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Preface

The papers in this volume were selected for presentation at the 15th 

International Meshing Roundtable, held September 17–20, 2006 in 

Birmingham, Alabama, U.S.A.. The conference was started by Sandia 

National Laboratories in 1992 as a small meeting of organizations striving 

to establish a common focus for research and development in the field of 

mesh generation. Now after 15 consecutive years, the International 

Meshing Roundtable has become recognized as an international focal point 

annually attended by researchers and developers from dozens of countries 

around the world. 

The 15th International Meshing Roundtable consists of technical 

presentations from contributed papers, keynote and invited talks, short 

course presentations, and a poster session and competition. The Program 

Committee would like to express its appreciation to all who participate to 

make the IMR a successful and enriching experience. 

The papers in these proceedings were selected from among 42 

submissions by the Program Committee. Based on input from peer 

reviews, the committee selected these papers for their perceived quality, 

originality, and appropriateness to the theme of the International Meshing 

Roundtable. The Program Committee would like to thank all who 

submitted papers. We would also like to thank the colleagues who 

provided reviews of the submitted papers. The names of the reviewers are 

acknowledged in the following pages. 

As Program Chair, I would like to extend special thanks to the Program 

Committee and to the Conference Coordinators for their time and effort to 

make the 15th IMR another outstanding conference. 

Sandia National Laboratories    Philippe P. Pébay 

15th IMR Chair

July 2006
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Non-Local Topological Clean-Up 

Guy Bunin 

buning@tx.technion.ac.il

Abstract. A new approach to topological clean-up of 2D meshes is presented. 

Instead of searching for patterns in a mesh and replacing them as in other 

methods, the proposed method replaces a region in a mesh only according to the 

boundary of that region. This simplifies the classification of the different cases, 

and allows mesh modification over greater regions in the mesh. An algorithm for 

quadrilateral meshes utilizing this approach is presented in detail, and its effects 

on example problems are shown. 

1. Introduction 

Topological clean-up is the name given to methods aimed to improve the 
quality of a mesh, by changing its connectivity [1,2,3,4,6]. It is usually car-
ried out after a mesh has been generated by some meshing algorithm. The 
goal of the clean-up is to decrease the number of nodes that are attached to 
too few or too many cells. In an all-quadrilateral mesh, if there are nodes 
attached to more or less than 4 cells, some cells will be forced to have in-
ner angles different than 90 degrees. Decreasing the number of irregular 
nodes could therefore improve the quality of the mesh. 

The methods presented in the literature on the subject are usually based 
on predefined "cases" or "patterns". Cases are specific configurations of 
the mesh connectivity that, once found in the mesh, are modified according 
to the case found. Because the number of possible configuration of a mesh 
increases dramatically with the configuration size, the cases are local,
spanning a region of a few cells at most. By applying local clean-up opera-
tions successively on a mesh, many problematic configurations can be re-
solved. There are, however, possible mesh improvements that are not cov-
ered by these methods. 

Department of Physics, Technion, Haifa 32000, Israel



4      G. Bunin 

In this paper a new clean-up method is proposed. In this approach, the 
configurations are regions of the mesh classified according to the bound-
ary of the region. The mesh connectivity is modified by replacing the mesh 
of the region with a different mesh connectivity, that was created by "topo-
logically meshing" the interior of the boundary of that region. In other 
words, a new mesh connectivity conforming to the boundary of the re-
placed region is created, and if this new connectivity has a better topologi-
cal quality, it can replace the existing mesh of the region. The method can 
be applied to improve the mesh structure even if irregular nodes are not 
close to each other, thus allowing the clean-up of cases not specified by 
previous methods. 

The method presented, like other topological clean-up methods, does 
not take the vertex locations into account. Therefore, if applied without 
any restrictions, it might reduce the geometric quality of the mesh. This is 
especially true near mesh boundaries, since boundary vertices cannot be 
moved, and the amount of possible mesh smoothing is more limited. In 
such cases it may be better to use techniques that are more geometric in 
nature. For further discussion see section 2.5, where criteria for allowing 
clean-up operations are suggested. 

The paper is organized as follows. In chapter 2 the algorithm is de-
scribed. Chapter 3 presents examples of clean-up results. Chapter 4 pre-
sents conclusions and possible directions for future research. 

2. Algorithm 

2.1 Algorithm Overview 

In the method suggested, every topological clean-up operation consists of 
3 steps, see figure 1. First, a simply-connected part of the mesh is selected 

mesh is "topologically-meshed", i.e. a new mesh-connectivity is created 

determined by the first layer of cells outside the loop. Finally, if the new 
topological-mesh meets a number of conditions, the principal condition be-
ing the improvement of the topological structure, the existing part of the 

After a replacement takes place the new mesh nodes have no location. 
The geometric stage, of assigning coordinates to the vertices can be done 
as a fourth step after the replacement, or perhaps at once after all the  topo- 

(Fig. 1, (2)). This "meshing" phase is based on the loop structure, which is 

(Fig. 1, (1)). Then, the inside of the loop surrounding the chosen part of the 

mesh is replaced by the new mesh (Fig. 1, (3)).
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locations to the new vertices will not be addressed here. For research on 
the subject see [7] and references therein. 

In what follows only the case of quadrilateral meshes is addressed, 
though the basic principle may be extended to other cases, such as triangu-
lar and mixed meshes. 

A

(1)

A

(2)

A

(3)

A

(4)

Fig. 1. The steps of a single clean-up operation. (1) A loop surrounding a part of 
the mesh is chosen. (2) The loop is given a different topological-mesh (connec-
tivity only), based on the topological structure of the loop. (3) The mesh inside the 
loop is replaced by the new mesh created in step 2. (4) The new nodes are given 
coordinates, and the whole mesh is smoothed. (This part can also be done after all 
clean-up operations are over). 

2.2 Definitions 

Node Valence – the number of cells (or edges) incident on the vertex. 

logical clean-up process has ended (Fig. 1, (4)). The problem of assigning 
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Clean Mesh – a mesh in which all nodes are of valence 4. 
Defect – a node of valence other than 41.
Loop – a closed path traversing edges in a mesh. 
Topological Outer Angle – a closed loop in a mesh divides the mesh 
into two parts: the cells inside the loop, and the cells outside the loop. A 
vertex which is on the loop itself will therefore be incident upon cells 
inside and outside the loop. The outer angle of a vertex on a loop is cal-
culated to be (see Figure 2): 

< Topological Outer Angle> =

<number of outside cells incident> - 2 

(1)

If the vertex is on the mesh boundary, a factor of 90/ ,  being the 
geometric outside angle of the boundary, is added to the right hand side 
of equation (1), to account for the lack of cells outside the mesh. 

Convex Loop – a convex loop is a loop whose nodes all have a non-
negative topological outer angle. 
Corner of a Convex Loop – a corner of a convex loop is a vertex with a 
positive outer angle. 
Side of a Convex Loop – the edges of a loop between two given corners. 

Fig. 2. The vertex V in the figure is incident upon 3 cells that are outside the loop. 

                                                     
1 Some authors refer to it as an irregular node. 

V

According to Eq. (1), its topological outer angle is 3 -- 2 = +1. 
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2.3 Remeshing a Convex Loop 

This section describes a way of topologically meshing a convex loop. That 
is, a new mesh connectivity inside a loop is created. This new connectivity 
is used in step 2 of the algorithm, after a loop has been chosen. 

The input to the algorithm is the loop, and the topological outside angle 
(TOA) of each vertex on the loop. Since it is a convex loop (see definition 
above) the TOA is non-negative. The following algorithm has an even 
more restricted input domain: it only deals with loops that have TOA's of 0 
or +1. This restriction actually limits the input to a topological analog of a 
polygon: there are N sides and N corners (see definition above), each cor-
ner has TOA = +1. 

There is a class of convex loops that can be meshed with only one defect in 
the mesh. Figure 3 shows such a mesh, for a convex loop of 3 sides. As 
can be seen in the figure, certain constraints on the lengths of the sides 
should hold. We will discuss these relations now. 

Fig. 3. A single-defect mesh inside a convex loop, for N = 3. The mesh can be 
viewed as composed of N structured meshes (clean meshed with 4 sides). The 
seaming of the loop constrains the side lengths. For N = 3: 

231231
;; ababab .

a1

b1

a2b2

b3

a3

One Defect Solution 
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nn
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l

l

b

b

a

a

M

:

0

:

0

:

:

11

1

(2)

Where
II

ID
M

2  is a 2N x 2N matrix, and D2 is the N x N identity 

matrix, with columns N-1,N brought to the beginning (becoming columns 
1,2). E.g. for N = 3, D2 is: 

010

001

100

2
D (3)

And for N = 5 D2 is: 

00010

00001

10000

01000

00100

2
D

(4)

                                                     
2 A structured mesh is a clean mesh with 4 sides. 

A single defect mesh of N sides can be viewed as N structured meshes
seamed together. Every side of the loop is composed of 2 sides of the 2 
logical meshes, see figure 3. Let li, I = 1...N be the length of the loops 
sides, and ai, bi the lengths of the 2 parts of each li. Then ai + bi = li. More-
over, due to the seaming of the sides of the logical meshes, some parts 
must have equal lengths, for example b1 = a3, b2 = a4, etc., or in general: 

1mod1 Nii
ab . For a loop with N sides, the constraints can be summarized 

in the following matrix equation: 
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When N is not a multiple of 4, the matrix M can be inverted. Then the 
matrix equation (2) can be solved. If the ai and bi of the solution vector are 
all non-negative integers, this solution represents a single defect mesh. If 
not, the loop cannot be meshed with a single defect. 

Many Defects 

This section describes an algorithm for meshing loop that cannot be 
meshed with a single defect. We limit ourselves to loops having 3, 4 or 5 
sides. We first define a "penalty factor" for loops. For loop with 3 or 5 
sides:

iii
baabsP ,min,0min (5)

where ai,bi are the solutions to equation (2) for the loop. A loop with pen-
alty 0 can be meshed with one defect. A loop with positive penalty can 
only be meshed with more defects3.

For 4-sided loops we define the penalty as follows. Let dcba ,,,  be the 
side lengths of the loop. Then we define the penalty of the loop using the 
penalty defined for 3-sided loops. 

acabsdbPbdabscaPP ,,,,,max1
334

(6)

Here P3, P4 are the 3-sided loop and 4-sided loop penalties, respectively. 
The rationale behind this definition will be clear below, when we describe 
the meshing algorithm of 4-sided loops.

We now describe the meshing algorithm. The algorithm presented is re-
cursive. For the case of a loop with 3 sides, the penalty of the loop is com-
puted, Eq. (5). If P=0, then the loop can be meshed with one defect, com-
pleting the meshing of this loop. Otherwise, one of the sides is "broken" 
into two, and the resulting 4-sided loop is meshed recursively. This effec-
tively puts a 3 defect into the mesh, see figure 4,A. The location of the 
"brake" is chosen according to the penalty of the 4-sided loop it would cre-
ate.

For a 5-sided loop, if the penalty of the loop is 0, the loop is meshed 
with one defect. If not, the algorithm joins two adjacent sides of the loop 

                                                     
3 Actually, it can be proved that an odd number of defects with valence 3 or 5 is 

required. 
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Fig. 4. Meshing of 3-sided (A) and 5-sided (B) loops that cannot be meshed with 
one defect. The loops are converted to 4-sided loops and meshed as such. 

l1

l2l3

a

l2l3

b
1

lba

l1

l2

l3l4

l5 l2

l3l4

l5+ l1

A

B

For meshing a 4-sided loop, let a,b,c,d be the side lengths of the loop. If 
ca and db , then the loop can be meshed with a clean mesh. Other-

wise, the algorithm adds rows until a triangle is formed, see figure 5. Since 
the rows stretch between a pair of opposite sides, there are two possible di-
rections for adding the rows, see figure 5A,B. The direction of adding the 
rows is chosen according to the penalty of the resulting triangle. Note that, 
in the side that was closed, a 5-defect is formed. This meshing method is 
the reason for the penalty definition for 4-sided loop: the penalty is just 
one plus the better of the penalties of the triangles that can be formed by 
adding rows. If the penalty of a 4-sided loop is 1, it can be meshed with 2 
defects. If the penalty is higher, more defects are required.

into one, and sends the result to be meshed as a 4-sided loop, see figure 
4,B. The joining effectively creates a 5-defect. The sides to be joined are 
chosen according to the penalty of the 4-sided loop that would be created. 
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2.4 Choosing the Loop to Remesh 

The first step in a single clean-up operation is choosing a region to remesh. 
This region should preferably contain defects, so that a clean-up operation 
may be possible. There are various ways of finding loops around defects. 
Presented here is a very simple way; there are other, perhaps better ways. 

Fig. 5. Meshing of a 4-sided loop. In the case shown 7;2;4;3 dcba .
The 2 possible directions for adding rows are presented. The 3-sided loop left in 
case A takes a penalty of 0. The penalty for the loop in case B is 1. 

b

d

d-b

c
a

d

a-c

b

c

B

a

A

The algorithm starts from a single defect in the mesh, called the "seed 
defect". A single layer of cells is added by adding all cells that are incident 

tive, see figure 6), then cells incident on the vertices with negative outer-

found, and the process is repeated from the beginning. Otherwise, if no 
mesh replacement has been made, the loop is grown further by adding the 
cells incident on the blob, and making the loop convex again. This process 
is repeated until a replacement has been made, or it is certain that no re-
placements will be made by extending the blob further. 

The seed defects are chosen by preferring defects that are furthest away 
from the boundary. If no replacement was made using the innermost defect 
as a seed defect, the process is repeated with the second innermost one, 
and so on. Once a mesh replacement made, the process starts again from 
the innermost defect. 

rounding this blob is not a convex loop (i.e. some outer angles are nega-

convex. The loop is then sent to the topological meshing algorithm described 

upon this defect. This group of cells will be called a "blob". If the loop sur-

angle are added to the blob. This process is repeated until the loop is

in section 2.3. If a mesh replacement has been made, a new seed defect is 
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2.5 Criteria for Allowing the Replacement 

Certain criteria must be met for the mesh replacement to be held. The 
first, obvious demand is that the replacement will improve the topological 
quality of the mesh. The topological quality is defined as the sum of how 
much the valence of the nodes varies from 4. A mesh replacement will 
only be carried out if this sum is lower after the replacement. 

Also, there are convex loops which the topological-meshing algorithm 
described above cannot mesh, such as a loop containing a node with topo-
logical outer angle greater than +1. Obviously, in such a case no replace-
ment is made. 

A topological clean-up process does not take into account the geometry 
of the mesh. This is less problematic when making mesh replacements far 
from the boundary of the mesh, where a smoothing process can move the 
mesh vertices to a great extent without creating low quality cells. Close to 
the mesh boundary, however, the mesh has less flexibility due to the fixed 
location of the boundary vertices, and the replacement is more risky. The 
following conditions help avoid creating poor cells. 

A mesh replacement is allowed only if: 
1. The blob radius (defined by the number of times it was grown, see 

blob to the boundary. 

1

2

3

4

Fig. 6. Choosing a mesh region to be replaced. 1. The seed defect. 2. The cells in-
cident on the seed defect. 3. The cell added to the first layer (2) to make its loop 
convex. The first loop (designated as I) surrounds cells of (2)+(3). 4. If no mesh 
replacement is made for loop I, the blob is extended. Loop II surrounds the larger 
blob. 

I

II

section 2.4) is smaller than the distance of the closest defect in the 
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2. The new defects (if any) in the replaced mesh are further from the 
boundary than the defects in the existing blob. 

The conditions above are of heuristic nature, but some intuitive reason-
ing can be given in their favor. The first condition stems from the idea that 
big modifications of the mesh (modifications over great distances) require 
more flexibility of the mesh that exists only far from the mesh boundary. 
The second condition reflects the importance of well aligned rows along 
the boundaries, as well as a reasoning similar to the one done for the first 
condition, to say that the flexibility of the mesh far from the boundary can 
help in reducing the effect of the defects on mesh quality. 

3. Examples 

In the examples below, we show the results of applying the clean-up al-
gorithm on sample meshes. The input meshes used were created with the 
MSC/PATRAN software. To allow a cleaner comparison, all meshes were 
smoothed with Laplacian smoothing. 

It is worth while noting that the mesh generator used already contains
its own topological clean-up stage [2], so the comparison presented here 
shows mesh improvement on-top of what was achieved using the clean-up 
described in [2]. 

In the comparisons shown below 2 different quality measures are used. 
The shape measure  [4,5] is used to evaluate the quality of a single cell. 
As in [5], it is defined here as the minimum of the shape metrics of the 4 
triangles that can be formed by the vertices of the quadrilateral. The pur-
pose of the second measure is to evaluate cell size transitions. A gradual 
size transition is an important characteristic of a mesh. To quantify this 
property of a mesh we define a size transition metric as follows. For every 
pair of neighboring cells (cells that share an edge) the area of the larger 
cell is divided by the area of the smaller one. The size transition metric of 
the mesh is the average of this quotient over all pairs of neighboring cells. 
It is always larger or equal to 1. A gradual size transition will be character-
ized by a metric close to 1. 

The first example shows a uniform size mesh. Figures 7-8 show the 
mesh before and after clean-up. Mesh defects are marked by squares or 
circles, according to node valence. Figure 9 compares the shape quality 
histograms. As can be seen, there is a great reduction in the number of 
cells with shape quality 7.0 . This is directly connected to the reduction 
in the number of  defects, as  is  shown  in  figure  10,  in  which  the  mesh 
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before the clean-up is drawn again, with cells having 7.0  filled in 
black. As can be seen, amongst the cells surrounding a node with valence 3 
there is typically one with 7.0 . Table 1 presents a comparison of mesh 
characteristics for this example. 

Fig. 7. Mesh of example 1 before clean-up. 

Fig. 8. Mesh of example 1 after clean-up.
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Fig. 9. Comparison of shape quality distributions in example 1 before and after 
clean-up.

Fig. 10. Mesh of example 1 before clean-up; cells with 7.0  are filled. 

Table 1. Mesh characteristics of example 1. 

Before Clean Up After Clean Up 
Number of Cells 745 721 

Number of Defects 42 20 
Average Metric 0.857 0.852 

Minimal Metric 0.478 0.464 

Number of Cells with 7.0 52 34 

Size Transition Metric 1.115 1.119 
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The second example shows a mesh that contains a large change in mesh 

ture seen here is an improvement in the size transition. The size transition 
metric is reduced from 1.223 to 1.166. 

Fig. 11. Mesh of example 2 before clean-up. 

Fig. 12. Mesh of example 2 after clean-up. 

size, due to variation in boundary edge length, see Figs. 11,12. A new fea-
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Fig. 13. Comparison of shape quality distributions in example 1 before and after 
clean-up.

Table 2. Mesh characteristics of example 2. 

Before Clean Up After Clean Up 
Number of Cells 696 802 

Number of Defects 56 22 
Average Metric 0.881 0.900 

Minimal Metric 0.410 0.408 

Number of Cells with 7.0 61 28 

Size Transition Metric 1.223 1.166 

The third example shows the action of the algorithm on a mesh with 
concave boundaries, and an interior boundary (hole). 
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Fig. 14. Mesh of example 3 before clean-up. 

Fig. 15. Mesh of example 3 after clean-up. 
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Table 3: Mesh characteristics of example 3. 

Before Clean Up After Clean Up 
Number of Cells 1047 1041 

Number of Defects 61 39 
Average Metric 0.900 0.906 

Minimal Metric 0.466 0.471 

Number of Cells with 7.0 58 45 

Size Transition Metric 1.107 1.108 

4. Conclusions 

A new approach to topological clean-up of 2D meshes was proposed. The 
basic clean-up operation in this method is creating a new connectivity for a 
region of the mesh, and replacing the existing mesh of the region. The new 
connectivity is created using information on the structure of the boundary 
of that region only. If this new connectivity is thought to improve the mesh 
quality, a replacement of this mesh region is made. 

An algorithm utilizing this approach for quadrilateral meshes was pre-
sented in detail, and the results of applying it on example meshes were 
shown. These examples, as well as others, suggest that a large reduction in 
the number of cells with lower shape quality ( 7.0 ) can be achieved. 
This fact is closely tied to the reduction in the number of defects (irregular 
nodes) in the mesh. The effect on the average shape quality is usually 
small, a few percent at most. Another observation is that the clean-up can 
help improve the cell size transitions in meshes where there are significant 
changes in cell size. 

The proposed approach seems to be especially beneficial for clean-up 
far from the boundary. There, replacement operations over larger distances 
can be carried out, and the relative advantage over local clean-up tech-
niques is more pronounced. This makes the technique a good complement 
to advancing front mesh generators, which tend to create defects inside the 
mesh, where the fronts collide in the meshing process. 

Further research can include finding improved region selection algo-
rithms, and perhaps improved topological meshing methods. Good algo-
rithms for finding legal locations for the new nodes after replacement are 
important as well; the speed and robustness of the mesh replacement stage 
relies on them. The general approach can probably be applied to triangular 
and mixed quad-tri meshes as well. 
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Summary. The proposed quad-dominant mesh adaptation algorithm is based on
simplicial optimization. It is driven by an anisotropic Riemannian metric and uses
specialized local operators formulated in terms of an L∞ instead of the usual L2

distance. Furthermore, the physically-based vertex relocation operator includes an
alignment force to explicitly minimize the angular deviation of selected edges from
the local eigenvectors of the target metric. Sets of contiguous edges can then be
effectively interpreted as active tensor lines. Those lines are not only packed but
also simultaneous networked together to form a layered rectangular simplicial mesh
that requires little postprocessing to form a cubical-dominant one. Almost all-cubical
meshes are possible if the target metric is compatible with such a decomposition and,
although presently only two-dimensional tests were performed, a three-dimensional
extension is feasible.

Key words:

1 Introduction

Elementary modification operators are essential to optimize the computational
meshes used by finite element and finite volume solvers. They have been suc-
cessfully employed to automatically adapt simplicial meshes of triangles, in
two dimensions, and tetrahedra, in three dimensions [1]. However, this level of
automation has not yet been duplicated for cubical meshes of quadrilaterals,
in two dimensions, and hexahedra, in three dimensions. Generation, let alone
adaptation, of such meshes is still a challenge. There is, nevertheless, a strong
demand for quality cubical meshes either due to the intrinsic properties of
such elements or simply for compatibility with existing solvers.

Although fairly robust two-dimensional methods have been developed, cur-
rent conformal all-hexahedral algorithms are usually limited in scope and can-
not automatically process arbitrary shaped domains [2]. Acknowledging this
difficulty, cubical-dominant algorithms allow a small percentage of non-cubical
elements in order to achieve an increased level of automation. The present
work proposes such an algorithm that combines cubical particle packing [3, 4]

Quad-dominant, mesh adaptation, anisotropic Riemannian metric.



22 K.-F. Tchon and R. Camarero

with tensor line networking [5] and recasts the whole process as a specialized
simplicial optimization. More precisely, physically-based attraction-repulsion
forces are used to distribute the vertices of a simplicial mesh according to
the local density prescribed by an anisotropic Riemannian control metric.
Coupled with appropriate particle or vertex population control, this results
in an approximate centroidal Voronoi-Delaunay triangulation. Furthermore,
the proximity-based particle interaction force is modified to promote cubical
Voronoi regions by using an L∞ norm instead of the usual L2 norm to com-
pute metric distance. Particle population control is also reformulated in terms
of simplicial refinement and coarsening operations using the same chessboard
distance. These modifications provide, however, only local alignment and an
additional constraint is needed to recover the globally layered structure of an
ideal cubical mesh. An angle-based torsional spring-like force is used for this
purpose and aligns selected mesh edges with the local metric eigenvectors. A
physical interpretation of this optimization process can best be described as
line networking. Set of contiguous mesh edges indeed effectively form tensor
lines that are not only packed but also simultaneously interconnected together
to form a layered rectangular simplicial mesh that requires little processing
to form a cubical-dominant one. Almost all-cubical meshes are also possible if
the target metric is compatible with such a decomposition. Finally, although
presently only two-dimensional cases were considered, a three-dimensional ex-
tension is feasible and should be computationally competitive with classical
simplicial optimization.

Following a brief summary of existing adaptation methods, the present
paper describes the proposed specialized simplicial optimization algorithm
and uses both academic and practical test cases to illustrate its capabilities.

2 Simplicial Versus Cubical Mesh Adaptation

2.1 Riemannian Metrics and Distance

Mesh adaptation algorithms are typically controlled by a target map spec-
ifying the desired element size according to its location in the domain. For
anisotropic maps, size also varies according to element orientation. Metric-
based algorithms cast such a target map as a tensor representing a deforma-
tion of space that modifies how the length, area and volume of mesh entities
are measured [6, 7]. Such a Riemannian metric tensor is a symmetric positive
definite matrix M and can be factored as the product of a rotation matrix R
and a diagonal matrix Λ as in this two-dimensional formula

M = RΛR−1 =
(
e1 e2

)
(

λ1 0
0 λ2

)(
et
1

et
2

)
. (1)

The columns of R are the eigenvectors of M and correspond to two prescribed
directions e1 and e2. The diagonal terms λ1 and λ2 are the strictly positive
eigenvalues of M. The target sizes h1 and h2 along e1 and e2 are given by the
inverse square root of those eigenvalues, i.e., hi = 1/

√
λi.
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Fig. 1. Two-dimensional ε-balls for a metric distance based on an L2 (left), an L1

(middle) and an L∞ norm (right).

Using such a target map, adapting a simplicial mesh is equivalent to re-
quiring that all its edges have a unit metric length, as explained in Sect. 2.2.
The notion of metric distance between two vertices is thus essential. For a
locally constant metric M, it is defined as follows

lab =
√

(pb − pa)t M (pb − pa) (2)

where a and b are any two vertices and p is a position vector. For non-constant
metrics, lab can be approximated by integrating this formula along segment ab
or by using an averaged metric. Following Minkowski’s formula in Euclidean
space, a generalized distance can also be defined in metric space as an Lp

norm

lab =

(
d∑

i=1

|xi|p
)1/p

(3)

where xi =
√

λi ei. (pb − pa) and d is the considered dimension. If p = 2 then
distance is measured using the classical L2 norm given in Eq. 2. On the other
hand, p = 1 corresponds to an L1 norm also called taxicab or Manhattan
distance while p = ∞ corresponds to the infinity norm also called Chebyshev
or chessboard distance

lab = max
1≤i≤d

|xi| . (4)

The differences induced by those norms in the partition of space are illustrated
in Fig. 1. The chessboard distance, i.e., the L∞ norm, is of particular interest
for cubical adaptation as explained in Sect. 3.1.

2.2 Simplicial Adaptation

The ideal simplex is considered to be a regular one, i.e., an equilateral triangle
in two dimensions (Fig. 2) or an equilateral tetrahedron in three dimensions. A
quality regular simplicial mesh should be composed of such elements. However,
equilarity implies constant or almost-constant element sizes. To facilitate the
generation of variable density simplicial meshes, a Riemannian metric tensor
can be introduced. A quality mesh should then be composed of regular sim-
plices in metric space, i.e., the edges of its elements should all have the same
metric length or, more precisely, a unit metric length. A perfectly adapted
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mesh is therefore called a unit mesh. This compact and elegant framework to
measure shape quality and size conformity has been extensively used to gen-
erate adapted simplicial meshes. See for example [1] and the references cited
therein. Furthermore, adapting a mesh to a solution is an iterative process
that can be done by global mesh regeneration or local mesh modifications.
In an iterative adaptation context where modifications to a previous mesh
are expected to be minimal, the latter approach may be advantageous. The
elementary simplicial mesh modification primitives or operators optimize the
vertex density and element shape quality to get as close as possible to a unit
mesh in metric space. They can be classified as follows:

• refinement and coarsening improve local vertex density by inserting and
deleting vertices;

• reconnection improves element shape by flipping faces and edges;
• relocation improves both element shape and local vertex density by repo-

sitioning individual vertices at optimal locations.

Those primitives can also be used after global mesh generation as postprocess-
ing operations. Global remeshing can then be viewed as a way to produce good
initial meshes for a local optimization process.

2.3 Cubical Adaptation

As for simplices, the ideal cubical element is a regular one, i.e., a square in
two dimensions (Fig. 2) or a cube in three dimensions. This, however, im-
plies edges not only equal in length but also joined at right angles. In prac-
tice, this orthogonality is very important and, in an anisotropic metric-based
adaptation framework, can be preserved in physical space only if the edges

3√
2

e2 e1

e2
e1

3√
2 h1

3√
2 h2

e2 e2e1 e1

√2

√2

h2 h1

11

1

1

1

Fig. 2. Ideal triangle (left) versus ideal quadrilateral and its triangular decomposi-
tions (right) in metric space and in physical space. The metric tensor is considered
locally constant.
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of the cubical element are aligned with the local eigenvectors. This explicit
directional constraint contrasts with the weak and indirect alignment of an
adapted simplex. A perfect simplicial element can indeed have any orientation
as long as its edges have a unit metric length and its loose alignment with
the minor eigenvector of the metric, corresponding to the smallest eigenvalue
and thus the biggest target size, is only due to the stretching introduced by
the spacial transformation (Fig. 2). A perfectly adapted cubical mesh is thus
understandably more difficult to obtain than a simplicial one. In addition to
this directional constraint, cubical connectivity is also more complex to ma-
nipulate. It indeed has a layered structured that practically precludes strictly
local modifications. Vertex relocation or smoothing is the most widely used
method to adapt cubical meshes, particularly structured ones [8]. However,
although it can improve both vertex density and element shape, smoothing
is limited by a fixed mesh topology. Mesh refinement and coarsening, on the
other hand, involve connectivity modifications [9, 10, 11, 12]. The major issue
with conformal refinement-coarsening is, however, that element shape quality
cannot be maintained without a powerful local reconnection method and the
coveted cubical flip operator is still only theoretical in three dimensions [13].

Simplicial-to-cubical conversion methods avoid this problem by optimiz-
ing simplicial meshes and generating cubical elements only in a postprocessing
step. Local mesh modifications thus only involve simplex manipulation and are
greatly facilitated. Once the target vertex density is achieved, adjacent simpli-
cial elements are merged to form cubical ones. Different merging strategies are
possible including advancing fronts [14, 15, 16], graph theory [17] and qual-
ity constraints [18, 3, 4]. Although, some non-cubical elements may remain,
particularly in three dimensions, such cubical-dominant meshes are accept-
able in many applications. Furthermore, while Riemannian metrics have been
used with direct cubical adaptation, the lack of a proper local reconnection
operator limits their appeal. This indirect approach, on the other hand, can
use the full complement of local optimization operators available for simplicial
meshes. However, the ideal vertex distribution for a unit simplicial mesh is
very different from the one required by perfectly adapted cubical elements.
Not all edges should indeed have a metric length of one. For example, in
two dimensions, edges that correspond to diagonals in the quadrilateral mesh
should have a metric length of

√
2. Additionally, right triangles with sides

aligned with the local metric eigenvectors are better suited than equilateral
ones for simplicial-to-cubical conversion (Fig. 2).

Better vertex distributions can be obtained using physically-based packing
algorithms that approximate centroidal Voronoi-Delaunay triangulations. An
appropriate modification of the proximity-based force used to distribute the
mesh vertices indeed enables the partition of the domain into cubical Voronoi
regions [3, 4]. This improves the local alignment with the metric eigenvec-
tors of the resulting simplices. The merged cubical elements thus have better
shape and require much less postprocessing. The globally layered structure
of the ideal cubical mesh is, however, difficult to recover using a strictly lo-
cal method. Networks of tensor lines everywhere tangent to the local metric
eigenvectors can be used for this purpose [5]. Due to the orthogonal nature
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of this network, the resulting quadrilateral elements are very well shaped and
triangular elements are only inserted when the tensor lines are fragmented
to ensure the conformity of the final mesh. The practical implementation of
such a method requires, however, an assortment of techniques that are not
as computationally efficient as simplicial adaptation and may be difficult to
extend to three dimensions.

The next section proposes an alternative approach that combines cubical
particle packing with tensor line networking and recasts the whole process as
a specialized simplicial optimization.

3 Specialized Simplicial Optimization

3.1 Specialized Simplicial Operators

For high quality simplicial-to-cubical conversion, edges corresponding to di-
agonals should have an L2 metric length of

√
2, in two dimensions, or

√
3, in

three dimensions, and not 1. The unit meshes generated by classical simplicial
operators based on such an L2 distance are thus not best suited. This discrep-
ancy can be avoided by using an L∞ norm to compute metric distance because
all edges should then have a unit length including diagonals. This chessboard
distance has thus been used to modify the specialized two-dimensional oper-
ators presented here.

Vertex relocation – A physically-based approach was chosen in the present
work [19, 20, 3, 4]. In this paradigm, mesh vertices are particles and the follow-
ing potential is used to derive the interaction forces between those particles

φ(x) =
1
4

e−x4 − 3
16

Γ

(
1
4
, x4

)
+ C (5)

where Γ (a, z) =
∫∞

z
ta−1e−tdt is the incomplete gamma function and C is an

arbitrary constant. The first derivative of this potential corresponds to the
function given by Bossen and Heckbert [20]

φ′(x) =
dφ

dx
=
(
1− x4

)
e−x4

. (6)

If an L2 norm is used to measure distance then the following attraction-
repulsion force is exerted on vertex or particle i by particle j

Fij = −φ′(lij)
lij

(pj − pi) = −φ′(lij)hijuij (7)

where lij is the metric distance between i and j as defined in Eq. 2, hij is
the target size along edge ij and uij is the unit vector (pj − pi)/‖pj − pi‖.
When coupled with appropriate population control, such a force will distribute
the particles according to the density prescribed by the target metric. At
equilibrium, the empty region maintained by this force around each particle
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Fig. 3. Two-dimensional attraction-repulsion potential field (left) and the modulus
of the corresponding force (right) for an L∞ distance and an Euclidean metric, i.e.,
the identity matrix. The constant C in Eq. 5 is chosen so that the potential is equal
to zero at a unit distance.

is analogous to an approximate Voronoi cell. Furthermore, since the particle
is at the center of this cell, the resulting partition of space is an approximate
centroidal Voronoi tessellation. The Voronoi cells have the shape of the ε-ball
associated with the type of distance used to define the attraction-repulsion
potential (Fig. 1). When an L2 distance is used, those Voronoi cells have an
elliptic or ellipsoidal shape. However, if an L∞ or chessboard distance is used
instead then those cells will have the desired cubical shape. Let m be the index
of the eigenvector for which |

√
λm em.(pj −pi)| is maximum. The chessboard

attraction-repulsion force is then given by

Fij = −α φ′(lij)hmem (8)

where lij is computed with Eq. 4, α is the sign of em.(pj−pi) and hm = 1/
√

λm

is the target size associated with the local metric eigenvector em (Fig. 3). Using
a first order equation of motion [20], the position of a particle or vertex i is
updated at each iteration n as follows

pn+1
i = pn

i + ω
∑

j∈Nv
i

Fn
ij (9)

where ω is a constant set to 0.2 and N v
i is the set of vertices sharing an edge

with i. Of course boundary vertices have to be reprojected after each update.

Refinement and coarsening – Mesh refinement and coarsening correspond
to particle population control in the physical paradigm. When the local density
is too low, a particle is created and, when it is too high, a particle is destroyed.
The normalized density around a particle i can be estimated by the inverse
of the averaged metric area of its neighbors

ρi =
β |N e

i |∑

j∈N e
i

√
det(Mj) A(Tj)

(10)

where A(Tj) is area of triangle Tj , Mj is the averaged metric within Tj , N e
i

is the set of triangles sharing i and |N e
i | is the number of triangles in this set.
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The constant β is set to
√

3/4 for ellipse packing and 0.5 for square packing.
The associated error is computed as follows

δ(ρ) =
{

ρ− 1 if ρ ≥ 1,
1
ρ − 1 otherwise. (11)

The edge splitting and collapsing primitives from simplicial optimization can
be used to insert and delete vertices and control this density. More precisely, if
an edge has a metric length greater than a given threshold lmax then it is split
in two by introducing a new vertex in the middle. Similarly, if an edge has a
metric length lower than a given threshold lmin then it is collapsed by merging
its two end vertices. Depending on the optimization strategy used, those op-
erators may, however, tend to oscillate for rapidly varying metrics: they delete
vertices that they just inserted. To stabilize the process, an estimation of the
normalized density after each operation can be used as a safeguard [20]. Let
ρi be the local density around a vertex i as defined in Eq. 10. When one of
the interior edges connected to i is split then the local density becomes

ρ+
i = ρi (|N e

i |+ 2) /|N e
i | (12)

because two neighboring triangles must also be split in two. Similarly, when
one interior edge connected to i is collapsed then the local density becomes

ρ−i = ρi (|N e
i | − 2) /|N e

i | (13)

because two neighboring triangles must also be collapsed. Only the length
based criterion is used for boundary edges but interior edges are split or
collapsed only if δ(ρ+

i ) ≤ δ(ρi) or δ(ρ−i ) ≤ δ(ρi) respectively. Again, to make
the packing cubical, an L∞ norm is used to compute the metric length of the
edges. Furthermore, care must be taken when dealings with edges on curved
boundaries to avoid degenerate configurations. See for example [21] for more
details on how it can be done.

Local reconnection – In simplicial-to-cubical conversion methods, what is
important is the rectangular distribution of the vertices more than their con-
nectivity, as long as it is reasonable, i.e., coherent with the local target mesh
density. This simplicial connectivity is essentially used for fast neighbor search-
ing during relocation and population control operations. Once the vertex dis-
tribution is rectangular their simplicial connections will naturally be made of
right angle simplices. That is why the local reconnection used in the present
work is the classical operator from simplicial optimization. Furthermore, as
only two-dimensional cases have been considered for now, only an edge swap
or flip has been implemented. This operator replaces the edge shared by two
triangles with a new edge linking their opposite vertices. This flip is only per-
formed if the worst shape of the resulting triangles is better than the shape
of the initial ones. The following measure of shape quality was used

Q(T ) = 4
√

3 A(T ) min
1≤i≤3

√
det(Mi)∑

1≤j<k≤3

(pk − pj)T Mi(pk − pj)
(14)

where i, j and k refer to the vertices of triangle T .
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3.2 Tensor Line Alignment

Although an improvement over classical simplicial operators, the modifica-
tions presented in the previous section provide only local alignment with the
eigenvectors of the target metric. The resulting Voronoi regions will be cubical
but there is no guaranty that those regions will be aligned to form continuous
layers that are so important to maximize the proportion of cubical elements in
the final mesh. The staggered configuration in Fig. 4 is as valid as the aligned
one. Only adequate boundary conditions can favor the latter one. A stronger
and more explicit global alignment force is needed. The approach proposed
here is reminiscent of the method introduced in [5]. The difference is that here
the global metric topology embodied by the tensor line network is no longer
traced beforehand but is recovered through essentially local modifications of
a simplicial mesh.

For this purpose a torsion spring-like force explicitly minimizes the angular
deviation of selected mesh edges with the local metric eigenvectors. Associ-
ated with lineal springs, such angle-based forces are already used in mesh
smoothing [22]. Their use here is, however, more analogous to active polylines
in computer graphics. More precisely, those active polylines are tensor lines
formed by links that correspond to selected mesh edges. These edges will be-
come the sides of the final cubical elements. They are identified by computing
their angular deviation from the local eigendirections. Taking into account the
deformation introduced by a metric M, this angular deviation for an edge ij
is given by

θij = arccos
√

λm em.(pj − pi)√
(pj − pi)tM(pj − pi)

(15)

where m has the same definition as in Eq. 8. If |θij | ≤ θmax/2 then ij is a
candidate tensor line link for the eigenvector field m (Fig. 5). If more than
one edge is admissible for a given combination of eigenvector and orientation
along this eigenvector then the one with the smallest deviation is chosen. The
corresponding alignment force acting on vertex i is computed as follows

Gij∗ = Cθ (pj − pj∗) (16)

where Cθ is a constant and pj∗ = pi + [(pj − pi).em] em is the projection
of pj along em (Fig. 5). This alignment constraint can be introduced as a
modification to the relocation force and the vertex position update is then
written as follows

pn+1
i = pn

i + ω




∑

j∈Nv
i

Fn
ij +

∑

j∗∈Nv∗
i

Gn
ij∗



 (17)

Fig. 4. Staggered (left) and aligned (right) square packing.
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Fig. 5. Edge alignment.

where N v∗

i is the set of links associated with i. Note that the constant Cθ

must be chosen carefully. The greater Cθ, the better the alignment but also
the stiffer the optimization problem will be. After some numerical experimen-
tations, Cθ was set to 2 and θmax to π/4.

Reevaluated each time a vertex position is updated, those links play the
role of a specialized reconnection operator. More than simplicial connectivity,
those links indeed reflect the topology of the final cubical mesh. Because of the
continuity of the metric, the end-to-end collection of links also forms tensor
lines. Those lines are continuous as long as the metric is continuous and the
prescribed element size is reasonable compared to the metric variation or
tensor line curvature. Those active lines can also be considered as directional
agglomerations of particles and their thickness is equal to the local target
size prescribed by the metric. When links are set or broken then those lines
are effectively fused or split. When particles are created, moved or destroyed
so are those lines. The packing of particles also means that lines are packed
and form layers upon layers. Furthermore, since particles are linked along
both eigenvectors, those lines are also interconnected. The process can thus
be interpreted as physically-based line networking or weaving.

3.3 Optimization Algorithm

Algorithm 1 sums up the main steps performed during the optimization
process. A coarse initial triangulation is required as an input. The boundary
of the domain must be represented by this triangulation and, when refining
boundary edges, those constraints must be preserved. An empty constrained
Delaunay triangulation is a good example of initial mesh. The algorithm is
vertex-wise. It loops through all the vertices, moves them and enforces popu-
lation control until convergence or a given number of iterations is completed.
The threshold lmin is set to 0.75 while lmax is set to 1.33. The movement of
a vertex due the attraction-repulsion as well as alignment forces is limited to
the visibility zone of its immediate neighbor vertices, i.e., no inverted triangle
should be created by the computed displacement. Any displacement that does
not meet this requirement is discarded. Furthermore, after each successful re-
location or refinement-coarsening operation, the local reconnection operator
is called recursively to maintain the quality of the neighboring simplices. Note
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Algorithm 1 Specialized simplicial optimization
Require: constrained empty triangulation

repeat
for all vertex i do

update position
if moved then

reconnect neighborhood
end if
find is and il, the shortest and longest edges connected to i
if lis < lmin and (is on boundary or δ(ρ−

i ) ≤ δ(ρi)) then
collapse is

else if lil > lmax and (il on boundary or δ(ρ+
i ) ≤ δ(ρi)) then

split il
end if
if an edge has been collapsed or split then

reconnect neighborhood
end if

end for
until convergence

also that the metric is stored at each vertex of the triangulation. For new ver-
tices or when vertices are moved, the metric is computed using an analytical
function or by interpolation in a background mesh. In all edge-based compu-
tations, the metric is considered constant and the average of the values stored
at the two end vertices is used.

Although similar in purpose, the present cubical packing force field was es-
tablished by a very different reasoning and does not have the same shape than
the one proposed in [3, 4]. An alignment force is also used to further promote
the formation of continuous layers and ultimately increase the percentage of
cubical elements in the final mesh. Additionally, like the pliant method pro-
posed by Bossen and Heckbert [20], this process is recast as a simplicial mesh
optimization and should eventually have the same computational efficiency.
The problem has, however, more constraints and should thus take more time
to converge. One potential difficulty is, as with other optimization methods, to
get stuck in a local minimum. A possible approach to avoid such local minima
is to start with a wider permissible edge length range and to slowly tighten
it as the mesh is adapted. This results in a gradual and globally consistent
evolution of the mesh that is more likely to reach a global minimum. An addi-
tional strategy is to first adapt the mesh using only attraction-repulsion forces
combined with refinement-coarsening operations. The result is then used as
an initial mesh for the stiffer problem with alignment forces. Both of these
strategies are used for the test examples presented in the next section.

Once optimized, very little additional processing is needed to produce
the final high quality quad-dominant mesh. Available edges for simplicial-to-
cubical conversion are first identified. Forbidden edges are tensor line links
and constrained boundary edges. For each of the available edges, the quality
of the candidate quadrilateral element Q formed by the adjacent triangles is



32 K.-F. Tchon and R. Camarero

computed as follows

Q(Q) =
2√
3

min
1≤i≤4

Q(Ti) (18)

where Ti is the corner triangle associated with vertex i of Q. Edges with
Q < 0.3 are discarded. The remaining edges are listed in decreasing order
according to this quality, the corresponding quadrilaterals are constructed
and their edges removed from the list until it is empty.

4 Numerical Results

4.1 Academic Test Examples

The first example is defined on a [0, 7] × [0, 9] rectangular domain. The
prescribed target sizes for this example are

h1 =






1− 19
40y if y ∈ [0, 2] ,

20(2y−9)/5 if y ∈
]
2, 9

2

]
,

5(9−2y)/5 if y ∈
]
9
2 , 7

]
,

1
5 + 1

20 (y − 7)4 if y ∈ ]7, 9]

(19)

and h2 = 1.01h1 with e1 and e2 corresponding to the Cartesian axes. This is a
quasi-isotropic version of the analytic metric from [1]. Purely isotropic metrics
are indeed considered degenerate for tensorline-based cubical meshing because
e1 and e2 would then be indefinite [5]. The resulting adapted triangular and
quad-dominant meshes are presented in Fig. 6. The size variation prescribed
by this metric does not allow an all-quadrilateral mesh but the algorithm is
still able to directionally partition the domain and maximize the number of
such elements, i.e., there is 84.8 percent of quadrilaterals. Table 1 gives some

Fig. 6. Quasi-isotropic metric (Eq. 19) – Unit simplicial mesh obtained using clas-
sical L2-based (left) and specialized L∞-based operators (middle) as well as final
quad-dominant mesh (right).
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Table 1. Some statistics for the meshes presented in Figs. 6 to 10.

Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10

Nb edges 5268 2853 8895 11815 39917
Min. length 0.652 0.983 0.487 0.485 0.499
Ave. length 1.006 0.999 0.986 0.997 0.987
Max. length 1.364 1.026 1.890 1.686 1.778
Std dev. 0.071 0.005 0.096 0.070 0.094

Nb triangles 292 0 606 446 2100
Min. quality 0.703 - 0.501 0.507 0.454
Ave. quality 0.854 - 0.885 0.845 0.864
Max. quality 0.982 - 1.000 0.989 1.000
Std dev. 0.044 - 0.065 0.084 0.070

Nb quads. 1624 972 2671 3874 12307
Min. quality 0.530 0.667 0.310 0.353 0.304
Ave. quality 0.894 0.943 0.873 0.876 0.855
Max. quality 0.996 1.000 0.996 0.990 0.995
Std dev. 0.119 0.057 0.122 0.068 0.101

Quad-dom. 84.8% 100% 81.5% 89.7% 85.4%

statistics for this mesh as well as the other meshes presented in this section.
These statistics include the number of edges and their metric length as well as
the number of triangular and quadrilateral elements and their shape quality
as computed with Eqs. 14 and 18. Note that, for comparison, a mesh obtained
with classical operators is also presented in Fig. 6.

The next example is anisotropic and is defined on the same rectangular
domain. Again the prescribed directions correspond to the Cartesian axes
while the target sizes are computed as follows

h1 =






1− 19
40x if x ∈ [0, 2] ,

20(2x−7)/3 if x ∈
]
2, 7

2

]
,

5(7−2x)/3 if x ∈
]
7
2 , 5

]
,

1
5 + 1

20 (x− 5)4 if x ∈ ]5, 7] ,

h2 =






1− 19
40y if y ∈ [0, 2] ,

20(2y−9)/5 if y ∈
]
2, 9

2

]
,

5(9−2y)/5 if y ∈
]

9
2 , 7

]
,

1
5 + 1

20 (y − 7)4 if y ∈ ]7, 9] .
(20)

The resulting mesh is presented in Fig. 7. Contrary to the first test case, a
completely quadrilateral mesh is possible and the present method is able to
generate it.

The final analytic test case is another quasi-isotropic metric, dubbed ba-
nana, that uses a size distribution taken from Lewis et al. [23] and is defined
as follows

h1 =
1

100
[
1 + 30 (y − x2)2 + (1− x)2

]
(21)

and h2 = 1.01h1 with (x, y) ∈ [−1.25; 1.25] × [−0.5; 1.25]. The normalized
gradient of the size distribution, i.e., ∇h1/‖∇h1‖, is taken as e1 while e2 is
simply equal to e1 rotated by an angle of 90 degrees. The tensor line network
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Fig. 7. Anisotropic metric (Eq. 20) – Unit simplicial mesh obtained using clas-
sical L2-based (left) and specialized L∞-based operators (middle) as well as final
quadrilateral mesh (right).

Fig. 8. Banana metric (Eq. 21) – Tensor line network (top) and corresponding
adapted quad-dominant mesh (bottom).

for this metric is not aligned with the Cartesian axes as in the previous ex-
amples and is presented in Fig. 8 along with the final adapted quad-dominant
mesh. The quality of the quadrilaterals in this mesh is substantially superior
to the quality of the merged elements obtained by Borouchaki and Frey [18],
i.e., an average of 0.87 versus 0.63, although the percentage of triangular el-
ements is higher, i.e., 18.5 versus 3 percent (Table 1). Element shape quality
is intentionally favored by the present method.

4.2

The first practical application example is a mesh generated for a geometry-
based metric. It shows how to use level set information encapsulated in a
metric to generate high quality meshes. The considered domain is a heat
exchanger and the metric is constructed using a variation of the ideas proposed
in [24]. The vector e1 is set to the normalized gradient of φ, the distance-to-the-
closest-boundary function, while e2 is again equal to e1 rotated by an angle of

Practical Application Examples
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90 degrees. The target size h1 along e1 is limited by the local thickness of the
domain. The function φ can be used to compute the medial axis of the domain
and deduce this local thickness [24]. Furthermore, a user defined clustering
has been added to the strictly geometric information extracted from φ. More
precisely, the target size h1, which is normal to the boundaries of the domain,
is computed as follows

h1 = min (hw
1 + (γ − 1)φ, hτ ) (22)

where hw
1 is the user prescribed size of the elements at the closest boundary,

γ is the associated geometric growth ratio and hτ is a limiting size computed
from the local thickness τ of the domain. For the considered example, hτ was
set to 0.25τ . Along e2, the target size h2 is computed as follows

h2 = hw
2 (1 + |κ|φ) (23)

where κ is the curvature of the closest boundary and hw
2 = 2π/N |κ|. The user

prescribed constant N corresponds to the number of elements needed to dis-
cretize a perfectly circular boundary. Furthermore, using Eq. 23 with adjacent
circular and completely flat boundaries introduces very difficult size transi-
tions and explicit gradation has to be used to ensure high quality meshes [25].
The maximum target size growth between adjacent elements, γ0, was set
to 1.2. Figure 9 shows the tensor line network for N = 32, γ = 1.2 and
hw

1 = 0.1r with r being the radius of the internal circular boundaries. The re-
sulting adapted mesh is also presented in Fig. 9 and counts almost 90 percent
of quadrilaterals with an average quality of 0.876 (Table 1).

The final example uses a solution-based metric extracted from the com-
puted flow around a NACA 0012 airfoil using an Hessian-based error estimator

Fig. 9. Heat exchanger – Tensor line network (left) and corresponding quad-
dominant meshes (right).
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Fig. 10. Naca 0012 airfoil – Quad-dominant mesh adapted to an unsteady flow at
a Mach number of 0.85 and a Reynolds number of 5000.

[26]. An unsteady laminar transonic flow with a Reynolds number of 5000 and
a Mach number of 0.85 was considered. Again, gradation with γ0 = 1.2 was
used. The resulting mesh is presented in Fig. 10 and counts about 85 percent
of quadrilaterals with an average quality of 0.855 (Table 1).

4.3 Future Developments

The results presented above show that the proposed algorithm is able to gener-
ate high quality quad-dominant meshes. However, to obtain high percentages
of quadrilateral elements, the metric must prescribe smoothly varying target
sizes. Just as for triangles, there is a physical limit on how fast target size can
vary to get well shaped quadrilaterals. A specialized gradation algorithm must
be developed as already suggested in [5]. All-cubical meshes are also possible
if this gradation algorithm can provide compatible metrics. The problem of
obtaining such meshes is thus displaced from the actual generation task to
the metric construction task. This is hopefully a simpler problem.

The more compatible the metric, the easier it is to obtain a global min-
imum. However, even for a completely compatible metric such as the one
defined by Eq. 20, local minima are possible and this implies the presence
of unnecessary triangles in the final mesh. To avoid such a local minimum,
the following two-step strategy was used. The mesh is first adapted without
alignment forces. Three passes are used: 200 iterations with lmin = 0.75 and
lmax = 2.66 then 200 iterations with lmax reduced to 2.00 and finally 200 iter-
ations with lmax = 1.33. The second step uses the result as an initial mesh and
performs an additional 200 iterations with alignment forces, lmin = 0.75 and
lmax = 1.33. This fixed number of iterations is probably overkill but the goal
of the present work is to prove the soundness of the proposed specialized op-
erators and not yet their efficiency. Given those considerations, CPU timings
are not very meaningful but, to give an order of magnitude, the quadrilateral
mesh presented in Fig. 7 took 101.62 seconds on an Intel Pentium M run-
ning at 1.3GHz. There is, furthermore, little overhead per iteration per vertex
compared to classical operators. The real increase in computer time is due to
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the number of iterations needed to converge to a more difficult problem. An
optimized iterative process will also be the goal of future developments.

Finally a three-dimensional extension is very possible and more practical
than tensor surface networks. Simplicial-to-cubical conversion templates in-
deed already exist [4, 17] and classical simplicial reconnection operators can
be used in a future three-dimensional optimizer. The generalization of all the
other operators presented in Sect. 3 is mostly trivial.

5 Conclusion

The proposed specialized simplicial optimization is capable of automati-
cally generating high quality quad-dominant meshes with a layered struc-
ture aligned along the local eigenvectors of an anisotropic Riemannian control
metric. This confirms the soundness of the L∞-based simplicial operators and
the angle-based alignment force. The computational efficiency is not yet es-
tablished but is expected to be similar to classical simplicial optimization.
Only two-dimensional cases were considered in the present paper but a three-
dimensional extension is feasible. Besides cubical meshes, the present method
can also provide simplicial mesh postprocessing when right angle simplices
are required. All-cubical meshes are also possible if the metric is compatible.
Automatic cubical mesh generation can thus be achieved using a two-prong
approach: the construction of a compatible metric and the generation of the
corresponding mesh. The present paper deals with the second part. Future
developments should take care of the first part.
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Summary. We propose algorithms to incrementally modify a mesh of a planar do-
main by interactively inserting and removing elements (points, segments, polygonal
lines, etc.) into or from the planar domain, keeping the quality of the mesh during
the process. Our algorithms, that combine mesh improvement techniques, achieve
quality by deleting, moving or inserting Steiner points from or into the mesh. The
changes applied to the mesh are local and the number of Steiner points added during
the process remains low. Moreover, our approach can also be applied to the directly
generation of refined Delaunay quality meshes.

1 Introduction

In many two-dimensional geometric modelling problems it is desirable to ob-
tain a triangular mesh that respects the domain of interest ensuring that the
triangles of the triangulation satisfy some quality requirements. There exist
many works on the generation of a quality mesh for a Planar Straight Line
Graph (PSLG) domain. Delaunay refinement mesh generation algorithms have
taken place in this frame of investigations [12, 13, 11, 7]. In keeping quality
of a mesh two objectives are pursued. First, get skinny triangles, triangles
without the required quality, out of the mesh. Second, force segments of the
PSLG into the mesh. Both goals are achieved by the addition of Steiner points,
points that do not belong to the original mesh. In current Delaunay refinement
algorithms, two kinds of Steiner points deal with the former goal, namely, cir-
cumcenters and off-centers. The later objective is carried out by the addition
of midpoints on constrained segments to insert. Local optimization techniques,
like refinement, derefinement, topological changes and mesh smoothing, are
employed usually as a postprocess to improve mesh quality [1, 5].

In this work we address the problem of adjusting a mesh to local changes
of its domain. The initial motivation for this problem came from our interest

∗Partially supported by the Spanish Ministerio de Educación y Ciencia under
grant TIN2004-08065-C02-02.
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on the simulation of cuts in triangulated objects. We modify a quality mesh of
a PSLG under the insertion/removal of elements (points, segments, polygonal
lines, etc.) to/from the PSLG, while keeping the quality of the mesh along the
process. There exist some work related to the dynamic insertion and deletion
of points and segments on Delaunay triangulations [6, 8], although they do
not fit into the schema of Delaunay refinement algorithms.

Obviously, when a PSLG is changed, we can use a Delaunay refinement
algorithm to modify the underlying mesh: the updated PSLG can be consid-
ered as input PSLG and a new mesh can be generated from scratch. However,
when a PSLG is dynamically modified, apart of the quality requirement of its
underlying mesh, we expect that additional features are going to be provided,
namely:

Incrementality: The mesh of the updated PSLG is obtained without the
regeneration of the whole mesh.

Locality: The changes applied to the mesh do not imply a propagation
of these modifications to the whole mesh.

Optimality: The Steiner points added as a result of the modification of
the mesh should be as few as possible.

A possible incremental solution to the insertion problem, alternative to
generate a new mesh from scratch, is to apply a Delaunay refinement algorithm
to the PSLG obtained joining: the current PSLG, the Steiner points of the
current mesh and the elements to be inserted into the PSLG. In this way we
can take advantage of the work done during the generation of the current
mesh. However, considering Steiner points of the current mesh as part of the
new PSLG contributes to the degradation in the distribution of Steiner points
in successive updates of the mesh, generating a high number of small triangles,
as we will show with some examples below. Suppose we have an initial PSLG
composed of a square boundary and two points a and b (Figure 1(a)). After
applying Ruppert’s Delaunay refinement algorithm we obtain the mesh shown
in Figure 1(b). The insertion of a new point, c, onto the PSLG close to an
existing Steiner vertex, s, creates two new skinny triangles that have to be
refined (Figure 1(c)). Then, an incremental Delaunay refinement algorithm
generates the mesh in Figure 1(d).

The solution we propose to avoid the excessive insertion of vertices and the
generation of small triangles produced by a degradation in the distribution
of points in successive updates of the mesh is the deletion or the movement
of Steiner vertices, followed if necessary by the addition of Steiner vertices
according to Ruppert’s algorithm. In Figure 1 we can compare the previous
result of applying a Delaunay incremental refinement algorithm, Figure 1(d),
with the movement of the Steiner vertex s to a suitable zone, in Figure 1(e),
and with the deletion of the Steiner vertex, shown in Figure 1(f). From these
examples one can observe that moving the vertex results in a much better
mesh than in the case of using the incremental algorithm, but the optimal
solution is obtained by the deletion process. This suggests that removal of
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Fig. 1. (a) An initial PSLG composed of a square boundary and two points. (b)
A Delaunay refined triangulation of the PSLG. (c) A new point to be added to the
mesh with the skinny triangles associated to its insertion in grey. (d) The resulting
mesh after applying an incremental Delaunay refinement algorithms to the mesh in
Figure 1(c). (e) Result obtained if the Steiner vertex is moved to a suitable region.
(f) Mesh achieved if the Steiner vertex is deleted.

Steiner vertices will therefore have priority in front of movement of Steiner
vertices.

In this paper we introduce a framework, that combines mesh improve-
ment techniques, for modifying incrementally a mesh under local changes
of its PSLG domain. Starting from a quality mesh of the initial PSLG, we
insert/remove elements to/from the PSLG in such a way that as the PSLG
changes the underlying mesh is modified keeping its quality during the process.
Our algorithms make only local modifications: deletion, movement or inser-
tion of Steiner points from/into the mesh. Moreover, the number of Steiner
points added during the process remains low.

One of the main ideas behind our proposed algorithms is that the bad
vertex of some skinny triangles can be moved to a quality zone ensuring that
a prefixed mesh quality is obtained. We give a numerical method for finding
the optimal placement where the vertex has to be moved.
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Our framework can also be applied to directly generate refined Delaunay
quality meshes. We give initial experimental results showing that the num-
ber of Steiner points obtained with our approach is smaller compared to the
number obtained when traditional circumcenter refinement methods are used.

2 Preliminaries

A Planar Straight Line Graph (PSLG) is a set of points and segments satisfy-
ing two constraints: all endpoint segments are points in the PSLG, segments
may intersect each other only at their endpoints.

A triangulation T is a conforming triangulation of a PSLG, Ω, if each
point in Ω corresponds to a vertex in T , and a segment of Ω is represented by
a linear contiguous sequence of edges of T . New Steiner vertices, not points of
Ω, may appear, and each segment of Ω may have been subdivided into shorter
edges by these additional vertices. Flipping these edges is forbidden, then they
are marked as locked. In a conforming Delaunay triangulation of a PSLG, the
Steiner vertices are added so that the Delaunay property is maintained.

The star of a vertex q, Sq, of a triangulation T consists of all the triangles
of T that contain q. The link of q, Lq, is the polygon determined by the set
of edges of the triangles in Sq that are not incident to q. Since the average
degree of a node in a planar graph is less than six [3], the average number
of triangles of Sq or the average number of edges of Lq, is at most six. The
kernel of Lq, denoted by ker(Lq), is the set of all points p ∈ Lq, such that for
every vertex v of Lq, the segment vp is within Lq.

Given an edge e ∈ Lq, being ei and ef its endpoints, we take the following
notation (see Figure 2):

• Hq,e is the open half-plane determined by e and containing the vertex q.
• tq,e is the triangle with vertices ei, ef and q.
• t′q,e the adjacent triangle to tq,e by e.
• cq,e the circumcircle of t′q,e.
• aq,e the arc cq,e∩Hq,e. We will say that cq,e is the supporting circle of aq,e.

A triangle having an angle β < α, for certain fixed α, is called skinny.
The diametral circle of a subsegment (portion of a segment from a PSLG)

is the (unique) smallest circle that contains the subsegment.
A subsegment is said to be encroached if a vertex lies strictly inside its

diametral circle, or if the subsegment does not appear in the triangulation.

2.1 Incremental Delaunay Algorithm

There exists three types of algorithms for constructing Delaunay triangula-
tions, namely, divide-and-conquer, sweepline and incremental. Because of our
goals we concentrate our attention in the latter ones.
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Fig. 2. Notation used in the definitions.

Incremental algorithms add vertices one by one and update the triangu-
lation after each vertex is added maintaining the Delaunay property. The
original algorithm, developed by Lawson [9], is based upon edge flips. There
are incremental algorithms due to Bowyer [2] and Watson [14] that do not use
edge flips. In Lawson’s algorithm, when a vertex is inserted, the triangle that
contains it is found, and three new edges are inserted to attach the new vertex
to the vertices of the containing triangle. If the new vertex falls upon an edge
of the triangulation, that edge is deleted, and four new edges are inserted to
attach the new vertex to the vertices of the containing quadrilateral. Next, a
recursive procedure tests whether the new vertex lies within the circumcircles
of any neighboring triangles, each affirmative test triggering an edge flip that
removes a locally non-Delaunay edge. Each edge flip reveals two additional
edges that must be tested.

2.2 Ruppert’s Algorithm

The Delaunay refinement algorithm, first described by Ruppert [12], refines
the mesh by inserting additional Steiner vertices (using Lawson’s algorithm
to maintain the Delaunay property) until all triangles satisfy the quality con-
straint. Vertex insertion follows two rules:

• Any encroached subsegment is bisected by inserting a vertex at its mid-
point.

• Each skinny triangle is normally split by inserting a vertex at its circum-
center. The Delaunay property guarantees that the triangle is eliminated.
However, if the new vertex would encroach upon any subsegment, then it
is not inserted; instead, all the subsegments it would encroach upon are
split.
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Encroached subsegments are given priority over skinny triangles.

Ruppert’s algorithm guarantees the following properties:

• Edges of the mesh well-graded. New edges generated are greater than the
smallest distance between two non-incident features of the input PLSG.

• Optimal size of the mesh. The number of Steiner points added is within a
constant factor of the minimum number of points added by any meshing
of the same input.

• Termination. In order to ensure Ruppert’s algorithm termination the up-
per bound for α is arcsin 1

2
√

2
≈ 20.7◦, angles between incident segments

in the input PSLG greater or equal than 90◦ are required, and co-circular
points are not allowed. Shewchuk [13] relaxes this minimum angle require-
ment to 60◦. Pav, in [11], showed that the algorithm terminates for a wider
class of input than previously suspected, establishing this bound in 45◦.
In fact, other considerations have to be taken into account with respect to
the input, but they rarely appear in practice.

3 Quality Zones

One of the main ideas behind our proposed algorithms is that some skinny
triangles can be eliminated by moving the Steiner points corresponding to
their bad vertex. The solution relies on the fact that, for a given Steiner
vertex, it is possible to define a zone where it can be moved ensuring that a
prefixed mesh quality can be obtained. To make sure that the result is a valid
triangulation, a Steiner vertex q has to be moved to a point in ker(Lq) and
then the Delaunay property among the new triangles has to be maintained
by flipping locally non-Delaunay edges.

3.1 Definitions

Let T be a Delaunay refined triangulation of a PSLG and α be a given quality
angle.

The feasible zone of an edge e ∈ Lq for an angle β is the set Fe,β = {p ∈
Hq,e|êipef ≥ β, p̂efei ≥ β, êfeip ≥ β} (see Figure 3(a)).

As can be observed in Figure 3(a), the feasible zone is a convex region
obtained as intersection of two half-planes and a circle. Let d be the point
in Hq,e such that eiefd is an isosceles triangle with d̂eief = êiefd = β. One
half-plane is defined by the line through ei and d that does not contain ef ,
and the other half-plane is defined by the line through ef and d′ that does
not contain ei. The center f of the circle is the point of Hq,e located on the
bisector of eief , such that êifef = 2β. Then, from a well known geometric
property, at any point p on the circle boundary the following expression is
satisfied: êipej = β.
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The feasible zone of a vertex q for an angle β is the set Fq,β =
⋂

e∈Lq
Fe,β .

The non-skinny zone of a vertex q is the set Fq,α.
The Delaunay zone of an edge e ∈ Lq, denoted Dq,e, is the set of points of

Hq,e external to cq,e (see Figure 3(b)).

β

Hq,e

ejei

2β

β β

β

d d

β tq,e

e

efei

(a) (b)

Fig. 3. (a) A feasible zone Fq,e,β . (b) Delaunay zone Dq,e.

The Delaunay zone of a vertex q is the set Dq =
⋂

e∈Lq
Dq,e.

The Delaunay zone of a vertex is an open non-convex set and, as exhibited
in Figure 4, may be constituted by several non-connected components. The
boundary of Dq will be denoted by Dq.

Fig. 4. Delaunay zone with two non-connected components.

The quality zone of a vertex q for the angle α is the set Qq,α = Fq,α

⋂
Dq

(see Figure 5).
From the last definition it is clear that if p ∈ Qq,α then the triangles of Sp

are non-skinny and the exterior adjacent triangles to Lp edges are Delaunay.
It is not difficult to prove the following:

Lemma 1. Let q be a vertex of a triangulation T . Then, we have:

• If Fq,β 
= ∅, Fq,β is a convex set included in ker(Lq).
• If Fq,β 
= ∅ and β′ > β, Fq,e,β′ � Fq,e,β and Fq,β′ � Fq,β.

q
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q

Fig. 5. Quality zone Qq,α

3.2 Finding a Point That Maximizes the Minimum Angle

Let p be a point in ker(Lq). We denote by Tq(p) the set of triangles determined
by p and the edges of Lq. If Lp is formed by k edges, we have a collection of
3k angular functions φj(p), j = 1, · · · , 3k, each one representing an angle of a
triangle of Tq(p).

We are interested in finding a point p̃ ∈ ker(Lq) ∩ Dq maximizing the
function Φ(p) = minj φj(p). When instead of searching for the point p̃ ∈ Dq

we seek a point p∗ ∈ ker(Lq), we have a collection of quasiconvex functions
and the problem can be solved in O(k) time using Generalized Linear Pro-
gramming [1].

Then, we first find the point p∗. If p∗ ∈ Dq then p∗ is the optimal solution
p̃. Otherwise we find the point p that maximizes the function Φ(p) restricted
to Dq and we take a point inside Dq close to p as the target point p̃.

Instead of implementing the Generalized Linear Programming approach
for finding p∗, we describe an alternative numerical technique for solving the
problem directly that also allow us to find p if it is necessary. The technique
is based on the following lemmas:

Lemma 2. Let l be a line such that l ∩ Fq,β 
= ∅. Then, we have:

1. l ∩ Fq,β is a point or a segment.
2. If l ∩ Fq,β is a segment, the midpoint m of l ∩ Fq,β satisfies Φ(m) ≥ β.

Proof. Let s = l∩Fq,β . Since l∩Fq,β is a convex set, s is a point or a segment.
Let m be the midpoint of s. Suppose that Φ(m) < β. By Lemma 1 we know
that Fq,β ⊂ Fq,Φ(m) and consequently m is an interior point of Fq,Φ(m), which
is contradictory with the fact that m is on the boundary of Fq,Φ(m).

Lemma 3. Let aq,e be a Delaunay arc whose supporting circle cq,e contains
p∗. Let p′ be the point that maximizes φ(p) restricted to aq,e, and let p be the
point that maximizes φ(p) restricted to Dq. If p′ ∈ Dq then φ(p′) = φ(p).



Mesh Modification Under Local Domain Changes 47

Proof. Since p′ ∈ Dq, clearly φ(p′) ≤ φ(p). Suppose φ(p′) < φ(p). Since p′

maximizes φ(p) restricted to aq,e, Fq,φ(p′) is tangent to cq,e at p′. Moreover,
due to that Fq,φ(p′) is convex, cq,e, p∗ ∈ Fq,φ(p′) and p∗ ∈ cq,e, we have
Fq,φ(p′) ⊂ cq,e. By Lemma 1 we have Fq,φ(p) � Fq,φ(p′), consequently Fq,φ(p̃) �

cq,e, which is contradictory with the fact that p ∈ Dq.

The maximizing algorithm consists of two main steps, first we find the
point p∗ that maximizes Φ. If p∗ happens to lie inside the Delaunay Zone, Dq,
then it is the target point p̃; on the contrary we have to find p onDq. Both steps
are based on the optimal gradient method that progressively approaches the
point maximizing a function. This method needs the direction v(p) in which
the function increases more quickly. In our case we approximate v(p) as follows
(see Figure 6):

1 Determine the minimum angle β of Tq(p).
2 If β is adjacent to p, let v(p) be the direction of its angle bisector.
3 If β is not adjacent to p, let r be the vertex of β and let v(p) be the

perpendicular vector to rp satisfying that the half-plane determined by p
and v(p) does not contain the other vertex of the triangle.

p
β

v(p)
p

β

v(p)

Fig. 6. On the left, β is adjacent to p and increases in the direction of its angle
bisector. On the right, β is adjacent to an edge of Lq and increases in the direction
perpendicular to the edge adjacent to p and β.

Figure 7 illustrates the first step of the maximizing algorithm that finds
p∗ based on Lemma 2. Let pk be the point obtained after the k-th iteration
of the algorithm. The point q is used to compute the initial iteration p0. The
point pk+1 is computed from pk by applying the following steps:

1 Compute the minimum angle βk of Tq(pk) and the vector v(pk).
2 Compute the feasible zone Fq,βk

.
3 Compute the segment s as the intersection between Fq,βk

and the half-line
determined by pk and v(pk).

4 Take pk+1 as the midpoint of s.

The algorithm finishes when the distance between pk and pk+1 is lesser than
ε and the difference between βk and βk+1 is lesser than δ, where ε and δ are
parameters that permit controlling the accuracy of the solution.
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v( )pk

pk

Fq,βk

pk+1s

Fig. 7. First step of the maximizing algorithm.

Figure 8 illustrates the second step of the maximizing algorithm, based on
Lemma 3, that finds a point p on Dq maximizing Φ(p). Let aq,e be a Delaunay
arc whose supporting circle cq,e contains p∗. Any point of aq,e is qualified to
compute the initial iteration p0.

pk

s

pk+1

v(pk)p∗

C

aq,e

e

Fq.βk

pk

pk+1
p∗

v(pk)

e
C

aq,e

(a) p1 ∈ aq,e. (b) p1 �∈ aq,e.

Fig. 8. Second step of the maximizing algorithm.

There are two cases for computing pk+1 from pk. The first one is triggered
when pk lies on aq,e (see Figure 8(a)). In this case we apply the following
steps:

1 Compute the minimum angle βk of Tq(pk) and the vector v(pk).
2 Compute the orthogonal projection v of v(pk) onto the tangent line to cq,e

at pk.
3 Compute the feasible zone Fq,βk

.
4 Compute the segment s intersection between Fq,βk

and the half-line de-
termined by pk and v.

5 Take pk+1 as the midpoint of s.
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The second case occurs when pk does not lie on aq,e (see Figure 8(b)). In this
case the point pk+1 is taken as the intersection point between aq,e and the
half-line determined by pk and v(pk).

Only when the point p lies on Dq, the point p̃ is taken as the last itera-
tion point not lying on aq,e. Then, the described process must be applied to
Delaunay arcs whose supporting circle contains p∗ until the point p̃ is found.
If the process fails for all these arcs, we compute the set P of the intersection
points between the arcs, and we take p̃ as an interior point of Dq very close
to the point of P maximizing Φ(p).

4 Basic Operations

Movement and deletion of Steiner points are the basic operations used by our
improvement process. Steiner points to be treated by the process can belong
to two main groups. The first group is formed by the Steiner points located on
any segment of the PSLG, and the second group is formed by the remaining
Steiner points. We have named restricted vertices the points of the first group,
since their movement will be restricted to the corresponding segment, and free
vertices the points of the second group.

4.1 Moving Free Vertices

The key concept regarding the movement of a free vertex q is to substitute this
vertex by the best point in the quality zone Qq,α, being α the quality of the
mesh. Then, we have to find a point p̃ ∈ Dq maximizing the function Φ(p) and
satisfying Φ(p̃) ≥ α. In order to do that, we apply the maximizing algorithm
explained in the previous section. Observe that the simple insertion of p̃ into
the triangulation guarantees that exterior triangles to Lq are Delaunay, but
does not guarantee the Delaunay property among interior triangles. For this
reason, the vertex q has to be deleted and the vertex p̃ has to be inserted
using an Incremental Delaunay algorithm. Then, it is possible that Lp̃ 
= Lq

and, consequently, Φ′(p̃) ≥ Φ(p̃), where Φ′(p) is the function to be maximized
in the interior of Lp̃. In this case, we initiate an iterative process that in
each step updates q with the vertex p̃ obtained in the previous step, applies
the optimizing algorithm to q and inserts the new p̃ using an Incremental
Delaunay algorithm. The process finishes when Lp̃ = Lq. Only when the final
p̃ satisfies Φ(p̃) ≥ α, the point p̃ is inserted into the mesh as a Steiner vertex.

4.2 Deleting Free Vertices

Devillers in [4] proposed an algorithm to delete a point from a Delaunay trian-
gulation. Basically, his algorithm retriangulates Lq by determining Delaunay
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ears using the concept of power of q. In our case we need to obtain not just a
Delaunay triangulation, but a Delaunay refined one. Consequently we verify
whether the Delaunay ear is skinny or not, stopping the process when a skinny
one is found.

4.3 Moving Restricted Vertices

The movement of restricted vertices is constrained over their correspondent
subsegments. This kind of vertices can be present on a boundary subsegment
or on a non-boundary subsegment of a PSLG. Since the optimizing algorithm
can easily be adapted in order to guarantee that the vertex p̃ lies on the
subsegment, in both cases we apply the iterative process explained in Section
4.1.

4.4 Deleting Restricted Vertices

Deletion of a restricted vertex depends on whether it belongs or not to a
boundary subsegment of the PSLG. The presence of a restricted vertex on a
non-boundary subsegment implies the application of the deletion algorithm
explained in Section 4.2 to the two sides of the subsegment independently.
In this way the point is deleted only if each side independently fulfills the
point deletion verification, and then the region in each side is retriangulated
individually. The same steps from the algorithm of Section 4.2 can be carried
out without changes, with the only extra consideration that a restricted vertex
on a subsegment can not be deleted if a vertex of its link is encroached by the
subsegment. In case of a boundary subsegment the process detailed above is
applied only to the interior side.

4.5 Expanding Deletion of Vertices

Once a vertex has been deleted from the mesh other vertices are susceptible
of deletion. Each time a vertex is deleted all its adjacent Steiner vertices are
added to a queue to be deleted, causing in this way several iterations. The
iteration process ends when none of the vertices in the queue can be deleted.

5 Modifying a Delaunay Refined Mesh

Modification of a Delaunay refined mesh means to insert new PSLG elements
into the mesh or delete PSLG elements from the mesh. The elements can be
points, segments, polygonal lines and polygonal holes.

An element is inserted in the mesh by inserting its points and then checking
if each segment of the element is a sequence of edges of the mesh. If the check
fails, the segment is inserted by a recursive process that adds its midpoint and
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checks if the two subsegments are edges of the mesh. The edges corresponding
to segments are marked as locked. When the element is a polygonal hole, the
triangles located in the interior of the hole are deleted.

An element is deleted by marking its edges as unlocked, considering its
points Steiner vertices and trying to delete them by using the Devillers algo-
rithm. When the element is a polygonal hole, we first triangulate its interior.

After the insertion or deletion of an element, a process of improvement
is called that expands the quality through the mesh. We could follow two
approaches: to apply our improvement process each time a part of the element
is inserted or deleted, or apply the process right after the whole element is
inserted or deleted. This situation has been illustrated with the insertion of a
segment in Figure 9 (first approach) and in Figure 10 (second approach). As
can be observed in the figures, the use of the improvement process after each
point insertion increases the number of Steiner points. Consequently, in our
algorithms we will follow the second approach.

(a) (b)

(c) (d)

Fig. 9. (a) Initial mesh of a PSLG formed by a square boundary. (b) The mesh after
the insertion of two points. (c) The resulting mesh with skinny triangles generated
by the insertion of a segment whose endpoints are the points previously added. (d)
Resulting mesh obtained applying a improvement process after each partial element
addition.



52 N. Coll et al.

(a) (b) (c)

Fig. 10. (a) Initial mesh of a PSLG formed by a square boundary. (b) The resulting
mesh with skinny triangles generated by the insertion of a segment. (c) Resulting
mesh delaying improvement process at the end.

5.1 Improvement Process

The improvement process receives as input two lists: the list of points to be
inserted, initially containing only midpoints of encroached subsegments, and
the list of skinny triangles to be removed, originated by the modification of
an element. The output of the process is a mesh with the desired quality. The
process maintains the two lists and finishes when both are empty. Priority
is established on midpoints. To remove a skinny triangle, we first check its
Steiner vertices for deletion, then we check its Steiner vertices for movement,
and finally we add circumcenters to the list of points. This order of treatment
of skinny triangles is important to obtain a reduction in the number of vertices.
Following the rule from Ruppert’s algorithm encroached circumcenters are not
inserted and the midpoint of the encroached subsegments are added to the
list of points to be inserted.

6 Generating a Delaunay Refined Mesh

As stated in the introduction, our improvement process can also be applied to
generate a refined Delaunay quality mesh of a PSLG. The complete process
consists of the following steps. First, a conforming Delaunay triangulation
of the PSLG is generated, then the list of skinny triangles to be removed is
obtained, and finally our improvement method is applied to eliminate those
skinny triangles. Observe that initially the list of points to be inserted is
empty.

7 Experimental Results

We have implemented our algorithms in C++ language and using OpenGL
libraries to build an interactive interface. Our application takes a triangulated
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PSLG as input. This initial mesh is refined until the desired quality is achieved.
Also, the mesh can be modified by adding or deleting elements while keeping
the quality established.

We have run several simulations in order to test our implementation and
we have compared these simulations with meshes generated using TRIAN-
GLE, a freely available software produced by Jonathan R. Shewchuck [13]
(http://www.cs.cmu.edu/�quake/triangle.html), and an incremental Ruppert
algorithm based on the work of Miller et al. [10]. In table 1 we present the
statistics and the reference to the correspondent set of outputs. The input
PSLG is composed of a square boundary and a polygonal hole described by
20 points. The final PSLG consists of the initial PSLG plus four polygonal
holes each one of them composed of 10 points. In incremental Ruppert and in
our approach these last four holes are added to the mesh one at a time. Tests
have been carried out varying the quality requirement. The first column of
table 1 shows the quality measures considered. The following columns show
the number of triangles of the initial mesh and those generated by TRIAN-
GLE, the incremental Ruppert algorithm, finishing with our algorithm. It can
be observed in the results obtained that the number of triangles generated by
the incremental Ruppert, or from the scratch are higher than applying our
algorithm. Also notice that the percentage of the increment increases as the
quality angle gets higher.

Table 1. Number of triangles obtained after the insertion of four holes.

α Initial mesh From scratch Incremental Ruppert Our approach Figure

20◦ 124 439 421 314 11
25◦ 170 514 547 413 12
30◦ 257 717 1275 565 13
32◦ 350 1745 2771 674 14

(a) From scratch. (b) Incremental Ruppert. (c) Our approach.

Fig. 11. Results obtained for an angle α = 20◦.
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(a) From scratch. (b) Incremental Ruppert. (c) Our approach.

Fig. 12. Results obtained for an angle α = 25◦.

(a) From scratch. (b) Incremental Ruppert. (c) Our approach.

Fig. 13. Results obtained for an angle α = 30◦.

(a) From scratch. (b) Incremental Ruppert. (c) Our approach.

Fig. 14. Results obtained for an angle α = 32◦.
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All previous examples deal with the addition of elements to the initial
PSLG, but our algorithm allows us to delete elements from the PSLG. Figure
15 shows an example of segment deletion. Notice that the mesh obtained after
the segment deletion is quite similar to the initial mesh.

(a) (b) (c)

Fig. 15. (a) Initial mesh. (b) A mesh with a segment to be deleted. (c) Resulting
mesh after the segment deletion.

Finally, we present some initial results obtained when we use our improve-
ment method for Delaunay refined mesh generation. The PSLG used mod-
els the Lake Superior. Figure 16(a) shows the mesh generated taking 34◦ as
quality angle by TRIANGLE, and Figure 16(b) the result after applying our
method.

(a) Mesh produced by TRIANGLE. (b) Mesh produced by our approach.

Fig. 16. Results obtained for an angle α = 34◦.

8 Future Work

Future work includes an exhaustive analysis of the conditions in which the
algorithm terminates.

A large experimentation with other input PSLGs is necessary to confirm
our initial results in Delaunay refined mesh generation.
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Our ultimate goal is to extend our framework towards the modification
and generation of three dimensional meshes.
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Summary. A hierarchical simplicial mesh is a recursive decomposition of space into
cells that are simplices. Such a mesh is compatible if pairs of neighboring cells meet
along a single common face. Compatibility condition is important in many applica-
tions where the mesh serves as a discretization of a function. Enforcing compatibility
involves refining the simplices of the mesh further, thus generates a larger mesh. We
show that the size of a simplicial mesh grows by no more than a constant factor
when compatibly refined. We prove a tight upper bound on the expansion factor for
2-dimensional meshes, and we sketch upper bounds for d-dimensional meshes.

1 Introduction

Hierarchical data structures based on repeated subdivision of space have been
widely used in application areas such as finite element analysis, computer
graphics, scientific visualization, geometric modeling, image processing and
geographic information systems. In many such applications, the spatial de-
composition serves as a discretization of the domain of a scalar or vector field,
which associates each point of real d-dimensional space with a scalar or vector
value, respectively. The field values are sampled at the vertices of the subdi-
vision, and for any other query point the field value could be computed by an
appropriate (often linear) interpolation of the field values at the vertices of
the cell that contains it. The subdivision is adaptively refined to improve the
approximation of the field at regions of high variation.

Our interest in this paper is on simplicial decompositions, particularly on
regular hierarchical simplicial meshes [10, 2]. This is a generalization of the
concept of hierarchical regular triangulation in the plane. Each element of such
a mesh is a d-simplex, that is, the convex hull of d + 1 affinely independent
points [4]. A simplicial mesh is said to be regular if the vertices of the mesh are
regularly distributed and the process by which a cell is subdivided is identical
for all cells. The regular simplicial mesh that we consider is generated by a
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process of repeated bisection applied to a hypercube that has been initially
subdivided into d! congruent simplices. The subdivision pattern repeats itself
on a smaller scale at every d levels.

A simplicial mesh is called compatible if pairs of neighboring cells meet
along a single common face. A compatible simplicial mesh is also referred to
as a simplicial complex. (See Fig. 1 for a 2-dimensional example.) The com-
patibility condition is important since otherwise cracks may occur along the
faces of the subdivision, which in turn causes discontinuities in the function
and presents problems when using the mesh for interpolation. A compatible
mesh ensures at least C0 continuity and is desirable for many applications.
2-dimensional simplicial meshes have been used for multi-resolution terrain
modeling and rendering [5, 9, 3, 12, 6]; 3-dimensional meshes for volume ren-
dering of 3-dimensional scalar fields (such as medical datasets) [7, 14], and
4-dimensional meshes for visualization of time-varying flow fields.

(a) (b)

crack

Fig. 1. (a) A crack (b) Compatible simplicial mesh in the plane

Refining a simplicial mesh to enforce compatibility requires refining ad-
ditional simplices if they share split faces with their neighbors. The cost of
compatible refinement is that a larger mesh will be generated. Our goal in this
paper is to show that when a simplicial mesh is refined to enforce compati-
bility, its size will grow by no more than a constant factor. We prove a tight
upper bound on the expansion factor for 2-dimensional meshes, and upper
bounds for d-dimensional meshes.

Previously, Weiser [13] and Moore [11] proved results on the cost of re-
stricting quadtrees. A restricted quadtree is a quadtree in which two neighbor-
ing leaf cells in the quadtree may differ at most by one level [8]. Moore calls
a restricted quadtree as a 1-balanced quadtree. Weiser showed that a square
quadtree grows no more than nine times bigger and a triangular quadtree
grows no more than thirteen times bigger when refined to provide 1-balance
[13]. Moore later showed Weiser’s bounds could be reduced by showing that
a square quadtree grows at most eight times larger, and triangular quadtrees
grow ten times larger when refined for 1-balance [11]. Moore also showed that
his bounds are tight.

We follow Moore’s methodology to show similar results for the family of
bisection-based regular hierarchical simplicial meshes. Note that, Moore’s tri-
angular quadtrees are constructed by repeatedly subdividing a triangle into
four smaller triangles which are similar to the original triangle. Moore also
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analyzes degree-three triangular “quadtrees” where each triangle is subdi-
vided into nine smaller similar triangles. In any case, all the triangles in the
entire triangular quadtree are similar triangles. The simplicial meshes that we
consider in this paper arises from a different family of meshes, which are con-
structed by repeatedly subdividing a simplex into two child simplices which
are congruent to each other but not similar to their parent. Thus, the sub-
division rule is different from a triangular quadtree and there is more than
one similarity class of simplices in the mesh. This bisection-based subdivision
rule can be applied in any dimension d. In addition, Moore’s analysis is based
on 1-balancing, whereas we are interested in compatibility refinement which
imposes a tighter requirement.

The remainder of the paper is organized as follows. In Section 2 we present
basic definitions and describe regular hierarchical simplicial meshes. In Sec-
tion 3 we prove an upper bound on the size of a 2-dimensional compatibly
refined simplicial mesh. In Section 4, we prove that this upper bound is as-
ymptotically tight. In Section 5, we sketch an upper bound for d-dimensional
meshes.

2 Preliminaries

The simplex decomposition tree (sd-tree for short) is a collection of binary
trees representing a regular hierarchical simplicial mesh in real d-dimensional
space. Assume that the domain of interest has been scaled to lie within a unit
reference hypercube. The reference hypercube is initially subdivided into d!
congruent simplices that share the major diagonal. It is well known that the
collection of these simplices fully subdivide the hypercube, and further that
this subdivision is compatible [1]. These d! simplices form the starting point
of our simplicial decomposition. Simplices are then refined by a process of
repeated subdivision, called bisection, in which a simplex is bisected by split-
ting one of its edges at its midpoint. The edge to be bisected is determined by
a specific vertex ordering [10, 2]. Intuitively, this bisection scheme alternates
bisecting the major diagonal of the hypercube first, then the diagonals of the
d−1 faces, then the diagonals of the d−2 faces, and so on, finally bisecting the
edges (1-faces) of the hypercube. (In the 2-dimensional and the 3-dimensional
case, this bisection scheme is equivalent to bisecting the longest edge of the
simplex.) Hence, each of the d! coarse simplices at the highest level is the
root of a separate binary tree, which are conceptually joined under a common
super-root corresponding to the hypercube. See Fig. 2 for a 2-dimensional
subdivision and the corresponding sd-tree.

Define the level, �, of a simplex to be the depth modulo the dimension,
that is, � = (p mod d), where p denotes the depth of a simplex in the tree.
The depth of a root simplex is zero, and of any other simplex is one more
than the depth of its parent.
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(a) (b)

Fig. 2. (a) 2-dimensional simplicial subdivision (b) The corresponding sd-tree

(a) (b)

Fig. 3. (a) level-0 simplex
(b) level-1 simplex

Maubach [10] showed that with every d con-
secutive bisections, the resulting simplices are
similar copies of their d-fold grandparent, sub-
ject to a uniform scaling by 1/2. Thus, the pat-
tern of decomposition repeats every d levels in
the decomposition. Since the two children of any
simplex are also congruent, it follows that all the
simplices at any given level of the decomposition
tree are congruent to each other. Thus, all the
similarity classes can be represented by d canonical simplices, one per level.
In Fig. 3(a) and (b) the shaded simplices denote the two canonical simplices
for a 2-dimensional subdivision. Notice, for example, that any simplex in the
subdivision shown in Fig. 1 is congruent to either one of the two canonical
simplices. Consequently, it suffices to consider only the canonical simplices
when analyzing the structure of the tree.

(a) (b)

Fig. 4. (a) Before and (b) after
compatible refinement

A d-dimensional simplex decomposition
tree is said to be compatible, if each simplex
in the subdivision shares a (d− 1)-face with
exactly one neighbor simplex. If the subdivi-
sion is not compatible, we can further refine
simplices to provide compatibility. Consider
the non-compatible subdivision in Fig. 4(a).
The simplices that share a bisected edge
with already bisected simplices need to be
bisected as well. However, note that new bi-
sections will possibly trigger more bisections
at the higher levels of the tree. In Fig. 4(b)
the dashed edges illustrate the bisections triggered due to compatibility re-
finement of the subdivision shown in (a).
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3 Upper Bound for 2-Dimensional Decompositions

In this section, we prove that the size of a 2-dimensional regular hierarchical
simplicial mesh grows only by a constant factor when compatibly refined.

Theorem 1. A non-compatible simplex decomposition tree in 2-dimensional
space with n nodes can be compatibly refined to form a simplex decomposition
tree with no more than 14n nodes.

S

(b)(a)

S

Fig. 5. (a) Barrier of a level-0 simplex (b) Barrier of a level-1 simplex

We follow a similar method as Moore [11] to prove this theorem. We start
by finding a barrier, that is, a configuration of simplices around a particular
simplex S. Then, we show that if such a barrier is produced after a series of
splits (possibly none), then simplex S will never split during compatibility
refinement. Recall that, in the 2-dimensional case, we have two canonical
simplices which are shown in Fig. 3(a) and (b). We call them level-0 simplices
and level-1 simplices, respectively. The barriers for each class of simplices are
illustrated in Fig. 5(a) and (b). Before proving the above theorem, we first
introduce the notion of a safe simplex and prove a lemma that shows that
such simplices cannot be split.

Definition 1. (Safe Simplex) A simplex S is safe if none of the barrier ele-
ments are split initially or such a barrier comes into existence after any series
of splits.

Lemma 1. A safe simplex S will never split during compatibility refinement.

Proof. (of Lemma 1)
We will prove the lemma by induction on the depth of the simplex in the

simplex decomposition tree. Let p denote the depth of the simplex S.

If S is the deepest leaf, S will not split since a simplex will only split if it has
a split neighbor.

Basis
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Assume that our inductive hypothesis holds for simplices at depth p + 1. We
will show that the inductive hypothesis holds for a simplex S at depth p. We
need to consider the two canonical simplices separately.

Let us first consider the case where S is a level-0 simplex, that is, p mod
2 = 0. Note that for S to split, either one of the three neighboring simplices
shown in Fig. 6(a) should split. If none of the three neighbor simplices labeled
0, 1 and 2 split, S will never split. Suppose that S is initially surrounded by
the barrier shown in Fig. 6(b), such that no barrier element is split. Even if all
the boundary barrier elements that are at depth p split due to compatibility
refinement, we will have the structure depicted in Fig. 6(c). Notice that the
neighbors labeled 0 and 2 are at depth p+1, and they have their own barriers.
Thus, these neighbors are safe. The barrier for neighbor 0 is depicted with
thick lines in Fig. 6(d), and the barrier for neighbor 2 is symmetric to that.
Therefore, by the inductive hypothesis that was assumed to hold for simplices
at depth p + 1, neighbors 0 and 2 need not split.

S
0

2

1

1

2

0 S

3

4

(c)

S

(b)(a)

element splits
1 level of boundary

1

2

0 S

3

4

(d)

Fig. 6. Induction step for a level-0 simplex

Similarly simplices labeled 3 and 4 at depth p + 1 are surrounded by a
barrier and they will not split. If 3 and 4 do not split, neighbor simplex 1 will

Induction Step



The Cost of Compatible Refinement of Simplex Decomposition Trees 63

not split. Thus, none of the neighbor simplices of S will split ensuring that S
will not split. This concludes the case of a level-0 simplex.

The case of S being a level-1 simplex can be proved similarly. Suppose
that S is initially surrounded by the barrier shown in Fig. 7(a), such that no
barrier element is split. Even if all the boundary barrier elements that are
at depth p split due to compatibility refinement, we will have the structure
depicted in Fig. 7(b). Notice that if none of the three neighbor simplices of S
which are labeled 0, 1 and 2 split, S will never split. Neighbors 1 and 2 which
are at depth p+1 have their own barriers, and so, they are safe. The barrier for
neighbor 1 is depicted with thick lines in Fig. 7(c). The barrier for neighbor 2
is symmetric. Therefore, neighbors 1 and 2 need not split. Similarly, simplices
labeled 3 and 4 are at depth p + 1 and have their own barriers, preventing
neighbor 0 to split. Since none of the neighbor simplices of S split, S will not
split. ��

boundary
element
splits

3

0

4 2

1 3

0

4 2

(b) (c)(a)

1

S S S

Fig. 7. Induction step for a level-1 simplex

Proof. (of Theorem 1)
Using Lemma 1, if a simplex S splits, it must not be safe, that is, one or

more of its barrier elements is initially split. We will hold one of its barrier
elements responsible for splitting of S. A split element R may be responsible
for splitting 13 other split elements, since it may be in the barrier of 13 possible
elements as depicted in Fig. 8 when R is a level-0 simplex, and in Fig. 9 when
R is a level-1 simplex. In Fig. 8, part (a) shows the nine possible level-0
simplices whose barriers contains R, and part (b) shows the four possible
level-1 simplices whose barriers may contain R. Thus, compatibly refining a
simplex decomposition tree could increase the number of nodes by at most a
factor of 14. ��

4 Tightness of the Upper Bound

In this section, we demonstrate that the upper bound of Theorem 1 is as-
ymptotically tight by constructing an infinite family of simplex decomposition
trees, each of which grow fourteen times larger less an additive constant, when
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Fig. 8. 13 simplices whose barriers contain level-0 simplex R

R1

4

65
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(a)

R

10

11
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(b)

Fig. 9. 13 simplices whose barriers contain level-1 simplex R

compatibly refined. Let Ti denote the i-th tree in this family of trees. Ti is
constructed as follows. We start with the tree shown in Fig. 10(a). Initially,
we designate the simplex with thick borders as the next simplex to split. Each
split generates two new child simplices. After the split we update next to be
the child simplex which has the central vertex of the subdivision as one of
its vertices. To construct Ti, we split the next simplex 2i times. Figure 10(b)
shows such a subdivision after six splits (i = 3). To complete the construction
of Ti, we replace the next simplex with the subdivision shown in Fig. 10(c).

Figure 11 and Fig. 12 show the first three trees of this family. Figure 11(a)
and (b) show T1 before and after compatible refinement, respectively. Splits
performed during compatible refinement are depicted with dashed lines. T1 has
19 internal nodes before refinement, and 97 internal nodes after refinement.
Fig. 11(c) shows T1 and T2 such that T1 is within the gray inner square
with thick borders. T2 is defined within the outer square. The thicker dashed
lines correspond to the additional splits (i.e., internal nodes generated) due
to compatible refinement of T2.
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(c)(a) (b)

Fig. 10. Construction of Ti

1 (b) T1

(c) T1

after refinement

after refinement

Fig. 11. T1 within the inner gray square and T2 within the outer square

(a) T
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Figure 12 shows T1, T2 and T3 such that T1 is within the innermost light
gray square, T2 is within the dark gray next outer square and T3 is defined
within the outermost square.

before        after refinement
number of internal nodes 

T1 within light gray square

T2 within dark gray square

T3 within outermost square

19

21

97

23 153

125

Fig. 12. T3

From these first three trees of the sequence we observe a pattern that, Ti+1

contains two more internal nodes than Ti, and the compatible refinement of
Ti+1 produces twenty six more internal nodes than the compatible refinement
of Ti. See Fig. 13 for a depiction of how Ti+1 is related to Ti. In this figure, the
thick solid lines represent the two additional splits in Ti+1 compared to Ti,
and the thick dashed lines (seven of them are on the border of Ti) constitute
the twenty six additional splits needed for the compatible refinement of Ti+1

than were necessary for the compatible refinement of Ti. (The thin solid lines
were already accounted for in previous trees of the sequence.) The number of
internal nodes before and after the compatible refinement for the first three
trees of the family is also given in Fig. 12.

Based on above observations, any tree of this family with n nodes generates
a tree with 14n− 169 nodes after compatible refinement. As n increases, the
expansion factor approaches the upper bound of 14.

5 The Expansion Factor in Higher Dimensions

Unlike the 2-dimensional case, we do not have tight bounds on the expansion
factor for dimensions 3 and higher. However, we will sketch an upper bound
on their size after compatible refinement. In our results for 2-dimensional
trees described in previous sections, we have chosen the minimum barrier for
a simplex in order to prove a tight upper bound. Our approach will be to
generate a larger barrier, but one that is easier to analyze. Such a barrier for
a level-0 simplex in the 2-dimensional case is shown in Fig. 14. This barrier
contains 18 simplices all of the same depth. (All of them are level-0 simplices.)
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Ti

Ti+1

Fig. 13. Ti and Ti+1

Consequently, a level-0 simplex could be in the barriers of 17 other simplices,
meaning that if it were split, it could be responsible for 17 other element
splits. Thus, compatibly refining a 2-dimensional simplex decomposition tree
could increase the number of nodes by at most a factor of 18.

S

Fig. 14. A naive bar-
rier for a level-0 sim-
plex in 2-dimensions

If we analyze the construction of the barrier, we note
that the square containing S in Fig. 14 is surrounded
by 8 squares and each square contains 2 level-0 sim-
plices. We can generalize such a barrier to d-dimensional
case as follows. Consider a level-0 simplex S within
a d-dimensional hypercube H. Surround H by 3d − 1
hypercubes such that each face of H is shared by a
neighbor hypercube. Each of these neighbor hypercubes
contains d! simplices. This results in a barrier contain-
ing 3dd! level-0 simplices including S. Consequently, a
level-0 simplex could be in the barriers of (3dd!)−1 sim-
plices, therefore, if it is split, it could be responsible for
(3dd!) − 1 other element splits. Thus, a d-dimensional
simplex decomposition tree could grow by at most a
factor of 3dd! when compatibly refined.

However, above analysis is only for level-0 simplices. In the d-dimensional
case, we have d canonical simplices to be considered. We can construct the
barrier for a level-k simplex S as follows. S is contained in a d-dimensional
hypercube H. Surround H by 3d − 1 hypercubes as before, but consider that
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each hypercube is subdivided into d! ·2k level-k simplices instead. This results
in a barrier containing 3dd! · 2k level-k simplices including S. Consequently, a
level-k simplex could be in the barriers of 3dd! ·2k−1 simplices. Since k could
be d− 1 at most, an d-dimensional simplex decomposition tree could grow by
at most a factor of 3dd! · 2d−1 when compatibly refined.

6 Conclusion

We have shown that when compatibly refined the size of a 2-dimensional
simplex decomposition tree grows at most by a factor of 14 and this is tight.
This is a worst-case bound, however, and our preliminary experiments on
randomly generated sd-trees suggest that, in practice the expansion factor
is much smaller. For example, over a 100 randomly generated 2-dimensional
sd-trees of maximum height 32, the average expansion factor was found to
be only 4.7, and the maximum expansion factor was found to be 5.9. For
3-dimensional sd-trees of maximum height 32, the average was 31.2 and the
maximum was 36.1. For 4-dimensional sd-trees of maximum height 32, the
average was 227.6 and the maximum was 244.6.

For dimensions higher than 2, we have sketched an upper bound, but a
more complete analysis would be needed to prove tight bounds. Since a d-
dimensional sd-tree contains simplices from d different similarity classes, and
for a complete analysis each canonical simplex has to be considered separately,
it would therefore be much more challenging to prove tight upper bounds for
general dimensions.
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Abstract. We describe an approach to construct hexahedral solid NURBS (Non-Uniform Ra-
tional B-Splines) meshes for patient-specific vascular geometric models from imaging data
for use in isogeometric analysis. First, image processing techniques, such as contrast enhance-
ment, filtering, classification, and segmentation, are used to improve the quality of the in-
put imaging data. Then, lumenal surfaces are extracted by isocontouring the preprocessed
data, followed by the extraction of vascular skeleton via Voronoi and Delaunay diagrams.
Next, the skeleton-based sweeping method is used to construct hexahedral control meshes.
Templates are designed for various branching configurations to decompose the geometry into
mapped meshable patches. Each patch is then meshed using one-to-one sweeping techniques,
and boundary vertices are projected to the lumenal surface. Finally, hexahedral solid NURBS
are constructed and used in isogeometric analysis of blood flow. Piecewise linear hexahedral
meshes can also be obtained using this approach. Examples of patient-specific arterial models
are presented.

Keywords: Patient-specific vascular models, hexahedral mesh, skeleton-based

1 Introduction

Recently, patient-specific modeling was proposed as a new paradigm in simulation-
based medical planning. Physicians, using computational tools, construct and eval-
uate combined anatomical/physiological models to predict the outcome of alterna-
tive treatment plans for an individual patient. A comprehensive framework has been
developed to enable the conduct of computational vascular research [1, 2]. Blood
flow simulations provide physicians with physical data to help them devise treatment
plans.
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Fig. 1. The abdominal aorta model is divided into 26 patches, and each color represents one
different patch. (a) - volume rendering result; (b) - isocontouring result; (c) - surface model and
its path after removing unnecessary components; (d) - control mesh; (e) - solid NURBS mesh
after refinement (73,314 elements); (f) - fluid-structure interaction simulation results: contours
of the arterial wall velocity (cm/s) during late systole plotted on the current configuration. Only
major branches are kept in (d-f).
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Isogeometric analysis is a new computational technique that improves on and
generalizes the standard finite element method. It was first introduced in [3], and
expanded on in [4]. In an effort to instantiate the concept of isogeometric analy-
sis, an analysis framework based on NURBS was built. Mathematical theory of this
NURBS-based approach was put forth in [5]. NURBS is not the only possible ba-
sis for isogeometric analysis but it is certainly the most highly developed and widely
utilized. For an introductory text on NURBS, see Rogers [6]. A more advanced treat-
ment of the subject is given in Piegl and Tiller [7]. Other geometric modeling tech-
niques that have potential as a basis for isogeometric analysis include: A-patches [8],
T-splines [9], and subdivision [10]. These warrant further investigation.

Figure 1 shows one such model, obtained from patient-specific imaging data. We
have designed a set of procedures which allows us to create solid NURBS vascular
models directly from patient-specific data. We have named this process the vascular
modeling pipeline, which can be divided into four main steps:

1. Preprocessing – in scanned Computed Tomography (CT) or Magnetic Reso-
nance Imaging (MRI) data, the intensity contrast may not be clear enough, noise
exists, and sometimes the blood vessel boundary is blurred. Therefore, we use
image processing techniques to improve the quality of CT/MRI data, such as
contrast enhancement, filtering, classification, and segmentation.

2. Path Extraction – The goal is to find arterial pathes. Vascular surface models
can be constructed from the preprocessed imaging data via isocontouring. The
skeleton is then extracted from the surface model using Voronoi and Delaunay
diagrams. This skeletonization scheme is suitable for noisy input and creates
one-dimensional clean skeletons for blood vessels.

3. Control Mesh Construction – a skeleton-based sweeping method is developed
to construct hexahedral NURBS control meshes by sweeping a templated quad
mesh of a circle along the arterial path. Templates for various branching con-
figurations are presented which decompose the geometry into mapped meshable
patches using the extracted skeleton. Each patch can be meshed using one-to-
one sweeping techniques. Some nodes in the control mesh lie on the surface,
and some do not. We project nodes lying on the surface to the vascular sur-
face. The blood vessel wall can be built by radially extending the surface outside
10%-15% of the distance to the center line.

4. NURBS Construction and Isogeometric Analysis – after generating hexahedral
control meshes, we construct solid NURBS geometric models and employ isoge-
ometric analysis to simulate blood flow. Piecewise linear hex meshes can also be
obtained. Three numerical examples, coronary, thoracic and abdominal arteries,
are presented.

The remainder of this paper is organized as follows: Section 2 reviews related
previous work. Section 3 describes the meshing pipeline and preprocessing for our
geometric modeling approach. Section 4 talks about solid NURBS construction and
isogeometric analysis. Section 5 explains the skeleton-based sweeping method and
decomposition templates for various branching configurations. Section 6 presents
three numerical examples. Section 7 draws conclusions and outlines planned future
work.
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2 Previous Work

Sweeping Method: Sweeping, or 2 1
2 -D meshing, is one of the most robust tech-

niques to generate semi-structured hexahedral meshes. One-to-one sweeping re-
quires that the source and target surfaces have similar topology. The source surface
is meshed with quadrilaterals [11], which are swept through the volume using linking
surfaces as a guide [12].

However, few geometries satisfy the topological constraints required by one-to-
one sweeping. In the CUBIT project [13] at Sandia National Labs, a lot of research
has been done to automatically recognize features and decompose geometry into
mapped meshable areas or volumes. Various many-to-one and many-to-many sweep-
ing methods have been developed [14, 15, 16, 17]. Care should also be taken in
locating internal nodes during the sweeping process [18, 19].

Medial Axis-based Mesh Generation: Medial axis is the locus of points that
are minimally equidistant from at least two points on the geometry’s boundary. The
medial axis transform provides an alternative representation of geometric models
that has many useful properties for analysis modeling [20]. Applications include de-
composition of general solids into subregions for mapped meshing, identification
of slender regions for dimension reduction and recognition of small features for sup-
pression. The medial surface subdivision technique [21] decomposes the volume into
map-meshable regions, which are then filled with hex elements using templates.

Medial axis has been used to construct hexahedral meshes for CAD objects. The
skeleton-based modeling methods were developed for solid models [22]. Quadros et
al. used a skeleton technique to control finite element mesh size [23]. Besides other
unstructured mesh generation methods [24, 25, 26], a skeleton-based subdivision
method has also been used in biomedical applications, such as a below-knee residual
limb and external prosthetic socket [27], and bifurcation geometry in vascular flow
simulation [28]. However, trifurcations and more complex branchings also exist in
the human artery tree. Therefore, decomposition templates for arbitrary branching
configurations are desirable and are constructed in this paper.

NURBS in Mesh Generation and Analysis: As the most highly developed and
widely utilized technique, NURBS [6, 7, 29] has evolved into an essential tool for a
semi-analytical representation of geometric entities. Sometimes NURBS solid mod-
els are taken as input for finite element mesh generation [30]. Anderson et al. pro-
posed a fast generation of NURBS surfaces from polygonal mesh models of human
anatomy [31]. An enhanced algorithm was developed for NURBS evaluation and uti-
lization in grid generation [32]. In isogeometric analysis [3], NURBS basis functions
are used to construct the exact geometry, as well as the corresponding solution space.

3 Meshing Pipeline and Preprocessing

The input images are often of poor quality which makes it difficult to generate quality
meshes for regions of interest. To circumvent this problem we pass the raw imaging
data through a preprocessing pipeline where the image quality is improved by en-
hancing the contrast, filtering noise, classifying, and segmenting regions of various
materials. The surface model is then extracted from the processed imaging data, and
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Fig. 2. A schematic diagram of the meshing pipeline. Preprocessing includes three modules:
image processing, isocontouring and geometry editing, and path extraction.

the vessel path is obtained after skeletonizing the volume bounded by the surface.
First we modify the geometry by removing unnecessary components, then extract
the skeleton. The generated path can also be edited according to simulations, e.g.,
adding a path for a Left Ventricle Assist Device (LVAD) in the thoracic aorta model
(Figure 12). A skeleton-based sweeping method is then used to generate hexahedral
control meshes for solid NURBS construction and isogeometric analysis. Figure 2
shows the meshing pipeline. The preprocessing step of our skeleton-based meshing
approach is described below, including image processing, isocontouring and geome-
try editing, and path extraction.

Image Processing: We choose a fast localized method for image contrast en-
hancement [33]. The basic idea is to design an adaptive transfer function for each
individual voxel based on the intensities in a suitable local neighborhood. A bilateral
pre-filtering coupled with an evolution driven anisotropic geometric diffusion PDE
(partial differential equation) [34] is utilized to remove noise. Sometimes we need to
classify the voxels into several groups, each of which corresponds to a different type
of material. We choose an approach which relies on identification of the contours by
membership of seed points which are located by the gradient vector diffusion [35].
A variant of the fast marching method is adopted [36] to segment the imaging data
to find the clear boundary of each voxel group belonging to a certain category.

Isocontouring and Geometry Editing: There are two main isocontouring meth-
ods from imaging data: Primal Contouring (or Marching Cubes [37]) and Dual Con-
touring [38]. In this application we choose Dual Contouring to extract the isosurface,
because it tends to generate meshes with better aspect ratios. We then modify the
model to suit our particular application. This can be done in various ways, for ex-
ample, by removing unnecessary components, adding necessary components which
are not constructed from imaging data, denoising the surface, etc. After getting the
vessel path, we can edit it according to simulation requirements. For example, we
can add a path for the left ventricle assist device (LVAD) in the thoracic aorta model
(Figure 12).

Path Extraction: The vertex set of the extracted and possibly repaired geometry
is then used to create an interior path lying in the middle of the blood vessels. We
define a squared distance function which assigns to any point x ∈ R3, the minimum
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square distance to the vertex set. We further compute the index 1 and index 2 saddle
points of this distance function and compute the unstable manifold of these two types
of critical points. The identification of the critical points along with their indices and
the computation of the unstable manifold are done efficiently via the Voronoi and
its dual Delaunay diagram of the point set. The details of this method can be found
in [39]. We adopt this method of path generation because it has several advantages
which are useful for the patient specific modeling of blood vessels. One advantage
is that it can handle noisy input gracefully. Often the noise present in the data is
not fully eliminated after the preprocessing stage. In the path generation step we
employ another stage of filtering which helps to construct a clean skeletal path for the
extracted geometry. Secondly, the extracted geometry may have flat regions where
it is not straight forward to obtain a linear path. Fortunately our starring scheme, as
described in [39], eliminates these spurious features and create the one-dimensional
path. The results of this path generation step are shown on various datasets (Figures
1, 11, 12).

4 Solid NURBS Construction and Isogeometric Analysis

In a NURBS-based isogeometric analysis a physical domain in R3 is defined as a
union of patches. A patch, denoted by Ω, is an image under a NURBS mapping of a
parametric domain (0,1)3

Ω = {x = (x,y,z) ∈ R3 | x = F(ξ,η,ζ), 0 < ξ,η,ζ < 1}, (1)

where

F(ξ,η,ζ) =
n

∑
i=1

m

∑
j=1

l

∑
k=1

Rp,q,r
i, j,k (ξ,η,ζ)Ci, j,k, (2)

Rp,q,r
i, j,k =

Ni,p(ξ)M j,q(η)Lk,r(ζ)wi, j,k

∑n
î=1 ∑m

ĵ=1 ∑l
k̂=1

Nî,p(ξ)M ĵ,q(η)Lk̂,r(ζ)wî, ĵ,k̂

. (3)

In the above, Rp,q,r
i, j,k (ξ,η,ζ)’s are the rational basis functions, and Ci, j,k’s ∈ R3 are

the control points. In the definition of the rational basis, Ni,p(ξ)’s, M j,q(η)’s, and
Lk,r(ζ)’s, are the univariate B-spline basis functions of polynomial degree p, q, and
r; wi, j,k’s, strictly positive, are the weights.

In isogeometric analysis the geometry generation step involves construction of a
control mesh, which is a piecewise multi-linear interpolation of control points, and
the corresponding rational basis functions. The initial mesh encapsulates the ‘exact
geometry’ and, in fact, defines it parametrically.

For the purposes of analysis, the isoparametric concept is invoked (see Hughes
[40]). The basis for the solution space in the physical domain is defined through
a push forward of the rational basis functions defined in (2) (see [5] for details).
Coefficients of the basis functions, defining the solution fields in question (e.g., dis-
placement, velocity, etc.), are called control variables.

As a consequence of the parametric definition of the ‘exact’ geometry at the
coarsest level of discretization, mesh refinement can be performed automatically
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without further communication with the original description. This is an enormous
benefit. There are NURBS analogues of finite element h- and p-refinement, and there
is also a variant of p-refinement, which is termed k-refinement, in which the conti-
nuity of functions is systematically increased. This seems to have no analogue in
traditional finite element analysis but is a feature shared by some meshless methods.
For the details of the refinement algorithms see [3].

The isogeometric approach is fundamentally higher-order. For example, in order
to represent circles, cylinders and spheres, rational polynomials of at least quadratic
order are necessary. The generation of refined NURBS bases of all orders is fa-
cilitated by simple recursion relationships. The versatility and power of recursive
NURBS basis representations are truly remarkable. Equation systems generated by
NURBS tend to be more homogeneous than those generated by higher-order finite el-
ements and this may have some benefit in equation solving strategies. NURBS satisfy
a ‘variation diminishing’ property. For example, they give monotone fits to discontin-
uous control data and become smoother as order is increased, unlike Lagrange inter-
polation polynomials which oscillate more violently as order is increased. NURBS
of all orders are non-negative pointwise. This means that every entry of the NURBS
mass matrix is non-negative. These properties are not attained in finite element analy-
sis. On the other hand, NURBS are not interpolatory. They are fit to nets of control
points and control variables. This aspect is less transparent to deal with than the cor-
responding finite element concepts of interpolated nodal points and nodal variables
but somewhat similar to the situation for meshless methods. There are many robust
algorithms to create very complex geometries with NURBS.

5 The Skeleton-based Sweeping Method

Blood vessels are tubular objects, therefore we choose the sweeping method to con-
struct hexahedral control meshes for NURBS-based isogeometric analysis.

5.1 Sweeping Method

In the sweeping method, a templated quadrilateral mesh of a circle is projected onto
each cross-section of the tube, then corresponding vertices in adjacent cross-sections
are connected to form a hexahedral mesh. A hexahedral NURBS control mesh should
satisfy the following four requirements:

1. Any two cross-sections can not intersect with each other.
2. Each cross-section should be perpendicular to the path line.
3. In the intersection region of several branches, each cross-section should remain

perpendicular to the vessel surface.
4. In order to achieve a G1-continuous surface, the boundary vertex shared by two

patches in the control mesh should be collinear with its two neighbors along the
axial direction, and the boundary vertex shared by three or more patches should
be coplanar with all of its neighboring boundary vertices. This is because, for a
so-called open knot vector, a NURBS curve is tangent to the control polygon at
the first and the last control nodes.
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(a) (b) (c)

Fig. 3. Multi-resolution templates for cross-sections. (a) Level-1-template (9 control nodes);
(b) Level-2-template (17 control nodes); (c) Level-3-template (25 control nodes). Red points
are circle centers, green points are interpolatory control nodes on the circle, and blue points
are non-interpolatory control nodes defined as the intersection point of two tangent lines at its
two neighboring green points.

We choose to parameterize the template cross-section as follows. One parametric
direction is associated with a closed circular curve, while another parametric direc-
tion is associated with a radial coordinate. Rational quadratic basis is used to define
the circular curve with a control polygon given by the linear interpolation of the
green and blue points shown in Figure 3. For the template shown in Figure 3a, the
control polygon is a square consisting of 8 control nodes, while in Figure 3b, it is an
octagon. Note that the circular cross-section is unchanged geometrically and para-
metrically as more control points are chosen for its representation. The green control
points lie on the circle, while the blue control points do not. This is due to the fact
that the rational basis is interpolatory at the green points and is not interpolatory at
the blue points. Also note that each interpolatory control point has two neighbor-
ing non-interpolatory points that are collinear with it. This construction guarantees
the resultant circular curve to be G1-continuous. Later, when we discuss data fit-
ting, it is only the interpolatory points that get projected onto the true surface. The
non-interpolatory points are adjusted to preserve the collinearity in order to obtain a
G1-continuous cross-section.

In the process of sweeping, we translate the cross-section template to the selected
locations on the path, and rotate it to make its normal vector pointing in the direction
tangent to the path as shown in Figure 4. This gives the third parametric direction
for the solid NURBS representation. The hexahedral control mesh is constructed
by connecting the corresponding control nodes in adjacent cross-sections. Piecewise
linear hexahedral meshes can also be generated at the same time by projecting all
boundary vertices to the vessel surface, or by interpolating the elements of the solid
NURBS geometry.

5.2 Branching Templates

One-to-one sweeping requires that the source and target surfaces have similar topol-
ogy. Generally, arterial models do not satisfy this requirement, therefore we need to
decompose arterial networks into mapped meshable regions. In this section, we will
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Fig. 4. The skeleton-based sweeping method. (a) - a blood vessel skeleton; (b) - a templated
circle is translated and rotated to each cross-section. A bifurcation is shown.

discuss various decomposition templates for different branching configurations. An
n-branching is formed when n branches join together, where n≥ 3. When n = 3, it
is a bifurcation; when n = 4, it is a trifurcation; when n > 4, we call this situation
higher order branching.

In the human vascular system, most branchings are bifurcations. However, tri-
furcations or higher order branchings also exist. For example, there are several tri-
furcations in the coronary arteries (Figure 11) and the abdominal aorta (Figure 1).
In the following, we will discuss decomposition templates for all possible branching
configurations.

Bifurcation

For every intersection, a so-called master arterial branch is chosen. Typically, it is
an artery with the largest diameter. Suppose the master branch consists of two sub-
branches (Branch 1 and Branch 2), and the slave branch is Branch 3, as shown in
Figure 5a. The axes of Branch 1, 2 and 3 are Axis 1, 2 and 3 respectively (Axis 1
and Axis 2 may not be collinear). There is one basic case, shown in Figure 5, and all
bifurcations can be decomposed into three map-meshable regions by a variant of this
basic template.

Figure 5 shows the path, the constructed hexahedral control mesh, the solid
NURBS mesh, and the piecewise linear hexahedral meshes of the bifurcation tem-
plate. The bifurcation geometry is decomposed into three patches: the master branch
contains two patches (red and green), and the slave branch has one patch (yellow).
Here we choose Level-1-template (Figure 3a) for each cross-section, as the master
and slave branches have similar diameters. The bifurcation template also works for
finer cross-sections.

When the master branch and the slave branch have different diameters, the con-
trol nodes of some cross-sections are distributed unevenly in order to generate bet-
ter intersection regions. Figure 6 shows two control meshes and their corresponding



82 Y. Zhang et al.

Fig. 5. The bifurcation decomposition template. (a) - path; (b) - control mesh; (c) - solid
NURBS; (d) - a piecewise linear hex mesh. The bifurcation geometry is decomposed into 3
patches, and each patch is rendered with a different color.

solid NURBS meshes. The master branch control polygon is deformed from a square
to a trapezoid so as to accommodate a slave branch with a smaller diameter. Note that
the NURBS basis changes accordingly so as to preserve the circular cross-section,
and the quality of the intersection geometry is improved as can be seen in Figure 6
and Figure 7, where the axes of the master and the slave branches are non-orthogonal,
or non-coplanar. Although deforming the control polygon of the master branch gives
better results as compared to the non-deformed case, for the intersection of branches
with high diameter ratios we advocate the use of a finer template for the master
branch, such as a Level-2-template or a Level-3-template.

Fig. 6. Comparison of two meshes for the situation when the master branch and the slave
branch have different diameters. Control nodes on cross-sections are distributed evenly in
Mesh (1) (the top row), and unevenly in Mesh (2) (the bottom row). The red curves in the
right two pictures are transition curves.
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Fig. 7. Control mesh and solid NURBS (a) - the axes of the master and slave branches are not
perpendicular to each other; Control mesh and solid NURBS (b) - the axes of the master and
slave branches are not coplanar.

Trifurcation

Trifurcation has one master branch and two slave branches. According to the position
of slave branches relative to the master branch, we classify all possible trifurcations
to fall into five irreducible cases. All other trifurcations can be decomposed into
map-meshable regions by extending the five basic decomposition templates.

Case 1: The two slave branches are distributed along the peripheral direction of
the master branch, and they are in opposite relative to the master branch (the angle
between them is around 180◦). The same cross-section template can be used for the
master and slave branches.

Case 2: The two slave branches are distributed along the peripheral direction,
and the angle between them is arbitrary. Finer cross-section template is chosen for
the master branch.

Case 3: The two slave branches are distributed along the axial direction of the
master branch, and they intersect with each other.

Case 4: The two slave branches are distributed along the axial direction of the
master branch, and they do not intersect with each other. This situation degenerates
into two bifurcations.

Case 5: The two slave branches do not intersect with the master branch at the
same point, but they intersect with each other. In this situation, two bifurcations
merge into one trifurcation.

If a Level-1-template is selected as the cross-section of the master branch, then
there are at most two slave branches along the peripheral direction as shown in Fig-
ure 8 (Case 1). If the two slave branches are not opposite relative to the master
branch, or the two slave branches have different diameters from the master branch,
then a Level-1-template is not suitable, and we need to choose finer cross-section
templates, such as a Level-2-template or a Level-3-template. Similarly, if a Level-2-
template is selected as the cross-section of the master branch, then there can be at
most four slave branches along the peripheral direction. A Level-3-template allows
at most eight slave branches along the peripheral direction. In Case 2 of Figure 8,
the two slave branches are distributed along the peripheral direction and they are not
opposite, therefore we choose the finer cross-section template for the master branch
(Level-2-template), while the slave branch may have coarser cross-sections (Level-
1-template).

Case 3 and Case 4 have the same path, but Case 4 degenerates into two bifurca-
tions because its two slave branches do not intersect with each other even though their
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Trifurcation Case 1

Trifurcation Case 2

Trifurcation Case 3

Trifurcation Case 4

Trifurcation Case 5

Fig. 8. The trifurcation decomposition templates of Case 1-4. (a) - path; (b) - hex control mesh;
(c) - solid NURBS; (d) - piecewise linear hex mesh. The Trifurcation geometry is decomposed
into 4 patches (Case 1, 2, 3, 5) or 5 patches (Case 4). Each patch is rendered with a different
color.
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axes intersect. There is another special situation (Case 5) where two slave branches
do not intersect with the master branch at the same intersection point in the skeleton,
but the two intersection points are very close and the two slave branches intersect
with each other. This situation contains two bifurcations in the skeleton, but it should
be considered as one trifurcation. Therefore, when we choose branching configura-
tions, both the path and the vessel size should be considered.

Remark: In n-branching, n should be decided not only by the path, but also
by the diameter of each slave branch. In other words, if neighboring slave branches
intersect with each other, then it is n-branching. Otherwise, it degenerates into several
m-branchings, where m < n. On the other hand, several m-branchings may merge into
one n-branching if its slave branchings intersect with each other.

Here we discuss three basic templates for n-branching when n > 4. Relative to the
master branch, there are only two directions to arrange slave branches, the peripheral
and axial directions of the master branch. All other n-branching configurations can
be obtained by combining the three basic ones.

Case 1: There are three or more slave branches distributed along the peripheral
direction of the master branch. Figure 9 shows one example of four slave branches
along the peripheral direction. Level-2-template is selected for the master branch.
If there are more than four slave branches, the master branch needs to have a finer
cross-section. The cross-section template of slave branches can be coarser.

Case 2: There are three or more slave branches distributed along the axial direc-
tion of the master branch. Neighboring slave branches intersect with each other.

Case 3: There are three or more slave branches distributed along the axial di-
rection of the master branch. Slave branches do not intersect with each other. n-
branching degenerates into several m-branchings (m < n).

Several lower order branchings may merge into a higher order one, for example,
one bifurcation and one trifurcation can merge into a 5-branching. Case 1, Case 2
and Case 3 can be combined together to form more complex configurations. Figure
9 shows one example of 7-branching. It has four slave branches along the peripheral
direction and two slave branches along the axis of the master branch.

5.3 Data Fitting

After the sweeping step, each circular cross-section needs to be projected onto
the vessel surface as shown in Figure 10. First the interpolatory control points
(green points) are moved in the radial direction to the true surface. Then, the non-
interpolatory points (blue points) are placed at the intersection of the lines tangent to
the true surface passing through the two neighboring interpolatory points.

There are situations when the tangent lines do not intersect inside the fan region
defined in Figure 10b, or do not even intersect with each other when they are parallel.
This may occur when the cross-section template is not sufficiently fine to capture
features of the true surface, or when the true surface is noisy. This situation will
also result in an overlap in the geometry. In order to avoid overlap, we force the

Higher Order Branching
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n-branching Case 1

n-branching Case 2

n-branching Case 3

A combination of Case 1 and Case 2

Fig. 9. The n-branching templates of Case 1-3 and a combination of Case 1-2. (a) - path; (b) -
control mesh; (c) - solid NURBS; (d) - piecewise linear hex mesh. The Trifurcation geometry
is decomposed into 6 patches (Case 1), 5 patches (Case 2) or 7 patches (Case 3, a combination
of Case 1 and Case 2). Each patch is rendered with a different color.
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Ray 1

Ray 2

Ray 1

Ray 2
(b)(a) (c)

Fig. 10. One cross-section template is projected to the vessel surface. (a) Level-2-template
for one circular cross-section; (b) The red curve is the vessel curve. In the blue fan region,
the two tangent lines do not intersect with each other, and the magenta point is the calculated
control node; (c) The two neighboring green control nodes are adjusted. The green curve is
the constructed spline curve. Green control nodes are interpolatory points lying on the vessel
surface, and blue points are non-interpolatory.

non-interpolatory point to stay inside the fan region (the sector between two radial
rays) by placing it at the midpoint (indicated by the magenta color) of the segment
connecting the two interpolatory points. Finally, the location of the interpolatory
points is changed so as to preserve G1-continuity of the surface.

After projecting each cross-section to the vessel surface, we construct hexahedral
control meshes and generate solid NURBS for patient-specific vascular models. The
geometric error can be reduced by choosing a finer template for each cross-section.

5.4 Implications for Analysis of Blood Flow in Arteries

The proposed construction of a NURBS solid mesh for isogeometric analysis has the
following implications:

1. Parametric definition of the NURBS mesh allows one to refine the boundary
layer region near the arterial wall in order to accurately capture flow features.

2. In the case of a flow in a straight circular pipe driven by a constant pressure gra-
dient, NURBS basis of quadratic order gives rise to a point-wise exact solution
to the incompressible Navier-Stokes equation system. This also has implications
on the overall accuracy of the approach.

3. The choice of the parameterization of the cross-section template gives rise to
a singularity in the geometrical mapping at the center. This singularity does not
seem to affect the accuracy of the computational results. Other parameterizations
of the circular cross-section, containing multiple patches, are also possible.

6 Numerical Examples

In this section we present applications of the meshing pipeline to three patient-
specific vascular models: a model of a portion of the coronary tree, a model of the
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thoracic aorta, and a model of the abdominal aorta. Isogeometric analysis is then
used to compute blood flow in the models. In all cases, time-dependent, viscous,
incompressible Navier-Stokes equations were used as the blood model. The fluid
density and dynamic viscosity were chosen to be representative of blood flow. The
first example makes use of the Casson model for the dynamic viscosity while in
other examples viscosity was set to a constant value. All models are subjected to
a time-periodic inflow boundary condition, which simulates the input from a beat-
ing heart. The arterial wall is assumed rigid in the first example. Examples two and
three present fluid-structure interaction calculations in which the wall is assumed to
be elastic (see Bazilevs et al. [2] for the details of the mathematical formulation).
The rigid wall simulation was performed on a single processor, while the elastic wall
simulations were done in parallel.

A model of a portion of the coronary tree: Data for this model was obtained
from CT Angiography imaging data of a healthy male, over 55 years of age. Large
motions of the heart, as it supplies blood to the circulatory system, decreases the qual-
ity of the imaging data, and makes construction of patient-specific coronary models a
challenging task. Nevertheless, we managed to extract a portion of the coronary tree
for the purposes of creating an analysis suitable model. Results of the isocontouring
algorithm are shown in Figure 11a. Figures 11b-11d show the path, the control mesh,
and the solid NURBS model of the arterial segment. The model was used to study
drug delivery processes in arteries. The drug concentration in the blood is modeled
as a passive scalar governed by an unsteady advection-diffusion equation. Figure 11e
shows the isosurface of the drug concentration at 50% colored by the blood velocity
magnitude, revealing that the flow is unsteady, and has many complex features.

Thoracic aorta model: Data for this model was obtained from CT Angiography
imaging data of a healthy male over-30 volunteer. A patient-specific model of the
thoracic aorta was constructed by running through the meshing pipeline. An extra
branch, representing a left ventricular assist device (LVAD), was added to the arterial
model. Evaluation of LVADs, as well as other electromechanical devices used to
support proper blood circulation, is of great interest to the cardiovascular community.

12c. Figure 12d shows a result of the fluid-structure interaction simulation. Note that
the inlet and the three smaller outlet branches were extended for the purposes of
analysis.

Abdominal aorta: Data for this model was obtained from 64-slice CT angiog-
raphy of a healthy male over 55 years of age. Various stages of the meshing pipeline
are illustrated in Figure 1a-1f. Figure 1g shows a result of the fluid-structure simu-
lation. A computational study using a truncated geometrical model of this aorta was
performed in [2]. We used 85 seconds for path extraction and 8 seconds for control
mesh construction on a 64-bit dual-AMD 2GHz linux system, and 20 seconds for
solid NURBS generation on an Intel 3GHz linux system.

7 Conclusions and Future Work
We have developed a four-stage process to construct analysis suitable geometric
models from patient-specific vascular imaging data with a goal of using them in

The path, the control mesh, and the solid NURBS model are shown in Figures 12a-
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Fig. 11. Coronary artery. (a) - isocontouring results (two different view angles); (b) - path;
(c) - control mesh; (d) - solid NURBS model (20,824 elements); (e) - rigid wall simulation
results: isosurface of the drug concentration at 50% colored by the blood velocity magnitude
(cm/s).

isogeometric analysis of blood flow in arteries. We have focused on the NURBS
modeling, and did not treat other geometrical modeling technologies, such as A-
patches, T-splines, and subdivision. We would like to investigate these techniques in
the future.

We have successfully applied our method to three patient-specific examples,
which involve a model of a part of the coronary arterial tree, a thoracic aorta model,
and an abdominal aorta model. As part of the future work, we would like to apply
the techniques described here to modeling and analysis of the human heart.
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Fig. 12. Thoracic aorta. (a) - surface model and the path, a LVAD is inserted; (b) - control
mesh; (c) - solid NURBS (41,526 elements); (d) - fluid-structure interaction simulation re-
sults: contours of the arterial wall velocity (cm/s) during late diastole plotted on the current
configuration.
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Rapid Meshing of Turbomachinery Rows Using
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Summary. A semi-unstructured grid generation method especially taylored for the meshing
of turbomachinery blade passages and their associated cavities is presented. The method is
based on a smart combination of quasi-3D methods, an ad-hoc block decomposition of the
domain and a grid-based reconstruction of the computational domain.
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Introduction

The aerodynamic design of uncooled turbomachinery rows is based, among other
things, on the repeated simulation of three-dimensional blade rows with a fast turn-
around time. Traditionally blade rows have been simulated using clean aerodynamic
surfaces and simplified computational domains consisting of just the aerodynamic
surface and an approximated main annulus. A more accurate and realistic represen-
tation of the flow geometry would require the inclusion of the tip-shroud and under
platform cavities, the airfoil platforms themselves and the sealing flows, which on
the other hand have been shown to have a large influence on the development of

The motivation for addressing this specific topic is two-fold. First, the compu-
tational resources have traditionally limited the overall number of grid points in the
simulations and hence their level of complexity. Second, and more important, the ef-
ficient setting of turbomachinery simulations has been traditionally a problem, which
is aggravated by the presence of tip-shroud and platform cavities.

The steady growth of computational resources has paved the way to overnight
simulations of blade rows including its cavities with a small number of CPUs, how-
ever if these simulations have to be included in a design process, the generation of
the associated grids need to be performed in the order of tens of minutes or at most
a few hours.

secondary flows (see Figs. 1 and 2).
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Fig. 1. Real geometry and turbine terminology.

Configurations as the one outlined in Fig. 3 may be meshed using multi-block
structured methods. The departing point is usually a CAD 2D drafting model that
do not define the fluid domain. The solid model is usually constructed by another
specialist and many details, usually irrelevant from a fluid dynamics point of view,
are included on it. Obtaining a proper mesh for such configurations may be a one-
week task.

Multi-block structured meshing requires to accommodate the geometry in the
block interfaces to concentrate nodes in high gradient regions and determine the
block topology. The whole process is very slow and not suitable in a design environ-
ment.

The use of fully unstructured methods presents several problems as well. The
airfoil surface has a large curvature in the leading edge region in the downstream di-
rection, while in the span-wise direction the curvature is much smaller. The meshing
process is slow, not reliable enough and tends to generate more nodes than necessary
in the radial direction.

The generation of fast and robust ad hoc methods for this type of configurations
is hence very attractive.
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Method Overview

The method exploits several particularities of the configuration to significantly ease,
not only the meshing procedure, but the post-processing of the simulations. First the
computational domain is conceptually subdivided in sub-domains as it is sketched in
Fig. 4 left. However the 3D solid model is not strictly needed and the grid is con-
structed making extensive use of the freedom that provides the periodicity condition
in the azimuthal direction and the use of semi-structured grids.

Fig. 2. Traditional design grids (top) and new grids (bottom).
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Fig. 3. General arrangement of a turbo-machine and grid of the computational domain

Fig. 4. Conceptual block decomposition (left) and scheme of the meshing process (right)

It is important to highlight that the only truly three-dimensional feature in the
domain is the blade airfoil. The tip-shroud cavity and the under-platform cavities are
essentially axi-symmetric configurations where the azimuthal position of the lateral
boundaries is free, provided that the blade pitch is covered, and do not need to be
fixed in advance. Both parts may be meshed using semi-unstructured methods. The
unstructured part of the method copes with the more complex part of the geometry
(e.g.: The definition of the cavity in the meridional plane) while the structured part
deals with the easiest part of the meshing process (e.g: in the cavity the 3D mesh is
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obtained revolving the 2D unstructured grid). The difficult part of the problem is to
combine all the blocks in a consistent way without generating non-conformal grids
and satisfying the designer’s requirements in terms of point distribution.

The method considers two types of geometry. The airfoil surface that is created
by a specific application and that will be considered given in this work, and the
two dimensional geometry, that defines the cavities and the inlet/outlet boundary
conditions, and whose revolution defines the computational domain that contains the
blade surface. The latter is usually constructed in a CAD environment and need to
be cleaned to eliminate details which are not relevant for the simulations.

The method needs to handle information coming from different sources. In or-
der to integrate the process in a design environment a specific application has been
developed to keep track of all the information and control the different interfaces.
Turbomachinery design is conducted in a hierarchical way and this philosophy has
been kept in the actual process.

First a semi-unstructured grid about the airfoil is generated using a system espe-
cially designed for the meshing of blade passages that is currently used routinely[1].
This method produces hexahedral and prismatic cells that are easy to merge with
revolved two-dimensional grids. The sub-domain is shorter than the one used in the
absence of cavities, which spans from the trailing edge of the previous row to the
leading edge of the next (see Fig. 3). The inlet and outlet angles are obtained from
through-flow data (meridional analysis).

In second place the cavity sub-domains are defined and meshed using hybrid
grids. Then the rest of the blade passage is meshed using a structured grid. Especial
care has to be taken to ensure the compatibility of the node distribution of this mesh
with the airfoil and cavity grids.

Finally the 2D grids are revolved and the resulting grid merged with the semi-
unstructured grid of the airfoil. A design environment has been developed, which
manages all information, ensures the compatibility of the grids, merges them auto-
matically and creates boundary conditions and consistent initial flow solution.

Geometry Generation

A state-of-the-art turbomachinery design environment must deal with complex con-
figurations and build simulation models in just a few hours. To obtain this objec-
tive, a trade off between generic and tuned tools to speed-up the overall process
is mandatory. In the context of the present work, all final simulation models are
three-dimensional, although advantage is taken, whenever it is possible, of the quasi-
axisymmetric nature of the problem.

A CAD-like geometric kernel is used to support all the geometry translation,
creation and manipulation, as well as the grid generation. The underlying entities
supporting all the geometry are Non-Uniform Rational B-Splines (NURBS) and the
solid model topological data structure is a Radial Edge Non-Manifold Boundary
Representation (RENM B-Rep).
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Fig. 5. Hybrid grid on an airfoil (left) and semi-structured grid with a profiled end-wall detail
(right)

Passage and Cavities

Including the cavities in the simulation increases significantly the amount of infor-
mation needed to set up the grid. The cavities are complex and are defined in a CAD
tool, together with the rest of the engine, by a designer. The general arrangement
(GA) contains usually more information that required including a higher level of
details than needed for the simulations, drafting information, other layers, etc.

The GA is imported as an IGES file. The micro-edges are eliminated and the
geometry cleaned, which is more efficient than redraw the full geometry. If needed
this can be redesign within the same environment. At this point it is possible to
decide how to subdivide the domain in blocks. Three blocks are necessary for the
latter merging (see Fig. 4) but it is recommended to subdivide into sub-blocks to
improve the quality of the grid (meshing zones 1.b and 2.b with structured grids).

Aerodynamic Surfaces

The airfoil surface is provided by the aerodynamic designer and is considered as
given in the present work. The baseline computation considers the end-wall as an
smooth axi-symmetric surface. The real platform geometries considered here require
a modification of the baseline flow-path since it presents discontinuities (gaps) with
the rest of the passage end-wall. This problem is illustrated in Fig. 7. When non-
axisymmetric end-wall (NAEs) are considered to reduce secondary losses (see Fig. 5,
right) the geometry is considered given as well, the main reference with the previous
case is that this surface is continuous with respect the baseline axi-symmetric end-
wall.
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Two-Dimensional Unstructured Triangulation

The computational domain of some blocks (i.e. 1.a and 2.a and 3 in figure 4) and a
reference section of the blade grid is tessellated using Delaunay triangulations. Some
approaches emphasise constructions based on edge swappings (Lawson’s algorithm),
whereas others rely on the in-circle property (Bowyer-Watson method). The present
algorithm makes use of both methods to increase the robustness of the system. En-
forcing the prescribed geometry is usually done in two post-processing steps. First,
the edges that define the geometry are required to exist. In the present approach an
arbitrary set of edges, not necessarily conforming to a boundary, is forced to exist by
executing a sequence of swappings [2]. In a second step, all of the triangles placed
outside of the domain are flagged and removed, making use of the orientation asso-
ciated to the closed circuits that define them and of a consistent ordering of the nodes
that constitute the triangles.

Interior nodes of the domain are inserted making use of a function that provides
a measure of the desired size of the triangles [3]. This element-size function is built
just from the information contained in the point distribution of the domain boundaries
and of the prescribed curves in its interior. The key idea of the procedure is to use
as field point distribution function the solution of a Laplace equation with Dirichlet
boundary conditions.

Mesh quality is improved in two different steps: grid smoothing and node-degree
homogenisation. The latter process is useful to break some topological structures
that tend to appear during the course of the triangulation and that prevent further
improvement of the grid. The original two-dimensional procedure was generalised
in order to obtain grids on arbitrary surfaces [4]. To reduce the computational time
of edge-based solvers and increase the grid quality, triangles may be converted in an
unstructured grid of quads [5].

Two-Dimensional Unstructured Viscous Grid

Grids with high-aspect-ratio cells are generated using an advancing normal technique
[6] to build layers of stretched quadrilaterals in the boundary layer and wake regions.
Normals are advanced from the selected boundaries where a distribution of points
is assigned to each boundary node. Once a layer of normals has been constructed
the normal directions are smoothed to improve the quality of the grid. Each single
normal may be prevented from growing if either the associated cell reach an aspect
ratio close to a certain threshold, usually of order unity, or another node or edge is
found in the advancing direction.

Some blocks (i.e 1.b and 2.b in figure 4) of our problem are meshed using structured
grids based on the solution of elliptic partial differential equations (PDEs). Forcing

Meshing Techniques

Two-Dimensional Structured Grid
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terms are used to construct stretched layers of the cells close to the domain bound-
aries. Control functions are computed using the boundary point spacing and then
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Once P and Q are obtained at each boundary the values for the inner points are
obtained interpolating along lines of constant ξ and η:

P(ξ,η) = (1−η)P1 (ξ)+ηP2 (ξ) 0≤ ξ≤ 1

Q(ξ,η) = (1−ξ)Q1 (η)+ξQ2 (η) 0≤ η≤ 1

Grid control of orthogonality at boundaries is introduced adding a second term
in P and Q,
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where 0 < λ < 1 is a factor that relaxes the orthogonality at the boundaries. It has
been observed that the range λ ∈[0.4-0.7] produces optimal results for our configu-
rations.

The elliptic PDEs are solved using a multi-grid method and the smoother is based
on a point-wise Newton solver. When the forcing terms are used the convergence of
the algorithm deteriorates slightly.

Grid Topology Model

An efficient data structure was implemented to support the grid generation process
in geometrical complex models. Solid models are stored in a Radial Edge Non-
Manifold (RENM) data structure and numerical grid entities are stored in a Grid
Topology Model (GTM) [7]. The GTM data structure explicitly defines the adjacency
between grid entities, abstracts the grid from the geometry, eliminates duplicated grid
points and provides surface direction normalisation for grid generation.

A semi-unstructured grid generation system was specially designed for the meshing
of blade passages [1]. The main idea is to build an hybrid two-dimensional grid

Grid Generation Methology

Airfoil Passage Meshing

interpolated to the inner points [8][9]. The forcing terms are computed as
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Fig. 6. Two-dimensional domains and data required for the generation of a semi-unstructured
grid

for a reference blade-to-blade section and generate a continuous mapping from that
section to the rest, keeping the same topology. Then, the triangles and quadrangles
of the adjacent sections are connected to form triangular prisms and hexahedra.

The process is fast and robust and the quality of the resulting grid easy to monitor
by inspecting each of the sections. The current approach uses the NURBS definition
of the blade surface, the boundary conditions of the row and the streamlines from a
through-flow program. The first step is to select the number and distribution of radial
sections. Typically, sections are clustered in the hub and tip regions to provide ade-
quate resolution of the end-wall boundary layers and the cores of the secondary vor-
tex system. Once the blade sections have been fixed, the intersections of the NURBS
definition of the blade and the stream-surfaces associated at each streamline are com-
puted and stored. Simultaneously, the passage of each section is automatically com-
puted. Then, one of the sections is chosen as the reference section and an hybrid grid
is constructed in the m′ −θ plane4 of the corresponding stream-surface.

4Parameter m′ is definded as follows:
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Fig. 7. Modification of the baseline geometry to introduce platform geometry and profield
end-walls.

Fig. 8. Close-up of the 2D hybrid grids in the Cavities

At this stage the homologous points of the current section are selected, the exist-
ing 2D grid mapped to the rest of the section and a three-dimensional connectivity
defined (see Fig. 6).

m′(x) =
∫ x

x0

ds
r

=
∫ x

x0

√
1+(r′(x))2

r(x)
dx

wherexistheaxialaxisoftheengine.Thisparameterizationisusedinturbomachinneryto
deal with 2D CFD simulations on stream-surfaces due its properties i.e., preserves angles, is
non-dimensional and locally length-coherent...
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Non axi-symmetric end-walls and platform profiles are introduced as pertur-
bations of the axi-symmetric nominal tip and hub stream-surfaces defined by the
trough-flow analysis. The perturbations are gradually damped away from the walls
until an axi-symmetric stream-surface is recovered.

When the cavities are included the length of the passage meshed by this method
is reduced to an arbitrary distance from the blade contained within the upper and
lower platforms.

Cavity Meshing

Cavities are meshed in the (x,r) plane using hybrid grids. Stretched layers in the
vicinity of the wall are constructed using an advancing layer method and revolved
later for merging. Node distribution of the passage in platform gap region is forced
to be the same as the one of the cavity.

To generate a high quality mesh, the rest of the passage is meshed using a struc-
tured grid for which it is necessary to generate a block.. Continuity of the streched
cells in the blade passage block has to be provided here (see fig. 8). The cavities
themselves are usually meshed using hybrid grids, thus, blocks 1.a and 2.a have
structured grid and blocks 1.b, 3 and 2.b have hybrid grids (see Fig. 4). Triangles and
quadrilaterals are transformed in hexahedral and primatic cells respectively upon
revolution, although the possibility of building an structured 2D multi-blocks grid
remains for blocks 1.a, 2.a and 3 (but user will spend more time).

Merging

Once the 3D blade passage grid and the 2D cavity grid have been generated (see
Fig. 9 left), the latter has to be revolved to form a 3D grid and then merged with the
former.

The grid of the cavity is defined in the (x,r) plane and the inlet and outlet planes
of the blade passage grid have a unique projection in the (x,r) plane defined by rb(x)
and an arbitrary distribution of nodes in the azimuthal direction, although in practice,
at the inlet the nodes are distributed uniformly in the azimuthal direction, while at
the outlet a node clustering is typically seen in the middle of the passage to increase
the definition in the wake region.

The creation of a conformal high-quality grid requires a point-wise definition
of the extrusion of the 2D grid. To begin with we assume a reference angle θ0 and
a variation of the origin for each radial section θ0 + α1(r) (see Fig. 9 right). Then
the azimuthal variation in the passage is represented by θ j. If the distribution were
uniform θ j = ( j−1)∆θ with ∆θ = Blade Pitch/(Nθ−1) where Nθ is the number of
points in the azimuthal direction. The azimuthal angle in the interface plane is then

θ j(xI) = θ0 +α1(r)+θ j.

The azimuthal position of the nodes is further modified to aligned the grid located
in the main annulus with the flow as it is sketched in Fig. 10 where the 2D revolved
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2D Cavity
Grid

Grid
3D passage

Fig. 9. Description of the merging problem (left) and adaption of the extruded 2D grid to the
3D grid (right)

grid is depicted. The azimuthal position of the extruded grid taking into account this
feature is then

θ(x,r) = θ(xI)+
x− xI

r
tanβ

Once all the grids have been created are merged in a single grid, all the duplicated
nodes are removed. Especial care has to be taken in the boundary layer regions where
the grid spacing is very small and the generation of a conformal grid complex.

Preprocessing Environment

To integrate the present method in a design environment it was necessary to create
a specific tool to manage all the information required, launch specific programs to
mesh different blocks, ensure the compatibility among the different blocks and merge
them automatically.

Automation of the whole process is possible due to the assignation by the user
of attributes to the different geometric entities. This allows to mesh the redesigns
reusing the grid parameters of the previous designs.
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Revolved
Grid

xI

β

Fig. 10. Sketch of the grid in the main annulus

Initial flow solution and boundary conditions are set-up while meshing the differ-
ent sub-blocks and transfered to the final grid. To ease the CFD convergence process
the environment also handles the interpolation of the flow solution from other simu-
lations, with or without cavities.

The main idea is to perform the whole work is a single environment that guides
the user to set up of the grid and to where all the information is readily available.

Application Examples

The fifth stator of a low-pressure turbine has been chosen to test the capabilities
of the method. The same geometry had been previously meshed using a multi-block
structured method (see Fig. 11). The main difference between the structured grid and
our method (Fig. 12) is due to the propagation of the stretching in the boundary layer
region on the cavities and the passage to obtain a conformal grid. These additional
points are not only undesirable from a computational point of view but represent a
30% of the total number of points.

Although the tip cavity has not been included in this mesh the number of nodes
of the mesh with cavities approximately doubles the one of the single passage (about
1.6 ×106 points). The final grid is not only of better quality, but the time required to
set the grid is reduced by one order of magnitude (from one week to a few hours)

Concluding Remarks

A method to set up CFD simulations for turbomachinery rows including its adjacent
cavities in a few hours has been presented. The method constructs the grid depart-
ing from the general arrangement, the blade surface and the trough-flow data, that
contain value data to construct the grid as the inlet and outlet angles.
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Fig. 11. Multi-block grid of the fifth rotor of the Trent 1000 engine low-pressure turbine (3.8
×106 nodes)
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Fig. 12. Semi-structured grid of the fifth rotor of the low-pressure turbine of the Trent 1000
engine (3.0 ×106 nodes)



108 M.A. Burgos et al.

The current approach constructs the grid without making use a solid model.
Instead directly uses the 2D geometry to construct the cavity grids revolving un-
structured grids. The blade passage mesh is constructed using as well a 3D semi-
structured grid.

Approximately the number of points in the cavities is the same than the number
of nodes in the blade passage, however the complexity in the generation of the grid
does not increase significantly.

Today the largest limitation of the method consists in the accommodation of the
fillets between the blade and the platforms, that are known to significantly impact the
development of secondary flows.
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Abstract. This paper presents a robust and automated approach to generate un-
structured hybrid grids comprised of prismatic and tetrahedral elements for viscous
flow computations. The hybrid mesh generation starts from a triangulated surface
mesh. The prismatic elements are extruded based on the weak solutions of the
Eikonal equation to generate anisotropic elements at boundaries, and finally the
isotropic tetrahedral grids are generated to fill the rest of the domain. The pre-
sented hybrid meshing algorithm was validated using a ball valve model under both
steady and unsteady conditions.

1 Introduction

A great challenge for viscous flow simulations is to gain anisotropic elements
at the vicinity of the boundary area, especially for complex geometric solid
surfaces. When such domains are discretized, it is important that the grid fits
the boundaries well, and no conflict occurs during boundary mesh generation
processes. These issues become even more difficult to achieve with strongly
curved boundaries. The first issue relates to surface discretization or surface
mesh generation, which is not discussed in this paper.

To effectively avoid the warping of normal directions during boundary
meshing, it is critical to generate good-quality, high-aspect-ratio cells in the
vicinity of boundaries for wall-dominated phenomena. For this purpose, a
new approach based on a hybrid meshing methodology was proposed, in which
normal directions are calculated using a weak solution of the Eikonal equation
at each solid surface node of the boundaries to be propagated [1], [5], and [6].

The purpose of this paper is to validate the quality and effectiveness of the
proposed new hybrid mesh generation strategy using a ball valve model. This
paper is arranged as follows: Section 2 describes the problem to be solved.
Section 3 gives a brief introduction of the methodology used in this work.
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Section 4 illustrates the mesh results. Validation of the flow using the pre-
sented method is demonstrated in Section 5. Finally, Section 6 summarizes
the presentation.

2 Problem Description

In this paper, the steady and unsteady fluid flows in a three-dimensional (3D)
model of a ball valve are computed. Figure 1 shows the geometric image of a
pipe section including a ball valve. The valve is in the half open position. The
goal of the fluid flow analysis is to determine the velocity and the pressure of
the fluid as it exits the section.

Fig. 1. Diagram of the pipe section

Topologically, the illustrated geometry is very simple and is equivalent
to a cylinder. Geometrically, this configuration has both convex and concave
shapes in its body. The most difficult consideration in this test case is how to
correctly calculate normal directions at the four singularity points as shown
in Figure 2. In this case, there are four surfaces that pass through and share
the singularity point. The traditional normal calculation method uses the geo-
metric information surrounding the point to be propagated, i.e., the weighted
average normal vectors of neighboring surfaces. The definition of the normal
vector may become ambiguous at special cases when normal direction is per-
formed in this way. For example, in Figure 2, the definition of normal vectors
for Surface 2 and Surface 4 are almost in opposite directions. It is difficult to
determine a compromise normal vector at this point using the average normal
vectors of neighboring surfaces.

Instead of using the traditional normal calculation, this paper uses a new
way to calculate normal vectors to prevent the above-mentioned problem. The
propagation strategy is described in Section 3, and the resulting meshes at
singularity points are presented in Section 4.

To analyze the flow pattern within this system, geometric sizes are set as
illustrated in Figure 1. The total length of the pipe section is 8.0 in and the
diameter at intake areas and valves is 1.0 in. Several physical characteristics
of the fluid are also pre-defined, including the flow rate at the inlet area as
0.5 in/s and the fluid as water.
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Fig. 2. Singularity point

3 Methodology

A primary challenge that exists in dealing with viscous flow concerns bound-
ary mesh generation. Many boundary mesh generation methods have been
proposed, and two important problems still exist. The first problem relates
to the potential self-intersection of the front as it grows from the original
surface. Local self-intersection may occur during propagation when the offset
distance is greater than the local curvature radius in concave regions. Global
self-intersection, on the other hand, arises when the distance between two
distinct points on the curve or surface reaches a local minimum. The second
difficulty, which is a more recent issue in offset construction, is the establish-
ment of a common connectivity between the original and offset surfaces.

Two major types of methods in dealing with the computation of offset
curves and surfaces are proposed: direct offset methods (DOM), which propa-
gate curves or surfaces directly based on a geometric construction; and indirect
offset methods (IOM), which cast the curve or surface offset problem into a
set of partial differential equations (PDE), in which, geometric information is
implicitly represented.

The advantage of DOM is that the entire or partial original parameter-
ization information can be preserved (which is a rather attractive merit to
boundary meshing), but the self-intersection problem cannot be avoided, and
extra care is required for removing self-intersections. The ability to effectively
eliminate these self-intersections is an important criterion in the applicability
of such methods in the context of an automated procedure. One represen-
tative attempt to eliminate self-intersections is the Advancing Front Method
developed by Pirzadeh [9] based on a grid-marching strategy. The solution is
to simply stop the advancement of the front before self-intersections occur.
Based on a similar marching idea, Sullivan [10] presented a self-intersection
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detection and removal algorithm in 2D. The 3D algorithm developed by
Guibault [8] eliminates self-intersections by first detecting tangled-loops and
then re-locating the points located within this area. In the algorithm described
by Glimm et al [11], a hybrid algorithm is applied to resolve self-intersections
by either re-triangulating triangles after removing unphysical surfaces, or re-
constructing the interface within each rectangular grid block in which crossing
is detected. Other types of techniques to eliminate self-intersections use the
properties of curves and surfaces, i.e., control points, derivatives, curvature,
etc. Blomgren [12], Tiller and Hanson [13], and Coquillar [14] approached the
problem by offsetting the control polygon for NURBS curves. Nachman [15]
extended this idea to propagate surfaces by offsetting control points. Piegl
and Tiller [16] sampled offset curves and surfaces based on bounds on the sec-
ond derivatives to avoid self-intersections. In the method developed by Sun et

local self-intersections may occur, while the rest of the control points remain
unchanged. Farouki [18] described an algorithm which first decomposes the
original surfaces into parametric patches, and then uses Hermite interpolation
to construct the offset surfaces.

The representative work of IDM is the level set method developed by
Sethian and Osher [19, 20, 21, 22] which models front propagation problems as
a hyperbolic differential equation. In this method, self-intersection problems
can be avoided, but at the cost of completely losing the connectivity infor-
mation stored in the original geometric front. In general, to restore a similar
connectivity between the original and offset fronts is not a trivial task.

The present work proposes to use a boundary mesh generation method
discussed in [1], [5] and [6], which combines the advantages of the two types
of methods to build a new offset construction method that maintains para-
metric connectivity between the original and offset surfaces, and still avoids
self-intersections through the use of a weak solution to the shortest distance
problem. Figure 3 shows the outline of the proposed mesh generation process.
The details for each step are explained below.

Surface Mesh Generation

In the present hybrid meshing strategy, the surfaces are discretized into trian-
gles [23, 24]. Figure 4 shows the initial surface mesh used in this test. There are
no restrictions for the shape of surface mesh elements. The proposed bound-
ary mesh process can accept any type of elements, e.g., triangular, quad, etc.

Boundary Mesh Generation

There are four essential steps in the boundary meshing process: (1) calculate
the φ value for each grid node using the fast sweeping algorithm; (2) calculate
normal directions for the front grid nodes; (3) propagate front points along

al. [17], control points are repositioned to reduce local curvature in areas where
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Surface mesh generation
(Triangulated elements) 

 Calculation 

Normal calculation 

Nodes propagation 

Connectivity construction 

Internal mesh generation
(Tetrahedral elements) 

Boundary mesh generation
(Prism elements) 

Fluid flow calculation 

Fig. 3. Outline of mesh generation process

Fig. 4. Surface mesh

their local normal directions according to the given distance; (4) construct
blocks or the relative topological connectivity around the boundary area.

1. φ calculation
The present work proposes using the Offset Distance Equation, which is
a variation of the Eikonal equation, to model the surface offset problem.
This equation is given below:

{
∇φ · ∇φ = 1
φ = 0 if P ∈ Γ

(1)

where φ is the minimum Euclidean distance from an arbitrary point (P ) in
the computational domain to the front (Γ ) to be propagated. Equation 1
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expresses the condition for the shortest Euclidean distance from any space
position to the boundary. To enforce the boundary condition, φ = 0 when
P ∈ Γ , exact values are first assigned to boundary nodes. Then, Gauss-
Seidel iterations with alternating sweeping orderings are used to update
the φs at the rest of the grid nodes. The details of this fast sweeping
algorithm can be found in [2].

2. Normal calculation
At each grid node, the normal vector is represented by the equation

n =
∇φ

|∇φ| (2)

where n is the normal direction and φ is the weak solution of the Offset
Distance Equation. The term ∇φ/|∇φ| can be viewed as a unit propaga-
tion speed in the normal direction: positive for an outward propagation,
and negative for an inward propagation.

3. Nodes propagation
The propagation equation at each node is:

xt = Fn (3)

Setting the propagation speed F at each node to 1.0, the new propagated
points are obtained by iteratively solving Equation 3 using the fourth-
order Runge-Kutta method [3].

4. Connectivity construction
All the propagated points are sequentially connected according to their
original connectivities. The final propagation surface forms the input sur-
face mesh for the volume mesh generation process. Figures 5 and 6 show
the overall boundary mesh interface and the final boundary mesh of this
ball valve model.

Singularity points 

Singularity points 

Fig. 5. Boundary mesh interface
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Fig. 6. Boundary mesh

Internal Mesh Generation

After the boundary meshing process, a new surface mesh is generated, which
possesses exactly the same topological definition (triangle connectivity) as
the original solid surface. This new surface mesh becomes the input surface
mesh for tetra mesh generation. The entire computational domain defined by
this surface mesh is tessellated by isotropic tetrahedra [7, 4]. Figures 7 and
8 illustrate the final mesh generated for this model, and Figures 9 shows the
final mesh at the middle section.

Fig. 7. Final mesh (outside view)

4 Mesh validation

This section will only evaluate the quality of the resulting mesh for prismatic
elements.
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Fig. 8. Final mesh (internal view)

Fig. 9. Final mesh (in the middle section)

Volume Distribution

For validation, the original boundary is decomposed into 12 surfaces, and
three layers are generated after propagation. Table 1 illustrates the size of the
minimum and maximum volume for prismatic elements at each layer. From
this table, we can see that the volume of the prisms is reduced when marching
proceeds toward the internal direction.

Figure 10 illustrates partial volume distribution of the prismatic elements.
Because the normal directions at the surface mesh are defined toward the
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Table 1. Prismatic element volume range

Layer 1 Layer 2 Layer 3
Min. Size Max. Size Min. Size Max. Size Min. Size Max. Size

4.776e-5 4.516e-4 2.374e-5 2.851e-4 1.504e-5 2.701e-4

outward direction of the domain, all the volume values are represented in
negative values. In this figure, blue color represents maximum volume, and
red represents minimum when absolute values are used. This figure shows
that the quality of the surface mesh can greatly affect the quality of the
boundary mesh. As a more uniform distribution is generated for the original
surface mesh, the quality of the prismatic elements improves. Table 2 shows
the overall volume range generated for this model.

Fig. 10. Volume distribution of prismatic elements

Table 2. Overall volume range

Type Min. Size Max. Size
Prismatic element 1.503e-5 4.516e-4

Tetrahedral element 2.904e-5 1.802e-3

Aspect Ratio

The definition of aspect ratio for a prism element is:

aspect ratio =
averaged beam length

averaged circumcircle radius
(4)

Table 3 illustrates the histogram of aspect ratio for prismatic elements. From
the table we can see that the averaged aspect ratio is 0.012632. The reason
of this boundary mesh has such a small aspect ratio value is that the initial
surface mesh is very coarse. Refining the surface mesh size or increasing the
offset distance will help to increase the aspect ratio.
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Table 3. Histogram of aspect ratio

Range Number of prisms %

0.003443 - 0.007660 2241 42.395006

0.007660 - 0.011877 1010 19.107075

0.011877 - 0.016093 562 10.631858

0.016093 - 0.020310 423 8.002270

0.020310 - 0.024527 362 6.848278

0.024527 - 0.028743 293 5.542944

0.028743 - 0.032960 183 3.461975

0.032960 - 0.037177 68 1.286417

0.037177 - 0.041393 64 1.210745

0.041393 - 0.045610 80 1.513432

total 5286 100

Averaged aspect ratio = 0.012623

Normalized Equiangular Skewness

Table 4. Histogram of normalized equiangular skewness

Value of normalized equiangular skewness Number of prisms % Cell quality

0.000000 - 0.250000 710 13.431706 Excellent

0.250000 - 0.500000 3827 72.398789 Good

0.500000 - 0.750000 391 7.396897 Fair

0.750000 - 0.900000 332 6.280742 Poor

0.900000 - 1.000000 26 0.491865 Bad

total 5286 100

Averaged normalized equiangular skewness = 0.16386

Thedefinitionofnormalizedequiangularskewness(NES)andcellquality
can be found in [25]. According to [25], 0 indicates the ideal element, 1 indi-
cates the bad element, and the acceptable NES range in 3D is 0-0.4. Table 4
illustrates the histogram of NES. From this table, we can see that the aver-
aged normalized equiangular skewness is 0.16386 which falls in the acceptable
range.

Sharp Corner Behavior

Theoretically, this boundary mesh generation method allows the propagation
to proceed to any distance without losing original connectivity at sharp cor-
ners. However, the cost is that some of the elements may degrade down to
zero-volume elements under certain circumstances.

For example, Figure 11 shows the propagation behavior at one sharp corner
in two dimensions. The boundary line is propagated toward its inner direction
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Fig. 11. Propagation behavior at a sharp corner

(from left to right), the propagation paths are skewed together after a certain
distance. The post-redistribution algorithm is required to avoid zero-volume
elements during the boundary mesh generation process.

Singularity Point Propagation Behavior

Figure 12 shows the propagation behavior at singularity points. The upper
figure illustrates the enlarged view of the boundary mesh interface at the part

Fig. 12. Mesh at singularity points
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with singularity points. The two bottom figures show the mesh at one singu-
larity point. From these figures, we can see that there is only one propagation
path at the singularity point, which is shared by the four surfaces’ meshes.
The reason we can get unique normal directions at the singularity points is
because the φ value at any point in the computational domain is a unique
value. This means the normal vector, ∇φ

|∇φ| , is a unique value at any point of
the computational domain. Thus, in this case, the proposed method can avoid
the problem caused by the traditional normal calculation method.

The flow at the inlet is set as a uniform velocity in the direction of the z-
axis. The expected velocity solution in the domain is shown in Figures 13
and 14. As predicted, a vortex flow pattern develops in the downstream area.
Figure 15 illustrates an enlarged view of Figure 14. Figure 16 is the internal
pressure distribution which is coincident with the anticipated result.

In this case, the unsteady solver is applied. Figures 17 and 18 show the veloc-
ity result plotted by magnitude and vector, respectively. From these figures,
we can see that the final fluid velocity distribution demonstrates a similar be-
havior as the result calculated by the steady solver when a sufficient physical
time is predefined. Figure 19 is an enlarged view of Figure 18 which illustrates
the vortex pattern developed in the downstream area. Figure 20 shows the
velocity variation at node #2794, which is a singularity point. Its position is
illustrated in Figure 8. All the other nodes demonstrate the same convergent
behavior. After a certain iteration time, the variation of velocity at any com-
putational node converges to a steady value. Figure 21 illustrates the internal
pressure distribution of this model.

5 Flow Analysis

Stead Flow

Unsteady Flow

The flow calculation is performed by ALGOR Professional Multiphysics,
which is finite element analysis (FEA) software developed by ALGOR, Inc.
Fluid enters the pipe, which is connected to a ball valve in the half-open po-

- a viscous layer on model boundaries is expected in the flow. Two analy-
ses (steady and unsteady flow) are performed using this mesh. Their velocity
and pressure analysis results are shown below, respectively. In the illustrated
results, dark blue color represents low value, and red represents high value.

sition. Since the Reynolds number is very low - the viscous force is dominant
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Fig. 13. Velocity distribution (plot by magnitude)

Fig. 14. Velocity distribution (plot by vector)
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Fig. 15. Vortex pattern (enlarged view)

Fig. 16. Pressure distribution
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Fig. 17. Velocity distribution (plot by magnitude)

Fig. 18. Velocity distribution (plot by vector)

6 Conclusion

An automated hybrid grid generation method has been developed. The bound-
ary anisotropic elements are extruded along the normal directions which are
represented by the weak solution of the Eikonlal equation. The method was
applied to the ball valve model for both steady and unsteady fluid flow analy-
sis using ALGOR Professional Multiphysics software. The preliminary results
show that the proposed method practically generated well-qualified grid dis-
tribution for viscous flow.

Further research and development work needs to be done in the following
areas: 1) A higher-order numerical solution of the Eikonal equation is to be
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Fig. 19. Vortex pattern (enlarged view)

Fig. 20. Velocity variation at node #2794



Hybrid Mesh Generation for Viscous Flow Simulation 125

Fig. 21. Pressure distribution

explored. The benefit of doing this is to get more accurate normal calculation
which will obviously strengthen control ability during the propagation process;
2) In this work, the propagation stops after three propagations in order to
avoid zero-volume elements. Thus, a mesh optimization procedure is to be
added as a complementary work of the presented method.
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Abstract. This article presents a remeshing procedure of thin sheets for numerical 

simulation of metal forming process in three dimensions. During simulation of 

metal forming processes, where large plastic deformations are possible, severe 

mesh distortion occur after a few incremental steps. Hence an automatic mesh 

generation with remeshing capabilities is essential to carry out the finite element 

analysis. This paper gives the necessary steps to remesh a structure in finite ele-

ment simulation of forming processes. The proposed remeshing technique based 

on geometrical criteria includes adaptive refinement and coarsening procedures. It 

has been implemented with triangular and quadrilateral elements. The proposed 

method has been integrated in a computational environment using the ABAQUS 

solver. Numerical examples show the efficiency of the proposed approach. 

sheet.

Keywords: Adaptive remeshing, forming process, geometrical error estimator, thin 

1 Introduction 

The finite element method has been very successful in the numerical 

simulation of metal forming processes like deep-drawing, hydro-

forming or forging [1-2]. However, due to the imposition of large 

A Remeshing Procedure for Numerical Simulation 
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plastic strains and friction, the finite element mesh representing the 

workpiece undergoes severe distortion and hence it is necessary to 

generate a new mesh for the deformed domain [3]. It is therefore 

convenient to update the mesh in such a way that it conforms to the 

new deformed geometry and becomes dense enough in the critical 

region while remaining reasonably coarse in the rest of the domain.  

The remeshing procedure must be automatic and robust. Several 

remeshing methods have been proposed during the last years. Glob-

ally, three different types of adaptive remeshing strategies can be 

distinguished: r-adaptivity, p-adaptivity and h-adaptivity [4-5]. 

Strategies based on r-adaptivity consist of keeping the number of 

special grid points fixed, but allowing them to move into regions 

where a finer spatial discretization is needed. This type of adaptation 

is particulary powerful on problems where a large domain is needed 

to capture a time varying solution which has steep slopes over only a 

small fraction of that domain [6]. The remeshing techniques pre-

sented by Zienkiewicz et al [7], Fourment et al [8], Coupez [9], 

Borouchaki et al [10] are based on the computation of a size map to 

govern a global remeshing of the part at each iteration. Strategies 

based on p-adaptivity consist of changing the degree of the interpo-

lating polynomials in appropriate regions of the mesh. This method 

is preferred for (linear) smooth solutions or over subregions where 

the solution is smooth [11]. Strategies based on h-adaptivity consist 

of adapting the number of grid points and changing the mesh con-

nectivity. Grid points are added to areas where more accuracy is 

demanded (the interpolation will be enriched) and can be deleted 

where the solution is accurate enough. As part of these methods, 

remeshing techniques based on the computation of a size map to 

govern a global remeshing of the part at each iteration have been 

proposed [7-10]. Cho and Yang [12] have proposed a refinement al-

gorithm based on h-adaptivity  which consists  in splitting each de-

formed element in two elements along an edge. This procedure drags 

to the creation of small edges and consequently degenerates



elements during repetitive refinement iterations. Moreover, all simi-

lar refinement methods only based on the break of edges lead to the 

formation of small edges or poor shaped elements. 

This paper presents a new remeshing technique for the numerical 

simulation of thin sheet metal forming processes. This method is 

based on a geometrical criterion. It is applied to computational do-

main after each small displacement step of forming tools. It allows, 

in particular to refine the current mesh of the part under the numeri-

cal simulation of the forming process in the curved area with pre-

serving shape quality element and to coarsen this mesh in the flat 

area.

The mesh refinement is necessary to avoid large element distor-

tions during the deformation. It ensures the convergence of the com-

putation and allows an adequate representation of the geometry of 

the deformed domain. The mechanical fields are simply induced 

from the old mesh into the new mesh.  

The proposed remeshing method looks like to the remeshing 

method presented by Meinders [13] in the case of a triangular mesh. 

Compared to Meinders method, the proposed remeshing technique 

generates a smaller number of elements, it has been implemented 

with triangular and quadrilateral elements and a coarsening tech-

nique is considered, in addition to the refinement technique.  

This paper gives the different steps of the proposed remeshing 

method. Some application examples are presented in order to show 

the pertinence of our approach. 

The simulation of the forming process is based on an iterative proc-

ess. At first, a coarse initial mesh of the part is generated with trian-

gular or quadrilateral elements. At each iteration, a finite element 

computation is then realized in order to simulate numerically the 

forming process for a small displacement step of forming tools.  

This displacement step must be sufficiently small with respect to the 

specified minimal size of mesh elements. 

2 General Remeshing Scheme 

A Remeshing Procedure for Numerical Simulation      129
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Then, remeshing is applied after each deformation increment, if nec-

essary, according to the following scheme: 

coarsening procedure applied to elements which are in flat area, 

iterative refinement to restore mesh conformity, 

refinement procedure applied to elements which are in curved area 

(the refinement is applied in the vicinity of nodes for which the 

shape of the surface is changed and only if the minimal element 

size is not reached), 

iterative refinement to restore mesh conformity. 

This process (simulation of the forming process for a small dis-

placement step of forming tools, remeshing of the part) is repeated 

until the final tool displacement is reached. 

The computation convergence is principally based on the mesh 

refinement and coarsening procedures. The applied refinement must 

in particularly not introduce a mesh distortion, which could increase 

during iterations and stop the forming process simulation. 

During the remeshing procedure, a geometrical criterion is used to 

refine the current mesh of the part in the curved area, and to coarsen 

this mesh in the flat area. For a given element, this geometrical crite-

rion represents the maximal angular gap between the normal to the 

element and the normals at its vertices. An element is thus consid-

ered to be “curved” (resp. “flat”) if the corresponding angular gap is 

greater (resp. smaller) than a given threshold (for example 8 de-

grees). The geometrical refinement and coarsening methods based 

on the same geometrical criterion are thus consistent. 

The normal vector  at node P can be defined as the weighted av-

erage of the unit normal vectors
i

N  (i = 1,..m) to elements sharing 

node P: 

2.1 Geometrical Criterion 
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0

0
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where
i
 is the angle at P of the ith element sharing P. 

The computation of normal vector to the element depends on the 

element shape (triangle or quadrilateral). The normal vector N  to a 

triangle P1P2P3 is the unit normal vector to its supporting plane : 

3221

3221

PPPP

PPPP
N (2) 

The normal vector to a quadrilateral element is the average of the 

normal vectors to the four triangles defined by joining its barycentre 

to its edges. 

The geometrical criterion applied to an element can be written as: 

gi
i

N ),(arccosmax (3) 

Where 
i
 is the normal at vertex i of the element, N  is its normal 

and
g

is an angular gap threshold. In this case, the element must be 

refined.

The adaptive remeshing technique consists in improving the mesh in 

order to conform to the geometry of the current part surface during 

deformation. In the following, the mesh refinement and coarsening 

methods are detailed.  

A Remeshing Procedure for Numerical Simulation  

2.2 Mesh Refinement and Coarsening Methods 



132 L. Giraud-Moreau et al.

The refinement technique consists in subdividing mesh elements. 

An element is refined if it is a “curved” element (geometrical crite-

rion). There is only one element subdivision which allows to pre-

serve the element shape quality: the uniform subdivision into four 

new elements. In the case of a triangle, three new nodes are added : 

one in the middle of each edge. In the case of a quadrilateral, five 

nodes are added : one in the middle of each edge and one in the ele-

ment barycentre. Figure 1 shows the triangular and quadrilateral 

element refinements.  

After each refinement procedure, an iterative refinement to restore 

mesh conformity is necessary. Indeed, after applying the subdivision 

according to the geometrical criterion, adjacent elements to subdi-

vided elements must be modified. As the edges of the subdivided 

elements are divided in two, there is a node in the middle of the 

edges common to the subdivided element and its adjacent elements. 

The mesh is then not conforming. To retrieve the mesh conformity, 

adjacent elements to subdivided elements must be also subdivided. 

This last subdivision can not be a homothetic subdivision in four 

elements because it would result in the systematic homothetic subdi-

vision of all mesh elements. 

There are three different configurations for adjacent elements 

which must be subdivided in order to ensure the mesh conformity: 

no edge is saturated (i.e. containing a new added node), 

only one edge is saturated, 

at least two edges are saturated. 

Fig. 1. Triangular and quadrilateral element refinements 
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Depending on the configuration, a subdivision is applied if neces-

sary. In the first case (no saturated edge), the element is not subdi-

vided and is not modified. In the second case (one saturated edge), a 

triangular element is subdivided in two triangles and a quadrilateral 

element in three triangles (see figure 2). This subdivision allows to 

stop the propagation of the homothetic subdivision. In the third case, 

if all the edges are saturated the element is subdivided in four homo-

thetic elements. Otherwise, in the case of triangular elements (hav-

ing two saturated edges), all possible subdivisions lead to the forma-

tion of poor shaped elements (stretched elements). It is then 

necessary to add a new node in order to subdivide also this element 

into four homothetic elements (see figure 3). In the quadrilateral 

A Remeshing Procedure for Numerical Simulation  

case, when only two edges are saturated and are adjacent, the quadri-

lateral is subdivided in four triangles (see figure 4). This subdivision 

allows to stop the propagation of the homothetic subdivisions. In the 

other cases, the element is subdividing into four homothetic quadri-

lateral elements (see figure 5) by adding nodes in the middle of no-

saturated edges and in the barycentre of the element. 

This refinement procedure is iteratively applied until no new node is 

added.

Fig. 2. Subdivision of elements with one saturated edge 

Fig. 3. Subdivision of triangle with two saturated edges 
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From an algorithmic point of view, the mesh is composed of two 

types of element: ordinary and extraordinary. An ordinary element is 

a triangle or a quadrilateral without saturated edges (see figure 6). 

An extraordinary triangle is a triangle with one and only one satu-

rated edge. An extraordinary quadrilateral is a quadrilateral with 

only one saturated edge or two adjacent saturated edges. Figure 7 

shows extraordinary triangle and quadrilaterals. The remeshing algo-

rithm must take into account these two element types. During the re-

finement operation, the geometrical criterion is applied to elements 

of both types. An ordinary or extraordinary element which is curved 

is then subdivided into four ordinary elements. After this operation, 

all ordinary elements with at least two saturated edges, except the 

case of two adjacent edges for quadrilateral elements, are iteratively 

subdivided into four ordinary elements. Then, all the elements with 

at least one saturated edge are transformed to extraordinary elements 

and the other elements remain unchanged. 

At the end of the refinement operation, for the mechanical com-

putational purpose, the extraordinary elements of the resulting mesh 

are transformed : an extraordinary triangle is divided in two trian-

gles, an extraordinary quadrilateral with one middle node is divided 

in three triangles and an extraordinary quadrilateral with two middle 

nodes is divided in four triangles. 

Fig. 4. Subdivision of quadrilateral element with two adjacent saturated edges 

Fig. 5. Other cases of subdivision of quadrilateral element 

Fig. 6. Ordinary elements 
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Fig. 7. Extraordinary elements 

The coarsening technique is the reciprocal operation of the refine-

ment procedure. It can only be applied to a set of four ordinary ele-

ments, called associated elements, obtained during a homothetic 

element refinement. Thanks to the coarsening technique, the initial 

element is restored when the area in which this element belongs, be-

comes flat (see figure 8).

Fig. 8. Triangular and quadrilateral elements coarsening 

A quad tree structure can be considered to coarsening the mesh of 

the part. This structure allows to quickly localize associated ele-

ments. Each root of the tree is an element of the initial mesh and 

each edge is an intermediate element created during the refinement 

procedures. The leafs of the tree are elements of the current mesh 

and are brought together if they are associated. Figure 10 presents 

the quad tree structure associated to the mesh of the part on figure 9 

at iteration 3. Elements whose number is underlined, are extraordi-

nary elements. 

Fig. 9. Example of adaptive remeshing during three iterations 
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The coarsening technique is only applied to the leafs of a same level 

which are brought together. In the above example, associated ele-

ments which could be coarsened are: (6, 7, 8, 9) or (10, 11, 12, 13) 

or (18, 19, 20, 21). As in the refinement procedure, to ensure the 

mesh conformity, some coarsened elements could be refined if nec-

essary. This last operation can only be applied when all the flat areas 

have been coarsened by the coarsening technique.

2.3 

During the refinement procedure, the mechanical fields are simply 

induced from the current mesh to the new mesh. During the coarsen-

ing procedure, the mechanical fields associated to four associated 

elements are averaged and the result is associated to the new ele-

ment. During the refinement procedure, the mechanical fields of 

curved elements are simply associated to the four new created ele-

ments from the subdivision.  

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21

Transfer of Mechanical Fields 

Fig. 10. Quad tree structure for the mesh of the part of figure 9 
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3.1 

An early application of adaptive mesh refinement was the simulation 

of 3-D sheet metal stamping example (Benchmark square box of 

Numisheet’93). According to Onate et al. [14], the geometric data of 

the square cup are: drawing depth 40 mm, sheet dimensions 

150 150 mm
2
, thickness h

0
= 0.78 mm, friction coefficient between 

the sheet and rigid tools is assumed to be  = 0.144 and the blank-

holder force F = 19600 N. The material model used is an isotropic 

elastoplastic von-Mises model with multi-linear isotropic hardening 

approximating a power law yield stress curve defined as 

2637.0
)07127.0(29.567

p

. The punch velocity is 20 mm/s and 

its stroke is 80 mm. The tools (punch, die and blank-holder) are sup-

posed rigid and modeled by discrete rigid surfaces. Two examples 

are presented: the first example concerns the stamping of square 

sheet in which the angle  between initial sheet plane frame (X,Y) 

and the tools orientation (x,y,z) is  = 0° (see Figure 11a) and the 

second concerns the stamping of square sheet with  = 45° (see Fig-

ure 11b). In these two cases, the solver 3D ABAQUS/EXPLICIT 

has been used. The element size adaptive discretization of the de-

formable sheet uses hmin = 0.75 mm, geometrical criterion = 8°. 

Meshes adapted to the part curvature corresponding to different 

punch displacement (u = 6, 15, 24, 30, 36, 45 and 48 mm) are shown 

in Figures 12 to 18 for  = 0° and  = 45°.  We can note that, the ini-

tial blank sheet is computed using an initial coarse mesh (100 quad-

rilateral elements), the mesh is again refined uniformly and the adap-

tive mesh refinement procedure is activated where elements are 

created automatically in regions of large curvature to even more ac-

curately represent the complex material flow (large stretching) 

around the punch and die radii. The final contour of the sheet for 60 

mm of punch displacement is presented in Figure 22 for  = 0° and 

in Figure 23 for  = 45°. We can note the final shape of the sheet is 

completely different due the initial sheet orientation.  

A Remeshing Procedure for Numerical Simulation  

3 Numerical Examples 

Sheet Metal Stamping 
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(a)  = 0°  (b)  = 45° 

Fig. 11. Tools and initial sheet orientation

Fig. 12. Displacement u = 6 mm 

Fig. 13. Displacement u = 15 mm 

Fig. 14. Displacement u = 24 mm 

x
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Y X

x
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Fig. 15. Displacement u = 30 mm 

Fig. 16. Displacement u = 36 mm 

Fig. 17. Displacement u = 45 mm 
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Fig. 18. Displacement u = 48 mm 

Fig. 19. Final shape for  = 0° 

Fig. 20. Final shape for  = 45° 
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3.2 

The second example is the crushing of a thin cylinder. The cylinder 

blank has initially 140 mm length, 44 mm diameter and 0.5 mm 

thickness. The initial mesh of the cylinder is constituted by 2048 

quadrilateral sheet finite elements. Two concentrate loads diametri-

cally opposite was prescribed using a linear ramp to simulate the 

crushing operation. The deformation evolution of the blank is illus-

trated in Figure 21. Here, the mesh refinement is localized on large 

deformed blank areas. The final mesh of the blank contains 30301 

quadrilateral and 26714 triangular elements. 

A Remeshing Procedure for Numerical Simulation  

Crushing of a Thin Cylinder 
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4 Conclusions 

The different steps necessary to the remeshing of the computation 

domain in large elastoplastic deformations in three dimensions have 

been presented. The proposed adaptive remeshing technique is based 

on refinement and coarsening procedures using ageometrical crite-

rion. This approach has been implemented with triangular and quad-

rilateral elements in the ABAQUS code. Numerical simulations of 

thin sheet metal forming process in three dimensions have validated 

the proposed approach and proved its efficiency. The extension in 

three dimensions for massive structure metal forming is currently 

under progress. 

Fig. 21. Deformed cylinder for different crushing step 
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Abstract. We propose an unstructured mesh redistribution method without using skewed 
elements for steady-state problems. The regions around solution features are indicated by a 
sensor function. The medial axes of the strong feature regions are calculated so that ele-
ments can be clustered around the most important solution features efficiently. Two ap-
proaches, a discrete surface-based approach using a Delaunay triangulation method and a 
mathematical-representation approach using least square fitting, are shown to calculate the 
medial axes. Remeshing of an initial volume mesh is performed around the medial axes us-
ing an advancing front method and/or an advancing layer method. Two examples are shown 
to present how our approach works. 

Key words: Solution-based; mesh redistribution; remeshing; unstructured mesh

1. Introduction 

Computational fluid dynamics (CFD) has become a crucial tool for 
prediction and analysis of flow field within a domain, providing engineers 
with a reliable means of understanding complex flow patterns. However, 
in order to obtain accurate results for highly complex flow fields, meshes 
must be clustered near the areas where the solution gradients are high. This 
is an arduous task the engineer must perform prior to the completion of the 
calculation. The meshes can be clustered in two ways; either a very fine 
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mesh is generated, or some solution-based mesh clustering is performed. 
The first approach can be very expensive in terms of computational costs. 
Although surface meshes can be adapted geometrically based on surface 
curvature and local volume thickness [1], it is often difficult to choose ad-
aptation criteria for volume meshes before numerical simulations. The 
second approach can be achieved by mesh adaptation. 

There are three mesh adaptation approaches: mesh refinement/de-
refinement [2, 3], mesh redistribution [4] and the combination of these [5, 
6]. Since structured meshes are not flexible for adding or deleting nodes 
locally, the mesh redistribution approach is widely used to move nodes 
toward solution features while the connectively of the mesh is maintained. 

Although solution features are adapted by unstructured meshes rela-
tively easily, there are two issues needed to be addressed. One is the main-
tenance of valid elements. Hanging nodes can be created during a mesh re-
finement process. Local refinement of hybrid meshes for viscous flow 
simulations, which contain regular elements such as tetrahedra, prisms, 
pyramids and hexahedra, is difficult without creating low-quality elements 
to eliminate hanging nodes. To overcome this issue, an approach using 
generalized elements is promising [3]. 

The other issue is the quality of resulting refined meshes. Stretched 
elements may affect solution accuracy and cause a stiffness problem in 
numerical simulations. Mavriplis reports spanwise grid stretching, which 
is widely used in aircraft CFD simulations, may have substantial 
repercussions on overall simulation accuracy even at very high levels of 
resolution [7]. Since typical refinement and redistribution algorithms for 
unstructured meshes create highly stretched tetrahedra around solution 
features, the validation of the simulation process may be required. If a 
refined mesh does not have elements that have too small or too large 
angles even near solution features, we do not need to worry about these 
issues.

In this paper, we propose a solution-based redistribution method for un-
structured volume meshes. The structured mesh redistribution methods 
only allow nodes to move towards solution features, while maintaining the 
mesh connectivity. In our unstructured mesh redistribution method, a mesh 
is remeshed around the solution features detected. The main objective here 
is to extract strong solution features as smooth surfaces (Section 2.3) based 
on sensor values (Section 2.2) and then to create high quality elements 
around them (Section 2.4). The entire domain can be remeshed with the 
embedded surfaces using an advancing front method with tetrahedra and 
an advancing layer method with prisms or hexahedra if needed. Alterna-
tively, elements around the feature surfaces are removed from the initial 
volume mesh and only the resulting voids are remeshed to reduce 
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the required CPU time. Two examples are shown to present how our ap-
proach works (Section 4). 

2. Meshing Methods 

In this section, the methods for creating an initial mesh and redistributing 
nodes around solution feature surfaces are described. 

2.1. Surface/Volume Mesh Generation 

To generate surface meshes based on computer-aided design (CAD) de-
fined geometries, a direct advancing front method is employed [8]. A 
modified decimation method is used for image-based geometries [1]. 

Tetrahedral meshes are created using an advancing front method [9]. 
For viscous flow simulations, a modified advancing layer method is used 
for the near-field mesh generation [10], which is followed by tetrahedral 
mesh generation to fill the rest of the domain using the advancing front 
method. The quality of the tetrahedral elements are enhanced using angle-
based node smoothing, face swapping based on the Delaunay property, and 
removal of nodes that have an insufficient number of tetrahedra. A user 
can specify a stretching factor to control the mesh density. 

The hybrid mesh generation method can be used to create layered 
meshes on solution features discussed in the next section to create high 
quality anisotropic adaptive meshes. 

2.2. Feature Detection 

After a numerical simulation using an initial mesh, the next step is the de-
tection of solution features. The location of solution features is indicated 
by the weight function by Soni et al. [11] or the shock sensor by Lovely 
and Haimes [12]. The weight function is calculated based on the conserved 
variables and indicates the regions of important flow features. It is defined 
at each element as follows: 
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where Wk (k = 1, 2, 3), i

k
q  and qi are x, y and z components of normalized 

gradient, the kth component of the gradient calculated using ith variable and 
the average variable at the centroid of the element, respectively. The sym-
bol  represents the Boolean sum, which, for two variables q1 and q2, is 
defined as 

212121
qqqqqq (2)

The shock sensor is based on the fact that the normalized Mach number 
Mn = 1 at a shock. 

1
p

p

a
M

n

V

(3)

where a, V and p  are the speed of sound, velocity vector and pressure 
gradient, respectively. 

2.3. Extraction of Solution Feature Surfaces 

To adapt high-quality elements around strong solution features, the next 
step is recognition of feature surfaces. Although this approach may need 
more meshing steps than a typical mesh redistribution method, much better 
quality elements can be generated around the solution feature surfaces. 
Marcum and Gaither propose a pattern recognition algorithm in 2D and 
mention the difficulty of extending it to 3D [13]. Although our approach 
needs user interaction during the process (to be discussed in Section 4), it 
enables feature surface extraction. 

The direct extraction of solution feature surfaces is difficult from the 
initial mesh and solution data. At least two steps are needed. First, regions 
around the solution features are specified by selecting a certain sensor 
value. Although elements can be subdivided in the entire regions, the 
number of elements in the resulting mesh may become too big. The re-
gions can be very thick if an initial volume mesh is coarse at the solution 
feature locations. To avoid this problem, the medial axis (also known as 
skeleton) of each region is extracted in the following step. Elements are 
clustered around the medial axes. 

Two approaches can be considered to extract solution feature surfaces. 
One is a discrete surface-based approach. A medial axis is extracted from a 
triangulated closed surface using Delaunay triangulation [14]. Triangulated 
isosurfaces at a certain sensor value can be calculated easily and robustly, 
which enclose regions around solution features. For example, the shock 
features are surrounded by the isosurfaces at Mn = 1. A Delaunay 
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tetrahedral mesh can be obtained from a triangulated isosurface. The center 
of the circumsphere of each tetrahedron is considered to represent the me-
dial axis. The quality of the resulting medial axes depends on the smooth-
ness of the isosurfaces. However, isosurfaces are not usually smooth, and 
they may have bumps and holes due to truncation errors in the entire simu-
lation process. User interaction is often required to fix the resulting sur-
faces.

The other approach is a mathematical-representation approach. A me-
dial axis can be estimated using least square fitting directly from the nodes 
on an isosurface. Least square fitting methods often minimize the vertical 
offsets from a surface function instead of the perpendicular offsets to sim-
plify an analytic form for the fitting parameters. Consequently, the least 
square fitting does not estimate the surface function well when the region 
defined by an isosurface is thick. Although a set of coordinates of nodes 
near a solution feature is needed as an input for a least square fitting 
method, the connectivity of the nodes is not required. Therefore, we define 
a solution feature as a set of nodes based on the following process: 
1. Select nodes of a volume mesh that have a certain range of sensor val-

ues.
2. Also select nodes that are one-ring neighbors of the nodes in Step 1 to 

eliminate noise due to truncation errors. 
3. Number each cluster of selected nodes, which can be defined as their 

connectivity, if the mesh has more than one solution features. 
4. Calculate distance from the closest boundary at each selected node. The 

boundary is represented by the selected nodes that have at least one un-
selected node as their one-ring neighbor. The distance is defined as the 
number of edges from the boundary. 

5. The nodes that have local maxima of the distance values are considered 
to form medial axes. 

The coordinates of the nodes in Step 5 are fitted to functions, such as a 
plane, quadric and cone, using a least square fitting method. Local mesh 
size can be considered to be the error range of a data point. The reciprocal 
of the local mesh size is used for weighing. Suppose that a cluster of se-
lected nodes xmj (j = 1, 2,…, nm) is fitted to a function z = f(x, y).

m
n

j j

jjj

l

yxfz
E

1

2

,
(4)

where lj is the maximum edge length connected to node j. E should be 
minimized.

The resulting function should be trimmed to define a surface in the 
computational domain. 
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2.4. Remeshing with Embedded Surfaces 

Next step is to remesh the initial volume mesh (defined as V) around the 
medial axes created in the previous section. First, surface meshes (defined 
as S) are created on the medial axes based on user-specified mesh size. 
Second, elements of V are removed if they are close to S. Each node of S,
Si, should be in an element of V, Vi. A node of V, Vj, is removed if it is in a 
sphere defined at node Si (i = 1 to the number of nodes in S) with the radius 
of 3 max(lsi, lvi), where lsi is the maximum length of the edges connected to 
Si and lvi is the maximum length of the edges in Vi and if Vj is visible from 
Si (i.e., there is no boundary surface of V between Vj and Si). Third, the 
void regions around the medial axes are filled using the meshing method 
described in Section 2.1. 

The entire domain is remeshed with the embedded surfaces if a layered 
mesh is needed for no-slip walls or the shape of the outer boundary needs 
to be changed. 

3. Flow Solver 

The flow simulation system that is used for the current study is developed 
for a generalized grid framework, in which the discretization of the physi-
cal domain can be of structured, unstructured or an agglomeration of cells 
with an arbitrary number of faces (polytops) [15, 16]. The integral form of 
the Navier-Stokes equations is taken as the governing equations for the 
fluid flow. The spatial discretization of the governing equations is based 
on a cell-centered, finite volume upwind scheme. The convective fluxes at 
the cell-faces are evaluated using Roe’s approximate Riemann [17]. 
Higher-order accuracy in the spatial domain is achieved using a Taylor se-
ries expansion of flow variables. The gradients at the cell center for the 
Taylor series expansion is estimated using either the Gauss theorem to-
gether with a weighted averaging procedure or a least-square fit of the 
variables in the neighboring cells. The least-square system resulting from 
the later approach is solved using the Gram-Schmidt method. A limiter 
function is added to the Taylor’s series expansion to avoid the creation of 
local extrema during the reconstruction process. Limiters by Venka-
takrishnan [18], and Barth and Jesperson [19] are implemented in the gen-
eralized grid framework. 
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4. Applications 

In this section, two examples are shown to demonstrate and to discuss the 
solution-based mesh redistribution approach. 

4.1. NACA0012 Wing 

Figure 1a  shows a mesh around a NACA0012 wing (50k nodes). An in-
viscid flow simulation is carried out at a freestream Mach number of 0.799 
and an angle of attack, , of 2.26º. Figures 1b and 1c illustrate pressure 
coefficient (Cp) distribution and weight function value distribution based 
on Eq. 1; the results indicate a shock on the wing. 

 (a) (b) (c) 
Figure 1. NACA0012 wing: (a) a tetrahedral mesh; (b) Cp distribution (M = 0.799,  = 

2.26º); (c) weight function value distribution. 

In this example, the shock location is estimated using the discrete sur-
face-based approach based on Delaunay triangulation (Figure 2).  First, an 
isosurface of a weight function value of 0.2 is extracted and smoothed us-
ing Visualization Toolkit (VTK) [20] (Figure 2a). Second, the medial axis 
of the isosurface is calculated (Figure 2b).  The symmetry planes prevent 
creating a single medial axis. The medial axis is modified there manually 
(Figure 2c).  It is sometimes difficult to generate an expected medial axis 
as single surface using existing algorithms even if a solution feature is sim-
ple.

Once the feature surface is computed, the surface mesh generation algo-
rithm is applied to create a high quality mesh on it. Elements of the initial 
volume mesh, Vn0, near the solution feature are removed and the void is 
remeshed using the advancing front method. Figure 3b shows  the resulting 
volume mesh (110k nodes; Vn1). As a result, a high quality redistributed 
mesh is produced with alignment to the major flow feature.  Figure 3c
shows another redistributed volume mesh after the second simulation cycle 
(130k nodes; Vn2).
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Figure 2. Extraction of a flow feature: (a) isosurface of a weight function value of 0.2 at the 

shock location; (b) medial axis of the isosurface; and (c) modified medial axis. 

 (a) (b) (c) 
Figure 3. Redistributed volume meshes: (a) initial mesh (50k nodes); (b) redistribution #1 

(110k nodes) – elements around the shock are replaced with finer elements; (b) redistribu-

tion #2 (130k nodes). 

Figure 4  illustrates hybrid meshes for the same wing geometry to per-
form viscous flow simulations and Cp distribution. The shock location is 
estimated using the same approach from the initial hybrid  mesh  (Figure
4a), and then the entire domain is remeshed with the embedded surface 
(Figure 4b). To avoid creating skewed elements around the intersection 
between the wing upper surface and the embedded surface, the near-filed 
mesh around the wing is generated first. The embedded surface close to or 
within the near-field mesh is trimmed automatically, and then the rest of 
the domain is filled with tetrahedral elements. 

Figure 5 shows Cp distribution based on the redistributed mesh Vn1

(Figure 3b), a reference tetrahedral mesh (110k nodes; Figure 5b), the hy-
brid meshes (Figure 4), and an experimental result. The shock locations of 
the numerical results do not agree with that of the experimental data well. 
The viscous flow simulations give better result, but further investigation 
for the turbulence model is required. In the inviscid flow case, although the 
reference mesh has almost the same number of nodes as Vn1, it is not 
adapted to the shock feature. The redistributed mesh Vn1 represents the 
shock more clearly. In the viscous flow case, the redistributed mesh also 
represents the shock more clearly. 
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Figure 4. Hybrid meshes for the NACA0012 wing and Cp distribution (-1.0 to 1.0): (a) ini-

tial hybrid mesh; (b) redistributed hybrid mesh. 
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Figure 5. Comparison of Cp distribution for the NACA0012 wing (M = 0.799,  = 2.26): 

(a) Cp distribution; (b) reference mesh (110k nodes). 

4.2. Capsule Model 

Figure 6  shows an initial tetrahedral mesh around a re-entry capsule model 
and Mach number distribution on a cross-section. The bow shock in front 
of the capsule becomes steady, but the flow solution is not fully con-
verged. The shape of the outer boundary is a hemisphere so that the mesh 
can be used for flows at different angles of attack. Isosurfaces of a certain 
weight function value can be extracted as triangulated surfaces (Figure
7a), the medial axes of which are considered to represent the most impor-
tant locations. An approach to obtain medial axes using a Delaunay trian-
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gulation method from the triangulated surfaces can be considered. How-
ever, it is difficult to obtain medial axes automatically as smooth surfaces 
as discussed in the previous example. Although the isosurfaces shown in 
Figure 7a  are smoothed using a Laplacian method, many holes and small 
features prevent extracting smooth medial axes. 

Figure 6. Initial mesh for a capsule model and Mach number distribution on a cross-section 

(M = 1.0-4.0). 

Figure 7. Flow features: (a) extracted isosurfaces at a weight function value of 0.05; (b) es-

timated features using a least square fitting method. 
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Figure 8. Flow features on the 

symmetry plane. 

Figure 9. Redistributed mesh for a capsule model 

and Mach number distribution on a cross-section 

(M = 1.0-4.0). 

The other approach using the least square fitting method is more appro-
priate in this case. After a user specifies one of the template functions, 
such as a cone, quadratic and quartic, and the z axis of the function, a cor-
responding medial axis is obtained as a mathematical function (Figure 7).
The bow shock in front of the capsule is fitted to a quadratic, and the shock 
from the aft of it is fitted to a cone. Figure 8  shows the obtained surfaces 
(Figure 7b) and the isosurfaces for reference  (Figure 7a) on the symmetry 
plane. The least square fitting method estimates the medial axes well. One 
of the disadvantages using unstructured meshes is that flow features di-
verge quickly. This approach enables us to estimate missing flow features. 

Figure 9  shows a redistributed mesh, which has 0.74 million nodes. In 
this case, the entire mesh is regenerated because the shape of the outer 
boundary is changed to remove extra elements. The initial mesh shown in 
Figure 6  can be used for cases at different angles of attack, but it has 0.89 
million nodes. In addition, the elements around the shocks in the far field 
are coarse. Figure 10  illustrates Mach number distribution on the symme-
try planes of the initial and redistributed meshes. Both flows are fully con-
verged. The initial mesh gives a carbuncle phenomenon on the bow shock, 
while the redistributed mesh gives better result. One of the solution feature 
surfaces shown in Figure 7b  fits the bow shock well. 
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Figure 10. Mach number distribution for the capsule model on the symmetry planes (M = 

1.0-4.0): (a) the initial mesh showing a carbuncle phenomenon; (b) the redistributed mesh. 

The most notable advantage of the surface-based mesh redistribution 
method is that anisotropic nonsimplicial elements can be used around the 
feature surfaces to avoid creating skewed elements. Figure 11  shows a re-
distributed hybrid mesh, which has 0.62 million nodes, based on the same 
numerical result. Prismatic layers are placed around the bow shock. The 
quality of the mesh is excellent as shown in the dihedral angle distribution 
(Figure 11b).

5. Conclusion and Future Work 

In this paper, we propose a solution-based mesh redistribution method for 
strong solution features. Solution features are indicated by a weight func-
tion and a shock sensor. The feature locations are estimated by medial axes 
of isosurfaces at a certain sensor value. To compute medial axes, two ap-
proaches are discussed. The discrete surface-based approach using a De-
launay triangulation method may not be suitable to estimate solution fea-
tures as smooth surfaces. The mathematical-representation approach using 
least square fitting can represent solution features easily and can interpo-
late missing features due to truncation errors. The remeshing method with 
embedded surfaces enables anisotropic nonsimplicial elements to be 
placed around the features to avoid creating skewed elements. 
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(b)

Figure 11. Redistributed mesh for a capsule model using anisotropic elements: (a) hybrid 

mesh; (b) dihedral angle distribution of the mesh. 

The proposed approach, however, does not work well if a solution fea-
ture is difficult to be represented as a single surface, such as vortex break-
down. In future work, the solution-based mesh redistribution method will 
be combined with a mesh refinement method [3] to adapt a mesh to all the 
solution features efficiently [21]. 
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Summary. We study adaptive meshes which are quasi-uniform in a metric gener-
ated by the Hessian of a P1 finite element function. We consider three most efficient
methods for recovering this Hessian, one variational method and two projection
methods. We compare these methods for problems with anisotropic singularities
to show that all Hessian recovery methods result in acceptable adaptive meshes
although the variational method gives a smaller error.

1 Introduction

Generation of adaptive meshes is now the standard option in most software
packages. Contrary to uniform meshes, adaptive meshes with the same number
of elements result in much more accurate solutions of PDEs. In this article,
we consider unstructured adaptive meshes which are frequently anisotropic.

One way to generate the adaptive mesh is to define a metric that reflects
problem specifics. A posteriori error estimates or some features of a prob-
lem solution can be used to define this metric. Different error estimates for
anisotropic meshes can be found in [8, 9] (see also references therein). In this
article, we focus on the maximum norm of the interpolation error for P1 finite
element solutions. In this case, the metric is induced by the Hessian (matrix
of second derivatives) of the exact solution. Since the exact solution is not
available, the Hessian must be recovered from the finite element solution.

Among many methods for recovering the Hessian, we selected three most
efficient methods, one variational method [4] and two projection methods
[3, 12]. We compare these methods for problems with anisotropic singulari-
ties. This research topic was inspired by the statement made in article [7] that
the L2-projection method was preferable for the Delaunay-type mesh gener-
ation algorithm considered there. In this article, we consider different mesh
generation algorithm and show that all Hessian recovery methods result in
acceptable adaptive meshes although the variational method gives a smaller
error.
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The Hessian recovery methods are illustrated with 2D examples. Their
extension to 3D tetrahedral meshes is straightforward. These methods have
linear complexity with respect to the number of mesh nodes.

The paper outline is as follows. In Section 2, we describe our metric-based
mesh generation method. In Section 3, we consider the metric induced by the
Hessian of a continuous piecewise linear mesh function and discuss different
methods to recover this discrete Hessian. In Section 4, we analyze numerically
these methods for problems with anisotropic singularities.

2 Metric-based Mesh Generation

Let Ω be a polygonal domain, and M(x) be a symmetric positive definite
2× 2 matrix for any x = (x1, x2) in Ω. In metric given by M , the volume of
a domain D ⊂ Ω and the length of a curve � are defined as follows:

|D|M =
∫

D

√
det M(x) dx, |�|M =

∫ 1

0

√
(M(γ(t))γ(t), γ(t)) dt,

where γ(t) : [0, 1] → �2 is a parametrization of �.
Let Ωh be a triangular mesh covering the domain Ω. In this article, we

analyze meshes that are quasi-uniform in metric M(x) (or M -quasi-uniform).
These meshes have a number of useful approximation properties when the
metric is connected with a posteriori error estimates or solution features. A
short summary of these properties is given in the next section.

There are many methods for generating a M -quasi-uniform mesh (see, for
example, [7]). In this article, we focus on iterative methods that use a sequence
of local mesh modifications to generate a global mesh. The list of mesh modifi-
cations includes alternation of topology with node deletion/insertion end edge
swapping, and node movement. To describe the method, we need the notion
of a mesh quality. For a triangle ∆ of Ωh, we denote by p(∆) the total length
of its edges (perimeter) in the metric M . Then, the mesh quality is defined by

Q(Ωh) = min
∆∈Ωh

Q(∆), (1)

where 0 < Q(∆) � 1 is the quality of triangle ∆ (see [4] for more details),

Q(∆) = 12
√

3
|∆|M
p(∆)2

F

(
p(∆)
3h∗

)
. (2)

Here F (t) : �+ → [0, 1] is a continuous smooth function, 0 � F (t) � 1, with
the only maximum at point 1, F (1) = 1, and such that F (0) = F (+∞) = 0.
Parameter h∗ is equal to the size of elements in a mesh consisting of N∗
equilateral (in the metric M) triangles. Thus, h∗ is a simple function of |Ω|M
and N∗. The last factor in (2) controls the size of the element, whereas the
remaining factors control its shape.
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Since the mesh quality is equal to the quality of the worst triangle, the local
mesh modifications are applied to this triangle. We accept the first operation
that minimizes the mesh quality. If none of the mesh modifications increases
mesh quality, the triangle is temporary placed in a special list and the next
worst triangle is processed. When the number of elements in the list exceeds
some threshold, all of them are released back into the mesh.

This iterative method requires an initial mesh. The initial mesh may be
arbitrary and very coarse. The parameter h∗ provides simple control over the
number of mesh elements. The bigger mesh quality Q(Ωh), the closer the
number of mesh elements to N∗ which is the given number. In a computer
program, we terminate the iterative method when Q(Ωh) becomes bigger than
0.7.

3 Recovery of Metric from Hessian of Discrete Solution

The special choice of the metric M(x) will allow us to generate meshes with de-
sired properties. The most desirable property for applications is minimization
of certain norm of the solution error. In this article, we consider the interpo-
lation error, u − Ihu, where u is a known function and Ih is the piecewise
linear interpolation operator.

A priori error bounds for the maximal norm on optimal meshes have been
studied since the beginning of 90s [6]. Recall that the optimal mesh is defined
as the mesh that minimizes the interpolation error among conformal meshes
with a bounded number of elements. The main difficulty in analysis is possible
anisotropy of the optimal mesh.

The lower upper bound on the error for general discrete spaces was ob-
tained by V.Tikhomirov in 1960. In [1, 10], we analyzed a more narrow class
of spaces of continuous piecewise linear functions on conformal triangula-
tions and showed that the optimal meshes still provide the same error decay
which is reciprocal to the number of elements N∗. In [11], our analysis has
been extended to Lp-norm, where p > 0. For sufficiently smooth solutions
(u ∈ C2(Ω̄)) and 0 < p � +∞, the asymptotical error is

‖u− Ihu‖Lp(Ω) ∼ N−1
∗ .

Moreover, in [1, 10] we proved that meshes which are only quasi-uniform in
the metric derived from the Hessian of u still result in the optimal interpolation
error. Now, we describe this metric in more details.

Let H(x) be the Hessian of u,

H = {Hij}2i,j=1, Hij =
∂2u

∂xi∂xj
, i, j = 1, 2.

We consider its spectral decomposition H(x) = WT (x)Λ(x)W (x) and gener-
ate the metric M(x) as follows:
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M(x) = WT (x)|Λ(x)|W (x), |Λ(x)| = diag{|λ1(x)|, |λ2(x)|}, (3)

where λi(x) are eigenvalues of H(x). To emphasize distinctive nature of this
metric, we shall write |H(x)| instead of M(x).

In a practical adaptive computation, the unknown solution Hessian H(x)
must be replaced by its discrete approximation Hh. In [1, 10], we have for-
mulated sufficient conditions for approximation Hh under which the mesh
quasi-uniform in the metric |Hh| is also quasi-uniform in the metric |H(x)|. If
the initial mesh, used to recover Hh, is far from the optimal one, the discrete
Hessian may not approximate the continuous one. In this case, the problem is
solved again on the generated mesh and the adaptation process is repeated.
The final mesh will be referred to as the quasi-optimal mesh.

There are a few methods for recovering the discrete Hessian Hh from the
piecewise linear function uh defined at mesh nodes. In next sections, we ana-
lyze numerically one variational and two projection methods. It was reported
in [7] that the projection method was more robust for the Delaunay-like mesh
generation algorithm described there. Since we have different experience with
the iterative mesh generation algorithm described in the previous section, we
decided to analyze the effect of the Hessian recovery onto the interpolation
error.

3.1 Variational Methods

Let superelement σ be a set of triangles sharing an interior mesh node a and
Hh(a) be the value of the continuous piecewise linear Hessian Hh at this mesh
node. The weak definition of the discrete Hessian is as follows:

∫

σ

Hh
ij(a)ϕh

a dx = −
∫

σ

∂uh

∂xi

∂ϕh
a

∂xj
dx, (4)

where ϕh
a is the piecewise linear (P1) finite element function associated with

the node a. Since ϕh
a vanishes on ∂σ, definition (4) is nothing else but the

Green formula.
At a boundary mesh node a, the Hessian Hh(a) is the weighted extrapo-

lation from the neighboring interior nodes [5]:

Hh
ij(a) =

∑
b Hh(b)mab∑

b mab
, mab =

∫

σ

ϕh
a ϕh

b dx, (5)

where summation goes over mesh points b ∈ ∂σ that are not on ∂Ω.
The approximation properties of the recovery method (4) have been stud-

ied in [1, 10]. The local convergence of the discrete Hessian towards the dif-
ferential one has been established for a class of smooth solutions. Another
variational method for the Hessian recovery has been introduced and ana-
lyzed in [2].
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3.2 Projection Methods

Another group of methods for recovering the Hessian Hh uses the projection
technique. The first method from this group reads:

Hh = IZZ

(
∇
(
IZZ(∇uh)

))
(6)

where IZZ is the Zienkiewicz-Zhu (ZZ) projector on the P1 finite element
space [12]. The gradient of uh is constant inside mesh triangles. To find the
gradient of uh at an interior mesh node a of the superelement σ defined above,
we fit (in the least square sense) a linear function to the values of∇uh assigned
to the centers of mass of triangles in σ. Repeating this procedure twice, we
get the piecewise linear Hessian of uh at the node a. Again, the Hessian is
extrapolated to boundary nodes using (5).

In [7], the L2-projector IL2 is used instead of the ZZ-projector. However,
both projectors do not remove high frequency errors introduced by small non-
uniformities in the mesh. The superconvergence properties of the recovered
gradient are restored by applying a smoothing operator Sh right after the
projection operator:

Hh = ShIZZ

(
∇
(
ShIZZ(∇uh)

))
. (7)

As shown in [3], two Jacobi conjugate gradient iterations for the equation
−∆v + v = 0 with the initial guess corresponding to IZZ(∇uh) are sufficient
to dump high frequency errors in majority of problems. It is pertinent to note
that the authors studied only isotropic meshes and the optimal number of
Jacobi iteration was found experimentally. In the next section, we shall show
that the same conclusion cannot be extended to anisotropic meshes and the
maximal norm.

Note that for isotropic solutions, efficient implementation of the L2-
projector can be done by lumping the mass matrix [3]. In other cases, solution
of a linear system with a mass matrix is required to find IL2(∇uh). Since the
mass matrix may be quite stiff on an anisotropic mesh, we think that the IZZ -
projector is a more reasonable choice in (7) than the L2-projector suggested
in [3].

All three Hessian recovery methods have linear complexity with respect
to the number of mesh nodes. The variational method is less expensive. The
complexity of the second projection method grows linearly with the number of
smoothing iterations. The complexity of these methods is less than complexity
of the mesh generation algorithm when the initial mesh is far from the optimal
one. In the coarse of adaptive iterations the number of mesh modifications
decreases and the relative complexity of the Hessian recovery methods grows.
The actual numbers are essentially problem dependent.
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4 Numerical Experiments

In this section, we analyze numerically three Hessian recovery methods given
by (4), (6), and (7). We shall refer to the last two methods as the ZZ-projection
and the BX-projection methods, respectively.

In the first example, we consider the problem of minimizing the interpo-
lation error for the function [6]

u(x1, x2) =
(x1 − 0.5)2 − (

√
10x2 + 0.2)2

((x1 − 0.5)2 + (
√

10x2 + 0.2)2)2
.

defined over the unit square [0, 1]2. The function has slight anisotropic sin-
gularity at point (0.5, −0.2/

√
10) which is outside the computational domain

but close to its boundary. The Hessian of u is the saddle point matrix, i.e. it
has one positive and one negative eigenvalue.

The solution isolines and the adapted mesh are shown in Fig. 1. Table 1
shows the L∞ and H1 norms of the interpolation error. The maximal norm
of the interpolation error is almost reciprocal to N∗. The energy norm is
given only for illustration purposes. All the methods require 4 to 5 adaptive
iterations to generate quasi-optimal meshes. The variational method results
in the most accurate interpolation solution.

The gradient smoothing in the BX-projection method does not affect the
energy norm of error but increases the maximum norm in 2-3 times. This
factor becomes even bigger if we increase the number of smoothing iterations.

Table 1. Experiment 1: L∞ and H1 norms of the interpolation error for three
Hessian recovery methods.

Variational method ZZ-projection method BX-projection method

N∗ L∞ H1 L∞ H1 L∞ H1

3000 0.0334 0.206 0.0410 0.211 0.1201 0.234
6000 0.0164 0.146 0.0234 0.147 0.0443 0.158
9000 0.0102 0.119 0.0138 0.119 0.0326 0.123

In the second experiment, we build the optimal mesh for the function
proposed in [7]:

u(x1, x2) = x2x
2
1 + x3

2 + tanh(10(sin(5x2)− 2x1)).

The computational domain is the square [−1, 1]2. The solution is anisotropic
along the zigzag curve (see left picture in Fig. 2) and changes sharply in the
direction normal to this curve.

Table 2 shows the L∞ and H1 norms of the interpolation error. As in the
previous example, the variational method results in the smallest interpolation
error. Similarly, the energy norm of error does not drop down as fast as the
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Fig. 1. Isolines of function u from the first example (left) and the adapted mesh
after 5 iterations for the Hessian recovered with the variational method (right).

maximal norm since we minimize only the latter. Note that setting the number
of smoothing iterations to 10 results in only 19% increase in the energy norm
but destroys the anisotropic mesh structure and rockets up the maximal norm.

In Fig. 3, we show the behavior of the maximal norm of error during the
course of adaptive iterations. Due to the discrete nature of the metric |Hh|,
this behavior is frequently non-monotone. We point out the visible oscillations
and slower convergence of the BX-projection method. The other two methods
required 5 iterations for convergence. We explain this by a slight smearing of
the recovered gradient by operator Sh.

Table 2. Experiment 2: L∞ and H1 norms of the interpolation error for three
Hessian recovery methods.

Variational method ZZ-projection method BX-projection method

N∗ L∞ H1 L∞ H1 L∞ H1

3000 0.02081 0.920 0.02271 0.945 0.1464 0.906
6000 0.00846 0.686 0.01110 0.889 0.0427 0.716
9000 0.00561 0.650 0.00899 0.627 0.0186 0.635

It is pertinent to note that the L∞-norm of the error averaged over mesh
triangles is close for all three methods. This indicates that the number of
lower-quality triangles is much smaller than N∗. However, we should keep
it mind that these triangles are usually located in crucial regions from the
physical viewpoint.
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Fig. 2. Adapted mesh after 6 iterations for the Hessian recovered with the varia-
tional method (left) and its zoom around point (0, 0) showing the anisotropic mesh
structure.
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Fig. 3. The L∞-norm of the interpolation error during the coarse of 15 adaptive
iterations with N∗ = 9000.

In conclusion, we note that the choice of the recovery method must depend
on the norm in which we want to minimize the error. For the maximal norm,
the gradient smoothing is the bad idea. The variational method seems to
exhibit the most robust behavior over a larger scale of norms.
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Dynamic surfaces arise in many applications, such as free surfaces in
multiphase flows and moving interfaces in fluid-solid interactions. In many applica-
tions, an explicit surface triangulation is used to track the dynamic surfaces, posing
significant challenges in adapting their meshes, especially if large curvatures and
sharp features may dynamically appear or vanish as the surfaces evolve. In this pa-
per, we present an anisotropic mesh adaptation technique to meet these challenges.
Our technique strives for optimal aspect ratios of the triangulation to reduce in-
terpolation errors and to capture geometric features based on a novel extension of
the quadric-based surface analysis. Our adaptation algorithm combines the oper-
ations of vertex redistribution, edge flipping, edge contraction, and edge splitting.
Experimental results demonstrate the effectiveness of our anisotropic adaptation
techniques for static and dynamic surfaces.

Key words: Mesh adaptation; anisotropic meshes; dynamic surfaces; feature
preservation

1 Introduction

Many computational applications involve triangulation of complex surface
geometry, and an increasing number of them involve dynamically changing
surfaces, such as free surfaces in multiphase flows [39] and moving boundaries
in fluid-solid interactions [26]. In these simulations, the geometry is not known
a priori and is part of the solution of a numerical simulation. As a surface
evolves, the surface may undergo severe expansion or contraction in different
regions or along different directions, leading to large curvatures, sharp fea-
tures, and even topological changes. It is therefore often necessary to adapt
the meshes for these complex dynamic surfaces to maintain a valid surface
representation with minimal geometric errors.

Mesh adaptation has been an active research subject in numerical simu-
lations for nearly two decades [32, 35]. In recent years anisotropic generation

Summary.
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and adaptation of 2-D triangular and 3-D tetrahedral meshes have attracted
significant attention to reduce or minimize errors [3, 7, 8, 11, 12, 13, 15, 19,
25, 28, 29, 37, 38]. In general, these methods strive to equi-distribute errors by
adapting the mesh density based on a metric tensor field, typically estimated
based on the Hessian of a solution field. Anisotropic meshes can also signif-
icantly enhance the accuracy of a surface representation [1, 6, 10, 20]. Very
few methods have been developed on anisotropic meshing and remeshing of a
surface mesh [1, 10]. The method of Alliez et al. [1] generates quad-dominant
meshes, and the method of Cheng et al. [10] considers only smooth, implicit
surfaces, which may not be suitable for triangulated surfaces with sharp fea-
tures that occur in many simulations. In addition, moving surfaces introduce
significant additional complexities and constraints to mesh adaptation. A ro-
bust dynamic triangulation algorithm was developed by Cheng et al. [9], which
is specialized for skin surfaces and it is unclear how to generalize that algo-
rithm to other surfaces. Therefore, anisotropic mesh adaptation for static or
dynamic surfaces remains a significant challenge.

In this paper, we investigate the problem of adapting a dynamic surface
mesh within a numerical simulation to reduce geometric errors. We propose an
extension of the quadric-based surface analysis by Heckbert and Garland [20]
and relate it to the interpolation error of a surface. Based on this analysis, we
define a Riemannian metric tensor to adapt the surface mesh anisotropically
using a combination of vertex redistribution, edge flipping, edge contraction,
and edge splitting. These operations improve not only mesh quality but also
the accuracy of the geometric representation. The interplay between different
operations is potentially very complicated. To keep the algorithm simple, we
optimize the mesh with vertex redistribution and edge flipping under geo-
metric constraints, and use edge splitting and edge contraction to resolve
pathological situations due to constraints. We compare the numerical solu-
tions using anisotropic adaptation and isotropic adaptation, and demonstrate
the significant advantages of our anisotropic adaptation. For simplicity this
paper assumes the surface does not change topology during evolution.

The remainder of the paper is organized as follows. Section 2 presents
some background information on anisotropic meshes and quadric-based sur-
face analysis. Section 3 proposes a novel anisotropic transformation for sur-
face meshes and applies it to mesh optimization using vertex redistribution
and edge flipping. Section 4 describes the resolution of extreme angles and
adaptation of mesh density using edge splitting and edge contraction. Sec-
tion 5 presents numerical results and comparisons with isotropic adaptation
for static and dynamic surfaces. Finally, Section 6 concludes the paper with
a discussion.
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2 Background

In this section, we present some background information on anisotropic meshes
and quadric-based surface analysis.

2.1 Anisotropic Meshes

It is well known that a mesh with long and skinny triangles can interpolate
a function with large curvature more accurately than a mesh with equilateral
triangles [11, 13, 19, 36, 38]. A general formulation of anisotropic mesh gen-
eration or adaptation in 2-D or 3-D is to define a d × d metric tensor M(x)
(or simply M) at each point x in Rd, where d is 2 or 3, respectively. M is
referred to as the Riemannian metric tensor or fundamental tensor [24]. By
definition, M is symmetric positive-definite and has an eigen decomposition

M = EΛET , (1)

where Λ is the diagonal matrix of the eigenvalues of M, which are all real
and positive, and E is the matrix of the eigenvectors of M. Geometrically, E
corresponds to a rotation matrix and Λ corresponds to scaling factors. Any
point y = x + ε in an infinitesimal neighborhood of x is mapped to

ỹ = y +
√

ΛET ε = y +
d∑

i=1

√
λieT

i εei, (2)

which maps a circle (or sphere in 3-D) in the physical space into an ellipse
(or ellipsoid) in a parametric space with the semiaxes proportional to

√
Λii

for i ∈ [1, d]. A curve r(s) : [a, b] → R2 is mapped to a curve with length

l =
∫ b

a

√
ṙT Mṙds, (3)

which can be approximated using the midpoint rule as

l ≈
√

(rb − ra)T M(a+b)/2(rb − ra). (4)

In numerical computations, M is typically chosen to minimize the inter-
polation error of a function f in a certain norm. Using Taylor series expansion
one can show that the error in interpolating a function f with linear elements is
approximately εT Hε as ε tends to zero, where H denotes the Hessian of f . The
Hessian is symmetric and therefore has an eigen decomposition H = RDRT ,
where D is a diagonal matrix of the eigenvalues of H (i.e., the curvatures of
f) and R is composed of the eigenvectors of H. The eigenvalues of H may be
negative, and the metric tensor M can be obtained by setting Λ = |D| and
E = R in (1), i.e., M = R|D|RT , which minimizes the interpolation error by
equi-distributing the error.
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To generalize the above formulation to surface meshes, a 2-D metric tensor
may be defined on a local or global parametric space [1, 10]. For solution-
based adaptation the metric tensor may be assumed to be given as an input
to the meshing algorithm, but in problems such as dynamic surfaces, which
themselves are the solutions, the adaptation requires a careful analysis of the
evolving surface.

2.2 Quadric-Based Surface Analysis

Surface analysis is a fundamental subject in differential and numerical geom-
etry. Mathematical analysis has traditionally focused on smooth surfaces [24].
Its generalization to discrete surfaces has attracted significant attention in
recent years, but the focus has been limited to the asymptotic behavior of
discrete representations of smooth surfaces [20, 30]. If a surface discretization
is relatively coarse or has singularities, then most asymptotic analyses break
down. The quadric-based analysis proposed by Heckbert and Garland [20]
seems to generalize well for their connections with approximation theory [31]
and singularity analysis, as we will show shortly.

Given a triangulated surface mesh let each vertex v be the origin of a local
coordinate frame, and m be the number of the faces incident on v. Let N be
a m × 3 matrix whose ith row vector is the unit outward normal to the ith
incident face of v, and W be an m×m diagonal matrix with Wii equal to the
weight associated with the ith face. We typically use the the face area of the ith
incident face of v for the weight Wii. Let A denote the 3× 3 matrix NT WN,
which we refer to as the quadric metric tensor. Suppose G is a diagonal matrix
containing the eigenvalues of A. Let λi denote Gii with λ1 ≥ λ2 ≥ λ3, and
V be the matrix of the eigenvectors of A, so A = VGVT . We refer to the
vector space spanned by the eigenvectors of A corresponding to the relatively
large eigenvalues of A as its primary space and the complementary space as
its null space. As we will show later, for smooth surfaces the null space of A
is closely related to the Riemannian metric tensor for error minimization, and
the threshold between the eigenvalues for the primary and null spaces can be
chosen geometrically.

Suppose the triangles incident on v discretize a rectangular neighborhood
with dimensions ε1 and ε2 along the maximum and minimum curvature direc-
tions, and κ1 and κ2 are the maximum and minimum curvatures, respectively.
Heckbert and Garland [20] have shown that as ε tends to 0 the eigenvalues of
A are

λ1 ≈ 4ε1ε2 −
1
2
(λ2 + λ3) (5)

λ2 ≈
4
3
ε31ε2κ

2
1 (6)

λ3 ≈
4
3
ε1ε

3
2κ

2
2 (7)



Anisotropic Mesh Adaptation 177

For meshes approximating a smooth surface, λ2/λ1 and λ3/λ1 approach 0 in
the rates of O(ε21) and O(ε22), respectively.

This asymptotic analysis, however, is not applicable near singularities. We
generalize it to treat singularities as follows. Consider folding a smooth surface
to form a ridge along the minimum curvature direction at a point, and let θ
denote the dihedral angle between the two sides of the ridge. It is easy to show
that after the folding, the three eigenvalues become

λ̃1 ≈ λ1 cos2
θ

2
+ λ2 sin2 θ

2
(8)

λ̃2 ≈ λ1 sin2 θ

2
+ λ2 cos2

θ

2
(9)

λ̃3 ≈ λ3 (10)

Since λ2/λ1 = O(ε21) before folding, near singularities λ̃2/λ̃1 ≈ tan2(θ/2) after
folding. At sharp corners, the eigenvalues become more complicated, but in
general all three eigenvalues are O(ε1ε2). This singularity analysis provides
a geometrically meaningful way to select the thresholds for the null space
(χc for λ2/λ1 and χr for λ3/λ1). It is the foundation of the feature detection
methods of Jiao [22], Jiao and Alexander [23], which detect ridges and corners
by determining the null space along with some safeguards.

The asymptotic interpretation λ2/λ1 ≈ ε21κ
2
1/3 and the singularity inter-

pretation λ̃2/λ̃1 ≈ tan2(θ/2) are consistent within a constant factor, in that
tan2(θ/2) approaches ε21κ

2
1 as θ tends to zero. This dual asymptotic and singu-

larity analysis is very useful, as it provides a new tool to handle the ambiguous
cases that arise frequently in discrete surfaces. In particular, a relatively coarse
mesh may behave in an ambiguous manner like neither singular nor smooth
surfaces, but λ2/λ1 would be approximately tan2(θ/2) and e3 would be along
the minimum curvature direction. This dual analysis is particularly useful for
dynamic surfaces, in which some areas may have increasingly large curva-
tures before sharp features emerge, and the quadrics may be used to capture
such a transition consistently without resorting to two drastically different
treatments for smooth regions and sharp features.

The quadrics are also closely related to optimal triangles in an asymptotic
sense. We define the aspect ratio ρ of a triangle to be that of its minimum
containing ellipse, as advocated by Heckbert and Garland [20]. A dual def-
inition, where the optimal triangle is defined as the triangle with maximum
area contained in an ellipse with a given aspect ratio, can also be used [13].
In both cases, the optimal aspect ratio of a triangle is

√
κ1/κ2, where κ1 and

κ2 are the eigenvalues of the Hessian of the surface with respect to its local
parameterization. It has been shown that the quadric-based surface simplifica-
tion produces optimal anisotropic triangles in an asymptotic sense for smooth
surfaces [20], but there seems to be no published result on how to apply this
analysis to mesh adaptation. In the following, we propose a quadric-based
procedure for anisotropic mesh adaptation.
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3 Anisotropic Mesh Optimization

It is challenging to define a suitable tensor field for surface meshes while taking
into account the potential singularities. In this section we propose a tensor
field and apply it to anisotropic vertex redistribution and edge flipping.

3.1 Anisotropic Transformation

For triangulations of smooth surfaces one can construct the Riemannian met-
ric tensor for anisotropic transformation by computing the curvature tensors
at each vertex to approximate the Hessian of a surface [1]. Although this ap-
proach is well founded for sufficiently fine discretization of smooth surfaces,
the estimated curvatures are not meaningful near singularities and may be
sensitive to perturbation for coarse meshes.

To avoid these numerical problems, we propose to construct the Rie-
mannian tensor M2×2 based on the quadrics as

M = R
[

λ2 0
0 λ3

]
RT , (11)

where λi are the eigenvalues of the quadric metric tensor A, and R is a 2× 2
rotation matrix from the principal directions to the axes of the coordinate
frame. From our previous analysis, for surface meshes conforming to the tensor
field M, ρ =

√
λ2/λ3 ≈

√
|κ1/κ2|. To see this, observe that

ρ =
√

λ2/λ3 ≈
|ε1κ1|
|ε2κ2|

=
|κ1/κ2|
ε2/ε1

.

By definition ρ = ε2/ε1, and therefore ρ2 ≈ |κ1/κ2|. Note that we can multi-
ply M by any factor without changing the aspect ratio. The computation of
M does not require estimating the curvatures explicitly, so it is simple and
efficient. In addition, A and in turn M are computed in an integral form, so
they are not sensitive to perturbation, and it is justified to construct a larger
geometric support by summing up A (or M) at neighboring vertices.

It is important to note that the preceding analysis is asymptotic in nature,
and may be invalid near singularities and degenerate cases. In particular, if
κ1 ≈ κ2 ≈ 0, the aspect ratio is very sensitive to perturbation. If λ2 � λ3,
which may occur near singularities (where λ3/λ2 = O(ε2) along an ridge)
or on a cylindrical patch (where λ3/λ2 = 0), the aspect ratio may become
arbitrarily large. Too large aspect ratios may lead to too small time steps or
larger condition numbers in a numerical simulation [36], and in turn severely
decrease the efficiency and defeat the purpose of anisotropic adaptation. To
resolve these issues, we impose an upper bound on the aspect ratio by imposing
lower and upper bounds on the eigenvalues (the entries of the diagonal matrix
in (11)) of M, i.e.,
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M̃ = R
[

min{max{λ2, ψl}, ψu} 0
0 min{max{λ3, ψl}, ψu}

]
RT . (12)

Based on the singularity analysis of the quadrics, ψl and ψu should be in the
form of λ1 tan2(θ/2) for some angle θ. Compared with the thresholds χr and
χc for feature detection, in general ψl/λ1 ≤ χr ≤ ψu/λ1 ≤ χc (e.g., 8◦, 20◦,
30◦, and 45◦ after converting ψl/λ1, χr, ψu/λ1, and χc into angles by the
mapping f(χ) = 2 arctan

√
χ). These angles are tunable parameters that can

be selected based on their geometric meanings and experiments. With this
modified tensor, the surface would be strongly anisotropic only near sharp
features or large-curvature areas, where anisotropy is desired to avoid large
interpolation errors.

3.2 Anisotropic Mesh Smoothing

Mesh smoothing is a popular method for mesh enhancement by redistributing
vertices without changing mesh connectivity. It is also often the most dif-
ficult step in mesh adaptation. This problem is particularly challenging for
smoothing surfaces because the vertex motion must preserve the geometry
typically without a CAD model. A high-order surface approximation may
be constructed [1, 6, 18], but large errors may still accumulate after repeated
smoothing or adaptation of a dynamic surface. A simple solution was proposed
by Jiao [22] through a weighted-residual formulation of local volume conser-
vation. Here we use a simpler form of that method to redistribute vertices
tangentially within the null space of A, and focus on the issue of anisotropy
in mesh smoothing.

A typical smoothing procedure moves a point toward a weighted average of
its neighbor vertices. For anisotropic smoothing we must take into account the
Riemannian tensors when computing the average. In the previous subsection
we discussed the construction of the tensor at each vertex, which uses its
own local coordinate frame. To compute a weighted average at a vertex p,
the tensors at p and its adjacent vertices must be transformed into the same
coordinate frame.

Given two adjacent vertices q and p, we compute the rotation matrix R
as follows. If the first eigenvectors at the two vertices are the same, then the
rotation matrix is simply TT

q Tp, where Tp is a 3 × 2 matrix whose column
vectors are the second and third eigenvectors of A at p, and similarly for Tq.
If the normals differ, then TT

q Tp is no longer a rotation matrix. Let S denote
TT

q Tp. We compute R based on the projection of the third eigenvector of A
at p onto Tq, i.e.,

R2 =
S2

‖S2‖
, and R1 =

S1 −R2S1R2

‖S1 −R2S1R2‖
,

where Ri and Si denote the ith column vectors of R and S, respectively.
By plugging R corresponding to each adjacent vertex q into (12), we trans-
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form the tensor at q to the local frame at p. For each edge pq, its mid-
point x is then transformed to

√
D 1

2
RT

1
2
TT

p (x − p), where R 1
2
D 1

2
RT

1
2

=

M 1
2

= 1
2 (Mp + Mq), and the length of the edge is estimated based on (4)

as
√

(p− q)T TpM 1
2
TT

p (p− q). Using these transformations we obtain the
vertex’s smoothed location p̃ within the tangent plane at p and then project
p̃ to the null space at p (which is the same as the tangent plane at smooth
vertices but is the tangent line at ridges) when mapping back to R3.

In our overall smoothing procedure, we first compute the metric tensors
at all vertices and then compute the new position for all vertices using a
Jacobi-style iteration, which is easy to parallelize in numerical simulations
and also avoids recomputing the metric tensors after moving each vertex.
Correction steps may be performed to add correction terms to preserve the
shape [22]. Note that in principle any averaging scheme may be plugged into
our smoothing procedure to compute the new position within the tangent
space, but some schemes may exhibit instability when using a Jacobi-style
iteration so may not be suitable in our setting.

3.3 Anisotropic Edge Flipping

Edge flipping is a commonly used operation in meshing algorithms such as
Delaunay triangulation. For each edge uv with opposite vertices p and q, we
flip uv if the Delaunay flipping criterion (i.e., ∠upv +∠uqv > π) is satisfied in
its parametric space. A key question is how to define this parametric space.
Unlike vertex redistribution, where a vertex is at the center of the geometric
support of the computation, it is unnatural to choose any vertex as reference
for edge flipping. Because of the integral nature of quadric metric tensors,
we obtain a reference frame by summing up the quadric metric tensors at
the four vertices, and then obtain the reference frame and Riemannian tensor
from its null space. The origin of the reference frame is positioned at the
average of the four points. This approach avoids biasing toward any vertex.
After obtaining the tensor one can compute the angles in the parametric space
or use the modified Delaunay criterion [7]. Our algorithm repeatedly flips the
edges using this modified Delaunay criterion until convergence.

If the metric tensor is a constant, then this procedure would converge to
the Delaunay triangulation within the parametric space independent of the
flipping sequence. For general surfaces this process may not converge to a
Delaunay mesh and may even run into an infinite loop due to the potential
inconsistencies caused by discretization errors. We use a greedy strategy to
flip edges in decreasing order of maximum opposite angle, avoiding infinite
loops by flipping edges only once. For meshes with sharp features we prohibit
flipping any edge that is marked as a ridge edge (which are identified also
using the quadric metric tensor [22]) because such a flipping introduces large
errors.
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4 Anisotropy-Aware Mesh Repair

Vertex redistribution and edge flipping optimize a mesh with a given num-
ber of vertices and under other geometric constraints (such as boundary and
features). If a dynamic surface undergoes severe expansion or contraction,
the number of vertices may need to be increased or decreased to maintain the
overall density. Furthermore, there may be some small or large angles that can
restrict time steps or lead to arbitrarily large errors in the normal directions
[36]. These bad angles may not be resolved by mesh optimization due to geo-
metric constraints. We address these issues using a process referred as mesh
repair. Mesh repair does not attempt to optimize any quality measures but
focuses on safeguarding and resolving pathological cases. Our overall adapta-
tion strategy is to iterate between mesh optimization and mesh repair. Mesh
repair is critical for generality and robustness but is also difficult to analyze.
To keep it simple, we choose the two simplest operations: edge splitting and
edge contraction. These repair operations must be anisotropy-aware so that
they do not undo the effect of anisotropic mesh optimization.

4.1 Edge Splitting

Edge splitting inserts a new vertex to an edge, as illustrated in Fig. 1(a). It
helps to refine the area where the mesh may be too coarse, and to eliminate
large angles with a long opposite edge. We choose the edges to split based on
the following two criteria:

Absolute longness: the edge is the longest in its incident triangles and is longer
than a given threshold L, or

Relative longness: the edge is longer than a desired edge length l < L, one
of its opposite angles is close to π (greater than a threshold θl), and the
shortest edge in its incident triangles is no shorter than s (where s < l).

The four parameters above must be chosen in a way consistent with edge
contraction, which we consider in Sect. 4.3. In the second criterion the con-
straint on s is necessary to prevent over-refinement caused by splitting too
small triangles. Note that this process leaves out some large angles, which will

Fig. 1. Operations used in anisotropy-aware mesh repair
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be addressed by edge contraction. We split the edges in decreasing order of
edge lengths. After splitting an edge the new vertex is first positioned at the
edge center, and then projected along the normal direction to the point that
minimizes a quadric error metric along the edge to preserve smoothness.

4.2 Edge Contraction

Edge contraction merges two adjacent vertices into a single vertex, and it helps
to coarsen the mesh and to eliminate some very small angles (and also some
large angles). Edge contraction is more difficult than edge splitting because
it can potentially smear features and even cause mesh folding. We determine
whether an edge is desirable to contract using the following criteria:

Absolute small angle: its opposite angle in an incident triangle is smaller than
a threshold θs, and the longest edge of the triangle is shorter than the
desired edge length l, or

Relative shortness: it is shorter than a small fraction r of the longest edge in
its incident triangles, or

Absolute small triangle: the longest edge in its incident faces is shorter than
a given threshold S, and it is the shortest edge in its incident triangles, or

Relative small triangle: the longest edge in its incident faces is shorter than
the desired edge length l, and it is shorter than a fraction R of the longest
edges in both physical and normalized space.

The first two criteria address poorly-shaped triangles with a very small angle
or a short edge, and as a side product eliminate some triangles with very large
angles. The last two criteria address well-shaped but too small triangles to
decrease vertex density for mesh coarsening.

We contract edges in increasing order of edge lengths. To preserve features
during contraction, if two vertices have different feature ranks (a smooth,
ridge, and corner vertex has a feature rank of 0, 1, or 2, respectively) we place
the merged vertex at the original vertex with the higher rank. If two vertices
have the same rank, to preserve smoothness we obtain a weighted average of
the original vertices and then project it along the normal direction to minimize
the quadric error metric. To prevent mesh folding we reject contractions that
would lead to topological changes or normal inversion of any face. We observe
that such violations rarely occur as we contract shortest edges first.

4.3 Parameter Selection

Mesh repair requires a number of parameters as it deals with pathological
cases by nature. The interplay among different parameters are quite complex.
Overall, we have three different types of parameters: edge lengths (l, L, s, S),
edge-length ratios (r, R), and angles (θl and θs).

For edge-length parameters, in general s < S < l < L, since S and L
specify desirable lengths for edge contracting and splitting, and s/l is closely
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related to the maximum aspect ratio allowed by anisotropic transformation
(i.e.,

√
ψu/ψl). For the edge-length ratio r and R, in general r < R as they

correspond to poorly-shaped and well-shaped triangles, respectively. The ratio
r is related to the ratio of s/l in the relative-longness criterion, and in general
r � s/l ≈

√
ψl/ψu. The threshold R is related to S, and we choose R ≈ S/l.

For the angle thresholds, θs � θl, and it is desirable that 2θs + θl > 180◦,
so that large angles incident on a relatively short edge would be eliminated
by edge contraction. The angle θs is also related to the thresholds ψl and ψu.
The maximum of the minimum angle of a triangle contained in an ellipse with
aspect ratio ρ =

√
ψu/ψl is 2 arctan ρ, and therefore we choose θs ≈ 2 arctan ρ.

Based on these consideration and extensive experiments, we choose the
following default values for the parameters:

• ψl = λ1 tan2(4◦) and ψu = λ1 tan2(15◦);
• r = 0.1, R = 0.5;
• s = l

√
ψl/ψu, S = Rl, L = 1.5l;

• θs = 2arctan
√

ψl/ψu ≈ 15◦ and θl = 160◦.

In general the desired edge length l may vary in space, but it typically suffices
to have a uniform value as the desired average edge length. In the following we
present some experimental results, all of which used the above default values.

5 Experimental Results

We present some preliminary results of anisotropic adaptation for static
and dynamic surfaces to demonstrate its effectiveness, and compare it with
isotropic remeshing for dynamic surfaces.

5.1 Remeshing Static Surfaces

When applied to a static surface our anisotropic adaptation algorithm es-
sentially becomes a remeshing tool. We show two simple examples of static
remeshing to demonstrate the effect of anisotropic adaptation. In the first ex-
ample we remesh a small cube. As shown in Fig. 2, a layer of small triangles
was formed around sharp features.

In the second example we remesh a surface mesh with corrupted sharp
features, as shown in Fig. 3. We adapt the mesh while adding a normal motion
to denoise the surface. The detail of this denoising procedure is beyond the
scope of this paper, but its basic idea is to identify the noisy vertices similar to
feature detection using the eigenvalues of the quadric metric tensor, and then
add a normal motion in a volume-preserving fashion similar to the normal-
diffusion approach of Ohtake et al. [33]. As obvious from the figures, the final
mesh is anisotropic near high-curvature regions and both the mesh quality
and surface geometry were improved substantially.
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Fig. 2. Remesh cube with anisotropic mesh optimization

Fig. 3. Adapting a surface with corrupted features using anisotropic mesh adapta-
tion

5.2 Adaptation of Dynamic Surfaces

As discussed earlier, the advantages for anisotropic surface adaptation are
most prominent in adapting dynamically moving surfaces. We use a series of
dynamic surfaces with an increasing level of difficulty to verify our assertion.
In particular, we adapt a surface that is advected in two challenging flow
fields for a time period T as detailed later. The larger T is the more severe
the deformation becomes. We modulate time by the cosinusoidal function
cos(πt/T ) to make the flow periodic, so that in principle the shape at time
t = 0 and t = T should be identical. Such a test has been widely used to
test dynamic surfaces or moving interfaces [4, 14, 16, 27]. In these tests, we
propagate each vertex using the fourth-order Runge-Kutta integration scheme
and then adapt the surface anisotropically. The time step was controlled using
the approach of Jiao [21] to prevent mesh folding. We perform anisotropic
mesh smoothing at every time step and invoke the full-fledged anisotropic
adaptation every few iterations or when the time step becomes too small.
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5.2.1 Modest Deformation

Dynamic surfaces pose significant challenges to mesh adaptation, and most
traditional adaptation techniques lead to large errors or abrupt failure at a
very early stage. In order to compare our method with existing adaptation
techniques, we first consider the modest deformation of a sphere of radius 0.15
centered at (0.5, 0.75, 0.5) in a vortex flow with a time period of T = 2. The
spatial velocity of this deformation field is given by

u(x, y, z) = sin2(πx)(sin(2πz)− sin(2πy)), (13)
v(x, y, z) = sin2(πy)(sin(2πx)− sin(2πz)), (14)
w(x, y, z) = sin2(πz)(sin(2πy)− sin(2πx)). (15)

This flow is a challenge as large curvatures develop at the maximum deforma-
tion. In this test we compare the results of using anisotropic mesh optimiza-
tion with the isotropic remeshing, in particular our own implementation of the
method of Alliez et al. [2]. In both cases we used a time step of 0.01. Figure 4
shows the meshes using anisotropic adaptation at times t = 0, 1, and 2 using
a relative coarse initial mesh with 10, 784 vertices and 21, 564 triangles. Fig-
ure 5 shows the results using isotropic remeshing with uniform spacing using
the same initial mesh. The anisotropic results are obviously far superior to
the isotropic ones. Quantitatively, the volume loss for anisotropic adaptation
was less than 0.1% compared to about 24% for isotropic remeshing. Note that
the isotropic remeshing algorithm of Alliez et al. [2] can adapt vertex density
based on curvatures, but we observed some numerical instability and worse
results when adapting vertex density based on Gaussian or mean curvatures,
probably because the curvatures are inherently sensitive to perturbation.

Fig. 4. Results of vortex flow using our anisotropic adaptation at t = 0, 1, and 2

In terms of efficiency, anisotropic adaptation took 9 minutes to complete
the whole simulation on a PC with 3.2 GHz Pentium D processor. In com-
parison, the remeshing algorithm by Alliez et al. [2] is very expensive and
takes several minutes even for a single remeshing step; therefore, we adopted
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Fig. 5. Results using isotropic remeshing at times at t = 1, and 2 for the same flow
and initial mesh as in Fig. 4

an approximation solver proposed by Ostromoukhov et al. [34] to make their
algorithm more competitive. Even after this speed-up, isotropic remeshing
took 30 seconds per remeshing step, which amounts to about 10 times slower
than our technique. This relatively simple example shows the effectiveness
and efficiency of anisotropic adaptation and demonstrates the challenges in
remeshing dynamic surfaces.

5.2.2 Large Deformation

In the literature, another widely used test has a velocity field

u(x, y, z) = 2 sin2(πx) sin(2πy) sin(2πz), (16)
v(x, y, z) = − sin(2πx) sin2(πy) sin(2πz), (17)
w(x, y, z) = − sin2(2πx) sin2(2πy) sin(πz), (18)

which advects a sphere centered at (0.35, 0.35, 0.35) for a time period of T = 3.
This problem is sometimes referred to as the Enright test and has been solved
using implicit surfaces, such as the level set method and its variations [16, 17]
and hybrid front tracking methods [5, 14]. Note that if one simply propagates
the vertices of a surface mesh independently, some triangles would become
inverted very soon, so mesh adaptation is necessary.

We used an initial mesh with 23, 238 vertices and 46, 472 triangles with
a time step of 0.015, so the whole computation took 200 iterations. Due to
distortions introduced by the flow, anisotropic optimization alone cannot meet
this challenge, so we used the full-fledged anisotropic mesh adaptation. We
invoke anisotropic adaptation every 4 time steps. This flow is mildly unstable
during the second half period, so a smoothing term similar to that in Fig. 3
was added to denoise the surface.

Figure 6 shows the surfaces with anisotropic mesh adaptation after 50,
100, 150, and 200 time steps. At the maximum deformation (i.e., t = 1.5) the
surface area increased by a factor of 4.12, and the numbers of vertices and
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triangles also roughly quadrupled (increased to 98, 638 and 197, 292, respec-
tively). At time t = 3 the surface returned back to a nearly perfect sphere,
and the errors in both the volume and surface area were less than 0.1%. Note
that the popular level-set method lost 80% of volume for this test, while the
much-improved particle level-set method of Enright et al. [16] lost 2.6% when
using one million grid points. Because of the lower time complexity of our
surface mesh-based scheme, the computation time of our method is expected
to be orders of magnitude smaller than that of Enright et al. [16].

Fig. 6. Solution of Enright test with anisotropic mesh adaptation

5.2.3 Very Large Motion

The motion in the previous test is large, but it is still relatively simple because
the surface remained smooth and the time period was relatively short. We
test our method using a more challenging problem with the same flow as in
Sect. 5.2.1 but a longer period of T = 6. Under this flow the sphere swirls for
three cycles at the maximum deformation, forming cusps and extremely thin
filaments, posing significant challenges to represent the surface accurately.
To the best of our knowledge no solution to this problem has been reported
previously in the literature, except for a result of T = 4 using a hybrid surface-
marker and volume-of-fluid method [4]. Our simulation used a time step of
0.015 for 400 iterations using an initial mesh same as that in the previous test.
Figure 7 shows the surface after 100, 200, and 400 time steps, respectively.
At the maximum deformation the area increased by a factor of 5.6, and the
numbers of vertices and triangles increased by a factor of 5.4. At time t = 6,
the volume error was about 0.3%.

6 Conclusion

In this paper we present an effective approach for anisotropic adaptation of
triangulated surfaces, with a focus on adapting dynamic surfaces that are the
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Fig. 7. Solution of vortex flow with anisotropic adaptation for period T = 6

solutions of numerical simulations. This setting poses significant challenges in
accuracy and efficiency. We present an extension of the quadric-based surface
analysis to treat singularities and in turn deliver a unified framework for re-
solving smooth surfaces, sharp features, and the ambiguities between them.
We propose a simple and efficient transformation for anisotropic mesh adap-
tation with built-in safeguards for degeneracies, and use this transformation
to optimize a mesh anisotropically. We also develop a mesh repair strategy
to address pathological cases. The effectiveness of anisotropic adaptation was
demonstrated using a number of examples, and orders of magnitude of im-
provements were achieved in accuracy and efficiency for dynamic surfaces
compared to adapting the surface meshes isotropically or representing and
propagating the surfaces using Eulerian methods. A number of research issues
remain open for dynamic surfaces, including accurate resolution of topolog-
ical changes of surface meshes and volume conservation in full-fledged mesh
adaptation, which we are investigating and plan to report in the future.
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Summary. Mesh adaptation is considered here as the research of an optimum that
minimizes the P1 interpolation error of a function u of R

n given a number of vertices.
A continuous modeling is described by considering classes of equivalence between
meshes which are analytically represented by a metric tensor field. Continuous met-
rics are exhibited for Lp error model and mesh order of convergence are analyzed.
Numerical examples are provided in two and three dimensions.
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1 Introduction

Nowadays, in the context of numerical simulations based on finite elements or
finite volumes methods, unstructured mesh adaptation has largely proved its
efficiency for improving the accuracy of the numerical solution as well as for
capturing the behavior of physical phenomena. In principle, this technique al-
lows (i) to substantially reduce the number of degrees of freedom, thus impact-
ing favorably the cpu time and (ii) to automatically capture the anisotropy
of the physical phenomena. However, such efficiency is usually observed from
the practical point of view only, as a thorough theoretical analysis is really te-
dious to carry out on unstructured meshes. Indeed, there is no simple Hilbert
space structure for the type of non-isotopological meshes that are required
for a variational study. To overcome this difficulty, we represent meshes with
continuous functions describing them. To this end, the concept of continuous
metric, introduced by Dervieux et al. [19, 7], is used to replace the notion of
a mesh in a variational analysis. A continuous metric is simply a continuous
function associating a metric tensor to each vertex of the domain.
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Over the last few years, numerous papers have been published concerning
mesh adaptation in numerical simulations. It points out that isotropic mesh
adaptation has been already well addressed in two and three dimensions,
see for instance [12, 2, 18, 22, 24, 25, 21, 27]. Regarding anisotropic mesh
adaptation, numerous works using (or implicitly using) the concept of metric
in order to equally distribute the interpolation error have been published in
two dimensions [1, 3, 4, 10, 9, 17]. However, only a few of them have dealt
with the three-dimensional case [13, 16, 20, 28, 23].

Recently, some papers have proposed a new approach to define an optimal
metric in two dimensions for minimizing the interpolation error in norm Lp in
order to generate anisotropic adapted meshes [26, 6, 5]. Formally speaking, let
u be an analytic solution defined on a bounded domain Ω and let N denotes
the desired number of vertices for the mesh, the aims is to to create the “best”
mesh H, i.e., the best continuous metric M, to minimize the interpolation
error ‖u − Πhu‖p in Lp norm, Πhu being the linear interpolate of u on H.
To this end, a model of the interpolation error eM is required. Once eM has
been properly defined, a calculus of variation is performed on the domain Ω.
Mathematically, we need to solve the following minimization problem:

find E(M) such that min
M

∫

Ω

|eM(x)|p dx. (1)

The aim of this paper is to extend the results presented in two dimensions
in [6] in any dimension. Firstly, we indicate how we get our local error model
eM based on a bound of the interpolation error. We also demonstrate that
the optimal directions of the desired metric coincide with the directions of
the Hessian of the solution. Secondly, to extend the result in dimension n, we
propose a definition of anisotropic quotients. A coordinate transformation is
performed with these quotients to simplify the resolution of Problem (1) by a
calculus of variation. Finally, we analyze the order of convergence of the error
with respect to the obtained optimal metric.

Analytical examples in two and three dimensions are given to illustrate
the impact of the continuous metric throughout a mesh adaptation process.

2 Metric Notions

The notion of length in a metric space is closely related to the notion of metric
and subsequently to the definition of the scalar product in the vector space.
When this metric is continuously defined over the whole domain, it is called
a continuous metric. In the following, the natural scalar dot product of Rn is
denoted by 〈 , 〉.

Metric Definition

A metric tensor (or, more simply, a metric) M in Rn is a n × n symmetric
strictly definite positive matrix; hence M is always diagonalizable.
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From this definition, it follows up that the scalar product of two vectors in
Rn is defined with respect to a metric M as:

〈u , v 〉M = 〈u,Mv 〉 = tuMv ∈ R .

Under this notion, the Euclidean norm of a vector in Rn is easily defined as:

‖u‖M =
√
〈u , u 〉M =

√
tuMu ,

that actually measures the length of vector u with respect to metric M.
A metricM could be geometrically represented by its associated unit ball,

an ellipsoid, defined as:

EllM = {b |
√

t−→abM−→
ab = 1}

where a denotes the center of the ellipsoid. The main axes are given by the
eigenvectors of matrixM and the radius along each axis is given by the inverse
of the square root of the associated eigenvalues.

In the following sections, the metric unit ball is essentially used to define
neighborhoods. We denote by BM(a) the unit ball of a in metric M, also
defined as:

BM(a) = {b ∈ Rn | dM(a, b) ≤ 1 }.
More details on these notions can be found in [14].

Continuous Metric

Let Ω ⊂ Rn be the computational bounded domain. Defining a continuous
metric on Ω is equivalent to define an Euclidean space supplied with a Rie-
mannian metric (Ω,M(.)), where M(.) is the continuous metric. In this case,
the distance between two points a and b is given by the integral:

dM(a, b) =
∫ 1

0

√
t−→abM(γ(t))−→ab dt, (2)

where γ(t) = a + tab is a normal parametrization of the arc ab.
A mesh is called a unit mesh with respect to the continuous metric M(.) if

all its edges have a length strictly equal (or very close) to one in the continuous
metric M(.), as given by Relation (2) and if all its elements are (almost)
regular.

This notion of a continuous metric is a trick that allows us to forsake
the mesh in the analysis. Indeed, a mesh generator governed by a metric
tensor field makes use of the distance criterion specified by the continuous
metric. Therefore, two different unit meshes with respect to this metric can
be considered as strictly equivalent. This metric defines a class of equivalence
between meshes. In this respect, the mesh becomes an unknown of the problem
with respect to a continuous metric.
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Notations

In the following, a continuous metric M defines for any point a of the domain
Ω ∈ Rn a matrix M(a). For sake of simplicity we omit a in our notations, we
denote by M instead of M(a) the continuous metric. This continuous metric
is always diagonalized. We define the following functions as unknowns of our
problem:

• let RM be the function associating to each point a of the domain Ω ∈ Rn

the coordinate transformation matrix of M(a). RM is composed with the
eigenvectors (v1,v2, ..,vn) of M.

• let be λ1, λ2, .., λn the n functions associating to each point a of the domain
the eigenvalues of M(a). Or similarly, we could denote by h1, h2, .., hn the
local size functions defined by hi =

√
1/λi for i = 1, ..., n.

For a unit mesh, an edge parallel to vi should be, according to (2), of length
equal to hi =

√
1/λi, where hi is the local mesh size in direction vi.

If the distance in a metric space is defined by a metric, the latter also indi-
cates the vertex density (or distribution) over the domain directly from the lo-
cal sizes (hi)i=1..n. Indeed, let d be the mesh density, defined as d =

∏n
i=1 h−1

i ,
then the number of vertices C(M) of the mesh, or the mesh complexity, is given
by:

C(M) =
∫

x∈Ω

d(x) dx =
∫

x∈Ω

n∏

i=1

1
hi

(x) dx.

Let u be a C2 continuous function, we denote its Hessian by Hu =
(

∂u

∂xi∂xj

)

i,j

.

It can be decomposed as follows:

Hu = Ru ΛR−1
u = Rudiag

(
∂2u

∂αi
2

)
R−1

u ,

where Ru is formed by the eigenvectors of Hu denoted (u1,u2, ..,un). If the
diagonal matrix Λ has all non-zero terms, then the matrix |Hu| is a metric
tensor defined as:

|Hu| = Ru |Λ|R−1
u = Rudiag

(∣∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣

)
R−1

u . (3)

3 Local Error Modeling

In this section, the local error eM(a) in the neighborhood of a vertex a is
designed. This error is evaluated in the neighborhood BM(a) of a defined by
the continuous metric M. We first express this error in terms of the discrete
error eK , the interpolation error in L∞ norm on an element K of mesh H con-
sidered as a representative of the continuous metric M. Next, we demonstrate
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that this error is maximal when its main directions (v1,v2, ..,vn) are aligned
with the main directions of the Hessian (u1,u2, ..,un). Then, we obtain the
following local error model:

eM(a) =
n∑

i=1

h2
i

∣
∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣ .

3.1 Local Error Definition

Let a be a point of domain Ω and let BM(a) = {x ∈ Ω | dM(x, a) ≤ 1}
denotes its unit ball. The aim is to control the local error eM in the vicinity
of a defined as:

eM(a) = max
x∈BM(a)

|u(x)−Πhu(x)|.

Practically, we need a discrete support to be able to compute this error.
To follow up on this idea, we consider a mesh H as a member of the class
of equivalence defined by M and a as a vertex of this mesh. As the mesh
is represented by M, the unit ball BM(a) is represented on H by Bh(a), its
ball in the mesh, i.e., the set of all mesh vertices connected to the vertex a.
Indeed, H is a unit mesh for M, then the lengths of all edges ab, b ∈ Bh(a)
are equal to one with respect to the metric. Consequently, we propose the
following model for the local error on the mesh H:

eM(a) = max
K∈Bh(a)

‖u−Πhu‖∞,K = max
K∈Bh(a)

eK . (4)

Therefore, we need to compute the interpolation error on an element K in
L∞ norm to model the local error. This will be explained in the next section.

3.2 The Discrete Case

In this section, a geometric error estimation of the interpolation error in L∞

norm is presented. This error estimate will be used hereafter to construct our
error model. Here, we will focus exclusively on the three-dimensional case.

We consider a tetrahedral unstructured mesh with the following notations:

• K = [a, b, c, d] is a tetrahedron with a diameter not necessary supposed
small

• u : R3 −→ R is a (regular) function representing the solution of our prob-
lem

• Πhu is the linear interpolate of u on the element K defined by the para-
meterization Πhu = (1 − λ − µ − ν)u(a) + λu(b) + µu(c) + νu(d), with
0 ≤ λ + µ + ν ≤ 1.
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The aim is to bound the error e = u −Πhu on K. To this end, we rely on a
Taylor expansion with an integral rest of the function e at a vertex of K (for
instance a) with respect to any interior point x in K:

(u−Πhu)(a) = (u−Πhu)(x) + 〈−→xa , ∇(u−Πhu)(x)〉

+
∫ 1

0

(1− t) 〈−→ax , Hu(x + t−→xa)−→ax〉 dt ,

where ∇u(x) and Hu(x) denote the gradient and the Hessian of the variable
u at point x, respectively. Actually, as we assume that the maximal error is
achieved at the location x (closer to a than to b, c or d), then ∇(u−Πhu)(x) =
0 and as u and Πhu coincide at the vertex a by definition, we get:

|e(x)| = |
∫ 1

0

(1− t) 〈−→ax , Hu(x + t−→xa)−→ax〉 dt | .

Let a′ representing the point corresponding to the intersection of the line ax

with the face opposite to a. It exists a real number λ such that −→ax = λ
−→
aa′. As

a is closer to x than to any other vertex of K, λ ≤ 3/4, it yields:

|e(x)| = |
∫ 1

0

(1− t) λ2 〈−→aa′ , Hu(a + t−→xa)
−→
aa′〉 dt | ,

≤ 9
16

max
y∈aa′

| 〈−→aa′ , Hu(y)
−→
aa′〉 | |

∫ 1

0

(1− t) dt | ,

and then:
|e(x)| ≤ 9

32
max
y∈K

| 〈−→aa′ , Hu(y)
−→
aa′〉 | .

At this point, we can introduce the L∞ norm of the interpolation error and
consider the symmetric definite positive matrix |Hu| (cf. Section 2). The fol-
lowing bound is obtained:

‖u−Πhu‖∞,K ≤ 9
32

max
y∈K

〈−→aa′ , |Hu(y)| −→aa′〉 .

Notice that the previous relationship is not very useful in practice as the
bound depends on the extremum x that is not known a priori. However, it
can be reformulated in a more practical manner as follows:

eK = ‖u−Πhu‖∞,K ≤ 9
32

max
y∈K

max
v⊂K

〈v , |Hu(y)|v 〉 , (5)

where v ⊂ K means that v is a vector inside the element K, i.e., there exist
two points m,n ∈ K such that v = −→mn.

This expression provides a bound in the case where the maximum error
is achieved inside the element K. If the maximum error is obtained on the
element face, then we obtain:
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eK = ‖u−Πhu‖∞,K ≤ 2
9

max
y∈[a,b,c]

max
v⊂[a,b,c]

〈v , |Hu(y)|v 〉 .

Similarly, for a maximum value obtained along an element edge, we have:

eK = ‖u−Πhu‖∞,K ≤ 1
8

max
y∈ab

〈−→ab , |Hu(y)| −→ab〉 .

In conclusion, Relation (5) provides a convenient bound of the interpolation
error on an element K.

Remark 1. This proof can be extended to any dimension n using a recurrence
relation where the constant is given by:

cn = λ2|
∫ 1

0

(1− t)dt | = 1
2

(
n

n + 1

)2

.

3.3 Optimal Directions

From the previous section, the local error eM in the neighborhood of a is
defined by Relation (4) and for any simplex K of Rn we have:

eK = cn max
y∈K

max
v⊂K

〈v, |Hu(y)|v 〉 ≤ max
y∈K

max
v⊂K

〈v, |Hu(y)|v 〉. (6)

We note that right-hand side of Relation (6) is a second order estimate since
‖v‖2 is smaller than the diameter of element K. In the proposed modeling,
we neglect third order terms, which allows us to replace maxy∈K f(y) by f(a)
in the neighborhood BM(a). The right-hand side of Relation (6) is used to
model the interpolation error eK . In consequence, Equation (4) is written in
a more simple form as:

eM(a) = max
K∈Bh(a)

max
v⊂K

〈v, |Hu(a)|v 〉 .

The set of eigen-vectors (v1,v2, ..,vn) of M forms a basis of Rn. Hence,
any vector v inside Bh(a) ⊂ BM(a) can be written in this basis such as
v =

∑n
i=1 νivi which could be also written v =

∑n
i=1 µihivi with ‖µ‖2 =∑n

i=1 µ2
i ≤ 1. Finally, from Expression (3), we have to compute the expression:

eM(a) = max
‖µ‖2≤1

n∑

j=1

(
n∑

i=1

µihi〈vi,uj〉
)2 ∣

∣
∣
∣

∂2u

∂αj
2

∣
∣
∣
∣ . (7)

Problem (7) could be written in a matrix form as follows:

eM(a) = max
‖X‖2≤1

(HPX)T |Λ|HPX, (8)

where
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• X is the unknown vector of the µi

• H and |Λ| are the diagonal matrices diag(hi) and diag(
∣
∣
∣ ∂2u
∂αi

2

∣
∣
∣), respectively

• P is the transformation matrix from the eigen-basis of M to that of |Hu|,
defined by P = (Pij)ij = (〈ui |vj〉)ij .

We consider the one to one variable substitution Y = PX. As the orthogonal
matrix P preserves the norm, Problem (8) is equivalent to the following:

eM(a) = max
‖Y ‖2≤1

(HY )T |Λ|HY = max
‖y‖2≤1

n∑

i=1

h2
i y2

i

∣
∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣ , (9)

here, the vector Y has been written as (y1, y2, .., yn). It yields:

max
‖Y ‖2≤1

(HY )T |Λ|HY ≤ max
j=1..n

(
h2

j

∣
∣
∣
∣

∂2u

∂αj
2

∣
∣
∣
∣

) n∑

i=1

y2
i .

Therefore, the constraint is active, i.e., the maximum is reached for ‖Y ‖ = 1,
and we get the following equality:

max
‖Y ‖2≤1

(HY )T |Λ|HY = max
i=1..n

(
h2

i

∣
∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣

)
.

To find the optimal directions, we differentiate the Lagrangian L associ-
ated with Problem (9). Let λ be the Lagrange multiplier associated with the
constraint ‖Y ‖2 = 1, which is equivalent to the initial constraint. This con-
straint replaces the initial one as it is differentiable. The optimality condition
∇L(Y, λ) = 0 is equivalent to the system:






...
2yi

(
h2

i

∣
∣
∣ ∂2u
∂αi

2

∣
∣
∣− λ

)
= 0

...

for i = 1, ..., n .

The n solution vectors Yi, i = 1, ..., n are such that:

yi = 1 and yj = 0 for j 
= i and λ = h2
i

∣
∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣.

Going back to the initial problem, the n solution vectors Xi are finally:

Xi = P−1Yi = ui .

The previous demonstration indicates that the optimal directions of the
metric are aligned with the main directions of the Hessian. Replacing the value
of Xi back in Relation (7), the local error model now becomes:

eM(a) =
n∑

i=1

h2
i

∣
∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣ . (10)

In the remainder of paper, we consider that the optimal direction are those
of Hu. However, we still have to compute the optimal sizes.
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4 Calculus of Variation

From the previous section, we know that the interpolation error in the neigh-
borhood of the vertex a could be modelled by Relation (10). Now, we are
looking for a function M that minimizes, for a given number N of vertices,
the Lp norm of this error. To this end, we have to solve the following problem:

min
M
E(M) = min

M

∫

Ω

(eM(x))p dx = min
hi

∫

Ω

(
n∑

i=1

h2
i (x)

∣
∣
∣
∣
∂2u

∂αi
2
(x)

∣
∣
∣
∣

)p

dx,

(11)
under the constraint:

C(M) =
∫

Ω

n∏

i=1

h−1
i (x) dx =

∫

Ω

d(x) dx = N. (12)

In the following, a formal resolution scheme is proposed. Then we check that
the resulting solution is indeed a metric and is also the sole minimum.

4.1 Anisotropic Quotients in Dimension n

We notice that if the local sizes hi are used as unknowns then Constraint (12)
is non linear, however the constraint is linear with respect to the density
d =

∏n
i=1 h−1

i . Nevertheless, if d is introduced as an unknown, then one of the
hi will be removed, thus removing a certain symmetry. Moreover, anisotropic
ratios ri, which relate all the sizes i.e., ri = f(h1, h2, .., hn), may be naturally
extracted from the metric. Instead of keeping hi as variables, we shall use
what we call anisotropic quotients. Let us propose a definition of anisotropic
quotients in dimension n.

The idea is to define a notion of an anisotropic quotient very similar to
the notion of an anisotropic ratio in two dimensions and that can be easily
extended to any dimension. Indeed, none clear definition of the anisotropic
ratio is known by the authors in three dimensions. Then, this definition will
be used to perform a substitution of variables to obtain as unknown the first
n− 1 anisotropic quotients ri and the density d.

We define the ith anisotropic quotient in dimension n as:

ri =
(

hn
i∏n

k=1 hk

)1/n

.

The advantage of this definition is to provide a simple geometric interpretation
in terms of the ratio of hyper-volumes. In two dimensions, this quotient is
simply the square root of the anisotropic ratio.

From the previous definition, the following variable substitution is consid-
ered to solve Problem (11)-(12):
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(hi)i=1..n → ((ri)i=1..n−1, d).

Conversely, the local sizes are calculated by:

hi = d−
1
n ri for i = 1, .., n− 1 and hn = d−

1
n

(
n−1∏

i=1

ri

)

. (13)

The intermediate pivot variable P is defined as P =
(∏n−1

i=1 ri

)−1

. Finally,
after the substitution (13) we face the following problem to solve:

min
((ri)i, d)

∫

x∈Ω

d−
2p
n (x)

(
n−1∑

i=1

r2
i (x)

∣
∣
∣
∣
∂2u

∂αi
2
(x)

∣
∣
∣
∣+ P−2(x)

∣
∣
∣
∣

∂2u

∂αn
2
(x)

∣
∣
∣
∣

)p

dx,

(14)
under the linear constraint:

∫

x∈Ω

d(x) dx = N. (15)

4.2 Formal Resolution

In this section, we assume that the considered functions are smooth enough.
The Euler-Lagrange optimality necessary condition reads: for a critical point
M, the variation of the cost function E is proportional to the variation of the
constraint C. Let δE(M; δM) be the variation of the functional E in M in the
direction δM defined as:

δE(M; δM) = lim
ε→0

E(M+ ε δM)− E(M)
ε

.

As the number of vertices is constant, the variation of the constraint is zero:

δC(M; δM) = lim
ε→0

1
ε

(∫
(d + εd)−

∫
d

)
=
∫

δd = 0.

Then, we deduce by means of the Euler-Lagrange optimality necessary
condition that it exists a Lagrange multiplier λ such that:

∀δM, δE(M; δM) = λδC(M; δM) = 0 ,

or equivalently:

∀δri for i = 1, ..., n− 1 and ∀δd such that
∫

δd = 0 then

n−1∑

i=1

δE(M; δri) + δE(M; δd) = 0 , (16)
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where δri and δd are functions representing the different components of the
variation δM, i.e., δM = (δr1, δr2, .., δrn−1, δd).

Problem (14)-(15) is solved in two distinct steps that are based on Equa-
tion (16):

• step 1: evaluation of the anisotropic quotients ri for i = 1, ..., n− 1
• step 2: evaluation of the density d, which is a normalization, to obtain the

number of desired vertices N .

Step 1. If Equality (16) is developed by choosing δd = 0, it comes:

∫

Ω

2pd−
2p
n (∗)p−1

(
n−1∑

i=1

(
ri

∣
∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣− P−2r−1

i

∣
∣
∣
∣

∂2u

∂αn
2

∣
∣
∣
∣

)
δri

)

= 0, (17)

where the term (∗) is equal to:

n−1∑

i=1

r2
i

∣
∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣+ P−2

∣
∣
∣
∣

∂2u

∂αn
2

∣
∣
∣
∣ .

If the integrand of Equation (17) is zero then the equation is trivially
satisfied and its solution is retained. It implies the n− 1 following relations:

ri

∣
∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣− P−2r−1

i

∣
∣
∣
∣

∂2u

∂αn
2

∣
∣
∣
∣ = 0 for i = 1, ..., n− 1 .

We deduce the n− 1 first anisotropic quotients:

ri =

∣
∣
∣
∣
∣

∂2u
∂αn

2

∂2u
∂αi

2

∣
∣
∣
∣
∣

1
2

P−1 for i = 1, ..., n− 1 . (18)

Using the n− 1 anisotropic quotients given by (18) and the fact that P is
defined by the product of the inverse of the ri for i = 1, ..., n− 1, we have:

P = P−(n−1)

∣
∣
∣
∣

∂2u

∂αn
2

∣
∣
∣
∣

n−1
2 n−1∏

i=1

∣
∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣

− 1
2

,

then,

P =
∣
∣
∣
∣

∂2u

∂αn
2

∣
∣
∣
∣

1
2 n∏

i=1

∣
∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣

− 1
2n

. (19)

From the previous relation, ri for i = 1, ..., n− 1 are exhibited independently
of P :

ri =
∣
∣
∣
∣

∂2u

∂αn
2

∣
∣
∣
∣

1
2
∣
∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣

− 1
2
∣
∣
∣
∣

∂2u

∂αn
2

∣
∣
∣
∣

− 1
2 n∏

i=1

∣
∣
∣
∣

∂2u

∂αn
2

∣
∣
∣
∣

1
2n

,

and finally,
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ri =
∣
∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣

− 1
2 n∏

i=1

∣
∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣

1
2n

.

The anisotropic quotients may be also expressed in function of matrix |Hu|:

ri =
∣
∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣

− 1
2

(det |Hu|)
1
2n for i = 1, ..., n− 1 .

Step 2. The evaluation of the density d is also deduced from Equality (17) by
legally choosing δri = 0 for i = 1, ..., n− 1, it results:

∫

Ω

d−
2p+n

n

(
n−1∑

i=1

r2
i

∣
∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣+ P−2

∣
∣
∣
∣

∂2u

∂αn
2

∣
∣
∣
∣

)p

δd = 0. (20)

A solution of the previous equality with δd verifying the constraint
∫

δd = 0 is
obtained when the integrand that is multiplied by δd is constant. Therefore,
we have:

d−
2p+n

n

(
n−1∑

i=1

r2
i

∣
∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣+ P−2

∣
∣
∣
∣

∂2u

∂αn
2

∣
∣
∣
∣

)p

= Cst,

which, from Relations (18) and (19) equivalent to:

npd−
2p+n

n

∣
∣
∣
∣
∣

n∏

i=1

∂2u

∂αi
2

∣
∣
∣
∣
∣

p
n

= Cst.

Finally, as the mesh must contain N vertices which are given by the integral
of the density on Ω, the density reads:

d = N




∫

Ω

∣
∣
∣
∣
∣

n∏

i=1

∂2u

∂αi
2

∣
∣
∣
∣
∣

p
2p+n





−1 ∣
∣
∣
∣
∣

n∏

i=1

∂2u

∂αi
2

∣
∣
∣
∣
∣

p
2p+n

.

The density may also be written in function of the determinant of matrix
|Hu|:

d = N

(∫

Ω

(det |Hu|)
p

2p+n

)−1

(det |Hu|)
p

2p+n .

Final solution. The solution of Problem (14)-(15) has been exhibited above.
Then, the converse variables substitution given by Relation (13) is applied to
solve Problem (11)-(12). For i = 1, ..., n, we have:

hi =
1

N1/n

(∫

Ω

(det |Hu|)
p

2p+n

)1/n

(det |Hu|)
1

2(2p+n)

∣
∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣

−1/2

,

or equivalently,

λi =
1
h2

i

= N2/n

(∫

Ω

(det |Hu|)
p

2p+n

)−2/n

(det |Hu|)
−1

2p+n

∣
∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣ .
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4.3 Uniqueness and Order of Convergence

In this section, we will demonstrate by a direct proof that the obtained metric
really minimize the error model. LetM be a metric define by n−1 anisotropic
quotients ri for i = 1, ..., n − 1 and a density d which is written under the
general form d = N(

∫
Ω

f)−1f . We recall that ri for i = 1, ..., n− 1 and f are
strictly positive functions. From Relation (14), the error committed with this
metric is given by:

E(M) = N− 2p
n

(∫

Ω

f

)− 2p
n
∫

Ω

f− 2p
n

(
n−1∑

i=1

r2
i

∣
∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣+

∣
∣
∣
∣

∂2u

∂αn
2

∣
∣
∣
∣

n−1∏

i=1

r−2
i

)p

.

The error committed with the optimal metric Mopt is obtained with Rela-
tion (11):

E(Mopt) = npN− 2p
n




∫

Ω

∣
∣
∣
∣
∣

n∏

i=1

∂2u

∂αi
2

∣
∣
∣
∣
∣

p
2p+n





2p+n
n

. (21)

In order to prove that E(Mopt) ≤ E(M), we use the generalized arithmetic-
geometric inequality which comes from the concavity of ln:

ln

(
1
n

n∑

i=1

r2
i

∣
∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣

)

≥ 1
n

n∑

i=1

ln
(

r2
i

∣
∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣

)
= ln

(
n∏

i=1

∣
∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣

1
n

)

,

as we have
∏n

i=1 ri = 1. By substituting the value of rn provided by Rela-
tion (13), it comes:

n−1∑

i=1

ri2
∣
∣
∣
∣
∂2u

∂αi
2

∣
∣
∣
∣+

∣
∣
∣
∣

∂2u

∂αn
2

∣
∣
∣
∣

n−1∏

i=1

r−2
i ≥ n

∣
∣
∣
∣
∣

n∏

i=1

∂2u

∂αi
2

∣
∣
∣
∣
∣

1
n

.

Finally, if we denote

g =

∣
∣
∣
∣
∣

n∏

i=1

∂2u

∂αi
2

∣
∣
∣
∣
∣

p
2p+n

,

we get





E(Mopt)
n

2p+n = n
pn

2p+n N− 2p
2p+n

∫

Ω

g ,

E(M)
n

2p+n ≥ n
pn

2p+n N− 2p
2p+n

(∫

Ω

f

) 2p
2p+n

(∫

Ω

f− 2p
n g

2p++n
n

) n
2p+n

.

By utilizing the Holder inequality, we obtain
(∫

Ω

f
2p

2p+n

(
g

f
2p

2p+n

))

≤
(∫

Ω

f

) 2p
2p+n

(∫

Ω

f− 2p
n g

2p+n
n

) n
2p+n

, (22)
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as we have 




1 + n
2p ≥ 1,

1 + 2p
n ≥ 1,

1
1+ n

2p
+ 1

1+ 2p
n

= 1 .

Therefore, Relation (22) implies that E(Mopt) ≤ E(M), for all metric M.
As optimization Problem (14)-(15) is strictly convex, the solution is unique.

Order of Convergence

Let first introduce the definition of order of convergence in dimension n.

Definition. A sequence of n-d metrics (MN )N such that C(MN ) = N ver-
tices (cf. Relation (12)) gives a kth order of convergence for a given norm
‖eMN

(x)‖Lp if we have:

‖eMN
(x)‖Lp ≤ Cst N−k/n . (23)

The pth square root of Relation (21) is considered to estimate the order of
convergence:

E1/p(Mopt) = nN− 2
n

(∫

Ω

|det(Hu)|
p

2p+n

) 2p+n
pn

≤ Cst

N2/n
.

Therefore, according to Relation (23), the previous inequality expresses a
second-order of convergence of the metric sequence obtained by the present
adaptation strategy for regular solutions whatever the chosen dimension and
the chosen Lp norm.

5 Practical Continuous Metric in Three Dimensions

The metrics corresponding to the usual cases of the L1, L2 and L∞ norms
in three dimensions are presented. The L∞ is found by passing to the limit.
Notice that the obtained expression is exactly the same as the one based on
geometric error estimate that has been commonly used in the literature [13].

The results are sum up with the following equation:

MLp = DLp R−1
u




‖λ1‖

‖λ2‖
‖λ3‖



Ru,

where DLp and λi for i = 1, 2, 3 are given in the following table:
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Notice that the metric could also be written:

MLp = DLp (det |Hu|)
−1

2p+3 R−1
u |Λ|Ru. (24)

Relation (24) gives a quantitative physical interpretation of the impact of the
norm on the metric construction. Indeed, the metric prescribes a fine size for
a large eigenvalue of the Hessian. For the continuous metric, the eigenvalues
are multiplied by the term (det |Hu|)

−1
2p+3 which is small for large eigenvalues.

Consequently, reducing p of the Lp norm implies to less refine large Hessian
regions, for instance if a discontinuity occurs in the solution, it becomes less
“attractive” for lower p. This will be illustrated in the next section on numer-
ical examples.

6 Analytical Examples

In this section, we propose to analyze the impact of the continuous met-
ric throughout a mesh adaptation process on two-dimensional and three-
dimensional analytical examples. The mesh adaptation process is a single
loop algorithm. We first apply the analytical function on the mesh, then the
Hessian of the solution is computed by means of a double L2 projection al-
gorithm. Finally, the continuous metric is constructed and a unit mesh with
respect to this metric is generated. The process is repeated until convergence
of the mesh. Notice that here the gradation of the mesh (the size variation
between two neighboring elements) is not controlled.

As regards the mesh adaptation algorithm, the two-dimensional and three-
dimensional methods are based on local mesh modifications. Each approach
consists in modifying iteratively the initial mesh so as to complete a unit mesh
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with respect to the metric M. The ingredients to comply with these require-
ments typically include mesh enrichment, mesh coarsening and local mesh
optimization procedures. The local mesh modification operators involved are:
edge flipping, edge collapsing, edge splitting, node repositioning and degree
relaxation.

The surface mesh modification algorithm, also used for the two-dimensional
case, is pretty straightforward, edge lengths are computed with respect to the
metric M and edges too small are collapsed while edges too long are splitted
into unit length segments. Edge flips and node repositioning operations are
performed to improve the overall size and shape mesh quality [11].

Similarly, in the volume mesh modification algorithm edge lengths are
computed with respect to the metric M and edges too small are collapsed
while edges too long are splitted using a vertex insertion procedure based
on an anisotropic generalization of the Delaunay kernel [8]. Generalized edge
swaps and node repositioning operations are performed to improve the overall
size and shape mesh quality [15].

For each function, we compare meshes obtained for minimizing L1, L2

and L∞ norms of the model error and we analyze the order of convergence
obtained with each norm.

A Smooth Two-Dimensional Function

The first function f1 is a smooth function involving small and large variation
amplitudes, Figure 2 (top right). The function is defined as follow:

f1(x, y) =






0.1 sin(50x y) if x y ≤ −π

50

sin(50x y) if
−π

50
< x y ≤ 2π

50

0.1 sin(50x y) if
2π

50
< x y

(25)

As we notice in Section 5, the metric defined with L1 norm better captures
the small amplitudes than metrics constructed with norms with larger p. This
is exemplified in Figure 2 where meshes are obtained for L1, L2 and L∞ norms
with a number of vertices targeted to 3, 300 are represented. Indeed, the small
amplitude waves regions (in each corner) are more captured when using a Lp

norm with a lower p whereas the large amplitude region is clearly more refined
with the L∞ norm.

In each case, the adapted mesh fits well the metric. The mesh adaptation
algorithm statistics indicate that almost 91 % of the edges have a unit length,
i.e., a length between 1/

√
2 and

√
2. We can compute the efficiency index of

the resulting adapted meshes, i.e., a scalar value representing the adequacy
between the metric specification and the actual element size, with the following
formula:
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Fig. 1. Convergence order for functions f1 (left) and f2 (right) regarding the used
Lp norm

τH = exp

(
1
ne

ne∑

i=1

(Ql(ei)− 1)

)

,

where ne is the number of edges of the mesh and Ql(ei) is the length quality
of the edge ei in the metric given by:

Ql(ei) =
{

lM(ei) if lM(ei) ≤ 1
(lM(ei))−1 else

with lM(ei) the edge length in the metric M. Here, an efficiency index close
to 0.86 is obtained in each case.

Figure 3 shows the final mesh obtained for minimizing L1 norm of the
error with a number of vertices targeted to 15, 000. The anisotropic mesh
refinement along each wave is clearly emphasized in this figure.

For this function, a convergence of order 2 is reached for all norms as
predicted by theory. This convergence is illustrated in Figure 1 (left).

A Steep-Gradient Two-Dimensional Function

The second analytic function f2 is a function with small amplitude waves
going through a sinusoidal steep-gradient step (similar to a Dirac layer) in
the middle of the domain, Figure 4 (top right). The function is defined as
follow:

f2(x, y) = 0.1 sin(50x) + arctan
(

0.1
sin(5 y)− 2x

)
(26)

This function is proposed to point out the attractive effect of a steep-
gradient region on the mesh adaptation process. As illustrated in Figure 4,
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Fig. 2. Final adapted meshes minimizing L1 (top left), L2 (bottom left) and
L∞ (bottom right) norms with a target number of vertices equal to 3, 300 for the
analytical function f1. Top right, f1 iso-values are represented

the mesh obtained (N = 15, 000) with L∞ norm only refines the steep-gradient
region, whereas meshes with L1 and L2 norms were able to capture the small
amplitude waves. Notice that even with 300, 000 vertices L∞ norm continues
to impose only vertex insertion in the steep-gradient region. This example
puts in evidence that metrics defined by a Lp norm with a low p value are
more appropriate to capture weak phenomena in simulations involving large
amplitude phenomena such as shocks in CFD.

For this harder case, it is more difficult for the adaptive mesh generator
to respect the metric field, even more without any mesh gradation, as most
of the vertices are inserted in the steep-gradient region. The adapted mesh
for the L1 norm fits well the metric, about 93 % of the edges having a length
between 1/

√
2 and

√
2 and the efficiency index being 0.866. Nevertheless, only

51 % of the edges have a length between 1/
√

2 and
√

2 for the L∞ case which
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Fig. 3. Final adapted mesh minimizing L1 norm with a target number of vertices
equal to 15, 000 for the analytical function f1

leads to an efficiency index equal to 0.73 (notice that 80 % of the edges have
a length between 1/2 and 2, mainly because of the lack of gradation control).

An order of convergence equal to 2 is only reached for L1 norm, whereas
orders of 1 and 0 are obtained for L2 and L∞ norms, respectively. Here, we
don’t want to drive any conclusion, as a complete analysis of the discontinuous
cases must be assessed as in [6] where authors explained that theoretical orders
of convergence are in some cases only asymptotically reached.

A Smooth Three-Dimensional Function

Function f3d is a smooth function involving small and large variation am-
plitudes. f3d is a three-dimensional extension of function f1 in a spherical
domain. The function is defined as follows:

f3d(x, y, z) =






0.1 sin(50x) if x ≤ −π

50

sin(50x) if
−π

50
< x ≤ 2π

50

0.1 sin(50x) if
2π

50
< x

(27)

where x = (x− 0.4) (y − 0.4) (z − 0.4).
As mentioned previously in two dimensions, the metric defined with L1

norm better captures the small amplitudes than metrics constructed with
norms with larger p. This is shown in Figures. 5 and 6 where anisotropic
adapted surface and volume meshes are depicted for L1, L2 and L∞ norms
with a number of vertices targeted to 275, 000. The small variations of the
function are clearly better captured with the L1 norm than the L∞ norm.
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Fig. 4. Final adapted meshes minimizing L1 (top left), L2 (bottom left) and L∞

(bottom right) norms with a target number of vertices equal to 15, 000 for the
analytical function f2. Top right, the surface described by f2 is represented

In each case, the adapted tetrahedral mesh respects well the metric. Be-
tween 80 % and 85% of the edges have a unit length and an efficiency index
between 0.825 and 0.84 is obtained.

Order of convergence for this analytical function is presented in Figure 5
(top right). A convergence of order equal to 2 is reached for L1 and L2 norms
as expected by theory. As for as L∞ norm is concerned, second order con-
vergence is not obtained regarding the global L∞ norm over all the domain.
Nevertheless, if the local L∞ norm is integrated over the domain then an
almost second order of convergence is observed. Indeed, this norm aims at
equally distributing the interpolation error over the domain.
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Fig. 5. Final anisotropic adapted surface meshes minimizing L1 (top left), L2

(bottom left) and L∞ (bottom right) norms with a target number of vertices equal
to 275, 000 for the analytical function f3d. Top right, convergence order for function
f3d regarding the used Lp norm

7 Conclusion

In this paper, a continuous approach has been proposed to derive metrics in
order to minimize the interpolation error in Lp norm. This approach is based
on classes of equivalence between meshes represented by continuous metrics.
We have demonstrated that there exists a unique optimal metric. A theoretical
analysis gives the conditions for second-order convergence.

These theoretical results have been exemplified on analytical functions
in two and three dimensions where second order of convergence have been
observed.

In future work, we intend to apply this continuous setting to discontinuous
solutions and to realistic three-dimensional numerical simulations.
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Fig. 6. Final anisotropic adapted volume meshes in a cut plane minimizing L1

(top), L2 (middle) and L∞ (bottom) norms with a target number of vertices equal
to 275, 000 for the analytical function f3d
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21. Löhner, R., and Baum, J. Adaptive h-refinement on 3D unstructured grids
for transient problems. Int. J. Numer. Meth. Fluids 14 (1992), 1407–1419.

22. Mavriplis, D. Adaptive meshing techniques for viscous flow calculations on
mixed-element unstructured meshes. AIAA paper 97-0857 (1997).

23. Pain, C., Humpleby, A., de Oliveira, C., and Goddard, A. Tetrahedral
mesh optimisation and adaptivity for steady-state and transient finite element
calculations. Comput. Methods Appl. Mech. Engrg. 190 (2001), 3771–3796.

24. Peraire, J., Peiro, J., and Morgan, K. Adaptive remeshing for three-
dimensional compressible flow computations. J. Comput. Phys. 103 (1992),
269–285.

25. Rausch, R., Batina, J., and Yang, H. Spatial adaptation procedures on
tetrahedral meshes for unsteady aerodynamic flow calculations. AIAA Journal
30 (1992), 1243–1251.

26. Schall, E., Leservoisier, D., Dervieux, A., and Koobus, B. Mesh adap-
tation as a tool for certified computational aerodynamics. Int. J. Numer. Meth.
Fluids 45 (2004), 179–196.

27. Speares, W., and Berzins, M. A 3d unstructured mesh adaptation algorithm
for time-dependent shock-dominated problems. Int. J. Numer. Meth. Fluids 25
(1997), 81–104.

28. Tam, A., Ait-Ali-Yahia, D., Robichaud, M., Moore, M., Kozel, V., and
Habashi, W. Anisotropic mesh adaptation for 3d flows on structured and
unstructured grids. Comput. Methods Appl. Mech. Engrg. 189 (2000), 1205–
1230.



How Efficient are Delaunay Refined Meshes?
An Empirical Study

Bruce Simpson

School of Computer Science; University of Waterloo, Waterloo, Ontario, Canada,
N2L 3G1
rbsimpson@uwaterloo.ca

Summary. Given a data function, f(x, y), defined for (x, y) in a domain,D and
an error measure for approximating f on D, we can call a piecewise linear func-
tion, fpl(x, y), acceptable if its error measure is less than or equal to a given error
tolerance. Adaptive Delaunay Refinement (ADR) is one approach to generating a
mesh for D that can be used to create an acceptable fpl(x, y). A measure of the
efficiency of methods for generating a mesh, M , for piecewise approximation is the
size of M. In this paper, we present empirical evidence that ADR generated meshes
can be twice a large as necessary for producing acceptable interpolants for harmonic
functions. The error measure used in this study is the maximum of the triangle
average L2 errors in M. This observation is based on demonstrating a comparison
mesh generating using maximal efficiency mesh theory as reviewed in the paper.
There are two different approaches to point placement commonly used in ADR,
edge based refinement and circumcenter based refinement. Our study indicates that
there is no significant difference in the efficiency of the meshes generated by these
two approaches.

1 Introduction

The meshing context of this paper is piecewise linear function approximation
on a planar domain D. I.e. Given a function f(x, y) defined for (x, y) ∈ D, cre-
ate an unstructured triangular mesh, M , for D and the coefficients of a piece-
wise linear approximation, f (pl)(x, y) ≈ f(x, y). Unstructured meshes pose
an efficiency-computational cost trade-off. Local computations with unstruc-
tured meshes tend to be more complex than with structured grids. However, a
given accuracy in f (pl)(x, y) can usually be achieved by an unstructured mesh
with significantly fewer vertices that needed by structured grids. So, for global
computations, unstructured meshes can be more efficient by virtue of being
smaller. Iterative adaptive h-refinement is a long standing mesh generation
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techniques that aims to provide this efficiency (since 1970s.) The combina-
tion of this technique with Delaunay meshing has been used almost as long
( since 1980s). We will use the abbreviation ADR for adaptive Delaunay h-
refinement in the sequel. Clearly, there is a limit, for a given f and target
error, on how small the meshes that meet this target error can be. A mesh
that meets the error target with a minimal number of vertices is a maximal
efficiency mesh, Simpson [26]. In this paper, we address questions of how ef-
ficient are the meshes generated by adaptive Delaunay refinement, relative to
maximal efficiency meshes.

In §2, we review the development of adaptive Delaunay refinement methods
and explain the details of the versions that are used in our computations. In
particular, we distinguish two choices for the insertion vertex used for refining
a triangle, T , the midpoint of a longest edge of T , which we will denoted
LEBis(T ), and the circumcenter of T , which we will denote by CC(T ). In §3,
we present in detail a demonstration of ADR for piecewise linear interpolation
of a specific harmonic function. This demonstration leads to a discussion of a
class of simple meshes consisting of isosceles right angled triangles. This class
is closed under adaptive h-refinement or ADR for either LEBis(T ) or CC(T )
type insertion and any of these methods produce the same result whan applied
to an initial mesh in the class.

The demonstration of §3 includes evidence that ADR generated meshes can
be roughly twice as large as maximum efficiency meshes, for isotropic data.
This evidence is based on a comparison to the size of a highly efficient mesh
created by a computation specific to the data function. The computation of
the comparison mesh is detailed in §4 and an overview of the theory supporting
this computation is given in §5. In §6, a second example is presented in less
detail that confirms the features of the example discussed in §3. The results of
this study are highly consistent with a similar study by E. F. D’Azevedo, [10],
which demonstrates that adaptive meshes created by the program PLTMG [3],
discussed below, are about twice as large as specially constructed comparison
meshes.

2 Iterative Refinement Methods

Iterative refinement refers to a hierarchy of mesh generation methods, as
shown in Figure 1. We will use this hierarchy to discuss related previous
work and the methods used in the computations of this paper. Basic iterative
h-refinement (BR) requires a size measure for triangles, size(T ), an input a
mesh M0 for D, and a maximum size tolerance, sizeTol, which may be vari-
able across D. The method then attempts to create a mesh, M for D such
that size(T ) ≤ sizeTol for every T ∈ M . Delaunay refinement methods,
(DR), are basic h-refinement methods in which M0 and M are constrained
Delaunay triangulations. Adaptive refinement methods, (AR) are basic h-
refinement methods related to specific applications, such as piecewise linear
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Fig. 1. A hierarchy of iterative refinement methods

approximation. These methods are aware of a data function through an er-
ror measure for triangles. They require an error tolerance, errTol and the
method attempts to create a mesh such that the error in every triangle does
not exceed errTol. Adaptive Delaunay refinement (ADR) methods have char-
acteristics both of adaptive h-refinement and Delaunay refinement methods.
This requires a reconciliation of the the refinement criterion on size(T ) in the
case of Delaunay refinement with the triangle error measure in the case of
adaptive h-refinement.

2.1 Basic and Adaptive Refinement Methods

To describe the basic attributes of iterative refinement methods, we use the
following pseudo code algorithmic description of basic refinement.

1: basic iterative refinement(M)
2: initialize S by the triangles of M
3: while S is not empty do
4: select T using S
5: if Refine(T) then
6: Vinsert = SelectNewVertex(T,M)
7: (Sadd, Srem) = Insert(Vinsert ,M)
8: S ⇐ S + Sadd − Srem

9: else
10: S ⇐ S − T
11: end if
12: end while

(1)

The algorithm computes a sequence of meshes, Mn, n = 0, 1, 2, ... on the do-
main D. Mn+1 is obtained from Mn by selecting a triangle T in Mn such that
a method predicate, Refine(T), has value True and inserting a related vertex
into Mn, The input parameter is mesh M , which is identified with M0 of the
above mentioned sequence. This description uses several abstract procedures
that are incompletely described by their names. Basic refinement methods can
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be illustrated by simple model examples of these procedures, which have been
associated with early refinement methods. We will describe the methods that
we review, and those used in the computations of this paper, by specifying
these processes in the child methods of the method hierarchy of Figure 1.
The description uses a dynamic set, S, of triangles of M which, at any time
contains the triangles of M that may trigger refinement. Perhaps a simpler
explanation is that at all times T ∈ M − S implies Refine(T) == False.
Insert(V,M) takes Mn as input argument for parameter M , and returns
Mn+1 as output argument. The procedure returns two sets of triangles; Sadd

are the triangles in Mn+1 but not in Mn, and Srem are in Mn but not Mn+1.
A simple instance of this basic refinement algorithm uses simple longest

edge bisection of T . For this, SelectNewVertex of step 6: of (1) returns the
midpoint of a longest edge of T for Vinsert and Insert of step 7: splits T into
two new triangles TA and TB using a new edge from Vinsert to the vertex
opposite the split edge of T . If the edge being split is internal to the mesh,
then the same split is performed on the neighbouring triangle, Tneigh, produc-
ing two more triangles TC and TD in the refined mesh. The implication for
step 7: of this method is that Insert returns Sadd = {TA, TB , TC , TD} and
Srem = {T, Tneigh}. In a 1984 paper, [18], Rivara presented a class of basic
h-refinement methods using simple longest edge bisection.

It is common to implement the selection of step 4: of (1) so that larger
triangles are selected before smaller ones. The need for quick access to the
largest triangle in S complicates the data structure for this dynamic set,
Shewchuck, [25]. The longest edge propagation path of Rivara, [19, 20], is
a heuristic for finding a local maximum edge length in the mesh. For any
triangle T0 in M , the longest edge propagation path of T0, Lepp(T0), is the
sequence {Tj}N

j=0, where Tj is the neighbor triangle on a longest edge of Tj−1,
and longest edge (Tj) > longest edge (Tj−1), for j = 1, . . . , N . This condition
determines N ≥ 0. Consequently either Lepp(T0) terminates with TN that
has a longest edge that is a constrained edge of M , (e.g. a mesh boundary
edge), or it terminates with a pair of neighbouring triangles, (TN , T̄ ) such
that their common edge is a longest edge of both. For the computations of
this paper, these ideas affect step 4: of (1); i.e. a triangle T0 is initially selected
from S and then T is set to TN of Lepp(T0). It is common then that T is not
itself in S. This is a technicality of the combined use of Lepp and longest
edge bisection discussed in §2.1 immediately following ; see Rivara, [19], for a
discussion of it.

6: Vinsert = SelectNewVertex(T, M)

The general pattern of this procedure is that it computes a candidate vertex
Vcand for Vinsert that will improve the configuration of triangles in the mesh
near Vinsert relative to the refinement criteria. If Vcand is so close to a boundary
edge, e, that its insertion would result in an obtuse triangle adjacent to e, then
Vcand is said to encroach on e. Inserting Vcand in this case would violate the
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assumptions we have placed on the meshes of the refinement sequence. So if
Vcand does not encroach on any boundary edge, then it can be returned as
Vinsert by SelectNewVertex(T,M), otherwise the midpoint of an encroached
edge is returned. Two standard choices for Vcand are the circumcenter of T ,
CC(T ) , or the midpoint of a longest edge of T , which is referred to as longest
edge bisection, LEBis(T ) . We will compare the efficiency of meshes generated
by these two possible choices in §3.

Adaptive Refinement

The basic refinement methods that have just been discussed contain the geo-
metric features of adaptive h-refinement methods for triangular meshes which
starting appearing in the literature in the late 1970s1. The context of these
refinement methods was piecewise linear function approximation, f (pl)(x, y),
typically by the finite element method, for a data function, f(x, y), typically
defined implicitly by a partial differential equation. The implication for our
refinement method hierarchy is that the Refine(T) predicate uses an error
estimate of some measure of the error, err(x, y) = f(x, y) − f (pl)(x, y). The
literature on error estimation is large and continues to grow; we do not review
it here. Bank and Weiser published an early paper on error estimation for
this purpose, [5]. This research was done at an early stage of the sustained
development by Bank and collaborators, of the pde solving software PLTMG
which incorporates adaptive h-refinement, [3].

2.2 Delaunay and Adaptive Delaunay Refinement Methods

As mentioned above, for Delaunay refinement methods, all the Mn are con-
strained Delaunay meshes; but in addition, we require that no boundary edge
is the longest edge of an obtuse triangle. For Delaunay refinement, step 7: of
(1) is the familiar Delaunay vertex insertion into the mesh, Mn. Algorithmi-
cally, the update can be accomplished by a simple insertion of Vinsert followed
by a series of edge swaps, or equivalently, as the Delaunay kernel operation
of George and Borouchaki, [13], page 55, which is expressed in this reference
by Mn+1 = Mn − Cav(Vinsert)2 + Ball(Vinsert)3 To relate this operation to
the basic refinement algorithm, we identify Srem of step 7: of (/refalgorithm)
with Cav(Vinsert) and Sadd with Ball(Vinsert).

What has been the motivation for developing ADR methods from basic
h-refinement methods? The initial uses of iterative Delaunay refinement seem
to have been motivated by the use of the circumcentre of T for (Vinsert). Frey,

1Perhaps the earliest reference to adaptive refinement based on LEBis is Sewell,
1979, [23]. See also Bank and Sherman, 1979, [4]; the edge based refinement of this
reference is not exactly LEBis

2the cavity of V in Mn,Cav(V ), is the set of triangles with V in their circumcircle
3the ball of V in Mn+1, Ball(V ), is the set of triangles in Mn+1 incident on V



220 B. Simpson

1987, [12], promoted it on the basis that CC(T ) was a new vertex that was
equidistant from the vertices of T , and a longer distance from any other nodes
of M , and other authors have concurred, e.g. Peraire et al, 1987, [16].

Another motivation came from proofs that the Delaunay incidences min-
imized the interpolation error for f(x, y) = x2 + y2 in a number of error
measures, over a given set of vertices, e.g. D’Azevedo and Simpson, 1989, [11]
and Rippa, 1992 [17], The implication was that for isotropic errors, a maxi-
mal efficiency mesh would be a Delaunay mesh. Of itself, this is not a very
convincing motivation because most data, and errors, are anisotropic. The
extension of these ideas to anisotropic errors was also recognized in the ap-
plications literature e.g. Mavriplis, 1991 [14], and the mesh theory literature.
Anisotropic errors are minimized by meshes that are Delaunay in appropriate
stretched coordinate systems (see §5).

There are also motivations from the benefits of using Delaunay meshes for
the discretization of PDEs by either the FEM or FVM that we do not discuss
here, e.g. Shewchuck, 2002 [24], and Sukumar, 2003, [29].

A characteristic of Delaunay meshes is that they contain the most equi-
angular, and hence most equi-lateral, triangles of any vertex connectivity of a
triangular mesh. This is a shape benefit that is not tied to the choice of CC(T )
for insertion as was noted by Baker, 1994, [2]. Rivara and Palma, 1997, [21]
and [19] reported combining Lepp and the choice of LEBis(T ) for Vinsert with
Delaunay insertion. Borouchaki and George presented in the same year, [7],
an edge based Delaunay refinement scheme that uses many features similar
to those that we have discussed above.

Delaunay refinement research was simultaneously being carried forward by
the momentum of research in computational geometry. This research extended
the Refine predicate to include a requirement that the minimum angle in the
triangles exceed a specified angle tolerance, angTol. I.e.

Refine(T) ≡ True ⇐⇒ size(T ) ≥ sizeTol or min angle(T ) ≤ angTol
(2)

Chew, 1993, [8], Ruppert, 1995, [22], and Shewchuck, 1996, [25], devel-
oped Delaunay refinement algorithms based on Vcand = CC(T ), and suit-
able encroachment rules, that were proven to terminate with MN satisfy-
ing min angle(MN ) ≥ angTol for angTol values up to about 30◦. Meth-
ods proven to terminate satisfying this angle constraint are referred to as
quality methods for mesh generation. Based on this research, Shewchuck
produced the widely used quality Delaunay refinement code, Triangle, [25].
Using size(T ) = Rcc(T ), Vcand = CC(T ) , and a largest T first ordering
for the selection in step 4, Baker, [2], gave an alternative proof that De-
launay refinement with the given encroachment rule, terminates satisfying
min angle(MN ) ≥ 30◦.
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3 ADR

In this section, we provide a detailed study of ADR using the data function

compexp(x, y) = (1 + e2πxcos(2πy))/(2e2π) (3)

as the working example. Because this function is the real part of complex
valued function (1 + e2πz)/(2e2π), we will refer to it as the complex exponen-
tial function. f (pl)(x, y) is the piecewise linear interpolant of f and the error
measure to be used is

|e|M = max
T∈M

|err|2,A(T ) (4)

where |err|2,A(T ) is a computable estimate of the average L2 error over tri-
angle T ,

||err||2,A(T ) = (
∫

T

(f − f (pl))2dA/A(T ))
1
2 (5)

A(T ) is the area of T . |err|2,A(T ) is computed by estimating ||err||2,A(T )
using a 7 point order 4 quadrature rule for integration over T which may be
found in Strang and Fix, [28], page 184. The criteria used for Refine(T) are
those of (2) with |err|2,A(T ) in place of size(T ) and similarly for errTol. We
set angTol = 20◦; however, the angle criterion plays very little role in this
study.

We introduce several notations:
M(D, f, errTol) – for a mesh generated by ADR on domain D, for data

function f using error tolerance errTol
NV (M) – for the number of vertices in mesh M .
|err|2,A(T, f) – for |err|2,A(T ) if we wish to be explicit about dependence on f .

3.1 A Demonstration

For this computation, D is US, the unit square and the initial mesh, M0 is
the two triangle mesh on US. LEBis is used in SelectNewVertex. M(US,
compexp, 10−3) is shown in Figure 2(A); the triangles of this mesh are shaded
with a 10 level gray scale based on log10(|err|2,A(T )) to show the distrib-
ution of errors. A summary histogram of this error data is also shown in
Figure 2(B).

It can be seen in Figure 2(A) that only one triangle shape is present in
the refined mesh; all the triangles are isosceles, right angled. We will abbre-
viate ‘isosceles, right angled triangle’ to IRAT. For an IRAT, the midpoint
of the longest edge coincides with the circumcircle center, i.e. LEBis(T ) =
CC(T ) . In Lemma 1 below, we use this to infer that, for this M0, the ADR
methods that use either choice of Vinsert produce the same mesh as an adap-
tive h-refinement method that uses simple longest edge bisection refinement.
The regions of constant triangle shape and size form a series of patches with
curved outlines in the mesh. The edge lengths step down by a constant factor
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(A) M(US, compexp, 10−3) // NV (M) =
3845 vertices

(B) histogram of |err|2,A(T, ce)

Fig. 2. ADR mesh for complex exponential, (3), with errTol = 10−3, : 3845 vertices

of 1/
√

2 on moving from one patch to its neighbour on the right. This pat-
tern can be conveniently summarized by the histogram of the distribution of
the log2(longest edge) shown in Figure 3(A). It shows a discrete spectrum of
sizes at the negative half integers. This pattern persists if we decrease errTol.
Figure 3(B) shows the same histogram for errTol = 1.0−4; the correspond-
ing mesh has 37520 vertices, i.e. about 10 times the number in the mesh of
Figure 3(A).

(A) errTol = 1.0− , for mesh in Figure
2(A)

3845 verticies

(B) errTol = 1.0−4, mesh not shown
37520 vertices

Fig. 3. Histograms of Log2(size(T )) for M(US, compexp, errTol)

The grey scale visualization of the distributed triangle interpolation errors
of Figure 2(A) shows that on each patch of constant triangle shape and size,
the errors are larger for the triangles nearer to the right side of the patch. At
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the boundary of two patches, the neighouring triangle of the larger size are
shaded dark and those of the smaller size are light indicating a discrete step
in error size across this boundary. The error step is of relative size ≈ 1

2 since
the triangle edge size change is 1√

(2)
. The gradual darkening of the error grey

scale across the patches is reflected in the relatively block shaped histogram
of the distribution of log10(|e|T ) shown in Figure 2(B).

We now show that the features of this example have some generality.

3.2 Isosceles, Right Angled Triangle Meshes

We will refer to a mesh in which each triangle is an IRAT as an IRATM.
Evidently, an IRATM is a Delaunay mesh that meets the non-obtuse bound-
ary triangle criteria for the Delaunay refinement procedure DelRefine(M) of
§2. The next lemma shows that for a class of common Delaunay refinement
methods, if M0 is an IRATM, then all Mn of the refinement sequence are
IRATMs.

Lemma 1. Let M be an IRATM, and let T be a triangle selected using by
either Lepp or largest triangle first ordering. Let Vinsert be either LEBis(T )
or CC(T ), and let M ′ be the result of Delaunay insertion of Vinsert into M .
Then M ′ is an IRATM.

Proof If the longest edge of T is a boundary edge, then the lemma is
clearly true. Assume that the longest edge of T is not on the boundary, and
let T be its neighbour on this edge. Then T cannot be smaller than T . But
since T has been selected by either Lepp or largest first ordering, T cannot
be larger than T . So we conclude that T is the same size as T and the two
triangles form a square. SelectNewVertex will choose the centre of the square
for Vcand. Vcand does not encroach on any boundary edge, nor does it lie in the
circumcircle of any mesh triangle other than T and T . Hence Vinsert = Vcand

and DelaunayInsert breaks T ∪T into 4 IRATs in M ′ and all other triangles
in M ′ are unchanged from M .

Corollary 1. Let M0 be an IRATM, then the same mesh is obtained by the
following three refinement methods applied to M0:

i) adaptive h-refinement with simple longest edge bisection
ii), iii) ADR with either CC(T ) or LEBis(T ) for Vinsert

provided that either Lepp or largest triangle first ordering is used in the se-
lection of T for refinement and the empty diametral circle encroachment rule
(,or no encroachment rule,) is used.

This observation muddies the water for establishing a general merit of
combining Delaunay insertion with adaptive h-refinement to get ADR, or
some merits of using one of LEBis(T ) or CC(T ) in preference to the other.
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(A) LEBis(T ) : 3750 vertices (B) CC(T ) : 3802 vertices
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Fig. 4. ADR with strong encroachment test: errTol = 10−3

Any such theoretical statements of merit would have to be contingent on the
choice of initial mesh.

Before you try this with your favourite ADR code, note that, while mathe-
matically correct, the proof of the lemma depends heavily on exact arithmetic.
For IRATs, the circumcircle of T is the diametral circle of its longest edge.
So empty circle testing and encroachment testing are basically the same. The
binary outcome of the exact arithmetic encroachment test is, however, lost in
floating point computation. If inexact arithmetic is used, there are in effect
three outcomes:

1. the vertex is definitely not inside the diametral circle
2. it is definitely inside the circle
3. the test is not definitive.

In such arithmetic, the property that ADR maps an IRATM into a bigger
IRATM will hold if we define encroachment to occur only if the vertex is def-
initely inside the diametral circle. We will refer to this as the weak encroach-
ment test. For the meshes created in §3.1, we used this criterion. If, however,
we change the criterion to be that encroachment takes place unless the vertex
is definitely outside the diametral, circle, then we get the strong encroachment
test. Two things ensue from using the strong test in SelectNewVertex. We
do not get a sequence of IRATM meshes, and there is a difference between us-
ing the LEBis(T ) choice of Vcand and the CC(T ) choice. In Figure 4(A) and
(B), we show the two meshes generated by the strong test and the LEBis(T )
choice of Vcand in (A) and the CC(T ) choice in (B). While the meshes are
evidently not IRATMs, and clearly differ, the sizes are not significantly dif-
ferent, i.e. the variation between the meshes in Figures 2(A), 4(A), and 4(B)
is less than 12%.
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(A) Comparison mesh - 1938 vertices (B) Log10(|err|2,A(()T ) histogram

Fig. 5. Comparison mesh for complex exponential; (3)

3.3 A Comparison Mesh

In §3.1, we noted that the light shading of the error gray scale in the triangles
on the right sides of the uniform mesh patches of Figure 2(A) indicate some
inefficiencies in this mesh. These triangles are smaller than necessary, which
also shows in the block structure of the error histogram in Figure 2(B). We can
get some insight into the extent of this inefficiency by creating a comparison
mesh, Mcomp using techniques discussed in the next section that are based on
some theory of mesh efficiency which is reviewed in §5. For errTol = 10−3,
Mcomp is shown in Figure 5(A) and NV (Mcomp) = 1938. A histogram of
log10(|err|2,A(T )) is shown in Figure 5(B). This histogram shows that the
mesh is strongly equidistributing; i.e. that |err|2,A(T ) ≈ errTol for most of
the triangles in Mcomp. This histogram also shows that Mcomp is not, strictly
speaking, a feasible mesh; i.e. it contains some triangles that do not meet
the error tolerance. Meshes that are fully equidistributing to a specified er-
ror tolerance are theoretically possible. But constructing them is as difficult
as constructing MMaxEff . Here we propose Mcomp as an indication that a
MMaxEff has about 1900 to 2000 vertices. This is evidence for our conclusion
that the ADR generated meshes, M(US, ce, 10−3) that we have shown are
about twice as big as necessary.

3.4 A Modified Domain: The Hollow Square

Perhaps efficiency factor of about 2 that we observed for Mcomp compared to
meshes of Figures 2 or 4 is due to taking D as the unit square and /or M0

as an IRATM. In this section, we look at an alternative D = HolloSq which
is the hollow square created by removing the square from (.2,.2) to (.8,.8)
from the unit square as shown in Figure 6. M0 is the 8 triangle mesh on HS.
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(A) LEBis(T ) : 3141 vertices (B) CC(T ) : 3227 vertices

Fig. 6. MLEBis(HolloSq, compexp, 10−3) and MCC(HolloSq, compexp, 10−3)

Despite the difference in appearance of the the two meshes in Figure 6, they
are essentially the same size i.e. neither LEBis(T ) nor CC(T ) appear to pro-
vide an efficiency advantage over the other. This effect persists for a range of
errTol. Figure 7 shows that the sizes of MLEBis(HolloSq, compexp, errTol)
and MCC(HolloSq, compexp, errTol) are essentially the same for 10−4.2 ≤
errTol ≤ 10−2.4. A least squares fit to this data produces the linear relation-
ship NV (M) ≈ 3.15/errTol.

4 Creating a Comparison Mesh

We discuss the following steps for creating a comparison mesh like that of
Figure 5(A).

1) Introduce an appropriate new coordinate system by a transformation

(u, v) = G(x, y) (6)

which maps D in the (x, y) plane 1-1 onto a domain D in the (u, v) plane.
Let the inverse transformation be (x, y) = g(u, v).

Figure 6 (A) shows MLEBis(HolloSq, compexp, 10−3) with 3141 vertices,, cre-
ated using LEBis(T ) and Figure 6 (B) shows MCC(HolloSq, compexp, 10−3)
with 3227 vertices, created using CC(T ) . MLEBis(HolloSq, ce, 10−3) clearly
shows the pattern of patches of regular submeshes that characterizes
M(US, compexp, 10−3) of Figure 2(A) and Figure 4(A). It seems likely that
this is related to the shape stability of simple longest edge bisection stud-
ied by Adler, [1]. By comparison, MCC(HolloSq, compexp, 10−3) in Figure
6(B) shows no such patterns; it, and Figure 4(B),show relatively continu-
ous transitions of triangle edge lengths with significantly more irregularity.
These characteristics of the two vertex insertion methods were reported by
Baker, [2].
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2) Define data function

F (u, v) = f(g(u, v)) for(u, v) ∈ D (7)

for (u, v) ∈ D to be the function corresponding to f invariant under (6).
Create an appropriate mesh, M comp = M(D,F, errTol)

3) Using (x, y) = g(u, v), map M comp to Mcomp on D.

Key to getting a suitable comparison mesh are the interpretations of ‘ap-
propriate’ as it appears in steps 1) and 2) of (7). These explanations are based
on some theory of maximal efficiency meshes which is, unfortunately, incom-
plete and technically complex, even for two dimensions. We give an overview
of this theory in §5. The choices of appropriate G(x, y) and M comp are quite
problem specific and customized; so these techniques for creating Mcomp are
not practical general mesh generation techniques.

Note that in looking for efficient meshes for pwlinear interpolation, we are
not concerned with whether they are Delaunay meshes or not. While we do
create a Delaunay mesh for M comp in step 2, the inverse mapping of step 3
does not ensure that Mcomp is Delaunay, nor do we care.

(A) NV (M(HS, ce, errTol)) = 3.15/errTol
for either LEBis or CC

(B) MComp, NV (M̄) = 1938 vertices

Fig. 7.

For the complex exponential, D’Azevedo, [9], showed that an appropriate
transformation is4

u = G1(x, y) =
√

20/eπ (eπ xcos(π y)− 1) (8)

v = G2(x, y) =
√

20/eπ eπ xsin(π y)

4Actually (8) is the transformation computed by D’Azevedo rotated through 90◦.

¯
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The image of the unit square in the (x, y) plane under this transformation
is shown in Figure 7(B). It is a semi-ring in the upper half of the (u, v) plane,
centred on (−c, 0), for c =

√
20/eπ = .1933 . . . and having inner radius c, and

outer radius 2
√

5 = 4.472 . . ..
Figure 7(B) also shows the version of M comp used as per step 2 of (7)

to create Mcomp, shown in Figure 5(A), as per step 3. To create M comp, we
use a small amount of ADR applied to an initial Delaunay mesh, M0. M0

is constructed from a regular grid of vertices controlled by a grid spacing
parameter, h. The boundary vertices form a uniformly spaced partition of ∂D
of spacing ≈ h, and the internal vertices lie on a grid (j h, k

√
5h) for integers

j and k corresponding to grid points inside D at a distance greater than h
from the boundary. ADR is then used to reduce the size of the triangles of M0

to meet an error criterion, errTol for F , while retaining much of the desired
shape in the resulting triangles. We pick h large enough that M0 requires at
least every internal triangle to be refined at least once.

This example can provide some simple intuitive insight into the term ‘ap-
propriate’ for G of step 1 and M comp of step 2 in this case. We know that the
mesh spacing in M should be small on the x = 1 boundary of the unit square
(for accuracy) and should be large on the x = 0 boundary (for efficiency). If
such a mesh is to be the transform of an essentially uniform mesh on D, then
the image of the x = 1 boundary must be much longer that the image of the
x = 0 boundary. G accomplishes this by mapping the x = 1 boundary to the
large outer circle, and the x = 0 boundary onto the small inner circle, of the
boundary of D.

As described in §5, the ideal comparison mesh would be a regular mesh
of essentially uniform triangles of appropriate shape. Exact uniformity is not
possible because of the geometry of D and not useful because of the ap-
proximate relation between |err|2,A(T , F ) and |err|2,A(T, f) when T and T
are images under (8). Step 2 at (7) has two continuous control parameters,
h and errTol, that can be tuned to control the size of Mcomp and the spec-
trum of |err|2,A(T ). However, the variation of these outcomes with the control
parameters is only approximately continuous; there are discrete jumps in be-
haviour due to the ‘stiffness’ of essentially uniform meshes. For this reason,
we have presented the mesh of Figures 5(A) and 7(B) as a comparison mesh
even though it is not feasible, rather than a feasible comparison mesh with a
spectrum that peaks significantly below the error tolerance of 10−3.

5 An Overview of Some Theory
of Maximal Efficiency Meshes

In the introduction, we describe a goal of adaptive h-refinement as producing
meshes that locate the vertices efficiently for the control of the piecewise linear
approximation purpose of the mesh. We also mention that there is a limit to
how efficiently this can be achieved. The mathematical formulation of this
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limit is a maximal efficiency mesh, MmaxEff , which minimizes the number
of vertices over the set of meshes for which maxT∈M (||err||2,A(T )) ≤ errTol.
We can view ADR as a method for generating meshes, M(D, f, errTol) that
are feasible meshes for the constrained optimization problem of determining
MmaxEff . In this section, we give an overview of some of the theory pertaining
to MmaxEff . We start with the simple case of quadratic f , then discuss what
can be said for more general functions, and then look at harmonic functions
in particular.

5.1 The Quadratic Data Function Model

Much of our understanding of max efficiency meshes is guided by analysis
of f(x, y) as a quadratic polynomial, which has produced some rigorously
correct results and helpful insights. Three key components of the study of
optimal meshes for quadratic f are

a) an explicit formula for ||err||2,A(T, f) that shows its dependence on the
size and shape of T

b) an affine transformation to a new coordinate system that reduces the for-
mula of a) to one of two canonical cases.

c) a characterization of the maximal efficiency triangle shapes for the two
canonical cases.

The transformation of b) is then used to reduce optimal meshing problems
to one of two canonical optimal meshing problems. The characterization of c)
provides some indication of the nature of solutions to these problems, including
some special case, non-typical solutions.

Component a): Error in Linear Approximation of Quadratic Data

Let f(x, y) = 1
2H1,1 x2 + H1,2 xy + 1

2H2,2 y2 where H is the constant Hessian
of f . In developing a formula for ||err||2,A(T, f) for this quadratic f , Nadler
[15], introduces quantities, dj , associated with the jth edge of T which can be
expressed in native coordinates, (x, y), by the quadratic form

dj+1 =
1
2
(Pj+1 − Pj ,H(Pj+1 − Pj)) for Pj = (xj , yj) (9)

The error is then given by

||err||2,A(T, f) =
1

180
((d1 + d2 + d3)2 + d2

1 + d2
2 + d2

3). (10)

See also Berzins, [6]. Note from (10) that dj has units of error; so they are
invariant under affine changes of coordinates.
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Component b): Canonical Forms

We now develop an affine transformation from native coordinates, (x, y) to
coordinates, (u, v) in which the dj have a canonical form. These new coor-
dinates are commonly called stretched coordinates. Because H is symmetric,
there is an orthogonal matrix, M such that M t H M is diagonal, D; the diag-
onal entries of D, Dk k = 1, 2 being the eigenvalues of H. Consequently, we
can rewrite (9) as

dj+1 =
1
2
(M (Pj+1 − Pj), D M (Pj+1 − Pj))

M Pj are rotated coordinates of Pj which we will denote by (pj , qj). Assuming
that |D1| ≤ D2, we can then write

dj+1 =
1
2
D2 (a2(pj+1 − pj)2 + (qj+1 − qj)2) (11)

where a2 = D1/D2, so |a2| ≤ 1. For simplicity, we assume a2 
= 0, avoiding
the degenerate case.

The transformation to stretched coordinates takes the form
(

u
v

)
=
√

D2

(√
|a2| 0
0 1

)
M

(
x
y

)
=
(

G1(x, y)
G2(x, y)

)
. (12)

It is useful to introduce the anisotropy ratio, a, which carries the sign of a2, as
a = sign(a2)

√
|a2| Under this transformation, we have the following forms

for dj

if a > 0 dj+1 = 1
2 ( (uj+1 − uj)2 + (vj+1 − vj)2 ) the definite case

if a < 0 dj+1 = 1
2 (−(uj+1 − uj)2 + (vj+1 − vj)2 ) the indefinite case (13)

Stretched coordinates are useful here because the maximal efficiency mesh-
ing problem is invariant under (12) in the sense that a solution in one coor-
dinate system transforms to a solution in the other. Let us note the details
involved in this assertion. If we continue to use F (u, v) = f(g(u, v)) as in-
troduced in §3.3, we can regard functions (f,D) and (F,D) as one abstract
quadratic function, invariant under (12). However, by virtue of (13), we can
see that from the point of view of error behaviour, we can assume

F (u, v) = (u2 + v2)/2 if a > 0 (14)
= (−u2 + v2)/2 if a < 0

which we will denote by F (u, v) = (±u2 + v2)/2.
We can extend the mapping between D and D to be a mapping of an

arbitrary mesh M on D to mesh M on D in which each triangle T ∈ M is
mapped exactly to a triangle T ∈ M . In this sense, we could say that M
and M are invariant under (12). Consequently, the piecewise linear function
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F (pl)(u, v) can be defined either as the piecewise linear interpolant of F on
M , or the transform of f (pl)(x, y); they are equivalent. Using this invariance
of f (pl)(x, y) and the invariance of the dk terms of Nadler’s formula, we can
see that ||err||2,A(T, f) is invariant, i.e. can be calculated in either coordinate
system.

Consequently, we have the following equivalences

M(D, f, errTol) ⇐⇒ M(D,F, errTol) (15)
MmaxEff ) ⇐⇒ MmaxEff

meaning that if meshes M and M are images under (12), then M meets the
error tolerance, errTol if, and only if, M does, and M is a maximal effiency
mesh if, and only if, M is.

Component c): Maximal Efficiency Triangles

A triangle is a maximal efficiency triangle, TmaxEff , if it maximizes A(T ) over
the set of triangles such that ||err||2,A(T ) ≤ errTol. The maximal efficiency
triangle for a general quadratic f is the transform of its canonical case. Both
D’Azevedo, [9], and Nadler [15], identified the shapes of maximal efficiency
triangles for the canonical cases. For the definite case, the maximal efficiency
triangles are equilateral with any orientation. For the indefinite case, there are
several isosceles shapes for TmaxEff ; however, their optimality is orientation
dependent, which complicates the construction of MmaxEff for the indefinite
case. One of these shapes is the isosceles triangle with horizonal base and
height to base ratio

√
5/2.

If, per chance, domain D could be tiled with maximal efficiency triangles
for errTol, then the resulting mesh would be MmaxEff for D. Then, in turn,
the mesh obtained by transforming MmaxEff to the domain D would be
MmaxEff for (D, f, errTol).

5.2 More General Data Functions

If f(x, y) is not quadratic, then, assuming that f is smooth, it can be approx-
imated near P by a quadratic based on the Hessian, Hf (P ). It is common
in meshing algorithms to use the quadratic f theory locally, i.e. for triangles
that are small enough to qualify as being ‘near P ’. However, this is of limited
value in the global view of meshing needed for the theory of maximal effi-
ciency meshes. So we turn to some classical differential geometry for the tools
we need.

If the line segment from Pj to Pj+1 is considered to be infinitely short, i.e.
by setting Pj+1 = Pj + dP for differential dP , then, in native coordinates, (9)
becomes the differential edge length formula

ds2 = (dx,Hf (P ) dx) (16)
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In the case that Hf (P ) is positive definite, (16) is the Riemannian geom-
etry formula for differential arc length for metric tensor Hf . For the case
in which Hf (P ) is indefinite, (16) is the formula for differential arc length
in a Minkowski, or hyperbolic, geometry. Classical differential geometry
has established that for particular classes of metric tensors, it is possible
to define stretched coordinates globally for the domain by transformations
(u, v) = G(x, y). The differential edge length formulae in the (u, v) coordi-
nates are either Euclidean, i.e. ds2 = du2 + dv2, or canonical hyperbolic,
i.e. ds2 = −du2 + dv2, Sokolnikoff, [27], Chapter 2. These are the same two
canonical cases as we identified at (13).

In [9], D’Azevedo determined sufficient conditions on Hf for a global trans-
formation to stretched coordinates to exist, and describes a procedure for
constructing G(x, y). These conditions are met, in particular, by harmonic
functions and the procedure applied to the complex exponential data func-
tion, (3) results in essentially the transformation (8).

Since these transformations to stretched coordinates are not generally
affine, triangles in stretched coordinates are mapped onto ‘curved triangles’
i.e. three sided patches connecting the images of the vertices with curved sides.
In particular, ||err||2,A(T, f) is not invariant. Consequently, the problems of
determining MmaxEff for D, f and errTol and MmaxEff for D,F and errTol
no longer enjoy the equivalence that we noted at (15) for quadratic data func-
tions. It is not clear whether such equivalences would hold in some asymp-
totic sense as errTol → 0. We have observed in calculations that the ratio
|err|2,A(T , F )/|err|2,A(T, f) ≈ .75 as T becomes small. This suggests that
|err|2,A(T , F ) may not be even a consistent approximation to |err|2,A(T, f)
for small T . These observations have implications for the construction of com-
parison meshes that we present in §4. We introduce a separate error tolerance
for tuning the comparison mesh and we report the error statistics for Mcomp

in native coordinates, (x, y).

5.3 Application to Harmonic Functions

For harmonic data functions fyy(x, y) = −fxx(x, y) so Hf has the special form

Hf =
(

r s
s −r

)
(17)

for r = fxx(x, y), s = fxy(x, y). The eigenvalues of (17) are D2 =
√

r2 + s2,
D1 = −D2; hence, non-degenerate Hf (x, y) is always indefinite. The anisotropy
ratio, a, of (11) is exactly −1, so, in this sense, the error metric is isotropic.
However, because Hf is always indefinite, the error will show some directional
dependence and maximal efficiency triangles have orientation restrictions and
are not equilateral as discussed in §5.1.

The D’Azevedo global transformation to stretched coordinates can be com-
puted for harmonic functions, and, in particular,for the complex exponential,
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(3) as per (8) which was used to construct the image domain, D in the (u, v)
plane shown in Figure 7(B). Using ADR, M = M(D, (−u2 + v2)/2, errTol)
was created as described in §4. The initial mesh for M had a regular interior
grid which, if refined once, would be composed of maximal efficiency triangles
for the indefinite case in stretched coordinates.

6 The Double Pole: A Second Example Data Function

If we look at the mesh characteristics and efficiency of ADR applied to an-
other harmonic data function, we find that our observations of §3 for the
complex exponential are confirmed. In this section, we demonstrate this using
the ‘double pole’ data funtion

dp(x, y) = Re(1/(z−c)2) = ( (x−c1)2+(y−c2)2 )/( (x−c1)2+(y−c2)2 )2 (18)

on the unit square, for pole at c = (1.1, .5).

(A) M(US, dp, .0045) : 1281 vertices (B) Mcomp : 677 vertices

Fig. 8. ADR and comparison meshes for double pole data function

For a two triangle initial mesh, with errTol = .0045, and the weak en-
croachment criterion, all methods produce the IRATM shown in Figure 8(A)
The D’Azevedo transformation for a double pole at (c1, c2) is

u =
√

6(1−(x−c1))/d2 ; v =
√

6(y−c2)/d2 for d2 = (x−c1)2+(y−c2)2 (19)

The domain, D in the (u, v) plane corresponding to D= the unit square is
shown in Figure 8(B). It is bounded by arcs from four circles. These circles
have centers denoted (uck, vck) and radii denote by rk for k = 1 . . . 4 in the
following table
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(A) IRATM : histogram of |err|2,A(T ) (B) Mcomp : histogram of |err|2,A(T )

Fig. 9. Error spectra for adaptive and comparison meshes for double pole data
function

(uc1, vc1) = s(1,−1/(2 ∗ c2)) ; r1 = s/(2c2)
(uc2, vc2) = s(1 + 1/(2(c1 − 1)) ; r2 = s/(2|c1 − 1|)
(uc3, vc3) = s(1, 1/(2 ∗ c2) ; r3 = s/(2c2)
(uc4, vc4) = s(1 + 1/(2c1) ; r4 = s/(2c1)

where s =
√

6.

7 Observations and Conclusions

There are several observations that we have made that are consistent across
the computations that we have described, and others that we performed in
the course of this study. A primary objective was to estimate the efficiency
of ADR applied to isotropic data functions and using Euclidean geometry
Delaunay meshes. We observed that the meshes are typically about twice the
size of maximal efficiency meshes for these cases. It seems reasonable to us
that a similar efficiency would be obtained by ADR for anisotropic data, using
appropriate stretched coordinates.

Our review of §2 identified several versions of adaptive refinement and in
particular, we reported on computations using the alternative choices of inser-
tion vertex, LEBis(T ) and CC(T ) . In §3, we noted that the different versions
all produce that same resulting mesh, if the initial mesh is an IRATM, and if
the implementations in inexact arithmetic use a weak encroachment criterion.
The relevance of this observation for our efficiency study is that any efficiency
differences between the versions must come from features associated with the
initial mesh. If the initial mesh is not an IRATM, or a strong encroachment

The error histograms for M(US, dp, .0045) of Figure 8(A)) and Mcomp,
transformed from Figure 8(B), are shown in Figures 9(A) and (B) respectively.
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criterion is used, then difference in the resulting meshes were quite apparent,
but differences in efficiency were insignificant, (Figures 4, 6).

The form of the error histograms for the ADR meshes provide some insight
into the nature of their efficiency. Figures 2(B) (complex exponential) and 9(B)
both show that log10(errTol) − .6 ≤ log10(|err|2,A(T )) ≤ log10(errTol) and
10.−.6 ≈ 1/4. I.e.

errTol/4 ≤ |err|2,A(T ) ≤ errTol

The lower bound of errTol/4 for |err|2,A(T ) was universally observed in our
computations, and the distribution of |err|2,A(T ) in the interval (errTol/4,
errTol) is typically fairly uniform as shown in Figures 2(B) and 9(B). So the
average error is about 5errTol/8, which is roughly consistent with the mesh
having twice as many triangles as would be needed to meet the error criterion
of errTol.

Perhaps this amount of inefficiency in ADR meshes is acceptable for many
purposes. But if we want to achieve more efficiency, where should we look?
Perhaps some form of smoothing could focus the error histogram distribu-
tion at its average value enough to be a significant remedy. However, it does
not seem obvious how this would be achieved, and at what price. Note that
D’Azevedo, [10], demonstrated a similar level of efficiency in the meshes gen-
erated by PLTMG, which incorporated a smoothing.

We have presented efficiency of ADR for refinement based on the L2

average error, ||err||2,A(T ). It would be interesting to know the extent to
which our observations would carry over to an energy average norm, i.e.
(
∫

T
(∂err/∂x)2 + (∂err/∂y)2dA/ A)1/2. It would also be very interesting to

know about the efficiency of ADR for three dimensions. However, there are
substantial difficulties in exending the technique of this paper to 3-D. In par-
ticular, neither the theory of maximal efficiency triangles for quadratic data
nor techniques for computing a global transform to stretched coordinates are
known.
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Small Polyhedron Reconnection: A New Way 

to Eliminate Poorly-Shaped Tetrahedra 

Jianfei Liu and Shuli Sun 1

LTCS, Department of Mechanics and Aerospace Engineering, College of 

Engineering, Peking University, Beijing 100871, China  

Abstract. Local transformation, or topological reconnection, is one of effective 
procedures of mesh improvement method, especially for three-dimensional 
tetrahedral mesh. Although the existing local transformations such as 2-3/3-2 flip 
are effective in removing poorly-shaped tetrahedra, it is still possible to improve 
the quality of mesh further by expanding the space of transformation region. The 
authors recently proposed a new local transformation operation, small polyhedron 
reconnection (or SPR for abbreviating), which seeks the optimal tetrahedralization 
of a polyhedron with a certain number of vertexes and faces (typically composed 
of 20 to 40 tetrahedral elements). In this paper, the framework of SPR approach 
for mesh quality improvement based on the SPR operation is presented. The main 
idea is to take a poorly-shaped or “worst” element as the core and construct a 
small polyhedron by adding 20-40 elements surrounding it, then find the optimal 
tetrahedralization of this small polyhedron through SPR operation. By replacing 
the original tetrahedra with the optimal tetrahedralization, the quality of the mesh 
is improved. Experimental investigations with tetrahedral finite element meshes 
show that the SPR approach is quite effective in improvement of mesh quality 
with acceptable time cost, and works well in combining with a smoothing 
approach. Although further researches are required for a more definite conclusion, 
the presented approach can be utilized as a powerful and effective tool for 
tetrahedral mesh generation and mesh improvement. We believe that the superior 
performance of the SPR approach makes it worthy of further study. 
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1. Introduction 

Geometrical optimization (also called node repositioning or smoothing) 

and topological optimization (also called local transformation or 

reconnection) are two main categories of mesh improvement procedure. 

Geometrical optimization relocates mesh points to improve mesh quality 

without changing mesh topology [1-7], while topological optimization 

changes the topology of a mesh, i.e. node-element connectivity 

relationship [1-3, 8, 9]. This paper will focus on the latter, local 

transformation.

The most frequently used and most effective operations of reconnection 

for tetrahedral mesh are so-called basic or elementary flips [10], e.g. 2-3 

flip, 3-2 flip, 2-2 flip, 4-4 flip. These topological transformations are 

usually called “local”, since only a small number of tetrahedra (typically 

fewer than 5) are removed or introduced by a single transformation. Such 

flips are simple, easy to implement, but effective in removing 

poorly-shaped tetrahedra [2, 3, 8]. However, since these basic local 

transformations only simply make a selection from several possible 

configurations within a relatively small region composed of several 

tetrahedra, the effect for mesh quality improvement is limited.  

In order to break such a limitation and improve the quality of mesh 

further, the authors recently proposed the strategy of optimal 

tetrahedralization for small polyhedron and corresponding small 

polyhedron reconnection (SPR) operation [11], which seeks the optimal 

tetrahedralization of a polyhedron with a certain number of vertexes and 

faces instead of choosing the best configuration from several possibilities 

within a small region that consists of a small number of tetrahedra. For a 

SPR operation, since the region – usually composed of 20 to 40 tetrahedral 

elements – is much larger than that in the local transformations mentioned,  
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more quality improvement is expected. Up to now, to the best knowledge 

of the authors, no relevant studies have been reported in other literatures. 

The previous work of the authors [11] mainly emphasized the concept 

and the idea of the SPR operation from the viewpoint of local topological 

transformation. The efficiency of the SPR operation is also discussed and 

tested. The time complexity of the searching algorithm in the SPR 

operation seems too high and the computational cost may not be afforded 

if the size of the small polyhedron is too large. However, by some 

deliberate speedup strategies, the efficiency of optimal searching algorithm 

can be significantly enhanced and the SPR operation can be applied to 

practical mesh improvement with acceptable payment of time cost.  

In this paper, the framework of SPR approach for mesh quality 

improvement based on the SPR operation is presented. The main idea is as 

follows. First locate a poorly-shaped or “worst” element (in sense of some 

quality measurement). Then take this “worst” element as the core and 

construct a small polyhedron by adding 20-40 elements surrounding it. 

Next find the optimal tetrahedralization of this small polyhedron through 

the SPR operation. By replacing the original tetrahedra with the optimal 

tetrahedralization, the quality of the mesh is improved. The cycle 

continues until the improvement reaches its limit, that is no better 

tetrahedralization existed for the small polyhedron most recently 

constructed.  

2. SPR Operation: Optimal Tetrahedralization 

for Small Polyhedron 

To break the limitation of the existing elementary flips, the authors 

recently proposed a new local reconnection strategy [11], optimal

tetrahedralization for small polyhedron, which is illustrated in form of 

two-dimensional case in Fig. 1. Rather than simply making a selection 

from several possible configurations within a small region that consists of 
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a small number of tetrahedra as previous local transformation usually does, 

the new reconnection strategy seeks the optimal tetrahedralization of a 

polyhedron with a certain number of vertexes and faces. Since the region – 

usually composed of 20 to 40 tetrahedral elements – is much larger than 

that in the local transformations mentioned, more quality improvement is 

expected.

Fig. 1. Two-dimensional illustration for optimal tetrahedralization for small 

polyhedron

According to the strategy of optimal tetrahedralization for small 

polyhedron, two kinds of small polyhedron reconnection (SPR) operations 

are defined as follows. 

SPR operation 1: For a given polyhedron with a certain number of 

triangles on boundary, seeks its optimal tetrahedralization without Steiner 

nodes added. 

SPR operation 2: For a given polyhedron with a certain number of 

triangles on boundary, seeks its optimal tetrahedralization without Steiner 

nodes added under some extra geometric restrictions. 

Note that the number of triangles on the boundary, S, is taken here to 

denote the size of the polyhedron instead of the number of tetrahedral 

elements. The SPR operation 2 is mainly applicable for boundary recovery 

and the details are not discussed here. This paper focuses on SPR operation 

1 (for conciseness omits “1” in following text). In order to keep the 
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completeness of the method proposed, the algorithm of the SPR operation 

[12] is first introduced. .  

First choose a triangle F on the boundary of the polyhedron P, and 

construct an element (denoted by ELE) by F and one of the other vertexes 

of the polyhedron. Thus the original polyhedron is divided into the element 

ELE and a new smaller polyhedron (denoted by Q). Next solve the smaller 

problem for the new smaller polyhedron Q by the same algorithm 

recursively, and then merge its result with the element ELE to get a 

feasible solution for the original polyhedron P. Here, the so-called feasible 

solution is in some sense optimal, since it includes the optimal solution of 

the smaller polyhedron Q. This process is repeated for all the remain 

vertices. Finally choose the best tetrahedralization from all feasible 

solutions. Thus the final solution is exactly the optimal solution for the 

polyhedron P. The recursive procedure is illustrated in form of 

two-dimensional case in Fig. 2, and the pseudocode for the algorithm is 

listed in Algorithm 1.  

Fig. 2. Recursive procedure for the SPR operation illustrated in form of 

two-dimensional case (ELE+ the best triangulation of Q => a triangulation of P)

By the way, some more general and sophisticated local transformations, 

such as composite transformation operations [9], the general edge flip [10], 

may be considered as special cases of the SPR operation. 

N

ELE

polyhedron P

F

polyhedron Q

ELE

ELE+best triangulation of Q
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Algorithm1: The recursive algorithm of the SPR operation 

 int OptimalTetMeshForSmallPolyhedron (q0, P, T)

input: q0, quality of the initial mesh; 

P, the small polyhedron. 

  output:  T, the best triangulation. If there is no triangulation  

with quality better than q0, T will be NULL.

return value: “succeed” or “fail”.

temporary variables: Tc, the best triangulation among these 

already tested; 

qc, quality of Tc;

      rt, return value of the recursive call. 

1 qc=q0, Tc=NULL

2 select a triangle F on the polyhedron 

3  for each vertex N on the polyhedron, do 

    { 

4     if ( F and N can construct a valid tetrahedron ELE

5        and quality of ELE is better than qc)

        { 

6      remove ELE from P, construct a new smaller  

polyhedron Q

  7   rt= OptimalTetMeshForSmallPolyhedron (qc, Q, TQ)

  8   if ( rt is “succeed”) 

       { 

  9     merge TQ & ELE to create a new triangulation of P

  10     update Tc and qc

       } 

      } 

    } 

11  if (a better mesh found) { T=Tc, return "succeed"}

12  else return "fail"
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The algorithm given above is supposed to treat all of the triangulation 

cases and seems very time consuming. However, what’s exhilarating is 

that many of the triangulation tries will be aborted and rejected in early 

stage since they produce a bad element or can not pass the valid test (such 

as overlapping or gap occurs). Similarly, though a large number of 

sub-problems appear in the searching process, many of them will be 

blocked by the valid test or quality test of the first element.  

Moreover, if an initial triangulation for a polyhedron already exists, the 

optimal search process can be greatly accelerated, although the initial 

triangulation is not necessary for the SPR operation. This is the usual case 

for mesh improving. 

The valid test and quality test discussed above has already made the 

SPR operation be able to improve quality for practical finite element 

meshes within acceptable time cost when the size of small polyhedron is 

limited to 15. 

Additionally, a few further strategies are discussed in following to 

accelerate above searching algorithm. If a polyhedron can be subdivided 

into several smaller ones in digging process, it is unwise to still treat them 

as a whole one. We may readily achieve substantial speedup by solving 

several small sub-problems on smaller polyhedrons separately. Then the 

result is obtained by merging the result of all separate sub-problems. The 

testing results indicate this strategy can greatly enhance the algorithm 

efficiency. Furthermore a natural idea to speed the operation further is 

guiding the process to separate the small polyhedron as earlier as possible. 

So we select the digging face at the location where a tetrahedral element 

has just been removed.  

In the thorough search algorithm, there is a drawback: the same 

sub-problems may be encountered several times. Here a simple strategy, 

storing and searching, is adopted to eliminate the repeated calculation of 

the same sub-problem. The sub-problems that have already been solved are 

stored in a bintree, in which each solved sub-problem has a record with 

information including its geometric description and the result of its optimal 

tetrahedralization. Before to be solved, any sub-problem will be searched 
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first in the bintree. If its record has existed, just retrieve the result and 

return.

3. Using the SPR Operation to Remove Slivers 

and Other Poorly-Shaped Tetrahedra 

The SPR operation can be applied to improve the mesh quality by 

removing slivers and other poorly-shaped element in a step by step 

manner. First find the worst element according to a specific quality 

measure. Then construct a small polyhedron that includes the worst 

element and its neighbors, and perform SPR operation to find out the best 

tetrahedralization of this polyhedron to improve the quality of local region 

adjacent to the worst element. Next, find another worst element and repeat 

above procedure. The procedure will stop when the tetrahedralization of 

the polyhedron that includes current worst element can not be improved. 

The SPR operations are usually performed in limited times in practice and 

the payment for time cost is reasonable. 

There are two key steps in the above procedure: 1) Construction of the 

small polyhedron, 2) Optimal tetrahedralization of the small polyhedron by 

the SPR operation. 

Suppose a bad element is a sliver, that its four nodes are nearly 

coplanar. This element together with some other elements which share one 

of 2 particular sliver edges with bigger dihedral can compose a small 

polyhedron (Fig. 3 and Algorithm 2).  

Fig. 3. A small polyhedron created surrounding a sliver 
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Usually, applying a SPR operation to such a polyhedron will eliminate 

thin element appropriately. In some cases, the polyhedron created is not 

big enough to produce a good local mesh. More elements should be 

included to mend the polyhedron, which is supposed to make the 

polyhedron something smoother. Our testing shows that using the small 

polyhedrons created in our algorithm can usually improve the mesh fairly 

well in a low time cost.  

By the way, we also notice recent work of Moore and Saigal [13] to deal 

with sliver shaped elements in 3-dimensional finite element models, which 

first merges the slivers with neighboring elements to create a polyhedron, 

and then subdivides the polyhedron into a collection of local tetrahedra by 

connecting a temporary centroidal node added to all of the external 

triangular facets of the polyhedron, rather than searching for the best 

triangulation of the polyhedron without extra node added as we proposed. 

4. Examples and Discussions 

Several examples of finite element mesh are given to demonstrate the 

effectiveness of the presented SPR approach. The size of the small 

polyhedron, S, defined by the number of triangles, is set to 25. The finite 

element meshes in examples are generated by tetrahedral mesh generation 

Algorithm 2: Constructing small polyhedron surrounding 

 the worst element 

Input: mesh M, the worst element E of M.

Output: a small polyhedron P with E as its core. 

1 Calculate the six dihedral angles of E.

2 Get the two maximum angles, suppose their related edges 

 are ab and cd.

3 Get all elements around ab and cd.

4 Merge all those elements to produce polyhedron P.
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package AutoMesh3D [14] through the ball-packing method [15, 16]. The 

presented SPR procedure is already embedded in AutoMesh3D. The 

coefficient [2, 17] is adopted as the quality measure for tetrahedral 

element. Most elements with less 0.1 are slivers in following examples. 

All tests are performed on the following platform: A Pentium IV PC (2.4 

GHz CPU and 256 MB RAM) with compiler of Visual C++ 6.0. 

The first finite element mesh shown in Fig. 4 consists of 22392 nodes 

and 113975 tetrahedral elements initially. Its quality is not good. There are 

34 elements with the quality value below 0.03, and the lowest value is 

0.00118. The statistics of initial quality and quality after the presented SPR 

approach are listed in Table 1, which shows remarkable improvement of 

mesh quality by the SPR approach. The minimum value of  increases to 

0.321. The substantial improvement in quality of large number of elements 

indicates that, as a new local transformation procedure, the SPR approach 

works effectively on optimizing mesh topology around the worst element, 

and hence improves the quality of whole mesh. In this example, the SPR 

operations with total number of 5754 are performed, and the running time 

(about 260 seconds) is acceptable considering substantial improvement in 

mesh quality. 

Fig. 4. The first finite element mesh 
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Table 1. Statistics of the quality distribution of elements in the first mesh 

Range of 0.00~0.03 0.03~0.12 0.12~0.30 0.30~0.66 > 0.66 

Initial mesh 

(min. 0.00118)
34 423 1763 13526 98229 

After SPR only 

(min.  0.321) 
0 0 0 10495 100975 

The second finite element mesh includes 2726 nodes and 8359 

tetrahedral elements initially (Fig. 5). Its quality is also not good enough. 

There are 13 elements with the quality value below 0.03, and the lowest 

value is 0.0036.  

Fig. 5. The second finite element mesh 

The elementary local transformations (or ELT for abbreviating) and the 

presented SPR approach are applied to the initial mesh, respectively. Due 

to the restriction of the geometry, the small polyhedrons created in the SPR 

operation are not big enough. Thus the benefit to mesh quality 

improvement is not evident compared with example 1. Table 2 shows the 

statistics of initial quality and quality after optimization. Both ELT and 

SPR procedures improve the mesh quality; however, as expected, the SPR 
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approach gives better result. The minimum value of  increases from 

0.0036 to 0.275 and there are only 4 elements with quality value lower 

than 0.30. The running time for SPR is about 7.5 seconds. We believe that 

the superiority in effectiveness makes the SPR approach more useful and 

become a potential replacement for previous local transformations in mesh 

topological optimization. 

Table 2. Statistics of the quality distribution of elements in thesecond mesh 

Range of 0.00~0.03 0.03~0.12 0.12~0.30 0.30~0.66 > 0.66 

Initial mesh 

(min. 0.0036)
13 33 188 2500 5625 

After ELT only 

(min.   0.181) 
0 0 33 2304 5726 

After SPR only 

(min.  0.275) 
0 0 4 2358 5598 

The results of above examples indicate that the proposed SPR procedure 

is able to significantly improve the quality of tetrahedral mesh. In practice, 

the topological modification and node reposition should be combined 

together to get more effective results. In next example, it can be seen that 

the combination of the proposed SPR procedure and smoothing will 

achieve substantial improvement in mesh quality. 

The third finite element mesh illustrated in Fig. 6 consists of 11007 

nodes and 53710 tetrahedral elements, and the minimum value of  is 

0.0110 initially. First, ELT and SPR procedures are applied to the initial 

mesh, respectively. The results listed in Table 3 indicate that the mesh 

quality has only limited improvement after ELT or SPR procedure. Almost 

same results are obtained for the two approaches. The minimum value of 

increases from 0.0110 to 0.0195. It is found that, by monitoring the 

optimization procedure, the processes for both approaches are quickly 

blocked by the same worst element, since no further improvement can be 

made by topological modification alone to the local small polyhedron that 

includes current worst element. 
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Fig. 6. The third finite element mesh 

Table 3. Statistics of the quality distribution of elements in the third mesh 

Range of 0.00~0.03 0.03~0.12 0.12~0.30 0.30~0.66 > 0.66 

Initial mesh 

(min. 0.0110)
26 159 794 7605 45126 

After ELT only 

(min.  0.0195) 
11 159 794 7601 45130 

After SPR only 

(min.  0.0195) 
11 159 794 7600 45131 

After ELT + smoothing + ELT

(min.   0.0990) 
0 1 494 11211 41988 

After SPR + smoothing + SPR

(min.  0.332) 
0 0 0 9948 42598 

In order to obtain further improvement in mesh quality, smoothing or 

node reposition is applied to combine with topological optimization. Here, 

an efficient smoothing approach based on chaos searching algorithm [5] is 

adopted. The running time for smoothing procedure is 76 seconds. After 

smoothing procedure, ELT and SPR procedures are performed respectively 

again. The direct effect on quality improvement by smoothing is not very 

distinct; however, the smoothing procedure has optimized node 



254     J. Liu and S. Sun 

distribution or configuration around the worst element, and such an 

improvement provides favorable conditions for topological optimization 

and makes topological optimization work more effectively. It can be seen 

from Table 3 that both ELT and SPR procedures do actually take effect 

after the smoothing procedure. Similarly, the SPR procedure gives much 

better result while the running time of 120 seconds is acceptable. The 

minimum value of  increases to 0.332.  

Compared with ELT, the presented SPR approach is obviously more 

suitable for combining with smoothing approach, and combination of SPR 

and smoothing approach is a better choice for mesh improvement. The 

time cost of SPR approach is reasonable and worthy to be paid.  

It can also be observed in above examples that the number of elements 

generally decreases by several percentages after topological optimization, 

since most of the bad elements which usually occupy small volumes are 

removed.  

By the way, same quality measure should be adopted in smoothing and 

topological transformation procedures. Otherwise the optimization process 

may probably suffer “zigzag” problem since some quality measures are 

found to induce inconsistent evaluation for quality change of element in 

5. Conclusion and Future Work 

The small polyhedron reconnection operation is a new and very 

effective way to improve tetrahedral meshes. Although further speedup is 

expected for the searching algorithm, examples show that the presented 

SPR approach can be applied to practical mesh improvement with 

acceptable payment of time cost and is able to give much better results 

than the most commonly used local transformations. In addition, the 

presented SPR approach works well in combining with smoothing 

approach. We believe that the superiority in effectiveness makes the SPR 

approach more useful with the further speedup of its efficiency and 

some circumstances [5, 18]. 
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become a potential replacement for previous local transformations in mesh 

topological optimization.  

The superior performance of the SPR approach makes it worthy of 

further study. Some works are in progress, including how to construct 

more appropriate polyhedron, developing more suitable data structure for 

supporting searching algorithm to eliminate the repeated calculation of the 

same sub-problem, choosing smartly digging face on the small polyhedron 

where the new elements are to be created, selecting the optimal digging 

directions and subdividing the polyhedron into several sub-polyhedrons as 

earlier as possible, etc. If a good tetrahedralization can be obtained in early 

stage, it will stop many unnecessary tries and block a lot of sub-problems 

to be created and treated.  

The current work on the SPR approach mainly focuses on isotropic 

mesh. If changing the distance metric in quality measurement, the SPR 

approach might be extended to improvement of anisotropic mesh. 
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Summary. In this paper we present one approach to build optimal meshes for P1

interpolation. Considering classical geometric error estimates based on the Hessian
matrix of a solution, we show it is possible to generate optimal meshes in H1 semi-
norm via a simple minimization procedure.

1 Introduction

1.1 Statement of the Problem

Let Ω be a domain of IR2 and u a solution of an elliptic PDE problem on Ω
under Dirichlet boundary conditions on ∂Ω.

The energy norm is the natural one to measure the error of a numerical
approximation of the solution of this problem and the Cea’s lemma [4] give a
bound for the error.

Cea’s lemma. If the hypotheses of the Lax-Milgram theorem are satisfied,
there exists a constant C independent of the subspaces Vh such that

‖u− uh‖ < C inf
v∈Vh

‖u− v‖

where Vh denotes the finite element spaces, uh the discrete solution associated
with Vh and ‖.‖ the norm in the space V .

a posteriori mesh adaptation. Thanks to Cea’s lemma, the error made over
the mesh is bounded by the interpolation error. Hence, controlling the in-
terpolation error allows control the approximation error. This has led to a
number of a posteriori mesh adaptation procedures with metric specifica-
tions based on the control of the interpolation error ([9, 7] and the references
in [13]). However, these methods are usually based on the L∞ norm of the
interpolation error instead of a more physical norm.
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The exact solution is usually unknown; we only know the discrete solution
uh and reconstruction methods are used to estimate the error estimator since
it is theoretically bounded by derivatives one order higher than the order of
the field approximation.

Surface mesh optimization. If we consider the solution u as a Cartesian sur-
face, the problem of minimizing the interpolation error consists in defining a
mesh so that the surface mesh is as smooth as possible. This has led to the
notion of geometric mesh [9] : a geometric mesh is a piecewise planar approxi-
mation of the surface so that the distance between the underlying surface and
the element of the triangulation does not exceed given tolerance threshold.
To make sure that a mesh is a geometric mesh, one generally introduces some
measurements of quality like planarity, roughness or deviation. In particular
the roughness of a piecewise linear surface is defined as the square L2 norm of
the gradient of the surface integrated on the triangulation [15]. Thus, control-
ling the H1 seminorm can be see as an optimization procedure of the quality
of a surface.

In this paper, we assume that the discrete solution uh is a P1 continuous
finite element function and that we measure the error in H1 seminorm. We
shall see that the computation of this error involves second order derivatives
of the computed scalar field. One way estimate these derivatives is to use re-
construction methods (see [14] for a comparison of recently published recovery
methods).

1.2 Outline

The purpose of this paper is to describe an adaptation procedure in order to
build an optimal mesh by controlling the H1 seminorm of the interpolation
error. First we go back to the H1 seminorm of the interpolation error on one
element of the mesh. We show how it can be written using the Hessian matrix
of u and we recall how the second order derivatives of the computed scalar
field can be estimated over the domain using recovery methods. Then an adap-
tation procedure based on a minimization problem is described. Eventually,
analytical examples are provided to illustrate this approach.

2 Optimal Mesh

The concept of optimal mesh theoretically refers to a set of meshes. For ex-
ample, if several meshes are given, one will be able to say that the optimal
mesh is that for which the selected measurement is optimal. In this work, a
triangulation consisting of N nodes will be said optimal in H1 seminorm if it is
the triangulation that minimizes the interpolation error among all conforming
N-nodes triangulations.
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3 Expression of the H1 Seminorm of the P1

Interpolation Error

We consider a mesh T (Ω) composed of linear triangles and denote K = [a, b, c]
as the reference element, Πhu as the piecewise linear interpolate of the solu-
tion u according to T (Ω). The usual IR2 scalar product is denoted by 〈., .〉 ,
and the Hessian matrix of u by Hu.

3.1 Expression of the Error Gradient on One Element K

Let us write eK = u−Πhu the interpolation error on element K. It vanishes
at the vertices of the triangle and has the same Hessian matrix as u.

Using a Taylor expansion at each vertex vi of K (where the error vanishes)
we can write,

eK(vi) = eK(x) + 〈−→vix,∇(eK)(x)〉+
1
2
〈−→vix, Hu

−→vix〉+ εi‖−→vix‖2,∀x ∈ K, (1)

Let us denote qvi
(x) = 1

2 〈−→vix,Hu(x)−→vix〉.
Then, by neglecting the terms of εi, we have






〈−→v0x,∇(eK)(x)〉+ qv0(x) = 0

〈−→v1x,∇(eK)(x)〉+ qv1(x) = 0

〈−→v2x,∇(eK)(x)〉+ qv2(x) = 0

and consequently the following system





〈−−→v0v1,∇(eK)(x)〉+ qv0(x)− qv1(x) = 0

〈−−→v0v2,∇(eK)(x)〉+ qv0(x)− qv2(x) = 0

which can be written
A∇(eK)(x) = −F (x) (2)

where A = (−−→v0v1
−−→v0v2)

t and F (x) =
(

qv0(x)− qv1(x)
qv0(x)− qv2(x)

)
.

3.2 Seminorm

The H1 seminorm of the interpolation error on an element K is

|eK |2H1
=
∫

K

‖∇(eK)(x)‖2.

Finally, with the approximation (2) we consider

|eK |2H1
≈
∫

K

‖A−1F (x)‖2. (3)
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3.3 Remark on the Numerical Computation of the Error Gradient

To compute the error gradient we need to get an estimate of the Hessian
matrix on K. Integrals of the error gradient can easily be obtained via a
quadrature formula.

Estimation of the Hessian The Hessian of uh, a P1 finite element function,
can be approximated by using a recovery method. We can cite for example
the generalized finite difference (a variant of Green’s formula [10, 10.4.2]),
the Zienkiewicz-Zhu [18] recovery procedure, the simple linear fitting [6], the
quadratic fitting [17] or the double L2 projection

H = IL2(∇(IL2(∇u))) (4)

where IL2 is the L2 projection on the P 1 finite element space [1].
We refer to [14] for a comparison of these different recovery techniques.
Moreover, the adaptation process may be controlled by modifying the

eigenvalues in the spectral decomposition of Hu (see [16] for an analysis of
the effect of such a control strategy on the interpolation error).

Here, to evaluate the Hessian, we use formula (4). As it has been said in
[13], we have no convergence proof of this scheme but result is better with
using it [1].

Interpolation scheme In order to get the value of the Hessian everywhere on
the mesh, interpolation schemes are used since the Hessian is only known at
each vertex of the mesh.

4 Application to Mesh Adaptation

The procedure described below minimizes the interpolation error among all
triangulations having the same number of vertices.

Following [8], we introduce a functional on the mesh based on the error
gradient to drive the adaptation procedure. Hence, we define

J (T ) =
∑

K∈T

∫

K

||∇(eK)(x)||2. (5)

Using (3) we can write the expression of J with the Hessian matrix of u and
we consider now

J (T ) =
∑

K∈T

∫

K

||A−1F (x)||2. (6)

The procedure consists in minimizing functional J using local operators on
the initial mesh.
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4.1 Operators for Mesh Improvement

There are four main types of mesh improvement, topologic or geometric: edge
refinement, edge swapping, vertex suppression, vertex displacement [10]. Since
we want to adapt the mesh while preserving the same number of vertices, we
only consider node reconnection and vertex displacement.
Edge swapping. It is a simple operation in 2D. Only two configurations are
possible as an edge has only two adjacent triangles. The edge between two
triangles K1 et K2 will be swapped if:
∫

K1

||A−1F (x)||2 +
∫

K2

||A−1F (x)||2 >

∫

K
′
1

||A−1F (x)||2 +
∫

K
′
2

||A−1F (x)||2

where (K1′,K2′) is the alternate configuration.

Fig. 1. swap

Vertex displacement. This procedure preserves the connectivity of the mesh.
In order to get the position of the nodes that minimises the error we use a
minimisation procedure.

Let V = (v1, v2, ..., vN ) ∈ IR2N
where N is the number of the vertices of

T .
Let us consider

F : IR2N → IR, V → F(V ) =
∑

K∈T

∫

K

||A−1F (x)||2

and the following optimization problem

min
v∈IR2N

F(v),

for which classical optimization methods [3] can be used. We use a gradient
method to minimize J :

∀i ∈ {0, .., N} vn+1
i = vn

i − ρ(∇J (V n))i, ρ > 0.

The main difficulty of this procedure is to move the points without creating
overlapping elements. To ensure that the movement does not destroy a valid
triangulation, we adapt the step size ρ so that the new point x� stays in the
shell around x (i.e. all the elements around x).
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4.2 Algorithm

The algorithm consists in applying iteratively these operators on the mesh
until the mesh stabilizes.

• We start with a triangulation T 0
h of the computational domain.

• Repeat:
– Compute the discrete Hessian at each vertex of the mesh T (i)

h

– Generate the mesh T (i+1)
h which minimize (5) with the following local

operators:
· Vertex displacement
· Edge swapping

– Terminate the loop if the number of swaps is null and if the vertices
don’t move.

Remarks:

Since the edge swapping is performed if and only if the functional (6)
decrease, the number of swap is bounded.

5 Experimental Results

To illustrate the proposed method, we present some results for a few examples :
three examples with given analytical solutions and one for a partial differential
equation.

Here the goal is to generate optimal triangulation of these surfaces by
using the adaptation scheme defined previously. The resulting triangulation
is considered optimal in so far as it is the triangulation that minimimizes the
interpolation error in H1 seminorm among all the surface triangulations (and
ensure the best error equirepartion). As we want compare our procedure with
classical adaptation schemes, we start with a mesh of the parameter space (we
obtain the surface mesh by considering the value of the analytical function at
each mesh vertex) obtained from a size map built by considering the absolute
value of the Hessian matrix. More precisely the initial mesh is built by using a
metric based adaptation procedure which equilibrates the interpolation error
in L∞ norm over the mesh and the metric field is computed using the absolute
value of the Hessian matrix.

For each example we present the value of the functional before and after
optimization. To study the convergence of the interpolation error as the mesh
is refined, we plot the H1 seminorm of the error as functions of the number
of elements nbt. In all these examples, for technical reason, all the boundary
points are fixed.
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5.1 Analytical Examples

We consider an initial mesh (built with the FreeFem++ software [12]) for
which the interpolation error in L∞ norm is upperbounded by a threshold
value ε.

Constant Hessian surfaces We consider here adaptive meshes for f1(x, y) =
x2 + y2 and f2(x, y) = x2 − y2 (Fig. 2).

Fig. 2. Resulting meshes in the parameter space for two different types of surfaces:
f(x, y) = x2 + y2. (left) and f(x, y) = x2 − y2. (center), (x, y) ∈ [−1, 1] × [−1, 1],
where the triangles are right-angled and aligned along the axes.

Non constant Hessian surfaces We consider here adaptive meshes f3(x, y) =
x3 + y3 (Fig. 3) and f4(x, y) = x2y + y3 + tanh(10(sin(5y) − 2x)) (Fig. 5)
which has a more complicated structure and exhibits an highly anisotropic
feature (this function simulates a solution with a shock layer : the equation
of the smooth line is sin(5x) = 2x )

Both procedures equilibrate the interpolation error. Nevertheless, if we
compare the initial mesh to the final one, the pattern of the triangles is dif-
ferent between the elliptic and the hyperbolic regions. We obtain the same
triangulation in the elliptic region (where the Hessian matrix is positive defi-
nite) but, as expected not in the hyperbolic region: for quadratics functions,
the optimal triangles which produce the smallest H1 seminorm of the inter-
polation error are acute isoceles triangles aligned with the solution [5].

We observe the same behaviour for more general functions (see the example
Fig. 5).

However, the value of the functional in the case of the adaptation in L∞

norm and in our case are close to each other for smooth functions (see Fig. 4)
especially for functions whose adapted mesh has little anisotropy: in this case,
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Fig. 3. Initial (left) and resulting (right) mesh in the parameter space for f3(x, y) =
x3 + y3,(x, y) ∈ [−1, 1] × [−1, 1]

the classical metric based adaption technique gives good meshes even in the
H1 seminorm. This is not surprising in so far as that in this case the corre-
sponding mesh is close to a Delaunay mesh for which roughness (and conse-
quently the cost function J ) is minimal [15].

5.2 Partial Differential Equation Examples

This example solves the boundary value problem of Poisson’s equation on an
L-shape with Dirichlet boundary condition:

−∆u = 1, Ω =]0, 1[2−[1/2, 1[2

Numerical results are shown in Table 1. Similar observations as in the previous
analytical cases can be made. For a PDE with shock the key point is the
reconstruction of the Hessian which can be quite difficult on highly anisotropic
case [13].

Table 1. Value of the H1 norm and L2 norm for initial (right) and resulting mesh
(left) as function of the number of elements(nbt) or vertices (nbv)

H1 L2 H1 L2 nbv nbt

0.0409041 0.00225554 0.0426227 0.00234673 57 84

0.0129854 0.000262934 0.0136801 0.000255626 271 473

0.00906429 0.000128142 0.00944111 0.000135652 368 659

0.00633305 6.43262e-05 0.0065542 6.88933e-05 684 1264

0.00470695 3.71549e-05 0.00493037 4.07533e-05 1141 2144
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Fig. 4. Plot of J (Th) as functions of nbt for f2(x, y), f3(x, y) et f4(x, y)

5.3 Towards Quad-Triangles Meshes

Moreover, as for saddle-shaped functions, quadrilaterals may offer a higher-
order approximation on a mesh [11], this procedure can be used for building
(anisotropic) quadrilaterals in the hyperbolic region through a simple triangle-
to-quad conversion [2].
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Fig. 5. Zoom of meshes of f4(x, y) = x2y + y3 + tanh(10(sin(5y) − 2x)) in the
parameter space (initial mesh on the left and final mesh on the right), (x, y) ∈
[−1, 1] × [−1, 1], x2 + y2 < 1.

Fig. 6. Resulting surface meshes for f2(x, y) (left) and f4(x, y) (rigth) where tri-
angulated mesh has been changed into a quad-dominant mesh in hyperbolic region
through a simple triangle-to quad conversion.

6 Conclusion

In this paper we have presented a simple methodology based on local mesh op-
erators for building optimal meshes for the H1 seminorm of the interpolation
error. Numerical results were presented to illustrate our approach.

• We have shown through numerical experiments that classical methods
based on the absolute value of the Hessian matrix of the solution allow
the construction of good meshes even for the H1 seminorm, especially
from the finite element viewpoint.
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• From a surface meshing viewpoint il would be interesting to study in detail
the optimization in H1 seminorm especially for building quad-dominant
meshes in anisotropic regions.

This method can be extended to 3D. In this case the local operators for
mesh modifications are much more complex : the edge swap operator modifies
the shell of an edge (ie all the tetrahedra around an edge) and the number of
possibly new tetrahedralizations of a shell of n elements is given by the Catalan
number C(n) = (2n−2)!

n!(n−1)! which shows the complexity of this operator.
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Summary. A mesh smoothing method based on Riemannian metric comparison is
presented in this paper. This method minimizes a cost function constructed from
a measure of metric non-conformity that compares two metrics: the metric that
transforms the element into a reference element and a specified Riemannian metric,
that contains the target size and shape of the elements. This combination of metrics
allows to cast the proposed mesh smoothing method in a very general frame, valid
for any dimension and type of element. Numerical examples show that the proposed
method generates high quality meshes as measured both in terms of element charac-
teristics and also in terms of orthogonality at the boundary and overall smoothness,
when compared to other known methods.

1 Introduction

In the context of numerical simulations, particularly in computational fluid
dynamics (CFD), the concept of mesh quality is always an issue. Smoothing
is a mesh modification method that can be used to increase mesh quality in
many ways. Most often, simple smoothing algorithms are used after initial
mesh generation or topological modifications to an existing mesh, in order
to equidistribute variations of size or shape globally or locally, see [1, 2] for
examples.

In this paper, a new mesh smoothing method based on the minimization
of metric non-conformity is proposed. The presented method, instead of opti-
mizing size or shape functions, directly compares an element’s actual metric
to a desired target metric. These metrics contain, in a single matrix entity,
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details on local size and shape. Since the algorithm is only dependant on a
specified metric, it can be used in different settings such as initial mesh gener-
ation, where the specified metric is constructed from geometric information,
or in a posteriori adaptation, where the metric is computed from a numerical
solution. Assuming that a correctly defined metric is specified, this paper ex-
plains how a mesh smoothing method can be devised to generate high quality
meshes with respect to the metric, while respecting high constraints for the
mesh such as constant number of vertices and constant connectivity between
vertices of the mesh.

The first section of the paper presents some of the works related to mesh
smoothing and discusses why a new smoothing algorithm is needed, that si-
multaneously accounts for both size and shape of elements. The concepts of
Riemannian metrics and non-conformity are explained next, in Sect. 3. The
paper then goes on to explain the smoothing method used to optimize the
non-conformity of a mesh (Sect. 4) and presents the prototype algorithm used
to validate the method. Numerical examples that illustrate the versatility of
the method and the quality of the resulting meshes are presented in the final
part of the paper, and conclusions are drawn.

2 Mesh Optimization by Smoothing

Smoothing methods can be separated into two categories: methods that opti-
mize size distribution and methods that optimize element shape.

In the size distribution methods category, the most common type of
smoothing is certainly Laplacian smoothing, where a vertex is moved to the
center of its neighbors. Examples of other size distribution methods include
physical analogies such as the spring analogy [3, 4] and particle potential min-
imization [5], methods based on the elliptical Poisson system [6, 7, 8, 9] as
well as “center of mass” methods [10, 11]. These methods have been used in
adaptive setting: they all have some kind of weight function or concentration
function that allows for spacing or size specification. Their main drawback is
that they provide very little control over element shape, since they are only
based on the measure of distance between points. They are not appropriate
when orthogonality or other shape properties are desired. Moreover, these
methods are subject to geometric tensions. This means that vertices are at-
tracted in concave corners, and this pulling effect can even result in the mesh
folding outside the geometry, since optimal positioning of nodes is based on
length and is not aware of domain boundaries. This behavior can be con-
trolled using constraints on the optimization process to enforce boundaries,
or concentration functions to reduce tensions. But these processes must often
be adjusted somewhat manually for a given class of geometries. This hints
to the fact that, as they are formulated, these optimization processes do not
entirely incorporate the underlying engineering and computational objectives
of smoothing.
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The second category of methods is shape based optimization. Some of the
best known methods in this category apply a complex optimization algorithm
to reduce a cost function based, for example, on angular criteria [12, 13] or on
shape distortion measures such as those presented in [14, 15, 16]. Most often,
these smoothing methods are used as a final step during mesh generation,
to regulate shape variations from an ideal shape, for example a square for
a two-dimensional quadrilateral element. The resulting meshes exhibit very
smooth shape distribution. The inherent limitation of these methods lies in
the fact that the definition of a perfect element shape is global. When a vertex
is moved, the optimization process tries to satisfy a specific shape which is
the same over the whole domain. These approaches are excellent to correct
unsatisfactory shape distortions in a generated mesh, but lack the capacity to
adapt vertex distribution to complex flow characteristics, that locally exhibit
highly anisotropic features. For this latter purpose, it is necessary to be able
to locally specify the exact shape desired, including anisotropy.

From the previous analysis, it becomes apparent that current methods lack
one of two kinds of control, either on size or shape. In the present work, the
goal it to unify these controls into a single target specification, and devise a
vertex relocation method capable of satisfying at best this specification. For
example, it could be necessary, in the same mesh, to specify highly anisotropic
orthogonal elements to resolve boundary flow near an airfoil while also spec-
ifying, in another region, highly anisotropic elements stretched in a specific
orientation and size to resolve a shock wave. In this case, a variation of a shape
based approach might seem best suited for the boundary layer part, while a
size based approach would probably yield the best results for the shock region.

Two or more smoothing methods can be combined either by successively
applying each one, sequentially or iteratively, or by minimizing a single cost
function obtained as an arbitrary combination of several simpler functions.
However, this type of combined method results in heuristic approaches that
are application and case dependant and thus, not as general as desired. In
the present work, a single cost function is used, rather than an arbitrary
combination of functions, in order to prevent spurious properties in resulting
meshes and case specific modifications to the function.

To obtain high quality meshes with local control of mesh characteristics,
a number of desired properties of the smoothing method have been identified.
The smoothing method should allow to:

1. simultaneously optimize both element size and shape;
2. specify variable anisotropic size and shape targets over the domain;
3. minimize a single cost function;
4. smooth both structured or unstructured meshes in 2D and in 3D;
5. construct non-folding meshes without constraining the optimization process.

The first three properties can be met using a cost function based on a
Riemannian metric, as the next sections will show. Also, since a metric-based
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specification of the target mesh characteristics is independent of element type,
the use of a cost function based on metric comparison ensures that the opti-
mization process be independent of the mesh and element types as well.

Furthermore, the present work aims to develop a general mesh smoothing
method that naturally converges towards non-folded meshes. Hence a formu-
lation of the smoothing problem is chosen that lends itself to unconstrained
optimization. Indeed, it is postulated that for the optimization process to
naturally result in high quality meshes without constraints, essentially entails
that the overall process be specifying a correct form of the mesh smoothing
problem. Here, a correct form of the smoothing problem refers to a formula-
tion where element size, element shape, presence of domain boundaries and
fixed mesh connectivity are intrinsically accounted for.

3 The Concept of Metric and Non-Conformity

The use of a Riemannian metric as a size and shape specification map for
adaptation of a mesh is a central concept to this paper. It has been first
introduced in [17] as a way to describe the size, stretching and orientation of
the mesh elements in a single matrix entity. It has been shown in works such as
[18, 19] to allow the control of mesh characteristics through the specification
of a single tensor defined on the domain.

A specified metric Ms can be constructed from a posteriori error estima-
tion or user defined functions as well as geometric properties. The Riemannian
metric is a general entity that can be used in any adaptation process, inde-
pendent of how it is constructed and what characteristics the user wants to
achieve through the adaptation process.

Smoothing using a metric involves moving mesh vertices so that each ele-
ment be as close as possible to the ideal size and shape, as measured in the
space defined by the specified metric. These ideal elements are the unit side
equilateral triangles or the unit squares in two dimensions and their equiva-
lents in three dimensions. Being of the ideal size and shape in the metric will
result in an element being of the specified size, stretching and orientation,
according to the metric.

The quality of a mesh can be measured using the non-conformity measure
presented for simplices in [20, 21] and extended to non-simplices in [22]. The
central idea is that the actual metric MK of an element K, the metric that
defines the transformation between the element in its present state and the
ideal element described before, must be equal to the specified metric:

MK = Ms. (1)

Two residuals can be computed from Eq. (1) and, when added, result in
the following non-conformity tensor:

Tnc =MKM−1
s +MsM−1

K − 2I (2)
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where Tnc is the non-conformity tensor and I the identity tensor. A norm is
then taken on this tensor to obtain a single non-conformity measure εK . There
are a number of possibilities for the choice of a matrix norm, and effects of this
choice still need to be determined, but the Frobenius norm is used throughout
this paper:

εK = ‖Tnc‖ =
√

tr (TT
nc Tnc). (3)

A global non-conformity measure εT for a whole mesh T has been defined
by Labbé et al [20] as the average of the elementary values:

εT =
1
n

n∑

i

εKi
(4)

where n is the number of elements in the mesh and εKi
the non-conformity

measure of element i. This measure is used in Sect. 5 to compare the global
quality among meshes obtained in numerical examples.

4 Non-Conformity Minimization

Smoothing a mesh using a Riemannian metric as a control function is not a re-
cent idea. A review of some tested methods can be found in [23]. In these earlier
methods, target size and shape are usually achieved by the use of optimiza-
tion algorithms based on geometric properties measured using the distance
between vertices. The distance LMs

between vertices A and B is measured in
the metric space using the vertices known coordinates in geometric space:

LMs
=
(
AB

TMs AB
)1/2

. (5)

Since all these methods use Eq. (5) in the definition of the weights or the
cost function, it means that they are length based. As discussed in Sect. 2,
it is inherent to these methods that they can result in regions of undesired
element concentration, even folding, in highly curved regions or in areas with
strong variations in the specified metric. The smoothing algorithm proposed
here prevents these effects by optimizing a function based on an element based
metric comparison instead of using a measure of edge lengths.

4.1 Choice of the Cost Function

Several cost functions can be constructed based on the elementary non-
conformity measure and the choice discussed here is independent of the res-
olution algorithm presented in Sect. 4.2. For our tests, the cost function f
chosen for optimization is the sum of the squared non-conformity measures of
the elements, as follow:

f =
∑

Ki∈T
ε2

Ki
(6)
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Knowing that the non-conformity measure vanishes for a perfect element and
increases exponentially as the element is modified from its perfect state, this
function will put more emphasis on bad elements than an algebraic average.
The results obtained using this cost function have been compared to those ob-
tained using the simple summation of the non-conformity measure, i.e. taking
εT as the cost function. In general, Eq. (6) generates better results in regions
where the non-conformity measure is quite similar over neighboring elements,
as it increases the distance between the values of the elements non-conformity
measures. Minimization of this function prioritizes reducing distortions of the
worse elements.

The optimization algorithm described in the next section uses Gauss-Seidel
iterations on the mesh vertices. Assuming a fixed position for all vertices ex-
cept one, the optimal position for this vertex V is the position where the
cost function f is minimized. Moving of vertex V only affects its neighbor-
hood N(V ) composed of elements Ki that own the vertex V . The optimal
position (xV , yV ) for vertex V is the one minimizing the contribution of the
neighborhood N(V ) to the cost function f

fV =
∑

Ki∈N(V )

ε2
Ki

. (7)

Figure 1 shows examples of two-dimensional neighborhoods that will be
used for the calculations presented next.

V

E1

E2 E3

E4

V
E1

E2

E3

E4

E5

Fig. 1. Neighborhood N of a vertex V

4.2 Minimization Algorithm

In order to minimize a cost function based on the non-conformity measure, the
algorithm presented by Seveno in [24] has been chosen. This algorithm can be
rated as a “brute force” method, since it is not based on standard optimization
methods, using, for example, computation of gradients. The optimal position
of a vertex is determined by sampling the cost function at various positions
around the current vertex position and choosing the one with the lowest value
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of the cost function. This sampling is performed a number of times for each
vertex, using a dynamic step size in each direction until convergence. The
global algorithm is a Gauss-Seidel scheme where each vertex is moved in an
arbitrary order, generally being the one in which vertices were listed in the
mesh input file, and the new computed position is updated right away to
influence the displacement of the next vertices. The algorithm is presented for
the two-dimensional case for simplicity, but its three-dimensional version is a
direct extension.

Algorithm 1 describes the global smoothing procedure. The maximum
number of iterations is set by the user in order for the code to stop if conver-
gence cannot be obtained. During each global iteration, the algorithm tries
to displace every vertex. The procedure is stopped completely and said to
have converged if the maximum displacement of all vertices is lower than a
user specified value usually around 0.1% of the average edge length of the
neigborhood. This criterion is very restrictive but is necessary in cases where
some vertices need to travel a great distance in the domain. The mesh could
be considered converged by a more relaxed criterion such as the average dis-
placement, but it could happen that some vertices do not completely travel
to their optimum positions.

Algorithm 1 Global Procedure
for iter = 1 to maximum number of iterations do

for vertex = 1 to last vertex do
Move vertex using Algorithm 2
Compute vertex total displacement

end for
Compute maximum vertex displacement
if Maximum vertex displacement < threshold value then

End the global iteration cycle
end if

end for

The displacement algorithm differs from the one proposed by Seveno’s
only in the evaluation of a different cost function and in the use of a local
definition of the displacement steps based on an averaged local element size.
The general idea of the method is described in pseudo-code in Algorithm 2
for the displacement of a single vertex inside one global Gauss-Seidel iteration
over all vertices.

After computing the cost function for the initial position of the vertex,
the algorithm tries to move the vertex to eight different positions around its
current one. It is moved by a distance δ in each direction. This δ starts at
a user defined value δinitial and is dynamically updated at each iteration of
the while loop. After testing the eight positions, the vertex is moved to the
one that reduces the cost function the most and the value of δ is increased
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Algorithm 2 Optimization of a vertex position
δ = δinitial

CFinitial = compute cost function for current position
CFbest = CFinitial

while δmin ≤ δ ≤ δmax do
for i = −1 to 1 do

for j = −1 to 1 do
Test position = (x + iδ, y + jδ)
CFtest = compute cost function for test position
if CFtest < CFbest then

CFbest = CFtest

ibest = i
jbest = j

end if
end for

end for
if CFbest < CFinitial then

Move vertex to (x + ibestδ, y + jbestδ)
δ = c δ

else
δ = δ/c

end if
end while

by a coefficient c to anticipate further movement. If none of the eight tested
positions reduces the cost function, the vertex stays at its initial position and
the value of δ is reduced by the factor c. The reduction of δ ensures that
points closer to the initial position will be tested, to see whether the optimum
position lies between the actual position and the ones previously tested. For
all examples presented in Sect. 5, the following values have been used:

δinitial = 0.1L (8)
δmin = 0.01L (9)
δmax = 0.5L (10)

c = 5 (11)

where L is the average edge length in the neighborhood N(V ).
In order to move vertices on the domain boundaries, a similar algorithm

is used. In this case, the algorithm relies on the parametric definitions of the
geometric entities that support the boundary edges and faces of the com-
putational domain. In these cases, the variable δ is defined in terms of the
parametrization of the underlying entity and the displacement is computed
from the parameter value at which the vertex was initially located. Then, the
positions tested are evaluated on the entity using a modified value of this
parameter.
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This algorithm yields very good results, as shown in Sect. 5. The main dis-
advantage of using this “brute force” approach is that it is slow. The testing of
so many positions has a serious impact on the computing performance. This
is caused by the fact that every time a position is tested, the non-conformity
measure must be evaluated on all the neighboring elements. In order to com-
pute these non-conformity measures, an average specified metric Ms must be
evaluated on each element using numerical integration as discussed in [22].
This operation is very costly because each integration point must be local-
ized and interpolated on the background mesh, which is usually the mesh
before smoothing, onto which the specified Riemannian metric field Ms as
been defined.

The next section shows that, at convergence, this algorithm generates
meshes of higher metric conformity than other previously used methods, such
as the spring analogy or edge length equidistribution.

5 Numerical Examples

This section presents a series of academic test cases for which minimization of
the mesh non-conformity measure using the proposed algorithm yields high
quality meshes when compared to previously published smoothing methods.
The main assumption regarding these tests is that the specified Riemannian
metric used to control the smoothing process can be computed correctly and
adequately represents a user’s needs.

5.1 Optimization of Shape

The first example presented is really simple. It is a rectangle geometry with a
structured 4×4 quadrilateral element mesh. The purpose of this example is to
show how sensitive to shape distortion the proposed algorithm is, compared to
edge length equidistribution. Obviously, the smoothest mesh, without using
concentrations, on this geometry is the one where all quadrilaterals are prefect
rectangles that fit the geometry.

Figure 2 shows the results of smoothing the mesh on this geometry using
edge length equidistribution in the image at left and minimization of non-
conformity measure in the image at right using a uniform Euclidean specified
metric. Smoothing using the first method generates a valid mesh. The ele-
ment are roughly the same size and vertical edges were lengthened so that
edge lengths become more uniform. However, shape is not optimized at all.
The color scale shows the resulting non-conformity measure of each element.
The global non-conformity measure for this mesh is εT = 102.061 and the el-
ementary non-conformity measure εK varies from 41 to 213. By comparison,
the second mesh is much better. Its non-conformity measure is εT = 56.966
and is the same for each element since the specified metric is uniformed. While
not perfect, one must keep in mind that the reference element is a unit square,
not a rectangle. But it can be seen that not only size was optimized but the
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Non-conformity Coefficient
213.02 170.41 127.81 85.206 42.603 0

Fig. 2. Edge length equidistribution versus minimization of non-conformity measure
in a rectangular domain

shape was also respected, yielding elements closer to the unit square than in
the other mesh.

5.2 Smoothing in Curved Regions

One of the main concerns while smoothing meshes is the introduction of geo-
metric tension, as described in Sect. 2. In this section, the example uses a
simple curved geometry in order to show that, compared to other smoothing
methods, effect of geometric curvature on final vertex position is minimal for
metric non-conformity based smoothing.

In this example, the computational domain is a two dimensional duct with
a 180o elbow, as shown in Fig. 3. The initial mesh used for the smoothing
procedure, also shown in Fig. 3, is a standard transfinite interpolation. If this
mesh were to be smoothed using widely used methods such as spring analogy
or standard elliptic smoothing, the results would not be satisfactory because
of geometric tensions in the curved regions. Images of the resulting meshes
can be found in [25].

For methods based on length only, such as the spring analogy, geometric
pulling on the vertices is not negligible. Since there is absolutely no control
on the shape of elements, vertices can be pulled outside the geometry, in
between the two arms of the duct, to reach the optimum positioning, as shown
in [25]. In the case of the elliptic smoothing, it is known that vertices are
naturally concentrated in the concave region while moving away from the
outer boundary. It is not necessary to mention, that even if the resulting
mesh is guarantied to be valid, this type of concentration is not a desired
effect.

These geometric tensions are very hard, if not impossible, to get rid of.
One of the solutions to reduce their effect on vertex positioning is to include
a criteria measuring shape in the optimization process and this is what is
naturally accomplished through metric non-conformity minimization. Figure 4
shows the result of the smoothing of the transfinite interpolation mesh of the
previous figure.
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Fig. 3. U-duct with a 199 × 35 transfinite interpolation mesh

Fig. 4. Mesh smoothed using non-conformity minimization and Euclidean metric

In order to get this mesh, a locally uniform Euclidean target metric was
specified. This metric is isotropic and the main diagonal is uniform and defined
by the local size around each vertex. The smoothing process took 8.87 hours on
an Athlon 2400+ processor to converge in 563 global Gauss-Seidel iterations.
The resulting mesh presents almost no sign of undesired concentrations in the
curved region. The mesh is really smooth in all directions and everywhere
enclosed in the prescribed geometry. Compared to the initial mesh that had
a non-conformity measure of εT = 5.10, this mesh reduced considerably this
measure to εT = 3.61 which is a good quality improvement considering the
fixed mesh connectivity.



282 Y. Sirois et al.

One can also notice the orthogonality of the elements at the boundaries.
This mesh characteristic is very useful in CFD for example, but is not inherent
to methods such as transfinite interpolation. Orthogonality must usually be
imposed through special conditions in optimization functions near the bound-
ary. In the case of non-conformity minimization, it is implied in the specifica-
tion of the reference element. When a boundary vertex needs to be moved, it
is almost certain that it cannot reach the desired element size, being restricted
to sliding on the boundary. In that case, the cost function tends to minimize
shape discrepancy between the reference element and the actual element to
reach the lowest cost function value it can. Since the desired element is a
square, the vertex will move to the position where its two adjacent elements

5.3

The next example shows how the method reacts to a more complex specified
metric. A CFD solution is computed on the same geometry. The mesh used
for this computation is shown in Fig. 5. Knowing that there will be boundary
layers present, the mesh has been concentrated near the boundary before
hands. Nothing else has been done to the mesh in order to not anticipate any
other flow characteristics.

Fig. 5. Mesh provided to the CFD solver and also initial mesh used in the smoothing
algorithm.

Figure 6 shows the flow speed solution obtained on the previous mesh.
Distinct flow characteristics such as the boundary layers and the detachment
of this layer after the elbow are noticeable in the solution. The boundary
layer detachment was not anticipated and should be better resolved with

Smoothing Using a posteriori Error Estimator

become closest to squares, generating orthogonal elements.
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Fig. 6. A) Isovalues of speed computed on the initial mesh. B) Mesh representation
of the metric computed from the CFD solution

an adapted mesh. The metric is constructed using error estimation on this
solution, resulting in an anisotropic metric field and the initial mesh has a
non-conformity measure of εT = 21.10.

In order to adapt on this solution, the specified metric is computed using an
error estimator based on the second derivative of the speed solution shown in
Fig. 6. This estimator creates an anisotropic Riemannian metric field defined
for each vertex position in the domain that gives the desired size, stretching
and orientation. A representation of this specified metric is given in the form
of an adapted mesh in Fig. 6 that satisfies almost perfectly the metric. Thus,
a high quality smoothed mesh should resemble at best the mesh of Fig. 6 in
terms of the size distribution and element shape and orientation, under the
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constraint of a fixed connectivity. Here, the mesh of Fig. 6 is meant only as a
visual representation of the specified metric and cannot be compared to the
other meshes shown, that have a fixed topology throughout the smoothing
process.

The result of smoothing the mesh of Fig. 5 using non-conformity mini-
mization with the a posteriori metric field yields the mesh shown in Fig. 7,
that has a non-conformity measure of εT = 7.81. This mesh is well adapted to
all flow characteristics, including the detachment of the boundary layer which
can easily be seen. Again, for the same reasons as in the previous example,
orthogonality at the boundaries is preserved, which is good considering the
complexity of the metric specified. This example converged in 18.06 hours and
659 global iterations

Fig. 7. Mesh smoothed using metric constructed from solution

This result can be compared to those obtained using pure spring analogy,
shown in Fig. 8. This later mesh has an average non-conformity measure of
εT = 16.79 compared to 7.81 for the mesh of Fig. 7. It can be seen that com-
pared to non-conformity minimization, it tends to concentrate elements in the
elbow almost to the point of folding outside the geometry. It can also be seen
in the figure that the distribution of elements is not as precise as with the
previous mesh if it is compared to the representation of the specified metric
of Fig. 6. Near the entrance for example, elements are too stretched along
the outer wall of the duct compared to inner wall elements, even though they
should be almost the same size. Moreover, orthogonality near boundaries is
not preserved when using spring analogy compared to non-conformity mini-
mization.

The same type of adaptation can be applied to a mesh with triangular
elements. Fig. 9 shows the result of this adaptation using the same metric
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Fig. 8. Mesh adapted using pure spring analogy

reaching non-conformity measure εT = 2.53. In this case, the original mesh
is the mesh of Fig. 7 where all elements were divided into two triangles.
Again, the result shows a mesh that exhibits the same characteristics as the
representation of the metric in Sect. 6. This shows that a cost function based
on a metric is really independent of the type of element in the mesh and
that the specified metric describes the same objective for all. This example
reaches convergence in 276 global iterations that took 3.46 hours. Notice that
the time is considerably shorter here because there is no need to use corner
sub-simplices on triangles and that the initial mesh was already adapted in
its quadrilateral form.

Fig. 9. Triangle mesh adapted using metric constructed from the CFD solution



286 Y. Sirois et al.

At some points in both cases, mainly in the elbow, right after the boundary
layer section and in the entrance section, some elements seem quite uneven
and irregular, forming an odd wavy pattern. What needs to be determined
here, is if it is the smoothing process or the metric itself that caused this.

In order to determine this, the mesh can be compared again to the one
of Fig. 6. The mesh of Fig. 6 clearly shows, near the elbow a rapid variation
from the smaller elements of the boundary layer to larger elements and then
back to smaller ones. It can also be seen that the metric requires similar size
and shape elements in the entrance section. This confirms that it is a feature
of the specified metric. The answer to this metric from the non-conformity
minimization algorithm is to try to distribute the limited number of vertices
according to the specified variations, and since there are too few vertices to
completely resolve the features in the metric, the result is a wavy pattern that
tries to satisfy the shape specification.

This example shows that the presented algorithm is also responsive to
anisotropic specification of the target size and shape while preserving general
orthogonality at the boundaries. Also, it is important to notice that the re-
sulting meshes are of higher quality than those obtained with other previously
tested smoothing algorithms [25]. The times showed here are very high, this
is simply because the algorithm has not been optimized for speed at the mo-
ment. It uses the restrictive criteria proposed in Sect. 4. Many modifications
can be applied to the algorithm in order to increase its speed. For example,
even close to convergence, every vertex is still considered and tested for dis-
placement. Choosing to move only vertices in regions where vertices moved in
previous iterations would reduce processing time in a significant way.

6 Conclusion

In the context of mesh adaptation, it is necessary to have a smoothing method
that is able to smooth any type of mesh elements in terms of both size and
shape and that allows to locally specify these characteristics in an anisotropic
way. In this paper, a smoothing method based on the minimization of a pre-
viously defined non-conformity measure has been presented to answer this
problem. The strong point of this method resides in the definition of a cost
function based on metric comparison, metrics that contain in a single matrix
entity, information of size, stretching and orientation desired at each specific
location. The construction of this single cost function also ensures that the
minimization is independent of the type of mesh elements.

Numerical examples have shown that smoothed meshes obtained using
the algorithm presented are of high quality and inherently present desired
characteristics such as boundary orthogonality. Also, we have seen that if
the choice of displacement step is small enough, the non-conformity measure
will prevent elements from going into a degenerate state, preventing folding.
Compared to other methods, it does not induce geometric tensions as for
length based methods and provide a way to specify shape as well as size.
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The optimization algorithm used to prototype the approach, which is based
on a brute force approach, is of course not the most elegant way of minimiz-
ing a cost function. While most other optimization methods use some type
of derivative approach to minimize the cost function, of the cost function
and since the cost function based on metric comparison is not easily differen-
tiable, the introduction of a better optimization algorithm, although essential
in practice, is left as future work.
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Summary. We study the problem of constructing asymptotically optimal meshes
with respect to the gradient error of a given input function. We provide simpler
proofs of previously known results and show constructively that a closed-form so-
lution exists for them. We show how the transformational method for obtaining
meshes, as is, cannot produce asymptotically optimal meshes for general inputs. We
also discuss possible variations of the problem definition that may allow for some
forms of optimality to be proved.

1 Introduction

In this paper, we study “optimal triangular meshes for minimizing the gradient
error”, as first described in the landmark paper by D’Azevedo and Simpson
in [2].

In particular they consider the problem of approximating an input bivari-
ate scalar function f(x1, x2) by a piece-wise linear triangle mesh that interpo-
lates f at its vertices. They are interested in approximations whose gradient
errors are less than an input ε in an L∞ sense, and are interested in the limit
behavior of the meshing method as ε → 0.

D’Azevedo and Simpson [2] described the following simple approach. Given
f ,

• Find a reparametrization of f (described by a mapping from the plane to
the plane) that is “isotropic” in gradient error.

• Lay down a regular triangulation in the reparametrized domain.
• Map this triangulation back to the original (x1, x2) domain (straightening

out any edges that have become curves).
• Sample f at the vertices of this triangulation to produce the piece-wise

linear approximation.

D’Azevedo and Simpson then show the following
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• They prove that a reparametrization that equidistributes gradient error
exists, and can be calculated as the solution to a specific two-dimensional
differential equation.

• They prove that if f is quadratic, then their method has at most 30%
more triangles than any other triangulation that has L∞ gradient error
less than ε.

• They argue that the same 30% bound should hold in the limit for arbitrary
f over any region where the determinant of H, the Hessian of f , is bounded
away from 0.

This method is very appealing because it creates an approximation using
a triangulation that has completely regular connectivity, a property that can
be very useful for finite element applications. Moreover, the triangulation is
the result of an explicit reparametrization step and so no optimization is
required. Of course the reparametrization does require knowledge of f , so this
may present somewhat of a bootstrapping problem, but in practice f may be
approximated. Additionally, similar to some other techniques [2, 3, 6], this
method only applies in regions where the determinant of H is bounded away
from 0, and so for more complicated functions it may need to be used in
conjunction with other global decomposition methods.

In this paper, we present the following new results

• We show that the isotropic reparametrization can be expressed in closed
form simply as the gradient of f . No differential equation solving is neces-
sary.

• We show that, in general, for a non-quadratic f the argument from [2] is
not complete, and in fact, when there are no bounds on the anisotropy of
H, then the amount of gradient error can be unbounded.

• We follow this with a discussion of some ideas we have explored to address
the limitations of the basic algorithm.

Our closed form expression for the reparametrization greatly simplifies
the method of [2]. It removes the need to solve a complicated differential
equation (compare [2] equation 3.3). It also makes the existence proof of the
reparametrization almost trivial (compare [2] section 7).

Unfortunately, we also show that for arbitrary f , the gradient error can
be unbounded. Informally speaking, a right isosceles triangle in the equili-
brating reparametrization will automatically have the “correct” aspect ratio
as determined by the eigenvalues of H, and will be “correctly” stretched in
the directions corresponding to the eigenvectors of H. But if the edges are
not additionally aligned with the eigenvector directions, then the resulting
triangulation can have large angles, arbitrarily close to 180 degrees.

For a quadratic function f , the eigenvector directions are spatially invari-
ant, and so one can always rotate the domain to align its axes everywhere with
the eigenvectors. For a non-quadratic function, this is generally not possible.
These resulting triangles can thus exhibit arbitrary gradient error.
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Negative results of this kind have appeared elsewhere. Reference [5] shows
that it is, in general, not possible to obtain meshes through the transforma-
tional method that satisfy the orientation and equidistribution property for
any adaptation function that specifies the shape and orientation of elements
at every point. Although ours is somewhat of a negative result, we hope that
the readers will value the clarification of the strengths and weaknesses of the
method described in [2].

2 Reparametrization

Consider the problem of approximating an input scalar function f(x1, x2) de-
fined over the plane with a piece-wise linear triangle mesh. The mesh exactly
interpolates f at the vertices and is linear inside triangles. Such a mesh defines
a continuous piece-wise linear approximation of f . We define the point-wise
gradient error at each (x1, x2) to be the squared L2 norm of the difference be-
tween the gradient of f and the gradient of the mesh approximation. Because
the mesh represents a piece-wise linear function, it’s gradient is piece-wise
constant, and can be evaluated only in the interior of triangles. This defini-
tion of gradient error follows [2].
Define the gradient error of the triangulation to be the maximum point-wise
gradient error over the entire domain.

At every point in the plane, define the Hessian matrix of f with respect
to the coordinates xi, with entries

Hij =
∂2f

∂xi∂xj

As done in [2], we restrict ourselves to a domain in the plane where H is
non-degenerate (determinant bounded away from 0).

At each point, define the (positive definite) squared Hessian matrix Q =
HT H. As described in [2], this matrix is related to the gradient error for very
small triangles. If, as in [2], we assume that for every small triangle, there is an
interior (or very close) point x0 where the triangle’s gradient exactly matches
the gradient of f , then the gradient error at any other point x interior to the
triangle is approximately H(x − x0) = Hr, where H is the Hessian matrix
of the Taylor expansion of f around x0, and r = x − x0 is a very small
displacement. The squared L2 gradient error at a point is thus rT HT Hr =
rT Qr (plus higher order terms).

Under the transformational method it is our goal to find a reparametriza-
tion of the plane such that Q becomes the identity matrix.

In [2] it is shown that such an isotropic transformation always exists for
any smooth f , and they provide a differential equation that can be numerically
integrated to find the solution. As discussed in [2], finding such a reparame-
trization has implications in finding triangulations with low gradient error.
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2.1 A Closed Form Reparametrization

Here we present a simple closed form for a reparametrization of the plane such
that Q becomes the identity matrix.

We interpret the matrix Q = HT H of section 2 as the coordinates of the
(0, 2) error tensor

qab =
∑

ij

Qij(dxi)a(dxj)b

where the a and b subscripts are coordinate-free tensor place holders and the
(dxi)a make up the basis of covectors at each point [1].

Assume that we have reparametrized the plane using new coordinates

[x̂1(x1, x2), x̂2(x1, x2)]

We can then re-express the original tensor q as

qab =
∑

ij

Q̂ij(dx̂i)a(dx̂j)b

with some new appropriate matrix Q̂. Define the Jacobian matrix of the
reparametrization at each point as

Jij =
∂x̂i

∂xj

then, following the well known “basis change rule” [1], we have

Q̂ = J−T QJ−1 (1)

Note that this matrix Q̂ is not the square of a matrix with entries ∂2f
∂x̂i∂x̂j

.
Rather it represents the coordinates of the original tensor re-expressed in the
new parametrization.

Define a parametrization (x̂1, x̂2) to be isotropic if Q̂ = I.

Define the gradient parametrization as

x̂i =
∂f

∂xi
(2)

Theorem 1. Given a bivariate function f(xi) in a region where its Hessian
matrix is non-singular, then the gradient parametrization is an isotropic para-
metrization.
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Proof. The entries of the Jacobian of this parametrization are

Jij =
∂

∂xj

(
∂f

∂xi

)
=

∂2f

∂xj∂xi
= Hij

Under this parametrization, the matrix Q̂ can be computed as

Q̂ = J−T QJ−1 = J−T (HT H)J−1 = H−T (HT H)H−1 = I

�

This proves that an isotropic parametrization exists, and that it can be
computed in closed-form using equation (2).

Theorem 2. The isotropic parametrization of equation (2) is unique up to
rigid isometry.

Proof. Consider any isotropic parametrization x̃(x) that is different from the
gradient parametrization x̂(x). Because the Jacobian of x̂(x) is the Hessian
(H) of f , and H is everywhere non-singular, then x̂(x) is invertible. We can
always write the new isotropic parametrization as x̃ = s◦ x̂, where s = x̃◦ x̂−1.
In a certain sense, s tells us how x̃ differs from x̂.

If K is the Jacobian of x̃(x), then S ≡ KH−1 is the Jacobian of s. From
equation (1) and the fact that x̃ is an isotropic parametrization, we know that
it must satisfy

Q̂ = K−T QK−1 = K−T (HT H)K−1 = I

or in other words

(KH−1)T (KH−1) = ST S = I

Which shows that S is everywhere orthogonal. It follows that, since s is a map-
ping between two planar domains with an everywhere orthogonal Jacobian, s
must be a rigid isometry [7]. �

It is also a tedious but straightforward calculation to show that the gra-
dient parametrization, in fact, satisfies the differential equation given in [2]
(equations 3.3 to 3.6).

We first note that, in the above proofs, there is no explicit mention of
the dimensionality of the input domain, suggesting that the above is a proof
that the gradient map is the solution to any equivalent problem posed in an
arbitrary-dimensional Euclidean space.

Corollary 1. Given an input function f : Rn → R, in a region where its
Hessian is non-singular, the gradient parametrization of equation (2) is an
isotropic parametrization. This isotropic parametrization is unique up to rigid
isometry.

We can conclude that, given an input with a non-singular Hessian, there
always exists a mapping that can transform the original domain into one in
which the gradient error is isotropically distributed, and that this mapping is
always the gradient map composed with some rigid isometry.
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2.2 Alignment

For purposes of error analysis, it will later be important to study the relation
between the orientations of edges of a triangulation in the original and repara-
metrized spaces. We present this analysis here to establish some notation and
concepts that will be useful through later sections.

We can study the relation between the orientations of edges in the original
and transformed domains for meshes that are increasingly fine by looking at
simple differential properties of a reparametrization m : Rn → Rn. Given a
triangle edge starting at x and oriented in direction v, it will be oriented
in direction w = m(x + v) − m(x) when transformed by m. We can see
that, in the limit as triangles become smaller and smaller, and their edges are
equally shrunk, an edge with orientation v will map onto an edge oriented
in the direction of w = Dvm (the derivative of m in the direction v) in the
reparametrized domain.

Given an input function f with an everywhere non-singular Hessian,
Define an aligned isotropic parametrization to be an isotropic parametriza-
tion that maps the eigenvector directions of H onto the coordinate directions
of the isotropic domain.

From our knowledge of the properties of isotropic parametrizations, we
can easily compute the form that an aligned isotropic parametrization has. If
the (generally spatially varying) Hessian of the input is H = RT ΛR, where R
is orthogonal, and Λ is diagonal, then, as proved in section 2.1, any isotropic
parametrization m will have a Jacobian K = SH = SRT ΛR, where S is a
constant orthogonal matrix.

This parametrization will transform the i-th eigenvector vi of H into

wi = Dvi
m = Kvi = SRT ΛRvi = (SRT ) · (λiêi) (3)

where λi is the eigenvalue corresponding to vi and êi is the i-th coordinate
direction. By definition, an aligned isotropic parametrization is one for which,
for all i, this wi is in the direction of êi. From equation (3) and the fact that
SRT is an orthogonal matrix, we conclude that for m to be aligned it must be
that SRT = I, that is S = R. In conclusion, we see that an aligned isotropic
parametrization is an isotropic parametrization that is the composition of the
gradient parametrization with an isometry with Jacobian S, where at every
point it is S = R.

Because, as proved in section 2.1, the orthogonal matrix S is constant,
we can state that an aligned isotropic parametrization only exists for input
functions f for which R is constant (e.g. a quadratic f). In conclusion, for
general inputs f for which R is spatially varying, an isotropic reparametriza-
tion exists, but an aligned isotropic one doesn’t. This fact will prove to be
crucial in later sections.
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3 Asymptotically Optimal Meshing

We are now in a good position to analyze the problem of asymptotically
optimal meshing with respect to gradient error as defined above. Consider
a mesh such that every triangle in the mesh has gradient error (as defined
in section 1) bounded by a constant ε. For any given mesh and bound ε, we
define the efficiency of the mesh to be the average area of its triangles. An
optimal mesh is one that has the highest efficiency among all others for a
given ε bound, because it must have the minimum number of triangles when
meshing any finite domain.

Given a mesh T with an error bound of ε and efficiency ν(T ), its compet-
itiveness ratio is defined as ν(T )/νo(ε), where νo(ε) is the optimal efficiency
for this error bound. Note that for a domain which is a finite area of the plane
(x1, x2), we can also measure the competitiveness ratio using the “average
area” in a reparametrized domain (x̂1, x̂2). This is true because the total area
before and after the reparametrization is simply related by a constant.

A meshing algorithm A that can take any ε and produce a mesh T = A(ε)
with an error bound of ε is said to be asymptotically optimal to within a

constant λ if lim
ε→0

ν(A(ε))
νo(ε)

≥ λ.

3.1 Transformational Meshes

We describe here the process of obtaining a mesh from a transformation, and
the subsequent steps that we take to analyze the error of its triangles. We first
assume that the transformation, or reparametrization, that we apply to the
original domain where the input f is defined is an isotropic transformation,
and therefore is the gradient map composed with some isometry. As before,
we call the original domain x and the isotropic one x̂.

For any given value of the error threshold ε, we seek to find a triangulation
with squared gradient error bounded by ε. We first lay out a regular grid
of right-isosceles triangles in the x̂-domain, as in figure 1 (left). We then
map the vertices of these triangles to the x-domain and connect them with
straight edges using their original connectivity, as shown in figure 1 (middle).
This defines the transformational mesh. The function f is then sampled at
the vertices of the transformational mesh, and approximated as a piece-wise
linear function.

To analyze the error of the transformational mesh’s triangles we take an-
other further step, and transform the mesh back to the isotropic domain.
Consider the highlighted triangle in the x-domain of figure 1 (middle), with
vertices x1, x2, and x3. When we map the triangle back onto the x̂-domain
we obtain the highlighted triangle �x̂1x̂2x̂3 of figure 1 (right). Notice that,
although the vertices of this triangles lie on a uniform grid, its edges are in
general curved, since the gradient map is in general a non-linear transforma-
tion. We can compute the gradient of the triangle �x1x2x3, which is simply
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Fig. 1. A regular grid of right-isosceles triangles in the reparametrized domain (left).
The corresponding set of triangles shown in the original domain (a transformational
mesh) (middle). The marked triangle transformed back to the reparametrized do-
main (right).

the gradient of the piece-wise linear approximation formed by �x1x2x3. This
gradient can be identified as some point x̂∗ in the x̂-domain, as shown in figure
1 (right). This is so because the x̂-domain really represents (up to isometry)
the gradient space of the input function, and so the gradient x̂∗ will correspond
to some location in the x̂-domain.

Once this setup is complete, the task of measuring gradient error is simple.
In the x-domain, the squared gradient error between any point in the interior
of a triangle and the piece-wise linear approximating mesh is the squared
distance between the gradient of f at that point and the gradient of the
triangle that the point lies in. In other words, we can measure this error
in the x̂-domain by simply taking squared euclidean distances between any
point interior to a transformed triangle and its gradient x̂∗. Finally, we point
out that composing the gradient parametrization with an isometry does not
change this reasoning since, by definition, isometries do not change distances
between transformed points. Thus the above analysis applies to any isotropic
parametrization.

3.2 Quadratic Input

We first analyze the behavior of the above construction when applied to a
simple quadratic input f . The relevance of this simpler case is that, as pointed
out in [2], the behavior of an arbitrary input is very similar to that of the
quadratic case when we look at meshes in the limit as they become finer and
finer.

Consider an input function f with constant Hessian. This Hessian H is
symmetric real and can be decomposed as H = RT ΛR, where Λ is diagonal
and R is a rotation by θ radians. Let us refer to the eigenvalues of H as λ1

and λ2. Consider for analysis a right-isosceles triangle in the x̂ domain with
coordinates x̂1 = ô+

√
ε
2 (−1,−1), x̂2 = ô+

√
ε
2 (1,−1), and x̂3 = ô+

√
ε
2 (−1, 1)
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(because it is expressed in generic form as a function of the coordinates of its
circumcenter ô, this analysis applies to any triangle in a regular grid of right-
isosceles triangles.) We use an isotropic parametrization x̂ in general form,
that is, computed as the gradient parametrization composed by an isometry
with Jacobian S, where S is a rotation by α radians. Note that, because
the gradient map of a quadratic function is a linear map, both this triangle
and its corresponding triangle in the x-domain have straight edges. In order
to analyze the error inside this triangle, we compute its gradient ∇f∗ (the
gradient of its supporting plane) and the location of this gradient in the x̂-
domain: x̂∗ = S∇f∗. We can show (see appendix) that x̂∗ is such that

‖x̂∗ − ô‖ =
√

ε| sin[2(θ − α)]µ| (4)

with

µ =
1

2
√

2
(λ1 − λ2)[

λ1

λ2
(1 + sin(2θ)) +

λ2

λ1
(1− sin(2θ))] (5)

From equation (4) we can conclude that if θ = α, that is, if S = R and
therefore if the isotropic reparametrization is aligned, as defined in section 2.2,
then x̂∗ = ô. In this case, because the error of a triangle is the maximum
distance between any of its interior points and x̂∗, we can conclude that the
error of this triangle is exactly ε. (Recall that since f is quadratic, the isotropic
image of �x1x2x3 is a triangle with straight edges.)

Clearly, as was argued in [2], in any optimal triangulation, the isotropic
image of each triangle cannot have an area greater than that of an equilateral
triangle circumscribed by a circle of radius

√
ε (otherwise, it could not have

gradient error bounded by ε). Each of our right-isosceles triangles is only 23%
smaller than such an equilateral triangle, so the average area (measured in
the isotropic domain) of the triangles obtained by this algorithm can be no
smaller than 77% of the average area of the triangles of an optimal triangu-
lation. Therefore if the reparametrization is aligned isotropic, we conclude, in
agreement with [2], that the induced transformational mesh is asymptotically
optimal.

We can also compute a lower bound on the approximating error (E) for any
right-isosceles triangle. In particular, for any point x̂ interior to the triangle
we have

E(x̂) = ‖x̂− x̂∗‖2 = ‖x̂− ô− (x̂∗ − ô)‖
≥ max{0, ‖x̂∗ − ô‖ − ‖x̂− ô‖}2

≥ max{0, ‖x̂∗ − ô‖ − sup{‖x̂− ô‖}}2

≥ max{0,
√

ε| sin[2(θ − α)]µ| −
√

ε}2

= ε ·max{0, | sin[2(θ − α)]µ| − 1}2

(6)

We can notice from equation (6) that if θ 
= α, that is, if S 
= R (the
reparametrization is not aligned), then the gradient error in a triangle can
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be arbitrarily large if we are not to place any restrictions on the amount of
anisotropy of f .

Intuitively, the amount of gradient variation of f inside such a triangle
is bounded by ε, but in the non-aligned case, the gradient of the piece-wise
linear approximation can still be significantly different from the gradient of f
(everywhere) in the triangle.

In figure 2 we show two triangulations resulting from isotropic parame-
trizations. On the left, we show the point-wise gradient error obtained when
using the aligned parametrization. In this case, the triangles all have small
(90◦ or less) angles, they have zero error at their circumcenter (at the midpoint
of one of their edges), and error bounded by ε elsewhere. On the right, we show
the result using a non-aligned parametrization. In this case, the triangles can
have arbitrarily large error, they might not have zero error anywhere (they
might actually not interpolate the gradient), and they often have large angles.
This link between large gradient error and large angles has been pointed out
before (see [4] for example).

In [2] an aligned isotropic reparametrization for the quadratic case is com-
puted ([2] equation 2.8), and in [2] theorem 2.1, it is proved that this will
result in an optimal triangulation. As we have shown, there are in fact many
isotropic reparametrizations, but only the one that is aligned has guarantees
that it leads, for any quadratic input, to an asymptotically optimal mesh.
This distinction is not made explicit in [2]. This leads them to incorrectly
conclude in their section 3 (the non-quadratic case), that the isotropic para-
metrization they find (which is generally not everywhere aligned), will result
in an asymptotically optimal triangulation.

Fig. 2. Gradient approximation error graphed for a transformational mesh derived
from an aligned isotropic reparametrization (left), and a non-aligned isotropic one
(right). The bar on the far right shows the error scale (white is zero error). The
input function is f(x1, x2) = 0.156(x1)

2 + 0.318(x2)
2 − 0.281x1x2.
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3.3 Arbitrary Input

For non quadratic input, the eigenvector directions of H = RT ΛR, and there-
fore R, will in general be spatially varying. As a result, for an isotropic repara-
metrization with Jacobian SH where S is orthogonal, (except for a curve of
measure 0) we will generally have S 
= R, which corresponds to θ 
= α in
equation 6. In these regions, if λ1 � λ2 (f is highly anisotropic), then for any
regular right-isosceles triangulation of the isotropic reparametrized domain,
the gradient error will be accordingly large, and the triangles will have to be
made much smaller than optimal. If no bounds are placed on the anisotropy
of f , then to meet a gradient error threshold the triangles may be arbitrarily
small, and an optimality bound cannot in general be met.

Fig. 3. Point-wise error of a transformational triangulation (left), and worst per-
triangle error of the same triangulation (right). The bar on the far right shows the
error scale (white is zero error). The lowest worst error is in the triangles in a vertical
band around the center of each triangulation, where the eigenvectors of H are better
aligned with the coordinate directions in the isotropic reparametrization. The input
function is f(x1, x2) = 1/

√
(x1)2 + (x2)2. Shown is a region slightly away from the

singularity.

One can of course still obtain upper bounds on the error, if one imposes an
anisotropy bound on f , but this is a much weaker result than hoped for, and
much less than what can be achieved in the quadratic case, where asymptotic
optimality is guaranteed for an arbitrary quadratic input.

In practice we have seen that the error can grow quite large even when
the amount of anisotropy is not very extreme. In figure 3 we show a trans-
formational mesh obtained from an isotropic reparametrization. The lowest
errors are found in a vertical band around the center of each image, where the
alignment happens to be best (S is closest to R).
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3.4 Relaxing Continuity

We can attempt to relax the problem definition in a way that might make it
easier to obtain asymptotically optimal meshes. In particular, we can consider
a variation of the problem where we do not sample f at vertices, but directly
interpolate both f and its gradient at some interior point of a subset of the
mesh’s triangles.

Clearly if we relax the problem definition and allow the mesh to not have
C0 continuity, then it is possible to obtain asymptotically optimal meshes in
the limit. We can lay out a uniform grid of triangles in isotropic space, and
simply treat each triangle separately. We then require that each triangle ex-
actly interpolate the function f and its gradient at its circumcenter. The error
in each triangle then will be bounded by ε, the resulting mesh is optimally effi-
cient in the limit. Since this method is simply interpolating f and its gradient
at its center, we can just as easily use a uniform grid of equilateral triangles.

In practice a mesh that doesn’t even have C0 continuity might not be very
useful. We can do slightly better by constructing the “non-conforming” mesh
of figure 4, which will be guaranteed to be C0 at the edges’ midpoints. In this
mesh of equilateral triangles (in isotropic space), the input f and its gradient
are sampled at the circumcenter of every marked triangle. This determines the
piece-wise linear approximation f̄ at triangles that are marked. We construct
f̄ at all other triangles by reading the values of f̄ at the midpoints of edges of
marked triangles. We can see that every edge in the triangulation is incident
to exactly one marked triangle, and so this construction exactly determines f̄
without over-constraining it.

In appendix B, we show that in the quadratic case, this produces asymp-
totically optimal meshes when any isotropic reparametrization is used, even
an unaligned one. Because in the non-quadratic case we can always compute

Fig. 4. A non-conforming triangle mesh that is C0 continuous only at the edge
midpoints in the isotropic domain (left). The construction used in the appendix for
showing C0 continuity at midpoints and bounded error (right).
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an isotropic parametrization and alignment is not necessary, and because in
the limit the approximation’s behavior is dominated by its low order behavior,
we conjecture that a formal proof of its optimality can be constructed.

Again, the obvious drawback is that this is a non-conforming triangle mesh
that is only guaranteed to be C0 at edge midpoints.

4 Asymptotically Optimal Triangulations

Although we have shown that a transformational mesh, as defined, cannot
produce guarantees on asymptotical optimality for an arbitrary input, our
analysis does provide a deeper understanding of the problem of asymptotically
optimal meshing.

We have also shown how a regular grid of right-isosceles triangles in an
isotropic reparametrization has error bounded by ε if all triangles are perfectly
aligned (that is, if their edges in the original parametrization are aligned with
the eigenvectors of H), and that their efficiency is ε: only 23% lower than the
maximum attainable efficiency. Therefore such a triangulation is guaranteed
to be asymptotically optimal to within at least 77%.

In practice, obtaining such a triangulation may prove too hard, and we can
obviously allow some flexibility by permitting the triangulation to include non-
aligned triangles that have an error bounded by ε, and an area possibly much
smaller than the maximum attainable efficiency, so long as the proportion
of these triangles to the total goes to zero when we make the triangulation
increasingly fine. This approach may provide a future avenue for obtaining
provably asymptotically optimal meshes. We plan to explore this possibility
in future work.
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Appendix A

Suppose that we are given an input quadratic function f with Hessian H =
RT ΛR, where, as in section 3.2, R is a rotation by θ radians, and Λ has
eigenvalues λ1 and λ2. We consider an isotropic parametrization x̂ of the
x-domain that is the composition of the gradient parametrization with an
isometry having orthogonal Jacobian S, where S is a rotation of the plane
by α radians. We first compute the expression of the gradient of a triangle
that, in the x̂-domain, has vertices with coordinates x̂1 =

√
ε
2 (−1,−1), x̂2 =√

ε
2 (1,−1), and x̂3 =

√
ε
2 (−1, 1). This triangle can be mapped to the x-

domain and considered as a piece-wise linear element. As such, it will have a
gradient, which we then transform to the x̂-domain by applying the rotation
S. The final coordinates of this transformed gradient x̂∗ in the x̂-domain can
be used to derive error bounds for the triangle. We then show that if we were
to translate all the points of this triangle in the x̂-domain by a vector ô we
would get the same result, that is, the value of x̂∗ is the same as before except
that it is also translated by ô.

If the input function is an arbitrary quadratic function f(x) = c + gT x +
1
2xT Hx, where c is an arbitrary constant and g an arbitrary vector, then
we can write the relation between the x and the x̂ domains. Because the
parametrization is by definition x̂ = S∇f(x), and ∇f(x) = g + Hx, then we
can say that

x = H−1(ST x̂− g) (7)

Because the triangle �x1x2x3 linearly approximates f in the x-domain,
we can write

f∗ − f1 = u · (f2 − f1) + v · (f3 − f1)

where f∗(x) is the linear approximation, fi = f(xi), and u and v are (the first
two) local barycentric coordinates of the triangle. The scalars (u, v) are such
that at any point x we can write

x− x1 = P

[
u
v

]

P =
[
x2 − x1 x3 − x1

]

We can write the gradient of f∗ as

∂f∗

∂xi
=

∂f

∂u

∂u

∂xi
+

∂f

∂v

∂v

∂xi

which can be rewritten as

∇f∗ = P−1

[
f2 − f1

f3 − f1

]
(8)

We now compute the two terms of the right-hand side of equation (8).
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Because x2 − x1 = H−1ST (x̂2 − x̂1) and x3 − x1 = H−1ST (x̂3 − x̂1), and
from the definition of P and of x1, x2, and x3 we find that P =

√
2εH−1ST

and

P−1 = (
√

2ε)−1SH

On the other hand, the expressions for f2 − f1 and f3 − f1 simplify to

f2 − f1 =
ε

4
(
[

1
−1

]T

SH−1ST

[
1
−1

]
−
[
−1
−1

]T

SH−1ST

[
−1
−1

]
)

f3 − f1 =
ε

4
(
[
−1
1

]T

SH−1ST

[
−1
1

]
−
[
−1
−1

]T

SH−1ST

[
−1
−1

]
)

If we call B = SHST , then we know that det(B) = det(H), and that B can
be decomposed as B = (RST )T Λ(RST ) where RST is a rotation of the plane
by θ−α radians. In particular, the off-diagonal entry of B is B12 = 1

2 sin(θ−
α)(λ1−λ2), and we can also verify that B−1

12 = −B12/det(B) = −B12/det(H).
This allows us to simplify the above equations into

f2 − f1 = εB12/det(H)
f3 − f1 = εB12/det(H)

From this we can compute

∇f∗ = P−1

[
f2 − f1

f3 − f1

]

=
√

εB12
SH

det(H)

[
1/
√

2
1/
√

2

]

Because x̂∗ = S∇f∗, then

x̂∗ =
√

ε

2
sin[2(θ − α)(λ1 − λ2)]

S2H

det(H)

[
1/
√

2
1/
√

2

]
(9)

We can compute the norm of x̂∗ by taking into account that S2 is an orthog-
onal matrix and therefore

‖x̂∗‖ =
√

ε

2
√

2
| sin[2(θ − α)](λ1 − λ2)[

λ1

λ2
(1 + sin(2θ)) +

λ2

λ1
(1− sin(2θ))]|(10)

We now consider the more general case of an arbitrary triangle T =
�x̂′

1x̂
′
2x̂

′
3 in the x̂-domain that is the translation of the above �x̂1x̂2x̂3 by an

arbitrary vector ô in the x̂-domain. Where in this notation it is x̂′ = x̂ + ô. In
this case we want to compute x̂′∗− ô and its norm, where x̂′∗ is the gradient of
triangle �x′

1x
′
2x

′
3 transformed by S. We can write the relation between points

in the x̂ and x-domains as
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x = H−1(ST x̂′ − g) = H−1(ST x̂ + ST ô− g) = H−1[ST x̂− (g − ST ô)] (11)

We now consider the problem of approximating not f but the function
f̄(x) = f(x) − ôT Sx. Because the gradient of f̄ at the origin is g − ST ô, we
can see that equation (11) is formally the same as (7) if we are approximating
f̄ as opposed to f . We can apply the same analysis as above and find that,
because f̄ and f have the same Hessian, the approximated gradient of f̄ is

∇f̄∗ =
√

ε

2
sin[2(θ − α)(λ1 − λ2)]

SH

det(H)

[
1/
√

2
1/
√

2

]

But because a linear approximation that is based on interpolating a func-
tion at three points reproduces linear functions, and f = f̄+ôT Sx, we find that
if we had been approximating f we would’ve obtained that ∇f∗ = ∇f̄∗+ST ô.
We are now interested in computing x̂′∗ − ô, which we can obtain by multi-
plying the expression for ∇f∗ by S, and subtracting ô

x̂∗ − ô =
√

ε

2
sin[2(θ − α)(λ1 − λ2)]

S2H

det(H)

[
1/
√

2
1/
√

2

]

whose norm is

‖x̂′∗ − ô‖ =
√

ε

2
√

2
| sin[2(θ − α)](λ1 − λ2)[

λ1

λ2
(1 + sin(2θ)) +

λ2

λ1
(1− sin(2θ))]|

Which has the same form as equations (9) and (10).

Appendix B

We show here that the triangulation shown in figure 4 (left) has gradient
error bounded by ε and has C0 continuity at edge midpoints. Given an input
function that is an arbitrary quadratic function f(x) = c + gT x + 1

2xT Hx,
where c is an arbitrary constant and g an arbitrary vector, then we can write
the relation between the x and the x̂ domains. Because the parametrization
is, by definition, x̂ = S∇f(x), and ∇f(x) = g + Hx, we can say that

x = H−1(ST x̂− g) (12)

Consider the triangles shown in figure 4 (right) in the isotropic domain
x̂. Their circumcenters are ôi and the midpoint of their shared edges are
m̂i = 1

2 ô1 + 1
2 ôi, i ∈ {2, 3, 4} (their counterparts in the original domain are oi

and mi). For those triangles that are “marked”, the input f and its gradient
are sampled at their circumcenter ôi, i ∈ {2, 3, 4}, and thus their gradient error
is ε. This sampling completely determines the piece-wise linear approximation
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f∗ of f inside marked triangles. At the midpoints m̂i of edges, we sample
f∗ from the single marked triangle incident to the edge. Setting the values
of f∗ at m̂2, m̂3, and m̂4 then completely determines the piece-wise linear
approximation at T1. C0 continuity at the midpoints m̂i is guaranteed by
construction. To prove that the gradient error at T1 is bounded by ε we simply
show that the construction above will produce the same values of f∗ at the
midpoints m̂i (and therefore the same linear approximation inside T1) as if
we had sampled f and ∇f at the circumcenter of T1.

For triangle Ti, i ∈ {2, 3, 4} , we can compute the sampled value f∗(mi) =
f(oi)+∇f(oi)T (mi− oi). Similarly, for T1, we can compute the value that f∗

would have at m̂i if we had obtained it by sampling f and ∇f at o1: f̄∗(mi) =
f(o1) +∇f(o1)T (mi − o1). We now only have to prove that f∗(mi) = f̄∗(mi)
for i ∈ {2, 3, 4}.

We first compute f(oi), i ∈ {1, 2, 3, 4}. From (12) we know that oi =
H−1(ST ôi − g), and so

f(oi) = c + gT H−1(ST ôi − g) +
1
2
(ôT

i S − gT )H−1(ST ôi − g)

= c− gT H−1g +
1
2
gT H−1g +

1
2
ôT

i SH−1ST ôi

(13)

Because (from our definition of the reparametrization) ∇f(oi) = ST ôi, we
can write

f∗(mi) = f(oi) +∇f(oi)T (mi − oi)

= c− gT H−1g +
1
2
gT H−1g +

1
2
ôT

i SH−1ST ôi + ôT
i SH−1ST (m̂i − ôi)

= c− gT H−1g +
1
2
gT H−1g +

1
2
ôT

i SH−1ST ôi

+ ôT
i SH−1ST (

1
2
ôi +

1
2
ô1 − ôi)

= c− gT H−1g +
1
2
gT H−1g +

1
2
ôT

i SH−1ST ô1

(14)

While on the other hand

f̄∗(mi) = f(o1) +∇f(o1)T (mi − o1)

= c− gT H−1g +
1
2
gT H−1g +

1
2
ôT
1 SH−1ST ô1 + ôT

1 SH−1ST (m̂i − ô1)

= c− gT H−1g +
1
2
gT H−1g +

1
2
ôT

i SH−1ST ô1

(15)
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Abstract. For a variety of structural finite element analyses on automotive body panels, 

aerospace wings and space satellite panels, high-quality, structured quadrilateral meshing is 

imperative. Transfinite meshing, the technique to produce such meshes is severely infringed 

by the presence of surface-interior point constraints. The present paper attempts to solve the 

inverse problem of transfinite meshing with interior point cointraints. A modified Newton 

Raphson based solution is proposed to inverse solve Coons bi-linear blending equation. The 

Coons parametric coordinates are thus determined for a set of face-interior points from their 

global coordinates. The boundary of the surface is next seeded with “soft-points” at 

reflected locations and smart-discretized to result in high fidelity, high-quality transfinite 

meshes.

Keywords: Point constraint, mesh, transfinite, mapped, structured, Coon's Equation, 

Newton-Raphson

1. Introduction 

Mapped meshing or transfinite meshing is an important mesh generation 

technique, especially with quads, used frequently in a wide gamut of finite 

element anaysis problems. These meshes are structured and hence have a 

higher solution reliability. These meshes are also economical and if stress-

sensitive regions of the outer surface are pre-meshed with such meshes, a 

lighter tetrahedral mesh is usually produced. However, interior mesh 

points are hard to honor for transfinite meshes. Usually the nearest node is 

snapped to the interior point. This depletes element quality often. In the 
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present paper,  an attempt is made to solve the inverse problem of 

transfinite meshing with interior point cointraints. The inverse problem is 

solved to evaluate Coons parametric coordinates of the interior point 

constraints from their global world coordinates. A conventional modified 

Newton- Raphson based solution is proposed to inverse solve Coons’ bi-

linear blending equation. The boundary of the surface is next seeded with 

“soft-points” at reflected locations and smart-discretized. 

2. Past Research 

Mapped or transfinite meshing techniques with both quadrilateral and 

triangular elements remain to be one of the earliest automatic mesh 

generation algorithms in the world of surface mesh generation. 

Zienkiewicz and Phillips [1] report probably one of the earliest papers in 

this area. They proposed a 2D automatic mesh generation scheme based on 

isoparametric mapping for flat and curved surfaces. Gordon and Hall [2] 

defined the transfinite interpolation on the rectangle two years later in 

1973. In 1974, Cook [3] used it to construct C0 continuous 

quadrangulations of deformed quadrangles. Cook's method induces of C0

continuous structured meshes on C0 continuous transfinite patches. Haber 

et al. [4] discuss a general purpose transfinite mapping technique  for a 

wide range of surfaces. Alain Peronnet [5–7] did several in-depth 

investigations on transfinite interpolation techniques on both C1 and G1

continuous domains for both 2D and 3D surfaces. Mitchell [8–9] and 

Armstrong [10] reported approaches to automatically identify the corners 

of a mapped meshable domain and discuss techniques to assign intervals 

on surface boundaries. However, even after an exhaustive research, no 

research work was found on the transfinite mesh generation problem with 

interior point constraints.

3. Problem Statement 

The present paper attempts to solve the problem of generating a transfinite 

mesh on a face geometry such that the grid lines pass through a set of face 

interior point constraints. When that is attained, a nice smooth structured 

mesh is produced that has high quality surface elements that are not 

distracted by the interior constraints. Fig. 1 shows a regular mapped mesh 

where the interior point constraints are ignored. 
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Fig. 1.  A mapped mesh with interior constraints ignored 

Figure 2 depicts the same geometry with the same mesh, where the interior 

mesh nodes are snapped to the constraints that are nearest to them. No 

mesh node is allowed to snap to more than one point constraint, else the 

topology of the mesh will collapse at that location. The boundary 

discretization remains unchanged. 

Fig. 2.  Mapped mesh with mesh nodes snapped to the nearest interior constraints 

When nearest nodes are snapped to the interior mesh points, the element 

shapes distort resulting in highly skewed elements that are unreliable for 

stress and dynamic structural analysis. Automobile car body panels need to 

model arrays of spot-weld points which represent potential high stress 

areas hence requiring good -quality (low skew) structured meshes 

connecting them. Most part of the industry accomplishes such meshes 

through tedious, inefficient, manual techniques. 

Face-interior 

point constraint 

Nodes snapped 

to face-interior 

point constraints 
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Figure 3 depicts a typical 4 sided area that needs to be transfinite meshed. 

The area is four-sided and require nodes to match up on each pair of 

“logical” sides. 

Fig. 3.  A 4-sided Coons space 

4.1 Coons Blending 

Given an area bounded by three or four curves (B-Spline/Bezier) , a 

surface patch can be created by blending the boundaries using suitable 

blending functions [11]. The theory of patches and blending was first 

developed by Coons [12]. Coons blending functions are traditionally used 

to generate transfinite or mapped meshes on 2D and 3D representation of 

surfaces or mesh-domains. A 2D four-sided area bounded by four curves 

(B-spline, Bezier or discrete) as shown in Fig.3.  Let P,Q,R,S be functions 

representing the boundary curves in any cartesian 2D space. Thus, 

P  Q  R  S  f(x,y)                (1) 

and the rail points are 

P(x,y)  r(u,0),   Q(x,y)  r(u,1), R(x,y)  r(0,v) and S(x,y)  r(1,v)       (2) 

where r(a,b) is a generic parametric function that represents each boundary 

curve in the range of a to b. Also at any point on the boundary curves the 

cartesian functions can be written as 

A

B

CD

S

P

Q

R

E

P(x,y)  (Px, Py)                 (3) 

4. Transfinite Interpolation in 2D Space 
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The corners of the area are denoted by A,B,C,D where

  A(x,y)  r(0,0), B(x,y)  r(1,0), C(x,y)  r(1,1) and D(x,y)  r(0,1)       (4) 

Thus, for any interior node E(x,y) r(u,v), Coons bilinear blending function 

can be written as a bullean sum. 

Ex = (1 – v)Px + vQx + (1 – u)Rx + uSx  –  [(1 – u)(1 – v)Ax

+ (1 – v)uBx +v(1 – u)Dx +uvCx];

Ey = (1 – v)Py + vQy + (1 – u)Ry + uSy  –  [(1 – u)(1 – v)Ay

+ (1 – v)uBy +v(1 – u)Dy +uvCy];             (5) 

In a matrix form, equation (5) can be rewritten for the abscissa as

(1 u)(1 v)

u(1 v)

uv

v(1 u)
Ex = { }=[B]{ }

(1 u)

u

v

(1 u)

           (6) 

where

{ } = { Ax,Bx,Cx,Dx,Px,Sx,Qx,Rx }
T

           (7) 

A similar companion equation exists for the oordinate Ey.

4.2 Presence of Interior Point Constraint 

If an interior point constraint F(x,y)  r(u',v') exists in the domain closest 

to node E, (as exhibited in Fig. 1) node E will have to be snapped to 

location F. The deviation of mesh node E from point constraint F can  thus 

be expressed as

f(u,v) = [B]{ } – Fx  and g(u,v) = [B] { }  –  Fy          (8) 

As explained before, the aim of this exercise is to minimize the the 

functionals f,g with respect to u,v as described in eqn. (8). For  n interior 

mesh-points, the problem can be globally described by 
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n n

(u,v) i i

i i

b = Min f , g ,                    (9) 

The minimization problem can further be expressed as

T
T T11 12

i i i i
21 22

J J
f g = s t

J J
         (10) 

Although, this approach has an easy and logical extention in 3D,  the 2D 

approach is mostly used. A 2D domain of the curved surface is developed 

(or parameter space used) and the mesh is generated in 2D using the 

improved algorithm. Once the mesh is generated in 2D, a transformation 

mechanism is used to get the 2D mesh on the 3D surface. This is a 

standard procedure for generating 2D meshes on developable surfaces and 

is done no differently for this case.

5. The Inverse Problem and Its Solution 

The present scenario leads to an inverse problem as posed by equation (9). 

During transfinite meshing, Coons equation (6) is used to locate a mesh 

interior point in the cartesian 2D domain, when its boundary parametric 

([B]) and cartesian coordinates ({ } are known. With the interior point 

constraint this problem is reversed. The parametric coordinates (u',v') need 

to be determined while its cartesian location F(x,y) is known.

In order to solve eqn. (10), a modified Newton-Raphson procedure may 

be adopted. 

Using a modified Newton-Raphson, the solution is given by 

[J] Z + F = 0              (11) 

where [J] = Jacobian =
11 12

21 22

J J

J J
           (12) 

   Z  = { s , t } T ;             F = {f, g} T;             (13a) 

The elements of the Jacobian can be expressed as

J11 = f/ s;   J21 = g/ s          (13b) 

J12 = f/ t;   J22 = g/ t            (13c) 
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Finally, the change in the parametric coordinates during the ith iteration 

step can be written as

Iteratively solve the following equation, till it converges 

(s, t)i = (s, t)i-1 + ( si, ti)           (15) 

6. Solution Convergence 

The solution to eqn. (9) is usually quite speedy and usually converges for 

an error norm | i| <= 1e-05. The error norm | | is a root-mean-square of the 

collective differences of the evaluated coordinates across successive 

iterations and can be expressed as

| i| = (si – s i-1)
2 + (ti – ti-1)

2   for the ith iteration.       (16) 

However, the convergence of the solution depends on the geometry of the 

boundary. If the rail curves are represented by higher order rational 

splines, the solution could slow down a bit; it could slow down a little 

futher if the face is represented by facets (implying the boundary curves 

are represented by poly-lines). However, for all practical purposes the 

solution time is insignificant compared to the mesh generation time on 

these surfaces. 

 7. Boundary Reflection 

Once the inverse problem is solved, the parametric coordinates of the 

interior points are known in the Coons’ domain. These parametric 

coordinates are now used to create reflected locations on the boundaries of 

the domain. Figure 4 shows two face interior constraints E and F whose 

parametric  locations in the Coon’s space are given by E (s1,t1) and F 

(s2,t2). The solution to the inverse problem gives us the Coon’s parametric 

locations of these points. 

si  = ( –J22 f i – 1 + J12gi – 1)/|J|         (14a) 

ti  = (J21 fi – 1   –  J11gi – 1)/|J|          (14b) 
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Fig. 4.  Interior point constraints reflected on the boundary via “soft-points" 

7.1 Soft Points and Pseudo-Edges 

The Coons space parametric coordinates of interior points E & F are next 

used to create 4 temporary nodes on the rail curves at parametric locations 

s1, s2, t1 and t2. These nodes act as “soft-points” or soft-constraints. These 

soft points need to be honored during boundary discretization. i.e. mesh 

nodes need to be created at these locations. As a result, it is ensured that 

the interior points are always reflected on the boundary. The resulting 

transfinite mesh lines thus flow through the interior point contraints.  It is 

important to note that when 2 or more soft-point locations are close enough 

on a given pair of sides, they are merged into one.

For every interior point constraint, 4 such soft-points need to be created 

on the 4-sides of the area. Each side of the 4-sided area is called a 

“Pseudo-Edge”. It is important to remind here that each pseudo-edge is 

actually a collection of one or more CAD edges. When the pseudo-edge is 

discretized, the soft-point acts like a “pseudo-vertex". A node is always 

created on it. This ensures, that when a pseudo-edge with a given element 

count is discretized, these “soft” locations are guranteed to get a node. The 

resulting mesh, gets interior nodes that are very close to the face-interior 

constraints. These nodes are now snapped to the constraint location.

Conventional mesh relaxation methods try to solve the same problem, 

but they would hold the boundary nodes fixed. The present algorithm, in 

contrast, determines apriori suitable boundary node locations so as to  

Face-interior 

point constraints 

s

t s2

t2

s1

t1

F(s2,t2) E(s1,t1)
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minimize the distortion of the mesh. Because there is more freedom on the 

boundary, with the present algorithm, the chances of producing a better 

structured mesh is stronger.

7.2 Boundary Discretization 

When face-interior point constraints are present, boundary discretization 

changes in a two-fold manner. Firstly, it creates a non-uniform seeding in 

most cases, secondly it alters the element count on a given pair of sides. 

The maximum element count on a side or a Pseudo-Edge can be given by

mi = | (Li/s) , (n + 1) | max           (17) 

where

m = element count on pseudo-edge i 

Li = length of pseudo-edge i 

n = number of unique boundary reflections on a side 

s = meshing size 

A pseudo-edge is an assembly of p edges. However, when this pseudo-

edge is pre-discretized with q soft-points (reflected location of face-interior 

constraints), the edge is assumed to be logically composed of r = (p + q) 

sub-edges. The 3D coordinates of node j to be placed at parametric 

location sj can be expressed as

where this node is found to lie on the l-th sub-edge; slj represent its local 

parametric co-ordinate on the l-th sub-edge; Pls and Ple signify the start and 

end locations of the l-th sub-edge. The local parametric location is given 

by

l-1

lj j tot k

k =1

s = s . l l 1/ l where ltot = length of the r sub-edges       (19)

 ll   = length of the l-th sub-edge that contains this node 

7.3 Boundary Blending 

We have already observed that presence of interior point constraints affects 

the boundary discretization of the face. Because interior points are  

Nj (x,y,z) = (1 – slj).Pls(x,y,z) +  slj.Ple(x,y,z)         (18) 
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reflected on the boundary, the boundary discretization becomes non-

uniform. When boundary node distribution becomes non-uniform, a 

boundary blended bi-linear transfinite interpolation becomes necessary to 

make sure that the mesh line flow is smooth and boundary effects are well 

reflected in the interior of the space. Coons eqn. (5) now changes to 

Thus, for any interior node E(x,y)  r(u,v), Coons bilinear blending 

function can be written as a bullean sum. 

Ex = (1 – v´)Px + v´Qx + (1 – u´)Rx + u´Sx  –  [(1 – u´)(1 – v´)Ax

+ (1 – v´)uBx + v´ (1 – u´)Dx +u´v´Cx];         (20a) 

Ey = (1 – v´)Py + v´Qy + (1 – u´)Ry + u´Sy  –  [(1 – u´)(1 – v´)Ay

+ (1 – v´)u´By +v´ (1 – u´)Dy +u´v´Cy];         (20b) 

where the boundary modified parametric coordinates can be written as 

u´ = {(1 – )u1 +  u2}/{1 – (u2 – u1)(v2 – v1)}     (21a) 

v´ = {(1 – )v1 + v2}/{1 – (u2 – u1)(v2 – v1)}     (21b) 

where  u1, u2 represent the parametric coordinates of the pair of guide 

nodes on the u-rail curves and v1, v2 represent the corresponding 

parameters on the v-rail curves.  and  represent the u and v-directional 

coordinate for this (u,v) Coons space location assuming a uniform 

boundary distribution. 

8. Examples and Discussion 

Figure 5 depicts a flat semi-annular surface with 6 interior point 

constraints. In automobile body panels, such point constraints usually 

represent spot-welds. A transfinite mesh of size 5 length units is generated 

on the surface. The mesh nodes nearest to the point-constraints are snapped 

to them. As a result, the quad element quality, especially around the spot-

welds deplete. The only work-around is to reduce the element size and 

create a finer mesh so as to reduce element distortion.
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Fig. 5. Unconstrained transfinite (mapped) mesh with interior points. After the mesh is 

generated, nearest interior nodes are snapped to the point constraints. 

Figure.6 shows an improved transfinite mesh that honors the point 

constraints. Although the element size is same, the interior point 

constraints are reflected on the boundary. Consequently, the number of 

elements in the t direction change (from 4 to 6). Since the number of face-

interior points is less than the element count in the s direction, the final 

element count in the s direction does not change (13).  It is interesting to 

note here, that although the elements produced by the algorithm in Fig. 6 

are structured compared to the elements around the constraints in Fig. 5, 

the mesh aspect ratio becomes non-uniform. In most structural analyses, 

especially of such seam/spot welded body panels, the accuracy of stress 

computation is most sensitive to element distortion. This, distortion (D) is 

usually measured as a positive ratio of the minimum to the maximum 

Jacobian measured at the Gauss points as 

D =  | Jmin/Jmax |            (22) 

The distortion D, thus, depends little on the aspect ratio of the element, as 

long as the element shape is rectangular. However, elements too thin (high 

aspect ratio) tend to have a negative impact on the assembly stiffness 

matrix. A 5:1 aspect ratio is usually used as a limit. Within this limit, a 

mesh with a better element distortion (Fig. 6) is deemed more reliable than 

the unstructured pattern (Fig. 5).

     Interior point constraints 
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Fig. 6. Improved transfinite (mapped) mesh with interior point constraints. 

The following example has 6 interior point constraints, but Fig. 6 shows 

only 5 soft-points in the radial (t) direction on each pseudo-edge. This is 

because, two soft-points per psuedo-edge in the t-direction, were merged 

into an average location because they were two close. As a result, those 

two point constraints lie on the same nodal rail-line as shown in Fig. 6. 

This is an example of a practical compromise that needs to be made when 

one or more constraints are “equi-potential". 

Figure 7 shows a quarter section of a structural bearing which is being 

analyzed for stress variations under dynamic loads. A swept hexahedral 

mesh is generated on the volume, where one of the wall faces has 3 interior 

point constraints. The hex mesh nodes are snapped to the point constraints. 

2D transfinite meshes are first generated on all wall faces before the 

interior is filled. The point constraints, in this case, represent concentrated 

radial dynamic loads. The mesh nodes of the transfinite mesh on the wall 

face are snapped to the point constraints, thus resulting in bad quality 

hexahedral elements in the vicinity of the load application point.
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Fig. 7. Swept mesh with face interior point constraints. One wall face shows an 

unconstrained transfinite (mapped) mesh where the nearest interior nodes are snapped to the 

point constraints. 

Figure 8 shows a much improved hex meshed volume, where the 

transfinite mesh on the wall face is perfectly structured even though it 

honors the point-constraints. The resulting mesh has an admirably high 

mesh quality compared to the mesh in Fig. 7. 

Fig. 8. Improved Swept mesh with face interior point constraints. The transfinite mesh on 

the wall face is immaculately structured. 

Wall face with 

interior point 

constraints. 
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9. Conclusion 

Structural analyses of automotive parts and body panels frequently require 

high quality, high fidelity structured meshes. Many of these meshes need 

to honor pre-defined face-interior and boundary point constraints that 

represent load application points or welded or joined spots. Conventional 

meshing techniques snap nearest nodes to these point constraints after 

meshing is done thus negatively impacting the mesh quality at critical 

zones of interest. The present paper proposes an apriori remedial approach, 

where an inverse solution of Coons bi-linear blending equation is 

performed to determine the parametric co-ordinates of the point 

constraints. Once the coordinates are known, a boundary correction step is 

taken, where the boundary of the face is pre-seeded at these parametric 

locations. The number of elements to be generated along each pair of sides 

is also influenced by the number and location of point constraints. With the 

new boundary discretization, a very high quality strutured mesh results as 

is evident from the two examples presented. 
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This paper introduces a new automatic tetrahedral mesh generator on the
adaptive finite element ALBERTA code. The procedure can be applied to 3-
D domains with boundary surfaces which are projectable on faces of a cube.
The generalization of the mesh generator for complex domains which can be
split into cubes or hexahedra is straightforward. The domain surfaces must
be given as analytical or discrete functions. Although we have worked with
orthogonal and radial projections, any other one-to-one projection may be
considered. The mesh generator starts from a coarse tetrahedral mesh which
is automatically obtained by the subdivision of each cube into six tetrahedra.
The main idea is to construct a sequence of nested meshes by refining only
the tetrahedra which have a face on the cube projection faces. The virtual
projection of external faces defines a triangulation on the domain boundary.
The 3-D local refinement is carried out such that the approximation of domain
boundary surfaces verifies a given precision. Once this objective is achieved
reached, those nodes placed on the cube faces are projected on their corre-
sponding true boundary surfaces, and inner nodes are relocated using a linear
mapping. As the mesh topology is kept during node movement, poor quality
or even inverted elements could appear in the resulting mesh. For this reason,
a mesh optimization procedure must be applied. Finally, the efficiency of the
proposed technique is shown with several applications.

Las Palmas de G.C., Spain
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1 Introduction

In finite element simulation in engineering, it is crucial to adapt automatically
the three-dimensional discretization to the geometry and to the solution. Many
authors have made great efforts in the past to solve this problem in differ-
ent ways. A perspective on adaptive modeling and meshing can be studied in
[1]. The main objective is to achieve a good approximation of the real solu-
tion with a minimal user intervention and a low computational cost. It is clear
that as the complexity of the problem increases (domain geometry and model),
the methods for approximating the solution are more complicated. ALBERTA
[2, 3] is a software which can be used for solving several types of 1-D, 2-D or
3-D problems with adaptive finite elements. The local refinement and dere-
finement can be done by evaluating an error indicator for each element of the
mesh and it is based on element bisection. To be more specific, the newest
vertex bisection method is implemented for 2-D triangulations [4]. Actually,
ALBERTA has implemented an efficient data structure and adaption for 3-D
domains which can be decomposed into hexahedral elements as regular as pos-
sible. These elements are subdivided into tetrahedra by constructing a main
diagonal and its projections on its faces for each hexahedral element. The lo-
cal bisection of the resulting elements is recursively carried out by using ideas
of the longest edge and the newest vertex bisection methods. Details about
the local refinement technique implemented in ALBERTA for two and three
dimensions can be analyzed in [5]. This strategy works very efficiently for ini-
tial meshes with a particular topology and high-quality elements (obtained by
subdivision of regular quadrilateral or hexahedral elements). In these cases the
degeneration of the resulting meshes after successive refinements is avoided.
The restriction on the initial element shapes and mesh connectivities makes
necessary to develop a particular mesh generator for ALBERTA. In this paper
we summarize the main ideas introduced for this purpose. Obviously, all these
techniques could be applied for generating meshes with other types of codes.
Besides, these ideas could be combined with other type of local refinement
algorithms for tetrahedral meshes [6, 7].

2 Automatic Mesh Generator

In this section, we present the main ideas which have been introduced in
the mesh generation procedure. In section 2.1, we start with the definition
of the domain and its subdivision in an initial 3-D triangulation that verifies
the restrictions imposed in ALBERTA. In section 2.2, we continue with the
presentation of different strategies to obtain an adapted mesh which can ap-
proximate the surface boundaries of the domain within a given precision. We
construct the mesh of the domain by projecting the boundary nodes from a
plane face to the true boundary surface and by relocating the inner nodes.
These two steps are summarized in sections 2.3 and 2.4, respectively. Finally,
in section 2.5 we present a procedure to optimize the resulting mesh.
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2.1 Initial Coarse Mesh

In order to understand the idea of the proposed mesh generator, it is conve-
nient to first consider a domain of which the boundary can be projected on
the faces of a cube. A second case is to consider a parallelepiped instead of
a cube. In this last case, an automatic decomposition of the parallelepiped
into cubes can be carried out. At present, we have implemented in ALBERTA
these two cases. Nevertheless, in the input data we could define an object
outline with connected cubes and/or parallelepiped, such that the boundary
of the domain is obtained by a one-to-one projection from the boundary faces
of the object outline to the true boundary surface. Once the decomposition
in cubes is done, we build an initial coarse tetrahedral mesh by splitting all
cubes into six tetrahedra [5]. For this purpose, it is necessary to define a main
diagonal on each cube and the projections on its faces, see Figure 4(a). In
order to get a conforming tetrahedral mesh, all cubes are subdivided in the
same way maintaining compatibility between the diagonal of their faces. The
resulting initial mesh τ1 can be introduced in ALBERTA since it verifies the
imposed restrictions about topology and structure. The user can introduce in
the code the number of recursive global bisections [5] which is necessary to
fix a uniform element size in the whole initial mesh.

The same technique can be applied by considering a decomposition of the
object outline into hexahedra instead of cubes. In this case, the recursive
local refinement technique [5] introduced in ALBERTA may produce poor
quality elements and, consequently, degenerate meshes. In this paper, as a
first approach, we have used a decomposition of the object outline into cubes.

2.2 Local Refined Mesh

The next step of the mesh generator includes a recursive adaptive local re-
finement strategy of those tetrahedra with a face placed on a boundary face
of the initial mesh. The refinement process is done in such a way that the
true surfaces are approximated with a linear piece-wise interpolation within a
given precision. That is, we look for an adaptive triangulation on the bound-
ary faces of cubes, such that the resulting triangulation after node projection
on the true boundary surface is a good approximation of this boundary sur-
face of the domain. The user has to introduce as input data a parameter ε
that defines the maximum separation allowed between the linear piece-wise
interpolation and the true surface [8]. We remark that the true surface may
be given by an analytical or a discrete function, such that each point of a
cube face corresponds only to one point on the true surface. We propose two
different strategies for reaching our objective.

The first one consists on a simple method. We construct a sequence of
tetrahedral nested meshes by recursive bisection of all tetrahedra which con-
tain a face located on a boundary face of cubes. The number of bisections
is determined by the user as a function of the desired resolution of the true



328 R. Montenegro et al.

surface. So, we have a uniform distribution of nodes on these cube faces; see
for example Figure 4(b). Once all these nodes are virtually projected on the
true surface, the application of the derefinement criterion developed in [8],
with a given derefinement parameter ε, defines different adaptive triangula-
tions for each face of the cube. We remark that the derefinement criterion fixes
which nodes, placed on cube faces, can not be eliminated in the derefinement
process in order to obtain a good approach of the true surface. Specifically, a
node can not be eliminated if the distance between its virtual position on the
true surface and the middle point of its surrounding edge is greater than ε.
Then, for conformity reasons other nodes of the 3-D triangulation can not be
removed. Besides, all node belonging to the coarse initial mesh continues in
all the levels of the derefined sequence of nested meshes. As the derefinement
criterion in ALBERTA is associated to elements, we mark for derefinement all
tetrahedra containing a node which can be eliminated. In particular, we make
a loop on tetrahedra during the derefinement process from the penultimate
level of the sequence to the coarse initial mesh. We analyze elements with two
sons and if the node, that was introduced by their father’s bisection, verifies
the derefinement condition, then we mark its two sons for derefinement.

The second strategy only works with a local refinement algorithm. In this
case, the idea is to apply a recursive refinement on all tetrahedra containing a
face placed on a boundary cube face and, at the same time, verifying that the
distance between the points of the virtual triangle defined by the projection of
its nodes on the true surface and the corresponding points on the true surface
is greater than ε.

The first strategy is simpler, but it could lead to problems with memory
requirements if the number of tetrahedra is very high before applying the
derefinement algorithm. For example, this situation can occur when we have
surfaces defined by a discrete function with a very high resolution. Neverthe-
less, the user can control the number of recursive bisections.

On the other hand, the problem of the second strategy is to determine for
each tetrahedron face, placed on a boundary face of cubes, if it must be subdi-
vided attending to the approximation of the true surface. This analysis must
be done every time that a face is subdivided into its son faces. Suppose, for ex-
ample that true surface is given by a discrete function. Then, the subdivision
criterion stops for a particular face when all the surface discretization points
on this face have been analyzed and all of them verify the approximation
criterion.

2.3 Projection on Boundary Surfaces

Although ALBERTA has already implemented a node projection on a given
boundary surface during the bisection process, it has two important restric-
tions: nodes belonging to the initial mesh are not projected, and inverted
elements could appear in the projection of new nodes on complex surfaces.
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In this last case, the code does not work properly, as it is only prepared to
manage valid meshes.

For this reason, a new strategy must be developed in the mesh generator.
The projection is really done only when we have defined the local refined
mesh by using one of the methods proposed in the previous section. Then, the
nodes placed on the cube faces are projected on their corresponding boundary
surfaces, maintaining the position of the inner nodes of the domain. We have
remarked that any one-to-one projection can be defined: orthogonal, spherical,
cylindrical, etc.

After this process, we obtain a valid triangulation of the domain boundary,
but it could appear a tangled tetrahedral mesh. Inner nodes of the domain
could be located now even outside of it. So, an optimization of the mesh
is necessary. Although the final optimized mesh does not depend on the in-
ner nodes initial position, it is better for the optimization algorithm to start
from a mesh with a quality as good as possible. Then we propose to relo-
cate in a reasonable position the inner nodes of the domain before the mesh
optimization.

2.4 Relocation of Inner Nodes

There would be several strategies for defining a new position for each inner
node of the domain. An acceptable procedure is to modify their relative posi-
tion as a function of the distance between boundary surfaces before and after
their projections. This relocation is done attending to proportional criteria
along the corresponding projection line. Although this node movement does
not solve the tangle mesh problem, it normally makes it decrease. That is, the
number of resulting inverted elements is less and the mean quality of valid
elements is greater.

2.5 Mesh Optimization: Untangling and Smoothing

An efficient procedure is necessary to optimize the pre-existing mesh. This
process must be able to smooth and untangle the mesh and it is crucial in the
proposed mesh generator.

The most usual techniques to improve the quality of a valid mesh, that
is, one that does not have inverted elements, are based upon local smoothing.
In short, these techniques consist of finding the new positions that the mesh
nodes must hold, in such a way that they optimize an objective function. Such
a function is based on a certain measurement of the quality of the local sub-
mesh, N (v), formed by the set of tetrahedra connected to the free node v. As
it is a local optimization process, we can not guarantee that the final mesh is
globally optimum. Nevertheless, after repeating this process several times for
all the nodes of the current mesh, quite satisfactory results can be achieved.
Usually, objective functions are appropriate to improve the quality of a valid
mesh, but they do not work properly when there are inverted elements. This
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is because they present singularities (barriers) when any tetrahedron of N (v)
changes the sign of its Jacobian determinant. To avoid this problem we can
proceed as Freitag et al in [9, 10], where an optimization method consisting
of two stages is proposed. In the first one, the possible inverted elements are
untangled by an algorithm that maximises their negative Jacobian determi-
nants [10]; in the second, the resulting mesh from the first stage is smoothed
using another objective function based on a quality metric of the tetrahedra
of N (v) [9]. After the untangling procedure, the mesh has a very poor quality
because the technique has no motivation to create good-quality elements. As
remarked in [9], it is not possible to apply a gradient-based algorithm to op-
timize the objective function because it is not continuous all over R3, making
it necessary to use other non-standard approaches.

We have proposed an alternative to this procedure [11], so the untangling
and smoothing are carried out in the same stage. For this purpose, we use
a suitable modification of the objective function such that it is regular all
over R3. When a feasible region (subset of R3 where v could be placed, be-
ing N (v) a valid submesh) exists, the minima of the original and modified
objective functions are very close and, when this region does not exist, the
minimum of the modified objective function is located in such a way that
it tends to untangle N (v). The latter occurs, for example, when the fixed
boundary of N (v) is tangled. With this approach, we can use any standard
and efficient unconstrained optimization method to find the minimum of the
modified objective function, see for example [12].

In this work we have applied, for simultaneous smoothing and untangling
of the mesh by moving their inner nodes, the proposed modification [11] to
one objective function derived from an algebraic mesh quality metric studied
in [13], but it would also be possible to apply it to other objective functions
which have barriers like those presented in [14].

Besides, a smoothing of the boundary surface triangulation could be ap-
plied before the movement of inner nodes of the domain by using the new
procedure presented in [15] and [16]. This surface triangulation smoothing
technique is also based on a vertex repositioning defined by the minimization
of a suitable objective function. The original problem on the surface is trans-
formed into a two-dimensional one on the parametric space. In our case, the
parametric space is a plane, chosen in terms of the local mesh, in such a way
that this mesh can be optimally projected performing a valid mesh, that is,
without inverted elements.

3 Applications

The performance of our new mesh generator is shown in the following three
applications. The first corresponds to a domain defined over a complex terrain,
the second to a sphere and the third to a cube with all faces deformed by
Gaussian functions.
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3.1 Domain Over Complex Terrain

In the last few years, we have developed a tetrahedral mesh generator that ap-
proximates the orography of complex terrains with a given precision [17, 18].
To do so, we only have digital terrain information. Our domain is limited on its
lower part by the terrain and on its upper part by a horizontal plane placed at
a height at which the magnitudes under study may be considered steady. The
lateral walls are formed by four vertical planes. The generated mesh could be
used for numerical simulation of environmental phenomena, such as wind field
adjustment [19], fire propagation or atmospheric pollution [20]. The following
procedures are mainly involved in this automatic mesh generation: a Delau-
nay triangulation method [21, 22], a 2-D refinement/derefinement algorithm
[8] and a simultaneous untangling and smoothing algorithm [11]. Besides, we
have recently developed a new method for quality improvement of surface
triangulations, by using optimal local projections [15, 16], which can be intro-
duced in the mesh generator.

Alternatively to this strategy, the automatic mesh generator proposed in
this paper can be used for the same purpose. As a practical application we have
considered a rectangular area in Isla de La Palma (Canary Islands) of 22×16
km. The upper boundary of the domain has been placed at h = 6 km. To define
the topography we use a digitalization of the area where heights are defined
over a uniform grid with a spacing step of 200 m in directions x and y. We
start from a parallelepiped of 22×16×6 km initially subdivided into 11×8×3
cubes with edge sizes of 2 km. Each cube is subdivided into six tetrahedra by
using the subdivision proposed in [5], see Figure 4(a). This discretization is
used to define the uniform initial triangulation τ1 of the parallelepiped. We
refine it 18 times by constructing a recursive bisection of all tetrahedra which
contain a face placed on the lower face of the parallelepiped. If we applied 6
global refinements by using the 4-T Rivara’s algorithm [23] instead of previous
recursive bisections, the resultant 2-D triangulation on the lower face of the
parallelepiped would be the same.

Once the orography is virtually interpolated on this local refined mesh, the
derefinement condition, introduced in [8], is applied with a derefinement pa-
rameter of ε = 25 m. Then, we make an orthogonal projection on the terrain
of the adaptive triangulation obtained on the lower face of the parallelepiped.
Besides, we relocate the other nodes vertically by using a proportional cri-
terion. The adapted mesh has 65370 tetrahedra and 15263 nodes, see Figure
1(a), and it nears the terrain surface with an error less than ε = 25 m.

This mesh has 115 inverted tetrahedra, its average quality measure is
qκ = 0.68 and its minimum quality is 0.091, see reference [11] and Figure
2. The node distribution is hardly modified after five steps of the optimiza-
tion process by using our modified objective function. We remark that we
have not relocated those nodes placed on the terrain during this optimization
process.
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Fig. 1. Detail of Isla de La Palma (Canary Island): (a) initial mesh and (b) resulting
mesh after five steps of the optimization process

The evolution of the mesh quality during the optimization process is repre-
sented in Figure 2. This measure tends to stagnate quickly. The quality curves
corresponding to the second and fifth optimization steps are close. The aver-
age quality measure increases to qκ = 0.75. After this optimization process,
the worst quality measure of the optimized mesh tetrahedra is 0.34. Finally,
we remark that the number of parameters necessary to define the resulting
mesh is quite low, as well as the computational cost. The total CPU time for
the initial mesh and its optimization is less than 1 minute on an Intel Pentium
M processor, 2.26 GHz and 2 Gb RAM memory. In particular, the compu-
tational cost of five iterations of the simultaneous untangling and smoothing
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Fig. 2. Quality curves for the initial and optimized meshes after two and five iter-
ations for the domain defined in Isla de La Palma (Canary Island)

procedure is about half a minute. At the first iteration of this optimization
process the mesh is untangled.

3.2 Sphere

We consider now a 3-D spherical domain as a first application where all cube
faces are radial projected on a curve surface. We start from a cube divided into
six tetrahedra, see Figure 4(a), and we refine 9 times constructing a recursive
bisection of all tetrahedra which contain a face placed on a face of the cube.
The resulting mesh contains 577 nodes and 2016 tetrahedra. Then, we make a
radial projection on the spherical surface of triangulations defined on the cube
faces. Besides, we relocate the inner nodes radially by using a proportional
criterion. A view of the resulting mesh can be seen in Figure 3(a).

No inverted elements appear in this process and high quality elements
are produced. Its average quality measure is qκ = 0.71 and its minimum
quality is 0.48. If we use the tetrahedral mesh optimization presented in [11]
by only relocating inner nodes of the domain, the mesh quality is improved
with a minimum value of 0.55 and an average qκ = 0.73. We remark that the
improvement is not so significant after ten iterations, since the initial mesh has
good quality. The CPU time for constructing the initial mesh is approximately
0.2 seconds and for its smoothing process is 0.5 seconds on a Intel Pentium
M processor, 2.26 GHz and 2 Gb RAM memory.

In this application we also show the smoothing possibility of the surface
triangulation. So, we use the technique proposed in [15, 16] to improve the
quality of the spherical surface triangulation presented in Figure 3(a). This
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surface mesh contains 386 nodes and 640 triangles with an average quality of
0.85 and a minimum one of 0.65. After five iterations of surface smoothing
process we obtain the mesh shown in Figure 3(b) which has an average quality
of surface triangles of 0.86 and a minimum one of 0.78. If we keep the boundary
nodes in their new positions and we optimize again the mesh by only moving
inner nodes, then the tetrahedral mesh results with an average quality measure
qκ = 0.72 and its minimum quality is 0.52. It can be observed that these
values are between those obtained for the initial mesh and its optimization.
Nevertheless, the difference is not significant due to the regularity of the initial
mesh. The procedure proposed in this paragraph could be interesting when
we start from meshes with poor quality surface triangulations.

(a) (b)

Fig. 3. Surface triangulation of the sphere: (a) initial mesh and (b) resulting mesh
after five steps of the surface optimization process

3.3 Domain with Gaussian Surfaces

As a last application we present a unit cube domain of which faces are orthog-
onal projected on different surfaces defined by Gaussian functions. We start
from an initial coarse triangulation composed by 8 nodes and 6 tetrahedra.
This subdivision is proposed in [5], see Figure 4(a). We refine this triangula-
tion τ1 by 18 recursive bisections of all the tetrahedra which contain a face
placed on a cube face, resulting a mesh with 48703 nodes and 198672 tetra-
hedra, see Figure 4(b). Once the boundary surface information was virtually
interpolated on this local refined mesh, the derefinement condition [8] was
applied with a derefinement parameter ε = 0.00001.
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Fig. 4. Main stages of the mesh generator for the domain with Gaussian surfaces
on all its faces: (a) initial mesh, (b) global face refinement, (c) local face refinement
after applying the derefinement procedure and (d) projection on boundary surfaces

In Figure 4(c) the corresponding mesh is presented and it contains 23520
nodes and 60672 tetrahedra. Then, we make an orthogonal projection on the
domain boundary surface of the adaptive triangulation obtained previously
over the cube faces. Besides, we relocate the inner nodes by using a propor-
tional criterion along the Cartesian directions. The resulting mesh is shown in
Figure 4(d) and it initially has 240 inverted tetrahedra with average quality
measure qκ = 0.64, see Figure 6. An inner view of the surface triangulation
may be observed in Figure 5. The evolution of the mesh quality during the
optimization process, by applying the simultaneous untangling and smoothing
procedure [11] to the inner nodes of the domain, is represented in Figure 6.
The quality curves corresponding to the second and tenth optimization steps
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Fig. 5. Inner view of the surface triangulation for the domain with gaussian surfaces
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Fig. 6. Quality curves for the initial and optimized meshes after two and ten iter-
ations for the domain with gaussian surfaces
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are very close. The average quality measure increases to qκ = 0.75 and the
minimum value improves to 0.14. Finally, we remark that the final mesh is
generated in less than one minute on a Intel Pentium M processor, 2.26 GHz
and 2 Gb RAM memory. In particular, the computational cost of five itera-
tions of the simultaneous untangling and smoothing procedure is about half a
minute. We observe that at the second iteration of this optimization process
the mesh is untangled.

4 Conclusions and Future Research

The proposed mesh generator is an efficient method for creating tetrahe-
dral meshes on domains with boundary faces projectable on faces of cubes
and it is used as pre-processor for ALBERTA. We remark that it requires
a minimum user intervention and has a low computational cost. The main
ideas presented in this paper for automatic mesh generation could be used
for different codes which work with other tetrahedral or hexahedral local re-
finement/derefinement algorithms. With these ideas, more complex domains
could be meshed by decomposing its outline into a set of connected cubes or
hexahedra. Although this procedure is at present limited in applicability for
high complex geometries, it results in a very efficient approach for the prob-
lems that fall within the mentioned class. The mesh generation technique is
based on sub-processes (subdivision, projection, optimization) which are not
in themselves new, but the overall integration using a simple shape as start-
ing point is an original contribution of this paper and it has some obvious
performance advantages.
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Sparse Voronoi Refinement�

Benôıt Hudson, Gary Miller, and Todd Phillips
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Carnegie Mellon University

Summary. We present a new algorithm, Sparse Voronoi Refinement, that produces
a conformal Delaunay mesh in arbitrary dimension with guaranteed mesh size and
quality. Our algorithm runs in output-sensitive time O(n log(L/s) + m), with con-
stants depending only on dimension and on prescribed element shape quality bounds.
For a large class of inputs, including integer coordinates, this matches the optimal
time bound of Θ(n log n + m). Our new technique uses interleaving: we maintain a
sparse mesh as we mix the recovery of input features with the addition of Steiner
vertices for quality improvement.

1 Introduction

One of the main missing components in current tetrahedral meshing algo-
rithms research is the existence of refinement algorithms with good run time
analysis. Runtime analysis for some methods (notably those involving quad-
trees or octrees) has been straightforward [HPU05, MV00] due to the very
structured spatial decomposition. However, there are many practical meshing
algorithms with very poor run time guarantees.

The goal in designing Sparse Voronoi Refinement (SVR) was to create
a meshing algorithm that was similar in implementation and style to many
widely used meshing algorithms, but with the added benefit of very strong
worst-case bounds on the runtime complexity and space usage. An additional
achievement of SVR is that the algorithm can work in any fixed dimension d.
The most practical implementations of SVR will probably take advantage of
fixing d = 3, but higher dimensional meshing (spacetime methods, etc.) is a
growing area of future research to which SVR can contribute.

The three important aspects of a mesh that are addressed by SVR are
that the mesh resolve all the input features (conforming), that mesh elements

� This work was supported in part by the National Science Foundation under grants
CCR-9902091, CCR-9706572, ACI 0086093, CCR-0085982 and CCR-0122581.
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be well-shaped (quality), and that the number of elements be small (size-
guarantee).

Quality: In this work, we will refer to a quality mesh as one in which
the radius-edge ratio is bounded by a constant for any mesh element. In three
dimensions, this metric is somewhat lacking, as it can admit a family of poorly-
shaped elements known as slivers, although it is known how to post-process a
radius-edge mesh and eliminate slivers. On the other hand, this criterion allows
better proof generalization and yields strong bounds on the aspect ratio of the
Voronoi Diagram, the dual of the Delaunay triangulation. Thus most of the
SVR operations and metrics are defined on the Voronoi diagram. This vastly
simplifies most of the proofs, especially for d ≥ 3. An actual implementation
of SVR would likely only use the Delaunay, but the conceptual framework of
the Voronoi is essential to understanding the algorithmic design of SVR. We
further discuss mesh quality, Voronoi quality, and the elimination of slivers in
Section 2.1.

Conforming: Sparse Voronoi Refinement produces a Voronoi diagram
such that the dual Delaunay triangulation conforms to the input. That is,
every input feature is represented in the output Delaunay mesh by one or
several segments, triangles, and higher-dimensional facets.

Size Guarantee: We would like to say that our algorithm generates a
mesh whose size is at most a constant fraction larger than the smallest radius-
edge quality mesh. There are two problems with this goal. First, finding such
a mesh seems difficult. Two, it is not obvious that this is the correct goal for
meshing applications. To see the second concern consider an input of just two
edges of the same length forming a cross. Assume the edges do not intersect
but come arbitrarily close. An optimal radius-edge mesh would simply form a
sliver out of these two edges. While, a good aspect-ratio mesh would introduce
very small tetrahedra near where the two edges are close. Thus, it seems that
we would like to return a mesh such that the local feature size at every point
is bound both from above and below by a constant times the diameter of the
simplex containing it. In this paper we will only show that our algorithm will
return a mesh such that no tetrahedra is too small. That the distance between
any two vertices is bounded below by the local feature size of the input.

Time and Space Usage: Given a Piecewise Linear Complex (PLC) as
input [MTTW95], we will use n to denote the total number of input features
(vertices, segments, triangles and larger facets, etc). We will use L/s to denote
the the ratio of the diameter of the PLC to the smallest pairwise distance
between two disjoint features of the PLC. The notation L/s is historic, and
the concept appears in many works under many names ([Eri01] contains a
long list of references).

Sparse Voronoi Refinement has worst case runtime bounded by O(n log L/s+
m), where m is the number of output vertices. This runtime bound is a vast
improvement over prior meshing algorithms for three and higher dimensions.
For almost all interesting inputs, this bound is equivalent to O(n log n + m),
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which is optimal (using a sorting lower bound). SVR also has optimal output-
sensitive space usage O(m).

Most versions of Delaunay refinement algorithms (Section 2 contains a
short survey of such methods) first construct the Delaunay triangulation of
the input points as a preprocess. Unfortunately, in dimension higher than
two, the complexity of the Delaunay triangulation (that is, the number of
edges, triangles, tetrahedra, etc.) can be super-linear in the number of input
vertices: Ω(nd/2�) in the worst case. More concretely, in three dimensions
this implies that any such algorithm has worse case space and runtime Ω(n2),
which is impractical for large inputs – furthermore, some of the classic worst-
case examples look very much like engineered surfaces one might want to
mesh.

However, it is well known that a quality Delaunay mesh with m vertices
has only O(m) elements [MTTW95, Tal97], implying that it should be possible
to break the O(nd/2�) runtime barrier by avoiding the preprocessing step.

Sparse Voronoi Refinement accomplishes this by interleaving the tradi-
tional preprocess with the main body of the algorithm. We maintain a De-
launay mesh throughout the algorithm, but enforce that it is always a quality
radius-edge mesh. The input point set and features are gradually recovered
over the life of the algorithm, rather than at initialization.

By maintaining the quality of the mesh, SVR ensures that it is sparse: the
degree of any vertex is at most constant. This allows all the mesh modifications
to be performed in constant time, so that the runtime work for the refinement
process is only O(m) (Section 8.1), plus bookkeeping of O(n log(L/s)) term
arising from point location costs (Section 8.2).

SVR expands the capabilities of existing analyzed meshing algorithms in
terms of practical output size and generalization to higher dimension. SVR
also represents the first analyzed 3D Delaunay refinement algorithm to achieve
the near-optimal bounds we claim. Nonetheless, SVR does not yet completely
solve the meshing problem because it has overly strict restrictions on the
geometry of the input. Future work in this regard is discussed in Section 9.

Section 2 discusses some related work, along with some of the design de-
cisions of SVR.

Some notation needed to understand the algorithms, proofs, and input
restrictions is presented in Section 3.

Section 4 presents a simplified, toy version of SVR that operates on an
input point set without input features or boundary concerns. Important new
algorithmic and proof techniques are discussed in this section. The goal is to
present the salient novel features of SVR, so that the reader can better under-
stand the general method behind SVR and the geometric intuitions behind
the proofs.

Section 5 presents the full SVR algorithm, with the added complications
for handling boundaries and input features. The approaches taken by SVR to
address these complexities are highly similar to previous works [MPW02]. For
brevity we refer to earlier results for most of the proofs and only highlight the
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novel portions; a technical report version of this paper presents the proofs in
full detail [HMP06].

The results of Section 6 in particular provide fairly strong structural results
about quality Voronoi diagrams that may be applicable to other meshing
algorithm analyses; Sections 7 and 8 use the structural results to prove our
algorithm is correct, size-guaranteed, and fast.

2 Related Work

2.1 Mesh Quality and Well-Spaced Points

It has long been known that the Finite Element Method converges to a so-
lution if there are no large (almost 180◦) angles in the mesh. The closely
related problem of ensuring there are no small (almost 0◦) angles in the mesh
has proven to be more tractable using the Delaunay triangulation, which has
well-understood geometric and topological properties. In general, the smallest
angle in the Delaunay triangulation can be still very small, though it is max-
imal over all possible triangulations; therefore, to ensure a quality mesh, we
must add Steiner vertices. When all the angles in a simplex are large, the sim-
plex has good aspect ratio, which is variously described as the ratio between
the radius (or volume) of the minimum circumscribing ball to the maximum
inscribed ball, or the ratio between the volume of the simplex to the length
of its shortest edge.

In generalizing to higher dimension, it is much more convenient to use a
different definition of mesh quality than the aspect ratio. The radius-edge
ratio of a simplex is the ratio of the circumradius to the length of the smallest
edge of the simplex, where the circumradius of a simplex is the radius of the d-
dimensional circumball that passes through its vertices. It was observed more
than ten years ago that meshes with good radius-edge have the property that
the points from the mesh are well spaced in a precise technical sense. In
particular, the Voronoi diagram of the point set has the property that each
Voronoi polytope has good aspect ratio (since the Voronoi region may be
unbounded one has to carefully define its aspect ratio; see Definition 1). This
work has motivated research into efficient algorithms to generate these good
radius-edges meshes. Indeed, most methods related to Ruppert’s Delaunay
refinement algorithm generate meshes that explicitly satisfy the radius-edge
condition rather than the aspect ratio condition.

In two dimensions, the radius-edge ratio corresponds exactly with the as-
pect ratio. In three and higher dimension, this is not true: there are simplices
with good (small, near one) radius-edge ratio that have bad (large, near infi-
nite) aspect ratio. Because of their shape in 3D, these types of elements are
known as slivers. Many algorithms have been proposed that take as input a
good radius-edge 3D mesh, and refine it into a sliver-free, good aspect-ratio
mesh [Che97, ELM+00, LT01].
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In particular, using the results and techniques of our analysis, a very simple
timing analysis of the Li-Teng algorithm for sliver removal ([LT01], extended
by Li to higher dimension [Li03]) shows that it will work with linear time
and space requirements on point sets. Such an algorithm can easily be run as
a post-process to SVR in order to generate a sliver-free mesh. Therefore, we
henceforth ignore the issue of slivers.

2.2 Delaunay Refinement Algorithms

There have been several different approaches to the meshing problem. The
idea of generating a mesh whose size is within a constant factor of optimal
was first considered by Bern, Epstein, and Gilbert [BEG94] using a quadtree
approach. A 3D extension was given by Mitchel and Vavasis [Mit93].

Chew introduced a 2D Delauanay refinement algorithm [Che89] and
showed termination. Chew added the circumcenter of poor quality trian-
gles(Steiner nodes).

Ruppert [Rup95] extended this idea of adding circum-centers for 2D mesh-
ing to produce a mesh that was within a constant factor in size from the op-
timal and also handled line segments as input features. The extension of this
algorithm to 3D has been ongoing research. Some methods assume that that
Ruppert’s local feature size function is given [MTT+96]. Others refine a bad
aspect ratio mesh directly [She98, MPW02]. These methods by them selves
do not give constant approximation size meshes since the may include sliv-
ers. But they do produce meshes that have size bounded below by a constant
times the local feature size.

Finding refinement algorithms that have provably good run times has also
been of interest. Spielman, Teng, and Üngör [STÜ02] proved that Ruppert’s
and Shewchuk’s algorithms can be made to run in O(lg2 L/s) parallel steps.
They did not, however, prove a work bound. Miller [Mil04] provided the first
sub-quadratic time bound in 2D with a sequential work bound of O((n lg Γ +
m) lg m), in which Γ is a localized version of L/s (in particular, Γ ≤ L/s).
The extra lg m factor is related to a priority queue that was required for
the runtime proof in the presence of input segments. Har-Peled and Ungor
removed the lg m factor using a quadtree data structure [HPU05].

Many algorithms for Delaunay refinement in 3D have been proposed [She02,
CP03, PW04, CD03], but so far have eluded nontrivial runtime analysis. Sim-
ple examples can usually give bad worst-case performance for naive imple-
mentations of these algorithms. As mentioned, they will all suffer from inter-
mediate size Ω(n2) in the worst case.

3 Preliminaries

Throughout this paper, unless explicitly stated otherwise, all objects are in
Ed. Given a set S, the convex closure of S, denoted CC(S), is the smallest
convex set containing S, while the convex hull is the boundary of CC(S).
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Throughout, all balls will refer to topologically open balls. We say that a
point x encroaches on a ball B if x ∈ B; that is, if x is interior to the ball.

A polytope is the convex combination of finite set of points P . The dimen-
sion of the polytope is the dimension of the affine subspace generated by P .
The boundaries as well as the domain we consider are a collection of poly-
topes. We formally use the formal definition of a Piecewise Linear Complex
(PLC) from [MTTW95].

For this paper, we place additional requirements on the input; we expect
that most if not all of these can be lifted with additional work drawing on
existing techniques. First, we make the usual Draconian requirement that the
angle between any two intersecting polytopes, when one is not contained in the
other, is at least 90◦. We also require that polytopes have a convex hull that
is defined by O(1) vertices (although we place no restriction on the number
of interior vertices); and furthermore that the hull vertices are well-spaced.
Finally, the definition of a PLC requires that all input facets are convex. This
would be a minor restriction were input angles unrestricted, because one can
always decompose the PLC facets as needed to fulfill this condition. In the
Future Work Section 9 we discuss how to lift some of these restrictions.

We define a mesh M as a set of vertices in Ed and the Voronoi diagram of
the vertices. The Voronoi cell of a mesh vertex v is denoted VM (v). We will
call the set of nodes of the Voronoi diagram the Voronoi nodes (these are not
the vertices of M). We define the outradius RM (v) to be the distance from
v to the farthest Voronoi node of its cell. We define the inradius rM (v) to be
the distance from v to the point of closest approach of the boundary of the
Voronoi cell. When the mesh in question is clear, we may write Rv or rv for
brevity.

Given a set of points P , let CC(P ) denote the convex closure of P , i.e.,
the smallest convex set containing P .

Definition 1. Given a mesh M and a mesh vertex v, the aspect ratio of the
Voronoi cell VM (v) is RM (v)/rM (v).

We say M has aspect ratio τ if for each vertex v ∈ vertices(M) the aspect
ratio of V (p) is at most τ . In this case, we will refer to M as a τ -quality
Voronoi diagram.

We will assume throughout there are no degeneracies, that is, no sphere of
dimension k ≤ d containing k + 2 points. Algorithms to address degeneracies
have been considered; incorporating these method into our framework will be
addressed in later work following Miller, Pav, and Walkington [MPW02].

A crucial definition is that of local feature size, as defined by Rup-
pert [Rup95]. Let lfs(x) be the minimum distance from x to two disjoint
polytopes of the input PLC. We also define a closely related function, the
current feature size cfsM (x), which is the distance from x to the second-
nearest mesh vertex of M . We will simply write cfs when it is clear that only
one mesh M is involved. This notion of cfs has been written elsewhere as lfsM ,
lfs0, or lfs0,M , however, in this work we will use cfs to strongly disambiguate
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the two notions. The lfs never changes and counts distance to any polytope.
The cfs decreases between intermediate meshes as refinement proceeds, and
only counts distance to vertices.

Given any point p in the convex closure of G we consider the lowest di-
mensional cell containing p. We call this the containing dimension of p,
denoted CD(p).

We will need a spacing function defined everywhere for our runtime
bounds. We use the gap size definition originally defined for mesh coarsen-
ing [MTT99, Tal97].

Definition 2. Let P be a point set in Ed. A gap-ball B of P is any d-ball
meeting the following two criteria:

• B is not encroached by any point in P .
• The center of B lies inside the convex closure CC(P ).

Definition 3. Let P be a point set in Ed. Let x be a point in CC(P ). The
gap size GP (x) is the radius of the largest gap-ball B of P such that x lies
on the surface of B.

For brevity, we define that GM (x) ≡ Gvertices(M)(x).

Clearly, the gap size is a monotone decreasing function as we add vertices
to the mesh: the shape of the convex closure does not change, but it gets
harder to satisfy the non-encroachment requirement.

Definition 4. Let a mesh M and a point x ∈ CC(M) be given. We define
the grading of M at x as:

ΓM (x) =
GM (x)
cfsM (x)

This notion of grading is useful for capturing the relative quality of a
mesh, with the advantage that Γ is defined everywhere in the convex clo-
sure, rather than just at vertices like many mesh metrics. This notion and
nearly-equivalent notions for grading have used before [MTT99, Tal97, Mil04,
HPU05].

4 Simplified Algorithm

In this section, we describe a simplified version of our algorithm without any
input feature complications or boundary concerns. For the simple algorithm,
the input is a set of points in the infinite plane Ed where the hypercube
[0, L1/d]d repeats. While this is not a particularly realistic model of compu-
tation, it does allow us to develop the intuition we use for the full algorithm,
while avoiding considerable distractions. Furthermore, the periodic point set
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Simplified-SVR(P : d-dim point set, τ : mesh quality constant, k: 0 < k ≤ 1 )
1: Assume an initial Voronoi mesh M exists.
2: Let U be the set of uninserted input vertices: U = P − V (M)
3: while U is non-empty do
4: Perform a break move
5: while M has aspect ratio worse than τ do
6: Perform a clean
7: end while
8: end while

TryInsert(p: d-dim point, M d-dim mesh, U : set of uninserted d-dim points)
9: if ∃u ∈ Us.t.|pu| ≤ kNNM (p) then

10: Yield : Insert u into M , updating U and the Voronoi diagram.
11: else
12: Insert p into M , updating the Voronoi diagram.
13: end if

Fig. 1. The simplified SVR algorithm on a periodic point set. The break and clean
moves are described in the text.

model can be simulated by embedding the input hypercube within a larger
bounding box.

For the purposes of this simplified exposition, we will not discuss initializa-
tion, except to note that it is only linear work, assigning uninserted vertices
to one of a constant number Voronoi cells. At a basic level, SVR operates
incrementally. At any point in time, we have a Voronoi diagram. Some of the
input points are Voronoi vertices, some of the input points are not yet recov-
ered. The Voronoi diagram also has Steiner vertices. Every input point that
is not yet recovered is contained in some Voronoi cell.

The algorithm iteratively plays one of three moves until none of the moves
apply:

• clean move: Pick a Voronoi cell of bad aspect ratio. Take one of its farthest
Voronoi nodes, and try to insert it using TryInsert.

• break move on an input: Pick an input vertex that has been recovered in
the mesh and whose Voronoi cell includes an input point. Take its farthest
Voronoi node, and try to insert it using TryInsert.

• break move on a Steiner vertex: Pick a mesh vertex that is not an input
(it is a Steiner point) and whose Voronoi cell includes an input point.
Unconditionally insert one of the input points.

Assuming this algorithm terminates, at that point there will be no cells of
bad aspect ratio, and all the input vertices will have been recovered, so the
algorithm will have produced a quality conforming mesh.

We add the additional constraint that clean moves take precedence over
break moves. One can then think of the algorithm as operating in phases.
Each phase, SVR starts with a quality mesh, “breaks” it with a break move;
then “cleans” using only clean moves, until quality is re-established.
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Fig. 2. The cell of v is being destroyed by SVR (either because it is skinny, or
because p′′ is inside); SVR tries to add the farthest Voronoi node p. The outer circle
around p is of radius Rv; the inner disc, in grey, is of radius kRv. (A) Because the
uninserted input point p′ is near p, SVR must yield – otherwise, an artificially small
feature will have been created, violating our size guarantees. (B) The uninserted
input point p′′ is too far from p, so SVR does not yield. Our size guarantees would
be maintained were SVR to yield to p′′, but the time bounds would be violated
because p′′ may be arbitrarily close to v.

When the algorithm considers adding a Steiner point, it may instead yield
to an input vertex if there is one nearby. This ensures that no Steiner point
ever is inserted too close to an input vertex, which is critical for guaranteed
mesh size. Suppose SVR is cleaning a skinny Voronoi cell V (v) and considers
the addition of Steiner p. There is an empty ball around p of radius Rv. This
provides a natural definition of “nearby,” for yielding purposes. For reasons
related to runtime analysis, we must reduce the radius of this neighborhood
by a constant factor k, slightly smaller than 1. Expressed concisely, we will
yield to an unrecovered input point p′ if |pp′| < kRv (see Figure 2).

Why does the runtime argument need k < 1? If we relaxed to k = 1, p′

might be arbitrarily close to v (or some other vertex). Such a situation would
cause an arbitrarily bad break in the quality of the mesh. This would cause us
to lose sparsity guarantees, which would in turn destroy runtime guarantees.
For this reason, the constants in the runtime analysis will depend on 1/(1−k),
greatly increasing as k approaches 1. On the other hand, guarantees about
spacing and mesh size work best when we are most aggressive about yielding
to input vertices rather than adding more Steiner vertices: smaller k makes
for larger output. There is a tradeoff here, which we expect argues for setting
k close to 1.

The proof that the simplified SVR terminates with guaranteed mesh size
is almost verbatim from Ruppert [Rup95], albeit adapted to higher dimension
and with an additional case for yielding to input vertices. What is novel are
the proofs that bound the runtime and intermediate mesh quality.
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Under appropriate settings of the user-given parameters τ and k (namely,
kτ > 2

√
2), we can guarantee that M never has aspect ratio worse than some

constant τ ′ that depends only on τ , k, and d – even during the clean and break
phases. It is well known [MTTW95, Tal97] that if the mesh vertices are well-
spaced, then the Delaunay and its dual Voronoi have size linear in the number
of vertices. In particular, every vertex has constant degree (its Voronoi cell
has a constant number of facets). This further implies that inserting a vertex
into such a mesh will take only constant time using an incremental algorithm;
this gives us the O(m) bound for refinement work.

The only charge left, then, is the point location: determining whether any
unrecovered vertices are included in the k-ball around p. The point location
structure we use is almost trivial: the algorithm simply stores the list of un-
recovered input vertices that each cell includes. When a new mesh vertex is
inserted, the insertion algorithm also recomputes the lists of affected Voronoi
cells. Then, to determine whether any unrecovered vertices are in the k-ball,
the algorithm merely queries each neighboring Voronoi cell in turn.

We use an amortized analysis for the point location charges that is remi-
niscent of the two-dimensional analysis of Miller [Mil04]: we charge the point
location not to the Voronoi node that is prompting the test, but to the unre-
covered vertex being tested. There are two sub-charges: the relocation charge
for updating point location information, and the charge for point location
queries. Both charges are computed similarly, so in this section we will merely
sketch out the former case.

Consider an unrecovered vertex u. Whenever the Voronoi cell that contains
u changes, a new vertex p was inserted nearby – at a distance related to
(within a constant factor of) cfs(u). Furthermore, when p is inserted, SVR
ensures via the yielding rules that the nearest neighbor of p is no closer than
a distance related to cfs(p). Finally, because u and p are close, cfs(p) is related
to cfs(u). Thus, for every p whose insertion affects u, p is both close (distance
O(cfs(u)) and has a large (radius Ω(cfs(u))) empty ball around it. Therefore,
an adversary can only pack a constant number of vertices around u before the
feature size at u falls by half.

Later, we will prove that cfs(u) is at most the diameter L of the periodic
region, and never goes below Ω(s). Thus, the adversary can force the algorithm
to halve the feature size at most log(L/s) times around u. So the number of
times that u is relocated will be at most log(L/s). Precise statements of the
lemmas are found in Section 8.2, while rigorous proofs appear in the tech
report [HMP06].

As we develop the full algorithm, the important techniques of this section
will remain the same: as long as SVR ensures that no new vertex is ever
inserted too close to an existing mesh vertex, the algorithm always has a
quality mesh (not too broken). In turn, this implies that the insertion is fast
and that the gap size around unrecovered features falls exponentially, so that
the point location costs are also small.
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TryAdd(p: i-dim Voronoi point, r: radius, M : i-dim mesh)
1: if ∃q ∈ U(M) such that |pq| ≤ kr then
2: ForceAdd(q,M)
3: else if ∃B ∈ Balls(M) such that p ∈ B then
4: Split(B) for all such B
5: TryAdd(p, r, M)
6: else
7: ForceAdd(p, M)
8: end if

Split(B: protecting ball from a mesh M)
1: TryAdd(center(B), radius(B), M)
2: while M has a skinny cell V (v) do
3: TryAdd(far-node(v), RM (v), M)
4: end while

ForceAdd(p: i-dim point,M : i-dim mesh)
1: Run Bowyer-Watson or Edelsbrunner-Shah to insert p into the mesh M .
2: Reassign vertices in U(M) and protecting balls in Balls(M) to their new Voronoi

cells as needed.
3: for every higher-dimensional mesh M+ that contains M as a sub-feature do
4: Remove from Balls(M+) all the balls associated with Voronoi nodes that

were destroyed.
5: Add to Balls(M+) a ball for every Voronoi node that was created.
6: Add p to U(M+) if not already present.
7: end for
8: {The following only occurs if p was a vertex in P (M).}
9: If cd(p) < i then remove p from U(M)

10: while ∃B ∈ F (M) such that p ∈ B do
11: If p is the second encroachment on B, Split(B)
12: end while

Fig. 3. The subroutines used in the SVR algorithm.

5 Full Algorithm

The input is described as a PLC, and must meet the criteria described in
Section 3.

As scratch data structures, we maintain, for every input feature including
the complete domain:

• A mesh M . We will prove that each mesh always has good quality (good
Voronoi aspect ratio).

• A mapping U from each Voronoi cell in M to the list of uninserted vertices
in that cell of containment dimension < i.

• A mapping Balls from each Voronoi cell in M to the list of balls intersect
the cell(these balls are used to protect lower-dimensional features).
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A protecting ball is a ball B(p,NNM−(p)) centered at a Voronoi node of
a lower-dimensional mesh M−. This corresponds exactly to the circumball of
a lower-dimensional subfacet.

In the bootstrapping phase of the algorithm, we initialize the data struc-
tures for each feature in order of increasing dimension. We generate the
Voronoi diagram of the convex hull of each feature F , then partition each
sub-feature’s protecting balls among the cells of M(F ) to create the S map-
ping. We also partition the vertex set similarly.

As in the point-set case, the algorithm will now iteratively perform break
and clean moves until it reaches a quality conformal mesh. The clean move is
identical to before (except for an updated version of TryInsert). The break
move is now expanded to try to break encroached balls using the new Split
routine. Encroached balls correspond to lower-dimensional input features that
has not yet been recovered.

However, we must sequence the moves correctly across dimensions. In par-
ticular, we maintain the invariant that every mesh is always of good quality.
We first refine for quality (clean moves) from the bottom (lowest dimension)
up. Next, we refine for input (break moves) from top down. This approach
is critical to establishing the runtime bound, though it is irrelevant to the
correctness proof.

When we consider adding a Steiner point, as before, we may have to yield
to an input vertex. However, we may also have to yield to lower-dimensional
input features; this is a common technique in mesh refinement. Unlike in
standard Delaunay mesh refinement techniques, for runtime reasons we are
required to occasionally allow input protective balls to be encroached by mesh
vertices; however, we only allow a single encroachment, and only by vertices
that have containment dimension less than dim(M). The need for this is based
on the fact that while we can charge according to the spread (L/s) of the input
for the point location of features the user input, we want the charge on sub-
features the algorithm creates to be only linear in the size of the output.
Allowing singly-encroached input features allows the algorithm to ensure it
never performs point location on any non-input protective balls until the gap
size around the protective ball is related to its diameter.

6 Structural Properties of Quality Voronoi Diagrams

In this section we present several structural lemmas about good radius-edge
meshes. These lemmas are crucial for our analysis and may be well suited for
timing analysis of future algorithms. For brevity, proofs are omitted, but can
be found in [HMP06].

Let M be a τ -quality Voronoi diagram in Ed. Our first main goal in this
section is to show that the cfs of any point in a gap-ball is bounded below by
a constant times the ball’s radius.
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Lemma 1. Suppose that M is a τ -quality Voronoi diagram, and suppose that
B is a gap-ball of V (M) with center c and radius r. If x ∈ B ∩ CC(M) then

cfs(x) ≥ c1r

where c1 depends only on τ and is independent of dimension.

We now a state a lemma that is functionally equivalent to Lemma 1, but
allows the gap-ball to have one vertex encroaching it.

Lemma 2. Suppose M is a τ -quality Voronoi diagram and p is a Voronoi
vertex. Define M ′ as the Voronoi diagram of V (M)\{p}. Suppose B is a gap-
ball of radius r in M ′, then for all x ∈ B:

cfs
M

(x) ≥ c2r

We now state two lemmas that relate the grading Γ of a Voronoi diagram
to the quality τ . These lemmas are not really new, but we include more simple
formulations than prior work.

Lemma 3. (Quality Gives Bounded Grading)
Suppose M is a τ -quality Voronoi diagram. Then there exists a constant c3

depending only on τ such that ΓM (x) ≤ c3 for any x ∈ CC(M).

Lemma 4. (Bounded Grading Gives Quality)
Suppose we have a Voronoi diagram M , and suppose that ΓM (p) ≤ τ at every
vertex p ∈ M . Suppose further that every Voronoi node of M is contained in
CC(M). Then M is a 2τ -quality Voronoi diagram.

We note that the hypothesis for Lemma 4 is satisfied when we have a τ -
quality mesh such that the diametral ball of every mesh simplex on the convex
hull is unencroached.

7 Spacing

The key lemma that Ruppert used in his paper stated that the algorithm will
never insert two points more than a constant factor closer to each other than
what is dictated by the lfs function over the input – in fact, it will never even
consider inserting a point too close to a neighbor. By controlling the spacing
of output vertices, Ruppert could then prove that his algorithm terminates
with a mesh of guaranteed size. We will do the same; and we also need to
control the spacing in order to achieve our time bounds.

The statement of the theorem is as follows:

Theorem 1. For any point p considered for insertion into a mesh M , whether
or not p is eventually inserted, we have that lfs(p) ≤ CNN(p)
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From this we get a corollary which allows us to bound the nearest neighbor
of a mesh vertex at any time – in particular, at the end of the algorithm:

Corollary 1. In any mesh M produced during the run of the algorithm, for
any mesh vertex v ∈M , we have that lfs(v) ≤ (1 + C)NNM (v)

The proofs herein are somewhat simplified from those presented by many
prior authors, even as they are generalized to higher dimension. As in most
such analyses, we split the single constant c into a constant Ci for every
dimension 1 . . . d. In our algorithm, unlike in most, we need an additional
constant C0 for the spacing of input vertices when they are inserted.

Lemma 5. Let p be an input vertex being inserted by SVR. Then:

lfs(p) ≤ (1 +
C1

k
)NNM (p)

Proof. Let v be the vertex in whose cell p lies. If v has containment dimension
0, then the lemma is obvious. Otherwise, we know lfs(v) ≤ C1NNMv

(v) by the
usual inductive argument. Furthermore, we know that v did not yield to input
vertex p when v was inserted, which means that |vp| ≥ kNNMv

(v). Finally, we
use the Lipschitz condition and some algebra to prove the result. This shows
that C0 ≥ 1 + C1/k .

The bounds on Ci for i > 0 are exactly analogous to prior work but with
a 1/k factor. This gives a linear program which we can solve for C0, which

shows that the sizing theorem holds whenever τkd > 2d−1/2 . In other words,
for any τ > 2d−1/2, there is a k close enough to 1 that allows the proof to
go through. Setting k = 1 gives a correct algorithm, but we will see that the
algorithm will run in time proportional to (1−k)−1 which suggests a tradeoff
between solution quality and runtime.

7.1 Size Optimality

A proof due to Ruppert shows that, so long as the sizing condition is guar-
anteed – as it is for SVR, according to Theorem 1 –, then on point set input,
the mesh is within a constant factor of the smallest mesh that respects the
input vertices. As shown by Shewchuk [She98], this proof fails in the presence
of input features (even just segments) in dimension at least 3: by using sliv-
ers, on certain inputs, we can produce an arbitrarily smaller mesh than what
is dictated by the local feature size. Given that slivers are undesirable, it is
unclear exactly what the correct definition of size optimality is, when in the
presence of features.
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8 Timing Analysis Overview

8.1

We claim that the entire refinement process modifies only O(m) Voronoi cell
boundaries over the life of the algorithm. Hence, the cost of maintaining the
mesh is O(m).

Proof (see [HMP06]) proceeds by first showing that the mesh is always
a quality mesh at any point during the algorithm. It is then shown that the
mesh is always sparse. Finally, a charging argument to count the total number
of edges.

Lemma 6 (Always Quality). At any point during Sparse Voronoi Refine-
ment, the intermediate mesh is a τ ′-quality mesh.

Theorem 2 (Sparse Mesh). Any intermediate mesh during the lifetime of
Sparse Voronoi Refinement is sparse, i.e. there is a constant depending only
on τ and k that bounds the degree of every vertex.

Corollary 2 (Mesh Update Charge). The number of Voronoi facets that
are ever created is O(m), so that the overall time spent updating the mesh is
O(m).

Proof. Any time a Voronoi facet f is created, it is adjacent to a freshly inserted
vertex v. We will charge the cost of creating f to the insertion of v. Consider
the intermediate mesh immediately after the insertion of v. By Theorem 2, v
is of constant degree, hence the number of facets charged to v is constant, so
the total number of Voronoi facets that are ever created is linear in the total
number of vertices ever inserted, hence O(m).

8.2

We sketch a basic overview of the timing analysis for point location work. A
rigorous analysis is omitted for brevity, but can be found in [HMP06].

Consider a feature and the sequence of meshes of that feature that the
algorithm produces: M0,M1, . . . Mi, . . . Mj , . . . Mm. We claim that through
this sequence, no more than O(1) point location events affect any ball B with
center c before cfs(c) falls by half, i.e.:

Lemma 7. If cfsMj
(c) ≥ cfsMi

(c)/2 then B was relocated at most O(1) times
during the insertion of points pi through pj.

Lemma 8. If cfsMj
(c) ≥ cfsMi

(c)/2 then B was searched or tested for en-
croachment at most O(1) times during the insertion of points pi through pj.

Mesh Update Work

Accounting for Point Location and Relocation
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Together, these lemmas tell us that point location events must be in some
sense “packed” around the points being located. It follows that the number
of point location events around a point (or ball) to be inserted is bounded by
the log of the ratio between the farthest and the nearest event.

For input points and features, this bounds the number of events to
log(L/s). For created balls and queued points, it can be shown that the num-
ber of events is only a constant. Together this gives a bound on point location
costs of O(n log(L/s) + m).

9 Conclusions

We have shown how to produce, in near-optimal time, a conformal mesh of
the input domain, in arbitrary dimension. While this is a first, there are many
remaining questions.

Firstly, we allow the user to demand a value of τ ≥ 2d−1/2, equivalent to
a radius-edge ratio of ρ ≥ 2d−3/2. With some proof work (without changing
the algorithm at all), we know how to improve this slightly in d > 2, but
not substantially. In two dimensions, our bound matches Ruppert’s original
bound of 20.7◦, or ρ ≥ 2

√
2 – and indeed it should, since our proof is based

on the same precepts. In the decade since the publication of Ruppert’s result,
his proof has been improved to allow the user to demand angles of more than
25◦; and it is believed that the correct answer is that the user should be able
to demand almost 30◦ on any input (of course, on some inputs, the user can
demand even larger angles). It is less clear how the bound changes according
to dimension, but we believe our stated bound is much too conservative.

Most egregiously, we have demanded that the user must give us a PLC
with all angles orthogonal or obtuse. Several recent papers have begun ad-
dressing the issue of removing the 90◦ angle restriction [CP03, PW04]. These
techniques seek to create, at initialization, a protective region around small
angles, requiring an oracle that will provide the algorithm with the lfs at many
points. This requirement leads to very poor runtime bounds with any naive
analysis. To incorporate these methods into SVR, the natural method would
be to create some protective region that could adapt as SVR recovers more
input features. Indeed, the recent work of Pav and Walkington [PW04] ap-
pears to be moving in this direction, as they attempt to reduce the oracular
requirements. We believe that as algorithms for three dimensional meshing
with arbitrary domains continue to mature, they can be incorporated into
SVR to achieve better runtime guarantees.

Certainly, future work will include the parallelization of SVR, which is
important for any modern large-scale meshing algorithm. All of the mesh
modifications in SVR are local, so basic shared memory algorithmic techniques
involving a conflict graph will most likely suffice. This analysis is in progress,
and we do not foresee any major difficulties.
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The last possibility is the reduction of the point location costs from
O(n log(L/s)) down to O(n log n) for inputs with pathological spread. This
is mainly of theoretical concern. One possibility would be to cluster together
several small input features and point locate them as a conglomerate, until
the mesh is refined down to a relatively polynomial spread. It is quite unclear
how to properly define such a clustering strategy, but vague intuitions sug-
gest that something akin to well-separated pair decompositions [CK92] might
suffice.
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Volume and Feature Preservation
in Surface Mesh Optimization

College of Computing, Georgia Institute of Technology, Atlanta, GA 30332

Summary. Mesh optimization is critical in numerical simulations involving com-
plex or evolving geometry. Because of the geometric constraints, such as preservation
of sharp features and conservation of volume, optimizing a surface mesh poses sig-
nificant challenges, especially when a CAD model is unavailable. In this paper, we
introduce a formulation of volume conservation in a local sense for surface meshes
under smoothing or other types of mesh motion, and propose a simple and effi-
cient technique to solve it. We also present a simple and robust feature detection
technique to enhance the effectiveness of local volume conservation and mesh opti-
mization. We present the theoretical foundation of our techniques and experimental
study to demonstrate their effectiveness.

Key
conservation; feature detection

1 Introduction

Mesh optimization is important in mesh generation for numerical simulations
[8] and in many simulations with moving boundaries [3]. For its potential
high efficiency and simplicity, a commonly used optimization strategy is mesh
smoothing, which redistributes the vertices without changing the connectivity
of a mesh. Although it has been widely used in optimizing 2-D and 3-D meshes
[2, 4, 5, 12, 17], smoothing a surface mesh has some significant challenges due
to additional geometric constraints. Two critical and nontrivial constraints are
the preservation of sharp features and conservation of volume. Although some
sophisticated techniques were developed and used in stand-alone meshing and
remeshing tools, they are hard to implement and ill-suited for numerical simu-
lation codes, especially on parallel computers. The lack of simple and effective
surface mesh smoothing techniques significantly limits the capabilities or effi-
ciencies of numerical simulations involving complex geometry under significant
motion, such as in multiphase flows [25].

Xiangmin Jiao

words: Mesh optimization; mesh smoothing; surface meshes; volume
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Conservation of volume (or mass) is a fundamental issue for accurate and
stable numerical simulations, especially the simulations of dynamic systems
over a long period of time [19]. It is well-known that a naive procedure, such
as Laplacian smoothing, may shrink the volume of a domain substantially
[24]. Volume conservation has attracted significant attention in recent years
in mesh optimization and surface fairing [9, 19, 23, 27]. In the context of mesh
optimization, most methods primarily focus on limiting volume errors during
mesh generation or remeshing by projecting the vertices onto a continuous
or discrete surface [6, 7, 9, 18]. These methods involve point location proce-
dures, which are potentially expensive and difficult to implement especially
on a parallel computer. In addition, if the mesh-optimization procedure must
be called repeatedly as required in many numerical simulations, severe vol-
ume errors may still occur due to accumulation of errors. The method in [19]
enforces volume conservation up to machine precision, but it may incur large
local errors near singularities or sharp features.

Another issue intimately related to volume conservation is feature de-
tection and preservation. Feature detection is a critical issue also in its
own right in mesh generation, mesh optimization, and numerical simulations
[1, 11, 16, 20, 26]. Without proper treatment of features or singularities, large
errors may occur during a meshing or remeshing process, and significant un-
dershoots or overshoots may occur near singularities in high-order approxi-
mations to a surface. Within numerical simulations, improper treatment of
features may undermine the accuracy or stability. Although a number of fea-
ture detection techniques have been proposed in the literature, the most ro-
bust techniques are also difficult to implement and typically lack a consistent
theoretical foundation. Although they may be sufficient for stand-alone mesh-
ing tools and interactive environments, simple and robust feature detection
techniques are still needed for many other computational applications.

This paper aims at developing simple and efficient techniques for surface
mesh optimization that can be easily integrated into numerical simulations
based on sound mathematical foundations. The main contributions of the
paper are twofold. First, we formulate volume conservation in a local sense for
meshes under smoothing or other types of mesh motion, and propose a simple
and efficient technique to achieve volume conservation. Second, we propose a
robust feature detection technique that is relatively easy to implement and
to integrate into meshing processes or numerical simulations. Both of these
techniques are based on an eigenvalue analysis of a metric tensor at each vertex
of the mesh, which combines the asymptotic analysis for fine discretizations
of smooth surfaces and the singularity analysis for coarse meshes or sharp
features in a fine mesh. This analysis establishes a new theoretical foundation
for feature detection and volume conservation in mesh optimization and leads
to simple and robust algorithms for them.

The remainder of the paper is organized as follows. Section 2 presents
the basic framework for our surface mesh smoothing, referred to as null-space
smoothing. Section 3 presents a formulation and numerical solution to enforce
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volume conservation in a local sense. Section 4 describes a simple and ro-
bust feature detection technique that reuses the computational tools present
in earlier sections and improves the effectiveness of mesh smoothing and lo-
cal volume conservation. Section 5 demonstrates the effectiveness of our new
technique in surface mesh smoothing. Section 6 concludes the paper with a
discussion.

2 Null-Space Smoothing

2.1 Formulation

We review our basic framework for surface mesh smoothing, referred to as
null-space smoothing, proposed previously in [15]. This technique smooths a
surface mesh by moving each vertex within a null space, which in general is
a plane, a line, or the empty set, tangential to the surface at the vertex. Let
T denote a matrix whose column vectors are the bases of the null space, and
let c denote the vector from v to the centroid (or a weighted average) of its
neighborhood. The null-space smoothing moves v toward the centroid within
the null space for a displacement t, i.e.,

t = TTT c. (1)

We define the null space using an eigenvalue analysis of a metric tensor.
At each vertex v, suppose v is the origin of a local coordinate frame, and m
be the number of the faces incident on v. Let N be an m×3 matrix whose ith
row vector is the unit outward normal to the ith incident face of v, and W
be an m×m diagonal matrix with Wii equal to the weight (such as the face
area) associated with the ith face. Let A denote NT WN, which we refer to as
the quadric metric tensor, for its use in the well-known quadric error metric
[14]. A is symmetric positive semi-definite (i.e., xT Ax ≥ 0 for any vector x),
and its eigenvalue decomposition [10] is

A = VΛVT , (2)

where its eigenvalues λi = Λii are all real and nonnegative, and its correspond-
ing eigenvectors ei are the column vectors of V. We refer to the vector space
spanned by the eigenvectors corresponding to relatively large eigenvalues of
A as its primary space and the complementary space as its null space.

In general, the null space at a vertex is tangent to the surface. For suf-
ficiently fine meshes, the null space has dimensions 2, 1, or 0 at a smooth,
ridge, or corner vertex, respectively, so it is essentially the tangent space of
the surface at a vertex. For relatively coarse meshes, however, it is in general
a subspace of the tangent space (e.g., it may be a line along the direction
of minimum curvature in the tangent plane). Null-space smoothing moves a
vertex within the tangent plane or along the direction of minimum curvature,
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and therefore it tends to preserve sharp features and areas with large curva-
tures. In addition, it stops changing a surface after the mesh has converged
tangentially. Therefore, null-space smoothing is expected to work well and
typically introduce negligible perturbation to a surface in practice.

2.2 Analysis of Null-Space Smoothing

We now analyze the error in null-space smoothing more formally in terms of
volume change. Consider moving a vertex v by a displacement t. Let ai and
ni be the area and unit normal of the ith incident face of v, respectively, and
assume Wii = ai. The volume change is δV =

∑m
i=1 ainT

i t/3 = ‖WNt‖1/3.
From the definition of A, we have the singular value decomposition [10]

√
WN = U

√
ΛVT , (3)

where U is an m×3 matrix, and
√

W is the diagonal matrix whose ith diagonal
entry is the square root of Wii (and similarly for

√
Λ). Let sT = ‖

√
WU‖1,

and then,

3δV = ‖WNt‖1 = ‖
√

WU
√

ΛVT t‖1 =
3∑

i=1

si

√
λi(tT ei). (4)

If the mesh is coarse, then si (and similarly for tT ei) may have compara-
ble sizes for different i, so null-space smoothing introduces a relatively small
volume change proportional to the square roots of the smallest eigenvalues.
Assume the mesh is relatively uniform and let h be a measure of the average
edge length. Following an analysis similar to that in [14], it can be shown
that as h approaches 0, the largest eigenvalues are O(h2) but the smallest
eigenvalues corresponding to the null space of A are O(h4). In addition, tT ei

is O(h2), so δV is O(h4) in null-space smoothing with a positional error of
O(h2) even near singularities. If t contained a component corresponding to
larger eigenvalues (such as in Laplacian smoothing), then δV would be O(h3)
with a positional perturbation of O(h) near singularities. Therefore, null-space
smoothing works significantly better than Laplacian smoothing.

3 Volume Conservation

Moving one vertex in null-space smoothing preserves the potential second-
order accuracy of a surface triangulation. However, moving the vertices for
many iterations may still degrade the order of accuracy. We propose an ex-
tension of null-space smoothing to reduce the volume error further. Our basic
idea is to add a small component within the primary space at the vertex to
correct the volume while preserving the singularities of the surface. If we move
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each vertex one by one (i.e., updating in a Gauss-Seidel style), then the prob-
lem is relatively simple: we just need to determine a direction d in the primary
space and then a length α, such that α‖WNd‖1 = −‖WNt‖1, because from
(4) it is obvious that moving the vertex by αd+ t leads to no volume change.
If all vertices are moved concurrently (i.e., updating in a Jacobi style, which is
advantageous for its preservation of symmetry and ease of parallelization), we
may determine the direction for each vertex independently but the distances
of their movement must be solved concurrently. In the following, we will first
describe how to determine the directions that are applicable to both Gauss-
Seidel and Jacobi styles, and then present how to compute the motion in the
Jacobi style.

3.1 Estimation of Directions

Let us first consider the problem of estimating a direction at each vertex. The
key requirement of this direction is that it must be in the primary space. In-
tuitively, one might determine a weighted average of face normals and project
it onto the primary space, but a naive implementation may be sensitive to
weights and hence prone to artifacts near singularities. It is desirable to find
a direction that is well behaved near singularities so that it does not vary
abruptly between two neighboring ridge vertices.

We compute the directions using a mean normal based on an extension of
the preceding eigenvalues analysis. Suppose all the faces are offset outwards
for a unit distance, and the intersection of the planes passing through the
offset faces incident on a vertex v is then the solution to an m × 3 linear
system

Nx ≈ 1. (5)

Since N may be over- or under-determined, we reformulate it in a least squares
sense and obtain a 3× 3 linear system

Ax = b, (6)

where b = NT W1. Let k denote the dimension of the primary space, and as-
sume λ1 ≥ λ2 ≥ λ3. Generally speaking, k is one, two, and three at a smooth,
ridge, and corner vertex, respectively, but may be smaller for extremely shape
ridge or corner vertices where λ2 or λ3 is too small compared to λ1 (e.g.,
≤ ελ1 for ε ≈ 0.003). By restricting x to be within the primary space, the
solution to (5) is then

x ≈
k∑

i=1

eT
i bei/λi, (7)

which is numerically more stable by avoiding division by very small numbers.
If k = 1 (i.e., the surface is smooth at the vertex), then x reduces to the first
eigenvector, which converges to the outward surface normal. If k > 1 (i.e., the
surface is singular at the vertex), then x approximately points to the medial
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axis of the surface and in turn approximately bisects the tangent planes at
the singularity. For these reasons, x provides a good estimation of normals
and is well behaved at singularities, and therefore we use d = x/‖x‖ as the
direction at each vertex for volume correction.

3.2 Concurrent Vertex Motion

After obtaining the direction at each vertex, we must then solve for the dis-
tance α that each vertex moves. In a Gauss-Seidel-style iteration, α is sim-
ply −(bT t)/(bT d) at a vertex, which is similar to the single-node relaxation
method in [19]. For Jacobi iterations, however, the problem is more difficult
because the volume swept by each face is in general nonlinear in the dis-
placements of the vertices. Although a naive technique such as rescaling the
domain or making α uniform for all vertices may restore the total volume
in a global sense, it has no physical meaning and may undermine accuracy.
We propose a new approach that formulates volume conservation in a local
sense to obtain a system of equations and then solves the equation efficiently
using a simple iterative procedure. Although our focus is mesh smoothing, we
present our formulation in a general form so that it can be easily adapted to
other settings.

Suppose a volume flux (or mass flux) ε is given over a surface (where the
flux may be due to the tangential motion in the null-space smoothing or other
types of surface motion). We define a numerical flux f at each face to be the
gain or loss of volume per unit area, i.e.,

f =
(∫

e′
xT n′ dx−

∫

e

xT n dx
)

/

∫

e

1dx, (8)

where e and e′ denote the face before and after adding the normal motion
αd at the vertices, and n and n′ denote their unit normals, respectively. Our
objective is to make the numerical flux f as close to the prescribed flux ε as
possible, i.e., f ≈ ε. Using a weighted-residual method, we obtain a weak form
by requiring the error f − ε project orthogonally onto the function space of
the basis functions of the mesh, i.e.,

∫
(f − ε)ωi dΓ = 0 (9)

for each shape function ωi of the mesh. From the summation property∑
i ωi = 1, this weak form of local volume conservation enforces global volume

conservation strictly, i.e.,
∫

f dΓ =
∫

εdΓ .
Given a triangle e = p0p1p2, let d̃i = αidi and qi = pi+d̃i. Let t1 = p1−

p0, t2 = p2 − p0, and n = t1 × t2. Given the displacements, we can evaluate
the integral in (9) up to machine precision using numerical quadrature. To
analyze f , we decompose the prism between e and e′ into three tetrahedra,
p0p1p2q1, p0q1p2q2, and p0q1q2q0, as illustrated in Fig. 1. If di has the
same direction for all vertices, the swept volume V of e is then
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V =
1
6

(
nT d̃1 + (t1 + d̃1)× (t2 + d̃2) · (d̃0 + d̃2)

)

=
1
6

(
nT (d̃0 + d̃1 + d̃2) + (d̃1 × t2 + t1 × d̃2 + d̃1 × d̃2)T (d̃0 + d̃2)

)
,

which is a cubic function in αi. If di has different directions at different ver-
tices, each quadrilateral of the prism would be bilinear, but it still holds that
V = nT (d̃0 + d̃1 + d̃2)/6 + O(α2). Therefore, (9) leads to a nonlinear system
of equations in αi.

p0

p1

p2

q1

q2

q0

Fig. 1. Decomposition of prism swept
by face p0p1p2 into three tetrahedra

Fig. 2. Control volume for approximat-
ing numerical flux at vertex

To solve (9) efficiently, we use an efficient quasi-Newton method as follows.
Let us define the control volume of each vertex to be composed of one third of
each of its incident faces, as illustrated in Fig. 2. Let g =

∑
i αidT

i nHi, where
n denote the normal field over the surface, and Hi is a step function, which
is 1 in the control volume of the vertex and 0 elsewhere. Then

∫
fωi dΓ =∫

gωi dΓ + O(α2). Let D be the diagonal matrix, where

Dij =
∂
∫

gωi dΓ

∂αj
=
{

1
3d

T
i β if i = j
0 if i 
= j

, (10)

where β =
∑m

k=1 aknk (similar to b in (2) but may be integrated over a
different reference geometry). D approximates the derivative of

∫
fωidΓ with

respect to αj . Using Broyden’s method [13], α can be solved iteratively using
the secant equation

D
(
α(k+1) −α(k)

)
= r(k), (11)

where r(k) is the residual of the kth iteration, i.e.,

r
(k)
i = −

∫
(f(α(k))− ε)ωi dΓ,

with r
(1)
i =

∫
εωi dΓ . Because D is a diagonal matrix, this equation can be

solved very conveniently. In general, the convergence rate of Broyden’s method
is superlinear and hence this method is very efficient.
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We now plug in the above formulation into conservative mesh smoothing.
Let Γ denote the original surface mesh and Γ̃ denote the surface mesh after
tangential motion t. We use Γ̃ as the reference for the numerical integration.
Let Vγ(u) denote the swept volume of a surface γ due to nodal displacements
u. The above nonlinear system would then enforce that V

Γ̃
(d̃) = V

Γ̃
(−t) =

−VΓ (t), and hence

VΓ (t + d̃) = VΓ (t) + V
Γ̃
(d̃) = VΓ (t) + V

Γ̃
(−t) = VΓ (t)− VΓ (t) = 0. (12)

In summary, this conservative algorithm proceeds as following:

1. obtain intermediate surface mesh by moving vertices by t, and set d̃ = 0;
2. for each vertex v, compute

d̃v = d̃v −
∑

e Ve(d̃)−
∑

e Ve(−t)
∑

e aenT
e dv

dv; (13)

3. repeat step 2 until convergence.

On line 2, the volumes, areas, and normals are computed on the intermediate
surface mesh Γ̃ , and the summations are over the incident faces of v. This
quasi-Newton method in practice converges to nearly machine precision for
only very few iterations. This method does not require the quadric metric
tensor in (6) to be weighted by area, so alternative weighting schemes may
be used. Note that (13) may be unstable if nT

e di ≈ 0. This case is unlikely to
occur for our choice of d except at cusps, which are inherently unstable. So
vertices on cusps should in general be skipped in this procedure for robustness.

4 Feature Detection

In our preceding analysis, it is obvious that detection of geometric features
is critical in preserving high-order accuracy in mesh smoothing. In addition,
it is important to identify regions with relatively large curvature to reduce
errors for coarse meshes. Besides surface smoothing, feature detection also
plays an important role in many other geometric and numerical computations
involving surfaces, such as mesh generation and remeshing [1, 26], solution
transfer across different meshes [16], etc..

A number of feature detection techniques have been proposed in the lit-
erature, but most of the robust ones are relatively difficult to implement or
to integrate into application codes such as numerical simulations. We present
a robust feature-detection technique based on a singularity analysis of the
quadric metric tensor, which is an enhancement of our preliminary results in
[15]. This method is also based on the eigenvalue analysis and hence is par-
ticularly well-suited in our setting. In addition, it can be implemented using
only an element connectivity table and hence is easy to be integrated into
application codes even on parallel machines.
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4.1 Identifying Features

The relative sizes of the eigenvalues λi of A in (6) are closely related to
the local flatness at a vertex, as illustrated in Fig. 3, where the axes of the
ellipsoids are aligned with the directions of the eigenvectors and the semiaxes
are proportional to the eigenvalues. In general, A has three large eigenvalues
at a corner, two large ones at a ridge, and one large one at a smooth point. It
therefore seems natural to compare λ3/λ1 and λ2/λ1 against some thresholds
to identify corners and ridges. Such a process has been used previously in
processing image or meshes (such as “tensor voting” [21] and its variations
[22]). However, because the metric tensor A is unsigned, feature detection
based on eigenvalues alone cannot distinguish a near cusp (i.e., very acute
features) from a flat surface and hence is unreliable for surface meshes with
very sharp features.

Fig. 3. Correlation of eigenvalues and local flatness

We safeguard sharp features as follows. An acute corner can be safeguarded
by angle defect, denoted by θa, which is the difference between 2π and the
sum of the angles at the vertex in its incident faces. To safeguard acute ridges,
because the first eigenvector points toward the dominant direction of normals,
its projection onto the face normals would vary in signs. Let e1 point toward
the positive side of b (i.e., eT

1 b > 0). We classify a vertex v as follows:

1. if λ3/λ1 ≥ χc or |θa| ≥ π/2, then v is at corner;
2. if λ2/λ1 ≥ χr or e1n ≤ 0 in incident face, then v is on a ridge.

A tiny (close to zero) χc would classify all vertices as corners, and a large (close
to one) χc would classify no corners; similarly for χr and the classification of
ridges. Note that if the mesh has mesh folding or cusps, we can extend the
second step to report a cusp if λ2/λ1 � χr and e1n ≤ 0 in any face.

To obtain meaningful and intuitive values for χc and χr, we connect them
with the dihedral angle and open angle. For a ridge with dihedral angle θ ≤
π/2 (i.e., the arc-cosine of the inner product of the face normals), assuming
the weights in W are balanced along different sides of a singular point, the
eigenvalues satisfy λ2/λ1 ≈ tan2(θ/2) and λ3 ≈ 0. For a cone with an opening
angle π − ϑ (i.e., the vertex angle in the cross section through the apex and
center of the base), the eigenvalues satisfy λ3/λ1 ≈ λ2/λ1 ≈ 2 tan2(ϑ/2). This
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analysis provides a convenient way to choose the thresholds. Specifically, given
a user-specified dihedral-angle threshold φr (on θ) and open-angle threshold
φc (on ϑ), we then have χc = 2 tan2(φc/2) and χr = tan2(φr/2). For example,
if φr = 15◦ and φc = 45◦, then χr ≈ 0.03 and χc ≈ 0.2. Note that these
thresholds assume that the weights in A are well balanced. For well-graded
meshes, which are typically used in finite element analysis, the area weighting
would suffice. For nonuniform meshes, as sometimes used in rapid prototyping,
the angle weighting delivers more balanced weights (i.e., setting Wii in (2) to
be the angle at vertex v in its ith incident face).

4.2 Filtering Noise

The above feature-detection technique may be sensitive to noise, as it considers
the eigenvalues at different vertices independently. It is therefore important
to have additional rules to filter out false features and patch missing ones.
We achieve this goal by identifying the ridge edges and using the connectivity
among the ridge edges and feature vertices. We consider an edge as a candidate
ridge edge if its dihedral angle is not too small (e.g., > φr) and consider a
ridge vertex to be strong if it is connected to another ridge or corner vertex
by a candidate ridge edge. If the dihedral angle of a candidate edge is large
(e.g., > φc), we immediately accept it as a ridge edge. Otherwise, we accept a
candidate edge if it is incident on a strong ridge vertex v and its direction is the
closest to the third eigenvector at v (i.e., the inner product of the tangential
direction of this edge with the eigenvector is either the positive maximum or
the negative minimum among all the candidate edges incident on v).

After identifyig ridge edges, we then employ them to filter out false feature
vertices, based on the observation that a ridge edge usually points toward a
ridge or corner vertex. The filtration proceeds as follows:

1. for each vertex, count the number k of incident ridge edges;
2. upgrade a vertex to a corner if k > 2;
3. upgrade a smooth vertex to a ridge if k = 2;
4. downgrade a ridge vertex to smooth vertex if k < 2 except for acute ridge

vertices (i.e., eT
1 n ≤ 0);

5. after reclassfying all vertices, downgrade a ridge edge if neither of its
incident vertices is a ridge or corner vertex;

This procedure tends to identify the systematic patterns of ridge curves in
the mesh and filter out isolated false features. If the surface is very noisy, we
can reduce the sensitivity of the eigenvalues by computing the metric tensor
A as the sum of the tensors of itself and its neighboring ridge vertices and
then repeat the classification and filtration procedure. Note that this whole
detection procedure can be implemented easily by iterating through the faces
or vertices. It does not require advanced data structures (such as the half-edge
data structure) other than the standard element connectivity tables, so it is
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particularly convenient to be integrated into numerical simulations even on
parallel computers.

5 Experimental Tests

In this section, we report some experimental tests of our feature detection
and conservative mesh smoothing methods. Our formulations are not limited
to specific schemes for computing the centroid at each vertex. For simplic-
ity, in our tests we use Laplacian smoothing, which computes the centroid
as the average of the neighboring vertices at each vertex, but more sophisti-
cated schemes may be used instead. Figure 4 shows the results of smoothing
a surface mesh with a relatively simple geometry with sharp features to study
the convergence of our method. During the process, the sharp ridges and
corners are automatically identified using our feature detection technique.
Four meshes of different resolutions are used and smoothed for 1000 itera-
tions each with two volume-correction steps at each iteration. The left image
in Fig. 4 shows the meshes before and after conservative smoothing drawn
on top of each other. It is obvious that many vertices moved for a nontrivial
distance at smooth regions and along ridges, but the surface remained on top
of each other. The right image in Fig. 4 shows the convergence of volume
errors using null-space smoothing and conservative smoothing with one, two
or three volume-correction steps, where the x-axis corresponds to the four dif-
ferent meshes. The convergence rate of null-space smoothing is roughly linear
with respect to grid refinement, while conservative smoothing converges faster
than fourth-order and its error decreases rapidly as the number of volume-
correction steps increases. Figure 5 shows the results of another example using
a triple-torus, in which the features are less salient. We show the input meshes
and the close-up views of the meshes before and after smoothing near a joint
between the tori. The relative volume error was 2.59× 10−8 after 500 steps of
conservative smoothing with three iterations of correction steps. The geom-
etry was clearly preserved after smoothing even with substantial tangential
motion, owing to the weighted-residual formulation to minimize local errors.

To demonstrate the effectiveness of our feature detection technique, Fig. 6
shows the results of feature detection for three mechanical parts with fine fea-
tures, obtained from http://www-c.inria.fr/Eric.Saltel/download/. The left
images of Fig. 6 show the input meshes and the right images show in translu-
cency the features detected by our method. In all the examples φr was chosen
to be 15◦. The first two examples (referred to as “thepart” and “fan1” in the
mesh colletion) are fairly representative for the coarse meshes commonly used
in rapid prototyping or stereolithography. Our method accurately identified
all the salient features. The third example uses a typical finite-element mesh
of the “fandisk,” and remarkably some very fine features were identified by our
method without any artifacts, while the commonly-used angle-based methods
may have difficulties.
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Fig. 4. Conservative smoothing of notched sphere and convergence study. In left
image, dashed blue edges correspond to input mesh and solid green edges correspond
to smoothed mesh

(a) Overall geometry. (b) Before smoothing. (c) After smoothing.

Fig. 5. Sample result of conservative smoothing of triple torus

6 Conclusion

In this paper, we presented novel techniques to conserve volume and preserve
features in mesh optimization. Our techniques are based on an eigenvalue
analysis of the quadric metric tensor. Due to their unified theoretical foun-
dation, the analysis of our technique is relatively simple and coherent. More
importantly, our techniques are easy to implement and does not required
sophisticated data structures (such as the half-edge data structure) and ex-
pensive geometric algorithms (such as high-order surface reconstruction and
point location), so they are particularly suitable to be integrated into numeri-
cal simulations. The proposed volume-conservation technique is also promising
to generalize to other moving surfaces with a source term. In this paper, we
only reported experimental results using Laplacian smoothing to compute the
centroids around each vertex, but more sophisticated schemes can be used
and are currently being investigated.

10
0

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

normalized mesh resolution

re
la

tiv
e 

vo
lu

m
e 

er
ro

r

null−space smoothing
with 1 corrector step
with 2 corrector steps
with 3 corrector steps

fourth−order slope

first−order slope



Volume and Feature Preservation in Surface Mesh Optimization 371

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Sample results of detecting features in mechanical parts
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Abstract. This work examines the use of Loop subdivision surfaces as a surrogate
for CAD or analytic-based geometry. The modeler begins by constructing a subdivi-
sion surface from a full-resolution imported surface triangulation, and then queries
this surface to return information about the model. Evaluations on the surface are
performed using a simplified implementation of Stam’s exact evaluation procedure
for Loop subdivision surfaces. The paper presents details of this simplified approach
and shows how it can be used to provide surface coordinates, derivatives, and cur-
vatures for evaluations at arbitrary parameter values. The implementation also pro-
vides the ability to tag hard-edges (and implicitly hard-vertices) in the imported
geometry to preserve creases and points using a one-dimensional cubic-spline scheme
which preserves C2 continuity along hard-edges. Away from hard-edges and vertices,
the Loop surface is C2 continuous everywhere except in the immediate vicinity of
irregular vertices in the control-net where it still retains C1 continuity. Examples
are presented using control-nets built from a variety of legacy triangulations with
widely varying complexity. To demonstrate the modeler, we use a simplified mesh-
ing application which queries arbitrary locations on the surface to support either
uniform or curvature-adaptive triangle refinement. The simple evaluation rules for
surface coordinates and derivatives make the scheme extremely fast and robust.
Since the input triangulation becomes the control-net of the subdivision surface, it
is not necessarily an interpolant for the input data. Various approaches for making
the surface interpolating are discussed, and this area remains one of active research.

1 Introduction

With increasing computing power pushing simulation technologies toward
ever-higher fidelity, modeling applications in a broad spectrum of disciplines
have sought ever-tighter integration with the underlying geometry. CAD-
based modeling techniques have appeared in fields as diverse as Earthmoving,

On the Use of Loop Subdivision Surfaces
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Aerodynamic Vehicle Design, and Endoscopic Surgery. In the most tightly-
coupled approaches, applications communicate with the underlying CAD-
kernel either through vendor-provided “direct” CAD interfaces or vendor-
neutral programming interfaces. In many situations, these CAD-based ap-
proaches are very attractive since they avoid translation errors and provide
the modeling application with direct access to the latest revision of the fully
detailed geometry. This provides important geometric consistency, since the
same CAD models are used for creation, design, analysis and manufacturing.

Nevertheless, CAD-based modeling is not always either feasible or desir-
able. “Legacy geometry” is one example of an area which can cause difficulties
for CAD-based simulations. Most simulation systems have to cope with mod-
els that date from pre-CAD eras, or even old CAD models that are somehow
inconsistent when imported into current CAD systems. An aircraft geometry
from two decades ago may only have been defined as a series of loftings, a
faceted polyhedral mesh, or a surface triangulation that is considered coarse
by the standards of modern simulations. A modern finite element solver may
require position and curvature information within the triangles of a surface
triangulation to achieve higher-order accuracy. CAD definitions for legacy
models get lost, they get damaged by translation, or often they simply never
existed.

In other situations, CAD-based modeling is simply not desirable. Using
the CAD system to perform geometry queries and manipulation means that
this system must be running and available to serve your application. This
consumes CAD licenses that are typically both expensive and limited in num-
ber. Moreover, it requires the CAD system to be running either on the same
platform as the simulation code or in direct communication with the plat-
form running the simulation code. When running simulations on thousands
of processors of massively parallel hardware, license consumption alone is an
issue of real concern. And in addition, such high-powered computing hardware
is typically protected by firewalls and other perimeter defenses that restrict
communication, and accessing an non-local CAD-engine may be difficult.

All of these situations require a CAD-free surrogate for the queries that
the CAD system usually fields in CAD-based simulations. In this work we in-
vestigate the use of Loop subdivision surfaces as an underlying surface model.
Loop subdivision surfaces [3] have been extensively studied over the past two
decades in the fields of computer graphics, animation [10] and scattered data
surface reconstruction [4]. They can be used to represent globally smooth lo-
cally manifold surfaces of arbitrary global topology. The surface is defined
by a control-mesh which is a watertight triangulation (simplicial polytope)
constructed using some existing discrete representation of a model. While
subdivision surfaces have simple rules for updating existing node locations
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and performing new insertions, our use of them for geometric modeling is
enabled by Stam’s exact evaluation procedure for Loop subdivision surfaces
[6, 7].

Any mesh generation or mesh adaptation application uses geometry eval-
uation and inverse evaluation to place points on the entity of interest. These
applications read and hold the geometry (usually in the form of a Boundary
Representation – BRep) and may support a large number of curve and surface
primitives. Some applications depend on a geometry kernel (or Direct CAD
interface) to deal with the complexities of the individual entities. These ker-
nels directly provide evaluation functions that have one degree of freedom for
curves (t) and two for surfaces (u, v). In either case, vertices are placed directly
on geometry by direct evaluation or “snaps” (inverse evaluation) which can
be performed by the use of derivatives of the forward evaluation. When using
a subdivision surface as the underlying geometry, Stam’s evaluation proce-
dure answers the same type of requests by providing geometry for arbitrary
parameter values. In the theoretical development, we describe a simplified im-
plementation of this procedure and algorithms for determining the first and
second derivatives of the surface. The capability to construct surface geom-
etry and its derivatives at arbitrary parameter values provides a very fast
and lightweight modeler and gives a simple and uniform view of the surface
(i.e. one type – triangles) that is locally manifold. Moreover, unlike classical
tensor-product spline or BRep surfaces, this approach is independent of the
global complexity of the surface and is not constrained to rectangular patches.

An approximating subdivision surface does not necessarily pass through
the nodes of the control-mesh (it is not an interpolant of this node set). The
literature in computer graphics and scattered data reconstruction highlights
several approaches to make the surface interpolating, and displacement [5],
multi-resolution [9] and adaptation [4] are addressed in our discussion.

2 Surface Parametrization by Subdivision

2.1 Subdivision Surfaces

The main idea behind subdivision surfaces is to represent a smooth surface
by a control-mesh. This mesh can be enhanced by various refinement schemes,
and in the limit of infinitely many refinements it approaches the “true” sur-
face. In practice these refinements are repeated until the surface is sufficiently
fine. This is the approach used in applications from computer graphics and
visualization where subdivision surfaces are most commonly employed.

A distinction is made between interpolating and approximating subdivi-
sion schemes. In the interpolating schemes the nodes of the control-mesh stay
fixed during the refinement. The resulting surface is then an interpolant of the

On the Use of Loop Subdivision Surfaces for Surrogate Geometry
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nodes in the control-mesh, which is an attractive property. However the sur-
faces generated with these schemes are sometimes not sufficiently smooth, and
the convergence to the “true” surface is relatively slow. The approximating
schemes, on the other hand, generally do not produce surfaces which interpo-
late the control-mesh, but they do result in smooth surfaces with continuous
second derivatives everywhere except for at certain isolated points.

When considering the functions essential to a geometry kernel (when used
for mesh construction and adaptation) there are two basic requirements. The
first is the ability to evaluate, that is, given parameters within the geomet-
ric support produce 3D coordinates of the point on the entity. In the case
of subdivision surfaces, the support is the control-mesh triangles and the pa-
rameters are the barycentric coordinates within each triangle. The second
required function is the ability to find the nearest point on the geometry to
a given set of coordinates. This

”

snap” (inverse evaluation) is usually cast
as a minimization problem and is efficiently solved by the use of an iterative
Newton solver. In order to construct this solution the forward evaluation is
required along with both first and second derivatives at the evaluated point.
The resultant position may not be in the current control-mesh triangle, which
will be reflected in the barycentric coordinates (being outside the valid range).
The neighboring control triangle opposite the vertex with the largest negative
weight is set as the current support and the Newton solver is restarted within
this triangle. This converges quickly and is robust requiring little additional
intervention (but can be sensitive to starting locations when the geometry is
concave).

In this work we are concerned about second derivatives, both for computing
curvatures and for applying the Newton solver (as described above). Therefore
our current focus is on approximating schemes. In Section 3.3 we discuss
various alternatives for obtaining an interpolating model.

2.2 Spline Curves

For one-dimensional curves the subdivision schemes are particularly simple.
The control-mesh is a polygon and the limiting procedure gives a smooth
curve, see Fig. 1 for an example. At each refinement step, the polygon edges
are divided in two. In this example we use an approximating scheme where the
inserted midpoint at level j + 1 is simply the average of the two neighboring
nodes at level j,

xj+1
2i+1 = (xj

i + xj
i+1)/2. (1)

The original nodes are moved to a linear combination of their previous loca-
tions as well as their neighbors’,

xj+1
2i = (xj

i−1 + 6xj
i + xj

i+1)/8. (2)

The limiting curve is a cubic spline and it is C2 continuous. We note
that the subdivision rules (1) and (2) are local, and therefore a node in the
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Control Polygon One Refinement Two Refinements

Fig. 1. Subdivision of a polygon using an approximate scheme. The limiting curve,
which is the “true” smooth curve being represented, is shown with thin line.

control-polygon only affects the curve in a neighborhood around the node. As
we pointed out above, the refined polygons will approach the “true” curve in
the limit, but it is also possible to compute the limiting positions of the nodes
at any level by the simple expression

xj,∞
i = (xj

i−1 + 4xj
i + xj

i+1)/6. (3)

where xj,∞
i denotes the limiting position of point i at refinement level j.

2.3 The Loop Subdivision Scheme

For surfaces, various types of elements can be used for the control-mesh. While
the original approximating subdivision schemes of Catmull and Clark [1] were
based on quadrilateral meshes, we have worked exclusively with the Loop
scheme [3] for triangular meshes. The control-mesh is defined by a set of nodes
as well as a triangulation. In a refinement step, each triangle is split into four,
and we need rules for the location of the new midpoint of the edges as well
as the new location of existing nodes, see Fig. 2. The number of neighbors of
existing nodes is k (the valance), and the value we use for the weight ω was
proposed by Loop [3], see Warren [8] for a simpler alternative.

Again we can compute the limiting location for the nodes at any level of
the refinement. The formula is the same as the one to advance one level (right
plot in Fig. 2), but with ω replaced by 1/(k + 3ω/8), see Fig. 3. We can also
compute the tangent vectors (and from them the surface normal) using the
expressions

t1 =
k−1∑

i=0

cos
2πi

k
xi, t2 =

k−1∑

i=0

sin
2πi

k
xi (4)

where xi is the ith neighbor of the considered node.
Figure 4 shows an example of a control-mesh with the limiting Loop subdi-

vision surface. Note again that this is an approximate scheme and the nodes of
the control-mesh are not located on the surface. The surface is C2 continuous

On the Use of Loop Subdivision Surfaces for Surrogate Geometry
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Fig. 2. The Loop subdivision scheme. The figures show the weights used to compute
a new mid-edge point (left) and how to update existing nodes (right).
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Fig. 3. The node positions in the limit of infinitely many refinements using the
Loop scheme. This effectively moves the nodes of the control-mesh to the “true”
surface.

everywhere except at irregular nodes (nodes that do not have six neighbors).
The subdivision process converges fast and for visualization purposes a few
refinements are sufficient to obtain a good approximation of the surface.

It should be noted that the subdivision scheme defines a hierarchy of
“control-nets” each having the same limiting result. The left part of Fig. 4
results in the middle part after applying one subdivision operation. This set
of vertices can be considered a new control-polygon and then results in the
right part of Fig. 4 after another application of the operator.
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Control-Mesh
One Refinement Two Refinements

Fig. 4. Subdivision using the Loop subdivision scheme. The figures show the limiting
surface together with the initial control-mesh, and two refined meshes.

2.4 Hard vs. Soft Edges

The Loop scheme produces smooth surfaces everywhere, including at the
boundaries of the mesh (Fig. 5, left). Sometimes it is desired to have sharp
boundaries (“creases”), which requires special treatment in the subdivision
process. We tag the edges of the control-mesh corresponding to the sharp
boundaries as hard edges. In the refinement of these nodes we use the one-
dimensional spline scheme (1)-(3) instead of the Loop scheme. This will rep-
resent a smooth boundary curve with a jump in the tangent plane on the two
sides of the curve (Fig. 5, middle).

In a similar way, the vertices of the boundaries can be tagged as hard
vertices to produce a jump in the tangent along the boundary curve. Since a
vertex can not be subdivided, the scheme for hard vertices is simply to leave
them fixed at their original positions (Fig. 5, right).

Soft Edges Hard Edges Hard Vertices

Fig. 5. Hard and soft edges and vertices. The hard edges are shown in thick lines
and the hard vertices are shown with large spheres.

On the Use of Loop Subdivision Surfaces for Surrogate Geometry
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3 Parametrization and Evaluation

Using the subdivision scheme and the limiting expressions, we can evaluate
the surface properties at the control nodes and at the nodes of any refined
mesh. However, in order to be useful in a general geometry setting we need
a parameterization of the surface and the ability to evaluate at arbitrary
locations. There is not much literature on the parameterization of subdivi-
sion surfaces, presumably because the refinement process fulfills most all the
needs in computer graphics and animation. Stam showed how to evaluate the
Catmull-Clark surfaces for arbitrary parameter values [7], and later extended
this analysis to Loop surfaces [6]. We use a simplified form of these methods,
and we describe the parameterization for regular triangles in this section,
while the next section discusses arbitrary triangulations.

The parameterization of spline curves are well-known, and for a “smooth”
edge segment (no hard vertices or end points) we number the four consecu-
tive polygon nodes xi−1, . . . ,xi+2 and introduce a parameter value t ∈ [0, 1]
between node i and i + 1. The explicit expression for the spline curve is then:

x(t) =
[
t3 t2 t 1

] 1
6







−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0













xi−1

xi

xi+1

xi+2







Similar expressions are available for edge segments neighboring hard vertices
(interpolating control points), see de Boor [2] for details.

3.1 Parametrization – Regular Triangles

In a regular triangle, the subdivision surface reduces to the common box
splines for which analytical expressions are available. Each node has exactly
six neighbors and the total number of nodes in the triangle or adjacent to it
is 12 (Fig. 6). A natural parameterization is given by the local barycentric
coordinates in the triangle (right plot). Since u + v + w = 1 we can eliminate
one of these coordinates, and we choose to parameterize by v, w.

For evaluation at the local coordinates v, w, we compute all monomials
and collect in a column vector:

c(v, w) = (1, v, w, v2, vw,w2, v3, v2w, vw2, w3, v4, v3w, v2w2, vw3, w4)T (5)

These basis functions are mapped to a Lagrangian basis by multiplication by
the matrix φ below. We obtained this matrix from the expressions in [6] after
substituting u = 1− v −w, renumbering, identifying coefficients, and writing
in matrix form.
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Local Node Numbering
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Local Coordinates
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(u,v,w)=(0,1,0) (u,v,w)=(0,0,1)

Fig. 6. The local node numbering for regular triangles (left) and the local barycen-
tric coordinates u, v, w where u + v + w = 1 (right).

φ =
1

12



















6 0 0 −12 −12 −12 8 12 12 8 −1 −2 0 −2 −1
1 4 2 6 6 0 −4 −6 −12 −4 −1 −2 0 4 2
1 2 4 0 6 6 −4 −12 −6 −4 2 4 0 −2 −1
0 0 0 0 0 0 2 6 6 2 −1 −2 0 −2 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 2 0 0 0 −2 −1
1 −2 2 0 −6 0 2 6 0 −4 −1 −2 0 4 2
1 −4 −2 6 6 0 −4 −6 0 2 1 2 0 −2 −1
1 −2 −4 0 6 6 2 0 −6 −4 −1 −2 0 2 1
1 2 −2 0 −6 0 −4 0 6 2 2 4 0 −2 −1
0 0 0 0 0 0 2 0 0 0 −1 −2 0 0 0
0 0 0 0 0 0 0 0 0 0 1 2 0 0 0



















(6)

Finally we create a node array with the 12 local nodes according to the
numbering in Fig. 6 (a 3-by-12 matrix):

x = (x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12) (7)

Using these expressions the surface location is a product of these matrices and
the vector c(v, w):

x(v, w) = xφc(v, w) (8)

The first and second derivatives are obtained in a similar way by differentiating
the simple monomials in c(v, w).

3.2 Parameterization – Irregular Triangles

The method Stam suggested for irregular triangles is based on the fact that
the subdivision process introduces new triangles with regular neighborhoods

On the Use of Loop Subdivision Surfaces for Surrogate Geometry
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Control-Mesh One Refinement Two Refinements

Fig. 7. Refinement of a triangle with irregular nodes. The triangle under considera-
tion is shown in light gray, and the triangles with regular neighborhoods are shown
in dark gray.

that can be evaluated using the box spline expressions (see Fig. 7). Clearly,
after a sufficient number of refinements any point in the triangle can be cov-
ered by a regular triangle and evaluated using (8). However, for points close
to an irregular node a very large number of refinements might be required.
Stam solved this problem by introducing an eigen-decomposition of the refine-
ment matrix, and was able to evaluate arbitrary close to irregular nodes in a
constant number of operations. In our work, we choose a simpler solution in
which we refine until the requested position is covered by a regular triangle or
until some maximum subdivision depth is reached. If the maximum depth is
reached (usually around 25 subdivisions), then we nudge the requested posi-
tion onto the center triangle (which will be regular) and subdivide once again.
At this point the evaluation using a regular neighbor can be applied. We use
this special treatment for points close to the irregular nodes and in the vicinity
of hard edges or vertices.

The crucial step of our scheme is to subdivide around the point v, w, iden-
tify the new triangle and the new parameter values v, w, and repeat recursively
until the neighborhood is regular. During this refinement we use a local rep-
resentation of the relevant triangles only. Figure 6 shows our node numbering
for this local submesh. It is constructed by selecting a starting vertex in the
triangle (this also sets the new v, w). The other two vertices are selected in a
right-handed manner. The fourth vertex is selected as the node opposite the
first. The rest are defined by winding around the triangle in a right-handed
fashion and collecting all of the next level vertices that support any triangle
that touches the target. This neighborhood is fully defined by the valance of
each of the vertices of the target triangle (3 integers) and the positions of each
of the neighborhood nodes, where the number of nodes is k1 + k2 + k3 − 6.
This small memory footprint does not overwhelm the stack as the recursive
procedure continues.

The next level is reached by selecting the appropriate subtriangle (as seen
in the center of Fig. 7) based on v, w. A new neighborhood is specified by
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Algorithm 1: Subdivision Surface Evaluation

Description: Evaluate a subdivision surface for arbitrary parameter values
Input: Control-mesh, triangle t, local coordinates v, w
Output: Surface location x and its first and second derivatives dx, ddx

function [x, dx, ddx] = loopeval(t, v, w, depth)

if t regular
Evaluate surface location and derivatives using (8)

else
Subdivide t and all triangles sharing its nodes
if depth ≤ 25

t′ = new triangle covering v, w
v′, w′ = new local coordinates in t′

else
t′ = center subtriangle
v′, w′ = new local coordinates (on edge of subtriangle)

end if
[x′, dx′, ddx′] = loopeval(t′, v′, w′, depth + 1)
Inverse mapping: x = x′, dx = ±dx′/2, ddx = ddx′/4

end if

Fig. 8. High-level pseudo-code for evaluation of subdivision surfaces at arbitrary
parameter values.

applying the subdivision rules (as seen in Fig. 4) where the hard edges are
defined during the splitting of existing hard edges. Hard vertices need not be
explicitly marked because they are defined when the number of hard edges
touching a node is greater than two. The valence of the 3 subtriangle vertices,
the neighborhood coordinates, as well as the new v, w are passed on to the
next recursion level. Finally, the computed derivatives are adjusted because
of the mapping between the new and the old parameters v, w. Our complete
algorithm is described in pseudo-code in Fig. 8.

3.3 Generating an Interpolating Result

The fact that the Loop scheme is not interpolating might be a major prob-
lem in some applications. The subdivision schemes that are interpolating [10]
produce less smooth surfaces than the Loop scheme, and we would therefore
loose the ability to provide geometry “snaps” (solving with Newton’s scheme
across the triangles). This would make the scheme unusable in our context.

An alternative method that we have used with some success is to solve
for new node locations in the control-mesh such that the “true” Loop surface
interpolates the original nodes. This simply amounts to solving

S∞(xinterp) = x (9)

On the Use of Loop Subdivision Surfaces for Surrogate Geometry
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Interpolating Splines

Fig. 9. Splines computed from new control points such that the curve interpolates
the original points. The right plot shows that the resulting curve is not always
well-behaved. In this case it has a cusp.

for the new nodes xinterp, where x are the original node locations and S∞

the linear operator that produces the limiting node locations. For the Loop
scheme, S∞ is essentially the stencil in Fig. 3, except for hard edges/vertices.
The linear system of equations (9) is well conditioned and can be solved in
just a few iterations with a Krylov subspace solver.

Our initial experiments show that the surfaces generated by xinterp are
well-behaved for uniform control-meshes, see left plot in Fig. 9 for an example
of a spline. However, for more general control-polygons, the resulting curve
might have cusps (right plot). A similar example for surface meshes using the
Loop scheme is shown in Fig. 10.

One correction algorithm that shows more success is to post-process the
results in a manner similar to that in [5]. By maintaining v, w and the parent
triangle for any vertex, it is possible to adjust the position by applying the
linear weights times the displacement of the control-net to the limiting surface.
This insures that the adjusted surface passes through the control-net at the
expense of C1. Approaches, such as multi-resolution [9] and adaptation [4]
promise both smoothness and interpolation, and these are subject of on-going
investigations.

4 Results

This work is aimed at investigating the utility of Loop subdivision surfaces
as surrogate geometry. In order to demonstrate their use in this role, we have
constructed a very simple surface mesh refinement application. Within this
application, all geometry constructors (requests for new points on the surface)
are based on the version of Stam’s evaluation procedure described in Algo-
rithm 1. We simply provide the local parameterization at the desired vertex
insertion point, and this algorithm returns the xyz -triple for the constructed
vertex. An analogous constructor is central to virtually all geometry/CAD-
based mesh generation systems, and is the key ingredient in the use of Loop
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Interpolating Subdivision Surfaces

Fig. 10. Loop subdivision surfaces computed from new control points such that the
surface interpolates the original points. The left plots show (original) control-meshes,
and the right plots show the surfaces. The bottom example shows a (probably un-
desired) negative effect.

subdivision surfaces as a CAD-free modeler. Algorithm 1 also provides first
and second derivatives of the surface at the evaluation location.

Aside from this central feature, the mesh refinement application demon-
strated in this section is very simplistic and has relatively few features of merit.
It was written simply as a platform for testing/demonstrating the constructor,
and is not (in any way) intended as a viable mesh generator. Mesh refinement
proceeds by performing a set of centroidal insertions within a set of triangles,
followed by an edge-swap pass which performs swaps based upon the evalua-
tion of a maxmin predicate. It is important to recognize that the tessellations
shown are not generated in the traditional subdivision construction manner
as so often seen in the literature.

Each example begins with the control-net for the underlying subdivision
surface read in from a legacy triangulation file. No coarsening of the legacy tri-
angulation is performed. For the purpose of demonstration, a simple dihedral-
angle criteria on triangles in this control-net is used to establish hard edges.

Figure 11 shows the effect of hard edges and two example meshes generated
using this adaptation application. The legacy geometry in this figure is the

On the Use of Loop Subdivision Surfaces for Surrogate Geometry
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Viking backshell

Viking heatshield

a. Control net b. Uniform refinement c. Adaptive refinement

ÒHardÓ
edges

Fig. 11. Control-net, uniform and adaptive tessellations of the Viking spacecraft
aeroshell geometry. The upper row of images shows the backshell (back) and the
lower shows the heatshield (front). Both tessellations demonstrate preservation and
refinement of hard edges in the input mesh.

aeroshell of NASA’s Viking spacecraft which was the culmination in a series
of exploratory missions to Mars from 1964-1975, and pre-dates much of the
modern CAD industry. The upper row of images in Fig. 11 shows the view
from the back, while the lower shows the geometry from the front. The back
of the aeroshell is a truncated bi-conic. The control-net shown in Fig. 11a is
composed of 1700 triangles and the dihedral-angle criteria identifies one circle
of hard-edges at the sharp transition between the two conics and another at
junction with the flat backface.

The simple mesher described above was run using both uniform refinement
and curvature adaptive refinement. In the adaptive example, refinement was
triggered using the maximum local surface curvature at each triangle centroid
scaled by the triangle’s area. Surface curvature was evaluated making use of
Algorithm 1’s ability to return the first and second derivatives at any point on
the surface. The uniformly refined mesh has 35000 triangles while the adaptive
triangulation has 9100. The triangulation algorithm produced approximately
7500 triangles-per-second on a 2Ghz CPU, however no serious attempt has
been made to optimize the mesher or subdivision surface library.

While the Viking aeroshell is an example of legacy geometry that pre-dates
CAD-based modeling, Fig. 12 shows and example of geometry that comes from
a 3D scanner and similarly has no underlying CAD definition. The figure shows
the control-net (45k triangles) and a curvature adapted triangulation (105k
triangles) for an irregularly shaped piece of foam. The 3D scan produced a
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Control net Adaptive triangulation

Hard edges

Fig. 12. Control-net (45k triangles) and curvature-adaptive triangulation (105k tri-
angles) for irregularly shaped foam piece from high-resolution 3D scan. Inset frames
show details of control-net and surface triangulation.

STL triangulation file and this triangulation (without decimation) was used
as the control-net for the subdivision surface. The simple adaptive mesher
used in the previous example was then run using this surface as an underlying
geometry. While the original scan is at quite high resolution, the enlargements
of the control-net shown in Fig. 12 (inset top-left) exhibit substantial faceting
due to the small characteristic feature size on the irregular surface. The adap-
tive triangulation shown at the right of Fig. 12 offers improved resolution of
regions with high curvature. Hard edges are indicated on the figure and form
a single closed loop around the lower perimeter of the piece.

On the Use of Loop Subdivision Surfaces for Surrogate Geometry
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Figure 13 shows a final example with the control-net and adaptive trian-
gulation generated on a model of a pig. The control-net in this case is quite
coarse with only about 7000 triangles. Despite this, the model is remarkably
detailed and includes all major anatomical features as well as details like eye-
lids, hoofs, nostrils, and jowls. These features are even more apparent in the
adapted triangulation shown in the center and two inset frames of Fig. 13.
This adapted triangulation was built using the simple mesher described earlier
with curvature-sensitive refinement and includes 244k triangles. In addition
to the obvious features, refinement reveals more subtle detail captured by
the control-net. The refined triangulation reveals the pig’s shoulder blades,
pelvis, hamstring definition, and additional facial detail. As with the earlier
cases, the goal of this example is not to show the “best” triangulation for this
geometry, but to illustrate the use of this very coarse legacy triangulation as a
control-net definition and to mesh using the Loop subdivision surface defined
by that control-net.

5 Conclusions

This work outlined a method for using existing surface triangulations as un-
derlying geometric models for the construction of more highly refined mod-
els complete with local surface derivatives and curvature information. The
method is based upon the construction of a Loop subdivision surface using the
legacy triangulation at full resolution. The presentation outlined a simplified
surface evaluation procedure based on Stam’s exact method for Loop surfaces.
The presentation of this simplified approach highlighted the construction of
surface coordinates, derivatives, and curvatures for evaluations at arbitrary
locations on the surface. The implementation also provides the ability to tag
hard -edges (and therefore hard -vertices) in the imported geometry to preserve
creases and points using one-dimensional cubic-spline scheme which preserves
C2 continuity along hard-edges. Away from hard-edges and vertices, the Loop
surface is C2 continuous everywhere except right at irregular vertices in the
control-net, where it is still C1.

The modeler was demonstrated using a simplistic meshing application
which queries arbitrary locations on the surface to support either uniform or
curvature-adaptive triangle refinement. Curvature information for adaptation
parameter was obtained through direct evaluation on the subdivision surface
using the algorithm presented in section 3. Examples were presented using
control-nets built from a variety of legacy triangulations with widely vary-
ing complexity. The ability to query the surface at arbitrary locations and
quickly find surface derivatives and curvature information makes this modeler
very attractive for users of finite element analysis methods that require this
information to achieve higher-order accuracy.

The simple evaluation rules for surface coordinates and derivatives make
the modeler extremely fast and robust. Even with no special effort to optimize
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Fig. 13. Control-net and curvature-adaptive triangulation for pig geometry. The
control-net contains about 7000 triangles, while the adaptive triangulation contains
about 244k. Inset frames at the bottom show details of facial structure and hoofs.

On the Use of Loop Subdivision Surfaces for Surrogate Geometry
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the implementation, surface triangulations with nearly 500k triangles can be
generated in under a minute on a single processor desktop machine. Immedi-
ate plans will focus on experiments with the construction of the subdivision
surface itself. Since the input triangulation becomes the control-net of the
subdivision surface, it is not, in general, an interpolant for the input data.
However, the deviation is small when the control-net resolves the geometry
and hard edges are tagged appropriately. For example, the distances between
the control-net nodes and the subdivision surfaces in the three examples in
Section 4 are in average less than 0.06% of the geometry size, and the max-
imum deviations are less than 0.2%. Research examining various approaches
for making the surface exactly interpolating is ongoing.
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Summary. A Cartesian shrink wrapping technique has been investigated in this study to 
construct triangular surface meshes for three-dimensional dirty geometries. The geometries 
dealt in this paper are defined by faceted representation with dirtiness such as non-
conforming edges, gaps and overlaps. The objective of the proposed technique is to deliver 
a way constructing triangular surface meshes for upstream solutions in design processes 
without extensive labors for healing dirtiness in complicated dirty geometries. A Cartesian 
grid is overlaid onto the dirty geometries and its cells are adaptively refined until target 
resolution is achieved while recording intersections with geometric facets in cells. An initial 
watertight shell called the wrapper surface is constructed by selectively extracting the 
boundary sides of intersected cells. The wrapper surface is improved by a subsequence of 
operations such as projecting nodes onto geometry, adjusting nodes on the geometry and 
editing local triangular faces to achieve better approximation. The meshes generated using 
the presented technique may not be geometrically accurate but their quality is good enough 
to quickly deliver upstream fluid analysis solutions with significantly reduced engineering 
time for problems of extreme complexity such as the full underhood fluid/thermal analysis 
for automobiles. Mesh generation experiments have been carried out for complicated ge-
ometries and results from some applications are presented in this paper. 

1. Introduction 

Automatic mesh generation has become an essential tool for the finite ele-
ment or finite volume analyses of practical engineering problems. The ge-
ometries of the problems are defined as CAD data and access to informa-
tion stored in CAD data can be provided either through geometric 
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modeling kernel or exporting the data in a format loadable into the target 
system [BWS03]. The IGES and STEP are most commonly used protocols 
for exchanging CAD data from one CAD system to the other system. Even 
though the STEP normally delivers better translation results than IGES 
does by providing information with representations and global tolerances, 
immigration of CAD data from one system to the other often results in 
dirty geometries containing gaps, holes, overlaps and non-conformal edges 
which do not exist in the native data. The inconsistency of tolerant model-
ing methods in two systems is one of major reasons causing dirtiness in the 
imported geometry. Another source of dirty geometries often ignored is the 
urgent need of upstream solutions in practice. In such cases, engineers 
have to carry out simulation even before all the parts in the model have not 
been designed by leaving small voids or using similar parts in their legacy 
library.

Imbedding the mesh generation system in CAD systems can be a way to 
avoid the dirtiness from happening, since the meshing operation can be 
applied on the native data without translation. The cost for imbedding is 
extremely expensive and it cannot be done often due to issues other than 
technical ones. An alternative for imbedding is to develop the mesh gen-
eration system inter-operatable with CAD systems. The development cost 
for this framework is lower than that of imbedding. However, this ap-
proach needs both the CAD and the mesh generation system to be avail-
able locally. In addition, the CAD data and the mesh data should be man-
aged separately afterward. 

Most conventional approach is to heal the dirtiness by directly editing 
geometric entities of dirty geometries. Manual healing for dirty geometric 
models is very labor intensive and time consuming as engineers should de-
structively replace the old geometric entities using sophisticated reasoning. 
An investigation was carried out for detail suppression using topological 
modifications and the concept of virtual topology was suggested to define 
topologies of problems using underlying dirty geometries without exten-
sive editing [SBC97]. Yet cleaning up dirty geometries requires consider-
able user interactions. 

While the previous algorithms intend to fix dirtiness in CAD models, 
the scope of this study is focused on generation of meshes without altering 
the input geometries. A major bottleneck from dirty geometries to 3D fluid 
simulations lies in constructing watertight surface meshes as the subse-
quent tetrahedral volume mesh generation is relatively straightforward. 
The Cartesian grid approach and shrink wrapping technique are employed 
to tackle the problem in the present study. The shrink wrapping approach 
was proposed by Kobbelt et al. [KVL99] In their approach, a plastic mem-
brane is wrapped around an object and shrunk either by heating the mate-
rial or by evacuating the air from the space in between the membrane and 
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the object’s surface. Theoretically, the plastic skin provides an exact im-
print of the given geometry at the end of process. The problems in apply-
ing their technique to dirty geometry meshing are, first, the construction of 
wrapping membrane surface is difficult and, second, the projection opera-
tor may not always provide reliable results to compute traction and relaxa-
tion due to the nature of dirtiness. Thus, the Cartesian grid approach is in-
troduced to construct the wrapping (or wrapper) surface and geometric 
modification on the surface is taken to improve closeness of the wrapper 
surface to the given geometry. 

The Cartesian grid generation is a well-established technique. Basically, 
it overlays an axis-aligned structured grid onto the geometry of a problem 
and takes a part of the grid, which is in the region of interest. Later, the 
nodes near the input geometry can be repositioned or local structure of 
mesh can be modified. The octree technique for constructing tetrahedral 
meshes can be classified into this technique as it checks intersections be-
tween the cells in the tree and the input geometry and refines each cell in 
the region of interest based on intersecting pattern [She85]. Schneider is an 
early investigator with full hexahedral elements for 3D volume mesh gen-
eration [Sch95]. Aftosmis and his colleague presented a technique clipping 
geometric facets with Cartesian cells and using such information in fluid 
simulations [ABM97] and an extended technology has been used in ex-
tracting large scale models such as building geometries using shape pro-
files [WCG05]. Wang extended the application of this technique to dirty 
geometry cases [ZF02]. He pointed out that the Cartesian mesh generation 
is tolerable to dirtiness of geometries as long as the region of interest can 
be classified. And the zigzag boundary of the meshes can be improved us-
ing the best approximation available. There have been active development 
works to exploit such technology in extremely complicated applications 
with many components and some dirtiness in industrial field [CDA06, 
CEI06, CFD06] but few articles have been published in the open literature. 
More recently, Boschoff and Pavic carried out an extensive research for 
extracting clean surface meshes from architectural models containing 
penetrating and touching components [BP05]. 

2. Outline of the Proposed Algorithm 

The major difficulty in generating 3D volume meshes for dirty geometries 
for fluid simulations with traditional mesh generation tools is to make the 
dirty geometry clean so that the meshing tools can be applied step by step, 
for instance, from edge meshing to surface meshing and, then, to volume 
meshing. The main idea of the technique presented is (1) to construct a
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representation from underlying Cartesian grid and (2) improve the surface 
mesh while maintaining water-tightness for better approximation to the 
original geometry. The watertight faceted representation (or surface mesh) 
may not precisely represent geometric details of the model but, at least, 
provides a quality surface mesh for the subsequent tetrahedral volume 
mesh generation and, eventually, the upstream fluid simulation. The two 
phases can be concisely summarized as follows. 

Overlaying Cartesian grid and extracting wrapping surface: A simple 
Cartesian grid of small number of cells is overlaid to the input geometry. 
The cells in the grid are refined until all of them satisfy criteria. The re-
finement for Cartesian cells is carried out while checking intersections be-
tween cells and the input geometry. Given the intersecting cells, all the 
non-intersected cells are classified into regions bounded by the intersecting 
cells. By collecting outer front of intersecting cells, it is possible to con-
struct a watertight surface, so-called the wrapper surface, for each region. 

Modifications of wrapper surface: In general, the initial wrapper surface 
represents the topology of a volume collectively defined by the input sur-
faces. However, the detailed geometry of the wrapper surface is far differ-
ent from that of the input volume. The wrapper surface is modified by ad-
justing nodal positions or editing local connectivity of nodes to get better 
geometric approximation to the input geometry. 
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Fig. 1. Schematic description of wrapping procedure 

As briefly demonstrated in Figure 1, it is always possible to construct a 
watertight surface approximating the volume boundary by extracting the 
connected boundary faces of the intersected cells. The typical case in 
which the previous statement is not true is when a cell completely falls be-
tween gaps, so-called invisible gap [WS02]. However, geometries in prac-
tice are reasonably well defined and the failure would not happen if cells 
around gaps are larger than gap distance. 

watertight surface mesh for a dirty geometry by extracting a closed surface 
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3. Initial Wrapper Surface Generation 

The first phase of the current technique is to construct a rough approxima-
tion for the input dirty geometry, the wrapper surface. This section de-
scribes how to generate the initial wrapper surface using the Cartesian grid 
technique.

3.1 Initial Cartesian Grid Generation 

The faceted representation such as the stereolithography (STL) format is 
used to define the input geometry in this study. The STL format is popular 
due to its simplicity and portability. The facets in the geometry are stored 
in a search tree to be used for the intersection checks and projection in this 
study.

A uniform Cartesian grid is overlaid on the input geometry and its cells 
are adaptively refined later. The Cartesian grid is defined with cells and 
faces. In this paper, cells are defined with their six faces, locations and di-
mensions. Each face records its left and right neighbor cells. They also 
store references to child faces in case of refinement. Vertices are not used 
because they are not necessary [ABM97].

3.2 Adaptation of the Grid 

Starting from the initial grid, an adaptive grid is constructed by gradually 
refining cells until all cells satisfy give size criteria. The size functions 
[ZBS02] are used to define the desired local sizes. While the curvature size 
function generally regards quality of geometric approximation, the prox-
imity size functions may result topological difference of surface meshes 
obtained. For example as shown in Figure 2, insufficient refinement be-
tween gaps in a single connected simple geometry results a double con-
nected representation. The problem is resolved only after two more re-

finement for cells (see Figure 2(b)). In 2D cases, cells of size 2/2G  are 
required to ensure that the gaps are resolved regardless to orientations and 

translations. Similarly, the factor becomes 3/2G  in 3D cases. The 
maximum difference of refinement between neighboring cells is limited to 
1 both for simplicity in the data structure and smooth transition of cell 
sizes.
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3.3 Extracting Initial Wrapper Surface 

In the adapted Cartesian grid, there may be several groups of contiguous 
non-intersecting cells, the regions. A region may represent a virtual vol-
ume. In complicated models, there are multiple virtual volumes and geo-
metric complexity often results exceptional cases. 

Let us paint cells intersecting the input geometry in a simple grid shown 
in Figure 3(a). Naturally, those cells form virtual walls which separate 
non-intersecting cells into regions. Starting from a side of an intersecting 
cell on the exterior region, a closed shell can be extracted by following 
neighboring boundary sides of intersecting cells (see Figure 3(b)). There 
might be exceptional cases as shown in the interior regions causing non-
manifold connection and fictitious regions. The intersection status of some 
cells should be manipulated to resolve such cases. 

G

D

(a) (b) 

Fig. 2. Proximity size function to resolve gaps 

Fig. 3. Nonmanifoldness and fictitious region 
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4. Improvement of Wrapper Surfaces 

In general, the initial wrapper surface extracted from the Cartesian grid 
topologically represents the virtual volume that is desired to recover. How-
ever, its geometric details, the zigzag configurations, are far different from 
the desired geometry. The remaining procedure of the developed technique 
is to improve such poor geometric approximation that it represents the in-
put geometry better. This is done by adjusting node positions and locally 
editing triangular elements. 

4.1 Projection of Nodes 

The first step for improving the wrapping surface is to move nodes of the 
zigzagged wrapper surface onto the input geometry. The simplest way is to 
project the nodes onto the nearest points on the input geometry. However, 
the nearest point projection may not give desired results as schematically 
shown in Figure 4. 

Fig. 4. Abnormal projection of node 

Due to the nature of the current approach, it is obvious that all the nodes 
are all inside of the volume. (Or all nodes should be outside of the volume 
if the exterior wrapper surface was taken.) Thus all nodes should be pro-
jected to either outward or inward. An approximated normal vector, N
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n  is a normal vector of its adjacent face and N
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n  is the averaged 

normal vector of them. When a node is found to have the sign of inner 
product of its approximated normal vector and projection vector that is in-
consistent to those of its neighboring nodes, some preconditioning such as 
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a weighted Laplacian smoothing should be done to prevent invalid projec-
tion.

In many practical cases, there are distinctive features on the boundary 
such as sharp edges and boundary between two zones. Often, it is highly 
desired to restore such features in the wrapper surface. In addition to the 
projection onto the surface, nodes in the vicinity of feature curves in the 
geometry are projected onto the feature curves. For a given feature curve, 
the closest nodes from the two ends are found on the wrapper surface and a 
path between the nodes is traced by using the feature curve as a guide. This 
procedure is basically traveling through mesh edges from one end node to 
the other while comparing distance to the feature curve and dot product of 
the edge vectors and the feature curve tangential vector. The tracing may 
fail to identify a reliable path and further investigation is undergoing. Even 
after identifying a reliable path, it is often observed that the compulsive 
projection of the nodes onto the feature curves deteriorates the configura-
tions of neighboring faces. The projection of nodes is carried out in an in-
cremental manner while checking validity of neighboring faces. 

4.2 Editing Local Connectivities 

In general, a finer initial wrapper surface provides better approximation 
for the input geometry after the projection. However, there may be very 
slender and skewed triangles. A set of standard local modification opera-
tions for triangles is used to improve such undesirable configurations fur-
ther.

Edge collapsing: An edge that is unacceptably shorter than its neighbor-

Edge splitting: If an edge is too long comparing to its neighboring 
edges, then a new node is introduced at its center and its two adjacent faces 
are divided into four triangles in Figure 5(b). The edge splitting is also 
used to improve skewed triangles. 

Edge swapping: The edge swapping shown in Figure 5(c) can be very 
effective to improve the closeness of the faces to the geometry as well as 
to improve skewness of slender triangles. 

ing edges is removed by merging its two end nodes as shown in Figure 5 (a). 
 Also, this operation is used to coarsen surface meshes [GH97]. 
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Fig. 5. Local mesh editing 

4.3 Node Smoothing 

Mostly, a weighted Laplacian smoothing [Her76] is used to improve 
skewed triangles by repositioning nodes. The nodes are projected back to 
the input geometry afterward. When a large number of iterations were ap-
plied to improve triangular quality, excessive smoothing deteriorates de-
tails of configurations and makes projection of nodes back to the geometry 
harder by moving nodes too far from the geometry. In such cases, en-
hanced smoothing techniques preserving features and volumes can be very 
effective [Tau95, VMM99, ZF02]. 

4.4 Zone Partitioning 

The wrapped surface can be separated into several regions based on the 
underlying surfaces. The closest input surfaces are checked for every faces 
and faces of same corresponding input surface are grouped and separated 
into a zone. This is particularly useful when boundary conditions should be 
applied for certain zones in the fluid simulations later. In many cases, there 
are many small fictitious zones after initial separation due to the fact that 
the wrapper zone boundaries do not exactly follow those of input surfaces. 
In such cases, the faces in small islands are redistributed to neighboring 
larger zones. 

5. Mesh Generation Examples 

The presented algorithms are implemented in TGrid, a preprocessor for 
FLUENT solver. The developed mesh generator has been exercised on a 
set of example problems and the results are presented in the following sec-
tions. The presented examples include a simple geometry to graphically 
demonstrate the meshing procedure as well as fairly complicated geome-
tries having intersecting facets to validate effectiveness of the proposed 
technique.
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5.1 Transport Aircraft: General Wrapping Procedure 

A relatively simple example is taken in this section to demonstrate the 
typical mesh generation procedure developed. 

The model is an artificial transportation aircraft which is composed of 
five separate parts – fuselage, two wings and two sheet metal parts joining 
the fuselage and wings.  An initial Cartesian grid is overlaid to the input 
geometry shown in Figure 6(a) and the configurations of intersected cells 
can be shown as in Figure 6(b). The connected exterior faces of the cells 
were extracted and the faces were triangulated based on predefined pattern 
in terms of hanging node configurations. Figure 6(c) shows the initial 
shrink wrapped surface after projection. The configuration in Figure 6(c) 
was improved using the smoothing, local mesh editing, etc. The final mesh 
is presented in Figure 6(d) after the zone partitioning. 

cells; (c) Initial wrapper surface; (d) Final wrapper surface after improvements 
Fig. 6. Typical mesh generation procedure. (a) Input geometry; (b) Intersected Cartesian 
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The following figure shows the minor dirtiness of the model. The part 
joining the wing and the fuselage does not share identical nodes and edges 
with either parts and some portion is penetrating into the fuselage. 

Fig. 7. Dirtiness in aircraft model 

Fig. 8. Cartesian grid lines on cutting plane 

Figure 8(a) displays the gridlines of the underlying Cartesian grid on a 
cutting plane. The white lines are on cells intersecting the input geometric 
facets. The regions of different shades in Figure 8(b) represent that they 
are in separated regions bounded by the intersected cells shown as the 
white region. 
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In the existence of distinctive edges, so-called feature lines, in the initial 
geometry, such features can be restored in the final mesh by projecting 
nodes onto the feature lines as shown in Figure 9. 

Fig. 9. Feature line recovery 

5.2 Combined Engine Block 

The second example in this paper is a V8 engine (see Figure 8(a)). The 
model contains three types of typical dirtiness to be dealt in dirty geometry 
meshing, intersections by penetrating parts, holes due to missing parts and 
unreliable facets due to poor triangulation common in STL files. Figure 
8(b) highlights such dirtiness in circles. 

(a) Combined engine block.    (b) Three types of dirtiness 

Fig. 10. V8 engine 

In general, any holes whose sizes are larger than cells in the Cartesian 
grid may result leakages in wrapping procedure. Thus such holes are de-
sired to be filled prior to the wrapping operation. However, it is almost im-
possible to identify such holes in many complicated models in practice. If 
a model is wrapped with leakages due to such holes, the resulting wrapped 
surface is folded at a certain location, where the leakage occurs and the 
wrapper surface propagates into the inside of the volume. In such case, a 
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pair of faces can be chosen and the path between them can be tracked as 
shown in Figure 11 and the location of the hole should lie on the path. The 
hole should be resolved by adding additional facets manually. 

Figure 12 shows a contour plot displaying the distance of each face cen-
ter to the underlying input geometry. This plot can be exploited to quickly 
identify locations where higher resolutions with smaller cells are required 
if necessary. 

Fig. 11. Hole identification with path 
tracking

Fig. 12. Distribution of distance between face 
centers and underlying geometry 

Figure 13(a) illustrates noisy zigzag configurations along the zone 
boundaries after partitioning mentioned in the section 4.6. The difficult 
cases are to recovery smooth boundary when there is no explicit boundary 
between the two zones in the underlying geometry, for instance, a pair of 
parts penetrating each other. In such cases, the nodes on the zigzag bound-
ary can be projected onto both parts alternatively and the boundary forms a 
smooth line as shown in Figure 13(b). 

Fig. 13. Zone partitioning and boundary recovery 
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The CPU time complexity for Cartesian grid generation and region 
separation is shown in Figure 14 with a linear trend line. The experiment 
was done using a Linux machine with 2 Pentium 4 (3.4GHz) processors. 
The CPU times spent for subsequent modifications such as smoothing, 
swapping and coarsening were excluded as they are interactive operations 
which are triggered one after the other. From the latest refinement stage of 
8,882k cells, 4.12 million triangles were extracted into the initial wrapper 
surface and it took 298 seconds to extract those triangles, incrementally 
project onto the input geometry and improve severely skewed triangles by 
edge collapsing and swapping. 
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Fig. 14. CPU time complexity for Cartesian grid generation and region generation 

5.3 Meshing For Underhood and External Aero-Simulation 

The example in this section is taken to illustrate an application of the 
developed mesh generator for a model of industrial complexity and to dis-
cuss the turnaround time in industrial applications. The model for a whole 
truck body is presented in Figure 15(a) and it contains more than 1250 as-
sembly parts including ones in underhood shown in Figure 15(b). The 
original geometry contains 473156 facets with 237761 vertices. 

Several resolution levels have been tested and numerical experiment 
carried out using a AMD 64bit Opteron machine shows that the developed 
mesh generator takes 3.5 GB for 10 million cells and spends 1 hour to gen-
erate 60 million cells with intersection checks. The truck body was placed 
in an artificial wind tunnel and wrapped with it. The final wrapper surface 
consists of roughly 2 million faces and 1 million nodes after coarsening. It
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Fig. 15. Truck model for underhood thermal management simulation 

took roughly 1 man week to construct the wrapped surface mesh ready for 
tetrahedral volumetric mesh generation from the initial STL files including 
hole filling and tailored mesh generation and connection for critical parts 
such as the heat exchanger. 

The volume mesh generation was carried out mainly with tetrahedral 
elements and wedge prism layers were applied to some parts. Several fail-
ures occurred due to poor triangular quality and excessively close prox-
imity between opposing faces. The final volume mesh used for the fluid 
simulation contains 6.8 million cells with 0.7 million interior nodes with 
the boundary entities mentioned prior. Figure 17 shows streamlines and 
pressure distributions obtained by the simulation. 
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   Fig. 16. Configurations of final wrapper surface for 3D volume mesh generation 

       
Fig. 17. Streamlines and pressure distributions from CFD simulations 
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6. Discussions and Future Works 

A mesh generation technique has been investigated to construct triangular 
3D surface meshes for dirty geometries and applications of the developed 
mesh generator have been presented to demonstrate effectiveness of the 
proposed technique. The proposed algorithm constructs initial watertight 
triangular meshes called the wrapper surfaces from the Cartesian grid 
overlaid onto the input dirty geometries by analyzing intersections of its 
cells. The final wrapper surface is obtained by gradually improving until a 
quality surface mesh is achieved to proceed to the subsequent tetrahedral 
volumetric mesh generation with. As the intersection check in Cartesian 
grid generation is tolerant to geometric dirtiness to a certain extent, it is 
possible to reduce a significant amount of user interactions that were nec-
essary in traditional geometric healing. 

Further works are under investigation in some areas. For example, it 
will be necessary to improve memory efficiency to exploit the presented 
technique on extreme applications such as combined fluid simulations of 
external aero, underhood thermal management and cabin HVAC. The cells 
in the presented study are represented a face-based unstructured data struc-
ture. A comparative study is undergoing using the octree data structure. 
Also, several key improvements should be made to deliver special need to 
construct meshes for volumes with thin surfaces attached to. Automated 
hole fixing is another challenging issue. The two major problems are, first, 
to identify a hole and, second, resolve it. According to our experience, the 
hole can be an artifact one caused by missing faces as well as structural 
one, for example, a hole on a sheet metal component. The former is rela-
tively easier to detect due to the existence of free mesh edges each having 
only one connected face. The later often appears clean as the thin sheet 
metal is defined very close two surfaces that are fully connected to 
neighboring surfaces. In the existence of holes, the traditional way is to 
patch them with extra triangles manually. An interesting alternative is to 
coarsen the cells around a hole so that the hole does not appear in the 
wrapper surface. Further study will be carried out for this issue. 
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Abstract. Creating models of real objects is a complex task for which the use of 

traditional modeling techniques has proven to be difficult. To solve some of the 

problem encountered, laser rangefinders are frequently used to sample an object´s 

surface from several viewpoints resulting in a set of range images that are 

registered and integrated into a final triangulated model. In practice, due to surface 

reflectance properties, occlusions and accessibility limitations, certain areas of the 

object´s surface are  not sampled leaving holes which create undesirable artifacts 

in the integrated model. In this paper, we present a novel algorithm for the 

automatic hole–filling of triangulated models.  The algorithm starts by locating 

hole boundary regions. A hole consists of a closed path of edges of boundary 

triangles that have at least an edge, which is not shared with any other triangle. 

The edge of the hole is then fitted with a b-spline where the average variation of 

the torsion of the b-spline approximation is calculated. Using a simple threshold of 

the average variation of the torsion along the edge, one can automatically classify 

real holes from man-made holes. Following this classification process, we then use 

an automated version of a radial basis function interpolator to fill the inside of the 

hole using neighboring edges. Excellent experimental results are presented.
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1. Introduction 

Creating accurate models of real environments is a nontrivial task 

for which traditional modeling techniques are inappropriate. In these 

situations, the use of laser rangefinders [5] seems attractive due to 

their relative independence from the sampled geometry and their 

short acquisition time. The combined use of range and color images 

is very promising and it has been demonstrated that together they 

can produce an unprecedented degree of photorealism [15, 16]. 

Unfortunately, surface properties (i.e., low or specular reflectance), 

occlusions and accessibility limitations cause the scanner to miss 

some surface elements, leading to incomplete reconstruction of the 

scene and introducing holes in the resulting models. Creating high-

quality mesh representations of objects based on such incomplete 

information remains a challenge [24]. Due to the costs and 

difficulties involved in scanning real environments, it is desirable to 

have automatic or semiautomatic tools for helping users to improve 

the quality of incomplete data sets. 

The problem of filling holes in a triangulated mesh can be divided 

into two sub-problems: hole identification and   construction of the 

missing data using the available data near the holes. Unfortunately, 

none of these problems are trivial since holes created during the 

scanning of geometrically rich objects, such as detailed sculptures, 

can be quite complex [9]. However, in many practical cases, holes 

occurring in range images can be topologically simpler. This is the 

case of many holes found when scanning interior environments 

where most surfaces tend to be smooth and planar areas are 

abundant (for example: imagine a home or an office environment). 

For these situations, simpler algorithms for identifying holes and for 

parameterizing their neighbors can be specified to avoid the 

problems usually associated with more general cases. 

This paper presents a novel algorithm for automatically 

identifying and filling holes in regions associated with smooth 

surfaces. Although our algorithm is targeted towards filling holes in 

smooth surfaces, it does not provide a general solution to the hole-

filling problem. It is conceptually very simple and its 

implementation is straightforward. The algorithm takes a 

triangulated mesh, which is analyzed for the existence of boundary 

edges (edges that belong to a single triangle). The occurrence of a 
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hole implies the existence of a cycle defined by boundary edges. 

Thus, once a boundary edge is found, the algorithm traces the entire 

boundary. A ring of points around the boundary is used for an 

interpolation procedure that will eventually fill in the hole. The 

points near the hole are then used to fit a surface using a radial basis 

function (RBF) interpolator. An important feature of our algorithm is 

that it guarantees that the reconstructed patches blend smoothly into 

the original surface. Moreover, the reconstructed surface preserves 

the original sampling rate of the original mesh. As the new 

primitives are distinguished from the original points, they can be 

processed further. Since the algorithm works after surface 

reconstruction, it can be used with any reconstruction technique and 

its processing is only limited to the size of holes. In this paper, we 

demonstrate the effectiveness of our approach in real data sets and 

show how it can significantly improve the overall quality of a 

triangular mesh model. 

The paper is organized as follows: Section 2 discusses previous 

work. Section 3 presents the details of the hole-filling algorithm. 

Section 4 discusses results obtained using this algorithm, and 

Section 5 summarizes the contributions of this paper and proposes 

future developments. 

2. Previous and Related Work 

Hole filling is an important problem in object reconstruction and 

this work benefits from previous efforts in areas such as range image 

registration [6, 17, 20] and surface reconstruction from point clouds 

[2, 3, 11, 12].

Curless and Levoy [8] used a hole-filling technique to interpolate 

non-sampled surfaces in concave regions of objects. In this case, the 

added surfaces were intended to produce “watertight” models for 

reproduction using rapid prototyping machines. Their algorithm has 

little or no impact on the appearance of the objects. In our work, we 

are concerned about the reconstruction of holes that, if not fixed, 

would result in major rendering artifacts. 

Carr et al. [7] use polyharmonic radial basis functions (RBF) to fit 

an implicit representation to a set of sampled points. This technique 

consists of creating a signed distance function, fitting an RBF to the 

resulting distance function, and extracting iso-surfaces from the  
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fitted RBF. It is general and produces very impressive results, but 

the entire set of points is treated as a single implicit function. In 

order to create the signed distance function, the system needs to 

know what portion of the space corresponds to the exterior of the 

surface and what portion corresponds to its interior, which may not 

always be readily available. 

Davis et al. [9] use a volumetric diffusion approach, analogous to 

in-painting techniques [4, 18], to fill holes in range scans. The 

process consists of converting a surface into a voxel-based 

representation with a clamped signed distance function. The 

diffusion algorithm consists of alternated steps of blurring and 

compositing, after which the final surface is extracted using 

Marching Cubes [14, 28].

Alexa et al. [1] used point sets to represent shapes and employed 

an approach similar to ours as they also locally project points onto 

planes and fit surfaces through those points. The reconstructed 

surfaces are used to sub–sample the point set. Their method, 

however, does not attempt to fill holes on surfaces. 

Wang and Oliveira [21] proposed a pipeline to improve the 

reconstruction of scenes represented as sets of range images. The 

pipeline consists of a segmentation step followed by the 

reconstruction of missing geometric and textural information for 

individual objects. The reconstruction of missing geometric data 

exploits the fact that real (indoor) scenes usually contain many 

planar and symmetric surfaces. Thus, a 3D Hough transformation is 

used to identify large planar regions, whose corresponding samples 

are replaced by texture-mapped polygons and are also removed from 

the point cloud [10, 22, 23]. In the remaining dataset, individual 

objects are segmented as clusters of spatially closed points, using an 

incremental surface reconstruction algorithm [11]. Inside each 

cluster, the point cloud is analyzed and searched for approximately 

symmetric patterns using a variation of the 3D Hough 

transformation [21]. As these patterns are identified; the algorithm 

automatically proceeds with reconstruction by mirroring data from 

one part of the model to another.  Figure 1 shows a chair extracted 

from a real data set. The image on the left corresponds to the original 

samples with large holes. The image to the right shows the model 

recovered using the symmetry-based reconstruction algorithm 

J. Branch et al.
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described in [21]. It provides a significant improvement with respect 

to the original model, but some holes are still visible. Such holes 

essentially result from the lack of data on both sides of the model 

and from limitations of surface reconstruction algorithms [2, 3, 11, 

12] that work effectively on areas with variable sampling density. 

The algorithm presented in this paper intends to fill these remaining 

holes.

Figure 1. a) Chair from the range image has big holes due to occlusion,  b) 

Symmetry-based reconstruction. 

3. Hole-Filling Algorithm 

With the objective of correcting the topological anomalies related to 

the absence of information in mesh representing objects, it is 

necessary to generate new points in those regions which have not 

been scanned. 

The proposed methodology first identifies and analyzes the holes 

present in the grid to determine which ones must be filled and which 

ones belong to the topology of the object. For example, 

discontinuities are present in the eye area on the surface of the mask 

as shown in Figure 2. Figure 3 shows the block diagram of the 

proposed algorithm. 

a                                    b 

Figure 2. a) Surface Hole, b) Representation Hole. 
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The analysis of the holes consists of studying the torsion of the 

contour curve of every hole. This analysis is based on the idea that 

every hole belonging to the surface is smooth and regular, but the 

holes generated by occlusion often present irregularities reflected in 

high torsion of the contour. Some examples are shown in Figure 4. 

Next, an iterative process is started to fill the holes using 

neighboring points. These points are generated by means of local 

interpolators of radial basis functions originating from a 

neighborhood selected iteratively around a hole until a pre-selected 

fitting threshold is reached. 

Figure 3. Block diagram of the algorithm. 

3.1.  Hole Identification 

The first step for the process of hole filling is the process of 

identification, during which it is possible to find the different types 

of holes present in the topology of an object. There are those that 

really belong to the surface, and those that are caused by the 

acquisition process itself, i.e, such as holes due to occlusion or due 

to insufficient views as illustrated in Figure 4. 

J. Branch et al.
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a                                    b 

Figure  4. a) Hole generated by occlusion, B) Hole generated by partial scanning. 

If the object is a triangular mesh, a hole consists of a closed path 

of edges of border triangles. A border triangle is the one that has at 

least an edge which is not shared with any other triangle (that edge is 

called a limiting edge). 

By following these border edges the holes can be detected 

automatically. However, it is possible to differentiate two kinds of 

borders: an internal limit which delimits a hole on a surface, and an 

external limit which delimits a patch or an island inside a hole or the 

limits of the surface. For the filling process, the path which 

represents the limits of the surface is eliminated within the set of 

detected holes. This elimination can be done by verifying that every 

one of the holes identified does not enclose a surface. 

Initially, the algorithm takes a seed triangle located at any part of 

the grid, and it searches on the whole mesh until it finds a border 

triangle from which it starts a recursive search to find a closed path. 

This search is done by determining which one of the three edges is 

on a border, and then it searches for an adjacent border triangle that 

shares some of those vertices. The algorithm proceeds until the 

starting triangle is found again.

Figure 5 shows lateral views of the Standford bunny data set. It 

has five holes, two of them are part of the real object. The other 

holes were generated in early steps of surface reconstruction 

(acquisition and registration). Figure 6 shows the final result of the 

hole identification algorithm. 
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a b c 

Figure 5. a) Lateral view of  Stanford’s Bunny, b) and c) View of the five holes 

that the object owns. 

a b 

Figure 6. a) and b) Result of the algorithm of holes identification on the mesh, 

five identified holes. 

3.2. Hole Analysis 

The step following the detection of holes is analysis. This stage tries 

to determine whether a hole must be filled or not, whether the hole is 

present on the surface of the real object, or if the hole was caused 

during an intermediate stages of  reconstruction. 

There are an infinite number of configurations of holes on  free 

form objects which makes it very difficult to identify the actual hole 

belonging to the surface. This is why the hole-filling process 

requires an interaction with the user. An attempt to automate this 

procedure consists in analyzing the contour curve of each hole. 

Keeping in mind that the smoothness of the contour is relative to the 

density of the sampling points, the holes present in man-made 

objects usually have smooth contours. 

On the other hand, the holes caused by occlusion, present  great 

variability of the contour curve as shown in Figure 7. 
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a                                      b 

Figure 7. a) Internal contour, b) External contour. 

Since the contour line is a curve, it can be studied and classified 

according to its geometric properties as curvature and torsion. To 

classify the contour curves we use the torsion and not the curvature 

because a hole on a surface can have a wide range of curvature 

variations. It is important to establish the behaviour of every curve in 

the space, such as its smoothness or high variability. 

The study of the torsion of a curve depends on the behaviour of 

the osculating plane. The osculating plane is the plane nearest to the 

curve at an arbitrary point A. This plane crosses the A point and it 

contains the tangent T and the normal N to the curve at A, as 

illustrated in Figure 8. 

Figure 8. Osculating plane (Vector for N and T necessary). 

From point-to-point through the curve, the position of the 

osculating plane varies in a similar way to the tangent vector. This 

simple characteristic allows characterization of the curvature. The 

variation of the osculating plane allows calculation of the torsion of 

a curve. Similar to the curvature, the variation of the osculating 

plane is measured according to the arch longitude. That is, if  is 

the angle between the osculating planes at a fixed point A and a 

neighbouring point X, and if s  is the arch longitude AX, then the 

torsion  at the point A is defined as the limit 

ss

lim
0

.
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The sign of the torsion depends on the side of the curve towards 

which the osculating plane turns when it is moving across the curve. 

However, according to differential geometry, the properties of the 

curve at a point are those properties which depend on an arbitrarily 

small environment. The properties of this type of curve are defined 

in terms of derivative on the curve at the point. The estimation of the 

torsion is defined as follows: 
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The contour is partially approximated by means of Bézier curves 

of the third degree with sets of four continuous points until the 

estimation of the torsion is computed at every point along the 

contour.

Once they are obtained, the equations of the torsion for the 

segments along the curve are evaluated at the last point. Since Bézier 

curves guarantee that the obtained curve has the extreme points of 

the set from which it is calculated, the error of approximation that is 

present at the intermediate points does not affect the torsion’s 

estimation (see Figure 9).

a b 

c d 

Figure 9. Approximation to the contour curve by means of Bézier’s curves and 

points on which the torsion is estimated. 

Finally, the variance of the torsions is calculated to measure the 

level of dispersion of the measured values at each point. The holes 

whose contours have a variance of torsion higher than a pre-

established threshold, will be filled The value of this measure is 

obtained by: 
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shows different cases of the hole and its values of dispersion.  In 

these cases, low dispersion is considered as values less than 0.1. 

Although  the smoothing of long  contour curves depend on sample 

In general, low values of dispersion suggest a surface hole. Figure 10 



Figure 10. Measurement of the torsion of contour curve in six different cases 

a) 0.31, b) 0.42, c) 0.245, d) 1.1E-4, e) 3.2E-3, f) 0.04, g) 0.09, h) 0.38, i) 0.51, 

j) 0.63. 

density. We assumed that in a real data range the density is adequate 

and that the mesh does not yet have any reduction procedure.

3.3. Calculation of the Interpolant 

Once the holes to be filled are classified, the missing points are 

computed by an interpolation function using a continuous 

interpolation scheme. In order to do this, a function h(x) is calculated 

from a set of points distributed in a homogenous way around the 

contour of the hole. This interpolating function is constructed using 

a radial basis function. 

The procedures based on radial basis functions have proven to be 

very useful in the reconstruction of shapes from noisy, disperse, and 

incomplete data [25, 26, 27]. Recent studies about RBF are centred 

on the reconstruction of a big set of points produced by modern 

acquisition devices [11, 17, 7, 26]. 

The radial basis functions are circularly symmetric functions 

centred on a point called centre. To calculate an interpolant of RBF, 

let us consider a set of points 
N

ppP ,...,
1

 sampled from a 

surface S and with a set of normals, 
n

nnN ,...,
1

, which indicate 
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the orientation of the surface. The main goal is to build a function 

)(rh in such a way that the set of zeroes satisfies the 

equation 0)(:
3

rhr ,  approximating the set of points P. 

The typical interpolation function )(rh interpolating P is defined 

as:

,])([)(

pp

iii

i

Crrgrh

For hole filling, it is necessary to compute independent 

interpolators local to every hole. Therefore, for every hole, a 

different interpolant function is estimated with a reduced set-of-

points. This set-of-points should be as big as possible and 

homogeneously distributed so that the obtained function can 

estimate the topology of the missing points. 

3.4. Centres Selection 

The computation of the interpolating radial basis functions, which is 

not a compact support, is expensive. Therefore, the selection of the 

centres or set-of-points on which the interpolant will be calculated 

carefully. The estimation of the adequate neighbourhood is done by 

means of an iterative procedure (see Figure 11).

a b c 

Figure 11. a) Iteration 1, Neighbourhood size: 38. b) Iteration 2, Neighbourhood 

size: 106. c) Iteration 3. Neighbourhood size: 172.

where
3

)(),/()( ssss  is a tri-harmonic radial basis 

function used for the approximation of the absent surface The 
i
 are 

the set of weights associated to each centre, 
i

g  are typically a 

polynomials of second or third degree, and the 
i

C  are the set of 

centres.
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This process starts with a small number of selected centres, as a set 

of points radially near to each one of the vertices on the contour 

curve, the size of radio is initially established by the user, this 

selection  is shown in Figure 12. An interpolant is calculated for 

these points and the precision is measured on a set of control points.  

If the precision measured is not equal to the threshold or lower than 

a pre-established threshold, the size of radio is duplicated, and a new 

selection process is done until a threshold is reached. In every one of 

these iterations an interpolant is calculated. The evaluation of the 

quality of the interpolation is done over a set of reference points, 

which initially belong to the neighbourhood of the hole but are not 

used to calculate the interpolant. 

Figure 12. Estimation of the set of centres. 

Figure 13 shows the result of the selection of the adequate 

neighbourhood for the calculation of the interpolating function on a 

real object. Once the initial neighbourhood is obtained, the reference 

points set must be determined to measure the quality of the 

interpolating function. This set-of-points should be kept constant. In 

the proposed algorithm, the set-of-points of the initial 

neighbourhood is clustered to obtain homogeneous regions which 

describe different variations of the topology in the regions around 

the hole. A cluster type K-mean [19] is used, where the parameter K 

will be equal to the number of vertices that form the hole’s contour. 

J. Branch et al.
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a b 

Figure 13. a) and b) final neighborhood for each hole in the bunny.

Once the set of regions defined for every cluster is obtained, a 

point is randomly selected from each of them (see Figure 14), which 

will represent every region. In this way, it is assured that the 

evaluation is done homogeneously around the hole. If an 

interpolating function reaches the threshold with high precision, it 

means that it represents the topology of the hole’s neighbourhood. 

Figure 14. a) Neighbourhood clusterization. b) and c) Selection of the reference 

points set. 

3.5. Filling the Hole 

In order to fill each hole, it is important to remember that the 

reconstructed segment preserves the sampling density of the original 

mesh; that is, the sampling density that is measured for each one of 

the holes. 

In general, two important criteria are used for determining the 

new points that fill each hole. First, the position of new points 

should be inside the hole and the new triangles added to the hole 

must be easy to merge with the original mesh. The local 

triangulation is an efficient procedure for hole-filling because it 

avoids the remeshing of  the cloud-of-points. Additional procedures 

such as the normal estimation over the new points and the new 

normal of the contour points that will be different due the new 
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In order to generate the new segment of the mesh, we use an iso-

surface algorithm with a RBF interpolator [7]. Given a density 

function S, an iso-surface at value a  is defined as the set of all 

points p where apf )( . In the context of surface reconstruction, 

where S represents a signed-distance function. The reconstructed 

surface corresponds to the iso-surface where f = 0. 

The function S is sampled at regular intervals to construct a 

manifold mesh of polygons representing the desired iso-surface at a 

specified resolution. The density of the new segment of the mesh is 

equal to the mean value of the original mesh. Facet vertices are 

ordered such that the cross-product of adjacent edges (the facet 

normal) is consistent with the gradient of the density function S. The 

marching cubes algorithm is a well-known general purpose 

algorithm and we use it to fill the holes as illustrated in Figure 16. 

Figure 16. a) and b) show the filled holes identified in Section 3.1.

 a  b               c 

Figure 15. Hole triangulation a) Initial mesh, b) Contour extraction, new points 

generation and local triangulation, c) Filling hole. 

segment of the surface, can also be made locally (see Figure 15). 

Second, the density of the new set-of-points must be of that vicinity.

J. Branch et al.
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4. Experiments and Results 

All tests were made with a computer with a 3.0GHz processor, 

1.0Gb of ram memory running under the Microsoft XP operating 

system.  The implementations of the models were made in C++ and 

MATLAB. In addition, a graphical motor in OpenGL was 

programmed to obtain the graphical representation of the images.  

The  data were acquired with the Kreon sensor available in the 

Advanced Man-Machine Interface Laboratory Department of 

Computing Science, University of Alberta, Canada. 

In order to calibrate the model and to validate the correct behavior 

of the interpolator over 3D points, several tests were made on 

synthetically generated holes. The generation of synthetic holes is 

necessary to evaluate the quality of the points obtained with the 

interpolator since in real cases, the degree of precision of the points 

generated with respect to the real section of the surface is impossible 

to measure.  The test consisted of generating synthetic holes on real 

range image, extracting a near points neighborhood by means of a 

kd tree structure.  Next, the hole is filled with the proposed strategy 

and the error of fit between the extracted data of the real surface and 

the new points is measured.  The error reported in Table 1 

corresponds to the error of the distance between both sets of points. 

Figure 17, shows  the variation of neighborhood size to fill the hole. 

Table 1. Variation of neighborhood size to fill the hole.

Number of Points Size of Hole=50 Surface size = 6051

Neighborhood Size error % of Surface 

100 1.79E-2 1.65%

200 1.60E-2 3.31%

500 1.03E-3 8.26%

1000 0.83 16.53%
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Figure 17. Different neighborhood sizes.

To show the behavior of our algorithm one can see in Figures 18 

and 19 results for several real 3D cases. These images show that the 

algorithm generates smooth segments to fill the surface holes in 

different configurations and correctly identifies each one of the 

holes.

Figure 18. a) Original mesh, b) set of center and c) hole filled with RBF 

interpolant.

a                                 b 

Figure 19. a) Original mesh, b) hole filled with RBF interpolating function. 
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5. Conclusion 

We have presented a new technique for filling holes in a triangulated 

model using a local radial basis function interpolant defined for each 

one of the holes detected using the torsion fluctuation around the 

contour curve. In the algorithm, each contour curve is approximate 

with a Bézier curve segment from which the torsion is calculated 

analytically. The method is simple and effective, since the radial 

basis function fits the surface smoothly and always generates a 

closed manifold triangular mesh. 

When big holes are present in a mesh, the interpolating function 

cannot adequately fit the surface. No big holes can exist if a good 

scanning process is done, that is, holes whose sizes do not exceed 

3% of the total size of the mesh. Our algorithm has only one 

parameter: the predefined threshold for  the variation of the torsion 

to determine if a hole must be filled. The other values like the size of 

vicinity are automatically calculated. 

The threshold for the variation of the torsion to identify a  hole in 

the mesh will be affected by the sample density and the method to 

make the mesh. So an approach to automatically define this value 

from a given mesh would be desirable.  In some cases the holes 

would be on a plane. For these cases our algorithms must complete 

with a normal variation analysis of limit edges; but this is not a 

general case because the holes too often are caused by occlusion  

and are not trivial surfaces. 
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S. Mitchell proved that a necessary and sufficient condition for the existence
of a topological hexahedral mesh constrained to a quadrilateral mesh on the
sphere is that the constraining quadrilateral mesh contains an even number of
elements. S. Mitchell’s proof depends on S. Smale’s theorem on the regularity
of curves on compact manifolds.

Although the question of the existence of constrained hexahedral meshes
has been solved, the known solution is not easily programmable; indeed, there
are cases, such as Schneider’s pyramid, that are not easily solved.

D. Eppstein later utilized portions of S. Mitchell’s existence proof to
demonstrate that hexahedral mesh generation has linear complexity. In this
paper, we demonstrate a constructive proof to the existence theorem for the
sphere, as well as assign an upper-bound to the constant of the linear term in
the asymptotic complexity measure provided by D. Eppstein.

Our construction generates 76*n hexahedra elements within the solid
where n is the number of quadrilaterals on the boundary. The construction
presented is used to solve some open problems posed by R. Schneiders and D.
Eppstein. We will also use the results provided in this paper, in conjunction
with S. Mitchell’s Geode-Template, to create an alternative way of creating a
constrained hexahedral mesh. The construction utilizing the Geode-Template
requires 130*n hexahedra, but will have fewer topological irregularities in the
final mesh.

1 Introduction

Hexahedral mesh generation has been subject to active research during the
past twenty years. And, while some progress has been made in the area of

Albuquerque, NM

UT jfsheph@sci.utah.edu
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push-button hexahedral mesh generation for fairly specialized classes of com-
plex domains, a generalized hexahedral mesh generation algorithm does not
exist which will support all types of domains and applications.

The existence theorem for hexahedral meshes provided by S. Mitchell [6]
states that a solid homeomorphic to the sphere, whose boundary is tessel-
lated by an even number of quadrilaterals, can be partitioned into a hexahe-
dral mesh using interior surfaces whose boundaries are the dual cycles of the
quadrilateral mesh. The solid partition is referred to as a constrained hexa-
hedral mesh, and the partition of the boundary is known as the constraining
quadrilateral mesh.

The problem of constructing constrained hexahedral meshes has proven
very difficult to address. The techniques based on S. Mitchell’s proof to the
existence theorem are difficult to implement; in a few cases, seemingly simple
problems are difficult to solve.

D. Eppstein [5] presented a complexity analysis on the generation of hexa-
hedral meshes constrained to a bipartite quadrilateral mesh. Part of his con-
struction depends on adding a layer of cells that have sixteen and eighteen
faces; the problem of constructing the hexahedral solution to these cells of
quadrilaterals is left open to the reader, and, instead, S. Mitchell’s proof is
invoked to prove existence of a solution to those cells. In his paper, D. Epp-
stein focuses on the analysis of the complexity of the generation of constrained
hexahedral meshes.

In this paper, a constructive proof is given based on adding four basic tran-
sitional cells of hexahedral elements to a quadrilateral mesh: 1) a transition
of paired hexahedra, 2) a transition to four-split hexahedra, and 3) a tran-
sition from four-split hexahedra to a closed mesh. The rules of how to build
the transitional layers of hexahedra using these basic cells will be given. The
result presented in this paper is a constructive, easily-programmable, solution
that provides a precise, a priori, count on the number of hexahedral elements
that will be generated.

Additionally, S. Mitchell [7] introduced the Geode-Template to interface
a four-split quadrilateral mesh to a diced tetrahedral mesh. In his paper,
Mitchell relies on splitting a hexahedral mesh to create a four-split, or diced,
quadrilateral boundary. In this paper, we will show how to transition to a
four-split mesh without modifying the original boundary.

The remainder of this paper will outline the concepts, definitions, and
proofs which ultimately result in a constructive proof of S. Mitchell’s existence
theorem. The proof of the theorem presented in this paper can be summarized
as follows:

1. We introduce the notions of a Paired Partition and Transitions be-
tween quadrilateral meshes. It is shown that every quadrilateral mesh that
admits a Paired Partition has a transition to a quadrilateral mesh whose
dual has no self-intersecting loops.
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2. Given a quadrilateral mesh whose dual has no self-intersecting loops, we
introduce a method for transitioning the quadrilateral mesh to a Four-
Split Quadrilateral Mesh. The transition is created by inserting layers
of elements that divide a quadrilateral in two along the each of the two
dual cycles that compose the quadrilaterals.

3. It is shown that a Four-Split Quadrilateral Mesh on the sphere4 is
the boundary of a hexahedral mesh.

4. We demonstrate a Four-Split Pyramid cell to close the hexahedral
mesh.

5. Finally, we show that any quadrilateral mesh on a sphere with an even
number of quadrilaterals is the constraining boundary of a hexahedral
mesh.

While topologically valid, the resulting quality of the hexahedral mesh cre-
ated by this construction will not provide solutions for practical applications
and is presented merely to provide a concrete measurable construction of a
solution to the problem of constrained mesh generation.

The solution presented for the sphere can be extended to the case of the
torus and compact 2-dimensional manifolds in general by using the Geode-
template coupled with a constrained tetrahedral mesh. (If every loop in a
quadrilateral mesh on a 2-dimensional compact manifold has an even number
of quadrilaterals, it is possible to apply all the results of this paper to transition
to a Four-Split Quadrilateral Mesh. This, then, will permit the use of the
Geode-template and reduce the problem to the existence of a constrained
tetrahedral mesh.)

Finally, a few solutions to open problems in mesh generation are presented
including: a new solution to Schneider’s open problem [11], the eight-sided
quadrilateral octahedron [5], and Eppstein’s cube [5]. Additionally, a question

linear edges for a convex polyhedron is solved by the construction provided
in this paper.

2 Basic Terminology

The terms quadrilateral and hexahedral mesh follow the definition given by
S. Mitchell in [6]. The dual of a quadrilateral mesh on a compact manifold
is a graph where every vertex is connected to four other vertices (i.e. a 4-
regular graph). A structure referred to as the Spatial Twist Continuum or
STC for short is associated with this graph [9]. In this definition, the notion
of chord is introduced. A chord is a chain of quadrilaterals that is constructed
by traversing the adjacent quadrilaterals through opposite edges. A loop is

4Technically, the construction requires a four-split quadrilateral mesh with a
‘star-shaped’ boundary (i.e. there must be a point which can be seen by all nodes
on the four-split boundary simultaneously.)

by M. Bern, et al. [2] on the existence of a hexahedral decomposition with
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a closed chord. In particular, for a quadrilateral mesh on a closed compact
manifold, every chord belongs to a loop.

of how to untangle self-intersecting loops to create the interior surfaces nec-
essary to generate the hexahedral mesh. Their results are used to resolve R.
Schneider’s pyramid [11].

3 Element Representation

The quadrilateral and hexahedral elements to be referenced throughout the
paper will follow the conventions used in finite-element analysis. A quadrilat-
eral is represented by an ordered set of vertices {v1, v2, v3, v4}, and bounded
by the four edges {v1, v2}, {v2, v3}, {v3, v4}, and {v4, v1}. The edges in
the quadrilateral that do not share vertices are called opposite edges of the
quadrilateral. A hexahedron is represented by an ordered set of vertices {v1,
v2, v3, v4, v5, v6, v7, v8}, and bounded by the six faces {v1, v4, v3, v2}, {v5,
v6, v7, v8}, {v5, v6, v2, v1}, {v8, v7, v3, v4}, {v6, v2, v3, v7}, and {v1, v5,
v8, v4}.

Fig. 1. Element configuration

Additional requirements of a valid quadrilateral mesh are that each edge
in the mesh must contain exactly two distinct vertices, and each interior edge
must be shared by exactly two quadrilaterals. Similarly, for a valid hexahedral
mesh the faces of a hexahedron must contain exactly four distinct vertices,
and each interior face of the hexahedral mesh must be shared by exactly two
hexahedra.

4 Hexahedral Transitions of Quadrilateral Meshes

Definition 1 Two distinct quadrilateral meshes are transitions of each
other if there is a hexahedral mesh whose boundary contains the union of
both meshes.

By solving the hexahedral mesh of the transition of a given quadrilateral
mesh, the original hexahedral problem is resolved, because the union of the

Loops may self-intersect. T. Suzuki, et al. [12] gave a detailed description
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hexahedral mesh with the layer of transition elements gives the solution to
the original quadrilateral mesh.

4.1 Paired Partition Transition

Definition 2 A Paired Partition of a quadrilateral mesh, Q, is a partition
PQ of Q such that each element in the partition is a pair of quadrilaterals that
share at least an edge.

In other words, a quadrilateral mesh Q admits a paired partition if there
exist a set

1. PQ = { {p, q}, such that p and q are quadrilaterals in Q},
2. Any two distinct elements in PQ {p, q} and {p’, q’} are disjoint,
3. Q is the union of PQ, and,
4. For each element {p, q} in PQ, p and q share an edge or, equivalently, p

and q are neighbors.

Since the dual of a quadrilateral mesh on a closed manifold is a 4-regular
graph, a Paired Partition also corresponds to the graph-theoretic problem
known as a perfect matching, or a 1-factor, of a 4-regular graph. We utilize
the following theorem (a proof is given in [3]):

Theorem 1. Every quadrilateral mesh on a 2-Dimensional manifold in �3

with an even number of quadrilaterals admits a Paired Partition.

Theorem 2. Every quadrilateral mesh on the sphere with n elements that
admits a Paired Partition transitions to quadrilateral mesh with no self-
intersecting loops. The total number of hexahedral elements within the tran-
sition between the original quadrilateral mesh and the new quadrilateral mesh
with no self-intersecting loops is n.

Proof: Construct the Paired Partition of the quadrilateral mesh. Let
{p, q} be in PQ.

Fig. 2. The Paired Partition Transition. The image on the right is the ‘Cell of Six
Quadrilaterals’.

Removal of Self-Intersecting Loops
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The two quadrilaterals with vertices {{v1, v2, v5, v4}, {v2, v3, v6, v5}}
(see Figure 2) transition to the quadrilateral mesh with six quadrilaterals
{{v1, v2, v7, v8}, {v7, v2, v3, v8}, {v1, v8, v9, v4}, {v8, v3, v6, v9}, {v4, v9,
v10, v5}, {v9, v6, v5, v10}}. The boundary of the hexahedral mesh comprised
of the two hexahedra with vertices {v1, v2, v5, v4, v8, v7, v10, v9}, and {v2,
v3, v6, v5, v7, v8, v9, v10} mesh below is the exclusive union of the two sets
of quadrilaterals. For any two paired quadrilaterals, p and q, with vertices
{v1, v2, v3, v4}, and {v2, v5, v6, v3}, construct the two hexahedral elements
with vertices {v1, v2, v3, v4, v7, v8, v9, v10}, and {v2, v5, v6, v3, v8, v7,
v10, v9}.

This transition is applied to each set of paired quadrilaterals in the Paired
Partition. The boundary of the transition mesh minus the original quadri-
lateral mesh is composed of cells of six quadrilateral elements (see Figure 2).
Thus each paired element in the Paired Partition is mapped to a unique
set of quadrilaterals {p1, p2, p3, q1, q2, q3} in the transitioned mesh.

There is a natural partition induced by mapping each element {p, q} in
the Paired Partition to a unique subset of quadrilaterals {p1, p2, p3, q1,
q2, q3} of the transitioned mesh. We will call the newly introduced partition
of the mesh ‘Cell of six quadrilaterals’. As a consequence of a peculiar
property of these new cells, it will be shown that all the loops in the new
quadrilateral mesh that result from the transition are non-self-intersecting.

The fact that the new mesh will not contain any self-intersections can be
seen by taking any quadrilateral in the transitioned quadrilateral mesh, and
finding the Cell of six quadrilaterals that contains the quadrilateral. Notice
that there are two types of loops that go through a Cell of six quadrilater-
als: there is one loop that is fully contained inside a Cell of six quadrilat-
erals, and three others that are not (see Figure 3). Notice, also, that the only
intersections in the cell take place between the fully contained loop in the cell
and one of the loops that is not fully contained in the cell (see also Figure
4). Therefore, for any given quadrilateral, the intersection must take place
between two distinct loops. Hence, there cannot be any self-intersections.

A total of n hexahedral elements were used to transition to a quadrilateral
mesh with no self-intersecting loops. We should also note here, that it may be
possible that changing only a subset of the pairs may be required to remove

Fig. 3. Dual chords on the Paired Partition Transition boundary
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Fig. 4. Various arrangements of dual chords with adjacent Paired Partition tran-
sitions.

all self-intersections in the mesh. That is to say that n is an upper bound on
the minimum transition layer to obtain no self-intersections.

4.2 The Four-Split Transitions

The Four-Split Transition

In this section, we will describe a transition from a non-self-intersecting
quadrilateral mesh to a Four-Split Quadrilateral mesh. A Four-Split
Quadrilateral mesh is the collection of four cells that result from splitting
a single quadrilateral into four quadrilaterals; five points are added: four at
the mid-edges, and one at the center as shown in Figure 5. Any quadrilateral
mesh that results from a transition which splits one quadrilateral into four is
called a Four-Split Quadrilateral Mesh.

Fig. 5. Four-Split Transition

A Four-Split Quadrilateral Mesh has the following properties:

1. There are four vertices labeled as corner vertices.
2. There is a unique vertex labeled as interior.
3. There are four vertices labeled as mid-edges.
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4. Adjacent cells share corner vertices with corner vertices, and mid-edge
vertices with mid-edge vertices.

The fourth property is essential to the proof of the next theorem to ensure
that the faces of the Four-Split Pyramid given below will match appropri-
ately.

We now define Theorem 3 which provides a sufficient condition for the
existence of a transition to a Four-Split Quadrilateral Mesh.

Theorem 3. If each of the dual loops of the quadrilaterals on the sphere does
not self-intersect, there is a transition of the mesh to a four-split quadrilateral
mesh.

Proof: A given oriented loop in the dual of the quadrilateral mesh which
does not self-intersect splits the mesh into three disjoint sets of quadrilaterals:
1) the set of quadrilaterals that lie to the right of the loop, 2) the set of
quadrilaterals that compose the loop, and 3) the set of quadrilaterals that
lie to the left of the loop. The quadrilaterals that compose the loop are a
boundary between the quadrilaterals labeled left and right. This partition
of the mesh exists because there are no self-intersections that change the
orientation of the curve.

By utilizing these three sets of quadrilaterals, we can begin to add layers of
hexahedra onto the quadrilaterals which will result in a four-split quadrilateral
transition. There are three cases to consider when adding a layer of hexahedra
(shown in Figure 6): case 1 is used when a quadrilateral lays in the regions
labeled as right of the oriented loop, case 2 is utilized when a quadrilateral
belongs to the loop, and case 3 is used when a quadrilateral lies to the left of
the loop. We will discuss each of these cases separately.

• Case 1: If a quadrilateral lies to the right of an oriented loop, a single
hexahedron is added on top of the quadrilateral towards the center of the
sphere.

• Case 2: When a quadrilateral belongs to a loop, a cell of three quadrilat-
erals is placed as illustrated in Figure 6.

• Case 3: When a quadrilateral lies in the region labeled as left of the loop,
two hexahedra are added on top of the quadrilateral towards the center of
the sphere.

Fig. 6. Transition cell for the Four-Split transition
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Thus, three types of transition cells placed at each quadrilateral of the
mesh: one is a single hexahedra, another is a pair of hexahedra one on top of
the other, and the third one is the one illustrated in Figure 6.

By placing the set of cells on top of each quadrilateral as described above
for each of the cases, we will now show that the cells will match appropriately
at the interface with each of the other sets of cells for each quadrilateral. For a
single loop, take any two quadrilaterals sharing an edge with the cells placed
on top of the quadrilateral as described above, and the result is one of six
possible scenarios:

• Scenario A - Both quadrilaterals are in the set of ‘right’ quadrilaterals: In
this case, two hexahedra are placed next to each other, and will match up
appropriately.

• Scenario B - Both quadrilaterals are in the set of ‘left’ quadrilaterals: In
this case two pairs of hexahedral elements are palaced next to each other,
and the hexahedra will match up appropriately.

• Scenario C - One quadrilateral is labeled ‘left’, and a neighbor is labeled
‘right’: This scenario is not possible, because the oriented loop with no

self-intersections is the boundary that divides the ‘left’ quadrilaterals from
the ‘right’ quadrilaterals by definition.

• Scenario D - One quadrilateral is labeled ‘right’ and the other belongs to
the loop: The quadrilateral labeled ‘right’ must lie in the region to the right
of the loop. In this case, there is one hexahedral element on the right side
of the loop that is matched with an appropriately aligned hexahedra from
case 2 template.

• Scenario E - One quadrilateral is labeled ‘left’ and the other belongs
to the loop: Using similar reasoning to case D, the ‘left’ quadrilateral is
to the left of the quadrilateral in the loop, and there are two hexahedral
elements matching two hexahedral elements from the case 2 template, and
the hexes match up appropriately.

• Scenario F - Both quadrilaterals belong to the loop: Label the two quadri-
laterals p and p’ having vertices v1, v2, v3, v4, and v3, v2, v5, v6 respec-
tively. The quadrilaterals p and p’ share the edge v2, v3.
There are two possible cases: i) one quadrilateral is a successor of the other
quadrilateral with respect to the loop, or ii) the two quadrilaterals are not
successors of each other.
– Case i - The quadrilaterals are traversed successively in the loop: Sup-

pose the loop traverses quadrilateral p through edges v4, v1 and v2,
v3. If the loop traverses quadrilateral p’ through v2, v5 and v3, v6 (see
Figure 7), the loop must also traverse quadrilateral p’ through two ad-
ditional edges v3, v2 and v5, v6. If the loop traverses quadrilateral p’
at four edges, the loop is self-intersecting at p’, which is contradictory
to the assumption of no self-intersections. Therefore, the loop will tra-
verse the adjacent quadrilateral p’ through edges v3, v2 and v5, v6,
and the hexes match up appropriately.
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Fig. 7. This configuration is will occur only if there is a self-intersecting loop in the
quadrilateral mesh.

– Case ii - The quadrilaterals are not successively traversed in the loop:
In this case, the case 2 templates must face in opposite directions with
respect to the loop; that is, the left edge of one template must be shar-
ing the left edge of the adjacent template, or the right edge of one
template is sharing the right edge of the adjacent template, as shown
in Figure 8).
If the loop is traversing p through edges v1, v2 and v3, v4, the loop
cannot traverse at p’ through the shared edge v3, v2. Otherwise, p
could be considered a successor or predecessor of p’; this would lead to
the loop being self-intersecting at p and contradicting our assumptions
on the loop. Hence, the loop must traverse p’ through the edges v2, v5
and v3, v6.. Therefore, we need to show that p cannot be to the ‘left’
of p’ while p’ is to the ‘right’ of p. We can demonstrate that this is
impossible by using basic properties of simple Jordan curves.
We create an oriented, closed loop of segments by connecting the mid-
point of each edge traversed by the loop from all the quadrilaterals
in the loop. This oriented, closed loop of segments is a simple Jordan
curve because the loop that induced it is not self-intersecting.
Construct an oriented, open poly-segment with vertices v1, v2, v5. This
poly-segment must intersect the oriented, closed curve induced by the
loop at two different points. As a direct result of the property of simple
Jordan Curves,one intersection point the tangent of the oriented closed
loop must be pointing to left of the oriented poly-segment, and, at the
other intersection point, the tangent must be pointing to the right.
We are, therefore, left with two possibilities: the loops are either to
the right of each other, or to the left of each other. In either case, the
hexahedra from the case 2 template will match up appropriately as
illustrated in Figure 8.

We now return to the Paired Partition transition described earlier, and
we notice an interesting pattern which can be exploited to reduce the number
of elements in the four-split transition. Each Cell of Six Quadrilaterals
(as shown in Figure 3) contains two types of loops: the inner loops, and the
exterior loops (as described earlier). None of the inner loops intersect each
other; hence, it is possible to orient all loops so that their direction is con-
sistent. Similarly, none of the exterior loops intersect each other, and we can
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Fig. 8. Possible loop orientations in Scenario F, case ii

therefore orient these loops, as well. Thus, by adding only two layers of two
splits, it is possible to transition to a four-split quadrilateral mesh. Each of the
cells has two outer loops oriented to the left of each other, and the remaining
loop to the right of the center loop, and placing each element within the cell
distinctly into one of the scenarios described above.

As a result of this ability to distinctly orient each of the loops, we can
calculate the total number of transition elements needed to convert from a
Paired Partition to a Four-Split Quadrilateral Mesh as:

number of transition elements = number of quadrilaterals to the right of
the loop + 2*number of quadrilaterals to the left + 3*number of quadrilaterals
from the loop

The hexahedral elements transition the original quadrilateral elements to
one where the quadrilaterals to the left and right of the mesh remain identical
to the originals, but the ones along the loop are split into two quadrilaterals.
The set of originals chords is transferred to the transition quadrilateral mesh
as follows:

1. The loop just processed is discarded from the set of chords,
2. The remaining chords are mapped onto the faces of the transition quadri-

lateral mesh. In particular, when a loop is projected onto one of the pair of
quadrilaterals resulting from the split along the loop, it must be transverse
to the loop.

The operation of adding two split transition layers described above is re-
peated for another loop of the remaining loops projected onto the new quadri-
lateral mesh that results from the transition elements. Each time a loop is
processed the set of remaining loops diminishes by one. The process continues
iteratively until no more loops remain from the original set. Wherever two
loops intersect, a group of Four-Split Cell is created, because two quadri-
laterals resulted from the loop processed at an earlier stage in the process,
and the secondarily processed loop adds two more quadrilaterals along the
transversal direction. Since each loop is processed only once, and exactly two
loops cross each quadrilateral cell in traversal directions; hence, the result-
ing transition of quadrilaterals will be a Four-Split Quadrilateral Mesh.
Figure 9 illustrates the results of two layers from two different loops that
intersect.
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Fig. 9. Two layers result from two different loops intersecting.

An Alternative Four-Split Transition

Scott Mitchell suggested an alternative construction [10]. The alternative tran-
sition is accomplished by adding one layer of hexahedra on the elements that
are either on the loop or to the left of the loop. All other quadrilaterals are
left as they are. The proof of the theorem is very similar to the one above.
Using his approach, the number of transition elements added at each layer is
given by the formula:

number of transition elements = number of quadrilaterals to the left of the
loop + number of quadrilaterals on the loop

It is critical for both four-split transitions that the quadrilateral mesh is
on the sphere. A torus, for example, may have loops that do not split the
domain in two regions as required by the proof. In general, non-intersecting
loops could be processed simultaneously by the approach given above if the
chords are carefully oriented to reduce the number of layers.

4.3 Four-Split to Closure Transitions

Once a Four-Split Quadrilateral Mesh is in place it is possible to transition
to a constrained hexahedral mesh utilizing one of several other transitions. We
now demonstrate how the remainder of the sphere can be filled using a Four-
Split Pyramid, or the Geode-template to obtain an all-hexahedral mesh.

The Four-Split Pyramid Transition

Theorem 4. A Four-Split Quadrilateral Mesh is the boundary a hexahe-
dral mesh containing 16*n hexahedra, where n is the number of quadrilaterals
before four-split division.

Proof: This construction is done by utilizing a hexahedral decomposition
of a pyramid into sixteen hexahedra (a detailed construction of the pyramid is
given in [4].) This pyramid is characterized by having a Four-Split Quadri-
lateral Mesh at the base of the pyramid (the pyramid is illustrated in Figure
10). The Four-Split pyramids are placed inside the sphere with their bases



Constrained Hexahedral Mesh Generation 447

aligned at each of the four-split cells with the apex of pyramids being con-
nected to the center of the sphere, and the midpoints to the corresponding
midpoints of the faces to the adjacent cells as illustrated in Figure 10. The
connectivity to adjacent Four-Split Pyramids is guaranteed by the funda-
mental property of the Four-Split Quadrilateral Mesh that ensures that
corner vertices meet with comer vertices, and mid-edge vertices meet with
mid-edge vertices.

Fig. 10. A cross-sectional view of the Four-Split Pyramid. The mid nodes and the
tips of each of the Four-Split pyramids are merged to ensure conformal meshes.

S. Mitchell’s Geode Template

The Four-Split Pyramid contains several hexahedra which share two faces
or edges with neighboring elements (also known as ‘doublets’ [8]). therefore,
a very attractive alternative to the Four-Split Pyramid is S. Mitchell’s
Geode-Template [7]. The Geode-template contains more elements than the
Four-Split Pyramid, but reduces the number of doublets in the resulting
mesh. In this section, we will show how the Geode-template can be utilized
in place of the Four-Split Pyramid.

Fig. 11. The Geode-template by S. Mitchell

The Geode-Template contains 26 hexahedral elements, and contains a
Four-Split Quadrilateral Mesh at the base. The template was designed to
match a four-split quadrilateral cell to a diced tetrahedral constrained mesh.
The interior of the mesh is filled by two four element hexahedral dicing of a
tetrahedral element where the apex is connected at the center of the sphere.
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If we cap the geode template with a pyramid split into two diced tetra-
hedra, the resulting hexahedral decomposition can be used in place of the
Four-Split Pyramid described earlier.

5 A Constructive Hexahedral Existence Theorem

5.1 Solutions using the Four-Split Pyramid

Theorem 5. A quadrilateral mesh on the sphere with an even number of
quadrilaterals is the boundary of a hexahedral mesh of the interior of the
sphere. The total number of hexahedra is 76*n where n is the number of quadri-
laterals on the boundary.

Proof: By Theorem 1, every even-parity quadrilateral mesh on a 2-
dimensional compact manifold admits a Paired Partition. By Theorem 2, a
transition to a quadrilateral mesh can be constructed with no self-intersecting
loops. By Theorem 3, the quadrilateral mesh transitions to a four-split, and,
by Theorem 4, the quadrilateral mesh is the boundary of a hexahedral mesh.

The total number of hexahedral elements is given by
number of hexahedra = number of elements to resolve self-intersecting

loops + number of elements to transition to a four-split + 16 * number of
four-split pyramids

1. The number of hexahedra added by applying the transition that removes
self-intersecting loops illustrated in Figure 3 is n.

2. For each of the six quadrilaterals of each cell, the total number of hexa-
hedra needed to transition to a four-split is 9; hence the total number of
hexahedra needed to transition the mesh to a four-split is 9 * 6 * n/2.

3. The total number of hexahedral elements per cell needed to solve the
four-split is 16 * 6 *n/2.

Hence, the total number of hexahedra to fill the interior is n + 48*n +
27*n which equals 76*n total elements.5

5.2

Utilizing the Paired Partition transition and the Four-Split transition, but
replacing the Four-Split Pyramid with the modified geode-template results
in a solution with fewer ‘doublet’ entities in the mesh. This solution requires:

1. n + 9*6*n/2 hexahedra needed to transition to the Four-Split Quadri-
lateral Mesh

5Using Mitchell’s alternative Four-Split transition in the section titled An Al-
ternative Four-Split Transition, the number of hexahedra required for the con-
strained solution is 54*n.

Solutions Using the Geode-Template
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Fig. 12. The various transition layers used in the constructive proof.

2. plus, 26*6*n/2 elements from the Geode-Template
3. plus, 4*2*6*n/2 elements for the diced tetrahedra with apex at the center

of the mesh.

This new solution of the constrained hexahedral mesh contains a total of
130*n elements,6 but will contain significantly less doublets than a solution
produced by the Four-Split Pyramid.

5.3 Solutions Using a ‘Pillowed’ Four-Split Pyramid

Another slightly different approach replaces the transitions from the paired
partition and the Four-Split Pyramid by transition cells but do not contain
the doublet elements identified earlier. The doublet elements can be removed
in the transition layers by applying the doublet-pillowing technique described
by S. Mitchell and T. Tautges [8]. The base of the new Four-Split Pyramid
will still be a four-split quadrilateral cell, and the resulting transition cells still
have no self-intersecting loops, and will not contain any doublets. However,
by removing the doublets the resulting solution to the constrained hexahedral
problem requires 5396*n hexahedral elements.

6 Applications

In this section we demonstrate constrained hexahedral solutions to the quadri-
lateral meshed boundaries described as Schneider’s Pyramid, the Quadrilat-
eral Octahedron, and Eppstein’s Cube. In all cases, the solution is a direct
result from Theorem 5. The solutions are presented by conveniently number-
ing the quadrilaterals such that the quadrilateral admits a Paired Partition
of the form PQ = {{q1, q2},...,{q2k-1, q2k},...,{qn-1, qn}} where n is
the number of quadrilaterals for each case; the total number of hexahedra used
to solve the constrained hexahedral mesh will be 76*n or 130*n depending
on which solution is used. The source code used in generating these solutions
is available at [1].

6Using Mitchell’s alternative Four-Split transition in the section titled An Al-
ternative Four-Split Transition, the number of hexahedra required for the con-
strained solution using the Geode-template is 112*n.
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6.1 Schneider’s Pyramid

Figure 13 contains an open view of Schneider’s pyramid with each of the
boundary quadrilaterals being numbered. There are 16 quadrilaterals on the
boundary of the pyramid resulting in a total of 1216 hexahedral elements being
generated using the Four-Split Pyramid, or 2080 hexahedral elements if the
Geode-template is utilized.

Fig. 13. Schneider’s pyramid

6.2 Quadrilateral Octahedron

Figure 14 contains an open view of the Quadrilateral Octahedron with each
of the boundary quadrilaterals being numbered. There are 8 quadrilaterals on
the boundary of the pyramid resulting in a total of 608 hexahedral elements
being generated using the Four-Split Pyramid, or 1040 hexahedral elements
if the Geode-template is utilized.

Fig. 14. Quadrilateral Octahedron

6.3

In Eppstein’s original construction, there are two sets of quadrilateral cubes
used to transition to the tetrahedral based mesh. One had sixteen elements,
and the other eighteen. These cubes contain quadrilateral doublets (i.e faces
that share two edges with an adjacent neighbor). There is another version
of Eppstein’s cubes with 22 and 20 quadrilateral non-degenerate elements
respectively. We focus on the 16-quadrilateral cube shown in Figure 15.

Eppstein’s Cube
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Fig. 15. Eppstein’s Cube

1216 hexahedral elements are needed to resolve the constrained mesh utilizing
the Four-Split Pyramid solution, or 2,080 hexahedra if the Geode-template
solution is utilized.

7 Conclusions

The construction presented in this paper demonstrates a solution of S.
Mitchell’s existence theorem. However, this construction is different from the
constructions utilized in S. Mitchell’s proof. Indeed, his solution cannot lead
to the construction given in this paper. In the approach outlined in the origi-
nal proof of S. Mitchell’s existence theorem, a mesh that contains a loop with
an odd number of intersections will have to be connected through an interior
surface to another loop with an odd number of intersections on the bound-
ary. The Paired Partition transition has the very interesting property of
locally connecting all of the loops defined by the initial quadrilateral bound-
ary mesh through interior surfaces, and simultaneously creating a transition
to a quadrilateral mesh which contains no self-intersecting loops.

We have given results for Schneider’s pyramid and Eppstein’s cube and
Quadrilateral Octahedron, with element counts needed to generate a hexa-
hedral topology in these solids using the construction outlined in this paper.
The solution presented for the sphere can be extended to the case of the torus
and compact 2-dimensional manifolds in general by using the Geode Tem-
plate coupled with a constrained tetrahedral mesh. From the construction, it
follows that it is possible to generate a hexahedral decomposition with linear
edges for a quadrilateral mesh of a convex region. The question of finding a
general construction with a minimal number of elements with linear edges is
open.

Acknowledgements

The authors would like to express appreciation to Scott Mitchell for his review
of the paper, and the many additional insights provided. We would also like to

The value of n for Eppstein’s cube shown in Figures 15 is 16. A total of



452 C.D. Carbonera et al.

thank Cynthia Phillips, M. Gopi, and David Eppstein for their guidance and
expertise in graph theory which enabled us to formulate a proof for perfect
matching of closed quadrilateral meshes.

References

1. C. D. Carbonera, ‘A Constructive Approach to Hexahedral Mesh
Generation: Algorithm Implementation’, source code available from
http://carbonera.uprr.pr/.

2. M. Bern, D. Eppstein, P. K. Agarwal, N. Amenta, P. Chew, T. Dey, D. P.
Dobkin, H. Edelsbrunner, C. Grimm, L. J. Guibas, J. Harer, J. Hass, A. Hicks, C.
K. Johnson, G. Lerman, D. Letscher, P. Plassmann, E.Sedgwick, J. Snoeyink, J.
Weeks, C. Yap, , and D. Zorin. Emerging challenges in computational topology.
In NSF-funded Workshop on Computational Topology, pages –, 1999.

3. C. D. Carbonera and J. F. Shepherd. On the existence of a perfect matching
for 4-regular graphs derived from quadrilateral meshes. SCI Institute Technical
Report, UUSCI-2006-021, 2006.

4. Carbonera Pyramid, available from http://www-users.informatik.rwthaachen.
de/∼roberts/SchPyr/index.html.

5. D. Eppstein. Linear complexity hexahedral mesh generation. In 12th ACM Sym-
posium on Computational Geometry, pages 58–67. ACM, 1996.

6. S. A. Mitchell. A characterization of the quadrilateral meshes of a surface which
admit a compatible hexahedral mesh of the enclosed volumes. In 13th Annual
Symposium on Theoretical Aspects of Computer Science, volume Lecture Notes
in Computer Science: 1046, pages 465–476, 1996.

7. S. A. Mitchell. The all-hex geode-template for conforming a diced tetrahedral
mesh to any diced hexahedral mesh. In Proceedings, 7th International Meshing
Roundtable, pages 295–305. Sandia National Laboratories, October 1998.

8. S. A. Mitchell and T. J. Tautges. Pillowing doublets: Refining a mesh to ensure
that faces share at most one edge. In Proceedings, 4th International Meshing
Roundtable, pages 231–240. Sandia National Laboratories, October 1995.

9. P. J. Murdoch and S. E. Benzley. The spatial twist continuum. In Proceedings,
4th International Meshing Roundtable, pages 243–251. Sandia National Labora-
tories, October 1995.

10. Scott Mitchell to Jason Shepherd, email entitled ‘constructive approach to con-
strained hex mesh generation’, dated March 31, 2006.

11. Schneiders Pyramid Open Problem, http://www-users.informatik.rwthaachen.
de/∼roberts/open.html.

12. T. Suzuki, S. Takahashi, and J. F. Shepherd. Practical interior surface gen-
eration method for all-hexahedral meshing. In Proceedings, 14th International
Meshing Roundtable, pages 377–397. Sandia National Laboratories, September
2005.



Automatic Hexahedral Mesh Generation 

with Feature Line Extraction 

Masayuki Hariya1, Ichiro Nishigaki2, Ichiro Kataoka3, Yoshimitsu Hiro4

1, 2, 3 Mechanical Engineering Research Laboratory, Hitachi, Ltd. 

832-2, Horiguchi, Hitachinaka, Ibaraki, Japan 
1masayuki.hariya.sa@hitachi.com
2ichiro.nishigaki.mp@hitachi.com
3ichiro.kataoka.pq@hitachi.com
4 Industrial Information System Division, Hitachi, Ltd. 

Omori Bellport B Bldg., Minami Oi 6-chome, Shinagawa-ku, Tokyo, 

Japan

yoshimitsu.hiro.yc@hitachi.com

Abstarct. An improved method using feature line extraction is described for automatically 

generating hexahedral meshes for complex geometric models that automate the normally 

interactive operations (such as model editing). Testing showed that the time taken for these 

interactive operations was significantly reduced, making it possible to quickly generate 

hexahedral meshes with sufficient quality for complex models. Application of this method 

to mechanical part models showed that it shortened the time to generate a mesh in about 

10% the time required with the previous method. 

1. Introduction 

The use of digital engineering in manufacturing to shorten product-

development times is becoming more widespread. Both three-dimensional 

computer-aided-design (3D-CAD) modeling and computer-aided engineer-

ing (CAE) are widely used by product designers. A promising approach to 

reducing the CAE preprocessing time is automatic mesh generation [1].

Hexahedral meshes are widely used in numerical analyses because they 

generally provide more accurate results than tetrahedral meshes. They are 
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usually generated by hand by dividing a complex geometric model into 

simple geometrical blocks. As this requires many interactive procedures, 

various methods for automatically generating them have been proposed 

[2–6].

One is based on the Octree method [2]. It generates small cubes inside 

the geometric model and generates a mesh by mapping the surfaces of the 

cubes on the boundary onto the surfaces of the geometric model. Another 

method automates the division of the blocks [3–6].

Our previous method for automating the process is based on shape rec-

ognition and boundary fitting [7–8]. A unique shape-recognition technique 

is used to change a geometric model into an approximate one consisting of 

straight lines. Boundary fitting maps small cubes that are generated by di-

viding the approximate model, onto the geometric and generate hexahedral 

meshes.  This reduces the number of interactive procedures, and thus re-

duces the time to generate a hexahedral mesh by about 60%. However, this 

sometimes can not generate meshes automatically in case of some compli-

cated models. We have now improved our method by also automating the 

model-editing task by using feature line extraction. 

2. Previous Mesh Generation Method 

2.1 Shape Recognition and Boundary Fitting 

The procedure for generating hexahedral meshes using shape recognition 

and boundary fitting is illustrated in Figure 1.

Step 1-1: An approximate model (Figure 1(b)), called a recognition 

model, is constructed from a geometric model (Figure 1(a)) by using only 

the lines parallel to the Cartesian axes. The recognition model must be 

topologically identical and geometrically similar to the geometric model. 

Step 1-2: The edge lengths of the recognition model are adjusted to the 

nearest integral multiple of the standard element sizes, and the model is di-

vided into cubes, producing what is called a mapping model (Figure 1(c)). 

Step 1-3: The mapping model is mapped onto the original geometric 

model by boundary fitting, generating the final hexahedral mesh (Figure 

1(d)). The input data is the standard element size. 

The shape recognition is based on fuzzy-logic theory. All edges of the 

geometric model are arranged parallel to the Cartesian coordinates ( , , )

of the mapping space. The axis where an edge is arranged is determined 

based on information obtained from the geometric model, such as the 
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direction vectors of the edges and the vertex angle of two edges. The direc-

tions of the coordinate axes are called the assigned directions. The shape of 

the recognition model is determined from the assigned directions of the 

edges. For example, in Figure 1(b), the assigned direction of edge e1 is the 

 axis. 

Figure 1 Procedure for generating hexahedral meshes using shape recognition and bound-

ary fitting 

2.2 Problems 

With this mesh generation procedure, two typical errors may result in a 

failure to generate a recognition model. 

(1) If the geometric model contains surfaces where the boundary has 

three or fewer edges, a recognition model that is topologically equal to the 

geometric model cannot be generated. 

(2) If the assigned edge directions are not correct, a recognition model 

cannot be generated even if the geometric model is topologically correct. 

Interactive operations (adding or deleting a line to or from the geometric 

model, correcting an assigned direction, etc.) are necessary in such cases 

before the recognition model can be generated. 



456

3. Improved Mesh Generation Method 

Our improved method avoids the two problems described above by using 

feature line extraction to generate a recognition model. The procedure for 

generating a recognition model is illustrated in Figure 2. 

Step 2-1: Triangular meshes (Figure 2(b)) are generated on the surface 

of the geometric model [Figure 2(a)]. 

Step 2-2: A feature-shape model [Figure 2(c)] is generated by extracting 

the feature lines from the boundaries of the triangular meshes [Figure 2(b)].  

Step 2-3: The recognition model [Figure 2(d)] is generated from the fea-

ture-shape model. 

Figure 2 Procedure for generating recognition model using feature line extraction 

This improved method has two key features. First, the feature lines used 

for generating the recognition model can be automatically extracted from 

the triangular meshes on the geometric model. This means that the genera-

tion of the recognition model does not depend on the topology of the geo-

metric model. Therefore, a hexahedral mesh can be generated without hav-

ing to manually divide a complex geometric model into simple geometrical 

blocks. Second, the feature lines are selected by taking the assigned direc-

tions into consideration using a method that will be described below. This 

means that a hexahedral mesh can be generated without correcting the as-

signed directions. 

Furthermore, STL data of the measurement data photo with computed 

tomography (CT) equipment and STL data created by a computer graphics 

(CG) program can be used for the surface-mesh model (Figure 2(b)). This 

enables the use of finite-element analysis, which uses a high-quality hexa-

hedral mesh about a wide range of steps of the engineering. 
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As shown in Table 1, the current method (based on feature line extrac-

tion) is better than the previous one (based on fuzzy logic) in terms of the 

automation of mesh generation and the application range, while the previ-

ous method is better in terms of the generation of meshes that represent the 

geometric model. This is because, in the current method, the shape of the 

generate meshes is affected by the surface meshes used. 

3.1 Generating Recognition Model 

The recognition model is generated as shown in Fig. 3. 

Figure 3 Steps in generating recognition model 

Table 1. Comparison between mesh generation methods 
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The recognition-model generation program reads the surface-mesh model 

and registers it in a data table. The mesh corresponding to the surface-

mesh model is called the mesh face, the boundaries of the mesh face are 

called the mesh lines, and the nodal points of the mesh face are called 

mesh points. 

3.1.2 Set Initial Degree of Adaptation: Step 3-2

Unit normal vector v = (vcx, vcy, vcz) is set as the initial degree of adapta-

tion P = (P , P , P ) for each mesh face. This degree is what a mesh face is 

assigned in the direction of a particular coordinate axis ( , , ) in the map-

ping space. The normal vector can be calculated from the coordinates of 

the mesh points composing the mesh face.

Surface mesh groups are defined by grouping the mesh faces based on 

their degrees of adaptation.

First, the assigned directions of the mesh faces are determined: P , P ,

and P  are compared, and the assigned directions are taken as the maxi-

mum absolute values of the axial directions. The assigned directions are 

modified based on the signs of the degrees of adaptation. For example, if 

P = 1.0, P = 0.0, and P = 0.0, the initial assigned direction is the  axis. 

The actual direction is -  because the sign of P  is minus.

Next, the mesh faces with the same assigned direction and sharing a 

mesh line are defined as a surface- mesh group. The assigned direction of 

the group is the assigned direction of the mesh faces composing it. 

Example surface-mesh groups are shown in Figure 4. Mesh faces with 

the same shading represent one surface-mesh group. The assigned direc-

tion of surface-mesh group 1 (Gr1) is + , based on the assigned direction 

of mesh face MF1. 

Figure 4 Surface-mesh groups 

3.1.1 Read Surface-Mesh Model: Step 3-1 

3.1.3 Define of Surface-Mesh Groups: Step 3-3 
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The defined surface-mesh groups are modified based on group correction 

rules, which are necessary conditions for relating two or more surface-

mesh groups. Here we consider two example conditions. 

Condition 1: A surface-mesh group must have four or more neighboring 

surface-mesh groups. 

Condition 2: The assigned direction of a surface-mesh group should not 

be in the same axial direction as the assigned direction of a neighboring 

surface-mesh group. 

Example surface-mesh groups not satisfying these conditions are shown 

in Figure 5. In Figure 5(a), Gr1 touches only three surface-mesh groups. In 

Figure 5(b), Gr1 and Gr2 are both assigned the -axis direction.

An example of modifying a surface-mesh group to satisfy Condition 1 is 

shown in Figure 6. First, the length of the line shared by each pair of sur-

face-mesh groups is calculated. The shared line length for Gr1 and Gr2 is 

L2, the shared line length for GR1 and Gr3 is L3, and the shared line 

length for Gr1 and Gr4 is L4. A surface-mesh group that has three or less 

neighboring surface-mesh groups is combined with the one with which is 

has the longest shared line, and a new surface mesh group is generated. 

Because L3 is the longest shared line for Gr1, Gr1 is combined with Gr3, 

creating Gr5. 

An example of modifying a surface-mesh group to satisfy Condition 2 is 

shown in Figure 7. One of the two groups with the same assigned direction 

is divided in two and setting a new assigned direction. In the figure, Gr5 is 

created from Gr1 and is assigned the direction of the  axis because the as-

signed directions of the neighboring surface-mesh groups are  and . The 

actual assigned direction is thus –  based on the z component of the aver-

age normal vector of the mesh faces composing Gr5.

Many other group correction rules are used besides the two described 

above.

Figure 5 Irregular-mesh groups 

3.1.4 Modify Surface-Mesh Groups: Step 3-4 
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Figure 6 Group correction rule to satisfy 

Condition 1 

Figure 7 Group correction rule to satisfy 

Condition 2 

3.1.5 Generate Feature-Shape Model: Step 3-5 

Feature surfaces are defined as the defined and then modified surface-

mesh groups, and their assigned directions are the assigned directions of 

the groups. A feature line is defined as a set of mesh -lines shared by two 

different surface-mesh groups. The set of mesh lines, ML1–4, for the sur-

face-mesh model in Figure 8 comprising the boundary between GrA and 

GrB is defined as one feature line.

Figure 8 Feature line 
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The assigned direction of a feature line is determined from the combina-

tion of the assigned directions of the two surface-mesh groups to which the 

feature line belongs. The relation between the assigned directions of the 

surface-mesh groups and the assigned direction of the feature line is shown 

in Table 2.

Table 2 Assigned direction of feature line 

The sign of the assigned direction is the sign of the direction vector of 

the feature line. For example, if the assigned direction is  and the sign of 

the x value of the direction vector is minus, the assigned direction is modi-

fied to - .

3.1.6 Define Geometric Data and Topology Data: Step 3-6

The data for the feature-shape model are defined using boundary represen-

tation, which is expressed using topology data showing the connection be-

tween geometric elements and using geometric data showing the shape of 

each geometric element.

The correspondence between the geometric model and the feature-shape 

model is shown in Table 3. The geometric data for the feature points are 

the 3-D coordinates of the points. Moreover, the feature surface is com-

posed of mesh -faces, and the feature line is composed of mesh -lines. The 

topology data has a hierarchical structure like the geometric model. 

Table 3 Correspondence between geometric model and feature-shape model 
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3.1.7 Check Feature-Shape Model and Dssigned Directions

To generate the recognition model, the feature-shape model and assigned 

directions must satisfy the following recognition-model generation condi-

tions.

<Condition 1> At least one feature surface is assigned the plus or minus 

direction of one of the ( , , ) axes. 

<Condition 2> Neighboring feature surfaces are not assigned to the 

opposite direction of same axial direction. 

<Condition 3> There must be at least one feature line comprising the 

feature surface boundary, which is assigned the plus or minus direction of 

two coordinates axes. 

<Condition 4> Neighboring feature lines are not assigned to the 

opposite direction of same axial direction. 

Example satisfied and unsatisfied conditions are shown in Figure 9. 

If the conditions are satisfied, Step 3-7a is carried out. If the conditions 

are not satisfied, Step 3-7b is carried out. 

Figure 9 Satisfied and unsatisfied recognition-model generation conditions 

3.1.8 Output Recognition Model Data: Step 3-7a 

The feature-shape model and assigned directions are registered in the data-

base.

3.1.9 Modify Degree of Adaptation: Step 3-7b 

The degree of adaptation of the mesh face (MF) is modified based on the 

degrees of adaptation of the neighboring mesh faces. The number of 

neighboring mesh faces is denoted by n. The degree of adaptation of a MF 

before modification is denoted by Pb = (P b, P b, P  b), and the degree of 
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adaptation after modification is denoted by P = (P , P , P ). The degree of 

adaptation before correction of neighboring mesh -faces MF(i): 

(I = 1,2,…,n ) is denoted by Pbi = (P bi , P bi , P bi), and the degree of adap-

tation of a MF after modification is calculated as follows. 

                                                                                                               (1) 

                                                                                                               (2) 

In the equations,  is a parameter reflecting the speed of modification. 

Equation (1) is used to smooth the degree of adaptation, and equation (2) is 

used to normalize the degree of adaptation calculated using equation (1). 

Small surface-mesh groups are removed at the time of a surface mesh-

group definition by modification, as described above. As a result, the gen-

eration of the recognition model is simplified. 

4. Examples of Generated Meshes 

We extracted feature lines to generate a hexahedral mesh of a mechanical-

part model (Figure 10(a)) for use in structural analysis. Figure 10(b) shows 

the surface-mesh model used to generate the mesh. The feature-shape 

model (Figure 10(c)) was generated by extracting the feature lines. Not all 
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the feature lines corresponded to the ones in the geometric model. Figure 

10(d) shows the mapping model, and Figure 10(e) shows the generated 

hexahedral mesh.

Table 4 summarizes the mesh-generation times for the previous and cur-

rent methods. The current method requires no time for interactive opera-

tions, and its calculation time is about half that of the previous one because 

there is less trial and error. As a result, its mesh generation time is about 

10% that of the previous one.

Two other examples are shown in Figures 11 and 12. The crank-shaft 

(Figure 11(b)) has 8200 elements, and the connecting rod (Figure 12(b)) 

has 1788. The calculation time for the former was 30 sec, and that for the 

latter was 5 sec. In both cases, the hexahedral mesh was automatically 

generated without interactive operations, such as line creation necessary 

for recognition model. 

Our improved method does not require the operator to perform any 

skillful interactive operations such as block division. That is, someone 

without any specialized knowledge can generate hexahedral meshes. 

Figure 10 Procedure for generating hexahedral mesh for mechanical part 
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Table 4 Comparison of mesh generation times (min) 

Figure 11 Surface-mesh model and hexahedral mesh for crank shaft 
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Figure 12. Surface-mesh model and hexahedral mesh for connecting rod 

5. Conclusion 

Our improved method for automatically generating hexahedral meshes can 

be used to reduce the number of interactive operations needed to generate 

meshes. Application to complex geometric models showed that it can 

(1) automatically extract feature lines from the boundary between sur-

face meshes, enabling a recognition model to automatically be generated 

and a hexahedral mesh to be quickly generated, and 

(2) generate a hexahedral mesh of a mechanical-part model in about 

10% the time required with the previous method. 
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Summary: Unconstrained Paving and Plastering [1] were introduced as new 
methods of generating all-quadrilateral and all-hexahedral finite element meshes.  
Their introduction was after preliminary conceptual studies.  This paper presents 
an update on Unconstrained Paving and Plastering after significant implementa-
tion and conceptual development. 

1 Introduction 

Modeling and simulation has become an essential step in the engineering 
design process.  Modeling and simulation can be used during either the 
original design phases, or on assessment of existing designs.  In either 
case, the end result is increased confidence in the design, faster time to 
market, and reduced engineering cost. 

An essential step in modeling and simulation is the creation of a finite 
element mesh which accurately models the geometric features of the 
model being analyzed.  Meshes generated for three-dimensional models 
are typically composed of either all-tetrahedral or all-hexahedral elements.  
Some methods exist for the generation and analysis of hybrid meshes 
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which contain a mix of element types.  However, for traditional finite ele-
ment modeling of continuum mechanics, a single element type is most of-
ten used. 

Quite a debate has emerged over the advantages and disadvantages of 
hexahedral verses tetrahedral elements.  Tetrahedral meshes are typically 
much easier to generate.  On complicated models with complex geometric 
features, the time savings on generating a tetrahedral mesh rather than a 
hexahedral mesh can be orders of magnitude with the current meshing 
technology.  However, the benefit of hexahedral elements is that they often 
perform better in the analysis stage [2,3,4]. 

Regardless, the bottom line is that customers of finite element meshing 
software continue to demand improved ability to generate hexahedral ele-
ments.  This demand is what drives research in hexahedral mesh genera-
tion.

Unconstrained Plastering [1] is a new method for the automatic genera-
tion of hexahedral meshes.  Unconstrained Plastering continues to show 
promise, although several technical and implementation challenges remain.  
This paper presents the current status and some of the challenges which are 
currently being addressed. 

2 Previous Research 

The work presented in this paper is built upon the work previously pre-
sented in [1], which includes an extensive description of previous research 
done on hexahedral mesh generation at institutions across the world.  If the 
reader is unfamiliar with the existing research in hexahedral mesh genera-
tion or the current state-of-the-art in hexahedral mesh generation, they are 
encouraged to read the previous research section in [1].  Rather than re-
peating that information here, the previous research described in this paper 
will be limited to summarizing Unconstrained Paving and Plastering, and 
other algorithms which directly contributed to their development. 

Paving [5] has been shown to be a robust and efficient solution to the 
quadrilateral surface meshing problem. However, its three-dimensional ex-
tension, Plastering [6,7,8], has not done the same for hexahedral mesh 
generation.  Plastering calls for a pre-meshed boundary, which is created 
without considering global mesh topology.  Fronts are then created, from 
which hexahedral elements are advanced into the solid in an element-by-
element fashion.  As fronts collide, complex configurations of closely-
spaced randomly-oriented quadrilaterals yield complex unmeshed voids 
which Plastering is rarely able to resolve.  As a result, traditional Plaster-
ing is able to completely mesh only simple primitive models with carefully 
pre-meshed boundaries.  Plastering’s inability to mesh more complex



Unconstrained Paving and Plastering: Progress Update      471 

solids stems from its element-by-element geometric approach and the 
added constraints of a pre-meshed boundary.  Like Paving, Plastering con-
siders only local element connectivites, with a high priority placed on in-
cremental nodal placement and single element topology.  Although this 
approach worked well in Paving for two dimensional surface meshing, the 
extra degree of freedom in three dimensions proves that more global con-
sideration of hexahedral topology is required. 

Learning from the experience of Plastering, Whisker Weaving [9,10] 
was developed with an emphasis on global hexahedral topology.  The con-
cept of the dual, or Spatial Twist Continuum [11] was key to the develop-
ment of Whisker Weaving.  Like Plastering, Whisker Weaving also starts 
from a pre-defined boundary quad mesh.  Each quad on the boundary 
represents a whisker, or incomplete chord in the dual.  The topology of the 
boundary quad mesh is traversed until groups of three or more boundary 
quadrilaterals are found whose corresponding whiskers could be advanced, 
or crossed, forming the topology of a single hexahedral element.  The spa-
tial locations of interior nodes are not calculated until the topology of the 
entire mesh is determined.  Thus, formation of hexahedral element topol-
ogy is guided by near-exclusive consideration of mesh topology logic.  
Geometric characteristics of the solid are considered secondary to the 
overall mesh topology.  This is in stark contrast to Plastering which does 
nearly the opposite.  Whisker Weaving is able to successfully generate 
hexahedral topology for a wide spectrum of solid geometries.  However, 
because it leaves geometric positioning of interior nodes until after the en-
tire mesh topology has been determined, Whisker Weaving is unable to 
make any guarantees on reasonable element quality.  In practice, the ele-
ment qualities produced by Whisker Weaving are rarely adequate, and are 
often inverted. 

Research on Plastering and Whisker Weaving has shown that any algo-
rithm which attempts to automatically generate hexahedral meshes must 
take both model topology as well as geometric model characteristics into 
consideration.  Failure to consider geometric features of a solid will almost 
always result in poor element quality.  Failure to consider global mesh and 
model topology will almost always result in a failure to generate a valid 
hexahedral mesh topology. 

It is with this background that research on Unconstrained Paving and 
Plastering began.  The authors introduced the concepts of Unconstrained 
Paving and Plastering in [1], and briefly summarize them here for clarity.  
Based on recent research and development efforts, this paper details new 
discoveries that help move this technology closer to a general all-purpose 
hexahedral mesh generator. 

Unconstrained Paving and Plastering removes the constraint of a pre-
meshed boundary. This allows the meshing process to consider more 
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global model topologies without being constrained by local mesh anoma-
lies.  The domain is then systematically partitioned through the advance-
ment of fronts.  In traditional advancing front methods [5,6,12], individual 
solid elements are generated by following geometric reasoning to build in-
dividual nodes, edges and faces, starting from a predefined boundary mesh 
and advancing inwards.  In contrast, Unconstrained Paving and Plastering 
advance geometric layers or partitions independent of element distribution.  
Unconstrained Paving and Plastering delay the final definition of elements 
until it is absolutely necessary, thus removing any artificial constraints that 
a pre-meshed boundary imposed. 

Unconstrained Paving and Plastering partition the domain into regions 
classified based on the number of remaining degrees of freedom.  The Spa-
tial Twist Continuum [11] defines quadrilateral elements as the intersec-
tion of two chords and hexahedral elements as the intersection of three 
chords.  As such, a domain which is to be meshed with quadrilaterals must 
constrain two degrees of freedom for the entire domain corresponding to 
two chords required for each quadrilateral.  Similarly, a domain which is to 
be meshed with hexahedra must constrain three degrees of freedom for the 
entire domain corresponding to the three chords required for each hexa-
hedra.

Figure 1 illustrates the meshing of a simple surface with Unconstrained 
Paving.  Unconstrained Paving systematically partitions the surface into 
sub-regions  which are classified as either: 

unmeshed voids (white regions in Figure 1, no degrees of freedom 
are constrained) 
connecting tubes (light gray regions in Figure 1, one degree of free-
dom is constrained), or 
final elements (dark gray regions in Figure 1, two degrees of free-
dom are constrained). 

For Unconstrained Plastering, the regions are classified as either: 
unmeshed void (no degrees of freedom are constrained), 
connecting tubes (one degree of freedom is constrained), 
connecting webs (two degrees of freedom are constrained), or 
final elements (three degrees of freedom are constrained).

A front advancement as shown in Figure 1a introduces an unconstrained 
row of elements with an undetermined number of quadrilaterals.  The ad-
vancement of a row essential introduces a single new chord to the dual of 
the eventual mesh.  However, the number of quads in this row or chord is 
left unconstrained at this point.  Since a quadrilateral is the intersection of 
two chords, the insertion of a single new chord through a single front ad-
vancement does not uniquely determine any quadrilaterals unless the chord 
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inserted happens to cross previously inserted chords.  In Figure 1b, an ad-
ditional front is advanced inserting a second chord.  At the bottom two 
corners, this newly inserted row crosses the previously advanced row, thus 
defining a quadrilateral element at each of the two row crossings. 

(a) One row advanced    (b) Intermediate step     (c) Intermediate step (d) Final mesh 

Figure 1. Unconstrained Paving 

Figure 1 a, b, and c illustrate that at all times, the unmeshed void (white 
region) is connected to the boundary either by direct adjacency or through 
connecting tubes.  For example, in Figure 1a, the unmeshed void is con-
nected to one connecting tube on the bottom, and the surface boundary on 
the top.  In Figure 1b, the unmeshed void is connected to two connecting 
tubes, one on the top and one on the bottom.  Likewise in Figure 1c, the 
unmeshed void is connected to four connecting tubes (i.e top, bottom, left 
and right).  Thus, any of the curves on the unmeshed void can be split into 
as many mesh edges as needed for resolution of the void.  Any splitting of 
the curves on the unmeshed void can be propagated back to the boundary 
through the connecting tubes. 

Similarly in three dimensions with Unconstrained Plastering, all sur-
faces of the unmeshed void are connected to the boundary either by direct 
adjacency or through connecting tubes.  As a result, any of the surfaces of 
the unmeshed void are free to be discretized as required for resolution.  
Any discretization of the surfaces of the unmeshed void can be propagated 
back to the boundary through the connecting tubes.  This is in contrast to 
traditional Paving and Plastering where the unmeshed void is completely 
discretized at all times by either element edges or quadrilateral faces.  This 
discretization proved to be the Achilles heal for traditional Plastering since 
the unmeshed void is typically discretized with closely spaced randomly 
oriented quadrilaterals.  In general, Unconstrained Paving and Plastering 
continue advancement of rows and sheets until the unmeshed void can be 
meshed with Midpoint Subdivision [13]. 

Unconstrained Paving and Plastering rely heavily upon model topology 
by removing the constraint of the pre-meshed boundary, advancing uncon-
strained rows and sheets rather than single elements, and by following 
strict guidelines which consider global ramifications when local dual op-
erations are performed.  Unconstrained Plastering also considers geometric 
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characteristics of the model by performing proximity and angle checks be-
tween nearby fronts, size checks to make sure that front advancements are 
consistent with desired element sizes, and layer checks to ensure that ad-
vancing fronts are boundary-sensitive.  In addition, like traditional Plaster-
ing, Unconstrained Plastering advances rows in the primal space which 
provides access to direct geometric properties of the model and previously 
advanced rows.  In contrast, Whisker Weaving operates in the dual space 
which is part of the reason geometric features are not considered.   It is an-
ticipated that through careful combination of both topological and geomet-
ric considerations, Unconstrained Plastering will be successful on arbitrary 
geometry assemblies. 

Although Unconstrained Plastering has matured since its initial intro-
duction, there are still several technical hurdles which must be overcome 
before success can be declared.  Section 3.0 introduces incomplete fronts 
which Unconstrained Paving and Plastering use to handle model concavi-
ties.  Model concavities appear in everything except trivial primitive mod-
els.  Section 4.0 describes the processes of merging and seaming which are 
used to eliminate proximity problems and small angles between adjacent 
fronts which occur in nearly every model as fronts collide.  Section 5.0 
shows some example models which have been meshed with the current 
implementation.  Finally, section 6.0 discusses plans for future research 
and development, followed by conclusions in section 7.0. 

3 Model Concavities – Incomplete Fronts 

Concavities are a common occurrence in even simple CAD models.  A 
strict geometric definition of a concavity is anywhere on the model where 
the interior angle at a point is greater than 180 degrees.  However, in a 
hexahedral meshing sense, a concavity is anywhere that has a large enough 
interior angle that three hexahedra would more accurately model the ge-
ometry than only two hexahedra.  Submapping technology defines this 
condition as a “Corner” [14]. 

Unconstrained Plastering handles concavities through the definition and 
advancement of “incomplete fronts.” Figure 2a shows a simple solid with 
one of the surfaces highlighted. Figure 2b shows what the ideal mesh 
would look like on this model.  The left-most curve on the highlighted sur-
face is a concavity in the model since each mesh edge on it has three adja-
cent hexahedra. Figure 2c shows the sheet of hexes which is directly adja-
cent to the highlighted surface.  Because of the concavity on the left-most 
curve, this sheet extends out into the interior of the solid.
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(a) simple model 
with one shaded 
surface.

(b) ideal mesh. (c) hex layer adja-
cent to shaded sur-
face.

(d) shaded surface 
is a complete front.

Figure 2.  Example of an incomplete front 

When Unconstrained Plastering begins, it initializes fronts from each of 
the boundary CAD surfaces.  The highlighted surface in Figure 2a would 
be initialized as a front to advance.  However, because of the concavity, 
this front is marked as an incomplete front.  In contrast, the highlighted 
surface in Figure 2d would be initialized as a complete front since all of 
the curves on it are convex.  The advancement of this or any other com-
plete front entirely defines a single hexahedral sheet.  This is accomplished 
because the topology of the model completely defines the path the sheet 
should take.  However, the advancement of an incomplete front can only 
define the portion of the sheet directly in front of the surface(s) comprising 
the front.  Any further advancement of the front would be arbitrary.  Figure 

from the incomplete front in this example.  All three are valid, and the 

used. However, choosing between them is not possible until other adjacent 
fronts are advanced.  The recommended procedure for incomplete fronts is 

shows this simple example after several adjacent fronts are advanced.  No-

that by continuing to advance adjacent complete fronts, the incomplete
front can be completed when adjacent fronts are advanced far enough to 
guide the incomplete hex sheet to completion. 

3a, b, & c shows three possible arbitrary advancements of a complete sheet 

mesh in Figure 2b demonstrates that the sheet in Figure 3b is eventually 

to advance the front to form a partial hex sheet, as shown in Figure 3d, fol-

tice that the incomplete front was advanced only once.  Figure 3f shows 

lowed by advancement of other complete fronts in the model.  Figure 3e 
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(a) Arbitrary advancement 
option 1 

(b) Arbitrary advancement 
option 2 

(c) Arbitrary advancement 
option 3 

(d) Only known advance-
ment is performed 

(e) After several more layers 
are advanced 

(f) Final sheet resolution of 
incomplete front

Figure 3. Various options and final resolution of incomplete front 

Another option would be to completely refrain from advancing this in-
complete front until adjacent fronts have been advanced far enough to 
“complete” the incomplete front.  However, doing so would leave the 
boundary of the solid exposed to direct collisions from other advancing 
fronts.  When fronts collide, seaming and merging is needed.  Seaming and 
merging operations result in nodes and edges with non-optimal valences, 
which often results in poor element qualities.  By performed seaming and 
merging directly on the model boundary the risk of creating poor elements 
directly on the model boundary is increased.  Since analysis results are of-
ten of greater interest on the boundary, care must be taken to ensure as 
high an element quality as possible on the boundary.  As such, the recom-
mendation is that each incomplete front be advanced once in order to form 
a protective layer directly adjacent to the model boundary.  After a single 
advancement, the incomplete front can wait until adjacent complete fronts 
are advanced far enough to complete the incomplete front. 
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4 Front Collisions 

As fronts are advanced in Unconstrained Paving & Plastering, certain op-
erations must be performed.  The operations that are performed most often 
are merging and seaming.  Merging is defined as the resolution of small 
gaps between fronts.  Seaming is defined as the resolution of small angles 
between adjacent fronts.  Merging and seaming must be performed itera-
tively since merging often creates seaming cases; likewise seaming often 
creates merging cases. 

4.1 Merging 

During Unconstrained Paving and Plastering, cases requiring merging oc-

trates the partial meshing of an example surface using Unconstrained Pav-

the front to advance.  The dashed dark line represents the desired advanced 
location of this front, which clearly shows the proximity problem which 

can be resolved by collapsing out the connecting tube, with the solid dark 

the model would look like after the advancement of additional fronts after 
the merge operation.  Essentially, the merge operation inserts a 5-valent 
node in the quad mesh. 

case, proximity problems exist throughout the entire connecting tube.  As a 
result, it makes geometric sense to collapse the entire tube.  However, on 
other geometries, it is possible that the connecting tube might expand in 
some regions, making proximity only an issue for a portion of the tube.  

proximity, if part of the tube requires collapsing, then the entire tube must 
be collapsed in order to keep topological consistency throughout the 
model.  In order to reconcile sizing in cases where only part of the tube has 
proximity, pillowing [15] can be performed to make the tube sizes more 

can be performed in the connecting tubes to make the size of the tube con-
sistent so the entire tube can be merged. 

cur in either the connecting tubes or in the unmeshed void.  Figure 4 illus-

ing.  Figure 4c shows a close-up of a connecting tube which is too skinny 

must be resolved before continuing.  Figure 4e shows how the proximity 

for an additional advancement.  In Figure 4d, the solid dark line represents 

line representing the modified front after merging.  Figure 4f shows what 

Figure 4c shows the connecting tube which must be collapsed.  In this 

This is illustrated in Figure 5a.  However, regardless of the geometric 

consistent.  Figure 5 illustrates that pillowing followed by row smoothing 
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(a) Example surface (b) Several rows advanced (c) Close-up view 

(d) Desired front advancement (e) Fronts merged (f) Additional fronts advanced 

Figure  4.  Merging example for connecting tube proximity 

(a) Desired front advancement (b) Pillow added (c) Row smoothing 

(d) Pillow added (e) Row smoothing (f) Merge performed 

Figure 5. Merging partial tube proximity problems with pillowing
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Merge cases can also occur in the unmeshed void as illustrated in Figure 6.  

dashed dark line shows the desired advancement which is not possible be-

merged out.  Points A and B are the extremes of the merge and are new 
topological constraints on the model where nodes must be placed.  They 
will end up being 5-valent nodes in the final mesh.  In order to maintain 
mesh topology consistency, these points must be propagated back to the 

gation of constraints to the boundary through connecting tubes is called 
“cutbacks.”  Cutbacks split the connecting tube into two or more connect-
ing tubes.  The original front that had the proximity problem then needs to 

(a) Proximity case in 
unmeshed void 

(b) Desired front ad-
vancement

(c) Merged model, A & B

(d) Cutbacks added (e) New fronts for ad-
vancement

(f) Several additional fronts 

Figure 6. Merging example for unmeshed void proximity 

The thick dark solid line in Figure 6b is the front to be advanced.  The 

cause of the proximity.  Figure 6c shows that the proximity has been 

be updated as shown in Figure 6e.  Additional fronts can then be advanced 

boundary through the connecting tubes as shown in Figure 6d.  The propa-

around the proximity as shown in Figure 6f. 

 are new model constraints

are advanced
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strained Plastering.  The unmeshed void is drawn in white, the connecting 
tubes in light gray, the connecting webs in dark gray, and the final ele-
ments in black.  Proximity in the connecting tube on the right stops addi-
tional sheets from advancing from both the top and bottom of the model.  
The proximity is resolved by merging out the connecting tube and the cor-

(a) 3D Merge Case (b) Merge Performed (c) Additional sheet advanced 

Figure 7. Unconstrained Plastering merge case 

4.2 Seaming 

cur where two fronts intersect.  The need for seaming is based on the angle 

than a specified tolerance , then seaming is required.  Seaming is per-

increases above *w, where w is a weighting factor greater than 1.0.  If
w = 1.0, then the angle will only increase to exactly the seaming tolerance.  

which would cause seaming to be required again.  If a larger w is used, 
such as 1.1, then  will have increased enough over  that nearby changes 
will be less likely to drop enough to require additional seaming. 

where the seaming stops.  Point C is a new constraint on the model where 

shows the addition of the cutbacks and the modifications to fronts A and 

vanced one additional row. 

Figure 7 illustrates a merge case in the connecting tubes during Uncon-

responding connecting webs in Figure 7b.  An additional front from the top 
of the model can now be advanced as illustrated in Figure 7c. 

During Unconstrained Paving and Plastering, cases requiring seaming oc-

intersection between fronts A and B.  If the angle of intersection , is less 

at which the fronts intersect.  Figure 8a shows the model from Figure 4 af-

Subsequent small perturbations nearby could cause the angle to decrease 

ter the merging was performed.  Figure 8b shows a close up showing the 

formed, as shown in Figure 8d, by merging the fronts together until the 

Figure 8d illustrates the completion of the seam.  Point C is the point 

a five-valent node will be located.  Similar to point A and B in Figure 6c, 
point C must be propagated back to the boundary with cutbacks.  Figure 8e 

B.  Figure 8f shows the model after fronts A and B have both been ad-
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often create a set of connecting tubes which are no longer connected to an 
unmeshed void.  These connecting tubes are like all other connecting tubes 
in that they still have one degree of freedom remaining for Unconstrained

(a) Example surface (b) Check for seaming at 
intersection of fronts 

(c) Angle of intersection 
determines if seaming is 
required

(d) Seaming is performed 
until angle increases 

(e) Cutbacks are added and 
fronts updated 

(f) Additional fronts are 
advanced

(g) Connecting tube behind 
seam no longer touched 
unmeshed void 

(h) Final mesh in seaming 
region

Figure 8. Unconstrained Paving seaming example 

The highlighted region of Figure 8g illustrates that cutbacks in seaming 
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Paving and two degrees of freedom for Unconstrained Plastering.  For 
Unconstrained Paving, these connecting tubes can be diced as many times 

Unconstrained Plastering, these connecting tubes which are no longer con-
nected to an unmeshed void represent a partition of the solid which can be 

operation is performed, an additional sheet is advanced as illustrated in 

h, connecting tubes that no longer touch an unmeshed void are often cre-
ated during seaming.  This is also the case in three dimensions with Un-
constrained Plastering.  The two light gray surfaces on the top of the model 

surfaces can be meshed with quadrilaterals and swept [16,17,18] through 

tion, the topology of connecting tubes in three dimensions has only a sin-
gle source and a single target, which simplifies the sweeping process to 1-1 
sweeping.

(a) 3D Seam Case (b) Seam with cutbacks performed 

(c) Additional front advanced  (d) Another seaming operation performed 

Figure 9. Unconstrained Plastering Seaming example 

as required to get the proper element resolution as shown in Figure 8h.  For 

Figure 9 Illustrates a seaming case in Unconstrained Plastering which 
is a result of the merge operation performed in Figure 7.  After the seaming 

Figure 9c.  This sheet advancement creates an additional seaming case 

meshed with traditional paving and sweeping [16,17,18]. 

which is seamed as illustrated in Figure 9d.  As illustrated in Figure 8g & 

in Figure 9d represent two such connecting tubes.  These two light gray 

the corresponding connecting tube to obtain the final mesh.  By defini-
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5 Unconstrained Plastering Examples 

Conceptually, Unconstrained Paving and Plastering can handle a wide va-
riety of model complexity.  The logic is available to handle concavities, 
small model angles, collisions between fronts, seaming of adjacent fronts, 
and assembly models.  However, as is often the case, implementation of 
the logic lags the conceptual progression.  At the time of its initial intro-
duction [1], no solids had yet been successfully meshed with Uncon-
strained Plastering.  Since then implementation has progressed to success-
fully mesh numerous models of simple complexity. 

Plastering.  However, the concavity requires the use of incomplete fronts.  
In addition, merging in both connecting tubes and in the unmeshed void 
were required.  As expected, the resulting mesh topology is that of a sub-
mapped mesh [14].  The minimum scaled Jacobian in this mesh is 0.92 on 
a scaled from 0.0 to 1.0 where 1.0 is the perfect hexahedral element. 

Unconstrained Plastering meshed the model in Figure 11 with a mini-
mum scaled Jacobian of 0.62.  The topology of the model is that of a sim-
ple brick, however, the top surface has the shape of a rhombus, which re-
sults in non-perpendicular angles leading to lower quality elements and 
some irregular transitioning nodes on the top and bottom surface.  The 
mesh topology of the mesh is that of a swept mesh. 

Figure 12 illustrates a model which is also relatively simple.  The top 
surface is a curved nurb.  The tapered end caused the merging and seaming 

regular nodes on the side of the volume.  The irregular nodes on the top of 
the model are introduced by the quad mesher which meshes the top surface 
of a connecting tube which is then swept as described in section 4.2.  The 
minimum scaled Jacobian in this mesh is 0.577.  The mesh topology is nei-
ther mapped or swept, but a true unstructured mesh topology.  Although 
the model topology of this model could yield a swept mesh topology, this 
example illustrates that Unconstrained Plastering is not restricted to such 
simple mesh topologies.  Rather, Unconstrained Plastering is free to insert 
hexahedral sheets into the solid as required to adequately model the geo-
metric complexity. 

Figure 10 shows a seemingly simple model meshed with Unconstrained 

cases illustrated in Figure 7 and Figure 9 to arise which resulted in the ir-
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Figure 10. Example model 1 Figure 11. Example model 2

Figure 12.  Example model 3

6 Future Research 

As mentioned previously, implementation of Unconstrained Plastering lags 
the conceptual development.  As a result, resources are currently allocated 
to implementation of the currently available logic.  Current implementa-
tion resources are focused on more complicated concavities, models with 
very thin sections, boundary topology which intersects at extreme angles, 
and assembly models.  It is anticipated that as implementation progresses, 
additional cases will be encountered which will require additional logic 
and operations which are not yet considered. 

At the time of publication of [1], implementation on Unconstrained 
Plastering had begun, but implementation of Unconstrained Paving was 
not a priority.  Priorities and resources have since been modified.  As a re-
sult, implementation of Unconstrained Paving has now begun.  It is antici-
pated that Unconstrained Paving will behave much better than traditional 
Paving on surfaces that have skinny regions as illustrated in Figure 13. 
Figure 13a shows the result from traditional Paving.  Since the boundary 
edges are meshed apriori, the nodes are placed without considering prox-
imity to other curves.  As a result, the gray elements illustrate that skewed 
elements often result in thin sections such as this.  Figure 13b shows what 
a more desirable mesh would be where the nodes opposite the thin section 
line up.  Since Unconstrained Paving is not constrained by an apriori 
boundary mesh, it is anticipated that the cutback process resulting from the 
merging in this region will result in a mesh similar to that in Figure 13b. 
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(a) Traditional Paving result (b) Unconstrained Paving result 

Figure 13.  Mesh comparision between traditional Paving and Unconstrained Pav-
ing

7 Conclusions 

The conceptual understanding of Unconstrained Paving and Plastering has 
progressed significantly since its initial introduction.  Conceptually, many 
complex models can be handled.  Implementation lags the conceptual de-
velopment, but is the focus of current resources. 

Triangular and tetrahedral meshing algorithms are accompanied by 
long accepted mathematical proofs and theorems [19].  In contrast, Uncon-
strained Paving and Plastering, like traditional Paving [5], are quite heuris-
tic and currently lack complete mathematical verification.  Regardless, tra-
ditional Paving is accepted as a robust solution to the quadrilateral 
meshing problem because it has been implemented dozens of times at both 
academic and commercial institutions resulting in robust and efficient 
mesh generation software.  Likewise, the current implementation of Un-
constrained Plastering indicates that once a complete implementation is in 
place, Unconstrained Paving and Plastering may also provide efficient and 
robust mesh generation tools.  Future advances in mathematics and mesh 
generation may provide the mathematical backing they currently lack. 
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Summary. In this paper we present a new node projection scheme to generate
hexahedral meshes in sweeping geometries. It is based on a least-squares approxima-
tion of an affine mapping. In the last decade several functionals have been defined
to perform this least-square approximation. However, all of them present several
shortcomings in preserving the shape of the inner part of the projected meshes, i.e.
the offset data, for simple and usual geometrical configurations. To overcome these
drawbacks we propose to minimize a more general functional that depends on two
vector parameters. Moreover, we detail a procedure that automatically selects these
parameters in such a way that offset data is maintained in the inner part of projected
meshes.

Key words: Finite element method; mesh generation; hexahedral elements;
sweep; node projection; affine mapping.

1 Introduction

Several fast and robust algorithms have been developed to generate unstruc-
tured tetrahedral meshes [1, 2]. However, fully automatic unstructured hexa-
hedral mesh generation algorithms are still not available. Therefore, special
attention has been focused on existing algorithms that decompose the entire
geometry into several simpler pieces that can be considered as union of one-
to-one extrusion volumes. Sweeping is one of the most robust and efficient
algorithms to mesh these simpler volumes with hexahedral elements. Several
algorithms have been devised to generate hexahedral meshes by projecting
the cap surfaces along the sweep path [3, 4, 5, 6]. In all of them the cru-
cial step is the placement of the inner nodes. From the computational point
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of view, sweep methods based on a least-squares approximation of an affine
mapping are the fastest alternative to compute these projections [7]. Several
functionals have been introduced to perform the least-squares approximation,
see section 2. In spite of their computational efficiency (both in terms of CPU
time and memory), these methods present several drawbacks. For instance,
the minimization of these functionals may lead to a set of normal equations
with a singular system matrix for very usual geometrical configurations. In
addition, the obtained mesh may present several undesired features such as
flattening and skewness, see [9] for details.

In order to overcome these shortcomings, in reference [9] we introduced a
new functional that depends on two vector parameters that can be selected
by the user. However, only a feasible selection of these parameters, based on
our experience, was provided. In this paper we first prove the relationship be-
tween the optimal solution of the classical functional and the optimal solution
of the new functional proposed in [9]. In addition, we propose a definition
of a measure of the normal vector to a given loop of nodes that we denote
by pseudo-normal. Based on the previous relationship and the definition of
the pseudo-normal, we prove and detail a new algorithm that automatically
selects the functional parameters. These parameters are selected in order to
preserve the shape of the inner part of projected meshes, i.e. offset data. It is
important to point out that the geometrical cases that lead to a set of nor-
mal equations with a singular system matrix are identified from the singular
value decomposition (SVD) of the optimal solution of the classical functional.
Moreover, to increase the computational efficiency of the proposed algorithm,
the minimization of the new functional adequately reuses the optimal solution
of the classical functional. Finally, we present two simple examples that show
the robustness and the reliability of the proposed algorithm.

2 Problem Statement and Functional Definitions

Let X = {xi}i=1,...,m ⊂ Rn be a set of source points, and Y = {yi}i=1,...,m ⊂
Rn a set of target points with m ≥ n. In a sweep application {xi}i=1,...,m

are the nodes that belong to the boundary of the projected layer (where the
initial layer is the source surface mesh). Similarly, {yi}i=1,...,m are the nodes
that belong to the boundary of the target layer. Our goal is to find a mapping
φ : Rn → Rn such that

yi = φ(xi), i = 1, . . . , m. (1)

We approximate φ by an affine mapping ϕ from Rn to Rn,

ϕ(x) = A(x− cX) + cY , (2)

where
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cX :=
1
m

m∑

i=1

xi and cY :=
1
m

m∑

i=1

yi

are the the geometrical centers of the sets X and Y , respectively. The affine
mapping ϕ is computed by minimizing the functional

F (A) :=
m∑

i=1

‖yi − cY −A(xi − cX)‖2 =
m∑

i=1

‖yi −Axi‖2, (3)

where x = x− cX and y = y − cY , see details in [5, 9]. The minimization of
functional F is equivalent to imposing the following m constraints

A(xi − cX) = yi − cY , i = 1, · · · ,m, (4)

being the unknowns the coefficients of the n× n matrix

A =






a1,1 . . . a1,n

...
...

an,1 . . . an,n




 .

These constraints can be expressed in matrix form as

AX = Y, (5)

where

X :=






x1
1 − cX

1 . . . xm
1 − cX

1
...

...
x1

n − cX
n . . . xm

n − cX
n




 and Y :=






y1
1 − cY

1 . . . ym
1 − cY

1
...

...
y1

n − cY
n . . . ym

n − cY
n




 ,

However, minimization of functional (3) generates flattened layers under the
following two conditions:

• If the set of source points, X, determines a plane in 3D geometries (for
instance a source surface mesh with planar boundary), then the minimiza-
tion of functional (3) leads to a set of normal equations with singular
system matrix, see [9]. In practice, singular value decomposition is used
to solve the set of normal equations. In this case the inner part of the
projected mesh will be planar. Hence, the offset data of the source surface
mesh will be lost.

• If a given mesh is projected to an inner layer with a planar boundary by
minimizing (3), then the projected mesh will always be planar, see [9].

It is important to point out that these geometrical configurations are ex-
tremely usual in CAD models. We will use the term hyperplanar to denote
a linear variety of dimension n − 1 (a plane for n = 3 and a straight line
for n = 2). In particular, given a hyperplanar set of points, X, we define the
homogeneous hyperplane of X as the subspace of vectors
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H = {v ∈ Rn| < nX ,v >= 0}, (6)

where nX ∈ Rn is a unitary normal vector to X.
To solve the previous drawbacks, Knupp introduced another change of co-

ordinates: x = x−cX+cY −cX and y = y−cX , see [5, 9] for details. Moreover,
using these new coordinates the following functional was also defined in [5]

G(A) :=
m∑

i=1

‖yi − cX −A(xi − cX + cY − cX)‖2 =
m∑

i=1

‖y i −Ax i‖2. (7)

Therefore, we are looking for a linear mapping A such that it approximately
transforms, in the least-squares sense, X = {x i}i=1,...,m to Y = {y i}i=1,...,m.

However, functional (7) also presents two important shortcomings:

• If the set of source points, X, is hyperplanar and cY − cX ∈ H, then
the minimization of functional G leads to a set of normal equations with
singular system matrix, see [9].

• If a non-planar surface mesh with planar boundary is projected to an inner
layer which is non-parallel to the boundary of the source surface, then the
projected nodes do not preserve the shape of the original surface mesh and
a skewness effect is introduced, see [9].

In order to overcome the drawbacks arising from the minimization of func-
tionals F and G, we introduced the following functional, see [9]

H(A;uX ,uY ) :=
m∑

i=1

‖yi − cY −A(xi − cX)‖2 + ‖uY −AuX‖2, (8)

where uX and uY belong to Rn. It is important to point out that vectors
uX and uY in (8) can be properly selected in order to obtain several desired
properties of functional H.

It has been proved that if the set of source points is hyperplanar it is
always possible to select a vector uX such that the minimization of H leads
to a set of normal equations with a full rank matrix, see [9]. However, given
any arbitrary geometry no algorithm was proposed to properly define vectors
uX and uY . The main goal of the present paper is to explicitly state how to
select vectors uX and uY in order to define an automatic and robust algorithm
to sweep meshes in a one-to-one volume.

3 Analysis of Functional H

In this section we present new properties of functional H that are of major
importance to deduce the general node projection algorithm. First, we prove
four lemmas that will allow us to relate the solutions of the minimization of
functionals F and H.
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Lemma 1. If X is a hyperplanar set of points and uX /∈ H, then Rn =
span(uX)⊕ H.

Proof. In this case, the homogeneous hyperplane defined by X is a subspace of
Rn with dimension equal to n−1. Since uX /∈ H we have that span(uX)∩ H =
{0}. Thus, Rn = span(uX)⊕ H. ��

Lemma 2. Let X be a hyperplanar set of points. Assume that uX /∈ H, uY ∈
Rn, and A ∈ L(Rn) are given. Then, there exists a mapping Θ[A,uX ,uY ] :
Rn → Rn such that:

(i) Θ[A,uX ,uY ] ∈ L(Rn)
(ii) Θ[A,uX ,uY ](uX) = uY

(iii) Θ[A,uX ,uY ](vH) = AvH, ∀vH ∈ H.

Proof. Given v ∈ Rn, Lemma 1 states that Rn can be represented as the
direct sum of the subspaces span(uX) and H. Therefore, for every v ∈ Rn

there exist vH ∈ H and λ ∈ R such that

v = vH + λuX . (9)

Hence, we define the image of v ∈ Rn by Θ[A,uX ,uY ] as

Θ[A,uX ,uY ](v) := AvH + λuY . (10)

It is straightforward to prove that Θ[A,uX ,uY ] defined in such a way is
linear, and that it verifies properties (ii) and (iii). ��

To illustrate a practical application of Lemma 2 in a three-dimensional
problem, we consider a set of points X located on a plane H, see figure 1. Under
these conditions, the numerical solution obtained by minimizing functional F
maps all vectors that do not belong to the plane H to the image of this plane
by A, i.e. the flattening effect. In this case, Lemma 2 ensures that by using the
linear mapping Θ we will be able take into account the offset data by mapping
parallel vectors to uX (since vector uX /∈ H) to the desired direction, provided
by vector uY . In addition, we will preserve the behavior of the linear mapping
A over H. Specifically, any vector that belongs to the plane H will be mapped
according to the linear mapping A. In practice, we will determine this matrix
A by minimizing functional F , as we will see in Proposition 1.

Lemma 3. Let X be a hyperplanar set of points, and assume that uX /∈ H

and uY ∈ Rn. Then,
F (Θ[A,uX ,uY ]) = F (A).
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v = vH + λuX

H

vH

λuX

uX

cX

cY AvH

uY

λuY

Θ[A,uX ,uY ]

Θ[A,uX ,uY ](v) = AvH + λuY

AH

X

XA

Fig. 1. Transformation of a given vector v by mapping Θ when X is a planar set.

Proof. Since X is hyperplanar, xi − cX ∈ H, for i = 1, . . . , m. Therefore, by
the third property of Lemma 2, Θ[A,uX ,uY ](xi − cX) = A(xi − cX), for
i = 1, . . . , m. Finally, according to the definition of the functional F

F (Θ[A,uX ,uY ]) =
m∑

i=1

‖yi − cY −Θ[A,uX ,uY ](xi − cX)‖2

=
m∑

i=1

‖yi − cY −A(xi − cX)‖2 = F (A).

��

Lemma 4. Let X be a hyperplanar set of points, and assume that uX /∈ H

and uY ∈ Rn. Then,

H(Θ[A,uX ,uY ];uX ,uY ) = F (Θ[A,uX ,uY ])

Proof. This result follows from the definitions of functionals F and H, and
Lemma 2. ��

Proposition 1. Let X be a hyperplanar set of points, and assume that uX /∈
H and uY ∈ Rn. If AF ∈ L(Rn) and AH ∈ L(Rn) are such that

F (AF ) = min
A∈L(Rn)

F (A),

H(AH ;uX ,uY ) = min
A∈L(Rn)

H(A;uX ,uY ),

then: Θ[AF ,uX ,uY ] = AH .
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Proof. We have already proved, see details in [9], that the minimization of
functional H is equivalent to solving n uncoupled overdetermined linear sys-
tems. Thus, the minimization of functional H has one and only one solution.
In addition, we define R(A;uX ,uY ) := ‖uY −AuX‖2. Hence,

H(A;uX ,uY ) = F (A) + R(A;uX ,uY ).

We consider the following sequence of equalities and inequalities:

F (AF ) ≤ F (AH) since AF minimizes F

≤ F (AH) + R(AH ;uX ,uY ) since R(A;uX ,uY ) ≥ 0 for every A

= H(AH ;uX ,uY ) by definition of R(A;uX ,uY ) and H

≤ H(Θ[AF ,uX ,uY ];uX ,uY ) since AH minimizes H

= F (Θ[AF ,uX ,uY ]) by Lemma 4

= F (AF ). by Lemma 3.

Note that the first and the last terms are the same. Thus, all the inequalities
are in fact equalities. From the previous sequence of equalities we prove that
Θ[AF ,uX ,uY ] and AH minimize the functional H. Since the minimization
of H has a unique solution we have that Θ[AF ,uX ,uY ] = AH , and the
proposition holds. ��

To summarize, based on the four previous lemmas, Proposition 1 states
a strong relationship between the optimal solutions of functional F and H,
namely AF and AH . This relationship is the keystone for the general algo-
rithm to minimize functional H. It states that when X is a hyperplanar set of
points we can obtain the unique solution of the minimization of H by means
of one of the optimal solutions of the minimization of F . Specifically, AH can
be obtained as the linear transformation that maps uX to uY , and any vector
vH ∈ H to AvH, see figure 1 for a 3D interpretation. Hence, the two remaining
tasks are: 1. to automatically select the two vector parameters uX and uY

according to the given geometry; and 2. to determine how to compute the
linear transformation Θ, see section 5.

4 Preserving Offset Data

In this section we introduce several definitions and results in order to formalize
some desirable properties of node projection algorithms. The key issue is the
definition of a measure of the normal vector to a given loop of nodes. Recall
that in projection algorithms the inner layers are described by a loop of nodes.
That is, there is not an underlying surface carrying any additional information.
Moreover, in a wide range of applications the loops of nodes are not planar.
Therefore the normal vector to this kind of loops is not defined. However,
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given a loop of nodes we will define a pseudo-normal vector and we will relate
it to the preservation of the shape of the inner part of the projected mesh,
the offset data.

Definition 1 (Loop). Given a set of points X = {xi}i=1,...,m ⊂ R3, a loop
is the closed poly-line constructed by joining xi with xi+1 for i = 1, . . . , m.
We consider that xm+1 ≡ x1.

In several applications it is necessary to sweep a non-simple connected
surface along the extrusion path. These surfaces are defined by one outer
boundary and as many inner boundaries as holes they have. Therefore, we
need to consider sets of points composed by several loops. Specifically, one
counter-clockwise oriented loop corresponding to the outer boundary, and
several clockwise oriented loops corresponding to the inner holes.

Definition 2 (Multi-loop). A set of points X = {xi}i=1,...,m ⊂ R3 is a
multi-loop if it is organized in p loops X1, . . . , Xp.

Definition 3 (Pseudo-area). Given a vector c ∈ R3, the pseudo-area of a
loop X = {xi}i=1,...,m ⊂ R3 is

a :=
m∑

i=1

(xi − c)× (xi+1 − c).

The pseudo-area of a multi-loop X = X1 ∪ · · · ∪Xp organized in p loops is

a := a1 + · · ·+ ap,

where a1, . . . ,ap are the pseudo-areas of loops X1, . . . Xp, respectively.

Note that ‖(xi − c)× (xi+1 − c)‖ is the double of the area of the triangle
xixi+1c, see figure 2. Moreover, if X is a planar multi-loop, then the pseudo-
area a is equal to the area enclosed by X.

In order to prove that pseudo-area is well defined, the next proposition
proves that the pseudo-area vector does not depend on the selected c ∈ R3.
Moreover, it is invariant under translations, and its norm is also invariant
under orthogonal transformations.

Proposition 2 (Invariance of pseudo-area). Let X = {xi}i=1,...,m ⊂ R3

be a set of points. The pseudo-area vector verifies:

(i) Given c ∈ R3 then

a =
m∑

i=1

(xi − c)× (xi+1 − c) =
m∑

i=1

xi × xi+1.

(ii) Given t ∈ R3 the pseudo-area of X is equal to the pseudo-area of X +t =
{xi + t}i=1,...,m.
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c

x1

x2

x4

x5
x6

x3

a = 6
i=1(x

i − c)× (xi+1 − c)

Fig. 2. Geometrical interpretation of the pseudo-area vector.

(iii) Given an orthogonal transformation N, then the pseudo-area of NX =
{Nxi}i=1,...,m is Na, where a is the pseudo-area of X.

Proof. Given c ∈ R3, and taking into account that X is a loop, then

a =
m∑

i=1

(xi − c)× (xi+1 − c)

=
m∑

i=1

xi × xi+1 +
m∑

i=1

c× (xi − xi+1) +
m∑

i=1

c× c

=
m∑

i=1

xi × xi+1 +
m∑

i=1

c× (xi − xi+1) =
m∑

i=1

xi × xi+1.

Given t ∈ R3, the second property is a direct consequence of property (i)
applied to c = −t.

By property (i) and taking into account that N is orthogonal we have that

aNX =
m∑

i=1

Nxi ×Nxi+1 =
m∑

i=1

N(xi × xi+1) = Na.

��

At this point, given a loop X, we have proved that the norm of the pseudo-
area vector is a geometrical invariant associated to the loop. Furthermore, it
only depends on the ordering and the relative geometrical location of the
points.

Proposition 3 (Projected area). If a multi-loop X is projected on an or-
thogonal plane to its pseudo-area vector a, then the obtained polygon has area
equal to ||a||.
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Proof. By definition of pseudo-area of a multi-loop, it suffices to prove the re-
sult for a single loop. Given a loop X, the projection of the points {xi}i=1,...,m

on the orthogonal plane to a are the points xi
a⊥ := xi − xi

a, where

xi
a :=

< xi,a >

< a,a >
a.

Hence, we have that xi = xi
a + xi

a⊥ for i = 1, . . . , m. The pseudo-area of X is

a =
m∑

i=1

xi × xi+1 =
m∑

i=1

(xi
a + xi

a⊥)× (xi+1
a + xi+1

a⊥ )

=
m∑

i=1

xi
a × xi+1

a⊥ + xi
a⊥ × xi+1

a + xi
a⊥ × xi+1

a⊥

Note that xi
a×xi+1

a⊥ and xi
a⊥ ×xi+1

a are orthogonal to a. Thus, its sum is also
orthogonal. Furthermore, xi

a⊥ × xi+1
a⊥ is parallel to a. Therefore xi

a × xi+1
a⊥ +

xi
a⊥ ×xi+1

a cannot contribute to the parallel component to a and it has to be
0. Hence, we have that

a =
m∑

i=1

xi
a⊥ × xi+1

a⊥ ,

which is the area of the polygon obtained from the projection of the loop X
on the orthogonal plane to a. ��

Hence, the view of the loop from the direction of the pseudo-area has an
area equal to the norm of the pseudo-area of X. Therefore, we can interpret
the direction of the pseudo-area as a normal vector to the loop.

Definition 4 (Pseudo-normal). The pseudo-normal of a multi-loop X is
the unitary vector

nX
pseudo := a/||a||,

where a is the pseudo-area of X.

Note that if X is a planar loop, the pseudo-normal nX
pseudo is equal to the

unitary normal nX to X.
The pseudo-normal provides a kind of normal when there is no underlying

surface, only the loop of points. All the information along the direction of the
pseudo-normal is understood as offset data. We claim that a good node pro-
jection procedure has to preserve data along the pseudo-normal. In particular,
the flattening and skewness effects previously explained are due to a deficient
preservation of offset data. In addition, we describe two new undesired effects
related to unsatisfactory preservation of offset data:

• Offset scaling. Offset data of projected meshes is scaled along the sweep
direction. This effect appears when we project from a non-planar loop to
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another non-planar loop of different thickness. It is related to the mini-
mization of functional F , and to an incorrect election of uX and uY when
minimizing functional H, see first example in section 6.

• Flipping. Offset data is projected inversely to the expected orientation.
It appears when a loop is curved towards one direction and it is projected
to another loop that is curved on the opposite direction. It is related to
the minimization of functional F , and can also appear due to incorrect
elections of uX and uY when minimizing functional H, see second example
in section 6.

Summarizing, in order to avoid flattening, skewness, offset scaling, and
flipping effects we have to obtain affine mappings that preserve the length,
direction and orientation of offset data.

5 Algorithm Implementation

In this section we detail the algorithm that we have developed in order to
properly select the parameters uX and uY and obtain the affine projection.
The basic idea is that we can efficiently use the minimization of functional
F to minimize H. The key issue is to realize that AH = Θ[AF ,uX ,uY ]
when X is hyperplanar, see Proposition 1. Therefore, the optimal solution of
functional H can be computed from the optimal solution of functional F if a
proper criterion to select the vectors uX and uY is defined.

The general algorithm, for hyperplanar and non-hyperplanar set of points
X, is decomposed in two steps. First, the optimal solution AF and its singular
value decomposition are computed. Second, a criterion to select the vectors uX

and uY is defined. In addition, if the set of points X and/or Y are hyperplanar
(a planar source and/or target surfaces in 3D applications) a geometrical
interpretation of the chosen vectors uX and uY is also presented.

5.1 The Optimal Solution of Functional F and its Singular Value
Decomposition

In order to minimize functional F we compute the minimum norm solution
of Equation (5). To this end, we use the singular value decomposition of the
system matrix

X
T

= UWV
T
, (11)

where U is an m× n matrix with orthogonal columns, W is a n×n diagonal
matrix with positive or zero elements (the singular values)

W :=






w1

. . .
wn




 ,
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such that w1 ≥ w2 ≥ · · · ≥ wn−1 ≥ wn, and V is an n×n orthogonal matrix.
We denote by vi ∈ Rn, for i = 1, . . . , n, the columns of matrix V.

Taking into account this decomposition, we compute the minimum norm
solution, AF , as

AF = Y UW
+

V
T
, (12)

where

W
+

:=






w +
1

. . .
w +

n




 and w +

i =

{
0 if wi = 0
1
wi

if wi 
= 0
for i = 1, . . . , n.

Once we have computed the optimal solution AF according to (12), we com-
pute its singular value decomposition

AF = UWVT , (13)

where U and V are two n×n orthogonal matrices, and W is a n×n diagonal
matrix with positive or zero elements (the singular values)

W :=






w1

. . .
wn




 ,

such that w1 ≥ w2 ≥ · · · ≥ wn−1 ≥ wn. We denote by ui ∈ Rn and vi ∈ Rn,
for i = 1, . . . , n, the columns of matrices U and V respectively.

Remark 1. Let M be an m × n matrix, and M = UMWMVT
M its singular

value decomposition. On one hand, the columns of the orthogonal matrix VM

with an associated singular value equal to zero span KerM. On the other
hand, the columns of the orthogonal matrix UM with an associated positive
singular value span RangeM, see references [10, 11].

5.2 Selection of Vectors uX and uY

From Equation (11) we realize that when the set of points X is hyperplanar
the diagonal matrix W has a null singular value: wn = 0. In this case, the
singular value decomposition of the optimal solution AF will also have a null
singular value: wn = 0. Therefore, to properly choose uX and uY we have to
analyze the KerAF and the RangeAF .

Lemma 5. If dim KerAF = 1, then KerAF = span(vn).

Proof. Since dimKerAF = 1 and w1 ≥ w2 ≥ · · · ≥ wn−1 ≥ wn ≥ 0 we have
that wi > 0 for i = 1, . . . , n − 1 and wn = 0. To finalize, by Remark 1 we
know that KerAF = span(vn). ��
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Table 1. Algorithm to obtain the affine projection.

STEP 1. Compute the optimal solution AF according to Equation (12).
STEP 2. Compute the SVD of AF according to Equation (13).
STEP 3. Set the values of uX and uY :

3.a If wi > 0, for i = 1, . . . , n.
Set uX = nX

pseudo and uY = nY
pseudo.

3.b If wi > 0, for i = 1, . . . , n − 1, and wn = 0.
Set uX = vn and uY = un.

3.c If wi ≥ 0, for i = 1, . . . , n − 2 and wn−1 = wn = 0.
Degenerated case not applicable to real situations. Stop the algorithm.

STEP 4. For any x ∈ R
n compute the linear part of the affine projection as

A(x) = AF (x− < x,uX > uX)+ < x,uX > uY .

STEP 5. Compute the desired affine mapping according to Equation (2)

ϕ(x) := A(x − cX) + cY .

Lemma 6. If dim KerAF = 1, then (RangeAF )⊥ = span(un), where ⊥ de-
notes orthogonality.

Proof. Since dim KerAF = 1 and w1 ≥ w2 ≥ · · · ≥ wn−1 ≥ wn ≥ 0 we
have that wi > 0 for i = 1, . . . , n − 1, and wn = 0. Taking into account
Remark 1, we know that RangeAF = span(u1, . . . ,un−1). To finalize, since
U is orthogonal we have that < un,ui >= 0, for i = 1, ..., n − 1. Therefore
(RangeAF )⊥ = span(un). ��

Lemmas 5 and 6 define the desired criterion to select vectors uX and uY .
That is, to obtain the optimal solution AH , we first find the optimal solution
AF , and based on its singular value decomposition we select the vectors uX

and uY . Our proposed algorithm is composed of five steps and it is summarized

In the fourth step we obtain the linear part of the affine mapping as

AF (x− < x,uX > uX)+ < x,uX > uY .

In the case that X is a hyperplanar set we can decompose, by Lemma 2, x as
xH + λuX. Therefore, the obtained linear transformation maps xH to AF xH

and λuX to λuY. Hence, by Proposition 1 we know that this linear mapping is
the optimal solution of the minimization of functional H, obtained by means
of minimizing F .

5.3 Geometrical Interpretation

Finally, we will prove two additional results that provide a geometrical inter-
pretation to the obtained selection of vectors uX and uY in our algorithm.

in Table 1.
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Table 2. Selection of vectors uX and uY according to the sets X and Y .

Y hyperplanar Y non-hyperplanar

X hyperplanar
dimKerAF = 1

uX = nX = nX
pseudo

uY = nY = nY
pseudo

dimKerAF = 1
uX = nX = nX

pseudo

uY = un

X non-hyperplanar
dimKerAF = 1

uX = vn

uY = nY = nY
pseudo

dimKerAF = 0
uX = nX

pseudo

uY = nY
pseudo

Specifically, Lemma 8 states that if X is a hyperplanar set of points, then
our algorithm selects uX as the unitary normal vector to X: uX = vn = nX ,
which is in fact the natural choice. Moreover, Lemma 9 states that if Y is a
hyperplanar set of points, then our algorithm selects uY as the unitary nor-
mal vector to Y : uY = un = nY , which is also the obvious choice. Table 2
presents the geometrical interpretation of the proposed selection of vectors
uX and uY .

Lemma 7. If X is a hyperplanar set of points and nX is an unitary normal
vector to X, then KerX = span(vn) = span(nX).

Proof. Since X is hyperplanar then RankX = n − 1, see [9]. That is,
dim KerX = 1. Therefore, KerX = span(vn), see Remark 1. Since nX is
an unitary normal vector we have that XnX = 0, see equation (6). Hence,
nX ∈ KerX. Thus, span (nX) = KerX = span(vn). ��

Lemma 8. Let X be a hyperplanar set of points and AF the optimal solution
of functional F computed according to Equation (12). If nX is an unitary
normal vector to X and dim KerAF = 1, then

KerAF = KerX = span(vn) = span(vn) = span(nX).

Proof. Since V is an orthogonal matrix we have that V
T
vn = (0 · · · 0 1)T .

Moreover, since X is hyperplanar and w1 ≥ w2 ≥ · · · ≥ wn−1 ≥ wn ≥ 0, we
have that wn = 0. Therefore, W

+
V

T
vn = W

+
(0 · · · 0 1)T = 0. Hence

AF vn = Y UW
+

V
T
vn = 0.

That is, vn ∈ KerAF . Since dim KerAF = 1 we have that KerAF =
span(vn). To finalize, we only have to apply Lemmas 5 and 8. ��

Lemma 9. If Y is a hyperplanar set of points, dim KerAF = 1, and nY is
an unitary normal vector to Y , then (RankAF )⊥ = span(un) = span(nY ).
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Proof. First, since Y is hyperplanar then Y
T
nY = 0, or equivalently

(nY )T Y = 0T . (14)

Next, we will prove that (nY )T UWVT = 0T

(nY )T AF = (nY )T UWVT by Equation 13

= (nY )T Y UW
+
V

T
by Equation 12

= 0T by Equation 14 .

Since V is orthogonal it is invertible. Thus

(nY )T UW = 0T ,

which is equivalent to the following set of conditions

(nY )T u1w1 = 0
...

(nY )T un−1wn−1 = 0
(nY )T unwn = 0.

Since dimKerAF = 1, then wi > 0, for i = 1, . . . , n−1, and wn=0. Therefore,
nY is orthogonal to u1, . . . ,un−1 (the first n − 1 columns of matrix U). To
finalize, using Lemma 6, we have that span(un) = (RangeAF )⊥ = span(nY ).

��

6 Numerical Examples

Two examples are presented to assess several aspects and advantages of the
proposed algorithm. To highlight the analyzed capabilities in both cases we
have selected two extremely simple geometries and we have discretized them
with a coarse mesh, as it is suggested in [14]. In both examples we first project
the source surface onto the target surface [12]. Second, we obtain a structured
mesh on the linking sides using a transfinite interpolation algorithm (TFI)
[1]. Third, we compute an initial inner node position using a weighted pro-
jection from the cap surfaces [3, 5, 9]. Finally, a boundary error correction
is added to compute the final location [7, 8]. In addition, both examples are
computed using two strategies: 1. projecting only from the cap surfaces, and
2. starting from the cap surfaces, compute the position of the new layer from
the previous one in an advancing front manner. Note that in these exam-
ples we analyze the capability of the projection algorithm to reproduce the
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Fig. 3. Geometry of the first example: (a) top view; (b) bottom view

shape of the inner part of the projected mesh. That is, the flattening and the
flipping effects. Other issues such as the application to skewed and twisted
sweep paths, layers defined by non-affine or non-convex boundaries, or the
skewness effect introduced by functional G have been already addressed, see
[9, 12] for details. In order to measure the quality of the hexahedral mesh we
use the hexahedron shape metric, fshape, defined in [13]. Note that fshape is
a normalized measure. Therefore, it always lies in the range [0, 1].

The goal of the first example is to illustrate that, using the developed algo-
rithm, the offset scaling and flattening effects introduced by the minimization
of functional F can be avoided. That is, we will show that the obtained affine
mapping preserves the shape of the source mesh. Hence, it generates a hexahe-
dral mesh with less low-quality elements than the minimization of functional
F . The one-to-one volume is defined by two non-planar surfaces, see figure 3.
The boundary loops of both surfaces are symmetric, being the boundary loop
of the middle inner layer on the symmetry plane, see figure 4(a). However,
the surfaces are not symmetric. Note that they have a non-planar inner part
curved in the same orientation.

Figures 4(b) and 4(c) show the central cross-section of the obtained meshes
minimizing functionals F and using the proposed algorithm, respectively. For
this geometry, as the sweeping process advances from one layer to the next
one, the boundary loops become flatter and flatter until a planar boundary
loop is reached in the middle of the sweep path. Therefore, the flattening and
offset scaling effects produced by the minimization of functional F appear.
That is, in each projection the inner shape of the projected mesh becomes
more planar. When the planar loop in the middle of the geometry is reached,
see figure 4(a), a planar projected mesh is obtained and the offset data of
the cap surfaces is completely lost. Nevertheless, the proposed algorithm also
imposes that the optimal solution has to map uX to uY. According to our
selection of these vectors, we take into account the offset information of the
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Fig. 4. (a) Surface mesh; (b) central cross-section of the obtained mesh minimizing
F ; (c) central cross-section of the obtained using the proposed algorithm.

boundary loops, and in each projection, the location of the inner nodes of the
new layer resemble the shape of the cap meshes.

It is important to point out that in this particular case, all the boundary
loops are affine. That is, given two boundary loops an affine mapping exists
than exactly maps one onto the other. Therefore, functional F becomes null in
each projection and the boundary error correction will not improve the initial
mesh since it will not be triggered. In other words, the boundary correction will
not contribute since there is not error in the projection of the boundaries. On
the contrary, the developed algorithm also imposes that the computed affine
mapping has to map uX to uY. Therefore, in this example it does not exactly
map the boundary loops in the pseudo-normal direction, and the boundary
error correction will be triggered. Hence, we capture the shape of the source
surface and we obtain curved inner layers of elements, see figure 4(c), while
the minimization of functional F delivers more planar layers, see figure 4(b).
The meshes presented in figures 4(b) and 4(c) are obtained using a layer-by-
layer projection procedure. No significant differences have been observed if
the projection is computed only from the source and the target surfaces.

Figure 5 shows an histogram of the element quality. Note that using
the proposed algorithm we are able to increase the minimum quality value,
min(fshape). However, the minimization of F generates elements with a higher
value of max(fshape). The general behavior, which we have also observed in
other examples, is that the proposed algorithm tends to increase the minimum
quality value and to concentrate the quality of the elements around the mean
value.

The goal of the second example is to illustrate that the flipping effect
introduced by the minimization of functional F can be avoided using the pro-
posed algorithm. In this example we discretize an extrusion volume defined by
two surfaces with a rectangular boundary and with non-planar inner part, see
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Fig. 5. Mesh quality analysis for the first example. Distribution of the elements
according to its quality and statistical values of the quality of the elements.

Fig. 6. Geometry of the second example: (a) top view; (b) bottom view

figure 6. These cap surfaces are parallel, and their boundaries are orthogonal
to the sweep direction. We start the sweep process by meshing the linking
sides. However, due to a bad parameterization of one linking side, the loops
of nodes that define the inner layers are not completely planar. Moreover,
the loops of nodes are alternatively curved towards and opposed to the sweep
direction.

Under these conditions the minimization of functional F introduces the
flipping effect and unacceptable flat hexahedral elements with zero volume
are obtained, see figure 7(a). Note that since the loops of nodes are affine,
the boundary error cannot correct this drawback. However, according to the
proposed algorithm we are able to detect the proper direction of vectors uX

and uY . Hence, the flipping effect due to the minimization of functional F
is avoided and a high quality mesh is generated, see figure 7(b). Similarly to
the previous example, figures 7(a) and 7(b) are obtained projecting from one
layer to the next one in an advancing front manner. No significant differences
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Fig. 7. Central cross-section of the obtained mesh: (a) minimizing F ; (b) using the
proposed algorithm.
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Fig. 8. Mesh quality analysis for the second example. Distribution of the elements
according to its quality and statistical values of the quality of the elements.

have been observed if the projections are computed only from the source and
the target surfaces.

Figure 8 presents the distribution of the elements according their quality.
Note that the presented algorithm generates a mesh such that the quality of
the elements verifies fshape ∈ [0.95, 1.0].

7 Conclusions

In this paper we have proposed and detailed a node projection algorithm
to obtain hexahedral meshes in one-to-one sweep geometries. We show that
this algorithm, in conjunction with the boundary error procedure, is of major
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importance to preserve non-planar shape of the cap surfaces in the inner layers
of the hexahedral mesh. Moreover, we claim that the presented algorithm has
two additional advantages. First, it provides better node location than the
minimization of functionals F and G. Second, since it takes into account the
offset data of the cap surfaces (via the vectors uX and uY ), it triggers the
boundary correction procedure when the boundary loops of the layers are
affine. To summarize, using this algorithm we are able to overcome flattening,
skewness, offset scaling, and flipping effects introduced by the minimization
of functional F .
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Summary. This paper discusses the problem of refining constrained Delaunay
tetrahedralizations (CDTs) into good quality meshes suitable for adaptive numeri-
cal simulations. A practical algorithm which extends the basic Delaunay refinement
scheme is proposed. It generates an isotropic mesh corresponding to a sizing func-
tion which can be either user-specified or automatically derived from the geometric
data. Analysis shows that the algorithm is able to produce provable-good meshes,
i.e., most output tetrahedra have their circumradius-to-shortest edge ratios bounded,
except those in the neighborhood of small input angles. Good mesh conformity can
be obtained for smoothly changing sizing information. The algorithm has been im-
plemented. Various examples are provided to illustrate the theoretical aspects and
practical performance of the algorithm.

1 Introduction

Given a three dimensional mesh domain Ω represented by a piecewise linear
discretization of its boundary, i.e., ∂Ω is a set of vertices together with a set
of non-crossing segments and facets. The constrained Delaunay tetrahedraliza-
tions (CDT) T of ∂Ω is a tetrahedralization of its vertices and every segment
or facet of ∂Ω is represented as a union of faces of T . CDTs are useful struc-
tures that they not only respect the boundaries of mesh domains but also
retain many nice properties of Delaunay tetrahedralizations [19]. It is known
that the CDT of a given ∂Ω does not always exist in three dimensions [1].
By slightly refining ∂Ω with few additional points, the existence of a CDT is
guaranteed [14]. Provably-good algorithms for efficiently constructing CDTs
have been proposed [16, 18, 31]. A robust software implementation is publicly
available [32].

Generally, CDTs are not well suited for numerical simulations. The mesh
quality of CDTs is usually bad, e.g., there are elements which are very skinny
or flat and vertices having a big number of connected edges. Numerical meth-
ods such as finite element and finite volume methods have special demands
on their meshes. In order to obtain accurate results, the mesh elements must
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be “well-shaped”, e.g., having small aspect ratio. To reduce the interpolation
error, the largest angle of elements should be bounded [3, 17]. For capturing
the details of the solution field, the mesh must have smaller size in the region
where the solution or its gradient changes rapidly. While in order to reduce
the CPU time, the mesh must be as sparse as possible in the rest of the region.
In adaptive simulation which the physical problem is solved iteratively, the
desired mesh size in a single loop is usually obtained from the solution of the
previous iteration through an error estimator. It is convenient to introduce a
sizing function (or control space [6, 10]) to specify the desired size feature of
the problem. For example, the function specifies the (isotropic or anisotropic)
mesh size at any point in the domain.

The general adaptive mesh refinement problem can be described as fol-
lows: given an arbitrary boundary constrained tetrahedralization T and a siz-
ing distribution function H, find a set of additional points (so-called Steiner
points) and update T with these points, such that the resulting mesh only
has well-shaped elements and the mesh size conforms to H. In this paper, we
study a special case of the general problem by assuming that T is a CDT. We
refer to our problem as CDT refinement. The purpose is to develop an effi-
cient method that transfers any CDT into a good-quality mesh for adaptive
numerical simulations (see Fig. 1 for an example).

Fig. 1. A CDT of a flange (left), a refined mesh (middle), and the finite volume
solution (pdelib [33]) of a static heat equation (right). The refined mesh (20K nodes,
76K tets) was obtained within 3 seconds (on Intel(R) Xeon(TM) CPU 3.60GHz).

On refining CDTs, several merits of the CDT can be exploited. The bound-
aries of the input domain are respected and refined simultaneously, there are
no needs to recover them during the refinement and extract them later. More-
over, the exterior boundaries of the mesh domain are never overrefined. Hav-
ing the properties close to Delaunay tetrahedralizations, the searching for the
nearest feature of any point is local, no additional data structure is needed.
It is efficient to classify critical input features (e.g., small input angles) for re-
fining or protecting. However, CDT refinement does not guarantee to remove
all badly-shaped elements. To obtain a high-quality computational efficient
mesh, after the refinement a mesh smoothing (or mesh optimization) step is
necessary.
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The Delaunay refinement methods pioneered by Chew [4, 5], Ruppert [8],
and Shewchuk [13] are well known for having theoretical guarantees on the
quality of mesh elements and producing nicely graded meshes, i.e., the mesh
edges are short at small input features and gradually increasing to bigger ones.
Moreover, the resulting mesh is conforming Delaunay, which means the edges
(or faces) of the dual Voronoi diagram are orthogonal to the faces (or edges)
of the mesh. This is a very useful property for finite volume meshes [11, 25].
In three dimensions, only one class of badly-shaped tetrahedra called slivers
(a sliver has no short edges but nearly zero volume) can survive. The mesh
smoothing is essentially used to remove slivers [20, 23, 24]. The main limitation
against the elegance of the basic scheme is that no input angle should be
smaller than 90◦. This condition is not likely to be satisfied in most of the
realistic problems. Much work [15, 28, 21, 22] has gone into removing the
restrictions. However, most of these methods do not take an arbitrary sizing
functions into account.

The algorithm of Miller, et al. [11] finds a well-spaced point set conforming
to the domain boundary by sphere-packing, then triangulate the point set by
the Delaunay criterion. Recently, Oudot, et al [30] designed a volume meshing
algorithm which greedily samples the interior and the boundary of the domain
using a similar Delaunay refinement scheme. Both algorithms support user-
defined sizing functions. While these methods are not designed for refining
CDTs. In stead of that, the boundaries are unknown on input and have to be
enforced by the refinement.

Another class of methods [7, 9] which is popularly used for mesh refining
works in two parts: (1) point generation using the sizing information, and
(2) point insertion by the constrained Delaunay criterion. In part (2), some
points are filtered due to the saturation of the near points. This approach is
able to quickly generate a number of Steiner points well conforming to the
given sizing function and can be parallelized easily. From the theoretical point
of view, this approach does not guarantee mesh quality. It heuristically relies
on mesh optimization.

In this paper, a practical algorithm that builds on many previous work [7,
8, 13, 30] is proposed. This algorithm, referred to as constrained Delaunay
refinement, generates an isotropic mesh corresponding to a sizing function
H which can be either user-specified or automatically derived. The CDT is
refined incrementally by appropriately inserting points into it. At each step,
a new point v is generated by the basic Delaunay refinement scheme, v is
inserted only if the local mesh is sparse according to H. The process terminates
when no new point can be inserted. This algorithm inherits the theoretical
guarantees of the basic Delaunay refinement [8, 13]. It generates provably-
good quality mesh inside the domain. Those remaining low quality elements
are located in the neighborhood of small input angles. This algorithm has
been implemented. Practical experiments show that it works both robustly
and efficiently. The results validate our claim on the quality of the output
tetrahedra. Good mesh conformity is observed for smooth sizing functions.
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The remainder of this paper is organized as follows. The proposed algo-
rithm is described in section 2. Section 3 provides theoretical analysis regard-
ing this algorithm. Two approaches for specifying a sizing function are dis-
cussed in section 4. Various refinement examples as well as numerical results
are presented in section 5. Conclusions are stated in section 6.

2 Constrained Delaunay Refinement

In this section, the algorithm for refining CDTs is presented. It behaves like
the basic three dimensional Delaunay refinement algorithm of Shewchuk [13],
i.e., finds the badly-shaped tetrahedra and eliminates them by inserting their
circumcenters. However, the insertion of circumcenters is restricted by the
local mesh sizing information specified on input. We refer to this algorithm
as constrained Delaunay refinement.

2.1 Definitions

The input of this algorithm is a CDT T of a piecewise linear complex X [11].
The boundaries of X (segments and facets) are represented as a union of sub-
segments and subfaces in T (see Fig. 2). Any tetrahedron τ in T is constrained
Delaunay, i.e., the circumsphere of τ encloses no vertex of X that is visible
from the inside of τ , the visibility is blocked by the boundaries of X [16]. If τ
is constrained Delaunay, it may not be Delaunay. While if τ has no face which
is subface, it is Delaunay.

Let H(p) > 0 be a sizing function defined at any point p in X that specifies
the desired lengths of edges connecting at p. H is isotropic if the edge length
does not vary with respect to the directions at the point, otherwise, it is
anisotropic. In the scope of this paper, we assume H is isotropic. An ideal
sizing function is defined analytically at any point of X. In most cases, H is
given discretely at some points in X, the size of other points is obtained by
interpolation. We will further discuss the sizing function in section 3.

The radius-edge ratio of a tetrahedron τ is the ratio of the circumradius to
the shortest edge of τ . If τ has a large radius-edge ratio, then it must be badly-
shaped, e.g., it is skinny or flat. However, it is not vice versa. The slivers can

a facet of X

Fig. 2. Left: a piecewise linear complex (PLC). The shaded area highlights one of
its facets. Right: a constrained Delaunay tetrahedralization (CDT) of the left PLC.
The surface mesh of the CDT consists of subsegments and subfaces.
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have fairly small radius-edge ratio although they are very flat. Nevertheless,
radius-edge ratio is effective in classifying the shapes of tetrahedra.

In three dimensions, a subsegment or subface can have infinitely many
circumspheres. However, its smallest circumsphere (i.e., the diametric cir-
cumsphere) is unique. In the scope of this paper, we tacitly use the term
circumsphere to mean the unique one. A subsegment or a subface is said to
be encroached if a vertex lies inside or on its circumsphere.

2.2 The Algorithm

Given a CDT T to be refined, a sizing function H, a radius-edge ratio bound
B, and two parameters α1, α2. The algorithm incrementally adds Steiner
points into T and updates T into a refined mesh.

At each step, a Steiner point v is generated by the basic Delaunay refine-
ment scheme, i.e., v is found by the following three point generating rules.

R1 if a subsegment s is encroached, then v is the midpoint of s;
R2 if a subface f is encroached, then v is the circumcenter of f . However, if v

encroaches upon some subsegments, reject v, use R1 to find a v on one of
the encroached subsegments.

R3 if a tetrahedron t satisfies one of the two cases:
(1) t has radius-edge ratio greater than B, or,
(2) there is a corner p of t, such that α1H(p) < r, where r is the radius of

the circumsphere of t,
then v is the circumcenter of t. However, if v encroaches upon any subseg-
ment of subface, reject v, use R1 or R2 to find a v on one of the encroached
subsegments or subfaces.

Once the point v is found, the point accepting rule decides whether or not
v can be inserted into the mesh. Let P be a set of vertices collected as follows:

• If v is found by R1, P has two endpoints of s.
• If v is found by R2, P has the endpoints of subfaces which v is intended

to split.
• If v is found by R3, P has the endpoints of tets which v is intended to

split.

Then v can be inserted if α2H(p) < |v − p|, for all p ∈ P , where | · | is the
Euclidean distance. Otherwise, v is not inserted.

If v passes the point accepting rule, it is inserted into the current mesh
and the local mesh of v is retriangulated according to the Delaunay criterion.

Remark. R3-1 tests if t has bad quality, and R3-2 checks the H-conformity
of the corners of t. R3-1 has priority higher than R3-2, that is, R3-2 is triggered
when all tets has radius-edge ratio larger than B.

In the point accepting rule, if v is found by R1 or R2, only the endpoints of
the subsegment or subfaces of the same facet where v lies on have the right to
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accept or reject v. It appears that v can be too close to some existing vertices
in terms of H, i.e., there exists a point p 
∈ P , such that α2H(p) > |v−p|. We
will show in the next section that the distance |v − p| is bounded in terms of
α2 and H.

3 Analysis

The central idea of the algorithm is - only inserts a Steiner point when the local
mesh of the point is sparse. The sparseness is indicated by the values of the
sizing function at its adjacent vertices. In isotropic case, one can assume each
vertex p of the mesh is surrounded by two virtual balls, one sparse ball with
radius α1H(p), and one protect ball with radius α2H(p). The space outside
the sparse ball of p is sparse from the viewpoint of p, while the space inside
the protect ball of p is free of Steiner points. Notice that when α1 → +∞ (i.e.,
no sparse space) and α2 → 0 (i.e., no protect ball), it is the basic Delaunay
refinement algorithm [13].

In the following, we provide conditions on the sizing function H, and the
parameters α1, α2, and B to ensure the theoretical guarantees of this algo-
rithm. Specifically, we will show:

• The termination of the algorithm only depends on α2.
• The mesh quality is governed by both B and α2.
• The properties of H will influence the mesh conformity.
• The mesh size can be adjusted by α1.

For each output vertex v, its parent pv is defined as follows: if v is an input
vertex, pv is the closest output vertex to v; if v is an inserted vertex, let pv

be the closest vertex to v immediately after v is inserted, if there are several
such vertices, choose the one which is the most recently inserted. Notice that
pv may not be the closest output vertex to v.

Given a PLC X, the local feature size [8] lfs(p) at any point p is the radius
of the smallest ball centered at p that intersects two nonincident features of
X (where each of two features might be a vertex, segment or facet). lfs() is
defined for all points in X, it satisfies a 1-Lipschitz condition, i.e., for any two
points u and v in X, lfs(v) ≤ lfs(u) + |u− v|.

We use the definition of input angle from Cheng et al. [21]. Simply saying,
an input angle of the PLC X is any angle that formed by two incident seg-
ments, or a segment and a facet, or the dihedral angle formed by two incident
facets.

Lemma 1 shows that in the output mesh, the length of the shortest edge
of each vertex is bounded.

Lemma 1. Let v be a vertex of the output mesh, let p be the vertex closest
to v, then |v − p| ≥ min{α2H(v), Cα2H(pv), lfs(v)}, where C = sinθm/

√
2,

and θm is the smallest acute input angle.



On Refinement of Constrained Delaunay Tetrahedralizations 515

Proof. We prove this lemma by enumerating all cases of the presence of v and
p and deriving the bounds on each of them.

Assume v is an input vertex, then |v−p| = |v−pv| ≥ α2H(v). Now assume
p is an input vertex, then |v − p| ≥ lfs(v).

In the following, we examine the cases which both v and p are inserted
vertices. The notation p ≺ v means p is inserted before v.

Assume v is found by R1. Let s be the segment on which v lies.

(1) Assume p is found by R1. Let s′ be the segment on which p lies.
If s and s′ are coincident, if p ≺ v, then |v− p| = |v− pv| ≥ α2H(pv), else,
|v − p| ≥ α2H(v).
If s and s′ are disjoint, then |v − p| ≥ lfs(v).
If s and s′ share a common input vertex e, let θ be the angle formed
by s and s′, θ < 90◦ (since p is the closest vertex to v), then |v − p| ≥
|v − e|sinθ ≥ |v − pv|sinθ ≥ α2H(pv)sinθm (see Fig. 3 (a)).

(2) Assume p is found by R2. Let f be the facet on which p lies.
If s and f are disjoint, then |v − p| ≥ lfs(v).
If s and f share at one common input vertex e, let θ be the angle formed by
s and line segment eq, θ < 90◦ (see Fig. 3 (b)), then |v−p| ≥ |v−e|sinθ ≥
|v − pv|sinθ ≥ α2H(pv)sinθm.
If s belongs to f (see Fig. 3 (c)). Suppose p ≺ v, then p does not encroach
upon the segment v splits, hence |v − p| > |v − pv|, so this case is not
possible (since pv is closer to v than p is). The remaining case is v ≺ p,
then |v − p| ≥ α2H(v).

(3) Assume p is found by R3. Similar to the last case in (2) (Fig. 3 (c)), the
only possible case is v ≺ p, then |v − p| ≥ α2H(v).

vqs

fp

v

e

q

p
s’

s v

e

q

p

s

f

(a) (b) (c)

Fig. 3. Suppose v is found by R1, vp is the shortest edge connected at v. q illustrates
the possible location of the parent of v.

Assume v is found by R2. Let f be the facet on which v lies:

(4) Assume p is found by R1. Let s be the segment on which p lies.
If s and f are disjoint, then |v − p| ≥ lfs(v).
If s and f intersect at one input vertex e. Let θ be the input angle formed
by s and f , θ < 90◦ (refer to Fig. 3 (b), switch the positions of v and p).
Then |v − p| ≥ |v − e|sinθ ≥ |v − pv|sinθ ≥ α2H(pv)sinθm.
If s belongs to f (refer to Fig. 3 (c), switch the positions of v and p). If



516 H. Si

p ≺ v, then |v − p| ≥ |v − pv| ≥ α2H(pv), else, let q ∈ s be either an
input vertex or q ≺ v (see below), |v − p| ≥ |v − q|/

√
2 ≥ |v − pv|/

√
2 ≥

α2H(pv)/
√

2.
Now we show that such q must exist. It can be found by the following
iterative process: initialize i := 0, q0 := p; (i) let qi+1 be the endpoint of
the subsegment split by qi which is closer to v; if qi+1 is an input vertex
or qi+1 ≺ v, then q := qi+1 and return; else, i := i + 1 and goto (i). The
iterative process will terminate since R1 has priority higher than R2.

(5) Assume p is found by R2. Let f ′ be the facet on which p lies.
If f and f ′ are coincident. If p ≺ v, then |v − p| ≥ |v − pv| ≥ α2H(pv),
else, |v − p| ≥ α2H(v).
If f and f ′ are disjoint, then |v − p| ≥ lfs(v).
If f and f ′ intersect at an input vertex e (refer to Fig: 3 (b)), let θ be the
input angle formed by the two facets at e, θ < 90◦, |v− p| ≥ |v− e|sinθ ≥
|v − pv|sinθ ≥ α2H(pv)sinθm.
If f ′ and f intersect at a common segment s, let θ be the input dihedral
angle formed by f and f ′, θ < 90◦, let q be the vertex on s which is the
closest one to v, |v− q| ≥ α2H(pv)/

√
2 (using the same arguments in case

(4)), then |v − p| ≥ |v − q|sinθ ≥ α2H(pv)sinθ/
√

2.
(6) Assume p is found by R3.

If p ≺ v, let q ∈ f be either an input vertex or p ≺ v (such q can be found
by using the similar iterative process in case (4) and the fact R2 has higher
priority than R3), then |v−p| ≥ |v−q|/

√
2 ≥ |v−pv|/

√
2 ≥ α2H(pv)/

√
2,

else, |v − p| ≥ α2H(v).

Assume v is found by R3. If p ≺ v, then |v−p| = |v−pv| ≥ α2H(pv), else,
we have the following cases:

(7) Assume p is found by R1. Let s be the segment on which p lies, similar
to case (4), let q ∈ s be either an input vertex or q ≺ v, then |v − p| ≥
|v − q|/

√
2 ≥ |v − pv|/

√
2 ≥ α2H(pv)/

√
2.

(8) Assume p is found by R2. Let f be the facet on which p lies, similar to
case (6), let q ∈ f be either an input vertex or q ≺ v, then |v − p| ≥
|v − q|/

√
2 ≥ |v − pv|/

√
2 ≥ α2H(pv)/

√
2.

(9) Assume p is found by R3, then |v − p| ≥ α2H(v).

In the worst case, which is in case (5), C = sinθm/
√

2.

Theorem 1 which guarantees the termination of the algorithm is a directly
outcome from the above Lemma.

Theorem 1. The algorithm terminates if α2 > 0.

Next, we consider the output mesh quality. Our goal is to show that the
algorithm is able to create a mesh with most of the tetrahedra have their
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radius-edge ratio bounded, only few poor quality tetrahedra remain in well
defined locations.

We say a tetrahedron is skinny if its radius-edge ratio is smaller than B.
A vertex is sharp if there are two segments or a segment and a facet sharing
at it form an acute angle; a segment is sharp if it contains a sharp vertex or
there are two facets sharing it form an acute dihedral angle; a facet is sharp
if it contains a sharp segment or there is another segment or facet adjacent
to it forming an acute angle or acute dihedral angle.

Theorem 2. Suppose the quality bound B is larger than 2. Then there exists
a constant D, such that when α2 = D, most of the output tetrahedra have a
radius-edge ratio smaller than B. The circumcenter of any skinny tetrahedron
is within distance

√
2α2H(p), where p is a sharp vertex or a vertex inserted

on a sharp segment or a sharp facet.

Proof. If there is no acute input angle and B > 2, the basic Delaunay refine-
ment algorithm guarantees that the distance of any output vertex v to its
nearest neighbor is at least lfs(v)

DS+1 , where DS > 1 is a fixed constant (Theorem
6 in [13]). The theorem can be proved if D is chosen sufficiently small such
that the inequality

D <
lfs(v)

H(v)(DS + 1)

is hold for any output vertex v, i.e., the protect ball of v is always empty and
no later generated vertex will be rejected.

Assume there are acute input angles. The theorem can be proved by the
following procedure. At initialization, choose D0 to be an arbitrary positive
value, and run the constrained Delaunay refinement algorithm with α2 := D0.
In the output mesh, there may have skinny tets. Let t be a remaining poor
quality tet, ct be its circumcenter. t can be categorized into one of the four
sets listed below:

• Φ1, ct lies outside the mesh and does not encroach upon any segment or
subface.

• Φ2, ct lies inside the mesh and does not encroach upon any segment or
subface.

• Φ3, ct encroaches upon a segment (or a subface) which is non-sharp.
• Φ4, ct encroaches upon a sharp segment (or a sharp subface).

Consider a tet t ∈ Φ1, there exists at least one segment s (or one subface f)
which is encroached by a corner of t, i.e., s (or f) is non-conforming Delaunay,
and s (or f) is not split because its circumcenter cs is rejected by the point
accepting rule, i.e., cs lies inside at least one of the protecting balls of its
corners.

We show one special case that such segment exists, other cases can be
shown similarly. Assume one face abc of t lies on a facet F (see Fig. 4), bc be
the longest edge of abc. Then the circumcircle C of abc must intersect some
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Fig. 4. t ∈ Φ1, one special case of the existence of an encroached segment. In the
above figure, abc is a face of t and lies inside a facet F , de is the boundary segment
of F which is encroached by a.

boundary segment de of F . Moreover, both d and e lie outside or on C (since
abc is a Delaunay subface on F ). Let the intersections of C and de be d′ and
e′, then � dae ≥ � d′ae′ ≥ 90◦. Hence segment de is encroached by a.

t will be eliminated if s (or f) is split by the constrained Delaunay refine-
ment. This can be achieved by shrinking the protect balls of the endpoints of
s (or f) such that its circumcenter lies outside all of them. It is possible to
choose a sufficiently small D1 > 0, such that all tets of Φ1 can be removed by
running the algorithm with α2 := D1. The newly inserted vertices may create
new poor quality tets which can be classified into Φ2, Φ3, and Φ4.

Consider a tet t ∈ Φ2, ct is rejected by some protect balls of existing
vertices at the neighborhood of t. t can be eliminated by shrinking these
protect balls such that ct lies outside all of them. It is possible to choose a
sufficiently small D2, 0 < D2 ≤ D1, such that no t ∈ Φ2 can survive after
running the algorithm with α2 := D2. There are possibly remaining poor
quality tets of Φ3 and Φ4.

Consider a tet t ∈ Φ3, the circumcenter of s (or f) is rejected by lying
inside some protect balls of its endpoints. s (or f) will be split by shrinking
these protect balls. Consequently, either t gets eliminated during the split of
s (or f), or ct does not encroach any segment or subface and is accepted for
insertion, or t becomes a tet of Φ2. It is possible to choose a sufficiently small
D3, 0 < D3 ≤ D2, such that no t ∈ Φ2 ∪ Φ3 can survive after running the
algorithm with α2 := D3. Now the possibly remaining poor quality tets can
only belong to Φ4.

If t ∈ Φ4, the circumcenter cs of s (or f) is rejected by lying inside
some protect balls of its endpoints (see Fig. 5). Let p be such a vertex, then,
|ct − cs| < |cs − p| < α2H(p). Hence |ct − p| <

√
2α2H(p).

Next, we consider the mesh conformity with respect to the sizing function
H. For each vertex v, let S(v) and L(v) denotes the lengths of the shortest
edge and the longest edge among all edges containing v, respectively. We are
interesting the values S(v)

H(v) and L(v)
H(v) . Theorem 3 gives bounds on those output

vertices at where the local mesh quality is met.
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c t

c s

p

t

s

Fig. 5. t ∈ Φ4, the circumcenter ct of t encroaches upon the circumsphere of segment
s. The circumcenter cs of s lies inside the protecting ball of one of the endpoint p.

Theorem 3. Suppose all tets containing v have their radius-edge ratio bounded,
and the rule R3-2 is not applicable on any of them, then:

(i) S(v)
H(v) ≥ min{α2, Cα2

H(pv)
H(v) , lfs(v)

H(v) }.
(ii) L(v)

H(v) ≤ 2α1;

Proof. The first claim follows directly from Lemma 1. Let t be a tet which
contains v and has the longest edge of length L(v), let r be the circumradius
of t, then: L(v)

2 ≤ r ≤ α1H(v) =⇒ L(v)
H(v) ≤ 2α1.

When the local mesh quality is satisfied, and the mesh is saturated, The-
orem 3 shows that the mesh conformity at each vertex v is related to H, α1,
α2 and lfs. Specifically,

• H, α2, and lfs together decide the lower bound of the mesh conformity.
• The term H(pv)

H(v) indicates that H should not vary too much in v’s neighbor-

hood, e.g., H is 1-Lipschitz. The term lfs(v)
H(v) indicates that H is constrained

by lfs which is dependent upon the boundary of the CDT.
• α2 plays a contradictory role between mesh quality and mesh conformity.

It needs to be small in order to guarantee the mesh quality. While it is
desired to be as large as possible for the good mesh conformity.

• α1 limits the length of the longest output edge connected at v. It directly
controls the result mesh size, i.e., the smaller it is, the bigger the mesh
size will be.

4 Specify Sizing Functions

Our algorithm needs a sizing function H which is defined over the mesh do-
main and specifies the local mesh size, e.g., the desired edge length or element
density. The data of a sizing function can be based on either a priori known
information or a posteriori error estimation.
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This section describes two approaches for specifying a sizing function. If
no sizing function is given by the user, it can be automatically derived by
using the boundary data of the CDT. Alternatively, a background mesh whose
vertices contain the size information can be supplied along with the CDT.

4.1 Sizing Function Derived from CDT

It is possible that an appropriate sizing function may not available in advance.
For example, on the first time to create a mesh for simulation, there is not
much mesh size information available1. In such case, H is derived from the
CDT T of a PLC X by the following approach:

• if p is not a Steiner point, then H(p) := lfs(p);
• else H(p) is interpolated from its adjacent vertices by the Shepard in-

terpolation, where the weights are set to be the second inverse power of
distances, i.e.,

H(p) :=
∑n

i=1 |p− vi|−2H(vi)∑n
i=1 |p− vi|−2

.

where vi is a vertex connecting to p in current mesh.

The use of Shepard interpolation [2] has the effect that the closest node
has the biggest influence on the size of the Steiner point. An example is shown
in Fig. 6.

Fig. 6. Sizing function derived from local feature sizes and Shepard interpolation.
The left two pictures show a CDT and the local feature sizes at its vertices. On the
right, the refined mesh and the obtained sizing function are shown.

The above approach is simple enough in practice. If p is a vertex of the
initial CDT, lfs(p) can be efficiently computed by searching locally the small-
est distance of the nearest vertex, subsegment, and subface. Another feature
is that the sizing function is computed on the fly, i.e., each Steiner point gets
its size after it is inserted. There is no need to store H. The mesh quality

1Although some pre-knowledge of the problem may help for deciding the size of
the mesh on its boundary. However, it is generally hard to decide the appropriate
mesh size inside the volume in advance.
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can be improved by choosing an appropriate value for α2. There are simi-
lar approaches [7, 9, 29] but they require additional data structures, e.g., a
background mesh or a KD-tree.

4.2 Use of a Background Mesh

If H is known in advance, the most popular and flexible way for specifying H is
through a background mesh whose vertices or elements encode the information
about the desired mesh size. The background mesh can be any grid structure
(such as uniform grid or Octree) or an unstructured mesh (such as CDT).

We use an unstructured mesh as the background mesh. Hence it can be
the initial CDT or a tetrahedral mesh obtained at the previous iteration in an
adaptive process. At any point p of the current mesh, H(p) can be obtained
by means of interpolation in the background mesh:

• locate p in a tetrahedron t which contains p;
• compute H(p) as the P 1 interpolation of the sizes H(pi) at the vertices pi

of t.

5 Examples

The algorithm has been integrated in TetGen – a quality tetrahedral mesh
generator [32]. The input can be either a PLC or a CDT. A sizing function
H can be optionally specified using a background mesh. If H is not available,
it will be automatically generated by the approach discussed in section 4.1.
Parameters B, α1, and α2 are all adjustable by command line options. Each
of them has a default value (B = 2.0, α1 =

√
2, α2 = 0.5) if it is not specified

on input.
The next two examples (Figs. 7 and 8) were built for analysis purpose.

We study the effects of using different combinations of the parameters (B,
α1, and α2) and compare the results according to the theoretical analysis of
section 3.

Figure 7 are serials of meshes created by various combinations of (B,α2).
The sizing functions are automatically derived. Remaining poor quality tets
are plotted for selected meshes. The mesh size of each mesh is given in the
form nv/nt/nb, where nv – the number of nodes, nt – the number of tets,
and nb – the number of remaining poor quality tets. The results validate our
claim (Theorem 2) on the mesh quality, i.e., for an appropriate α2, most of
tets have bounded radius-edge ratio, poor quality tets are all close to small
input angles. Notice that few slivers may remain in the volume, they can be
removed by a mesh smoothing step.

Figure 8 show three meshes of a unit cube obtained by specifying different
sizing functions H through background meshes. The Hs used in these meshes
are piecewise smooth functions. The parameters are chosen as follows: B =
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(2.0, 0.5) (2.0, 0.2) (2.0, 0.1) (2.0, 0.1).
262/765/52 536/1526/124 1022/2963/240 −/ − /240.

(1.4, 0.2) (1.2, 0.2) (1.1, 0.2) (1.1, 0.2).
692/2064/124 964/3082/124 1901/7233/126 −/ − /126.

Fig. 7. Given a CDT with small input angles, the above pictures are different meshes
refined by using various combinations of parameters (B, α2) and automatically de-
riving sizing functions.

Mesh 1 Mesh 2 Mesh 3
12248/73693/0 22587/139484/0 108389/688768/0

Fig. 8. Meshes created by specifying different sizing functions.

2.0, α1 =
√

2, and α2 = 0.05. Table 1 lists the statistics of the ratios S(v)
H(v)

and L(v)
H(v) (defined in Theorem 3) at mesh vertices. The statistics show that

the meshes are well conformed to the corresponding Hs.
In the following, some selected examples which illustrate the practicabil-

ity of this algorithm are presented (Fig. 10 to Fig. 12). The complexity of the
input geometries2 challenges both the robustness and efficiency of the algo-

2Available from Inria’s large repository: http://www-rocq1.inria.fr/gamma
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Table 1. Statistics of the ratios Sv = S(v)
H(v)

and Lv = L(v)
H(v)

(defined in Theorem 3)
at mesh vertices of the meshes shown in Fig. 8.

Mesh 1 Mesh 2 Mesh 3
Sv Lv Sv Lv Sv Lv

< 0.5 0 0 0 0 0 0

0.5 − 1/
√

2 58 0 0 0 0 0

1/
√

2 − 1 3221 1 283 0 0 0

1 −
√

2 15062 113 10778 14 1927 49√
2 − 2 4246 3867 1187 1044 94186 12594

2 − 2
√

2 0 18606 0 11190 12276 95746

> 2
√

2 0 0 0 0 0 0

Table 2. Statistics of mesh sizes and CPU times (examples in Fig. 9 to Fig. 11).
Tested on Intel(R) Xeon(TM) CPU 3.60GHz, 2G Memory.

Input CDT Quality Mesh CPU time
nv nt nv nt (sec.)

747 6,364 19,626 300,712 1,783,953 36.80
Peugeot 7,689 20,689 474,678 2,706,469 84.91
Engine 59,233 190,768 410,288 1,506,073 135.06

rithm. Table 2 shows the statistics on the size of input and resulting meshes,
the CPU time for refining CDTs. Figure 9 are radius-edge ratio histograms of
the resulting meshes.

6 Conclusion and Discussion

In this paper, the problem of refining constrained Delaunay tetrahedraliza-
tions is raised in the context of adaptive numerical simulations. A practical
algorithm is proposed. This algorithm inherits the simplicity and elegance of
the basic Delaunay refinement scheme. While it has no restriction on the an-
gles of the inputs and it takes a user-specified sizing function into account.
The algorithm refines a CDT by fast distributing additional points (Steiner
points) in its sparse area. Theoretical analysis shows that the mesh quality can
be provably-good, good mesh conformity can be obtained for smooth sizing
functions.

There are possibilities to improve the mesh quality and reduce the mesh
size. Notice that the the circumcenter used in basic Delaunay refinement
scheme might not be the best position for a Steiner point. Alternatively, the
off-center [27] may be considered.

Although this algorithm is proposed for refining CDTs, it can be used
to refine any boundary constrained tetrahedralizations (non-CDTs) as well.
Notice that the point generating rules and the point accepting rule do not
rely on the type of inputs. A CDT is eligible for an efficient implementation
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Fig. 9. Radius-edge ratio histograms (examples in Fig. 10 to Fig. 12).

of these rules. It is not the case for arbitrary non-CDTs that required features
may not be found locally. While a background grid (such as Octree) may be
used.

It would be interesting to adapt the algorithm for anisotropic H. For this
purpose, the usual ways of measuring edge lengths, updating locally Delaunay
property around Steiner points, and the interpolation of H must be extended
by anisotropic manners [10].
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1 Introduction

Yee’s scheme for the solution of the Maxwell equations [1] and the MAC
algorithm for the solution of the Navier–Stokes equations [2] are examples
of co-volume solution techniques. Co-volume methods, which are staggered
in both time and space, exhibit a high degree of computationally efficiency,
in terms of both CPU and memory requirements compared to, for example,
a finite element time domain method (FETD). The co-volume method for
electromagnetic (EM) waves has the additional advantage of preserving the
energy and, hence, maintaining the amplitude of plane waves. It also better
approximates the field near sharp edges, vertices and wire structures, without
the need to reduce the element size. Initially proposed for structured grids,
Yee’s scheme can be generalized for unstructured meshes and this will enable
its application to industrially complex geometries [3].

Despite the fact that real progress has been achieved in unstructured
mesh generation methods since late 80s, co-volume schemes have not gen-
erally proved to be effective for simulations involving domains of complex
shape. This is due to the difficulties encountered when attempting to gener-
ate the high quality meshes that satisfying the mesh requirements necessary
for co-volume methods. In this work, we concentrate on EM wave scattering
simulations and identify the necessary mesh criteria required for a co-volume
scheme. We also describe several approaches for generating two-dimensional
and three-dimensional meshes satisfying these criteria. Numerical examples
on the scattering of EM waves show the efficiency and accuracy that can be
achieved with a co-volume method utilising the proposed meshing scheme.

2 Mesh Requirements

For co-volume integration schemes to be implemented on unstructured meshes,
the triangulation has to satisfy a number of criteria. For EM simulations, since
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the schemes are staggered in space, co-volume methods need two mutually
orthogonal meshes for the electric and magnetic fields. The dual Delaunay–
Voronöı diagram is the obvious choice. In 2D, corresponding edges of the
Voronöı and Delaunay meshes are mutually orthogonal. In 3D, every edge of
the Voronöı diagram is orthogonal to the corresponding face of the Delaunay
triangulation and vice versa.

Both meshes must be sufficiently smooth, i.e. the edges in both meshes
must not be too short or too long. The stability property of an explicit im-
plementation determines the time step in terms of the shortest edge in both
meshes. Thus, all the edges should have length O(δ), where δ is the rec-
ommended element size based upon the characteristic wavelength, λ, of the
problem. The typical value used in many simulations is δ = λ/15.

In addition, from the view point of accuracy, the Delaunay mesh should
not contain bad elements, where, in this context, an element is defined as bad
if its circumcentre is located outside the element.

A brief explanation of the main requirements can be found in the Appen-
dix.

3 Mesh Quality Criteria

The criteria employed to determine the suitability of the mesh have to reflect
the requirements of the numerical solution procedure. The simple formula

Q = β
min{lD, lV }

〈lD〉
(1)

is very useful to estimate the quality of the mesh built for wave scattering
purposes. Here, β =

√
8 is a normalization coefficient, which gives Q = 1 for

an ideal mesh (see Section 5), lD is the Delaunay edge length, lV is the Voronöı
edge length and 〈lD〉 is the average Delaunay edge length. The minimum is
taken over all sides of both meshes.

If the mesh contains some bad elements, then the fraction,

rbad =
Nbad

e

Ne
, (2)

is also a criterion which may be used to compare different meshes. Here Ne

is the total number of elements in the mesh and Nbad
e is the number of bad

elements.
A sufficient condition to ensure the smoothness of the Voronöı diagram,

is to ensure that every element has its circumcentre inside the element and
located as far as possible from its edges or faces. In this case, the measure

qe = 3
he

Re
≡ 3 cos

(
max

i=1,...,4
αi

)
(3)
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is employed to estimate the quality of each individual element. In this expres-
sion, Re is the circumradius, he = min

i=1,...,4
he

i is the signed shortest distance

from the circumcentre to an element edge or face (set negative if the circum-
centre lies outside the element). For a perfect tetrahedral element qe = 1;
qe < 0 for a bad element. This quality parameter qe is also related to the
maximal vertex angle αi of an element. In 2D the vertex angle is simply the
angle between the two edges connected to this vertex. In 3D the analogous
tetrahedron vertex angle has a more complicated definition. The angle αi of
vertex Pi is defined as the angle under which a circumcircle of the face op-

P1

P4

P2

P3

�1
O O1

x

z

y

Fig. 1. On the definition of 3D element angle (left). Six elements of 3D ideal mesh
form a parallelepiped tiling the space (right).

posite to Pi is seen from Pi in the plane passing through Pi and centre of
element’s circumsphere, O, and face’s circumcircle, Oi, as seen in figure 1.
The segment OOi has length hi. A good quality element, with qe > 0, will
have all acute vertex angles. It can be shown that, if qe > 0 for all elements
of the mesh, then the mesh is guaranteed to be Delaunay satisfying [4].

It can be shown that the necessary condition to ensure a good quality
tetrahedral element, qe > 0, with circumcentre located inside the element,
is that the four triangular faces of the element should have acute angles [4].
Therefore, it is important to ensure that the initial boundary triangulation
consists of triangles with all acute angles.

If all the tetrahedron vertex angles defined above are acute, some dihedral
angles can be right or obtuse. A tetrahedron with all acute dihedral angles
can have its circumecentre located outside its volume and hence can have an
obtuse vertex angle.

Notice also, that although the tetrahedron vertex angle and the solid angle
for the same vertex are not related uniquely, nevertheless the solid angle is



532 I. Sazonov et al.

less/equal/greater than 2π, if the vertex angle is acute/right/obtuse, respec-
tively.

4 Traditional Meshing Methods

Traditional unstructured mesh generation methods, such as the advancing
front technique (AFT) [5] and the Delaunay triangulation [6], as well as their
combinations [7], are not designed to guarantee the creation of a mesh meet-
ing the requirements set out above, even in the two-dimensional case. These
methods generate meshes in which the element edge length is normally accept-
able, but the corresponding Voronöı diagram may often be highly irregular,
with some very short Voronöı edges. Thus, these methods cannot guarantee
the regularity of the edge lengths of the dual mesh and the absence of bad
elements, even in 2D. Mesh improvement methods, based on swapping, recon-
nection [8] and smoothing, improve the quality of 2D meshes. Nevertheless,
a significant number of very short Voronöı edges and bad elements, located
mainly near the domain boundary, remain in the final mesh [9]. In 3D, the
advancing front technique (AFT) can produce meshes with about 60% of bad
elements and these are unsuitable for a co-volume solution scheme.

A promising approach is the construction of the centroidal Voronöı tessel-
lation (CVT) and its dual Delaunay mesh. The CVT relocates the generated
nodes to be at the mass centroids of the corresponding Voronöı cells with re-
spect to a given density function [10]. A new Voronöı tessellation of the relo-
cated nodes is produced. This process, which is called Lloyd’s algorithm [11],
can be repeated until all nodes are close enough to the corresponding cen-
troids. Lloyd’s algorithm needs an initial mesh, which can be generated by
any method. In addition to relocating the nodes, the CVT scheme changes
the mesh topology. Although the quality of final mesh is much higher than
the quality of the initial mesh, it is normally not suitable for the successful
application of co-volume solution schemes: in 3D, the share of bad elements
is usually around 10% of the total elements, although this can be reduced to
3–5% for specially prepared initial meshes.

An alternative approach is the stitching method [9]. In this approach, the
problem of triangulation is split into a set of relatively simple problems of
local triangulation. Firstly, in the vicinity of boundaries, body fitted local
meshes are built with properties close to those regarded as being ideal. An
ideal mesh is employed, away from boundaries, to fill the remaining part of
the domain. These mesh fragments are then combined, to form a consistent
mesh, with the outer layer of the near boundary elements stitched to a region
of ideal mesh by a special procedure, in which the high compliance of mesh
fragments is used. This will result in high quality meshes compared to those
built by other methods [9].
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5 Ideal Mesh

In 2D, a mesh of equilateral triangles is an ideal mesh. The index of every
node, i.e. the number of nodes connected to a node, is 6, the Voronöı edge
length lV = lD/

√
3 ≈ 0.56 lD, the element quality is qe = 1 and all the vertex

angles are 60◦. A 3D analogue of this ideal mesh consists of equal non-perfect
tetrahedra, each face of which is an isosceles triangle with one side of length
llong
D and two shorter sides of length lshort

D = (
√

3/2) llong
D . Six such tetrahedra

form a parallelepiped tiling the space, as illustrated in Figure 1. It can be
shown that this configuration maximises the minimum Voronöı edge for a
fixed element size. All Voronöı edges have the same length lV ≈ 0.38 δ where
δ ≡ 〈lD〉 = (3 llong

D + 4 lshort
D )/7 ≈ 0.92 llong

D . This configuration guarantees
that the element quality is qe ≈ 0.95 and that every node has an index of
14. All vertices have an acute angle, 71.5◦, and hence, the circumcentre is
located inside each element. However, certain dihedral angles are equal to
90◦, which is larger than the value α = arccos(1/3) = 70.5◦ for the perfect
tetrahedron. The 2D and 3D ideal meshes satisfy the requirements listed in
Section 2, but do not necessarily fit the boundaries of an arbitrary domain to
be triangulated.

6 Near Boundary Triangulation

If the domain boundary is smooth enough i.e. if its radius of curvature is
much greater than δ, then building the first few layers of a body fitted mesh
is an elementary task in 2D: the near boundary mesh has the same topology
as the 2D ideal mesh. A well tuned 2D advancing front method is capable of
producing a high quality near boundary mesh of this type. Modifications to
the method, which improve the mesh quality if the boundary curvature is not
small, are described in [9].

The analogous 3D problem is not elementary, even for the problem of gen-
erating high quality tetrahedral elements near a plane boundary discretised
with a 2D ideal mesh. Using the 3D advancing front technique, which is re-
garded to be an effective method for placing points, we can build a perfect
tetrahedron on every boundary triangle (Figure 2a). The first layer of new
points forms a hexagonal structure which cannot be connected to form trian-
gles which are all acute. This is illustrated in Figure 3. Hence, this method
applied directly, which generating nearly twice the number of boundary points,
cannot even produce a mesh of the desired form for the first layer.

Analyzing the structure of the 3D ideal mesh, it can be concluded that
the best location of a new point is above the edge shared by two conjugate
surface triangles (Figure 2b). Starting from a plane boundary with an ideal
2D triangulation, the boundary triangles are grouped into pairs sharing the
same edge. A New points are located above these edges. The optimal position
for the points is at a distance of 0.684 of the boundary edge length from the
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a b

Fig. 2. (a) Placing a new point above centroid of boundary triangles as in classical
AFT. (b) Placing a new point above a midpoint of an edge (bold line) shared by two
boundary triangles. Open circles indicate new points, dotted lines show new edges
of formed nearly boundary tetrahedra.

Fig. 3. Perfect tetrahedra built at every boundary triangle (view from above the
boundary) (left). Delaunay connection of their apexes (right)

plane. This minimises the worst element quality at qe = 0.795. This procedure
ensures that the number of new points similar to that of the initial boundary
points. This means that the triangulation can be continued layer by layer to
form a 3D mesh with the same topology as the 3D ideal mesh. This process
is demonstrated in Figure 4.

In the general case, the boundary triangulation does not have the topology
of 2D ideal mesh on a plane with all nodal indexes equal to 6. Therefore, when
we group all the boundary faces into pairs, some of the generated triangles
will remain ungrouped (Figure 5). For such an ungrouped triangle, point in
the next layer must be located above its circumcentre, as in the standard ad-
vancing front technique. If the topology of the boundary mesh is good enough,
i.e. if the index of most nodes is 6, and a relatively small number of nodes
have index 5 and 7, then the number of uncoupled triangles is relatively small.
Hence, the number of points in the the next layer will only slightly exceed the
number of boundary points. All the points are connected by the Delaunay
method and a new layer is formed. This can be viewed as a sophisticated
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Fig. 4. Tetrahedra built if nodes are placed above edges (left). Boundary triangu-
lation (solid) and Delaunay connection of nodes (dashed) (right).

Fig. 5. Set of boundary faces is split by non-intersecting pairs of triangles sharing
this same edge. Those edges are indicated by a bold lines. Non-coupled triangles are
indicated by grey.

version of the 3D advancing front method for placing points, coupled with the
Delaunay method for connecting points.

An example of a mesh produced by the basic AFT for a domain with a
slightly curved boundary, and with a nearly ideal boundary mesh, is shown in
Figure 6. Here only tetrahedra having boundary faces are shown. The colour
indicates the tetrahedron quality: with white to red corresponding to quality
qe from 1 to zero and from blue to black corresponds to the quality qe from
zero to −3. It can be observed that a significant number of bad elements
remains.

Figure 7 shows several views of the first layer of a mesh generated using the
proposed method. The colour–quality indication is the same as that used in



536 I. Sazonov et al.

Fig. 6. Fragment of triangulation by the classical AFT. Elements having boundary
face are shown only. View from the outside (left) and from the domain (right).

Figure 6. It should be noted that the near boundary triangulation is the most
demanding part of the stitching method. Furthermore, acute near boundary
triangulation will automatically solve the problem of boundary recovery, which
is an essential part of any Delaunay triangulation.

Fig. 7. Fragment of the triangulation by the new method. View from the outside
(a) and from the domain (b–c), elements having boundary face (a,b), also elements
having boundary edge (c), also elements having boundary node (d)
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Steps in creating a new layer:

1. Split all boundary (or frontal) triangles by pair of triangles sharing the
same edge, minimizing the number of single triangles.

2. Locate new points above midpoint of the shared edges and above centroid
of single triangle.

3. Connect all the points by Delaunay method.

7 Example of a Domain Triangulation.

A simple domain, made of two spherical surfaces, is triangulated using the
procedure described above. The size of elements used increases towards the
outer sphere. A cut through the triangulation is shown in Figure 8. The colour–
quality indication is the same as in Figures 6 and 7. The mesh contains some
bad elements, with qe ≈ −0.017, but they form just 0.12% of the elements
only, i.e. 256 among Ne = 218, 816. The shortest Voronöı edge is 0.05 δ, 87%
of the internal nodes have the ideal index of 14, and the rest of the nodes have
indices between 10 and 16. To compare the quality of the generated mesh with
that obtained by other methods, the same 3D domain and the same boundary
triangulation were used to generate meshes using an advancing front method,
a Delaunay triangulation and a coupled Delaunay and CVT scheme. Various
mesh quality criteria were computed: the global quality criteria, Q defined in
equation (1); the percentage of bad elements in the mesh rbad; the individual

Table 1. Comparison for different meshing methods

Method Q rbad
qe 3Rin

e /Re nodal index

min mean min mean min max

Advancing Front 4 · 10−7 67% −3 −0.49 3·10−4 0.65 4 37

Delaunay 2.4 · 10−6 50% −2.2 −0.07 5·10−3 0.72 8 24

Delaunay+CVT 1.0 · 10−5 9.8% −1.2 0.39 0.08 0.88 9 21

Present method 4.8 · 10−2 0.12% −0.02 0.65 0.74 0.92 10 16

element quality qe, defined in equation (3); a standard criterion of the ratio an
element’s inradius Rin

e to its circumradius. To estimate topological properties
of the obtained meshes, the range of the nodal index for internal nodes was
also determined. The results are displayed in Table 1. It can be seen that
the new method gives much improved mesh quality compared to all other
methods.
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Fig. 8. Cut of the triangulation of a spherical layer.

8 Numerical Results

This mesh has been used with a co-volume integration scheme for Maxwell’s
equations. The unknowns are the projections of the electric field onto the
Delaunay edges and the projections of the magnetic field onto the Voronöı
edges. The solution is advanced in time using a staggered explicit scheme.
The wave frequency is such that the diameter of the sphere is 2λ. The size
of the elements near the scattering PEC sphere is approximately λ/15. Near
the external boundary, the element size is λ/6. The distance between the
boundaries is large enough to neglect the reflection of wave from the external
boundary during first three cycles. The number of time steps per cycle is 141.
The computation time per time step is 0.1 s, which is ten times faster than
the corresponding time for a conventional finite element time domain method
on the same mesh. The computed radar cross section (RCS) distribution is
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Fig. 9. Radar Cross Section exact (red) and computed by the co-volume method
(blue).

compared with the exact distribution in Figure 9 and the maximum difference
at any location is less than one tenth of a dB.

9 Conclusion

A new method of placing the points in 3D triangulation is proposed. The
method produces a high quality near boundary triangulation. It has been
demonstrated that the quality of the resulting mesh is such co-volume inte-
gration schemes can be successfully implemented. An example that demon-
strates that the problem of building a mesh for a 3D domain for use with
a co-volume solution scheme is solvable. Work on the generalization of the
method for more complicated domains is currently in progress.
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Appendix: Yee’s scheme generalized to unstructured
meshes

The Yee algorithm is based on: Ampere’s law

∂

∂t

∫

A

E dA = ε

∮

∂A

H dl (4)

and Faraday’s law
∂

∂t

∫

A

H dA = −µ

∮

∂A

E dl (5)

applied to a surface A and its boundary ∂A. Here E and H are the electric
and magnetic fields, respectively; dA is an element of surface area directed
normal to the surface, dl is an element of the contour length directed tangent
to the contour; ε and µ are the electric and magnetic permeability.

If a dual Delaunay–Voronöı diagram is built for the domain of integration,
then equations (4) and (5) can be approximated as

En
i − En−1

i

∆t
AV

i = ε

MV
i∑

k=1

Hn+0.5
ji,k

lVji,k
, i = 1, . . . , ND

s (6)
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Hn+0.5
j −Hn−0.5

j

∆t
AD

j = −µ
3∑

k=1

En
ij,k

lDij,k
, j = 1, . . . , NV

s (7)

where En
i is the projection of the electric field onto the ith Delaunay side at

the instant n∆t; Hn+0.5
j is the projection of the magnetic field onto the jth

Voronöı side at the instant (n + 0.5)∆t; lDi and AV
i denote the length of the

ith Delaunay side and the area of the corresponding Voronöı face respectively;
lVj and AD

j are the length of the jth Voronöı side and the area of the corre-
sponding Delaunay face respectively; ji,k, k = 1, . . . , MV

i are sides of a Voronöı
face corresponding to the ith Delaunay edge (Figure 10a); ij,k, k = 1, 2, 3 are
sides of a Delaunay triangle face corresponding to the jth Voronöı edge (Fig-
ure 10b); ND

s and Ne
s are the numbers of Delaunay and Voronöı sides in the

mesh.

p p

i ji,4
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ij,3
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ij,3

a b c

Fig. 10. The ith Delaunay side connecting nodes p1-p2 and correspondent Voronöı
face formed by Voronöı sides ji,1, . . . , ji,6 (a). The jth Voronöı side connecting cir-
cumcentra of elements e1-e2 and correspondent Delaunay face formed by Delaunay
sides ij,1, ij,2, ij,3 (b-c). In (c) the Voronöı side does not intersect the correspondent
Delaunay face.

Equations (6)and (7) form an explicit procedure for advancing the electric
field form time tn to t(n+1) and the magnetic field from time t(n−0.5) to t(n+0.5).
For a structured grid this scheme is if c∆t < l/

√
3 where c = 1/

√
εµ is the

light speed, and l is an edge length. For an unstructured tetrahedral mesh,
there is no such simple criterion but computations show that we can use the
following relation

c∆t < Sf min
i,j
{lVi , lDj } (8)

where Sf is a safety factor.
In the co-volume scheme, the values of electric and magnetic field are taken

at the intersection point of the edge and the correspondent face. If an element
has its circumcentre outside its volume then the field will lie outside the edge
connecting the two corresponding circumcentres (Figure 10c). In this case, the
approximation of the integral cannot guarantee even the first order accuracy.
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Summary. The Delaunay terminal edge algorithm for triangulation improvement
proceeds by iterative Lepp selection of a point M which is midpoint of a Delaunay
terminal edge in the mesh. The longest edge bisection of the associated terminal
triangles (sharing the terminal edge) can be seen as a first step in the Delaunay
insertion of M . The method was introduced as a generalization of non-Delaunay
longest edge algorithms but formal termination proof had not been stated until now.
In this paper termination is proved and several geometric aspects of the algorithm
behavior are studied.

1 Introduction

Edge based refinement methods for 2 and 3 dimensional triangulations have
been studied and used for developing adaptive software for PDEs since be-
ginning of the eighties, e.g. Bank [5] , Rivara et al [6, 7, 18, 8, 13], Nambiar
et al, [11], Muthukrishnan et al [10], Morin et al, [9]. In particular, the meth-
ods based on the longest edge bisection of triangles guarantee that refined
meshes of geometrical quality analogous to the input mesh are produced in
2-dimensions [6, 7].

More recently, methods that produce a sequence of improved constrained
Delaunay triangulations (CDT) have been developed to deal with the quality
triangulation problem of a planar straight line graph D. The combination of
edge refinement and Delaunay insertion has been described by George and
Borouchaki , [4, 3] and Rivara and her collaborators, [13, 15, 16, 17, 18, 22].
Strong mesh improvement properties for iterative Delaunay refinement based
on inserting the circumcentre of triangles to be refined have been established
by Chew, [2], Ruppert [14], and Shewchuk [21]. In particular, under appropri-
ate conditions on D, the method is guaranteed to produce optimal-size meshes
with the minimum angle larger that a specified angle tolerance. Applications
of this form of refinement have been described by Weatherill et al [25, 26] and
Baker, [19]. Baker also published a comparison of edge based and circumcenter
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based refinement, [20]. An algorithm based on off-center insertions have been
recently presented by Üngor [28].

The Delaunay terminal edge algorithm for triangulation improvement pro-
ceeds by iterative selection of a point M which is midpoint of a Delaunay
terminal edge (a longest edge for both triangles that share this edge) in the
mesh. This method combines the use of the longest edge propagating path as-
sociated to a bad quality processing triangle to determine a terminal edge in
the current mesh, with the Delaunay insertion of the midpoint of this terminal
edge. Note that the longest edge bisection of the associated terminal trian-
gles (sharing the terminal edge) can be seen as a first step in the Delaunay
insertion of M .

The Lepp Delaunay terminal edge method was introduced in a rather
intuitive basis as a generalization of previous longest edge algorithms in
[13, 18, 31]. This was supported by the improvement properties of both the
longest edge bisection of triangles and the Delaunay algorithm, and by the
result presented in Theorem 1 in next section. Later in [17] we discussed some
geometrical properties including some (rare) potential loop cases for angle tol-
erance greater than 22◦ and its management. However, while empirical studies
show that the method behaves analogously to the circumcircle method in 2-
dimensions [17, 18, 22], formal proofs on algorithm termination and on optimal
size property have not been established due to the difficulty of the analysis.
Recently in [29] we have presented some geometrical improvement properties
of an isolated insertion of a terminal edge midpoint M in the mesh. In this
paper we improve and extend these results and prove algorithm termination.

t0

t1

t2

t3

A

B

(a)

t0
*

t1
t 2

t 3

C

D

(b)

Fig. 1. (a) AB is an interior terminal edge shared by terminal triangles (t2, t3)
associated to Lepp(t0) ={t0, t1, t2}; (b) CD is a boundary terminal edge with unique
terminal triangle t2 associated to Lepp(t∗0 = {t∗0, t1, t2, t3}.
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2 Concepts and Preliminary Results

2.1 The Longest Edge Propagating Path (Lepp) and Terminal
Edge Triangles

The following concepts were introduced and used in references [13, 17, 18].
An edge E is called a terminal edge in triangulation τ if E is the longest
edge of every triangle that shares E, while the triangles that share E are
called terminal triangles. Note that in 2-dimensions either E is shared by two
terminal triangles t1, t2 if E is an interior edge, or E is shared by a single
terminal triangle t1 if E is a boundary (constrained) edge. See Figure 1 where
edge AB is an interior terminal edge shared by two terminal triangles t2, t3,
while edge CD is a boundary terminal edge with associated terminal triangle
t3.

For any triangle t0 in τ , the longest edge propagating path of t0, called
Lepp(t0), is the ordered sequence {tj}N+1

0 , where tj is the neighbor triangle on
a longest edge of tj−1, and longest-edge (tj) > longest-edge (tj−1), for j=1,...
N. Edge E = longest-edge(tN+1) = longest-edge(tN ) is a terminal edge in τ
and this condition determines N . Consequently either E is shared by a couple
of terminal triangles (tN , tN+1) if E is an interior edge in τ , or E is shared by
a unique terminal triangle tN with boundary (constrained) longest edge. See
Figure 1 for an illustration of these ideas.

C

BA

(b)(a)

A

C

ZB

O

DR

γ

Fig. 2. R is the geometrical place of the fourth vertex D for Delaunay terminal
triangles ABC, ABD; (b) R reduces to one point when γ = 2π/3 (triangle ADB
equilateral).

For a Delaunay mesh, an unconstrained terminal edge imposes the fol-
lowing constraint on the largest angles of the associated terminal triangles
[13, 18]:

Theorem 1. For any pair of Delaunay terminal-triangles t1, t2 sharing a non-
constrained terminal edge, largest angle(ti) ≤ 2π/3 for i = 1, 2.
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Proof For any Delaunay terminal triangles BAC of longest AB (see Figure
2(a)), the third vertex D of the neighbor terminal triangle ABD must be
situated in the exterior of circumcircle CC(BAC) and inside the circles of
center A,B and radius | A − B |. This defines a geometrical place R for D
which reduces to one point when angle BCA = 2π/3 where OZ = r/2 (see
Figure 2(b)), implying that R = φ when angle BCA > 2π/3.

2.2 The Longest Edge Bisection of Triangles

For an arbitrary triangle, t, the longest edge bisection of t is the splitting of
t into two triangles tA, tB by joining the midpoint of a longest edge to the
opposite vertex as shown in Figure 3 where |B − C| ≤ |C − A| ≤ |B − A|.
Using the notation of Figure 3, the following theorem presents some simple
properties of a the first longest edge bisection of any t.

Fig. 3. notation for longest edge bisection.

Theorem 2. a) α1 ≥ α0/2
b) If t is obtuse, α1 ≥ α0

c) β2 ≥ 3α0/2
d) if t is obtuse, β2 ≥ 2α0

e) if t is acute, β1 > α0 if α0 < π/6
f) tB is acute if α0 > arcsin(1/3) = 19.5◦ (sufficient, but not necessary.)

Assertion a) follows from the following strong result due to Rosenberg and
Stenger [27]: For any triangle t∗ obtained in the iterative longest edge bisection
process, the smallest angle of t∗ is greater than or equal to α0/2. Assertion
(b) was proved in [12]. Assertions c) and d) are obtained by noting that
β2 = α1 + α0. Assertions (e) and (f) were proved in [29].

2.3 Delaunay Insertion of Point M

It is well known that among all triangulations, the Delaunay triangulation
maximizes the minimum angle. In fact, a much stronger statement holds [30].
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Among all triangulations with the same smallest angle, the Delaunay triangu-
lation maximizes the second smallest angle, and so on. In particular, we can
associate an angle vector to any triangulation, that is the increasing sequence
of angles (α1, α2, ..., α3m) (where m is the total number of triangles in any
triangulation of the associated vertex set). That is, α1 ≤ α2 ≤ ... ≤ α3m. We
say (α1, α2, ...α3m) > (β1, β2, ..., β3m) if there exists an i such that αi > βi

and for all j < i, αj = βj . This is the standard lexicographic order on vectors.
So, given 2 triangulations, we can compare their angle vectors using this order
[30].

Theorem 3. Among all triangulations of a given point set, the Delaunay tri-
angulation has the largest angle vector.

Consequentely if we call TS the non-Delaunay triangulation obtained by
simple insertion of point M (longest edge bisection of both terminal triangles),
and TD to the Delaunay triangulation obtained by Delaunay insertion of M,
then TD is better than TS in sense of Theorem 3.

3 An Algorithmic Description of the Lepp Delaunay
Terminal Edge Method

We are interested in improvement of angles in the mesh, so we introduce a
minimum angle tolerance θtol. Given these criteria, we will refer to any triangle
t such that a smallest angle of t is less than θtol as a bad triangle.

The algorithm can be simply described as follows: iteratively, each bad
triangle tbad in the current triangulation is eliminated by finding Lepp(tbad),
a pair of terminal triangles t1, t2, and associated terminal edge l. If non-
constrained edges are involved, then the midpoint M of l is Delaunay inserted
in the mesh. Otherwise the constrained point insertion criterion of

∮
3.1 is

used. The process is repeated until tbad is destroyed in the mesh, and the al-
gorithm finishes when the minimum angle in the mesh is greater than or equal
to an angle tolerance θtol. The algorithm including point selection strategies
for constrained terminal triangles is given below. A restriction on the size of
θtol will be presented in

∮
3.1.

Lepp-Delaunay-Terminal-Edge Algorithm
Input = a CDT, τ , and angle tolerance θtol

Find Sbad = the set of bad triangles with respect to θtol

for each t in Sbad do
while t remains in τ do

Find Lepp (tbad), terminal triangles t1, t2 and terminal edge l. Triangle
t2 can be null for boundary l.
Select Point (P, t1, t2, l)
Perform constrained Delaunay insertion of P into τ
Update Sbad
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end while
end for

Select Point (P, tterm1, tterm2, lterm)
if (second longest edge of tterm1 is not constrained and second longest edge
of tterm2 is not constrained) or lterm is constrained then

Select P = midpoint of lterm and return
else

for j = 1,2 do
if ttermj is not null and has constrained second longest edge l∗ then

if (α0 < 30◦ or α1 < 30◦) then
Select P = midpoint of l∗ and return

else
Select P = midpoint of lterm

end if
end if

end for
end if

3.1 Potential Loop Conditions to be Avoided

When the second longest edge CA is a constrained edge, the swapping of this
edge is forbidden. In such a case, the insertion of point M would imply that the
later processing of bad quality triangle MAC would introduce triangle MAM1

(see Figure 4(a)) similar to triangle ABC implying an infinite loop situation.
To avoid this behavior we introduce the following additional operation:

Constrained edge point insertion: If CA is a constrained edge and
α0 < 30◦ or α1 < 30◦ then insert midpoint M1 of edge CA.

Lemma 1. If triangle BM1A (see Figure 4(b)) has largest angle greater than
2π/3, then M is not inserted in the mesh by processing triangle M1BA.

Proof See Theorem 1�

The condition (α0 < 30◦ or α1 < 30◦) has been introduced to avoid
the undesirable boundary loop condition, as well as to avoid the insertion of
unnecesary vertices in the boundary. We have chosen 30◦ value because the
algorithm behaves well in practice for θtol = 30◦ [13, 17, 18]

For simplicity we will omit consideration of a rare special loop case dis-
cussed in [17], where a triangle MAM1 similar to a bad-quality triangle ABC
can be also obtained for a non-constrained edge CA. This happens when
quadritalerals BEAC and ADCM (see Figure 4(a)) are terminal quadrilater-
als (where edges BA and CA are terminal edges respectively) together with
some non-frequent conditions on neighbor constrained items. A necessary but
not sufficient condition on the triangle ABC for this to happen is that angle
BMC ≥ π/3 which implies α0 ≥ αlimit = arctan

√
15−

√
3

3+
√

5
> 22◦ for obtuse
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E

Fig. 4. (a) Over constrained edge CA, the insertion of M and M1 produces triangle
MAM1 similar to triangle BAC; (b) Insertion of M1 avoids this situation.

triangle BAC [17]. This loop case can be avoided by adding some extra con-
ditions to the algorithm. However, to simplify the analysis we will restrict the
angle tolerance to αlimit.

4 Characterization of Delaunay Terminal Triangles

In this section we present a characterization of Delaunay terminal triangles
based on fixing the second longest edge CA and choosing the smallest angle
at vertex A.

C

E

G

F

I

B

M

F’

H’

AN
α 1 α 0

E’
G’H

Fig. 5. Regions EFC and E’F’C’ are geometrical places for vertex B and midpoint
M for a terminal triangle BAC with respective smallest and largest angle of vertices
A and C.

Figure 5 shows the possible locations for vertex B and the midpoint M .
This supports an analysis of properties of the longest edge sons of triangle
BAC as parametrized by B. Since CB is a shortest edge and BA is a longest
edge, the following two conditions hold: Condition (1) constrains B to lie
inside the circular arc EFA of centre C and radius |C − A|. Consequently,
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M lies inside the circular arc CF ′A of centre N = (C + A)/2 and radius
|C − A|/2. Condition (2) constrains B to lie outside the circular arc CF of
centre A and radius |C −A|, and so M lies outside circular arc NF ′ of centre
A, radius |C − A|/2. The line CE makes an angle of 120◦ with CA; this
constraint is a direct application of Theorem 1 for an unconstrained Delaunay
terminal triangle. Some of the properties of the triangles of the diagram are
summarized in the table given below. We denote the smallest and largest angle
of any triangle t by θmin(t) and θmax(t) respectively.

B is in/on property
edge CE θmax(t) = 120◦

arc EF t is an isosceles triangle with smallest edge equal
to second longest edge

arc CF t is an isosceles triangles with longest edge equal
to second longest edge

edge CG t is a right triangle, α0 = α1, θmin(tA) = α0 = α1

interior of region CEG obtuse triangles, α1 > α0, θmin(tA) = α0

interior of region CGF acute triangles with α1 < α0, θmin(tA) = α1

5 Angle Size Bounds

In this section we use the characterization of the preceding section to obtain
a theorem that improves the bounds of Theorem 2 on α1 for acute Delau-
nay terminal triangles. We firstly present a study on the distribution of the
ordered pair of angles (α0, α1) for unconstrained Delaunay terminal triangles
and we develop better bounds on α1 for acute triangles. The study on the dis-
tribution of (α0, α1) is summarized in Figure 6 which is a relabelled version of
Figure 5.

Note that the segments EH and UW respectively correspond to the ter-
minal triangles with smallest angles equal to 30◦ and αlimit ≈ 22, 2◦. Note
that for α0 = 30◦, the angle α1 decreases from 60◦ to approximately 23.79◦

along EH, while for α0 = αlimit the α1 angle decreases approximately from
37.75◦ to 19.25◦ along UW. Remember that segment line CG indentifies right
terminal triangles with α0 = α1. Note that the ratio α1/α0 ≥ 1 for obtuse
triangles (B in CEG) as expected according to part (b) of Theorem 2; while
for acute triangles, the ratio α1/α0 increases from 0.5 to 1 both along arc F
to C, and along arc F to G. These properties and continuity reasoning allows
to state the following lemma:

Lemma 2. For acute Delaunay terminal triangles, there exist fixed constants
C1, C2 (C1 ≈ 0.79, C2 ≈ 0.886) such that:

a) For smallest angle α0 ≤ 30◦ (B in region CIH), α1 ≥ C1α0.
b) For smallest angle α0 ≤ αlimit (B in region CVW), α1 ≥ C2α0.
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C A

U(22,37) V(22,22)

I(30,30)

G(45,45)

F(60,30)

H(30,23.79)

w(22,19.25)

E(30,60)

22

Fig. 6. Distribution of angles (α0, α1) for a terminal triangle with B in CEF.

c) The ratio α1/α0 approaches 1.0 both when α0 decreases, and when BAC
becomes a right triangle.

d) Using the notation of Figure 3, β2 ≥ (1 + C1)α0 for α0 ≤ 30◦.

Proof for (d) note that β2 = α1 + α0�

6 Bounds on the Distance from M to Previous Vertices

In this section we bound the distance from M to previous vertices in the mesh
for a bad quality terminal triangle BAC. We use both the properties of the
longest edge bisection of a Delaunay terminal triangle BAC and the constraint
on the empty circuncircle.

Note that the circumcenter O of an obtuse (acute) triangle is situated in
the exterior (the interior) of the triangle, as illustrated in Figure 7. Further-
more for any non constrained Delaunay obtuse triangle t, the distance d from
the circuncenter O to the longest edge BA (see Figure 7(a)) satisfies that
0 < d < r/2, where r is the cicumradius. We will consider the limit cases
d = r/2 and d = 0, which respectively correspond to largest angles equal to
2π/3 and π/2, to state bounds for obtuse and acute triangles.

6.1 Obtuse Delaunay Terminal Triangles

Consider the limit Delaunay terminal triangle BAC with largest angle equal
to 2π/3 and smallest angle α equal to αlimit = arctan

√
15−

√
3

3+
√

5
> 22.2◦ which

holds if and only if angle BMC is equal to π/3.
Consider Figure 8 and without loss of generality, asume r = 1. Then

by using a coordinate system of center O and axes OZ and OZ̃, the point
C(xC , yC) satisfies the equations yC = mxC + 1/2 and x2

C + y2
C = 1, where

m = tan120◦ = −
√

3. By solving this system we get:
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(a) (b)

O
Od

Fig. 7. (a) obtuse triangle; (b) acute triangle.

Z
C

H

60º

M

ZO

αB A

Fig. 8. BAC is a limit triangle with angle BCA = 3π/2, α = αlimit ≈ 22◦, angle
BMC = π/3, and OM = r/2.

xC =
√

3−
√

15
8 , yC = −

√
3
(√

3−
√

15
8

)
+ 1

2 .

This implies that αlimit = arctan
(√

15−
√

3
3+

√
5

)
(as discussed in

∮
3.1) and

OM = MZ = 1/2
BA =

√
3, BM = MA =

√
3/2

HM = (
√

15−
√

3)/8
BH = (5

√
3−

√
15)/8

CH =
√

3(
√

15−
√

3)/8
BC =

√
3
√

3−
√

5)/2
MC = (

√
15−

√
3)/4)

Note also that any previous neighbor vertex D of neighbor triangle CAD
must be situated in the exterior of CC(BAC), which implies |D − M | >
|Z −M |.

Lemma 3. For any obtuse bad quality Delaunay terminal triangle,
|M − C| ≥ C1|B − C|, and |M −D| ≥ C2|B − C|
where C1 =

√
15−

√
3

2
√

3
√

3−
√

5
≈ 0.7 and C2 = 1√

3
√

3−
√

5
≈ 0.66
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Lemma 4. For α ≤ αlimit and π/2 ≤ γ ≤ 2π/3, there exist functions
C̃1(α, γ), C̃2(α, γ) such that
|M − C| = C̃1(α, γ)|B − C| and |M −D| = C̃2(α, γ)|B − C|
where C̃1(α, γ) ≥ C1, and C̃2(α, γ) ≥ C2

Furthermore,
(i) for fixed α = α̃, both C̃1(α̃, γ) and C̃2(α̃, γ) increase as γ decreases.
(ii) For fixed γ = γ̃, both C1(α, γ̃) and C̃2(α, γ̃) increase as α decreases.

6.2 Acute Delaunay Terminal Triangles

Consider the right triangle with smallest angle equal to αlimit, where M co-
incides with the circumcenter O. Assuming r = 1, it holds that

|B − C| = 2sin αlimit and |MC| = |MZ| = 1, which implies that
|M − C| = |M − Z| = 1

2 sin αlimit
|B − C| ≈ 1.3|B − C|.

Furthermore for acute isosceles triangle with smallest angle equal to αlimit,
it holds that |M − C| > |M − B| and |M − Z| > r. Assuming r = 1, after
some computation we get |B − C| < 0.4 and |M − B| > 0.98 which implies
|M −C| > 2.4|B−C|, and |M −Z > 2.5|B−C|. Consequentely the following
theorem can be stated:

Theorem 4. For acute Delaunay terminal triangles, there exist constants
CC > 1, CD > 1 such that
|M − C| ≥ CC |B − C| and |M −D| ≥ CD|B − C|.

7 Elimination of Too-Obtuse Triangles

7.1 Elimination of Too Obtuse Triangle MAC

Let triangle tA = MAC be the obtuse triangle resulting from bisecting ter-
minal edge BA of triangle BAC, and assume that MAC remains in the mesh
after the Delaunay insertion of M . We consider the case in which the largest
angle of triangle MAC is greater than 2π/3, in which case we refer to MAC
as a too-obtuse triangle. See Figure 9. According to Theorem 1, MAC can
not become a terminal triangle in the mesh and will be necessarily eliminated
by swapping of edge CA, when another terminal edge midpoint M1, is in-
serted in a neighbor terminal edge E associated to Lepp(MAC). This can be
performed by processing either triangle MAC or another bad triangle t∗ such
that Lepp(t∗) intersects Lepp(MAC).

Consider the case shown in Figure 9, in which the neighboring triangle of
MAC on edge AC is triangle ACD and terminal edge E is either AD or CD
(in Figure 9, D is denoted as D′ when E is equal to CD). Then the following
constraints apply to M1:
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(i) D must be in the exterior of CC(MAC)
(ii)M1 must be in the interior of CC(MAC) in order that the swapping of

edge CA applies.
(iii) Theorem 1 applies, implying that angle DCA ≤ 2π/3 (or angle D′AC ≤

2π/3), which restricts M1 to the shadowed region of Figure 9.

A

D

D’

X Z

Y

M

J

C

B

M1

Fig. 9. DA (or D′C) terminal edge implies that M1 must belong to region XY Z
where angle JCA = angle XY A = angle CY Z = 2π/3.

The following Lemma presents some useful geometrical properties to state
angle bounds on the smallest angle of neighbor terminal triangle DAC as a
function of the size of angle CMA.

Lemma 5. Consider triangle MAC and the line JC such that angle JCA=2π/3
as shown in Figure 10. Then

(a) If angle CMA = 120◦, then JC is tangent to CC(MAC) at C (see Figure
10(a));

(b) If angle CMA > 120◦, then JC intersects CC(MAC) at a point G (see
Figure 10(b));

(c) If angle CMA = 150◦, then the triangle GCA is isosceles with angles
30◦, 30◦, 120◦;

(d) If angle CMA ≥ 150◦, the angle CAD ≥ 30◦ and the smallest angle of
triangle CAD is always at D.

Remark Note that according to Theorem 2 and Lemma 2, triangle MAC
is almost isosceles. This implies that for the limit case where angle CMA =
120◦, the smallest angle of triangle MAC is greater than or equal to αlimit

Lemma 6. Consider triangle MAC having neighbor terminal edge AD of mid-
point M1. If angle CMA > 120◦, then M1 belongs to region KG’UV in Figure
11, where angle KLA = 120◦, VL ⊥ CA, and U is midpoint of VA. Further-
more angle CAD ≥ angle CAG.

Proof Part (b) of Lemma 5 applies. Thus D must be situated in the
exterior of CC(MAC) and to the right of line JG in Figure 10(b), which
allows to find the region for M1�
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120º

C A

M

120º

J

G

120º
C A

M

J

(a) (b)

Fig. 10. (a) angle CMA = 120◦ implies JC is tangent to CC(MAC) at C; (b)
angle CMA > 120◦ implies that JC intersects CC(MAC) at a point G.

D

J

G

G’

M

AC

K

V

U

L

Fig. 11. Largest angle of triangle CMA impose constraints on neighbor terminal
triangle DCA; D in region JGKV by above CC(MAC) and to the right of JG, and
M1 in KG’UV.

Figure 12 shows the case in which FF ′ is a terminal edge. Here the con-
strains on M1 also assure that points unnecesarily close to midpoint M and
to previous points A,C, F, F ′ are not inserted.

7.2 Too-Obtuse Triangles of the Initial Mesh

Lemma 5 and Lemma 6 are indeed valid for any non-constrained too-obtuse
triangle in a CDT, and consequently the results of the proceding section also
apply to the triangles of the initial mesh. Note however that the remark which
is below Lemma 5 does not apply, and an initial too-obtuse triangle can have
a small smallest-edge corresponding to a local feature size of the geometry.

Consider now the case where a sequence of non-constrained too-obtuse
triangles appear in the initial CDT. This represents an initial configuration
which ends either with a constrained edge (this is mandatory if the last triangle
is too-obtuse) or with a couple of terminal triangles. In any case the insertion
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A

M

C

F

F’

1M

Fig. 12. FF’ is terminal edge in Lepp(CMA) implying that midpoint M1 belongs
to the shadowed region.

of a terminal edge midpoint M in general implies the big improvement of a
subsequence of too-obtuse triangles, where the circumcircle of each triangle
of the subsequence contains M .

8 Improvement Steps

The results of last section guarantee that M1 is not inserted near to previous
vertices A, C, neither too close to the midpoint of CA. Furthermore the De-
launay insertion of M1 eliminates triangle CMA by introducing new triangles
t1, t2 as shown in Figure 13, which are both less obtuse than triangle CMA.
If M1 is inside circumcircle CC(MAC) and far from its boundary, both tri-
angles t1, t2 are better than triangle MAC and even more, they can be good
triangles. However if M1 is close to the circumcircle boundary, the smallest
angle(s) of vertex M1 can be close to, or even can be worst than the smallest
angle of triangle BAC (in the case that triangle BAC is acute).

In this section we prove that after a finite number of point insertions (usu-
ally one or two additional point insertions) a significant discrete improvement

t 1 t 2

M1

A

M

C

B

Fig. 13. M1 close to the circumcircle introduces bad triangles t1, t2.
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is achieved in the smallest angles involved. Consequentely slow angle improve-
ment, neither slow angle worsening does not happen throughout the process.

We need to consider two cases:
Case 1: MM1 is a terminal edge.

M1

A

M

C

M2

~
t2t~1

Fig. 14. M1M is a terminal edge.

Case 2: t1, t2 are Lepp triangles. Here we assume that t2 belongs to
Lepp(t1), which implies that the longest edge of t2 is larger than the longest
edge of t1.

Thus the following result holds:

Theorem 5. Consider that M1 is close to the circumcircle boundary as shown
in Figure 13. Then a significant discrete improvement of the smallest angles
of the triangles t1, t2 is attained by inserting a finite number of terminal edge
midpoints inside CC(t2).

Proof Case 1. Here t1, t2 are terminal triangles (one obtuse and one acute).
Then by Delaunay insertion of midpoint M2 (see Figure 14), the triangles
t1, t2 are replaced by highly improved triangle t̃1, t̃2 according to Theorem 2
and Lemma 2. Note also that this implies the introduction of bad too-obtuse
triangles M1CM2 and M1M2A, whose elimination will be be performed by
edge swapping.

Case 2. Since M1 is inside circumcircle CC(MAC) and close to its bound-
ary, this implies that both CC(t1) and CC(t2) are approximately equal to
CC(MAC). So both triangles t1, t2 are eliminated by inserting a point M2

inside CC(t2) unless M2 is too close to the boundary of CC(t2) but outside
CC(t1).

We need to consider three cases:

(i) M1A is terminal edge and M2 is midpoint of M1A
(ii)M2 is midpoint of a neighbor terminal edge and is far from the boundary

of CC(t2).
(iii) M2 is near to the boundary of CC(t2)
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In the case (i), the insertion of M2 produces highly improved, more equilat-
eral triangles (see Figure 15(a)). Note that triangle M2MA is the best longest
edge son of triangle M1MA, for which the angle bounds of Theorem 2 and
Lemma 2 apply. Note also that triangle M1CM2 is an obtuse longest edge son
of better triangle M1CA.

t~

t~ t~

M1

M2

A

(a)

M1

M2

M

AC

3

2 1

(b)

C

M

Fig. 15. (a) M1A is a terminal edge; (b) M2 is midpoint of neighbor terminal edge
and far from the boundary of CC(t2).

For the case (ii), the insertion of M2 produces a configuration of bet-
ter triangles t̃1, t̃2, t̃3 (see Figure 15(b)) similar to that of case (i), where
CC(M2MA) contains the midpoint of edge CM2 and probably the midpoint
of edge CM1. Thus if any of these triangles is not acceptable, its processing
will imply the insertion of either the midpoint of CM2 and / or the midpoint
of CM1 which will produce a significant discrete improvement of the current
bad angles without introducing too-obtuse angles.

For the case iii) we need to consider in turn two cases: iii(1) M2 is inside
CC(t1). Here the insertion of M2 close to the boundary of CC(t2) implies the
configuration of Figure 16(a), where either CM1 or CM2 becomes a terminal
edge with midpoint M3, in the interior of CC(t1), whose Delaunay insertion
produces significant discrete improvement of the smallest angles. Figure 16(a)
illustrates the case where M3 is midpoint of CM2; note that CMM3 is the
best longest edge son of trianlge CMM2, edge MM2 is swapped by edge M3A
which eliminates the smallest angle at M2 introducing highly more equilateral
triangles; moreover angle CM1M3 > angle CM1M .

iii(2) M2 is outside CC(t1). Here the insertion of M2 implies the config-
uration of Figure 16(b), where M1M becomes a terminal edge with midpoint
M3, whose Delaunay insertion will produce highly improved triangles and
eventually one too-obtuse triangle�
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M1
M1

A

(a)

M

C

M

M

AC

(b)

M3

M2

M3

Fig. 16. M2 close to the boundary of CC(t2) produces terminal edges inside CC(t2)
a) M2 is inside CC(t1); (b) M2 is outside CC(t1).

9 Algorithm Termination

In the case that an acute bad triangle t is being processed, an intermediate
worst too obtuse triangle tA is introduced and eliminated by edge swapping
(tA not necessarily belongs to an intermediate Delaunay triangulation). As
discussed in

∮
8, this operation can introduce a bigger acute triangle that is

worse than t as shown in Figure 13. We will show that only a finite chain of
worsening triangles can occassionally appear in the mesh. Indeed the following
more general result holds:

Lemma 7. Only a finite sequence of worsening and / or lightly improving
too-obtuse triangles can (rarely) appear in the processing mesh.

Proof Firstly assume that there exists an infinite sequence of monotoni-
cally worst acute triangles {ti}∞i=1, and worst obtuse triangles {tiA}∞i=1, where
each circumcircle CC(tiA) is bigger than CC(ti) and contains a point Pi (a
previous point or an added point) close to the circumcircle boundary and far
from tiA, consequently edge swapping applies producing a worst bigger acute
triangle ti+1, a worst bigger ti+1

A and an increasing circumcircle CC(ti+1
A ), for

i = 1, 2, ... However since the geometry is finite eventually one of these circum-
circles will cointain a boundary vertex and will intersect boundary constrained
edges, which will stop the generation of bigger triangles.

An analogous reasoning can be used for a sequence of lightly improving
obtuse triangles {tiA}, and for a sequence that combines lightly improving /
worsening obtuse triangles�

Imposing the following assumption we can prove algorithm termination:

(I) Geometry assumption The PSLG geometry does not have constrained
angle less than π/2 (analogously to the Ruppert condition).
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Theorem 6. Given the assumption (I) and angle tolerance θtol ≤ αlimit, the
algorithm terminates.

Proof Consider a CDT of the input geometry data, and let tr be a right
constrained terminal triangle (with constrained right angle). Firstly we study
the constrained edge point insertion criterion of

∮
3.1 for this kind of triangles.

We need to consider two cases: (i) If the smallest angle is α0 ≥ 30◦, then the
midpoint of the longest edge is Delaunay inserted in the constrained mesh,
which implies the introduction of two quality triangles, each one having one
constrained edge. (ii) Otherwise if α0 < 30◦, the midpoint of the second
longest edge is Delaunay inserted in the constrained mesh. This introduces a
better right constrained triangle tr, and a too-obtuse triangle with constrained
smallest edge, which is consequently eliminated by swapping of its longest
edge. The process is repeated for the new right constrained triangle either
until this is a good triangle, or until its smallest angle is ≥ 30◦. In the latter
case, if the current tr becomes a terminal triangle, case (i) again applies.

Finally termination is based on the angle improvement results of theorems
2, 3, 5, lemmas, 1, 2 and on Lemma 7�

10 Concluding Remarks

We have presented a geometrical characterization of unconstrained Delaunay
terminal triangles. Also, for a bad Delaunay terminal triangle t, we have pre-
sented bounds on the angles and bounds on the distance from the terminal
edge midpoint M to previous vertices. We have developed constraints on the
next points inserted after M , which allow to consider improvement steps that
use several consecutive point insertions to highly improve too obtuse triangles
introduced by longest edge bisection of t. We have used these results to prove
algorithm termination. In future research we expect to prove that optimal-size
triangulations are obtained.
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Summary. The contribution of the current paper is three-fold. First, we generalize
the existing sequential point placement strategies for guaranteed quality Delaunay
refinement: instead of a specific position for a new point, we derive a selection disk
inside the circumdisk of a poor quality triangle. We prove that any point placement
algorithm that inserts a point inside the selection disk of a poor quality triangle
will terminate and produce a size-optimal mesh. Second, we extend our theoretical
foundation for the parallel Delaunay refinement. Our new parallel algorithm can be
used in conjunction with any sequential point placement strategy that chooses a
point within the selection disk. Third, we implemented our algorithm in C++ for
shared memory architectures and present the experimental results. Our data show
that even on workstations with a few cores, which are now in common use, our
implementation is significantly faster the best sequential counterpart.

1 Introduction

In this paper we address theoretical and practical aspects for the development
of both scalar and parallel Delaunay mesh generation algorithm and software
that satisfy the following requirements:

1. allow to construct well-shaped elements with bounded minimal angle;
2. produce graded meshes, i.e., meshes with element size specified by a user-

defined function;
3. offer proofs of termination and size optimality;
4. allow to use custom point placement strategies (e.g., circumcenter, off-

center, etc.);
5. replace the solution of a difficult domain decomposition problem with

an easier data distribution approach without relying on the speculative
execution model [10, 19];

6. offer performance improvement over the best available sequential software,
even on workstations with just a few hardware cores.



564 A.N. Chernikov and N.P. Chrisochoides

We describe our solution which satisfies all of these requirements. Although
the extension of the method to three dimensions is still is progress, we present
a complete practical parallel two-dimensional guaranteed quality graded mesh
generator. In such applications as the direct numerical simulations of turbu-
lence in cylinder flows with very large Reynolds numbers [12] and coastal ocean
modeling for predicting storm surge and beach erosion in real-time [25], three-
dimensional simulations are conducted using two-dimensional meshes. In both
cases, 2D mesh generation is taking place in the xy-plane and it is replicated
in the z-direction in the case of cylinder flows or using bathemetric contours
in the case of coastal ocean modeling applications.

The field of sequential guaranteed quality Delaunay refinement has been
extensively studied, see [8, 13, 16, 20, 23] and the references therein. However,
new ideas and improvements keep being introduced. One of the basic questions
being studied is where to insert additional (so-called Steiner) points into an
existing mesh in order to improve the quality of the elements. Ruppert’s [20]
and early Chew’s [8] algorithms use circumcenters of poor quality triangles.
Later, Chew [9] suggested to use randomized insertion of near-circumcenter
points for three-dimensional Delaunay refinement, with the goal of avoiding
slivers. Recently, Üngör [24] proposed to insert specially chosen points which
he calls off-centers; this method allows to produce smaller meshes in practice
and it was implemented in the popular sequential mesh generation software
the Triangle [22]. We expect that other optimization techniques can be used
to select positions for new points. Indeed, in Subsection 2.2 we give an exam-
ple of a point placement strategy that in some cases allows to achieve even
smaller meshes than the off-center method, albeit at significant computation
cost. Since one would not like to redesign the parallel algorithm and soft-
ware to accommodate each of the point placement techniques, in this paper
we generalize the sequential Delaunay refinement approaches and develop a
framework which allows to use custom point selection strategies. In particular,
we derive a selection disk for the position of a new point with respect to a poor
quality triangle and prove that any point placement technique with the only
restriction that it selects a point inside the selection disk will terminate and
produce a size-optimal guaranteed quality mesh. While the use of Chew’s [9]
picking-sphere is restricted to produce only meshes with constant density, the
use of our selection disk allows to obtain graded size-optimal meshes.

The domain decomposition problem for parallel mesh generation is formu-
lated as follows [11, 14, 15]. Given a domain Ω ⊂ Rn, construct the separators
Sij ⊂ Rn−1, Sij ⊂ Ω, such that Ω is decomposed into subdomains Ωi:

Ω =
N⋃

i=1

Ωi, Ωi ∩Ωj = Sij , i, j = 1, . . . , N, i 
= j,

while the separators do not create very small angles and other features
that will force the degradation of the mesh quality. Linardakis and Chriso-
choides [14, 15] described a Medial Axis Domain Decomposition Method for
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two-dimensional geometries. However, the solution is based on the Medial
Axis Transform which is very difficult and expensive to construct for three-
dimensional geometries. Another approach is to partition and refine the mesh
simultaneously [10, 19], such that when a conflict is detected between concur-
rently inserted points, some of the point insertions are canceled, which leads
to high computation and communication costs.

In [4–7] we showed that the domain decomposition problem for the parallel
Delaunay refinement can be replaced with an easier data distribution problem.
We proved that an auxiliary spatial data structure, like a uniform 2D (or 3D)
lattice and a quadtree (or an octree), can be constructed in such a way that
the points introduced in certain regions of Ω, that correspond to separated
regions from the above data structure, do not have any dependences and can
be inserted concurrently.

In [5, 7] we presented the theory and the implementation for the paral-
lel construction of guaranteed quality uniform two-dimensional meshes which
use a uniform lattice as an auxiliary spatial data structure. In [4, 6] we pre-
sented the theoretical foundation for the construction of non-uniform (graded)
meshes for the circumcenter point insertion method [8, 20, 23]. In this paper,
we present the algorithm for the generalized point insertion method, describe
our implementation and the experimental results using the off-center point
insertion strategy [24].

Ruppert’s sequential Delaunay refinement algorithm has quadratic worst-
case running time, even though in most practical cases the time is linear with
respect to the output size [20, 23]. Recently, Miller [16] proposed a Delaunay
refinement algorithm which runs in optimal O (n log n + m) time, where n
is the size of the input, and m is the size of the output. He achieved this
improvement by introducing a priority queue, where the skinny triangles are
ordered by their diameter (equivalently, circumradius), and the triangles with
the largest diameter are refined first. As it can be seen further in the paper, our
parallel algorithm also gives priority to triangles with large circumradii, which
allows to eliminate quadratic running time for pathological input geometries.

Cheng et al. [3] developed an algorithm to remove sliver tetrahedra from
an existing Delaunay mesh. The algorithm pumps the weights of the vertices
and flips the edges to obtain a new triangulation of the same point set. The
maximum weight that can be assigned to a point is bounded by a function of
the distance to the nearest point. This relates to the choice of radius for our
selection disk which depends on the length of the shortest edge of a triangle.

In Section 2 we introduce the background for the sequential Delaunay
refinement, define the selection disk for the insertion of Steiner points, and
present the proofs of termination and size optimality to show that a Delaunay
refinement algorithm which chooses points inside the selection disks of skinny
triangles terminates and produces size optimal meshes. Then, in Section 3
we describe our parallel implementation and experimental results. Section 4
concludes the paper.
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2 Point Insertion for Sequential Delaunay Refinement

2.1 Delaunay Refinement Background

Let the mesh M = (V, T, S) consist of a set V = {pi} of vertices, a set
T = {ti = � (pupvpw) | pu, pv, pw ∈ V } of triangles, and a set S = {si =
pupv | pu, pv ∈ V } of constrained segments. We will denote an edge of a tri-
angle as e (pipj). The input to a planar triangular mesh generation algorithm
includes a description of domain Ω ⊂ R2, which is permitted to contain holes
or have more than one connected component. We will use a Planar Straight
Line Graph (PSLG) [22] to delimit Ω from the rest of the plane. Each segment
in the PSLG is considered constrained and must appear (possibly as a union
of smaller subsegments) in the final mesh. The vertices of the PSLG are a
subset of the final set of vertices in the mesh.

There are two commonly used parameters that control the quality of mesh
elements: an upper bound on the circumradius-to-shortest edge ratio (which
is equivalent to a lower bound on a minimal angle [17]) and an upper bound
on the element area. We will denote the circumradius-to-shortest edge ratio of
triangle t as ρ (t) and the area of triangle t as ∆(t). The former upper bound is
usually fixed and given by a constant value ρ̄, while the latter can vary and be
controlled by some user-defined grading function ∆̄(·), which can be defined
either over the set of triangles or over Ω, depending on the implementation.

Let us call the open disk corresponding to a triangle’s circumscribed circle
its circumdisk. We will use symbols© (t) and r (t) to represent the circumdisk
and the circumradius of triangle t, respectively. A mesh is said to satisfy the
Delaunay property if the circumdisk of every triangle does not contain any of
the mesh vertices [13, 23].

Delaunay mesh generation algorithms start with constructing an initial
mesh, which conforms to the input PSLG, and then refine this mesh until
the element quality constraints are met. In this paper, we focus on paral-
lelizing the Delaunay refinement stage, which is usually the most memory-
and computation-expensive. The general idea of Delaunay refinement is to
insert additional (Steiner) points inside the circumdisks of poor quality tri-
angles, which causes these triangles to be destroyed, until they are gradually
eliminated and replaced by better quality triangles.

We will extensively use the notion of cavity [13] which is the set of triangles
in the mesh whose circumdisks include a given point pi. We will denote C (pi)
to be the cavity of pi and ∂C (pi) to be the set of edges which belong to only
one triangle in C (pi), i.e., external edges. For our analysis, we will use the
Bowyer-Watson (B-W) point insertion algorithm [2, 26]:

V ′ ← V ∪ {pi},
T ′ ← T \ C (pi) ∪ {� (pipjpk) | e (pjpk) ∈ ∂C (pi)},

(1)

where M = (V, T, S) and M′ = (V ′, T ′, S′) represent the mesh before and
after the insertion of pi, respectively.
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Sequential Delaunay algorithms treat constrained segments differently
from triangle edges [20, 23]. A vertex p is said to encroach upon a segment s, if
it lies within the open diametral disk of s [20]. When a new point is about to
be inserted and it happens to encroach upon a constrained segment s, another
point is inserted in the middle of s instead [20], and a cavity of the segment’s
midpoint is constructed and triangulated according to (1).

The proofs of termination and size optimality of Delaunay refinement al-
gorithms [20, 23] explore the relationships between the insertion radius of a
point and that of its parent. The insertion radius R (p) of point p is defined as
the length of the shortest edge connected to p immediately after p is inserted
into the mesh [23]. The parent p̂ of point p is the vertex which is “responsible”
for the insertion of p [23]. In particular, if p is inserted inside the circumdisk
of a poor quality triangle, p̂ is the most recently inserted vertex of the shortest
edge of that triangle. If p is a midpoint of an encroached segment, p̂ is the
point (possibly rejected for insertion) that encroaches upon that segment. If
p is an input vertex, it has no parent. In addition, the proofs require that
ρ̄ ≥

√
2.

The local feature size function lfs : R2 → R for a given point p is equal to
the radius of the smallest disk centered at p that intersects two non-incident
vertices or segments of PSLG X [20]. lfs (p) satisfies the Lipchitz condition:

Lemma 1 (Lemma 1 in Ruppert [20], Lemma 2 in Shewchuk [23]).
Given any PSLG X and any two points pi and pj in the plane, the following
inequality holds:

lfs (pi) ≤ lfs (pj) + ‖pi − pj‖ (2)

2.2 Delaunay Refinement Using Selection Disks

Traditionally, Steiner points are selected in the circumcenters of poor quality
triangles [8, 20, 23]. However, Chew [9] chooses Steiner points randomly inside
a picking sphere to avoid slivers. His goal is to construct a mesh with con-
stant density; therefore he proves the termination, but not the size-optimality
of the mesh. Ruppert [20] and Shewchuk [23] proved that if ρ̄ ≥

√
2, then De-

launay refinement with circumcenters terminates and, furthermore, produces
size-optimal meshes. In this context, size-optimality means that the number
of triangles in the resulting mesh will be within a constant multiple of the
smallest possible number of triangles satisfying the input constraints.

Recently, Üngör [24] introduced a new type of Steiner points called off-
centers. The idea is based on the observation that sometimes the triangles cre-
ated as a result of inserting circumcenters of skinny triangles are also skinny
and require further refinement. It combines the advantages of advancing front
methods, which can produce very well-shaped elements in practice, and Delau-
nay methods, which offer theoretical guarantees. Üngör showed that the use of
off-centers allows to significantly decrease the size of the final mesh in practice.
Consider Figure 1(left). Suppose � (pkplpm) is skinny: ρ (� (pkplpm)) > ρ̄. If
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Fig. 1. (Left) Delaunay refinement with off-centers [24]. (Right) The selection
disk (shaded) for the insertion of a Steiner point.

we insert its circumcenter c, the new triangle � (cplpm) may also be skinny.
In this case, instead of inserting c, Üngör suggests to insert the off-center o
chosen on the perpendicular bisector of the shortest edge e (plpm) in such a
way that the new triangle � (oplpm) will have circumradius-to-shortest edge
ratio equal to exactly ρ̄. While eliminating additional point insertions, this
strategy creates triangles with the longest possible edges, such that one can
prove termination of the algorithm and size-optimality of the result.

However, circumcenters and off-centers are not the only possible positions
for inserting the Steiner points, either sequentially or in parallel, such that
one can prove termination and size-optimality.

Definition 1. If t is a poor quality triangle with circumcenter c, shortest edge
length l, circumradius r, and circumradius-to-shortest edge ratio ρ = r/l >
ρ̄ ≥

√
2, then the selection disk for the insertion of a Steiner point that would

eliminate t is the open disk with center c and radius r −
√

2l.

For example, in Figure 1(right) e (plpm) is the shortest edge of a skinny tri-
angle � (pkplpm) and c is its circumcenter. The selection disk is the shaded
disk with center c and radius r (� (pkplpm))−

√
2‖pl − pm‖.

Below we prove that any point inside the selection disk of a triangle can be
chosen for the elimination of the triangle, and that the generalized Delaunay
refinement algorithm which chooses Steiner points inside the selection disks
terminates and produces size-optimal meshes.

Remark 1. The radius of Chew’s picking sphere is fixed and is equal to one half
of the length of the shortest possible edge in the final mesh [9]. We generalize
the idea of his picking sphere to the selection disk, such that the radius of
the selection disk varies among the triangles and depends on the length of the
shortest edge of each particular triangle.
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Fig. 2. (Left) p̂i is a Steiner point within a selection disk of a poor quality triangle
which encroaches upon a constrained segment e (pupv). (Right) An optimization-
based method for the selection of a Steiner point within a selection disk of a poor
quality triangle.

Remark 2. Üngör’s off-center always lies inside the selection disk.

Remark 3. As ρ (� (pkplpm)) approaches
√

2, the selection disk shrinks to the
circumcenter c of the triangle. If, furthermore, ρ (� (pkplpm)) ≤

√
2, the selec-

tion disk vanishes, which coincides with the fact that the triangle � (pkplpm)
cannot be considered skinny.

The proofs of termination and size-optimality of Delaunay refinement with
circumcenters in [8, 20, 23] rely on the assumption that the insertion radius of
the Steiner point is equal to the circumradius of the poor quality triangle. This
assumption holds when the Steiner point is chosen in the circumcenter of a
triangle, since by Delaunay property the circumdisk of the triangle is empty,
and, hence, there is no vertex closer to the circumcenter than the vertices
of this triangle. However, the above assumption does not hold if we pick an
arbitrary point pi within the selection disk, see Figure 1(right). Therefore,
we need new proofs in the new context when Steiner points can be inserted
anywhere within the selection disks of poor quality triangles.

Proof of Termination

Lemma 2. If pi is a vertex of the mesh produced by a Delaunay refine-
ment algorithm which chooses points within selection disks of triangles with
circumradius-to-shortest-edge ratios greater than ρ̄ ≥

√
2, then the following

inequality holds:
R (pi) ≥ C ·R (p̂i) , (3)

where we distinguish among the following cases:



570 A.N. Chernikov and N.P. Chrisochoides

(i) C =
√

2 if pi is a Steiner point chosen within the selection disk of a skinny
triangle;

Otherwise, let pi be the midpoint of subsegment s. Then

(ii) C = 1√
2

if p̂i is a Steiner point which encroaches upon s, chosen within
the selection disk of a skinny triangle;

(iii) C = 1
2 cos α if pi and p̂i lie on incident subsegments separated by an angle

of α (with p̂i encroaching upon s), where 45◦ ≤ α ≤ 90◦;
(iv) C = sin α if pi and p̂i lie on incident segments separated by an angle of

α ≤ 45◦.

If pi is an input vertex, then

R (pi) ≥ lfs (pi) . (4)

Proof. We need to present new proofs only for cases (i) and (ii), since the
proofs for all other cases are independent of the choice of the point within the
selection disk and are given in [23].

Case (i) By the definition of a parent vertex, p̂i is the most recently in-
serted endpoint of the shortest edge of the triangle; without loss of generality
let p̂i = pl and e (plpm) be the shortest edge of the skinny triangle� (pkplpm),
see Figure 1(right). If e (plpm) was the shortest edge among the edges incident
upon pl at the time pl was inserted into the mesh, then ‖pl− pm‖ = R (pl) by
the definition of the insertion radius; otherwise, ‖pl − pm‖ ≥ R (pl). In either
case,

‖pl − pm‖ ≥ R (pl) . (5)

Now we can derive the relation between the insertion radius of point pi

and the insertion radius of its parent p̂i = pl:

R (pi) >
√

2‖pl − pm‖ (by the construction of the selection disk)
≥
√

2R (pm) . (from (5))

Hence, R (pi) >
√

2R (p̂i); choose C =
√

2.
Case (ii) Let p̂i be inside the selection disk of a skinny triangle� (pkplpm),

such that p̂i encroaches upon e (pupv), see Figure 2(left). Since the edge
e (pupv) is part of the mesh, there must exist some vertex pw such that pu,
pv, and pw form a triangle. Because pw is outside of the diametral circle of
e (pupv), the circumdisk © (� (pupvpw)) has to include point p̂i. Therefore, if
p̂i were inserted into the mesh, � (pupvpw) would be part of the cavity C (p̂i)
and the edges connecting p̂i with pu and pv would be created. Therefore,

R (p̂i) ≤ min(‖p̂i − pu‖, ‖p̂i − pv‖) <
√

2
‖pu − pv‖

2
=
√

2R (pi) ;

choose C = 1√
2
. ��
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Theorem 1 (Theorem 4 in Shewchuk [23]). Let lfsmin be the shortest
distance between two non-incident entities (vertices or segments) of the input
PSLG. Suppose that any two incident segments are separated by an angle of
at least 60◦, and a triangle is considered to be skinny if its circumradius-to-
shortest edge ratio is larger than ρ̄, where ρ̄ ≥

√
2. Ruppert’s algorithm will

terminate with no triangulation edge shorter than lfsmin.

The proof of this theorem in [23] is based on the result of Lemma 3 in [23],
which establishes the relations (3) and (4) in the context of circumcenter
point insertion. Otherwise, the proof is independent of the specific position
of inserted points. Since we proved (3) and (4) in the context of inserting
arbitrary points within selection disks, this theorem also holds in this context.

Proof of Good Grading and Size Optimality

The quantity D (p) is defined as the ratio of lfs (p) over R (p) [23]:

D (p) =
lfs (p)
R (p)

. (6)

It reflects the density of vertices near p at the time p is inserted, weighted by
the local feature size.

Lemma 3. If pi is a vertex of the mesh produced by a Delaunay refinement
algorithm which chooses points within selection disks of skinny triangles and
C is the constant specified by Lemma 2, then the following inequality holds:

D (pi) ≤ 1 +
D (p̂i)

C
. (7)

Proof. If pi is chosen within the selection disk of a skinny triangle, then
R (pi) >

√
2‖pi − p̂i‖ by construction. If pi is a segment midpoint and p̂i is a

rejected encroaching Steiner point within a selection disk, R (pi) > ‖pi − p̂i‖
because p̂i is inside the diametral circle of the segment. If pi is a segment
midpoint and p̂i is an encroaching vertex which lies on another segment, then
by the definition of the insertion radius R (pi) = ‖pi− p̂i‖ by the definition of
the insertion radius. In all cases,

R (pi) ≥ ‖pi − p̂i‖. (8)

Then
lfs (pi) ≤ lfs (p̂i) + ‖pi − p̂i‖ (from Lemma 1)

≤ lfs (p̂i) + R (pi) (from (8))
= D (p̂i) R (p̂i) + R (pi) (from (6))
≤ D (p̂i)

R(pi)
C + R (pi) (from Lemma 2)

The result follows from dividing both sides by R (pi). ��
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Lemma 4 (Extension of Lemma 7 in Shewchuk [23] and Lemma 2
in Ruppert [20]). Suppose that ρ̄ >

√
2 and the smallest angle in the input

PSLG is strictly greater than 60◦. There exist fixed constants CT and CS

such that, for any vertex pi inserted (or considered for insertion and rejected)
within the selection disk of a skinny triangle, D (pi) ≤ CT , and for any vertex
pi inserted at the midpoint of an encroached subsegment, D (pi) ≤ CS. Hence,
the insertion radius of a vertex has a lower bound proportional to its local
feature size.

The proof of this Lemma in [23] relies only on Lemmata 2 and 3 here which
have been proven to hold for the Steiner points chosen within selection disks
of skinny triangles. Hence, the Lemma holds in this context, too.

Theorem 2 (Theorem 8 in Shewchuk [23], Theorem 1 in Ruppert
[20]). For any vertex pi of the output mesh, the distance to its nearest neighbor
is at least lfs(pi)

CS+1 .

The proof in [23] relies only on Lemmata 1 and 4 here and, therefore, holds
for the arbitrary points chosen within selection disks of skinny triangles.

Theorem 2 is the precondition of the following theorem:

Theorem 3 (Theorem 10 in Shewchuk [23], Theorem 14 in Mitchell
[18], Theorem 3 in Ruppert [20]). Let lfsM (pi) be the local feature size at
pi with respect to a mesh M (treating M as a PSLG), whereas lfs (pi) remains
the local feature size at pi with respect to the input PSLG. Suppose a mesh
M with smallest angle θ has the property that there is some constant k1 ≥ 1,
such that for every point pi, k1lfsM (pi) ≥ lfs (pi). Then the cardinality of M
is less than k2 times the cardinality of any other mesh of the input PSLG with
smallest angle θ, where k2 = O

(
k2
1/θ

)
.

An Example of a Point Selection Strategy

Let us consider Figure 2(right). We can see that the off-center o of the skinny
triangle � (pkplpm) is not the only location for a Steiner point pi that will
lead to the creation of the new triangle incident to the edge e (plpm) with
circumradius-to-shortest edge ratio equal to exactly ρ̄. The arc shown in bold
in the Figure is the intersection of the circle passing through pl, pm, and o with
the selection disk of � (pkplpm). Let us denote this arc as Γ . The thin arcs
show parts of the circumcircles of other triangles in the mesh. We can observe
that the cavity C (pi) will vary depending on the location of pi, according
to the set of triangle circumdisks that include pi. Let us also represent the
penalty for deleting triangle t as P (t):

P (t) =
{
−1, if (ρ (t) > ρ̄) ∨ (∆(t) > ∆̄),

1, otherwise.
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Fig. 3. (Left) Un upper part of a model of cylinder flow. (Right) Pipe cross-
section model.

Table 1. The comparison of the number of triangles generated with the use of three
different point insertion strategies, for different models and minimal angle bounds.
No area bound is used.

Point position θ = 10◦ θ = 20◦ θ = 30◦

flow pipe flow pipe flow pipe
Circumcenter 2173 3033 3153 4651 8758 10655
Off-center 1906 2941 2942 4411 6175 8585
Our optimization-based
method 1805 2841 2932 4359 6319 8581

Then our objective is to minimize the profit function associated with the
insertion of point pi as the sum of the penalties for deleting all triangles in
the cavity C (pi):

min
pi∈Γ

F (pi), F (pi) =
∑

t∈C(pi)

P (t)

In other words, we try to minimize the number of deleted good quality tri-
angles and at the same time to maximize the number of deleted poor quality
triangles. The results of our experiments with the cylinder flow (Fig. 3(left))
and the pipe cross-section (Fig. 3(right)) models using Triangle version 1.6 [22]
are summarized in Tables 1 and 2. We do not list the running times since our
experimental implementation is built on top of the Triangle and does not
take advantage of its intermediate calculations as do the circumcenter and
off-center insertion methods. From Table 1 we can see that our optimization-
based method tends to produce up to 20% fewer triangles than the circumcen-
ter method and up to 5% fewer triangles than the off-center method for small
values of the minimal angle bound and no area bound, and the improvement
diminishes as the angle bounds increase. Table 2 lists the results of the sim-
ilar experiments, with an additional area bound constraint. We observe that
the introduction of an area bound effectively voids the difference among the
presented point insertion strategies.

3 Generalized Parallel Delaunay Refinement

In [6] we described the construction of a quadtree which overlays the mesh. If
a part of the mesh associated with a leaf Leaf of the quadtree is scheduled
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Table 2. The comparison of the number of triangles generated with the use of three
different point insertion strategies. For the cylinder flow model, the area bound is
set to ∆̄ = 0.01, and for the pipe cross-section model ∆̄ = 1.0.

Point position θ = 10◦ θ = 20◦ θ = 30◦

flow pipe flow pipe flow pipe
Circumcenter 219914 290063 220509 289511 228957 294272
Off-center 219517 290057 220479 289331 226894 295644
Our optimization-based
method 219470 289505 220281 289396 226585 294694

DelaunayRefinement(X , g, ∆̄(·), ρ̄, f(·), M, Leaf)
Input: X is a PSLG which defines Ω

g is the granularity
∆̄(·) is the triangle area grading function
ρ̄ is the upper bound on triangle circumradius-to-shortest edge ratio
f(·) is a deterministic function which returns a specific position

within triangle’s selection disk
M is the current Delaunay mesh
Leaf is the leaf scheduled for refinement

Output: Locally refined Delaunay mesh M
Locally refined quadtree node Leaf

1 imin ← minPoorTrianglesi(Leaf) �=∅ i
2 imax ← imin + g
3 for j = imin, . . . , imax

4 while PoorTrianglesj(Leaf) �= ∅
5 Let t ∈ PoorTrianglesj(Leaf)
6 p ← f(t)
7 Insert p into M
8 for L ∈ {Leaf} ∪ BUF (Leaf)
9 Update PoorTriangles(L) and Counter(L)

10 endfor
11 endwhile
12 endfor
13 Split Leaf recursively while (9) holds
14 return M, Leaf

Fig. 4. The algorithm executed by each of the refinement threads.

for refinement by a thread, no other thread can refine the parts of the mesh
associated with the buffer zone BUF (Leaf) of this leaf. For each leaf of the
quadtree the following relation is maintained:

∀t ∈M : © (t) ∩ Leaf 
= ∅ =⇒ r (t) <
1
4
� (Leaf) , (9)

where � (Leaf) is the length of the side of Leaf . See [6] for the details.
The algorithm is designed for the execution by one master thread which

manages the work pool and multiple refinement threads which refine the mesh
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and the quadtree. Figure 4 presents the part of the algorithm executed by each
of the refinement threads.

When a quadtree leaf Leaf is scheduled for refinement, we remove not
only the nodes from the buffer zone BUF (Leaf) of Leaf from the refinement
queue, but also the nodes from BUF (L) for each L ∈ BUF (Leaf). Although
this is not required by our theory, there are two implementation considerations
for doing so, and both are related to the goal of reducing fine-grain synchro-
nization.1 First, each leaf has an associated data structure which stores the
poor quality triangles whose circumdisks intersect this leaf, so that we can
maintain the relation (9). Even though in theory the refinement of the mesh
by concurrent threads is not going to cause problems when the threads work
within the same quadtree leaf, in practice we would have to introduce synchro-
nization in line 9 of the algorithm in Figure 4 to maintain this data structure.
Second, for efficiency considerations, we followed the design of the triangle
data element that is used in the Triangle [22]. In particular, each triangle
contains pointers to neighboring triangles for easy mesh traversal. However, if
two cavities share an edge and are updated by the concurrent threads, which
can be done legitimately in certain cases [6], these triangle–neighbor pointers
will be invalidated. For these reasons, we chose to completely separate the
sets of leaves affected by the mesh refinement performed by multiple threads.

Each of the worker threads performs the refinement of the mesh and the
refinement of the quadtree. The poor quality triangles whose split-points se-
lected by a deterministic function f(·) are inside the square of Leaf are stored
in the data structure denoted here as PoorTriangles(Leaf). Leaf needs to be
scheduled for refinement if the size of this data structure is not empty. In ad-
dition, each Leaf has a counter for the triangles with various ratios of the side
length of Leaf to their circumradius. If we denote σ(t, Leaf) =

⌊
log2

�(Leaf)
r(t)

⌋
,

then Counteri(Leaf) = |{t ∈M | (© (t) ∩ Leaf 
= ∅) ∧ (σ(t, Leaf) = i)}|.
When Counteri(Leaf) = 0, ∀i = 1, 2, 3, it implies that (9) would hold for
each of the children of Leaf , and Leaf can be split. In [5] we proved that
when a point is inserted into a Delaunay mesh using the B-W algorithm, the
circumradii of the new triangles are not going to be larger than the circum-
radii of the triangles in the cavity of the point or those that are adjacent to
the cavity. Therefore, new triangles that would violate (9) are not going to be
created. Each leaf of the quadtree has associated with it a bucketing structure
which holds poor quality triangles:

PoorTrianglesi(Leaf) = {t ∈M | (f(t) ∈ Leaf) ∧ (σ(t, Leaf) = i)∧
((∆(t) > ∆̄(t)) ∨ (ρ (t) > ρ̄))}.

At each mesh refinement step, all triangles in PoorTrianglesj(Leaf) are re-
fined, for all j = imin, . . . , imin + granularity, where

1As we have shown in [1], modern SMTs are not suitable for executing fine-grain
parallelism in Delaunay mesh refinement.
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imin = minPoorTrianglesi(Leaf)�=∅ i, and granularity ≥ 1 is a parameter that
controls how much computation is done during a single mesh refinement call.
After a mesh refinement call returns, the feasibility of splitting Leaf is eval-
uated, and it is recursively subdivided if necessary.

3.1 Implementation and Experimental Evaluation

We implemented the algorithm in C++ using Pthreads for thread manage-
ment. The experiments were conducted on an IBM Power5 node with two dual-
core processors running at 1.6 GHz and 8 GBytes of total physical memory.
We compared our implementation with the fastest to our knowledge sequen-
tial Delaunay mesh generator the Triangle version 1.6 [22]. This is the latest
release of the Triangle, which uses the off-center point insertion algorithm [24].
In order to make the results comparable, our GPDR implementation also uses
the off-center point insertion [24]. Triangle provides a convenient facility for
the generation of meshes respecting user-defined area bounds. The user can
write his own triunsuitable() function and link it against the Triangle.
This function is called to examine each new triangle and to decide whether
or not it should be considered big and enqueued for refinement. We encoded
our grading function into the triunsuitable() function, compiled it into an
object file, and linked against both the Triangle and our own GPDR imple-
mentation. We ran each of the tests 10 times and used average or median
timing measurements as indicated.

Figure 5(left) presents the total running times for several granularity val-
ues, as the number of compute threads increases from 1 to 4. One additional
thread was used to manage the refinement queue. The mesh was constructed
for the pipe cross-section model shown in Figure 3(left), using the grading
function

∆̄(x, y) = c · (
√

(x− 200)2 + (y − 200)2 + 1), (10)

where c = 10−4 and (x, y) is the centroid of a triangle. Thus a triangle is
considered big if its area is greater than ∆̄(x, y). In all tests we used the same
20◦ degrees angle bound. The total number of triangles produced both by the
Triangle and GPDR was approximately 17 million.

We can see that the best running time was achieved using 4 compute
threads with the granularity value equal to 2, and it constituted 56% of the
Triangle’s sequential running time. It is also interesting to see the intersection
of lines corresponding to granularities 2 and 3, when the number of compute
threads was increased from 3 to 4. This intersection reflects one of the ba-
sic tradeoffs in parallel computing, between granularity and concurrency: in
order to increase the concurrency we have to decrease the granularity, which
introduces more overheads.

Figure 5(right) shows the breakdown of the total execution time for each
of the threads. The fact that the management thread is idle for 93% of the
total time suggests the possibility of high scalability of the code on larger
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Fig. 5. (Left) The total running time of the GPDR code, for different granularity
values, as the number of compute threads is increased from 1 to 4, compared to the
Triangle [22]. Each point on the graph is the average of 10 measurements. (Right)
The breakdown of the total GPDR execution time for each of the threads, when the
number of compute threads is 4 and granularity is 2. Thread number 0 performs
only the management of the refinement queue, and threads 1–4 perform mesh and
quadtree refinement. The data correspond to the test with the median total time.

machines, since it can handle many more refinement threads (cores) than the
current widely available machines have.

Standard system memory allocators exhibited high latency and poor scal-
ability in our experiments, which lead us to develop a custom memory man-
agement class. At initialization, our memory pool class takes the size of the
underlying object (triangle, vertex, quadtree node, or quadtree junction point)
as a parameter and at runtime it allocates blocks of memory which can fit
a large number of objects. When the objects are deleted, they are not deal-
located but are kept for later reuse instead. Our qualitative study of the
performance of the standard, the custom, and a novel generic multiprocessor
allocator appears in [21].

4 Conclusions

We analyzed the existing point insertion methods for guaranteed quality De-
launay refinement and unified them into a framework which allows to develop
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Fig. 6. An example mesh of the pipe model, with the corresponding quadtree. The
grading function is given by (10) with c = 0.3.

Fig. 7. Examples of the approaches for choosing Steiner points within selection
disks of skinny triangles.

customized mesh optimization techniques. The goals of these techniques may
include the following:

• minimizing the number of inserted points, see for example [24] and Sub-
section 2.2 here;

• eliminating slivers, see [9];
• splitting multiple poor quality triangles simultaneously, see Fig. 7(left).
• creating elongated edges in required directions, see Fig. 7(center);
• inserting more than one point, e.g., to create elements with specific shapes,

see Fig. 7(right);
• satisfying other application-specific requirements.

In this paper, we extended our theoretical framework for parallel Delaunay
refinement presented in [6] to work with custom point placement techniques.
We used three different point placement methods: circumcenter, off-center
and a new optimization-based method which allows to improve the size of the
mesh by up to 20% and up to 5% over the first two methods, respectively.
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Our current algorithm is limited to deterministic point selection; incorporating
randomized point selection is left to the future research.

We presented the algorithm and the implementation of a parallel 2D
graded guaranteed quality Delaunay mesh generator. The experimental re-
sults show that our code on a machine with two dual-core processors runs in
56% of the time taken by the fastest sequential code the Triangle [22]. By us-
ing a quadtree constructed in a specific way, we eliminated the need to solve
the difficult domain decomposition problem. Our ongoing research includes
the extension of the theory and of the implementation to three dimensions.
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