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1 Introduction

Yee’s scheme for the solution of the Maxwell equations [1] and the MAC
algorithm for the solution of the Navier–Stokes equations [2] are examples
of co-volume solution techniques. Co-volume methods, which are staggered
in both time and space, exhibit a high degree of computationally efficiency,
in terms of both CPU and memory requirements compared to, for example,
a finite element time domain method (FETD). The co-volume method for
electromagnetic (EM) waves has the additional advantage of preserving the
energy and, hence, maintaining the amplitude of plane waves. It also better
approximates the field near sharp edges, vertices and wire structures, without
the need to reduce the element size. Initially proposed for structured grids,
Yee’s scheme can be generalized for unstructured meshes and this will enable
its application to industrially complex geometries [3].

Despite the fact that real progress has been achieved in unstructured
mesh generation methods since late 80s, co-volume schemes have not gen-
erally proved to be effective for simulations involving domains of complex
shape. This is due to the difficulties encountered when attempting to gener-
ate the high quality meshes that satisfying the mesh requirements necessary
for co-volume methods. In this work, we concentrate on EM wave scattering
simulations and identify the necessary mesh criteria required for a co-volume
scheme. We also describe several approaches for generating two-dimensional
and three-dimensional meshes satisfying these criteria. Numerical examples
on the scattering of EM waves show the efficiency and accuracy that can be
achieved with a co-volume method utilising the proposed meshing scheme.

2 Mesh Requirements

For co-volume integration schemes to be implemented on unstructured meshes,
the triangulation has to satisfy a number of criteria. For EM simulations, since
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the schemes are staggered in space, co-volume methods need two mutually
orthogonal meshes for the electric and magnetic fields. The dual Delaunay–
Voronöı diagram is the obvious choice. In 2D, corresponding edges of the
Voronöı and Delaunay meshes are mutually orthogonal. In 3D, every edge of
the Voronöı diagram is orthogonal to the corresponding face of the Delaunay
triangulation and vice versa.

Both meshes must be sufficiently smooth, i.e. the edges in both meshes
must not be too short or too long. The stability property of an explicit im-
plementation determines the time step in terms of the shortest edge in both
meshes. Thus, all the edges should have length O(δ), where δ is the rec-
ommended element size based upon the characteristic wavelength, λ, of the
problem. The typical value used in many simulations is δ = λ/15.

In addition, from the view point of accuracy, the Delaunay mesh should
not contain bad elements, where, in this context, an element is defined as bad
if its circumcentre is located outside the element.

A brief explanation of the main requirements can be found in the Appen-
dix.

3 Mesh Quality Criteria

The criteria employed to determine the suitability of the mesh have to reflect
the requirements of the numerical solution procedure. The simple formula

Q = β
min{lD, lV }

〈lD〉
(1)

is very useful to estimate the quality of the mesh built for wave scattering
purposes. Here, β =

√
8 is a normalization coefficient, which gives Q = 1 for

an ideal mesh (see Section 5), lD is the Delaunay edge length, lV is the Voronöı
edge length and 〈lD〉 is the average Delaunay edge length. The minimum is
taken over all sides of both meshes.

If the mesh contains some bad elements, then the fraction,

rbad =
Nbad

e

Ne
, (2)

is also a criterion which may be used to compare different meshes. Here Ne

is the total number of elements in the mesh and Nbad
e is the number of bad

elements.
A sufficient condition to ensure the smoothness of the Voronöı diagram,

is to ensure that every element has its circumcentre inside the element and
located as far as possible from its edges or faces. In this case, the measure

qe = 3
he

Re
≡ 3 cos

(
max

i=1,...,4
αi

)
(3)
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is employed to estimate the quality of each individual element. In this expres-
sion, Re is the circumradius, he = min

i=1,...,4
he

i is the signed shortest distance

from the circumcentre to an element edge or face (set negative if the circum-
centre lies outside the element). For a perfect tetrahedral element qe = 1;
qe < 0 for a bad element. This quality parameter qe is also related to the
maximal vertex angle αi of an element. In 2D the vertex angle is simply the
angle between the two edges connected to this vertex. In 3D the analogous
tetrahedron vertex angle has a more complicated definition. The angle αi of
vertex Pi is defined as the angle under which a circumcircle of the face op-
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Fig. 1. On the definition of 3D element angle (left). Six elements of 3D ideal mesh
form a parallelepiped tiling the space (right).

posite to Pi is seen from Pi in the plane passing through Pi and centre of
element’s circumsphere, O, and face’s circumcircle, Oi, as seen in figure 1.
The segment OOi has length hi. A good quality element, with qe > 0, will
have all acute vertex angles. It can be shown that, if qe > 0 for all elements
of the mesh, then the mesh is guaranteed to be Delaunay satisfying [4].

It can be shown that the necessary condition to ensure a good quality
tetrahedral element, qe > 0, with circumcentre located inside the element,
is that the four triangular faces of the element should have acute angles [4].
Therefore, it is important to ensure that the initial boundary triangulation
consists of triangles with all acute angles.

If all the tetrahedron vertex angles defined above are acute, some dihedral
angles can be right or obtuse. A tetrahedron with all acute dihedral angles
can have its circumecentre located outside its volume and hence can have an
obtuse vertex angle.

Notice also, that although the tetrahedron vertex angle and the solid angle
for the same vertex are not related uniquely, nevertheless the solid angle is
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less/equal/greater than 2π, if the vertex angle is acute/right/obtuse, respec-
tively.

4 Traditional Meshing Methods

Traditional unstructured mesh generation methods, such as the advancing
front technique (AFT) [5] and the Delaunay triangulation [6], as well as their
combinations [7], are not designed to guarantee the creation of a mesh meet-
ing the requirements set out above, even in the two-dimensional case. These
methods generate meshes in which the element edge length is normally accept-
able, but the corresponding Voronöı diagram may often be highly irregular,
with some very short Voronöı edges. Thus, these methods cannot guarantee
the regularity of the edge lengths of the dual mesh and the absence of bad
elements, even in 2D. Mesh improvement methods, based on swapping, recon-
nection [8] and smoothing, improve the quality of 2D meshes. Nevertheless,
a significant number of very short Voronöı edges and bad elements, located
mainly near the domain boundary, remain in the final mesh [9]. In 3D, the
advancing front technique (AFT) can produce meshes with about 60% of bad
elements and these are unsuitable for a co-volume solution scheme.

A promising approach is the construction of the centroidal Voronöı tessel-
lation (CVT) and its dual Delaunay mesh. The CVT relocates the generated
nodes to be at the mass centroids of the corresponding Voronöı cells with re-
spect to a given density function [10]. A new Voronöı tessellation of the relo-
cated nodes is produced. This process, which is called Lloyd’s algorithm [11],
can be repeated until all nodes are close enough to the corresponding cen-
troids. Lloyd’s algorithm needs an initial mesh, which can be generated by
any method. In addition to relocating the nodes, the CVT scheme changes
the mesh topology. Although the quality of final mesh is much higher than
the quality of the initial mesh, it is normally not suitable for the successful
application of co-volume solution schemes: in 3D, the share of bad elements
is usually around 10% of the total elements, although this can be reduced to
3–5% for specially prepared initial meshes.

An alternative approach is the stitching method [9]. In this approach, the
problem of triangulation is split into a set of relatively simple problems of
local triangulation. Firstly, in the vicinity of boundaries, body fitted local
meshes are built with properties close to those regarded as being ideal. An
ideal mesh is employed, away from boundaries, to fill the remaining part of
the domain. These mesh fragments are then combined, to form a consistent
mesh, with the outer layer of the near boundary elements stitched to a region
of ideal mesh by a special procedure, in which the high compliance of mesh
fragments is used. This will result in high quality meshes compared to those
built by other methods [9].



Smooth Delaunay–Voronöı Dual Meshes for Co-Volume Schemes 533

5 Ideal Mesh

In 2D, a mesh of equilateral triangles is an ideal mesh. The index of every
node, i.e. the number of nodes connected to a node, is 6, the Voronöı edge
length lV = lD/

√
3 ≈ 0.56 lD, the element quality is qe = 1 and all the vertex

angles are 60◦. A 3D analogue of this ideal mesh consists of equal non-perfect
tetrahedra, each face of which is an isosceles triangle with one side of length
llong
D and two shorter sides of length lshort

D = (
√

3/2) llong
D . Six such tetrahedra

form a parallelepiped tiling the space, as illustrated in Figure 1. It can be
shown that this configuration maximises the minimum Voronöı edge for a
fixed element size. All Voronöı edges have the same length lV ≈ 0.38 δ where
δ ≡ 〈lD〉 = (3 llong

D + 4 lshort
D )/7 ≈ 0.92 llong

D . This configuration guarantees
that the element quality is qe ≈ 0.95 and that every node has an index of
14. All vertices have an acute angle, 71.5◦, and hence, the circumcentre is
located inside each element. However, certain dihedral angles are equal to
90◦, which is larger than the value α = arccos(1/3) = 70.5◦ for the perfect
tetrahedron. The 2D and 3D ideal meshes satisfy the requirements listed in
Section 2, but do not necessarily fit the boundaries of an arbitrary domain to
be triangulated.

6 Near Boundary Triangulation

If the domain boundary is smooth enough i.e. if its radius of curvature is
much greater than δ, then building the first few layers of a body fitted mesh
is an elementary task in 2D: the near boundary mesh has the same topology
as the 2D ideal mesh. A well tuned 2D advancing front method is capable of
producing a high quality near boundary mesh of this type. Modifications to
the method, which improve the mesh quality if the boundary curvature is not
small, are described in [9].

The analogous 3D problem is not elementary, even for the problem of gen-
erating high quality tetrahedral elements near a plane boundary discretised
with a 2D ideal mesh. Using the 3D advancing front technique, which is re-
garded to be an effective method for placing points, we can build a perfect
tetrahedron on every boundary triangle (Figure 2a). The first layer of new
points forms a hexagonal structure which cannot be connected to form trian-
gles which are all acute. This is illustrated in Figure 3. Hence, this method
applied directly, which generating nearly twice the number of boundary points,
cannot even produce a mesh of the desired form for the first layer.

Analyzing the structure of the 3D ideal mesh, it can be concluded that
the best location of a new point is above the edge shared by two conjugate
surface triangles (Figure 2b). Starting from a plane boundary with an ideal
2D triangulation, the boundary triangles are grouped into pairs sharing the
same edge. A New points are located above these edges. The optimal position
for the points is at a distance of 0.684 of the boundary edge length from the
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a b

Fig. 2. (a) Placing a new point above centroid of boundary triangles as in classical
AFT. (b) Placing a new point above a midpoint of an edge (bold line) shared by two
boundary triangles. Open circles indicate new points, dotted lines show new edges
of formed nearly boundary tetrahedra.

Fig. 3. Perfect tetrahedra built at every boundary triangle (view from above the
boundary) (left). Delaunay connection of their apexes (right)

plane. This minimises the worst element quality at qe = 0.795. This procedure
ensures that the number of new points similar to that of the initial boundary
points. This means that the triangulation can be continued layer by layer to
form a 3D mesh with the same topology as the 3D ideal mesh. This process
is demonstrated in Figure 4.

In the general case, the boundary triangulation does not have the topology
of 2D ideal mesh on a plane with all nodal indexes equal to 6. Therefore, when
we group all the boundary faces into pairs, some of the generated triangles
will remain ungrouped (Figure 5). For such an ungrouped triangle, point in
the next layer must be located above its circumcentre, as in the standard ad-
vancing front technique. If the topology of the boundary mesh is good enough,
i.e. if the index of most nodes is 6, and a relatively small number of nodes
have index 5 and 7, then the number of uncoupled triangles is relatively small.
Hence, the number of points in the the next layer will only slightly exceed the
number of boundary points. All the points are connected by the Delaunay
method and a new layer is formed. This can be viewed as a sophisticated



Smooth Delaunay–Voronöı Dual Meshes for Co-Volume Schemes 535

Fig. 4. Tetrahedra built if nodes are placed above edges (left). Boundary triangu-
lation (solid) and Delaunay connection of nodes (dashed) (right).

Fig. 5. Set of boundary faces is split by non-intersecting pairs of triangles sharing
this same edge. Those edges are indicated by a bold lines. Non-coupled triangles are
indicated by grey.

version of the 3D advancing front method for placing points, coupled with the
Delaunay method for connecting points.

An example of a mesh produced by the basic AFT for a domain with a
slightly curved boundary, and with a nearly ideal boundary mesh, is shown in
Figure 6. Here only tetrahedra having boundary faces are shown. The colour
indicates the tetrahedron quality: with white to red corresponding to quality
qe from 1 to zero and from blue to black corresponds to the quality qe from
zero to −3. It can be observed that a significant number of bad elements
remains.

Figure 7 shows several views of the first layer of a mesh generated using the
proposed method. The colour–quality indication is the same as that used in
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Fig. 6. Fragment of triangulation by the classical AFT. Elements having boundary
face are shown only. View from the outside (left) and from the domain (right).

Figure 6. It should be noted that the near boundary triangulation is the most
demanding part of the stitching method. Furthermore, acute near boundary
triangulation will automatically solve the problem of boundary recovery, which
is an essential part of any Delaunay triangulation.

Fig. 7. Fragment of the triangulation by the new method. View from the outside
(a) and from the domain (b–c), elements having boundary face (a,b), also elements
having boundary edge (c), also elements having boundary node (d)
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Steps in creating a new layer:

1. Split all boundary (or frontal) triangles by pair of triangles sharing the
same edge, minimizing the number of single triangles.

2. Locate new points above midpoint of the shared edges and above centroid
of single triangle.

3. Connect all the points by Delaunay method.

7 Example of a Domain Triangulation.

A simple domain, made of two spherical surfaces, is triangulated using the
procedure described above. The size of elements used increases towards the
outer sphere. A cut through the triangulation is shown in Figure 8. The colour–
quality indication is the same as in Figures 6 and 7. The mesh contains some
bad elements, with qe ≈ −0.017, but they form just 0.12% of the elements
only, i.e. 256 among Ne = 218, 816. The shortest Voronöı edge is 0.05 δ, 87%
of the internal nodes have the ideal index of 14, and the rest of the nodes have
indices between 10 and 16. To compare the quality of the generated mesh with
that obtained by other methods, the same 3D domain and the same boundary
triangulation were used to generate meshes using an advancing front method,
a Delaunay triangulation and a coupled Delaunay and CVT scheme. Various
mesh quality criteria were computed: the global quality criteria, Q defined in
equation (1); the percentage of bad elements in the mesh rbad; the individual

Table 1. Comparison for different meshing methods

Method Q rbad
qe 3Rin

e /Re nodal index

min mean min mean min max

Advancing Front 4 · 10−7 67% −3 −0.49 3·10−4 0.65 4 37

Delaunay 2.4 · 10−6 50% −2.2 −0.07 5·10−3 0.72 8 24

Delaunay+CVT 1.0 · 10−5 9.8% −1.2 0.39 0.08 0.88 9 21

Present method 4.8 · 10−2 0.12% −0.02 0.65 0.74 0.92 10 16

element quality qe, defined in equation (3); a standard criterion of the ratio an
element’s inradius Rin

e to its circumradius. To estimate topological properties
of the obtained meshes, the range of the nodal index for internal nodes was
also determined. The results are displayed in Table 1. It can be seen that
the new method gives much improved mesh quality compared to all other
methods.
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Fig. 8. Cut of the triangulation of a spherical layer.

8 Numerical Results

This mesh has been used with a co-volume integration scheme for Maxwell’s
equations. The unknowns are the projections of the electric field onto the
Delaunay edges and the projections of the magnetic field onto the Voronöı
edges. The solution is advanced in time using a staggered explicit scheme.
The wave frequency is such that the diameter of the sphere is 2λ. The size
of the elements near the scattering PEC sphere is approximately λ/15. Near
the external boundary, the element size is λ/6. The distance between the
boundaries is large enough to neglect the reflection of wave from the external
boundary during first three cycles. The number of time steps per cycle is 141.
The computation time per time step is 0.1 s, which is ten times faster than
the corresponding time for a conventional finite element time domain method
on the same mesh. The computed radar cross section (RCS) distribution is
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Fig. 9. Radar Cross Section exact (red) and computed by the co-volume method
(blue).

compared with the exact distribution in Figure 9 and the maximum difference
at any location is less than one tenth of a dB.

9 Conclusion

A new method of placing the points in 3D triangulation is proposed. The
method produces a high quality near boundary triangulation. It has been
demonstrated that the quality of the resulting mesh is such co-volume inte-
gration schemes can be successfully implemented. An example that demon-
strates that the problem of building a mesh for a 3D domain for use with
a co-volume solution scheme is solvable. Work on the generalization of the
method for more complicated domains is currently in progress.
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Appendix: Yee’s scheme generalized to unstructured
meshes

The Yee algorithm is based on: Ampere’s law

∂

∂t

∫

A

E dA = ε

∮

∂A

H dl (4)

and Faraday’s law
∂

∂t

∫

A

H dA = −µ

∮

∂A

E dl (5)

applied to a surface A and its boundary ∂A. Here E and H are the electric
and magnetic fields, respectively; dA is an element of surface area directed
normal to the surface, dl is an element of the contour length directed tangent
to the contour; ε and µ are the electric and magnetic permeability.

If a dual Delaunay–Voronöı diagram is built for the domain of integration,
then equations (4) and (5) can be approximated as

En
i − En−1

i

∆t
AV

i = ε

MV
i∑

k=1

Hn+0.5
ji,k

lVji,k
, i = 1, . . . , ND

s (6)
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Hn+0.5
j −Hn−0.5

j

∆t
AD

j = −µ
3∑

k=1

En
ij,k

lDij,k
, j = 1, . . . , NV

s (7)

where En
i is the projection of the electric field onto the ith Delaunay side at

the instant n∆t; Hn+0.5
j is the projection of the magnetic field onto the jth

Voronöı side at the instant (n + 0.5)∆t; lDi and AV
i denote the length of the

ith Delaunay side and the area of the corresponding Voronöı face respectively;
lVj and AD

j are the length of the jth Voronöı side and the area of the corre-
sponding Delaunay face respectively; ji,k, k = 1, . . . , MV

i are sides of a Voronöı
face corresponding to the ith Delaunay edge (Figure 10a); ij,k, k = 1, 2, 3 are
sides of a Delaunay triangle face corresponding to the jth Voronöı edge (Fig-
ure 10b); ND

s and Ne
s are the numbers of Delaunay and Voronöı sides in the

mesh.

p p

i ji,4

1
2

ji,2 ji,3

ji,1

ji,6 ji,5

e e
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j

ij,1 ij,2

ij,3

e e
1 2

j

ij,1
ij,2

ij,3

a b c

Fig. 10. The ith Delaunay side connecting nodes p1-p2 and correspondent Voronöı
face formed by Voronöı sides ji,1, . . . , ji,6 (a). The jth Voronöı side connecting cir-
cumcentra of elements e1-e2 and correspondent Delaunay face formed by Delaunay
sides ij,1, ij,2, ij,3 (b-c). In (c) the Voronöı side does not intersect the correspondent
Delaunay face.

Equations (6)and (7) form an explicit procedure for advancing the electric
field form time tn to t(n+1) and the magnetic field from time t(n−0.5) to t(n+0.5).
For a structured grid this scheme is if c∆t < l/

√
3 where c = 1/

√
εµ is the

light speed, and l is an edge length. For an unstructured tetrahedral mesh,
there is no such simple criterion but computations show that we can use the
following relation

c∆t < Sf min
i,j
{lVi , lDj } (8)

where Sf is a safety factor.
In the co-volume scheme, the values of electric and magnetic field are taken

at the intersection point of the edge and the correspondent face. If an element
has its circumcentre outside its volume then the field will lie outside the edge
connecting the two corresponding circumcentres (Figure 10c). In this case, the
approximation of the integral cannot guarantee even the first order accuracy.




