
7

Efficiency Enhancement of Estimation
of Distribution Algorithms

Kumara Sastry, Martin Pelikan, and David E. Goldberg

Summary. Efficiency-enhancement techniques speedup the search process of esti-
mation of distribution algorithms (EDAs) and thereby enable EDAs to solve hard
problems in practical time. This chapter provides a decomposition and an overview
of different efficiency-enhancement techniques for estimation of distribution algo-
rithms. Principled approaches for designing an evaluation-relaxation, and a time-
continuation technique are discussed in detail.

Key words: Efficiency enhancement, evolutionary computation, estimation
of distribution algorithms, parallelization, evaluation relaxation, hybridiza-
tion, time continuation, speedup

7.1 Introduction

A key challenge in genetic and evolutionary algorithm research is the design
of competent genetic algorithms (GAs) that can solve hard problems quickly,
reliably, and accurately. Estimation of distribution algorithms (EDAs) are
one such class of competent GAs. In essence, EDAs take problems that were
intractable with first-generation GAs and render them tractable, oftentimes
requiring only a polynomial (usually subquadratic) number of fitness evalu-
ations. However, for large-scale problems, the task of computing even a sub-
quadratic number of function evaluations can be daunting. This is especially
the case if the fitness evaluation is a complex simulation, model, or compu-
tation. For example, if a search problem requires over a million evaluations,
and if each evaluation takes about 10 s, EDAs would take over 120 days to
successfully solve the problem. This places a premium on a variety of effi-
ciency enhancement techniques. In essence, while competence leads us from
intractability to tractability , efficiency enhancement takes us from tractability
to practicality . In addition to function evaluations, in EDAs, the probabilistic
model building process can also be computationally intensive, especially with

K. Sastry et al.: Efficiency Enhancement of Estimation of Distribution Algorithms, Studies in

Computational Intelligence (SCI) 33, 161–185 (2006)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006

162 K. Sastry et al.

increasing problem sizes, making a variety of model-efficiency-enhancement
techniques also a necessity.

A distinct advantage of EDAs over many other evolutionary algorithms
is that the probabilistic models contain useful information about problem
structure that can be exploited in the principled design of various efficiency-
enhancement methods. Systematically incorporating problem knowledge
mined through the model-building process of EDAs into the design of an
efficiency-enhancement technique makes it adaptive and can potentially en-
hance the speed-up of the method. For example, when a simple surrogate
(approximate fitness function) is used as an alternative to an expensive and
accurate fitness evaluation, we obtain a moderate speed-up of about 1.3[75].
On the other hand, when the probabilistic model is used to design a surro-
gate, we obtain a speed-up of about 50 [64]. That is, by incorporating problem
knowledge contained in the probabilistic model into the design of the surro-
gate, we obtain about 39-fold increase in the speed-up.

In this chapter, we present an overview of different efficiency-enhancement
techniques, used to speedup not only the search process, but also the model-
building process. We will also illustrate systematic and principled ways
of incorporating and integrating the knowledge gained through probabilis-
tic models in the efficiency-enhancement methods – specifically, evaluation
relaxation [72], and time continuation [24] – to yield maximum speedup.
Additionally, subsequent chapters will discuss in detail some of the efficiency-
enhancement methods outlined here.

This chapter is organized as follows. We start with a brief outline of funda-
mental tradeoffs exploited by different EDA efficiency-enhancement methods
and discuss four broad classes of efficiency enhancement techniques (1) Paral-
lelization, (2) hybridization, and (3) time continuation, and (4) evaluation re-
laxation. We then provide examples of two principled efficiency-enhancement
techniques (1) An evaluation-relaxation scheme where we build an endoge-
nous fitness-estimate model using the probabilistic models built by EDAs –
specifically, the Bayesian optimization algorithm (BOA) [62, also see chapter
by Pelikan et al] – in Sect. 7.3, and (2) a time-continuation scheme where we
develop a scalable mutation operator in the extended compact GA (eCGA)
[37, also see chapter by Harik et al] that searches locally in the substructural
neighborhood in Sect. 7.4. Summary and key conclusions are given in Sect. 7.5.

7.2 Decomposition of Efficiency Enhancement
Techniques

In practical optimization problems we are often faced with limited computa-
tion resources, which brings forth different tradeoffs involving (1) time, which
is the product of population size, number of generations per epoch, and the
number of convergence epochs, and (2) solution quality assessment. Note that
the time includes both the function-evaluation time and the EDA time (time

7 Efficiency Enhancement of EDAs 163

for selection, model building, model sampling, and replacement). It should
be noted that the EDA time – especially the model building, sampling, and
replacement – can be very significant and sometimes comparable to – if not
more than – the function-evaluation time.

One or more of the following tradeoffs are exploited by efficiency-
enhancement techniques to speedup EDAs:

Quality-Duration Tradeoff: Usually, the longer we run an EDA (with a
sufficient population size), the higher will be the solution quality. However,
in real-world scenarios, the computational resources are often limited, which
leads to a tradeoff between solution quality and the search duration. There-
fore, efficiency can be gained by choosing a search procedure that maximizes
solution quality given the computational resource requirements. For example,
quality-duration tradeoff might result in deciding between running a single
epoch of an EDA with large population, as opposed to multiple epochs of the
EDA with small population.

In addition to the search process, building a high quality model in EDAs
might require longer time. On the other hand, reasonably accurate models
might be built in less amount of time. Therefore, efficiency in EDAs can be
gained by correctly deciding model accuracies during the search process.

Accuracy-Cost Tradeoff: Oftentimes, many complex real-world optimiza-
tion problems involve computationally expensive function evaluation. How-
ever, an array of cheaper fitness functions can be easily developed, but at the
cost of accuracy of fitness estimation. That is, the approximate fitness func-
tions (or surrogates) suffer from various levels of error, and typically, cheaper
the fitness function, larger the error in it. This introduces a tradeoff between
fitness functions that are computationally cheap, but less accurate and fit-
ness functions that are accurate, but computationally expensive. Therefore,
we have to decide on the level of solution-quality assessment accuracy required
during the search process, such that high-quality solutions can be obtained at
minimum computational cost.

Additionally, in EDAs, a similar tradeoff exists between the probabilistic
model accuracy and the cost. Typically, high-quality models are more expen-
sive than low-quality models and striking an appropriate balance between
model accuracy and model cost can significantly improve the model-building
efficiency of EDAs.

Time Budget and Resource Allocation Tradeoff: Given limited com-
putational resource its allocation in terms of population size, run duration,
and number of convergence epochs can significantly influence the efficiency
of the search algorithm. Time budgeting tradeoffs are often faced when dis-
tributing the EDA process between multiple processors (to strike a balance
between communication and computation times), dividing the overall search
time between different variation operators of an EDA such as crossover and

164 K. Sastry et al.

mutation, or dividing the search time between different local and global search
methods.

Additionally, in EDAs time budgeting tradeoffs can also be faced when
dividing resources between model building and model usage (in terms of ex-
ploration via model sampling and evaluation of sampled individuals).

Efficiency-enhancement techniques that exploit one or more of the afore-
mentioned tradeoffs can be broadly classified into four categories:

Parallelization: EDAs are run on multiple processors and the computations
are distributed among these processors [14]. The use of parallelization –
of both the search process and the model-building process – in EDAs is
discussed in detail elsewhere in this book (see chapter by Ocenasek et al).

Hybridization: Domain-specific knowledge and other techniques are coupled
with EDAs to create a search bias and to accelerate the search process
[16, 26, 39, 44, 54, 80]. In addition to traditional hybridization methods,
prior knowledge can be incorporated in the probabilistic models of EDAs,
details of which are provided elsewhere in this book (see chapter by
Baluja). Additionally, the effectiveness of hybridizing EDAs with local
search methods is empirically demonstrated for the spin-glass problems
elsewhere in this book (see chapter by Pelikan and Hartmann).

Time continuation/utilization: Capabilities of both mutation and recom-
bination are utilized to the fullest extent, and time budgeting issues are
addressed depending on the problem type [24, 47, 73, 74, 82, 83]. In this
chapter, we will illustrate a principled manner of incorporating neigh-
borhood information, contained in the probabilistic models, with time-
continuation operators to yield maximum speedup.

Evaluation relaxation: Accurate, but expensive fitness functions are re-
placed by less accurate, but inexpensive fitness functions (or surrogates),
and thereby the total number of costly fitness evaluations is reduced
[2, 8, 31, 43, 53, 64, 72, 75, 76, 81]. In this chapter, we will illustrate a prin-
cipled approach for using substructural knowledge provided by proba-
bilistic models of EDAs to develop an endogenous surrogate that can be
used instead of the expensive fitness function to obtain high-quality so-
lutions and thus provide maximum speedup. In addition to relaxing the
solution-quality assessment measures, we can also relax the model-quality
assessment in EDAs [66].

The speedup obtained by employing an efficiency-enhancement technique
(EET) is measured in terms of a ratio of the computation effort required by
an EDA when the is not used to that required when the EET is used. That
is, η = Tbase/Tefficiency−enhanced. The speedup obtained by employing even a
single EET can potentially be significant. Furthermore, assuming that the
performance of one of the above methods does not affect the performance of
others, if we employ more that one EET, the overall speedup is the product

7 Efficiency Enhancement of EDAs 165

of individual speedups. That is, if the speedups obtained by employing par-
allelization, hybridization, time continuation and evaluation relaxation be ηp,
ηh, ηt, and ηe respectively, then the overall speedup obtained is

ηtotal = ηpηhηtηe.

Even if the speedup obtained by a single EET is modest, a combination of
two or more EETs can yield a significant speedup. For example, if we use
a parallel EDA that yields linear speedup with 100 processors, and each of
the other three EETs makes EDAs 25% more efficient, then together they
yield a speedup of 100 ∗ 1.253 = 195.3. That is evaluation relaxation, time
continuation, and hybridization would give slightly more than 95 processors’
worth of additional computation power.

Before we demonstrate principled methodologies for utilizing information
from probabilistic models of EDAs for maximum efficiency enhancement, we
present a brief outline of each of the four classes of efficiency-enhancement
techniques.

7.2.1 Parallelization

In parallelization, EDAs are run on multiple processors and the computations
are distributed among these processors [13, 14]. Evolutionary algorithms are
by nature parallel, and many different parallelization approaches such as a
simple master-slave [9, 30], coarse-grained [32, 67, 84], fine-grained [27, 28, 50,
70], or hierarchical [23, 29, 33, 48] architectures can be readily used. Regardless
of how parallelization is done, the key idea is to distribute the computational
load of EDAs on several processors thereby speeding-up the search process.
A principled design theory exists for developing an efficient parallel GA and
optimizing the key facts of parallel architecture, connectivity, and deme size
[14], some of which are discussed in the next chapter. Apart from parallelizing
the function evaluations, the probabilistic model building process can also be
parallelized [56–58] which is also discussed in the chapter by Ocenasek et al.

7.2.2 Hybridization

In hybridization, domain-specific knowledge and other local-search techniques
are coupled with evolutionary algorithms to obtain high-quality solutions in
reasonable time [16, 26, 39, 44, 54, 80]. Most industrial-strength evolutionary
algorithms employ some sort of local search for a number of reasons such
as achieving faster convergence [12, 39, 80], repairing infeasible solutions into
legal ones [42, 59], initializing the population [21, 68], and refining of solutions
obtained by a GA [41]. In addition to traditional ways of hybridizing EDAs
[34, 46, 60, 61, 71], prior knowledge of the search problem can be incorporated
into the probabilistic models as discussed elsewhere in this book (see chapter
by Baluja).

166 K. Sastry et al.

While evolutionary-algorithm practitioners have often understood that
real-world or commercial applications require hybridization, there have been
limited efforts in developing a principled design framework on answering crit-
ical issues such as the optimal division of labor between global and local
searches (or the right mix of exploration and exploitation) [26, 79], the effect
of local search on sampling [39, 40], and the optimal duration of local search
[39, 45], and similar efforts are yet to be attempted for understanding and
designing hybrid EDAs.

7.2.3 Time Continuation

In time continuation, capabilities of both mutation and recombination are
optimally utilized to obtain a solution of as high quality as possible with a
given limited computational resource [24, 47, 73, 74, 82, 83]. Time utilization
(or continuation) exploits the tradeoff between the search for solutions with
large population and a single convergence epoch and using a small population
with multiple convergence epochs.

Early theoretical investigations indicate that when the subsolutions are
of equal (or nearly equal) salience and both recombination and mutation op-
erators have the linkage information, then a small population with multiple
convergence epochs is more efficient. However, if the fitness function is noisy
or has overlapping subsolutions, then a large population with single conver-
gence epoch is more efficient [73, 74]. On the other hand, if the subsolutions
of the problem are of nonuniform salience, which essentially requires serial
processing, then a small population with multiple convergence epochs is more
efficient [24]. While early efforts on developing adaptive continuation opera-
tors using probabilistic models of EDAs are promising [35, 47, 73], much work
needs to be done to develop a principled design theory for efficiency enhance-
ment via time continuation and to design adaptive continuation operators to
reinitialize population between convergence epochs.

7.2.4 Evaluation relaxation

In evaluation relaxation, an accurate, but computationally expensive fitness
evaluation is replaced with a less accurate, but computationally inexpensive
fitness estimate. The low-cost, less-accurate fitness estimate can either be (1)
exogenous, as in the case of approximate fitness functions [8, 43, 49], where
external means can be used to develop the fitness estimate, or (2) endogenous,
as in the case of fitness inheritance [81] where, some of the offspring fitness is
estimate based on fitness of parental solutions.

Evaluation relaxation in GAs dates back to early, largely empirical work of
Grefenstette and Fitzpatrick [31] in image registration [20] where significant
speedups were obtained by reduced random sampling of the pixels of an im-
age. Approximate models have since been used extensively to solve complex

7 Efficiency Enhancement of EDAs 167

optimization problems in many engineering applications such as aerospace
and structural engineering [8, 11, 19].

While early evaluation-relaxation studies were largely empirical in nature,
design theories have since been developed to understand the effect of approx-
imate evaluations via surrogates on population sizing and convergence time
and to optimize speedups in approximate fitness functions with known vari-
ance [51, 53], in integrated fitness functions [3, 4], in simple functions of known
variance or known bias [72], and in fitness inheritance [75]. While exogenous
surrogates can be readily used in EDAs, the probabilistic models of EDAs can
be effectively used to develop endogenous surrogates that provide significant
speedup [64, 76], details of which are provided in the next section. In addition
to relaxing the solution-quality assessment measures, we can also relax the
model-quality assessment in EDAs. For example, we can use sporadic model
building, where the structure of the probabilistic model is built once every
few generations and the probabilities are updated every generation [66].

7.3 Evaluation Relaxation: Designing Adaptive
Endogenous Surrogates

As mentioned earlier, a distinct advantage of EDAs over first-generation GAs
is the availability of variable-interaction information in terms of the proba-
bilistic models mined from a population of promising solutions. Therefore, we
can use the probabilistic models to infer the structural form of the surrogate.
This is in contrast to surrogates often used to speedup evolutionary algo-
rithms, which are of fixed form and do not adapt to key variable interactions
of the underlying search problem. In other words, with the help of probabilis-
tic models built in EDAs, we can use the probabilistic models to decide on
the form of the surrogate and use one of the system identification, estimation,
or regression methods to estimate the coefficients of the surrogate.

For example, the probabilistic model of eCGA represents nonoverlapping
partitions of variables. The resulting surrogate inferred from the model would
then be a polynomial, whose order and terms are decided based on the sub-
structures identified by the model, and the coefficients of the surrogate rep-
resent the partial contribution of the subsolutions to the overall fitness of the
individual [76]. The surrogates designed with the information provided by the
probabilistic models are quite accurate and yield substantial speedups. For
example, on a class of boundedly difficult additively decomposable problems
endogenous surrogates in BOA yields speedups of about 50 [64]. This is in con-
trast to a moderate speed-up of about 1.3 obtained by using a simple fitness
inheritance method [75, 81].

In the remainder of this section, we illustrate the design of adaptive en-
dogenous surrogates in the Bayesian optimization algorithm. We note that the
design method can be extended to other EDAs and the key idea is to using
the probabilistic model to infer the structural form of the surrogate and to

168 K. Sastry et al.

use system-identification and estimation tools for computing the coefficients
of the surrogate.

7.3.1 Evaluation Relaxation: Endogenous Surrogates in BOA

The Bayesian optimization algorithm (BOA) uses Bayesian networks to model
candidate solutions [62, also see chapter by Pelikan et al]. The structure of
the Bayesian network is encoded by a directed acyclic graph with the nodes
corresponding to the variables in the modeled data set and the edges cor-
responding to conditional dependencies. A Bayesian network encodes a joint
probability distribution given by

p(X) =
n∏

i=1

p(Xi|Πi), (7.1)

where X = (X0, . . . , Xn−1) is a vector of all the variables in the problem; Πi

is the set of parents of Xi (the set of nodes from which there exists an edge to
Xi); and p(Xi|Πi) is the conditional probability of Xi given its parents Πi.

The parameters of the Bayesian networks are represented by a set of condi-
tional probability tables (CPTs) specifying a conditional probability for each
variable given any instance of the variables that the variable depends on. CPTs
store conditional probabilities p(Xi|Πi) for each variable Xi. Local structures
– in the form of decision trees or decision graphs – can also be used in place
of full CPTs to enable more efficient representation of local conditional prob-
ability distributions in Bayesian networks. While we describe the design of
endogenous surrogate in BOA with CPTs, similar methodology can be used
for BOA with decision trees and graphs.

Given the probabilistic model (in form of a Bayesian network), we can
infer the form of the surrogate as an acyclic tree whose nodes correspond to
the variables and the edges correspond to the marginal fitness contributions of
subsolutions (or the coefficients of the surrogate). That is, for every variable
Xi and each possible value xi of Xi, an estimate of the marginal fitness con-
tribution of a subsolution with Xi = xi must be stored for each instance πi of
Xi’s parents Πi. In the binary case, each row in the CPT is thus extended by
two additional entries. Figure 7.1 shows an example of the probability model
and the substructural surrogate in BOA. The substructural fitness can be
estimated as

fest(X1,X2, . . . , X�) = f̄ +
�∑

i=1

(
f̄(Xi|Πi)

)
, (7.2)

where f̄(Xi|Πi) denotes the average fitness of solutions with Xi and Πi. That
is,

f̄(Xi|Πi) =
1
nh

∑

{j|yj⊃xi,πi}
f (yj) − f̄(Πi), (7.3)

7 Efficiency Enhancement of EDAs 169

p(X) 5

p(X) 7

7X

X6 p(X |X X) 3 2 1

p(X |X) 2 1
X1 X2

X3

X4X5
p(X |X) 6 7

p(X) 1

p(X |X) 4 5

(a) Probability model

X6

X7

X1 X2

X3

X5
X4

f(X) 5
f(X |X) 4 5

f(X |X X) 3 2 1
f(X |X) 6 7

f(X) 7

f(X) 1 f(X |X) 2 1

(b) Substructural surrogate

Fig. 7.1. Substructural fitness estimation model in Bayesian optimization algo-
rithm. The estimated fitness for the model is given by fest(X1, X2, . . . , X7) =
f̄ + f̄(X1) + f̄(X2|X1) + f̄(X3|X2X1) + f̄(X5) + f̄(X4|X5) + f̄(X7) + f̄(X6|X7)

where nh is the total number of individuals that contain the schema πi, yj is
the jth individual and f(yj) is its fitness, and f̄(Πi) is the average fitness of
all solutions with Πi.

Similar to earlier fitness-inheritance studies, we begin with fully evaluating
the initial population, and thereafter evaluating an offspring with a probability
1−pi. In other words, we use the endogenous surrogate to estimate the fitness
of an offspring with probability pi. One question remains as to where to obtain
information for computing the coefficients of the surrogate, which is addressed
in Sect 7.3.2.

7.3.2 Where to Estimate the Marginal Fitnesses From?

In the proposed method, for each instance xi of Xi and each instance πi of
Xi’s parents Πi, we must compute the average fitness of all solutions with
Xi = xi and Πi = πi. In this section, we discuss two sources for computing
the coefficients of the surrogate:

1. Selected parents that were evaluated using the actual fitness function
2. The offspring that were evaluated the actual fitness function

The reason for restricting computation of the coefficients of the surrogate to
selected parents and offspring is that the probabilistic model used as the basis
for selecting relevant statistics represents nonlinearities in the population of
parents and the population of offspring. Since it is best to maximize learn-
ing data available, it seems natural to use both populations to compute the
marginal fitness of the components of the surrogate. The reason for restricting
input for computing these statistics to solutions that were evaluated using the
actual fitness function is that the fitness of other solutions was estimated only
and it involves errors that could mislead the surrogate and propagate through
generations.

170 K. Sastry et al.

We have extensively tested the proposed evaluation-relaxation scheme on
a class of boundedly difficult additively decomposable problems. Before pre-
senting the key results, we now briefly introduce facetwise models to predict
the scalability and speed-up of using endogenous surrogates as an alternative
to expensive fitness evaluation.

7.3.3 Scalability and Speedup

Facetwise and dimensional models can be used to analyze the scalability of
and the speedup provided by endogenous surrogates in EDAs. In this section,
we present the key results of the analysis and the details are given elsewhere
[76].

The error introduced by the surrogate can be modeled as additive Gaussian
noise with zero mean and variance piσ

2
f,t, where pi is the probability of an

individual receiving estimated fitness, and σ2
f,t is the true fitness variance.

However, this approximation is not valid for very high pi values as the sub-
structural fitness is estimated from very few individuals, which increases the
error in the estimate significantly. Empirically, we observed that the noise
variance becomes significantly higher than the above approximation when
pi ≥ 0.85. Error due to variance (as in additive Gaussian noise) increases both
the population size and run duration required for EDA success [25, 38, 52, 72].

The increase in the required population size due to the use of the sub-
structural surrogate is given by

nr =
n

no
= (1 + pi) . (7.4)

where no is the minimum population size required to obtain a solution of
quality (m− 1)/m when the endogenous surrogate is not used. Here, m is the
number of key substructures of the search problem.

The increase in the run duration due to the use of the surrogate is given
by

tc,r =
tc
tc,o

=
√

1 + pi. (7.5)

where tc,o is the run duration – in other words, the number of generations –
taken by the EDA to successfully solve the search problem when the surrogate
is not used.

Using (7.4) and (7.5) and, after further simplifications and approximations,
we can estimate the increase in the total number of function evaluations re-
quired to obtain a solution with at least m−1 out of m substructures at their
optimal values as

nfe,r ≈ (1 + pi)
1.5 (1 − pi) . (7.6)

Therefore, the speedup provided by using endogenous fitness-estimation
model is given by the inverse of the function-evaluation ratio:

7 Efficiency Enhancement of EDAs 171

ηendogenous fitness model =
1

(1 + pi)
1.5 (1 − pi)

. (7.7)

Equation (7.6) indicates that the number of function evaluations initially
increases with pi, reaching a maximum at pi = 0.2. The function-evaluation-
ratio model indicates that the number of function evaluations decreases with
pi for pi > 0.2 and reaches a minimum at pi = 1. In other words, the speedup
decreases initially (pi < 0.2) and then increases reaching a maximum at pi = 1.
However, as mentioned earlier, the facetwise models for the population sizing
and the convergence time are not valid at very high values of pi. Nevertheless,
the models are suggestive and as shown in the results, we obtain maximum
speedups when pi is close to 1.0.

It should be noted that in our scalability and speedup analysis, we only
considered the cost of actual fitness evaluation. In other words, we ignored
the time complexity of selection, fitness model construction, generation of new
candidate solutions, and fitness estimation. Combining these factors with the
complexity estimate for the actual fitness evaluation can be used to compute
the optimal proportion of candidate solutions whose fitnesses can be estimated
using the endogenous surrogate. We reiterate that the proposed evaluation-
relaxation scheme is beneficial when the actual fitness evaluation is expensive,
in which case the above costs are indeed negligible and the models developed
in this section valid.

7.3.4 Results and Discussion

We use two test functions for verifying and validating the use of the endoge-
nous surrogate instead of costly, but accurate function-evaluation method. Our
approach in verifying the models and observing if the proposed evaluation-
relaxation scheme yields speedup is to consider bounding adversarial problems
that exploit one or more dimensions of problem difficulty [25]. Particularly, we
are interested in problems where substructure identification and exchange is
critical for the EDA success. Specifically, we use OneMax – where the fitness
function is the number of ones in the binary string – and m−k deceptive trap
problem [1, 17, 18, 22].

While the optimization of the OneMax problem is easy, the probabilistic
models built by EDAs such as eCGA and BOA, however, are known to be only
partially correct and include spurious linkages [63]. Therefore, the speed-up
results on the OneMax problem will indicate if the effect of using partially
correct linkage mapping on the endogenous surrogate is significant. For an
ideal surrogate developed for the OneMax problem, the average fitness of a 1
in any leaf should be approximately 0.5, whereas the average fitness of a 0 in
any leaf should be approximately −0.5.

Unlike, the OneMax problem, m − k deceptive problems are boundedly
difficult and the accurate identification and exchange of key substructures
are critical to EDA success. For the m − k trap problem, f̄(Xi = 0) and

172 K. Sastry et al.

f̄(Xi = 1) depend on the state of the search because the distribution of
contexts of each bit changes over time and bits in a trap are not independent.
The context of each leaf also determines whether f̄(Xi = 0) < f̄(Xi = 1) or
f̄(Xi = 0) > f̄(Xi = 1) in that particular leaf.

Figure 7.2(a) and 7.2(b) present the scalability and speedup results of the
evaluation-relaxation scheme for BOA on a 50-bit OneMax, 10-4 and 10-5
deceptive trap functions. We considered a binary (s = 2) tournament selec-
tion without replacement. For each test problem, the following proportions of
using the surrogate, pi, were considered: 0–0.9 with step 0.1, 0.91–0.99 with
step 0.01, and 0.991–0.999 with step 0.001. For each test problem and pi value,
30 independent experiments were performed. Each experiment consisted of 10
independent runs with the minimum population size to ensure convergence to
a solution within 10% of the optimum (i.e., with at least 90% correct bits) in
all 10 runs. For each experiment, bisection method was used to determine the
minimum population size, and the number of evaluations (excluding the evalu-
ations done using the model of fitness) was recorded. The average of 10 runs in
all experiments was then computed and displayed as a function of the propor-
tion of candidate solutions for which fitness was estimated using the surrogate.
Therefore, each point in Figs. 7.2(a) and 7.2(b) represents an average of 300
BOA runs that found a solution that is at most 10% from the optimum.

In all experiments, the number of actual fitness evaluations decreases with
pi. Furthermore, the surrogates built in BOA are applicable at high pi values,
even as high as 0.99. That is, by evaluating less than 1% of candidate solutions
and estimating the fitness for the rest using the endogenous surrogate, we
obtain speedup of 31 (for OneMax) to 53 (for m k-Trap). In other words,
by developing and using the endogenous surrogate to estimate the fitness of

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Proportion of inheritance, p
i

F
un

ct
io

n
ev

al
ua

tio
n

ra
tio

, n
fe

/n
fe

(p
i =

 0
) 50-bit OneMax

10 4-Trap
10 5-Trap
Theory

0.96 0.97 0.98 0.99 1
0

0.05

0.1

(a) Function-evaluation-ratio

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

50

55

Proportion of inheritance, p
i

S
pe

ed
-U

p,
 η

in
h

50-bit OneMax
10 4-Trap
10 5- Trap
Theory

0.96 0.97 0.98 0.99 1
0

10

20

30

40

50

(b) Speedup in BOA

Fig. 7.2. The effect of using the endogenous surrogate on the total number of
function evaluations required for BOA success, and the speedup obtained by using
the evaluation relaxation-scheme in BOA. The empirical results are obtained for a
50-bit OneMax, 10 4-Trap and 10 5-trap problems

7 Efficiency Enhancement of EDAs 173

99% of the individuals, we can reduce the number of actual fitness evaluation
required to obtain high quality solutions by a factor of up to 53.

Overall, the results suggest that significant efficiency enhancement can
be achieved through an endogenous surrogate that incorporates knowledge of
important subsolutions of a problem and their partial fitnesses. The results
clearly indicate that using the surrogate in EDAs can reduce the number of
solutions that must be evaluated using the actual fitness function by a factor of
31–53. Consequently, if fitness evaluation is a bottleneck, there is a lot of room
for improvement using endogenous surrogates in EDAs in general, and BOA,
in particular. For real-world problems, the actual savings may depend on the
problem being considered. However, it can be expected that developing and
using the fitness-estimate model enables significant reduction in the number of
fitness evaluations on many problems because deceptive problems of bounded
difficulty bound a large class of important nearly decomposable problems.

The probabilistic models are not only useful for the design of surrogates,
but can be exploited in other facets of efficiency enhancement as well. In the
following section, we illustrate the use of probabilistic models in the principled
design of time continuation operators.

7.4 Time Continuation: Mutation in EDAs

In time continuation, we investigate and decide between the fundamental
tradeoff between using an evolutionary algorithm with a large population for a
single convergence epoch or with a small population for multiple convergence
epochs, as illustrated in Fig. 7.3. A continuation operator is required when
using a small-population, multiple-epoch evolutionary algorithm for maintain
diversity in population between epochs. In the ideal case, the continuation op-
erator perturbs only bad building blocks (BBs) at the end of each convergence
epoch. However, in practice, the continuation operator not only perturbs bad
building blocks, but also some good ones, and a regeneration cost – or cost of
reduction in solution quality between two epochs – is incurred. Since the con-
tinuation operator modifies only a few individuals to seed the population in
subsequent epochs, it is assumed to be some form of mutation or local search
method. Therefore, the decision making involved in time continuation can also
be posed as choosing between two key genetic operators – recombination and
mutation.

Goldberg [24] developed an analytical framework to optimally solve the
time continuation problem. Early studies considered the effect of the salience
structure and observed that while a large population run is preferable for
problems with near-uniform salience structure, a small population run is ad-
vantageous for problems with exponential-salience structure [24, 82, 83]. More
recent studies considered the effectiveness of incorporating the building-block
structure into both global and local evolutionary algorithm operators and the
effect of noise, salience structure and the crosstalk between different building

174 K. Sastry et al.

P
op

ul
at

io
n

si
ze

P
op

ul
at

io
n

si
ze

Time Time

(a) (b)

epoch 1 epoch 2 epoch 3

Fig. 7.3. Two scenarios of resource utilization: (a) Large population, single con-
vergence epoch, and (b) Small population, multiple convergence epochs

blocks on time continuation [74, 77]. When both global and local operators
are given the substructural information (or good neighborhood information),
a small population run is beneficial for deterministic problems with near-
uniform salience structure. On the other hand, for noisy problems, a large
population is preferred.

One of the key challenges in time continuation is the design of effective con-
tinuation operators that searches in the correct neighborhoods. Existing muta-
tion (or continuation) operators usually search in the local neighborhood of an
individual, without taking into account the global neighborhood information.
In genetic algorithms, mutation is usually a secondary search operator which
performs random walk locally around a solution. On the other hand, in evolu-
tion strategies, while powerful mutation operators are used [6, 10, 36, 69, 78],
the neighborhood information is still local around a single or few solutions.
In local-search literature, while the importance of using a good neighbor-
hood operator is often highlighted [5, 7, 15, 85, 86], no systematic methods for
designing neighborhood operators that can solve a broad class of bounding
problems have been developed.

However, for solving boundedly difficult problems, local neighborhood in-
formation is not sufficient, and a mutation operator which uses local neighbor-
hoods requires O(mk log m) number of evaluations [55]. Therefore, we utilize
the probabilistic models built in eCGA for automatically building global neigh-
borhood (or linkage) information into the mutation operator. Unlike, adaptive
mutation techniques in evolution strategies, which usually have local neigh-
borhood information adapted over time, our method leads to a more global
induction of the neighborhood.

In Sect. 7.4.1, we illustrate the design of an efficient operator that utilizes
the global neighborhood information mined by the probabilistic models of the

7 Efficiency Enhancement of EDAs 175

extended compact genetic algorithm (eCGA) [37, also see chapter by Harik
et al] to search among competing subsolutions.

7.4.1 Mutation in eCGA: Searching in Substructural
Neighborhood

As described in the chapter by Harik et al, eCGA builds marginal product
models that yields a direct mapping of linkage groups among successful indi-
viduals. Therefore, we use the model-building procedure of eCGA to identify
the key substructures of a problem. Once the linkage-groups are identified,
we use an enumerative building-block-wise mutation operator [74] to search
for the best among competing subsolutions. For example, if the model builder
identifies m BBs of size k each, the eCGA continuation operator will select
the best subsolution out of 2k possible ones in each of the m partition.

That is, from a sample of randomly generated candidate solution the top
solutions (as determined by the selection mechanism) are used to build prob-
abilistic model in eCGA. The best solution in the population is used for
substructural mutation: Consider the first nonmutated substructure, where
the substructures are arbitrarily chosen from left-to-right, however, different
schemes can be – or may required to be – chosen to decide the order of
choosing substructures to mutate. For example, substructural partitions that
contain most active variables might be mutated before those that contain less
active variables. For the substructure in consideration, create 2k − 1 unique
individuals with all possible subsolutions in the chosen partition, where k is
order of the substructure. The subsolutions in other partitions are not modi-
fied. Evaluate all 2k − 1 individuals and retain the best for mutation of other
substructures. Thus at each convergence epoch the best subsolution in each
partition is chosen and the search ends after m convergence epochs, where m
is the number of substructures in the problem.

Note that the performance of the above mutation can be slightly improved
by using a greedy heuristic to search for the best among competing BBs, how-
ever, as shown later, the scalability of the mutation operator is determined by
the population-size required to accurately identify the building blocks. Fur-
thermore, we perform linkage identification only once in the initial generation.
This offline linkage identification works well on problems with BBs of nearly
equal salience. However, for problems with BBs of nonuniform salience, we
would have to perform linkage identification and update BB information in
regular intervals. The key idea in designing the mutation operator in other
EDAs such as BOA is that the operator should effectively use the neighbor-
hood information contained in the probabilistic models.

We now present the scalability of the enumerative BB-wise mutation op-
erator and followed by an analysis of the efficiency enhancement provided by
time continuation in eCGA.

176 K. Sastry et al.

7.4.2 Scalability of Building-Block-Wise Mutation

The scalability of the BB-wise mutation operator depends on two factors (1)
the population size required to build accurate probabilistic models of the link-
age groups, and (2) the total number of evaluations required by the BB-wise
mutation operator to find optimal subsolutions in all the partitions. Pelikan,
Sastry, and Goldberg [65] developed facetwise models for predicting the critical
and maximum population-size required to correctly identify good interactions
among variables. They showed that the minimum population size scales as

nmin = Θ
(
2km1.05

)
, (7.8)

and the maximum population size which avoids discovery of false dependencies
between independent variables is given by

nmax = Θ
(
2km2.1

)
. (7.9)

In other words, to avoid incorrect identification of BBs, the population size
should be less than nmax. Since we require that all the BBs be correctly
identified in the first generation itself, the population size required should be
greater than nmin, but less than nmax. That is,

Θ
(
2km1.05

)
≤ n ≤ Θ

(
2km2.1

)
. (7.10)

Since the model building is performed only once, the total number of function
evaluations scales as the population size. That is,

Θ
(
2km1.05

)
≤ nfe,1 ≤ Θ

(
2km2.1

)
. (7.11)

During BB-wise mutation, we evaluate 2k − 1 individuals for determining
the best BBs in each of the m partitions. Therefore, the total number of
function evaluations used during BB-wise mutation is

nfe,2 =
(
2k − 1

)
m = O

(
2km

)
. (7.12)

From Equations 7.11 and 7.12, the total number of function evaluations scales
as

Θ
(
2km1.05

)
≤ nfe ≤ Θ

(
2km2.1

)
. (7.13)

We now empirically verify the scale-up of the population size and the
number of function evaluations required for successfully solving the m−k de-
ceptive trap problem in Figs. 7.4(a) and 7.4(b), respectively. For the empirical
runs, we use tournament selection without replacement with a tournament size
of 8. The average number of subsolutions correctly converged are computed
over 30 independent runs. The minimum population size required such that
m− 1 subsolutions converge to the correct value is determined by a bisection
method [72]. The results of population-size is averaged over 30 such bisection

7 Efficiency Enhancement of EDAs 177

2 3 4 5 7 10 20 30 50

10
2

10
3

10
4

Number of building blocks, m

P
op

ul
at

io
n

si
ze

, n

k = 4, d = 0.25: O(m1.4)
k = 5, d = 0.20: O(m1.4)

(a) Population size

2 3 4 5 7 10 20 30 50

10
2

10
3

10
4

Number of building blocks, m

N
um

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

, n
fe

k = 4, d = 0.25: O(m1.4)
k = 5, d = 0.20: O(m1.4)

(b) Number of function evaluations

Fig. 7.4. Population size (7.10) and the number of function evaluations (7.13)
required by BB-wise mutation for solving m − k Trap function. The results are
averaged over 900 runs for the number of function evaluations and 30 bisection runs
for the population size. The relative deviation for the empirical results is less than
0.2%. The population size and the number of function evaluations both scale as
Θ(2km1.5)

runs, while the results for the function-evaluation ratio is averaged over 900
independent runs.

In contrast to fixed mutation operators which require O(mk log m) num-
ber of function evaluations to solve additively separable GA-hard problems
[55], the proposed eCGA-based BB-wise mutation operator that automatically
identifies the linkage groups requires only O(2km1.5) (polynomial) number of
evaluations.

7.4.3 Crossover vs. Mutation in eCGA

We know that eCGA scales as Θ
(
2k
√

km1.5 log m
)

[73, also see chapter by
Harik et al], and from (7.13), we know that the BB-wise mutation scales as
Θ
(
2km1.5

)
for additively separable problem of bounded difficulty. Therefore,

the BB-wise mutation operator in eCGA is Θ
(√

k log m
)

faster than eCGA in
solving boundedly difficult additively separable problems. That is, the speedup
– which is defined as the ratio of number of function evaluations required by
eCGA to that required by the selectomutative GA – is given by

η =
nfe(eCGA)

nfe(BBwise Mutation)
= Θ

(√
k log m

)
, (7.14)

which is empirically verified in Fig. 7.5. The results clearly indicate the effi-
ciency enhancement provided by the time continuation operator that automat-
ically and adaptively searches for the subsolution neighborhood as identified
by eCGA.

178 K. Sastry et al.

2 3 5 7 10 20
1

2

3

4

5

6

7

8

9

Number of building blocks, m

S
pe

ed
-U

p,
 η

k = 4, d = 0.25: O(log(m))
k = 5, d = 0.20: O(log(m))

Fig. 7.5. Empirical verification of the speedup (7.14) obtained by using the proba-
bilistic model building BB-wise mutation over eCGA for the m − k Trap function.
The results show that the speedup scales as Θ(

√
k log m)

Time-continuation scenarios have also been studied when dealing with
noisy problems and problems with overlapping building blocks, where a com-
petent crossover is often more efficient than a competent mutation, and
therefore a large-population, single convergence epoch eCGA run is preferred
[74, 77]. One of the important efforts directly motivated by this study, which is
currently underway, is the design and development of adaptive time continu-
ation operators that utilize the substructural models built by eCGA not only
in mutation and recombination operators, but also to automatically decide
between using a large population with single convergence epoch or a small
population eCGA with multiple convergence epochs [47]. Simply stated, the
model building is used to identify the appropriate population size regime and
whether local or global operators are used. For example, for noisy problems
an adaptive time continuation operator should implicitly switch from local
to global search operator as the problem becomes more noisy. The decision
making depends upon the type of the problem being solved, and results in
significant savings even for modestly sized problems.

7.5 Summary and Conclusions

Like any industrial-strength search algorithm, practical deployment of EDAs
strongly rely on one or more efficiency-enhancement techniques such as
parallelization, hybridization, time continuation, and evaluation relaxation.
While EDAs take problems that were intractable by first generation genetic

7 Efficiency Enhancement of EDAs 179

algorithms, and render them tractable, principled efficiency-enhancement
techniques take us from tractability to practicality. In this chapter, we pre-
sented an overview of various efficiency-enhancement techniques for speeding-
up EDAs. We also provided two examples of principled efficiency-enhancement
techniques, both of which utilize the probabilistic models built by the EDAs.
The first example was an evaluation-relaxation method, where we build an
endogenous substructural surrogate to estimate fitness of majority of the
population, while actual fitness is computed for only a small portion of the
population. The second example developed a competent mutation (or time
continuation) operator in the extended compact genetic algorithm, which uses
the probabilistic models and searches locally in the subsolution neighborhood.

The two examples clearly demonstrate that by systematically incorporat-
ing problem knowledge gained through the probabilistic models built in EDAs
into the efficiency-enhancement technique, the speedup can be significantly
enhanced. Furthermore, the overall efficiency of combining such nearly inde-
pendent efficiency-enhancement techniques is multiplicative. For example, if
we use a parallel EDA that yields linear speedup with 100 processors, and each
of the other three EETs makes EDAs 25% more efficient, then together they
yield a speedup of 100 ∗ 1.253 = 195.3. That is, evaluation relaxation, time
continuation, and hybridization would give slightly more than 95 processors’
worth of additional computation power.

Acknowledgments

This work was sponsored by the Air Force Office of Scientific Research, Air
Force Materiel Command, USAF, under grant F49620-03-1-0129, the National
Science Foundation under ITR grant DMR-03-25939 at Materials Computa-
tion Center, and the Research Award and the Research Board at the Uni-
versity of Missouri. The U.S. Government is authorized to reproduce and
distribute reprints for government purposes notwithstanding any copyright
notation thereon.

The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Air Force Office of Scientific
Research, the National Science Foundation, or the U.S. Government.

References

[1] Ackley, D. H. (1987). A Connectionist Machine for Genetic Hill Climbing.
Kluwer, Boston, MA

[2] Albert, L. A. (2001). Efficient genetic algorithms using discretization
scheduling. Master’s thesis, University of Illinois at Urbana-Champaign,
General Engineering Department, Urbana, IL

[3] Albert, L. A. and Goldberg, D. E. (2001). Efficient evaluation relax-
ation under integrated fitness functions. Intelligent Engineering Systems

180 K. Sastry et al.

Through Artificial Neural Networks, 11:165–170. (Also IlliGAL Report
No. 2001024)

[4] Albert, L. A. and Goldberg, D. E. (2002). Efficient discretization schedul-
ing in multiple dimensions. Proceedings of the Genetic and Evolution-
ary Computation Conference, pages 271–278. (Also IlliGAL Report No.
2002006)

[5] Armstrong, D. E. and Jacobson, S. H. (2005). Data independent neigh-
borhood functions and strict local optima. Discrete Applied Mathematics,
146(3):233–243

[6] Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice. Oxford
University Press, New York

[7] Barnes, J. W., Dimova, B., and Dokov, S. P. (2003). The theory of
elementary landscapes. Applied Mathematical Letters, 16:337–343

[8] Barthelemy, J.-F. M. and Haftka, R. T. (1993). Approximation con-
cepts for optimum structural design—a review. Structural Optimization,
5:129–144

[9] Bethke, A. D. (1976). Comparison of genetic algorithms and gradient-
based optimizers on parallel processors: Efficiency of use of processing
capacity. Tech. Rep. No. 197, Univeristy of Michigan, Logic of Computers
Group, Ann Arbor, MI

[10] Beyer, H.-G. (1996). Toward a theory of evolution strategies: Self-
adaptation. Evolutionary Computation, 3(3):311–347

[11] Booker, A. J., Dennis, J. E., Frank, P. D., Serafini, D. B., Torczon, V.,
and Trosset, M. W. (1998). A rigorous framework for optimization of ex-
pensive functions by surrogates. Technical report, National Aeronautics
and Space Administration (NASA), Hampton, VA. ICASE Report No.
98-47

[12] Bosworth, J. L., Foo, N., and Zeigler, B. P. (1972). Comparison of ge-
netic algorithms with conjugate gradient methods. ORA Tech. Report
No. 00312-1-T, University of Michigan, Department of Computer and
Communication Sciences, Ann Arbor, MI

[13] Cantú-Paz, E. (1997). A summary of research on parallel genetic al-
gorithms. IlliGAL Report No. 97003, University of Illinois at Urbana-
Champaign, General Engineering Department, Urbana, IL

[14] Cantú-Paz, E. (2000). Efficient and accurate parallel genetic algorithms.
Kluwer, Boston, MA

[15] Colletti, B. W. and Barnes, J. W. (2004). Using group theory to construct
and characterize metaheuristic search neighborhoods. In Rego, C. and
Alidaee, B., editors, Adaptive Memory and Evolution: Tabu Search and
Scatter Search, pages 303–329. Kluwer , Boston, MA

[16] Davis, L., editor (1991). Handbook of Genetic Algorithms. Van Nostrand
Reinhold, New York, NY

[17] Deb, K. and Goldberg, D. E. (1992). Analyzing deception in trap func-
tions. Foundations of Genetic Algorithms, 2:93–108. (Also IlliGAL Re-
port No. 91009)

7 Efficiency Enhancement of EDAs 181

[18] Deb, K. and Goldberg, D. E. (1994). Sufficient conditions for deceptive
and easy binary functions. Annals of Mathematics and Artificial Intelli-
gence, 10:385–408. (Also IlliGAL Report No. 92001)

[19] Dennis, J. E. and Torczon, V. (1997). Managing approximation models
in optimization. In Alexandrov, N. M. and Hussaini, M. Y., editors,
Multidisciplinary Design Optimization: State-of-the-Art, pages 330–347,
Philadelphia, PA. SIAM

[20] Fitzpatrick, J. M., Grefenstette, J. J., and Van Gucht, D. (1984). Image
registration by genetic search. In Proceedings of IEEE Southeast Confer-
ence, pages 460–464, Piscataway, NJ. IEEE press

[21] Fleurent, C. and Ferland, J. (1994). Genetic hybrids for the quadratic
assignment problem. In DIMACS Series in Mathematics and Theoretical
Computer Science, volume 16, pages 190–206

[22] Goldberg, D. E. (1987). Simple genetic algorithms and the minimal de-
ceptive problem. In Davis, L., editor, Genetic algorithms and simulated
annealing, chapter 6, pages 74–88. Morgan Kaufmann, Los Altos, CA

[23] Goldberg, D. E. (1989). Genetic Algorithms in Search Optimization and
Machine Learning. Addison-Wesley, Reading, MA

[24] Goldberg, D. E. (1999). Using time efficiently: Genetic-evolutionary al-
gorithms and the continuation problem. Proceedings of the Genetic and
Evolutionary Computation Conference, pages 212–219. (Also IlliGAL
Report No. 99002)

[25] Goldberg, D. E. (2002). Design of innovation: Lessons from and for
competent genetic algorithms. Kluwer, Boston, MA

[26] Goldberg, D. E. and Voessner, S. (1999). Optimizing global-local search
hybrids. Proceedings of the Genetic and Evolutionary Computation Con-
ference, pages 220–228. (Also IlliGAL Report No. 99001)

[27] Gorges-Schleuter, M. (1989). ASPARAGOS: A population genetics ap-
proach to genetic algorithms. Evolution and Optimization ’89, pages
86–94

[28] Gorges-Schleuter, M. (1989). ASPARAGOS: An asynchronous paral-
lel genetic optimization strategy. Proceedings of the Third International
Conference on Genetic Algorithms, pages 422–428

[29] Gorges-Schleuter, M. (1997). ASPARAGOS96 and the traveling salesman
problem. Proceedings of the IEEE International Conference on Evolu-
tionary Computation, pages 171–174

[30] Grefenstette, J. J. (1981). Parallel adaptive algorithms for function op-
timization. Tech. Rep. No. CS-81-19, Vanderbilt Univeristy, Computer
Science Department, Nashville, TN

[31] Grefenstette, J. J. and Fitzpatrick, J. M. (1985). Genetic search with
approximate function evaluations. Proceedings of the International Con-
ference on Genetic Algorithms and Their Applications, pages 112–120

[32] Grosso, P. B. (1985). Computer simulations of genetic adaptation: Par-
allel subcomponent interaction in a multilocus model. PhD thesis, Uni-
versity of Michigan, Ann Arbor, MI. (University microfilms no. 8520908)

182 K. Sastry et al.

[33] Gruau, F. (1994). Neural network synthesis using cellular encoding and
the genetic algorithm. PhD thesis, L’Universite Claude Bernard-Lyon I

[34] Handa, H. (2003). Hybridization of estimation of distribution algorithms
with a repair method for solving constraint satisfaction problems. Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pages
991–1002

[35] Handa, H. (2005). The effectiveness of mutation operation in the case
of estimation of distribution algorithms. Journal of Biosystems. (To
appear)

[36] Hansen, N. and Ostermeier, A. (2001). Completely derandomized self-
adaptation in evolution strategies. Evolutionary Computation, 9(2):
159–195

[37] Harik, G. (1999). Linkage learning via probabilistic modeling in the
ECGA. IlliGAL Report No. 99010, University of Illinois at Urbana-
Champaign, Urbana, IL

[38] Harik, G., Cantú-Paz, E., Goldberg, D. E., and Miller, B. L. (1999). The
gambler’s ruin problem, genetic algorithms, and the sizing of popula-
tions. Evolutionary Computation, 7(3):231–253. (Also IlliGAL Report
No. 96004)

[39] Hart, W. E. (1994). Adaptive global optimization with local search. PhD
thesis, University of California, San Diego, San Diego, CA

[40] Hart, W. E. and Belew, R. K. (1996). Optimization with genetic algo-
rithm hybrids using local search. In Belew, R. K. and Mitchell, M.,
editors, Adaptive Individuals in Evolving Populations, pages 483–494.
Addison-Wesley, Reading, MA

[41] Hartmann, A. K. and Rieger, H. (2001). Optimization algorithms in
physics, chapter 9, pages 192–203. Wiley-VCH, Berlin

[42] Ibaraki, T. (1997). Combinations with other optimization methods. In
Bäck, T., Fogel, D. B., and Michalewicz, Z., editors, Handbook of Evolu-
tionary Computation, pages D3:1–D3:2. Institute of Physics Publishing
and Oxford University Press, Bristol and New York

[43] Jin, Y. (2005). A comprehensive survey of fitness approximation in evo-
lutionary computation. Soft Computing Journal, 9(1):3–12

[44] Krasnogor, N. (2002). Studies on the Theory and Design Space of
Memetic Algorithms. PhD thesis, University of the West of England,
Bristol, England

[45] Land, M. (1998). Evolutionary algorithms with local search for combina-
torial optimization. PhD thesis, University of California at San Diego,
San Diego, CA

[46] Lima, C. F. and Lobo, F. G. (2004). Parameter-less optimization with the
extended compact genetic algorithm and iterated local search. Proceed-
ings of the Genetic and Evolutionary Computation Conference, 1:1328–
1339. (Also technical report cs.NE/0402047 at arXiv.org)

[47] Lima, C. F., Sastry, K., Goldberg, D. E., and Lobo, F. G. (2005). Combin-
ing competent crossover and mutation operators: A probabilistic model

7 Efficiency Enhancement of EDAs 183

building approach. Proceedings of the 2005 Genetic and Evolutionary
Computation Conference, pages 735–742. (Also IlliGAL Report No.
2005002)

[48] Lin, S.-C., Goodman, E. D., and Punch, W. F. (1997). Investigating
parallel genetic algorithms on job shop scheduling problem. Sixth Inter-
national Conference on Evolutionary Programming, pages 383–393

[49] Llorà, X., Sastry, K., Goldberg, D. E., Gupta, A., and Lakshmi, L. (2005).
Combating user fatigue in iGAs: Partial ordering, support vector ma-
chines, and synthetic fitness. Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1363–1370. (Also IlliGAL Report No.
2005009)

[50] Manderick, B. and Spiessens, P. (1989). Fine-grained parallel genetic
algorithms. Proceedings of the Third International Conference on Genetic
Algorithms, pages 428–433

[51] Miller, B. L. (1997). Noise, Sampling, and Efficient Genetic Algorithms.
PhD thesis, University of Illinois at Urbana-Champaign, General Engi-
neering Department, Urbana, IL. (Also IlliGAL Report No. 97001)

[52] Miller, B. L. and Goldberg, D. E. (1995). Genetic algorithms, tournament
selection, and the effects of noise. Complex Systems, 9(3):193–212. (Also
IlliGAL Report No. 95006)

[53] Miller, B. L. and Goldberg, D. E. (1996). Optimal sampling for genetic
algorithms. Intelligent Engineering Systems through Artificial Neural
Networks, 6:291–297

[54] Moscato, P. (1989). On evolution, search, optimization, genetic algo-
rithms and martial arts: Towards memetic algorithms. Technical Report
C3P 826, Caltech Concurrent Computation Program, California Institute
of Technology, Pasadena, CA

[55] Mühlenbein, H. (1992). How genetic algorithms really work: Mutation
and hillclimbing. Parallel Problem Solving from Nature II, pages 15–26

[56] Munetomo, M., Murao, N., and Akama, K. (2005). Empirical stud-
ies on parallel network construction of Bayesian optimization algo-
rithms. Proceedings of the Congress of Evolutionary Computation, 1-2-3:
1234–1238

[57] Ocenasek, J. and Pelikan, M. (2003). Parallel spin glass solving in hier-
archical Bayeisan optimization algorithm. Proceedings of the 9th Inter-
national Conference on Soft Computing, Mendel 2003, pages 120–125

[58] Ocenasek, J., Schwarz, J., and Pelikan, M. (2003). Design of multi-
threaded estimation of distribution algorithms. Proceedings of the
Genetic and Evolutionary Computation Conference, pages 1247–1258

[59] Orvosh, D. and Davis, L. (1993). Shall we repair? Genetic algorithms,
combinatorial optimization, and feasibility constraints. Proceedings of
the Fifth International Conference on Genetic Algorithms, page 650

[60] Pelikan, M. (2005). Hierarchical Bayesian Optimization Algorithm:
Toward a New Generation of Evolutionary Algorithm. Springer, Berlin
Heidelberg New York

184 K. Sastry et al.

[61] Pelikan, M. and Goldberg, D. E. (2003). Hierarchical BOA solves Ising
spin glasses and MAXSAT. Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1271–1282. (Also IlliGAL Report No.
2003001)

[62] Pelikan, M., Goldberg, D. E., and Cantú-Paz, E. (2000). Linkage learning,
estimation distribution, and Bayesian networks. Evolutionary Computa-
tion, 8(3):314–341. (Also IlliGAL Report No. 98013)

[63] Pelikan, M., Goldberg, D. E., and Sastry, K. (2001). Bayesian optimiza-
tion algorithm, decision graphs, and Occam’s razor. Proceedings of the
Genetic and Evolutionary Computation Conference, pages 519–526. (Also
IlliGAL Report No. 2000020)

[64] Pelikan, M. and Sastry, K. (2004). Fitness inheritance in the Bayesian
optimization algorithm. Proceedings of the Genetic and Evolutionary
Computation Conference, 2:48–59. (Also IlliGAL Report No. 2004009)

[65] Pelikan, M., Sastry, K., and Goldberg, D. E. (2003). Scalability of the
Bayesian optimization algorithm. International Journal of Approximate
Reasoning, 31(3):221–258. (Also IlliGAL Report No. 2001029)

[66] Pelikan, M., Sastry, K., and Goldberg, D. E. (2005). Sporadic model
building for efficiency enhancement of hBOA. IlliGAL Report No.
2005026, University of Illinois at Urbana-Champaign, Urbana, IL

[67] Pettey, C. C., Leuze, M. R., and Grefenstette, J. J. (1987). A parallel
genetic algorithm. Proceedings of the Second International Conference
on Genetic Algorithms, pages 155–161

[68] Ramsey, C. L. and Grefenstette, J. J. (1993). Case-Based initialization
of genetic algorithms. Proceedings of the Fifth International Conference
on Genetic Algorithms, pages 84–91

[69] Rechenberg, I. (1973). Evolutionsstrategie: Optimierung Technischer Sys-
teme nach Prinzipien der Biologischen Evolution. Frommann-Holzboog,
Stuttgart

[70] Robertson, G. G. (1987). Parallel implementation of genetic algorithms
in a classifier system. Proceedings of the Second International Conference
on Genetic Algorithms, pages 140–147

[71] Sastry, K. (2001a). Efficient cluster optimization using a hybrid extended
compact genetic algorithm with a seeded population. IlliGAL Report No.
2001018, University of Illinois at Urbana-Champaign, Urbana, IL

[72] Sastry, K. (2001b). Evaluation-relaxation schemes for genetic and evo-
lutionary algorithms. Master’s thesis, University of Illinois at Urbana-
Champaign, General Engineering Department, Urbana, IL. (Also IlliGAL
Report No. 2002004)

[73] Sastry, K. and Goldberg, D. E. (2004a). Designing competent mutation
operators via probabilistic model building of neighborhoods. Proceedings
of the 2004 Genetic and Evolutionary Computation Conference, 2:114–
125. Also IlliGAL Report No. 2004006

[74] Sastry, K. and Goldberg, D. E. (2004b). Let’s get ready to rumble:
Crossover versus mutation head to head. Proceedings of the 2004 Genetic

7 Efficiency Enhancement of EDAs 185

and Evolutionary Computation Conference, 2:126–137. Also IlliGAL
Report No. 2004005

[75] Sastry, K., Goldberg, D. E., and Pelikan, M. (2001). Don’t evaluate,
inherit. Proceedings of the Genetic and Evolutionary Computation Con-
ference, pages 551–558. (Also IlliGAL Report No. 2001013)

[76] Sastry, K., Pelikan, M., and Goldberg, D. E. (2004). Efficiency
enhancement of genetic algorithms building-block-wise fitness estima-
tion. Proceedings of the IEEE International Conference on Evolutionary
Computation, pages 720–727

[77] Sastry, K., Winward, P., Goldberg, D. E., and Lima, C. F. (2005). Fluc-
tuating crosstalk as a source of deterministic noise and its effects on ga
scalability. IlliGAL Report No. 2005025, University of Illinois at Urbana-
Champaign, Urbana, IL

[78] Schwefel, H.-P. (1977). Numerische optimierung von computer-modellen
mittels der evolutionsstrategie. Interdisciplinary Systems Research, 26

[79] Sinha, A. (2003a). Designing efficient genetic and evolutionary hybrids.
Master’s thesis, University of Illinois at Urbana-Champaign, Urbana, IL.
Also IlliGAL Report No. 2003020

[80] Sinha, A. (2003b). A survey of hybrid genetic and evolutionary algo-
rithms. IlliGAL Report No. 2003004, University of Illinois at Urbana-
Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL

[81] Smith, R., Dike, B., and Stegmann, S. (1995). Fitness inheritance in
genetic algorithms. In Proceedings of the ACM Symposium on Applied
Computing, pages 345–350, New York, NY, USA. ACM

[82] Srivastava, R. (2002). Time continutation in genetic algorithms. Master’s
thesis, University of Illinois at Urbana-Champaign, General Engineering
Department, Urbana, IL

[83] Srivastava, R. and Goldberg, D. E. (2001). Verification of the theory of
genetic and evolutionary continuation. Proceedings of the Genetic and
Evolutionary Computation Conference, pages 551–558. (Also IlliGAL
Report No. 2001007)

[84] Tanese, R. (1989). Distributed genetic algorithms for function optimiza-
tion. PhD thesis, University of Michigan, Ann Arbor, MI. (University
microfilms no. 8520908)

[85] Vaughan, D., Jacobson, S., and Armstrong, D. (2000). A new neigh-
borhood function for discrete manufacturing process design optimization
using generalized hill climbing algorithms. ASME Journal of Mechanical
Design, 122(2):164–171

[86] Watson, J.-P. (2003). Empirical Modeling and Analysis of Local Search
Algorithms For The Job-Shop Scheduling Problem. PhD thesis, Colorado
State University, Fort Collins, CO

