings of Schuster et al., who showed that the neutral
networks of two different RNA secondary structures can be separated by just
one point mutation [10].

4.3.4 Calculation of α(A)

Candidate structures for a protein sequence were generated from all possible
alignments of the sequence with structures in the PDB. This procedure is
called gapless threading. To speed up the computation, we considered a non-
redundant subset of the PDB in which proteins with homologous sequences
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are excluded [85]. About 106 alternative structures were obtained for proteins
of 100 amino acids, with this number decreasing for longer proteins. The
energy function correctly assigns the lowest energy to the native structure for
most proteins of known structure, and it generates a well-correlated energy
landscape in which structures very different from the native have high energy
gaps, so that α(A) is large.

Most of the computer time of these simulations is spent in the calculation
of α(A′) for all possible point mutants of the actual sequence A. To speed
up this calculation, we note that α(A) is obtained from the configuration
C with the highest destabilizing power, i.e. the highest value of the energy
gap divided by the structural distance from the native configuration. This
structure changes through evolution, but it is expected that the set of high
scoring structures remains the same for neighbouring sequences. Therefore,
for each actual sequence, we store a sufficiently large number of configurations
with the highest destabilizing powers (typically 50, see [86]), and we compute
their destabilizing power in the mutated sequences A′. This procedure may
slightly overestimate α(A′), since not all configurations are used, but the
fraction of sequences for which α(A′) crosses the acceptance threshold is below
0.1% [86].

One drawback of the computation of α(A) based on gapless threading
is that the number of alternative structures generated in this way decreases
with the length of the sequence, N . Therefore, the actual value of α(A) is
overestimated for longer sequences. This is not a significant problem when,
as here, one is interested in comparing values of α(A) for different sequences
of the same length. Nevertheless, it can be convenient, in particular for long
chains, to evaluate α(A) using a different method [87]. This method estimates
the minimal energy for non-native structures through a theoretical prediction
based on the random energy model (REM) [88,89],

EREM(A) ≈ Nc〈U〉A − σU,A

√
2Nc log(mN ) , (4.8)

where Nc is the number of native contacts, 〈U〉A and σU,A are the mean and
standard deviation of the interaction energy for all possible contacts, native
and non-native ones, within sequence A, and mN is the number of independent
contact matrices for a protein of length N , satisfying physical constraints of
hard core repulsion, hydrogen bonding and compactness. The minimal energy
estimated in this way, EREM(A), is in very good agreement with the minimal
non-native energy found by threading, Emin(A) ≈ (1.003±0.009)EREM(A)−
(0.0016±0.0012), when mN is set equal to the number of structures generated
through threading, with a correlation coefficient r = 0.96 [87]. Using this
estimate, one can evaluate the normalized energy gap as

α′(A) =
E(A,C∗) − Nc〈U〉A + σU,A

√
2Nc log(mN )

E(A,C∗)(1 − q0)
. (4.9)
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The number of alternative structures mN is expected to increase exponentially
with chain length as

log(mN ) ≈ AN + B . (4.10)

The parameters have been approximately estimated as A ≈ 0.1 and B ≈ 4 in
such a way that the minimal energy coincides with the one evaluated through
threading for short chains (N < 50) and the estimated minimal effective
energy is higher than the native energy for most proteins in the PDB [87].
Finally, one sets q0 = 0.1 as the typical overlap between unrelated structures,
disregarding the length dependence of this quantity.

4.3.5 Sampling the Neutral Networks

The neutral network of a given protein structure is defined as the set of seq-
uences A for which the stability against both unfolding and misfolding, mea-
sured through E(A,C∗) and α(A,C∗), respectively, exceed predetermined
thresholds, chosen as 98.5% of the values of those parameters for the wild-
type sequence in the PDB. The threshold chosen enforces conservation of the
thermodynamic stability of the native structure C∗. We verified that the quali-
tative behaviour of the model does not change in the range between 95% and
100% of the values for PDB sequences.

The SCN algorithm [31,32] explores the neutral network of a given protein
starting from its PDB sequence A1 = APDB and iterating the following proce-
dure: At iteration n, (a) the number X(An) of viable neighbours of sequence
An is computed, and (b) the sequence An+1 is extracted randomly among all
the viable neighbours of An. In this way, we generate a stochastic process that
explores the neutral network. This process looses rather quickly the memory
of the initial sequence. The total number of viable point mutations, X(A),
expresses the local connectivity of the neutral network. This number is nor-
malized by the total number of attempted mutations, Xtot,6 thus obtaining
the fraction of neutral neighbours, x(A) = X(A)/Xtot ∈ (0, 1].

4.3.6 Fluctuations and Correlations in the Evolutionary Process

In contrast with the homogeneity assumption of Kimura’s neutral model, the
SCN model shows that stability constraints produce a broad distribution of the
fraction of neutral neighbours x(A). This distribution P (x) is shown in Fig. 4.1

6 We impose conservation of the starting cysteine residues in the sequence, and
do not allow that other residues mutate into cysteine. These requirements are
imposed because a mutation that changes the number of cysteine residues by
one would leave the protein with a very reactive unpaired cysteine that would
most likely affect its functionality and would be therefore rejected with very high
probability. The maximum number of attempted mutations is therefore Xtot =
18(N − Ncys), where N is the number of residues and Ncys is the number of
cysteine residues in the starting sequence.
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Fig. 4.1. Probability distribution P (x) of the fraction x of neutral neighbours for
myoglobin, as obtained by the SCN model (adapted from [90])
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Fig. 4.2. Auto-correlation function C(n) ≡ C(x(Ak), x(Ak+n)) of neutral connec-
tivities for sequences separated by n substitutions for myoglobin, as obtained by the
SCN model (adapted from [86])

for the neutral network of myoglobin (PDB id. 1a6g). Other proteins yield
qualitatively the same results. Besides this distribution being very broad, the
fraction of neutral neighbours is strongly auto-correlated along a trajectory. In
Fig. 4.2, we show the auto-correlation function C(x(Ak), x(Ak+n)) of x(Ak),
defined as

C(x(Ak), x(Ak+n)) =

1
m − n

m−n∑
k=1

x(Ak)x(Ak+n) − x2

σ2
x

, (4.11)
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where the mean value x = (1/m)
∑m

k=1 x(Ak) and the variance σ2
x = x2 − x2

are calculated over the whole trajectory. Our results show that the auto-
correlation decays exponentially as

C(x(Ak), x(Ak+n)) ≈ exp(−n/�x) , (4.12)

with �x of the order of three substitutions [90] and, as we shall see, it has
important consequences on the statistics of the substitution process.

Broad fluctuations and strong auto-correlations of the neutral connectivity
are a general feature of the SCN model, and distinguish it from the standard
neutral model by Kimura. They have a rather simple explanation. Defining
xi(A) as the fraction of neutral neighbours when mutation occurs at site i,
one has x(A) =

∑N
i=1 xi(A)/N . If the fraction of neutral neighbours at differ-

ent sites are not correlated, their mean x(A) is expected to have fluctuations
vanishing as 1/

√
N . The broad distribution of x(A) that we found indicates

that this is not the case. In fact, there are significant positive correlations
between almost all pairs of variables xi(A) and xj(A) [90]. These correlations
are induced by the fact that the xi(A) at each site are significantly corre-
lated with some global variable, for instance, the mean fraction of neutral
neighbours x(A). This is shown in Fig. 4.3 for the case of myoglobin, defining

Ci =
1
m

m∑
k=1

(
xi(Ak) − xi

)(
x(Ak) − x

)
σxi

σx
. (4.13)

The figure shows that all the correlations Ci are positive and significant (they
were computed from order of 106 sequences, with significance threshold of
order 10−3), and moreover, they are positively correlated with the robustness
of site i to mutation, measured by xi [90].

Therefore, sequences with large x(A) are more rebust to mutation at all
sites. As also found by Bornberg-Bauer for prototype sequences [13], and as
we will discuss in next section, these more robust sequences have higher ther-
modynamic stability, so that mutations applied to them produce more often
other stable sequences. Figure 4.3 goes one step further, and shows that there
are some sites with small xi that are less tolerant to mutations both in gen-
eral and in mutationally robust sequences (the correlation between xi(A) and
x(A) is minimal for these sequences). The structural determinants of strong
structurally constrained sites will be investigated in the next section.

4.3.7 Substitution Process

Amino acid substitutions within the SCN model are controlled by two inde-
pendent events: Random mutations, described by a Poissonian process, and an
acceptance process, which consists in testing whether the sequence is viable.
The acceptance probability for a mutation that takes place in a protein of
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Fig. 4.3. Comparison between cross-correlations and conservations for myoglobin.
The fraction of neutral mutations at site i, xi, is shown on the abscissa, and the
correlation between xi and the overall neutral connectivity x, Ci, is shown on the
ordinate. The dashed horizontal and vertical lines indicate one standard deviation
from the mean (full horizontal and vertical lines). Additionally, horizontal and verti-
cal lines at the threshold of 1.5 standard deviations below the mean are also shown.
The sites above the threshold for both quantities are shown as full circles, the sites
below the threshold for both quantities are shown as full squares, whereas the sites
that are above the first threshold but below the second, or vice versa, are shown as
open circles (adapted from [86])

sequence A is given by the neutral connectivity x(A). As a result of the
broad distribution of this variable, the resulting substitution process is not
Poissonian. For a given evolutionary trajectory (i.e. for a given sequence of
neutral connectivities {x(A1), x(A2), . . .}) one can compute the probability
that the number St of accepted mutations in a time interval t equals n. This
probability is the product of the Poissonian probability that k mutations take
place in the time interval t, times the conditional probability that n of these
are accepted,

P{St = n} =
∞∑

m=n

e−μt (μt)m

m!
Pacc(n|m) , (4.14)

where the conditional acceptance probability of n mutations out of m is
given by

Pacc(n|m) =

(
n∏

i=1

x(Ai)

) ∑
{mj}

n+1∏
j=1

[1 − x(Aj)]
mj . (4.15)
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Here, the {mj} are all integer numbers between zero and m − n satisfying
n+

∑n+1
j=1 mj = m. The probability that a mutation is accepted is thus x(A1),

as long as the protein sequence is A1, x(A2) as long as the sequence is A2

and so on.
If all sequences have the same fraction of neutral neighbours x(A) = x,

(4.14) coincides with (4.4), and the number of substitutions in a branch of
length t, St, is a Poissonian variable with mean μtx and the substitution rate
equals μx, as in Kimura’s model. If the variance of the neutral connectivity
is not zero, the moments of the substitution distribution can be computed
in the long-time limit using the central limit theorem. Define τi as the time
interval between the i-th and i + 1-th substitutions. The τi are independent
variables with exponential distribution and expectation values E[τi] = 1/μx,
E[τ2

i ] = 2/μx2. If St is large, we can apply the central limit theorem to the
mean value

∑St

i=1 τi/St, finding

St∑
i=1

τi ≈ St
1

μx

[
1 +

zB√
St

+
1
2

z2B2

St

]
≈ t , (4.16)

where z is a normalized Gaussian variable, and

B2 =
E[τ2

i ]
E2[τi]

− 1 =
(
1 − e−1/
x

)−1
(

1/x2

1/x
2 − 1

)
+

1/x2

1/x
2 . (4.17)

The normalized variance B2 is larger than one because (a) the distribution
of x is broad, so that E[1/x2] > E2[1/x] and (b) trajectories are correlated
(the term [1 − exp(−1/�x)]−1 tends to one if the correlation length �x tends
to zero). The first two moments of St can be calculated as

E[St] ≈ μt

1/x
(4.18)

R(t) ≡ E[S2
t ] − E2[St]
E[St]

≈ B2

(
1 − 3B21/x

4t

)
. (4.19)

The normalized variance R(t) is called the ‘dispersion index’. Notice that if
the substitution process is Poissonian one has R ≡ 1. The asymptotic value
of the dispersion index for large time is R(t → ∞) = B2, which is larger than
one due to the broad fluctuations and time correlations of x. Therefore, the
substitution process is overdispersed. For small t, when the process probes only
one sequence, the substitution process is expected to behave as a Poissonian
process with R(t → 0) = 1.

We compared the above predictions to the expectation values calculated
from the probability defined in (4.14). The values of the neutral connectivities
were obtained from the evolutionary trajectories {x(A1), x(A2), . . .} simu-
lated with the SCN model (details of the calculation are given in [90]). Aver-
ages along an evolutionary trajectory are indicated with angular brackets 〈·〉,
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Fig. 4.4. Statistical properties of the substitution process of myoglobin, showing
the average number of substitutions 〈St〉 divided by μt (circles), the normalized
mutation variance Rμ(t) (squares), the normalized trajectory variance Rx(t) (trian-
gles) and the normalized total variance R(t) = Rμ(t) + Rx(t) (diamonds)

whereas averages over evolutionary trajectories are indicated with an over-
line · . The mean and the normalized variance of the number of substitutions
are shown in Fig. 4.4 for the case of myoglobin. In the plot, we distinguish the
normalized mutation variance

Rμ(t) =
1

〈St〉
(
〈S2

t 〉 − 〈St〉2
)

, (4.20)

the normalized trajectory variance

Rx(t) =
1

〈St〉
(
〈St〉2 − 〈St〉2

)
, (4.21)

and the normalized total variance (the dispersion index) R(t) = Rμ(t)+Rx(t).
Notice that if x(A) = x, one obtains Rμ(t) ≡ 1 as for all Poissonian processes,
and the normalized trajectory variance Rx(t) ≡ 0. From the plot, it is also
clear that most of the overdispersion comes from Rx(t), i.e. from the variance
between different evolutionary trajectories, which can generate rather different
substitution rates.

The quantitative agreement of the dispersion index R(t) of the SCN process
with the prediction (4.19) is quite good as far as the long-time limit is
concerned, but the temporal dependence is not well captured by this first-
order approximation. The dispersion index of the SCN process is compatible
with empirically obtained dispersion indices, which are usually in the range
1.5–5 [9, 50, 91]. Hence, these observed dispersion indices may be to a large
extent due to the correlations present in the evolutionary process both in space
and in time [90]. This result provides a mechanistic explanation of the fluctu-
ating neutral space model proposed by Takahata to account for the observed
statistics of the substitution process [92].
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Here, we should notice a difference between the results shown in Fig. 4.4
and those presented in [86]. In [86], we reported that the average substitution
rate 〈St〉/t decreases in time in the SCN model, tending to the asymptotic
value μ1/x. Recently Ho et al. [93], analyzing protein sequences, observed an
apparent decrease of the substitution rate through time that would match
qualitatively the SCN prediction. However, in obtaining the results pre-
sented in [86], we sampled the initial sequences of the evolutionary trajec-
tories with equal probability. This procedure is not entirely consistent, since
the time spent at sequence A is proportional on the average to 1/x(A),
so that the process spends more time in sequences with small neutral con-
nectivity x. Taking this into account, we have sampled the initial sequence
A1 with probability proportional to 1/x(A1). The initial rate is therefore∫ 1

0
P (x) (1/x) (μx) dx/

∫ 1

0
P (x) (1/x) dx, which is equal to the final rate μ1/x,

so that the rate is now constant in time. Figure 4.4 refers to this new sam-
pling protocol. This does not modify significantly the normalized variances
presented in Fig. 10 of [86], which was obtained with homogeneous sampling.
Therefore, the results of [86] cannot explain the empirical observations of non-
constant rate by Ho et al. [93].

4.4 Site-Specific Amino Acid Distributions

The reconstruction of phylogenetic trees from sequence alignments requires the
use of a model of protein evolution [4,94] (see also the chapters by Xia and by
Liò et al. in this book). In this context, the effects of both the mutational and
the selection processes on protein folding and function must be taken into
account. It is well known for instance that the local environment of a pro-
tein site within the native structure influences the probability of acceptance
of a mutation at that site [95]. Nevertheless, such a view, which is based on
structural biology, has a relatively limited impact on studies of phylogenetic
reconstruction, where the corresponding models usually rely on substitution
matrices that do not consider the structural specificity of different sites. The
most used substitution matrices, such as JTT [96], are obtained by extrapo-
lating substitution patterns observed for closely related sequences, and they
have low performances when distant homologs are concerned [97].

To account for selection at the protein level, it is necessary to consider
site-specific amino acid distributions within a protein family [98]. The use
of site-specific substitution matrices improves substantially maximum likeli-
hood methods for reconstructing phylogenetic trees [99–103]. In the studies
mentioned above, site-specific constraints are obtained either through simula-
tions of a protein evolution model or by fitting the corresponding parameters
within a maximum likelihood framework. As we will discuss in the following,
it is possible to deduce from the SCN model an analytical expression for site-
specific amino acid distributions with no adjustable parameters. The resulting
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distributions are in very good agreement with model simulations and with
site-specific amino acid distributions obtained from the PDB [39,40].

Sites in the same protein evolve in a correlated way, because they undergo
global stability constraints. However, Maximum Likelihood approaches become
almost computationally unfeasible unless one assumes that sites evolve inde-
pendently. Here, we will define a mean-field protein evolution model with
independent sites that reproduces with great accuracy the results of the SCN
model with global stability constraints. The price to pay for this simplifica-
tion is that we shall consider an effective selection process that depends on
the mutation process. At the mean-field level, mutation and selection, that
are independent processes in the Darwinian framework, become effectively
entangled.

4.4.1 Vectorial Representation of Protein Sequences

The interaction matrix U in (4.5) can be written in its spectral form as
U(a, b) =

∑20
α=1 εα u(α)(a)u(α)(b), where εα are the eigenvalues, ranked by

their absolute value, and u(α) are the corresponding eigenvectors. The main
contribution to the interaction energy is given by ε1 u(1)(a)u(1)(b), which has
a correlation coefficient 0.81 with the elements U(a, b) and a negative eigen-
value ε1. It is well known that hydrophobic interactions constitute the most
significant contribution to pairwise interactions in proteins, the components
of the main eigenvector are strongly correlated with experimental hydropathy
scales [104,105]. By considering only this main component, one can define an
effective energy function, H(A,C), which provides a good approximation to
the energy, (4.5), as

H(A,C)
kBT

≡ ε1
∑
i<j

Cij h(Ai)h(Aj) . (4.22)

The vector h(A) ≡ u(1)(A) is denoted as the Hydrophobicity Profile (HP)
of sequence A [38]. This is an N -dimensional vector whose i-th component is
given by h(Ai) ≡ u(1)(Ai). The 20 parameters h(a) ≡ u(1)(a), obtained from
the PE of the interaction matrix, are called interactivity parameters, and are
reported in Table 4.1.

Table 4.1. Interactivity scale used in this chapter and presented in [38]

A R N D C Q E G H I
0.1366 0.0363 −0.0345 −0.1233 0.2745 0.0325 −0.0484 −0.0464 0.0549 0.4172

L K M F P S T W Y V
0.4251 −0.0101 0.1747 0.4076 0.0019 −0.0432 0.0589 0.2362 0.3167 0.4083



4 The SCN Model of Protein Evolution 99

4.4.2 Vectorial Representation of Protein Folds

A convenient vectorial representation of protein structures may be derived
from the PE of the contact matrix C, which we denote as c. The latter max-
imizes the quadratic form

∑
ij Cij ci cj with the condition

∑
i c2

i = 1. In this
sense, ci can be interpreted as the effective connectivity at site i, since sites
with large ci are in contact with as many as possible sites j with large cj . All
the components of c have the same sign, which, by convention, is taken as
positive. Moreover, if the contact matrix represents a single connected graph,
as is the case for single-domain globular proteins, the information contained in
the PE is in most cases sufficient to reconstruct the whole contact matrix [37],
and consequently the full three-dimensional structure [106].

4.4.3 Relation Between Sequence and Structure

The constraint of thermodynamic stability predicts that there should be a
correlation between the vectorial representations of protein sequences and
structures.

For a given protein fold, we define the optimal HP, denoted as hopt, as
the vector that minimizes the approximate effective free energy, (4.22), under
the constraints that its mean hydrophobicity, 〈h〉 = N−1

∑
i hopt(Ai), and its

mean square value, 〈h2〉 = N−1
∑

i h2
opt(Ai), are kept fixed.7 These constraints

imply that the mean and standard deviation of non-native interactions is also
kept fixed, so that the normalized energy gap, (4.9), is also kept large. From the
property of the PE that it maximizes

∑
ij Cij ci cj with the condition

∑
i c2

i =1,
it is clear that hopt is strongly correlated with c [38]. In this formulation, 〈h〉
and 〈h2〉 are parameters not determined by the native structure, and they
should guarantee a large normalized energy gap (in fact, in the approximation
given by (4.22), the mean and mean square contact interactions that enter into
the calculation of α(A) by (4.8) are 〈U〉 = ε 〈h〉2 and 〈U2〉 = ε2 〈h2〉2).

The optimal HP represents an analytical solution to the problem of
sequence design for the effective energy function (4.22), and thus an app-
roximate solution for the energy function, (4.5). In the SCN evolutionary
model, mutations are accepted whenever the effective free energy and the
normalized energy gap overcome predefined thresholds. Thus, the optimal HP
is not expected to be ever realized during evolution, since they correspond to a
negligible volume in the neutral network. However, thermodynamically stable
sequences compatible with the given fold are expected to have HP values not
too different from the optimal one. This is indeed observed in simulations of
the SCN model. The mean correlation coefficient between the PE of the fold
and the HP of the sequences generated through SCN simulations is typically
0.45, which is significant. The HP averaged over all sequences compatible with

7 Here, we denote by angular brackets the average over all positions in a given
protein sequence or structure.
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a given fold,
[
h
]
evol

, correlates much more strongly with the PE of that fold
(and hence with the optimal HP), with a correlation coefficient larger than
0.95 for all of the studied folds [38]. These results show that one can recover
the optimal HP through an evolutionary average of the HPs compatible with
the protein fold.

Protein families represented in the FSSP [68] and in the PFAM [107] data-
bases show qualitatively similar results. The correlation between the PE of the
fold and the HP of individual sequences compares well with what was found
in SCN simulations. The average HP over aligned sequences from the same
protein family correlates more strongly with the PE than individual HPs: The
average correlation coefficient is 0.58 for FSSP families and 0.57 for PFAM
families [38]. This correlation is however much weaker than the analogous one
for SCN protein families, which is 0.96. There are several explanations for this
weaker correlation. First, this can be due to functional conservation, which
plays an important role in protein evolution and is not represented in the
SCN model. Part of the discrepancy can be also attributed to the approxi-
mate character of the effective energy function used to test the thermodynamic
stability. Furthermore, real protein families are much smaller than SCN fam-
ilies, for which we generated of the order of 106 sequences. To test for such
an effect, the average HP has been also computed using only few hundreds
of SCN sequences, i.e. of the same order of magnitude as in FSSP or PFAM
families. As a result, the correlation between the average HP and the PE was
found to be reduced to values comparable to those observed for the FSSP and
the PFAM sequence databases [38].

4.4.4 The PE as a Structural Determinant
of Evolutionary Conservation

As showed by Bornberg-Bauer [13], thermodynamic stability and mutational
stability are correlated. Sequences that are more stable can also bear a larger
number of mutations. Bornberg-Bauer called the sequence of maximal muta-
tional stability the prototype sequence of a fold, and showed that it has also
maximal thermodynamic stability. In our model, the optimally stable sequence
can be predicted analytically to have a HP that correlates very strongly with
the PE. Sequences close to the optimal one, in the sense that they have a large
correlation coefficient r(h(A), c), are therefore expected to bear a large num-
ber of mutations and to have larger neutral connectivity x(A). We verified this
prediction using the SCN families. Although there is a significant correlation
between the two quantities, the scattering of the data is very large. Thus in
Fig. 4.5, we plot x(A) averaged over protein sequences that have r(h(A), c)
in the same bin of width 0.02, as obtained for mesophilic rubredoxin (PDB
id. 1iro). Sequences close to the optimal one have a very large fraction of
neutral neighbours, as expected.

Thus, the relation r(h(A), c) between PE and HP explains a significant
part of the sequence variation of the overall mutational stability x(A). As we
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Fig. 4.5. Mean fraction of neutral neighbours 〈x(A)〉 as a function of the correlation
coefficient r(h(A), c) between the vectorial representations of sequence h(A) and
structure c for mesophilic rubredoxin (error bars indicate the standard deviation of
the mean)

will see in the next section, the PE explains also a large part of the site-specific
variation of mutational stability, with sites having PE components that are
smaller or larger than the mean being more conserved through evolution.

4.4.5 Site-Dependent Amino Acid Distributions

The SCN model of protein evolution generates trajectories in sequence space
for which the resulting HP fluctuates around the optimal HP, the latter being
strongly correlated with the PE of the protein fold’s contact matrix [38]. This
remarkable feature can be used to compute analytically the site-specific dis-
tribution of amino acid occurrences πi(a), where i indicates a protein site and
a one of the 20 amino acid types [39].

To derive an analytical expression for πi(a), the correlation coefficient
between the PE c of the native contact matrix and the evolutionary aver-
age of the hydrophobicity vector,

[
h
]
evol

, is assumed to be exactly 1, yielding
that the two vectors are linearly related as[

hi

]
evol

≡
∑
{a}

πi(a)h(a) = A (ci/〈c〉 − 1) + B , (4.23)

where the sum over {a} is over all amino acids, and

A =

√√√√ 〈[h]2
evol

〉 − 〈[h]
evol

〉2(〈c2〉 − 〈c〉2)/〈c〉2 and B = 〈[h]
evol

〉 . (4.24)

In the above equations, two kinds of averages have been introduced: The
angular brackets, denoting the average over the N sites of the protein,
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〈f〉 = N−1
∑

i fi, where the corresponding standard deviation is denoted as
σ2

f = 〈f2〉 − 〈f〉2, and the square brackets, denoting site-specific evolutionary
averages,

[
fi

]
evol

=
∑

{a} πi(a) f(a).
Equations (4.23) and (4.24) represent the conditions that the stationary

distributions πi(a) have to fulfil in order to guarantee a perfect correlation
between PE and the average HP. Assuming that these conditions are the
only requirement that the πi(a) have to meet, we require that the πi(a) are
the distributions of maximum entropy having the given average values. It is
well known that the solution of this optimization problem are Boltzmann-like
(exponential) distributions, characterized by an effective ‘temperature’ |βi|−1

that, in this context, varies from site to site and measures the tolerance of site
i to accept mutations over very long evolutionary times,

πi(a) =
exp[−βi h(a)]∑

{a′} exp[−βi h(a′)]
, (4.25)

with the constraint, (4.23),∑
{a}

exp[−βi h(a)] [h(a) − A (ci/〈c〉 − 1) − B] = 0 . (4.26)

Equation (4.26) states an analytical relation between the ‘Boltzmann pa-
rameter’ βi and the PE component ci, given the two evolutionary para-
meters A and B. This equation indicates that βi equals zero if ci/〈c〉 =
1+A−1

(∑
{a} h(a)/20−〈[h]

evol
〉), and that βi becomes negative for larger ci

and positive for smaller ci. The relationship between βi and ci is expected to
be almost linear in the range

∣∣ci/〈c〉 − 1
∣∣� 1. In addition, βi tends to minus

infinity when the average hydrophobicity at site i,
[
hi

]
evol

, tends to the max-
imally allowed value, and to plus infinity when the average hydrophobicity at
site i tends to the minimum allowed value.

Equation (4.26) has a simple qualitative interpretation. Positions with
large eigenvector component ci are buried in the core of the protein structure
and are therefore with high probability occupied by hydrophobic amino acids
(positive h(a)), having a large and negative βi. Conversely, surface sites with
small ci are more likely occupied by polar amino acids (negative h(a)), having
large and positive βi. Intermediate sites are the most tolerant to mutations,
having a small |βi| corresponding to high substitution temperature.

The distributions derived here refer to very long evolutionary times, when
memory of the starting sequence has been lost. We recall the three assumptions
that have been made for deriving the site-specific distributions: (a) The first
assumption is that selection on folding stability can be represented effectively
as a maximal correlation between the HP of sequences compatible with a given
fold and the optimal HP of that fold, the latter nearly coinciding with the PE.
This assumption follows directly from an approximation of the effective free
energy function with its principal (hydrophobic) component, (4.22). (b) The
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second assumption is that the average of the HP of selected sequences over
very long evolutionary times has a correlation coefficient of unity with the PE,
i.e. all other energetic contributions average out. (c) The third assumption is
that this correlation is the only relevant property of the site-specific amino
acid distributions, indicating that these distributions are the distributions of
maximum entropy whose site-specific averages have correlation one with the
PE, thus fulfilling the stability requirement. From these three assumptions, the
Boltzmann form of the amino acid distributions follows in a straightforward
manner. To compute the site-specific Boltzmann parameters, however, one
still needs to determine the positional mean and standard deviation of the
site-specific HPs. These quantities depend on the mutation process and the
selection parameters. They were computed directly from the data in such a
way that the analytical prediction does not contain any free parameter.

The agreement between the predicted site-specific amino acid distributions
and those observed in SCN simulations is very good [39], showing that this
analytical approach reproduces quantitatively the statistics of the much more
complex SCN process.

Boltzmann distributions have a long history in studies of protein struc-
ture and evolution. Structural properties of native protein structures, as for
instance amino acid contacts, have been assumed to be Boltzmann-distributed
[108], and Boltzmann statistics for structural elements was predicted in sta-
ble folds of globular proteins [109]. Our work points out to a complementary
explanation for such distributions.

Shakhnovich and Gutin [110] proposed a model of sequence design through
Monte Carlo optimization, which produced a Boltzmann distribution in
sequence space. A mean-field approximation of this model [17, 111] results
in site-specific amino acid distributions of the form

πi(a) ∝ exp[−β φi(a)] , (4.27)

formally similar to (4.25). There are, however, three important differences
between the present formulation and (4.27). First, (4.27) was derived as a
mean-field approximation to a Boltzmann distribution for entire sequences,
whereas (4.25) was derived from the relationship between average hydropho-
bicity at a given site and the PE component. Second, in (4.27), the Boltzmann
parameter β is the same for all sites, whereas βi, obtained here from the PE,
changes along the protein structure. Third and most important, to compute
(4.27), aligned families of natural proteins were used in [17, 111], whereas
the present computation only requires the PE and two empirical values, the
average and the standard deviation of the HP.

In [100, 101], Goldstein and co-workers assumed that the site-specific dis-
tributions of physico-chemical amino acid properties have a Boltzmann form.
From this assumption they derived a protein evolution model to be used in
phylogenetic reconstruction within a maximum likelihood framework. Since
the properties that were used in these studies are hydrophobicity and amino
acid size, the proposed distributions are a general case of those discussed here.
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However, differently from [100, 101], here we classify sites according to the
PE component, which is a structural indicator strongly correlated with con-
servation, and we compute the Boltzmann parameters analytically, whereas
in [100,101] they are fitted using a maximum likelihood framework.

4.4.6 Sequence Conservation and Structure Designability

We have shown that there is a direct relationship between a structural indica-
tor, the PE, and site-specific measures of long-term evolutionary conservation
that imposes limits to divergent evolutionary changes. This relationship also
provides a link between the topology of a fold and its designability.

One convenient measure of the amino acid conservation at a given site is
given by the rigidity, defined in terms of πi(a) as

Ri ≡
∑
{a}

[πi(a)]2 =

∑
{a} exp[−2βi h(a)]{∑
{a} exp[−βi h(a)]

}2 . (4.28)

The value Ri = 1 means that the same amino acid is present at site i in
all sequences, leading to complete conservation and β−1

i = 0. In general, the
rigidity decreases with increasing temperature |βi|−1. One can use (4.26) and
(4.28) to compute the rigidity directly from the PE.

A standard information-theoretic measure of site-specific sequence conser-
vation is given by the entropy of the amino acid distribution

Si ≡ −
∑
{a}

πi(a) log [πi(a)] = log [Z(βi)] + βi [hi]evol , (4.29)

where Z(βi) ≡ ∑
{a} exp[−βi h(a)]. The entropy attains its maximum value,

Si = log(20), at βi = 0, and it decreases with increasing |βi|. Predictions of the
entropy based on a different approach, (4.27), using aligned protein families
have been obtained in [17,111].

An important property of the entropy is that its exponential, exp(Si), pro-
vides an estimate of the average number of amino acid types acceptable at
site i over very long evolutionary times. Assuming that the amino acid dis-
tributions at different sites are independent from each other, the exponential
of the sum of all site-specific entropies, exp(

∑
i Si), gives an estimate of the

region of the sequence space compatible with a given fold. The size of this
region represents the designability of the fold. Although the independence
assumption is a clear oversimplification, the estimate of designability that can
be obtained should be a valuable approximation, and the present approach
allows to connect it explicitly to a topological feature of the protein native
structure [112,113].

Kinjo and Nishikawa [114] have recently pointed out the existence of a
strong relationship between hydrophobicity and the main eigenvector of sub-
stitution matrices derived from protein alignments with various values of the
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sequence similarities of the aligned proteins. They considered the eigenvector
corresponding to the largest eigenvalue (in absolute value) of the substitution
matrices. For high sequence similarities (above 35%), this eigenvector indi-
cates the propensity of the amino acid to mutate over short evolutionary times
(mutability). For low sequence identities (below 35%), corresponding to long
evolutionary times, this eigenvector is very strongly correlated with hydropho-
bicity. This correlation is easily understood in the light of the results presented
here. In fact, Kinjo and Nishikawa used Henikoffs’ method [115] for deriving
substitution matrices from observed frequencies of aligned amino acids at sites
with various PE values. In the present notation, these substitution matrices
can be indicated as M(a, b) ≈ log

[〈πi(a)πi(b)
〉
/
〈
πi(a)

〉〈
πi(b)

〉]
, where the

angular brackets denote positional average. In other words, these substitution
matrices measure the tendency of two residue types a and b to co-occur at
the same sites. The relationship between large time substitution matrices and
hydrophobicity gives therefore independent support to the results discussed
here.

4.4.7 Site-Specific Amino Acid Distributions in the PDB

We tested how the predicted site-specific distributions compare to those
obtained from a representative subset of the PDB [39]. For this compari-
son, we considered a non-redundant subset of single-domain globular proteins
in the PDB, with a sequence identity below 25% [85]. Globular folds were
selected by imposing that the fraction of contacts per residue was larger than
a length-dependent threshold, Nc/N > 3.5 + 7.8N−1/3. This functional form
represents the scaling of the number of contacts in globular proteins as a func-
tion of chain length (the factor N−1/3 comes from the surface to volume ratio),
and the two parameters are chosen so as to eliminate outliers with respect
to the general trend, which represents mainly non-globular structures. Single-
domain folds were selected by imposing that the normalized variance of the PE
components is smaller than a threshold,

(
1 − N〈c〉2)/(N〈c〉2) < 1.5. In fact,

multi-domain proteins have PE components that are large inside their main
domains and small outside them (the PE components would be exactly zero
outside the main domains if the domains would not share contacts). There-
fore, multi-domain proteins are characterized by a larger normalized variance
of PE components with respect to single-domain ones. It has been verified
that the threshold of 1.5 is able to eliminate most of the known multi-domain
proteins and very few of the known single-domain proteins.

In [39], we selected 404 sequences of less than 200 amino acids, and classi-
fied sites according to the value of ci/〈c〉 into bins, where 〈c〉 denotes the aver-
age over a single structure. For each bin, the observed distributions πci/〈c〉(a)
were fitted with an exponential function of the hydrophobicity parameters,
πci/〈c〉(a) ∝ exp[−βci/〈c〉 h(a)]. As in the case of the SCN simulations, the
interactivity scale derived from the effective free energy function, (4.22), was
used. The exponential fit was sufficiently good, and yielded the observed
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Boltzmann parameters βci/〈c〉 as a function of the normalized PE components,
ci/〈c〉.

Next, one can calculate the predicted Boltzmann parameters βci/〈c〉 from
the relation

ci/〈c〉 = 1 + Ã−1

[∑
{a} h(a) exp[−βci/〈c〉 h(a)]∑

{a} exp[−βci/〈c〉 h(a)]
− B̃

]
, (4.30)

where Ã and B̃ are defined as the analogous terms in (4.24), and the averages
indicated by the square brackets in (4.24) now denote, instead of the evolu-
tionary averages over a protein family, the average over all sites with ci/〈c〉 in
the same bin, even belonging to different structures, whereas angular brackets
in (4.24) now denote the average over all values of ci/〈c〉 weighted with the
number of sites in the bins.

The observed Boltzmann parameters are compared in Fig. 4.6 to the pre-
dictions of (4.30). The agreement is remarkable, as the predictions do not
involve any adjustable parameter, since Ã and B̃ are calculated from the
PDB data [39].

Fig. 4.6. ‘Boltzmann parameter’ βci/〈c〉 as a function of the normalized PE compo-
nent ci/〈c〉 (symbols) obtained by analysing a subset of 404 non-redundant single-
domain globular structures. The continuous line shows the analytical prediction,
(4.30), obtained using the mean hydrophobicity 〈

[
h
]
PDB

〉 = 0.128 and the variance

〈
[
h
]2
PDB

〉 − 〈
[
h
]
PDB

〉2 = 0.009 as obtained from this set. The dashed part of the
curve indicates the forbidden area ci < 0. The inset exemplifies the numerically
obtained − ln[π(a)] vs. hydrophobicity h(a) of amino acid a (symbols), as obtained
for 2.45 ≤ ci/〈c〉 < 2.5, yielding via a linear fit (shown as line) a value of β = −4.53
for this bin (adapted from [39])
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4.4.8 Mean-Field Model of Mutation plus Selection

Despite the good agreement with observations, the predicted distributions
do not take into account the mutation process acting at the DNA level, but
consider that all mutations from one amino acid to another are equiprobable.
To incorporate the DNA level into the SCN scheme, we represent protein
evolution at site i as an effective stochastic process with transition matrix

T (a, b) = Pμ(a, b)Pfix,i(a, b) (4.31)

for a substitution from a to b �= a. The first factor represents the mutation
process, and it is the same at all positions, and the second one represents the
site-specific neutral fixation of mutations that conserve thermodynamic stabil-
ity. Results from the SCN model show that, for what concerns the stationary
distribution, the fixation term can be written as

Pfix,i(a, b) = min {1, exp (−βi [h(b) − h(a)])} , (4.32)

where the Boltzmann parameter βi takes the value that fulfils (4.23). The
larger the absolute value of βi is, the larger is the fraction of mutations that
are eliminated by negative selection for protein stability and the larger is the
mutational load.

The stationary distribution of the complete transition matrix has now the
form π(a, β) ∝ wβ(a) exp[−β h(a)], where wβ(a) satisfies the equations

0 =
∑

{b},b �=a

min {exp [−β h(b)] , exp [−β h(a)]}

× [wβ(a)Pμ(a, b) − wβ(b)Pμ(b, a)] , (4.33)

for all final amino acid states b. If the mutation matrix satisfies the detailed
balance equation, w(a)Pμ(a, b) = w(b)Pμ(b, a), which is called ‘reversibility’
in the molecular evolution literature, then the stationary distribution of the
mutation plus fixation process becomes

πi(a) =
w(a) exp [−βi h(a)])∑

{a′} w(a′) exp [−βi h(a′)]
, (4.34)

where w(a) is the stationary distribution of the mutation process, which is
also the stationary distribution of the protein evolution process at sites where
βi equals zero (no mutations are rejected).

Within this more general context, the case w(a) ≡ 1, which corresponds
to Pμ(a, b) = 1/20, is the mutational model that was adopted in the previ-
ous subsection. Despite its simplicity, it provides already a surprisingly good
prediction of the observed amino acid frequencies. If we adopt a reversible
mutational model at the nucleotide level, we find

w(a) ∝
∑

codons(a)

f(n1) f(n2) f(n3) , (4.35)
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where f(n) is the stationary frequency of the four nucleotides A, T, G and C.
Using uniform nucleotide frequencies, f(n) ≡ 1/4 (or, in other words, w(a)
proportional to the number of codons) improves the prediction by 40% when
measuring the similarity using the Jensen-Shannon (JS) divergence [40], with-
out introducing any free parameter. By fitting the nucleotide frequencies,
we can further improve significantly the prediction by 30% with only three
free parameters [40]. The optimal nucleotide frequencies are f(T) = 0.24,
f(A) = 0.31, f(C) = 0.19 and f(G) = 0.26. Notice that the optimal nucleotide
frequencies violate Sueoka’s parity 2 rule f(A) = f(T) and f(C) = f(G) [116],
hinting at an asymmetric distribution of coding sequences on the two DNA
strands [117].

Note that the site-specific mean hydrophobicity now depends on the
parameters of the mutation process, so that

[
hi

] ≡
∑

{a} h(a)w(a) exp[−βi h(a)]∑
{a} w(a) exp[−βi h(a)]

= A (ci/〈c〉 − 1) + B . (4.36)

Therefore, the selection parameters βi, defined implicitly by the above equa-
tion, also depend on the parameters of the mutation process. This looks at
first sight in contradiction with the Darwinian paradigm according to which
selection and mutation are independent forces. However, the contradiction is
only apparent, as shown by the fact that the predicted distributions agree
very well with simulations of the SCN model with mutations at the DNA
level [117], for which the Darwinian paradigm holds. In the SCN model protein
sites evolve in a correlated way as a result of global stability constraints. The
effective model presented here is a mean-field model in which sites evolve inde-
pendently, which constitutes a considerable simplification, in particular with
respect to the task of evaluating likelihoods. The price to pay is that the selec-
tion parameter has to be computed self-consistently as the result of the mean
hydrophobic environment created by other residues, in which the mutation
process enters. For instance, when mutations favour the T nucleotide, that in
second codon positions mostly codes for hydrophobic amino acids, the β para-
meter vanishes at hydrophobic positions with large ci/〈c〉, whereas, with the
opposite mutation pattern, the β parameter vanishes at hydrophilic positions
with small ci/〈c〉. Therefore, mutation and selection, although independent
processes at a mechanistic level, become effectively entangled in the mean-field
model. Accordingly, the mutation load, i.e. the fraction of mutants eliminated
by negative selection, depends on the mutation bias [117], and so do the prop-
erties of protein folding thermodynamics: When the bias favours hydrophobic
mutations, the balance between stability with respect to unfolding and stabil-
ity with respect to misfolding shifts towards the former [57,117]. In this way,
the mutation process has a deep influence on the properties of proteins.
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4.5 Conclusions

We have described how the conservation of protein structures influences the
statistical properties of the evolutionary process by reviewing results that
were obtained by using the SCN model. We have given particular emphasis to
the effects of structure conservation on the topology of the neutral networks
in sequence space and on the correlations during evolutionary trajectories,
including the mutual effects on connected structural sites. Additionally, we
have explained how the site-specific distributions of amino acids can be derived
from the SCN model are consistent with those obtained from an analytically
solvable mean-field model.

As illustrated by the results that we discussed, the inclusion of structure
conservation in evolutionary models represents a powerful source of insight
into the rules that determine molecular evolution. With the advent of struc-
tural genomics initiatives and the constant advances in computer technology,
the range of applications of this approach is expected to expand considerably
in the future.
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5

Towards Unifying Protein Evolution Theory

N.V. Dokholyan and E.I. Shakhnovich

5.1 Two Views on Protein Evolution

There are many proposed models for protein domain evolution. The main
contention [1], however, is between divergent [2] and convergent [3] mod-
els of evolution. Divergent evolution proposes that there was an ancestor to
all domains that we see today and consequently all domains are historically
related to each other. Convergent evolution claims that chance is largely res-
ponsible for the appearance of new kinds of domains. Convergent evolution
explains the prevalence of certain types of structures by stating that those
structures are more favorable and are often recycled for different functions.
The distinction between convergent and divergent evolution is neither abstract
nor purely academic. If divergent evolution is the primary model responsible
for the appearance of new domains, then it is possible to reconstruct lineages
of domains, follow structural change, and predict contextual functional ranges
that occur due to well-defined evolutionary pressures. However, if convergent
evolution is the main driving force behind the appearance of new structures
and functions, in principle there should be no discernable structure–function
relationship. An important step in understanding evolution is the quantifica-
tion of dominant evolution scenario(s) as theoretical background for derivation
of the structure–function correlation. Here, we describe recent advances in this
direction.

5.2 Challenges in Functionally Annotating Structures

To outline the steps that are needed to create a theory of structure–function
correlation, we would like to first outline the challenges in doing so. First, we
have a problem of finding the “atomic unit” of functionality in proteins. This
atomic unit is commonly taken to be a protein domain. This is so because
domains can be both structurally sound and functional outside the protein
that they are a part of. The most common ways of finding protein domains rely



114 N.V. Dokholyan and E.I. Shakhnovich

heavily on personal“intuition” [4] and are often points of vigorous debate [5,6].
However, such an atomic unit must be agreed upon if a theory of structure–
function relation is to succeed. An atomic unit is integral to addressing the
structure–function correlation because of the need to “compare” these units.
If we pick incorrect atomic units, comparisons will be plagued by problems
like “flow of structure” and overlapping sets of nonunique functions.

The determination of the function for a hypothetical protein is currently
based on three strategies [7]. The first strategy is based on finding sequence
similarity to known proteins. Even at low sequence similarities, there may
be a set of conserved amino acids constituting an active site or a conserved
hydrophobic core [8–11]. In the case of a conserved active site, similar amino
acids may indicate the function of a hypothetical protein. The second strategy
involves the search for protein surface cavities using sequence and structural
similarities to protein with known function. As in the first strategy, the extent
of the success of this methodology depends strongly on the conservation of
local sequence and structural motifs. In addition, the second strategy relies
on the knowledge of the protein structure. The driving assumption for these
strategies is the possible similarity of the active sites between proteins sharing
the same or similar function [12,13]. Also, there have been several mechanisms
proposed to search for local functional motifs by comparison to libraries of
three-dimensional structural templates [13–15] and the analysis of the physi-
cal properties of protein surfaces. Teichmann and Thornton [7, 16] described
two examples of correct functional annotation of hypothetical proteins: the
HdeA protein from Escherichia coli [17] and the protein corresponding to
gene 226 from Methanococcus janaschii [18, 19]. Finally, the third strategy is
based on the crystalographic studies of the bound cofactors in the native pro-
tein structure. The main limitation of this strategy is that it requires experi-
mental reconstruction of the three-dimensional structures of protein–ligand
complexes. The efforts to annotate function exclusively based on structure
and sequence, as discussed above, are complicated by the fact that different
sequences may fold into similar structures [4] but have different functions.
A notable example of functional diversity inside a structurally homologous
family is the case of the P-loop NTPases. The structures of RecA (2reb) [20]
and adenylate kinase (2ak3) [21] proteins are similar. Both are alpha and beta
proteins. Both contain P-loop topology. Both are placed in the same SCOP
family [4]. Yet, their functions are quite distinct. RecA is a DNA repair pro-
tein, while the adenylate kinase is a transfer protein transferring phosphate
groups from AMP to ADP.

The problem is further complicated when some clearly homologous genes,
found through high scoring sequence comparison, fold into the same structure,
but perform different functions depending on the genome they are expressed
in. For example, two sequence homologues of an alpha/beta hydrolase share
more than 75% sequence identity. Yet, the E. coli version has the function
of a serine-activating enzyme, while the human homologue is a lysosomal
carboxypeptidase [22].
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Another challenge in understanding the structure–function relationship in
protein domains is that it is difficult to define quantitatively the metric of the
“function space.” While structural relationships between protein domains are
easily quantifiable, so that several good measures of it exist – Z-score [23–25]
and RMSD, the distance in functional space is poorly defined. A way to
address this crucial issue is by using a hierarchical description of protein func-
tionality and probabilistic models that aim to quantify functional proximity
based on dominating functional annotations.

Finally, the idea of understanding the protein function from individual
characteristics is exacerbated by some puzzling findings where evolution can-
not be easily traced. These findings were attributed most often to conver-
gent evolution. For example, Ponting and Russel [26] describe the case of the
Ser/His/Asp catalytic triad [27], which has been identified in five completely
different protein folds. These folds apparently do not share any common ances-
tor based on extensive sequence similarity searches. Therefore, these folds are
not considered homologous, yet their functions are the same and the catalytic
triad is also strikingly similar.

5.3 The Importance of the Tree of Life

Along with creating methods for measuring sequence, structure, and metabolic
pathway variability, we also have to create a way to describe the context
(see [9]) for each sequence and structure. A hierarchical description of the
context exists now and is referred to as the “tree of life” [28, 29]. The tree of
life describes the most probable divergence of organisms (or most parsimonious
way to describe their interrelationship based on multiple sequence alignment
of a single ubiquitous protein). An example of a tree based on this principle
of parsimony was constructed in the mid-1970s by Woese and collaborators
who used SSU rRNA molecule as a molecular chronometer. On the basis of
this information, most trees of life are now drawn [30–33]. SSU rRNA is used
because it is widespread in organisms and its structure is highly conserved [33].

There is, however, considerable debate about the precision of the phylogeny
predicted by a tree drawn purely on rRNAs alone. This dissention stems partly
from the fact that other genes give believably different trees for the same
set of organisms [34–42]. Further, apparently different trees can be produced
by naturalistic methods of traditional phylogeny [43–45]. It has been noted
that due to the existence of lateral transfer – a phenomenon where genes
are transferred via a plasmid or vector or some other method other than
divergence to another organism – nets should be used instead of trees to
represent interrelationships between organisms [46]. Indeed, the building of
an accurate tree of life or a net of life is very important, both because it
is an interesting academic challenge and because it is a necessary part in
understanding the context of the structure–function relationship elucidation
of such aspects as functional pressure on domain evolution.
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5.4 Building the PDUG

To consider sequence, structure, and function [47] information in a unified,
systematic way, Shakhnovich et al. [48] defined both gene families and fold
families (sequence and structure homologies) quantitatively using the Protein
Domain Universe Graph (PDUG) [49]. The PDUG is a graph where nodes
are sets of closely related sequences folding into well-defined domains [50, 51]
and edges are connections between the nodes that are based on structural
similarity (Fig. 5.1), while sequence identity between any pair of sequences
belonging to different nodes is less than 25%. To build the PDUG, Dokholyan
et al. [49] took all sequences from NRDB90 [52] and all structural domains
from HSSP [51]. Shakhnovich et al. [48] further used BLAST [53] sequence
homology to detect all sequences in NRDB90 with more than 25% sequence
identity to each HSSP domain. That set of sequences was combined into a
single gene family. Using cross-indexing between Swiss-Prot [54] and InterPro
[55] all equilogs (different sequences with the same function) belonging to every
gene family were identified. Those equilogs are further used to reconstruct the
functional flexibility score (FFS; see [6]).

Using this PDUG formalism, it is possible to explore global correlations
between sequence, structure, and function determinants. For example, we can
define a gene family based on micro-evolutionary considerations: the PDUG
represents on many evolutionary scales the variability accessible to a given

PDUG

Gene families 
(ID>25%)

Equilogs

Gene ontology

Functional 
Flexibility 

Score

Fig. 5.1. A diagram of the scaled organization and intrinsic properties of the PDUG.
The PDUG is built hierarchically: first, domains’ structural similarities are compared
to each other and from this information the structural graph is created. All the
sequences from NRDB with more than 25% identity to the original sequence of each
domain on the PDUG are collected into a gene family. All the equilogs (sequences
with the same function) matching the gene family are collected and used to create
a probabilistic GO tree from which the FFS is calculated using (5.1)
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gene upon mutation, whether that variability is in sequence, function, or
structure space. Unlike other definitions of gene families [50,56], the definition
proposed by Shakhnovich et al. [48] is local, i.e., with respect to a particu-
lar gene. The gene family of a gene is, therefore, all the immediate sequence
neighbors inside a PDUG node. Similarly, the fold family of a structure is
all the structural neighbors of that domain on PDUG (Fig. 5.1). By defining
the cutoff value for the sequence or structure comparison, it is possible to
control the variability for that gene, thus implicitly controlling the allowed
evolutionary divergence time on which structure–function determinants are
calculated. This approach turns out to be invaluable in gleaning new insights
into structure–function correlation, coevolution, and definition of important
properties in the PDUG.

5.5 Properties of the PDUG:
Power Laws on Very Different Evolutionary Scales

The properties of the PDUG have been recently addressed in several works
[49,57,58]. The properties of the PDUG largest cluster were determined [49].
The size of the largest cluster in the PDUG and random control graph were
determined and compared as a function of the structural similarity score Zmin

[49] defined by FSSP [24]. The random control graphs were constructed by
maintaining the same number of proteins and connections as in the actual
PDUG, but reshuffling the connections between the nodes. Control random
graphs represent an evolution process without any driving force, i.e., any node
can be connected to another node by chance. Dokholyan et al. [49] found
a pronounced transition of the size of the largest cluster in the PDUG at
Zmin = Zc ≈ 9. Random graphs featured a similar transition, but at a higher
value of Zmin = Zc ≈ 11. The distribution of cluster sizes depends significantly
on whether Zmin > Zc or Zmin < Zc for both the PDUG and random graphs.
It was also observed that the probability density P (M) of cluster sizes M for
both the PDUG and random graphs followed a power-law at their respective
Zc: P (M) ∝ M−2.5. The observed power-law behavior of P (M) is simply
a consequence of criticality at Zc as it is featured prominently both for the
PDUG and random graphs. The power-law probability density of cluster sizes
is a generic percolation phenomenon that has been observed and explained in
both percolation [59,60] and random graph theories [61].

To define more concretely the structural properties of the PDUG,
Dokholyan et al. [49] computed the probability P (k) of the number of edges
per node k taken at Zmin = Zc for individual clusters. It is known that P (k)
distinguishes random graphs from various graphs observed in science and tech-
nology [61]. In stark contrast with the equivalent random graph, the PDUG is
scale-free with P (k) ∝ k−1.6 with a high degree of statistical significance
(p-value less than 10−8). The power law fit of P (k) is most accurate at Z ≈ Zc,
and noticeably deteriorates above and below Zc. Similar calculations were also
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performed on the number of equilogs inside each PDUG node and the num-
ber of sequence members coding for individual domains [48]. These measures
represent three different levels of evolutionary divergence and characterize the
topology of the PDUG. Strikingly, it was discovered that not only do all these
values similarly follow a power-law, but they also obey the same exponent
P (k) ∝ k−1.6 This behavior turns out to be the fingerprint of divergent evolu-
tion and these data will help differentiating between the histories of divergent
and convergent evolution, as well as building proper evolutionary models.

The power-law fit at Zmin > Zc quickly becomes meaningless as the range
of values of connectivity k rapidly diminishes as greater Zmin lead to mostly
disconnected domains. At Zmin < Zc the power law fit also becomes prob-
lematic in the whole range of k because at large values of k (50–100) P (k)
shows some nonmonotonic behavior that can be interpreted as a maximum
at large k (the data are insufficient to conclude that with certainty). How-
ever, the remarkable property of a maximum P (k) at k = 0 i.e., dominance
of orphans remains manifest at all Zmin values. This is in striking contrast
with random graph that is not scale-free at any value of Zmin and where
P (k) allows almost perfect Gaussian fit with maximum at higher values of k.
This power-law behavior also turns out to be in contrast to that generated by
convergent evolution models (see [8]). The criterion for selecting cutoff value
based on transition in the giant component also turns out to be highly useful
in determining proper functional clusters (see [10]).

It is worth noting that the exponent −1.6 in the connectivity distribu-
tion was recently corrected and is suggested to be closer to −1.0 [57]. The
correction arises from the consideration of the exponential finite size effects,
which significantly contribute to the power-law regime [62, 63]. In addition,
recent examination of the origin of the scale-free properties of the PDUG sug-
gested that the PDUG is not modular, i.e., it does not consist of modules with
uniform properties. Instead, it was found the PDUG to be self-similar at all
scales [57].

5.6 Functional Flexibility Score:
Calculating Entropy in Function Space

Shakhnovich et al. [48] defined the function determinant of a gene family as
entropy in function space. When this measure is calculated in the context of
the PDUG, the Gene Ontology (GO) [24] is utilized to define the functional
variability (functional flexibility score or FFS) of a set of genes. The FFS
is a measure of the total amount of information needed to describe all the
functionality of a gene family. Interestingly, the FFS statistically correlates
with the logarithm of the total number of sequences in a gene family [48].
Contrary to merely counting the number of members in a gene family, the FFS
appears to be a more robust (with respect to possible bias in the databases,
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as well as uneven sampling of phylogeny) measure of gene family diversity
because it normalizes on the number equilogs, i.e., sequences that diverged far
enough to represent functionally diverse proteins. The FFS is a characteristic
of both the sequence topology of the PDUG as well as a functional determinant
of neighborhoods.

To calculate functional entropy, all sequences were combined into a single
set [48]. These sequences were then matched to InterPro [55] equilogs, pro-
teins with different sequences but the same function. The complete GO tree
was further reconstructed from the annotations of equilogs and the number
of equilogs of the family, which is assigned a particular functional annota-
tion normalized by total number of annotations at each level, is calculated
(Fig. 5.1). Thus it is possible to calculate the average amount of information
per level needed to fully describe the function of each gene family using the
following equation [48]:

FSS = − 1
Max(L)

∑
l

∑
i∈{nodes on level l}

pi log(pi) . (5.1)

Here, Max(L) is the maximal number of levels of annotation, the summation
is taken over all levels l and over all nodes i filled by the gene family on the
GO tree, and pi is the fraction of the family that is annotated with function i.

5.7 Lattice Proteins and Its Random Subspaces:
Structure Graphs

How important is the observation of power law in the organization of the
PDUG? Is it a generic feature of proteins as compact polymers or a result of
their evolutionary selection? To address this question, Deeds et al. [64] turned
to a simple yet exact lattice model of compact 27-mers, whose fully compact
conformations have been fully enumerated to yield 103,346 conformations. The
structural comparison between all pairs of compact structures can be carried
out in a similar way to the DALI method by calculating the number of native
contacts that two conformations have in common. Then the lattice structure
graph (LSG) is constructed in a similar way to the PDUG [64]. The evaluation
of the node connectivity distribution for the complete lattice graph all 103,346
structures and various randomly selected (in a manner consistent with the
convergent evolution scenario) subgraphs, as well as subgraphs of the 3,500
most designable lattice structures, yielded LSGs that feature Gaussian rather
than power-law distribution of p(k), in sharp contrast with the real PDUG.
These results suggest the evolutionary origin of power-law degree distribution
in the PDUG.
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5.8 Divergence and Convergence Explored:
What Power Laws Tell Us about Evolution

To advance toward a resolution of the debate distinguishing convergent and
divergent evolution, Deeds et al. [65] explored the predictions of convergent
models. The simplest such model assumes that nodes are discovered com-
pletely randomly – that is, the likelihood of adding a particular node has
nothing to do with the number of structural neighbors it has. In this class
of convergent models, as organisms evolve and speciate, nodes were added to
each proteome randomly, producing organisms whose structural domains rep-
resent a random subset of the existing protein domains taken from all organ-
isms. As with the entire PDUG, one can create a network from the structural
similarity between the domains within a particular proteome, and under this
type of convergent model, the resulting graph would be a random subgraph
of the PDUG. Thus, unbiased convergence leads to the null hypothesis that
proteome-specific subgraphs will be random subgraphs of the extant protein
universe.

Given a template graph of N0 nodes with a distribution of edges per node
described by pN0(k), the average distribution of edges per node in a subgraph
of N nodes chosen completely randomly should follow:

pN (k) = C

⎡
⎣MaxkN0∑

s=k

(
s
k

)(
N

N0

)k (
1 − N

N0

)s−k
⎤
⎦ (5.2)

where MaxkN0 is the maximally connected node in the template graph and C
is taken to normalize pN (k). This expression is similar in justification to those
used in percolation theory to estimate the behavior of scale-free networks
when a fraction of nodes are eliminated [66–68]. It is clear from the theory
that the degree distributions of random subgraphs exhibit a power-law region
that persists for a characteristic length at each subgraph size. Deviations to
higher k’s in subgraphs constitute an exponential tail to the distribution,
indicating that random subgraphs are very unlikely to contain nodes with
connectivity greater than this value. The maximum k in random subgraphs is
thus a “fingerprint” of random subgraphs of a given size.

On the basis of the understanding of the behavior of random subgraphs,
(5.2), Deeds et al. [65] turned to actual proteomes to determine whether they
represented random subgraphs of the PDUG. The authors created the organ-
ismal subgraphs using homology to determine which of the domain structures
in the PDUG occur in each organism. For each subset of nodes found in each
proteome, Deeds et al. [65] calculated the degree distributions for these sub-
graphs.

In addition, Deeds et al. [65] performed a power-law regression on the
degree distributions for the subgraphs of 59 fully sequenced bacterial pro-
teomes, all of which were well fit by a power law. This raises the possibility
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that these subgraphs may indeed be random; however, the maximum k in the
organismal subgraphs was considerably larger than that observed in arbitrary
random subgraphs of the same size. The probability that organismal PDUGs
are random subgraphs of the complete PDUG was estimated by comparison
of their actual maximum k with distribution of maximum k in random sub-
graphs based on (5.2). Such probability was found to be extremely low in most
organisms except few smallest ones where it reached about 0.01.

This finding suggests that the null hypothesis corresponding to a conver-
gent evolution model is highly unlikely and, thus, that unbiased models have a
low likelihood of explaining protein structural evolution. Even given the inabil-
ity of convergent models to explain this behavior, it is not necessarily clear that
this nonrandomness could be observed in a divergent model similar to those
that have been proposed [49, 69]. To explore this possibility, Deeds et al. [65]
modified an earlier model described in detail by Dokholyan et al. [49] to in-
clude speciation (Fig. 5.2). Simulations of the speciation model that included
generation of 3,500 model proteins and four organisms were performed, with
speciation occurring after 1,000 and 2,000 steps, and then the degree distrib-
utions of the subgraphs in each organism were compared to that of the overall
graph produced by the model. For ten realizations of the model, the model
organism subgraphs exhibited power-law degree distributions that deviated
to larger maximum k than expected at random. The p-values for the model

speciation

Organism A

COrganism Organism B

structural 
similarity

Fig. 5.2. A diagram of the speciation model. The PDUG evolves from all nodes
belonging to one organism, and after a specified gene duplication event, an organism
A undergoes speciation to create two organisms B and C with identical graphs.
All the new nodes, however, are added to one organism or the other, given that
the duplication events that give rise to new nodes will only occur within a single
proteome. After the proteomes evolve independently for a number of steps, speciation
occurs again, and so on
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subgraphs indicated that the bulk of these graphs did not have a high probabil-
ity of being random (although the probabilities were higher than observed for
the actual organisms). Although this model is certainly not detailed enough
to explain the evolution of real protein structures, it does demonstrate that
a simple, dynamic process can produce model organism subgraphs that are
similar to those observed in real organisms and that with careful modeling
the debate between convergence and divergence can be resolved. Most impor-
tantly, these data show that convergent evolution is highly unlikely and that
divergence is probably the dominating force in protein domain evolution.

5.9 Context Is Important

The above examples describing differences in function for the same protein
between different genomes (see [2]) show that understanding the structure–
function correlation involves buttressing structure information with “contex-
tual” information. We see that functionality may vary for the same struc-
ture depending on the genome, or the metabolic pathway. This is intuitively
understandable if we look at structure–function correlation from an evolu-
tionary standpoint [7, 22, 26, 70, 71]. Domains that were put under different
evolutionary pressures (which in our case translates directly into being in a
different context) evolve different functions. Consequently, we think that to
understand the relationship between structure and function, it is not enough
only to enumerate the possibilities, but it is also necessary to understand the
progression that has led to the state of protein domain universe as we observe
it now.

In a recent work, Shakhnovich [72] has demonstrated that using phylo-
genetic information it is possible to dramatically and quantitatively improve
functional annotation. He introduced, besides the structural similarity mea-
sure (Z-score) and the functional similarity (FFS), a measure of phylogenetic
distance (P) and presented a 3-dimensional landscape in (Z, FFS, P) space.
Dramatically, this landscape was found to be well-shaped. This finding points
out that pronounced structure–function correlation is observed only for do-
mains that are phylogenetically close, while for phylogenetically distant do-
mains correlation between structure and function (i.e., between Z and FFS)
essentially vanishes. This study shows clearly that “context” information, such
as the origin and phylogenetic history of a protein domain, in some cases may
influence the precise function of the gene more than the structure.

5.10 Not All Functions Are Created Equal
and Neither Are Structures

With the PDUG and the newly developed techniques, it is possible to perform
structure–function studies on a global scale capturing evolutionary relation-
ships that are not easily revealed by anecdotal studies alone. An interesting
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problem to address is the coevolution of gene family size, functionality,
and structure. For example, we can ask whether some functions require
smaller gene families than others by computing correlations between partic-
ular functionality and the FFS. Since the FFS reflects the size of the gene
family, this is equivalent to asking whether there is any bias in the kind of
function performed by domains encoded by large gene families versus small
ones. Previous research has shown that some functionalities may allow many
analogous functions increasing the FFS of the family, while others tend to have
stricter requirements. For example, some functions such as the kinase activity
have varied specificities within a relatively small number of sequence muta-
tions, [73] while others such as globins have much less functional flexibility
despite, in some cases, substantial sequence divergence [74]. Another example
is the eightfold (β/α) barrel structure, first observed in triose-phosphate iso-
merase, occurs ubiquitously in nature. It is nearly always an enzyme and most
often involved in molecular or energy metabolism within the cell. This extreme
example of the “one fold-many functions” paradigm illustrates the difficulty
of assigning function through a structural genomics approach for some folds.
Another example is the beta-propeller fold that appears as a very fascinating
architecture based on four-stranded antiparallel and twisted beta-sheets, radi-
ally arranged around a central tunnel. Similar to the β/α-barrel (TIM-barrel)
fold, the beta-propeller has a wide range of different functions. Some proteins
containing beta-propeller domains have been implicated in the pathogenesis of
a variety of diseases, such as cancer, Alzheimer’s, Huntington’s, Lou Gehrig’s
diseases, arthritis, familial hypercholesterolemia, retinitis pigmentosa, osteo-
genesis, hypertension, and microbial and viral infections. While some studies
exist that suggest that gene families encoding enzymes and enzymatic folds
are larger [75,76], they do not provide us with an overall picture, if one exists,
of general biases. Such biases may reveal important evolutionary pressures
that determine the codependence of structure and function.

Shakhnovich et al. [48] computed the FFS of all domains on the PDUG
and in turn assigned a functional category at the first level of GO (Fig. 5.1). It
was found that as the FFS of the domain increases, the percentage of enzymes
in the bin decreases, and consequently the percentage of domains with signal
transduction activity increases. Other functions remain relatively constant, at
least to the first approximation of these data. These results point to the ten-
dency of larger gene families (tests were also done directly between gene family
size and FFS with the same results) to encode domains with signal transduc-
tion activity and less diverse gene families to encode domains with enzymatic
activity. These results are unexpected in the light of the studies mentioned
above [75–77] and more research has to be done in this area to understand
the biological reasons and evolutionary mechanisms that have enabled us to
observe these trends. However, the obvious avenue of research from here would
involve the determination of the interdependency between the allowed func-
tional diversity for the gene family and the particular function.
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An approach to begin addressing this question is to look at physical char-
acteristics of the structure. From a physical perspective, the potential of a
gene to obtain new function may depend on its ability to accept mutations
without destroying the three-dimensional structure of a protein domain that it
encodes. The PDUG enables us to begin testing such hypothesis. As mentioned
before, we know from some studies that some folds such as TIM-Barrels [75]
and beta-propellers [77] encode large sequence families that are functionally
diverse. However, until now, no specific structural characteristic could be iden-
tified that corresponded to the allowed functional diversity. Using the PDUG
and the FFS, it was possible to attribute functional diversity to structure,
which is supported with previously reported results of different functional
categories having different FFS [78]. For example, most α+β protein domains
are involved in binding functions such as DNA binding, ATP grasp, and FAD
binding activity.

These results could mean that transcription factors are not as selective
as once thought and that noise in form of nondeleterious mutations to the
fold may give rise to the necessary transcriptional noise in the expression of
proteins. Of course, this finding sheds no light on the intrinsic qualities of all
alpha proteins versus α + β proteins that enables the latter to support more
sequences. It also says nothing about what biological mechanisms and pres-
sures enabled separations between commonly used folds and orphans. Clearly
coevolution of structure and function occurs.

5.11 Concluding Remarks

The presented overview provides strong evidence that methodologies based on
the use of the PDUG work in a variety of applications. Such an approach makes
it possible to address from a unique single prospective such seemingly dis-
connected issues as character of protein domain evolution, structure–function
relationship, relation between structural and functional properties of proteins,
and certain properties of genes that they encode. We are confident that the
PDUG approach is likely to yield further important fundamental unifying
insights into structural genomics, evolution, and structural biology.
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Molecules: Genomes



6

A Twenty-First Century View of Evolution:
Genome System Architecture, Repetitive
DNA, and Natural Genetic Engineering

J.A. Shapiro

It is essential for nonbiologists to understand that evolutionary theory based
on random mutation of autonomous genes is far from the last word on how
genomes have changed in the course of biological evolution. The last 50 years
of molecular genetics have produced an abundance of new discoveries and
data that make it useful to revisit some basic concepts and assumptions in
our thinking about genomes and evolution. Chief among these observations
are the complex modularity of genome organization, the biological ubiquity
of mobile and repetitive DNA sequences, and the fundamental importance
of DNA rearrangements in the evolution of sequenced genomes. This review
will take a broad overview of these developments and suggest some new ways
of thinking about genomes as sophisticated informatic storage systems and
about evolution as a systems engineering process.

6.1 Introduction: Cellular Computation and DNA
as an Interactive Data Storage Medium

Cells are amazingly capable and sophisticated information processors. If we
simply reflect on the incredible complexity and reliability of each cell divi-
sion cycle, encompassing hundreds of millions of biochemical reactions and
morphogenetic events, then we can only wonder at the control regimes that
keep cellular just-in-time production facilities operating properly in the face
of changing environments and damage. For example, a fast-growing E. coli
cell replicates its DNA at a speed of almost 2,000 base-pairs per second with
a final precision of better than one error per 109 nucleotides incorporated [1].

One of the keys to a twenty-first century vision of how genomes operate
is to think about DNA as a data storage medium. Genomic storage operates
over three different time scales that may be defined in terms of cellular and
organismal generations:

1. Many organismal generations. Genetic storage in local DNA sequences
and long range chromosome structure
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2. Multiple cell generations. Epigenetic storage in covalent modifications and
stable chromatin configurations

3. Within a single cell cycle. Computational storage in meta-stable nucleo-
protein complexes.

These three time scales reflect the different ways that DNA interacts with the
rest of the cell as it carries out computations and decision making. Cellular
computations involve evaluation of multiple internal and external inputs. In-
puts include the replication status of the genome, where the cell is in the cell
cycle, what nutrients are available, what intercellular signaling molecules are
present, and what other cells are touching the cell surface. Some situations
require fast responses, such as a change in the nutritional environment or the
detection of genome damage. Other situations result in longer term cellular
differentiations, characterized by the formation of chromatin configurations
(epigenetically stable complexes of DNA with protein and RNA heritable
through multiple cell generations [2]). Certain conditions involve restructur-
ing of genomic DNA molecules, either as part of the normal life cycle [3–6]
or in response to a crisis situation [7–9]. When DNA restructuring occurs in
DNA that is heritable through mating or vegetative reproduction, enduring
evolutionary changes are the consequence.

6.2 Genome System Architecture and Repetitive DNA

Genomes contain many different kinds of functional information organized
through the use of multiple codes, not just the triplet (three base) code for
amino acids in proteins. In addition to coding sequences determining the pri-
mary structures of RNA and protein molecules (these may be considered as
genomic data files), there is information for other essential processes:

1. Packaging DNA molecules within the nucleoid of prokaryotic cells or the
nucleus of eukaryotic cells

2. DNA replication and transmission of genome copies to progeny cells
3. Repair of DNA damage
4. DNA restructuring.

Without effective genome packaging, replication, transmission, and repair, no
cell-based life form could reproduce. Without DNA restructuring, no organism
could evolve.

Our current understanding of how coding sequence expression (data file
access) and other essential genome processes operate is based upon the revolu-
tionary genetic studies of protein synthesis and genome reproduction carried
out by Jacob and colleagues on the operon and replicon theories in the 1950s
and 1960s [10,11]. These studies defined a new class of genome component that
was unknown to classical genetics: signals written into the DNA that are recog-
nized by other cellular molecules and which affect only the DNA carrying the
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signal. These cis-acting signals are fundamentally different from any classical
definition of a gene. They serve to format coding sequences and genome archi-
tecture in the same way that generic bit strings format the encoded informa-
tion in electronic data storage media and guide the computational hardware to
the right data files and indicate the appropriate routines to apply. In an analo-
gous fashion, cis-acting signals in the genome direct cellular hardware to form
functional nucleoprotein complexes to carry out tasks such as transcription,
replication, DNA distribution to daughter cells, and DNA rearrangements [12].
Since they are generic and work at many locations, cis-acting signals belong
to the repetitive component of the genome [13]. By applying an informatic
perspective, we can appreciate the functional relevance and interconnections
of genome formatting features that have proved difficult to understand within
the mechanistic conceptual framework of classical genetics.

Employing the informatic metaphor, it is possible to argue that each
genome has a characteristic “system architecture,” in much the same way
that different computer systems do [13, 14]. The taxonomically specific sys-
tem architecture includes elements such as

1. Transcription signals used to regulate expression of particular coding seq-
uences as RNA copies

2. Signals for genome transmission (origins of DNA replication, centromeres
for aligning and distributing chromosomes during cell division, and telom-
eres for completing replication at the ends of linear DNA molecules)

3. Signals for recombination and DNA rearrangement
4. Signals for compacting the genome with protein and RNA to form parti-

cular chromatin structures
5. Signals for attaching the genome to particular cellular or nuclear struc-

tures.

From the genome system architecture perspective, it is possible for two genomes
in different species to have identical coding sequences but distinct sets of cis-
acting signals and different genome system architectures. The result of different
architectures would almost certainly be germ-line reproductive incompatibility
and, quite probably, distinct patterns of coding sequence expression leading to
phenotypic and ecological diversity. The major determinants of genome system
architecture are the repetitive elements in the genome, such as the long head-
to-tail tandemly arrayed repeats that flank the centromeres of most eukaryotic
chromosomes [15], telomere repeats that permit the replication of chromosome
ends [16], and dispersed repeats that contain many signals for transcription,
chromatin organization, and nuclear localization [13,17].

There is an extensive literature on the effects that repetitive DNA can exert
on coding sequence expression. These effects include countless experiments
with dispersed repeats that can migrate from one location to another in the
genome (mobile genetic elements; [18–21]). There is also a growing number of
studies of so-called“position effect”phenomena, where the expression of a par-
ticular genetic locus depends upon its location relative to dense concentrations
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of repetitive elements that are labeled “heterochromatic” because they can be
seen in the microscope as chromosome regions that stain differently from the
normal (or “euchromatic”) regions of the chromosome [22, 23]. Of particular
importance are trans position effects where repetitive element arrays affect the
expression of genetic loci on different chromosomes [22]. From a mechanistic
point of view, we now explain these dosage-dependent genome-wide effects as
due to titration of a limited supply of heterochromatin-binding proteins [23].
From an organizational point of view, trans position effects tell us that the
whole genome is a single integrated system, regulated both in cis and trans
by networks employing DNA repeats, in which segments on different DNA
molecules communicate with each other.

It has been evident for a long time that repetitive DNA is a more discri-
minating indicator of hereditary relationships than coding sequences. For
example, as long as 25 years ago, it was possible to construct a phylogeny
of primates by examining the distribution of restriction endonuclease cutting
sites in tandem repeats of “alpha satellite” DNA at centromeres [24]. More-
over, each order of mammals can be distinguished by its content of highly
repeated short interspersed nucleotide elements (SINEs) dispersed throughout
the genome at between 104 and 106 copies per haploid genome (data tabu-
lated in [25]). Plant species can also be distinguished by their centromeric
repeats [13], and closely related “sibling” Drosophila species differ markedly
in their content of both tandem satellite arrays and dispersed repeats [26,27].
Indeed, we use repetitive microsatellite DNA for forensic DNA analysis to
determine relationships between individuals [28]. In other words, the repeti-
tive component of the genome is far more taxonomically specific than coding
sequences. This conclusion is consistent with a key role for repetitive DNA in
evolutionary diversification.

6.3 Genomes and Cellular Computation:
E. coli lac Operon

In trying to understand how the genome serves as an information storage
system, it is helpful to look at simple phenomena that have been subject to
exhaustive detailed analysis for several decades. One of the most thoroughly
understood genomic computation and decision-making systems is the classic
case of the E. coli lac operon [10]. This system operates at short time scales.
Readers unfamiliar with the lac operon can best inform themselves through
a simple internet search that will turn up several basic descriptions of the
system. For more detailed molecular or computational descriptions, they can
consult reviews such as [29] or [30]. The lac system has been analyzed in logical
circuit terms by Setty et al. [31], and it is useful to note in that paper how
much more precise the natural system is than the synthetic constructs.

In regulating transcription of the lac operon, precise control results from
a series of highly integrated molecular interactions that allow E. coli cells
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to distinguish between two sugars and execute the following nontrivial algo-
rithm: “IF lactose is available AND IF glucose is not available AND IF the
cell can synthesize beta-galactosidase and lactose permease, THEN transcribe
lacZYA from the lac promoter.” These molecular interactions are typical of
the processes that occur in all cells to carry out information processing. They
can be stated in the form of Boolean propositions, for the operations involving

Lac Operon Products
1. LacY + lactose (external) → lactose (internal)
2. LacZ + lactose → allolactose (minor product)
3. LacI + lacO → LacI-lacO (repressor bound, lacP inaccessible)
4. LacI + allolactose → LacI-allolactose (repressor unbound, lacP accessible)

Glucose Transport Components and Adenylate Cyclase
5. IIAGlc-P + glucose(external) → IIAGlc + glucose-6-P(internal)
6. IIAGlc-P + adenylate cyclase(inactive) → adenylate cyclase(active)
7. Adenylate cyclase(active) + ATP → cAMP + P∼P

Transcription Factors
8. Crp + cAMP → Crp-cAMP
9. Crp-cAMP + CRP → Crp-cAMP-CRP

10. RNA Pol + lacP → unstable complex
11. RNA Pol + lacP + Crp-cAMP-CRP → stable transcription complex

Partial Computations
No lactose → lacP inaccessible (3)
Lactose + LacZ(basal) + LacY(basal) → lacP accessible (1, 2, 4)
Glucose → low IIAGlc-P → low cAMP

→ unstable transcription complex (5, 6, 7, 10)
No glucose → high IIAGlc-P → high cAMP

→ stable transcription complex (5, 6, 7, 8, 9, 11)
It is important to note that information processing involves metabolic

enzymes in the bacterial cytoplasm and transport proteins in the bacterial
membrane as well as DNA binding regulatory proteins and diffusible cyto-
plasmic molecules that serve as signals representing distinct environmental
conditions. Thus, there is no single separate class of information processing
molecules (i.e., no Cartesian dualism in the E. coli cell). Informatics is incor-
porated into functional cellular molecules (e.g. the glucose transporter), and
a single node in the cellular computation network may have nonlinear micro-
processing functions. In this regard, the components of the lac operon system
are paradigmatic for all cellular control regimes.

Another paradigmatic feature of the lac operon system is the role of weak
interactions, specific binding, and cooperativity to assemble and stabilize
nucleoprotein complexes essential for carrying out the molecular computa-
tions. This is seen in the formation of the complex needed to block access of
the lac promoter signal to the transcriptional apparatus (Boolean proposition
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Fig. 6.1. DNA repression loop formed by interaction between LacI repressor mole-
cules and two operators flanking the promoter region for initiating lac operon trans-
cription

3 earlier). Graphically, this cooperativity can be seen in a cartoon of the
repressor–DNA complex (Fig. 6.1). The looped repression complex depends
on a series of cooperative protein–DNA binding events involving internal
repeats within two different palindromic operator sequences and four separate
DNA-binding domains of individual LacI repressor chains as well as protein–
protein binding events between the four different copies of LacI. Any one of
these interactions would be unstable, but together they form a complex that
prevents lac operon transcription when inducer is not present.

The use of multiple cooperative interactions in cellular networks is a funda-
mental reason that genomes and protein structures are full of repetitive com-
ponents. In turn, repetition in DNA and proteins means that specific logical
operations arise through combinations of basic circuit elements (e.g., complex
regulatory regions in DNA, intra- and intermolecular interactions between
protein domains). In addition, the phenomenon known as “allostery” means
that binding one ligand can alter the shape and behavior of a molecule, thus
affecting its binding to other ligands. The allosteric properties of proteins and
nucleic acids confer communication and processing capabilities on individual
molecules and constitute the structural basis of how cellular network nodes
act as complex microprocessors. Cooperative interactions between allosteric
molecules thus endow cellular computing networks with combinatoric com-
plexity as well as the Fuzzy Logic precision [32] that comes from the integra-
tion of multiple layers of approximation.
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Working up from the details of a single basic cellular information-processing
example leads us to a number of areas that are ripe for formal analysis and
in silico simulation. It is important for the information scientists, mathemati-
cians, and physicists who do this work to bear in mind that the principles
underlying cellular analog computing may well be different from those that
operate in electronic digital computers. For example, the direct participation of
DNA in formation of nucleoprotein complexes suggests that it may not be use-
ful to apply Turing’s concepts of separate“machine”and“tape” [33] to cellular
computations. Although such a fundamental difference does not invalidate the
informatic metaphor, it does mean that we will have to be careful in applying
existing computational models to cells.

Combinatorics, fuzzy logic models, and principles learned from linguistics
and semiotics may all serve as key guides to a formal description of cellu-
lar information-processing networks. By the same token, bioinformatics that
goes beyond the parsing of large databases has the potential to lead us to
novel computing paradigms that may prove far more powerful than the Turing
machine-based digital concepts we now use. To anyone who becomes familiar
with the molecular details of cell biology, it is clear that no human contrivance
operates with the degree of complexity, the efficiency, or the reliability of living
cells. Thus, it is reasonable to argue that cells employ control regimes of great
sophistication beyond our existing technologies.

6.4 New Principles of Evolution:
The Lessons of Sequenced Genomes

Genome sequence analysis is one of our most important guides to disentan-
gling how cellular systems operate and how function changes in the course of
evolution. Here, we find abundant support for the general principles deduci-
ble from cases like lac. In particular, repetition, reuse, and combinatorics have
proven to be fundamental in protein and whole genome evolution.

The insights from genome sequences have altered our thinking about the
evolution of individual molecules, particularly proteins, as well as the evolution
of overall genome structure. We have obtained abundant evidence that protein
structures evolve by iterating, shuffling, and accumulating substructures called
“domains,” each comprising one of a finite sets of structural elements [34–37].
Figure 6.1 illustrates the different domains of the LacI repressor as shaded
blocks. Moreover, genome sequences establish that protein families character-
ize individual taxa from bacteria through mammals. These families have their
own phylogenetic structures and clearly evolved by iteration of existing coding
sequences, not by de novo appearance of each family member [38,39].

In addition, there are emerging patterns in genome structure that exist at
hierarchical levels beyond the coding sequences (data files) determining indivi-
dual protein and RNA products. We find that expression systems evolve by
combining coding sequences, regulatory signals, and chromatin markers into
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higher order complexes that persist and diversify in the course of evolution [2].
At even higher levels of organization, we find that genomes contain extensive
chromosome segments (syntenic regions) that may be duplicated at various
locations within the genome [40, 41] and scrambled into new combinations
during evolution [39].

6.5 Natural Genetic Engineering

All the preceding whole-genome sequence discoveries require mechanisms for
rearranging DNA segments of all size classes as basic evolutionary processes.
What do we know about the capacity of cells to carry out such natural ge-
netic engineering? An important clue is the discovery that our own genomes
are at least 43% composed of DNA segments that can move from one location
to another [35]. Two classes of transposable or mobile genetic elements have
been recognized from the work of Barbara McClintock and her molecular
followers [18–21, 42, 43]: DNA transposons move exclusively at the level of
DNA molecules, while retrotransposons and other retroelements move by
means of an RNA intermediate that can be reverse-transcribed into genomic
DNA [21,44–46].

McClintock discovered mobile genetic elements in the first instance be-
cause they mediated chromosome rearrangements. Molecular analysis has con-
firmed that the same mechanisms that lead defined segments of DNA to move
from one location to another (transpose) can also mediate both large- and
small-scale rearrangements. There appears to be something of a molecular
division of labor: DNA elements mediate rearrangements of large segments
(Fig. 6.2), while retroelements mobilize smaller segments, generally not larger
than several kilobases in length (Fig. 6.3).

The mechanisms underlying these rearrangements are just the kind of
processes needed to explain the patterns of genome conservation and scram-
bling found by comparing whole genome sequences. The transposable elements
(TEs) mediating genome rearrangements operate in natural populations
[4, 48, 50–52]; they can execute key evolutionary processes in the laboratory,
like exon shuffling [53]; and there is abundant documentation from sequence
analysis that TE-based mechanisms have in fact been used in genome evolu-
tion [17,49,54–56].

An especially illuminating example of natural genetic engineering is the
mammalian immune system. This system is important for several reasons.
First, because of its medical implications, it has been the subject of intense
investigation, and we know a great deal about how it operates and how it is
regulated. Second, the evidence is quite convincing that the natural genetic
engineering functions in our immune system arose from DNA transposons and
cellular repair functions [5, 57, 58]. Third, and most important, the immune
system is a system whose normal functions include ensuring rapid protein
evolution of molecules for recognizing foreign invaders. In other words, our
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Fig. 6.2. Some of the rearrangements mediated by DNA transposons. Well-
documented DNA rearrangements were carried out by the transposition systems
of replicative or cut-and-paste DNA transposons (double-headed arrows). Often the
structures of rearranged DNA generated by either mechanism are the same. These
examples are based largely on the rearrangements described in [47], and by Engels
(see, http://engels.genetics.wisc.edu/Pelements/HEI.html). The web site includes
an animation of P factor-mediated duplication/deletion events. Note that DNA
transposons have at least two ways of duplicating a sequence flanked by copies
of the element: either a transposed duplication at a new genetic site or a tandem
duplication at the original site. Both sorts of duplications are found in sequenced
genomes, especially in loci encoding large paralogue families

immune systems have evolved to evolve. This example (or counter-example)
of evolved evolvability demonstrates that there can be no theoretical obstacle
to evolving capacities to improve the evolutionary process. This means that
we should expect evolutionary processes to show the same degree of sophisti-
cation, complexity, and efficiency as other biological functions. The operation
of nonrandom and adaptive mechanisms for restructuring DNA molecules in
evolution should not be a surprise. Indeed, we should expect evolutionary
processes to be specific and efficient because all existing organisms are survi-
vors of repeated evolutionary competitions, and those organisms that are best
at adapting their genomes to new conditions are most likely to have won those
competitions.

The task of immune system cells (lymphocytes) is to produce a virtu-
ally infinite array of antigen-recognition proteins starting with a finite set of
germline DNA coding elements. Accomplishing this task requires the lympho-
cytes to create genetic diversity in just the right DNA locations to encode
unpredictable protein sequences at the appropriate protein locations. This
localized diversification task is efficiently completed by a consecutive process
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Fig. 6.3. Retrogene formation and retrotransduction of exons. The diagram sum-
marizes how the reverse transcription and integration activities of LINE elements
can create processed intron-free integrated cDNA copies of any cellular mRNA
(“retrogenes”) or can integrate DNA copies of exons located downstream of an
active LINE element after read-through transcription (“retrotransduction”). See [49]
for more details

of five highly regulated DNA rearrangements occurring at defined locations
in the genome to generate an indeterminate set of DNA segments encoding
the antigen-binding sites of immunoglobulin and T cell receptor molecules.
The details of this process have been described in reviews and in the litera-
ture version of this Chap. [59]. For purposes of this volume, it is sufficient to
summarize some basic features:

1. DNA rearrangements occur at specific sites in the genome because they are
demarcated by repetitive DNA signals. Some of these signals are directly
involved in DNA cleavage and rejoining, while other signals control tran-
scription that is linked to DNA changes.

2. Although immune system rearrangements occur at well-demarcated loca-
tions, the actual sequences produced are highly flexible. This means that
junctions of regions encoding antigen-binding domains can have many
different restructured sequences. In some cases, the lymphocytes can even
insert de novo synthesized DNA segments (i.e., with no germ-line tem-
plate) into these junctions.
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3. The DNA rearrangement process normally occurs only in cells destined
to produce antibodies or T cell receptors and follows a highly determined
series of rearrangements. Both intracellular signals, such as the ability to
produce a particular immunoglobulin chain, and extracellular signals, such
as lymphokine-directed transcription, regulate these DNA restructuring
processes.

Altogether, the immune system provides one case where cells display a strik-
ing degree of control over DNA restructuring. Additional examples are found
in other developmental DNA rearrangements [3, 4, 60]. Lymphocytes further
illustrate the potential cells have to turn natural genetic engineering activi-
ties on and off in response to internal and external signals. They demonstrate
how DNA rearrangements can be at one and the same time highly specific,
directed by DNA sequences or transcriptional activity, and yet flexible,
using untemplated nucleotides and variable internucleotide linkages to enhance
combinatorial diversity. The mixture of specificity and flexibility enables
the immune joining system to produce extraordinary protein diversity (on
the order of 1012 combinations) while conserving antibody chain structures.
By integrating specificity and flexibility, immune system engineering optimizes
the chance to produce a functional antibody molecule with an indeterminate
specificity.

It is highly significant that the degree of cellular control over natural
genetic engineering exemplified by lymphocytes and other developmental sys-
tems is not an isolated or even unusual case. Experimentation with a number
of different TE systems has shown that they can be activated temporarily
by response to particular conditions. The conditions are quite varied, ranging
from blockage of normal chromosome separation during early embryonic devel-
opment [42] to osmotic and other physical stresses associated with protoplast
regeneration [61] to oxidative starvation stress during “adaptive mutation”
[62–66] to mating outside the normal breeding group causing “hybrid dysgen-
esis” [50,51,67,68].

In the case of hybrid dysgenesis, it is especially worth noting that the DNA
changes typically occur during the development of the germ line [69]. This has
profound implications for the evolutionary success of massively restructured
genomes. When change occurs during germ line development, cells that have
undergone multiple DNA rearrangements have several offspring that produce
multiple gametes. As a consequence, natural genetic engineering after hybrid
dysgenesis can lead to the appearance of more than one individual progeny
carrying similarly altered genomes. These progeny thus constitute a small
interbreeding population that can transmit the massively restructured genome
to future generations.

In addition to control over when and in what situations natural
genetic engineering functions become active, there are a variety of examples
where mobile elements display various degrees of targeting specificity in the
genome (Table 6.1). In some cases, we know the molecular basis for targeting.
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Table 6.1. Specificity of natural genetic engineering functions

Example Observed specificity (mechanism)

Mating type cassette switching
(S. cerevisiae)

Localized, directional gene conversion
(HO endonuclease cleavage initiates
homology-dependent recombination) [70]

Immune system V(D)J joining Cleavage at specific recombination signal
sequences (RSSs); flexible joining by
nonhomologous end joining (NHEJ) functions
(recognition of RSSs by RAG1+2
transposase) [5, 58]

Immune system somatic
hypermutation

5′ exons of immunoglobulin determinants
(transcriptional specificity) [6]

Immune system class switching Lymphokine-controlled choice of switch
regions (promoter activation) [6]

Budding yeast (S. cerevisaea)
retroviral-like elements
Ty1-Ty4

Strong preference for insertion upstream of
RNA polymerase III initiation sites
(protein–protein interaction of integrase with
RNA polymerase III factors) [71,72]

Budding yeast retroviral-like
element Ty1

Preference for insertion upstream of RNA
polymerase II initiation sites rather than
exons [73]

Budding yeast retroviral-like
element Ty5

Strong preference for insertion in
transcriptionally silenced regions of the yeast
genome (protein–protein interaction of
integrase with Sir4 silencing protein) [74–76]

Fission yeast (S. pombe)
retroviral-like elements Tf1 &
Tf2

Insertion almost exclusively in intergenic
regions (>98% for Tf1); biased towards PolII
promoter-proximal sites, 100–400 bp
upstream of the translation start; preference
for chromosome 3 [77–79]

Murine Leukemia Virus (MLV) Preference for insertion upstream of
transcription start sites in human
genome [80,81]

HIV Preference for insertion into actively
transcribed regions of human genome [81]

Drosophila P-factors Preference for insertion into the 5′ end of
transcripts [82]

Drosophila P-factors Targeting (“homing”) to regions of
transcription factor function by incorporation
of cognate binding site; region-specific [83–86]

R1 and R2 LINE element
retrotransposons

Insertion in arthropod ribosomal 28S coding
sequences (sequence-specific endonuclease,
reverse transcription) [87,88]

Table continues on next page
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Table 6.1. Continued

Example Observed specificity (mechanism)

HeT-A and TART retrotrans-
posons

Insertion at Drosophila telomeres [89]

Group I homing introns
(DNA based)

Site-specific insertion into coding sequences
in bacteria and eukaryotes (sequence-specific
endonuclease) [90]

Group II homing introns
(RNA based)

Site-specific insertion into coding sequences
in bacteria and eukaryotes (RNA recognition
of DNA sequence motifs, reverse
transcription) [91,92]

Connections between DNA rearrangement specificity, on the one hand, and
transcriptional control or chromatin formatting functions, on the other, are
particularly significant for the following reason. Most biologists recognize that
signal transduction networks can direct transcriptional and chromatin format-
ting activities to particular regions or sites in the genome. Thus, connecting
these activities to the operation of mobile elements establishes a readily under-
stood molecular mechanistic basis for cellular control networks to target DNA
rearrangements in response to internal and external signals. The targeting
does not have to be (and in many cases is known not to be) rigidly determin-
istic. In this way, targeting may enhance the probability of adaptively useful
genome changes without preventing the flexibility that is necessary to cope
with unpredictable challenges.

6.6 Conclusions:
A Twenty-First Century View of Evolution

On the basis of discoveries about genome system architecture and natural
genetic engineering, it is now possible to formulate a series of basic concepts
that lead to viewing evolution as something akin to a systems engineering
process:

1. Genomes are formatted by repetitive elements and organized hierarchi-
cally for multiple information storage and transmission functions.

2. Major evolutionary steps occur by DNA rearrangements carried out by
sophisticated cellular natural genetic engineering systems operating non-
randomly.

3. Significant evolutionary changes can result from altering the repetitive
elements formatting genome system architecture, not just from altering
protein and RNA coding sequences.
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4. Cellular regulation of natural genetic engineering activities makes evolu-
tionary change responsive to biological inputs with respect to timing and
location of DNA rearrangements.

These basic ideas about the role of cell-regulated natural genetic engineering
of genome system architecture have implications for how we think about the
evolutionary process, and previous articles have discussed some of these [12–
14]. In the context of this volume, it is worthwhile to emphasize how natural
genetic engineering (a) can increase the efficiency of searching for genome
configurations that encode functional complex systems and (b) can favor the
elaboration of hierarchic system architectures.

In the immune system, for example, natural genetic engineering takes exist-
ing functional coding modules and assembles them into new combinations.
Since the rearranged DNA segments already have functionality, the potential
of the newly assembled genomic structure for adaptive utility is greater than
for a structure resulting from random changes. The same is true of other exam-
ples of natural genetic engineering. For example, insertion of a mobile element
containing a package of integrated transcription and chromatin-formatting sig-
nals can place an existing coding region under novel controls. In this way, a
working product can be expressed under conditions where it was previously
absent (see [93]). The evidence is quite solid that this process has taken place
during evolution [17,49,54]. Similarly, insertion of a DNA segment encoding a
functional domain is more likely to add new capabilities to a protein than are
random changes in sequence or addition of random polypeptide components.
Domain addition is commonly used in laboratory engineering of proteins.

Acquisition of new DNA regulatory regions and protein domains are
examples of engineering a new system by arranging known components in
new combinations. The rearrangement process can always be followed, as it
often is in human engineering, by fine-tuning or modification of individual
components (microevolution). Here again, the immune system is instructive.
A similar “rearrangement-followed-by-fine-tuning” sequence of events occurs
in the immune system with targeted “somatic hypermutation” of the exons
encoding antigen-binding domains of immunoglobulins [5, 6].

The ability to regulate DNA rearrangements in time and location within
the genome also adds significantly to the evolutionary efficiency of genome
restructuring. By making sure that genomes in normally reproducing organ-
isms are stable and that the genomes of cells under stress are mutable,
networks activating natural genetic engineering functions provide heredi-
tary variability when it is most needed [7]. Episodic activation of genome
restructuring functions means that multiple changes can occur when complex
rearrangements may be required to meet adaptive needs. Since they result
from a common activation event, different genetic changes are not indepen-
dent but coordinated. Episodic activation of genome restructuring functions
further predicts that evolutionary change will be inherently intermittent and
punctuated rather than continuous (cf. [94]).
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Targeting of genetic change has potential advantages. It can limit change to
regions where it is needed, as in restricting somatic hypermutation in B cells to
exons for antigen binding domains, and can prevent damage to functional cod-
ing elements, as in the targeting of retrotransposon insertions to the upstream
regions of genetic loci (Table 6.1). Restricting retrotransposon insertion sites
thus enhances the potential for a constructive regulatory change. In yeast,
selections for increased protein expression most commonly produce mutant
strains carrying just such retrotransposon insertions [93]. Although virtually
every mobile element displays some degree of target selectivity, there have
been no careful studies of how selectivity may influence the ability of the
element to make useful changes. Now that experimenters are learning how to
target mobile elements (see Table 6.1 and [75, 91, 92, 95]), the time is ripe to
investigate whether enhanced targeting alters their ability to generate adap-
tive changes.

In addition to increasing the efficiency of genome restructuring in response
to challenge, the action of natural genetic engineering systems also imparts
structural characteristics to genomes. Duplication and rearrangement of geno-
mic segments can involve DNA sequences in the megabase range [56, 96]. So
natural genetic engineering has the potential to facilitate the establishment
and amplification of higher order genomic subsystems, as has clearly occurred
in the evolution of homeodomain complexes [97]. This tendency to amplify pro-
gressively larger subsystems may help explain the hierarchic nature of genome
coding [2].

Another result of change by natural genetic engineering is the tendency for
genomes to accumulate dispersed copies of repeats. This tendency is usually
explained by the “selfish DNA” hypothesis [98,99]. However, the selfish DNA
view does not take into consideration the well-documented functional infor-
mation found in all classes of repetitive DNA elements [13]. Since dispersed
repeats influence both coding sequence expression and physical organization of
genomes, an alternative functionalist hypothesis must be entertained: namely,
that repeat distribution reflects the establishment of a system architecture
required for effectively integrated genome functioning.

6.7 Twenty-First Century Directions
in Evolution Research

It appears from this discussion that a distinct twenty-first century view
of evolution can stimulate research at the interface between experimental
observation-based biology and mathematical analysis of complex systems.
That was the objective of the present symposium. The ideas presented here
are consistent with molecular genetics but are quite different from conven-
tional evolutionary theory. Whether they prove to be predictive or not remains
unknown until tests have been performed.
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Experimental tests of evolutionary ideas can take two forms. One kind
of test involves experimentation in the wet lab with evolving organisms. In
most cases, these experiments will utilize microbes, such as bacteria and
yeast, as the test organisms because microbes have the most easily manipu-
lated genomes and because rare changes can be sought in large populations.
Tests of evolutionary concepts need to ask questions that go beyond the stan-
dard mutation studies that examine changes at specific genetic loci. In partic-
ular, experimentalists should begin to examine how more complex multilocus
systems arise in genomes. To see what mutational or natural genetic engi-
neering processes are involved in system evolution, we need to devise effective
selections that require the coordinated action of multiple genetic loci. Can
these arise, for example, by the concerted insertion of DNA transposons in
bacteria or retrotransposons in yeast, as suggested by the observations of
Errede et al. [93] and Peaston et al. [100]?

A second form of evolutionary test requires simulated evolutionary
processes, such as genetic programming [101]. Using simulated evolution mod-
els, computer scientists can determine whether the presence of mobile for-
matting repeats speeds up the evolutionary process, as suggested by their
prominence in genomes. In addition, simulated evolution can examine how
different evolutionary operators, modeled upon natural genetic engineering
systems, influence the structure of the evolved programs. To achieve success,
programs that accomplish real tasks, such as robotic control [102] will have
to be subjected to evolutionary modification. Moreover, various programming
languages or higher-level formalisms (e.g. object-oriented programming) will
have to be used to find the most suitable evolutionary model, and devising
operators modeled on genomic systems will require close collaboration between
computer experts and molecular geneticists.

The preceding sketch of new experimental approaches in vivo and in silico
should make it clear how alternative fundamental concepts of evolution open
up new methods of scientific exploration. The integration of biology and infor-
mation sciences in the twenty-first century will lead us to ask questions that
could not have been imagined in the middle of the twentieth century.
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Genomic Changes in Bacteria:
From Free-Living to Endosymbiotic Life

F.J. Silva, A. Latorre, L. Gómez-Valero, and A. Moya

7.1 Introduction

Symbiosis is the association between two or more distinct organisms during
at least one part of their lifecycle. Although this term is sometimes used in
a narrower sense, it includes for most authors a set of different situations
such as mutualism, parasitism and commensalism. Mutualism is defined as an
association in which both partners derive benefit from living together. Para-
sitism is an association in which one of the partners benefits, while the other
is harmed. Finally, commensalism is an association in which one of the two
members benefits while the other is neither harmed nor obtains an advantage.
In most cases, the association is established between a pluricellular eukaryote
and a microorganism such as a bacterium or unicellular fungus. These micro-
bial symbionts establish either facultative or obligate associations with their
hosts. In the latter, the symbionts are always required to be together.

The terms endosymbiosis and endosymbionts are applied to those sym-
bionts that live inside their hosts (the other partner in the association). This
association may also be narrower when the endosymbiont lives inside the host’s
cells. Endocytobiosis is the term applied to intracellular symbiosis [1].

Many bacterial species have been reported to be able to infect and produce
a pathogenic effect on insects. The pathogenic relation between the spore-
forming bacterium Bacillus thuringiensis and many species of lepidoptera,
coleoptera or diptera is well-known, but there are many other parasitic or
pathogenic relations involving species of the genera Clostridium, Serratia,
Pseudomonas, Photorhabdus, Wolbachia, etc. There are also many mutual-
istic associations between insects and microorganisms, and in most of them
the endosymbiont adapted to live intracellularly in a specialized host cell
called mycetocyte when it contains a fungal endosymbiont, and bacteriocyte
when it contains a bacterial symbiont. These cells are derived from different
parts and tissues of the insect such as fat body or Malpighian tubules and
form organs called mycetome or bacteriome depending on the endosymbiont
type. Bacteriocyte-associated endosymbionts have been described in many
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Table 7.1. Examples of bacteriocyte-associated endosymbionts of insects

Endosymbiont species Bacterial group Host (Insect Host (Common
order) name)

Buchnera aphidicola g-Pro Hemiptera Aphids
Carsonella ruddiia g-Pro Hemiptera Psyllids
Baumannia cicadellinicolaa g-Pro Hemiptera Sharpshooters
Portiera aleyrodidaruma g-Pro Hemiptera Whiteflies
Tremblaya princepsa b-Pro Hemiptera Mealybugs
Wigglesworthia glossinidia g-Pro Diptera Tsetse flies
Sodalis glossinidius g-Pro Diptera Tsetse flies
Blochmannia floridanusa g-Pro Hymenoptera Carpenter ants
Sithopilus oryzae primary g-Pro Coleoptera Weevils
endosymbiont (SOPE)
Nardonellaa g-Pro Coleoptera Weevils
Blattabacterium sp. Flavobacterium Dictyoptera Termites
Blattabacterium sp. Flavobacterium Dictyoptera Cockroaches

g-Pro, gamma-proteobacteria; b-Pro, beta-proteobacteria
aTaxonomic name designation is Candidatus.

insect orders such as hemiptera (aphids, psyllids or whiteflies), diptera (tsetse
flies), hymenoptera (carpenter ants), dictyoptera (termites or cockroaches) or
coleoptera (weevils) (Table 7.1).

Bacteriocytes are differentiated cells produced during insect development
that harbour bacterial endosymbionts (Fig. 7.1). In some species, the pres-
ence of the bacterial symbiont is required for differentiation of the bacterio-
cyte. In others, however, the bacteriomes are formed before being inhabited
by the endosymbionts [1]. Each bacteriocyte contains a large number of bac-
terial cells. The control of this number in the aphid endosymbiont, Buchnera
aphidicola, is probably carried out by its own bacteriocyte. Not only have
degenerating bacteria been observed inside bacteriocytes, but it has recently
been demonstrated that the most abundant transcripts of the B. aphidicola
bacteriocytes encode invertebrate type lysozymes [2]. These enzymes probably
control bacterial number by degrading cell walls and lysing bacteria.

Bacteriocyte endosymbionts are typically maternally inherited. Several
types of transmission have been described (see [1,3] for a review). In ants and
parthenogenetic aphids, oocytes are infected by invasive bacteria that leave
the bacteriomes and penetrate through the ovary [4], whereas in viviparous
aphids the developing embryos may also be infected by bacteria released from
mother bacteriocytes. In some beetle species such as those from the genus
Sitophilus, there is no transmission from the bacteriome to the ovary, since
endosymbionts are permanently in the ovaries and in the female germ cells.
Finally, the means of transmission of Wigglesworthia glossinidia in tsetse flies
is not transovarial, since transmission apparently takes place in the milk glands
through which the mother feeds the developing larvae.
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Fig. 7.1. Bacteriocytes of the aphid Cinara cedri. Electron microscopic image of a
semithin serial section of 1.5 μm from C. cedri. Parts of two cells are observed sepa-
rated by the cell membrane (M). Primary bacteriocyte (up) containing B. aphidicola
cells (1). Secondary bacteriocyte (down) containing the secondary endosymbiont
(R-type) (2). Other abbreviations: rough endoplasmic reticulum (RER); mito-
chondria (m); vacuole (v)

One of the most important characteristics affecting sequence evolution in
endosymbionts is the reduction of the effective population size because of the
small number of cells that are usually transmitted to the insect offspring. The
number of endosymbiont cells transmitted to each sexual egg has been esti-
mated in several B. aphidicola strains, ranging from 850 to 8,000 [5]. This
bottleneck population structure makes endosymbiont sequences evolve com-
pletely differently than those from free-living bacteria.

Obligate maternal transmission has been reported in several bacterial
endosymbionts [3]. This produces the coevolution of the host and bacterial
lineages. However, there are also several examples in which endosymbiont
and host phylogenies do not coincide. For example, it used to occur with the
so-called secondary endosymbionts (maternally inherited but without sharing
a long evolutionary history with their hosts as primary endosymbionts do),
which in several insects may infect other individuals, species or even more
phylogenetically distant taxa [6,7]. The case of the genus Wolbachia, an intra-
cellular gram-negative bacterium, which is found in association with a variety
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of invertebrate species, including insects, mites, spiders, terrestrial crustaceans
and nematodes, is an example of wide taxonomic distribution.

The nature of the associations between several insect species such as aphids,
carpenter ants or tsetse flies with bacterial species such as B. aphidicola,
Blochmannia floridanus and W. glossinidia, respectively, are mainly nutritional
[8–10]. These bacteria compensate for the deficient diet of the insects, syn-
thesizing several compounds such as amino acids and vitamins (Fig. 7.2). On
the other hand, these endosymbionts are unable to live outside the host cell
because they have lost many capabilities for carrying out a free life and they
require many different types of compounds obtained from the host cytoplasm,
including several nucleotides, amino acids and vitamins.

An appealing topic in evolutionary biology is the consequences that a
change in lifestyle produces in an organism. The ancestors of many bacter-
ial obligate mutualists were probably free-living bacteria with the ability to
infect insects and in some way benefit from that. At the beginning they were
possibly parasites or commensalists but with time evolved to a mutualistic
condition. This review will discuss several of the most important changes that
the genome of these organisms experienced during the transition to the new
way of life, and afterwards its adaptation to this type of life. These changes
may be summarized as:

1. Changes in the pattern of sequence evolution.
2. Drastic reduction of the genome size with a strong tendency to lose genes

and to lose DNA, the former being associated to the loss of many metabolic
capabilities.

BAp

0
amino acids nucleotides cofactors lipids chaperonines cell division flagellumDNA repair &

refombination
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Fig. 7.2. Comparative analysis of the number of genes involved in several func-
tional categories. Genome abbreviations: B. aphidicola strains (BAp, BSg and BBp);
Bl. floridanus (bfl), W. glossinidius (wgl); E. coli K12 (eco)
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3. Changes in the chromosomal rearrangement rates and the loss of the para-
sexual phenomenon with the loss of an efficient system for recombination,
and the ability of acquired foreign DNA sequences.

7.2 Genetic and Genomic Features
of Endosymbiotic Bacteria

7.2.1 Sequence Evolution in Endosymbionts

The comparative analysis of the bacterial genes and genomes has revealed sev-
eral features that may probably be applied to all or most of the endosymbiont
lineages. They are: (1) the increase in the AT content, (2) the acceleration of
the substitution rates, (3) the loss of the synonymous codon bias selected in
other organisms to increase the translation efficiency and (4) the change in
the amino acid composition of the proteins.

Increase in the AT Content

The average base composition in bacterial genomes is very variable, ranging
in the complete sequenced genomes from 22.5% to 72.1% GC content (see a
selection of genomes in Table 7.2). In general, the GC content of intracellular
bacterial symbionts is lower than that of extracellular bacteria [11]. A similar
result was also reported for the GC content of obligate symbionts (includ-
ing pathogen, mutualist or intracellular bacteria) when compared to those
of free living bacteria [12]. These two classification systems do not overlap
completely because some host-associated bacteria do not live intracellularly.
To be completely sure that the increase in AT content is associated with the
shift to intracellularity or obligate host-associated life, it is very important
to compare each endosymbiont lineage with its closest free-living relative.
These independent comparisons may permit us to know whether the decrease
in endosymbiont GC content is a general feature exhibited in any bacterial
group.

The first insect endosymbionts analysed and compared with phylogenet-
ically related bacterial species belonged to the gamma-proteobacteria. The
comparison of the composition of a small number of genes revealed that
in most cases coding and ribosomal RNA genes presented lower GC con-
tent in the endosymbionts. The complete genome sequences of the insect
endosymbionts B. aphidicola, W. glossinidia and Bl. floridanus [8–10, 13, 14]
showed that they were among the bacterial species with the lowest genome GC
contents (from 22.5% to 27.4%, see Table 7.2). Although endosymbiont phylo-
genies are difficult and controversial [10,15–18], we know that species belong-
ing to the genera Escherichia, Salmonella or Yersinia, which are their closest
relatives, contain higher GC contents (48–52% GC). Thus, the hypothesis that
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Table 7.2. GC content and genome size in a selected group of complete genomes
(sorted by increase GC content)

Species Group Size GC Host OI Comments
(Mb) (%)

Wigglesworthia glossinidia g-Pro 0.70 22.5 I Yes Mutualist
Mycoplasma mobile 163K Firm 0.78 25.0 F – Pathogen
Buchnera aphidicola BBp g-Pro 0.62 25.3 I Yes Mutualist
Ureaplasma parvum Firm 0.75 25.5 H – Pathogen
Buchnera aphidicola BAp g-Pro 0.66 26.2 I Yes Mutualist
Buchnera aphidicola BSg g-Pro 0.64 26.3 I Yes Mutualist
Clostridium tetani E88 Firm 2.87 27.0 H – Pathogen
Blochmannia floridanus g-Pro 0.71 27.4 I Yes Mutualist
Onion yellows phytoplasma OY-M Firm 0.86 27.7 P – Pathogen
Rickettsia prowazekii str. Madrid E a-Pro 1.11 29.0 H Yes Pathogen
Mycoplasma genitalium G-37 Firm 0.58 31.7 H – Pathogen
Wolbachia (end. of Brugia malayi) a-Pro 1.08 34.2 N Yes Mutualist
Wolbachia (end. of D. melanogaster) a-Pro 1.27 35.2 I Yes Pathogen
Bacillus thuringiensis ser. konkukian Firm 5.31 35.4 I – Pathogen
Haemophilus influenzae Rd KW20 g-Pro 1.83 38.0 H – Pathogen
Chlamydia trachomatis D/UW-3/CX Chla 1.04 40.0 H Yes Pathogen
Mycoplasma pneumoniae M129 Firm 0.82 40.0 H – Pathogen
Photorhabdus luminescens g-Pro 5.69 42.8 I/N – Pathogen/

Mutualist
Vibrio cholerae O1 biovar eltor g-Pro 4.03 47.0 H – Pathogen
Yersinia pestis CO92 g-Pro 4.83 48.0 H – Pathogen
Escherichia coli K12 g-Pro 4.64 50.0 H – Commensal
Escherichia coli O157:H7 g-Pro 5.5 50.0 H – Pathogen
Salmonella typhimurium LT2 g-Pro 4.95 52.0 H – Pathogen
Mycobacterium leprae TN Acti 3.27 57.8 H – Pathogen
Xanthomonas campestris g-Pro 5.08 64 P – Pathogen
Mycobacterium tuberculosis Acti 4.4 65.6 H – Pathogen
Pseudomonas aeruginosa PAO1 g-Pro 6.26 67.0 H – Pathogen
Ralstonia solanacearum GMI1000 b-Pro 5.81 69.0 P – Pathogen
Thermus thermophilus HB8 Dei-Ther 2.12 69.5 – – –
Nocardia farcinica IFM 10152 Acti 6.29 70.7 H – Pathogen
Streptomyces avermitilis MA-4680 Acti 9.12 72.0 – – –
Streptomyces coelicolor A3(2) Acti 9.05 72.1 – – –

g-Pro (gamma-proteobacteria), Firm (Firmicutes), a-Pro (alpha-proteobacteria),
Chla (Chlamydiae), b-Pro (beta-proteobacteria), Acti (Actinobacteria), Dei-Ther
(Deinococcus-Thermus), end (endosymbiont). I (insect), F (fish), H (human),
P (plant), N (nematode), OI (Obligate intracellular).

a GC richer ancestor of these endosymbionts experienced an overall tendency
to increase its AT content after the shift to endosymbiosis is possible. Natural
selection is acting against this tendency by avoiding, to a variable degree, a
high reduction in the gene GC content. However, when the gene is inacti-
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vated, the effect of natural selection disappears and the tendency to increase
AT content becomes stronger. This is the situation observed in B. aphidi-
cola, in which, when a gene is inactivated, a degenerative process produces
its reduction in size and in GC content. A correlation between both para-
meters has been detected in B. aphidicola, where, on average, finally reaches
47% of the initial gene GC content [19], which is around 15% GC content for
non-coding regions.

In other gamma-proteobacterial endosymbionts such as Carsonella ruddii
(psyllid endosymbiont), the GC content may be even smaller. Thus, the GC
content of a 37 kb genome segment was as low as 19.9%, with most of the
coding genes with GC contents smaller than 20% and even ribosomal genes
with very low values (33.1% and 35.6% for 23S and 16S, respectively) [20].

However, there are exceptions to this situation in gamma-proteobacteria,
with the peculiarly high GC content of the primary endosymbiont of the weevil
Sitophilus oryzae (SOPE), which presents an average value of 54% [11]. This
exception, however, may be associated with the fact that it is in a preliminary
stage of adaptation to intracellular life and, for that reason, both GC content
and genome size are high and large [15]. In fact, in a comparison of the GC
content of two genes in several gamma-proteobacteria, secondary endosym-
biont GC contents were intermediate between those from free-living bacteria
and those from primary endosymbionts [21]. Another exception to the general
rule of low GC content is the beta-proteobacteria primary endosymbiont of
mealybugs. It presents in 65 kb a high 57% GC content with all coding genes
with values higher than 52% [22]. Because many beta-proteobacteria have
even higher GC contents, a comparison with a close relative will be necessary
to determine whether this bacterium is, or is not, an exception for this feature.

The analysis of the previous results leads to the general assumption that
endosymbionts, especially intracellular endosymbionts, have low GC contents,
and to conclude that their ancestors probably presented an equilibrium in the
genome GC content, which was broken when the shift to intracellularity or
host-association occurred. From that moment the tendency of the genes and
genomes was to increase their AT content. Several hypotheses have been put
forward to explain the low GC content of the endosymbionts. First, a mu-
tational bias favouring higher rates of mutation from GC nucleotides to AT
nucleotides would increase the AT content if mutations were fixed by genetic
drift and natural selection were unable to avoid fixation, at least in non-
essential genes or degenerate sites. The small effective population size of B.
aphidicola, with strong bottlenecks in each aphid generation and the preven-
tion of the recovery of wild type phenotypes by recombination (a phenomenon
known as Muller’s ratchet), would produce an increase in the rate of nucleotide
substitution, especially those changes leading to the misincorporation of A and
T nucleotides [3,11,23]. A neutral explanation for the AT mutational bias may
be related to the loss of several DNA repair genes, for example those correct-
ing the deamination of cytosine which, if left uncorrected, will render an uracil
and finally thymine [3]. A selective explanation was also proposed recently,
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based on the higher energy cost and the limited availability of G and C over
A and T in the obligate pathogens and symbionts [12]. The authors proposed
that the higher fitness of the AT rich individuals would produce the selection
of a general mutation bias, not the particular selection of each GC to AT
substitution.

Acceleration of the Substitution Rates

The first wide comparative study on nucleotide substitution rates between
endosymbiont and free-living bacteria showed the existence of an accelerated
evolution for the former [23]. The analysis of the 16S rDNA of five indepen-
dently derived endosymbiont clades (Buchnera, Wigglesworthia, Wolbachia
and endosymbionts of mealybugs and whiteflies) showed, in every case, faster
evolution in endosymbionts than in free-living relatives. The same relative rate
test applied to coding genes in Buchnera showed an even higher acceleration
in non-degenerate sites. The main difference in the rate of evolution when
comparing the divergence of five coding genes between E. coli and Salmonella
and two distant B. aphidicola strains was the extremely large increase in the
non-synonymous substitution rate during the evolution of endosymbionts [23].
This accelerated evolutionary rate was also observed to be a characteristic of
other very distant symbiont species such as mutualist fungi or bacterial en-
dosymbionts of molluscan, insects or oligochaetes hosts [24–26].

Comparison of evolutionary rates between endosymbionts and free-living
bacteria shows marked differences regarding the evolution of synonymous and
non-synonymous sites. Thus, the number of synonymous substitutions per
site (Ks) in B. aphidicola is homogeneous among loci, which contrasts with
the heterogeneity found in free-living bacteria. In addition, the estimation of
the synonymous substitution rate showed a slight increase (over twofold) in the
endosymbiont over E. coli in genes with a low codon bias [27]. These differences
are extremely high when comparing the rates of non-synonymous substitutions
for the genes of B. aphidicola with those of free-living bacteria [13,27,28].

The explanation for the comparatively higher rates of substitution in
endosymbionts, especially at the non-synonymous sites, was attributed to the
unusual population structure of these organisms [23]. The strict vertical trans-
mission to the host offspring, with a probable complete asexuality of the bac-
terial population due to the division in subpopulations and to the probable
loss of efficient systems for competence and recombination [29, 30], and with
continuous bottlenecks in the population size at each aphid generation [5],
would favour the fixation of slightly deleterious mutations. Recently, it has
been proposed that these high evolutionary rates would be mainly due to an
enhanced mutation rate and to a relaxation of purifying selection [31].

Loss of the Codon Usage Bias

Many bacterial species show a selected codon usage bias throughout the
genome. The strength of the selected codon usage bias varies substantially
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among species, and in 30% of the genomes examined, there was no signif-
icant evidence that selection had been effective [32]. This group includes
obligate intracellular parasites or endosymbionts, such as species in the gen-
era Buchnera, Wigglesworthia, Rickettsia, Mycoplasma or Chlamydia. Several
deeper analyses of endosymbiont lineages have been carried out, finding
very little variation of the synonymous codon usage across the genome in
W. glossinidia, regardless of whether the genes have high or low expression
levels [33]. On the contrary, a slight residual codon bias was detected in the
three B. aphidicola genomes within the leading and the lagging strands [34].
Finally, it was recently reported that codon usage differs between strands of
replication and between putative high and low expression genes in five insect
endosymbiont genomes [35]. The strength of a general codon usage bias is cor-
related with several factors such as the number of rRNA operons and tRNA
genes in the genome, or the level of expression of the genes. These results
are consistent with the hypothesis that species exposed to selection for rapid
growth have a more strongly selected codon usage bias [32].

Change in Amino Acid Composition of the Proteins

The bias to increase AT content in the endosymbiont coding genes has a strong
effect on protein composition. When compared with free-living relatives, B.
aphidicola proteins show many differences in the frequency of GC-rich encoded
amino acid such as Val, Ala or Gly and AT-rich encoded amino acids such
as Ile, Asn or Ser, which are decreased and increased, respectively [27, 36].
A parsimonic reconstruction of amino acid substitutions in four B. aphidicola
strains, although putatively affected by homoplasy, suggested that in the early
evolutionary stage of the lineage after the divergence from free-living enterics,
a high number of amino acid replacements increasing AT took place. In its
recent evolution, however, replacement of AT or GC-rich encoded amino acids
is taking place at a similar rate, or there may even be those decreasing AT in
a high number [27]. However, because the frequency of AT rich amino acid is
very high in the current B. aphidicola proteins, the former observation already
shows the higher tendency of GC encoded amino acids over AT encoded to
mutate.

The bias to a high frequency of AT rich amino acids is also observed
in other insect endosymbionts such as W. glossinidia [9] or Bl. floridanus
[10]. The case of the psyllid endosymbiont C. ruddii is especially remark-
able, because in the analysis of 32 polypeptide sequences containing an
ortholog in B. aphidicola, R. prowazekii and E. coli, 50% of the residues con-
sisted of the five AT-rich encoded amino acids (Phe, Ile, Lys, Asn and Tyr),
which contrasted with the situation of E. coli (22.3%) but also with that of
R. prowazekii (29.4%) and B. aphidicola (29.3%) [20].

The comparison of the amino acid changes between E. coli and the genomes
of W. glossinidia, B. aphidicola and Bl. floridanus has shown that variation
in amino acid usage strongly correlates with GC content and the putative
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expression level of genes, and that selection against costly amino acids in high
expression genes is a secondary factor that explains amino acid usage [35].

The high frequency of some positively charged amino acids (especially
Lys) has produced an extreme increase in the isoelectric point (pI) of the
proteins (average values of 9.84, 9.6 and 8.9 for W. glossinidia, B. aphidicola
and Bl. floridanus) over those of E. coli or H. influenzae (pI = 7.2) [8–10].
A comparative analysis of the orthologous E. coli and Bl. floridanus protein
pIs has shown that most E. coli proteins with pIs ranging from 4 to 10 have
an ortholog in Bl. floridanus, with a higher pI in a tendency, which reaches
around 10.5 in the most extreme cases [10]. However, natural selection is acting
against this change in some proteins, with 20% of the Bl. floridanus proteins
presenting a difference of pI against E. coli smaller than 0.5.

Amino acid substitutions are also producing a negative effect on protein
folding. The high expression levels of genes encoding chaperones, especially
GroEL protein, may counteract this negative effect. In fact, the amino acid
substitution rate of chaperones is very low in endosymbionts, and it has been
experimentally demonstrated that the GroEL protein may act as a buffer
against the effect of deleterious mutations [37]. Intracellular bacteria contain
more hydrophobic proteins as a result of the increase in AT-rich encoded
amino acids. It also makes them less stable against misfolding [38].

7.2.2 Reductive Evolution: DNA Loss and Genome Reduction
in Obligate Bacterial Mutualists

One of the most interesting features of the obligate intracellular bacteria of
insects was the extremely small size of their genomes with the five complete
sequenced genomes reported to date being smaller than 800 kb (Table 7.2). In
addition, other genome sizes estimated by pulsed field electrophoresis revealed
a similar situation with the 680 kb of Baumannia cicadellinicola, the intracel-
lular endosymbiont of sharpshooters [39], and the even more extreme situation
of several B. aphidicola strains with sizes as small as 450 kb [40]. These small
genomes are apparently derived from bacterial ancestors of larger genomes.
For example, the genome of B. aphidicola BAp, with around 600 genes, is
derived from an ancestor of at least 1,800 genes and 2 Mb [41].

Gene and DNA loss are not necessarily two simultaneous processes. For
example, the genome of Mycobacterium leprae has experienced an important
and probably recent loss of genes presenting 1,604 protein-coding genes and
1,116 pseudogenes, which contrasts with the 3,959 genes of Mycobacterium
tuberculosis [42]. However, most of the DNA of these genes still remains in the
3,2 Mb M. leprae genome. Thus, we will first discuss the reasons why some
genes are lost in a genome and second the reasons why the DNA of either a
gene or a non-functional DNA segment (i.e. a pseudogene) is lost.

The shift of a bacterial cell to a completely host-associated life provokes
natural selection to act to maintain primarily those genes with essential or
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very important functions for either the bacterial cell machinery or the main-
tenance of the symbiotic relation. Thus, on the one hand, a minimal number
of around 206 genes has been proposed as necessary to maintain the main
vital functions of the simplest hypothetical bacterial cell [43] and, on the
other hand, insect-associated endosymbionts are required to produce several
metabolites absent or deficient in insect diets. The number of genes of several
functional categories in insect endosymbiont genomes is drastically reduced
when compared with E. coli (Fig. 7.2). However, several genes involved in
vitamins or amino acid synthesis have been retained because they are impor-
tant to complement the insect diet. Thus, between 33 and 76 genes involved in
cofactor metabolism and 35 and 62 in amino acid metabolism are present in
the genomes of the three B. aphidicola strains, W. glossinidia, and Bl. flori-
danus. They act to complement the diets of the aphid, fly and ant hosts.
Because of the absence of competition with other organisms and because many
compounds are available in the cytoplasm of the host cell where it lives, many
genes become non-essential and natural selection does not act to avoid their
loss from the genome species. If the number of lost genes increases when com-
pared to a free-living bacterium, the only way to compensate for it would
be to increase gene acquisition through horizontal gene transfer. However,
at a final stage the endosymbiont genomes have lost not only those genes
involved in DNA uptake, but also those involved in recombination, which
would favour the incorporation of foreign DNA molecules into the chromo-
some [8,13,14,29].

Gene inactivation does not necessarily imply DNA loss. In fact, mammal
pseudogenes have such a small deletion rate that the half-life of a pseudogene
(the period for losing half of its nucleotides) has been estimated at 884 million
years (My) [44]. The situation in other eukaryotes seems to be similar but there
are important exceptions, such as Drosophila with a half-life of 14 My. The loss
of DNA is also being studied in bacteria, and a primary observation was that
the number of fixed deletions overtakes those of insertions when a pseudogene
is compared with the orthologous gene of a phylogenetically related species
[45]. It led to the proposal that in bacteria there is an indel bias that favours
deletions over of insertions. It was proposed that this bias was associated with
a mutation bias and with the random fixation of the mutations. The extreme
reduction in the transition to mutualism of several bacterial endosymbionts
was associated with this bias. However, it was proposed that in a final stage
in B. aphidicola, the rate of DNA loss was as small as one nucleotide per
10,000 years [46]. One recent analysis of the 164 gene losses that took place
during the recent evolution of the three B. aphidicola lineages showed that
the half-life of a pseudogene was only 23.9 My, a non-irrelevant rate, and that
the disintegration rate during the initial steps of Buchnera evolution would
have been even higher because several mechanisms, now lost in B. aphidicola,
would have produced faster and more drastic losses of nucleotides [19].
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7.2.3 Chromosomal Rearrangements
Throughout Endosymbiont Evolution

When the genomes of the B. aphidicola strains BAp and BSg, which diverged
50–70 My ago, were obtained [8, 13], one of the most surprising facts was
that the order of the genes in both genomes was basically identical. There
were no chromosomal rearrangements (inversion, translocation, duplications
or horizontal gene transfer insertions) between them. The only difference was
the absence of several genes in each one of the two genomes. Losses were
scattered throughout the two compared chromosomes [13]. This led to the
proposal that a genomic stasis takes place after the transition to intracellular
life, a consequence of the loss of repeated sequences and an effective recom-
binational system mainly because of the absence of the recA gene. After the
sequencing of the third and more divergent (86–164 My) B. aphidicola strain
BBp, the number of rearrangements was maintained at very low levels, with
only two translocations of plasmid genes to the chromosome and two small
inversions affecting 1 and 6 genes, respectively [14]. The same situation was
recently observed after the sequencing of a second Blochmannia species, Bl.
pennsilvanicus [47], which diverged from Bl. floridanus (16–19 My ago) [48].
However, this chromosomal stability is not extended to plasmid genes. Thus,
up to seven types of leucine-type plasmids have been observed in B. aphidi-
cola strains, differing in the gene content and order [49, 50]. In addition, the
transfer of the leucine cluster to the chromosome has taken place several times
during the evolution of B. aphidicola lineages, with four different chromoso-
mal insertion sites [51, 52]. Plasmid variability has also been observed in the
tryptophan plasmid, but to a lesser extent [50].

When the genomes of either B. aphidicola or Bl. floridanus were com-
pared with those of their close relative E. coli, many chromosomal rearrange-
ments were detected [10,41], leading to the proposal that during the transition
to an obligate intracellular stage many chromosomal rearrangements took
place, which were associated in some cases with recombination between re-
peat elements such as transposable elements, phages, duplicated genes and
other repeats [53]. Excluding horizontal gene transfer insertions, the most
frequent chromosomal rearrangements in gamma-proteobacteria are inver-
sions. Genome rearrangement rates have been recently estimated for a subset
of genes shared by 30 gamma-proteobacterial complete genomes, observing
that, in general, the progressive increase in sequence-based distances between
genome pairs was associated to the increase in their rearrangement-based dis-
tances (breakpoint or inversion distances), but with several groups of dis-
tances not following this pattern. B. aphidicola and W. glossinidia lineages
were evolving on average at moderately higher rates compared with free-living
enteric bacteria, respectively, while Bl. floridanus was evolving at an almost
identical rate [18]. A detailed examination of a phylogeny based on genome
rearrangement distances showed that the rate of gene order evolution of this
set was very heterogeneous, with periods of complete stasis such as in the
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case of B. aphidicola strains, or the E. coli K12, and Salmonella typhimurium
lineages, and others of extreme acceleration such as the divergence of the two
Yersinia pestis strains, the Shigella flexneri lineage, or the period of adapta-
tion to intracellular life in Buchnera [18]. The comparison of two phylogenies
based on genome rearrangements (inversions) and sequence (amino acid sub-
stitutions) distances (Fig. 7.3) reveals the important differences between both
rates in some lineages. The extremely low sequence distances between the two
Shigella genomes and E. coli (a divergence of less than 1 My) contrast with
the high rearrangement distances because of the acceleration of the Shigella
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Fig. 7.3. Phylogenies of a selected group of gamma-proteobacteria based on amino
acid substitution distances (upper panel) and genome rearrangement distances (lower
panel). Distances were estimated in a previous paper [18]. Amino acid substitu-
tions were obtained from a concatenated alignment of 10 well-conserved proteins
involved in translation and rearrangements from the minimal number of inversions
separating two genomes composed of a set of 244 genes shared by 30 completely
sequenced gamma-proteobacterial genomes. Taxon names: eco (Escherichia coli
K12); sfl (Shigella flexneri 2a str. 301); sfx (Shigella flexneri 2a str. 2457T); stm
(S. typhimurium LT2); sty (Salmonella enterica subsp. enterica serovar Typhi str.
CT18); vch (Vibrio cholerae O1 biovar eltor str. N16961); ype (Yersinia pestis
CO92); ypk (Yersinia pestis KIM); BAp (Buchnera aphidicola BAp); BBp (Buchnera
aphidicola BBp); BSg (Buchnera aphidicola BSg); bfl (Blochmannia floridanus); wgl
(Wigglesworthia glossinidia)
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lineage. On the contrary, the high sequence distance between B. aphidicola
BAp and BBp (divergence 86–164 My) contrasts with the minimal rearrange-
ment rate. The low rearrangement and sequence distances between E. coli K
12 and S. typhimurium (100 My of estimated divergence) are also remarkable.
Thus, the evolution of the endosymbiont lineages passes through a period
of extreme acceleration of the rearrangement rate at the initial stage and a
period of complete stasis later.

Therefore, natural selection has played a very important role in the main-
tenance of the chromosomal architecture. Periods of relaxation of the nat-
ural selection pressure produce a strong increase in the rate of fixation of
rearrangements. However, the presence of repeats and an efficient system of
recombination are required to generate rearrangements and, for that reason,
the endosymbiont genomes in a final stage become completely stable, even
in the absence of natural selection pressure for the maintenance of the gene
order.

7.3 Conclusions and Prospects

In this review, we have described the main genomic changes that have taken
place during the evolution of obligate intracellular bacterial symbionts from
ancestral free-living or, at least, facultative symbiont forms. Most of the
changes have been observed by comparing ancient intracellular established
lineages with free-living phylogenetically related ones. However, the initial
steps of this transition have not received close attention. The main hypothe-
ses consider that many changes affecting gene order, gene content, functional
capabilities, etc., occurred in a very short lapse of time. To better characterize
these changes it would be necessary to identify and analyse bacterial species
that are in this situation at present, which is a difficult task, though several
candidates are currently being analysed. The sequencing of the genomes of the
secondary endosymbiont of the tsetse fly, Sodalis glossinidius and the primary
endosymbiont of Sitophilus oryzae (SOPE) are in progress at the RIKEN GSC
(Japan) and our group at Valencia University, respectively. The comparison
of these two species possessing large genomes with those of some related free-
living enterics, will show the main changes occurring at the initial stages of
an obligate symbiont association.

The discovery that many insects contain, in addition to a primary bacterial
endosymbiont, several other endosymbionts (secondary endosymbionts) opens
the possibility of detecting a variety of situations which once analysed, may
render a general image of the endosymbiont scenario during the initial stages.
Especially interesting are the reasons for the coexistence of these endosym-
bionts in the same insect and whether they are able to form mutual stable
situations among themselves and the host, or whether they are in a transitory
stage that will end with the replacement of the primary endosymbiont.
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One of the most interesting changes observed during the progress of the
genome sequencing of SOPE was the presence of many copies of several inser-
tion sequence elements (IS), which are responsible for several gene inactiva-
tions and are a putative source of repeat elements. Homologous recombination
may use them to produce genome rearrangements including insertions, trans-
position, duplications and deletions.

The extent of genome reduction in these bacterial endosymbionts, and the
definition of the minimal gene contents for bacterial cellular survival and the
support of host life is a very interesting topic, which will be enriched with
the sequencing of very small genomes. This is the case of the B. aphidicola
strain BCc endosymbiont of the aphid Cinara cedri, whose genome is almost
completely sequenced, and contains a chromosome of less than 420 kb and
two small plasmids. Finally, the study of the insect–endosymbiont relation-
ship requires the analysis of endosymbionts belonging to different taxonomic
orders. Our group is contributing to these studies by sequencing the genome
of the flavobacterium endosymbionts of some cockroaches.
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21. A. Moya, A. Latorre, B. Sabater-Muñoz, F.J. Silva, J. Mol. Evol. 55, 127 (2002)
22. L. Baumann, M.L. Thao, J.M. Hess, M.W. Johnson, P. Baumann, Appl. Envi-

ron. Microbiol. 68, 3198 (2002)
23. N.A. Moran, Proc. Natl. Acad. Sci. USA 93, 2873 (1996)
24. F. Lutzoni, M. Pagel, Proc. Natl. Acad. Sci. USA 94, 11422 (1997)
25. A.S. Peek, R.C. Vrijenhoek, B.S. Gaut, Mol. Biol. Evol. 15, 1514 (1998)
26. M. Woolfit, L. Bromham, Mol. Biol. Evol. 20, 1545 (2003)
27. M.A. Clark, N.A. Moran, P. Baumann, Mol. Biol. Evol. 16, 1586 (1999)
28. E.U. Brynnel, C.G. Kurland, N.A. Moran, S.G.E. Andersson, Mol. Biol.

Evol. 15, 574 (1998)
29. F.J. Silva, A. Latorre, A. Moya, Trends Genet. 19, 176 (2003)
30. C. Dale, B. Wang, N.A. Moran, H. Ochman, Mol. Biol. Evol. 20, 1188 (2003)
31. T. Itoh, W. Martin, M. Nei, Proc. Natl. Acad. Sci. USA 99, 12944 (2002)
32. P.M. Sharp, E. Bailes, R. Grocock, J.F. Peden, R.E. Sockett, Nucl. Acids

Res. 33, 1141 (2005)
33. J.T. Herbeck, D.P. Wall, J.J. Wernegreen, Microbiology 149, 2585 (2003)
34. C. Rispe, F. Delmotte, R.C.H.J. van Ham, A. Moya, Genome Res. 14, 44 (2004)
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40. R. Gil, B. Sabater-Muñoz, A. Latorre, F.J. Silva, A. Moya, Proc. Natl. Acad.

Sci. USA 99, 4454 (2002)
41. F.J. Silva, A. Latorre, A. Moya, Trends Genet. 17, 615 (2001)
42. S.T. Cole, K. Eiglmeier, J. Parkhill, K.D. James, N.R. Thomson, P.R. Wheeler,

N. Honore, T. Garnier, C. Churcher, D. Harris, K. Mungall, D. Basham,



7 Genomic Changes in Bacteria 165

D. Brown, T. Chillingworth, R. Connor, R. M. Davies, K. Devlin, S. Duthoy,
T. Feltwell, A. Fraser, N. Hamlin, S. Holroyd, T. Hornsby, K. Jagels, C. Lacroix,
J. Maclean, S. Moule, L. Murphy, K. Oliver, M.A. Quail, M.A. Rajandream,
K.M. Rutherford, S. Rutter, K. Seeger, S. Simon, M. Simmonds, J. Skelton,
R. Squares, S. Squares, K. Stevens, K. Taylor, S. Whitehead, J.R. Woodward,
B.G. Barrell, Nature 409, 1007 (2001)
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52. B. Sabater-Muñoz, R.C.H.J. van Ham, A. Moya, F.J. Silva, A. Latorre,

J. Bacteriol. 186, 2646 (2004)
53. N.A. Moran, G.R. Plague, Curr. Opin. Genet. Dev. 14, 627 (2004)



Part III

Phylogenetic Analysis



8

Molecular Phylogenetics: Mathematical
Framework and Unsolved Problems

X. Xia

Phylogenetic relationship is essential in dating evolutionary events, recon-
structing ancestral genes, predicting sites that are important to natural
selection, and, ultimately, understanding genomic evolution. Three categories
of phylogenetic methods are currently used: the distance-based, the maximum
parsimony, and the maximum likelihood method. Here, I present the math-
ematical framework of these methods and their rationales, provide compu-
tational details for each of them, illustrate analytically and numerically the
potential biases inherent in these methods, and outline computational challe-
nges and unresolved problems. This is followed by a brief discussion of the
Bayesian approach that has been recently used in molecular phylogenetics.

8.1 Introduction

Biodiversity comes in many colors and shades, and unorganized biodiversity
cannot only dazzle our eyes but also confuse our minds. Phylogenetics is a
special branch of science with the aim to organize biodiversity based on the
ancestor–descendent relationship. Molecular phylogenetics uses molecular seq-
uence data to achieve its three main objectives: (1) to reconstruct the branch-
ing pattern of different evolutionary lineages such as species and genes, (2) to
date evolutionary events such as speciation or gene duplication and subsequent
functional divergence, and (3) to understand and summarize the evolutionary
processes by substitution models. With the rapid increase of DNA and protein
sequence data, and with the realization that DNA is the most reliable indicator
of ancestor–descendent relationships, molecular phylogenetics has become one
of the most dynamic fields in biology with solid theoretical foundations [1–3]
and powerful software tools [4–8]. I will not argue for the importance of molec-
ular phylogenetics other than quoting Aristotle’s statement that “He who sees
things from the very beginning has the most advantageous view of them.”

It is not always easy to see things from the very beginning. The evo-
lutionary process depicted in Fig. 8.1 shows an ancestral population with a
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Fig. 8.1. Illustration of nucleotide substitutions and the difficulty in correcting
multiple hits

single sequence shared among all individuals that have subsequently split into
two populations and evolved and accumulated substitutions independently.
Twelve substitutions have occurred, but only three differences can be observed
between the sequences from the two extant species. The most fundamental
difficulty in molecular phylogenetics is to estimate the true number of sub-
stitutions (i.e., 12) from the observed number of differences between extant
sequences (i.e., 3). In short, the difficulty lies in how to correct for multiple
hits.

The number of substitutions per site is known as a genetic distance.
The simplest genetic distance, known as the p-distance (Dp), between two
sequences is simply the number of different sites (N) divided by the sequence
length (L). For the two sequences in Fig. 8.1, Dp = 3/16. Because Dp does not
correct for multiple hits, it is typically a severe underestimation of the genetic
distance and has to be corrected. In the next few sections, I will first detail
commonly used substitution models, derive genetic distances based on the
substitution models, and introduce the three categories of molecular phyloge-
netic methods: the distance-based, the maximum parsimony, and the maxi-
mum likelihood methods. This is followed by a numerical illustration of the
Bayesian inference, together with a brief discussion of the Bayesian approach
that has recently been used in molecular phylogenetics [9]. Potential problems
with these phylogenetic methods will be highlighted.

8.2 Substitution Models

Substitution models reflect our understanding of how molecular sequences
change over time. They are the theoretical foundation for computing the
genetic distance in the distance-based phylogenetic method and for comput-
ing the likelihood value in the maximum likelihood method for phylogenetics.
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There are three types of molecular sequences, i.e., nucleotide, amino acid, and
codon sequences. Consequently, there are three types of substitution models,
i.e., nucleotide-based, amino acid-based, and codon-based. We will focus on
nucleotide-based substitution models, with only a brief discussion on amino
acid-based and codon-based models to highlight a few potential problems.

8.2.1 Nucleotide-Based Substitution Models
and Genetic Distances

Let P (t) be the vector of the four nucleotide frequencies in the order of A, G,
C, T at time t. Nucleotide-based substitution models are characterized by a
Markov chain of four discrete states as follows:

P (t + 1) = P (t)

⎡
⎢⎢⎣

MAA MAG MAC MAT

MGA MGG MGC MGT

MCA MCG MCC MCT

MTA MTG MTC MTT

⎤
⎥⎥⎦ = P (t) × M , (8.1)

where M is the transition probability matrix and Mij is the probability of
changing from state i to state j in one unit of time. Three frequently used
special cases of (8.1) will be detailed here: the JC69 model [10], the K80
model [11], and the TN93 model [12].

The simplest nucleotide substitution model is the JC69 one-parameter
model, in which all off-diagonal elements in M are identical and designated
as α. The four diagonal elements in M are 1−3α constrained by the row sum
equal to 1. There is a corresponding rate matrix, designated by Q̃, that differs
from M only in that the diagonal elements are −3α, constrained by the row
sum equal to 0. It is often more convenient to derive substitution rates by
using Q̃ instead of M , as will be clear later. Following (8.1), we have

PA(t + 1) = PA(t)(1 − 3α) + PG(t)α + PC(t)α + PT (t)α,

PG(t + 1) = PA(t)α + PG(t)(1 − 3α) + PC(t)α + PT (t)α,

PC(t + 1) = PA(t)α + PG(t)α + PC(t)(1 − 3α) + PT (t)α,

PT (t + 1) = PA(t)α + PG(t)α + PC(t)α + PT (t)(1 − 3α). (8.2)

Arranging the left-hand side to be P (t + 1) − P (t) and then applying the
continuous approximation, we have

∂PA

∂t
= −PA(t)(3α) + (PG(t) + PC(t) + PT (t))α,

∂PG

∂t
= −PG(t)(3α) + (PA(t) + PC(t) + PT (t))α,

∂PC

∂t
= −PC(t)(3α) + (PA(t) + PG(t) + PT (t))α,

∂PT

∂t
= −PT (t)(3α) + (PA(t) + PG(t) + PC(t))α. (8.3)
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Equation (8.3) is a special case of a general equation. Designate d as the
vector of the four partial derivatives, the general equation is

d = P (t) × Q̃, (8.4)

where Q̃ is the rate matrix mentioned before.
Suppose that we start with nucleotide A, what is the probability that it

will stay as A or change to one of the other three nucleotides after time t?
Given the initial condition that PA(0) = 1 and PG(0) = PC(0) = PT (0) = 0
and the constraint that PA + PG + PC + PT = 1, (8.3) can be solved to yield

PA(t) =
1
4

+
3
4
e−4αt,

PG(t) = PC(t) = PT (t) =
1
4
− 1

4
e−4αt. (8.5)

The time t in (8.5) is the time from the ancestor to the present. When we
compare two extant sequences, the time is 2t, i.e., from one sequence to the
ancestor and then back to the other sequence. So (8.5) has its general form as

Mii(t) =
1
4

+
3
4
e−8αt,

Mij(t) =
1
4
− 1

4
e−8αt, i �= j. (8.6)

The genetic distance (D), which is the number of substitutions per site,
is defined as D = 2tμ, where μ is the rate of substitution. For the JC69
mode, μ = 3α, so αt = D/6. Now we can readily derive D, now designated
DJC69, from the probability of a site being different which is estimated by the
p-distance (Dp) defined before. According to (8.6),

Dp = 1 − Mii(t) =
3
4
(
1 − e−8αt

)
=

3
4

(
1 − e−4DJC69/3

)
,

DJC69 = −3
4

ln
(

1 − 4Dp

3

)
. (8.7)

For the two sequences in Fig. 8.1, Dp = 3/16 = 0.1875 and DJC69 =
0.21576. The equilibrium frequencies are derived by setting (P (t + 1)−P (t))
in (8.3) to zero. Solving the resulting simultaneous equations with the con-
straint that the four frequencies sum up to 1, we have PA(t) = PG(t) =
PC(t) = PT (t) = 0.25. In summary, the JC69 model assumes that (1) the
four nucleotides can change into each other with equal probability and (2) the
equilibrium frequencies are all equal to 0.25.

The variance of DJC69 can be obtained by using the “delta” method [13].
When a variable Y is a function of a variable X, i.e., Y = F (X), the delta
method allows us to obtain approximate formulation of the variance of Y if
(1) Y is differentiable with respect to X and (2) the variance of X is known.
The same can be extended to more variables.
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The mathematical concept for the delta method is illustrated below, start-
ing with the simplest case of Y = F (X). Regardless of the functional rela-
tionship between Y and X, we always have

ΔY ≈
(

dY

dX

)
ΔX, (8.8)

(ΔY )2 ≈
(

dY

dX

)2

(ΔX)2 , (8.9)

where ΔY and ΔX are small changes in Y and X, respectively. Note that the
variance of Y is the expectation of the squared deviations of Y , i.e.,

V (Y ) = E (ΔY )2 ,

V (X) = E (ΔX)2 . (8.10)

Replacing (ΔY )2 and (ΔX)2 in (8.9) with V (Y ) and V (X), we have

V (Y ) ≈
(

dY

dX

)2

V (X). (8.11)

This relationship allows us to obtain an approximate formulation of the vari-
ance of either Y or X if we know either V (X) or V (Y ). For the variance of
DJC69, we note that DJC69 is a function of Dp, and the variance of Dp is
known from the binomial distribution:

V (Dp) =
Dp(1 − Dp)

L
, (8.12)

where L is the length of the two aligned sequences. From the expression of
DJC69 in (8.7), we have

∂DJC69

∂Dp
=

1
1 − 4Dp/3

,

V (DJC69) =
(

∂DJC69

∂Dp

)2

V (Dp) =
Dp(1 − Dp)

L(1 − 4Dp/3)2
. (8.13)

Kimura [11] noted that transitional substitutions typically occur much more
frequently than transversions, and consequently proposed the two-parameter
K80 model in which the rate of transitional substitutions (A ↔ G and T ↔
C) is designated as α and the rate of transversion substitutions (A ↔ T ,
A ↔ C, G ↔ T and G ↔ C) as β. Substituting this new Q̃ into (8.4) and
solving the equations with the initial condition that PA(0) = 1 and PG(0) =
PC(0) = PT (0) = 0 and the constraint that PA +PG +PC +PT = 1 as before,
we have
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PA(t) =
1
4

+
1
4
e−4βt +

1
2
e−2(α+β)t,

PG(t) =
1
4

+
1
4
e−4βt − 1

2
e−2(α+β)t,

PC(t) = PT (t) =
1
4
− 1

4
e−4βt. (8.14)

Note again that time t in (8.14) should be 2t when used between two extant
sequences. So (8.14) has its general form as

Ps(t) =
1
4

+
1
4
e−8βt − 1

2
e−4(α+β)t,

Pv(t) =
1
2
− 1

2
e−8βt, (8.15)

where Ps(t) and Pv(t) are the probabilities that a site differs by a transition
and a transversion, respectively, between two sequences that have diverged
for time t, and can be estimated by the proportion of sites that differ by a
transition (P ) and a transversion (Q), respectively. This leads to

βt = − ln(1 − 2Q)
8

,

αt = − ln(1 − 2P − Q)
4

+
ln(1 − 2Q)

8
. (8.16)

Recall that the genetic distance is defined as 2tμ where μ = α + 2β for the
K80 model. Therefore,

DK80 = 2αt + 4βt =
1
2

ln(a) +
1
4

ln(b) , (8.17)

where a = 1/(1 − 2P − Q) and b = 1/(1 − 2Q).
For the two sequences in Fig. 8.1, P = 2/16, Q = 1/16, DK80 = 0.22073.

The equilibrium frequencies are derived by setting d in (8.4) to the 0 vector.
Solving the resulting simultaneous equations with the constraint that the four
frequencies sum up to 1, we have PA(t) = PG(t) = PC(t) = PT (t) = 0.25.
Thus, the K80 model shares with the JC69 model the assumption that the
equilibrium frequencies are all equal to 0.25. The reader might have noticed
this because nucleotide frequencies are not featured in the expression of DJC69

or DK80.
The variance of DK80 can be derived by the delta method as before,

dDK80 =
(

∂DK80

∂P

)
dP +

(
∂DK80

∂Q

)
dQ = d1(dP ) + d2(dQ), (8.18)

(dDK80)2 = [d1(dP ) + d2(dQ)]2

= d2
1(dP )2 + 2d1d2(dPdQ) + d2

2(dQ)2

= d2
1V (P ) + 2d1d2Cov(P,Q) + d2

2V (Q),

=
[
d1 d2

] [ V (P ) Cov(P,Q)
Cov(P,Q) V (Q)

] [
d1

d2

]
. (8.19)
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Recall that P and Q stand for the proportion of sites that differ by a transi-
tional change and by a transversional change, respectively. Designate R as the
proportion of identical sites (R = 1−P −Q). From the trinomial distribution
of (R + P + Q)L, we have

V (P ) =
P (1 − P )

L
,

V (Q) =
Q(1 − Q)

L
,

Cov(P,Q) = −PQ

L
. (8.20)

Substituting these into (8.19), we have the variance of DK80,

V (DK80) = (dDK80)
2 =

a2P + c2Q − (aP + cQ)2

L
(8.21)

where c = (a + b)/2, with a and b defined in (8.17).
Note that (8.19) is a general equation for computing the variance by the

delta method. For any function Y = F (X1, X2, . . . , Xn), the variance of Y is
obtained by the variance–covariance matrix of Xi multiplied left and right by
the vector of partial derivatives of Y with respect to Xi.

Tamura and Nei [12] noticed the rate difference between C ↔ T and
A ↔ G transitions and proposed the TN93 model with the following rate
matrix:

Q̃ =

⎡
⎢⎢⎣

T . . . α1πC βπA βπG

C α1πT . . . βπA βπG

A βπT βπC . . . α2πG

G βπT βπC α2πA . . . ,

⎤
⎥⎥⎦ , (8.22)

where πi designates equilibrium nucleotide frequencies, and the diagonal
(dots) is constrained by the row sum equal to 0.

Following the same protocol as before, and designating P1, P2, and Q as
the probabilities of C ↔ T transitions, A ↔ G transitions and R ↔ Y
transversions (R means either A or G and Y means either C or T ), respectively,
we can obtain,

P1 = πT PTC(2t) + πCPCT (2t)

=
2πT πC

πY

(
πY + πRe−2βt − e−2(α1πY +βπR)t

)
,

(8.23)

P2 = πAPAG(2t) + πGPGA(2t)

=
2πAπG

πR

(
πR + πY e−2βt − e−2(α2πR+βπY )t

)
, (8.24)

Q = 2πRπy(1 − e−2βt). (8.25)
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Solving for α1t, α2t, and βt from (8.23) to (8.25), we have

α1t =
1

2πY

[
− ln

(
1 − Q

2πY
− P1πY

2πT πC

)
+ πR ln

(
1 − Q

2πRπY

)]
, (8.26)

α2t =
1

2πR

[
− ln

(
1 − Q

2πR
− P2πR

2πAπG

)
+ πY ln

(
1 − Q

2πRπY

)]
, (8.27)

βt = −1
2

ln
(

1 − Q

2πRπY

)
. (8.28)

DTN93 = 2t [πA(βπT + βπC + α2πG) + πC(βπA + βπG + α1πT )+
πT (βπA + βπG + α1πC) + πG(βπT + βπC + α2πA)]

= 4 (πRπY βt + πAπGα2t + πCπT α1t) . (8.29)

Because we can estimate P1, P2, and Q by the proportion of sites with
C ↔ T transitions, A ↔ G transitions, and R ↔ Y transversions, respectively,
DTN93 can be readily computed. For the two sequences in Fig. 8.1, DTN93 =
0.2525. The variance of DTN93 can be easily obtained by left- and right-
multiplying the variance–covariance matrix of P1, P2, and Q with the vector
of the three derivatives of DTN93 with respect to P1, P2, and Q in the same
way as shown in the last term of (8.19). The variance and covariance of P1,
P2 and Q can be obtained in the same way as in (8.20).

Many more substitution models and genetic distances have been pro-
posed [14], with the number of all possible time reversible models of nucleotide
substitution being 203 [15]. In addition, there are more complicated models
underlying the Log-Det and the paralinear distances [16,17] that can presum-
ably accommodate the nonstationarity of the substitution process. Different
substitution models often lead to different trees produced and constitute a
major source of controversy in molecular phylogenetics [18–20].

8.2.2 Amino Acid-Based and Codon-Based Substitution Models

Amino acid-based models [21,22] are similar in form to those nucleotide-based
models in the previous section, except that the discrete states of the Markov
chain will be 20 instead of only 4. Because of the large size of the transi-
tion matrix, the transition probabilities are typically derived from empirical
transition matrices [23,24].

There are three inherent difficulties with amino acid-based models. First,
protein-coding genes often differ much in substitution patterns, and one can
never be sure if any of the empirical transition matrices is appropriate for the
protein sequences one is studying. Second, note that an amino acid replace-
ment is effected by a nonsynonymous codon replacement. Two codons can
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differ by 1, 2, or 3 sites, and an amino acid replacement involving two codons
differing by one site is expected to be more likely than that involving two
codons differing by three sites. Only a codon-based model can incorporate this
information. Third, two similar amino acids are expected to, and do, replace
each other more frequently than two different amino acids [25]. However, the
similarity between amino acids is difficult to define. For example, polarity
may be highly conserved at some sites but not at others. Two very different
amino acids rarely replace each other in functionally important domains but
can replace each other frequently at unimportant segment. Moreover, the like-
lihood of two amino acids replacing each other also depends on neighboring
amino acids [26]. For example, whether a stretch of amino acids will form an α-
helix may depend on whether the stretch contains a high proportion of amino
acids with high helix-forming propensity, and not necessarily on whether a
particular site is occupied by a particular amino acid.

The codon-based substitution models [27, 28] were proposed to overcome
some of the difficulties in amino acid-based models. These models share the
third difficulty above with the amino acid-based models, and have additional
problems of their own. For example, one cannot get good estimate of codon
frequencies because protein-coding genes are typically very short. An alterna-
tive is to use the F3×4 codon frequency model [8, 29]. However, codon usage
is affected by many factors, including differential ribonucleotide and tRNA
abundance as well as biased mutation [30–32].

For example, the site-specific nucleotide frequencies are poor predictors
of codon usage (Table 8.1) of protein-coding genes in Escherichia coli K12.
The A-ending codon is used frequently for coding lysine, but the G-ending
codon is used frequently for coding glutamine (Table 8.1). The reason for
this is simple. Six Lys-tRNA genes in E. coli K12 all have anticodons being
UUU which can translate the AAA lysine codon better than the AAG lysine
codon. For glutamine codons, there are two copies of Glu-tRNA genes (glnX
and glnV) with a CUG anticodons matching the CAG codon and another two
copies (glnW and glnU) with the UUG anticodon matching the CAA codon.
However, the former is more abundant than the latter in the E. coli cell [33],
which would favor the use of CAG against the CAA codon for glutamine.

Table 8.1. Site-specific nucleotide frequencies and codon usage in two codon families

Base CS1 CS2 CS3 Codon AA Ncod

A 0.273 0.32 0.180 AAG Lys 24
C 0.189 0.24 0.326 AAA Lys 149
G 0.409 0.16 0.219 CAG Gln 73
U 0.129 0.28 0.275 CAA Gln 7

AA, amino acid; Ncod, number of codon; CS, codon site. Results based on eight
highly expressed genes (gapC, gapA, fbaB, ompC, fbaA, tufA, groS, groL) from
the Escherichia coli K12 genome (GenBank Accession: NC 000913).
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One should expect the F3 × 4 codon frequency model to perform poorly in
such a situation, which unfortunately is frequently encountered.

8.3 Tree-Building Methods

Three categories of tree-building methods are in common use: the distance-
based, the maximum parsimony, and the maximum likelihood methods. These
methods have their respective advantages and disadvantages, and I will pro-
vide mathematical details for the reader to understand their problems.

8.3.1 Distance-Based Methods

The distance-based methods build trees from a distance matrix, and are repre-
sented by the neighbor-joining (NJ) method [34], the Fitch–Margoliash (FM)
method [35], and the FastME method [36]. The calculation of genetic dis-
tances has already been covered in previous sections. Other than the simplest
UPGMA method, each tree-building method consists of two steps: (1) the
evaluation of branch lengths for a given topology by the least-squares (LS)
method, the NJ method or the FM method, and (2) the selection of the best
tree based on either the minimum evolution (ME) criterion or the least-squares
or the weighed least-squares criterion referred to hereafter as the FM crite-
rion. One should not confuse, e.g., the FM way of evaluating branch lengths
with the FM criterion for choosing the best tree.

There are many ways of evaluating branch lengths for a given tree, and
I will only present the LS method here. For the three-OTU (operational tax-
onomic unit) tree in Fig. 8.2a, the branch lengths (xi) can be solved uniquely
by the following equations:

d12 = x1 + x2,

d13 = x1 + x3,

d23 = x2 + x3. (8.30)
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For the four-OTU tree in Fig. 8.2b, we can write down the equations in the
same way as in (8.30), but there will be six equations for five unknowns. The
LS method finds the xi values that minimize the sum of squared deviations
(SS),

SS =
∑

(dij − d̄ij)2

= [d12 − (x1 + x2)]2 + · · · + [d34 − (x3 + x4)]2. (8.31)

By taking the partial derivatives with respect to xi, setting the derivatives to
zero and solving the resulting simultaneous equations, we get

x1 = d13/4 + d12/2 − d23/4 + d14/4 − d24/4,

x2 = d12/2 − d13/4 + d23/4 − d14/4 + d24/4,

x3 = d13/4 + d23/4 + d34/2 − d14/4 − d24/4,

x4 = d14/4 − d13/4 − d23/4 + d34/2 + d24/4,

x5 = −d12/2 + d23/4 − d34/2 + d14/4 + d24/4 + d13/4. (8.32)

With four OTUs, there are three unrooted trees. There are two commonly
used criteria for choosing the best tree. The first is the ME criterion based
on the tree length (TL), which is the summation of all xi values. The tree
with the smallest TL is chosen as the best tree. In contrast, the FM criterion
chooses the tree with the smallest SS

SS =
n−1∑
i=1

n∑
j=i+1

(
dij − d̄ij

)2
dP

ij

, (8.33)

where n is the number of OTUs and P often takes the value of 0 or 2.
Whether a distance-based method will recover the true tree depends critic-

ally on the accuracy of the distance estimates. We will briefly examine this
problem with both the ME criterion and the FM criterion. Let TLB and TLC

be the tree length for Trees B and C in Fig. 8.2. Suppose that OTUs 1 and
3 have diverged from each other so much as to have experienced substitution
saturation [37] to cause difficulty in estimating the true D13. Let pD13 be the
estimated D13, where p measures the degree of underestimation (p < 1) or
over-estimation (p > 1). Designate DTL as the difference in TL between the
two trees,

DTL = TLB − TLC =
d12 + d34 − (pd13 + d24)

4
. (8.34)

According to the LS method of branch evaluation, Tree B is better than
Tree C if DTL < 0, and worse than Tree C if DTL > 0. Simple distances
such as the p-distance or JC69 distance tend to have p < 1 and consequently
increase the chance of having DTL > 0, i.e., favoring the incorrect Tree C.
This is the long-branch attraction problem, first recognized in the maximum



180 X. Xia

parsimony method. Genetic distances corrected with the gamma-distributed
rates over sites [12, 38–40] tend to have p > 1 when there is in fact no rate
heterogeneity over sites, and consequently would favor Tree B over Tree C,
leading to long-branch repulsion [41].

The long-branch attraction and repulsion problem is also present with the
FM criterion. Let SSB and SSC be SS in (8.33) for Trees B and C, respectively.
With P = 0 in (8.33) and letting DSS = SSB − SSC , we have

4DSS = (d13 + d24)2 − (d12 + d34)2 + 2(d14 + d23) [(d12 + d34) − (d13 + d24)]
= x2 − y2 + 2z(y − x) , (8.35)

where x = d13 + d24, y = d12 + d34, and z = d14 + d23. We now focus on Tree
D, for which y is expected to equal z. Now (8.35) is reduced to

4DSS = (x − y)2. (8.36)

If branch lengths are accurately estimated, then x = y = 10, and DSS = 0,
i.e., neither Tree B nor Tree C is favored. However, if d13 (i.e., the summation
of the two long branches) is under- or over-estimated, then DSS > 0 favor-
ing Tree C. This means that both under- and over-estimation of the distance
between divergence taxa will lead to long-branch attraction. This can be bet-
ter illustrated with a numerical example with Tree D in Fig. 8.2, which also
displays three distance matrices. The first one is accurate, the second one has
genetic distances more underestimated for more divergent taxa, and the third
has genetic distances more over-estimated for more divergent taxa (e.g., when
gamma-distributed rates are assumed when the rate is in fact constant over
sites). Note that Tree B and Tree C converge to Tree D when x5 = 0. Table 8.2
shows the results by applying the ME and LS criterion in analyzing the three
distance matrices.

When the distances are accurate, both the ME criterion and the FM crite-
rion recover Tree D (the true tree) with x5 = 0, TL = 10, and SS = 0. However,
ME criterion favors Tree C when long branches are underestimated, and Tree
B when long branches are over-estimated. In contrast, the FM criterion would
favor Tree C with both under- and over-estimated distances (Table 8.2) when
negative branches are allowed.

Table 8.2. Distance matrix: effect of under- and over-estimation of genetic distances

TreeB TreeC TreeB TreeC TreeB TreeC

TL 10 10 7.75 7.5 12.5 13
SS 0 0 0.25 0 1 0
x5 0 0 −0.25 0.5 0.5 −1

Columns 2–3 are results from accurate genetic distances, columns 4–5 for genetic
distances more underestimated for more divergent taxa, and columns 6–7 for
genetic distances more over-estimated for more divergent taxa.
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S6 CATGCCGGC

S5 TATGCCGGC

S4 GACGTTGAC

S3 TACGTCAAC

S2 AACGTCGGC

S1 AATGCCGGC

∪→(T,C)

∪→(A,T)

∩→(T)

∪→(A,T,G)

∪→(T,G)

123456789

Fig. 8.3. Computing the minimum number of changes for the first site of the six
alignment sequences in phylogenetic reconstruction using the maximum parsimony
method

8.3.2 Maximum Parsimony Methods

In contrast to the distance-based methods, maximum parsimony (MP) and
maximum likelihood methods are character-based methods. The six aligned
sequences in Fig. 8.3 have nine sites, with sites 2, 4, 9 being monomorphic,
and the rest of sites being polymorphic. A polymorphic site with at least
two different states each represented by at least two OTUs is defined as an
informative site. The MP method operates on informative sites only.

Given a topology, the minimum number of changes for each sequence site
is computed, with the computation of the first site illustrated in Fig. 8.3. Each
node is represented by a set of characters, with the terminal nodes (leaves)
each represented by a set containing a single character. The method traverses
through each internal node, starting from the node closest to the leaves. If two
sets of the two daughter nodes have an empty intersection, then the node will
be represented by the union of the two daughter sets, otherwise the node will
be represented by the intersection. Once the operation reaches the root, then
the number of union operations is the minimum number of changes needed
to map the site to the tree. Site 1 in Fig. 8.3 requires four union operations,
whereas sites 3, 5, and 8 each require only one union operation. Sites 6 and
7, which are polymorphic with two nucleotide states but not informative, will
require one change for any topology. So the minimum number of changes, also
referred to as the tree length, given the topology and the sequences in Fig. 8.3,
is nine. The same computation is done for other possible topologies and the
tree with the smallest tree length is taken as the MP tree.

The MP method is known to be inconsistent [42, 43], and I will provide
a simple demonstration here by using trees in Fig. 8.4. With four species, we
have three possible unrooted topologies, designated Ti (i = 1, 2, 3), with T1

being the correct topology.
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Fig. 8.4. The long-branch attraction problem in the maximum parsimony methods

Let Xij be nucleotide at site j for species Xi, and L be the sequence
length. For simplicity, assume that nucleotide frequencies are all equal to 0.25.
Suppose that the lineages leading to X1 and X3 have experienced full substi-
tution saturation, so that

Pr(X1j = Xij,i�=1) = Pr(X3j = Xij,i�=3) = 0.25 (8.37)

where Pr stands for probability. The lineages leading to X2 and X4 have not
experienced substitution saturation and have

Pr(X3j = X4j) = P , (8.38)

where P > 0.25. For simplicity, let us set P = 0.8, and L =1,000.
We now consider the expected number of informative sites, designated by

ni (i = 1, 2, 3), favoring Ti. By definition, site j is informative and favoring T1

if it meets the following three conditions: X1j = X2j , X3j = X4j , X1j �= X3j .
Similarly, site j favors T2 if X1j = X3j , X2j = X4j , X1j �= X2j . Thus, the
expected numbers of informative sites favoring T1, T2, and T3, respectively, are

E(n1) = Pr(X1j = X2j , X3j = X4j , X1j �= X3j)L
= 0.25 × 0.25 × 0.75 × 1,000 ≈ 47,

E(n2) = Pr(X1j = X3j , X2j = X4j , X1j �= X2j)L
= 0.25 × 0.80 × 0.75 × 1,000 ≈ 150,

E(n3) = E(n1) ≈ 47. (8.39)

The equations mean that, in spite of T1 being the true topology, we should
have, on an average, only about 47 informative sites favoring T1 and T3, but
150 sites supporting the wrong tree T2. This is one of the several causes for
the familiar problem of long-branch attraction [44] or short-branch attraction
[45]. Because it is the two short branches that contribute a large number of
informative sites supporting the wrong tree, “short-branch attraction” seems
a more appropriate term for the problem than “long-branch attraction.”

8.3.3 Maximum Likelihood Methods

The maximum likelihood (ML) method is based on explicit substitution mod-
els. Many different types of computer simulation have demonstrated the
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Fig. 8.5. Likelihood calculation for the first site of the four aligned sequences

superiority of the ML method in recovering the true tree. I now use the
four aligned sequences in Fig. 8.5 to illustrate numerically the computation
involved in the ML method based on the JC69 model. With four sequences,
we have three possible unrooted topologies of which one is shown in Fig. 8.5.

The sequences have eight sites, with the first four sites sharing one site
pattern and the last four sites sharing another site pattern. So we need only
two site-specific likelihood functions. The likelihood function of the first site,
given the topology in Fig. 8.5, is the summation of the 16 probabilities corres-
ponding to the 16 nucleotide combinations of the two internal nodes with
unknown nucleotides (Fig. 8.5). Thus, the likelihood of the first site is

L1 = πAMAA(t1)MAA(t2)MAA(t5)MAG(t3)MAG(t4)
+πCMCA(t1)MCA(t2)MCA(t5)MAG(t3)MAG(t4) + . . .

+πT MTA(t1)MTA(t2)MTT (t5)MTG(t3)MTG(t4) , (8.40)

where Mij(t) for the JC69 model has already been given in (8.6) except that
“8αt” should be replaced by “4αt.” Note that L2 = L3 = L4 = L1. We can
write L5 (= L6 = L7 = L8) in a similar fashion.

The sequences in Fig. 8.5 allow us to simplify (8.40) greatly. Note that
S1 = S2 and S3 = S4 (Fig. 8.5) so that αt1, αt2, αt3, and αt4 are all zero.
Now we have

L1 = 0.0625 − 0.0625e−4αt5 ,

L5 = 0.0625 + 0.1875e−4αt5 . (8.41)

With the assumption that all sites evolve independently, the likelihood func-
tion for all eight sites is simply

L = L4
1L

4
5,

lnL = 4 ln(L1) + 4 ln(L5)
= 4 ln(0.0625 − 0.0625e−4αt5) + 4 ln(0.0625 + 0.1875e−4αt5). (8.42)

The αt5 value that maximizes ln L in (8.42) is αt5 = 0.27465, which leads
to lnL = −21.02998. The branch length between nodes 5 and 6 is 3αt5 =
0.82396. We can do the same calculation for the other two possible topologies,
and then choose the tree with the largest lnL value as the ML tree. In this
particular example, the tree in Fig. 8.5 is the ML tree because it has the
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lnL value greater than that of the other two trees. One may also find that the
ML tree, including its estimated branch lengths, is identical to the tree from
a distance-based method such as the neighbor-joining [34], the FastME [36]
or the FM method [35] as long as the JC69 distance is used.

There are two major criticisms on the ML method in phylogenetics. The
first is that the application of the likelihood in phylogenetics is not really
an ML method in its conventional sense because the topology is not in the
likelihood function [3,46]. To see this point, we can illustrate the conventional
ML method with a simple example.

Suppose we wish to estimate the proportion of males (p) of a fish popula-
tion in a large lake, a random sample of N fish contains M males. With the
binomial distribution, the likelihood function is

L =
N !

M !(N − M)!
pM (1 − p)N−M . (8.43)

The maximum likelihood method finds the value of p that maximizes the
likelihood value. This maximization process is simplified by maximizing the
natural logarithm of L instead:

lnL = A + M ln(p) + (N − M) ln(1 − p)
∂ lnL

∂p
=

M

p
− N − M

1 − p
= 0

p =
M

N
. (8.44)

The likelihood estimate of the variance of p is the negative reciprocal of the
second derivative,

Var(p) = − 1
∂2 lnL/∂p2

= − 1
−M/p2 − (N − M)/(1 − p)2

=
p(1 − p)

N
.

(8.45)
Note that, in contrast to the likelihood in (8.44), which is a function of p

(the parameter to be estimated), the likelihood in (8.42) does not have the
topology as a parameter. Without the convenient“∂ lnL/∂θ = 0” formulation,
we have to do either exhaustive or branch-and-bound search in order to find
the topology that maximizes that likelihood. In practice, exhaustive or branch-
and-bound search is rarely done, which implies that few of the published
ML trees are authentic ML trees. Thus, Nei’s criticism highlights more of
a practical difficulty than a theoretical one because the likelihood principle
does not require the parameter to be continuous and differentiable [47]. The
criticism can also be applied to other phylogenetic methods. However, other
methods are generally faster and can search the tree space more thoroughly
than the ML method. Therefore, while it is not particularly controversial to
claim that an authentic ML tree is generally better than a tree satisfying the
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MP, ME, or FM criterion, it is not unreasonable for one to expect the latter
to be as good as or better than an “ML” tree that is derived from searching
a small subset of all possible topologies. This is particularly pertinent with
reconstructing very large phylogenies [48].

The second criticism is on the assumptions shared by nearly all the sub-
stitution models currently implemented in the likelihood framework: (1) the
substitutions occur independently in different lineages, (2) substitutions occur
independently among sites, and (3) the process of substitution is described
by a time-homogeneous (stationary) Markov process. The first assumption is
false in taxa with a history of horizontal gene transfer [49–54]. The problem
of the second assumption can be illustrated with the following example in-
volving the GAT and GGT codons. Both codons end with a T . Whether a
T → A substitution would occur depends much on whether the second posi-
tion is an A or a G. The T → A substitution is rare when the second codon
position is A because a T → A mutation in the GAT codon is nonsynony-
mous, but relatively frequent when the second codon position is G because
such a T → A mutation in a GGT codon is synonymous. So nucleotide sub-
stitutions do not occur independently among sites. This is one of the rea-
sons for using codon-based models but these models have their own problems
as mentioned before. The third assumption is also problematic. Suppose, we
wish to reconstruct a tree from a group of orthologous sequences from both
invertebrate and vertebrate species, there is little DNA methylation in inver-
tebrate genomes, but heavy DNA methylation in some vertebrate genomes.
DNA methylation greatly enhanced the C → T transition (and consequently
the G → A transition on the opposite strand [55]). The net result is a much
elevated transition/transversion bias and increased AT% in the lineages with
DNA methylation, violating the third assumption.

More complicated models have been proposed in response to our increased
knowledge of the substitution process. However, such parameter-rich mod-
els require more data for reliable parameter estimation. The dilemma is that
increasing the sequence length also increases the heterogeneity of substitu-
tion processes [56] including heterotachy [57] operating on different sequence
segments and consequently increase the number of parameters to be esti-
mated. Such heterogeneity over sites implies that the consistency of the ML
method [47,58] is not of much value because we cannot get long sequences for
a fixed and small number of parameters. Take for example the estimation of
the proportion of male fish in the lake. If we get only six male fish in a sample
with no female, then the likelihood estimation of p is 1 which is worse than
our wildest guess without any data.

8.3.4 Bayesian Inference

The Bayesian approach has only recently been used in phylogenetic inference
[9]. Here, I illustrate the basic principle of the Bayesian approach by using the



186 X. Xia

problem of estimating the proportion (p) of males when the sample of six fish
being all males. For a continuous variable such as p, the Bayes’ theorem is

f(θ|y) =
f(y|θ)f(θ)∫
f(y|θ)f(θ)dθ

, (8.46)

where θ is the parameter of interest, y is the observed sample data, f(θ)
is the prior probability for incorporating our prior knowledge on θ, f(y|θ)
is the likelihood, and f(θ|y) is the posterior probability. In practice, (8.46)
is rarely used because the integration in the denominator is difficult unless
f(θ) and f(y|θ) are very simple, although the MCMC (Markov chain Monte
Carlo) approach [59,60] can alleviate the problem. Two alternative approaches
have been devised to ease the computation burden, one being to use discrete
approximations to continuous probability models, and the other being to use
the conjugate prior distributions. For our example involving a stationary and
independent Bernoulli process in estimating p, the conjugate prior distribution
is the beta distribution with the following f(p):

f(p) =
(n − 1)!

(r − 1)!(n − r − 1)!
pr−1(1 − p)n−r−1. (8.47)

Let us designate n and r as n′ and r′ in the prior distribution, n′′ and r′′ in
the posterior distribution, and just as n and r in the sample. If we expect the
fish species to have equal number of males and females, then for a sample of
six fish (n′ = 6), we expect r′ to be 3. The prior probability can be calculated
from (8.47) and shown in Fig. 8.6.
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Fig. 8.6. Comparison between prior and posterior probabilities
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It can be proven that, if the prior distribution of p is a beta distribution,
then the posterior distribution will also be a beta distribution with two para-
meters computed according to (8.48). In our actual sample with six males and
0 female (n = 6 and r = 6),

r” = r′ + r = 3 + 6 = 9,
n” = n′ + n = 6 + 6 = 12. (8.48)

Now the posterior probability can be calculated by using (8.47) and shown in
Fig. 8.6 in comparison with the prior probability. Thus, our prior expectation
of p = 0.5 has been revised by the actual sample to p = 0.8. One may note
that if the population of fish is indeed made of all males, e.g., when there is
a high concentration of androgen masculinizing all individuals to males [61],
then the likelihood estimate of p = 1 is correct and the Bayesian estimate of
p = 0.8 is wrong, and the wrong estimate may lead to our failure to identify
an environmental crisis.

In Bayesian phylogenetics, θ is a collection of the tree topology, the rate
matrix, and the branch lengths, and the likelihood function is formulated as in
the maximum likelihood method. The main difficulty is the justification of the
prior probability [1, 62, 63] which is problematic even for the simple example
of estimating p.

8.4 Final Words

What I have presented is only the tip of the iceberg. One need to go down and
get wet to see what is truly big (and truly messy). The models and equations
are presented more for convenience than for mathematical rigor, but should
work well for pedagogical purposes. I used to tell my son that his toys were
alive with their own minds so he should be nice to them otherwise they would
be upset and refuse to play with him. Such a lousy worldview nevertheless
seemed to work perfectly well for him. I am sure that my son will grow out of
this worldview, just as I am sure that the reader will grow out of the conceptual
framework of molecular phylogenetics that is presented in this chapter.
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Phylogenetics and Computational Biology
of Multigene Families

P. Liò, M. Brilli, and R. Fani

This chapter introduces the study of the major evolutionary forces operating in
large gene families. The reconstruction of duplication history and phylogenetic
analysis provide an interpretative framework of the evolution of multigene
families. We present here two case studies, the first coming from Eukaryotes
(chemokine receptors) and the second from Prokaryotes (TIM barrel proteins),
showing how functional and structural constraints have shaped gene duplica-
tion events.

9.1 Introduction

The genes and genomes sequencing projects have revealed that much of the
increase in gene number from bacteria to humans has been mainly promoted
by DNA duplication, which can lead to redundant gene copies.

In some special cases, an adaptive advantage for redundancy can be found,
e.g., an increased dosage of a protein, as is the case for the developing by many
insects of resistances to pesticides (see e.g., [1]). Such short-term selective
advantages should not be underestimated, but in the vast majority of gene
duplication events, a similar dosage effect cannot be invoked; thus, the preser-
vation by selection of both duplicates seems to be possible only if they diverge
in some way [2].

In eukaryotes, gene duplications seem to have occurred often, e.g., the
olfactory [3], HOX [4], or globin genes in animals [5, 6].

Moreover, the remnants of whole genome duplications have been identified,
e.g., for frogs [7,8], fishes [9–11], different yeast strains [12–15], and Arabidopsis
[16]; these, along with events involving DNA stretches of reduced size (from
less than a gene to a few genes), lead to suppose that gene duplication is one
of the most important mechanisms lying at the basis of eukaryotes evolution;
the whole process can be summarized as gene duplication event and evolu-
tionary divergence of the two paralogs; this in the long run can increase the
complexity of metabolism and regulatory patterns, which have been linked to
an increased morphological and/or phenotypical complexity [17].
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The modalities by which gene duplication promotes complexity increases
are nevertheless still an open question; in fact Dehal and Boore [18], studying
the two hypothesized rounds of whole genome duplication that happened in
the vertebrate lineage, noticed that the vast majority of duplicated genes that
originated after the proposed whole genome duplications were subsequently
lost, indicating that relatively few genes may have been responsible for the
increased complexity disclosed in vertebrates [18].

The three main distinct mechanisms that generate tandem duplication of
DNA stretches in eukaryotes are slipped-strand mispairing, gene conversion,
and unequal recombination. Various examples have been described (see e.g.,
[19, 20]) and they will not be discussed here.

Different extents of duplication are possible: a small part of a gene, a
module, an exon, an intron, a full coding region, a full gene, a chromosome
segment containing a cluster of genes, a full chromosome, or the entire genome.

It must be stressed that not every gene duplication results in acquiring
a new function by one of the two duplicates: most families, for example the
globin and olfactory gene clusters, also contain many duplicates that have
lost function (pseudogenes). Other duplicates can retain the original function
and be maintained in a given genome for indefinite time. This could happen
for the yet cited gene dosage effect, or because a certain degree of genetic
redundancy increases the robustness of genetic networks, as emerged by the
work of Gu et al. [21]: they performed a genome-wide survey on the phenotypic
effects of Saccharomyces cerevisiae single-gene deletion mutants and showed
that 25% of the mutants with no discernible phenotype could be explained by
the presence of duplicated loci [22].

Studies concerning the rate of gene duplication confirmed that the process
fulfills all the requisites for being considered an important evolutionary tool:
the duplication of a single gene is an event whose average rate is on the
order of 0.01 per gene per million years, ranging between 0.02 and 0.002 in
different species; moreover, duplicates exhibit an average half-life of about
four million years [2], a time that appear to be congruent with the evolution
of novel functions or the specialization of ancestral, inefficient ones. More
quantitatively, it has been estimated that half of all the genes in a genome
are expected to duplicate and increase to high frequency at least once on
timescales of 35–350 million years [2]. It could be interesting to remind that if
these estimations are correct, then the rate of duplication of a gene is of the
same order of magnitude as the rate of mutation per nucleotide site. Thus, even
in the absence of direct amplification of entire genomes (polyploidization),
gene duplication has the potential to generate substantial molecular substrate
for the origin of evolutionary novelties [2].

As anticipated, whole genome duplications are believed to have played an
important role in the evolution of yeast, plant, and vertebrate species (see
e.g., [5,23]). Consequently, the present debate on vertebrate evolution concen-
trates on the relative contribution of the large-scale genome duplication (the
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so-called big-bang model), after the echinoderms/chordates split and before
the vertebrate radiation, and the continuous origin by small-scale duplications.

After duplication a gene starts diverging from the ancestral sequence,
referring not only to coding sequences, but also to regulatory sites. Recently,
as microarray expression data accumulate in public databases, great atten-
tion has been devoted to understand the role of expression divergence in the
preservation of duplicates and the appearance of ever more complex expression
patterns and genetic networks.

As a result of the different extents of DNA duplication and the possible
types of evolutionary divergence of the duplicates (functional and/or regula-
tory), eukaryotic genomes in general and the vertebrate ones in particular,
contain several large gene families, whose gene products are expressed in
different tissues in different amounts, permitting the high degree of speciali-
zation of the different tissues.

The analysis of these large gene families is central to studies of mecha-
nisms of gene duplication and duplicates preservation, but are also related
to researches in genome evolutionary dynamics. Similar analyses make use of
statistics and bioinformatics and while being the present chapter not intended
to serve as a complete literature survey on these tools, it represents a good
introduction to recent aspects of this field, including description of some
statistical and bioinformatics techniques.

9.2 How Do Large Gene Families Arise?

As gene duplications take place within individuals constituting a population,
it is generally assumed that the duplicated gene is neutral or immediately
advantageous; otherwise it will be purged from the population; similarly, for
the duplicate to be preserved, it must be fixed in the population before it
becomes a functionless gene. Selection cannot identify a gene with future
potential, hence the duplication of a gene has been generally considered to
be followed by a race between the pseudogenization of one duplicate and its
fixation in the population. This depends on the need of the cell for that gene
product in that condition, i.e., it depends on the gene regulation and/or prod-
uct function.

Early studies on gene duplication and duplicates preservation lead to
the hypothesis that a balance between pseudogenization and fixation of the
duplicate, the last happening in the case the duplicate have acquired a new
and advantageous function.

9.3 The Classical Model of Gene Duplication

The classical model of gene duplication states that after the duplication event,
one duplicate may become functionless, while the other copy will retain the
original function [22,24]. Complete duplicates (when the duplication involves
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both the coding and all the regulatory sequences of the original gene) are
expected to be redundant in function (at least in the immediate beginning);
in this case, one duplicate may represent a backup copy shielding the other
from natural selection; this, being likely that a mutation have a negative effect
on function, implies that one duplicate will probably lose its function while
the other will retain it.

Very rarely, an advantageous mutation may change the function of one
duplicate and both duplicates may be retained. In conclusion, the most plau-
sible fate in the light of the classical model is the pseudogenization of one of
the two duplicates, but it suffers of a number of problems when explaining
evidences emerged by recent genome analyses. First of all, it fails to explain
the amount of functional divergence and the long-term preservation of the
large numbers of paralogous genes, which constitute most of eukaryotic multi-
gene families, because they often retain the original function for long time.
Accordingly, Walsh [25] used a mathematical model of the evolutionary fate of
duplicates starting immediately after the duplication event (when the dupli-
cates are perfectly redundant); this Markov model has two absorbing states,
fixation and pseudogenization. The main result is that if the population size
is large enough, the fate of most duplicated genes is to gain a new function
rather than become pseudogenes.

Nadeau and Sankoff [26], studying human and mice genes, estimated
that about 50% of gene duplications undergo functional divergence; other re-
searches showed that the frequency of paralogous genes preservation following
ancient polyploidization events are in the neighborhood of 30–50% over peri-
ods of tens to hundreds of millions of years [2]. To overcome these limitations,
new models have been proposed which better fit empirical data.

9.4 Subfunctionalization Model

In eukaryotes, gene expression patterns are typically controlled by complex
regulatory regions, which finely tune the expression of a gene in a specific
tissue, developmental stage, or cell lineage. Particularly interesting is the com-
binatorial nature of most eukaryotic promoters, composed by different and
partially autonomous regions with a positive or negative effect on downstream
gene transcription with the overall expression pattern being determined by
their concerted (synergistic) action.

Similarly, proteins can contain different functional and/or structural
domains, which may interact with different substrates and regulatory ligands,
or other proteins. Every transcriptionally important site or protein domains
can be considered as a subfunctional module for a gene or protein, each one
contributing to the global function of that gene or protein. Starting from
this idea, Lynch and Force [27] first proposed that multiple subfunctions of
the original gene may play an important role in the preservation of gene
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duplicates. They focused on the role of degenerative mutations in different
regulatory elements of an ancestral gene expressed at rates, which depend on
a certain number of different transcriptional modules (subfunctions) located
in its promoter region. After the duplication event, deleterious mutations can
reduce the number of active subfunctions of one or both the duplicates, but
the sum of the subfunctions of the duplicates will be equal to the number
of original functions before duplication (i.e., the original functions have been
partitioned among the two duplicates). Similarly, considering both duplicates,
they are together able to complement all the original subfunctions; moreover,
they can have partially redundant functions too.

This example of subfunctionalization considers both functions affecting the
expression patterns dependent on promoter sequences recognized by different
transcription factors, and also “hubs” proteins with different and partially
independent domains. The subfunctionalization, or duplication- degeneration-
complementation model (DDC) of Lynch and Force [25, 27], differs from the
classical model because the preservation of both gene copies mainly depends
on the partitioning of subfunctions between duplicates, rather than the occur-
rence of advantageous mutations.

A limitation of the subfunctionalization model is the requirement for mul-
tiple independent regulatory elements and/or functional domains; the classical
model is still valid if gene functions cannot be partitioned: for example when
selection pressure acts to conserve all the subfunctions together. This is often
the case when multiple subfunctions are dependent on each other.

9.5 Subneofunctionalization

A recent improvement in gene duplication models has been proposed by He
and Zhang [28], starting from the results of a work concerning both yeast
protein interaction data (from MIPS and [29]) and human expression data
(from [30]), which have been tested both under the neofunctionalization and
the subfunctionalization models. Neither models alone satisfied experimental
results for duplicates. Further progress are formalized as subneofunctionaliza-
tion model, which is a mix of previous models; the subfunctionalization appear
to be a rapid process, while the neofunctionalization requires more time and
continues even long after duplication [28].

The rapid subfunctionalization observed by He and Zhang [28] can be
viewed as the acquisition of expression divergence between duplicates; after
this subfunctionalization has occurred, both duplicates are essential (because
only together they can maintain the original expression patterns), and hence
they are maintained. Once a gene is established in a genome, it can retain
its function or evolve or specialize a new one (i.e., it undergoes neofunction-
alization).
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9.6 Tests for Subfunctionalization

Dermitzakis and Clark [31] developed a subfunctionalization test, and iden-
tified several paralogs common to both humans and mice in which it has
occurred. The basic idea is that the substitution rate in a given functional
region will be low if a gene possesses a function which relies on that residues,
otherwise the substitution rate in the same region will be higher. The statis-
tical method used by the authors permits the identification of regions with
significantly different substitution rates in two paralogous genes. Following
Tang and Lewontin [32], Dermitzakis and Clark represented the pattern of
change across a gene by the cumulative proportion of differences between a
pair of orthologs (termed “pattern graph”). The pattern graph shows sharp
increases when the substitution rate is high and almost no change in regions
of sparse changes. Dermitzakis and Clark proposed the “paralog heterogeneity
test,” comparing the pattern graphs for human and mouse paralogs of several
interesting genes. If one paralog has had a higher rate of substitution than
the other in a given region, the difference between the pattern graphs shows
a sharp rise or fall. If the paralogs have evolved at the same rate within a
region, the difference between the pattern graphs will change slowly across
the region.

The“paralog heterogeneity test”compares the longest stretch of increasing
or decreasing difference between the two pattern graphs to what would be
expected if they had evolved similarly. The null distribution is simulated by
the repeated random permutation of the two genes, so neither gene has distinct
regions. If a region contains significant differences when compared with the
null distribution, then the paralogs have evolved at different rates in that
region. If so, the subfunctionalization model predicts that it is important to the
function of the paralog in which it is conserved. Subfunctionalization assumes
that there is more than one region of functional importance and it is possible
for more than one region to be involved in a given function. By testing the
sum of the two or more largest stretches, the significance of multiple regions
can be determined; this can lead to predictions of functional regions for both
paralogs.

9.7 Tests for Functional Divergence After Duplication

One of the possible fates of a duplicated gene is to acquire a new function,
or to specialize a pre-existing but inefficient function; again statistics permit
the study of functional divergence in a rigorous manner. Changes in protein
function generally lead to variations in the selective forces acting on specific
residues. An enzyme can evolve arriving to recognize a different substrate,
which plausibly interact with residues not involved in docking the original
ligand, and leaving some of them free. Similar changes can often be detected
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as evolutionary rate changes at the sites in question. It is known that a good
estimator of the sign and strength of the selective force acting on a coding
sequence is the ratio between nonsynonymous and synonymous rates: if the
value exceed 1 the gene is said to be under positive selection, on the contrary
under negative selection [33].

This divergence of protein functions often is revealed by a rate change in
those amino acid residues of the protein that are most directly responsible
for its new function. To investigate this change in evolution, a likelihood ratio
test (LRT) is developed for detecting significant rate shifts at specific sites in
proteins. A slow evolutionary rate at a given site would indicate that this posi-
tion is functionally important for the protein. Conversely, a high evolutionary
rate would indicate that the position is not involved in an important protein
function. A significant rate difference between two subfamilies at a given site
would thereby mean that the function of this position is probably different in
the two groups.

Recent works take into account the phylogeny and the differing substitu-
tion rates between amino acids to detect functional divergence between par-
alogous genes. Gu [34, 35] has developed a quantitative measure for testing
the function divergence within a family of duplicated genes. The method is
based on measuring the decrease in mutation rate correlation between gene
clusters of a gene family; the hidden Markov model (HMM) procedures al-
low the amino acid residues responsible for the functional divergence to be
identified [34,35].

9.7.1 Case Study 1: Chemokine Receptors
Expansion in Vertebrates

Chemokine receptors (CR) are G-coupled protein receptors that bind small
peptides called chemokines (chemotactic cytochines). Chemokines and their
receptors are essential components of hematopoiesis, leukocyte trafficking,
organogenesis, and immuno-modulation in mammalian species [36]. They are
also involved in a variety of disease processes including inflammation, allergy
and neoplasia. All chemokines have four conserved cysteines linked by disul-
fide bonds and two of them, located in the N-terminal region, defines four
chemokine subfamilies: CXC, CC, C, and CX3C [37].

To date, a number of human receptors, specific for these chemokine
subfamilies, have been described, though many receptors are still unassigned.
Several viruses, for example Epstein-Barr, Cytomegalovirus, and Herpes
Samiri, contain functional homologs to human CRs, an indication that such
viruses may use these receptors to subvert the effects of host chemokines [23].
Moreover, primate immunodeficiency retroviruses have adopted CRs as essen-
tial gateways for entry into their target cells [38].

Understanding CRs evolutionary history would help the comprehension of
the evolution of immune system. The phylogenetic relationships of chemokine
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Fig. 9.1. The maximum likelihood phylogeny under the JTT+F+ Gamma model of
evolution for the set of chemokine receptors amino acid sequences from human and
mouse. Here, the entire sequence is considered. The scale bar refers to the branch
lengths, measured in expected numbers of amino acid replacements per site

receptors using maximum likelihood [39] showed that different evolutionary
models confirmed the same tree topology, with all CRs divided in four major
branches. The ML tree, obtained using the JTT+F+G model of evolution, is
shown in Fig. 9.1. The +F option implies that equilibrium frequencies of each
state, nucleotide or amino acid, is empirically calculated from the datasets
under analysis and not derived from the model.

Figure 9.2 shows the topology of chemokine receptors computed for the
concatenated sequences of the external loops, which are primarily involved in
the interactions with the ligands. The two topologies differ in several branches.
This may imply that receptors with similar specificity do not always form
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Fig. 9.2. Same as in Fig. 9.1. Here, the external loop regions are considered

monophyletic clusters (see e.g., CCR6, 1, 7, 9, and 10 with respect to the
other CCR, or the CXCRs) and that the ability of a receptor to interact with
a given chemokines’ family could have evolved and changed different times,
depending on events of gene conversion, sub and/or neofunctionalization.

9.7.2 Case Study 2: The Evolution of TIM Barrel Coding Genes

It is generally accepted that ancestral protein-encoding genes should have been
relatively short sequences encoding simple polypeptides likely corresponding
to functional and/or structural domains. The size and complexity of extant
genes are the result of different evolutionary processes, including gene fusion,
accretion of functional domains, and duplication of internal motifs (Fig. 9.3).
The last mechanisms is often referred to as gene elongation, i.e., the increase
in gene size and represents one of the most important steps in the evolution
of complex genes from simple ones.
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Fig. 9.3. Gene elongation: the duplication of an ancestral gene and the subsequent
fusion of the two homologs to produce a longer protein

A gene elongation event might be the consequence of an in-tandem
duplication of a gene; if the deletion of the intervening sequence between the
two copies and a mutational change converting the stop codon of the first copy
into a sense codon occurs, this might result in the elongation of the ancestral
gene. Therefore, the new gene is constituted by two paralogous moieties.

The traces of an internal repetition might gradually disappear from a gene
mainly because of mutations. The long-lasting evidence of an internal repe-
tition is the presence in the protein structure of three dimensionally similar
domains; Barbosa et al. [40] found an evidence for an internal gene duplica-
tion of the hisD gene which cannot be identified by analyzing the amino acid
sequence. However, in other cases, the traces of the common origin of two (or
more) portion within a gene (as well as of two or more genes) can be disclosed
by comparing the amino acid sequence of the protein it codes for.

Particularly interesting from this point of view is the following gene family.
At present, about 10% of all enzymes with known tertiary structures contains
at least one domain that has the β/a-barrel fold. In spite of their structural
similarity, the β/a-barrels are apparently able to support diverse functional
activities. The barrel structure is composed of eight catenated strand-loop-
helix-turn units. The β-strands are located in the interior of the protein,
forming the staves of a barrel, whereas the a-helices pack around the exterior.
The functional diversity and the poor sequence relationships among the dif-
ferent barrels motivated an intensive study of the evolution of their topology.
Over short spans of evolution, the relationships existing between different
β/a-barrel proteins can be reconstructed, but over longer periods of evolu-
tion, these relationships often become obscured. Therefore, the descent of the
barrel is still under debate and arguments for both convergent and divergent
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evolution of the β/a-barrels have been presented. But in the last years, a large
body of sequence, structural and experimental data clearly speaking toward
a divergent mode of evolution of these proteins has been reported.

This accumulation of data mainly concerns the structure and the analysis
of the products of hisA and hisF, which are particularly interesting from
an evolutionary point of view. These two genes, whose products [N -(5′-
phosphoribosyl) formimino]-5-aminoimidazole-4-carboxamide ribonucleotide
isomerase and imidazole-glycerol-phosphate synthase, respectively, catalyze
two central and sequential reaction in histidine biosynthesis. The comparative
analysis of amino acid sequence of the proteins they code for from different
archaeal, bacterial, and eukaryal organisms revealed that they are paralogous
and share a similar internal organization into two paralogous modules half the
size of the entire sequence.

Comparison of these modules led to the suggestion that hisA and hisF are
the result of two ancient successive duplications, the first one involving an
ancestral module half the size of the present-day hisA gene and leading (by a
gene elongation event) to the ancestral hisA gene, which in turn underwent a
duplication that gave rise to the hisF gene. Since the overall structure of the
hisA and hisF genes is the same in all the (micro)organisms where they has
been identified, it is quite likely that they were part of the genome of the last
common ancestor and that the two successive duplication events leading to the
extant hisA and hisF took place in the early stages of molecular evolution [41].

The biological significance of the subdivision of hisA and hisF into two
paralogous modules half the size of the entire genes is shown in Fig. 9.4.

Fig. 9.4. The structure of the HisA TIM-barrel from Thermotoga maritima (1QO2)
showing the eight internal strands and the wrapped-around helices
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Fig. 9.5. (a) Structures of the two half-barrels corresponding to the internal repe-
titions of the HisA protein from Thermotoga maritima; (b) evolutionary model on
the origin of hisA/hisF; (c) structures of the first and second quarters of the HisA
protein from Thermotoga maritima

According to the model proposed [41,42], the ancestral gene encoded for a half-
barrel protein which might undergo a homodimerization giving a functional
protein. The elongation event leading to the ancestor of hisA/hisF genes,
enabled the covalently fusion of two half-barrels producing a protein capable
of broad enzymatic activity and whose function was refined and optimized by
mutational changes occurring in time.

Over time, the whole-barrel gene might undergo a paralogous duplication
event, leading to the ancestor of hisA and hisF. The model is supported not
only by sequence comparative analysis [41], but also by the analysis carried
out by Lang et al. [42], who studied the structure of the HisA protein by veri-
fying that the complete barrel originated by means of a gene elongation event
starting from a gene coding for a half-barrel (Fig. 9.5b). The two halves of the
HisA protein were structurally superimposed (Fig. 9.5a), and they showed a
maximum rms of 2.1 rA, while the amino acid primary sequence analysis re-
vealed an identity of 29% for the Methanococcus jannaschii HisA/F proteins.
In Fig. 9.5b, we describe the model introduced for the evolution of this pair
of genes.

It starts with an ancestral gene coding for a half-barrel; after a gene elon-
gation event, the gene gains four additional (β/a)-modules arriving to code
for a complete barrel; this, in turn undergoes a gene duplication event lead-
ing to the present-day hisA/hisF gene pair. The analysis of the sequence and
structure of HisA and HisF depicts a likely scenario for divergent evolution of
(at least) some of the proteins belonging to this family.

The possibility that different β/a-barrel encoding genes might be the
results of divergent evolution by one (or more) duplication of an ancestral
gene received recently an elegant experimental confirmation [43] who worked
with HisA and TrpF proteins. HisA and TrpF catalyze two similar reactions,
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an Amadori rearrangement (which is the irreversible isomerization of an
aminoaldose to an aminoketose), in histidine and tryptophan biosynthesis,
respectively.

Despite the lack of detectable amino acid sequence similarity, HisA and
TrpF belong to the β/a-barrel family. The striking functional and structural
similarities suggest that HisA and TrpF may have evolved from one common
ancestral enzyme with low substrate specificity. By using random mutagenesis
and selection, the authors generated several HisA variants that catalyze the
TrpF reaction both in vitro and in vivo, and one of these variants retained sig-
nificant HisA activity. These variants were due to single amino acid exchanges;
it is possible that this “artificial” molecule probably may have the qualities of
the common ancestor of HisA and TrpF.

It is also worth noting that among the TIM barrel proteins, HisA is the
only one that have maintained an almost perfect subdivision in two modules
half the size of the entire gene and sharing a high degree of sequence similarity.
In other TIM barrels, such as HisF and TrpF, the common origin of the two
halves has been obscured by point mutations and/or larger rearrangements
due to functional and/or structural constraints. Therefore, it is possible that
HisA might resembles the ancestral TIM barrel enzyme.

We searched for additional local internal regions of similarities and we
found that they could correspond to two (β/a)-modules each (Table 9.1);
being the corresponding of a quarter of barrel, we will refer to these four
regions as the quarters. A structure for two of the quarters (the first and the
second) is shown in Fig. 9.5c [44]. The paralogy between these two quarters
is not expected by the half-barrel repetition yet known to be present in this
protein (which predicts a low rms in the first vs. third quarter comparison),
and it could represent the fossil of a very ancient evolutionary time, when a
TIM-barrel structure was formed by a homotetramer of quarters of barrel.

Given the very ancient dating of these events, it would be not surprising if
other quarters had lost their homology at the primary sequence level. Hence,
the present day situation could have been reached after two gene elongation
events, each one having the effect of doubling the length of the ancestral gene

Table 9.1. Percent identity (upper triangle) and similarity (lower triangle) obtained
by comparing the quarters of the HisA protein from Thermotoga maritima

1Q 2Q 3Q 4Q
(%) (%) (%) (%)

1Q 21 (18) 26 (20) 12 (11)
2Q 36 (30) 6 (11) 9 (22)
3Q 55 (36) 29 (27) 3 (13)
4Q 44 (32) 39 (36) 25 (30)

Given percentages are for the comparison between residues belonging to secondary
structures only and considering all residues, in parentheses
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and the number of (β/a)-modules in the product. Then, the HisA TIM barrel
would be the results of a cascade of two consecutive gene elongations.

The symmetry of the TIM-barrel structure suggests to test a further
ancestral duplication step in which the minute original gene coded for a single
(β/a)-module, capable of forming a homo-octamer to give the complete barrel.
Although the alignment constructed from the eight single (β/a)-modules is
very short, nevertheless, it still contains a certain amount of sequence and
secondary structure homologies not expected from random choice. If this is
so, the ancestral forms of life might have expanded their coding abilities and
their genomes “simply” by duplicating a small number of mini-genes, i.e., the
“starter types.”

Additional studies will help in better understanding the evolutionary
history of the TIM-barrel family of proteins, which are successful structures,
most represented in metabolism.
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SeqinR 1.0-2: A Contributed Package
to the R Project for Statistical Computing
Devoted to Biological Sequences Retrieval
and Analysis

D. Charif and J.R. Lobry

The seqinR package for the R environment is a library of utilities to retrieve
and analyze biological sequences. It provides an interface between: (i) the R
language and environment for statistical computing and graphics, and (ii) the
ACNUC sequence retrieval system for nucleotide and protein sequence data-
bases such as GenBank, EMBL, SWISS-PROT. ACNUC is very efficient in
providing direct access to subsequences of biological interest (e.g., protein
coding regions, tRNA, or rRNA coding regions) present in GenBank and
in EMBL. Thanks to a simple query language, it is then easy under R to
select sequences of interest and then use all the power of the R environment
to analyze them. The ACNUC databases can be locally installed but they
are more conveniently accessed through a web server to take advantage of
centralized daily updates. The aim of this chapter is to provide a handout on
basic sequence analyses under seqinR with a special focus on multivariate
methods.

10.1 Introduction

10.1.1 About R and CRAN

R [1, 2] is a free language and environment for statistical computing and
graphics, which provides a wide variety of statistical and graphical tech-
niques: linear and nonlinear modelling, statistical tests, time series analy-
sis, classification, clustering, etc. Please consult the R project homepage at
http://www.R-project.org/ for further information.

The Comprehensive R Archive Network, CRAN, is a network of servers
around the world that store identical, up-to-date, versions of code and docu-
mentation for R. At compilation time of this document, there were 43 mirrors
available from 21 countries. Please use the CRAN mirror nearest to you
to minimize network load, they are listed at http://cran.r-project.org/
mirrors.html.
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10.1.2 About this Document

In the terminology of the R project [1,2], this document is a package vignette.
The examples given thereafter were run under R version 2.1.0, 2005-04-
18 on Wed May 4 20:29:12 2005 with Sweave [3]. The last compiled version
of this document is distributed along with the seqinR package in the /doc
folder. Once seqinR has been installed, the full path to the package is given
by the following R code:

.find.package("seqinr")

[1] "/Users/lobry/Library/R/library/seqinr"

10.1.3 About Sequin and seqinR

Sequin is the well-known software used to submit sequences to GenBank,
seqinR has definitively no connection with sequin. seqinR is just a shortcut,
with no google hit, for “Sequences in R.”

However, as a mnemotechnic tip, you may think about the seqinR package
as the Reciprocal function of sequin: with sequin you can submit sequences
to Genbank, with seqinR you can Retrieve sequences from Genbank. This
is a very good summary of a major functionality of the seqinR package, to
provide an efficient access to sequence databases under R.

10.1.4 About Getting Started

You need a computer connected to the Internet. First, install R on your com-
puter. There are distributions for Linux, Mac, and Windows users on the
CRAN (http://cran.r-project.org). Then, install the ape, ade4, and se-
qinr packages. This can be done directly in an R console with for instance
the command install.packages("seqinr"). Last, load the seqinR package
with:

library(seqinr)

The command lseqinr() lists all what is defined in the package seqinR:

lseqinr()[1:9]

[1] "AAstat" "EXP" "GC"

[4] "GC2" "GC3" "SEQINR.UTIL"

[7] "a" "aaa" "as.SeqAcnucWeb"

We have printed here only the first nine entries because they are too nu-
merous. To get help on a specific function, say aaa(), just prefix its name
with a question mark, as in ?aaa and press enter.

10.1.5 About Running R in Batch Mode

Although R is usually run in an interactive mode, some data preprocessing
and analyses could be too long. You can run your R code in batch mode in a
shell with a command that typically looks like:
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unix$ R CMD BATCH input.R results.out &

where input.R is a text file with the R code you want to run and results.out
a text file to store the outputs. Note that in batch mode, the graphical user
interface is not active so that some graphical devices (e.g., x11, jpeg, png)
are not available (see the R FAQ [4] for further details).

It is worth noting that R uses the XDR representation of binary objects in
binary saved files, and these are portable across all R platforms. The save()
and load() functions are very efficient (because of their binary nature) for
saving and restoring any kind of R objects, in a platform independent way. To
give a striking real example, at a given time on a given platform, it was about
4 minutes long to import a numeric table with 70,000 lines and 64 columns
with the defaults settings of the read.table() function. Turning it into binary
format, it was then about 8 seconds to restore it with the load() function. It
is, therefore, advisable in the input.R batch file to save important data or re-
sults (with something like save(mybigdata, file = "mybigdata.RData"))
so as to be able to restore them later efficiently in the interactive mode (with
something like load("mybigdata.RData")).

10.1.6 About the Learning Curve

If you are used to work with a purely graphical user interface, you may feel
frustrated in the beginning of the learning process because apparently simple
things are not so easily obtained. In the long term, however, you are a winner
for the following reasons.

Wheel (the)

Do not re-invent (there is a patent [5] on it anyway). At the compilation time
of this document, there were 508 contributed packages available. Even if you
do not want to be spoon-feed à bouche ouverte, it is not a bad idea to look
around there just to check what is going on in your own application field.
Specialists all around the world are there.

Hotline

There is a very reactive discussion list to help you, just make sure to read the
posting guide at: http://www.R-project.org/posting-guide.html, before
posting. Because of the high traffic on this list, we strongly suggest to answer
yes at the question Would you like to receive list mail batched in a daily digest?
when subscribing at https://stat.ethz.ch/mailman/listinfo/r-help.
Some bons mots from the list are archived in the R fortunes package.

Automation

Consider the 178 pages of figures in the additional data file 1 http://genome-
biology.com/2002/3/10/research/0058/suppl/S1) from [6]. They were
produced in part automatically (with a proprietary software that is no more
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maintained) and manually, involving a lot of tedious and repetitive manipula-
tions (such as italicizing species names by hand in subtitles). In few words, a
waste of time. The advantage of the R environment is that once you are happy
with the outputs (including graphical outputs) of an analysis for species x, it is
very easy to run the same analysis on n species.

Reproducibility

If you do not consider the reproducibility of scientific results to be a serious
problem in practice, then the paper by Jonathan Buckheit and David Donoho
[7] is a must read. Molecular data are available in public databases, this is a
necessary but not sufficient condition to allow for the reproducibility of results.
Publishing the R source code that was used in your analyses is a simple way
to greatly facilitate the reproduction of your results at the expense of no extra
cost. At the expense of a little extra cost, you may consider to set up a RWeb
server so that even the laziest reviewer may reproduce your results just by
clicking on the “do it again” button in his web browser (i.e., without installing
any software on his computer). For an example, involving the seqinR pack-
age, follow this link http://pbil.univ-lyon1.fr/members/lobry/repro/
bioinfo04/ to reproduce on-line the results from [8].

Fine Tuning

You have full control on everything, even the source code for all functions
is available. The following graph was specifically designed to illustrate the
first experimental evidence [9] that, on average, we have also [A]=[T] and
[C]=[G] in single-stranded DNA. These data from Chargaff’s laboratory (see
Fig. 10.1) give the base composition of the L (Ligth) strand for seven bacterial
chromosomes.

[A]

0 % − 100 %

[G]

0 % − 100 %

[C]

0 % − 100 %

[T]

0 % − 100 %

Fig. 10.1. Chargaff’s data
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Fig. 10.2. Genetic code number one

The graph in Fig. 10.1 is a very specialized one. The filled areas correspond
to nonallowed values because the sum of the four bases frequencies cannot
exceed 100%. The white areas correspond to possible values (more exactly to
the projection from R

4 to the corresponding R
2 planes of the region of allowed

values). The lines correspond to the very small subset of allowed values for
which we have in addition [A]=[T] and [C]=[G]. Points represent observed
values in the seven bacterial chromosomes. The whole graph is entirely defined
by the code given in the example of the chargaff dataset (?chargaff to
see it).

Another example of highly specialized graph is given by the function
tablecode() to display a genetic code (Fig. 10.2) as in textbooks:

tablecode(dia = F)

It is very convenient in practice to have a genetic code at hand, and moreover
here, all genetic code variants are available (Fig. 10.3):

tablecode(numcode = 2, dia = F)

Data as Fast Moving Targets

In research area, data are not always stable. Compare the following graph
(Fig. 10.4):

dbg <- get.db.growth()

plot(x = dbg$date, y = log10(dbg$Nucl), las = 1,

main = "The growth of DNA databases", xlab = "Year",

ylab = "Log10 number of nucleotides")

with Fig. 1 in [10].
Data have been updated since then but the same R code was used to

produce the figure, ensuring an automatic update. For LATEX users, it is
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Fig. 10.3. Genetic code number two
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Fig. 10.4. The exponential growth of DNA databases

Table 10.1. A very simple example of amino acid counts in three proteins

Ala Val Cys

1 130 70 0
2 60 40 0
3 60 35 5

worth mentioning the fantastic tool contributed by Friedrich Leish [3] called
Sweave() that allows for the automatic insertion of R outputs (including
graphics) in a LATEX document. In the same spirit, there is a package called
xtable to coerce R data into LATEX tables, for instance Table 10.1 below
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was produced this way, enforcing a complete coherence between the R code
example and the table.

10.2 How to Get Sequence Data

10.2.1 Importing Raw Sequence Data from Fasta Files

The fasta format is very simple and widely used for simple import of biological
sequences. It begins with a single-line description starting with a character >,
followed by lines of sequence data of maximum 80 character each. Examples of
files in fasta format are distributed with the seqinR package in the sequences
directory:

list.files(path = system.file("sequences", package = "seqinr"),

pattern = ".fasta")

[1] "bb.fasta" "ct.fasta" "malM.fasta" "seqAA.fasta"

The function read.fasta() imports sequences from fasta files into your
workspace, for example:

seqaa <- read.fasta(File = system.file("sequences/seqAA.fasta",

package = "seqinr"), seqtype = "AA")

seqaa

A06852

[1] "M" "P" "R" "L" "F" "S" "Y" "L" "L" "G" "V" "W" "L"

[14] "L" "L" "S" "Q" "L" "P" "R" "E" "I" "P" "G" "Q" "S"

[27] "T" "N" "D" "F" "I" "K" "A" "C" "G" "R" "E" "L" "V"

[40] "R" "L" "W" "V" "E" "I" "C" "G" "S" "V" "S" "W" "G"

[53] "R" "T" "A" "L" "S" "L" "E" "E" "P" "Q" "L" "E" "T"

[66] "G" "P" "P" "A" "E" "T" "M" "P" "S" "S" "I" "T" "K"

[79] "D" "A" "E" "I" "L" "K" "M" "M" "L" "E" "F" "V" "P"

[92] "N" "L" "P" "Q" "E" "L" "K" "A" "T" "L" "S" "E" "R"

[105] "Q" "P" "S" "L" "R" "E" "L" "Q" "Q" "S" "A" "S" "K"

[118] "D" "S" "N" "L" "N" "F" "E" "E" "F" "K" "K" "I" "I"

[131] "L" "N" "R" "Q" "N" "E" "A" "E" "D" "K" "S" "L" "L"

[144] "E" "L" "K" "N" "L" "G" "L" "D" "K" "H" "S" "R" "K"

[157] "K" "R" "L" "F" "R" "M" "T" "L" "S" "E" "K" "C" "C"

[170] "Q" "V" "G" "C" "I" "R" "K" "D" "I" "A" "R" "L" "C"

[183] "*"

attr(,"name")

[1] "A06852"

attr(,"Annot")

[1] ">A06852 183 residues"

attr(,"class")

[1] "SeqFastaAA"

A more consequent example is given in the fasta file ct.fasta, which
contains the complete genome of Chlamydia trachomatis that was used in [11].
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Chlamydia trachomatis complete genome
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Fig. 10.5. Prediction of origin and terminus of replication with oriloc

You should be able to reproduce Fig. 1b from [11] with the following code (see
Fig. 10.5):

out <- oriloc(seq.fasta = system.file("sequences/ct.fasta",

package = "seqinr"), g2.coord = system.file("sequences/ct.coord",

package = "seqinr"), oldoriloc = TRUE)

plot(out$st, out$sk/1000, type = "l", xlab = "Map position in Kb",

ylab = "Cumulated composite skew in Kb", main = "Chlamydia trachomatis complete genome",

las = 1)

abline(h = 0, lty = 2)

text(400, -4, "Terminus")

text(850, 9, "Origin")

Note that the algorithm has been improved since then and that it is more
advisable to use the default option oldoriloc = FALSE if you are interested in
the prediction of origins and terminus of replication from base composition bia-
ses (more on this at http://pbil.univ-lyon1.fr/software/oriloc.html).
See also [12] for a recent review on this topic.

10.2.2 Importing Aligned Sequence Data

Aligned sequence data are very important in evolutionary studies, in this
representation all vertically aligned positions are supposed to be homologous
that is sharing a common ancestor. This is a mandatory starting point for
comparative studies. There is a function in seqinR called read.alignment()
to read aligned sequences data from various formats (mase, clustal, phylip,
fasta, or msf) produced by common external programs for multiple sequence
alignment.
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Let us give an example. The gene coding for the mitochondrial cytochrome
oxidase I is essential and therefore often used in phylogenetic studies because
of its ubiquitous nature. Download on your local computer the following two
sample tests of aligned sequences of this gene (extracted from ParaFit [13]),
this can be done directly at R prompt in the R console with:

download.file(url = "http://pbil.univ-lyon1.fr/software/SeqinR/Datasets/louse.fasta",

destfile = "louse.fasta")

download.file(url = "http://pbil.univ-lyon1.fr/software/SeqinR/Datasets/gopher.fasta",

destfile = "gopher.fasta")

The eight genes of the first sample are from various species of louse (insects
parasitics on warm-blooded animals) and the eight genes of the second sample
are from their corresponding gopher hosts (a subset of rodents):

l.names <- readLines("http://pbil.univ-lyon1.fr/software/SeqinR/Datasets/louse.names")

l.names

[1] "G.chapini " "G.cherriei" "G.costaric" "G.ewingi"

[5] "G.geomydis" "G.oklahome" "G.panamens" "G.setzeri"

g.names <- readLines("http://pbil.univ-lyon1.fr/software/SeqinR/Datasets/gopher.names")

g.names

[1] "G.brevicep" "O.cavator" "O.cherriei" "O.underwoo"

[5] "O.hispidus" "G.burs1" "G.burs2" "O.heterodu"

louse <- read.alignment("louse.fasta", format = "fasta")

gopher <- read.alignment("gopher.fasta", format = "fasta")

The aligned sequences are now imported in your R environment. SeqinR
has very few methods devoted to phylogenetic analyses but many are available
in the ape package. This allows for a very fine tuning of the graphical outputs
of the analyses thanks to the power of the R facilities. For instance, a nat-
ural question here would be to compare the topology of the tree of the hosts
and their parasites to see if we have congruence between host and parasite
evolution. In other words, we want to display two phylogenetic trees face to
face. This would be tedious with a program devoted to the display of a single
phylogenetic tree at time, involving a lot of manual copy/paste operations,
hard to reproduce, and then boring to maintain with data updates.

How does it looks under R? First, we need to infer the tree topologies from
data. Let us try as an illustration the famous neighbor-joining tree estimation
of Saitou and Nei [14] with Jukes and Cantor’s correction [15] for multiple
substitutions.

library(ape)

louse.JC <- dist.dna(x = lapply(louse$seq, s2c),

model = "JC69")

gopher.JC <- dist.dna(x = lapply(gopher$seq, s2c),

model = "JC69")

l <- nj(louse.JC)

g <- nj(gopher.JC)



216 D. Charif and J.R. Lobry

Now, we have an estimation for illustrative purposes of the tree topology
for the parasite and their hosts. We want to plot the two trees face to face,
and for this we must change R graphical parameters. The first thing to do is
to save the current graphical parameter settings so as to be able to restore
them later:

op <- par(no.readonly = TRUE)

The meaning of the no.readonly = TRUE option here is that graphical
parameters are not all settable, we just want to save those we can change at
will. Now, we can play with graphics (see Fig. 10.6):

g$tip.label <- paste(1:8, g.names)

l$tip.label <- paste(1:8, l.names)

layout(matrix(data = 1:2, nrow = 1, ncol = 2),

width = c(1.4, 1))

par(mar = c(2, 1, 2, 1))

plot(g, adj = 0.8, cex = 1.4, use.edge.length = FALSE,

main = "gopher (host)", cex.main = 2)

plot(l, direction = "l", use.edge.length = FALSE,

cex = 1.4, main = "louse (parasite)", cex.main = 2)

We now restore the old graphical settings that were previously saved:

par(op)

OK, this may look a little bit obscure if you are not fluent in programming,
but please try the following experiment. In your current working directory,
that is in the directory given by the getwd() command, create a text file
called essai.r with your favorite text editor, and copy/paste the previous R
commands, that is

Fig. 10.6. Comparison of the phylogenies of hosts and parasites with the Jukes and
Cantor model of DNA evolution
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l.names<-readLines("http://pbil.univ-lyon1.fr/software/SeqinR/Datasets/louse.names")

g.names<-readLines("http://pbil.univ-lyon1.fr/software/SeqinR/Datasets/gopher.names")

louse <- read.alignment("louse.fasta",format="fasta")

gopher <- read.alignment("gopher.fasta",format="fasta")

louse.JC <- dist.dna(x = lapply(louse$seq, s2c), model = "JC69" )

gopher.JC <- dist.dna(x = lapply(gopher$seq, s2c), model = "JC69" )

l <- nj(louse.JC)

g <- nj(gopher.JC)

g$tip.label <- paste(1:8, g.names)

l$tip.label <- paste(1:8, l.names)

layout(matrix(data = 1:2, nrow = 1, ncol = 2), width=c(1.4, 1))

par(mar=c(2,1,2,1))

plot(g, adj = 0.8, cex = 1.4, use.edge.length=FALSE,

main = "gopher (host)", cex.main = 2)

plot(l,direction="l", use.edge.length=FALSE, cex = 1.4,

main = "louse (parasite)", cex.main = 2)

Make sure that your text has been saved and then go back to R console
to enter the command :

source("essai.r")

This should reproduce the previous face-to-face phylogenetic trees in your
R graphical device (we have assumed here that the files louse.fasta and
gopher.fasta are present in your local working directory). Now, your boss
is unhappy with working with the Jukes and Cantor’s model [15] and wants
you to use the Kimura’s 2-parameters distance [16] instead. Go back to the
text editor to change model = "JC69" by model = "K80", save the file, and
in the R console source("essai.r") again, you should obtain the following
graph (Fig. 10.7):

Nice congruence, isn’t it? Now, something even worst, there was an error
in the aligned sequence set: the first base in the first sequence in the file

Fig. 10.7. Comparison of the phylogenies of hosts and parasites with Kimura’s
2-parameters model of DNA evolution
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louse.fasta is not a C but a T. Open the louse.fasta in your text editor,
fix the error, go back to the R console to source("essai.r") again. That is
all, your graph is now consistent with the updated dataset.

10.2.3 Complex Queries in ACNUC Databases

As a rule of thumb, after compression one nucleotide needs one octet of
disk space storage (because you need also the annotations corresponding to
the sequences), so that most likely you will not have enough space on your
computer to work with a local copy of a complete DNA database. The idea is
to import under R only the subset of sequences you are interested in. This is
done in three steps:

1. Select the database you want to work with the choosebank() function.
This function initiates remote access to an acnuc database. Called without
arguments, choosebank() gives the list of available databases:
choosebank()

[1] "genbank" "embl" "emblwgs" "swissprot"

[5] "ensembl" "emglib" "nrsub" "nbrf"

[9] "hobacnucl" "hobacprot" "hovernucl" "hoverprot"

[13] "hogennucl" "hogenprot" "hoverclnu" "hoverclpr"

[17] "HAMAPnucl" "HAMAPprot" "hoppsigen" "nurebnucl"

[21] "nurebprot" "taxobacgen" "greview"

If you want to work with GenBank, for instance, you call choosebank()
with "genbank" as an argument and store the result in a variable in the
workspace:
mybank <- choosebank("genbank")

str(mybank)

List of 5

\$socket :Classes 'sockconn', 'connection' int 6

\$bankname: chr "genbank"

\$totseqs : chr "46590656"

\$totspecs: chr "293711"

\$totkeys : chr "1307328"

The list returned by choosebank() here means that in the database called
genbank at the compilation time of this document there were 46,590,656
sequences from 293,711 species and a total of 1,307,328 keywords.
For the following, the most important item is the first one of the list,
mybank$socket, which contains all the required details of the socket con-
nection.

2. Then, you have to say what you want, that is to compose a query to
select the subset of sequences you are interested in. The way to do this
is documented under ?query, we just give here a simple example. In the
query below, we want to select all the coding sequences (t=cds) from cat
(sp=felis catus) that are not (et no) partial sequences (k=partial).
We want the result to be stored in an object called list1.
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query(socket = mybank\$socket, listname = "list1",

query = "sp=felis catus et t=cds et no k=partial",

invisible = TRUE)

Now, there is in the workspace an object called list1, which does not
contain the sequences themselves but the sequence names that fit the
query. They are stored in the req component of the object, let us see the
first ten of them:
sapply(list1\$req[1:10], getName)

[1] "AB000483.PE1" "AB000484.PE1" "AB000485.PE1"

[4] "AB004237" "AB004238" "AB009279.PE1"

[7] "AB009280.PE1" "AB010872.UGT1A1" "AB011965.SDF-1A"

[10] "AB011966.SDF-1B"

The first sequence that fit our request is AB000483.PE1, the second one
is AB000484.PE1, and so on. Note that the sequence name may have an
extension, this corresponds to subsequences, a specificity of the ACNUC
system that allows to handle easily a subsequence with a biological mean-
ing, typically a gene.
Note that the component call of list1 keeps a trace of the way we
have selected the sequences. At this stage, you can quit your R session
saving the workspace image. The next time an R session is opened with
the workspace image restored, there will be an object called list1, and
looking into its call component will tell you that it contains the names
of complete coding sequences from Felis catus.
In practice, queries for sequences are rarely done in one step and are more
likely to be the result of an iterative, progressively refining, process. An
important point is that a list of sequences can be reused. For instance, we
can reuse list1 get only the list of sequences that were published in 2004:
query(socket = mybank\$socket, listname = "list2",

query = "list1 et y=2004", invisible = TRUE)

length(list2\$req)

[1] 41

Hence, there were 41 complete coding sequences in 2004 for Felis catus in
GenBank.

3. The sequence itself is obtained with the function getSequence(). For
example, the first 50 nucleotides of the first sequence of our request are
myseq <- getSequence(list1\$req[[1]])

myseq[1:50]

[1] "a" "t" "g" "a" "a" "t" "c" "a" "a" "g" "g" "a" "g" "c"

[15] "c" "g" "t" "t" "t" "t" "t" "a" "g" "g" "c" "a" "c" "c"

[29] "t" "g" "c" "t" "c" "c" "t" "g" "g" "t" "g" "c" "t" "g"

[43] "c" "a" "g" "c" "t" "g" "g" "t"

They can also be coerced as string of character with the function c2s():
c2s(myseq[1:50])

[1] "atgaatcaaggagccgtttttaggcacctgctcctggtgctgcagctggt"
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Note that what is done by getSequence() is much more complex than
a substring extraction because subsequences of biological interest are not
necessarily contiguous or even on the same DNA strand. Consider for
instance the following coding sequence from sequence AE003734:

AE003734.PE35 Location/Qualifiers (length=1833 bp)
CDS join(complement(162997..163210),

complement(162780..162919),complement(161238..162090),
146568..146732,146806..147266)
/gene="mod(mdg4)"
/locus_tag="CG32491"
/note="CG32491 gene product from transcript CG32491-RT;
trans-splicing"

To get the coding sequence manually you would have join five different
pieces from AE003734 and some of them are in the complementary strand.
With getSequence() you do not have to think about this:
query(socket = mybank\$socket, listname = "list3",

query = "N=AE003734.PE35", invisible = TRUE)

transspliced <- getSequence(list3\$req[[1]])

tsaa <- getTrans(transspliced)

tsaa[1:50]

[1] "M" "A" "D" "D" "E" "Q" "F" "S" "L" "C" "W" "N" "N" "F"

[15] "N" "T" "N" "L" "S" "A" "G" "F" "H" "E" "S" "L" "C" "R"

[29] "G" "D" "L" "V" "D" "V" "S" "L" "A" "A" "E" "G" "Q" "I"

[43] "V" "K" "A" "H" "R" "L" "V" "L"

10.3 How to Deal with Sequence

10.3.1 Sequence Classes

There are at present three classes of sequences, depending on the way they
were obtained:

– seqFasta is the class for the sequences that were imported from a fasta
file

– seqAcnucWeb is the class for the sequences coming from an ACNUC
database server

– seqFrag is the class for the sequences that are fragments of other sequences

10.3.2 Generic Methods for Sequences

All sequence classes are sharing a common interface, so that there are very few
method names we have to remember. In addition, all classes have their specific
as.ClassName method that return an instance of the class, and is.ClassName
method to check whether an object belongs or not to the class. Available
methods are listed in Table 10.2.
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Table 10.2. Available methods for sequences

Methods Result Type of result

getFrag A sequence fragment A sequence fragment
getSequence The sequence Vector of characters
getName The name of a sequence String
getLength The length of a sequence Numeric vector
getTrans Translation into amino acids Vector of characters
getAnnot Sequence annotations Vector of string
getLocation Position of a sequence on its parent List of numeric vector

sequence

10.3.3 Internal Representation of Sequences

The current mode of sequence storage is done with vectors of characters in-
stead of strings. This is very convenient for the user because all R tools to
manipulate vectors are immediately available. The price to pay is that this
storage mode is extremely expensive in terms of memory. They are two util-
ities called s2c() and c2s() that allows to convert strings into vector of
characters, and vice versa, respectively.

Sequences as Vectors of Characters

In the vectorial representation mode, all the very convenient R tools for
indexing vectors are at hand.

1. Vectors can be indexed by a vector of positive integers, saying which
elements are to be selected. As we have already seen, the first 50 ele-
ments of a sequence are easily extracted thanks to the binary operator
from:to, as in
1:50

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

[19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

[37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50

myseq[1:50]

[1] "a" "t" "g" "a" "a" "t" "c" "a" "a" "g" "g" "a" "g" "c"

[15] "c" "g" "t" "t" "t" "t" "t" "a" "g" "g" "c" "a" "c" "c"

[29] "t" "g" "c" "t" "c" "c" "t" "g" "g" "t" "g" "c" "t" "g"

[43] "c" "a" "g" "c" "t" "g" "g" "t"

The seq() function allows to build more complex integer vectors. For
instance in coding sequences, it is very common to focus on third codon
positions where selection is weak. Let us extract bases from third codon
positions:
tcp <- seq(from = 3, to = length(myseq), by = 3)

tcp[1:10]

[1] 3 6 9 12 15 18 21 24 27 30
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myseqtcp <- myseq[tcp]

myseqtcp[1:10]

[1] "g" "t" "a" "a" "c" "t" "t" "g" "c" "g"

2. Vectors can also be indexed by a vector of negative integers saying which
elements have to be removed. For instance, if we want to keep first and
second codon positions, the easiest way is to remove third codon positions:
-tcp[1:10]

[1] -3 -6 -9 -12 -15 -18 -21 -24 -27 -30

myseqfscp <- myseq[-tcp]

myseqfscp[1:10]

[1] "a" "t" "a" "a" "c" "a" "g" "g" "g" "c"

3. Vectors are also indexable by a vector of logicals whose TRUE values say
which elements to keep. Here is a different way to extract all third coding
positions from our sequence. First, we define a vector of three logicals with
only the last one true:
ind <- c(F, F, T)

ind

[1] FALSE FALSE TRUE

This vector seems too short for our purpose because our sequence is much
more longer with its 1,425 bases. But under R vectors are automatically
recycled when they are not long enough:
(1:30)[ind]

[1] 3 6 9 12 15 18 21 24 27 30

myseqtcp2 <- myseq[ind]

The result should be the same as previously:
identical(myseqtcp, myseqtcp2)

[1] TRUE

This recycling rule is extremely convenient in practice but may have
surprising effects if you assume (incorrectly) that there is a stringent
dimension control for R vectors as in linear algebra.

Another advantage of working with vector of characters is that most R func-
tions are vectorized so that many things can be done without explicit looping.
Let us give some very simple examples:

tota <- sum(myseq == "a")

The total number of a in our sequence is 350. Let us compare graphically
the different base counts (Figs. 10.8–10.10) in our sequence:

basecount <- table(myseq)

myseqname <- getName(list1\$req[[1]])

dotchart(basecount, xlim = c(0, max(basecount)),

pch = 19, main = paste("Base count in", myseqname))
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Fig. 10.8. Example of a dotchart representation of base counts in a DNA sequence
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Fig. 10.9. Example of a dotchart representation of dinucleotide counts in a DNA
sequence

dinuclcount <- count(myseq, 2)

dotchart(dinuclcount[order(dinuclcount)], xlim = c(0,

max(dinuclcount)), pch = 19, main = paste("Dinucleotide

count in", myseqname))

codonusage <- uco(myseq)

dotchart.uco(codonusage, main = paste("Codon usage in",

myseqname))

Sequences as Strings

If you are interested in (fuzzy) pattern matching, then it is advisable to work
with sequence as strings to take advantage of regular expression implemented
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in R. The function words.pos() returns the positions of all occurrences of
a given regular expression. Let us suppose we want to know where are the
trinucleotides “cgt” in a sequence, that is, the fragment CpGpT in the direct
strand:

mystring <- c2s(myseq)

words.pos("cgt", mystring)

[1] 15 854 909 919 987 1248

We can also look for the fragment CpGpTpY to illustrate fuzzy matching
because Y (IUPAC code for pyrimidine) stands C or T:

words.pos("cgt[ct]", mystring)

[1] 15 909 919

To look for all CpC dinucleotides separated by three or four bases:

words.pos("cc.{3,4}cc", mystring)

[1] 27 121 152 278 431 437 471 476 477 492 555

[12] 618 722 788 809 885 886 939 1043 1046 1190 1220

[23] 1263

Virtually, any pattern is easily encoded with a regular expression. This is
especially useful at the protein level because many functions can be attributed
to short linear motifs.

10.4 Multivariate Analyses

10.4.1 Correspondence Analysis

This is the most popular multivariate data analysis technique for amino acid
and codon count tables, its application, however, is not without pitfalls [17].
Its primary goal is to transform a table of counts into a graphical display,
in which each gene (or protein) and each codon (or amino acid) is depicted
as a point. Correspondence analysis (CA) may be defined as a special case of
principal components analysis (PCA) with a different underlying metrics. The
interest of the metrics in CA, that is the way we measure the distance between
two individuals, is illustrated below with a very simple example (Table 10.1
inspired from [18]) with only three proteins having only three amino acids, so
that we can represent exactly on a map the consequences of the metric choice.

df <- data.frame(matrix(c(130, 60, 60, 70, 40,

35, 0, 0, 5), nrow = 3))

names(df) <- c("Ala", "Val", "Cys")

df
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Ala Val Cys

1 130 70 0

2 60 40 0

3 60 35 5

Let us first use the regular Euclidean metrics between two proteins i and i′,

d2(i, i′) =
J∑

j=1

(nij − ni′j)2 (10.1)

to visualize this small data set (Fig. 10.11):

library(ade4)

pco <- dudi.pco(dist(df), scann = F, nf = 2)

myplot <- function(res, ...) {

plot(res\$li[, 1], res\$li[, 2], ...)

text(x = res\$li[, 1], y = res\$li[, 2], labels = 1:3,

pos = ifelse(res\$li[, 2] < 0, 1, 3))

perm <- c(3, 1, 2)

lines(c(res\$li[, 1], res\$li[perm, 1]), c(res\$li[,

2], res\$li[perm, 2]))

}

myplot(pco, main = "Euclidean distance", asp = 1,

pch = 19, xlab = "", ylab = "", las = 1)

From this point of view, the first individual is far away from the two others.
But thinking about it, this is a rather trivial effect of protein size:

rowSums(df)

1 2 3

200 100 100

With 200 amino acids, the first protein is two times bigger than the others
so that when computing the Euclidean distance (10.1) its nij entries are on
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Fig. 10.11. Relationships between the three proteins with the Euclidean distance
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Fig. 10.12. Relationships between the three proteins with the Euclidean distance
on protein profiles

average bigger, sending it away from the others. To get rid of this trivial effect,
the first obvious idea is to divide counts by protein lengths so as to work with
protein profiles (Fig. 10.12). The corresponding distance is

d2(i, i′) =
J∑

j=1

(
nij

ni•
− ni′j

ni′•

)2

(10.2)

where ni• and ni′• are the total number of amino acids in protein i and i′,
respectively.

df1 <- df/rowSums(df)

df1

Ala Val Cys

1 0.65 0.35 0.00

2 0.60 0.40 0.00

3 0.60 0.35 0.05

pco1 <- dudi.pco(dist(df1), scann = F, nf = 2)

myplot(pco1, main = "Euclidean distance on protein profiles",

asp = 1, pch = 19, xlab = "", ylab = "", ylim = range(pco1\$li[,

2]) * 1.2)

The pattern is now completely different with the three proteins being
equally spaced. This is normal because in terms of relative amino acid
composition they are all differing two-by-two by 5% at the level of two amino
acids only. We have clearly removed the trivial protein size effect, but this is
still not completely satisfactory. The proteins are differing by 5% for all amino
acids but the situation is somewhat different for Cys because this amino acid
is very rare. A difference of 5% for a rare amino acid has not the same signi-
ficance than a difference of 5% for a common amino acid such as Ala in our ex-
ample. To cope with this, CA make use of a variance-standardizing technique
to compensate for the larger variance in high frequencies and the smaller vari-
ance in low frequencies. This is achieved with the use of the chi-square distance
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(χ2), which differs from the previous Euclidean distance on profiles (10.2) in
that each square is weighted by the inverse of the frequency corresponding to
each term

d2(i, i′) =
J∑

j=1

1
n•j

(
nij

ni•
− ni′j

ni′•

)2

(10.3)

where n•j is the total number of amino acid of kind j. With this point of view,
the map is now like this (Fig. 10.13):

$coa <- dudi.coa(df, scann = FALSE, nf = 2)

myplot(coa, main = expression(paste(chi^2, " distance")),

asp = 1, pch = 19, xlab = "", ylab = "")$

The pattern is completely different with now protein number 3, which is far
away from the others because it is enriched in the rare amino acid Cys when
compared with others.

The purpose of this small example was to demonstrates that the metric
choice is not without significant effects on the visualization of data. Depending
on your objectives, you may agree or disagree with the χ2 metric choice, that
is not a problem, the important point is that you should be aware that there
is an underlying model there, chacun a son goût ou chacun à son goût, it is
up to you.

Now, if you agree with the χ2 metric choice, there is a nice representation
that may help you for the interpretation of results. This is a kind of “biplot”
representation in which the lines and columns of the dataset are simultaneously
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Fig. 10.13. Relationships between the three proteins with the χ2 distance
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Fig. 10.14. First factorial map of correspondence analysis of the three proteins

represented, in the right way, that is as a graphical translation of a mathematical
theorem, but let us see how does it look like in practice (Fig. 10.14):

scatter(coa, clab.col = 0.8, clab.row = 0.8, posi = "none")

What is obvious is that the Cys content has a major effect on protein
variability here, no scoop. Please note how the information is well summarized
here: protein number 3 differs because it is enriched in in Cys; protein number
1 and 2 are almost the same but there is a small trend that protein number
1 to be enriched in Ala. When compared with Table 10.1, this graph is of
poor information here, so let us try a more big-room-sized example (with 20
columns so as to illustrate the dimension reduction technique).

Data are from [19], a sample of the proteome of Escherichia coli. According
to the title of this chapter, the most important factor for the between-protein
variability is hydrophilic–hydrophobic gradient. Let us try to reproduce this
assertion (Fig. 10.15):

download.file(url = "ftp://pbil.univ-lyon1.fr/pub/datasets/NAR94/data.txt",

destfile = "data.txt")

ec <- read.table(file = "data.txt", header = TRUE,

row.names = 1)

ec.coa <- dudi.coa(ec, scann = FALSE, nf = 1)

F1 <- ec.coa\$li[, 1]

hist(F1, proba = TRUE, xlab = "First factor for amino acid variability",

col = grey(0.8), border = grey(0.5), las = 1,

ylim = c(0, 6), main = "Protein distribution on first factor")

lines(density(F1, adjust = 0.5), lwd = 2)
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Fig. 10.15. The bimodal distribution of proteins on the first factor of variability
for amino acid composition

10.4.2 Synonymous and Nonsynonymous Analyses

Genetic codes are surjective applications from the set codons (n = 64) into
the set of amino acids (n = 20) (Fig. 10.16).

Two codons encoding the same amino acid are said synonymous, while two
codons encoding a different amino acid are said nonsynonymous. The distinc-
tion between the synonymous and nonsynonymous level are very important in
evolutionary studies because most of the selective pressure is expected to work
at the nonsynonymous level, because the amino acids are the components of
the proteins, and therefore more likely to be subject to selection.

Ks and Ka are an estimation of the number of substitutions per synony-
mous site and per nonsynonymous site, respectively, between two protein-
coding genes [21]. The Ka

Ks
ratio is used as tool to evaluate selective pressure

(see [22] for a nice back to basics). Let us give a simple illustration with
three orthologous genes of the thioredoxin familiy from Homo sapiens, Mus
musculus, and Rattus norvegicus species:

download.file(url = "http://pbil.univ-lyon1.fr/software/SeqinR/Datasets/ortho.fasta",

destfile = "ortho.fasta")

ortho <- read.alignment("ortho.fasta", format = "fasta")

kaks.ortho <- kaks(ortho)

kaks.ortho$ka/kaks.ortho$ks

AK002358.PE1 HSU78678.PE1

HSU78678.PE1 0.1249730

RNU73525.PE1 0.1428173 0.1363095
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Fig. 10.16. A visual representation of the surjective nature of genetic codes, genetic
code number 1. Adapted from [20]

The Ka

Ks
ratios are less than 1, suggesting a selective pressure on those

proteins during evolution.
For transversal studies (i.e., codon usage studies in a genome at the time it

was sequenced), there is little doubt that the strong requirement to distinguish
between synonymous and an nonsynonymous variability was the source of
many mistakes [17]. We have just shown here with a scholarship example that
the metric choice is not neutral. If you consider that the χ2 metric is not too
bad, with respect to your objectives, and that you want to quantify the syn-
onymous and an nonsynonymous variability, please consider reading this chap-
ter [20], and follow this link http://pbil.univ-lyon1.fr/members/lobry/
repro/jag03/ for on-line reproducibility.
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Evolutionary Genomics of Gene Expression

I.K. Jordan and L. Mariño-Ramı́rez

The study of evolution at the molecular level has focused primarily on changes
in gene (protein) sequences overtime [1]. Of course, phenotype is influenced not
only by the sequence of genes but also by their expression patterns, i.e., the
amplitude, timing, and spatial distribution of transcription. Thus, changes
in gene expression are quite likely to be equally as important as sequence
changes in evolution; indeed, the significance of gene expression divergence to
the evolutionary process has been recognized for some time [2–4]. However,
gene expression data have only recently accumulated to the levels needed for
systematic evolutionary studies. This has been due to the application of new
high-throughput techniques that measure gene expression levels for thousands
of genes simultaneously [5–7], as well as the development of database resources
needed to handle such data [8–10]. The availability of these expression data,
together with the long standing interest in the evolutionary significance of
gene expression, has stimulated numerous recent studies on gene expression
divergence.

This chapter will provide a guide for the study of gene expression
divergence. The emphasis will be placed on an integrated approach to the
study of evolutionary genomics that considers both gene sequence and gene
expression divergence and explores the relationship between those two aspects
of the evolutionary process. The body of the chapter will be broken down
into three sections. The first two body sections, on sequence divergence and
on gene expression divergence, will be tutorial in nature and cover specific
methodological techniques involved in the study of gene sequence and gene
expression divergence. In most cases, descriptions of methods will focus on
the most straightforward and widely available techniques. The third body
section, on integrated analysis, will be more conceptual in nature and deal
with selected examples of how gene sequence and gene expression divergence
analyses have been used to address fundamental evolutionary questions.
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11.1 Sequence Divergence

Methods of gene (protein) sequence analysis have been covered in great detail
elsewhere. Here, some of the basic techniques and issues related to sequence
analysis will be covered. A key concept for sequence analysis is that of func-
tional, and/or selective, constraint. A functionally constrained gene is one that
encodes a protein that performs a critical function for the organism, and a
functionally constrained residue (site) is one that plays an important role in
the function of the molecule. Changes to the sequence of such genes, or sites,
are likely to be deleterious, i.e., they will reduce the fitness of the organism,
and therefore will be removed by natural selection. Thus, genes, or specific
sites within a gene, that are under greater selective constraint evolve more
slowly, while genes (sites) that are subject to relatively less constraint evolve
more rapidly. As such, comparisons of gene divergence levels can be used to
make inferences about the strength of functional constraint and the relative
action of natural selection.

The availability of complete genome sequences provides great utility for
the comparative analysis of gene divergence levels because it allows for the
controlled comparison of divergence levels for thousands of genes. To com-
pare gene divergence levels between complete genome sequences one needs to:
(1) identify orthologous genes, (2) align gene (protein) sequences, and (3) cal-
culate substitution rates. Each of these tasks will be briefly covered below.

11.1.1 Ortholog Identification

Genes that share a common ancestor are said to be homologous, and
homologous genes can be defined as orthologous or paralogous [11]. Orthologs
are genes that diverged due to a speciation event, while paralogs are genes
that diverged due to a gene duplication event. Considering two species, such
as human and mouse, orthologs can be thought of colloquially as the pair cor-
responding genes, i.e., those that perform the same function, in each genome.
If both genomes are completely sequenced, then pairs of orthologous genes can
be identified using sequence similarity. This is the so-called “reciprocal best
hits” approach [12, 13]. To implement this approach, each protein sequence
encoded by genome A is compared individually to the entire set of protein
sequences encoded by genome B using a sequence similarity comparison tool,
such as BLAST [14, 15] or FASTA [16]. Protein sequences are typically used
because they are more sensitive for sequence similarity comparisons. Then,
for each protein from genome A, the protein with the highest similarity from
genome B is recorded as its best hit. The same process is repeated in the
opposite direction, with each protein from genome B compared individually
to all proteins from genome A and the best hits recorded. Orthologous pairs
are then identified as those pairs of proteins that are each other’s best hits in
the reciprocal sequence similarity searches.



11 Evolutionary Genomics of Gene Expression 237

This simple approach works quite well for closely related genomes. How-
ever, there are some caveats to ortholog identification that one should be
aware of. Ortholog identification between distantly related genomes is less
accurate owing because of to problems with sequence similarity comparisons
as well as the phenomenon of gene loss where the corresponding member of an
orthologous pair is lost in one lineage. Furthermore, the reciprocal best-hits
approach defined above identifies one-to-one orthologs. However, orthologous
relationships may also be one-to-many or many-to-many because of lineage-
specific gene duplications that occur subsequent to the speciation event under
consideration. These complex relationships can confound attempts to iden-
tify orthologs using only reciprocal best hits. Ortholog databases, such as
the Clusters of Orthologous Groups database [17], use complex algorithms
that post process reciprocal best hits between multiple complete genomes
and allow for the representation of many-to-many orthologous relationships.
A recently developed method for pairwise genome comparison, the recipro-
cal smallest distance algorithm, has been shown to identify many orthologs
missed by reciprocal best hits [18]. In some rare cases, lineage-specific gene
duplication followed by differential loss of alternate paralogous copies in the
different genomes can result in erroneous identification of orthologs [19]. One
way to avoid this problem is to use an ad hoc approach whereby the dis-
tribution of divergence levels between orthologs is considered and the most
divergent outliers are removed.

11.1.2 Sequence Alignment

Once orthologous gene (protein) pairs are identified they need to be aligned
before divergence levels can be calculated. The Clustal series is the most widely
used group of programs for sequence alignment [20]. Clustal uses a heuristic
approach for building multiple sequence alignments, but the initial pairwise
alignment step is based on dynamic programming algorithm that guarantees
an optimal solution. Given its ready availability and the reliability of its pair-
wise alignment step, Clustal is a good choice for aligning pairs of orthologs.

11.1.3 Sequence Distance Calculation

Gene (protein) divergence levels are calculated as sequence distances, which
measure the numbers of differences between sequences normalized by their
lengths. The simplest sequence distance measure is the p-distance. The
p-distance is simply the proportion of differences between any two gene
sequences and it is defined as

p =
nd

n
, (11.1)

where nd is the number of differences between the sequence and n is the
number of sites being compared. Alignment sites that contain gaps are usually
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ignored when calculating p-distances. The problem with the p-distance is that
it tends to undercount the number of changes that have occurred between
sequences. For example, multiple changes at a single site will only be counted
as one difference. Parallel substitutions that lead to the same residue will not
be counted at all. A number of different sequence distance measures have been
developed that attempt to account for multiple substitutions and give a more
accurate measure of sequence divergence. Examples of a few of these will be
covered below for nucleotide and protein sequences.

Nucleotide Sequences

Estimates of nucleotide divergence levels that account for multiple sub-
stitutions are based on mathematical models of the substitution process. The
simplest such model is the Jukes–Cantor model. In this case, it is assumed
that nucleotide frequencies are equal and that nucleotide substitutions are
all equally probable. The Jukes–Cantor nucleotide distance (d) [21] can be
calculated simply from the p-distance,

d = −3
4

ln[1 − (4/3)p] . (11.2)

Nucleotide substitution models become progressively more complicated
by separately parameterizing different aspects of the substitution process.
For instance, the Kimura two-parameter (K2P) method [22] accounts for
the fact that transitions, changes from purine-to-purine or from pyrimidine-
to-pyrimidine, occur at different rates than transversions, changes between
purines and pyrimidines. The K2P distance can be calculated as

d = −1
2

ln(1 − 2P − Q) − 1
4

ln(1 − 2Q) , (11.3)

where P and Q are the proportional differences between the sequences due to
transitions (P ) and transversions (Q). The Felsenstein (F81) model extends
Jukes–Cantor by allowing for unequal nucleotide frequencies [23]. Both of
these methods are merged in the Hasegawa, Kishino, and Yano (HKY85)
model that allows for unequal base frequencies as well as different transition
and transversion rates [24]. The most nuanced nucleotide substitution model is
the general reversible model where nucleotide frequencies are unequal and all
six pairs of substitution rates are free to vary [25,26]. More detailed expositions
of nucleotide substitutions models can be found in [27,28].

Synonymous vs. Nonsynonymous Substitutions

One of the great advantages of using nucleotide sequence distances is the
information that they can provide regarding the action of natural selection.
The effects of selection on nucleotide coding sequences (CDSs) can be gleaned
by comparing levels of synonymous (S) vs. nonsynonymous (N) sequence
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divergence [29]. S changes are substitutions in the CDS that do not change
the encoded amino acid sequence, while N changes are CDS substitutions that
result in amino acid differences. Thus, N changes may change the structure
and/or function of the encoded protein, while S changes are largely silent.
Since natural selection exerts its influence based on detectable phenotypic
differences, N changes are subject to the effects of selection while S differences
are, for the most part, invisible to natural selection. As such, S changes tend
to be freer to accumulate than N changes. The proportion of synonymous
(pS) and nonsynonymous (pN ) differences can be calculated as the number of
S (Sd), or the number of N (Nd), differences normalized by the number of S,
or N , sites

pS =
Sd

S
(11.4a)

pN =
Nd

N
. (11.4b)

These measures are also needed to account for multiple substitutions to be
more accurate. The pS and pN values can be used with the Jukes–Cantor
model (11.1) to calculate dS and dN , respectively. This approach is employed
in the Nei–Gojobori method [30] for calculating dS and dN . Other methods
take into account factors such as transition vs. transversion differences as well
as the nuances of the genetic code to try and achieve the most accurate S and
N distance measures possible. Several of these methods are implemented in the
program MEGA [31]. The program PAML [32] also calculates dS and dN using
a maximum likelihood-based approach. Users should note that depending on
the method employed, dS may be referred to as Ks and dN may be referred
to as Ka.

In general, when sequence pairs are compared, dN/dS � 1 is indicative
of purifying selection, or removal of deleterious changes, dN/dS ≈ 1 suggest
the absence of natural selection, and dN/dS � 1 is indicative of adaptive or
diversifying selection, based on the fixation of beneficial N sequence changes.

Protein Sequences

As with nucleotide sequences, protein sequence divergence levels can be calcu-
lated using the proportion of differences (p-distance) between sequences, but
this measure will underestimate the true amount of divergence for all but the
most closely related sequences. One correction for multiple amino acid sub-
stitutions is the Poisson corrected (PC) distance [27] where the probability
of k amino acid substitutions at a given site is considered to follow a Poisson
distribution. PC can be calculated from the p-distance as

d = − ln(1 − p) . (11.5)

However, most models of the amino acid substitution process are empirical
rather than analytical. Empirical models take advantage of the availability of
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many related protein sequences that can be reliably aligned. Given a set of
protein sequence alignments, the relative probabilities of exchange between
any two amino acid residues can be calculated. These probabilities can be
placed into a substitution matrix, which can be employed in the calculation of
distances between protein sequences. Commonly employed empirical models
are based on the PAM [33] and JTT [34] amino acid substitution matrices.
Distances based on empirical models are more accurate than those obtained
with simple analytical models like the PC distance, because they more closely
reflect biological reality.

Another important consideration when calculating divergence levels
between protein sequences is the fact that changes may accumulate at vastly
different rates in different regions of the sequence. As described previously,
sites along a sequence that are more functionally constrained will change more
slowly than sites that are less constrained. The gamma distance correction is
one way to account for this rate variation across sites. The gamma correc-
tion is based on the observation that the substitution rate across sites can be
considered to vary according to a gamma distribution [35]. The shape of this
distribution is governed by a single parameter α. The gamma distance (dG)
can be calculated from the p-distance as

dG = α
[
(1 − p)−1/α − 1

]
. (11.6)

The lower the value of α, the more severe the correction for multiple sub-
stitutions is. A gamma distance correction can also be used together with
an empirical-based model of amino acid substitution. For instance, the JTT
model can be used together with a gamma correction and this is represented
as JTT+Γ. Several protein divergence calculation methods are implemented
in the program MEGA.

11.2 Gene Expression Divergence

High-throughput techniques for measuring gene expression levels, such as
microarray and serial analysis of gene expression (SAGE) approaches, have
resulted in an explosion of gene expression data. This section will focus on
how microarray data collected from different species can be used to calculate
gene expression divergence. In order to illustrate the methods that can be
used in the evolutionary analysis of gene expression data, examples will be
taken from our own work based on the analysis of the Novartis Foundations’
mammalian gene expression atlas [36, 37]. The gene expression atlas reports
expression levels for thousands of human and mouse genes based on the use
of Affymetrix microarray experiments. There are two versions of the atlas
and this chapter focuses primarily on the second and more recent version,
sometimes referred to as GNF2. In GNF2, the results of replicate experiments
across a wide variety of tissue and cell-line samples are reported. The human
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data set has expression level measurements for 44,744 probes over 79 distinct
tissue samples, while the mouse data set includes expression level measure-
ments for 36,181 probes over 61 distinct tissue samples; in both data sets, each
tissue sample is represented by two replicate experiments. Given this abun-
dance of comparative expression data, GNF2 is a phenomenal resource for
the analysis of gene expression divergence. Used together with human–mouse
comparative sequence analysis, investigation of the GNF2 data can reveal
much about the evolution of gene expression and the relationship between
gene sequence and gene expression divergence.

11.2.1 Database Sources

There are a number of database sources available for extracting gene expression
data. The Novartis Foundation hosts its own database [38] that allows for
targeted querying of the gene expression atlas along with downloading of entire
expression datasets. The Novartis site also provides valuable information
concerning the expression atlas including useful tips for the analysis and
interpretation of their data as well as information on the source of tissue
samples used.

The UCSC genome browser [39] has integrated the gene expression atlas
data into its browser tracks for the human and mouse genomes. As with every-
thing on their site, the primary expression data is available for download either
as SQL tables or as tabulator delimited text files. In addition, one particu-
larly nice feature provided by the UCSC genome browser is the mapping of
Affymetrix probes identifiers to Genbank accessions for known human and
mouse genes. The UCSC genome browser also provides a number of other
canonical gene expression datasets for other model organisms such as yeast
and Drosophila.

The Gene Expression Omnibus (GEO) database [40] at the National Cen-
ter for Biotechnology Information (NCBI) also provides the GNF2 data. This
data can be queried with search terms, and users can also download the pri-
mary expression data as tabulator delimited text files. GEO is a vast repository
of gene expression data and one of its strengths is the many ways that the data
can be queried. For instance, users can identify all datasets generated from a
specific microarray platform. This can be quite useful for extracting datasets
that can be readily compared. GEO also provides nice graphical views of
expression data results as well as targeted comparisons between user selected
samples from a given dataset.

There are a couple of other database resources of note that store and
disseminate microarray expression data including the Stanford Microarray
Database [41] and the Human Gene Expression Index [42].

11.2.2 Probe-to-Gene Mapping

One of the first challenges in using GNF2, or any results based on the
Affymetrix platform for that matter, is probe-to-gene mapping. Affymetrix
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microarray technology is based on oligonucleotide probes that are designed to
correspond to specific genes, and each probe is labeled with a unique identifier
(id). The primary expression data are generally distributed along with these
Affymetrix ids. Since comparative analysis of gene expression data, between
species, involves a gene-centric approach, the user is faced with the task of
mapping these probe ids to gene ids such as Genbank or Refseq accessions.
Fortunately, Affymetrix probe-to-gene mapping keys can be downloaded from
the Affymetrix Web site [43]. Alternatively, the UCSC Genome Browser pro-
vides probe-to-gene mapping for GNF2. Finally, since the sequences of the
probes are often provided along with expression data, users could always do
their own probe-to-gene mapping but this would be somewhat labor intensive.

Users should be aware that sometimes multiple probes will map to a single
gene. In such cases, the user may decide to average the expression values for
the multiple probes to come up with one set of gene-specific values. Another,
somewhat arbitrary, approach that is sometimes used is to take the probe that
yields the highest expression value as the best one for a given gene. Far more
problematic is the fact that, in some cases, a single probe will map to multiple
unique genes; because of their inherent ambiguity, these data should not be
used for the analysis of gene expression divergence.

11.2.3 Structure of the Data

The GNF2 data, as well as many other microarray datasets, are structured as
a table with probe-specific expression data in rows and experiment (sample)-
specific data in the columns. Thus, for any particular probe, or gene, the
expression data consist of an array of values, one for each experimental condi-
tion. These are gene expression profiles, and they can be thought of as vectors
in n-dimensional space, where n is the number of distinct samples in the data
set. For instance, for any gene i, with expression levels recorded across n
samples, its expression profile can be represented as

genei = [Xi1, Xi2, Xi3, . . . , Xin] , (11.7)

where Xij is the expression value for gene i in the experiment j. It is
these gene-specific expression profiles that can be compared within or be-
tween species to measure gene expression divergence. When comparing profiles
between species, it is essential that the identity j and number n of the sam-
ples is identical in the vectors. For example, in GNF2, the human and mouse
datasets share 28 common tissue samples. These 28 samples can be arranged
in the same order across the gene expression profiles so that vectors can be
meaningfully compared between species.

11.2.4 Transformation and Normalization

Two critical issues with respect to microarray data are transformation and
normalization. The details on transformation and normalization are outside
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the scope of this chapter but they have been treated in depth elsewhere [44–46];
here, these matters will be covered briefly. For microarray data, transforma-
tion generally involves taking the logarithm to the base 2 (log2) of the ex-
pression value. This procedure is typically used to transform ratios as in the
case where the expression data are represented as a ratio of one experimental
condition over a reference experimental condition. In this case, log2 transfor-
mation treats up-regulation and down-regulation equally and represents them
in a very regular and intuitive way. For example, a ratio of 1 would mean no
change in expression across conditions and the log2 value would be 0. A ratio
of 4 would yield a log2 value of 2, while a ratio of 1/4 gives a log2 value of −2.
Thus, using log transformation, the magnitude of the deviations in up- and
down-regulation are symmetrical around 0. The GNF2 data, however, consist
of absolute expression value measurements as opposed to ratios. Nevertheless,
the relative levels of gene expression for each sample j across a gene i ex-
pression profile is often represented as a ratio of the absolute expression value
j over the median value of all n expression values in the profile. The use of
log2 transformation for these kinds of profile median ratios has the same useful
effect of mapping changes in gene-specific relative expression in a symmetrical
and continuous way around 0. The basic idea behind normalization is to con-
trol for systematic variation between experimental conditions that affect the
recorded levels of expression. This is particularly important when comparing
expression levels, or profiles, of orthologous genes between species. Since the
conditions under which the experiments for different species were conducted
are sure to differ, it is essential that relative, as opposed to absolute, expression
values are compared between experiments. One straightforward way to do this
is to mean, or median, center the results for each microarray. This consists of
dividing each individual expression by the mean, or median, expression value
for the entire array.

11.2.5 Measuring Divergence

Expression Level and Breadth

Gene expression divergence can be measured in several different ways. Per-
haps the most intuitive of these methods is to compare differences in gene
expression level or amplitude. When comparing between species, it is impor-
tant to ensure that the same tissues or samples are being compared and that
the data between species has been appropriately normalized. Given a gene-
specific profile of expression levels across a set of different tissues or samples,
the expression level can be taken as the maximum or the average of the tissue-
specific expression values. While both of these measures fairly represent the
amplitude of gene expression, using the average (or the sum), over all tissue-
specific values has the disadvantage of conflating gene expression level with
gene expression breadth. Gene expression breadth is a measure of how widely
a gene is expressed and can be counted simply as the number of tissues in
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which a gene is expressed at or above some threshold. Obviously, if expression
breadth is to be accurately compared between species, then it helps to ensure
that the same set of tissues is being compared for each species. For exam-
ple, the GNF2 has a total of 28 tissues that are shared between the human
and mouse experiments. Expression breadth would simply be measured as the
number of j tissue samples out of 28 where gene i is expressed at or above
some threshold. GNF2 provides absolute expression levels in arbitrary units
that are referred to as signal intensity values. For the GNF2 data, a signal
intensity value ≥ 350 can be taken to (approximately) indicate that a gene i
is expressed in a tissue j. In addition to signal intensity values (i.e., absolute
expression levels), the Novartis site also provides presence/absence calls for
each gene i and condition j (Xij). These calls simply indicate whether or not a
gene i can be considered to be expressed in tissue j with a certain level of sta-
tistical confidence. Thus, another approach to determine expression breadth
is simply to use the presence/absence calls for all Xij .

Gene Expression Profiles

As described earlier, a gene expression profile represents the levels of expres-
sion for gene i over all experiments (tissues) j. Most comparisons of gene
expression patterns consist of quantitative measures of the similarity or differ-
ence between gene expression profile vectors. Two of the most commonly used
metrics for comparing expression profile vectors are the Euclidean distance
and the Pearson correlation coefficient. The Euclidean distance is geometric
measure of the straight line distance of two points. The higher the Euclidean
distance, the more different the gene expression profiles are. For instance, if
comparing two genes A and B that have two-dimensional gene expression pro-
file vectors A = [a1, a2] and B = [b1, b2], the Euclidean distance dE would be
calculated as

dE =
√

(a1 − b1)2 + (a2 − b2)2 . (11.8)

For an expression profile vector of n-dimensions, the Euclidean distance dE

would be calculated as

dE =

√√√√ n∑
j=1

(aj − bj)2 . (11.9)

The Euclidean distance is particularly sensitive to changes in the magnitude of
gene expression. Comparison of genes with identical relative expression levels
across n tissues may actually yield quite large Euclidean distances if their
absolute expression levels differ substantially. One way to get around this is
to use relative expression levels by mean or median, centering the expression
levels for each gene-specific vector.

The Pearson correlation coefficient is also widely used in comparing gene
expression profile vectors, and it measures the strength of the linear rela-
tionship between the vectors being compared. Pearson correlation coefficient
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values scale from −1 to +1, where −1 would correspond to the exact oppo-
site expression pattern and +1 would indicate an identical expression pat-
tern. Use of the Pearson correlation coefficient assumes that the data are
normally distributed so log transformation of expression data is advised when
comparing profiles with this method. It is also important to note that the
Pearson correlation coefficient works best when comparing genes that are dif-
ferentially expressed, i.e., when there are substantial differences in expression
levels across the n samples being considered. Genes that are ubiquitously
expressed, such as housekeeping genes, can obviously be considered to have
very similar expression patterns. However, because there may be no discernible
linear relationship between up and down expression across tissues for such
evenly expressed genes, comparison of these genes using the Pearson correla-
tion coefficient will often result in values around 0 indicating no correlation.
On the other hand, the Pearson correlation coefficient is very good at iden-
tifying genes with similar tissue-specific expression patterns. There are many
forms for the Pearson correlation coefficient r. Given two n-dimensional gene
expression profiles vectors for genes A and B, where A = [a1, a2, . . . , an] and
B = [b1, b2, . . . , bn], r can be calculated as

r =

n∑
j=1

aj bj − 1
n

n∑
j=1

aj

n∑
j=1

bj

√√√√√ n∑
j=1

a2
j −

1
n

⎛
⎝ n∑

j=1

aj

⎞
⎠

2
√√√√√ n∑

j=1

b2
j −

1
n

⎛
⎝ n∑

j=1

bj

⎞
⎠

2
. (11.10)

Two other useful distance measures that are often employed include the
Hamming distance and mutual information both of which are useful for
considering expression data that has been rendered discrete such as pres-
ence/absence calls that can be represented as binary expression profiles.

11.2.6 Clustering and Visualization

Clustering and visualization are important components of gene expression
divergence analysis, which will nevertheless be treated in only the most cur-
sory manner here. For more detailed treatment of these issues, users can con-
sult [44, 47–49]. The idea behind clustering is simply to group genes with
similar expression profiles together. Clustering approaches can be classified as
hierarchical or nonhierarchical. Hierarchical methods group profiles into clus-
ters and also specify the relationships among the profiles within clusters, while
nonhierarchical methods simply define clusters of related expression profiles
with no specification of the within group relationships. Hierarchical cluster-
ing methods can be agglomerative, where profiles are successively joined until
they are all connected, or divisive, where the entire set of profiles is consid-
ered as a single cluster that is progressively broken down. Nonhierarchical
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clustering, on the other hand, starts with a predefined number of groups and
then proceeds to partition the profiles into these discrete groups. Examples of
nonhierarchical clustering are K-means clustering and self-organizing maps.

Visualization provides a very intuitive way for the user to identify similarly
expressed genes. In visualization, each sample j in a gene profile i is assigned a
color that indicates its relative level of expression. A typical color scheme that
is employed in visualization is to label relatively high-expression levels (or up-
regulated) as red and relatively low expression levels (or down-regulated) as
green. This allows for ready identification of genes that have similar patterns of
up and down expression across their respective profiles. Visualization is often
combined with clustering techniques to define related sets of genes. There are
many software packages that combine clustering and visualization techniques.
One freely available program that we have found to be quite useful is the
TIGR Multiexperiment Viewer (MEV) [50].

11.3 Integrated Analysis

This section will treat a few selected examples from the literature that
illustrate how integrated gene sequence and gene expression divergence
analyses can be used to address fundamental evolutionary questions. This
survey highlights new findings regarding the evolution of gene expression as
well as some of the open questions that have been raised in this relatively new
area of inquiry.

11.3.1 Sequence vs. Expression Divergence

We have explored the intersection of gene expression and gene sequence
divergence in two recent publications of our own [51, 52]. Both of these arti-
cles dealt with mammalian evolution and combined genomic sequence analy-
sis with analysis of gene expression data from the Novartis gene expression
atlas. The first of these studies took a network-based approach to the study
of gene coexpression [52]. Human gene expression profiles were compared
and genes that were found to be coexpressed were linked in a network. The
topology of the resulting human gene coexpression network was shown to
have scale-free properties that imply evolutionary self-organization via pref-
erential node attachment. When rates of sequence evolution between human
and mouse orthologs were overlayed on the coexpression network, genes with
numerous coexpressed partners, so-called “hubs” of the network, were found
to evolve more slowly, on average, than genes with fewer coexpressed part-
ners. Furthermore, coexpressed genes were demonstrated to have coevolved in
the sense that they have similar rates of evolution. These observations indi-
cate that the strength of selective constraints on gene sequences is strongly
influenced by the topology of the gene coexpression network. This connection
is strong for the coding regions and 3′ untranslated regions (UTRs), but the
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5′ UTRs appear to evolve under a different regime. An interesting exception
to this trend was found for the relationship between gene sequence divergence
and gene expression profile divergence. We found no correlation between the
rate of gene sequence divergence and the extent of gene expression profile
divergence between human and mouse. This suggests that distinct modes of
natural selection might govern sequence vs. expression divergence. Our current
work is focused on the possibility that the evolution of gene expression may
be driven by adaptation-driven divergence characterized convergent evolution
of gene expression patterns.

In a related study, two different aspects of gene expression divergence were
related to gene sequence divergence [51]. Changes in the expression level, or
the amplitude of expression, between human and mouse orthologs were shown
to be correlated with levels of gene sequence divergence that are determined
largely by purifying selection. However, consistent with the previously des-
cribed work, evolutionary changes of tissue-specific gene expression profiles
did not show such a correlation with sequence divergence. This is despite
the fact that divergence of both gene expression levels and profiles were sig-
nificantly lower for orthologous human–mouse gene pairs than for pairs of
randomly chosen human and mouse genes. Together, these findings indicate
that while purifying selection is acting to constrain gene expression diver-
gence, there is also likely to be a neutral component in evolution of gene
expression. This may be particularly true for tissues where the expression
of a given gene is low and functionally irrelevant. Neutral evolution of gene
expression is explored in more detail in Sect. 11.3.2. One prediction of the
neutral model of gene expression divergence is a regular, clock-like accumu-
lation of gene expression changes. Relative rate tests of the gene expression
divergence among human–mouse–rat orthologous gene sets did reveal clock-
like evolution for gene sequence divergence, and to a lesser extent for gene
expression level divergence, but not for the divergence of tissue-specific gene
expression profiles. These results suggest that the evolution of tissue-specific
expression profiles may be influenced by adaptively driven changes that tend
to accumulate at an uneven tempo overtime.

11.3.2 Neutral Changes in Gene Expression

Neutral evolutionary changes are those that do not confer any selective
advantage or disadvantage. The neutral theory of molecular evolution holds
that most changes between gene sequences are neutral, with respect to organ-
ismic fitness, and accumulate because of the random fixation of variants. The
relative influence of adaptively driven changes vs. neutral evolution of gene
sequences was a historically contentious issue that led to many fruitful areas
of inquiry. It appears that a similar debate in the literature is emerging over
the relative contributions of these two evolutionary modes – selection driven
vs. neutral – to the evolution of gene expression.
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Only very recently, due to the systematic analysis of high-throughput gene
expression data sets, has the neutral frame of reference started to be applied
in earnest to the evolution of gene expression patterns. In one particularly
provocative study, Khaitovich et al. evaluated the divergence of gene expres-
sion patterns within and between several mammalian species and concluded
that the evolution of gene expression patterns is largely neutral [53]. They
based their conclusion on several observations. First of all, expression levels
between species were found to accumulate approximately linearly as a func-
tion of time; this pattern held for comparisons of both primate species and
of mouse species. Second, divergence of expression levels between human and
chimp were found to be the same for pseudogenes, which evolve under no
selective constraint, as for (intact) nonpseudogenes. Finally, expression level
differences within species were shown to be strongly correlated with expression
level differences between species, suggesting that the same neutral evolution-
ary process are involved in the evolution of gene expression both within and
between species. The conclusion that gene expression divergence is primarily
neutral has substantial implications for the study of biological evolution and
function. For instance, the clock-like accumulation of gene expression changes
may allow for detailed inferences on the evolution of different tissues and
organ systems based on changes in gene expression patterns among them. On
the other hand, if gene expression changes are neutral then the application of
expression data to functional inferences may be limited.

Another recent study, by Yanai et al., also concluded that gene expres-
sion divergence between species may be dominated by neutral evolution [54].
This work took advantage of the first mammalian gene expression atlas pro-
vided by Novartis to assess the rate of gene expression pattern divergence
between mammalian species. Orthologous pairs of human–mouse genes were
identified and their expression patterns across multiple tissues were quanti-
fied. Expression patterns were represented as profiles that reflect the relative
expression levels in different tissues, and both distance measures and corre-
lations between profiles were measured. Several surprising results came out
of this analysis. None of the gene expression profiles that were most simi-
lar between human and mouse corresponded to orthologous genes. In fact,
expression profiles between orthologous genes were found to diverge so rapidly
that their differences are comparable to those seen between duplicated genes
(paralogs) and between random gene pairs. Even the corresponding tissues
between the two species did not show similar patterns of gene-specific exp-
ression levels; all human tissues were more similar to one another as were
all mouse tissues. Such rapid divergence in gene expression can be attributed
to the effects of natural selection based on adaptively beneficial functional
differences, so-called positive selection, or to random drift based on function-
ally indistinguishable (i.e., neutral) differences. The authors favor the neutral
model for several reasons including the presence of orthologous gene pairs
that are not presumed to have changed function and the even distribution of
expression differences across tissues.
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Contrary to the results suggesting neutral evolution of gene expression, a
few other recent studies have pointed to an important role for natural selec-
tion in constraining, and perhaps driving, gene expression divergence. Fraser
et al. focused on random fluctuations in gene expression that produce noise in
protein levels [55]. They investigated the biological significance of this noise,
specifically asking whether fluctuations in gene expression are biologically rel-
evant and thus subject to natural selection. To investigate this issue, they
tested two specific hypotheses, namely that two classes of genes, (1) essential
genes and (2) genes that encode members of multisubunit protein complexes,
should both be particularly sensitive to random fluctuations (noise) in gene
expression levels. Combined computational analyses of yeast gene and protein
expression levels, gene knock-out effects, and protein–protein interaction data
were used toward this end. The rationale behind the test was that essential
genes and genes that encode members of protein complexes should be par-
ticularly subject to the effects of natural selection – indeed these classes of
genes tend to show reduced rates of evolution consistent with strong purify-
ing selection – and if fluctuations in expression levels are significant, these
too should be under strong selection for the gene classes in question. They
found that, for both tests and over a large range of protein production lev-
els, these two classes of genes show significantly and substantially lower levels
of noise in protein expression than other genes. From this, it was concluded
that noise in gene expression is biologically relevant and is subject to the
effects of natural selection. This conclusion seemingly stands in stark contrast
to those of the two studies summarized above, both of which conclude that
gene expression levels are neutral with respect to organismic fitness. However,
the results summarized here may not be inconsistent with a neutral model of
gene expression. Indeed, natural selection does have an important role under
the neutral model of evolution, but its effect is to reduce, rather than enhance,
levels of diversity. Thus, genes (or positions in gene sequences) that are more
functionally constrained are expected to evolve more slowly than those that
are less functionally constrained and this prediction has been born out time
and time again. The noise in protein expression, while biologically relevant
in the sense that it is deleterious, conforms to the neutral pattern with genes
that are presumably more functionally constrained showing less variation in
protein production.

Yet another recent study examined patterns of gene expression poly-
morphism (within species changes) and gene expression divergence (between
species changes) in a number of datasets from different eukaryotic species inc-
luding Drosophila, mice, and primates [56]. Here again, the evolution of gene
expression was considered with respect to the neutral model of change. Using
a number of different measures, the authors found that gene expression levels
tend to be evolutionarily stable in that they change very little overtime. This
stability strongly implies that gene expression levels are subject to selective
constraint. However, there are substantial differences in the rates at which
gene expression changes, and different functional classes of genes were shown
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to have distinct characteristic levels of change. The authors also put forward
a model that explains how changes in gene expression could be driven by
directional selection.

11.3.3 Evolutionary Conservation of Gene Expression

The accumulation of genome scale expression data sets is beginning to pro-
vide opportunities for cross-species comparisons of gene expression patterns.
One recent report provides an example of how such studies can reveal
patterns of evolutionary conservation of gene expression [57]. The authors
of this work compiled large-scale gene expression data sets from six di-
verse species: Escherichia coli, Saccharomyces cerevisiae, Arabidposis thaliana,
Caenorhabditis elegans, Drosophila melanogaster, and Homo sapiens. Their
analysis included expression data for more than 40,000 genes under 2,000
experimental conditions, and the study is also notable for its combination of
gene expression and sequence data analysis. Correlations between condition-
specific gene expression patterns were used to identify coexpressed genes
within species. Coexpression networks, where genes are the nodes and they
are connected if significantly coexpressed, were found to have similar connec-
tivity across species. The distributions of network connectivity were found
to follow a power-law similar to other biological networks such as protein–
protein interaction and metabolic networks. The scale-free nature of these
distributions, along with their conservation between species, suggests that a
fundamental mechanism is involved in the evolution of gene expression in dif-
ferent domains of life. Pairwise correlations between genes were also compared
to the correlations between homologous gene pairs in different species and a
significant fraction was found to be similar. The utility of this homologous
coexpression similarity with respect to functional annotation of genes was
demonstrated. In addition, sets of highly connected genes were enriched for
genes that are essential and posses a high number of homologous sequences in
other organisms. Expression data were broken down into modules that consist
of coexpressed genes and the particular expression conditions that give rise
to their coregulation. While some groups of functionally related genes show
up as conserved modules in multiple species, many of the expression mod-
ules vary widely across species and so probably contribute to evolutionary
diversification.

Stuart et al. conducted a similar study of the cross-species conservation of
gene expression and identified pairs of genes that are coexpressed across more
than 3,000 microarray experiments conducted for humans, flies, worms, and
yeast [58]. A total of 22,163 evolutionarily conserved coexpression relation-
ships were identified in this way. Links between coexpressed genes were used
to build a coexpression network and this approach revealed network compo-
nents that were specific for different levels of diversification, such as ancient
vs. more recently evolved connections. The conservation of expression pat-
terns suggests that coexpression gene pairs are functionally related and the
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functional similarity provides the mechanistic basis of the selection for main-
tained coexpression. In light of this finding, the authors demonstrate how the
coexpression relationships can be used to provide evidence for the involve-
ment of new genes in specific cellular functions including cell cycle, secretion,
and protein expression. Notably, a few specific predictions generated based on
conserved coexpression were tested and confirmed.
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12

From Biophysics to Evolutionary Genetics:
Statistical Aspects of Gene Regulation

M. Lässig

12.1 Introduction

Genomic functions often cannot be understood at the level of single genes
but require the study of gene networks. This systems biology credo is nearly
commonplace by now. Evidence comes from the comparative analysis of entire
genomes: current estimates put, for example, the number of human genes at
around 22,000, hardly more than the 14,000 of the fruit fly, and not even an
order of magnitude higher than the 6,000 of baker’s yeast. The complexity
and diversity of higher animals, therefore, cannot be explained in terms of
their gene numbers. If, however, a biological function requires the concerted
action of several genes, and conversely, a gene takes part in several functional
contexts, an organism may be defined less by its individual genes but by their
interactions. The emerging picture of the genome as a strongly interacting
system with many degrees of freedom brings new challenges for experiment
and theory, many of which are of a statistical nature. And indeed, this picture
continues to make the subject attractive to a growing number of statistical
physicists.

Genes encode proteins, and proteins perform functions in the cell. Hence,
a gene takes part in a biological function only if it is expressed, i.e., if the
protein produced from it is present in the cell. Genes interact by regulation:
the protein of one gene can influence the production of protein from another
gene. Gene regulation can take place during transcription, the process by
which the cell reads the information contained in a gene and copies it to mes-
senger RNA (which is subsequently used to make a functional protein). This
is the most fundamental level of interactions between genes: the transcription
of one gene may be enhanced or reduced by the expression of other genes.
Transcriptional regulation is thus a good starting point for theory. We should
keep in mind, however, that it is not the only mode of gene interactions.
Especially in eukaryotes, additional regulation mechanisms involving histones,
chromatin, micro-RNAs, etc., become relevant, which are just entering the
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stage of model building. An excellent introduction to the biology of regulation
can be found in [1].

This article is a primer on theoretical aspects of gene interactions, and we
limit ourselves to transcriptional regulation. Clearly, the subject has rather
diverse aspects:

1. Transcription is a biophysical process, which involves the interaction of
DNA and proteins. Its regulation takes place through the binding of pro-
teins to DNA at specific loci in the vicinity of the gene to be regulated.
Already at this level, this process is rather complex and not yet fully
understood. What enables the protein to find one or a few specific func-
tional sites in a genome of up to billions of base pairs, bind there with
sufficient strength to influence transcription, and leave again once its task
is performed?

2. Given the protein can find its functional sites, can we as well? If that is
possible, we can predict the specific gene interactions building regulatory
networks from sequence data. The analysis of regulatory DNA is a major
topic of research in bioinformatics, with the aim of identifying statistical
characteristics of functional loci and of building search algorithms.

3. Regulation is also becoming an important part of evolutionary biology
[2, 3]. If regulatory networks are to explain the differentiation of higher
animals, there must be efficient modes of evolution for the interactions
between genes. At the level of regulatory DNA, these modes remain
largely to be explored. It is clear, however, that the underlying evolution-
ary dynamics is the basis of a quantitative understanding of regulatory
networks.

All three aspects of regulation contribute to a unified theoretical picture.
Key concepts such as the biophysical binding energy, the bioinformatic scoring
function, and the evolutionary fitness turn out to be rather deeply related. We
will focus on these crosslinks between different fields, which are quite likely
to become important for future research. A challenge for an introductory
presentation is the diversity of relevant background material, only a rather
eclectic account of which can be presented here. Yet, I hope it transpires even
from this short introduction that present quantitative genomics is an area of
science shaped by a remarkable confluence of ideas from different disciplines.

12.2 Biophysics of Transcriptional Regulation

The fundamental step in the regulatory interaction between two genes is a
binding process: the protein produced by the first gene acts as a transcrip-
tion factor for the second gene, i.e., it binds to a functional site on the DNA
close to the second gene and thereby enhances or suppresses its transcription.
Binding sites are short segments of typically 10–15 base pairs in prokary-
otes and even shorter segments in eukaryotes. They are primarily located in
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Fig. 12.1. Transcriptional regulation: Transcription is the synthesis of messenger
RNA (1) whose genetic code is a copy of the coding DNA (2) of a gene, by means of
RNA polymerase (3). A transcription factor (4) bound to a DNA target site interacts
with RNA polymerase molecules, (a) enhancing or (b) reducing the transcription
rate of a nearby gene

the cis-regulatory region of a gene, which lies just upstream of its protein-
coding sequence and extends over hundreds of base pairs in prokaryotes and
over thousands of base pairs in eukaryotes. The scenario of transcriptional
regulation is sketched in Fig. 12.1. A transcription factor bound to a func-
tional binding site regulates the downstream gene by recruiting or repelling
RNA polymerase. This protein–protein interaction catalyzes or suppresses the
process of transcription of the gene. All these binding processes should not
be understood as on or off; they happen with certain probabilities, which are
determined by the binding energies and the numbers of the molecules involved.

12.2.1 Factor-DNA Binding Energies

The interaction of a transcription factor protein with DNA is twofold: there
is a position-unspecific attraction with energy Eu and a specific interaction,
whose energy depends on the particular locus where the factor binds. The
unspecific part is the electrostatic interaction between the positively charged
protein and the negatively charged DNA backbone, while the specific part
involves hydrogen bonds between the binding domain of the protein and the
nucleotides of the binding locus. A locus is specified by its starting position
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Fig. 12.2. Thermodynamic states of a transcription factor. (1) Unbound state,
with three-dimensional diffusion. (2) Unspecific bound state, with one-dimensional
diffusion along the DNA backbone. (3) Specific bound state. The binding energy
depends on the genotype at the binding locus, which has length 	 and whose position
is specified by the coordinate r

r and its length � (with relevant values � of order 10). The specific binding
energy E(r) depends on � consecutive nucleotides a = (a1, . . . , a
) counted
downstream from the starting position, the sequence state or genotype of that
locus. Switching between unspecific and specific binding takes place via a
conformation change of the factor protein. As a result of these interactions,
the factor protein can be in three thermodynamic states as shown in Fig. 12.2:
unbound (i.e., freely diffusing), unspecifically bound (i.e., diffusing along the
DNA backbone), and specifically bound.

The biophysics of factor-DNA binding has been established in a series of
seminal papers [4–7]. More recently, the characteristics of specific binding have
been measured for some bacterial transcription factors [8–12]. These can be
summarized as follows:

1. The single nucleotides of a binding locus a ≡ (a1, . . . , a
) give approxi-
mately independent contributions to the binding energy,

E(a) =

∑

i=1

εi(ai) . (12.1)

2. At each position i, there is typically one preferred nucleotide a∗
i with

εi(a∗
i ) = mina εi(a). Hence, there is a unique “ground state” sequence

a∗ = (a∗
1, . . . a

∗

 ) with minimal binding energy E∗ ≡ E(a∗), i.e., with

strongest binding.
3. Mismatches with respect to the minimum-energy sequence involve energy

costs εi(a) − εi(a∗
i ) ≈ 1 − 3 kBT per nucleotide.

4. There is an energy difference Eu − E∗ ∼ 15 kBT between unspecific and
strongest specific binding.

Experimental data for the binding energies εi(a) are known only for a
few transcription factors. Approximate values for these energies can also be
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inferred from nucleotide frequencies in functional binding sites [10]. For order-
of-magnitude estimates, one often uses the so-called two-state approximation
[7], which is homogeneous in the nucleotide positions and distinguishes only
between match and mismatch:

εi(a) − εi(a∗
i ) =

{
ε if ai �= a∗

i

0 if ai = a∗
i

(12.2)

with ε ≈ 2kBT . In this approximation, the binding energy of a sequence a is
simply related to the Hamming distance d(a,a∗) (see also Chap. 14 by Jain
and Krug), i.e., the number of nucleotide mismatches between a and a∗,

E(a) = E∗ + ε · d(a,a∗) . (12.3)

12.2.2 Energy Distribution in the Genome

Figure 12.3a shows the sequence of energy values E(r) found in a segment
of the E. coli genome for a specific transcription factor, the cAMP response
protein (CRP). This “energy landscape” looks quite random, i.e., consecutive
energy values are approximately uncorrelated. The distribution Wdat(E) of
energies over the entire noncoding part of the E. coli genome is shown in
Fig. 12.3b. We can compare this with the distribution W0(E) obtained from a
random sequence with the same nucleotide frequencies (i.e., from a scrambled
genome). The distribution W0(E) is approximately Gaussian as expected for
a sum of independent random variables εi according to (12.1). The actual
distribution Wdat(E) is indeed of the same form as W0(E) for most ener-
gies. However, a closer look at the low-energy tail of the distribution shows
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Fig. 12.3. Transcription factor binding energies of the E. coli genome. (a) Energy
“landscape” E(r) for specific binding of the CRP factor at 200 consecutive positions
r in an intergenic region, with a binding site at position 59. (b) Count histogram
Wdat(E) with energy bins of width 0.1 obtained from all intergenic regions, together
with the distribution W0(E) for a random sequence (dashed line, shown with a 30-
fold zoom into the region E < 14; adapted from [15])
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that there are significantly more strong binding sites than expected from a
random sequence [13–15]. So at least some of them are there not by chance
but for a reason.

12.2.3 Search Kinetics

All three thermodynamic modes of a factor molecule – free diffusion, unspecific
binding, and specific binding – are important for the search kinetics toward a
functional site [4–6]. The unspecific attraction causes the transcription factor
to be bound to DNA with a finite probability, i.e., a given molecule spends
about equal amounts of time on and off the DNA backbone. Hence, the search
process is a mixture of effectively one-dimensional diffusion along the DNA
backbone and three-dimensional diffusion in the surrounding medium. This
proves more efficient than purely one- or three-dimensional diffusion. In the 1D
mode, the factor diffuses in a flat energy landscape if it is in the conformation
of unspecific binding, or in the landscape E(r) if it is in the conformation
of specific binding. In this way, it can sample the low-energy part of the
landscape E(r) while avoiding its barriers. The main obstacles on its way to
a functional site are spurious binding sites, which have a low energy E(r)
by chance and act as traps. We lack a completely satisfactory picture of the
search kinetics, which is an area of current research [13, 16]. However, this
process proves to be remarkably fast. Typical search times are less than a
minute, i.e., substantially shorter than typical functional intervals in a cell
cycle of at least minutes. Therefore, the regulatory effect of a site is related
to its probability of binding a factor molecule at equilibrium, which can be
evaluated by standard thermodynamics.

12.2.4 Thermodynamics of Factor Binding

We start with the idealized but instructive problem of a single factor pro-
tein interacting with a genome of length L� 1, which contains a single func-
tional site, while the rest of the sequence is random. Since the protein is
bound to the DNA with a probability of about 1/2, we neglect the unbound
state for the subsequent probability estimates and study only the bound pro-
tein, which is at equilibrium between specific and unspecific binding. At each
position r, the likelihood of these two states is given by the Boltzmann fac-
tors exp[−E(r)/kBT ] and exp[−Eu/kBT ], respectively. Hence, the partition
function for a single protein has the form

Z =
L∑

r=1

e−E(r)/kBT + L e−Eu/kBT . (12.4)

The functional site, which is assumed to be positioned at r = rf , must
have a low specific binding energy E ≡ E(rf ). We now single out this
position and write
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Z = e−E/kBT +
∑
r �=rf

e−E(r)/kBT + L e−Eu/kBT

≈ e−E/kBT + Z0, (12.5)

where Z0 is the partition function of a completely random sequence. The
probability of the factor being bound specifically at the functional site is then

p(E) =
e−E/kBT

Z
=

1
1 + e(E−F0)/kBT

, (12.6)

where F0 = −kBT log Z0 is the free energy for a random genome. Thus, the
binding probability depends on the binding energy in a sigmoid way, with a
threshold energy E = F0 between strong and weak binding. This strongly
nonlinear dependence is known to physicists as a Fermi function.

It is easy to generalize the thermodynamic formalism to more than one
factor molecule. Ignoring the overlap between close sites, each position r can
be empty or be occupied either by an unspecifically or by a specifically bound
factor. Using a chemical potential σ, the many-factor partition function can
hence, be written as

Z(σ) =
L∏

r=1

Z(σ, r) , (12.7)

where Z(σ, r) is a sum over the three thermodynamic states at position r,

Z(σ, r) = 1 + eσ−E(r)/kBT + eσ−Eu/kBT . (12.8)

The chemical potential σ is determined by the number of factor molecules, n,
via the relation n = (d/dσ) log Z(σ). For actual transcription factor numbers,
which are of order 1 − 104, this relation is well approximated by [13]

σ =
F0

kBT
+ log n. (12.9)

The functional site is now occupied by a specifically bound factor with
probability

p(E) =
eσ−E/kBT

Z(σ, rf )
=

1
1 + e(E−F0)/kBT−log n

. (12.10)

The binding probability – and hence the effects of the functional site on the
regulated gene – are thus determined by the binding energy, the number of
factor molecules, and on the genomic background (via the free energy F0). The
dependence p(E) is a Fermi function with threshold energy E = F0 + kBT log n,
which is shifted with respect to the single-molecule case. Clearly, p is also
a Fermi function of log n at fixed binding energy, with a threshold at
log n = (E − F0)/kBT .
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12.2.5 Sensitivity and Genomic Design of Regulation

The regulatory machinery can be very efficient: in bacteria, it has been shown
that single factor molecules can have regulatory effects. We can use (12.6)
to enquire how the cell can reach this high level of sensitivity, following
mostly [13]. We assume a minimal genome, which has a single functional site
of maximum binding strength E∗ and is otherwise random. If a single factor
molecule is to affect regulation, its binding to the functional site must not be
overwhelmed by the remainder of the genome. This leads to a criterion on the
signal-to-noise ratio of regulatory interactions,

F0
>∼E∗ , (12.11)

which in turn imposes a number of constraints on the design of regulatory
DNA:

1. In a random genome, there must be at most of order one minimum-energy
binding sites, i.e., L(1/4)
 � 1. This gives a lower bound on the site length,
� >∼ log L/ log 4. For a bacterial genome (L ∼ 106), we obtain � >∼ 10, which
gives the right length of functional binding sites. However, this bound
is not fulfilled in eukaryotes. Indeed, eukaryotic genomes use a different
design with groups of adjacent binding sites.

2. For each minimum-energy site, there are � suboptimal sites of Hamming
distance 1 from the minimum-energy sequence. These must not suppress
the binding to the minimum-energy site, i.e., exp(−E∗/kBT )>∼� exp[−(E∗+
ε)/kBT ] in the two-state approximation. This gives a lower bound on the
binding energy per nucleotide, ε/kBT >∼ log � ≈ 2 − 3.

3. Finally, the unspecific binding in the entire genome must not suppress
the specific binding to a minimum-energy site, i.e., exp(−E∗/kBT ) >∼
L exp(−Eu/kBT ). This produces a lower bound on the energy gap between
unspecific and optimal specific binding, (Eu − E∗)/kBT >∼ log L ≈ 15.

Quite remarkably, these bounds are fulfilled as approximate equalities in
bacteria. Hence, the machinery of transcriptional regulation operates just at
the threshold of single-molecule sensitivity, i.e, F0 ≈ E∗.

12.2.6 Programmability and Evolvability of Regulatory Networks

Of course, not every regulatory interaction is equally sensitive. To switch genes
on or off, the cell uses the dependencies of the binding probability both on fac-
tor numbers and on binding energies. During the cell cycle, the level of n can
vary over several orders of magnitude, say, between a few and tens of thousands
of molecules. At a given value of n, the effects on the regulated genes differ
since their functional sites have different values of E. The binding energies can
change on evolutionary time scales by mutations of the site sequence, which
leads to regulatory differences between individuals and, ultimately, between
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species. Both parameters are thus necessary to encode pathways in regulatory
networks. This is most flexible if minimum-energy sites are indeed sensitive
to a single factor molecule as discussed above. Differential programmability as
a network design principle [13] thus favors complicated molecular structures
with longer binding sites and larger binding energies. However, this competes
with the evolvability of the system by a stochastic evolution process [17]. We
have seen that the single-molecule sensitivity is just marginally reached in bac-
teria. This indicates that the actual machinery may result from a compromise
between programmability and evolvability: binding sites are just complicated
enough to work. It also indicates that genomic structures can only be under-
stood from their evolution; this aspect will be developed further in Sect. 12.4.

12.3 Bioinformatics of Regulatory DNA

Predicting regulatory interactions between genes is clearly a key problem in
bioinformatics, which is as important as the analysis of individual genes and
proteins. It is not surprising that this problem is very difficult since, as we
have discussed in Sect. 12.2, targeting regulatory input in a large genome is
a tremendous signal-to-noise problem even for the cell itself. Its solution via
the analysis of regulatory DNA requires finding statistical criteria to distin-
guish between functional binding sites and background sequence. A general
introduction to the relevant sequence statistics can be found in [18].

12.3.1 Markov Model for Background Sequence

We begin by specifying a stochastic model for the nonfunctional segments of
intergenic DNA. These are assumed to be Markov sequences with uniform
single-nucleotide frequencies p0(a) (a = A,C,G, T ). Hence, the probability of
finding a given sequence has the factorized form

P0(a1, . . . , ak) =
k∏

i=1

p0(ai) . (12.12)

This assumption should not be taken too literally. The term “nonfunctional”
refers to binding of a particular transcription factor. Intergenic DNA con-
tains plenty of nonrandom elements with other functions (e.g., binding sites
for other factors) or without known function (such as repeat elements). The
salient point is, however, that most of intergenic DNA is well approximated
by a Markov sequence with respect to binding of a given transcription factor.
To make this more precise, we project the distribution P0(a) for segments
of length � onto the binding energy E as independent variable. Denoting the
projected distribution for simplicity with the same letter P0, we have

P0(E) ≡
∑
a

P0(a) δ(E − E(a)) . (12.13)



262 M. Lässig

This distribution is close to the actual genomic distribution Wdat(E) for
most values of E, as we have seen in Fig. 12.3. It is possible to improve the
background model by introducing small frequency couplings between
neighboring letters [14,15].

12.3.2 Probabilistic Model for Functional Sites

The sequences a = (a1, . . . , a
) at functional sites of a given transcription
factor are assumed to be drawn from a different distribution Q(a). We write
this distribution in the form

Q(a) = P0(a) exp[S(a)] . (12.14)

The quantity S(a), which is called the relative log likelihood score of the
distributions P0 and Q, will turn out to have an important evolutionary
meaning as well.

The single-nucleotide distribution qi(a) at a given position i within
functional loci is obtained by summing the full distribution Q over all
other positions

qi(a) =
∑

a1,...,ai−1,ai+1,...,a�

Q(a) . (12.15)

The set of these marginal distributions, qi(a) (i = 1, . . . , �; a = A,C,G, T ) is
called the position weight matrix for binding sites of a given factor [19]. If the
score function is additive in the nucleotide positions, S(a) =

∑

i=1 si(ai), the

Q distribution has a factorized form, Q(a) =
∏


i=1 qi(ai) with

qi(a) = p0(a) exp[si(a)] . (12.16)

This additivity assumption is made in most of the existing literature since the
position weight matrix (12.15) can be inferred from a sample of known func-
tional site sequences, which in turn determines directly the single nucleotide
scores (12.16). This scoring is the basis for a number of site prediction methods
in single species and by cross-species analysis; see e.g., [19–23].

Here, we treat functional sites as coherent statistical units and do not
make the assumption of additivity of the score function [15]. As will be
discussed in the Sect.12.4, functionality imposes correlations between the
nucleotide frequencies within a functional site, preventing factorization of
the Q distribution. Of course, it is not possible to reconstruct the full
distribution Q(a), which lives on a 4
-dimensional sequence space, from a
limited sample of experimentally known functional sites. However, we can
again project this distribution onto the binding energy as independent vari-
able, Q(E) ≡∑

a Q(a)δ(E−E(a)). Since all regulatory effects of a functional
site depend on its sequence a only via the binding energy, we can also write the
score as a function of the energy, S(a) = S(E(a)) (this will become obvious in
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Sect.12.4). Hence, the relationship (12.14) has the same form for the projected
distributions,

Q(E) = P0(E) exp[S(E)] . (12.17)

12.3.3 Bayesian Model for Genomic Loci

Assuming that functional loci are distributed randomly with a small probabil-
ity λ, we now combine the models for background sequence and for functional
sites into a model for the full distribution of sequences a in intergenic DNA,

W (a) = (1 − λ)P0(a) + λQ(a) . (12.18)

(At the moment, we are ignoring the possible overlap between functional sites).
In the language of statistics, this is a probabilistic model with hidden variables.
The output of this model consists of pairs (m,a): First, the model variable
m ∈ {f, 0} is drawn with probabilities λ and 1 − λ (i.e., a locus is labeled
as nonfunctional or functional), then the sequence is drawn from the corre-
sponding distribution P0(a) or Q(a). However, only the sequence counts a are
available data. The “hidden” variable m can be inferred from the data in a
probabilistic way using Bayes’ formula, which expresses the joint probability
distribution of data and model in terms of its conditional and its marginal
distributions

prob(a,m) = prob(a|m) prob(m) = prob(m|a) prob(a) (12.19)

with prob(a) =
∑

m prob(a|m) prob(m). We can solve for the conditional
probability of the model for given data a,

prob(m|a) =
prob(a|m) prob(m)∑
m prob(a|m) prob(m)

. (12.20)

For the probability of functionality, ρf (a) ≡ prob(f |a), this formula reads

ρf (a) =
λQ(a)
W (a)

=
1

1 + exp[−S(a) + log 1−λ
λ ]

. (12.21)

The dependence on S has again the form of a Fermi function. Its thresh-
old value S = log[(1 − λ)/λ] separates sequences that are more likely to be
functional or more likely to be background.

The full Bayesian model (12.18) can again be projected onto the energy
variable,

W (E) = (1 − λ)P0(E) + λQ(E) . (12.22)

In this form, it can be tested against genomic data [15]. To plot the distrib-
utions P0, Q, and W as functions of E, we use (12.1) with an energy matrix
εi(a) = ε0 log[qi(a)/p0(a)] estimated from the position weight matrix up to an
overall constant ε0 [10]. For our example of the CRP transcription factor, the
distribution Q(E) can be estimated from the about 50 known binding sites in
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Fig. 12.4. Bayesian model for regulatory DNA and score function. (a) Energy count
histogram Wdat(E) for CRP sites in E. coli as in Fig. 12.3 (log scale), model distrib-
ution W (E) (thick line), and its decomposition (12.22) into background component
(1−λ)P0(E) (thin dashed line) and component λQ(E) (E < Es ≈ 13) of functional
sites (thin solid line). (b) Log-likelihood score S(E) = log[Q(E)/P0(E)] (shifted by
a constant, thick line) and probability of functionality ρf (E) (thin line) (adapted
from [15])

the E. coli genome. Using this Q distribution and a probability of functional-
ity λ ≈ 6 × 10−4, the full distribution W (E) produces an excellent fit of the
count histogram Wdat(E) over the entire range of energies; see Fig. 12.4a. The
log likelihood score function S(E) = log[Q(E)/P0(E)] is shown in Fig. 12.4b,
shifted such that the curve has its zero at a point Es ≈ 13 beyond which
binding becomes negligible.

The resulting probability of functionality ρf (E) as given by (12.21) is also
shown in Fig. 12.4b. This indicates the dilemma for the prediction of individual
binding sites based on sequence data from a single species. Many functional
sites have energies in the “twilight” region between the ensembles λQ and
(1−λ)P0, where ρf takes values around 1/2. Hence, depending on the energy
cutoff chosen, any prediction is torn between many false negatives or many
false positives.

12.3.4 Dynamic Programming and Sequence Analysis

It is straightforward to generalize the Bayesian approach to longer segments
of intergenic DNA, which are covered by an unknown number s of nonover-
lapping functional sites as shown in Fig. 12.5 [21]. The hidden variables are
now the sequence of left initial positions rf ≡ (r1, . . . , rs) of the functional
sites (with the no-overlap constraint rν+1 ≥ rν + � for ν = 1, . . . , s − 1). The
full sequence distribution in a segment of length L has the form

WL(a1, . . . , aL) = Z−1
∑
rf

λ̃sWL(a1, . . . , aL|rf ) , (12.23)
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f
0

Fig. 12.5. Analysis of regulatory sequences. A configuration of s nonoverlapping
binding sites is given by the sequence of left initial positions rf = (r1, . . . , rs) (with
rν+1 − rν ≥ 	 for ν = 1, 2, . . . , s − 1). It can be associated with a path m(r) which
takes the values m = f at the nucleotide positions of binding sites and m = 0
elsewhere. Dynamic programming algorithms based on a Bayesian model (12.24)
of genomic sequences assign to each site configuration a probability of occurrence
ρ(r|a1, . . . , aL) for given sequence data a1, . . . , aL; see (12.26)

where Z is a normalization factor, λ̃ = λ + O(λ2) is a weight factor for
each functional locus (the negligible correction terms originate from the
no-overlap constraint), and WL(a1, . . . , aL|rf ) is the sequence distribution for
given positions of functional loci,

WL(a1, . . . , aL|rf ) =

p0(a1) . . . p0(ar1−1)
s∏

ν=1

Q(arν
, . . . , arν+
−1) p0(arν+
) . . . p0(arν+1−1) =

p0(a1) . . . p0(aL) exp

[
s∑

ν=1

S(arν
, . . . , arν+
−1)

]
(12.24)

with rn+1 ≡ L + 1. The sum over sequences rf of arbitrary length s seems
formidable at first, but WL is easy to compute from the recursion

Wr(a1, . . . , ar) = (1 − λ̂)p0(ar)Wr−1(a1, . . . , ar−1)
+λ̃Q(ar−
+1, . . . , ar)Wr−
(a1, . . . , ar−
) (12.25)

with the initial condition W0 = 1 and λ̂ = λ̃ + O(λ̃2). This type of recur-
sion relation is usually called a dynamic programming algorithm in computer
science. In physics, it is known as a transfer matrix, and the sum (12.24) is
recognized as the corresponding discrete path integral in imaginary time r, if
we interpret rf as encoding a path m(r) that takes the value m = f at the
nucleotide positions rν , . . . , rν + �−1 (ν = 1, . . . , s) within functional loci and
m = 0 otherwise (see Fig. 12.5). Both concepts prove very useful also in more
general problems of sequence alignment.

In analogy to (12.21), the probability of a set rf of functional loci for given
sequence data is

ρ(rf |a1, . . . , aL) =
WL(a1, . . . , aL|rf )
WL(a1, . . . , aL)

. (12.26)
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The most likely set r∗f can be obtained by the following “backward” algo-
rithm: Given the sequence (W1, . . . , WL) obtained from the “forward” recur-
sion (12.25), we can decide for every point r whether it is more likely to
be a background position or the endpoint of a functional locus, ignoring all
sequence information from positions > r. This depends on whether the lead-
ing contribution to Wr comes from the first or second term on the r.h.s. of
(12.25) and defines the local optimum model m∗(r). The global optimum set of
functional loci respecting the no-overlap constraint is then r∗f = {r|b(r) = 1},
where b(r) is given by the recursion b(r) = � if b(r + 1) ≤ 1 & m∗(r) = f and
b(r) = max(b(r + 1)− 1, 0) otherwise, with the initial condition b(L + 1) = 0.

The Bayesian model can easily be extended to sequences containing sev-
eral types of binding sites, which bind different transcription factors and are
distinguished by their Q distributions. Dynamic programming algorithms can
thus predict the likely coverage of a sequence with binding sites of known
type [21]. This is the first step in extending the statistical analysis from single
binding sites to entire regions of regulatory DNA. Indeed, models of this kind
have been applied successfully to predict regulatory elements in eukaryotes,
which typically consist of functional groups of adjacent binding sites. In the
algorithms currently used, however, the scoring in (12.24) is strictly addi-
tive for groups of nonoverlapping binding sites: it does not take into account
dependencies between the sites within one functional group or overlapping
sites within one sequence.

12.4 Evolution of Regulatory DNA

In statistical picture developed so far, background sequences and functional
sites are reduced to ensembles P0 and Q. This picture is incomplete in two
ways. On one hand, it is quite disconnected from the biophysical aspects dis-
cussed before: the specific function of binding sites hardly enters the standard
formalism of position weight matrices. On the other hand, there is not yet any
notion of time and dynamics. Sequences change by various mutation processes,
and the observed sequence ensembles derive from this evolutionary dynamics.
The evolution of functional loci is fundamentally different from that of back-
ground sequence: it is subject to natural selection, that is, the fitness of an
organism depends on its genotype a at a functional locus via the effects on the
regulated gene. At this point, the biophysics of binding enters the evolution
of functional sequences [24–26]. Moreover, it becomes clear that the statistical
framework has to be extended from individual sequences to distributions of
genotypes in a population. In this section, we develop an evolutionary pic-
ture of regulatory DNA, from which we obtain expressions for the sequence
ensembles P0, Q, and the score function S. The next four paragraphs are a
self-contained introduction to the underlying concepts of population genetics.
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12.4.1 Deterministic Population Dynamics and Fitness

We start by describing the evolution of a large population, which contains
individuals of different genotypes a. Each genotype is assumed to produce
a specific phenotype, which may influence the reproductive success of the
individuals carrying it. With respect to factor binding, the phenotype can
be associated with the binding energy E(a), since presumably all organismic
effects of a locus depend on its genotype only via the binding energy. However,
the discussion in the following paragraphs is more general. For a more detailed
presentation, see e.g., [27].

We first assume that the subpopulations of a given genotype reproduce
separately, i.e., there are neither transitions between genotypes through
mutations nor (in a sexually reproducing population) mixing through genomic
recombination. Writing the dynamics of the subpopulations in the form of
simple growth laws,

d
dt

Na(t) = Fa(t)Na(t) , (12.27)

defines the (Malthusian) fitness Fa(t) of each genotype. For notational sim-
plicity, we now limit ourselves to the case of just two genotypes a and b,
where (12.27) can be written as growth laws for the total population size
N(t) ≡ Na(t) + Nb(t) and for the population fraction x(t) ≡ Nb(t)/N(t) of
genotype b,

d
dt

N(t) = F̄ (t)N(t), (12.28)

d
dt

x(t) = ΔFab(t)x(t)[1 − x(t)] (12.29)

with F̄ (t) ≡ [1 − x(t)]Fa(t) + x(t)Fb(t) and ΔFab(t) ≡ Fb(t) − Fa(t). This
decomposition is useful since the overall growth rate F̄ (t) is often strongly
time-dependent because of external conditions (e.g., seasonality), while fit-
ness differences, which reflect intrinsic properties of the phenotypes, are more
stable. Different genotypes coexisting in a population frequently produce the
same or very similar phenotypes and thus have equal fitness (ΔFab = 0).

Assuming ΔFab to be constant over the time of observation, the solution
of (12.29) is the evolutionary trajectory

x(t) =
x0 exp[ΔFab(t − t0)]

1 + x0(exp[ΔFab(t − t0)] − 1)
(12.30)

with the initial condition x(t0) = x0, as shown in Fig. 12.6a. For ΔFab �= 0, the
fixed points of this dynamics are the monomorphic population states x = 0,
and x = 1, of which x = 1 is stable for ΔFab > 1 and x = 0 for ΔFab < 1.
The approach to the stationary state takes place on a characteristic time
scale τd = 1/ΔFab. In the important case of neutral evolution (ΔFab = 0),
the evolutionary outcome remains indefinite. These results, which can readily
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Fig. 12.6. Evolution of genotype composition x(t). (a) Deterministic evolution with
fitness difference ΔFab > 0, leading to certain fixation of genotype b (time is shown
in units of τd = 1/ΔFab). (b) Stochastic evolution with selection and genetic drift,
leading to fixation of one of the genotypes. The time to fixation (grey shading) is
of order τs (NΔFab = 0.5, time is shown in units of N). (c) Stochastic evolution
with selection, genetic drift, and mutations in the regime Nμ � 1, leading to a
substitution dynamics with rates ua→b and ub→a given by (12.46). Substitution
events are marked by dashed lines. The typical time between initial mutation and
fixation (grey shading) for a given substitution, τs, is much shorter than the time
between subsequent substitutions, 1/ua→b respectively, 1/ub→a (NΔFab = 0.5,
Nμ = 0.05, time is shown in units of 1/μ)

be generalized to more than two phenotypes, are a simple version of Fisher’s
fundamental theorem of natural selection: any population with initially coex-
isting phenotypes of different fitness will evolve toward a state where only the
fittest phenotype is present.

Fisher’s theorem seems to prove the popularized Darwinian notion of the
“survival of the fittest.” However, it rests on very restrictive assumptions
that are never fulfilled in a natural population. The deterministic growth
law (12.29) neglects mutations and recombinations as well as the reproduc-
tive fluctuations present in any population because of its finite number of
individuals. These other evolutionary forces have to be incorporated in our
theoretical picture before we can even define fitness as a measurable quantity
and before the theory can address the important case of neutral evolution.

12.4.2 Stochastic Dynamics and Genetic Drift

Stochastic fluctuations of the reproduction process in a large but finite popu-
lation have been studied extensively in population genetics, see [28,29]. They
are called genetic drift, an unfortunate name, which may falsely suggest a
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deterministic effect. To take these fluctuations into account, we replace (12.27)
by a stochastic growth law,

d
dt

Na(t) = Fa(t)Na(t) + χa(t) , (12.31)

where χa(t) are Gaussian random variables with χa(t) = 0 and

χa(t)χb(t′) = Na(t) δ(t − t′) δa,b . (12.32)

This form of noise is simply due to the law of large numbers, and the con-
tinuum dynamics (12.31) emerges as an effective large-N description for a
plethora of discrete evolution models, which are defined at the level of indi-
viduals and have finite generation times. In the application to real populations,
N has to be interpreted as the so-called effective population size, which can be
inferred from genome data and is in general smaller than the actual population
size.

In the case of two genotypes, (12.31) can again be projected onto the
population fraction x,

d
dt

x(t) = ΔFab(t)x(t)[1 − x(t)] + χx(t) , (12.33)

where χx(t) = (∂x/∂Na)χa(t) + (∂x/∂Nb)χb(t) are Gaussian random vari-
ables with zero mean and

χx(t)χx(t′) =
x(1 − x)

N
δ(t − t′) . (12.34)

This dynamics produces stochastic evolutionary trajectories x(t) as shown in
Fig. 12.6b. To capture their statistics, we convert the Langevin (12.33) into
a Fokker–Planck equation for the probability distribution of the genotype
composition [28,30],

∂

∂t
P(x, t) =

1
2N

∂2

∂x2
x(1 − x)P(x, t) − ΔFab(t)

∂

∂x
x(1 − x)P(x, t) . (12.35)

The mathematical subtlety of this equation lies in the x-dependent diffu-
sion “constant” x(1 − x)/2N , which reflects the multiplicative nature of the
reproduction process. As a consequence, the two monomorphic population
states x = 0 and x = 1 are also fixed points of the stochastic dynamics. Any
evolutionary trajectory x(t) will eventually lead to one of these states with
probability 1; this is called the fixation of the corresponding genotype in the
population. In other words, the Fokker–Planck equation (12.35) describes dif-
fusion in the interval (0, 1) with absorbing boundaries. There is a family of
stationary states

P(x) = (1 − φ)δ(x) + φδ(1 − x) , (12.36)
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parametrized by the fixation probability φ of genotype b. The value of φ
depends on the initial condition x0 and can be computed by solving the back-
ward diffusion equation

∂

∂t
P(x, t|x0, t0) = x0(1 − x0)

(
1

2N

∂2

∂x2
0

− ΔFab(t)
∂

∂x0

)
P(x, t|x0, t0) .

(12.37)
For time-independent ΔFab, the stationary solution φ(x0) ≡ limt→∞ P(x =
1, t|x0, t0) has the form [28,30]

φ(x0,ΔFab, N) =
1 − exp(−2NΔFabx0)
1 − exp(−2NΔFab)

, (12.38)

which for near-neutral evolution (NΔFab � 1) reduces to

φ(x0, 0, N) = x0 + NΔFab x0(1 − x0) + · · · . (12.39)

The characteristic time τs of the stochastic dynamics interpolates between the
diffusive scale N and the deterministic scale: τs ≈ min(N, τd). It determines
the typical time of the evolution process up to fixation, shown shaded in
Fig. 12.6b.

Hence, the stochastic population dynamics depends no longer only on
the fitness difference of the genotypes as in the deterministic case, but also on
the initial state of the population and the population size. Yet, our evolution-
ary picture is still incomplete. Population states with coexisting genotypes
enter the dynamics as initial conditions, but since mutations are neglected,
the model does not explain how this coexistence is generated and maintained.

12.4.3 Mutation Processes and Evolutionary Equilibria

At the level of an individual, mutations are rare stochastic genotype changes
a → b, which take place with rates μa→b, often coupled to the reproduction
process. (These rates are all of the same order of magnitude, in estimates
we, therefore, omit the indices.) We include mutations into the population
dynamics (12.31) by their systematic effect on the genotype subpopulations,

d
dt

Na(t) = Fa(t)Na(t) +
∑
b

[μb→aNb(t) − μa→bNa(t)] + χa(t) , (12.40)

while their stochastic effect (whose variance is of order Nμ) is neglected since
it is small against the reproductive sampling noise χa(t). In the case of two
different genotypes, this dynamics can again be projected onto the variable x,

d
dt

x(t) = ΔFab(t)x(t)[1−x(t)]+μa→b[1−x(t)]−μb→a x(t)+χx(t) , (12.41)
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which leads to the Fokker–Planck equation [31]

∂

∂t
P(x, t) =

1
N

∂2

∂x2
x(1 − x)P(x, t) − ΔFab(t)

∂

∂x
x(1 − x)P(x, t)

−μa→b
∂

∂x
(1 − x)P(x, t) + μb→a

∂

∂x
xP(x, t). (12.42)

For time-independent ΔFab, this equation has a single stable stationary state,

P(x) =
1
Z

x−1+Nμa→b(1 − x)−1+Nμb→a exp(2NΔFab x) (12.43)

with a normalization constant Z that can be expressed in terms of Bessel and
Gamma functions [32].

12.4.4 Substitution Dynamics

Here, we are interested in the stochastic evolution (12.42) and its equilibrium
state (12.43) for Nμ � 1, which is the relevant dynamical regime for nuclear
DNA in eukaryotes and in most prokaryotes (but not in viral systems). In this
regime, the mutation term in (12.42) is small against the diffusion term except
for values of x close to the boundaries 0 or 1. In this region, the continuum
approximation of (12.42) is no longer valid, and (12.43) has to be replaced
by a stationary solution Pd(Na) of the underlying discrete evolution model,
which gives the probability that the population contains Na individuals of
genotype a (with Na = N −Nb = 0, 1, . . . , N). The discrete solution is easily
shown to have the singularity Pd(0) � (Nμa→b)−1Pd(1). This singularity is
correctly captured if we use the approximation Pd(Na) � ∫ (Na+1)/N

Na/N
dxP(x)

for all Na (except at the other boundary, where there is a similar singularity
Pd(N) � (Nμb→a)−1Pd(N − 1)) [33].

From this solution, we read off the following characteristics of the evolu-
tionary dynamics at equilibrium, which are illustrated by the trajectory of
Fig. 12.6c [32]:

1. For sufficiently small values of μ, the population remains monomorphic
for most of the time. Using the shorthands Q(a) ≡ Pd(Na = 0) and
Q(b) ≡ Pd(Na = N), we have

Q(a) + Q(b) = 1 − O(μN log N) . (12.44)

2. The ratio of probabilities for the two monomorphic population states is
given by the ratio of “forward” and “backward” mutation rate, the fitness
difference, and the effective population size:

Q(b)
Q(a)

=
μa→b

μb→a
exp(2NΔFab) + O(Nμ) . (12.45)
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3. The monomorphic population states x = 0 and x = 1 are unstable because
of mutations even at arbitrarily small values of μ, which cause occasional
transitions of the entire population from genotype a to b, and vice versa.
These so-called substitutions are marked by dashed lines in Fig. 12.6c. The
substitution rate ua→b can be evaluated as the product of creating a single
mutant of genotype b in an initially monomorphic a population, Nμa→b,
and its probability of fixation, φ(x0 = 1/N, ΔFab, N). The time between
initial mutation and fixation (shown by grey shading in Fig. 12.6c) is still
of order τs and thus much shorter than the time scale 1/μ, on which
mutation effects become important. Hence, the fixation probability φ is
given to leading order by (12.38), which has been derived for μ = 0.
Together, we have [28,30]

ua→b = Nμa→b
1 − exp(−2ΔFab)

1 − exp(−2NΔFab)
. (12.46)

Hence, the substitution rate ua→b is enhanced over μa→b for ΔFab > 0
and suppressed for ΔFab < 0, as shown in Fig. 12.7. For weak selection
(N |ΔFab| � 1), (12.46) becomes

ua→b = μa→b(1 + NΔFab + · · · ) . (12.47)

This reproduces Kimura’s famous original result: for neutral evolution, the
substitution rate equals the mutation rate in an individual, independently
of the population size. For this reason, the rates μa→b are referred to as
neutral mutation rates. For strong selection (N |ΔFab| � 1 � |ΔFab|),
(12.46) takes the asymptotic forms

−2 −1 1

1

2

3

4

2
N ΔF

u / μ

Fig. 12.7. Substitution rate in a population versus mutation rate in an individual.
The ratio of these rates, ua→b/μa→b, depends on the product NΔFab of effective
population size and fitness difference between the genotypes (in the relevant regime
N  1, ΔFab � 1, NΔFab finite). The substitution rate ua→b is equal to μab for
neutral mutations (ΔFab = 0), reduced for deleterious mutations (ΔFab < 0), and
enhanced for advantageous mutations (ΔFab > 0)
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ua→b = μa→b

{
2N |ΔFab| exp(2NΔFab) (2NΔFab � 1),
2NΔFab (2NΔFab � 1). (12.48)

The backward substitution rate ub→a is given by a formula similar to
(12.46) with ΔFba = −ΔFab. Forward and backward substitution rate
have the simple ratio

ua→b

ub→a
=

μa→b

μb→a
exp(2NΔFab) (12.49)

for N � 1. Comparing with (12.45), we obtain the consistency condition

ua→b

ub→a
=

Q(b)
Q(a)

. (12.50)

Hence, for sufficiently small mutation rates (μN log N � 1), a simple picture
emerges. The evolution of a population can be described as a sequence of
transitions between monomorphic genotype states (substitutions). The substi-
tution rate u is determined by the corresponding mutation rate in an individ-
ual, the fitness difference between the genotypes, and the effective population
size.

12.4.5 Neutral Dynamics in Sequence Space, Sequence Entropy

This evolutionary picture can be generalized to multiple genotypes, for
example, the 4
-dimensional sequence space of genomic loci a = (a1, . . . , a
).
Transitions between different sequence states are point mutations a → b,
which change exactly one nucleotide. (We neglect here insertion and deletion
processes, which change the length of the sequence). We first discuss neutral
evolution, where the substitution rate ua→b equals the mutation rate in an
individual, μa→b, for all elementary transitions a → b. Bona fide neutral
mutation rates can be inferred from DNA sequence alignments of sufficiently
close species, recent insights have also come from studying repeat elements.

We assume that the neutral dynamics has an equilibrium distribution
P0(a), which obeys detailed balance, i.e., the relation

μa→b

μb→a
=

P0(b)
P0(a)

(12.51)

holds for each pair of sequence states linked by an elementary transition
process a → b. This says that the probability current at equilibrium,
μa→bP0(a) − μb→aP0(b), vanishes for each elementary transition. Clearly,
any distribution P0(a) satisfying the conditions (12.51) is stationary under
the dynamics with rates μa→b, but not every such dynamics has a stationary
distribution, which satisfies (12.51) (the simplest counterexample involving
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three states and a circular probability current a → b → c at stationarity).
However, as will be verified below, detailed balance is a good approximation
for the genomic substitution dynamics at least in prokaryotes. (There are
known violations at CpG islands in eukaryotes [34]). In the simplest type of
models, every nucleotide a mutates independently of all other positions with
uniform rates μa→b (i.e., μa→b = μa→b for any two sequences a = (. . . , a, . . . )
and b = (. . . , b, . . . ) differing by exactly one nucleotide). This produces a
factorized equilibrium distribution P0(a) of the form (12.12).

We can project the equilibrium distribution onto a measurable quantity
as independent variable. For binding site sequences, a convenient choice is the
binding energy E, and the projected distribution P0(E) has the form (12.13).
Hence, we can define the sequence entropy [35]

S0(E) = log P0(E) , (12.52)

which counts the log density of sequence states a at energy E, weighted by
the distribution P0(a).

12.4.6 Dynamics Under Selection, the Score-Fitness Relation

The dynamics of substitutions can be studied in the same way for evolu-
tion under selection, which is specified at the level of genotypes by an arbi-
trary fitness function F (a) [17, 36]. This generalizes the results of [37] for a
model with selection acting independently at different nucleotide positions,
i.e., F (a) =

∑

i=1 fi(ai). For each elementary transition a → b, the substitu-

tion rate ua→b is determined by the neutral rate μa→b, the fitness difference
ΔFab, and the effective population size N according to (12.46). Given the
detailed balance (12.51) of neutral evolution and the relation (12.49) between
forward and backward rates, it then follows immediately that the evolutionary
dynamics under selection also obeys detailed balance, as given by (12.50) with
an equilibrium distribution Q(a) of the form (12.45). Thus, we have [17,36]:

The equilibrium distribution Q(a) of fixed genotypes generated by a substi-
tution dynamics (12.46) with fitness function F (a) is related to its neutral
counterpart P0(a) by

Q(a) = P0(a) exp[2NF (a) + const.] , (12.53)

with the constant given by normalization.

We can project (12.53) onto the fitness as independent variable. Defin-
ing the distribution Q(F ) ≡ ∑

a Q(a)δ(F (a) − F ), similarly P0(F ), and the
sequence entropy S0(F ) ≡ log P0(F ), the projected identity takes the form

Q(F ) = exp[2NF + S0(F ) + const.] (12.54)
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For binding site sequences, we have a similar projection on the binding energy,
Q(E) = exp[2NF (E)+S0(E)+const.], since all genotypes with the same“phe-
notype” E have the same fitness, i.e., the same score S. The projected iden-
tities express the equilibrium distribution under selection in terms of fitness
and sequence entropy, reflecting the balance between stochasticity (genetic
drift) and selection [17]. For strong selection, the exponent 2NF −S0 is dom-
inated by the fitness term, and Q(F ) takes appreciable values only at points
of near-maximal fitness, i.e., where Fmax −F <∼ 1/2N . For moderate selection,
there is a nontrivial balance between both terms, and for weak selection, the
Q distribution can be approximated by its neutral counterpart P0 = exp(S0).
Clearly, the roles of fitness and sequence entropy are formally analogous to
those of energy and entropy in statistical physics of thermodynamic systems,
if 2N is identified with the inverse temperature 1/kBT . Some consequences of
this analogy are discussed in [38].

The dynamics of substitutions establishes a rather general evolutionary
grounding of genome statistics, if we identify the equilibrium distributions
P0(a) and Q(a) with the genomic distributions discussed in Sect. 12.3 as
already anticipated by our notation. Comparing (12.53) and (12.14) gives
a relation between fitness and score [15,17]:

The log-likelihood score S(a) = log[Q(a)/P0(a)] equals the fitness function
multiplied by twice the effective population size up to a constant,

S(a) = 2NF (a) + const. . (12.55)

This relation allows us to use sequence data of a given genome to infer
quantitative patterns of its evolution. We now discuss specific consequences
for the evolution of regulatory DNA; an application to protein evolution can
be found in [37].

12.4.7 Measuring Selection for Binding Sites

We first give a precise definition of functionality for regulatory (and other)
elements: A binding locus is functional if the genotype at that locus is under
selection (for binding of the corresponding factor). Nonfunctional loci have
evolutionarily neutral genotypes. This definition asks whether binding at a
given locus makes a difference to the organism or not. It is weaker than that
of a functional binding site, which is a functional locus with a sequence a that
is likely to actually bind the factor. A functional locus can lose its binding
sequence because of deleterious mutations, leading to suboptimal fitness of the
organism. Conversely, a nonfunctional locus can have by chance a sequence,
which does bind the factor: this is a spurious binding site without consequences
for the organism.

To measure the selection on functional sites in silico, we apply the identity
(12.55) to the genomic distributions P0(a) and Q(a). (Assuming equilibrium
for most loci seems to be justified for our example of CRP binding sites
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in E. coli since we find very similar distributions in the distant bacterial species
Salmonella typhimurium, and the factor protein itself is highly conserved
between these species.) After projection onto the energy, the fitness landscape
2NF (E) for CRP binding sites is thus given by Fig. 12.4b [15]. The fitness is
constant in the no-binding region (E >∼Es ≈ 13) since the evolution is always
neutral in that region. This constant is set to 0 in our normalization, i.e., F (E)
measures the fitness gain of functional sites due to factor binding. Loci with
strong binding are also under strong selection, with effective fitness values
2NF of order 10. Genetic drift counteracts selection, producing also loci with
weaker binding and reduced effective fitness. This fitness “landscape” is thus
qualitatively of the form predicted from the underlying biophysics [17,24]. Of
course, it should be kept in mind that this landscape results from averag-
ing over a family of binding sites, which may have a spectrum of individual
selection coefficients and selected binding strengths.

12.4.8 Nucleotide Frequency Correlations

A further consequence of (12.54) is the generic occurrence of nucleotide fre-
quency correlations within functional loci [17]. If the fitness function F (a) is
not additive in the nucleotide positions, nucleotide frequencies are correlated
in selected genotypes even if they are independent under neutral evolution.
This happens quite generically since selection acts on the entire genotype
a as a functional unit and not on its single nucleotides. For binding sites,
fitness effects follow from the expression level of the regulated gene, which
depends on the sequence a via the binding probability of the corresponding
transcription factor. While the binding energy is often approximately additive
in the nucleotide positions as given by (12.1), the binding probability (12.10)
is a strongly nonlinear function of the energy. This introduces correlations
between nucleotide frequencies at any two positions within functional loci,
preventing factorization of the distribution Q(a).

12.4.9 Stationary Evolution of Binding Sites

Functional loci with a substantial level of selection (as found for the CRP bind-
ing sites in E. coli) evolve in a way quite different from background sequence.
This is quantified in Fig. 12.8a, which shows pairs of binding energies (E1, E2)
for experimentally verified CRP binding sites in E. coli and the corresponding
sites regulating orthologous genes in S. typhimurium [15,26]. The evolutionary
distance t between the two species and characteristics of the neutral muta-
tion process can be inferred from alignments of background sequence. The
“phenotypic” evolution of CRP binding is quantified by the energy transition
probabilities G0(E2|E1) under neutral evolution and Gf (E2|E1) under station-
ary selection [15]. These are readily obtained by simulating the substitution
dynamics over a time interval t for given initial value E1, both with neutral
rates μa→b and with rates ua→b given by (12.46) and the fitness function
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Fig. 12.8. Evolution of binding sites. (a) Binding energy pairs (E1, E2) for 32 exper-
imentally verified CRP binding sites in E. coli from the DPInteract database [39] and
their aligned orthologs in S. typhimurium (dots). Conditional expectation value for
the binding energy in S. typhimurium under neutral evolution, 〈G0(E2|E1)〉 (dashed
line), and under selection, 〈Gf (E2|E1)〉 (solid line). (b) Distribution of energy pair
counts Wdat(E1, E2) (filled contours), compared to the distribution W (E1, E2) given
by the Bayesian model (12.59). The symmetry of these distributions under ex-
change of E1 and E2 reflects detailed balance of the substitution dynamics (adapted
from [15,40])

2NF (E) measured in E. coli. The resulting conditional expectation values
〈G0(E2|E1)〉 and 〈Gf (E2|E1)〉 for the binding energy in S. typhimurium are
also shown in Fig. 12.8a. The data conform to the selection model, showing a
substantially stronger conservation of binding energy than expected for neu-
tral evolution [15,26,40].

We can now build a probabilistic model for cross-species comparisons [15].
It is based on the joint distributions of energy pairs

P0(E1, E2) = G0(E2|E1)P0(E1) (12.56)

under neutral evolution and

Q(E1, E2) = Gf (E2|E1)Q(E1) (12.57)

under stationary selection, which are determined by the corresponding distrib-
utions in one species and the energy transition probabilities. Detailed balance
of the substitution dynamics implies

P0(E2)
P0(E1)

=
G0(E2|E1)
G0(E1|E2)

and
Q(E2)
Q(E1)

=
Gf (E2|E1)
Gf (E1|E2)

, (12.58)

i.e., the joint distributions P0(E1, E2) and Q(E1, E2) must be symmetric
functions of their arguments. These distributions combine into a model for
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pairs of aligned loci, which generalizes the single-species model (12.22) and
takes the form

W (E1, E2) = (1 − λ)P0(E1, E2) + λQ(E1, E2) . (12.59)

(This model can be extended further to include nonstationary selection.) The
distribution W (E1, E2) with a fraction of functionality λ = 0.0018 is in excel-
lent agreement with the count distribution Wdat(E1, E2) obtained from E. coli
and S. typhimurium, as shown in Fig. 12.8b. The symmetry of Wdat thus cor-
roborates the underlying assumption of detailed balance. Analogous Bayesian
models can be defined for more than two species related by a phylogeny. This
approach has been applied to binding site prediction in bacteria [15]; a related
study of several species of fungi has been reported in [41].

12.4.10 Adaptive Evolution of Binding Sites

What does this picture say about the adaptive evolution of transcriptional
regulation in response to a newly arising selection pressure? The evolution
from a genotype with marginal binding (E(a) ≈ Es) to strong binding requires
only about three uphill point mutations in the fitness landscape of Fig. 12.4b,
i.e., there is an effective fitness gain 2NΔF ≈ 3 per mutation. Hence, accord-
ing to (12.48), the rate of uphill substitutions per locus is enhanced by a factor
2NΔF · d(a,a∗) at least of order 10 over the neutral point mutation rate per
nucleotide. At the same time, the downhill rate is strongly suppressed. This
shows that the adaptive formation of a binding site from background sequence
can indeed be a rapid mode of regulatory evolution, because of the substantial
level of selection [17].

However, this mode is only efficient if adaptation can set in immediately
after the selection pressure is established. In larger regulatory regions, the
exact position of a binding site is often not important. We assume that the
initial genome contains a set of L̃ shadow sites, i.e., positions r1, . . . , rL̃ where
a given sequence a would have the same regulatory effect. If one of these
shadow sites has already a genotype with marginal binding, it acts as a “seed”
for the onset of adaptation [42]. On the other hand, if all shadow sites of the
initial genome have energy E > Es, there is typically a substantial waiting
time of neutral evolution before one of them reaches the threshold energy
Es. Assuming the initial genome to be entirely background sequence, it will
contain at least one such seed if

∫
E<Es

P0(E)dE >∼ 1/L̃, which is a joint con-
dition on L̃ and the site length �: the shadow regulatory region must be long
enough and binding sites must be short enough. The example shows that the
evolvability of regulation imposes constraints on genome architecture [17].

12.5 Toward a Dynamical Picture of the Genome

The relationship S = 2NF +const. between score and fitness is a cornerstone
of the theoretical picture developed so far, which links its population genetic,
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bioinformatic, and biophysical arches. It relates a key evolutionary variable
with the statistics of genomic frequency counts. The physical binding energy is
an appropriate phenotypic variable on which fitness and score depend, because
molecular function is determined by binding interactions.

We have discussed this picture for transcription factor binding sites, but it
can be applied more generally to functional elements in genomes. It relates the
statistics of these elements in one genome with their evolutionary dynamics,
which is observed in cross-species comparisons. This dynamics is shaped by
selection: The components of functional elements are coupled by a common
fitness function. Hence, functional correlations lead to evolutionary correla-
tions. These can be traced in the Q distribution over fixed genomes of a
functional element; other methods use the statistics of polymorphisms within
a population.

Thus, the picture of the genome as a system with multiple interactions has
a fundamental dynamical significance. This is important since it allows us to
trace functional modules from evolutionary patterns. We conclude the chapter
with a brief outlook on various levels of functional integration for regulatory
sequences.

12.5.1 Evolutionary Interactions Between Sites

Regulatory function is often determined not by single binding sites, but jointly
by a group of sites in the same regulatory region [43]. An important mechanism
is binding cooperativity, i.e., the formation of a protein complex between two
(or more) factors bound to their corresponding DNA sites. The binding energy
of this complex has the form E = E1 + E2 + ΔE12, where E1 and E2 are the
energies of the factors bound individually and ΔE12 < 0 is the energy gain
because of the protein–protein interaction, which is of the order of a few kBT .
Cooperative binding has a number of functional effects [1]:

1. It increases the signal-to-noise ratio for the targeting of regulatory input
to a specific gene, which is important in larger eukaryotic genomes, where
single spurious binding sites are abundant in background sequence.

2. It sharpens the response of the binding probability to variations in the
factor concentrations around their threshold value. This follows from the
thermodynamics of two factors, which is a straightforward generalization
of the case of a single factor discussed in Sect. 12.2.

3. It implements logical connections between regulatory input signals to a
given gene. The simplest example is an AND connection between two
factors, where the regulated gene is affected only if both factors are
simultaneously present. This happens if the binding energies and factor
concentrations are such that individual binding is weak but joint binding
is strong. Larger groups of binding sites can encode a whole repertoire of
more complicated logical functions [44].
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Regulatory modules with several jointly acting binding sites are frequently
found in eukaryotes. The functional coupling of sites in a module translates
into interactions between these sites in their sequence evolution. The genomic
functional element, i.e., the subset of the regulatory region on which selection
acts, is the module as a whole. Its fitness F (E1, E2,ΔE12, . . . ) is a joint func-
tion of the binding energies as the relevant phenotypic variables [17, 24]. The
evolutionary dynamics under this selection allows for a large number of com-
pensatory changes, i.e., pairs of correlated substitutions changing two binding
energies such that the fitness remains constant. These lead to nucleotide fre-
quency correlations between different sites. Such compensatory changes have
indeed been observed in experiments on Drosophila promoters [45].

12.5.2 Site–Shadow Interactions

In larger regulatory regions, there is a number of shadow sites where a bind-
ing sequence a would have a similar regulatory effect as at the functional sites
present. In that case, the genomic functional element contains not only the
functional binding sites but also the shadow sites. Once a functional site has
disappeared due to deleterious mutations, a shadow site can turn functional
by adaptive evolution as described in Sect. 12.4. The resulting evolutionary
dynamics leads to sequence turnover with the actual binding sites present
at different but functionally equivalent positions [36]. Substantial sequence
turnover has been observed in a number of case studies [45–50]. Also the
number of actual sites is subject to evolutionary variation since the same reg-
ulatory effect, i.e., the same fitness, can be distributed over fewer stronger or
more weaker sites. With increasing number L̃ of shadow positions, one expects
that the number of actual sites grows while individual sites get weaker [36].

12.5.3 Gene Interactions

Evolutionary interactions are not limited to regulatory elements for the same
gene. An example are gene duplications and the subsequent evolution of the
daughter genes. Selection acts jointly on this pair of genes [51], which have
initially identical functions, eventually leading to either loss of one of them
or to subfunctionalization, which has been argued to be an important mode
of genome evolution in eukaryotes [52, 53]. This process can take place by
regulation, i.e., via a correlated distribution of the regulatory elements on the
daughter genes. More generally, the evolution of genes in a regulatory network
is correlated if their functions are coupled either in series (i.e., one gene acts
on the other) or in parallel (i.e., they are part of alternative pathways for
the same function). Although some regulatory networks in model organisms –
e.g., the embryonic development in the sea urchin [54] – have been studied in
detail, we lack a coherent view of their functional evolution to date.
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12.5.4 Evolutionary Innovations

Under stationary selection, functional elements are more conserved than back-
ground sequence, and the score-fitness relation quantifies the amount of con-
servation. But evolution is, of course, not limited to conservation. On one
hand, there is typically a multitude of different genotypes yielding the same
molecular function, and the evolutionary dynamics continuously plays with
these alternatives. On the other hand, organisms face long-term changes of
their environment, which lead to new selection pressures and a response by
adaptive evolution of new functions. If regulation is to account for a large part
of the diversification in higher eukaryotes, loss or gain of regulatory function
should be an important mode of molecular evolution. Changes in regulatory
DNA leading to new functions of gene networks have been observed [55], and
it is possible to extend the statistical models described in Sect. 12.4 to include
evolutionary gain or loss of function of individual binding sites [15]. On a
broader scale, understanding the molecular basis of evolutionary innovations
is a major challenge for theory and experiment in the coming years. It will
profoundly change our dynamical view of the genome.
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Drift and Selection
in Evolving Interacting Systems

T. Ohta

There are various levels of interacting networks, within a protein or nucleic
acid molecule, among proteins and nucleic acids, and genetic regulatory net-
works. At all these levels, interacting systems are dynamically evolving and
repeated appearance of modular structures is noted. These modular structures
repeatedly appear at different levels from proteins to genetic regulatory net-
works. Evolution of primary structure of proteins and nucleic acids depends
on all these systems. For the evolution of such interacting systems, both drift
and selection play important roles. Therefore, the near neutrality holds. The
nearly neutral theory argues that slightly deleterious mutant substitutions
disturb such systems mildly and occur by drift. Compensatory mutant substi-
tutions are expected to follow. Drift and selection often become inseparable,
such that formation and maintenance of networks depends on the interac-
tion of drift and selection. By considering the effects of drift and selection on
evolution of genetic regulatory elements that determine gene expression, the
nearly neutral theory may be extended to morphological evolution, because
organismal development is mainly controlled by regulation of gene expression.

It is now evident that random genetic drift is a main force of evolution of
the primary structure of DNA and proteins. However, genetic information is
steadily inherited, and for this, natural selection is responsible for the mainte-
nance. Also genes and gene regulations (regulation systems) are dynamically
evolving so that they are promptly responsive to environmental changes.
Positive selection works in such occasions. The most interesting issue for
me is how drift and selection interact each other. It is related to evolution
of highly complex interaction systems at various levels. In this chapter, in
connection to the nearly neutral theory, series of ideas and hypotheses are
reviewed.
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13.1 Hierarchy of Networks

The most fundamental network is within a protein or nucleic acid folding.
To properly fold for functional proteins or RNA molecules, there are certain
requirements on amino acid or RNA sequences. For example, Bastolla et al. [1]
investigated this problem and estimated that the average fraction of “neutral
connectivity” for myoglobin fold is about 0.6. In other words, the fraction, 0.4,
of all amino acid substitutions results in disruption of the fold. This fraction
is not constant but varies according to amino acid sequences [1].

The neutral connectivity is an advanced version of the neutral space [2,3],
and is directly related to the rate of protein evolution. More than three decades
ago, Dickerson [4] presented very clearly the relationship between the rate of
evolution and structural constraint of proteins. He compared the evolutionary
rates among fibrinopeptides A and B, globins, cytochrome c, and histone IV,
and concluded that the more rigid the specifications for the protein, the slower
is the accumulation of amino acid changes.

The next level of network is physical interaction among proteins and
nucleic acids. In fact, various studies are being done on proteomes. Such
interactions would impose constraints on amino acid or nucleic acid sequence
changes. Fraser et al. [5] examined the correlation between the number of int-
eractions and evolutionary rate of proteins, and found a significant negative
correlation between the two. In other words, proteins with more interactions
evolve slowly, in agreement with the prediction on constraints coming from
“among-proteins”interactions, i.e., proteins that interact with many other pro-
teins evolve slowly as compared with those with less interaction. However, it
is noted that the Pearson’s rank correlation (r = −0.24, with P = 0.002) is
not high. This is thought to reflect interactions at other levels, such as protein
folding mentioned before.

The most interesting network for evolutionary biologists is the genetic
regulatory network. This is because gene regulation is fundamental to organ-
ismal development and therefore to evolution of form and shape of organisms.
An interesting finding is the “turnover” of regulatory elements of transcrip-
tion factor genes. The expression pattern of the gene, even-skipped, is fine
tuned at a larval stage of Drosophila melanogaster. This pattern has been
conserved among Drosophila species examined [6]. Nevertheless, an enhancer
element that locates upstream of the coding region is turning over. Ludwig
et al. [7] constructed a chimera of the element between D. melanogaster and
D. pseudoobscura, and found that the function of the chimeric enhancer is not
quite normal even if the two native ones work perfectly in D. melanogaster.
From this finding, they suggested that the stabilizing selection is operating
on the expression pattern. In other words, slightly deleterious mutations that
mildly disturb the pattern are followed by compensatory mutant substitutions.
Here, drift and selection interact for such a turnover process.

At all these levels of interactions, there exist repetitive structures. It is well
known that proteins often consist of domains, which are made from modules.
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Proteins owe their structures and functions to compact assembly of modules.
At the“among-protein interaction level,” again characteristic repetitive motifs
are found such that motif constituents are conserved in “among-protein inter-
action networks” [8, 9] (see also the collection of papers in [10]).

Enhancers of genes often form modular structures [11]. The modular struc-
ture must be useful for evolution of new regulatory networks via cooption of
gene expression [6, 11]. Once a new network becomes useful for the organ-
isms, it will be fixed and established in evolution. Repetitive structures are
also found in genetic regulatory networks themselves. Some structures, often
called motifs, repeatedly appear in development and evolution, such that many
combinations of transcription factors and their target genes occur much more
frequently than random expectation [10,12]. Interaction of drift and selection
is related to the formation and maintenance of all these interaction systems.

13.2 Drift and Selection, a Historical Perspective

The late 1960s were a remarkable time for the emergence of the field of mole-
cular evolution. At that time, biochemical data were beginning to accumulate
and they needed to be looked at from the point of view of evolution. Motoo
Kimura was looking for data that he could connect with population genet-
ics theory. The relevant raw data that were available pertained amino acid
sequences. Zuckerkandl and Pauling [13] compared amino acid sequences of
hemoglobin α and cytochrome c among several mammals and discovered the
molecular clock that was totally unexpected to evolutionary biologists at that
time.

It was Kimura [14] who first paid attention to the number of mutant
substitutions per generation in a whole genome. His interest came from the
concept of the genetic load, particularly the load due to advantageous mutant
substitutions [15]. The load is called the cost of natural selection. Haldane [15]
estimated the amount of genetic death needed for an advantageous mutation
to be fixed in the population, and argued that the number of advantageous
mutant substitutions in a whole genome would be one in 300 generations.
This is because too much genetic death would cause extinction of the species.
Kimura extrapolated from the number of mutant substitutions per protein
locus to the same number per total genome, and obtained one nucleotide
substitution per two years in mammalian lineage. He argued that this figure
was much too large as compared to the Haldane’s estimate. This led him to
propose the neutral theory of molecular evolution.

In the next year, King and Jukes [16] published the article under the title,
“Non-Darwinian Evolution,” where they argued that most mammalian DNA
does not code for proteins and the load argument was not appropriate. In
the same year, Kimura [17] published another article where he argued that
the molecular clock was a strong evidence for the neutral theory. He further
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predicted that genes in living fossils might be expected to have changed by
the same amount as corresponding genes in more ordinary species.

During the 1970s, electrophoresis was used to measure protein polymor-
phisms. A most notable observation was a narrow range of heterozygosity
among various species. Lewontin [18] observed that the heterozygosity among
diverse species ranged from 5.6% in the house mouse to 18.4% in the fly,
Drosophila willistoni. He argued that such a small range of heterozygosity
could not be explained by the neutral theory and was strong evidence against
the theory.

Almost ever since the neutral theory was proposed, I have had several
questions about the theory. The first one was whether or not natural selec-
tion was so simple as to distinguish neutral mutations from selected ones. It
seemed to me that there might be numerous mutations whose effects were
so small that both random drift and selection influenced their behavior. The
second question was concerned with the molecular clock: the clock looked as
if it depended on chronological time rather than on generation number. This
was contrary to the belief that generation length provided the appropriate
time scale over which mutation rate should be measured. The third question
concerned with narrow range of heterozygosity in many species as measured
by electrophoresis. Remember that, under the neutral theory, the heterozy-
gosity should depend on the population size, since neutral mutations may
accumulate indefinitely in large populations.

I had been much puzzled by these three questions and realized that by
bringing very slightly deleterious mutations into the neutral theory, these
puzzles could be explained. The slightly deleterious mutation theory was first
published in [19], and then in [20]. Later, it has been named the nearly neutral
theory.

13.3 Molecular Clock and Near-Neutrality

Evolutionary rate of primary structure of proteins and RNAs, such as riboso-
mal and transfer RNA, is roughly constant, a phenomenon called molecular
clock. However, it is now known that some irregularities exist in molecular
clock. It is related to the networks at all levels considered above, since they
are maintained or modified in evolution. Interactions coming from higher order
structures have the strongest effects. It is well known that histone IV is very
conservative because of the structural constraint, whereas fibrinopeptides A
and B change freely. Interactions at other levels also have significant effects,
and molecules with similar structures evolve by different rates. Examples are
functional domains of ftz and bcd, which are believed to have arisen from
those of Hox genes and are evolving much faster than the latter [21], and
different evolutionary rates among gene members belonging to the growth
hormone-prolactin family [22].
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Effect of protein interaction on evolutionary rate is seen in the following
example. The α1β2 domain contact area of hemoglobin α and β has been rel-
atively conserved in vertebrates as compared with the changes in the area of
nascent α and β genes [23]. In many cases, however, effect of protein interac-
tions may not be easily found even if they exist.

As mentioned already, genetic regulatory interactions are most interesting
for molecular evolutionary biologists. If a gene is recruited and beginning to
perform a new function, amino acid sequence of the gene product would need
some modifications. The recruitment may result in an addition of a function
to already existing ones. The gene product cannot be freely modified, and the
elevation of evolutionary rate may not be revealed.

This process is sometimes coupled with gene duplication. Since duplicated
gene copies are free to change, acceleration of amino acid substitutions is easily
noted. Lynch and Force [24] formulated a simple case of gene duplication
with differential expression. They call it “subfunctionalization” of duplicate
genes. Their interesting finding is that the probability of subfunctionalization
is higher in small populations than in large ones. This process is intrinsically
stochastic. In any case, gene duplication often accompanies acceleration of
amino acid substitution rate [25,26].

Genes that have fixed functions for a long time usually show molecular
clock. However, note that even if the functions do not change, nearly neutral
mutant substitutions are characterized by rapid evolution in small popula-
tions and by slow change in large ones [20,27,28]. Another confounding factor
is variation in mutation rate among lineages, i.e., mutation rate depends on
the number of cell generations, mutation–repair systems, and others. I have
examined the mean and the variance of amino acid substitution rates of 49
genes of three orders of mammals, primates, artiodactyls, and rodent [29].
The mean number of substitutions per site of the three branches is given
in Fig. 13.1. In the figure, the rodent branch is relatively long while the
primate branch is short, reflecting the generation time effect. However, the
pattern is not so conspicuous in nonsynonymous tree as compared with syn-
onymous tree. This is because weak selection (mostly slightly deleterious) had
stronger effect in rodent lineage than in primate lineage. Remember that the
former has had larger population size than the latter. However, when diver-
gence pattern of mouse–rat sequences is compared with that of human–mouse
or human–rat sequences, such a difference is not found [30]. Estimation of
synonymous substitution number may not be quite accurate for calculating
divergence of human–rodent sequences, and the pattern was not found. Also
mutation–repair system differs between rodent and primate [31] and causes
the discrepancy. More recently, Jorgensen et al. [32] performed a much larger-
scale analyses of mammalian sequences than earlier studies [29], and showed
the highest average ratio of nonsynonymous to synonymous substitutions in
the human lineage, followed by the pig and then the mouse lineages. So the
previous results were verified.
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Fig. 13.1. Star phylogenies of 49 genes. Figures beside each branch are the estimated
number of substitutions per site (adapted from [29])

Genome sequence data have become available, and large-scale analyses are
being carried out. Many of such analyses reveal abundance of slightly delete-
rious substitutions. Lu and Wu [33] found that synonymous substitutions on
the X chromosome of human and chimpanzee are less frequent than those on
the autosomes. Based on the consideration that genes on X are more effec-
tively selected via hemizygous males than those on autosomes, these authors
conclude the abundance of slightly deleterious synonymous changes. They fur-
ther observed that X-linked nonsynonymous substitutions are more frequent
than autosomal ones. This would suggest occurrence of recessive advanta-
geous amino acid substitutions that are weakly selected [33]. Gu et al. [34]
carried out a genome-wide comparison of the evolutionary rates between a
laboratory strain and a wild strain of Saccharomyces cerevisiae. They found
that genes in the former strain tend to evolve faster than that in the latter,
and attributed this result to the increase of drift in the laboratory strain.
Keightley et al. [35] paid attention to the conservation of noncoding regions
of mammalian genomes that are thought to be regulatory regions, and found
that hominid genomes are less conserved than rodent genomes. They argue
that this is caused by the reduction of the effectiveness of weak selection
in hominids. Hughes [36] carried out statistical analyses on polymorphisms
of coding regions of bacterial populations and showed that various statistics
indicate abundance of slightly deleterious amino acid substitutions.

The variance of the evolutionary rate is often larger than that of the simple
Poisson process and indicates some irregularities of molecular clock [37]. Such
substitution patterns are thought to reflect influences coming from various
interacting systems.
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13.4 Mutants’ Effects on Fitness

A most critical quantity on near neutrality is the fixation probability of mutant
genes in a population. Let us examine the simplest case of semidominance
with selective advantage, s. The fixation probability, u, is a monotonically
increasing function of the product of the population size N and s, Ns,

u =
1 − exp(−4Nsp)
1 − exp(−4Ns)

, (13.1)

where p is the initial frequency in the population [38]. It is clear that, when
discussing evolution by nearly neutral mutants, one has to consider all mutants
around Ns = 0. So it is important to examine the frequency distribution of
occurrence of new mutations around this point.

There have been various attempts to estimate mutants’ effects on fitness.
Recent three papers [39–41] emphasize adaptive amino acid substitutions but
present evidence that most of amino acid changes are weakly selected. Sanjuan
et al. [42] estimated the distribution of fitness effects of mutations (in terms of
single nucleotide substitution) of an RNA virus by direct measure, and found
that distribution is skewed but continuous at the neutrality point. Nielsen and
Yang [43], by using the codon-based maximum likelihood method, estimated
the distribution of selection coefficient for viral data and for mitochondrial
gene data of primates. It was found that the normal and gamma distribution
fit the data. Piganeau and Eyre-Walker [44], on the other hand, used the
McDonald–Kreitman (MK) test [45], relative numbers of nonsynonymous to
synonymous divergences within species and between closely related species for
estimating the frequency distribution. They showed that the model of constant
selection coefficient does not fit the observed pattern of polymorphism versus
between-population divergence, by analyzing mitochondrial genes of several
species. Their results indicate that partially reflected gamma distribution fits
most data sets.

It is convenient to assume that the distribution of selection coefficient for
nearly neutral mutations is normal. Let us and σ2 be the mean and the vari-
ance of the distribution. The most important factor is twice the product of
the population size N and the standard deviation of the distribution, 2Nσ.
Note that the factor 2 comes because we are considering the diploid popula-
tion. This product is analogous to 2Ns of the ordinary selection model where
s is the selection coefficient. The present model is called the fixed model of
selection coefficient [46, 47], in that the distribution is fixed irrespective of
mutant substitutions. Note that in the shift model, on the other hand, the fit-
ness distribution shifts according to the substituted mutants’ effects, since the
population shifts back to the original state after mutant substitution [2, 48].

Results of our simulation studies on the fixed model show that, when
4Nσ > 3, several advantageous mutants are quickly fixed depending upon the
starting condition and thereafter almost all new mutations are deleterious [47].
When 4Nσ is in the range, 0.2–3.0, both random drift and selection affect the
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population fitness, which reaches equilibrium among mutation, selection, and
drift. Nielsen and Yang’s analyses on viral and mitochondrial data suggest
that this value is small and nearly neutral model is applicable. Piganeau and
Eyre-Walker’s analysis indicates that the distribution is of high leptokurtosis.
Because McDonald–Kreitman test depends on segregating polymorphisms,
strongly deleterious mutants are included and may have influenced. Further-
more, bottlenecks at the speciation that is not incorporated in the analyses
may have some effects.

One should recognize that the distribution would differ depending on func-
tion and environment. Thatcher at al. [49] attempted to measure fitness effects
of nonessential genes in yeast. Competition experiment of disruption strains
against wild type was performed, and it was found that the distribution
of selection coefficient is continuous, from almost no effect to considerable
decrease. It was also noted that some disruption strains showed marginal
fitness effect, whereas fitness of others depends on environments. In other
words, they are contingent. Remold and Lenski [50] examined the effects on
fitness of 18 insertion mutations of E. coli, in five different genetic backgrounds
(two genomes isolated from different populations evolved on glucose, two
genomes from different populations evolved on maltose, and their common
ancestral genome), and in two different environments (glucose and maltose
environments). They found that half the mutations had no effects of genetic
backgrounds and of environments. The remaining half had some effects of
genetic backgrounds and/or of environments. One-third had the effects of
genetic backgrounds in an environment-dependent way. One-sixth of muta-
tions had different effects in different genetic backgrounds in an environment-
independent way. They conclude that fitness effects of many mutations depend
on both genetic backgrounds and environments.

As for mitochondrial genes, their functions belong to the housekeeping
type, and most of them have been fixed long time ago. In terms of the long
term selection effects in evolution, the distribution of fitness effect would be
narrow with mean at highly negative side as compared with genes of contin-
gent function. For genes that are more responsive to environmental factors,
the fitness distribution would be of more flat shape. This is because mutants’
effects of contingent types such as those of gene regulation and signal trans-
duction, the mutants would act on phenotypes and morphological characters
that are targets of natural selection.

How does environment affect the fitness distribution, particularly in rela-
tion to simple versus diverse environments? Let us consider the influence of a
bottleneck on the distribution of effects on fitness. When the population size
is small and the population occupies a simple environment, the variance of the
distribution would be large as compared with the value of a large population
occupying diverse environment. This is because the fitness effect is averaged
over many environmental conditions for diverse environment [27]. On the other
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Fig. 13.2. Schematic diagram showing the frequency distribution of the fitness
effects of new mutations. Curve A is for a large population that occupies a hetero-
geneous environment, and curve B is for a small population that occupies a simple
environment (adapted from [27])

hand, the mean of the distribution would be unaltered. Figure 13.2 shows the
comparison of the distribution in a simple environment with that in a diverse
environment.

The situation may be compared with the case of artificial selection. Innan
and Kim [51] showed that artificial selection differs from natural selection
such that beneficial alleles may be fairly common in the founding population,
resulting in fewer hitchhiking effects. As pointed out by the authors, even in
nature, for isolated small populations, environmental simplicity together with
bottleneck effects may provide similar conditions as observed in the artificially
selected lines.

The most responsive class of mutations to environmental factors is the one
that changes gene expression. In many genes, regulation of their expression
is controlled by the interaction between transcription factors and regulatory
elements. As presented before, the turnover of a regulatory element of a tran-
scription factor gene of D. melanogaster is governed by stabilizing selection
for keeping the pattern [7], i.e., slightly deleterious mutant substitutions are
followed by compensatory ones, and the nearly neutral theory is applicable.
The distribution of mutants’ effects at regulatory elements would have larger
variance than that of amino acid changes.

As already argued, the fitness distribution of mutants’ effects is narrow
with deep negative peak for mitochondrial genes that have had fixed functions
for a long period of time. This is because the past selection had brought
the system to a well-adapted state. On the other hand, the distribution of
relatively new genes like hormones is flat and the mean may be close to
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zero [52]. The distribution is also flat for regulatory elements that are be-
ing coopted. Population size effect that reflects environmental diversity is
significant in providing opportunities of finding out favorable combinations of
cooptions.

Lynch and Cornery [53] proposed that genome complexity has increased
in eukaryotes because of its small population size as compared to prokaryotes.
In other words, drift enabled various nonadaptive processes to occur and thus
provided novel substrates for evolution. In terms of distribution of mutants’
effects on fitness, many of such nonadaptive processes are of a contingent
type, and transition from nonadaptive to adaptive ones would be dependent
on genetic as well as on environmental factors.

13.5 Evolution of Form and Shape: Cooption

Organismal development is controlled by spatial and temporal regulation of
gene expression. Evolutionary processes of new forms and shapes are accom-
plished by cooption or recruitment of genes expressed. It is a process of forming
a new regulatory network. It appears that associations of enhancer and tran-
scription factor involve loose interactions among available transcription factors
and their binding sites. New recognition sites are being created by random mu-
tations. According to Hahn et al. [54], spurious transcription binding sites are
very weakly selected against Ns ≈ 0.1. Hence they are almost neutral and
spread in populations by random drift. While drifting in populations, certain
favorable combinations of binding sites would appear and cooption would take
place.

Let us consider this process in a little more detail. In analogy with ordinary
mutant substitutions, cooption would consist of an occurrence of a favorable or
at least nondeleterious gene expression in one genome (phase 1) and increase
of the frequency of this locus in the population (phase 2). The question is
under what conditions does this rapid change in cooption occur? In other
words, which are among a subdivided large population as in Wright’s shifting
balance theory, a small population as in the nearly neutral model, and a large
population as in Fisher’s model, gives the best condition for rapid evolution?

Wray et al. [55] review various aspects on transcriptional regulations in
eukaryotes, and summarize the studies on correlation between gene expression
and anatomy: induced mutations, comparison of expressions, and quantitative
genetics. Through such investigations, it is now clear that gene expression is
highly polymorphic in natural populations, and many important phenotypic
variations may be attributed to such polymorphisms of gene expression. It is
also possible that variations coming from gene regulation are mostly quan-
titative. Furthermore, activities of transcription factors are redundant with
overlapping functions, i.e., more than one coexisting transcription factors may
recognize the identical binding site [55]. Therefore, quantitative regulation of
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gene expression must be dependent on complicated networks among transcrip-
tion factor-binding site interplay. Such a network should be robust, and with
high variability of expression level at each locus.

In fact, the phases 1 and 2 become inseparable. Consider the situation
where many newly arisen enhancers are drifting in a population. Transcription
factors often interact synergistically with other transcription factors, and
cooption takes place if two nearby recognition sites are available. Accord-
ing to [6], the average cell contains roughly 60 different transcription factors
in case of yeast. They estimate that three recognition sites of six base pairs
exist in every 200 base pairs if 60 transcription factors recognize 60 different
sequences of six base pairs. This abundance of recognition sites implies that
two nearby sites for two kinds of transcription factors are readily available,
and many genes are expressed awaiting cooption. It is also remembered that
not all new binding sites are functional, since expression of near-by genes is
context dependent such as chromatin structure and the relationship with other
binding sites [55].

Some of such new enhancers increase their frequencies by drift, and coop-
tion would start with them. There must be numerous trial and errors before
real cooption takes place. It means reformation of self-organizing regulatory
networks different from the previous one. It would be likely that frequency of
a new enhancer is high or fixed in a population via random drift before coop-
tion. Then the phase 1 of cooption may be different from the case of amino
acid substitutions. If a transcription factor were newly expressed, it would
alter the downstream pathway of gene expression. Since gene transcription
is redundant and an element of complex network, the fitness effect of a new
binding site would be positive or negative depending much on genetic as well
as on outside factors. So the selection coefficient of new gene expression would
be more responsive to environment than amino acid changes. The mean of the
distribution of selection coefficient is close to zero, and the variance is larger
than the case of amino acid substitutions.

For amino acid changes of mitochondria, the value of 2Nσ is estimated
around one [43]. For a new enhancer, this value would be larger, and numerous
nearly neutral variations are expected that are slightly deleterious as well as
slightly advantageous. In fact, it has been reported that regulatory elements
are characterized by very high polymorphisms [56].

According to Davidson [11], evolution of genetic regulatory network is
characterized by“bottom-up”evolution of genetic regulatory network pattern.
In this process, a set of terminally expressed (battery) genes may be kept
during evolution, however the regulatory network changes and becomes more
complex by cooption of additional transcription factors. Such modification of
network enables differential expression of genes in space and time of developing
organisms with more complicated forms than their ancestor.

Now consider effects of genetic background and environmental factors on
the fitness distribution for new enhancers. Wilkins [57] reviewed changing pat-
terns of mutants’ effects on gene expression depending on genetic, as well as
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environmental conditions. Genetic background effects come from variations
in interacting pathways and networks. Any mutations at a gene participat-
ing in a pathway may influence other genes in this pathway because of their
connection through pathway (see [57, pp. 356–360]). Mutants’ expression also
depends on environmental factors such as temperature. It is well known that,
in heterozygotes of Hsp90 mutations, monstrous character appears only at
high temperature [58]. Therefore, as argued before, the variance of the dis-
tribution is smaller for diverse environment than for plain environment (see
Fig. 13.2). The difference between curve A and curve B would be larger for
regulatory mutations than for amino acid changes, since the former is more
responsive to environment.

So it is likely that most cooption processes are nonadaptive, nearly neutral
spreading, and it is expected that rapid cooption occurs in small populations in
simple environment. However, at some rare occasions, advantageous spreading
of new expression pattern would take place. It may be that, after a series of
cooptions, another new gene recruitment becomes truly advantageous as in
the Fisher model, filling a gap of an interaction network. It is also possible
that two or more new enhancers taking place in different geographic regions
of a species meet to acquire a new useful interaction network in a subdivided
population as in the Wright model. In terms of sheer numbers, however, nearly
neutral spreading of new enhancers is thought to be most prevalent.

The process may be compared with the stepwise increase of fitness of
replicating RNA population. Schuster [59] reviews on RNA evolution, and
points out that stepwise increase of fitness is compatible with the neutral
or nearly neutral theory. The phenotype of RNA is considered to depend on
secondary structure, and the formation of secondary structure occurs in a
stepwise pattern. In other words, some neutral and nearly neutral variations
that are silent accumulated before a better secondary structure is formed.
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14

Adaptation in Simple
and Complex Fitness Landscapes

K. Jain and J. Krug

The notion that evolution can be viewed as a hill-climbing process in an adap-
tive landscape was introduced in 1932 by Wright [1], and remains one of the
most powerful images in evolutionary biology [2]. Since the discovery of the
molecular structure of genes, it has been clear that the substrate over which
the adaptive landscape should be properly defined is the space of genetic
sequences [3]. Nevertheless, apart from a few landmark papers [4, 5], adap-
tation has not been in the focus of the theory of molecular evolution, which
instead has concentrated on the effects of stochastic drift in a neutral (flat)
fitness landscape [6]. This situation is presently changing [7, 8]. Long-term
evolution experiments on microbial populations [9] are beginning to produce
a wealth of data, on the phenotypic as well as on the genotypic level, which
make it meaningful to ask precise questions about the timing and size of adap-
tive events, and what they can tell us about the structure of the underlying
adaptive landscape.

In this chapter, we introduce a class of sequence-based models of adapta-
tion, which have been the subject of much recent interest in theoretical pop-
ulation genetics as well as in biologically inspired statistical physics. These
models describe the behavior of a population of haploid, asexual individu-
als, each characterized by a genetic sequence of fixed length, in an adaptive
landscape, which assigns a fitness value to each genotype. The population is
exposed to the competing influences of mutations, which tend to increase the
genetic variability, and selection, which focuses the population in regions of
high fitness. The dynamics is deterministic, which implies that the genetic drift
induced by the stochastic sampling noise in finite populations is neglected, and
the adaptive landscape is generally taken to be time-independent. In view of
the vastness of the field, the selection of topics is unavoidably biased by the
interests and preferences of the authors. For a more comprehensive coverage
we refer the reader to several recent review articles [10–14].

The chapter is organized as follows. In Sect. 14.1 the key concepts and their
mathematical representation are introduced, and several types of mutation–
selection dynamics are described, leaving the form of the adaptive landscape
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unspecified. In Sect. 14.2, we consider simple fitness landscape comprising a
single adaptive peak or possibly two competing peaks. Here the central theme
is the error threshold phenomenon, which refers to the sudden delocaliza-
tion of the population from the fitness peak as the mutation rate increases
beyond a critical value. As is described in this book in the chapter by Ester
Lázaro, the error threshold and the related concept of a quasispecies play an
important role in the population dynamics of RNA viruses and in the develop-
ment of antiviral strategies. Because of its similarity to a phase transition, the
error threshold has been thoroughly analyzed using a range of methods from
statistical physics. We give an elementary derivation of the critical mutation
rate, and describe several modifications of the basic model, including fitness
peaks with a variable amount of epistasis, diploid populations, semiconserva-
tive replication, and time-dependent landscapes.

Section 14.3 is devoted to complex fitness landscapes consisting of many
peaks and valleys. Such landscapes can be modeled by ensembles of random
functions, which links this subject to the statistical physics of disordered sys-
tems. Whereas so far the discussion has been restricted to static or steady-
state properties, time-dependent aspects of mutation–selection dynamics are
discussed in Sect. 14.4. Finally, experimental realizations (in vitro as well as in
vivo) of the models are described in Sect. 14.5, and some concluding remarks
are presented in Sect. 14.6.

14.1 Basic Concepts and Models

In the following discussion, the constituents of a population carry a string
σ ≡ {σ1, . . . , σN} where each of the N letters σi is taken from an alphabet
of size � ≥ 2. In classical population genetics, σ represents the configuration
of alleles (variants of a gene) σi located at gene loci i. Typically, one-locus,
� allele models where � can take values between two (wild type and mutant)
to infinity (continuum of alleles) have been considered [15]. In the language
of population genetics, we are here concerned with multilocus models with
complete linkage [11].

At the molecular level, σ represents the genetic sequence of an individual.
For DNA(RNA)-based organisms, � = 4 corresponding to the nucleotide bases
A, T(U), C, and G and the sequence length N varies from a few thousands
for viruses to about 109 for humans. Thus, the total number 4N of sequences
available is hyperastronomically large. The minimum value of � = 2 can be
obtained by lumping A and G together in purins and C, T, and U in pyrim-
idines. The sequences may also represent proteins composed of a few hundred
amino acids taken from an alphabet of size � = 20 [3].

14.1.1 Fitness, Mutations, and Sequence Space

The essence of natural selection is that the relative reproductive success of an
individual determines whether the corresponding genotype becomes more or
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less abundant in the population. The fitness of an individual is a quantitative
measure of its reproductive success; depending on the context, it may be
defined as the viability of an organism, i.e. the probability to survive to the
age of reproduction [2], the replication rate of a microbe, the binding affinity
of regulatory proteins to DNA [16] or of antibodies produced by B-cells to
pathogens [17], the program execution speed for digital organisms [18], or the
cost function in an optimization problem [19].

In principle, one should assign a fitness to the phenotype, which then
should be related to the genotype; unfortunately, the genotype–phenotype
map is complicated and largely unknown except for a few cases [20] (see also
Sect. 14.3.1). This problem is usually outflanked by associating fitness W (σ)
with the genotype itself and define it to be the expected number of offspring
produced by an individual with sequence σ [14]. This definition applies to the
case of discrete generations, and is known as Wrightian fitness. To pass to
continuous time dynamics we write

W (σ) = exp[w(σ)Δt] ≈ 1 + w(σ)Δt, Δt → 0 , (14.1)

where Δt is the generation time and w(σ) is referred to as the Malthusian
fitness [10]. For future reference, we note that multiplication of the Wrightian
fitnesses by a common factor implies a constant additive shift of the Malthu-
sian fitnesses.

In Sect. 14.1.2, we will discuss models in which mutations occur either
as copying errors in the genetic material during cell division or induced by
some external influences. In Table 14.1, the spontaneous mutation rates for
some organisms are shown. They differ by orders of magnitude between RNA-
based viruses whose mutation rate per genome exceeds unity, and DNA-based
organisms, which can afford the complex replication machinery needed to
reduce the mutation rate to a much lower level. It has been suggested that
the high mutation rate of RNA viruses, rather than being due to the lack of
correction mechanisms, may constitute an adaptation to the rapidly fluctuating
environments that these organisms encounter (see the chapter by E. Lázaro in
this book). Within the DNA organisms, the mutation rate per base is seen to

Table 14.1. Spontaneous mutation rates for various organisms taken from [21]

Organism Genome size Rate per base Rate per genome

Bacteriophage Qβ 4.5 × 103 1.4 × 10−3 6.5
Vesicular stomatitis virus 1.4 × 104 2.5 × 10−4 3.5
Bacteriophage λ 4.9 × 104 7.7 × 10−8 0.0038
E. coli 4.6 × 106 5.4 × 10−10 0.0025
C. elegans 8.0 × 107 2.3 × 10−10 0.018
Mouse 2.7 × 109 1.8 × 10−10 0.49
Human 3.2 × 109 5.0 × 10−11 0.16

The first two organisms have RNA as genetic material and the rest are DNA-based
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decrease with increasing sequence length, and the mutation rate per genome is
roughly constant for similar organisms. However, mutation rates per genome
in higher eukaryotes become comparable to those of DNA-based microbes if
referred to the effective genome size, which excludes noncoding regions [21].

Before we describe the mutation–selection models, we need to specify the
space of sequences on which the evolutionary dynamics operate. The structure
and geometry of the sequence space depends on the nature of the allowed
moves that change one sequence into another. In the simplest case of a genome
of fixed length N subject only to point mutations (which we will restrict
ourselves to throughout this chapter), the natural choice for the sequence
space is the Hamming space with �N points. Two sequences σ and σ′ are
separated by the Hamming distance d(σ, σ′) which is given by

d(σ, σ′) =
N∑

i=1

(1 − δσi,σ′
i
) . (14.2)

The Hamming distance simply counts the number of letters in which the two
sequences differ, that is, the number of point mutations needed to mutate σ
into σ′ (and vice versa). The Hamming space for N = 3 and � = 2 is shown in
Fig. 14.1(left). The sequences are located at the corners of a cube, which for
general N becomes the N -dimensional hypercube.

To give an example of a sequence space with a somewhat different geom-
etry, we consider the graph bipartitioning problem (GBP) [22] (see also
Sect. 14.3.3). In the GBP, as the name suggests, the problem is to partition
a graph with given connections into two sets A and B with equal number
of vertices, such that the number of connections between A and B is mini-
mized. A bipartitioning configuration is mapped onto a binary sequence by
setting σi = 1 if the vertex i belongs to set A, and σi = −1 else. Thus the
sequence space consists of those

(
N

N/2

)
configurations σ for which

∑
i σi = 0,

1,1,−1

−1,−1,−1

1,−1,−1 −1,1,−1 −1,−1,1

1,1,1

1,−1,1

−1,1,1
1,−1,−1,1

−1,−1,1,1

1,1,−1,−1

−1,1,1,−1

1,−1,1,−1

−1,1,−1,1

Fig. 14.1. Examples of sequence spaces. Left panel: Hamming space of binary
sequences of length N = 3. Right panel: Graph bipartitioning problem space for
N = 4. In both cases σi = ±1 and nearest neighbors are connected by lines
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a subset of the Hamming space. An elementary move exchanges a pair of
vertices between the sets A and B. Two configurations are said to be at a
distance dGBP(σ, σ′) = d if they can be related by d exchange moves, so that
dGBP is half of the Hamming distance defined above. The GBP sequence space
for N = 4 is shown in Fig. 14.1(right).

The Hamming space as well as the GBP sequence space are symmetric and
regular graphs, in the sense that each vertex has the same number of neighbors
and all vertices are equivalent. This is no longer true if mutations that change
the sequence length through deletions, insertions, or gene duplications are
taken into account. Genetic recombination, which is of crucial importance for
sexual reproduction, leads to additional complications, because it introduces
moves, which involve pairs of sequences [19].

We return to the case of point mutations acting on sequences of fixed
length N , and proceed to derive an expression for the mutation probabilities
taking one sequence to another. If the mutations change a letter σi to any one
of the other � − 1 values with a probability μ, independent of the identity of
the letter and the other letters in the sequence, then the probability to mutate
a sequence σ′ to σ can be written as

p(σ′ → σ) =
(

μ

(� − 1)(1 − μ)

)d(σ,σ′)

(1 − μ)N . (14.3)

Obviously, this probability is the same for all αd sequences, which are at a
constant Hamming distance d from sequence σ, where αd is given by

αd =
(

N

d

)
(� − 1)d . (14.4)

This can be seen by noting that there are
(
N
d

)
ways of choosing d letters at

which a sequence differs from σ and each of these d letters can take � − 1
values. For large N , most of the sequences are located in a belt of width
∼ √

N around the distance dmax = N(� − 1)/� away from σ. Using (14.4), it
is easily checked that

∑
σ p(σ′ → σ) = 1.

Similar to the transition from Wrightian to Malthusian fitness, in the con-
tinuous time limit the mutation probability (14.3) has to be replaced by the
mutation rate γ(σ′ → σ), such that for generation time Δt → 0

p(σ′ → σ) ≈ δσ′,σ + Δt γ(σ′ → σ) . (14.5)

Denoting the mutation rate per letter by μ̃ and setting μ = μ̃Δt in (14.3)
yields

γ(σ′ → σ) =

⎧⎪⎨
⎪⎩

0 d(σ′, σ) > 1
μ̃/(� − 1) d(σ′, σ) = 1
−Nμ̃ d(σ′, σ) = 0 .

(14.6)

The normalization condition for mutation rates reads
∑

σ γ(σ′ → σ) = 0.



304 K. Jain and J. Krug

14.1.2 Mutation–Selection Models

We now discuss models of adaptation that incorporate the two competing
processes discussed above, namely, mutation and selection. Mutation increases
genetic diversity, while selection tend to contain the population at fit sequences.
In case selection wins out, one obtains a population in which individuals are
genetically closely related else a heterogeneous population distributed over
the entire sequence space results. In this chapter, we will mainly discuss the
so-called coupled models in which the mutations occur only during replication.
In the paramuse models, on the other hand, mutation and selection occurs in
parallel, and they will be discussed here briefly. We refer the reader for more
details to the reviews [10,11] and references therein. Although one may expect
both types of mutation mechanisms to be relevant in describing evolution, the
jury is still out on their relative importance. For this reason, both classes of
models have been analyzed in detail and the relationship between them has
been explored, with regard to both static [23] and dynamic [24] properties.

The models discussed below work under the following two assumptions:

(1) Infinite population, i.e., the total population size M � �N , the total num-
ber of genotypes available. Under this assumption, a deterministic descrip-
tion suffices and we can write down the time evolution equation for the
average population fraction X(σ, t) of sequence σ at time t. Although this
is often unrealistic, the analysis is simpler in this limit, which in many
cases can be adapted to the finite population case to provide quantita-
tive agreement with experiments [25–27]. The infinite population limit
can be justified if the population is known to be localized in a small re-
gion of sequence space around a fitness peak, if one is interested in a short
piece of the genome such as a single regulatory binding site [16] (see also
Sect. 14.2.4) or if one works in the population genetics setting, where the
letters in the sequence are alleles of a gene, rather than single nucleotides.

(2) Asexual reproduction that dominates in the lower forms of life such as
virus and bacteria, and digital organisms. We will mainly consider haploid
organisms but diploids are briefly discussed in Sect. 14.2.5. However, we do
not consider the case of sexual reproduction; a comparison between sexual
and asexual reproduction modes in the context of sequence space models
can be found in [28].

Paramuse Models

In the paramuse models, introduced by Crow and Kimura [6], one assumes
error-free replication and mutations are induced by the environment through
radiation, thermal fluctuations, etc. [10]. The equation for the rate of change
Ẋ(σ, t) = ∂X(σ, t)/∂t of the fraction X(σ, t) of the population with sequence
σ is given by
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Ẋ(σ, t) =

[
w(σ) −

∑
σ′

w(σ′)X(σ′, t)

]
X(σ, t) +

∑
σ′

γ(σ′ → σ)X(σ′, t) .

(14.7)
The first term is the selection term while the contribution from the mutations
is contained in the last term. The evolution (14.7) is nonlinear in X(σ, t)
because of the second term on the right-hand side, which is required to ensure
the normalization

∑
σ X(σ, t) = 1. This nonlinearity can be eliminated by

passing to un-normalized population variables Z(σ, t) defined by

Z(σ, t) = X(σ, t) exp

[∑
σ′

w(σ′)
∫ t

0

dτX(σ′, τ)

]
, (14.8)

which satisfy the linear equation [29]

∂Z(σ, t)
∂t

= w(σ)Z(σ, t) +
∑
σ′

γ(σ′ → σ)Z(σ′, t) . (14.9)

Equation (14.7) follows from (14.9) using the relation

X(σ, t) =
Z(σ, t)∑
σ′ Z(σ′, t)

. (14.10)

Inserting the explicit form (14.6) for the mutation rates, it can be shown that
the vector Z(t) = (Z(σ1, t), . . . , Z(σS , t)), where the index labels the S = �N

points in sequence space, obeys a Schrödinger equation in imaginary time

∂Z(t)
∂t

= HZ(t) (14.11)

with quantum spin Hamiltonian H in one dimension. Specifically, for � = 2,
one obtains the Hamiltonian of an Ising chain in the presence of a transverse
magnetic field (mutations) with general interactions (specified by the fitness
landscape) [29]; for an explicit example see (14.39). This model has been
solved exactly for a variety of fitness landscapes using methods of quantum
statistical physics [24, 29, 30]. A similar analysis has also been carried out for
the biologically relevant case of � = 4 [31].

Coupled (Quasispecies) Dynamics

In the quasispecies model introduced by Eigen in the context of prebiotic
evolution [4, 32, 33], the mutations are copying errors that occur during the
reproduction process. This implies that the population fraction X(σ, t) evolves
according to

Ẋ(σ, t) =
∑
σ′

p(σ′ → σ)W (σ′)X(σ′, t) −
(∑

σ′
W (σ′)X(σ′, t)

)
X(σ, t) ,

(14.12)
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which can be linearized by a transformation analogous to (14.8) to yield the
linear equation

Ż(σ, t) =
∑
σ′

p(σ′ → σ)W (σ′)Z(σ′, t) . (14.13)

In discrete time, this model takes the form

X(σ, t + 1) =
∑

σ′ W (σ′)p(σ′ → σ)X(σ′, t)∑
σ′ W (σ′)X(σ′, t)

(14.14)

where the denominator arises due to the normalization. The discrete time
analog of the transformation (14.8) is given by

Z(σ, t) = X(σ, t)
t−1∏
τ=0

∑
σ′

W (σ′)X(σ′, τ). (14.15)

As before, the un-normalized variables obey a linear equation given by

Z(σ, t + 1) =
∑
σ′

p(σ′ → σ)W (σ′)Z(σ′, t) . (14.16)

The use of the Wrightian (discrete time) fitness W (σ) in the continuous
time (14.12) requires some explanation. First, it ensures that the stationary
solutions of (14.12) and (14.14) are identical. Second, it reflects the fact that
(14.12) is invariant (up to a rescaling of time) under multiplication of the
fitnesses by a constant factor, W (σ) → CW (σ), which is an exact symmetry
of the discrete time equation (14.14), whereas the continuous time paramuse
dynamics (14.7) is invariant under additive shifts w(σ) → w(σ) + C [10, 23].
In fact, (14.12) is not the continuous time limit of (14.14). Instead, inserting
(14.1) and (14.5) in (14.14) and taking Δt → 0, one obtains the paramuse
dynamics (14.7). In this sense (14.12) is somewhat intermediate between the
discrete time model (14.14) and the continuous time dynamics (14.7).

For the discrete time model (14.14), one can represent the evolutionary
histories as configurations on a two-dimensional lattice with the two axes
directed along the sequence and along time, with a spin variable σi(t) at each
site. Writing the evolution (14.16) for the vector Z(t) in the form

Z(t + 1) = Tt+1,t Z(t) (14.17)

then suggests to interpret Tt+1,t as the transfer matrix of a two-dimensional
classical spin model, which relates the probability of a configuration in one
row of the lattice to the next one [34]. For � = 2, this 2N × 2N matrix can be
written (up to a multiplicative constant) as

Tt+1,t[{σi(t + 1)}, {σi(t)}] = exp

[
lnW ({σi(t)}) + J

N∑
i=1

σi(t + 1)σi(t)

]

(14.18)
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where
J =

1
2

ln(μ−1 − 1) . (14.19)

Thus Tt+1,t = exp[−H̃], where H̃ is the Hamiltonian of a two-dimensional
Ising model1 with nearest neighbor interactions of strength J along the time
direction and general interactions [determined by the fitness landscape W (σ)]
along the sequence direction [35]. The expression (14.19) shows that the
interactions along the time direction are ferromagnetic (antiferromagnetic)
whenever μ < 1/2 (μ > 1/2), while for μ = 1/2 the sequence is completely
randomized in each time step and the interaction vanishes.

Clearly, to obtain the distribution of sequences at time slice t, one needs
to solve iteratively for all the t − 1 preceding layers. In the steady-state for
which t → ∞ one requires the properties of the last “surface” layer coupled to
a semi-infinite “bulk.” Since the transfer matrix (14.18) does not contain any
couplings along the sequence direction in the last layer t + 1, the boundary
condition for this semi-infinite spin model corresponds to a free surface [36].

14.2 Simple Fitness Landscapes

So far we have discussed the general equations governing the evolution of a
population with mutations, but the fitness landscape was not specified. We do
so now and begin with landscapes that are“simple” in that the fitness depends
only on the distance from a given (master) sequence, which is usually the
genotype of highest fitness.2 Such landscapes are called permutation invariant,
because the fitness depends only on the number of mismatches relative to
the master sequence, but not on their position. Using this symmetry, the �N

population variables can be grouped into N + 1 error classes, which greatly
facilitates both numerical and analytic work [37].

14.2.1 The Error Threshold: Preliminary Considerations

Much of this section is devoted to a discussion of the error threshold phe-
nomenon, which refers to the loss of genetic integrity when mutations are
increased beyond a certain threshold. We consider only the stationary pop-
ulation distribution, which is established after a long time. The linearity of
both the continuous and discrete time evolution equations ((14.9), (14.14) and
(14.16)) implies that the stationary distribution is identical to the principal
eigenvector of the matrix multiplying the population vector on the right-hand
side, i.e., the eigenvector with the largest eigenvalue. The principal eigenvalue

1 The Ising Hamiltonian H̃ should not be confused with the Hamiltonian H of the
quantum spin chain in (14.11).

2 In the context of population genetics, the master genotype is often referred to as
the wild type.
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is related to the mean population fitness in the stationary state. In this sense,
the analysis of different fitness landscapes and mutation schemes is reduced
to the investigation of the spectral properties of the corresponding evolution
matrices [38].

The error threshold separates two regimes of mutation–selection balance
characterized by a qualitatively different structure of the principal eigenvec-
tor. For small mutation rates, the eigenvector is localized around the mas-
ter sequence, i.e., only the entries corresponding to the dominant genotype
and a few of its nearby mutants carry appreciable weight. Following Eigen
and Schuster [32], such a localized population distribution is referred to as a
quasispecies. When the mutation rate is increased beyond the error thresh-
old, the principal eigenvector becomes delocalized and the population spreads
uniformly throughout the sequence space. In this regime, finite population
effects, which are neglected in the models considered here, become extremely
important; rather than covering the entire sequence space, which is impossi-
ble given the vast number of sequences, a finite population forms a localized
cloud, which wanders about randomly [39].

Since both the eigenvectors and eigenvalues of any finite matrix depend
smoothly on its entries, the error threshold can become sharp, in the sense
of being associated with some nonanalytic behavior of the population distri-
bution or the mean population fitness, only in the limit N → ∞. We shall
see below that in order to maintain the localized quasispecies in this limit, it
is usually necessary to either reduce the single site mutation probability μ,
such that the mutation probability per genome μN remains constant, or to
increase the selective advantage of the master sequence with increasing N .

14.2.2 Error Threshold in the Sharp Peak Landscape

We demonstrate the error threshold in the case of a single sharp peak land-
scape, which is defined as

W (σ) = W0δσ,σ0 + (1 − δσ,σ0), W0 > 1 . (14.20)

Here σ0 denotes the master sequence, and W0 is the selective advantage of the
master sequence relative to the other sequences, whose Wrightian fitness has
been normalized to unity. We anticipate the error threshold to occur for μ → 0,
N → ∞, keeping the mutation rate per genome μN finite. Let us consider the
coupled model in discrete time3 defined by (14.14) with the choice (14.20).
In the limit μ → 0, the mutations taking the mutants back into the master
sequence can be neglected,4 and the only nonzero contribution to X(σ0) on
the right-hand side of (14.14) is that for σ′ = σ. This yields
3 Recall that in the steady-state, both versions of the coupled model are identical.
4 Neglecting back mutations toward the master sequence is common in population

genetics, where it is referred to as a unidirectional mutation scheme [11]. It sim-
plifies the analytic treatment [28,40], and will be used repeatedly in this chapter
as an approximation, which is expected to become exact for μ → 0, N → ∞.
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X(σ0) =
W0e−μN − 1

W0 − 1
, (14.21)

which is an acceptable solution provided μN ≤ lnW0. Thus, a phase transition
occurs at the critical mutation probability

μc =
lnW0

N
(14.22)

beyond which the population cannot be maintained at the peak of the
landscape. Close to μc, the fraction of population at the master sequence
behaves as

X(σ0) ≈ N

W0 − 1
(μc − μ) (14.23)

thus approaching zero continuously at μc. The above results are also confirmed
by a detailed numerical analysis for finite μ and N , in which the population
was grouped into error classes at constant Hamming distance from the master
sequence and the population in the error classes as well as the eigenvalues of
the evolution matrix were followed as a function of μ [37].

The way in which the error threshold condition (14.22) combines mutation
rate, sequence length, and selective advantage is the central result of quasi-
species theory. In particular, it shows that in order to maintain a localized
quasispecies at finite single site mutation rate in the limit N → ∞, the selec-
tive advantage has to increase exponentially with N [41]. Under the assump-
tion that typical selective advantages do not depend strongly on sequence
length, (14.22) also provides some rationalization for the observation that
the product μN is roughly constant within classes of similar organisms (see
Sect. 14.1.1). On the other hand, at given achievable values of the replication
accuracy and the selective advantage, the condition μ < μc place an upper
bound Nmax on the sequence length, beyond which genetic integrity is lost.
Elsewhere in this book, Ester Lázaro presents substantial evidence that RNA
viruses have evolved to reside close to this threshold, possibly because this
allows them to maintain a maximal genetic variability, which is needed to
rapidly adapt to changing environments (see also Sect. 14.5.2).

Neglecting back mutations to the master sequence allows to derive an
expression for the mean Hamming distance to the master sequence, which
reads [40]

〈d(σ, σ0)〉 =
W0Nμ

W0e−Nμ − 1
. (14.24)

The mean Hamming distance is finite for μ < μc and diverges as (μc − μ)−1

as the error threshold is approached. This provides an alternative character-
ization of the threshold. A related quantity, which has been proposed as an
order parameter for the transition, is the mean overlap

m = 1 − 2〈d(σ, σ0)〉
N

(14.25)
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Fig. 14.2. Continuous transition in the fraction X(σ0) of the master sequence and
the (almost) discontinuous one in the overlap m as a function of mutation rate μ,
for N = 1, 000 and W0 = 4

between the master sequence and a randomly chosen sequence [41]. Since
〈d(σ, σ0)〉 remains finite for N → ∞ in the localized phase, the overlap
is m = 1 in this limit and jumps discontinuously to m = 0 at the threshold.
Figure 14.2 displaying the two order parameters considered in the above
discussion illustrates that the nature of the transition – continuous or dis-
continuous – depends to some extent on the quantity under consideration.5

Yet another characterization of the error threshold relies on the notion of
the consensus sequence σc, which carries at each site i that letter σc

i , which is
most frequently represented in the population. It is easy to see that, for sym-
metry reasons, the consensus sequence in the sharp peak landscape (14.20)
coincides with the master sequence, σc = σ0, throughout the localized phase;
this is true for general permutation-invariant single peak landscapes. In the de-
localized phase, where the population is uniformly spread throughout sequence
space for N → ∞, all letters appear with equal probability and the consensus
sequence cannot be defined. This is an artifact of the assumption of infinite
population size: a finite population retains some genetic structure even in a
flat fitness landscape and diffuses through sequence space as a cloud centered
around a moving consensus sequence σc(t) [39]. Thus, at the error threshold,
the consensus sequence ceases to be pinned to the master sequence and be-
comes time-dependent. This criterion to locate the transition is particularly
useful in complex fitness landscapes, where the most-fit master sequence is
not known [42] (see Sect. 14.3). Similarly, in experimental studies of microbial
populations such as RNA viruses, the consensus sequence is taken to represent
the (unknown) wild type genome, and the genetic spread of the population

5 In contradiction to the discussion above, a numerical study based on the mapping
to a two-dimensional Ising model described in Sect. 14.1.2 deduced that both m
and X(σ0) change smoothly at the transition [36]. However, in this study, a scaling
analysis with genome length (akin to finite size scaling analysis in statistical
mechanics) was not carried out to obtain the behavior in the limit N → ∞.
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around σc is interpreted as a measure of the balance between mutational and
selective forces (see the chapter by E. Lázaro).

14.2.3 Exact Solution of a Sharp Peak Model

A variant of Eigen’s model was solved exactly for any N in [43]. The model
is defined in discrete time but the mutations are restricted to mutants within
Hamming distance equal to one, as for the continuous time mutation rates
(14.6). In addition, mutations are assumed to occur in the whole population
before the reproduction process. With the fitness landscape (14.20) this leads
to the linear evolution equation

Z(σ, t + 1) = [1 + (W0 − 1)δσ,σ0 ]

×
[
(1 − Nμ)Z(σ, t) + μ

∑
σ′

Z(σ′, t) δd(σ′,σ),1

]

for the un-normalized population variables. Note that the model is well defined
only for Nμ < 1.

At large times, Z(σ, t + 1) ≈ ΛZ(σ, t) where Λ is the largest eigenvalue
of the evolution matrix on the right-hand side of (14.26). In the delocalized
phase, the population is spread over the entire sequence space with mean
fitness W = 1, so that Λ = 1 whereas in the localized phase, a finite fraction
has fitness W0 > 1 and hence Λ > 1. For any N , the eigenvalue Λ is determined
by the exact equation

W0

W0 − 1
=

1
2N

N∑
k=0

(
N

k

)
Λ

Λ − 1 + 2kμ
. (14.26)

Because of the k = 0 term on the RHS of the above equation, it is evident
that Λ can take a value equal to 1 only in the N → ∞ limit. Thus, there is
no phase transition for any finite N .

In the limit N → ∞, μ → 0 with Nμ < 1 fixed the eigenvalue is given by
the expression

Λ = max{1,W0(1 − Nμ)} , (14.27)

which sticks to unity beyond the critical mutation strength

μc =
W0 − 1
W0N

. (14.28)

Incidentally, the above expression for μc can be obtained using (14.21) by
expanding the exponential to first order in μN . This is required to ensure that
μN < 1 is satisfied for any W0 > 1. In both cases, the selective advantage
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needed to localize the quasispecies is the inverse of the copying fidelity, i.e.,
the probability of creating an error-free offspring.

The behavior of other quantities at the threshold follows from that of Λ.
For example, the fraction of the population residing at the master sequence is
given by

X(σ0) =
W0(Λ − 1)
(W0 − 1)Λ

, (14.29)

which vanishes linearly in μc − μ at the threshold, and the mean Hamming
distance from the master sequence is

〈d(σ, σ0)〉 =
Nμ

Λ − 1
, (14.30)

which diverges as (μc −μ)−1. The expressions (14.28)–(14.30) are valid in the
asymptotic limit N → ∞, but systematic expansions of these quantities in
powers of 1/N are also available [43].

Comparing the expressions (14.23) and (14.24) to (14.29) and (14.30),
respectively, we see that X(σ0) and 〈d(σ, σ0)〉 behave qualitatively similar in
the two models as the error threshold is approached. This is a simple exam-
ple of the principle of universality commonly encountered at physical phase
transitions, which states that the way in which singular quantities vanish or
diverge at the transition is independent of detailed properties of the model.

14.2.4 Modifying the Shape of the Fitness Peak

Since the sharp peak landscape (14.20) was chosen for its simplicity, and not
because it is expected to be biologically realistic, it is important to investigate
how the error threshold phenomenology depends on the shape of the fitness
peak. In this section, we discuss some illustrative examples. A method for
solving the stationary quasispecies equation for general peak shapes has been
developed by Peliti [44]. It employs a strong selection limit, in which the fitness
is written as W (σ) = exp[Nφ(σ)] and the limit N → ∞ is carried out at fixed
mutation probability μ.

Peak Height vs. Peak Width

We first consider a landscape with one sharp global maximum and a broad
peak of lower fitness separated by a flat landscape. This is defined as

W (σ) = W0δσ,σ0 +WNδσ,σN +WN−1δd(σ,σN ),1 +
∑

j �=0,N−1,N

δd(σ,σ0),j , (14.31)

where σN is the sequence at maximal Hamming distance N from σ0 and
W0 > WN > WN−1 > 1. By placing the two fitness peaks at the two poles σ0
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and σN of the sequence space, the permutation symmetry of the landscape
is preserved and the population can be subdivided into error classes. The
coupled model with the landscape (14.31) has been studied in both continuous
[45] and discrete time [36]. Interestingly, with increasing mutation rate, the
quasispecies shifts abruptly from the sequence σ0 to the broader peak around
σN finally delocalizing over the whole sequence space. For large mutation
rates, the quasispecies is more comfortable at the lower peak surrounded by
an extended region of elevated fitness than at the (globally optimal) isolated
master sequence.

Mesa Landscapes

Broad fitness peaks arise naturally in the evolution of regulatory binding sites
[16, 46, 47]. In this context, the fitness of a given regulatory sequence can be
plausibly related to the binding probability of the corresponding transcription
factor. Simple thermodynamic models predict that the binding probability
depends on the number of mismatches d(σ, σ0) with respect to the regulatory
master sequence σ0 through a Fermi function,

pb(d) =
1

1 + exp[ε(d − d0)/kBT ]
, (14.32)

where ε is the binding energy per mismatch, εd0 is the chemical potential
corresponding to the concentration of the transcription factor, and kBT is the
thermal energy at temperature T . For ε/kBT � 1, the binding probability
drops abruptly from pb = 1 to pb = 0 when d exceeds the number d0 of
tolerable mismatches; a typical value of this ratio is ε/kBT ≈ 2.

In the simplest scenario, the selective advantage of a regulatory sequence
is assumed to be proportional to the binding probability. This leads to a
mesa-shaped fitness landscape, with a plateau of constant fitness and radius
d0 around the master sequence. In [16], a detailed study of the error threshold
in this landscape was presented for continuous time paramuse dynamics with
fitness landscape w(d) = w0pb(d). An exact solution is possible in a limit where
d becomes a continuous variable and the Fermi function (14.32) is replaced by
a step function. Provided d0 � N , the error threshold is found to take place
at a critical mutation strength μc given by

μc =
2w0

N(1 + η2/d2
0)

, (14.33)

where η is a constant of order unity. The critical mutation strength is seen
to increase with increasing d0, illustrating the enhanced stability of the qua-
sispecies with increasing width of the fitness peak. In the localized phase, the
majority of the population is located near the mesa edge at d = d0, reflecting
the exponential increase of the number (14.4) of available genotypes with dis-
tance d. This is a purely entropic effect, which leads to a maximal fuzziness
of regulatory motifs.
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Somewhat more realistically, one expects that the fitness depends not only
on the ability of the sequence to bind the transcription factor in a certain
cellular state, but also on its ability to avoid binding in other states. This
can be modeled by a fitness function, which is proportional to the difference
between two Fermi functions (14.32) with different values of d0, leading to
a crater landscape with a rim of high fitness around a fitness minimum at
d = 0 [47].

Epistasis: Coupled Dynamics

Not all landscapes display the error threshold phenomenon. We illustrate this
point using the multiplicative (or Fujiyama) landscape as an example. In
this case

W (σ) =
N∏

i=1

eλσi = exp[λ(N − 2d(σ0, σ))] , (14.34)

where for simplicity we choose � = 2 and let σi take values ±1. For λ > 0, the
master sequence is σ0 = (1, 1, 1, . . . , 1) and the Hamiltonian H̃ obtained from
(14.18) is

H̃ =
N∑

i=1

[−Jσi(t + 1)σi(t) − λσi(t)] . (14.35)

Because of the absence of interactions along the sequence space direction, one
obtains, for each position i, an one-dimensional Ising model in the presence
of magnetic field λ. This model is well known to lack a phase transition and
due to the λ term, the spins tend to align in the direction of the field. Cor-
respondingly, a finite fraction of the population is maintained at the master
sequence for any value of the mutation rate. The full population distribution
has been worked out in [48].

In genetic terms, the multiplicative form (14.34) implies that the differ-
ent gene loci contribute independently to the fitness, which is referred to as
the absence of epistatic interactions. In general, one must distinguish between
synergistic or negative epistasis, in which the (deleterious) effect of an addi-
tional mutation increases with increasing distance from the wild type (mas-
ter sequence), and diminishing returns or positive epistasis, when the effects
of mutations decreases with increasing distance.6 The sharp peak landscape
(14.20) is an extreme case of positive epistasis, because after the first mutation
away from the master sequence, any additional mutation does not affect the
fitness at all. An extreme limit of negative epistasis is represented by the case
of truncation selection, where the Wrightian fitness vanishes beyond a criti-
cal Hamming distance dc [49]. As we discuss below, whether or not an error

6 This nomenclature is based on [11,40], but it does not appear to be unambiguous;
in [49] a definition of positive and negative epistasis is used, which is opposite to
the present one.
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Fig. 14.3. Illustration of the fitness landscape (14.36) with s = q = 0.5 and three
different values of α

threshold occurs depends on the behavior of the landscape at large Hamming
distance from the master sequence.

Consider a general fitness landscape defined by [40]

W (σ) = q(1 − s)d(σ,σ0)
α

+ 1 − q , (14.36)

where 0 ≤ q, s ≤ 1, and α > 0. Two cases need to be distinguished: for
q < 1, the lower bound on the fitness is nonzero and when s → 1 it becomes
of sharp peak type (14.20) with the (relative) selective advantage 1/(1 − q)
for the master sequence, while for q = 1, the multiplicative form (14.34) with
λ = − ln(1−s) is recovered for α = 1, and α > 1 (α < 1) describes a situation
with negative (positive) epistasis (Fig. 14.3).

The error threshold can be computed in the unidirectional approximation
(no back mutations toward the master sequence), and in the limit N → ∞,
μ → 0, for α = 1, q < 1, it has been shown that the critical mutation strength
μc = N−1 ln[1/(1 − q)], which is of exactly the same form as the sharp peak
result (14.22). For q = 1, a similar analysis shows that (14.36) displays an
error threshold only when α < 1, with a critical mutation strength given by
μc = Nα−1λ [40]. Note that in this case, the correct scaling is obtained in the
limit N → ∞, μ → 0 keeping μN1−α fixed.

The above behavior can be understood using the following result for gen-
eral bounded Wrightian fitness landscapes with 0<Wmin≤W (σ)≤Wmax <∞.
For such landscapes, the master sequence is lost from the population at a
critical mutation probability, which satisfies (in the unidirectional approxima-
tion and for N → ∞) [40]

μc ≤ 1
N

ln(Wmax/Wmin) ; (14.37)

a similar result is proved in [50]. If the right-hand side of (14.37) diverges
as N → ∞, this would imply that there is no finite error threshold and the
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master sequence is maintained at any mutation rate while its vanishing would
be consistent with the existence of a sharp transition for μ → 0, N → ∞. For
q = 1, the ratio between the largest and the smallest fitness is Wmax/Wmin =
eλNα

, so that the right-hand side of (14.37) vanishes for N → ∞ only when
α < 1 whereas it goes to zero for any α > 0 for q < 1, in agreement with
the results cited above. The case of the multiplicative landscape (14.34) is
special; here Wmax/Wmin = e2λN and (14.37) would suggest a finite error
threshold.7 However, as discussed earlier, the master sequence is maintained
at any mutation rate for α = q = 1.

The general conclusion from these considerations is that the existence of
an error threshold requires positive epistasis. This can be understood from
the following qualitative argument [40]: For the case of positive epistasis, the
selection force toward the fitness peak that has to be overcome by muta-
tions is largest close to the peak; once this initial barrier has been surpassed,
the population delocalises completely. In contrast, for negative epistasis, each
additional step away from the fitness peak requires a larger mutation pressure
than the previous step, and hence the population remains localized.

Epistasis: Paramuse Models

Since Malthusian fitness is essentially the logarithm of Wrightian fitness,
the absence of epistatic interactions in continuous time models implies a
linear dependence of the fitness w(σ) on d(σ, σ0). To investigate the effects of
epistasis, a quadratic fitness landscape of the form

w(σ) = a[1 − 2d(σ, σ0)/N ] +
1
2
b[1 − 2d(σ, σ0)/N ]2 (14.38)

has been considered [11], with a > 0 and b > 0 (b < 0) for positive (negative)
epistasis. This choice of parameters leads, through the mapping described in
Sect. 14.1.2, to the quantum spin Hamiltonian

H = μ̃
N∑

i=1

(σx
i − 1) + a

N∑
i=1

σz
i +

b

2N

∑
ij

σz
i σz

j , (14.39)

where σx
i and σz

i denote the x- and z-components of the quantum mechanical
spin operator. As in the discrete time case, in the absence of epistasis (b = 0)
the spins at different sites i are independent. Epistasis introduces a coupling
between any pair i, j of spins, independent of their position in the sequence.
In the language of statistical mechanics, this is an interaction of mean field
type; it is ferromagnetic for b < 0 and antiferromagnetic for b > 0.

7 The unidirectional approximation erroneously predicts a transition at μc = s [40].
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An explicit solution of the model has been presented for the case a = 0,
b > 0 [11]. In the limit N → ∞, the mean overlap (14.25) is given by the
expression

m = max[1 − μ̃/b, 0] , (14.40)

which, in contrast to the case of the sharp peak landscape, vanishes continu-
ously at μ̃ = b. In general, an error threshold exists only if −b ≤ a < 0. This
implies that the fitness displays a minimum at a distance 0 < dmin ≤ N/2
from the master sequence.

14.2.5 Beyond the Standard Model

In this section, we discuss a few biologically motivated generalizations of the
mutation–selection models described so far, while however maintaining the
basic simplicity of the fitness landscape.

Diploid Models

The evolution equations for diploid organisms are similar to those for the
haploid case,8 except that the fitness W (σ) is replaced by the marginal fitness

W̃ (σ, t) =
∑
σ′

W (σ, σ′)X(σ′, t) , (14.41)

where W (σ, σ′) is the fitness of an individual with diploid genotype (σ, σ′),
and X(σ, t) is the fraction of individuals carrying sequence σ in either one of
their two sets of genes [23,51]. The analog of the sharp peak landscape (14.20)
is given by

W (σ, σ′) =

⎧⎪⎨
⎪⎩

W0 σ = σ′ = σ0

W1 either σ = σ0 or σ′ = σ0

W2 both σ, σ′ �= σ0

(14.42)

with W0 ≥ W1 ≥ W2. In the absence of dominance effects (W1 =
√

W0W2 for
Wrightian fitness or w1 = (w0 + w2)/2 for Malthusian fitness), the problem
can be reduced to the haploid case. However, in general, a transformation
to a linear equation, as described in Sect. 14.1.2, is unknown for the diploid
case; the equations are inherently nonlinear because of the dependence of the
marginal fitness (14.41) on the population distribution. As a consequence,
there are multiple solutions for the fraction X(σ0) of wild type individuals.
Nevertheless, error threshold phenomena occur whose locations depend on the
relative values of W0, W1, and W2. For instance, the critical mutation rate is
roughly doubled when compared to with haploid model in the case of complete
dominance of the wild type (W0 = W1 > W2).
8 In general, for diploid organisms the mode of reproduction – e.g., sexual, partheno-

genetic, or selfing – has to be taken into account [28]. The model discussed here
and in [23,51] is a special case of parthenogenesis.
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Semiconservative Replication

Although the quasispecies model described in Sect. 14.1.2 is appropriate for
organisms with RNA as genetic material, it needs to be amended for DNA-
based organisms. The genotype corresponding to a double stranded DNA
molecule can be represented by {σ, σ} where σ is the complementary strand
of σ. The replication process involves splitting the DNA and pairing each
strand with the complementary bases to produce two daughter DNAs. Thus,
only one strand of the original DNA is conserved in the daughter DNA. How-
ever, copying errors and subsequent (imperfect) repair result in a different
DNA genotype {σ′, σ′}. Thus, the (un-normalized) number of individuals of
genotype {σ, σ} evolves in time as [52]

Ż({σ, σ}, t) = −W ({σ, σ})Z({σ, σ}, t) +
∑

{σ′,σ′}
(p(σ′ → {σ, σ})

+p(σ′ → {σ, σ})) W ({σ′, σ′})Z({σ′, σ′}, t) , (14.43)

where p(σ′ → {σ, σ}) is the probability that parent strand σ′ produces {σ, σ}
and the first-term represents the loss of the original genome. For the sharp
peak landscape, the error threshold occurs at

μc =
2
N

ln
(

2W0

1 + W0

)
, (14.44)

which saturates for W0 → ∞ unlike (14.22), so that the loss of the master
sequence cannot be avoided by increasing its selective advantage. This can be
traced back to the destruction of the parent genome in the semiconservative
case, which implies that, at sufficiently high mutation probability per genome,
increasing the reproduction rate of the master sequence actually accelerates
its extinction.

Dynamic Landscapes

The assumption of a static fitness landscape is good when evolution occurs
on short time scales or in long-term, controlled experiments in the laboratory.
However, natural populations are usually subjected to dynamic environments
such as that of pathogens living in a host with a dynamic immune system. For
the problem of formation of quasispecies in the presence of a dynamic sharp
peak landscape, two cases need to be distinguished – one when the fitness
W0 of the master sequence σ0 is fixed but its location shifts at periodic time
intervals of length τ to a nearest neighbor [53], and the other in which the
location is kept fixed but the height of the peak changes with time [54,55].

In the former case, besides the usual upper limit on the mutation rate,
an analytical approximation of the model shows the existence of a lower limit
also [53]. The latter arises because when the peak shift occurs, at least one
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individual should be present at the new location so that it can replicate and
form the quasispecies. For too low mutation rates, this may not happen and
this effect is quite likely to be more pronounced for finite populations.

In the case of a time-dependent peak height W0(t) of the master sequence,
the characteristic timescale τ of variation of the fitness landscape must be
compared with the response time of the population, which is the inverse of
the relative growth rate of the master sequence compared with its mutants.
When τ is large compared with the response time, the population fraction at
the master sequence follows the landscape quasistatically. For rapidly chang-
ing landscapes, the time-averaged population undergoes an error threshold
transition at the mutation strength μc given by [54,55]

(1 − μc)N =

(∫ T

0
W0(t)dt

T

)−1

, (14.45)

which generalizes (14.22) by replacing the static fitness by an average over a
time interval of length T � τ . For periodic W0(t) with period τ the fraction
X(σ0, t) also changes periodically with the same period but with a phase shift
that increases with decreasing τ [55]. Because of this time lag, the master
sequence achieves maximum population when its fitness has already dropped
from the maximum amplitude.

Parental Effects

Digital organisms are computer programs with a set of instructions (genome)
including copy commands due to which they can be replicated. During the
copying process, some instructions can get deleted, repeated, or replaced. An
evolved program can perform complex logic operations by using a simple logic
operator available to it. Such complex organisms are selected by allotting them
more CPU time thus increasing their replication rate defined as the ratio of
the number of logical instructions that they can execute to the number of
instructions that they have to perform in order to produce a new program [18].
While the latter depends on the individual’s own genome, the CPU time
available to it is a parental influence.

The situation is analogous to the case of biological organisms, which obtain
proteins etc. from the parent besides the genome. In such a case, the fraction
X(σ′, σ, t) of population at sequence σ with ancestor σ′ evolves as [56]

Ẋ(σ′, σ, t) =
∑
σ′′

A(σ′′)W (σ′)p(σ′ → σ)X(σ′′, σ′, t)−f(t)X(σ′, σ, t) , (14.46)

where f(t) =
∑

σ′′,σ′ A(σ′′)W (σ′)X(σ′′, σ′, t) and A(σ′) is the contribution to
the fitness from the ancestor. In the absence of parental effects, A(σ) = 1 for
all sequences and the original (14.12) is obtained for X(σ, t) =

∑
σ′ X(σ′, σ, t).
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This can be generalized by weighting the population variable by the parental
contribution and defining the normalized variable

X(σ, t) =
∑
σ′

A(σ′)X(σ′, σ, t)/
∑

σ′,σ′′
A(σ′)X(σ′, σ′′, t) , (14.47)

which reduces the �2N variables in (14.46) to �N . Interestingly, in the steady
state the population X(σ, t) obeys the quasispecies (14.12) with fitness
A(σ)W (σ). Thus the available results for the standard quasispecies model can
be directly applied to this case. In particular, for the sharp peak landscape
the fraction X(σ0, σ0) at the master sequence increases (relative to the null
case when there are no parental effects) if the ancestral fitness A(σ0) > A(σ)
for σ �= σ0. It is also possible to obtain the opposite trend if the ancestral
effect is deleterious and has to be compensated by the fitness of the individual
itself, such as when A(σ0) < A(σ) and W (σ0) > W (σ).

Heterogeneous Mutations

The accuracy of replication depends on enzymes called polymerases, which can
be present in different types with their respective accuracies. For example, as
discussed by E. Lázaro in Chap. 15 of this book, RNA virus strains that show
resistance to certain mutagens may possess polymerases with a particularly
high copying fidelity. In the presence of p polymerases with concentrations
ck and replication error μk, k = 1, . . . , p, the mutation probability (14.3)
generalizes to

p(σ′ → σ) =
p∑

k=1

ck

(
μk

(� − 1)(1 − μk)

)d(σ,σ′)

(1 − μk)N . (14.48)

One may expect that by increasing the concentration of the polymerase with
low error rate, the error threshold can be increased (even to infinity). That
this indeed is the case was demonstrated in [57] for p = 2 with concentration
c of an error-free polymerase with replication error probability μ1 = 0 and
1 − c of an error-prone polymerase with μ2 = μ > 0. For the sharp peak
landscape, one can find the fraction X(σ0) = W0p(σ0 → σ0)/(W0 − 1) of the
master sequence by neglecting the back mutations as before where p(σ0 →
σ0) ≈ c + (1 − c)e−μN for μ → 0 and N → ∞. Then the master sequence
can localize the population if

μ > μc =
1
N

ln
(

1 − c

W−1
0 − c

)
, (14.49)

which reduces to (14.22) for c = 0 as expected and increases with increasing
c. Since the argument of the logarithm should be positive for real μ, it follows
that c < c′ = 1/W0 and on exceeding c′, the master sequence continues to
localize population for any mutation rate.
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14.3 Complex Fitness Landscapes

We now turn our attention to “complex” landscapes, which do not possess the
symmetries of the simple ones discussed in the last section. Realistic land-
scapes are expected to have hills, valleys, basins, and ridges [19]. A pictorial
representation of such a rugged fitness landscape drawn over a two-dimensional
plane is shown in Fig. 14.4. Despite the intuitive appeal of such pictures, how-
ever, it should be kept in mind that they are metaphors rather than models
of biological reality. Real fitness landscapes extend over the very high dimen-
sional, discrete space of genotype sequences, and there are indications that
the intuition gained in our experience with low-dimensional landscapes fails
when applied to such abstract objects [2].

Researchers trying to construct realistic fitness landscapes have followed
one of two basic approaches. One approach is to study simple model systems
for which the mapping from genotype to phenotype can be carried out
explicitly. This has been pursued in great detail for the case of RNA sequences,
which will be briefly described in Sect. 14.3.1, as well as for proteins; for a
detailed discussion we refer to the chapters by P. Schuster and P. Stadler, and
by U. Bastolla, M. Porto, H.E. Roman, and M. Vendruscolo in this book. The
second approach, which was conceptually inspired by the statistical physics
of disordered systems [58, 59], is to regard a given fitness landscape as the
realization of an ensemble of random functions with prescribed statistical
properties. In this case, an important quantity characterizing the ruggedness
of the landscape is the correlation coefficient ρ(d,N) between the fitnesses of
two genotypes at Hamming distance d, which is defined as

ρ(d,N) =
〈w(σ)w(σ′)〉 − 〈w(σ)〉2
〈w(σ)2〉 − 〈w(σ)〉2 , d = d(σ, σ′) . (14.50)

Here, the angular brackets stand for an average over the ensemble of landscape
configurations and the denominator ensures that ρ(0, N) is scaled to unity. We
have defined (14.50) in terms of Malthusian fitness, but the Wrightian case
can be treated in the same way. Examples of random fitness landscapes will
be discussed in Sects. 14.3.2–14.3.4.

Fig. 14.4. Schematic representation of a rugged fitness landscape defined over a
two-dimensional genotype space
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14.3.1 An Explicit Genotype–Phenotype Map for RNA Sequences

For the description of evolution experiments with self-replicating RNA mole-
cules (see Sect. 14.5.1), it is natural to assume that the fitness of a given RNA
sequence depends only on the three-dimensional shape that the molecule folds
into in the solution. As an approximation to the full three-dimensional shape
(the tertiary structure of the molecule), its secondary structure, defined as
the set of allowed base pairings that satisfies the no-knot constraint and min-
imizes the free energy, can be used. In contrast to tertiary structure, the sec-
ondary structure can be computed from the sequence by efficient algorithms.
Although this does not yet solve the problem of how to assign a fitness to the
genotype, it allows to study in great detail the mapping from the genotype
(the sequence) to the phenotype (the secondary structure) [20,60,61].

The most important feature of this mapping is that it is many-to-one.
Indeed, the number of secondary structures of random RNA sequences of
length N behaves asymptotically as [61]

NRNA ≈ 1.4848 × N−3/2 × (1.8488)N , (14.51)

whereas the number of sequences is 4N . Thus, exponentially many sequences
fold into the same secondary structure for large N . Since sequences with the
same secondary structure must be assigned the same fitness, it follows that the
fitness landscape contains large regions of constant fitness, which are there-
fore selectively neutral. Typically, there are a few common structures (which
are represented by many sequences) and many more rare ones, with the dis-
tribution of the number of sequences mapping to a given structure following
a power law. The most common structures form neutral networks extending
throughout sequence space, such that any randomly chosen sequence is close
to a sequence on this network. Similar networks have also been found in the
sequence space of proteins [62–64], see the chapter by U. Bastolla, M. Porto,
H.E. Roman, and M. Vendruscolo in this book. Some aspects of the evolu-
tionary process on such neutral networks will be discussed in Sects. 14.3.4
and 14.4.1.

14.3.2 Uncorrelated Random Landscapes

The simplest kind of random fitness landscape is the uncorrelated landscape
where the fitnesses are independent random variables drawn from some com-
mon probability distribution [59]. In this case, the correlation function (14.50)
reduces to ρ(d,N) = δd,0. An example from this class is the Random Energy
Model (REM) of spin glass theory [65–67], for which the (Wrightian) fitness
is given by

W (σ) = exp[κE(σ)] , (14.52)
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where the “energies” E are independent Gaussian random variables with
distribution

P (E) =
1√
πN

exp(−E2/N) , (14.53)

and κ is an “inverse selective temperature.”
This model displays a phase transition, which is quite similar to the error

threshold in the single peak landscape. At high mutation rates the population
is delocalized, while at low mutation rates it is frozen into the master sequence,
which in this case is simply the sequence σmax with the largest value Emax

of E(σ) in the particular realization (the “ground state” configuration of the
REM). The scaling with N in (14.53) is chosen such that this maximal value
is proportional to N , Emax = N

√
ln 2 to leading order. At the transition, the

mean overlap (14.25) jumps discontinuously from one to zero [41].
The critical mutation probability required for delocalization can be

computed along the lines used in Sect. 14.2.2 for the sharp peak landscape.
Neglecting back mutations to σmax, a nonzero population fraction X(σmax) is
maintained if the product of Wmax = exp[κEmax] with the probability (1−μ)N

of producing an error-free offspring is greater than the mean population fitness
W̄ in the delocalized phase [12]. The latter is obtained by averaging (14.52)
with respect to the distribution (14.53), which yields W̄ = exp[κ2N/4]. Com-
paring the two expressions, one finds [12,41,67]

μc = 1 − exp[κ2/4 − κ
√

ln 2] . (14.54)

The critical mutation probability reaches its maximal value μc = 1/2 at the
value κc = 2

√
ln 2 of the inverse selective temperature, which coincides with

the glass transition of the REM [65]. For κ > κc, the selective advantage of
the most fit sequence is so great that it dominates the population even in the
limiting case μ = 1/2, when a complete reshuffling of genotypes occurs in each
generation.

We note that, in contrast to most examples discussed in Sect. 14.2, the
expression (14.54) is independent of the sequence length N . This is a conse-
quence of the scaling of the random energies in (14.53). Indeed, this scaling
implies that the ratio Wmax/Wmin = exp[2Emax] grows exponentially in N ,
and hence the right-hand side of (14.37) is independent of N .

14.3.3 Correlated Landscapes

An example of a random fitness landscape with correlations can be constructed
from the Sherrington–Kirkpatrick (SK) spin glass model, which is defined by
the energy function

ESK(σ) =
1
N

∑
i<j

Jijσiσj . (14.55)

Here σi = ±1 and the Jij are independent Gaussian random variables with
zero mean and unit variance. A similar energy function arises for the graph
bipartitioning problem (GBP) discussed in Sect. 14.1.1,



324 K. Jain and J. Krug

EGBP(σ) = −
∑
i<j

Jijσiσj , (14.56)

where the spins satisfy the vanishing total spin constraint. In this case Jij =
J > 0 if the sites i and j are connected by an edge of the graph, and Jij = 0 else
[22,42]. Through (14.52), energy functions (14.55) and (14.56) can be directly
interpreted as Malthusian fitness landscapes [42,58,66]. They belong to a large
class of random landscapes for which the correlation function behaves as [60]

ρ(d,N) ≈ 1 − a1
d

N
+ O

((
d

N

)2
)

(14.57)

for N, d → ∞ but d/N � 1, with a constant a1 which is independent of N . The
significance of this behavior becomes clear if we interpret d/N as a continuous
variable. For random functions of a real variable, the linear dependence of
the correlation function for small arguments is typical of a nondifferentiable
process with independent increments (such as Brownian motion), whereas for
a differentiable random process the correlation function varies quadratically
at small distances. In this sense the linear behavior in (14.57) is indicative of
the ruggedness of the landscape.

A simple modification of the argument leading to (14.54) gives some insight
into how the fitness correlations affect the location of the error threshold [42].
We assume that in the localized phase the bulk of the population is located at
some distance d∗ = O(1) from the most fit genotype σmax, with corresponding
energy values Ē ≈ ρ(d∗)Emax. Equating the resulting mean population fitness
W̄ = exp[κĒ] to the product (1−μ)NWmax and using (14.57) then yields, for
large N , the estimate

μc ≈ κa1d
∗Emax

N2
. (14.58)

Together with the scaling of the ground state energy as ESK
max ∼ N1/2 and

EGBP
max ∼ N3/2 for the SK-model and the GBP, it follows that μSK

c ∼ N−3/2

and μGBP
c ∼ N−1/2, respectively, in agreement with simulations [42].

A family of random landscapes in which the ruggedness can be tuned are
the NK landscapes9 introduced by Kauffman and Levin [5,68]. In this model,
the Malthusian fitness10 of a genotype is written as a sum of contributions
from the N loci,

w(σ) =
1
N

N∑
i=1

wi , (14.59)

where each wi is a function of σi and K other loci chosen at random11. The
number of possible states of σi and its K chosen neighbors is then �K+1, and
9 A related family was defined in [66] in analogy to Derrida’s p-spin model of spin

glasses [65].
10 A Wrightian version of the model is discussed in [69].
11 Other schemes for choosing the interacting loci are described in [17,60,69].
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each of these states is assigned a random fitness drawn from some continuous
probability distribution. For large N the additive form of (14.59) ensures that
the w(σ) become Gaussian by virtue of the central limit theorem.

For K = 0 the loci are independent, and the model becomes equiv-
alent to the multiplicative fitness landscape without epistasis discussed in
Sect. 14.2.4; in particular, there is a unique fitness peak. At the other extreme
K = N − 1, the wi are independent random variables and the model reduces
to the uncorrelated landscape of Sect. 14.3.2. With increasing K the number
of fitness maxima increases and their height decreases [68], and the correlation
function is given by12 [71]

ρ(d,N) =

⎧⎪⎨
⎪⎩

(N − K − 1)! (N − d)!
N ! (N − K − d − 1)!

: d ≤ N − K − 1

0 : else.
(14.60)

This shows how the correlations decay more rapidly with increasing epistasis
(increasing K), and reduces to ρ(d,N) = 1−d/N for K = 0 and ρ(d,N) = δd,0

for K = N − 1, respectively (see Fig. 14.5).
Another model with tunable correlations was introduced in a study of

evolutionary dynamics in the limit of infinite genome size but with a finite
population [72]. For N → ∞ every mutation creates a genotype that has
not been previously represented in the population. The fitnesses can then be
created “on the fly” according to the transition probability

Prob[w(σ)|w(σ′)] ∼ exp[−(w(σ) − λdw(σ′))2] (14.61)

where d = d(σ, σ′) and the parameter 0 ≤ λ ≤ 1 determines the decay of the
correlations as ρ(d,N) ∼ λd.
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Fig. 14.5. Correlation function (14.60) for the NK-model with N = 20

12 The expressions for the correlation function given in [60,70] are incorrect, because
it is not taken into account that the d mutations separating the two genotypes in
(14.50) must affect different sites in the sequence.
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14.3.4 Neutrality

We have seen in Sect. 14.3.1 that realistic fitness landscapes obtained from
mapping sequences to structures contain extended regions that are selectively
neutral. It has been argued that this is a general feature of high-dimensional
fitness landscapes, which has important consequences for the way in which
evolutionary dynamics should be visualized [2]. Rather than consisting of val-
leys and hilltops, as suggested by the low-dimensional rendition in Fig. 14.4,
such a holey landscape would display a network of ridges of approximately
constant fitness, along which a population can travel large genetic distances
without ever having to cross an unfavorable low-fitness region.13

Several properties of the stationary population distribution for the qua-
sispecies model on a neutral network can be inferred without specifying the
precise structure of the network [73]. It is only assumed that the viable geno-
types make up a connected graph G of constant fitness, which is surrounded
by genotypes that are lethal or at least of very low fitness. Mutations are
restricted to nearest neighbor sequences. Then the key observation is that
the stationary population distribution X(σ) on the network14 is the principal
eigenvector of the adjacency matrix of the graph, which is a matrix that has
unit entries for pairs of viable sequences that are connected by a single point
mutation, and zero entries otherwise. The corresponding eigenvalue Λ is equal
to the population neutrality 〈ν〉,

Λ = 〈ν〉 =
∑
σ∈G

ν(σ)X(σ) , (14.62)

where ν(σ) is the number of viable neighbors of sequence σ (the degree of the
corresponding node of G). The weighting by the population fraction X(σ) in
(14.62) is significant. For any graph G, the principal eigenvalue of the adja-
cency matrix satisfies the bounds [74]

ν̄ ≤ Λ ≤ νmax , (14.63)

where ν̄ and νmax denote the average and maximal degrees of the graph. For a
random graph with a range of degrees, the relations (14.62) and (14.63) imply

13 The evolutionary importance of paths of viable genotypes that connect distant
points in sequence space was emphasized by Smith [3]. He illustrates the issue with
a game where the goal is to transform one word into another by changing one
letter at a time, with the requirement that all intermediate words are meaningful
(i.e., “viable”). An example is the path WORD → WORE → GORE → GONE
→ GENE.

14 The population on the network is normalized to unity,
∑

σ∈G X(σ) = 1, which
does not include the individuals in the lethal region. Although these individuals
do not reproduce, they constitute a finite fraction of the population, which is
replenished by mutations from viable genotypes.
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that generally 〈ν〉 > ν̄, which shows that the population preferentially resides
at nodes where the number of viable neighbors is larger than on average.
This has been referred to as the evolution of mutational robustness [73]. The
heterogeneity of the node degree along the neutral network has important
consequences also for the evolutionary dynamics, because it induces strong
fluctuations in the rate of neutral substitutions [63,64,75].

Neutral networks can be modeled as random subgraphs in sequence space.
Such subgraphs are defined through a simple modification of the uncorrelated
landscape model of Sect. 14.3.2, where each sequence σ is randomly assigned
fitness W (σ) = 1 (viable) with probability P and W (σ) = 0 (lethal) with
probability 1−P . Each connected region of viable genotypes then constitutes
a random subgraph. For small P these regions are small and isolated, but at
the percolation threshold P = Pc given by

Pc =
1

(� − 1)N
(14.64)

a giant network appears, which spans the sequence space and which, for
P > Pc, contains a finite fraction of all sequences [2, 76]. Since N is a large
number, the fraction of viable genotypes needed to create such a spanning
network is remarkably small [3].

For subgraphs of the binary hypercube (� = 2) with random assignment
of links (rather than sites), it has been shown that the principal eigenvalue of
the adjacency matrix is asymptotically given by [74]

Λ ≈ max[NP,
√

νmax] . (14.65)

Taking N → ∞ at fixed P one finds that νmax ∼ N , so that Λ → NP = ν̄. In
this limit, the neutral network behaves like a regular graph, and no significant
mutational robustness develops. On the other hand, if P → 0 as N → ∞ with
NP fixed, one obtains νmax ∼ N/ ln N � ν̄, and the mutational robustness
effect is significant.

14.4 Dynamics of Adaptation

In this section, we turn our attention to time-dependent aspects of the adap-
tive process. In rugged fitness landscapes, the population is faced with the task
of reaching ever higher fitness peaks by traversing fitness valleys or neutral
networks, which typically gives rise to a pattern of episodic or punctuated evo-
lution. This phenomenon will be discussed in general terms in Sect. 14.4.1, and
a specific model study [77] will be summarized in Sect. 14.4.2. In Sect. 14.5.3,
we describe an approach to evolutionary dynamics that is suited for land-
scapes that are smooth, in the sense that a simple (linear) relation between
fitness and genetic distance can be assumed.
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14.4.1 Peak Shifts and Punctuated Evolution

The existence of multiple fitness peaks of different height, as illustrated in
Fig. 14.4, immediately suggests that evolutionary histories should generally
display two distinct regimes: periods of stabilizing selection, where the pop-
ulation resides near a local fitness maximum, and peak shifts in which the
population moves quickly from one fitness peak to another of greater height.
The stationary distributions in a single peak landscape that were discussed at
length in Sect. 14.2 can be viewed as an approximate description of the first
regime. The necessity of peak shifts for explaining the succession of biologi-
cal forms in the paleontological data has been recognized for a long time,15

but the underlying mechanisms (and even the relevance of the concept itself)
remain controversial.

Mathematical analysis of peak shifts driven by stochastic fluctuations
in finite populations (genetic drift) generally show that the waiting time
for the shift is vastly larger than the time required for the transition itself
[79,80]. This can be argued to support the scenario of punctuated equilibrium
in macroevolution [81], which states that evolutionary changes (including both
speciation and phenotypic changes within a lineage) occur during relatively
short time intervals, which are separated by long periods of no discernible
change (stasis).

However, for realistic population sizes the stochastically driven peak shifts
may be far too rare to be relevant, and in fact they may not be needed
at all, if the picture of a holey landscape spanned by a network of neutral
ridges described in Sect. 14.3.4 is generally applicable [2]. Evolution in such a
landscape will nevertheless be punctuated, because a population moving by
genetic drift across a neutral network can increase its fitness only by finding
a path to another network of higher fitness. If these paths are rare, a natural
separation of time scales between (phenotypic) stasis and sudden fitness jumps
arises. This scenario is well established for simulations of in vitro evolution of
RNA sequences [20, 82]. Borrowing a concept from statistical physics, it can
be said that in this case the population is confined by entropic barriers rather
than by fitness barriers [83].

14.4.2 Evolutionary Trajectories for the Quasispecies Model

In the deterministic mutation–selection models of interest in this chapter,
stochastic fluctuations cannot be invoked to drive peak shifts. Nevertheless, a
population initially placed near one fitness peak in a multipeaked landscape is
able to relocate to a higher peak, by developing tails of mutants, which (since
the number of individuals is formally infinite) with time explore the entire
sequence space. Once a small mutant population has been established at the

15 A famous example is the transition from browsing to grazing behavior in
equids [78].
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Fig. 14.6. Example of a peak shift event for quasispecies dynamics with binary
sequences of length N = 9 in an uncorrelated random fitness landscape. At time
t = 8, the most populated sequence is near the origin (sequence number 1), but
at time t = 14 it has moved to a sequence number close to 300. The peaks of
lower height represent the first and second neighbor mutants of the most populated
sequence. They are not adjacent because of the linear arrangement of the sequences

distant fitness peak, it starts to compete with the majority at the original peak
and, if the newly populated peak is higher, it will eventually come to dominate
the population. In this way, the majority of the population can shift between
peaks without ever actually having to traverse a fitness valley (Fig. 14.6).

The time t× required for a single peak shift in the discrete time quasispecies
model has been estimated numerically for a simple degenerate two-peak land-
scape, given by (14.31) with WN = W0 and WN−1 = 1 [84]. The population
was first allowed to equilibrate in a single peak landscape and then the second
peak was turned on. The result is

t× ∼
(

lnW0

Nμ

)N

∼
(

μc

μ

)N

(14.66)

which, somewhat surprisingly, has the same form as the time required for a
finite population to cross a fitness valley [83]; of course in the latter case there
is an additional dependence on the population size.

The evolutionary trajectories that result from multiple peak shifts in an
uncorrelated rugged fitness landscape have been studied in detail in a strong
selection limit motivated by the zero temperature limit of the statistical
physics of disordered systems [77,85–87]. Writing

Z(σ, t) = eκF (σ,t), W (σ) = eκE(σ), μ = e−κ, (14.67)

with κ denoting the inverse selective temperature (see Sect. 14.3.2), and start-
ing with an initial condition Z(σ, 0) = δσ,σ(0) where σ(0) is a randomly chosen
sequence, the dynamics takes the following form in the κ → ∞ limit:

F (σ, t + 1) = maxσ′ [F (σ′, t) + E(σ′) − d(σ, σ′)] , t ≥ 2 (14.68)
F (σ, 1) = E(σ(0)) − d(σ, σ(0)). (14.69)
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Here, the logarithmic fitnesses E(σ) are independent random variables chosen
from a common distribution p(E). As already discussed in Sect. 14.3.2, one
expects the whole population to be localized at the fittest genotype in the large
time limit. At any finite time, in the strong selection limit, the population can
be identified with the most populated genotype. The behavior of this genotype
is essentially unaffected by dropping the mutation term for times t > 1, so
that the dynamics reduces to [86]

F (σ, t) = F (σ, 1) + (t − 1)E(σ), t ≥ 2 . (14.70)

This illustrates the fact that, after the entire sequence space has been“seeded”
by mutants of the original genotype σ(0) at time t = 1, the subsequent evo-
lution consists in the competition of independent populations located at the
fitness peaks. Distant peaks of high fitness are disadvantaged by a small initial
population but may come to dominate at later times.

Since the seeding population F (σ, 1) of a sequence only depends on
its distance from the initial genotype σ(0), within each shell of constant
k = d(σ, σ(0)) only the most fit genotype is a contender for global leader-
ship. Thus, the dynamics of the �N variables (14.70) can be reduced to N + 1
shell population variables F (k, t) whose fitnesses E(k) are chosen from the
distribution

pk(E) = αk p(E)

(∫ E

Emin

p(x)dx

)αk−1

. (14.71)

This is the distribution of the maximum among αk independent random vari-
ables with distribution p(E), and αk is the number of sequences in shell k, as
defined in (14.4).

The representation of the “evolutionary race” as a problem of crossing
straight lines16 is illustrated in Fig. 14.7. At a given time t, the most popu-
lated sequence located in shell k∗ leads until it is overtaken by a shell k∗′

with
E(k∗′

) > E(k∗) and so on, until the global fitness maximum takes over. A
natural question of interest is to identify the sequences that take part in this
evolutionary trajectory, and to determine their number. It is clear that for a
sequence to participate in the trajectory, it is necessary that it constitutes a
fitness record, in the sense that its fitness exceeds the fitnesses of all sequences
that are closer to σ(0). An analytical treatment of the statistics of these inde-
pendent but nonidentically distributed records shows that the average number
of records encountered on the way to the global maximum is [77]

R ≈ (� − ln � − 1)
� − 1

N (14.72)

for large N , and that essentially all records are located within the distance
dmax = N(� − 1)/� near which most of the sequences (including the most
16 The problem is related to models of highway traffic, where each vehicle is equipped

with a fixed random speed and overtaking is forbidden [88].
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Fig. 14.7. Illustration of the linear dynamics (14.70). For each shell of constant
Hamming distance k from σ(0) only the line with the largest slope is drawn. Dashed
lines are fitness records, dotted lines are nonrecords, and solid lines are records that
are not bypassed

fit sequence) reside. For � = 2, the inter-record spacing between the jth and
j + 1th record is of the order

√
N/j where j = 1 labels the last record (the

global maximum). Thus, a few records separated by distances of order
√

N
occur near dmax and the rest are clustered away from it.

However, many records are bypassed by fitter sequences that arise further
away from σ(0) but manage to catch up with the current leader at an earlier
time. For unbounded fitness distributions with Gaussian or exponential tails,
the number of nonbypassed records (which is the number of sequences that
take part in a trajectory) is found to be only of order

√
N with a uniform

spacing ∼ √
N , which suggests that the competition among the contenders is

strong when the average fitness of the population is still low. For fat-tailed
power law distributions the average number of records that are not bypassed
is asymptotically equal to unity, which implies that the population relocates
to the global fitness maximum in a single step.

Several statistical properties of the timing of peak shifts turn out to be
independent of the fitness distribution p(E) [77,85,86]. Specifically, denoting
by Tj the time at which the jth peak shift occurs, with j = 1 denoting the last
shift (which reaches the global fitness maximum), j = 2 the penultimate peak
shift and so on (Fig. 14.8), the corresponding distributions display universal
power law tails

Pj(Tj) ∼ (Tj)−(j+1) . (14.73)

In particular, the expected value of T1 is infinite. The prefactors of these
power laws depend, however, on the fitness distribution and the sequence
length, in such a way that, e.g., the typical value of T1 tends to unity for
fitness distributions with a power law tail.
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Fig. 14.8. Timing of evolutionary jumps

14.4.3 Dynamics in Smooth Fitness Landscapes

So far we have discussed landscapes in which the fitnesses can be very
different from each other and as described above, the evolutionary trajec-
tory can change in a stepwise manner if the landscape has local maxima.
Smoothly varying landscapes for which the system does not get trapped in
such metastable states are the subject of the following discussion. Smooth-
ness will be taken to imply here that there is a simple (linear) relationship
between the fitness of a genotype and its genetic distance from the master
sequence. Individuals can then be characterized by their fitness alone, and the
description can be based on a one-dimensional fitness space [89].

The prototypical case in which this reasoning applies is that of the multi-
plicative fitness landscape discussed in Sect. 14.2.4. We work in the Malthu-
sian setting and assume that the fitness w(σ) is simply equal to the number of
matches with the master sequence, w = 0, . . . , N . Then, the fraction Y (w, t)
of individuals with fitness w at time t evolves as [89]

Ẏ (w, t) = (w − w)Y (w, t) + μ̃[(w + 1)Y (w + 1, t)

+(N − w + 1)Y (w − 1, t) − NY (w, t)] , (14.74)

which is just the paramuse (14.7) evaluated for the present fitness landscape,
with w̄ denoting the mean fitness of the population. For large N the fit-
ness w can be treated as a continuous variable. Setting r = (w − N/2)/

√
N ,

μ̄ = μ̃/
√

N , and τ =
√

Nt, (14.74) reduces for N → ∞ to the drift-diffusion
equation

∂Y

∂τ
= (r − r̄)Y +

μ̄

2
∂2Y

∂r2
+

∂

∂r
(2μ̄rY ) . (14.75)

Analysis of (14.74) and (14.75) and related equations [90] shows that the
mean fitness diverges in finite time, since the equations ignore the fact that
at least one individual is required to initiate the reproduction process. This
can be circumvented by imposing a cutoff Yc inversely proportional to the
population size, below which the selection term does not operate.
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With this modification, one finds that at short times, the population which
was initially spread over a fitness range gets localized about the maximum
available fitness leading to a fast growth of average fitness. This is followed
by the collective motion of the localized “species” as a traveling wave with
constant speed and width (as long as the population is far from the bound-
aries w = 0 and N of the fitness space). A finite population size analysis of
discrete models (described in the infinite population limit by the above con-
tinuum equations) shows that both speed and variance of the wave diverge
linearly with increasing population size, which is consistent with the finite
time singularity that appears in the absence of a cutoff [90].

Quantitative agreement with finite population simulations requires a more
careful treatment in which the most fit nonempty mutant class is treated sto-
chastically, while keeping deterministic differential-difference equations of the
type (14.74) for the remainder of the population. In addition, the continuum
limit of (14.74) should be carried out on the level of lnY rather than for Y
itself, which leads to a nonlinear drift-diffusion equation replacing (14.75) [27].
Recent applications of fitness space models that go beyond the present dis-
cussion include studies of the in vitro evolution of DNA sequences selected
for protein binding [46], viral populations undergoing serial population trans-
fers [91], and the effects of recombination in asexual populations [92].

14.5 Evolution in the Laboratory

Viruses and bacteria are suitable candidates for testing the theory of asexual
evolution because of their simple genomes and high replication rates. For
instance, RNA viruses that are characterized by high mutation rates and small
genome (see Table 14.1 and Chap. 15 by E. Lázaro in this book) can produce
about 104 copies in an hour. Their typical population numbers are of the
order of 1011, thus getting close to the infinite population condition for the
applicability of quasispecies theory. Interestingly, evolution can also occur in
nonliving systems such as RNA extracted from a bacteriophage, which we now
proceed to discuss in 14.5.1.

14.5.1 RNA Evolution In Vitro

Early in vitro studies of adaptation to a given environment were carried out on
a simple system comprising RNA molecules and the enzyme RNA replicase,
which is required to catalyze the RNA replication reaction. In the first of a
series of experiments, the time interval during which the reaction is allowed to
proceed was gradually reduced with the number of generations, thus selecting
the rapidly growing molecules [93]. By the 74th generation, the initial baseline
strain with a genome length of a few thousand bases evolved to a 15 times
faster replicating (but no longer pathogenic) chain of merely a few hundred
bases, by casting off the parts of the genome, which do not participate in the
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in vitro replication process. Subsequently, experiments using such short RNA
were performed under different conditions and selection pressure [94, 95]. In
particular, the formation of a quasispecies consisting of only 40% of the master
sequence and many mutants has been demonstrated [96].

14.5.2 Quasispecies Formation in RNA Viruses

Inside a cell, a virus is subjected to the constantly changing environment of the
host, whereas the quasispecies concept described in earlier sections assumes
an infinite population evolving toward a stationary state in a static landscape.
Nevertheless, evidence for quasispecies formation has been obtained in in vivo
experiments on RNA viruses by examining their genetic heterogeneity [97],
and the quasispecies concept now plays an important role in virology [98–100];
for a detailed discussion, we refer to the chapter by Ester Lázaro in this book.

The first such experiment was performed on a Qβ phage population derived
from the wild type [25]. On sampling about 10% of its sequence, it was found
that on an average, the genome of the derived phage differs from the wild
type at about two positions. Assuming a Poisson model for the distribution
of deviations from the wild type, only 14% of the population was found to be
wild type and the rest was accounted for by related mutants with up to 3–4
substitutions. Similarly, in the Hepatitis C virus, half of the RNA molecules
were found to be identical and the rest one to four mutations away from
each other [101]. In the case of HIV, the quasispecies concept has been used
to explain the reappearance of the virus after the treatment with drugs that
target only the wild type [102]. Many experiments, such as [103] on poliovirus,
also show that RNA viruses operate close to the error threshold, since on a
modest increase in mutation rate (through chemicals), the virus population
was found to lose its genetic structure.

14.5.3 Dynamics of Microbial Evolution

The dynamics of adaptation have been studied in several long-term experi-
ments on asexually reproducing microbes like viruses and bacteria. In exper-
iments on E. coli [104, 105], several populations are derived from the same
ancestor and allowed to replicate under identical conditions. The ancestor is
engineered to have a selectively neutral marker so that it can be distinguished
from the offspring colony. The process of evolution occurs because the progeny
is grown in the presence of limited supply of glucose, unlike the ancestor.

To measure the fitness of the evolved type, the ancestor and the evolved
progeny are made to compete for glucose by mixing them in equal amounts
at time t = 0 and estimating their respective densities ρA and ρP at t = 0
and t = 1 where time is measured in days. Then the Malthusian fitness of the
evolved type at any instant measured relative to the ancestor A is given by

w =
ln(ρP (1)/ρP (0))
ln(ρA(1)/ρA(0))

. (14.76)
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The experiments indicate that the fitness of all populations improves in time,
but each of the replicate populations reaches a different fitness level at large
times. This supports the picture of a rugged fitness landscape (Fig. 14.4) with
several peaks in which the population, starting from the same initial point,
reaches different local maxima via different evolutionary trajectories.

Initially, fitness changes rapidly but slows down considerably in the course
of time. When the same experimental data is viewed at a finer scale, the best
fit to the data is obtained if the fitness increases are assumed to occur in
steps. The occurrence of punctuated evolution is associated with the selection
of rare beneficial mutations [106]. Although a large number of advantageous
mutations with small effects may have occurred, a few mutations with large
effects quickly spread through the population and are responsible for the jumps
in the fitness. For a review of other experiments with this bacterial population
see [9, 107].

The step-like nature of fitness trajectories, especially the properties of the
first step, has been investigated in detail in other experiments as well. For
instance, in [108], the distribution of the fitness conferred in the first step was
measured in E. coli, which supports the above observation of the occurrence
of few mutations with large benefits and many with small payoffs. Similar
experiments have also been performed on the RNA virus φ6 [109]. This study
tracked the fitness recovery in a population, after a deleterious mutation has
been induced by a population bottleneck, for about hundred generations. The
fitness was seen to recover in steps but the number of steps (and the fitness
benefit) was found to depend strongly on the population size. While large
populations recovered in one large step, smaller populations required many
steps each granting small favors. As discussed in detail in the chapter by
Ester Lázaro, such population bottlenecks occur naturally in the life cycle of
viruses, because the number of viral particles that are transmitted from one
host to another is often very small.

Finally, we note that under certain conditions populations of RNA viruses
display a linear increase or decrease of fitness with time [27, 110], which can
be analyzed within the framework of the fitness space models as discussed in
Sect. 14.4.3.

14.6 Conclusions

In this chapter, we have given an overview over a class of models of adaptive
evolution, which include selection and mutation, but (due to their determinis-
tic character) ignore effects of genetic drift in finite populations. A large body
of work spread out over different scientific communities has been devoted to
such models, and our survey must necessarily remain quite incomplete. We
have, therefore, tried to focus on some general concepts – such as sequence
space, fitness landscapes, error thresholds, and epistatic interactions – that
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we believe to be useful also beyond the specific biological situations in which
the models apply.

Stochastic effects characteristic of finite populations are expected to be
quantitatively and even qualitatively important for several of the phenomena
we have described. Genetic drift induces a new mechanism of genetic degra-
dation, Muller’s ratchet [111], in which the fittest genotype is lost from the
population because it is not sampled for reproduction. In the limit of infi-
nite sequence length, this process is irreversible, and it generally contributes
to the delocalization of the population from fitness peaks. Correspondingly,
a common result of finite population studies in simple [23, 37, 48] as well as
complex [42,72] landscapes is a lowering of the error threshold mutation rate
with decreasing population size. A comparison between Muller’s ratchet and
the error threshold in infinite population models can be found in [10, 50]. As
described in the chapter by E. Lázaro, both mechanisms for genetic degrada-
tion are being considered as possible strategies for fighting viral infections.

The finite size of the population is also crucially important for the peak
shifts in rugged landscapes as discussed in Sect. 14.4.2, because it imposes a
cutoff on the tails of rare mutants, which are responsible for the communi-
cation between distant fitness peaks. Much of the analytic work on adaptive
dynamics that takes stochastic aspects into account has considered the regime
of low mutation rates,17 where the population consists of a single genotype at
most times and the generation and fixation of new mutations are rare events.
In these studies, the geometrical constraints on the availability of new mutants
in sequence space are usually ignored, and the timing and fitness effects of
mutations are instead generated by a suitable stochastic process [112, 113].
An important task for the future will be to integrate the different theoretical
approaches, with the ultimate goal of bringing them to bear on the experi-
mental data that are becoming available.
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Genetic Variability in RNA Viruses:
Consequences in Epidemiology
and in the Development of New Strategies
for the Extinction of Infectivity

E. Lázaro

15.1 Introduction

Viruses constitute one of the simplest biological entities in nature. They
possess some properties typical of life, such as the transmission of genetic
information through generations, but lack a proper metabolism and a system to
translate the genetic information into proteins. This ambivalence places them
at the border between living and non-living matter. To reproduce themselves,
viruses are forced to infect a host cell, behaving as intra-cellular parasites.
Despite their simplicity, viruses have been able to develop a wide repertoire of
infection mechanisms and replication strategies to adapt to the broad diversity
of the cellular world in order to execute their genetic program.

All known viruses consist of one or several genomic nucleic acid molecules,
covered by protective layers. Usually, there is one protein capside that can
be enclosed by a lipid bilayer membrane proceeding from the host cell. The
number of proteins encoded by the viral genomes is rather small, making their
success to replicate and give rise to an offspring dependent on their ability to
take advantage of the enzymatic activities provided by the host cell. After
infection, cellular protein synthesis is stopped and most of the subcellular
machinery is directed to produce copies of the viral nucleic acids and proteins.
These newly synthesized viral components are assembled inside the cell into
mature virions that can infect other cells of the same organism or establish
transmission chains between different individuals. The stability of these chains
strongly conditions the survival of the virus in nature. Outside an adequate
host, viruses can still persist for some time in a latent state in which they are
unable to replicate and exposed to irreversible damage by physical conditions
of the environment. When they interact with the specific cellular receptors of
a suitable host, they can initiate an infection that, if successfully transmitted
in the population, can seriously compromise the survival of the host species.

In all cellular organisms, the genetic information is contained in the DNA.
Before being translated into proteins (the molecules that execute the functions
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necessary for the performance of the cell), the DNA has to be copied to mRNA.
But genetic information also needs to be maintained through generations, a
process that takes place by means of DNA replication, in which many enzy-
matic activities are involved. In contrast to cells, viruses are more versatile
and can use DNA or RNA to store the genetic information. DNA viruses can
follow a scheme similar to that followed by cells to replicate their genomes
and to synthesize their proteins. However, RNA viruses need another process,
RNA replication, which is not among the functions carried out routinely in the
cell [1]. Therefore, they have to encode and express the enzymatic activities
necessary to copy their genomes. These enzymes are the RNA replicases and
the reverse transcriptases, which in many cases are co-encapsidated with the
nucleic acid during the assembly of the viral particles. In this way, they are
available at the start of the infection.

All living systems must reach a compromise between the correct copy
of the nucleotide sequence of their genomes and the ability to adapt to an
environment that is continuously changing [2]. The generation of mutants
upon replication provides the necessary diversity from which natural selection
can choose the best adapted variants in a concrete environment. The observed
divergences among mutation rates in different species suggest that possi-
bly this character is selected depending on the variability of the environ-
ment [3]. Cellular systems are able to maintain a relative constancy in the
intra-cytoplasmatic medium and because of that, they do not need a high
genetic variability. Thus, evolution has emphasized the selection of a replica-
tive machinery with several corrector activities that permit a high copying
accuracy. However, even in the cellular world, mutation rate is not a fixed
character that cannot be altered. It can be modified in response to environ-
mental changes by selection of variants with higher or lower error rates. The
isolation of hypermutator strains, which show deficiencies in some of the poly-
merase corrector activities, is frequent in conditions of environmental stress
and is a proof of the versatility of mutability as a character that can be
modified when the environment requires it [4, 5].

A relevant characteristic of RNA viruses is that they replicate their
genomes with a copying fidelity several orders of magnitude lower than cel-
lular DNA [6]. This fact has been interpreted as a consequence of the fluc-
tuating environments that viruses have to face. High error prone replication,
together with the short replication times and large population sizes typical
of RNA viruses, instead of being a handicap for survival provides an ex-
traordinary evolutionary advantage by permitting the generation of a wide
reservoir of mutants with different phenotypic properties [7]. The high vari-
ability of RNA viruses facilitates their survival in presence of antibodies and
other defence mechanisms produced by the immune system of the host. It also
makes possible the acquisition of novel pathogenic properties that in occasions
have allowed to cross species boundaries favouring the infection of alternative
hosts [8,9]. Finally, the heterogeneity of RNA virus populations makes it also
difficult to eradicate diseases with antiviral drugs, due to the emergence of
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drug-resistant mutants [10], a problem that will be treated in more detail in
the next sections. Whether the high genetic variability of RNA viruses is a
selected character, necessary for survival in high fluctuating environments, or
it is simply a consequence of the lack of corrector activities of RNA replicases
and reverse transcriptases is a debated question. However, the fact that DNA
organisms, which usually live in constant environments, have evolved correc-
tor activities, whereas RNA viruses have not, suggests that replication with
high error rates is a selected character that strongly favours viral adaptation
to fast changing conditions.

15.2 Replication of RNA Viruses
and Generation of Genetic Variability

The first requisite for the evolution of any population is the generation of
a significantly wide genetic diversity on which natural selection and genetic
drift can act to shape the properties of the new populations generated at
subsequent generations.

The genetic variation attained by RNA viruses is mainly the result of mut-
ation and recombination, two processes that are dependent on the properties
of the enzymes that replicate their genomes. Genome segment reassortment
occurs during encapsidation and can add extra variability in the case of viruses
with segmented genomes.

The replication of RNA viruses takes place through two main mechanisms
that involve the use of different enzymatic activities [1]. Riboviruses, includ-
ing many prokaryotic RNA viruses as well as many animal and plant viruses
(poliovirus, influenza virus, hepatitis A and C viruses, etc.), replicate their
genomes using RNA replicases that catalyze the RNA-dependent RNA syn-
thesis. The template RNA can be of positive polarity (it can work as mRNA)
or negative polarity (it is the complementary strand that is translated into pro-
teins). Viruses with positive polarity genomes deliver the nucleic acid directly
to the cellular ribosomes and begin infections with translation. In contrast,
viruses with negative polarity genomes begin infections with transcription to
obtain mRNA molecules that can be translated. Retroviruses, HIV-1 (human
immunodeficiency virus type 1) being the best known example, replicate their
genomes through a different mechanism with an intermediary step that con-
sists in the copy of the genomic RNA to DNA. This process is catalyzed by
the enzyme reverse transcriptase, an RNA-dependent DNA polymerase car-
ried by the viral particle. The DNA obtained in this way is integrated in the
host chromosome, being transcribed by the cellular enzyme RNA polymerase
II to produce transcripts that can function either as precursors of mRNAs or
as genomic RNAs that can be assembled into progeny viruses.

The lack of corrector activities of both classes of enzymes RNA replicases
and reverse transcriptases results in high mutation rates, which have been
estimated in 10−4 to 10−5 misincorporations per nucleotide copied. For a virus
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with a genome length of 10,000 nucleotides, this amounts to the incorporation
of one incorrect nucleotide per genome copied on the average [6,11]. Thus, each
new viral genome differs from its parent at one or two nucleotide positions.
The relative proportion of a specific mutant in the viral population depends
on the rate at which the mutant is generated and on its fitness, which is
defined as the ability to give rise to a progeny in competition with the rest
of viruses replicating under certain environmental conditions [7]. The number
of mutations that occur per time unit is also influenced by the number of
replication rounds during that period, this is, the generation time. For viruses
with similar error rate polymerases, the shorter the generation time, the larger
the number of mutants that is produced in the same time interval.

Recombination takes place when a new genome is built from fragments
belonging to different parental molecules. In RNA viruses, this process usually
occurs by template switching during RNA or cDNA synthesis. Most stud-
ies suggest that recombination rates in RNA viruses are lower than in other
organisms [12], although there are some notable exceptions, such as HIV-1 in
which the recombination rate seems to be higher than the mutation rate [13].
Recombination can be a powerful mechanism to create advantageous genomes
and to purge deleterious mutations in a very short time. However, the actual
effects of recombination in RNA viruses have not been studied in detail, and
it is not clear whether it is beneficial or it has a negative effect on fitness [14].

Genome segment reassortment occurs in viruses with segmented genomes
and consists in the encapsidation in the same viral particle of genome segments
proceeding from different parental viruses. Influenza viruses are the typical
example in which this process has been responsible for antigenic shifts, prob-
ably resulting from combinations of segments of influenza virus of different
specificity [15]. The natural reservoir of influenza is aquatic birds, although
the virus can also infect domestic birds and mammals (human or pigs prefer-
ably). When a reassortant influenza virus emerges, its pathogenic potential can
dramatically increase, because the infected host is not able to recognize the
antigenic determinants of the new virus generated. These reassortant strains
have been responsible for a number of pandemics through history and most
studies suggest that a new influenza pandemic is unavoidable [16].

15.3 Structure of Viral Populations

The structure of viral populations results from the concerted action of the
processes of mutation and selection acting in very large ensembles of repli-
cating units. Population size fluctuations, which frequently take place dur-
ing transmission of viruses in nature, constitute an additional and important
factor influencing the extension of genetic diversity from which a new virus
population will be generated.

The evolution and self-organization of heterogeneous populations com-
posed by a large number of molecules subjected to error-prone replication
and exposed to selection was first studied theoretically [17]. These studies
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showed that, for large population sizes and after long growth times in a con-
stant environment, a steady-state is reached where each mutant represents
a constant fraction of the total population. This equilibrium population was
called quasi-species [18,19]. The most frequently occurring molecular species,
usually the one with the highest fitness, is called the master sequence. This
sequence is accompanied by a mutant spectrum, composed by an ensemble of
variants that differ in one or several nucleotide positions that can be respon-
sible for fitness variations in individual mutants. The number of nucleotide
differences between two sequences is called the Hamming distance. The con-
sensus sequence is defined as the sequence of the most represented nucleotides
at each genomic position in the ensemble of genomes constituting the popu-
lation. The correspondence between fitness values and sequences (or between
phenotypes and genotypes) reveals that fitness landscapes (a surface in the
genotype space representing the fitness of each genotype as a point placed at a
different height) are rather rugged, since relatively small sequence differences
can cause great differences in fitness values.

Analysis of RNA virus populations, either at the phenotypic or genotypic
level showed that these populations have a structure similar to the molecular
quasi-species described theoretically [20,21]. They present a master sequence
surrounded by a mutant cloud and, in the absence of a cloning method to
separate individual genomes, only the consensus sequence can be determined.
However, two main differences have to be taken into account when comparing
theoretical and viral quasi-species. The first one is that viral quasi-species usu-
ally are not equilibrium populations because viruses are continually confronted
with many environmental perturbations that cause variations in the fitness dis-
tribution of the population. The second difference is that viral fitness is not
only determined by the genomic replicative ability. In spite of its simplicity,
a virus must complete successfully many processes to originate an infective
progeny. These include recognition of the cellular receptors, uncoating and
release of the nucleic acid inside the cell, interaction with many enzymes and
cellular structures, correct assembly to give rise to new viruses and exit out of
the cell. The ability of a virus to perform correctly all these processes, together
with the replicative ability of its genome, is what determines its fitness value.
These differences introduce uncertainties and additional complexity to viral
evolution compared to molecular evolution described theoretically.

15.4 Viral Quasi-Species and Adaptation

Viral quasi-species constitute very dynamical structures in which the processes
of generation of new mutants, selection of the best adapted and elimination
of the less fit are continuously acting. Quasi-species replicating during a long
time in a near-constant environment in the absence of large population size
fluctuations can present a low rate of fixation of mutations in the consensus
sequence, despite the continuous occurrence of mutants that is characteristic
of the underlying dynamics of the population. In this case, the quasi-species is
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well adapted to the environment and can maintain a low rate of evolution, as
determined by the stability of the consensus sequence. Many of the mutants
generated are lethal or very deleterious and are eliminated or maintained at
low frequency by the action of negative selection. In contrast, mutants with a
selective advantage can be present at high frequency, even if they are produced
at a low rate [20]. Neutral mutations are thought to be very restricted in RNA
viruses because of their highly compact genomes [22]. Low rates of evolution
have been described for viruses well adapted to their animal reservoir (the
host in which the virus is usually maintained in nature) as influenza in birds
or hantavirus in rodents. The same happens in the laboratory, where viruses
are usually cultivated during years in the same cellular type. In both cases
an almost invariant consensus sequence can be found, although the dynamics
of the quasi-species is always dominated by the processes of mutation and
selection acting in close concert.

The factors that promote the fixation of mutations in the consensus
sequence are usually environmental changes that favour the selection of the
best adapted genomes in the new conditions or drastic reductions in the
number of individuals that will originate a new population, what is called
population bottlenecks. The occurrence of genetic alterations with an adap-
tive advantage in the absence of environmental perturbations is also possible,
although it happens more rarely. In this section, we will focus on some features
that favour the action of positive selection and amplification of advantageous
mutants. We will mention three examples that make enormously difficult virus
eradication:

1. Treatment with antiviral drugs. When a viral infection is treated with an
antiviral agent the usual outcome is that, after a short time of success,
the treatment loses its efficacy. The failure is generally due to the pres-
ence in the mutant spectrum of some genomes able to resist the action of
the drug. Usually, these genomes have lower fitness in the absence of the
drug and they are maintained at low frequencies by the action of negative
selection. The presence of the drug inhibits the replication of the sensitive
genomes, but not of the resistant ones, which are selected and amplified.
It can also occur that, at the beginning of the treatment, no drug-resistant
genomes are present in the population. However, the high mutation rates
and large population sizes of RNA viruses make highly probable that,
after a variable time lag, a resistant mutant appears, which in a short
time can dominate the population. Maybe, the most dramatic example of
drug-induced resistance occurs in patients infected with HIV-1 in which
variants resistant to all currently used drugs have been isolated [23, 24].
At present, the most effective treatment to control HIV-1 infection is
the so called highly active anti-retroviral therapy (HAART), which in-
volves a combination of several drugs, aimed at preventing the emergence
of variants with mutations conferring resistance to all the drugs at the
same time.
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2. Antigenic drift. There are considerable differences in the nature and dura-
tion of the immune response elicited by different viruses [25]. Some human
viruses, such as measles or chicken pox, can only infect once, because their
antigenic determinants have very slow evolution rate and the immunologi-
cal response of the memory cells continues being effective along the whole
life of the individual. In contrast, there are other viruses, influenza being
the paradigmatic example, that can infect the same organism repeated
times. Most experimental evidence leads to the conclusion that the tol-
erance of a virus to accept immune-escape mutations is limited by the
restriction of conserving the cell tropism [26]. Modifications in the capside
antigen domains of measles virus seem to have very deleterious effects,
possibly because they affect the recognition of the cellular receptors. In
contrast, influenza can experience a continuous change in the antigenic
properties of the two main surface proteins involved in the entry of the
virus inside the cell, the hemagglutinin and the neuraminidase. The evo-
lution of the virus seems to be strongly influenced by selection of new
antigenic variants to escape the immune system at the same time that
the capacity of interaction with the cellular receptor is preserved [15]. In
the case of the hemagglutinin gene, 18 codon sites have been identified in
which non-synonymous nucleotide substitutions are much more frequent
than synonymous [27, 28]. The remaining sites show the more common
pattern of synonymous substitutions, indicating that possibly they are
subjected to stronger evolutionary constraints.

3. Change of tropism. Many viruses are maintained in nature in animal reser-
voirs that do not manifest symptoms of disease. This probably occurs
because the relation virus–host is very old (hundreds or thousands of
years) and both species have had enough time to co-evolve, meaning that
the virus has attenuated its virulence and the host also has acquired some
properties that permit coexistence with the pathogen. The long time of
evolution in the same host has permitted to these viruses to be close to the
equilibrium between mutation and selection processes and to maintain a
high stability in the consensus sequence. Occasionally, a virus well-adapted
for replication in a particular host can cross the species boundaries and
infect a new host. This can be facilitated by genetic changes in the virus
and/or by ecological factors that involve alterations in the relationships
established among different species in nature [29, 30]. The infection of
a new host constitutes a sudden change in the environment in which
viral replication takes place, usually with the consequence of a drastic
decrease in the average fitness of the virus population, which prevents
further transmission. The success of a virus to establish as a new infec-
tious agent in the new host relies largely on two features (a) its ability to
interact with a cellular receptor that permits the entry inside the cells and
(b) the acquisition and fixation of mutations that allow efficient replication
and capacity of transmission between organisms. Most recent virus emer-
gences in humans include HIV-1, whose closest animal ancestor seems
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to be the simian immunodeficiency virus found in a particular species of
chimpanzees (SIVcpz) [31], the coronavirus causing SARS (severe acute
respiratory syndrome) [32] and the influenza virus H5N1, an avian virus
strain that can infect directly humans without further human-to-human
transmission [33].

15.5 Population Dynamics
of Host–Pathogen Interactions

Virus dynamics in nature cannot be separated from host population dynamics,
constituting two processes in continuous interaction [25, 34, 35]. Factors such
as the transmission mode, the basic reproductive number (R0), the duration
of the infectious period, the renewal of susceptible hosts and the durability of
the immune response contribute to shape the genetic heterogeneity of viruses
and the quasi-species structure. They also strongly condition the evolution of
the pathogen along the time, adding a great complexity to the epidemiological
and phylogenetic studies on RNA viruses.

An important factor in viral evolution that takes place at the inter-host
level is the number of viral particles that are transmitted from one host to
the other [20]. When this number is very small, a population bottleneck takes
place. Then, only one or few individuals originate a new population, resulting
in a strong reduction in the genetic diversity. The consequence is that any
mutation present in the founder genomes will have a high probability of be-
ing transmitted to the progeny, accelerating in this way the rate of fixation
of mutations (Fig. 15.1). Since most mutations are deleterious, the expected
effect of their accumulation through repeated bottlenecks is a decrease in the

Mutant spectrum

Consensus sequence

Fig. 15.1. Accumulation of mutations in the consensus sequence of a heterogeneous
virus population when a single genome (in the box) is selected to found a new
population. All the mutations carried by this genome are transmitted to the progeny,
and consequently they will be fixed in the consensus sequence
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average fitness that eventually could lead to the extinction of the population.
Bottlenecks are very frequent in nature, during the inter-organ or inter-host
transmission of many viruses. Thus, in each new infected organism, the quasi-
species must be rebuilt from one or a few founder genomes, a fact that could
lead to a wide diversity in diseases in which the usual form of transmission
is mediated through bottlenecks. The persistence of viruses in nature and the
limited number of circulating strains in diseases such as influenza, despite the
frequent occurrence of bottlenecks, is paradoxical [36]. It is believed that
the inter-host competition that can induce stochastic losses of the less fit
variants, together with the action of previous immune responses on genet-
ically related virus variants (the so called cross-immunity) are factors that
restrict the strain diversity. The intra-host competition that takes place after
each transmission event is an additional factor that favours the optimization
of the viral population inside each infected individual and also contributing
to the resistance to extinction of viruses transmitted through bottlenecks.

Grenfell et al. [37] have classified RNA viruses in four phylodynamic cat-
egories, according to factors pertaining to the host–pathogen interactions
(mainly the duration of the infection and the nature and strength of the
immune response). They are briefly described:

1. Short infections with strong cross-immunity. The best known viruses in-
cluded in this category belong to the family of morbilliviruses (measles
being a well studied example). In these viruses, epidemic cycles are mainly
determined by the lifelong immunity elicited by the pathogen, which
causes that the renewal of susceptible hosts takes place only at the birth of
new individuals. The existence of a strong immune response that is pow-
erful against all circulating strains (strain-transcending immunity) would
prevent the action of selection. In these viruses, the burden of many dif-
ferent strains seems to be limited by spatio-temporal parameters of the
dynamics of the epidemic process.

2. Short infections with partial cross-immunity. The best example of this
category is influenza A virus. The high mutation rate characteristic of
RNA viruses, together with the transmission of influenza through bottle-
neck events, opposes to the limited variability within lineages. In contrast
to measles, cross-immunity against virus variants is only partial and the
replacement of susceptible individuals takes place, not only through the
birth of new hosts but also through generation of new influenza strains
that may affect individuals previously exposed to the virus. Evolution
of influenza and its epidemic dynamics have been modelled in several
studies, trying to reproduce the strong seasonality of infections and the
replacement of strains at each epidemic. The most successful models
reproduce the behaviour of influenza epidemics when a short-lived strain-
transcending immunity (in contrast to the long-lived immunity character-
istic of viruses in the previous category) is included as an essential fac-
tor limiting viral diversity in the host population [36]. However, the role
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of within-host dynamics after each bottleneck mediating transmission
remains to be added to the epidemic model.

3. Infections with immune enhancement. These are infections with the possi-
bility of antibody-dependent enhancement (ADE). An example is dengue
virus that comprises four serotypes co-circulating in tropical regions. ADE
causes that secondary infections produced by a different virus serotype
usually curse with more severe symptoms than primary infections.

4. Persistent infections. In this category are included viruses such as HIV
and HCV (hepatitis C virus) that can persist in their host during long
times periods. For these viruses, inter-host dynamics is slow, being more
important and faster the intra-host period of evolution that is driven by
continuous and strong immune pressure.

15.6 The Limit of the Error Rate

Since the high genetic heterogeneity of RNA viruses provides an enormous
adaptive capacity, it could be naively expected that additional increases in
the replication error rate makes evolutionary adaptation even more efficient.
However, there are many theoretical and experimental evidences showing that
RNA viruses have selected the maximal error rate, which is compatible with
the preservation of their genetic information.

Theoretical studies on molecular evolution postulate that the higher the
error rate and the genome length, the smaller is the probability of obtaining a
progeny identical to the parental genome and to conserve the master sequence
in the population [17,19]. There is a sharp limit, called error threshold, which
cannot be crossed without catastrophic consequences for the survival of the
population (see the chapter by Jain and Krug in this book). Below this limit,
the quasi-species can maintain a large genetic variability from which the best
adapted molecules are selected. When the threshold is crossed, the dispers-
ing force of mutation cannot be compensated by selection of the best adapted
phenotypes and the genetic information melts away in a process with the phys-
ical characteristics of a first order phase transition, as the melting of a solid.
The transition takes place in an ‘information space’ that is multidimensional,
comprising 4N sequences of length N [38].

The error rate that can be maintained is related to the genome length
according to this relation:

Nmax < ln s0/(1 − q) . (15.1)

Here Nmax is the maximal length of the genome and it is inversely propor-
tional to the error rate per nucleotide (1 − q). The factor s0 indicates the
selective advantage of the master sequence in relation to the mutant spectrum.
Measurements of the chain lengths and the replication error rates of RNA
viruses show that the genome lengths of RNA viruses are close to the maxi-
mum that can be maintained at the error rates of their replication. Moreover,
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phylogenetic analysis of RNA viruses reveals a negative correlation between
rates of nucleotide substitution and genome size [39]. As a direct consequence,
all viral functions must be encoded within a limited genomic space (10–15 kb
on average for most RNA viruses), meaning that certain regions of the genome
will often have to participate in several functions at the same time, resulting
in restrictions to the capacity of RNA virus to alter their nucleotide sequences.
The most frequent evolutionary constraints identified are the following [22]:

1. Usually, the antigenic determinants of a virus are domains of the same
proteins involved in the recognition of the cellular receptor [26]. This fact
restricts the possibilities of immune escape to the occurrence of mutations
in domains that are not crucial for penetration of the virus inside the cell.

2. Genomic coding regions can also be involved in the interaction with
enzymes or cellular structures and in the regulation of the correct synthesis
and assembly of the viral components to constitute mature particles.

3. Synonymous mutations may be not silent and have effect on fitness
because they can affect the secondary structure of RNA domains criti-
cal for keeping the stability and functionality of the molecule [40].

4. Sometimes the same genomic region can encode several proteins through
the use of overlapping reading frames.

In most RNA viruses, a high amount of particles is not infectious, suggesting
that viral populations operate near the error threshold and most mutations
are not easily tolerated, possibly due to the above-mentioned constraints. The
large population sizes constituted by RNA viruses seem to be necessary to
avoid stochastic extinctions that could happen due to the generation of many
deleterious mutants.

Given the high mutation rate of RNA viruses, and the increased fraction
of deleterious mutations over advantageous ones that occur when a popu-
lation is well adapted to the environment, one can think of two alternative
strategies for driving a viral population to extinction. Both of them involve
an increase in the number of mutations in individual viral genomes, which can
be related, although not necessarily, to changes in the consensus sequence of
the population.

The first pathway is the classical one described by molecular evolution
error catastrophe theories. It consists in the increase of the replication error
rate, usually through the use of mutagens. The new populations generated
exhibit larger complexity than the initial ones. Advantageous mutations, even
if they occur, would be spoiled by the continuous generation of deleterious
mutations, before they can be fixed by natural selection. In this case, it is
the strong dispersing force of mutation what dominates the dynamics of the
population.

The second pathway consists in the application of successive bottlenecks
to the population. After each bottleneck, the founder genomes give rise to a
new population through a limited number of replication rounds. The larger the
number of generations between bottlenecks, the closer is the new population to
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the equilibrium between mutation and selection [41]. The resulting populations
have two essential characteristics. The first one is their low complexity, because
the low number of copy rounds taking place between bottlenecks does not
permit to generate a large genetic diversity. The second one is an increased rate
in the fixation of mutations in the consensus sequence, since most mutations
present in the founder genomes are transmitted to the descendants (Fig. 15.1).
Given the high amount of deleterious mutations, the expected result of their
accumulation is a progressive reduction in the average fitness of the population
that could lead to the extinction of infectivity.

The structure of the viral populations generated through the two path-
ways described here have different evolutionary consequences that have been
explored experimentally by several groups. Next sections contain a review of
the main results published in this field.

15.6.1 Increases in the Error Rate of Replication.
Lethal Mutagenesis As a New Antiviral Strategy

There are many experimental evidences documenting extinction of RNA
viruses experiencing an increased mutation rate due to the action of mu-
tagens [42–47]. The mutagens most currently used are 5-fluorouracil (FU),
5-azacytidine (AZC), azidothymidine (AZT), ribavirin and 7-hydroxyurea.
Some of them are nucleoside analogues that, in addition to increasing the
rate of erroneous incorporation of nucleotides, can also interfere with other
cellular or viral processes, such as endogenous nucleotide metabolism, viral
replication or transcription.

Foot-and-mouth disease virus (FMDV), poliovirus, HIV-1 and lymphocytic
choriomeningitis virus (LCMV) are some examples of RNA viruses in which
successful extinctions of infectivity have been documented. The results agree
with molecular evolution theories that postulate that viral replication operates
very close to an error threshold that cannot be crossed without compromising
the transmission of genetic information and the existence of the population
(reviewed in [48]). Although many studies have been devoted to the charac-
terization of the mutant spectrum of pre-extinction populations [43, 49, 50],
it is not clear how the quasi-species looses its infective capacity. It is not
known whether all the genomes are carrying lethal mutations and therefore
are unable to replicate or it is the disorganization of the mutant spectrum
what makes the quasi-species to be non-infective. In the last case, the quasi-
species could still conserve some viable genomes that, in the absence of the
interfering mutants, could initiate the development of an infective population.

Mutagenized populations of FMDV treated with AZC and FU could be
efficiently extinguished [47]. As expected, the characterization of the RNA
genomes composing the pre-extinction populations did not show mutations in
the consensus sequences, but displayed an increase in the complexity of the
mutant spectrum (reviewed in [51]). The maximum increases in complexity
occurred in the polymerase gene, which usually is well conserved. Other studies
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have also demonstrated the invariance of the consensus sequence, despite the
occurrence of a high number of mutations in individual genomes [43].

The same mutagenic agent can behave differently in different viruses. As
an example, LCMV was systematically extinguished after only two or three
passages in the presence of FU [43,52], whereas extinction of FMDV was sto-
chastic and required a larger number of passages in the presence of similar
amounts of mutagenic agent. Differences in the susceptibility of a virus to a
mutagen can be explained by a number of factors including different affinity
of the polymerase for the mutagen, effect of the mutagen in other viral or cel-
lular processes, type of mutations preferentially induced by the mutagen that
can affect viral functions differently depending on the nucleotide composition
of the virus genomes, etc., [53]. The influence of variations in the mutation
rate of different virus polymerases in the capacity of mutagens to extinguish
infections is not well known. In principle, it should be expected that the closer
is the virus to the error threshold, the easier should be its extinction by in-
creased mutagenesis. However, the error rate of the polymerase is very difficult
to estimate, and it can change depending on environmental factors and the
region of the genome sequenced. Mutation rates are usually obtained from
measurements of mutation frequency, a procedure that can lead to under-
estimation of the true mutation rates, because only replicating genomes are
abundant enough to be detected. The isolation of a poliovirus mutant with a
high fidelity polymerase [54,55] that is resistant to the action of ribavirin and
other mutagens clearly indicates that the error rate of a particular polymerase
is a relevant factor contributing to the efficiency of increased mutagenesis to
extinguish viral infections.

Studies in both riboviruses and retroviruses suggest that host enzymes
also represent a potential source of variation by RNA editing [56]. There are
some cellular enzymes able to produce hypermutation in the viral genomes,
which occurs as clusters of specific base substitutions. A documented example
is the enzyme APOBEC3G, which has been shown to generate G→A hyper-
mutations in HIV-1. Enzymes of this type could act as a natural strategy for
limiting viral infection by increasing mutagenesis above the error threshold.
The discovery of these host factors constitutes an alternative for the devel-
opment of agents that specifically enhance the natural antiviral activity of
cells.

Recently, extinction by lethal mutagenesis has been shown to involve
more complex mechanisms than those affecting only the replicative ability
of genomes [44]. It is well known that in a normal infection a variable amount
of the viruses produced are non-infective because they are unable to code for
all functional proteins [57]. However, inside the cell, it is plausible that many
of these non-infective genomes behave as parasites and replicate using the
proteins produced by other viruses. When the mutation rate is kept below
a critical threshold, defective mutants maintain an equilibrium with viable
genomes. The increase in the mutation rate forces the appearance of a larger
amount of defective genomes that, beyond a critical fraction, can exhaust the
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Fig. 15.2. Quantification of the viral genomic RNA and infectivity in supernatants
and cell fractions of LCMV incubated with 100 μgml−1 of 5-FU. Although a high
amount of RNA is still present in the samples, infectivity declines until undetectable
levels, indicating that replicative ability does not disappear simultaneously with
infectivity. Further details of this experiment can be found in [44]. Open symbols
correspond to the intra-cellular fraction. Filled symbols correspond to the super-
natant fraction

resources necessary for viral replication, becoming an additional force that
can promote extinction.

This conceptual framework derives from several ‘in vitro’ experiments with
LCMV [44]. Infective viruses and RNA genomic molecules were monitored dur-
ing a virological steady-state persistent infection of BHK-21 cells by LCMV
in the absence and presence of 5-FU (Fig. 15.2). In the course of the infection,
there is a clear increase in the number of genomic RNA molecules, both in the
intra-cellular fraction and in supernatants of control and mutagenized virus.
However, in FU-treated virus cultures, infectivity declines and falls below de-
tection, despite the high number of genomic RNA molecules. The number of
infective units per RNA molecule as a function of the mutation frequency
yields a curve with a sharp decay when the mutation frequency overcomes a
critical threshold. The sudden loss of infectivity takes place through a transi-
tion analogous to that predicted by error catastrophe theories. However, the
unexpected outcome of the experiment was the presence of large numbers
of RNA molecules, revealing that the replicative ability does not disappear
simultaneously with infectivity. Similar results have been found with poliovirus
and Hantaan virus where decreases in infectivity preceded decreases in viral
RNA levels [42,58,59].

Lethal mutagenesis probably presents many of the same difficulties as con-
ventional antiviral therapy. An important problem takes place in viruses, such
as retroviruses, that can stay in a latent state during a long time in cellular
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or anatomical reservoirs. Activation of these latent viruses can contribute to
the resurgence of the disease after interruption of drug treatment in vivo [60].
However, the strongest obstacle to antiviral mutagenesis is the appearance of
drug-resistant mutants due to the presence of enhanced fidelity polymerases.
Possibly these mutants are less able to generate resistances to other antivi-
ral drugs, due to the diminished ability of adaptation that results from the
reduction of the genetic diversity because of the higher fidelity of the poly-
merase. Therefore, combined therapies consisting of lethal mutagenesis and
other antivirals could be a promising strategy for the treatment of viral infec-
tions [54].

15.6.2 Evolution of Viral Populations
Through Successive Bottlenecks

The probability of extinction of small asexual populations due to the accumu-
lation of mutations was first studied by Muller several decades ago [61]. He
predicted that the genomes with the lowest mutational load could be stochas-
tically lost due to population fluctuations through a mechanism similar to the
clicks of a ratchet. When the ratchet clicks the first time, this means that the
genomes with no mutations are lost and the least loaded class corresponds to
individuals carrying one mutation. In the next click, the one-mutation class
disappears by a similar mechanism, and the least mutated class corresponds
now to genomes with two mutations and so on. At that time it was believed
that the least mutated genomes were the best adapted and that reversions
were the only mechanism able to recover fitness. Thus, this process, which is
particularly effective at high mutation rates, as it happens in RNA viruses,
should inevitably imply a progressive fitness loss that can lead populations to
extinction.

The experimental study on the transmission of RNA viruses through
successive bottlenecks usually is carried out making serial plaque-to-plaque
transfers (Fig. 15.3). At each transfer, the viral population is plated at low
multiplicity of infection to get well-isolated lytic plaques that are the result of
the infection by a single virus, which after several replication rounds gives rise
to a progeny. Since at each transfer the effective population size is reduced
to one individual, this constitutes the most extreme form of bottleneck. The
population contained in a randomly chosen plaque is isolated, properly diluted
and plated again in a process that is serially repeated. The consequences on
fitness of successive repetitions of this process have been analyzed with sev-
eral RNA viruses including bacteriophages MS2 [62] and Phi 6 [63], vesicular
estomatitis virus (VSV) [64–66], FMDV [67–69] and HIV-1 [70]. In all these
studies, progressive fitness declines were found, although extinctions of infec-
tivity were only observed in the case of HIV-1.

The most complete study on the effect that the accumulation of mutations
through plaque-to-plaque transfers has on fitness evolution has been carried
out with FMDV [67–69,71].
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Fig. 15.3. Schematic representation of the experimental procedure of plaque-to-
plaque transfers. The starting viral population is plated to isolate individual lytic
plaques. The virus contained in a single plaque (in the box) is diluted for titration
of infectious particles and to be used in the successive plaque transfer. The process
is repeated as many times as desired

In this study, the titer of the plaques (determined as the number of infectious
units per plaque or pfu) at each transfer was taken as a measure of fitness. The
mutations that accumulated along the process were identified by determining
the consensus sequence of the viral population isolated from single plaques at
different transfers. The expected result of the experiment was a progressive
decrease in fitness accompanied by an increase in the number of mutations
fixed in the consensus sequence. After a certain number of transfers, extinctions
of infectivity were expected. In contrast to these expectations, a biphasic
dynamics of fitness decrease was observed. There was an initial period of roughly
exponential fitness loss, but after a variable number of passages, a statistically
stationary state of fitness with large fluctuations around a mean constant value
was reached (Fig. 15.4). In this state, the virus exhibits a great resistance to
extinction, since when it reaches a very low fitness value, the usual outcome
at the next passage is a sudden fitness recovery. A detailed statistical analysis
of the viral titers at the stationary state showed that fluctuations in the viral
yield followed a Weibull distribution [69]. This distribution is indicative of an
underlying dynamics with two main features (a) an exponential amplification
of the founder genomes during the development of each plaque, which makes
that small fitness differences are considerably amplified and (b) large variations
in the initial state of the system at each transfer, which is determined by the
stochastic nature of the sampling process.

Strikingly, mutations accumulated at the same rate in the phase of fitness
decrease and in the stationary state [68]. This might indicate that the nature
and effects of mutations can vary with the transfer number, depending on
the restrictions imposed by the selection of the genomes able to form plaques.
When the population is well adapted to the environment, as it happens at the
beginning of the experiment, deleterious mutations are well tolerated. How-
ever, as the population is getting more debilitated, less deleterious mutations
can be accepted and possibly there are many extinctions of individual genomes
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Fig. 15.4. Infectious units per plaque produced along the process of plaque-to-
plaque transfers experienced by the viral clone C10. After an exponential decay of
infectivity, a statistical stationary state with strong fluctuations is attained

that become unable to replicate. Nevertheless, a fraction of the genomes con-
tained in a plaque can possess advantageous mutations, in some occasions
because the mutation has a positive effect ‘per se’ and in others because it
has a compensatory effect in a concrete genome carrying a particular combina-
tion of mutations. In the stationary state, where average fitness values possibly
are the lowest ones compatible with virus survival, advantageous mutations
would be more easily selected, because only the genomes carrying them can
form plaques and be chosen for the next transfer. Each advantageous muta-
tion produces a fitness increase that moves the genome to a different position
in the fitness landscape. This permits the acceptance of additional deleterious
mutations, originating the fluctuating pattern of infectivity that is observed
in the experiments.

An interesting result is the preferential accumulation of mutations in cer-
tain genomic regions that present a mutation frequency significantly higher
than the average obtained considering the whole genome [68] (Fig. 15.5). An
unusual distribution of mutations has also been found in bottlenecked HIV-1
clones in which there was a higher accumulation of mutations in the gene gag
and the first third of the genome, compared to the gene env, which is less
conserved in natural populations of the virus [73]. Bottlenecked VSV clones
also accumulated a high number of mutations in the N open reading frame,
contrasting with the conservation of this region in natural isolates [66]. All
these results suggest that bottlenecks permit the isolation of genomes that
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Fig. 15.5. Location of the mutations found in the genome of FMDV clones C10
and H5 subjected to 100 and 84 plaque transfers respectively. The top horizontal
line is a scheme of the FMDV genome showing the main regulatory regions and the
encoded proteins [72]. The lines below the genome indicate the non-synonymous (ns)
and synonymous (s) mutations present in the virus. The boxes indicate the genomic
regions where the number of mutations is significantly higher than the average for
the whole genome

otherwise would be eliminated under the action of positive selection that dom-
inates virus optimization. Genomic regions that seem to be much conserved
might mutate with the same mutation rate as the rest of the genome, although
subjected to stronger constraints. Nevertheless, the evolutionary relevance and
the molecular mechanism by which the mutation clusters observed in the bot-
tlenecked FMDV clones are generated is unknown and further experiments
are in progress to answer this question.

A numerical model of evolution through bottlenecks was developed with
the aim of identifying the parameters that are responsible for the biphasic
dynamics of fitness loss [74,75]. The main features of the model are the occur-
rence with low probability of advantageous mutations and the presence of an
extinction threshold, which means that genomes reaching the minimal allowed
fitness value are eliminated. The results of the simulations were very similar
to those observed in the experiments: a biphasic dynamics of fitness decrease
and large fluctuations in the fitness values attained at the stationary state.
Moreover, the statistical analysis of fitness values reveals that, similarly to the
experimental results, they follow a Weibull distribution, strongly supporting
that the underlying dynamics must be the same in both the simulations and
the experiments. The elimination of individuals as their fitness falls below the
extinction threshold and the probability of selecting for the subsequent trans-
fer genomes with compensatory mutations constitute two factors acting in
close concert to avoid extinctions due to an excessive accumulation of deleteri-
ous mutations. The occurrence of compensatory, advantageous mutations was
not introduced in most models of Muller’s ratchet that considered that back
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mutations were the only mechanism to revert the negative effect of deleterious
mutations [76,77]. However, compensatory mutations are much more frequent
than reversions as a mechanism to increase fitness, as it has been demon-
strated in several theoretical and experimental studies [78, 79]. Accordingly,
during the process of fitness recovery of FMDV and VSV bottlenecked clones
upon large population passages, both reversions and compensatory mutations
were found to be responsible for the observed fitness increases [64,66,71]. None
of the recovered strains reverted to a wild type sequence, confirming that bot-
tlenecks move the quasi-species through the fitness landscape towards regions
where the adaptive value of mutations can be drastically altered.

The results of all these studies show that there are different mechanisms
able to modulate the adaptive value of mutations. When the environment
is altered, a new fitness landscape appears where the effect of particular
mutations varies. In a similar way, even if the fitness landscape is not mod-
ified, bottlenecks constitute an effective way to explore new regions, where
the selective value of mutations can differ from that present in the initial
quasi-species. This means that the effect of mutations can vary depending on
the mutations previously accumulated in the genome, a fact that points to
epistatic interactions. Sanjuán et al. have studied the effect of pair of muta-
tions in the VSV genome, compared to their effects as single mutations [80].
They found mainly antagonistic interactions between deleterious mutations
(the effect of both mutations appearing together is smaller than the sum of
the separate effect of each mutation). This finding can partially explain the
non-linear dynamics of fitness loss observed in the FMDV clones. Some the-
oretical studies also show that antagonistic epistasis can reduce the speed of
the ratchet.

A relevant question concerns the effect that the high mutational load of
viral populations with a long history of bottlenecks has on their adaptability.
The studies of Novella [81] have shown that bottlenecked viruses, even if they
have recovered fitness through massive passages, always loss in competition
experiments with the wild type, meaning that they have lower adaptability.
It would be quite interesting to investigate if the high number of mutations
accumulated in bottlenecked viruses also has negative consequences for adap-
tation to a new environment with a different fitness landscape. These studies
can be carried out with viruses carrying different combinations of mutations
and having the same fitness value, as those obtained at different transfer num-
ber in the stationary state attained by FMDV bottlenecked clones. The results
of experiments of this type would allow to get more insight in the alternative
adaptive solutions that can be explored by RNA virus populations differing
in the consensus sequence.

15.7 Conclusions

Most of the viruses that are important human pathogens have RNA as
genetic material. All of them share high mutability and a great potential for
adaptation that makes their eradication enormously difficult. The isolation of
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drug-resistant mutants, the emergence of new diseases in humans caused by
viruses that usually are maintained in animal reservoirs or the appearance
of viral variants able to resist the action of the immune system of the host
constitute important challenges for research in this century. One of the most
promising strategies for the control of viral diseases consists in the increase
of the error rate of viral replication above the threshold that prevents further
transmission of genetic information. The difficulty to apply lethal mutagene-
sis to the treatment of viral infections largely rely, as it happens with other
antiviral drugs, on the emergence of resistant mutants, which in this case
would probably be those carrying high fidelity polymerases. The knowledge
of the exact mechanisms leading a population to error catastrophe implies a
detailed study of the composition and structure of the mutant spectrum of
the quasi-species. In this sense, the comparison with the structure of bottle-
necked populations that have accumulated a large number of mutations still
compatible with survival can help to design new strategies for the extinction
of infectivity.
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pacial).

References

1. L.A. Ball, in Fields Virology, 4th edn., ed. by D.M. Knipe, P.M. Howley
(Lippincott Williams and Wilkins, 2001)

2. D.J. Earl, M.W. Deem, Proc. Natl. Acad. Sci. USA 101, 11531 (2004)
3. J.W. Drake, B. Charlesworth, D. Charlesworth, J.F. Crow, Genetics 148, 1667

(1998)
4. P.L. Foster, Mutat. Res. 569, 3 (2005)
5. M.M. Tanaka, C.T. Bergstrom, B.R. Levin, Genetics 164, 843 (2003)
6. J.W. Drake, J.J. Holland, Proc. Natl. Acad. Sci. USA 96, 13910 (1999)
7. E. Domingo, J.J. Holland, Annu. Rev. Microbiol. 51, 151 (1997)
8. S. Cleaveland, M.K. Laurenson, L.H. Taylor, Philos. Trans. R. Soc. Lond. B

Biol. Sci. 356, 991 (2001)
9. M.E.J. Woolhouse, L.H. Taylor, D.T. Haydon, Science 292, 1109 (2001)

10. R. Chen, M.E. Quinones-Mateu, L.M. Mansky, Curr. Pharm. Des. 10, 4065
(2004)

11. E. Batschelet, E. Domingo, C. Weissmann, Gene 1, 27 (1976)
12. D. Posada, K.A. Crandall, E.C. Holmes, Ann. Rev. Genet. 36, 75 (2002)
13. T. Rhodes, H. Wargo, W.S. Hu, J. Virol. 77, 11193 (2003)



15 Genetic Variability in RNA Viruses 361

14. M.C. Boerlijst, S. Bonhoeffer, M.A. Nowak, Proc. R. Soc. Lond. B Biol. Sci.
263, 1577 (1996)

15. D.J. Earn, J. Dushoff, S.A. Levin, Trends Ecol. Evol. 17, 334 (2002)
16. R.J. Webby, R.G. Webster, Science 302, 1519 (2003)
17. M. Eigen, Naturwissenschaften 58, 465 (1971)
18. M. Eigen, C.K. Biebricher, in Variability of RNA Genomes, vol. III, ed. by

E. Domingo, J.J. Holland, P. Ahlquist (CRC, Boca Raton, FL, 1998)
pp. 211–245

19. M. Eigen, P. Schuster, Naturwissenschaften 64, 541 (1977)
20. E. Domingo, C. Biebricher, M. Eigen, J.J. Holland, Quasispecies and RNA

Virus Evolution: Principles and Consequences (Landes Bioscience, Austin,
2001)

21. E. Domingo, D.L. Sabo, T. Taniguchi, C. Weissmann, Cell 13, 735 (1978)
22. E.C. Holmes, Trends Microbiol. 11, 543 (2003)
23. U. Parikh, C. Calef, B. Larder, R. Schinazi, J.W. Mellors, in HIV-1 Sequence

Compendium ed. by C. Kuiken, B. Foley, B. Hahn, P. Marx, F. McCutchan,
J. Mellors, S. Wolinski, B. Korber (Theoretical Biology and Biophysics Group,
Los Alamos National Laboratory, Los Alamos, 2001) p. 191

24. R.W. Shafer, Clin. Microbiol. Rev. 15, 247 (2002)
25. R.M. Anderson, R.M. May, Infectious Diseases of Humans: Dynamics and Con-

trol (Oxford University Press, Oxford, 1991)
26. E. Baranowski, C.M. Ruiz-Jarabo, E. Domingo, Science 292, 1102 (2001)
27. R.M. Bush, W.M. Fitch, C.A. Bender, N.J. Cox, Mol. Biol. Evol. 16, 1457

(1999)
28. Y. Ina, T. Gojobori, Proc. Natl. Acad. Sci. USA 91, 8388 (1994)
29. P. Daszak, A.A. Cunningham, A.D. Hyatt, Science 287, 443 (2000)
30. S.S. Morse, Emerg. Infect. Dis. 1, 7 (1995)
31. F. Gao, E. Bailes, D.L. Robertson, Y. Chen, C.M. Rodenburg, S.F. Michael,

L.B. Cummins, L.O. Arthur, M. Peeters, G.M. Shaw, P.M. Sharp, B.H. Hahn,
Nature 397, 436 (1999)

32. P.A. Rota, M.S. Oberste, S.S. Monroe, W.A. Nix, R. Campagnoli, J.P. Icenogle,
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