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Advance Praise for Scalable Optimization via
Probabilistic Modeling

This book is an excellent compilation of carefully selected topics in estimation
of distribution algorithms—search algorithms that combine ideas from evolu-
tionary algorithms and machine learning. The book covers a broad spectrum
of important subjects ranging from design of robust and scalable optimization
algorithms to efficiency enhancements and applications of these algorithms.
The book should be of interest to theoreticians and practitioners alike, and is
a must-have resource for those interested in stochastic optimization in general,
and genetic and evolutionary algorithms in particular.

John R. Koza,
Stanford University

This edited book portrays population-based optimization algorithms and ap-
plications, covering the entire gamut of optimization problems having single
and multiple objectives, discrete and continuous variables, serial and parallel
computations, and simple and complex function models. Anyone interested
in population-based optimization methods, either knowingly or unknowingly,
use some form of an estimation of distribution algorithm (EDA). This book
is an eye-opener and a must-read text, covering easy-to-read yet erudite arti-
cles on established and emerging EDA methodologies from real experts in the
field.

Kalyanmoy Deb,
Indian Institute of Technology Kanpur

This book is an excellent comprehensive resource on estimation of distribu-
tion algorithms. It can serve as the primary EDA resource for practitioner
or researcher. The book includes chapters from all major contributors to
EDA state-of-the-art and covers the spectrum from EDA design to appli-
cations. These algorithms strategically combine the advantages of genetic and
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evolutionary computation with the advantages of statistical, model building
machine learning techniques. EDAs are useful to solve classes of difficult real-
world problems in a robust and scalable manner.

Una-May O’Reilly,
Massachusetts Institute of Technology

Machine-learning methods continue to stir the public’s imagination due to its
futuristic implications. But, probability-based optimization methods can have
great impact now on many scientific multiscale and engineering design prob-
lems, especially true with use of efficient and competent genetic algorithms
(GA) which are the basis of the present volume. Even though efficient and
competent GAs outperform standard techniques and prevent negative issues,
such as solution stagnation, inherent in the older but more well-known GAs,
they remain less known or embraced in the scientific and engineering commu-
nities. To that end, the editors have brought together a selection of experts
that (1) introduce the current methodology and lexicography of the field with
illustrative discussions and highly useful references, (2) exemplify these new
techniques that dramatic improve performance in provable hard problems,
and (3) provide real-world applications of these techniques, such as antenna
design. As one who has strayed into the use of genetic algorithms and genetic
programming for multiscale modeling in materials science, I can say it would
have been personally more useful if this would have come out five years ago,
but, for my students, it will be a boon.

Duane D. Johnson,
University of Illinois at Urbana-Champaign



Foreword

I’m not usually a fan of edited volumes. Too often they are an incoherent
hodgepodge of remnants, renegades, or rejects foisted upon an unsuspecting
reading public under a misleading or fraudulent title. The volume Scalable
Optimization via Probabilistic Modeling: From Algorithms to Applications
is a worthy addition to your library because it succeeds on exactly those
dimensions where so many edited volumes fail.

For example, take the title, Scalable Optimization via Probabilistic Mod-
eling: From Algorithms to Applications. You need not worry that you’re going
to pick up this book and find stray articles about anything else. This book
focuses like a laser beam on one of the hottest topics in evolutionary computa-
tion over the last decade or so: estimation of distribution algorithms (EDAs).
EDAs borrow evolutionary computation’s population orientation and selec-
tionism and throw out the genetics to give us a hybrid of substantial power,
elegance, and extensibility.

The article sequencing in most edited volumes is hard to understand, but
from the get go the editors of this volume have assembled a set of articles
sequenced in a logical fashion. The book moves from design to efficiency
enhancement and then concludes with relevant applications. The emphasis
on efficiency enhancement is particularly important, because the data-mining
perspective implicit in EDAs opens up the world of optimization to new meth-
ods of data-guided adaptation that can further speed solutions through the
construction and utilization of effective surrogates, hybrids, and parallel and
temporal decompositions.

The author selection in many edited volumes is catch as catch can, but the
editors themselves are well decorated authors in this subject area, and they
have reached out to some of the most important voices in the field.

Finally, edited volumes leave many loose ends hanging, but the coverage
and coherence of this volume is outstanding. Although different authors have
different perspectives, the overall impression one is left with is the correct
one. That is, EDAs are an important current technique that is leading to
breakthroughs in genetic and evolutionary computation and in optimization
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more generally. I’m putting Scalable Optimization via Probabilistic Modeling
in a prominent place in my library, and I urge you to do so as well. This
volume summarizes the state of the art at the same time it points to where
that art is going. Buy it, read it, and take its lessons to heart.

Urbana, Illinois, USA, David E. Goldberg
May 2006 Jerry S. Dobrovolny Distinguished Professor

Director, Illinois Genetic Algorithms Laboratory
University of Illinois at Urbana-Champaign

http://www-illigal.ge.uiuc.edu
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1

Introduction

Martin Pelikan1, Kumara Sastry2, and Erick Cantú-Paz3

Summary. This chapter provides motivation for estimation of distribution algo-
rithms and discusses the scope of this book. Additionally, the chapter provides a
road map to the book and pointers to additional information.

1.1 Motivation for EDAs

Estimation of distribution algorithms (EDAs) [1, 5, 8, 11] address broad classes
of optimization problems by learning explicit probabilistic models of promising
solutions found so far and sampling the built models to generate new candi-
date solutions. By incorporating advanced machine learning techniques into
genetic and evolutionary algorithms, EDAs can scalably solve many challeng-
ing problems, significantly outperforming standard genetic and evolutionary
algorithms and other optimization techniques. In the recent decade, many im-
pressive results have been produced in the design, theoretical investigation,
and applications of EDAs.

An EDA evolves a population of candidate solutions to the given prob-
lem. Each iteration starts by evaluating the candidate solutions and selecting
promising solutions so that solutions of higher quality are given more copies
than solutions of lower quality. EDAs can use any standard selection method
of genetic and evolutionary algorithms, such as binary tournament selection.
Next, a probabilistic model is build for the selected solutions and new solutions
are generated by sampling the built probabilistic model. New solutions are
then incorporated into the original population using some replacement strat-
egy, and the next iteration is executed unless the termination criteria have
been met. EDAs usually differ in the representation of candidate solutions,
the considered class of probabilistic models, or the procedures for learning
and sampling probabilistic models. The pseudocode of an EDA follows:

M. Pelikan et al.: Introduction, Studies in Computational Intelligence (SCI) 33, 1–10 (2006)
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Estimation of Distribution Algorithm (EDA)
t := 0;
generate initial population P(0);
while (not done) {
select population of promising solutions S(t);
build probabilistic model P(t) for S(t);
sample P(t) to generate O(t);
incorporate O(t) into P(t);
t := t+1;

}

EDAs derive inspiration from two areas: genetic and evolutionary compu-
tation and machine learning. The remainder of this section discusses these
two sources of inspiration.

1.1.1 Motivation from Genetic and Evolutionary Computation

EDAs borrow two important concepts from genetic and evolutionary compu-
tation:

1. Population-based search
2. Exploration by combining and perturbing promising solutions

Using a population of solutions as opposed to a single solution has sev-
eral advantages; for example, it enables simultaneous exploration of multiple
regions in the search space, it can help to alleviate the effects of noise in
evaluation, and it allows the use of statistical and learning techniques to au-
tomatically identify problem regularities.

Exploration of the search space by combining and perturbing promising
solutions can be effective because in most real-world problems, high quality
solutions are expected to share features. By effective identification of impor-
tant features and their juxtaposition, the global optimum can be identified
even in problems where local operators fail because of exponentially many
local optima and strong large-order interactions between problem variables.

1.1.2 Motivation from Machine Learning

EDAs use probabilistic models to guide exploration of the search space. Using
probabilistic models enables the use of rigorous statistical modeling and sam-
pling techniques to automatically discover and exploit problem regularities for
effective exploration.

In most EDAs, probabilistic models are represented by graphical mod-
els [2, 4, 9], which combine graph theory, modularity and statistics to provide
a flexible tool for learning and sampling probability distributions, and prob-
abilistic inference. Graphical models provide EDAs with a powerful tool for
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identifying and exploiting problem decomposition, whereas evolutionary algo-
rithms provide EDAs with robust operators for maintaining diverse popula-
tions of promising candidate solutions. Since most complex real-world systems
are nearly decomposable and hierarchical [16], the combination of machine
learning techniques and evolutionary algorithms should enable EDAs to solve
broad classes of difficult real-world problems in a robust and scalable manner.
This hypothesis was supported with a number of theoretical and empirical
results [3, 6, 7, 10, 12–15].

1.2 Scope and Road Map

This book provides a selection of some of the important contributions to
research and application of EDAs. There are three main areas covered in this
book:

1. Design of robust and scalable EDAs. (Chaps. 2–6, 10 and 11)
2. Efficiency enhancement of EDAs. (Chaps. 7–9, 11, 13, and 15)
3. Applications of EDAs. (Chaps. 12–15)

The content of each chapter is discussed next.

Chapter 2. The Factorized Distribution Algorithm and the Minimum Rela-
tive Entropy Principle by Heinz Mühlenbein and Robin Höns.
In this chapter, Mühlenbein and Höns discuss major design issues of
EDAs using an interdisciplinary framework: The minimum relative en-
tropy (MinRel) approximation. They demonstrate the relation between
the Factorized Distribution Algorithm (FDA) and the MinRel approxi-
mation. Mühlenbein and Höns propose an EDA derived from the Bethe–
Kikuchi approach developed in statistical physics and present details of a
concave–convex minimization algorithm to solve optimization problems.
The two algorithms are compared using popular benchmark problems –
2-d grid problems, 2-d Ising spin glasses, and Kaufman’s n− k function –
with instances of up to 900 variables.

Chapter 3. Linkage Learning via Probabilistic Modeling in the Extended
Compact Genetic Algorithm (ECGA) by Georges R. Harik, Fernando
G. Lobo, and Kumara Sastry.
The first-generation genetic algorithms (GAs) are not very successful in
automatically identifying and exchanging structures consisting of sev-
eral correlated genes. This problem, referred in the literature as the
linkage-learning problem, has been the subject of extensive research over
the last few decades. Harik et al. explore the relationship between the
linkage-learning problem and that of learning probability distributions
over multivariate spaces. They argue that the linkage-learning problem
and learning probability distributions are equivalent. Using a simple yet
effective approach to learning distributions, and by implication linkage,
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Harik et al. propose a GA-like algorithm – the extended compact GA
– that is potentially orders of magnitude faster and more accurate than
simple GAs.

Chapter 4. Hierarchical Bayesian Optimization Algorithm by Martin Pe-
likan and David E. Goldberg.
Pelikan and Goldberg describe the hierarchical Bayesian optimization al-
gorithm (hBOA) and its predecessor, the Bayesian optimization algorithm
(BOA), and outline some of the important theoretical and empirical re-
sults in this line of research. The hierarchical Bayesian optimization algo-
rithm (hBOA) solves nearly decomposable and hierarchical optimization
problems scalably by combining concepts from evolutionary computation,
machine learning and statistics. Since many complex real-world systems
are nearly decomposable and hierarchical, hBOA is expected to provide
scalable solutions for many complex real-world problems.

Chapter 5. Numerical Optimization with Real–Valued Estimation-of-
Distribution Algorithms by Peter A.N. Bosman and Dirk Thierens.
In this chapter, Bosman and Thierens focus on the design of real-valued
EDAs for the task of numerical optimization. Here, both the problem
variables as well as their encoding are real values, and concordantly, the
type of probability distribution to be used for estimation and sampling in
the EDA is continuous. Bosman and Thierens indicate the main challenges
in real-valued EDAs and review the existing literature to indicate the
current EDA practice for real-valued numerical optimization. They draw
conclusions about the feasibility of existing EDA approaches and provide
an explanation for some observed deficiencies of continuous EDAs as well
as possible improvements and future directions of research in this branch
of EDAs.

Chapter 6. A Survey of Probabilistic Model Building Genetic Programming
by Yin Shan, Robert I. McKay, Daryl Essam, and Hussein A. Abbass.
While the previous chapters address EDAs that mainly operate on vari-
ables encoded into fixed-length chromosomes, there has been growing in-
terest in extending EDAs to operate on variable-length representations,
especially for evolving computer programs. In this chapter, Shan et al.
provide a critical and comprehensive review of EDAs for automated pro-
gramming. They discuss important lessons learned from genetic program-
ming (GP) for better design of probabilistic models for GP. Shan et al.
also present key strengths and limitations of existing EDAs for GP.

Chapter 7. Efficiency Enhancement of Estimation of Distribution Algo-
rithms by Kumara Sastry, Martin Pelikan, and David E. Goldberg.
Estimation of distributions have taken problems that were intractable with
first generation GAs and rendered them tractable, whereas efficiency-
enhancement take EDAs from tractability to practicality . That is,
efficiency-enhancement techniques speedup the search process of estima-
tion of distribution algorithms (EDAs) and thereby enable EDAs to solve
hard problems in practical time. Sastry et al. provide a decomposition and
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a review of different efficiency-enhancement techniques for EDAs. They
illustrate a principled approach for designing efficiency enhancement tech-
niques by developing an evaluation-relaxation scheme in the Bayesian op-
timization algorithm, and a time-continuation method in the extended
compact genetic algorithm.

Chapter 8. Design of Parallel Estimation of Distribution Algorithms by Jiri
Ocenasek, Erick Cantú-Paz, Martin Pelikan, and Josef Schwarz.
In this chapter, Ocenasek et al. focus on the parallelization of Estima-
tion of Distribution Algorithms (EDAs) and present guidelines for de-
signing efficient parallel EDAs that employ parallel fitness evaluation and
parallel model building. They employ scalability analysis techniques to
identify and parallelize the main performance bottlenecks to ensure that
the achieved speedup grows almost linearly with the number of utilized
processors. Ocenasek et al. demonstrate their proposed approach on the
parallel Mixed Bayesian Optimization Algorithm (MBOA) and verify it
with experiments on the problem of finding ground states of 2-d Ising spin
glasses.

Chapter 9. Incorporating a priori Knowledge in Probabilistic-Model Based
Optimization by Shumeet Baluja.
Complex dependency networks that can account for the interactions be-
tween parameters are often used in advanced EDAs; however, they may
necessitate enormous amounts of sampling. In this chapter, Baluja demon-
strates how a priori knowledge of parameter dependencies, even incom-
plete knowledge, can be incorporated to efficiently obtain accurate models
that account for parameter interdependencies. This is achieved by effec-
tively putting priors on the network structures that are created. These
more accurate models yield improved results when used to guide the sam-
ple generation process for search. Baluja demonstrates the results on a
variety of graph coloring problems, and examines the benefits of a priori
knowledge as problem difficulty increases.

Chapter 10. Multiobjective Estimation of Distribution Algorithms by Mar-
tin Pelikan, Kumara Sastry, and David E. Goldberg.
Many real-world optimization problems contain multiple competing ob-
jectives and that is why the design of optimization techniques that can
scalably discover an optimal tradeoff between given objectives (Pareto-
optimal solutions) represents an important challenge. Pelikan et al. discuss
EDAs that address this challenge. The primary focus is on scalability on
discrete multiobjective decomposable problems and the multiobjective hi-
erarchical BOA (mohBOA), but other approaches to multiobjective EDAs
are also discussed.

Chapter 11. Effective and Reliable Online Classification Combining XCS
with EDA Mechanisms by Martin Butz, Martin Pelikan, Xavier Llorà,
and David E. Goldberg.
Learning Classifier Systems (LCSs), such as XCS and other accuracy-
based classifier systems, evolve a distributed problem solution online.
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During the learning process, rule quality is assessed iteratively using tech-
niques based on gradient-descent, while the rule structure is evolved using
selection and variation operators of evolutionary algorithms. While using
standard variation operators suffices for solving some problems, it does
not assure an effective evolutionary search in many difficult problems
that contain strong interactions between features. Butz et al. describe
how advanced EDAs can be integrated into XCS in order to ensure effec-
tive exploration even for problems in which features strongly interact and
standard variation operators lead to poor XCS performance. In particular,
they incorporate the model building and sampling techniques from BOA
and ECGA into XCS and show that the two proposed algorithms ensure
that the solution is found efficiently and reliably. The results thus sug-
gest that the research on combining standard LCSs with advanced EDAs
holds a big promise and represents an important area for future research
on LCSs and EDAs.

Chapter 12. Military Antenna Design Using a Simple Genetic Algorithm
and hBOA by Tian-Li Yu, Scott Santarelli, and David E. Goldberg.
In this chapter, Yu et al. describe the optimization of an antenna de-
sign problem via a simple genetic algorithm (SGA) and the hierarchical
Bayesian optimization algorithm (hBOA). Three objective functions are
designed in an effort to find a solution that meets the system require-
ments/specifications. Yu et al. show empirical results that indicate that
the SGA and hBOA perform comparably when the objective function is
“easy” (that is, traditional mask). When the objective function more ac-
curately reflects the true objective of the problem (that is, “difficult”),
however, hBOA consistently outperforms the SGA both computationally
and the optimal antenna design obtained via hBOA also outperforms that
obtained via the SGA.

Chapter 13. Feature Subset Selection with Hybrids of Filters and Evolution-
ary Algorithms by Erick Cantú-Paz.
The performance of classification algorithms is affected by the features
used to describe the labeled examples presented to the inducers. There-
fore, the problem of feature subset selection has received considerable
attention. Approaches to this problem based on evolutionary algorithms
typically use the wrapper method, treating the inducer as a black box
that is used to evaluate candidate feature subsets. However, the evalua-
tions might take a considerable time and the wrapper approach might be
impractical for large data sets. Alternative filter methods use heuristics
to select feature subsets from the data and are usually considered more
scalable than wrappers to the dimensionality and volume of the data. In
this chapter, Cantú-Paz describes hybrids of evolutionary algorithms and
filter methods applied to the selection of feature subsets for classification
problems. The proposed hybrids are compared against each of their com-
ponents, two feature selection wrappers that are in wide use, and another
filter-wrapper hybrid. Cantú-Paz investigates if the proposed evolutionary
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hybrids present advantages over the other methods in terms of accuracy or
speed. He uses decision tree and naive Bayes classifiers on public-domain
and artificial data sets. The experimental results in this chapter suggest
that the evolutionary hybrids usually find compact feature subsets that
result in the most accurate classifiers, while beating the execution time of
the other wrappers.

Chapter 14. BOA for Nurse Scheduling by Jingpeng Li and Uwe Aickelin.
Li and Aickelin have shown that schedules can be built mimicking a hu-
man scheduler by using a set of rules that involve domain knowledge.
Li and Aickelin present a Bayesian Optimization Algorithm (BOA) for
the nurse scheduling problem that chooses such suitable scheduling rules
from a set for each nurse’s assignment. Based on the idea of using proba-
bilistic models, the BOA builds a Bayesian network for the set of promising
solutions and samples these networks to generate new candidate solutions.
Computational results from 52 real data instances demonstrate the success
of this approach. The authors also suggest that the learning mechanism
in the proposed algorithm may be suitable for other scheduling problems.

Chapter 15. Searching for Ground States of Ising Spin Glasses with Hier-
archical BOA and Cluster Exact Approximation by Martin Pelikan and
Alexander K. Hartmann.
In this chapter, Pelikan and Hartmann apply the hierarchical Bayesian
optimization algorithm (hBOA) to the problem of finding ground states
of Ising spin glasses with ±J and Gaussian couplings in two and three di-
mensions. The authors compare the performance of hBOA to that of the
simple genetic algorithm (GA) and the univariate marginal distribution
algorithm (UMDA). The performance of all tested algorithms is improved
by incorporating a deterministic hill climber based on single-bit flips. The
results in the chapter show that hBOA significantly outperforms GA and
UMDA on a broad spectrum of spin glass instances. The authors also de-
scribe and incorporate the cluster exact approximation (CEA) into hBOA
and GA to improve their efficiency. The results show that CEA enables
all tested algorithms to solve larger spin glass instances and that hBOA
significantly outperforms other compared algorithms even in this case.

1.3 Additional Information

1.3.1 Conferences

Most EDA researchers present their results at the following conferences:

– Congress on Evolutionary Computation (CEC); IEEE
– Genetic and Evolutionary Computation Conference (GECCO); SIGEVO,

ACM Special Interest Group for Genetic and Evolutionary Computation
– Parallel Problem Solving from Nature
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1.3.2 Journals

The following journals publish majority of EDA articles:

– Evolutionary Computation; MIT Press
– Genetic Programming and Evolvable Machines; Springer
– IEEE Transactions on Evolutionary Computation; IEEE Press

A number of EDA articles can also be found in the following journals:

– Computational Optimization and Applications (COAP); Kluwer
– Information Sciences; Elsevier
– International Journal of Approximate Reasoning; Elsevier
– New Generation Computing; Springer

1.3.3 World Wide Web

The following search engines can be used to search for many EDA papers:

– CiteSeer, Scientific Literature Digital Library
http://citeseer.ist.psu.edu/

– Google Scholar
http://scholar.google.com/

More papers can be found on personal and institutional Web pages of
the researchers that contributed to this book or were cited in the references
therein.

1.3.4 Online Source Code

Source code of various EDAs can be downloaded from the following sources:

– Extended Compact Genetic Algorithm, C++; F. G. Lobo, G. R. Harik
Bayesian Optimization Algorithm, C++; M. Pelikan
Bayesian Optimization Algorithm with Decision Graphs; M. Pelikan
http://www-illigal.ge.uiuc.edu/

– Learning Factorized Distribution Algorithm (LFDA); H. Mühlenbein, T.
Mahnig; http://www.ais.fraunhofer.de/∼muehlen/

– Adaptive mixed Bayesian optimization algorithm (AMBOA); J. Ocenasek
http://jiri.ocenasek.com/

– Real-coded Bayesian Optimization Algorithm; C.-W. Ahn
http://www.evolution.re.kr/

– Probabilistic Incremental Program Evolution (PIPE); R. P. Salustowicz
http://www.idsia.ch/∼rafal/

– Naive Multi-objective Mixture-based Iterated Density-Estimation Evolu-
tionary Algorithm (MIDEA), Normal IDEA-Induced Chromosome Ele-
ments Exchanger (ICE), Normal Iterated Density-Estimation Evolution-
ary Algorithm (IDEA); P. A. N. Bosman
http://homepages.cwi.nl/∼bosman/
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– Java applets for several real-valued and permutation EDAs; S. Tsutsui
http://www.hannan-u.ac.jp/∼tsutsui/index-e.html
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[5] Larrañaga, P. and Lozano, J. A., editors (2002). Estimation of Distri-
bution Algorithms: A New Tool for Evolutionary Computation. Kluwer,
Boston, MA

[6] Li, J. and Aickelin, U. (2003). A Bayesian optimization algorithm for
the nurse scheduling problem. Proceedings of the IEEE Congress on
Evolutionary Computation 2003 (CEC-2003), pages 2149–2156

[7] Mühlenbein, H. and Mahnig, T. (1999). FDA – A scalable evolution-
ary algorithm for the optimization of additively decomposed functions.
Evolutionary Computation, 7(4):353–376

[8] Mühlenbein, H. and Paaß, G. (1996). From recombination of genes to
the estimation of distributions I. Binary parameters. Parallel Problem
Solving from Nature, pages 178–187

[9] Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks
of plausible inference. Morgan Kaufmann, San Mateo, CA

[10] Pelikan, M. (2005). Hierarchical Bayesian optimization algorithm: To-
ward a new generation of evolutionary algorithms. Springer, Berlin Hei-
delberg New York

[11] Pelikan, M., Goldberg, D. E., and Lobo, F. (1999). A survey of opti-
mization by building and using probabilistic models. IlliGAL Report
No. 99018, University of Illinois at Urbana-Champaign, Illinois Genetic
Algorithms Laboratory, Urbana, IL

[12] Pelikan, M., Sastry, K., and Goldberg, D. E. (2002). Scalability of the
Bayesian optimization algorithm. International Journal of Approximate
Reasoning, 31(3):221–258

[13] Rothlauf, F., Goldberg, D. E., and Heinzl, A. (2000). Bad codings and the
utility of well-designed genetic algorithms. IlliGAL Report No. 200007,
University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms
Laboratory, Urbana, IL



10 Martin Pelikan, Kumara Sastry, and Erick Cantú-Paz
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2

The Factorized Distribution Algorithm
and the Minimum Relative Entropy Principle

Heinz Mühlenbein and Robin Höns

Summary. Estimation of distribution algorithms (EDA) have been proposed as
an extension of genetic algorithms. In this paper the major design issues of EDA’s
are discussed using an interdisciplinary framework, the minimum relative entropy
(MinRel) approximation. We assume that the function to be optimized is additively
decomposed (ADF). The interaction graph GADF of the ADF is used to create
exact or approximate factorizations of the Boltzmann distribution. The relation be-
tween the Factorized distribution algorithm (FDA) and the MinRel approximation
is shown. We present a new algorithm, derived from the Bethe–Kikuchi approach
developed in statistical physics. It minimizes the relative entropy KLD(q|pβ) to the
Boltzmann distribution pβ by solving a difficult constrained optimization problem.
We present in detail the concave–convex minimization algorithm (CCCP) to solve
the optimization problem. The two algorithms are compared using popular bench-
mark problems (2-D grid problems, 2-D Ising spin glasses, Kaufman’s n−k function.)
We use instances up to 900 variables.

Key words: Estimation of distributions, Boltzmann distribution, factoriza-
tion of distributions, maximum entropy principle, minimum relative entropy,
maximum log-likelihood, Bethe–Kikuchi approximation

2.1 Introduction

The Estimation of distribution algorithms (EDA) family of population based
search algorithms was introduced in [21] as an extension of genetic algo-
rithms.1 The following observations lead to this proposal. First, genetic al-
gorithm have difficulties to optimize deceptive and nonseparable functions,
and second, the search distributions implicitly generated by recombination
and crossover do not exploit the correlation of the variables in samples of
high fitness values.

1 In [21] they have been named conditional distribution algorithms.
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EDA uses probability distributions derived from the function to be opti-
mized to generate search points instead of crossover and mutation as done
by genetic algorithms. The other parts of the algorithms are identical. In
both cases a population of points is used and points with good fitness are
selected either to estimate a search distribution or to be used for crossover
and mutation.

The family of EDA algorithms can be understood and further developed
without the background of genetic algorithms. The problem to estimate em-
pirical distributions has been investigated independently in several scientific
disciplines. In this paper we will show how results in statistics, belief networks
and statistical physics can be used to understand and further develop EDA. In
fact, an interdisciplinary research effort is well under way which cross-fertilizes
the different disciplines.

Unfortunately each discipline uses a different language and deals with
slightly different problems. In EDA we want to generate points with a high
probability p(x), in belief networks one computes a single marginal distrib-
ution p(y|z) for new evidence z, and statistical physicists want to compute
the free energy of a Boltzmann distribution. Thus the algorithms developed
for belief networks concentrate on computing a single marginal distribution,
whereas for EDA we want to sample p(x) in areas of high fitness values, i.e.,
we are interested in a sampling method which generates points with a high
value of p(x). But all disciplines need fast algorithms to compute marginal
distributions. The foundation of the theory is the same for all disciplines. It
is based on graphical models and their decomposition.

Today two major branches of EDA can be distinguished. In the first branch
the factorization of the distribution is computed from the structure of the
function to be optimized, in the second one the structure is computed from the
correlations of the data generated. The second branch has been derived from
the theory of belief networks [11]. It computes a factorization from samples
instead from the analytical expression of the fitness function. The underlying
theory is the same for both branches. For large real life applications often a
hybrid between these two approaches is most successful [17]. In this paper we
investigate the first branch only.

We discuss the problem of computing approximations of distributions us-
ing factorizations is investigated with the framework of minimum relative
entropy (MinRel). We distinguish exact factorizations and approximate fac-
torizations. We shortly summarize the results for our well-known algorithm
FDA. We present in detail a new algorithm BKDA. It is derived from an ap-
proach used in statistical physics to approximate the Boltzmann distribution.
It is called the Bethe–Kikuchi approximation. In this approach the marginals
from the unknown Boltzmann distribution are not computed from data, but
from a difficult constrained optimization problem. This paper extends the
theory first described in [15].

In Sect. 2.9, we summarize the functionality of our software system FDA.
It can be downloaded from http://www.ais.fraunhofer.de/∼muehlen. The



2 The Factorized Distribution Algorithm 13

different EDA algorithms are shortly numerically compared, using large
benchmark optimization problems like 2-D Ising spin glasses, and Kaufman’s
n − k function. We investigate problems with up to 900 variables, continuing
the work in [17], where graph bipartitioning problems of 1,000 nodes have
been solved.

2.2 Factorization of the Search Distribution

EDA has been derived from a search distribution point of view. We just re-
capitulate the major steps published in [17, 20]. We will use in this paper the
following notation. Capital letters denote variables, lower cases instances of
variables. If the distinction between variables and instances is not necessary,
we will use lower case letters. Vectors are denoted by x, a single variable by xi.
Let a function f : X → IR≥0 be given. We consider the optimization problem

xopt = argmax f(x). (2.1)

A promising search distribution for optimization is the Boltzmann distri-
bution.

Definition 1 For β ≥ 0 define the Boltzmann distribution2 of a function
f(x) as

pβ(x ) :=
eβf(x)∑
y eβf(y)

=:
eβf(x)

Zf (β)
. (2.2)

where Zf (β) is the partition function. To simplify the notation β and/or f
might be omitted.

The Boltzmann distribution concentrates with increasing β around the
global optima of the function. Obviously, the distribution converges for β → ∞
to a distribution where only the optima have a probability greater than 0 (see
[18]). Therefore, if it were possible to sample efficiently from this distribution
for arbitrary β, optimization would be an easy task. But the computation of
the partition function needs an exponential effort for a problem of n variables.
We have therefore proposed an algorithm which incrementally computes the
Boltzmann distribution from empirical data using Boltzmann selection.

Definition 2 Given a distribution p and a selection parameter Δβ, Boltz-
mann selection calculates the distribution for selecting points according to

ps(x) =
p(x)eΔβf(x)∑
y p(y)eΔβf(y)

. (2.3)

2 The Boltzmann distribution is usually defined as e−
E(x)

T /Z. The term E(x) is
called the energy and T = 1/β the temperature. We use the inverse temperature
β instead of the temperature.
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The following theorem is easy to prove.

Theorem 3. If pβ(x) is a Boltzmann distribution, then ps(x) is a Boltzmann
distribution with inverse temperature β(t + 1) = β(t) + Δβ(t).

Algorithm 1 describes the Boltzmann estimated distribution algorithm (BEDA).

Algorithm 1: BEDA – Boltzmann estimated distribution

1 t ⇐ 1. Generate N points according to the uniform distribution
p(x, 0) with β(0) = 0.

2 do {
3 With a given Δβ(t) > 0, let

ps(x, t) =
p(x, t)eΔβ(t)f(x)∑
y

p(y, t)eΔβ(t)f(y)
.

4 Generate N new points according to the distribution p(x,
t + 1) = ps(x, t).

5 t ⇐ t + 1.

6 } until (stopping criterion reached)

BEDA is a conceptional algorithm, because the calculation of the distrib-
ution ps(x, t) requires a sum over exponentially many terms. In Sect. 2.2.1 we
transform BEDA into a practical numerical algorithm.

2.2.1 Factorization of the Distribution

From now on we assume that the fitness function is additively decomposed.

Definition 4 Let s1, . . . , sm be index sets, si ⊆ {1, . . . , n}. Let fi be functions
depending only on variables xj with j ∈ si. Then

f(x) =
m∑

i=1

fi(xsi
) (2.4)

is an additive decomposition of the fitness function (ADF). The ADF is
k-bounded if maxi |si| ≤ k.

Definition 5 Let an ADF be given. Then the interaction graph GADF is
defined as follows: The vertices of GADF represent the variables of the ADF.
Two vertices are connected by an arc iff the corresponding variables are
contained in a common subfunction.

Given an ADF we want to estimate the Boltzmann distribution (2.2)
using a product of marginal distributions. The approximation has to fulfill
two conditions:

– The approximation should only use marginals of low order.
– Sampling from the approximation should be easy.
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A class of distributions fulfilling these conditions are the acyclic Bayesian
network (acBN)

q(x) =
n∏

i=1

q(xi|πi), (2.5)

where πi are called the parents of xi. For acyclic Bayesian networks sampling
can easily be done starting with the root x1. Cyclic Bayesian networks are
difficult to sample from.

Note that any distribution can be written in the form of an acyclic Bayesian
network because of

p(x) = p(x1)p(x2|x1)p(x3|x1, x2) · · · p(xn|x1, . . . , xn−1). (2.6)

But this factorization uses marginal distributions of size O(n), thus sampling
from the distribution is exponential in n. Therefore we are looking for factor-
izations where the size of the marginals is bounded independent of n.

For ADF’s the following procedure can be used to create factorizations.
We need the following sets:

Definition 6 Given s1, . . . , sm, we define for i = 1, . . . , m the sets di, bi,
and ci:

di :=
i⋃

j=1

sj , bi := si \ di−1, ci := si ∩ di−1. (2.7)

We demand dm = {1, . . . , n} and set d0 = ∅. In the theory of decomposable
graphs, di are called histories, bi residuals and ci separators [13].

The next definition is stated a bit informally.

Definition 7 A set of marginal distributions q̃(xbi
,xci

) is called consistent
if the marginal distributions fulfill the laws of probability, e.g.,∑

xbi
,xci

q̃(xbi
,xci

) = 1, (2.8)

∑
xbi

q̃(xbi
,xci

) = q̃(xci
). (2.9)

Definition 8 If bi �= ∅ we define a FDA factorization for a given ADF by

q(x) =
∏m

i=1
q̃(xbi

|xci
). (2.10)

A FDA factorization is k-bounded if the size of the sets {bi, ci} is bounded by
a constant k independent of n.

Remark: Any FDA factorization can easily be transformed into an acyclic
Bayesian network which has the same largest clique size. The FDA factor-
ization is only a more compact representation. Therefore the class of FDA
factorizations is identical to the class of acyclic Bayesian networks. Sampling
is done iteratively, starting with q̃(xb1).
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Proposition 9 Let a consistent set of marginal distributions q̃(xbi
,xci

) be
given. Then the FDA factorization defines a valid distribution (

∑
q(x) = 1).

Furthermore
q(xbi

|xci
) = q̃(xbi

|xci
), i = 1, . . . m (2.11)

whereas in general

q(xbi
,xci

) �= q̃(xbi
,xci

), i = 1, . . . m. (2.12)

The proof follows from the definition of marginal probabilities. The proof
of (2.11) is somewhat technical, but straightforward. The inequality (2.12)
is often overlooked. It means that sampling from the factorization does not
reproduce the given marginals.

The next theorem was proven in [20]. It formulates a condition under which
the FDA factorization reproduces the marginals.

Theorem 10 (Factorization Theorem). Let f(x) =
∑m

i=1 fsi
(x) be an

additive decomposition. If

∀i = 1, . . . , m; bi �= ∅ (2.13)

∀i ≥ 2 ∃j < i such that ci ⊆ sj (2.14)

then

pβ(x) =
∏m

i=1
pβ(xbi

|xci
) =

∏m
i=1 pβ(xbi

,xci
)∏m

i=2 pβ(xci
)

. (2.15)

The Factorization Theorem is not restricted to distributions and their
factorization. It is connected to the decomposition of GADF. A general
formulation and a historical survey of this important theorem can be found
in [1].

Definition 11 The constraint defined by equation (2.14) is called the running
intersection property (RIP).

The above theorem does not address the problem how to compute a good
or even an exact factorization. The construction defined by (2.7) depends on
the sequence s1, . . . , sm. For many sequences the RIP might not be fulfilled.
But if the sequence is permutated, it might be possible that the RIP will
be fulfilled. Furthermore, we can join two or more subfunctions, resulting in
larger sets s̃i. It might be that using these larger sets, the RIP is fulfilled. For
an efficient FDA we are looking for k − bounded factorizations which fulfill
the RIP.

Testing all the sequences is prohibitive. Actually, it turns out that the
computation of exact factorizations is done better by investigating the corre-
sponding interaction graph GADF. A well-known algorithm computes a junc-
tion tree of GADF(see [10]). From the junction tree a factorization can easily
be obtained. This factorization fulfills the RIP. A short description of the
algorithm can be found in [15]. The largest clique of the junction tree gives
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the largest marginal of the factorization. The decision problem if there exists
an k-bounded junction tree is NP in general.

The space complexity of exact factorizations has been investigated in [6].
For many problems the size of the largest clique is O(n), making a numerical
application using this factorization prohibitive. Thus for real applications we
are looking for good k-bounded factorizations which violate the RIP in a few
cases only.

2.2.2 The Factorized Distribution Algorithm

We first describe our algorithm Factorized distribution algorithm (FDA)
which runs with any FDA factorization.

Algorithm 2: FDA – Factorized distribution algorithm

1 Calculate bi and ci by the Subfunction Merger Algorithm.

2 t ⇐ 1. Generate an initial population with N individuals from
the uniform distribution.

3 do {
4 Select M ≤ N individuals using Boltzmann selection.

5 Estimate the conditional probabilities p(xbi |xci , t) from the
selected points.

6 Generate new points according to p(x, t + 1) =∏m

i=1
p(xbi |xci , t).

7 t ⇐ t + 1.

8 } until (stopping criterion reached)

The computational complexity of FDA is O(N ∗∑m
i=1 2|si|), where |si| de-

notes the size of the marginals. For a k-bounded FDA factorization we obtain
O(N ∗ m ∗ 2k), thus the complexity is linear in m. If the FDA factorization
is exact, then the convergence proof of BEDA is valid for FDA too. But since
FDA uses finite samples to estimate the conditional probabilities, convergence
to the optimum will depend on the size of the sample. Sampling theory can
be used to estimate the probability of convergence for a given sample size.

A factorization fulfilling the RIP is sufficient for convergence to the opti-
mum, but not necessary. But such a factorization can be difficult to compute
or may be not k − bounded. Therefore we use FDA mainly with approximate
factorizations. A good approximate factorization should include all edges of
the interaction graph.

We have implemented a general heuristic which automatically computes a
FDA factorization. The heuristic uses mainly merging of subfunctions. Let us
discuss the problem with a simple loop.

s1 = {1, 2}, s2 = {2, 3}, s3 = {3, 4}, s4 = {1, 4}
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All possible sequences end in b4 = ∅. We can use the factorization q(x) =
q̃(x1, x2)q̃(x3|x2)q̃(x4|x3) using s1, s2, s3 only. But if the subfunctions f3 and
f4 are merged then we obtain from our procedure.

q(x) = q̃(x1, x2)q̃(x3|x2)q̃(x4|x3, x1)

This factorization uses all edges from GADF but violates the RIP. Merging
of subfunctions lead to larger marginals. Therefore a good heuristic has
three conflicting goals: to minimize the number of RIP violations, to use all
dependencies of GADF, and to find a k-bounded factorization with a small k.

Algorithm 3: Subfunction Merger

1 S ⇐ {s1, . . . , sm}
2 j ⇐ 1

3 while d̃j �= {1, . . . , n} do {
4 Chose an si ∈ S to be added

5 S ⇐ S \ {si}
6 Let the indices of the new variables in si be bi = {k1, . . . , kl}
7 for λ = 1 to l do {
8 δλ ⇐ {k ∈ d̃j−1|(xk, xkλ) ∈ GADF }
9 }
10 for λ = 1 to l do {
11 if exists λ′ �= λ with δλ ⊆ δλ′ and kλ′ not marked super-

fluous
12 δλ′ ⇐ δλ′ ∪ {kλ}
13 Mark kλ superfluous

14 }
15 for λ = 1 to l do {
16 if not kλ superfluous

17 s̃j ⇐ δλ ∪ {k1, . . . , kλ}
18 j ⇐ j + 1

19 }
20 }

Algorithm 3 describes our heuristic. It is given a cut size, which bounds
the size of the sets. Each new variable is included in a set together with the
previous variables on which it depends. However, if another variable depends
on a superset of variables, the two sets are merged. If the size is larger than the
cut size, variables are randomly left out. After completing the merge phase,
the algorithm calculates c̃j , b̃j , and d̃j analogous to the construction given
by (2.7).

For 2-D grid problems exact factorizations are not k-bounded. If the ADF
consists of subfunctions of two neigboring grid points only, our subfunction
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merger algorithm computes a factorization using marginals up to order 3.
The factorization covers the whole interaction graph GADF. For a 3*3 grid
the subfunction merger constructs the following factorization

q(x) = q̃(x4, x5)q̃(x3|x4)q̃(x2|x5)q̃(x1|x2, 4)q̃(x7|x4)q̃(x0|x1, x3)

× q̃(x8|x5, x7)q̃(x6|x3, x7). (2.16)

Because grids are very common, we have in addition implemented a num-
ber of specialized factorizations for functions defined on grids. Our presenta-
tion of the subfunction merger algorithm has been very short. In the area of
Bayesian networks, the problem has been investigated in [3].

FDA has experimentally proven to be very successful on a number of
functions where standard genetic algorithms fail to find the global optimum.
In [16] the scaling behavior for various test functions has been studied. For
recent surveys the reader is referred to [15, 17, 19].

2.3 The Maximum Entropy Principle

In this section we investigate the problem of approximating an unknown
distribution given some information in a theoretical framework.

Let x = (x1, . . . , xn), B = {0, 1}n. Let φj : B → {0, 1}, j = 1, m be binary
functions, often called features. Let a sample S be given, p̃(x) the observed
distribution. Let

Ep̃(φj) =
∑
x∈B

p̃(x)φj(x). (2.17)

Note that φj can specify any marginal distribution, but also more general
expectations.

Problem We are looking for a distribution p(x) which fulfills the constraints

Ep(φj) = Ep̃(φj) (2.18)

and is in some sense plausible.
If only a small number of features is given the problem is under-specified.

Consequently, for incomplete specifications the missing information must be
added by some automatic completion procedure. This is achieved by the
maximum entropy principle. Let us recall

Definition 12 The entropy of a distribution is defined by

H(p) = −
∑

x

p(x) ln(p(x)). (2.19)

Maximum entropy principle (MaxEnt): Let

P = {p|Ep(φj) = Ep̃(φj), j = 1, . . . , m}. (2.20)
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Then the MaxEnt solution is given by

p∗ = argmaxp∈P H(p). (2.21)

The MaxEnt formulates the principle of indifference. If no constraints are
specified, the uniform random distribution will be the solution. MaxEnt has a
long history in physics and probabilistic logic. The interested reader is referred
to [8, 9].
The MaxEnt solution can be computed from the constrained optimization
problem

p∗ = argmaxp∈P H(p), (2.22)∑
x

p(x) = 1, (2.23)

∑
x

p(x)φj(x) = Ep̃(φj). (2.24)

This is a convex optimization problem with linear constraints. Therefore it
has a unique solution. It can be found by introducing Lagrange multipliers.

L(p, Λ, γ) = −
∑

x

p(x) ln p(x) + γ(
∑

x

p(x) − 1) (2.25)

+
m∑

i=j

λj(Ep(φj) − Ep̃(φj)), (2.26)

where Λ = (λ1, . . . , λm).
The maxima of L can be obtained by computing the derivatives of L. We
compute

∂L

∂p(x)
= − ln p(x) − 1 −

m∑
j=1

λjφj(x) + γ. (2.27)

Setting the derivative to zero gives the parametric form of the solution

p∗(x) = exp (γ − 1) exp
m∑

j=1

λjφj(x). (2.28)

Definition 13 Let Q be the space of distributions of the parametric form

Q = {q|q(x) =
1
Z

exp
m∑

j=1

λjφj(x)}. (2.29)

In order to characterize the MaxEnt solution, the relative entropy between
distributions has to be introduced.
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Definition 14 The relative entropy or Kullback–Leibler divergence between
two distributions p and q is defined as (see [4])

KLD(p, q) =
∑

x

p(x) ln
p(x)
q(x)

. (2.30)

Note that KLD(p, q) �= KLD(q, p), i.e., KLD is not symmetric! If q(x) = 0
and p(x) > 0 we have KLD(p, q) = ∞. This means that KLD gives large
weights to values near zero. In all other aspects KLD is a distance measure.
The following lemma holds [4].

Lemma 15 For any two probability distributions p and q, KLD(p, q) ≥ 0 and
KLD(p, q) = 0 iff p = q.

In our application KLD fulfills the Pythagorean property.

Lemma 16 (Pythagorean Property) Let p ∈ P , q ∈ Q, and p∗ ∈ P ∩ Q,
then

KLD(p, q) = KLD(p, p∗) + KLD(p∗, q). (2.31)

The proof is straightforward. The following theorem follows easily from the
lemma:

Theorem 17 (Maximum Entropy Solution). If p∗ ∈ P ∩ Q, then

p∗(x) = argmaxp∈P H(p). (2.32)

Furthermore, p∗ is unique.

The constrained optimization problem can be solved by standard math-
ematical algorithms. But also specialized algorithms have been invented, a
popular one is the Generalized iterative scaling algorithm (GIS) [5]. Unfortu-
nately the computational amount of the algorithm is exponential in general.

Obviously the MaxEnt approximation minimizes the relative entropy KLD
(p, u) to the uniform distribution u. Thus MaxEnt is a special case of the
MinRel principle. But there exists another justification of the MaxEnt solu-
tion, it is given by the Maximum Log-Likelihood principle.

Definition 18 Let S = {X1, . . . , XN} be an empirical sample, p̃(x) the
empirical distribution. Let q(x) be a distribution. Then the likelihood that q
generates the data is given by

LH(q) =
N∏

i=1

q(Xi) =
∏
x∈B

q(x)Np̃(x). (2.33)

The log-likelihood is defined as

LogLH(q) =
∑
x∈B

Np̃(x) ln q(x). (2.34)
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Theorem 19 (Maximum Log-Likelihood solution). If p∗ ∈ P ∩Q, then

p∗(x) = argmaxq∈Q LogLH(q). (2.35)

Furthermore, p∗ is unique.

Proof. Let p̃(x) be the observed distribution. Clearly p̃ ∈ P . Suppose q ∈ Q
and p∗ ∈ P ∩ Q. We show that LogLH(q) ≤ LogLH(p∗). The Pythagorean
property gives

KLD(p̃, q) = KLD(p̃, p∗) + KLD(p∗, q)

Therefore

KLD(p̃, q) ≥ KLD(p̃, p∗)

−H(p̃) − 1
N

LogLH(q) ≥ −H(p̃) − 1
N

LogLH(p∗)

LogLH(q) ≤ LogLH(p∗) ��
Thus the MaxEnt solution can be viewed under both the maximum entropy
framework as well as the maximum log-likelihood framework. This means
that p∗ will fit the data as closely as possible while as the maximum entropy
solution it will not assume facts beyond those given by the constraints.

We next investigate the relation of FDA factorizations and the MaxEnt
solution.

Definition 20 Given an ADF the MaxEnt problem is called complete mar-
ginal if all marginal distributions p̃(xsk

) are given. The FDA factorization
is called complete, if the graphical model of the factorization contains the
interaction graph GADF .

Theorem 21. The MaxEnt solution of a complete marginal MaxEnt problem
is the exact distribution. The MaxEnt solution of any complete FDA factor-
ization is the exact distribution.

Proof. Let a complete marginal MaxEnt problem be given. Then the features
φ(xsi

) are defined by Ep̃φ(xsi
) = p̃(xsi

). We abbreviate the parameters in
equation (2.29) by λ(xsi

). Now set λ(xsi
)p̃(xsi

) = βf(xsi
). Thus the ex-

act distribution is in the set Q. Obviously fulfills the exact distribution the
marginalization constraints. Therefore the exact distribution is the MaxEnt
solution. The proof for complete FDA factorizations works accordingly. ��

This theorem is the justification of the MaxEnt principle for FDA factor-
izations. If all relevant information of an ADF is given, the unique MaxEnt
solution is the exact distribution. But the computation of the MaxEnt solu-
tion for a complete FDA factorization is exponential if it does not fulfill the
RIP. Therefore FDA just samples from the factorization using the computed
marginals. But if the RIP is violated the generated distribution might be dif-
ferent from the exact distribution, even if the factorization is complete. Thus
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in contrast to the MaxEnt solution, the FDA factorization with its simple
sampling procedure might not converge to the optima of the function.

We next describe another approach to approximate the Boltzmann dis-
tribution. In this method the Kullback–Leibler divergence to the Boltzmann
distribution is minimized without computing the marginal distributions from
samples. Instead the values of the marginals are computed from a difficult
constrained minimization problem.

2.4 Approximating the Boltzmann Distribution

The Boltzmann distribution plays an important role in statistical physics.
Therefore a number of approximation techniques have been developed. We
present an approach where an approximation q

q(x) =
1
Z

k∏
i=1

q̃(xk) (2.36)

is computed which minimizes the relative entropy to the Boltzmann distrib-
ution. The method is described in [15] using the terminology of physics. We
give here a short mathematical derivation. The relative entropy is given by

KLD(q|pβ) =
∑

x

q(x) ln q(x) −
∑

x

q(x) ln pβ(x)

= −H(q) + lnZ − βEq(f).

We again assume that the function is defined by an ADF. Then we easily
obtain

Eq(f) =
m∑

i=1

q(xsi
)fi(xsi

). (2.37)

The expected average of the function can be computed using the marginals.
More difficult problem is the computation of H(q). We will restrict our dis-
cussion to FDA factorizations.

q(x) =
∏m

i=1 q̃(xsi
)∏m

i=1 q̃(xci
)
. (2.38)

For this factorization one computes

H(q) = −
m∑

i=1

q(xsi
) ln q̃(xsi

) +
m∑

i=1

q(xci
) ln q̃(xci

)

≈ −
m∑

i=1

q(xsi
) ln q(xsi

) +
m∑

i=1

q(xci
) ln q(xci

). (2.39)
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Note that for FDA factorizations which do not fulfill the RIP we have
q(xsi

) �= q̃(xsi
) if we use FDA sampling. But in order to make the prob-

lem tractable we assume q(xsi
) = q̃(xsi

) Then minimizing KLD leads to the
following constraint optimization problem.

Definition 22 (Bethe–Kikuchi approximation) Compute the minimum
of all FDA factorizations q(x) (2.38)

argminqKLD(q|pβ) =
m∑

i=1

q(xsi
) ln q(xsi

)

−
m∑

i=1

q(xci
) ln q(xci

) − β

m∑
i=1

q(xsi
)fi(xsi

) (2.40)

subject to the constraints for all sj with ci ⊂ sj∑
xsi

q(xsi
) = 1, (2.41)

∑
xsj

\xci

q(xsj
) = q(xci

). (2.42)

Remark: The minimization problem is not convex! There might exist many
local minima. Furthermore, the exact distribution might not be a local mini-
mum if the factorization violates the RIP.
The constraints make the solution of the problem difficult. We again use the
Lagrange function.

L(p, Λ, Γ ) = KLD(q|pβ) +
m∑

i=1

γi

⎛
⎝∑

xsi

q(xsi
) − 1

⎞
⎠

+
m∑

i=1

∑
xci

λ(sj , ci)

⎛
⎝ ∑

xsj
\xci

q(xsj
) − q(xci

)

⎞
⎠ . (2.43)

The minima of L are determined be setting the derivatives of L zero. The
independent variables are q(xsi

), q(xci
), γi, and λ(sj , ci). We obtain

∂L

∂q(xsi
)

= ln q(xsi
) + 1 − βq(xsi

)f(xsi
) + γi + r(Λ). (2.44)

Setting the derivative to zero, we obtain the parametric form

q(xsi
) = e−1−γie−r(Λ)eβf(xsi

). (2.45)

Note that the parametric form is again exponential. The Lagrange factors
Γ are easily computed from

∑
xsi

q(xsi
) = 1. The factors Λ have to be deter-

mined from a nonlinear system of equations. Before we describe an algorithm
for solving it, we describe a simple special case, the mean-field approximation.
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2.4.1 The Mean-Field Approximation

In the mean-field approximation uni-variate marginals only are used.

q(x) =
n∏

i=1

q(xi). (2.46)

We obtain for its entropy and Eq(f).

H(q) = −
∑

x

n∏
i=1

q(xi)
n∑

j=1

ln q(xj) = −
n∑

i=1

∑
xi

q(xi) ln q(xi)

Eq(f) =
∑

x

n∏
i=1

q(xi)f(x) =
m∑

i=1

n∏
j∈si

q(xj)f(xsi
).

For the mean-field approximation the Kullback–Leibler divergence is con-
vex, thus the minimum exists and is unique. The minimum is obtained by
setting the derivative of KLD equal to zero, using the uni-variates as variables.
We abbreviate qi = q(xi = 1).

Theorem 23. The uni-variate marginals of the mean-field approximation are
given by the nonlinear equation

q∗i =
1

1 + e
∂Eq
∂qi

. (2.47)

Proof. We compute the derivative

∂KLD
∂qi

= ln
qi

1 − qi
+

∂Eq

∂qi
= 0. (2.48)

The solution gives (2.47). ��
Equation (2.47) can be solved by an iteration scheme.

2.5 Loopy Belief Models and Region Graphs

The computation of the Bethe–Kikuchi approximation is difficult. We decided
to use a specialized algorithm, recently proposed in [26]. It is based on the
concept of a region graph. A region graph is a loopy graphical model. It is
strongly related to partially ordered sets (posets) or Hasse diagrams. Similar
or identical structures have been presented in [2, 14, 24]. This section follows
largely the notation of [26].

2.5.1 Regions

The region graph was introduced in [26] using a different graphical model, the
factor graph. The factor graph is a more detailed way to describe an additive
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decomposition. We decided not to use the factor graph to show the connection
of region graphs to junction trees.

Definition 24 Let S = {s1, . . . , sm} be the index set of an additive decom-
position for a fitness function f , such that

f(x) =
∑
si∈S

fi(xsi
). (2.49)

A region R = (sR, IR) is a set of variable indices sR ⊆ {1, . . . , n} and a set
of subfunction indices IR ⊆ {1, . . . , m}, such that

∀i ∈ IR : si ⊆ sR. (2.50)

The variables contained in the region are indexed by sR, whereas IR con-
tains the indices of the subfunctions which are contained in the region. It is
asserted by (2.50) that all variables needed for the contained subfunctions are
in sR.

Our goal is to approximate the Boltzmann distribution with the energy
E(x) = −f(x) by minimizing the relative entropy. For a region we define a
local energy.

Definition 25 For a region R, define the region energy

ER(xsR
) := −

∑
i∈IR

fi(xsi
). (2.51)

Region energies are defined only for those regions which contain the vari-
ables of at least one subfunctions. We will try to compute the marginals qR

on R from the Bethe–Kikuchi minimization problem. In [26] the marginals
are called the beliefs on R. This is the terminology of Bayesian networks.

2.5.2 Region Graph

Definition 26 A region graph is a graph G = (R, ER), where R is a set
of regions and ER is a set of directed edges. An edge (Rp, Rc) ∈ ER is only
allowed if sRc ⊂ sRp . If (Rp, Rc) ∈ ER, we call Rp a parent of Rc and Rc

child of Rp.

Since ER imposes a partial ordering on the set of regions, in [14] the same
structure was called a partially ordered set or poset.

Lemma 27 A region graph is directed acyclic.

Proof. This follows immediately from the requirement that edges are only
allowed from supersets to subsets. ��
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A junction tree can be turned into a region graph by creating a region for
every cluster and every separator and adding edges from each node to each
neighboring separator.

The global distribution of a junction tree is the product of all distribu-
tions on the clusters divided by the distributions of all the separators (see
[15]). We generalize this factorization by introducing counting numbers of the
regions.

Definition 28 The counting number cR of a region R is defined recursively
as

cR = 1 −
∑

R′∈A(R)

cR′ , (2.52)

where A(R) is the set of all ancestors of R.

This is well-defined, because the region graph is cycle-free. The maximal
regions (without ancestors) have counting number 1. From there, the counting
numbers can be calculated from the top to the bottom of the graph.

2.5.3 Region Graph and Junction Tree

The junction tree property has an equivalent on the region graph, called the
region graph condition.

Definition 29 We call a region graph valid if it fulfills the region graph
condition, which states that

1. For all variable indices i ∈ {1, . . . , n} the set RX,i := {R ∈ R|i ∈ sR} of
all regions R that contain Xi form a connected subgraph with∑

R∈RX,i

cR = 1, (2.53)

and
2. For all subfunction indices i ∈ {1, . . . , m} the set Rf,i := {R ∈ R|i ∈ IR}

of all regions R that contain fi form a connected subgraph with∑
R∈Rf,i

cR = 1. (2.54)

The connectivity of the subgraph, like the junction property, prevents that
in different parts of the graph contradictory beliefs can evolve. The condition
on the counting numbers makes sure that every variable and every subfunction
is counted exactly once.

The Kikuchi approximation of the Boltzmann distribution is defined as
follows (see also [23]).
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Definition 30 The Kikuchi approximation of the Boltzmann distribution
for a region graph is

k(x) =
∏

R∈R
qR(xsR

)cR (2.55)

In general, it is not normalized and therefore no probability distribution. The
normalized Kikuchi approximation

pk(x) =
k(x)∑
y k(y)

(2.56)

is a probability distribution.

If the region graph is derived from a junction tree, with qR being the marginal
distributions on the clusters and separators, k(x) is a valid distribution, since
its definition coincides with the junction tree distribution. It has been proven
that cycle-free region graphs reproduce the exact distribution [25]. Thus they
give the same result a junction tree.

The problem of sampling from a Kikuchi approximation is discussed later.
We next describe a local iteration algorithm, based on the region graph
and message passing between regions. The iteration algorithm minimizes the
Kullback–Leibler divergence.

2.6 The Concave Convex Procedure

The Concave Convex Procedure (CCCP) [27] is a variant of Generalized
Belief Propagation (GBP) proposed in [25]. It is based on the observation
that the Lagrangian consists of a convex and a negative convex (concave)
term. The CCCP algorithm alternates between updates of the convex and the
concave term.

2.6.1 The Convex and Concave Lagrangian

We now derive the CCCP update procedure, following [27]. The algorithm
is fairly complex. A detailed description can be found in the dissertation [7].
The Lagrangian to be minimized is given by (2.43)

L =
∑
R∈R

cR

⎛
⎝∑

xsR

qR(xsR
)βE(xsR

) +
∑
xsR

qR(xsR
) log qR(xsR

)

⎞
⎠

+
∑
R∈R

γR

⎛
⎝1 −

∑
xsR

qR(xsR
)

⎞
⎠

+
∑

(P,R)∈ER

∑
xsR

λPR(xsR
)

⎛
⎝ ∑

xsP \sR

qP (xsP
) − qR(xsR

)

⎞
⎠. (2.57)
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The basic idea of CCCP is to split L in a convex and a concave part. The
problematical part is the entropy term: For regions with cR > 0, the entropy
term is convex, for regions with cR < 0 it is concave. The average energy and
the constraints are linear in the qR, so it does not matter where we put them.

To avoid an arbitrary separation into convex and concave regions, we set

cmax = max
R

cR (2.58)

and use this definition to split up L into a convex part

Lvex =
∑
R∈R

cmax

⎛
⎝∑

xsR

qR(xsR
)βER(xsR

) +
∑
xsR

qR(xsR
) ln qR(xsR

)

⎞
⎠

+
∑
R∈R

γR

⎛
⎝1 −

∑
xsR

qR(xsR
)

⎞
⎠

+
∑

(P,R)∈ER

∑
xsR

λPR(xsR
)

⎛
⎝ ∑

xsP \sR

qP (xsP
) − qR(xsR

)

⎞
⎠ (2.59)

and a concave part

Lave =
∑
R∈R

(cR − cmax)

⎛
⎝∑

xsR

qR(xsR
)ER(xsR

) +
∑
xsR

qR(xsR
) ln qR(xsR

)

⎞
⎠

(2.60)

Obviously L = Lvex + Lave.

2.6.2 The Outer and Inner Loops

CCCP consists of an inner loop in which the messages are updated until
convergence, and an outer loop in which the current estimates of the marginals
are updated. For the inner loop we use the iteration index τ and for the outer
the index ξ.

The Outer Loop

For the outer loop we make the ansatz

∇Lξ+1
vex + ∇Lξ

ave = 0, (2.61)

where ∇L denotes the vector of the partial derivatives of L with respect to
the marginals qR(xsR

). The derivatives are given by
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∂Lvex

∂qR(xsR
)

= cmax (βER(xsR
) + ln qR(xsR

) + 1) − γR

−
∑

P |(P,R)∈ER

λPR(xsR
) +

∑
C|(R,C)∈ER

λRC(xsC
) (2.62)

and
∂Lave

∂qR(xsR
)

= (cR − cmax) (βER(xsR
) + ln qR(xsR

) + 1) . (2.63)

Inserting (2.62) and (2.63) into (2.61) gives

cmax

(
βER(xsR

) + ln qξ+1
R (xsR

) + 1
)
− γR

−
∑

P |(P,R)∈ER

λPR(xsR
) +

∑
C|(R,C)∈ER

λRC(xsC
)

+(cR − cmax)
(
βER(xsR

) + ln qξ
R(xsR

) + 1
)

= 0. (2.64)

Solving this for qξ+1
R (xsR

) gives the update equations for the marginals in the
outer loop:

qξ+1
R (xsR

) = qξ
R(xsR

)
cmax−cR

cmax exp
[
− cR

cmax
βER(xsR

)
]

× exp

⎡
⎣γR − cR

cmax
+

1
cmax

⎛
⎝ ∑

P |(P,R)∈ER

λPR(xsR
)

⎞
⎠

⎤
⎦

× exp− 1
cmax

⎡
⎣ ∑

C|(R,C)∈ER

λRC(xsC
)

⎤
⎦. (2.65)

For the regions with cR = cmax the previous marginal qξ
R(xsR

) cancels out.
We next introduce messages (see [25])

mPC(xsC
) := e

1
cmax

λP C(xsC
) (2.66)

and choose γR appropriately for normalization, which changes the update
equation to

qξ+1
R (xsR

) ∝ qξ
R(xsR

)
cmax−cR

cmax e−
cR

cmax
βER(xsR

)

∏
P |(P,R)∈ER mPR(xsR

)∏
C|(R,C)∈ER mRC(xsC

)
.

(2.67)

The Inner Loop

The inner loop update equation for the messages can be derived by inserting
(2.67) into the consistency equation∑

xsP \sR

qP (xsP
) = qR(xsR

). (2.68)
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This gives

∑
xsP \sR

qt
P (xsP

)
cmax−cP

cmax e−
cP

cmax
βEP (xsP

)

∏
Q|(Q,P )∈ER mQP (xsP

)∏
C|(P,C)∈ER mPC(xsC

)

= qt
R(xsR

)
cmax−cR

cmax e−
cR

cmax
βER(xsR

)

∏
Q|(Q,R)∈ER mQR(xsR

)∏
C|(R,C)∈ER mRC(xsC

)
. (2.69)

The message mPR(xsR
) is independent of the summation variables xsP \sR

,
so it can be extracted from the sum. It appears in the denominator on the
left side of (2.69) and in the numerator on the right side. This allows to solve
the equation for this message.

With the abbreviations

gR(xsR
) := qξ

R(xsR
)

cmax−cR
cmax e−

cR
cmax

βER(xsR
), (2.70)

hR(xsR
) :=

∏
Q|(Q,R)∈ER mτ

QR(xsR
)∏

C|(R,C)∈ER mτ
RC(xsC

)
(2.71)

we arrive at the inner loop update equation

mτ,upd
PR (xsR

) = mτ
PR(xsR

)

√∑
xsP \sR

gP (xsP
)hP (xsP

)

gR(xsR
)hR(xsR

)
. (2.72)

In order to make the iteration more robust, damping is applied Linear
damping [26, 27] calculates the messages as a linear combination between the
old and update messages:

mτ
P→R(xR) = (1 − α)mτ−1

P→R(xR) + αmτ,upd
P→R(xR). (2.73)

2.6.3 FDA Factorizations and Region Graphs

The Kikuchi factorization and the concept of region graph has also been used
for an EDA algorithm by [23]. But the marginals are not determined from
minimization of the Kullback–Leibler divergence, they are estimated from
samples. Thus instead of the FDA factorization the Kikuchi factorization is
used. But here a difficult problem appears, namely to sample from the Kikuchi
approximation. The factorization is a loopy graphical model, it contains cycles.
Therefore Gibbs sampling has been used in [23], which gives a valid distribu-
tion but is computational very expensive.

In contrast, we have implemented the full Bethe–Kikuchi method. In order
to circumvent the sampling problem, we decided to use FDA factorizations
only for the Kikuchi method. Given an arbitrary FDA factorization, we use
the marginals used for the factorization to create a region graph. This is al-
ways possible. Then the Bethe–Kikuchi approximation is computed using this
region graph. After the computation of the marginals the FDA factorization
is used again for sampling.
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2.7 The FDA Software

The FDA software allows to optimize arbitrary fitness functions of binary vari-
ables using various evolutionary algorithms like the simple genetic algorithm
(GA), the univariate marginal algorithm (UMDA), the FDA, the learning
factorized distribution algorithm (LFDA), the Bethe–Kikuchi Approximation
(BKDA) and the Iterated Kernighan–Lin algorithm (IKL). Details about these
algorithms and a free download of the FDA software can be found at the web
site http://www.ais.fraunhofer.de/∼muehlen.
The following list summarizes the implemented algorithms:

– −ag chooses the simple genetic algorithm GA. It allows one-point or
two-point crossover and mutation.

– −au chooses the UMDA algorithm. This algorithm estimates the univari-
ate marginal distributions from the population and then samples the next
generation with them.

– −af chooses the FDA algorithm. The FDA algorithm expects the fitness
function to be additively decomposable. To this end, the fitness functions
are given as a sum of “local functions” on a subset of the variables. If
there is no such structure given, UMDA is used instead. −af should be
combined with one of the implemented automatic factorization algorithms
described under −j.

– −al selects the LFDA algorithm. This algorithm estimates the structure
from the data using the BIC measure. The edge that increases the BIC
most is added to the graphical model, until there is no more improvement
possible. There are two subparameters to this algorithm: “m” gives a max-
imal number of parents that a variable can have, and “a” gives the weight
of the structure penalty. The default values are “-alm8a0.5.”

– −ab is our implementation of the Bethe–Kikuchi method BKDA. It is
recommended for experienced users only. The user is prompted for a value
of beta used for the Boltzmann distribution. It should be run for a single
generation only.

– −am is an iterated random algorithm. It creates the next population using
mutation from the maximum of the current population. It requires an
argument, which is the number of random bit flips which is performed
on the copies of the maximum in order to generate the starting points
of the next generation. It should be run together with a local optimizing
algorithm like the Kernighan–Lin algorithm. In FDA this option should
be used together with the −k switch with a population size of 2 till 4.

– −j selects the heuristic to compute the factorization for FDA. −jm selects
the subfunction join algorithm. The user should bound the size of the
marginal distribution by specifying a number, e.g., −jm9. In addition a
number of specialized factorizations for certain functions can be selected.

– −k turns on the local optimizer Kernighan–Lin algorithm [12]. It can be
used together with all the other algorithms, excluding BKDA of course.
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2.7.1 Local Hill Climbing

The use of a powerful local hill climbing algorithm changes the character of the
search dramatically. We have implemented a general Kernighan–Lin algorithm
[12]. It is not a simple local hill climber, but it has a sophisticated backtracking
procedure. Our implementation scales with O(n2). The algorithm can run
together with GA, UMDA, FDA and LFDA using a small population size.
It can also run as a simple iteration, the Iterated Kernighan–Lin algorithm
IKL with a population size of two. New and promising start configurations
are provided by randomly changing a certain percentage of the best solution
obtained so far. The performance of IKL strongly depends on using a good
value for this percentage.

For the graph bipartitioning problem a very fast version of Kernighan–Lin
has been implemented. It uses hash tables and a cut for backtracking. This im-
plementation scales approximately linearly with n. It allows the optimization
of graphs with more than 1000 variables with pop sizes up to 50.

2.8 Numerical Results

The EDA family of algorithms seems to be mature, at least for binary prob-
lems. It is time to demonstrate the state-of-the-art with large instances of
popular benchmark problems. In [17] large graph bipartitioning problems have
been solved. Large problems have been also solved in [22]. We will continue
this work here. We will use problems on 2-D grids and Kauffman’s n − k
function. The number of variables will be up to 900. Kauffman’s function is
an example of an ADF with random connections, the 2-D grid problems are
important problems with regular connections.

2-D Spin glass:

f(x) =
∑
i,j

fi,j(si, sj). (2.74)

sj is one of the four neighbors of si, si ∈ {−1, 1}. The function values are
randomly drawn from a Gaussian distribution in the interval [−1,+1].

2-D grid on plaquettes:

f(x) =
∑
i,j

fi,j(xi,j , xi+1,j , xi,j+1, xi+1,k+1). (2.75)

The indices define a plaquette on the 2-D grid. The function values for each
subfunction are randomly drawn from a Gaussian distribution in the interval
[−1,+1].
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Kauffman random n − 3:

f(x) =
n∑

i=1

fi(xi, xj , xk). (2.76)

The indices i, j, k are randomly chosen. The function values are drawn from
a Gaussian distribution in [0, 1].

The following table can be easily generated by any user of the FDA soft-
ware. We do not have the space to compare all the possible FDA algorithms.
The reader is encouraged to do tests himself.

The results confirm our theory. The standard FDA algorithm with large
population sizes (N = 30, 000) performs very good on all instances. It should
be no surprise that the population size has to be large. For the 2-D grid
problems we used the special factorization −jg5. It uses marginals of size
5, even for the Ising problems. For the Kauffman function the subfunction
merger algorithm −jm creates marginals up to size 12 for n = 400 and size 15
for n = 625. It needs a large sample size to compute good estimates of these
marginals. We remind the reader that for the BKDA algorithm the samples are
computed only once, after computing the marginals. Surprisingly the BKDA
algorithm runs slightly faster than FDA. Note that β has to be very large for
the Kauffman function. This indicates that the Kauffman function has many
local maxima. Still larger values of β do not improve the results for BKDA,
because the convergence becomes a problem. Given the many assumptions
used for BKDA we find the performance surprisingly good. But it seems to
be not a breakthrough.

Table 2.1. Comparison of FDA and BKDA on large problems

problem size alg. sample. β best value

Ising 400 FDA 30,000 - 297.259
Ising 400 BKDA 10,000 30 297.259
Ising 625 FDA 30,000 - 466.460
Ising 625 BKDA 10,000 30 463.622
Plaqu. 400 FDA 10,000 - 207.565
Plaque. 400 BKDA 10,000 30 207.565
Plaque. 625 FDA 30,000 - 320.069
Plaque. 625 BKDA 10,000 30 320.132
Plauqe. 900 FDA 30,000 - 459.274
Plaque. 900 BKDA 10,000 30 454.237
n − 3 400 FDA 10,000 - 0.7535
n − 3 400 BKDA 10,000 12,000 0.7520
n − 3 625 FDA 30,000 - 0.7501
n − 3 625 BKDA 10,000 15,000 0.7436
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2.9 Conclusion and Outlook

The efficient estimation and sampling of distributions is a common problem
in several scientific disciplines. Unfortunately each discipline uses a different
language to formulate its algorithms. We have identified two principles used for
the approximation – minimizing the Kullback–Leibler divergence KLD(q, u)
to the uniform distribution u or minimizing KLD(q, pβ) to the Boltzmann
distribution pβ .

We have shown that the basic theory is the same for the two algorithms.
This theory deals with the decomposition of graphical models and the compu-
tation of approximate factorizations. If the interaction graph GADF allows an
exact factorization fulfilling the RIP, then both methods compute the exact
distribution.

We have discussed two EDA algorithms in detail. The standard FDA al-
gorithm computes a factorization from the graph representing the structure.
If the corresponding graphical model does not fulfill the assumptions of the
factorization theorem the exact distribution is only approximated. Factoriza-
tions which cover as much as possible from the interaction graph GADF are
obtained by merging of subfunctions. The marginals of the standard FDA
algorithm are computed from sampling the FDA factorization.

The Bethe–Kikuchi algorithm BKDA computes the marginals from a dif-
ficult constrained minimization problem. Because sampling from the original
Bethe–Kikuchi factorization is difficult, we have extended the original ap-
proach. We use the FDA factorization which contains no loops. From this fac-
torization the marginals are computed using the Bethe–Kikuchi minimization.

Our results show that for binary problems the EDA algorithms perform as
good or even better than other heuristics used for optimization. At this stage
our algorithm is not yet optimized from a numerical point of view, nevertheless
is already competitive to more specialized algorithms.

In our opinion too many EDA researchers still investigate 1-D problems.
Our theory (and also practice) shows that these problems can be solved exactly
in polynomial time if the junction tree factorization is used. They pose no
problem for optimization at all.

The interested reader can download our software from the WWW site
http://www.ais.fraunhofer.de/∼muehlen.
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3

Linkage Learning via Probabilistic Modeling
in the Extended Compact Genetic Algorithm
(ECGA)

Georges R. Harik, Fernando G. Lobo, and Kumara Sastry

Summary. For a long time, genetic algorithms (GAs) were not very successful in
automatically identifying and exchanging structures consisting of several correlated
genes. This problem, referred in the literature as the linkage-learning problem, has
been the subject of extensive research for many years. This chapter explores the
relationship between the linkage-learning problem and that of learning probability
distributions over multi-variate spaces. Herein, it is argued that these problems are
equivalent. Using a simple but effective approach to learning distributions, and by
implication linkage, this chapter reveals the existence of GA-like algorithms that are
potentially orders of magnitude faster and more accurate than the simple GA.

3.1 Introduction

Linkage learning in genetic algorithms (GAs) is the identification of building
blocks to be conserved under crossover. Theoretical studies have shown that
if an effective linkage-learning GA were developed, it would hold significant
advantages over the simple GA [1]. Therefore, the task of developing such an
algorithm has drawn significant attention. Past approaches to developing such
an algorithm have focused on evolving a problem’s chromosomal representa-
tion along with its solution [2–4]. This has proven to be a difficult undertaking.
This chapter reinterprets and solves the linkage-learning problem in the con-
text of probabilistic optimization.

Recently, a number of algorithms have been developed that replace the
GA’s population and crossover operator with a probabilistic representation
and generation method [5–8]. Studies have shown a close correspondence be-
tween these algorithms and equivalent simple GAs [7]. This chapter shows
how a variant of these algorithms, that pays close attention to the proba-
bilistic modeling of the population successfully tackles the linkage-learning
problem.

We will begin by briefly reviewing the workings of the simple GA, as well
as those of the related probability-based algorithms. We will then explore

G.R. Harik et al.: Linkage Learning via Probabilistic Modeling in the Extended Compact

Genetic Algorithm (ECGA), Studies in Computational Intelligence (SCI) 33, 39–61 (2006)
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the close relationship between these two approaches to optimization. The re-
mainder of this chapter is then concerned with the ultimate consequences of
this relationship. The argument to be presented will consist of two separate
assertions:

– That learning a good probability distribution is equivalent to learning
linkage.

– That one “good” distribution can be found by searching for a jointly small
representation of two components: (1) the compressed representation of
the population under the given distribution and (2) the distribution’s
representation given the problem encoding.

Ultimately, this argument must stand on the legs of empirical observa-
tions, as in its essence it is but the application of Occam’s Razor. The last
part of this chapter presents a probabilistic algorithm, the extended compact
GA (ECGA), designed to learn linkage through learning good probability dis-
tributions. It then demonstrates the advantage that this approach provides
over the simple GA, on a theoretical problem that has traditionally been used
to test other linkage-learning approaches. Finally, this chapter explores the
consequences of the proposed probabilistic algorithm.

3.2 The Simplified Simple GA

A GA [9, 10] is a simulation of the genetic state of a population of individuals
– their genetic state being their combined chromosomes. It typically includes
those forces of genetics deemed most influential in nature, such as natural
selection, mutation, and crossover (mating). In this chapter, we will restrict
ourselves to one facet of the GA: its use as a problem solver, or optimization
algorithm. Natural evolution typically leads to a set of individuals that are
well suited to their environment. By controlling the computational nature of
such an environment, the GA can be made to evolve chromosomes (structures)
that are well suited to any given task.

An optimization is a search over a set of structures, to find the “best”
structure under some given criteria. This paradigm maps over readily to im-
plementation in a GA. Each structure is represented by its blueprint, or chro-
mosome, in the GA’s population. The GA’s population is thus the current
set of structures the algorithm has found to be most interesting or useful. At
each point in time, it represents the current “state” of the search. The genetic
operators of natural selection, crossover, and mutation then generate the next
state of the search from the current one. The GA’s goal is to reach a final
state (population) that contains a good solution (structure) to the problem
at hand.

In order to simplify this exposition, we will assume that the structures
the GA will optimize over are the set of binary strings of fixed length L. A
binary string is simply a consecutive sequence of characters each of which is a
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0 or a 1. This restriction makes it easier to visualize and understand the GA
and its operators. However, the theory developed in this chapter will remain
applicable to the much wider domain of optimization over finite-dimensional
spaces. We will for the same reason also consider only selecto-recombinative
GAs, thus ignoring for the moment the effects of mutation.

In the course of optimization, the GA’s population repeatedly undergoes
processing by the two genetic operators of crossover and selection, until it
converges. Convergence here means that only one type of chromosome remains
in the population – hopefully the best or a good solution. The two operators
have orthogonal goals. The crossover operator generates new chromosomes
by mixing parts from other pairs of chromosomes. It roughly corresponds to
mating and reproduction in nature.

The selection operator weeds out those chromosomes that are unsuited
to their environment – that is, those that have a poor score under the cur-
rent optimization. Again, for the purpose of simplicity, we focus on block
selection [11] and uniform crossover [12] as representatives of possibly more
general selection and crossover operators.

In block selection, a large fraction of the weakest chromosomes in the pop-
ulation are thrown out, and the stronger chromosomes are given their place.
Strength here is measured according to the chosen optimization problem. Op-
erationally, the optimization problem is represented by a fitness function that
maps structures over to real numbers. The strongest structures are then those
with the highest fitness score. Block selection is controlled by one parameter,
S, which specifies that only the best fraction 1/S of the population is to be
retained after the action of selection. Figure 3.1 shows the effects of selection
with S = 2 on a population of size 8.

Under uniform crossover, the population is paired up, and each pair of
chromosomes generates two children, which replace their parents in the pop-
ulation. A child is created from the two parents by randomly inheriting the
value of each position (dimension) from one of its two parents, while its sibling

6
6
5
5
4
4
6
6

0111111
0111111
1110101
1110101
1000111
1000111
1110111
1110111

0111111
1110101
0110001
1000111
1110111
0000010
1100001
0001101

6
5
3
4
6
1
3
3

fitness

Population before
selection

Population after
selection

fitness

Fig. 3.1. With S = 2, each chromosome in the top half of the population gets two
copies in the next generation
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gets the value at that position from the other parent. In the parlance of GAs,
each (position, value) combination is referred to as a gene. Figure 3.2 shows
the possible effects of uniform crossover on two very dissimilar chromosomes.

Optimization by selecto-recombinative GAs thus consists of a random ini-
tialization of the population, followed by repeated applications of crossover
and selection. This optimization is typically stopped when the population has
converged, although a number of other stopping criteria are also possible.
Figure 3.3 shows one particular population that has converged to the value
01110111. In a number of problems, GAs have been shown to consistently out-
perform standard optimization techniques. The reason why the GA does well is
widely agreed to be a consequence of its effective propagation of substructures
that are correlated with high fitnesses.

As an example, let us consider a simple optimization problem of maxi-
mizing 1s (onemax), where the fitness of each string is the number of 1s it
contains. Figure 3.4 shows the possible evolution of a population under one
generation of selection and crossover. Note how the ratio of 1s in the new
population is higher than in the old, and that the 1s are well distributed. This
is because selection increases the number of 1s, and crossover mixes them to-
gether in an attempt to combine all the 1s into a single chromosome. In this
case, each 1 gene is correlated with a high fitness, and the GA has successfully
exploited this information.

Although the reason for the GA’s success is widely agreed upon, the nature
of the structures it exchanges, and whose correlation with fitness it maintains,
is under vigorous debate. The crux of the problem is the complexity of these
structures. Two mutually exclusive possibilities vie for the explanation of the

1111111
0000000

10011000
01100111

Parents after crossoverParents before crossover

Fig. 3.2. Note how all the genes are conserved in a crossover. Each parental gene
ends up in one of the two children

01110111
01110111
01110111
01110111
01110111
01110111
01110111
01110111

Fig. 3.3. A converged population only has one type of chromosome in it, and can
therefore not search for more structures
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0110101
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Fig. 3.4. Selection followed by crossover leads to a new chromosome (the first) that
is more fit than any previous one

GA’s success: (1) that single genes are the only structures that the GA can ef-
fectively deal with; and (2) that the GA can process more complex structures,
consisting of several genes, which are referred to as building blocks.

The study of linkage learning is the study of how to make the GA process
structures more complex than single genes, in the absence of information
about which genes are related. In this context, related roughly means that
the genes would have to exist in tandem to provide a fitness boost, but each
gene alone would not provide a detectable fitness signal. As of yet, the most
advanced of such methods have only been marginally successful in justifying
the computational effort necessary to undertake them [3]. The remainder of
this chapter addresses this issue by developing a computationally justifiable
algorithm that learns linkage. First, however, we take a necessary detour to
explore a set of probabilistic algorithms that are closely related to the GA.

3.3 Order-1 Probabilistic Optimization Algorithms

The population of the GA represents information about the parts of the search
space that the GA has seen before. The crossover and selection operators tell
the GA how to exploit this information to generate new, and potentially
good, solutions. Along the course of time, researchers noticed that crossover
tended to decorrelate the individual dimensions (or genes) in the solution
structures, while selection tended to change the makeup of the population by
rewarding the more successful genes. Thus were born a number of algorithms
that replaced the population, crossover, and selection with a number of actions
on marginal probability distributions on each of the representation’s genes.

The idea behind these algorithms rested on representing the current state
of the search as the fraction of each dimension (or gene) in the population
that had a value of one. Using only this information, a new population could
be generated that mimicked the effect of many consecutive crossovers. By
altering these probabilities according to how well certain genes did against
the competition, these algorithms could also mimic the effect of selection.
The compact GA (cGA) [7] and PBIL [6] are two examples of these simplistic
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(but effective) algorithms. We will restrict ourselves here to looking at the
cGA as it is slightly simpler than PBIL.

The cGA begins by initializing an L-dimensional probability vector P [ ]
(one for each gene position) to 0.5. This phase corresponds to the random
initialization phase of the simple GA. S solutions are then generated by polling
this vector, i.e., selecting the Kth dimension (or gene) to be 1 if a unit uniform
random variable is less than the Kth dimension of the probability vector,
P [K]. The gene positions of the fittest of these S solutions are rewarded in
pairwise competitions with each of the less fit solutions. P [K] is increased if
the fittest has a 1 in the Kth position, and the less fit solution does not. P [K]
is likewise decreased if the fittest has a 0 in the Kth gene, and the less fit
solution does not. The amount of increase or decrease in parameterized by a
value E.

For instance, take the maximizing 1s problem, and assume L = 4, S = 2
and E = 0.25. Figure 3.5 shows one iteration taking place under this algo-
rithm. Of the two generated chromosomes 0111 (with a fitness of 3) is fitter
than 1010 (with a fitness of 2). The original probability vector is random,
P [ ] = [0.5, 0.5, 0.5, 0.5]. In the first gene, the 0 is part of a fitter chromosome
than the 1. Therefore P [0] is decreased by 0.25. Note that the index of the
first gene in the vector is taken to be 0, not 1 due to a programming conven-
tion. In the second gene, the opposite is true, therefore P [1] is increased by
0.25. The third gene is the same in both chromosomes, so P [2] is unchanged.
P [3] is again increased by 0.25. This leaves us with the new probability vector
P [ ] = [0.25, 0.75, 0.5, 0.75]. This process continues until the P [ ] vector implies
a single solution, that is all its values are zeroes or ones. At this point, the
cGA has converged.

One might see a close correlation between this algorithm and the simple
GA, but still find it difficult to guess at the extent of this relationship. It has
been shown that the simple GA using a population size N and a selection rate

two chromosomes
P generates 

0111      3

1010      2

fitness

P = [ 0.5 , 0.5 , 0.5 , 0.5 ]

Next P = [ 0.25 , 0.75 , 0.5 , 0.75 ]

P is updated

0 wins 1 wins 1 wins

 − 0.25 + 0.25+ 0.25 0

tie

Fig. 3.5. The cGA evaluation step consists of generation, followed by an examina-
tion that changes the probability distribution
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of S under tournament selection (which is a close cousin to block selection),
and uniform crossover, can be mimicked very closely by the cGA generating
S solutions and using E = 1/N . These algorithms are referred to as order-1
probabilistic algorithms as they maintain the population’s distribution as a
product of the marginal distributions of each of the separate genes; genes
being considered order-1 or trivial building blocks.

3.4 Probabilistic Optimization and Linkage Learning

The correspondence between the operation of the cGA and the simple GA
hints at a deeper connection. This connection is that the GA’s population
can be interpreted as representing a probability distribution over the set of
future solutions to be explored. The GA’s population consists of chromosomes
that have been favored by evolution and are thus in some sense good. The
distribution that this population represents tells the algorithm where to find
other good solutions.

In that sense, the role of crossover is to generate new chromosomes that
are very much like the ones found in the current population. This role can
also be played by a more direct representation of the distribution itself. This is
precisely what the cGA and PBIL do. Similarly, changes in the makeup of the
population due to selection can be reflected in alterations of the probability
distribution itself.

The probability distribution chosen to model the population can be crucial
to the algorithm’s success. In fact, the choice of a good distribution is equiv-
alent to linkage learning. We take a moment now to explore this statement in
the context of a problem that is difficult for the simple GA to solve without
proper linkage learning.

3.4.1 Linkage Learning and Deceptive Problems

We begin by defining a “deceptive” version of the counting ones problem.
Here the fitness of a string is the number of 1s it contains, unless it is all 0s,
in which case its fitness is L + 1 (L recall is the problem length). The reason
this is called a deceptive problem is that the GA gets rewarded incrementally
for each 1 it adds to the problem, but the best solution consists of all 0s.

The initial conception of this problem is a needle in a haystack, which no
optimization algorithm can be reasonably expected to solve. To transform it
into one that requires linkage learning, we combine multiple copies of deceptive
subproblems into one larger problem. For example, a 40-dimensional problem
can be formed by grouping together each four dimensions into a deceptive
subproblem. This problem will thus utilize 10 of the deceptive subproblems
defined above. The fitness of a string will be the sum of the subproblem
fitnesses, where each subproblem is defined over a separate group of four
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dimensions. Figure 3.6 shows how a sample 40-bit string is evaluated in this
problem. This problem is an order-4 deceptive problem, and is typical of the
kinds of problems used to test linkage learning algorithms.

A GA that learns linkage will operate by recombining each of the optimal
solutions to the 4-bit subproblems into one optimal 40-bit string consisting
of all 0s [2, 3]. A GA not learning linkage will tend to gravitate towards a
suboptimal solution consisting of some 0000s, and some 1111s. This is what
the simple GA will do [1]. In swapping genes between parents, it will often
break up good combinations, such as 0000, by crossing them over with slightly
worse combinations, such as 1111. The difficulty in learning linkage in this
situation is that the four genes defining each subproblem don’t have to be
adjacent. To learn linkage, a GA must correctly pick out each set of four
related genes. Even in this small problem, the number of such combinations
is astronomical.

Figure 3.7 shows a possible size 8 population representing a set of solu-
tions to this partially deceptive problem. This illustration depicts only one
subproblem (four genes) of each chromosome. In Figure 3.7 the GA has found
several good solutions with marginal fitness contributions of 4 and 5 over these
four genes. The uniform crossover shown destroys the correlations among the
genes that lead to a high fitness; and the average fitness in the population
decreases after crossover! Similarly, the order-1 probability representing this
population is P [ ] = [0.5, 0.5, 0.5, 0.5]. Yet, generating new solutions using this
distribution leads to poor solutions.

fitness =

1111 0100 1110 1011 0110 0101 1011 1111 0000 0000

4 + 1 + 3 + 3 + 2 + 2 + 3 + 4 + 5 + 5 = 32

Fig. 3.6. A large partially deceptive problem can be formed by concatenating a
number of smaller fully deceptive subproblems

marginal
fitness

marginal
fitness

+4
+5
+4
+4
+4
+5
+4
+5

1111.................
0000.................
1111.................
1111.................
1111.................
0000.................
1111.................
0000.................

0011.................
1100.................
1111.................
1111.................
0001.................
1110.................
1101.................
0010.................

+2
+2
+4
+4
+1
+3
+3
+1

Fig. 3.7. The first four genes of a population before and after a crossover that does
not recognize building block boundaries
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The correspondence that holds between the cGA and the simple GA rears
an ugly side to its head here. Both are unable to deal with this partially de-
ceptive problem, in which linkage learning is crucial. That is, both uniform
crossover, and order-1 probabilistic generation, fail to produce new chromo-
somes that are as good as the ones already in the population! Similarly, the
solution to this problem holds dually in the realm of GAs and probabilistic
algorithms.

In the GA, the crossover operator needs to understand that these four
genes are related, and not break up the combinations they represent. A build-
ing block crossover can be developed for this purpose that only swaps whole
solutions to subproblems, instead of single genes. In order to do this, however,
the algorithm must guess correctly at which genes are related – it must learn
linkage.

In probabilistic algorithms, the probability distribution needs to recognize
that these four genes are related, and represent the joint probability of these
four genes having the 16 possible configurations they can hold; as opposed to
the marginal distributions over each of the four genes independently. Such an
algorithm would model the original population in Fig. 3.7 using P [0000] = 3/8
and P [1111] = 5/8, and each set of four genes would maintain their correlation
from one generation to the next.

What we have just seen is that linkage learning is a skill that is easily
transferable into the domain of probabilistic algorithms. The remainder of
this chapter shows that the reverse is also true: that an operational and com-
putationally feasible search for good distributions can fulfill the traditional
task of linkage learning.

3.4.2 What Makes a Good Probability Model?

The cGA and PBIL define what it means to generate new solutions that are
like the current one. It is to poll the marginal distributions of each dimen-
sion or gene position, considering each of the gene positions to be indepen-
dent. More complex algorithms have been developed that match some of the
order-2 behavior of the population [8]. These algorithms act by investigat-
ing pairwise inter-gene correlations and generating a distribution that is very
close to polling from the population. The closeness measure most easily used
is an information-theoretic measure of probability distribution distances [13].
Modeling more complex, and more precise, higher-order behavior has been
suggested, but the validity of doing so has been questioned [5].

Pursuing this last train of thought to its ultimate conclusion reveals the
flaw in its prescription. We can directly model the order-L behavior of polling
the population, by only generating new members through random selection
of chromosomes that exist in the population already. This behavior will
rapidly lead to the algorithm’s convergence, while exploring no new struc-
tures. Thus, more accurate modeling of the population’s distribution is not
always a desirable course of action.
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Probabilistic algorithms that use order-2 correlations have sometimes been
found to be vastly superior to those using order-1 probabilities. Yet the argu-
ment above indicates that this trend cannot continue indefinitely up to order-L
modeling of the population. At some point, this progression must stop. This
puzzling combination seems to imply that more complicated models of the
population are useful, but only up to a point.

These ruminations hint at a resolution to the problem of picking an appro-
priate distribution to model the population. The solution comes from realizing
that the probability distribution to be used will represent a model of what
makes the current population good; and that the population is simply a finite
sample from this distribution. Fundamentally, the task of identifying a proba-
bility model to be used is then the induction of models that are likely to have
generated the observed population.

It is well known that unbiased search for such models is futile. Thus we
have no choice but to select a bias in this search space. The one we choose
is that given all other things are equal, simpler distributions are better than
complex ones. Simplicity here can be defined in terms of the representational
complexity of the distribution, given the original problem encoding. All things
are, however, rarely equal, and there remains a tradeoff between simplicity and
accuracy. Our aim will therefore be to find a simple model that nonetheless
is good at explaining the current population.

3.4.3 Minimum Description Length Models

Motivated by the above requirement, we venture forth a hypothesis on the
nature of good distributions:

By reliance on Occam’s Razor, good distributions are those under
which the representation of the distribution using the current encod-
ing, along with the representation of the population compressed under
that distribution, is minimal.

This definition is a minimum description length bias on the model search
for distributions [14]. It directly penalizes complex models by minimizing over
model size. In addition to doing so, it penalizes inaccurate models, because
information theory tells us that these are unlikely to be of much use in the
compression of the population [13].

3.4.4 MDL Restrictions on Marginal Product Models

We take a moment now to explore this hypothesis. The basis for compression
is the availability of a probability distribution over the space of structures to
be compressed. Given any particular distribution, we can calculate how many
bits it takes to represent a given message. In our case, the message is the
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population, and the distribution is the one to be evaluated. This hypothesis
reformulates the problem of finding a good distribution as a new optimization
problem – that of finding the distribution model that minimizes the combined
model and population representation.

For the remainder of this chapter we focus on a simple class of probability
models: those formed as the product of marginal distributions on a partition
of the genes – marginal product models (MPMs). These models are similar
to those of the cGA and PBIL, excepting for the fact that they can represent
probability distributions over more than one gene at a time. We choose these
models for two reasons: (1) they make the exposition simpler; and (2) the
structure of such a model can directly be translated into a linkage map, with
the partition used defining precisely which genes should be tightly linked.

To make MPMs more concrete, Table 3.1 shows one possible model over
a 4-dimensional problem. The partition chosen is [0,3] [1] [2], which means the
distribution represents genes 1 and 2 independently, but genes 0 and 3 jointly.
The probability distribution over [0,3] has a positive distribution for only the
values 00 and 11. This means that at no time can the population generated
by this distribution contain a 1 in the first position and a 0 in the fourth
position. So, chromosomes of 1001 and 0100 are legal, but 0001 and 1010 are
not! This form of restriction is not possible if the probabilities of genes 0 and
3 are represented independently. Obviously, this form of distribution is more
powerful than that allowed by the cGA (or PBIL).

Let us now try to represent a population of N chromosomes, half of which
are 0000, and half of which are 1111. Representing the population as is (simple
bit listing), requires 4N -bits of storage. On the other hand, an MPM of genes
[0,1,2,3] could first represent the probability of a structure being any of the
16 possible binary structures over those four positions. This probability dis-
tribution would indicate that only 1111 and 0000 have a positive probability
of being represented. Subsequently, the representation of each structure can
be 0 for 0000 and 1 for 1111. This encoding uses only 1-bit per structure, and
thus only N -bits for the whole population.

By recognizing that these 4-bits are correlated, and representing their dis-
tribution in an MPM, we have cut down to a fourth the amount of space re-
quired to store the population. Even when the probabilities are not so abrupt,
and every string has a positive probability of being represented, the entropy

Table 3.1. A marginal probability model over four genes

[0,3] [1] [2]

00 : 0.5 0 : 0.5 0 : 0.6
01 : 0.0 1 : 0.5 1 : 0.4
10 : 0.0
11 : 0.5
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of a distribution gives us the average number of bits it takes to represent
structures randomly pulled from that distribution. By calibrating an MPM’s
probabilities to match those of the population, this number can be used to
estimate that distribution’s compression of the population. Furthermore, the
calibrated MPM can easily be seen to be the one that compresses the pop-
ulation the most – that is, incorrectly modeling the population cannot pos-
sibly help. In fact, since the order of chromosomes is deemed unimportant
in the representation, a randomization of the ordering, followed by sampling
a chromosome then projecting onto any gene subset from the MPM will be
identical to polling the MPM at that subset. Thus, no distribution over that
MPM subset can do better than that incorporating the population’s frequency
counts [13].

The use of an MPM to represent the population consists of two parts:
(1) choosing the partition structure of the MPM; and (2) calibrating the MPM
by pulling the frequency counts of each of the subsets of the MPM directly
from the population. The efficacy of a particular distribution is defined as the
sum representation size of the model itself and the population compressed
under the model. At this point, there is little recourse but to explore the
actual equations defining this criterion.

3.4.5 The Combined Complexity Criterion

Let the Ith partition subset of an MPM be of size SI , where the sum of the SI

is L. Each subset of size S requires 2S−1 frequency counts to completely define
its marginal distribution. Each of the frequency counts is of size log2(N + 1),
where N is the population size. Therefore the total model representation size,
or complexity is

Model complexity = log2(N + 1)
∑

I

(2SI − 1). (3.1)

Now, the Ith subset represents SI genes. Let MI be the marginal dis-
tribution over this subset. The entropy of this distribution, Entropy(MI), is
defined as:

∑−pk log2(pk), where pk is the probability of observing outcome
k. This number is the average number of bits it takes to represent these SI

genes in the population. This number will never be greater than SI . This is
how the population is compressed, by representing the Ith subset’s genes only
after the Ith marginal distribution has been represented! Therefore, the total
compressed population complexity is

Compressed population complexity = N
∑

I

Entropy(MI). (3.2)

Armed with these two definitions, we can evaluate the efficacy of any
given MPM structure. By MPM structure, we mean the MPM partitioning,
without the actual probabilities for each of the marginal distributions. These
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probabilities are determined by the population, and the required condition
that the compression be optimal. First, we calibrate the MPM structure using
the population’s frequency counts to form a full MPM model. Second, we
add the model complexity and compressed population complexity to get a
combined complexity number

Combined complexity = Model complexity
+Compressed population complexity. (3.3)

Section 3.5 describes a simple algorithm for searching for partitions of the
gene space for a good MPM distribution over the population, given this oper-
ational criterion of finding a distribution such that its compressed complexity
is suitably small.

3.5 The ECGA

In this section, we combine the above heuristic with a greedy search algorithm
to invent an efficient probabilistic optimization algorithm. The proposed algo-
rithm is very simple:

1. Generate a random population of size N
2. Undergo tournament selection at a rate S
3. Model the population using a greedy MPM search
4. If the model has converged, stop
5. Generate a new population using the given model
6. Return to step 2

This algorithm may also be stopped at any time, using the best found
solution so far as its result. Most of the algorithm is self-explanatory, but we
focus on two of its features. First, the algorithm requires both a population,
and selection. Because we are remodeling the population at each generation,
the structure of the models may not be stable. Therefore, selection cannot be
replaced by a simple update as in the cGA. For the same reason, a concrete
population is required also. Only the crossover step is replaced by probabilis-
tic polling in this algorithm. Second, we have yet to describe the greedy MPM
search.

The greedy MPM search begins each generation by postulating that all of
the genes are independent – that is, that the MPM [0][1]· · ·[L − 2][L − 1] is
best. What it will then do is perform a steepest ascent search, where at each
step, the algorithm attempts to merge all pairs of subsets into larger subsets.
It judges such mergers again on the basis of their combined complexity. If
the best such combination leads to a decrease in combined complexity, then
that merger is carried out. This process continues until no further pairs of
subsets can be merged. The resulting MPM is then the one that is used for
that generation.
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Let us illustrate the greedy MPM search with an example. Consider the
population depicted in Fig. 3.8. The MPM search starts by assuming that the
model [0] [1] [2] [3] is best and computes its combined complexity.

Model Combined complexity
[0] [1] [2] [3] 44

The next step is to merge all possible pair of subsets of the current model
and compute their combined complexity measure. Doing so yields:

Model Combined complexity
[0, 1] [2] [3] 46.7
[0, 2] [1] [3] 39.8
[0, 3] [1] [2] 46.7
[0] [1, 2] [3] 46.7
[0] [1, 3] [2] 45.6
[0] [1] [2, 3] 46.7

The combined complexity of [0] [1] [2] [3] can be improved. [0, 2] [1] [3] is
the model that gives the best improvement, thus the search proceeds from
[0, 2] [1] [3]. Again, all possible pair of groups are merged:

Model Combined complexity
[0, 2, 1] [3] 48.6
[0, 2, 3] [1] 48.6
[0, 2] [1, 2] 41.4

At this point the model search stops because it is not possible to improve
upon the combined complexity measure. Subsequently, the model [0, 2][1][3]
would be used to generate a new population of individuals. This particular
model uncovers an important pattern in the population. It says that there is
a strong correlation between genes 0 and 2 and that they should be processed
accordingly.

A new MPM search is thus carried out each generation. Significant optimi-
zations can and have been taken in the implementation here, such as caching

1000
1101
0111
1100

0111
0010

1000
1001

Fig. 3.8. A population after selection has been performed
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delta values for all pair combinations at each step. For those interested,
computer code of the algorithm is available elsewhere [15].

This combined greedy search algorithm along with the minimum descrip-
tion length search criteria, applied to the task of optimization, will henceforth
be referred to as the extended compact GA (ECGA).

3.5.1 Experimental Results

Most of this chapter has concerned itself with the theoretical justification of
the ECGA. This section shows how the ECGA can significantly speed the
solution of problems that are partially deceptive. In the creation of partially
deceptive functions, we will rely on the composition of small deceptive prob-
lems, like the 4-bit problem defined previously. The subproblems we will use
are trap functions, whose fitness relies solely on the number of 1s present in a
chromosome. These functions have been used extensively in the testing of link-
age learning algorithms, and solving them has proven to be quite challenging
in the absence of prior linkage information.

We will begin by exploring the relationship between the population size
used and the proportion of subproblems solved correctly by both the ECGA
and the simple GA using uniform crossover. By adding in information about
the algorithms’ running time, we can show comparisons of the number of func-
tion evaluations both algorithms need to achieve a comparable level of opti-
mization. Without further ado then, we proceed to the experimental results.

3.5.2 Deceptive Trap Functions

In this section, ten copies of the 4-bit trap subproblem, are concatenated to
form a difficult 40-bit problem, as in Fig. 3.6. This is the problem used to
compare the ECGA with the simple GA. Each set of four neighboring genes,
[0–3] [4–7] and so on, thus formed one subfunction to be optimized. But neither
the simple GA nor the ECGA were told which genes were related, or that the
related groups were contiguous, or for that matter the size of the subproblems.

Both the ECGA and the simple GA with uniform crossover were run on
this problem 10 times, with a selection rate of 16 (which is higher than the
ECGA needs, but which the simple GA requires), gathering the average num-
ber of subfunctions solved per population size. This measure is especially
significant, as the performance of GAs and other optimization algorithms is
typically judged by the number of objective function evaluations they under-
take – and this number is the population size times the number of generations.

Table 3.2 shows the population size versus the average number of subfunc-
tions solved for the simple GA, and the average number of function evaluations
taken to do so. Table 3.3 does the same for the ECGA.

The differences between the simple GA and the ECGA are large, and in
the favor of the ECGA. To consistently solve nine building blocks, the simple
GA needs a population size of 100 thousand and over 3.8 million function
evaluations! To do the same, the ECGA needs a population size of 500 and
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Table 3.2. Simple GA complexity on deceptive subproblems

Population size Subfunctions solved Objective evaluations

100 3.9 740
500 5.1 5,100

1,000 6.1 15,600
5,000 6.8 1,00,000

10,000 7.3 2,48,000
20,000 8.0 6,14,000
50,000 7.9 15,60,000

1,00,000 8.8 37,90,000

Table 3.3. ECGA complexity on deceptive subproblems

Population size Subfunctions solved Objective evaluations

100 4.0 750
200 5.2 1,460
300 7.1 2,610
500 9.3 4,000
600 9.9 5,040

1,000 10.0 7,300

4 thousand function evaluations. On this small 40-bit problem, the ECGA is
1,000 times faster than the simple GA. This speedup is due to the careful
attention paid to probabilistic modeling in the ECGA. This speedup should
theoretically also become much greater when solving larger problems. The
following shows the successive MPM structures used in one successful run of
the ECGA:

GENERATION 0: [0-3][4 7 27][5-6 15][8-11][12-14 24][16-19]
[20-23][25][26 32-35][28-31][36-39]

GENERATION 1: [0-3 25][4-7 15][8-11][12-14][16-19][20-23]
[24 27][26 32-35][28-31][36-39]

GENERATION 2: [0-3][4-7][8-11][12-15][16-19][20-23][24-27]
[28-31][32-35][36-39]

Note that this structure changes from generation to generation. The ECGA
makes a few mistakes in the first pair of generations. The final result arrived
at in generation 2, however, completely discerns the subfunction structure
of the given problem – without being given this information ahead of time.
By simply searching for MPM-structures that optimally compress the popu-
lation, the ECGA has completely dissected the subproblem structure of the
40-bit problem! It is no surprise that armed with this information, the ECGA
proceeded to optimize this problem much faster than the simple GA.
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3.5.3 Scalability on Deceptive Trap Functions

In this section, experiments are performed to find out how the ECGA scales
up when the number of deceptive subproblems increase. For that purpose,
the number of deceptive subproblems ranges from 2 to 20 and the minimal
number of function evaluations required to solve all but one subproblem is
recorded, that is, the optimal solution with an error of α = 1/m, where m
denotes the number of subproblems.

A bisection method [16] is used over the population size to search for the
minimal sufficient population size to achieve a target solution. The results for
the minimal sufficient population size are averaged over 30 bisection runs. In
each bisection run, the number of subproblems solved with a given population
size is averaged over another 30 runs. Thus, the results for the number of
function evaluations and the number of generations spent are averaged over
900 (30 × 30) independent runs. For all experiments, tournament selection
without replacement is used with size S = 8. Both 4- and 5-bit deceptive
subproblems were tested. The results are presented in Fig. 3.9.

The results show that the population size scales approximately as
O(m log m) and the number of objective function evaluations scales as
O(m1.5 log m), giving a good match with analytical models that have been
developed elsewhere [18, 19]. These results contrast sharply with the expo-
nential scalability of the simple GA to solve the same problems [1]. Good
scalability is also obtained when exponentially scaled deceptive subproblems
are tested with the ECGA [20].

3.5.4 The Role of Selection

The role of selection is a curious one in the ECGA and not at all immediately
clear. If the proper level of selection is not maintained in the above runs how-
ever, the ECGA fails, and never models the problem structure correctly (the
same is true but an often ignored aspect of the simple GA). Taking a sec-
ond, we consider the dual roles of probabilistic generation and selection in the
ECGA. The role of generation (the ECGA’s crossover equivalent) is to create
more chromosomes that are like the ones in the present population. These
chromosomes will have no correlations across the MPM structure boundaries.
That is, if the MPM structure says that genes 1 and 2 are independent, they
will actually be independent in the generated population. Given that the al-
gorithm begins by assuming that all genes are independent, one might wonder
where dependencies come from at all.

The answer to that question is that selection recorrelates genes if a specific
combination of theirs is correlated with high fitness. In the partially deceptive
problems we have experimented on, selection correlates the group of 0s defined
over a common subproblem. This correlation is what the ECGA detects. If
the level of selection is very low, this correlation will never be generated, and
the ECGA will never detect that the genes are related. Thus, a low level of
selection can cause the ECGA to fail.
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Fig. 3.9. Population size and number of function evaluations required by the ECGA
to successfully solve all but one deceptive subproblems. Both 4- and 5-bit deceptive
subproblems were tested. The number of subproblems m range from 2 to 20. The
results for population size are averaged over 30 runs, while the number of function
evaluations is averaged over 900 independent runs. Copied with permission from [17]

In practical terms, this issue can be resolved by not generating a complete
new population in each generation, and instead, only replace a fraction of the
selected individuals by new ones sampled from the MPM model. This mech-
anism is the equivalent of implementing a crossover probability in simple GAs.
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It has been shown that if half of the selected individuals are kept from the
previous generation (the equivalent of a crossover probability of 0.5), then a
fixed level of selection pressure, not too high and not too low, is a robust
setting for the ECGA [21, 22].

3.5.5 Practical Applications

The ECGA provides a huge advantage over the simple GA when optimizing
deceptive subproblems. The real purpose of the ECGA, however, is not to
solve artificial problems, but rather practical real-world problems. Since its
introduction [23], the ECGA has been applied with success in a variety of
application areas, including forest management [24], quantum chemistry [25],
stock trading [26], and also as an improved learning mechanism in learning
classifier systems [27].

3.6 Summary, Conclusions, and Future Work

This chapter began by reviewing the simple GA and a related set of proba-
bilistic algorithms. Past work has equated some of these algorithms with the
simple GA, and an exploration of this relationship has pointed to the existence
of more general probabilistically based GA-like algorithms.

This chapter demonstrated that proper probabilistic modeling in these
algorithms is in effect the long-sought solution to the linkage-learning problem.
It has also introduced an operational complexity criterion for distinguishing
between good models and bad models. Experimental results have shown that
by focusing on learning marginal probability models, the ECGA can solve
some difficult problems orders of magnitude faster than simple GAs not using
linkage information.

This chapter has revealed a strong connection between linkage learning and
proper probabilistic modeling. This is however, only the tip of the iceberg in
as much as effective optimization is concerned. The goal of linkage learning,
while ambitious, is only a small part of the more general goal of representa-
tion learning. In representation learning, the actual optimization problem is
transformed into a different space, and optimized in that new space. The opti-
mization and design of biological entities – which transforms fitness functions
defined on 3-dimensional molecules into ones over a genetic representation –
is proof that such techniques can be effective. It is this author’s belief that
even such a search for transformations can be placed into the framework of
complexity based modeling.

Several questions and difficulties remain to be addressed by future work
on probability based optimization in general, and MPM-like approaches in
particular. A few of the more promising or addressable issues in this area are:

– The ECGA is simple to parallelize, by replacing the migration step of
standard parallel GAs by one of probability model exchange. This has the
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potential to greatly reduce the amount of communication and synchro-
nization needed over that of the parallel simple GA. Preliminary work in
this direction has been done with the compact GA [28] but needs to be
extended for the case of more general probabilistic models.

– The MPM model search is potentially computationally expensive. In some
problems, this poses the risk of overwhelming the function evaluation time
with the search’s own computational overhead. One recourse in these cases
is to use simpler probability models, such as those used by the cGA or
MIMIC. Another possible alternative is to implement this fixed search
algorithm in hardware, or to look for heuristic approximations to the MPM
algorithm. For example, the MPM search could be biased somewhat to
the encoder’s original linkage specification.

– Another approach to reducing the complexity of the MPM model search is
to sample from the population when building the correct MPM structure.

– On the other spectrum of function evaluation complexity, it is possi-
ble that more time for population analysis might be available. In these
cases, Bayesian network learning, although more complex, yield even more
powerful algorithms than the one described in this chapter [29, 30]. In
some cases, such as optimization in euclidean spaces, direct probabilis-
tic modeling might also offer more accurate methodologies than modeling
using arbitrary binary encodings over the selfsame space.

– The learning mechanism of the ECGA has been used to design a mutation-
like operator for conducting local search using the linkage information
learned [17], and its combination with the regular ECGA has also been
suggested [20]. The hybridization issue deserves additional research. It
is quite possible that by searching for mixtures of different models, one
might be able to optimally decide between the application of different GA
operators. That is, the probabilistic approach could settle once and for all,
on a problem by problem basis, the efficacy question of crossover versus
mutation.

– The probability modeling framework suggested here deals particularly well
with multi-dimensional data, but does not trivially extend to optimization
over more complex structures such as permutations, or programs. This
issue deserves serious consideration.
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algorithm, population sizing, and time to convergence. In Whitley, D.,
et al. (Eds.): Proceedings of the Genetic and Evolutionary Computation
Conference GECCO-2000, Morgan Kaufmann, San Francisco, CA (2000)
275–282

[19] Pelikan, M., Sastry, K., Goldberg, D.E.: Scalability of the Bayesian
optimization algorithm. International Journal of Approximate Reasoning
31 (2003) 221–258

[20] Lima, C.F., Sastry, K., Goldberg, D.E., Lobo, F.G.: Combining com-
petent crossover and mutation operators: A probabilistic model building
approach. In Beyer, H.G., et al. (Eds.): Proceedings of the ACM SIGEVO
Genetic and Evolutionary Computation Conference GECCO-2005, ACM,
NY, USA (2005) 735–742

[21] Harik, G.R., Lobo, F.G.: A parameter-less genetic algorithm. In Banzhaf,
W., et al. (Eds.): Proceedings of the Genetic and Evolutionary Compu-
tation Conference GECCO-99, Morgan Kaufmann, San Francisco, CA
(1999) 258–265

[22] Lobo, F.G.: The parameter-less genetic algorithm: Rational and auto-
mated parameter selection for simplified genetic algorithm operation.
PhD thesis, Universidade Nova de Lisboa, Portugal (2000) Also IlliGAL
Report No. 2000030

[23] Harik, G.R.: Linkage learning via probabilistic modeling in the ECGA.
IlliGAL Report No. 99010, Illinois Genetic Algorithms Laboratory,
University of Illinois at Urbadna-Champaign, Urbana, IL (1999)

[24] Ducheyne, E.I., De Wulf, R.R., De Baets, B.: Using linkage learning fo
forest management planning. In Cantú-Paz, E., (Ed.): Late Breaking Pa-
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Hierarchical Bayesian Optimization Algorithm

Martin Pelikan and David E. Goldberg

Summary. The hierarchical Bayesian optimization algorithm (hBOA) solves nearly
decomposable and hierarchical optimization problems scalably by combining con-
cepts from evolutionary computation, machine learning and statistics. Since many
complex real-world systems are nearly decomposable and hierarchical, hBOA is
expected to provide scalable solutions for many complex real-world problems. This
chapter describes hBOA and its predecessor, the Bayesian optimization algorithm
(BOA), and outlines some of the most important theoretical and empirical results
in this line of research.

Key words: Hierarchical problem solving, Evolutionary computation,
Bayesian networks, Optimization, Scalability, Decomposable problems

4.1 Introduction

The design and application of robust and scalable optimization techniques
that are applicable to broad classes of important real-world problems is among
the most important challenges of computational optimization. Estimation of
distribution algorithm (EDAs) [3, 27, 36, 50] address this challenge by combin-
ing concepts from evolutionary computation, machine learning and statistics.
The Bayesian optimization algorithm (BOA) [48] and the hierarchical BOA
(hBOA) [45] are among the most advanced EDAs. BOA and hBOA combine
Bayesian networks and evolutionary algorithms to solve nearly decomposable
and hierarchical optimization problems in which candidate solutions can be
represented by fixed-length discrete vectors.

It has been theoretically and empirically shown that BOA and hBOA
can solve nearly decomposable and hierarchical problems scalably and reli-
ably [43, 55]. A number of applications have been successfully tackled using
BOA and hBOA, including the applications to military antenna design [64],
telecommunication network design [63], Ising spin glasses [46] and nurse
scheduling [29].
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This chapter describes BOA and hBOA and provides an overview of the
most important theoretical and empirical results in this line of research. The
chapter also presents a number of experimental results, which confirm that
BOA and hBOA can solve difficult nearly decomposable and hierarchical
problems scalably and reliably.

The chapter starts by describing the basic BOA procedure and discussing
the methods for learning and sampling Bayesian networks in Sect. 11.2.
Section 4.3 describes hBOA and the differences between BOA and hBOA.
Section 4.4 presents several sets of experimental results and discusses the re-
sults in the context of the existing theory. Section 4.5 provides an overview of
related work. Section 4.6 discusses important topics for future work on BOA
and hBOA. Section 4.7 provides information on obtaining BOA and hBOA
implementations. Finally, Sect. 4.8 summarizes and concludes the chapter.

4.2 Bayesian Optimization Algorithm

This section describes the Bayesian optimization algorithm (BOA) [48]. The
section starts with an outline of the basic BOA procedure. Next, the section
provides a brief introduction to learning and sampling Bayesian networks.
Finally, the section discusses the scalability of BOA on decomposable problems
of bounded difficulty.

4.2.1 Basic BOA Procedure

BOA works with a population of candidate solutions to the given problem.
Candidate solutions are represented by fixed-length strings over a finite al-
phabet; usually, fixed-length binary strings are used. The first population is
generated randomly according to the uniform distribution over all solutions.

Each iteration starts by selecting promising solutions from the original
population using any standard selection method of evolutionary algorithms,
such as tournament or truncation selection. For example, truncation selection
selects the best half of the current population. Then, a Bayesian network is
built for the selected solutions and the built network is sampled to generate
new candidate solutions. New candidate solutions are then incorporated into
the original population using a replacement strategy. A number of replacement
strategies may be used; for example, the new candidate solutions can replace
the entire original population. The next iteration is then executed unless some
predefined termination criteria have been met. For example, the run can be
terminated after a given number of iterations or when all bits have nearly
converged. The pseudocode of BOA is shown in Fig. 4.1.

4.2.2 Bayesian Networks

Bayesian networks [24, 32] combine graph theory, probability theory and sta-
tistics to provide a flexible and practical tool for probabilistic modeling and
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Bayesian optimization algorithm (BOA)

t := 0;

generate initial population P(0);

while (not done) {

select population of promising solutions S(t);

build Bayesian network B(t) for S(t);

sample B(t) to generate O(t);

incorporate O(t) into P(t);

t := t+1;

};

Fig. 4.1. Pseudocode of the Bayesian optimization algorithm (BOA)

Fig. 4.2. A Bayesian network structure for five random variables
X1, X2, X3, X4, X5. In this network, for example, X1 has no parents (i.e., Π1 = ∅)
whereas the set of parents of X3 contains both X1 and X2 (i.e., Π3 = {X1, X2}).
To complete the definition of this network, a conditional probability table for each
Xi with the condition Πi would have to be specified

inference. BOA and hBOA use Bayesian networks to model promising solu-
tions found so far and sample new candidate solutions. A Bayesian network
consists of two components:

(1) Structure, which is defined by an acyclic directed graph with one node per
variable and the edges corresponding to conditional dependencies between
the variables (see Fig. 4.2 for example)

(2) Parameters, which consist of the conditional probabilities of each variable
given the variables that this variable depends on

Mathematically, a Bayesian network with n nodes encodes a joint proba-
bility distribution of n random variables X1, X2, . . . , Xn:

p(X1, X2, . . . , Xn) =
n∏

i=1

p(Xi|Πi), (4.1)

where Πi is the set of variables from which there exists an edge into Xi

(members of Πi are called parents of Xi).
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In addition to encoding direct conditional dependencies, a Bayesian net-
work may also encode a number of conditional independence assumptions.
More specifically, a Bayesian network encodes the assumption that each vari-
able Xi is conditionally independent of its predecessors in an ancestral order-
ing of variables given Πi, where the ancestral ordering orders the variables so
that variables in Πi always precede Xi. Since Bayesian networks are acyclic,
there always exists at least one ancestral ordering of the variables.

Like most other EDAs, BOA and hBOA consider each string position a
random variable. Therefore, each string position is represented by one node
in the Bayesian network and a candidate solution of n bits is an instantia-
tion of n random variables. Ideally, learning a Bayesian network for the set
of promising solutions in BOA should capture the structure of the underlying
problem by identifying conditional dependencies and independencies between
variables. Sampling the learned network exploits the identified dependencies
and independencies by combining and juxtaposing partial solutions so that
no important dependencies are broken. As is discussed in Sect. 4.2.5, if all
or most independence assumptions are discovered and the problem is decom-
posable into subproblems of bounded order, exploration guided by building
and sampling Bayesian networks significantly reduces problem dimensionality
and ensures that the global optimum is found in a quadratic or subquadratic
number of function evaluations despite the exponential number of potential
solutions [15, 43, 55]. The quadratic or subquadratic growth of function eval-
uations until reliable convergence is retained even for problems where the
number of local optima grows exponentially with problem size [15, 43].

The remainder of this section describes methods for learning and sampling
Bayesian networks and the scalability of BOA on decomposable problems.

4.2.3 Learning Bayesian Networks from Data

For successful application of BOA, it is important that BOA can automatically
learn a Bayesian network that encodes dependencies and independencies that
properly decompose the problem. To learn an appropriate Bayesian network,
BOA uses the set of promising solutions selected by the selection operator,
which transforms dependencies between decision variables in the problem into
statistical dependencies [43, 55]. There are two subtasks of learning a Bayesian
network: (1) learn the structure and (2) learn the parameters.

Learning the parameters is straightforward. For each variable Xi with
parents Πi, we need to estimate the probabilities p(Xi = xi|Πi = πi) for all
potential combinations of values xi of Xi and πi of Πi. This can be done using
the maximum likelihood estimator:

p(Xi = xi|Πi = πi) =
m(xi, πi)

m(πi)
, (4.2)

where m(xi, πi) denotes the number of instances with Xi = xi and Πi = πi,
and m(πi) denotes the number of instances with Πi = πi.
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Learning the structure is a much more difficult problem. Usually, the prob-
lem of learning the Bayesian network structure is split into two components:
(1) a scoring metric and (2) a search procedure. The scoring metric provides
a measure for evaluating network structures with respect to the given data D
(the selected set of promising solutions). The search procedure searches the
space of potential network structures to identify the structure with the best
value of the scoring metric.

Two types of scoring metrics are commonly used to evaluate Bayesian
network structures:

(1) Bayesian metrics [9, 22]
(2) Minimum description length metrics [59–61].

This work uses two basic scoring metrics: (1) The Bayesian information
criterion (BIC) [67] and (2) the Bayesian–Dirichlet metric with likelihood
equivalence (BDe) [9, 22].

BIC is a two-part minimum description length metric, where one part rep-
resents model accuracy, whereas the other part represents model complexity
measured by the number of bits required to store model parameters. For sim-
plicity, let us assume that the solutions are binary strings of fixed length n.
BIC assigns the network structure B a score [67]

BIC(B) =
n∑

i=1

(
−H(Xi|Πi)N − 2|Πi| log2(N)

2

)
, (4.3)

where H(Xi|Πi) is the conditional entropy of Xi given its parents Πi; n is
the number of variables; and N is the population size (the size of the training
data set). The conditional entropy H(Xi|Πi) is given by

H(Xi|Πi) = −
∑
xi,πi

p(xi, πi) log2 p(xi|πi), (4.4)

where p(xi, πi) is the marginal probability of Xi = xi and Πi = πi; and
p(xi|πi) is the conditional probability of Xi = xi given that Πi = πi.

BDe is a Bayesian metric that approximates the marginal likelihood of the
network structure given the data and is given by [9, 22]

BDe(B) = p(B)
n∏

i=1

∏
πi

Γ (m′(πi))
Γ (m′(πi) + m(πi))

∏
xi

Γ (m′(xi, πi) + m(xi, πi))
Γ (m′(xi, πi))

,

(4.5)
where p(B) is the prior probability of the network structure B; the product
over xi runs over all instances of xi (in the binary case these are 0 and 1);
the product over πi runs over all instances of the parents Πi of Xi; m(πi) is
the number of instances with the parents Πi set to the particular values given
by πi; m(xi, πi) is the number of instances with Xi = xi and Πi = πi; and
m′(πi) and m′(xi, πi) denote prior information about m(πi) and m(xi, πi),
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respectively. Here, we consider K2 metric [9], which uses an uninformative
prior that assigns m′(xi, πi) = 1 and m′(πi) =

∑
xi

m′(xi, πi).
According to our experience, Bayesian metrics tend to be too sensitive to

noise in the data and often capture unnecessary dependencies. To avoid overly
complex models, the space of network structures must usually be restricted
by specifying a maximum order of interactions [22, 49]. On the other hand,
minimum description length metrics favor simple models so that no unneces-
sary dependencies need to be considered. In fact, minimum description length
metrics often result in overly simple models and require large populations to
learn a model that captures all necessary dependencies.

Usually, a simple greedy search algorithm is used to construct a net-
work that maximizes the scoring metric. The greedy algorithm starts with
an empty network and in each iteration it applies a primitive graph operator
to the current network that improves the network score the most. As primi-
tive operators, edge additions, removals, and reversals are usually considered;
nonetheless, according to our experience, edge removals and reversals do not
significantly improve quality of the final model and that is why we only use
edge additions. The network must remain acyclic and all operators leading to
networks that violate this property are disallowed. The search is terminated
whenever the current network cannot be improved anymore. In some cases, it
is necessary to restrict the complexity of the network to contain dependencies
of at most a specified order [22, 48]. In BOA the network from the previous
generation can be used as a starting point for building the model in each
generation as suggested by Etxeberria et al. [11]; this can significantly reduce
the overall computational complexity of model building.

4.2.4 Sampling Bayesian Networks

Once the structure and parameters of a Bayesian network have been learned,
BOA generates new candidate solutions by sampling the distribution encoded
by the learned network [see (4.2)].

The sampling can be done using the probabilistic logic sampling of
Bayesian networks [23], which proceeds in two steps. The first step computes
an ancestral ordering of the nodes, where each node is preceded by its parents.

In the second step, the values of all variables of a new candidate solution
are generated according to the computed ordering. Since the algorithm gen-
erates the variables according to the ancestral ordering, when the algorithm
attempts to generate the value of each variable, the parents of the variable
must have already been generated. Given the values of the parents of a vari-
able, the distribution of the values of the variable is given by the corresponding
conditional probabilities.

4.2.5 Scalability of BOA on Decomposable Problems

BOA can solve problems decomposable into subproblems of bounded order in
a quadratic or subquadratic number of function evaluations [43, 55]. This can
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be shown by using facetwise theory, which originates in IlliGAL decomposition
of genetic algorithm design [14–16]. In particular, the problem of estimating
the number of evaluations until successful convergence is first split into the
problem of determining:

(1) An adequate population size, N
(2) The number of generations, G, until the optimum is found.

For most standard settings, the overall number of evaluations is then equal to
(or at least proportional to) N × G.

The problem of determining an adequate population size can be decom-
posed into four facets [43, 50]:

(1) Initial supply. For each subproblem in an appropriate problem decomposi-
tion, the population size must be large enough to ensure that all instances
of the particular subproblem have representatives in the initial popula-
tion [15, 17, 24]. For an n-bit problem decomposable into subproblems of
order k, the initial supply model leads to the population size that grows
as O(2k(k + log n)) [15, 17].

(2) Genetic drift. In some decomposable problems, some subproblems have a
stronger effect on solution quality than others. Then, solutions converge
in several phases where in each phase only some subproblems provide
distinguishable signal for selection. Nonetheless, even when a particular
subproblem does not affect selection, some partial solutions corresponding
to this subproblem may be lost due to the effects of stochastic operators
of BOA (genetic drift) [2, 30, 62, 73], and the population size must be large
enough to ensure that there is a sufficient initial supply for partial solu-
tions that converge last. As a bounding case, problems with exponentially
scaled subproblems can be considered, leading to the population-sizing
bound of O(n) [2, 30, 62, 73].

(3) Decision making. The quality of any partial solution of one of the subprob-
lems is affected by the remaining solution and, therefore, the decision mak-
ing between competing partial solutions is stochastic [24]. The population
size must be large enough to ensure that the decision making propagates
best partial solutions and eliminates the worst ones. To ensure that the
expected number of incorrect bits is upper bounded by a constant, the de-
cision making bound on the population size is O(2k

√
n log n) [15, 21]. The

above decision making bound decreases for problems where subproblems
are not scaled uniformly because in such problems, the effective problem
size becomes smaller.

(4) Model building. Without ensuring that the problem is properly decom-
posed, BOA cannot guarantee that the optimum will be found. The
population size must be large enough to learn a probabilistic model
that encodes a good decomposition of the problem [43, 55]. To ensure
that an appropriate model is learned, the population size is bounded
by O(2kn1.05) [43, 55]. Similarly as for decision making, model building
becomes easier for nonuniformly scaled problems.
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To estimate the number of generations until convergence, two bounding
cases are considered:

(1) Uniform scaling. Here the influence on solution quality is approximately
the same for all partial solutions and all subproblems converge in parallel
(parallel convergence). In this case, the expected number of generations
until convergence can be bounded by O(

√
n) [37, 72].

(2) Exponential scaling. Here the influence of subproblems is scaled so that
at any generation, one subproblem overshadows the remaining ones and
selection is driven by one or a few subproblems at a time (sequential
convergence). In this case, the expected number of generations until
convergence can be bounded by O(n) [73].

Putting all facets of the population sizing and convergence theory together
indicates that for decomposable problems of bounded difficulty the expected
number of evaluations is from O(n1.55) to O(n2), depending on the type of the
problem. That means that BOA can solve decomposable problems of bounded
difficulty in low-order polynomial time with respect to the number of evalua-
tions until convergence to the global optimum.

Low-order polynomial solution to boundedly difficult decomposable prob-
lems is an important result because most other optimization algorithms fail
to solve boundedly difficult decomposable problems scalably without prior
information about adequate problem decomposition. For example, most stan-
dard genetic algorithms require exponential population sizes to solve some
decomposable problems because standard variation operators, such as one-
point and uniform crossover, are often misled even for decomposable prob-
lems of bounded difficulty [15, 71]. Additionally, it can be shown that hill
climbers and other algorithms based on local search operators may require
time proportional to nk log n for many decomposable problems of bounded
difficulty because of potential deception in signal from small perturbations of
candidate solutions and the necessity of changing groups of k variables at a
time [33]; of course, for large problems with moderate values of k, convergence
in Θ(nk log n) evaluations is intractable.

4.3 Hierarchical BOA

A key feature of many complex systems that allows us to comprehend, analyze
and build such systems is hierarchy [70]. By hierarchy, we mean a system
composed of subsystems each of which is a hierarchy by itself until we reach
some bottom level [70]. At each level of a hierarchy, interactions within each
subsystem are of much higher magnitude than the interactions between the
subsystems.

This section describes the hierarchical BOA (hBOA) [45, 47], which com-
bines BOA with Simon’s concept of hierarchical and nearly decomposable
problems [70] to provide scalable solutions for nearly decomposable and
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hierarchical problems, including problems that cannot be decomposed on a
single level.

4.3.1 Three Keys to Hierarchy Success

To solve difficult hierarchical problems, hBOA starts at the bottom level with
subproblems of small order. At each level of optimization, hBOA uses promis-
ing solutions of the subproblems at the lower level as basic building blocks to
juxtapose solutions at the current level. For each identified subproblem, sev-
eral alternative promising solutions are preserved to serve as the basic building
blocks at the next higher level.

Three important challenges must be considered for the design of robust
and scalable solvers for difficult hierarchical problems [44, 45]:

(1) Decomposition. A competent hierarchical optimizer must be capable of
decomposing the problem at each level properly by identifying most
important interactions between the problem variables and modeling them
appropriately.

(2) Chunking. A competent hierarchical optimizer must be capable of repre-
senting partial solutions at each level compactly to enable the algorithm
to effectively process partial solutions of large order (this becomes most
important for highest levels).

(3) Diversity maintenance. A competent hierarchical optimizer must be ca-
pable of effective diversity maintenance to preserve alternative partial so-
lutions until it becomes clear which partial solutions may be eliminated.

To ensure decomposition, hBOA uses the same approach as BOA; it uses
Bayesian networks built from the selected population of promising solutions.
To ensure chunking, hBOA uses local structures to represent parameters of the
learned Bayesian networks. Finally, to ensure diversity maintenance, hBOA
uses restricted tournament replacement but other niching techniques can be
used as well. Figure 4.3 shows the pseudocode of hBOA.

Hierarchical BOA (hBOA)

t := 0;

generate initial population P(0);

while (not done) {

select population of promising solutions S(t);

build Bayesian network B(t) with local struct. for S(t);

sample B(t) to generate offspring O(t);

incorporate O(t) into P(t) using RTR yielding P(t+1);

t := t+1;

};

Fig. 4.3. Pseudocode of the hierarchical Bayesian optimization algorithm
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The remainder of this section first describes Bayesian networks with
decision trees used in hBOA for chunking. Next, restricted tournament
replacement used for diversity maintenance in hBOA is described.

4.3.2 Bayesian Networks with Decision Trees for Chunking

To motivate the use of local structures in Bayesian Networks, let us assume
that candidate solutions are represented by n-bit binary strings. There are
2k independent probabilities p(Xi|Πi) for k parents, |Πi| = k. Assuming that
on higher levels of the hierarchy, hBOA must process partial solutions of
moderate to large order, the number of independent probabilities will make
the computation intractable if the parameters are represented as standard
conditional probability tables. Clearly, the situation gets even worse for larger
alphabets.

To make the learning of interactions tractable even for interactions of
large order, local structures can be incorporated into BNs to enable a more
efficient representation of conditional probabilities [12, 15]. This section de-
scribes decision trees, which are among the most powerful local structures.

In BNs with decision trees, the conditional probabilities p(Xi|Πi) for each
variable Xi are encoded by a special decision tree Ti; for n variables, there
are n decision trees. Each internal node of the decision tree Ti is labeled by
a variable Xj where j �= i. Children of a node labeled by Xj correspond to
disjoint subsets of the potential values of Xj ; for each value of Xj , there is one
child corresponding to this value. Each traversal of a decision tree Ti for Xi

thus corresponds to a constraint on the values of some other variables. Each
leaf node of Ti then stores the probabilities of Xi given the constraint defined
by the traversal of Ti that ends in this leaf.

For the binary alphabet, there are two children of any internal node (one
child corresponds to a 0, whereas the other one corresponds to 1 and only one
probability must be stored in each leaf because p(Xi = 0|Πi = πi) + p(Xi =
1|Πi = πi) = 1 for any instance πi of Πi.

To illustrate the use of decision trees in Bayesian networks, consider the
example shown in Fig. 4.4, which considers a conditional probability table for
X1 where Π1 = {X2, X3, X4} and all variables are binary. In this example,
the full conditional probability table must contain eight values, whereas the
decision tree can store the same information with only four parameters.

Decision trees allow a much more efficient representation of conditional
probabilities, where in an extreme case, a dependency of order k may be rep-
resented by only O(k) parameters, whereas for the full conditional probability
table the number of parameters is at least Ω(2k).

Analogically to standard Bayesian networks, the problem of learning
Bayesian networks with decision trees can be split into two subproblems:
(1) learn the structure and (2) learn the parameters.

To estimate the parameters of a Bayesian network with decision trees,
hBOA uses the maximum likelihood estimate of the probabilities in the leaves
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X2 X3 X4 p(X1|X2, X3, X4)

0 0 0 0.75
0 0 1 0.25
0 0 0 0.25
0 0 1 0.25
1 1 0 0.20
1 1 1 0.20
1 1 0 0.20
1 1 1 0.20
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Fig. 4.4. A conditional probability table for p(X1|X2, X3, X4) and a decision tree
that reduces the number of parameters from 8 to 4

of all decision trees. Consider a decision tree Ti for Xi and a leaf in this
decision tree that specifies a condition C (based on the traversal). Then, the
maximum likelihood estimate of p(Xi = xi|C) where xi is a potential value
of Xi, is given by

p(Xi = xi|C) =
m(Xi = xi, C)

m(C)
, (4.6)

where m(Xi = xi, C) denotes the number of instances with Xi = xi that
satisfy C, and m(C) denotes the number of instances that satisfy C.

To measure quality of competing network structures, scoring metrics for
standard Bayesian networks can be adapted to Bayesian networks with deci-
sion trees [12, 15]. For example, the BDe score for a Bayesian network B with
decision trees can be computed as [15]

BDe(B) =
n∏

i=1

∏
l∈Li

Γ (m′
i(l))

Γ (mi(l) + m′
i(l))

∏
xi

Γ (mi(xi, l) + m′
i(xi, l))

Γ (m′
i(xi, l))

, (4.7)

where Li is the set of leaves in the decision tree Ti for Xi; mi(l) is the number
of instances in D which end up the traversal through the tree Ti in the leaf
l; mi(xi, l) is the number of instances that have Xi = xi and end up the
traversal of the tree Ti in the leaf l; m′

i(l) represents the prior knowledge
about the value of mi(i, l); and m′

i(xi, l) represents the prior knowledge about
the value of mi(xi, l). Again, an uninformative prior m′

i(xi, l) = 1 is used in
the K2 variant of the BDe metric for Bayesian networks with decision trees.
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As mentioned earlier, Bayesian metrics tend to be more sensitive to the
noise in data and, in practice, they often lead to overly complex models.
To bias the learning of Bayesian networks with decision trees toward simple
models, we adjust the prior probability of each network to favor simpler
models. This is done by first computing the description length of the parame-
ters required by the network. One frequency in the data set of size N can be
encoded using log2 N bits; however, only half of the bits suffice to encode the
frequencies with sufficient accuracy [13]. Therefore, to encode all parameters,
0.5(

∑
i |Li|) log2 N bits are needed, where

∑
i |Li| is the total number of leaves

in all decision trees. To favor simpler networks to the more complex ones, we
decrease the prior probability of each network exponentially fast with respect
to the description length of this network’s parameters [12]

p(B) = c2−0.5(
∑

i
|Li|) log2 N , (4.8)

where c is a normalization constant required for the prior probabilities of
all possible network structures to sum to one. The normalization constant
does not affect the result because we are interested in only relative quality of
networks and not the absolute value of their marginal likelihood.

To learn the structure of a Bayesian network with decision trees, a simple
greedy algorithm is used [15, 22]. The greedy algorithm starts with an empty
network, which is represented by single-node decision trees. Each iteration
splits one leaf of any decision tree that improves the score of the network
most until no more improvement is possible. For more details on learning
BNs with decision trees, see [12, 15, 43].

The sampling of a Bayesian network with decision trees can be done us-
ing probabilistic logic sampling [23] analogically to the case with standard
Bayesian networks in BOA.

For more information on using local structures in BNs, please see [12, 15].

4.3.3 Restricted Tournaments for Diversity Maintenance

A number of niching techniques exist that could be applied to maintain useful
diversity in hBOA. Here we use restricted tournament replacement (RTR) [20],
which incorporates the newly sampled candidate solutions one by one, using
the following three-step procedure for each new solution X:

1. Randomly select a subset W of w candidate solutions from the original
population

2. Let Y be a solution from W that is most similar to X (based on
genotypic distance)

3. Replace Y with X if X is better; otherwise, discard X

A robust rule of thumb is to set w = min{n,N/20}, where n is the number of
decision variables in the problem and N is the population size [43].
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Although RTR does not ensure that the population will be divided among
the niches evenly, it provides a fairly robust and powerful nicher, which
appears to be well-suited for typical hBOA applications.

4.3.4 Scalability of hBOA on Hierarchical Problems

The convergence of hBOA on hierarchical problems proceeds sequentially from
the bottom to the top level. At each level, the correct building blocks at
this level must be discovered and their competitors must be eliminated. The
number of evaluations required by hBOA to discover the correct building
blocks at each level can be upper-bounded by the overall number of fitness
evaluations required to solve the problem at the current level only.

Assuming that the subproblems at each level are of similar order and
difficulty, BOA scalability theory indicates that at each level l the number
of evaluations can be upper bounded by O(n1.55

l ), where nl is the number of
subproblems from the lower level, which serve as the basic building blocks at
the current level.

Assuming that the number of levels changes with problem size according
to a function L(n), the resulting bound is O(n1.55L(n)), where L(n) denotes
the number of levels in an n-bit problem.

The following section analyzes performance of BOA and hBOA by
presenting a number of experimental results.

4.4 Experiments

This section presents experimental results for BOA and hBOA. First, test
problems are described and their difficulty is discussed. Next, the experimental
approach is discussed. Finally, the results are presented and discussed.

4.4.1 Test Problems

Several artificial classes of problems were used to test BOA and hBOA
on the boundary of their design envelopes. The problems were designed so
that if BOA and hBOA cannot solve nearly decomposable and hierarchical
problems, their computational complexity will fail to scale up polynomially
with problem size.

To test BOA, three test problems for fixed-length binary strings were con-
sidered. Two of these problems – dec-3 and trap-5 – are uniformly scaled
decomposable problems of bounded difficulty for which it is necessary that
BOA finds an adequate problem decomposition; if an adequate decomposi-
tion is not found, the algorithm is expected to scale up exponentially [71].
Consequently, solving dec-3 and trap-5 scalably indicates that BOA can learn
an adequate problem decomposition and that it should be capable of solving
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other decomposable problems of bounded difficulty and anything easier [15].
The last test problem for BOA is expdec-3, which represents an exponentially
scaled decomposable problem of bounded difficulty based on dec-3. A detailed
description of the three test problems for BOA follows:

(1) Dec-3: Concatenated deceptive of order 3. In dec-3 [10], the input string is
first partitioned into independent groups of 3 bits each. This partitioning
is unknown to the algorithm, and it does not change during the run.
A 3-bit deceptive function is applied to each group of 3 bits and the
contributions of all deceptive functions are added together to form the
fitness. Each 3-bit deceptive function is defined as follows:

dec(u) =

⎧⎪⎪⎨
⎪⎪⎩

1 if u = 3,
0 if u = 2,
0.8 if u = 1,
0.9 if u = 0,

(4.9)

where u is the number of ones in the input string of 3 bits. An n-bit dec-3
function has one global optimum in the string of all ones and 2n/3 − 1
other local optima. To solve dec-3, it is necessary to consider interactions
among the positions in each partition because when each bit is consi-
dered independently, the optimization is misled away from the optimum
[5, 48, 71].

(2) Trap-5: Concatenated trap of order 5. Trap-5 can be defined analogically
to dec-3, but instead of 3-bit groups, 5-bit groups are considered. The
contribution of each group of 5 bits is computed as

trap5(u) =
{

5 if u = 5,
4 − u otherwise, (4.10)

where u is the number of ones in the input string of 5 bits. An n-bit trap-5
has one global optimum in the string of all ones and 2n/5 − 1 other local
optima. Trap-5 also necessitates that all bits in each group are treated
together, because statistics of lower order are misleading.

(3) Expdec-3: Exponentially scaled concatenated deceptive of order 3. Dec-3
and trap-5 are uniformly scaled decomposable problems where all par-
titions of the decomposition converge simultaneously. Expdec-3 modifies
dec-3 to investigate the behavior of BOA on exponentially scaled prob-
lems, where the partitions converge sequentially (domino convergence)
and selection focuses on only one or a few partitions at a time [73].
Specifically, expdec-3 scales the partitions so that the signal decreases
exponentially in a specified sequence of partitions. To ensure that a par-
ticular partition in the sequence overshadows the contributions of all the
subsequent partitions in the sequence, it is sufficient to multiply the ith
partition by ci, where c satisfies 0.1c

n
3 > n

3 − 1. The inequality restricts
c so that the smallest signal coming from ith partition is greater than
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the sum of the maximum signals coming from the remaining partitions
on positions 1 to (i − 1) in the sequence. Any constant c that satisfies
the above inequality can be used without affecting performance of BOA.
Like dec-3, expdec-3 has one global optimum in the string of all ones and
2n/3 − 1 local optima. Nonetheless, here the model does not have to con-
sider all interactions, but only those that correspond to subproblems that
are in the process of convergence at the particular iteration.

To test hBOA, two difficult hierarchical test problems – HIFF and hTrap –
for fixed-length binary strings were considered. Both problems test whether
hBOA is capable to ensure the three keys to hierarchy success to solve difficult
hierarchical problems scalably. If hBOA fails to solve HIFF and hTrap scal-
ably, it can be expected to fail on many other difficult hierarchical problems.
On the other hand, if hBOA is able to identify appropriate decomposition
at each level, represent the identified decomposition efficiently, and maintain
useful diversity, hBOA can be expected to scale up with a low-order polyno-
mial also for other hierarchically decomposable problems. A description of the
two functions follows:

(1) HIFF: Hierarchical if-and-only-if. Hierarchical if-and-only-if (HIFF) [74]
represents a problem that is intractable using single-level decomposition,
but that can be efficiently solved using a competent hierarchical optimizer.
In HIFF, the string length must be an integer power of 2, that is, n = 2l

where l is the number of levels.
The lowest level consists of the bits in the input string. At each level,
consequent pairs of bits contribute to the objective function using if-and-
only-if (iff), which returns 1 for inputs 00 and 11, and returns 0 otherwise.
The pairs of bits are then mapped to the next level; 00 is mapped to 0, 11
is mapped to 1, and everything else is mapped to the null symbol ‘-’. The
mapping and evaluation of pairs of bits then continues from the second
level until the top level, which consists of a single bit and is not evaluated.
To make the overall contribution at each level of the same magnitude, the
contributions of pairs of bits on ith level from the bottom are multiplied
by 2i.
Similarly as for test problems for BOA, the pairs of bits that contribute
to the overall fitness and are mapped to the next level can be chosen
arbitrarily but they must be fixed during the entire run. The further the
coupled string positions are, the more difficult HIFF becomes for standard
recombination operators that consider only interactions in tightly coded
partitions.
HIFF has two global maxima, one in the string of all ones and one in
the string of all zeros. HIFF does not have any other strict maxima.
Nonetheless, HIFF contains large-order interactions that make it difficult
to juxtapose either global optimum and cannot be effectively decomposed
on a single level. For more details on HIFF, see [74].
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(2) hTrap: Hierarchical trap. Like HIFF, hierarchical traps (hTraps) [42] can-
not be tractably solved using single-level decomposition, but can be
efficiently solved using a competent hierarchical optimizer. hTraps are
created by combining trap functions of order 3 over multiple levels of dif-
ficulty. For hTraps, the string length should be an integer power of 3, that
is, n = 3l where l is the number of levels.
In the variant of hTrap used in this work, on the lowest level, groups of
3 bits contribute to the overall fitness using a generalized 3-bit trap

trap3(u) =

{
fhigh if u = 3,

flow − u flow
2 otherwise,

(4.11)

where fhigh = 1 and flow = 1 + 0.1/l. Note that for these values of fhigh

and flow, the optimum of the trap is 000.
Each group of 3 bits corresponding to one of the traps is then mapped
to a single symbol on the next level; a 000 is mapped to a 0, a 111 is
mapped to a 1, and everything else is mapped to the null symbol ‘-’. The
bits on the next level again contribute to the overall fitness using 3-bit
traps defined above [see (4.11)], and the groups are mapped to an even
higher level. This continues until the top level is evaluated that contains 3
bits total. However, on the top level, a trap with fhigh = 1 and flow = 0.9
is applied. As a result, the optimum of hTrap is in the string of all ones
despite the superior performance of blocks of zeros on any level except
for the top one. Any group of bits containing the null symbol does not
contribute to the overall fitness.
To make the overall contribution at each level of the same magnitude, the
contributions of traps on ith level from the bottom are multiplied by 3i.
hTraps have many local optima, but only one global optimum in the string
of all ones. Nonetheless, any single-level decomposition into subproblems
of bounded order will lead away from the global optimum. That is why
hTraps necessitate an optimizer that can build solutions hierarchically by
juxtaposing good partial solutions over multiple levels of difficulty until
the global optimum if found.
For more details on hTraps, see [42].

4.4.2 Description of Experiments

To study scalability, we consider a range of problem sizes for each test problem.
The results are then used to investigate the growth of the number of function
evaluations until successful convergence to the global optimum with respect
to the problem size.

For each problem and problem size, bisection is ran to determine the min-
imum population size to ensure reliable convergence to the global optimum
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in 30 out of 30 independent runs [50]. Binary tournament selection is used
to select promising solutions. In BOA, the population of new candidate solu-
tions is half the size of the original population and the worst individuals in
the original population get replaced by new solutions. In hBOA, the popula-
tion of new solutions has the same size as the original population, but RTR
(where w = min{n,N/20}) is used to incorporate new solutions. BOA use
Bayesian networks with full conditional probability tables to model and sam-
ple candidate solutions, whereas hBOA uses Bayesian networks with decision
trees. To construct the model, BOA uses BIC metric [67], whereas hBOA uses
the BDe metric for decision trees [15] modified by subtracting a complexity
penalty term described in Sect. 4.3.2 [43, 51]. A greedy network construction
algorithm is used in all cases.

Performance of BOA on trap-5 is compared to that of a simple genetic algo-
rithm with uniform crossover. The simple genetic algorithm uses binary tour-
nament selection to select promising solutions. The probability of crossover
is pc = 0.6. To focus on the effects of selectorecombinative search, we use no
mutation.

A simple hill climber is also compared to BOA on trap-5. The hill climber
starts with a random binary string. In each iteration, it applies bit flip muta-
tion to the current binary string where each bit is flipped with a small probabil-
ity pm. If the modified solution outperforms the current one, the new solution
replaces the old one. The run is terminated when the optimum is found. We
use pm = 5/n, which is the optimal flipping probability for trap-5 [30].

4.4.3 Results

Figure 4.5 shows the number of evaluations until BOA finds the optimum of
dec-3 of n = 60 to n = 240 bits. The figure also compares the performance of
BOA with the dimensional scalability model discussed earlier, which estimates
the growth of the number of evaluations as O(n1.55). Analogical results are
shown in Fig. 4.6, which considers BOA for trap-5 (n = 100 to n = 250).

Figure 4.7 compares BOA performance on trap-5 with that of the simple
genetic algorithm (sGA) with uniform crossover and the hill climber (HC)
with bit-flip mutation.

Figure 4.8 shows the number of evaluations until BOA finds the optimum of
expdec-3 of n = 60 to n = 210 bits. The figure also compares the performance
of BOA with the dimensional scalability model, which estimates the growth
of the number of evaluations for expdec-3 as O(n2).

Figure 4.9 shows the number of evaluations until hBOA finds the optimum
of HIFF of n = 16 to n = 512 bits. Figure 4.10 shows the number of evaluations
until hBOA finds the optimum of hTrap of n = 27 to n = 243 bits. In both
cases, the results are compared to the theoretical model, which approximates
the growth of the number of evaluations as O(n1.55 log n), because for HIFF
and hTrap the number of levels grows proportionally to log n.
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Fig. 4.5. Scalability of BOA on dec-3
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Fig. 4.6. Scalability of BOA on trap-5

4.4.4 Discussion

The results confirm that BOA and hBOA can solve test problems in a
quadratic or subquadratic number of evaluations with respect to the num-
ber of decision variables, as is suggested by the scalability theory for BOA
and hBOA.

For dec-3 and trap-5 (see Figs. 4.5 and 4.6), the number of evaluations re-
quired by BOA is expected to grow proportionally to n1.55 or faster, and the
results confirm this result. For expdec-3 (see Fig. 4.8), the number of evalua-
tions is expected to grow proportionally to n2, and the results again confirm
this result. The comparison of BOA with the hill climbing and the simple
genetic algorithm (see Fig. 4.7) confirms that BOA can solve decomposable
problems with a significantly lower asymptotic complexity.
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Fig. 4.8. Scalability of BOA on expdec-3

For HIFF and hTrap (see Figs. 4.9 and 4.10), the number of levels grows
as a logarithm of problem size. The number of evaluations is thus expected
to grow proportionally to n1.55 log n, which is confirmed by the results.

4.5 Related Work

The most important recent developments in the research on BOA and hBOA
can be classified as follows:

(1) Efficiency enhancement. A number of efficiency enhancement techniques
were proposed for BOA and hBOA with the goal of speeding up these
two algorithms for large problems. Endogenous fitness modeling can be
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used to speed up fitness evaluation for problems where fitness evaluation
is the bottleneck [54, 66]. Specialized local searchers can be incorporated
to speed up BOA and hBOA [35, 46, 53]. Prior problem-specific knowledge
of various forms can be used to increase efficiency [4, 35, 65, 69]. Sporadic
model building can be used when model building is the bottleneck [57].
Parallel computers can be used to distribute both fitness evaluation [7]
and model building [38, 40].

(2) Parameter elimination. BOA and hBOA were combined with the
parameter-less genetic algorithm [19] to eliminate the need for setting an
adequate population size manually [52]; consequently, BOA and hBOA
do not require the user to set any parameters and still scale up with a
low-order polynomial [52].
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(3) Multiobjective optimization. Several multiobjective variants of BOA,
hBOA and mixed BOA (mBOA) were proposed [26, 28, 56] and shown
to be capable of solving difficult multiobjective decomposable problems.

(4) Applications. BOA and hBOA were successfully applied in a number of in-
teresting application; here we mention a few of them. Santarelli et al. [64]
applied hBOA to military antenna design; they showed that hBOA out-
performs standard evolutionary algorithms and provides high quality solu-
tions in the design of a complex, constrained feed network for an antenna
array. Li and Aickelin [29] applied BOA to nurse scheduling, where the
task was to assign nurses to shifts to satisfy a number of constraints; the
results indicated that BOA outperformed human schedulers. Pelikan and
Goldberg [46] applied hBOA to Ising spin glass in two and three dimen-
sions and maximum satisfiability (MAXSAT), and showed that hBOA is
capable of providing robust performance across a spectrum of difficult
problem instances. Rothlauf et al. [63] applied BOA to telecommunica-
tion network design, and showed that BOA is able to provide high quality
results even for poor problem encodings of telecommunication problems.
Mühlenbein and Mahnig [35] and Schwarz and Ocenasek [68] applied BOA
and LFDA to graph bipartitioning and showed that BOA can solve large
problem instances competitively. Finally, Arst [1] applied BOA to ground-
water remediation design; the results indicated that BOA can provide
high-quality solutions 30–2, 400% faster than the simple genetic algorithm
and the extended compact genetic algorithm (ECGA) [18], which is an-
other EDA that uses multivariate models.

(5) Extension of BOA and hBOA to other representations. Mixed BOA
(mBOA) [39] was proposed as an extension of BOA with decision graphs;
mBOA can learn and sample distributions over real-valued parameters.
BOA was extended to the domain of genetic programming [31]. Finally,
BOA was combined with adaptive mutation of evolution strategies and
clustering to tackle real-valued problems [58].

(6) Combination with XCS learning classifier system. XCS [75] is an online
accuracy-based classifier system that evolves a distributed problem so-
lution represented by a population of rules. To combine local classifiers
relevant to the current problem instance, XCS draws inspiration from
simple genetic algorithms and uses standard crossover and mutation op-
erators on pairs of relevant classifiers. Butz et al. [6] incorporated BOA
into XCS to enable XCS to learn and process complex features effectively.
The proposed method builds a Bayesian network with decision trees for
the population of rules at certain intervals. To recombine local classifiers,
model parameters are updated to match the current set of relevant clas-
sifiers and the model is sampled to generate new classifiers. The proposed
hybrid was shown to significantly outperform standard XCS on a number
of difficult hierarchical classification problems [6].
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4.6 Future Work

There are three important areas of future work on BOA and hBOA:

– Extension of BOA and hBOA to other representations. Real-valued vec-
tors, variable-length vectors, and program codes are among the most
prominent representations to tackle. Several approaches to bridging BOA
and hBOA with other representations were proposed [31, 32, 39, 58];
nonetheless, this line of research still represents one of the most important
challenges in research on BOA, hBOA and other EDAs.

– Efficiency enhancement of BOA and hBOA. A number of efficiency en-
hancement techniques exist for BOA and hBOA [4, 35, 46, 53, 54, 57, 65, 66,
69], most of which are presented in other chapters of this book. Nonethe-
less, finding new ways for improving performance of BOA and hBOA
represents an important challenge for future research in this area.

– Applications. New applications are another important component of future
work in this area. BOA and hBOA are broadly capable optimizers and they
should provide an important tool for practitioners across a broad range
of disciplines.

4.7 How to Obtain BOA and hBOA

The source code of BOA and BOA with decision graphs can be found
at http://www-illigal.ge.uiuc.edu/sourcecd.html. For information on
obtaining hBOA, visit http://www-hboa.ge.uiuc.edu/.

4.8 Summary and Conclusions

This chapter presented, discussed and tested a competent hierarchical opti-
mizer called the hierarchical Bayesian optimization algorithm (hBOA), which
solves nearly decomposable and hierarchical problems scalably and reliably
with only little problem-specific knowledge. The chapter also presented the
Bayesian optimization algorithm (BOA), which is applicable to boundedly
difficult problems decomposable on a single level.

Performance of BOA and hBOA can be further improved using a num-
ber of efficiency enhancement techniques that address both model building as
well as objective-function evaluation. Prior knowledge exploitation represents
one class of efficiency enhancement techniques and is particularly interesting
in this setting because of the large potential of BOA and hBOA for incor-
porating such knowledge. BOA and hBOA were extended to tackle multiob-
jective optimization problems and discover a tradeoff between the objectives
for decomposable multiobjective problems. BOA was hybridized with an XCS
learning classifier system to provide XCS with a practical technique for discov-
ering and combining complex features. Parameter-less variants of BOA and
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hBOA were proposed to eliminate the need for setting parameters manually.
BOA and hBOA were successfully applied to a number of applications from
spin glasses to nurse scheduling and military antenna design, confirming that
BOA and hBOA are robust and scalable optimization algorithms applicable
to a broad range of real-world problems.

Many complex real-world systems are nearly decomposable and hierarchi-
cal. hBOA combines concepts from genetic and evolutionary computation and
machine learning to solve difficult nearly decomposable and hierarchical prob-
lems. That is why we expect hBOA and its modifications and extensions to
significantly advance the area of optimization of difficult real-world problems
and to provide practical solutions for difficult optimization problems across a
broad range of disciplines of science, engineering and commerce.
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5

Numerical Optimization with Real-Valued
Estimation-of-Distribution Algorithms

Peter A.N. Bosman and Dirk Thierens

Summary. In this chapter we focus on the design of real-valued estimation-of-
distribution algorithms (EDAs) for the task of numerical optimization. Here, both
the problem variables as well as their encoding are real values. Concordantly, the
type of probability distribution to be used for estimation and sampling in the EDA is
continuous. In this chapter we indicate the main challenges in this area. Furthermore,
we review the existing literature to indicate the current EDA practice for real-
valued numerical optimization. Based on observations originating from this existing
research and on existing work in the literature regarding dynamics of continuous
EDAs, we draw some conclusions about the feasibility of existing EDA approaches.
Also we provide an explanation for some observed deficiencies of continuous EDAs
as well as possible improvements and future directions of research in this branch of
EDAs.

5.1 Introduction

One of the main impulses that triggered the emergence of the EDA field has
been the research into the dynamics of discrete GAs. EDAs provide an elegant
way of overcoming some of the most important shortcomings of classical GAs.
In general, for optimization to proceed efficiently, the induced search bias of
the optimizer must fit the structure of the problem under study. From this
point of view, the success of the EDA approach in the discrete domain is
rather intuitive. Because probability distributions are used to explicitly guide
the search in EDAs, the probability distribution itself is an explicit model
for the inductive search bias. Estimating the probability distribution from
data corresponds to tuning the model for the inductive search bias. Because
a lot is known about how probability distributions can be estimated from
data (Buntine, 1994; Lauritzen, 1996) the flexibility of the inductive search
bias of EDAs is potentially large. In addition, the tuning of the inductive
search bias in this fashion also has a rigorous foundation in the form of the
well-established field of probability theory.
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Estimating probability distributions, especially in the discrete case, is very
closely related to the modeling of dependencies between random variables,
specific settings for these random variables, or both. Such dependencies are
clearly embodied in the use of factorized probability distributions (Edwards,
1995; Lauritzen, 1996; Friedman and Goldszmidt, 1996). As a result, the
processing of these dependencies by the EDA in the discrete domain is
also explicitly ensured under the assumption of a proper estimation of the
(factorized) probability distribution. Dependencies in the discrete domain
match exactly with the notion of linkage information or, synonymously, the
structure of the problem. Hence, the competent estimation of probability
distributions in EDAs allows these algorithms to adequately perform link-
age learning and to ensure that such necessary conditions as proper building
block mixing (Thierens and Goldberg, 1993) meets with the positive effects
of the schema theorem (Holland, 1975) and the building block hypothesis
(Goldberg, 1989; Goldberg, 2002a). Although clearly more computational
effort is required to tune the inductive search bias by estimating the prob-
ability distribution, the payoff has been shown to be worth the computational
investment (e.g., polynomial scale-up behavior instead of exponential scale-up
behavior) (Pelikan et al., 1999; Etxeberria and Larrañaga, 1999; Pelikan and
Goldberg, 2001; Pelikan and Goldberg, 2003).

The use of factorized probability distributions in an EDA works very well
in discrete domain. In general, the EDA approach can be motivated perfectly
from the requirement of fitting the inductive search bias to the structure of
the optimization problem at hand. It is now interesting to investigate how
the approach carries over to the continuous domain. The main important
questions to answer are: (1) what does the model (i.e., probability distribution)
for the inductive search bias look like in the continuous domain and (2) can
this model be adapted properly to fit the structure of the problem?

The remainder of this chapter is organized as follows. First, in Sect. 5.2
we discuss real-valued numerical optimization problems and point out which
sources of problem difficulty typically exist. Next, in Sect. 5.3 we consider the
EDA approach in the continuous domain and show that in theory real-valued
EDAs can be very efficient numerical optimizers. In Sect. 5.4 we then present a
literature overview that describes the current state of the continuous subfield
of EDAs. Subsequently, in Sect. 5.5 we reflect on the dynamics of the currently
available real-valued EDAs in more depth. We also discuss whether and how
improvements can be made over current approaches. Finally, we summarize
and conclude this chapter in Sect. 5.6.

5.2 Problem Difficulty

The degree of difficulty of a numerical optimization problem is in a certain
sense unbounded. Because the search space is by definition infinitely large,
the number of substructures, i.e., the number of local optima and areas with
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various types of dependency, can also be infinite. The structure of a contin-
uous problem can most generally be seen as the composition of its contour
lines. The shape of these contour lines is unbounded and there are infinitely
many of them. Hence, anything is possible. Fortunately, we are typically not
interested in all possible problems. We assume that there is some form of “log-
ical” structure, similar to assuming in the binary domain that the function
is not a needle-in-a-haystack function. Hence, the problem structure we typi-
cally expect to be asked to tackle is a composition of simpler structures such
as local optima and some form of dependency between the problem variables.

Still, even assuming “simpler” substructures are present that we can tailor
our EDA to, it should be noted that in the continuous case the actual dif-
ficulty of the problem can still be arbitrary in the sense that the number of
substructures that can be present in the problem is arbitrarily large, even if
the problem has only one variable. This arbitrary problem difficulty in terms
of presence of multiple substructures throughout the search space will play
important role in evaluating the sensibility of the EDA approach as a whole
as well as existing actual EDA instances in the continuous domain.

At the most general level the substructures that are typically to be ex-
pected in the continuous domain are similar to the ones in the discrete domain.
The two basic substructures are multimodality and dependency. The main dif-
ference with the discrete case is that in the continuous case these structures
can also be viewed upon from a different perspective, viz., one that entails
slopes and peaks (i.e., hills or valleys). Since nothing is said about the number
of slopes and peaks or their actual configuration with respect to orientation
and location, this essentially allows for the construction of the same search
spaces with local optima (i.e., multimodality) and dependencies.

Various sources of problem difficulty in continuous spaces are often
explained most effectively by the design of an actual problem and its visualiza-
tion. For the purpose of illustration of problem difficulty and because the dis-
cussion of the results obtained with various continuous EDAs is often related
to existing benchmark problems, we now describe a set of five optimization
problems. These problems represent a variety of difficulties in numerical opti-
mization. The definitions of the numerical optimization problems are given in
Table 5.1. For an intuitive impression of the characteristics of the problems,
two-dimensional surface plots (with the exception of the readily-imaginable
sphere function) are provided in Fig. 5.1.

Sphere

The sphere function is probably the most standard unimodal benchmark prob-
lem for numerical optimization. It involves the minimization of a single hy-
perparabola. The function is unimodal, has no dependencies and has smooth
gradient properties. The sphere function is often used to study convergence.
The minimum value for any dimensionality is 0 which is obtained if all yi are
set to a value of 0.
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Table 5.1. Numerical optimization test problems

Name Definition Range

Sphere Minimize
∑l−1

i=0
y2

i

yi ∈ [−5, 5]

(0 ≤ i < l)

Griewank
Minimize 1

4,000

∑l−1

i=0
(yi − 100)2−∏l−1

i=0
cos

(
yi−100√

i+1

)
+ 1

yi ∈ [−600, 600]

(0 ≤ i < l)

Michalewicz Minimize −∑l−1

i=0
sin(yi)sin

20
(

(i+1)y2
i

π

) yi ∈ [0, π]

(0 ≤ i < l)

Rosenbrock Minimize
∑l−2

i=0
100(yi+1 − y2

i )2 + (1 − yi)
2

yi ∈ [−5.12, 5.12]

(0 ≤ i < l)

Summation
cancellation

Maximize 100/(10−5 +
∑l−1

i=0
|γi|)

where γ0 = y0, γi = yi + γi−1

yi ∈ [−3, 3]

(0 ≤ i < l)
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Fig. 5.1. Two-dimensional surface plots for four numerical optimization problems.
The ranges for Griewank’s function were zoomed to get a better indication of the
many local optima. Rosenbrock’s function and the summation cancellation function
are shown on a logarithmic scale for a better impression of their problem features.
Note that the summit of the peak for summation cancellation is actually 107, but
the drawing resolution prohibits accurate visualization thereof
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Griewank

Griewank’s function is a function with many local optima. Basically, it is a
parabola superimposed with a sine function to obtain many local optima.
As a result, if large steps are taken in Griewank’s function, the so observed
coarse-grained gradient information will quickly lead to a region close to the
minimum of the parabola. However, if only small steps are taken, the many
local optima will prevent efficient optimization of this function, even when a
random restart strategy is used. Furthermore, for a fixed precision, Griewank’s
function becomes easier to optimize as l increases if large steps are taken. The
minimum value for Griewank’s function for any dimensionality is 0, which is
obtained if all yi are set to a value of 100.

Michalewicz

Michalewicz’s function is also a function with many local optima, albeit to
a lesser degree than Griewank’s function. An important difference is that
Michalewicz’s function has many long channels along which the minimum
value throughout the channel is the same. The gradient information in such
a channel therefore does not lead to the better local optima which are found
at the intersections of the channels. Proper optimization of Michalewicz’s
function is therefore only possible if the channels of equal optimization value
are explored or covered fully to find the intersections. The minimum value
for Michalewicz’s function depends on its dimensionality. A description of its
solutions at which the minimum value is obtained for any dimensionality has
not been reported in the literature.

Rosenbrock

Rosenbrock’s function is highly nonlinear. It has a curved valley along which
the quality of the solutions is much better than in its close neighborhood.
Furthermore, this valley has a unique minimum of 0 itself for any dimension-
ality of Rosenbrock’s function, which is obtained if all yi are set to a value
of 1. Rosenbrock’s function has proved to be a real challenge for any numer-
ical optimization algorithm. The gradient along the bottom of the nonlinear
valley is very slight. Any gradient approach is therefore doomed to follow the
long road along the bottom of the valley, unless a starting point is provided
in the vicinity of the optimum. Furthermore, since the valley is nonlinear,
simple gradient based approaches will oscillate from one side of the valley
to the other, which does not result in efficient gradient exploitation. For an
IDEA, capturing the valley in a probabilistic model is difficult, even if all of
the points within the valley are known. The reason for this is that the valley
is nonlinear in the coding space.
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Summation Cancellation

The summation cancellation problem was proposed by Baluja and Caruana
(1995). This optimization problem has multivariate linear interactions be-
tween the problem variables. This should allow algorithms that are capable of
modeling linear dependencies to outperform algorithms that are not capable
of doing so. Furthermore, the degree of multivariate interaction is as large
as possible since each γi in the problem definition is defined in terms of all
yj with j < i. Finally, the optimum is located at a very sharp peak, which
implies that the optimization algorithm needs to have a large precision and
needs to be able to prevent premature convergence in order to reach the global
optimum. The minimum value for this function for any dimensionality is 107,
which is obtained if all yi are set to a value of 0.

5.3 Optimal EDAs

The definition of an optimal algorithm is subject to a certain viewpoint. In
search and optimization, a common definition of optimality is that the algo-
rithm is capable of finding an optimal solution (Russel and Norvig, 2003). A
more refined definition of optimality in the context of a specific class of opti-
mization problem is that for any problem instance there exists no algorithm
that is able to find the optimal solution faster than the optimal algorithm. The
EDA method is driven mainly by the estimation of a probability distribution.
The estimated probability distribution is meant to approximate the true prob-
ability distribution. The true probability distribution is the one that describes
perfectly the set of the selected solutions in the case of an infinitely large pop-
ulation size. If the method of selection is Boltzmann selection, it can be proved
that the resulting EDA using the true probability distribution is optimal in
the sense that it will indeed converge to the optimal solution (Mühlenbein and
Höns, 2005). Hence, we can call an EDA optimal if the estimated probability
distribution equals the true probability distribution.

Drawing samples from the Boltzmann distribution requires exponential
computation time and hence, the optimal Boltzmann EDA is not a practical
search algorithm. In practice, selection methods such as tournament selec-
tion and truncation selection are commonly used. Without loss of generality,
assume that the goal of the EDA is to minimize fitness. Now, the optimal
probability distribution associated with truncation selection is a distribution
that is uniform over all solutions y that have a fitness F(y) that is at most
the value of the fitness of the worst selected solution. This essentially corre-
sponds to pruning the search space to only those regions that are at least as
interesting as the currently available worst selected solution. The probability
distribution can be imagined as essentially maintaining exactly all solutions
that have a fitness of at most the value of the fitness of the worst selected
solution. Hence, sampling from this probability distribution entails nothing
more than just returning a single solution from the (infinitely large) set of
maintained solutions.
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Now observe the series of the fitness values of the worst selected solution in
subsequent generations. Using truncation selection this series is monotonously
decreasing. Moreover, the series becomes strictly monotonously decreasing if
in generation t all solutions with a fitness at least equal to the worst selected
fitness in generation t − 1 are pruned from the selected solutions. To prevent
obtaining an empty selection set, this additional discarding should not be
done for the solution(s) with the best fitness. Using this slight variation to
the truncation selection scheme the EDA approach with the true probability
distribution will clearly converge to the optimum with probability one because
optimal solutions are never discarded from the probability distribution and
the worst selected fitness values strictly decreases every generation.

The size of the search space that is still to be regarded, is encoded in
the probability distribution. Using truncation selection and an infinitely large
population, 100(1 − τ)% of all solutions that make up this remaining search
space are discarded. Hence, the size of the search space still to be explored
is reduced exponentially as a function of the generations passed. In practice
however, we do not have an infinite population size. Still the use of the opti-
mal probability distribution is likely to be extremely efficient in terms of the
number of evaluations actually required to find a solution of a certain quality.
To illustrate the potential effectiveness of EDAs in continuous spaces, Fig. 5.2
shows the convergence behavior on three of all optimization problems for a
dimensionality of l = 5 if the optimal probability distribution is known and
used in the EDA. The optimal probability distribution is hard to formalize
analytically, hence the method used uses rejection sampling. In other words,
the method generates random solutions and only accepts those that have a
fitness value smaller or equal to the worst selected solution. For Michalewicz’
function and the summation cancellation function we plotted the difference
with the optimal fitness value to be able to plot their convergence graphs as a
minimization procedure that searches for the minimum value of 0. From the
results in Fig. 5.2, we indeed find extremely efficient optimization behavior.
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The fitness improves exponentially fast with the number of evaluations re-
quired. Hence, only extremely few evaluations are actually needed to obtain
close-to-optimal results, regardless of the actual optimization problem. Con-
cluding, in theory, as a result of the solid background, EDAs for continuous
domains work well also next to EDAs for discrete domains as long as the true
probability distribution can be closely approximated.

In practice we in general do not have access to the optimal probability dis-
tribution. Moreover, in the general sense the optimal probability distribution
is arbitrarily complex as the problem itself can be arbitrarily complicated (see
Sect. 5.2). This makes that sampling from the true probability distribution can
take up an arbitrary long time. Hence, to obtain an actual EDA to work with,
we must approximate the probability distribution using practical techniques.
In the continuous case, the most common approaches are the normal proba-
bility density function (pdf) or combinations thereof. It is not surprising that
the first EDAs in continuous spaces were based exactly on these common
parametric pdfs. The most important question is of course how the extremely
efficient optimization behavior of the EDA using the true probability distri-
bution changes in the continuous domain if we use approximated probability
distributions instead.

5.4 An Overview of Existing EDAs

In this section we provide a literature survey of EDAs for continuous domains.
In Sect. 5.4.1, we consider factorized probability distributions. In Sect. 5.4.2,
we consider mixtures of factorized probability distributions. The majority of
the literature concerning EDAs is based on these two types of probability
distribution. We end with Sect. 5.4.3 where we consider other classes of prob-
ability distribution.

5.4.1 Factorized Probability Distributions

Similar to the discrete case, estimating a factorization, typically a Bayesian
one as introduced in the previous chapter, makes sense since at the top level
it assists in finding dependencies between the variables (i.e., the use of a
joint distribution versus the use of separate marginal distributions). The same
greedy arc-addition algorithm and scoring metrics such as BIC metric can be
used as in the discrete case. Note that in the continuous domain the nature
or shape of the dependency depends on the actual pdf that is factorized.

Normal pdf

The first real-valued EDAs used maximum-likelihood estimations of the nor-
mal pdf. The use of the normal pdf was a logical first choice since this pdf is
widely used, relatively simple and unimodal.
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Definition

The normal pdf PN
(μi,Σi)(Yi) is parameterized by a vector μi of means and a

symmetric covariance matrix Σi and is defined by

PN
(μi,Σi)(Yi)(y) =

(2π)−|i|/2

(det Σi)1/2
e−1/2(y−μi)

T(Σi)−1
(y−μi). (5.1)

Parameter Estimation

A maximum likelihood estimation for the normal pdf is obtained from a vector
S of samples if the parameters are estimated by the sample average and the
sample covariance matrix (Anderson, 1958; Tatsuoka, 1971):

μ̂i =
1
|S|

|S|−1∑
j=0

(Sj)i, Σ̂
i
=

1
|S|

|S|−1∑
j=0

((Sj)i − μ̂i)((Sj)i − μ̂i)
T. (5.2)

To estimate the conditional pdfs PN (Yi|Yπi
) required when constructing

Bayesian factorizations, let W j be the inverse of the symmetric covariance
matrix, that is W j = (Σj)−1. Matrix W j is commonly called the preci-
sion matrix . It can be shown that for a maximum likelihood estimate of
PN (Yi|Yπi) the maximum-likelihood estimations in (5.2) can be used (Bosman
and Thierens, 2000b):

P̂N (Yi|Yπi
)(y(i,πi)) =

1
(σ̆i

√
2π)

e
−(yi−μ̆i)

2

2σ̆2
i , (5.3)

where

⎧⎪⎪⎨
⎪⎪⎩

σ̆i = 1√
Ŵ

(i,πi)
00

μ̆i =
μ̂iŴ

(i,πi)
00 −

∑|πi|−1

j=0
(y(πi)j

−μ̂(πi)j
)Ŵ

(i,πi)
(j+1)0

Ŵ
(i,πi)
00

.

Properties

The number of parameters to be estimated equals 1/2|i|2 + 3/2|i|. Different
from the discrete case, the number of parameters to be estimated therefore
does not grow exponentially with |i| but quadratically.

The density contours of a normal factorized probability distribution are
ellipsoids. Depending on the dependencies modeled by the factorization, these
ellipsoids can be aligned along any axis. If there is no dependency between a
set of random variables, the projected density contours in those dimensions
are aligned along the main axes. In either case, a normal pdf is only capable
of efficiently modeling linear dependencies.
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EDAs

The first EDA for real-valued random variables was an adaptation of the
original binary PBIL algorithm. The algorithm uses l normal pdfs, one for each
of the l random variables (Rudlof and Köppen, 1996). To accommodate for
these normal pdfs, the probability vector from the original PBIL algorithm is
replaced with a vector that specifies for each variable the mean and variance of
the associated normal pdf. The means are updated using a similar update rule
as in the original binary PBIL. The variances are initially relatively large and
are annealed down to a small value using a geometrically decaying schedule.
New solutions are generated by drawing values from the normal pdfs for each
variable separately.

A second adaptation of PBIL to the continuous case was introduced by
Sebag and Ducoulombier (1998). Similar to the approach by Rudlof and
Köppen (1996), they proposed to use a normal pdf for each variable. However,
the variance is now updated using the same update rule as for the mean.

For real-valued random variables, Bayesian factorizations using normal
pdfs were proposed simultaneously by Bosman and Thierens (2000b) within
the probabilistic model-building EA framework and by Larrañaga et al. (2000)
in a variant of MIMIC that uses normal pdfs, termed MIMICC, and in the
Estimation of Gaussian Network Algorithm (EGNA). As a first approach,
Bosman and Thierens (2000b) used an algorithm by Edmonds (1967) to
find a Bayesian factorization of minimal entropy in which each variable
has at most one parent. Also, the optimal dependency-tree algorithm used
in COMIT and the greedy chain-learning algorithm used in MIMIC were
used (Bosman and Thierens, 2000a; Bosman and Thierens, 2000b). In a later
publication (Bosman and Thierens, 2001a), the BIC metric was proposed in
combination with a greedy factorization-learning algorithm. In the work by
Larrañaga et al. (2000), finding a Bayesian factorization starts with a com-
plete factorization graph. A likelihood-ratio test is then performed for each
arc to determine whether or not that arc should be excluded from the graph.
A greedy factorization-learning algorithm based on the BIC metric that starts
from the univariate factorization was also used.

The use of univariate factorizations for real-valued random variables
was studied and compared against the use of Bayesian factorizations by
various researchers (Bosman and Thierens, 2000a; Bosman and Thierens,
2000b; Larrañaga et al., 2000; Bosman and Thierens, 2001a). In these studies,
the use of univariately factorized normal probability distributions was shown
to be inferior to the use of multivariate factorized normal probability distri-
butions for optimization problems that have linear interactions between the
problem variables. Specifically, far better results were obtained on the sum-
mation cancellation function. Although on this particular problem the EDAs
even outperformed evolution strategies (ES), improvement over ES was not
observed on all problems described in Sect. 5.2. On both the Michalewicz and
the Rosenbrock function the EDA approach was even strongly inferior to ES.
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In general, the EDA approach was observed to have good optimization per-
formance on problems with linear dependencies and even on problems with
many local optima, in the likes of the Griewank function, of both lower and
higher dimensionality. However, the EDAs cannot efficiently solve optimiza-
tion problems with nonlinear interactions between their variables. The main
reason is that the interactions that can be modeled using the normal pdf are
just linear. Hence, the structure of the problem is not fit well by the probabil-
ity distribution. As a result, points surrounding the optimum get lost during
optimization and the EDA is left only with solutions far away from the op-
timum. However, by estimating the probability distribution of these points
with maximum likelihood, the EDA suffers from the drawback that it dis-
regards gradient information. Instead, it keeps sampling points in the same
area where the current selected solutions are while selection continuously de-
creases the size of this area. The EDA can therefore converge even while on a
slope towards the optimum. Hence, even if the problem is unimodal, the EDA
using maximum-likelihood estimations of the normal pdf can fail in finding
an optimal solution. This happens for instance on the Rosenbrock problem,
even for very large population sizes as is illustrated in Fig. 5.3. The success
rate of the EDA using the maximum-likelihood normal pdf was 0% for both
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dimensionalities. Conversely however, if the solutions do continue to surround
the optimum, the use of the maximum-likelihood normal pdf is very efficient
as is for instance the case on the sphere function where the initial variable
ranges are centered around the optimum.

Normal Kernels pdf

Definition

The normal kernels pdf is obtained by centering one multivariate normal pdf
at each point in the sample vector and by normalizing the sum of the densities:

PNK

(Σi)
(Yi)(y) =

1
|S|

|S|−1∑
j=0

PN
((Sj)i,Σi)(Yi)(y). (5.4)

Parameter Estimation

Deciding how to choose the covariance matrix for each normal pdf is hard.
A maximum-likelihood estimate is undesirable because in that estimate the
variances are zero, corresponding to a density of infinity at the mean of each
normal pdf. Therefore, the variances in the covariance matrix that is used for
each normal pdf in the normal kernels pdf should be set in a different manner.

One way of doing so, is to compute the range of the samples in S in each
dimension and to set the variance in the ith dimension to a value based on
the range such that it decreases as the number of samples increases, e.g.,
α · rangei/|S|. The value of α controls the smoothness of the resulting density
estimation.

Although formulas exist for the univariate conditional form of the normal
kernels pdf that is required to construct Bayesian factorizations (Bosman,
2003), both their computational complexity and the lack of sensibility of using
maximum likelihood estimates have prevented the use of such factorizations
in continuous EDAs using the normal kernels pdf.

Properties

The main advantage of the normal kernels pdf is that it has a natural tendency
to fit the structure of the sample vector and is thereby capable of express-
ing complicated nonlinear dependencies. A related disadvantage however is
that the quality of the density estimation heavily depends on the value of
α. Intuitively, a larger α results in a smoother fit, but it is hard to predict
beforehand what a good value for α would be. The normal kernels pdf has a
tendency to overfit a sample collection. Without proper model selection and
model fitting, the normal kernels pdf is hard to handle although it may be
relatively fast in its use. The other possibility is to set the variances, or even
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covariances, for the normal kernels pdf adaptively. If the adaptation is done
for each normal kernel separately, the resulting approach is equivalent to the
use of evolution strategies (Bäck and Schwefel, 1993). Concluding, the normal
kernels pdf certainly has interesting properties and potential to be used in
IDEAs, but it is likely to be hard to handle when perceived as a manner of
describing the structure of the data in a sample set.

EDAs

The normal kernels pdf was initially tried in an EDA by Bosman and Thierens
(2000a) (see also (Bosman and Thierens, 2000b; Bosman, 2003)). The range-
based approach based on the α parameter as mentioned above was used to
set the variances of the normal kernels. Fine-tuning α was found to be highly
problem-dependent. Not only is it difficult to set α to a useful value before-
hand, a proper value for α is apt to change during the run of the EDA. Hence,
good results are hard to obtain with this use of the normal kernels pdf.

Normal Mixture pdf

Definition

If we take w normal pdfs instead of only a single one or as many as |S|, we
have a trade-off between the cluster-insensitive normal pdf and the cluster-
oversensitive normal kernels pdf. The normal mixture pdf for random variables
Yi is parameterized by w triples that each consist of a mixture coefficient βj

i

a vector of |i| means and a symmetric covariance matrix of dimension |i|× |i|:

PNM

((β0
i
,μ0

i
,Σ0,i),...,(βw−1

i
,μw−1

i
,Σw−1,i),)(Yi)(y) =

w−1∑
j=0

βj
i PN

(μj
i
,Σj,i)(Yi)(y). (5.5)

Parameter Estimation

A maximum likelihood estimation cannot be obtained analytically for w > 1.
Therefore, as an alternative approach, the EM algorithm (Dempster et al.,
1977) can be used. The EM algorithm is a general iterative approach to com-
puting a maximum-likelihood estimate. For the normal-mixture pdf, an EM-
algorithm first initializes each mixture coefficient, all means and all covariance
matrices to certain values and then updates all of these values iteratively until
the algorithm converges or until a maximum number of iterations has been
reached. We refrain from presenting a derivation of the update equations and
refer the interested reader to the literature (Dempster et al., 1977; Bilmes,
1997).

An alternative manner to estimating a normal mixture pdf is to use clus-
tering (Hartigan, 1975). First, the samples are clustered using a clustering
method and subsequently a normal pdf is estimated in each cluster. The
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drawback of this approach is that from a probabilistic viewpoint, the resulting
probability distribution estimation is almost certainly not a maximum likeli-
hood estimate. However, the use of clustering does allow for the modeling of
nonlinear dependencies between the variables.

Properties

The main advantage of the normal mixture pdf is that it provides a trade-
off between the normal pdf and the normal kernels pdf. The normal mixture
pdf is able to model nonlinear dependencies a lot more accurate than when a
single normal pdf is used (see Fig. 5.4 for an example). Although the normal
mixture pdf does not have a flexibility as great as the normal kernels pdf has,
the normal mixture pdf is much easier to handle. The reason for this is that
the only parameter to set is the number of clusters to construct, which is a lot
more transparent than the value of α to set in the case of the normal kernels
probability distribution.
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A maximum likelihood approach is available to estimate the normal mix-
ture pdf parameters. However, especially as the number of variables and the
number of mixture components increases, the result using the EM algorithm
becomes unreliable. Similarly, the usefulness of clustering also decreases as the
number of variables increases. Hence, it makes sense to factorize the probabil-
ity distribution so that the probability distribution over all random variables
is a composition of normal mixture pdf estimates for smaller sets of variables.
Furthermore, the EM algorithm is a time-consuming approach. The clustering
approach on the other hand can be quite fast, depending on the clustering
algorithm that is used.

EDAs

Although the required expressions for computing Bayesian factorizations of
the normal mixture pdf have been derived (Bosman, 2003), the resulting for-
mulas are rather involved and not efficient for practical use. Concordantly, no
EDA has been reported in the literature as yet that uses such a factorization.

Gallagher et al. (1999) proposed an EDA that uses the adaptive mixture
pdf by Priebe (1994) for each variable separately (i.e., using the univariately
factorized probability distribution). Although their approach outperformed
other algorithms, the set of test problems consisted only of two relatively
simple two-dimensional problems.

Bosman (2003) experimented with an EDA that uses the EM-algorithm
to estimate a normal mixture pdf. Due to the complicated nature of Bayesian
factorizations when combined with the normal mixture pdf, only the univari-
ate factorization and the unfactorized probability distribution were tested. In
low-dimensional spaces the added flexibility of the normal mixture pdf com-
pared to the single normal distribution resulted in a clear improvement when
solving the Rosenbrock function using an unfactorized pdf. The growth of the
complexity of the nonlinear dependency in the Rosenbrock function, however,
quickly decreases the advantage of the higher flexibility offered by the use of
the normal mixture pdf. Although good results were also obtained on other
problems in low-dimensional spaces, the additional computational overhead
was found to be considerable.

Although the conditional pdf required for a Bayesian factorization is rather
complex, the approach for constructing a marginal-product factorization as
is done in the ECGA (see the chapter on ECGA) and the resulting factor-
ized normal mixture pdf are rather straightforward. The resulting probability
distribution describes for mutually exclusive subsets of variables a normal mix-
ture pdf than can be constructed in one of the aforementioned manners. Ahn
et al. (2004) developed an EDA that uses exactly this approach where each
normal mixture pdf is estimated using the clustering approach. Factorizing the
probability distribution in this manner can allow for a more efficient modeling
of independent subproblems. Although improvements were obtained over ear-
lier real-valued EDA approaches, the resulting EDA was still not found to be
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efficient at solving the Rosenbrock function, especially as the dimensionality
of the problem is increased.

Histogram pdf

Definition

Although conceptually the histogram pdf is arguably the most simple way to
represent a continuous real-valued probability distribution, we refrain from
giving a precise mathematical definition as it is unnecessarily complicated.
The histogram pdf splits up the range of each variable into several parts. A
probability is associated with each hyperbox (commonly called a bin) that
represents the probability of a sample to lie anywhere inside the combination
of ranges associated with that bin. Note that the number of splits per variable
or the relative size of all subranges do not need to be the same although in
the most traditional sense, such a fixed-width version of the histogram pdf is
the most commonly used.

Parameter Estimation

A maximum-likelihood estimation is obtained in the same manner as for the
integer (or binary) case, i.e., by computing the proportion of samples that fall
into a certain bin.

Properties

A more detailed estimate of the true underlying probability distribution can
be obtained if more bins are used. However, as the number of bins increases,
the efficiency of modeling dependencies with the histogram pdf rapidly de-
creases as many bins will be empty. Moreover, since often the number of bins
grows exponentially when expressing the joint probability of multiple random
variables (for instance when using the fixed-width approach), histograms are
actually quite inefficient in expressing dependencies.

Furthermore, as the number of bins is increased, the danger of over-fitting
and lack of generalization increases as well. If more bins are used, the number
of empty bins will increase. Drawing more samples from the estimated prob-
ability distribution will thus not produce any more samples in these areas,
even though these areas might very well contain the global optimum.

EDAs

The algorithm by Servet et al. (1997) is an adaptation of the original PBIL
algorithm. In the algorithm, a range is stored for each variable. For each
variable then, a histogram pdf with two bins is maintained, where the first bin
corresponds with the first half of the domain and the second bin corresponds
with the second half. The probability vector from the original PBIL algorithm
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now specifies for each variable the probability with which a new value for that
variable is generated in the second half of the domain currently stored for
that variable. A domain is resized to contain exactly one of the two halves of
that domain if the histogram starts to converge to that half of that domain.

Bosman and Thierens (2000a) first investigated the use of an EDA that is
based on a univariately factorized histogram distribution. In their work they
considered the fixed-width variant. Tsutsui et al. (2001) considered both the
fixed-width as well as the fixed-height histogram variants in their work but
also only in combination with the univariate factorization. The conclusions
of both investigations are that the resulting EDAs are quite well capable of
solving problems that do not exhibit dependencies between their variables. If
dependencies do occur, the EDAs are not capable of exploiting these depen-
dencies efficiently, which severely limits its practical use.

To overcome the exponential growth of the total number of bins as the
joint probability distribution of multiple variables is taken into account, a
specialized repeated-splitting technique as used in classification and regres-
sion trees can be used (Breiman et al., 1984). The available data is split in a
single dimension. To this end all possible axis-parallel splits are investigated
and the one that is the most beneficial in splitting up the data is selected. The
process is then recursively repeated in the two subsets until no split signif-
icantly improves the quality of the overall probability distribution anymore.
The resulting bins are not identically sized and are specifically tailored to fit
the data, thereby reducing the number of empty bins to 0. This approach was
used in an EDA by Poš́ık (2004). Although the EDA is capable of modeling
unfactorized joint probabilities, the approach was found not to be able to min-
imize Rosenbrock’s function. The main reason for this is likely the inability to
generalize the probability distribution outside of the current range of selected
solutions. Moreover, the approach was found not to be very robust against
multimodality.

5.4.2 Mixture-of-Factorizations Probability Distributions

A mixture-probability distribution is a weighted sum of probability distribu-
tions, each of which is a function of all random variables. The weights in the
sum are all positive and sum up to one to ensure that the summation is itself a
probability distribution. Although we have already encountered mixture prob-
ability distributions when we considered factorized probability distributions
in Sect. 5.4.1 (i.e., the normal mixture pdf), in this section we consider the
mixture as the main structure of the probability distribution. In Sect. 5.4.1
the main structure was the factorization. The general form of the mixture
probability distribution over all random variables Y is:

P (Y ) =
k−1∑
i=0

αiP i(Y ), (5.6)



108 P.A.N. Bosman and D. Thierens

where k is the number of mixture components, αi ≥ 0 holds for all i ∈
{0, 1, . . . , k − 1} and

∑k−1
i=0 αi = 1.

The mixture probability distribution can be seen as a logical extension of
the factorization approach. It can be viewed upon as a way of using multiple
factorizations by taking each probability distribution in the mixture to be a
factorization. The use of mixture probability distributions intuitively appears
to be an especially useful approach in the presence of multiple local optima
as each component in the mixture can be used to focus on a single local
optimum and thereby distribute the factorization search bias of the EDA over
multiple regions of interest. To a lesser extent one of the virtues of a mixture
probability distribution is that by using a combination of (simpler) probability
distributions, more involved probability distributions can be constructed that
for instance model nonlinear dependencies better. However, this is already the
case when using a factorization of a mixture pdf as already demonstrated in
Fig. 5.4 and hence is less of a virtue contributed by the mixture probability
distribution on its own.

By Means of Clustering

Using clustering to subdivide the set of solutions for which to estimate a
probability distribution followed by the subsequent estimation of probabil-
ity distributions for each cluster separately was already discussed when we
reviewed the normal mixture pdf in Sect. 5.4.1. Before its use by Ahn et
al. (2004) in the construction of the factorized normal mixture probability
distribution, the use of clustering to construct mixture probability distri-
butions in EDAs was initially investigated in the binary domain by Pelikan
and Goldberg (2000) using the k-means clustering algorithm (Hartigan, 1975).
This approach was concurrently investigated in the context of real-valued
EDAs by Bosman and Thierens (2001a) (see also (Bosman, 2003)). In their
work, a different, slightly faster clustering algorithm was used, called the
leader algorithm (Hartigan, 1975). The probability distributions in the mix-
ture are factorized normal pdfs. Hence, the resulting probability distribution
is actually a normal mixture probability distribution. The results generally
indicate an increase in optimization performance especially on the Rosenbrock
function (see Fig. 5.3 for an illustration). However, since no means has been
proposed to detect the number of clusters that is actually required, the ap-
proach requires significantly more evaluations on problems where a mixture
probability distribution is not required. Unfortunately, the improvement of
using the mixture of factorized normal pdfs over the use of a single normal
pdf on the Rosenbrock function decreases rapidly as the dimensionality of the
problem increases. The reason for this is that the number of clusters required
to model the nonlinear dependencies between the problem variables properly,
increases also with an increase in the problem dimensionality. As this in turn
requires a larger population size to ensure enough solutions in each cluster to
estimate a factorized normal pdf, the increase in search efficiency in terms of
the number of required evaluations to solve the problem, decreases.
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The difference with the factorized normal mixture pdf used by Ahn et al.
(2004) is that because in their probability distribution the top-structure is a
factorization, if the number of variables between which nonlinear dependen-
cies exist is limited and the groups of such nonlinearly dependent variables are
additively decomposable in the problem to be optimized, the factorization can
match this additive decomposability structure whereas the mixture pdf can
match the (smaller) nonlinear dependencies. This additive decomposability
and the smaller nonlinear dependency can clearly not be exploited effectively
by the top-level mixture probability distribution. Indeed, on an additively de-
composable variant of the Rosenbrock function, the approach by Ahn et al.
(2004) outperforms the approach by Bosman and Thierens (2001a). However,
it should be clear that the incentive behind the mixture probability distri-
bution is inherently different, namely to distribute the search bias over the
search space and thus to be able to cope with multiple regions of interest in the
search space simultaneously. The mixture probability distribution approach
is hence more general as it also allows for instance to use the factorized nor-
mal mixture pdf in the EDA by Ahn et al. (2004) in each cluster, effectively
combining the positive features of the EDA by Ahn et al. (2004) with the
incentive behind the approach by Bosman and Thierens (2001a).

5.4.3 Other Probability Distributions

Although the use of the parametric pdfs in combination with factorizations
and the use of clustering techniques to obtain mixture probability distribu-
tions as discussed in earlier sections are representative of the most common
techniques, other, often more involved, techniques exist.

Top-Level Discretization and Bottom-Level Continuous Modeling

A different use of the normal kernels pdf was proposed by Ocenasek and
Schwarz (2002). In their EDA, a discrete decision tree (Friedman and
Goldszmidt, 1996) is built for each variable by discretizing all other real-
valued random variables using axis-parallel splits. The variable that is found
to influence the current variable of interest the most is used to split up the
data range. The procedure is recursively repeated after splitting the data.
The rationale behind this approach is that once no more splitting is found
to be beneficial, the leaf nodes in the decision tree correspond to subranges
in the data set that can be properly estimated using univariately factorized
pdfs. The pdf used by Ocenasek and Schwarz (2002) is the normal kernels pdf
with α = 1. Since now the variances are specifically tailored to the subsets
constructed by the decision trees, this particular use of the normal kernels
pdf is much more robust. Although the resulting EDA was found to obtain
much better results on the Rosenbrock function, the overall performance of the
algorithm was not found to be significantly better than previously developed
EDAs. Moreover, the optimum of the Rosenbrock could still not be reached
satisfactorily (Kern et al., 2004).
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Probability Distributions Based on Latent Variables

A few alternative approaches currently used in real-valued EDAs are based
on the use of latent, or hidden, variables. These techniques attempt to model
the underlying data source by projecting the data onto another domain while
attempting to retain the most important features. Often, the dimensionality
of the data is then reduced.

An example of such techniques is the well-known principal component
analysis (PCA) (Jolliffe, 1986). In PCA, l′ < l vectors are chosen such that the
variance in those vectors is the largest when projecting the one-dimensional
data onto these vectors. The latent variables are the newly introduced vari-
ables that are used to model the data. Another approach in which latent
variables are used, is the Helmholtz machine. A Helmholtz machine is closely
related to neural networks and consists of a layer of input variables repre-
senting the l dimensions of the data and provides for multiple layers of latent
variables. Connections between these layers allow for the learning of a model
that describes the data, as well as the generation of new data.

Bishop (1999) indicated how PCA can be used to estimate probability
distributions and how to generate new samples from the estimated proba-
bility distributions. Using normal pdfs, the PCA-based estimated probability
distribution over the selected solutions, is an one-dimensional normal prob-
ability distribution. This approach has been used for real-valued optimiza-
tion (Shin and Zhang, 2001; Cho and Zhang, 2001; Shin et al., 2001). The
authors also used Helmholtz machines in combination with normal pdfs. The
results obtained are comparable to those obtained with factorized probability
distributions, but the number of latent variables is fixed beforehand, whereas
the approaches using factorized probability distributions are able to learn the
structure of the probabilistic model from data.

In the approach by Cho and Zhang (2002) a mixture of factor analyz-
ers is used. Standard factor analysis is a latent variable model that is based
on a linear mapping between the random variables and the latent variables,
resulting in a normal distribution that is modeled over the original random
variables. An EM-algorithm is used to find parameter estimates for the latent
variables in each mixture component as well as the mixture coefficients them-
selves. The number of mixture components is fixed beforehand as are again
the number of latent variables. The results for numerical optimization indicate
better performance for the mixture over the single factor analysis and other
nonmixture real-valued probabilistic model-building EAs, but the structures
of the latent-variable models were composed by hand.

The recent most EDA based on latent variable models was introduced
by Cho and Zhang (2004). The probability distribution used in their EDA
is based on the variational Bayesian independent component analyzers mix-
ture model by Choudrey and Roberts (2003). Although the formal equations
involved are out of scope for this chapter, we note that this recent way of es-
timating probability distributions overcomes many of the problematic issues
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that traditional models such as mixture of normal distributions estimated with
EM algorithms have. In principle, the model is capable of modeling any density
function as long as enough components are used in the mixture. Traditionally,
there exists a problem with computing the required number of components.
In the model by Choudrey and Roberts (2003) this problem is solved using
Bayesian inference. The use of this extremely powerful model in an EDA re-
sulted in an improvement over earlier proposed real-valued EDAs. However,
although the approach obtained much better results on the Rosenbrock func-
tion, it was still not able to converge to the optimum for the 10-dimensional
case using a population size of 6, 400. Although the model is in theory capable
of capturing the structure of the search space, the number of solutions that
is required to actually construct this probability distribution well enough is
extremely large.

5.5 Analysis and Redesign of Real-Valued EDAs

5.5.1 Analysis

Following the traditional motivation from discrete spaces and the lessons
learned from discrete GA research (Goldberg, 2002b), one assumes that ini-
tially enough information is supplied to the EDA, i.e., all the building blocks
are initially in the population. This is typically ensured by making the pop-
ulation large enough. All that the EDA is now required to do is to detect
the building blocks and mix them properly. From the previous chapters we al-
ready know that by using maximum-likelihood estimates for discrete spaces in
combination with factorization selection techniques, EDAs can be built that
very efficiently meet with this requirement and consequently achieve efficient
optimization. By using a proper factorization, the important substructures of
the optimization problem at hand are identified and specific combinations of
bits can be assigned high probabilities of replication when generating new so-
lutions. Hence, the important substructures never get lost during optimization
and are combined effectively to reach the optimal solution.

All real-valued EDAs for numerical optimization that we discussed so far
employ a probability distribution estimation technique that is equally bent on
describing the set of selected solutions as well as possible. Whenever possible,
maximum-likelihood estimates are used. An approximation of the maximum-
likelihood estimate is used otherwise. One could validly argue that this ap-
proach thus follows a direct translation of the EDA approach in the discrete
domain into the continuous domain. Alternatively, one can argue that this ap-
proach conforms completely to the design of the optimal EDA that uses the
true probability distribution as discussed in Sect. 5.3. Still, real-valued EDAs
so far have made for a far smaller success story than have EDAs for the dis-
crete domain, even though the range of actual EDA approaches is wider in the
continuous domain. For instance, no EDA discussed so far in this chapter is
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able to optimize the Rosenbrock function efficiently even though this problem
is unimodal and smooth. This has recently led researches to take a closer look
at what is happening with EDAs in the continuous domain.

The apparent failure of real-valued EDAs to solve the Rosenbrock function
was first noticed by Bosman and Thierens (2001b) (see also (Bosman, 2003)).
The explanation given for this failure was that because no assumptions are
made on the source of the data from which to estimate the probability dis-
tribution, real-valued EDAs disregard gradient information. In other words,
even part of an interesting region is discovered and the selected solutions
are located on a slope towards the optimum, the EDA can converge on this
slope since it only effectively searches inside the area covered by the selected
solutions. Through maximum-likelihood estimates there is no means of gen-
eralizing the estimated density outside this area. The premature convergence
on the Rosenbrock function was discussed further more recently by Bosman
and Grahl (2005) as well as by Yuan and Gallagher (2005). Premature conver-
gence was also observed by Kern et al. (2004) on the even simpler tilted-plane
function where the optimum is located at a boundary of the search space. For
a real-valued EDA using the normal pdf with maximum-likelihood estimates
it was proved by Grahl et al. (2005a) (see also (Grahl et al., 2005b)) that
the mean of this EDA can indeed only move a limited distance through the
search space. This distance is dependent on the selection intensity and the ini-
tial variance (i.e., spread of the initial population). Unless the optimum lies
within this bounded distance, the variance will go to 0 too quickly causing
the EDA to converge prematurely.

One could now argue that this is an unfair analysis as it violates the as-
sumption that initially enough data is available, i.e., that the optimum inside
the region covered by the initial population. If this is not the case, one should
consider the analogy of solving the one-max problem with a binary EDA when
for some variables not a single 1 is present in the population. It is however
important to note that in the continuous domain that such essential informa-
tion (i.e., the structure of the problem to be optimized, typically the building
blocks in the discrete case) easily gets lost during optimization. In general,
the reason for loss of essential information is that the problem structure is not
matched by the search bias of the optimizer. For instance, if a binary EDA
is not capable of detecting the individual deceptive trap functions, the addi-
tively decomposable trap function cannot be optimized efficiently because the
building blocks will have a too small probability of surviving variation.

In the continuous domain however, capturing the essential information
in the probability distribution is much more difficult (Bosman and Grahl,
2005). Problem structure in the continuous domain is exemplified by the con-
tour lines of the function to be optimized. Hence, the true distribution of
the selected individuals can be of virtually any shape. This means that we
need both the universal approximation property of our probability distribu-
tion as well as an infinite sample size to ensure that the problem structure is
effectively exploited by the EDA. However, such universal approximation is
computationally intractable. In practice, a continuous EDA will have to rely
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on tractable probability distributions such as the normal pdf. This means
that the contours of the probability distribution may no longer match with
the contour lines of the function to be optimized. Consequently, the notion
of dependency as observed in the estimated probability distribution does not
have to match with the actual dependency of the variables according to the
optimization problem at hand. Hence, linkage information in the continuous
domain cannot by definition be extracted from the estimated probability dis-
tribution. What is even more important to realize is that by using relatively
simple pdfs the property of having (local) optima inside the area covered by
the selected solutions may easily be lost during optimization. This will put
the EDA back in the position from where it can provably not find the opti-
mum using maximum-likelihood estimates, even when the selected solutions
are located on a slope.

5.5.2 Redesign

To overcome the problem identified above, three approaches can generally
speaking be taken. We will discuss these three approaches in turn.

More Involved Probability Distributions

The capacity of the class of probability distribution used in the EDA can be
increased. As pointed out in Sect. 5.4.3, the approach by Cho and Zhang (2004)
is probably the best example of this approach. But even though the model used
here is extremely flexible, the population size that is generally required to get
the estimated probability distribution right and not lose the encapsulation of
optima during optimization is enormous. Moreover, the computational costs
of estimating such involved probability distributions is considerable.

Explicit Gradient Exploitation

To allow the EDA to search outside of its range the explicit use of gradient
information can be enforced by hybridizing the EDA with local search op-
erators. Although such a hybrid approach can indeed be effective (Bosman
and Thierens, 2001b), such hybridization is possible for all EAs. Hence, we
seek a more specific solution to the problem at hand. Moreover, if desired, the
resulting improved EDA can then still be hybridized.

Variance Scaling

The third approach is strikingly simple in its nature, but it is specifically
designed for use in real-valued EDAs and has already been shown to be a
very effective principle (Ocenasek et al., 2004; Bosman and Grahl, 2005; Yuan
and Gallagher, 2005). The basic idea is to set the variance of the probability
distribution during the search not (only) according to the maximum-likelihood
approach, but (also) according to other criteria such as the success rate.
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In the approach by Ocenasek et al. (2004) the decision-trees combined
with the normal kernels pdf is used (Ocenasek and Schwarz, 2002). In ad-
dition however, a scaling factor is maintained. When drawing new solutions
from the estimated probability distribution, the variance of a normal kernel is
scaled by multiplication with this factor. The size of the scaling factor depends
on the success rate of the restricted tournament selection operator (i.e., the
number of times an offspring solution is better). An adaptive scheme is used
that changes the scaling factor to ensure that this success rate stays in-line
with the 1/5 success rule for evolution strategies (ES) (Bäck and Schwefel,
1993).

Yuan and Gallagher (2005) showed that by scaling the variance of the
estimated normal probability distribution by a factor of 1.5, an EDA based
on this variance-scaled normal probability distribution is capable of finding the
optimum of the Rosenbrock function. Although in itself this result is striking, a
fixed scaling factor will in general not be optimal. In the approach by Bosman
and Grahl (2005) a simple, but effective, adaptive-variance-scaling scheme is
proposed for use in an EDA that uses the factorized normal pdf. Similar to
the approach by Ocenasek et al. (2004) a scaling factor is maintained and
upon drawing new solutions from the probability distribution, the covariance
matrix is multiplied by this scaling factor. Updating this scaling factor is done
differently however. If the best fitness value improves in one generation, the
current size of the variance allows for progress. Hence, a further enlargement
of the variance may allow for further improvement in the next generation and
the scaling factor is increased. If on the other hand the best fitness does not
improve, the range of exploration may be too large to be effective and the
scaling factor is (slowly) decreased. In addition to variance scaling Bosman
and Grahl (2005) also show how a test can be constructed specifically for
the normal distribution that allows to distinguish between situations where
variance scaling is required and where variance scaling is not required. The
test is based on (ranked) correlation between density and fitness.

The results of the above mentioned EDAs that employ the scaling of the
variance are significantly better than those of the earlier EDAs that only em-
ploy maximum-likelihood estimates. The algorithms are for instance capable
of finding the optimum of the Rosenbrock function efficiently. The results of
the algorithm by Bosman and Grahl (2005) on the Rosenbrock function are
shown in Fig. 5.3. The key to their success is that the EDAs without variance
scaling are very efficient if the structure of the problem is not too compli-
cated, such as is the case for the sphere function. If the structure gets more
involved, there is hardly any means to generalize the probability distribution
over the entire search space. With the variance-scaling approach the EDA is
equipped with the possibility to shift its focus by means of variance adapta-
tion and to go and find local structures that it can efficiently exploit without
the additional variance scaling.

The results obtained with variance-scaling bring the EDAs in strong com-
petition with one of the leaders in (evolutionary) continuous optimization,
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the CMA-ES (Hansen and Ostermeier, 2001; Hansen et al., 2003; Kern et al.,
2004). Strikingly, the EDA approach using the normal pdf is at the top level
similar to the CMA-ES. Both algorithms compute values for the parameters
of the normal pdf and subsequently draw new solutions from this normal pdf.
Hence, the CMA-ES can validly be argued to actually be an EDA. The dif-
ference between the approaches lies in how the parameters are set. In the
pioneering EDA approaches, maximum-likelihood estimates are used on the
basis of the set of selected solutions. It has been observed however that this
more often does not lead to efficient optimization. The CMA-ES on the other
hand has been found to be a very efficient optimizer. The CMA-ES actually
uses the same estimate for the mean (i.e., the center of mass (also called sample
average) of the selected solutions). The differences lies in the way the covari-
ance matrix is built. Strikingly, it is exactly in the changing of the covariance
matrix (by scaling) that the EDA approach has recently been found to have
room for improvement. In the CMA-ES, the covariance matrix is built using
information about how the mean of the population has shifted the previous
generation. This information is combined with the (by multiplication slowly
fading) memory or cumulation of shifts in earlier generations to obtain what
is called the evolution path. In this approach there is no need to explicitly
check for success in generating new better solutions as the shift towards bet-
ter regions automatically influences the evolution path, which is subsequently
used to determine the covariance matrix.

As a result of using the mean shift, the CMA-ES is clearly capable of ex-
ploiting gradient properties of a problem, which is exactly what was hypoth-
esized to be lacking in maximum-likelihood EDAs (Bosman and Thierens,
2001b; Bosman, 2003). A final striking correspondence between the CMA-ES
and the EDAs that use variance-scaling is that the covariance matrix in the
CMA-ES is actually factorized into the multiplication of a covariance matrix
and what is called a global step-size. The global step-size is also computed on
the basis of the evolution path. This factorization is identical to the variance-
scaling approach in EDAs, the only difference being in terminology and the
way in which the scaling factor (or global step-size) is computed.

It is interesting to see that although the background and motivation for
the (real-valued) EDA approach and the CMA-ES approach are different, the
developments in these areas appear to be converging onto a similar approach.
Future research will have to point out which of the approaches is the overall
best way to go and whether the benefits of both approaches can be integrated
to arrive at even better evolutionary optimizers.

5.6 Summary and Conclusions

In this chapter we have discussed the design of real-valued EDAs for nu-
merical optimization. We have indicated what types of problem difficulty we
typically expect and what the optimal EDA for numerical optimization looks
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like. Subsequently we provided an overview of existing EDA approaches and
indicated that already there exists a vast array of approaches as many different
probability distributions have been studied.

Although the capacity of the class of probability distribution used in the
EDA has grown significantly, real-valued EDAs that attempt to estimate the
probability distribution as well as possible (i.e., typically using maximum-
likelihood estimates) from the set of selected solutions seem not to work well on
problems such as the Rosenbrock problem. Although this problem is unimodal
and has nice smooth gradient properties, EDAs tend to converge prematurely
while still on the slope towards the optimum.

The main problem is that in continuous problems, the structure of a prob-
lem is characterized by the contours of the function to be optimized. These
contours can take any shape. Hence fitting the problem structure in the con-
tinuous case requires the intractable universal approximation property and
huge amounts of data, rending the EDA approach inefficient. It is therefore
much more convenient to rely on the use of simpler probability distributions.
However, by doing so, important regions of the search space may get lost
during optimization because they are assigned extremely low densities due
to the mismatch between the density contours of the estimated probability
distribution and the density contours of the fitness function. To still be able
to use simpler probability distributions alternative means of overcoming prob-
lems of premature convergence should be found. To this end it is much more
convenient to view problem structure as an arrangement of slopes and peaks
in the search space. These simpler substructures are much easier to take into
account and to build inductive search biases for. Actually, the current range
of EDAs is already capable of searching such simpler substructures efficiently.
Hence, what should in addition be provided is the means to shift between
these substructures and ultimately focus on the most interesting one. To this
end variance-scaling approaches have recently been proposed and have been
shown to lead to much improved EDAs.

This significant improvement signals that there is a new open road to
explore for the design of real-valued EDAs for numerical optimization; and
this one has a fast lane.
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Kern, S., Müller, S. D., Hansen, N., Büche, D., Ocenasek, J. and Koumoutsakos, P.

(2004). Learning probability distributions in continuous evolutionary algorithms
– a comparative review, Natural Computing 3(1): 77–112



5 Numerical Optimization with Real-Valued EDAs 119
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A Survey of Probabilistic Model Building
Genetic Programming

Yin Shan, Robert I. McKay, Daryl Essam, and Hussein A. Abbass

Summary. There has been a surge of research interest in estimation of distribu-
tion algorithms (EDA). Several reviews on current work in conventional EDA are
available. Although most work has focused on one-dimensional representations that
resembles the chromosomes of genetic algorithms (GA), an interesting stream of
EDA using more complex tree representations has recently received some attention.
To date, there has been no general review of this area in the current literature.
This chapter aims to provide a critical and comprehensive review of EDA with tree
representation and closely related fields.

6.1 Introduction

6.1.1 Estimation of Distribution Algorithms

Evolutionary computation (EC) [69], motivated by evolution in the real world,
has become one of the most widely used Machine Learning techniques, because
of its effectiveness and versatility. It maintains a population of solutions, which
evolves subject to selection and genetic operators (such as recombination and
mutation). Each individual in the population receives a measure of its fitness,
which is used to guide selection. EC covers a wide range of techniques, but we
will frame our discussion primarily in terms of genetic algorithms (GA) [14]
and genetic programming (GP) [17, 33].

Lately, there has been a surge of research interest in estimation of distrib-
ution algorithms (EDA) [37, 42], which is partially motivated by EC. EDA is
also known as probabilistic model-building genetic algorithms (PMBGA) [49]
or iterated density estimation evolutionary algorithms (IDEA) [13]. EDAs
explicitly encode the knowledge accumulated in the course of the search in
well-structured models, typically probabilistic models, and thus it becomes
possible to explicitly exploit that knowledge to adaptively improve the effi-
ciency of the search. More specifically, these models are inductively learnt from
good individuals (training examples), and are sampled to create the new indi-
viduals of the next generation. A population is not usually maintained between
generations, and genetic operators are omitted from EDAs, either partially or
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completely. Instead, EDA is designed to capture the interactions among genes,
which represent the internal structure of problem solutions, and in this way
it estimates the distribution of good solutions directly, rather than employing
genetic operators. The major differences between various EDA methods lie in
the different formalism of models, depending on the types of knowledge, i.e.
the interactions among genes, intended to be represented.

There are several reasons for the increasing interest in EDA. The first
reason is the theoretical attraction. The highly complex and dynamic conse-
quences of genetic operators are extremely hard to understand and predict,
thus hindering efforts to further improve the performance of EC systems.
Replacing genetic operators and populations with a simple yet powerful model
makes it simpler to understand system behaviour. In some simple cases, EDA
is a quite accurate approximation of conventional EC [27, 42]. Secondly, in
terms of practical usefulness, superior performance of EDAs relative to con-
ventional EC has been reported in a number of publications [9, 10, 48, 50, 59].

6.1.2 Basic Algorithm of EDA

EDA uses a probabilistic model to estimate the distribution of promising solu-
tions, and to further guide the exploration of the search space. By iteratively
building and sampling from the probabilistic model, the distribution of good
solutions is (hopefully) approximated.

The formal description of EDA can be found in [13]. For the completeness
of this survey, we restate it as follows. Briefly, assume Z is the vector of vari-
ables we are interested in. DH(Z) is the probability distribution of individuals
whose fitnesses are greater than or equal to some threshold H (without loss of
generality, we assume we are dealing with a maximisation problem). Now if we
know DHopt(Z) for the optimal fitness Hopt, we can find a solution by simply
drawing a sample from this distribution. However, usually we do not know
this distribution. Due to the lack of prior information on this distribution, we
start from a uniform distribution. In the commonest form of the algorithm,
we generate a population P with n individuals and then select a set of good
individuals G from P. Since G contains only selected individuals, it represents
the search space that is worth further investigation. We now estimate a proba-
bilistic model M(ζ, θ) from G. ζ is the structure of the probabilistic model M
while θ is the associated parameter vector. With this model M, we can obtain
an approximation D̄H

M(Z) of the true distribution DH(Z). To further explore
the search space, we sample distribution D̄H

M(Z), and the new samples are
then re-integrated into population P by some replacement mechanism. This
starts a new iteration.

In this process, due to the lack of knowledge of the true distribution, a
usually well-studied probabilistic model M(ζ, θ) to approximate the distribu-
tion has to be introduced. Therefore, a vital part in the EDA algorithm is the
appropriate choice of the model with respect to the true model. This is the
reason that current EDA research is largely devoted to finding appropriate
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1. Generate a population P randomly.
2. Select a set of fitter individuals G from P.
3. Estimate a probabilistic model M over G.
4. Sample from the probabilistic model M to obtain a set of new individuals G′.
5. Incorporate G′ into population P.
6. If the termination condition is not satisfied, go to 2.

Fig. 6.1. High level algorithm of EDA

models and is hence one of the natural ways to differentiate EDA methods,
i.e. with respect to their probabilistic models. The particular choice of this in-
troduced probabilistic model is strongly related to specific assumptions about
building blocks.

All the EDA methods share a similar high level algorithm presented in
Fig. 6.1. EDA starts with a randomly generated population P. A probabilistic
model M is learnt from a set of individuals G selected from this population. A
new set of individuals G′ is generated by sampling from the learnt model M.
The new population is formed by incorporating G′ into the original population
P. The next iteration starts again from this new population.

Given this high level algorithm, there are many variants. For example,
each iteration may create a new population, or may simply replace part of
the old population with newly generated individuals; the system may learn a
model from scratch or update the previous model; and so on.

6.1.3 Extending EDA to GP style Tree Representation

Although EDA is becoming one of the most active fields in EC, the solu-
tion representation in most EDA is a GA style linear representation (one-
dimensional array, known as a chromosome in the GA literature). The more
complex tree representations, resembling GP individuals, have received only
limited exploration [14, 53, 63, 64, 71, 82], perhaps as a result of their intrin-
sic complexity. This is unfortunate, because tree representations provide a
natural and expressive way of representing solutions for many problems. Al-
though there are only a limited number of publications in this area, it appears
that authors are sometimes not fully aware of the work of others. This chapter
aims to provide a comprehensive and critical survey of these works, as a re-
source for future workers. For simplicity, we refer to the idea of applying EDA
approaches to estimate the distribution of GP-style tree form solutions as
EDA–GP, while referring to the EDA dealing with GA style linear strings as
conventional EDA. The term EDA–GP reflects the connection between EDA
and GP, but is not intended to imply that EDA–GP employs genetic search.
There are several GP works, for example [44, 45, 72], which do not strictly
employ tree-representation. Due to the significant differences in the represen-
tation from the tree structure, these works are not covered in the chapter,
and to minimise confusion, the term GP in this chapter generally refers to
GP with a tree representation.
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Extending conventional EDA to tree-representations is non-trivial, because
of the complexity of tree structures. Tree representations provide an alterna-
tive way of representing solutions, which are important to a large class of
problems, but at the same time introduce important complications, includ-
ing larger search spaces and more complex interactions among tree nodes. A
number of different models have been introduced to represent the important
interactions. To summarise, there are two very distinct classes of models, pro-
totype tree models and grammar models. This survey’s organisation is based
on this classification.

6.1.4 Structure of the Chapter

Although EDA–GP is in its infancy, the underlying ideas of EDA–GP are
not entirely new. At first, this type of learning was applied as a supplement
to conventional GP systems, as a mechanism for learning modularity. Later,
this research became more and more independent of conventional GP, and
methods which systematically learn mathematical models were proposed.

The remainder of this chapter is organised as follows. The next section
is a brief introduction to GP. The lessons from GP research in searching
for good probabilistic models for EDA–GP are presented in Sect. 6.3. The
two main streams of EDA–GP work will be presented in the two sections
which follow. The first stream, presented in Sect. 6.4, stems from probabilistic
incremental program evolution (PIPE) [63], and covers other approaches based
on the probabilistic model proposed in PIPE. The second stream, presented
in Sect. 6.5 covers grammar-based representations. In Sect. 6.6, an alternative
perspective for viewing EDA–GP, i.e. the perspective of probabilistic graph
models, is presented. Ant Colony Optimisation (ACO) is a closely related field
to EDA–GP. The relevant work in this field is reviewed in Sect. 6.7. The last
section provides the conclusion and addresses future research issues.

6.2 Genetic Programming and Its Tree Representation

GP [18, 33, 65] is an evolutionary computation approach (EC). GP can be most
readily understood by comparison with GA [14, 28]. The basic algorithm of
GP can be found in Fig. 6.2. This algorithm is very similar to that of GA.

1. Generate a population P randomly.
2. Select a set of fitter individuals G from population P.
3 Apply genetic operators on the set of selected individuals G to ob-

tain a set of children G′.
4. Incorporate the children G′ into population P.
5. If the termination condition is not satisfied, go to 2.

Fig. 6.2. Basic Algorithm of GP
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Essentially, an initial population is randomly generated. Then, to each pop-
ulation in turn, genetic operators are imposed on stochastically selected
individuals from one population to obtain its successor population.

Rather than evolving a linear string as GA does, Genetic Programming
evolves computer programs, which are usually tree structures. The fitness of
each individual is a function of the effectiveness of the program. The genetic
operators, such as crossover, are refined to act upon sub-trees, so as to ensure
that the child is syntactically correct.

Given the basic algorithm in Fig. 6.2, some important details of this al-
gorithm will be highlighted in the following subsections. Step 1 is concerned
with the initial population. It is presented in Sect. 6.2.1. In step 2, most of the
common selection methods in GA may be applied. There are usually three ge-
netic operators involved in step 3, which are presented in Sect. 6.2.2. In step 4,
two possible approaches can be used, either the generational approach or the
steady-state approach, presented in Sect. 6.2.3. There is some research in GP
which incorporates some form of learning into conventional GP. These studies
are related to this review and therefore are briefly mentioned in Sect. 6.2.4. A
number of important GP issues which are relevant to this survey are discussed
in Sect. 6.2.5.

6.2.1 Generation of Initial Population

Given two predefined sets – the terminal and non-terminal (function) sets –
the generation of the initial population is a process of iteratively creating indi-
viduals by stochastically choosing symbols from these two sets and assembling
them into a valid tree structure. There are many variants, primarily aimed at
biasing the shapes of the trees produced, but the details are beyond the scope
of this chapter. The terminal and non-terminal sets are the alphabet of the
programs to be made. The terminal set consists of the variables and constants
of the programs, while the non-terminal set consists of the functions of the
program. For example, the symbolic regression problems are a class of bench-
mark problems in GP [33]. They require GP to search for a computer program
(or in this case, more accurately, a mathematical function) to approximate the
given input and output. For these problems, the terminal set could be {x, y, z}
and the non-terminal set could be {+,−,×, /, sin, cos, log, e∧}.

6.2.2 Genetic Operators

There are three basic genetic operators in GP and GA: reproduction, crossover
and mutation.

Reproduction

Reproduction is straightforward. It simply copies the individual and places it
into the new population.
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Crossover

Crossover combines the genetic material of two parents by swapping certain
parts from both parents. Given two parents which are obtained by some se-
lection method, the crossover performs two steps:

– Select randomly a sub-tree in each parent.
– Swap the selected sub-trees between parents.

This is illustrated in Fig. 6.3. The sub-trees selected in parents are highlighted
in the rectangle box on the left hand side. On the right hand side, those two
sub-trees have been swapped to generate children.

Mutation

Mutation acts on only one individual. It introduces a certain amount of ran-
domness, to encourage exploration. Given one parent obtained by some selec-
tion method, mutation performs three steps:

– Randomly select a sub-tree in the parent.
– Remove the selected sub-tree.
– Randomly generate a new sub-tree to replace the removed sub-tree.

This is illustrated in Fig. 6.4. To obtain the child, the selected sub-tree high-
lighted in the rectangular box on the left hand side is replaced by the newly
generated sub-tree on the right hand side.
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6.2.3 Incorporation of New Individuals

There are two alternatives for implementing step 5 of the algorithm in Fig. 6.2,
the generational approach and the steady-state approach. In each iteration,
the generational approach discards the entire old population P and replaces
it with a newly created set of individuals G′. Each iteration is a generation. In
contrast, for the steady-state approach, once the individuals G′ are created,
they are incorporated back into the population P directly, i.e. the old pop-
ulation P is maintained and some of its individuals are replaced by the new
individuals according to some rules. Therefore, there are no clearly identifiable
generations.

6.2.4 Learning in Genetic Programming

In conventional GP research, the knowledge encoded in the population, and
the value of using it, have long been a focus of study. Consequently, numer-
ous methods have been proposed to utilise this knowledge, for example by
adaptive genetic operators, and learning modularity. Studies in this direc-
tion provides some insight into how GP works and as a result have had an
important influence on EDA–GP research.

Modularity and Building Blocks

Modularity and building blocks are related to the processes of hierarchical
problem solving and decomposition. Building blocks (BBs) are defined as sub-
trees which appear more frequently in good individuals. If building blocks can
be correctly identified and used, the performance of GP may be significantly
improved.

This line of research includes automatically defined functions (ADF) [33],
genetic library builder (GLiB) [4] and adaptive representation (AR) [57]. The
basic idea is that during the search, good sub-trees are identified, either heuris-
tically or by means of evolution, and are then explicitly encapsulated in some
form as one entity, so that they can be re-used later on.
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Permutation and Crossover

Permutation and crossover are also closely related to BBs. Since the discovery
and utilisation of BBs are important aspects of GP, it is important to adapt
genetic operators so that they can help to preserve and promote BBs.

In [3], two self-adaptive crossover operators, selective self-adaptive crossover
and self-adaptive multi-crossover, were proposed. These new operators adap-
tively determine where crossover will occur in an individual. Experimental
results demonstrate that both of these self-adaptive operators perform as well
or better than standard GP crossover.

Recombinative guidance for GP is proposed in [29]. In this approach, all
the performance values for all the sub-trees of a GP tree are calculated. These
values are then used to decide which sub-tree will be chosen to apply GP
operations on. Although GP with recombinative guidance performs well on
some problems, the definition of a sub-tree value is problem dependent.

6.2.5 Some Issues in GP

Although the basic ideas of GA and GP are similar, they have unique char-
acteristics because of the representation differences. We focus on some of the
characteristics of GP that are relevant to this survey. In order to highlight
these characteristics, we need to sometimes make a comparison with classic
GA, on which conventional EDA is based. Classic GA in this discussion is
roughly the GA system with fixed length, semantics attached to each locus,
and no genotype to phenotype mapping.

Semantics

When evolving a linear structure, as a classic GA does, it is usually assumed
that the semantics are attached to each locus (each position of the GA linear
string is called a locus). For example, when using a classic GA to solve a
travelling salesman problem, one common encoding method has each locus
representing one step, in which one specific city is visited. In other words, the
first locus is interpreted as the city ID that is to be visited in the first step,
the second locus is the second city to be visited, etc.

However, it is very hard, if not impossible, to build an analogy for this
in GP. GP tries to assemble a set of symbols which have meaning on their
own. Thus the meaning does not change, no matter where the symbol is.
Consequently, the effect of the node has to be understood in its surrounding
context, not by the absolute position of the symbol.

For example, in the symbolic regression problem, each symbol has its own
meaning; for example, symbol × means multiplication. This meaning does not
need to be interpreted according to its position. No matter whether × sits on
either the root node or a node at some other depth level, × has the same
meaning.
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Building Blocks

The Schema Theorem and its related building block hypothesis [14, 28] provide
a mathematical perspective to analyse GA and interpret its behaviour. These
ideas have also been extended to GP research.

In GA, a schema is defined as any string composed of 0’s, 1’s and *’s.
Each schema represents the set of bit strings containing the indicated 0’s and
1’s, with each “*” interpreted as a “don’t care”. For example schema 0*1
represents the set of bit strings composed of 001 and 011 exclusively. As we
can see, in this definition, a schema implicitly takes position as a reference.
This is related to the semantics discussed earlier. In theoretical GP research,
such as [33, 46, 79], because the semantics are attached to the symbols, the
schemas are non-rooted and thus the position reference is removed. In these
studies, a schema is defined as a sub-tree of some kind, and the absolute
position of the sub-tree is not considered. The quality of a non-rooted schema
is hence determined by its own structure, not just by where it is. Some more
recent studies [34, 56] have introduced rooted schema. However, it seems likely
that this approach is motivated primarily by the mathematical tractability of
schema modelling.

This subtle change in the definition of GP schema makes GP schema
research more relevant than just taking the original GA definition into
GP. Taking an example from symbolic regression problems, the symbol ×
returns completely different values depending on its surrounding context –
two operands in this case. This suggests that the effect of the symbol closely
depends on the surrounding context.

Bloat and Introns

In GP, individuals tend to bloat, i.e. to grow rapidly in size over the course
of a run while the fitnesses do not improve. This has been well recognised in
GP research [2, 8]. Bloat often involves introns. When evolving solutions in
GP, it is common that some parts of an individual do not contribute to its
fitness, and thus can be removed when evaluating fitness. These parts of the
individual are called introns. There is no consensus on the cause of introns or
their impact on GP performance, but their existence is amply confirmed. In
contrast, this phenomenon does not exist in classic GA, which usually employs
a fixed length linear representation

6.3 Lessons from GP Research in Searching for Models

Because the basic idea of EDA is to approximate the true distribution of
solutions using a model M, it is vital to choose an appropriate model M.
Consequently, conventional EDA research, which often employs a GA-style
linear string to encode individuals, heavily focuses on finding such a suitable
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probabilistic model M. The GA literature supports the belief that there are
dependencies between genes (also known as linkages). In the EDA literature,
many different kinds of probabilistic models have been proposed to represent
linkage.

Estimation of the distribution of tree form solutions is far more complex
than simply applying conventional EDA to a tree representation. One of the
major difficulties lies in finding an appropriate probabilistic model. We may
take lessons from GP research in this respect. Based on current GP under-
standing, we are convinced that a good model for EDA–GP should have the
properties listed later.

6.3.1 Internal Hierarchical Structure

The tree representation has an internal structure – an intrinsic hierarchical
structure. The model for EDA–GP needs to be able to represent this structure.
Thus when sampling the model, i.e. when generating individuals from the
model, a valid tree structure should be guaranteed. In this context, a valid
tree is a tree that can be evaluated and complies with the given constraints,
such as legitimate terminal and non-terminal symbol sets, depth limit and
typing.

6.3.2 Locality of Dependence

In conventional EDA, the model employed does not usually assume specific
dependencies between adjacent loci - a reasonable assumption for GA repre-
sentations. However, in a tree structure, dependence exhibits strong locality,
and this is the primary dependence which we should consider in tree repre-
sentation. For example, dependencies (relationships) between parent and child
nodes are expected to be stronger than among other nodes.

Another perspective for viewing this locality of dependence comes from se-
mantics. When evolving a linear structure, as conventional EDA does, usually
we assume the semantics are attached to the loci. For example, when using GA
to solve the travelling salesman problem, one common encoding method uses
each locus to represent a single step in which one specific city is visited. By
contrast, in a tree representation, the meaning of each node is clearly defined
by the symbol attached, and the effect of the node has to be interpreted in its
surrounding context. For example, in the symbolic regression problems, the
symbol × returns completely different values depending on the two operands.
The model chosen for evolving the tree structure has to be able to represent
this strong local dependence, as well as dependence on a larger scale.

6.3.3 Position Independence

Position independence is actually very closely related to locality of depen-
dence. It emphasises that in GP tree representations, the absolute position of
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a symbol does not play a large role. Because of locality of dependence, a sub-
structure may occur in various locations in different GP trees, but still have
an identical or similar contribution to the overall fitness. This belief is well
reflected in various GP schema theories [33, 46, 79], as discussed in Sect. 6.2.5.

The prevalence of introns [2] in GP representations provides a second rea-
son for emphasising the importance of positional independence in EDA–GP
models. When evolving solutions in GP, it is common that some parts of an
individual, called introns, do not contribute to the fitness, and thus can be
removed when evaluating fitness. If EDA–GP models are position-dependent,
introns which move the location of a particular building block complicate the
learning process, since each location has to be learnt separately; in a position-
independent model, occurrences of a building block in different locations can
reinforce each other.

An example may help to clarify the importance of position independence.
Suppose we have a symbolic regression problem which requires GP to approx-
imate the following function (i.e. the input and output of the function is given
to GP and GP is required to find a function which has similar behaviour):

f(x) = x3 + x2 + x.

The individual in Fig. 6.5 is a possible solution. In this solution, the sub-trees
in the boxes A and B, which produce x2 is apparently a building block for the
problem. However, the fact that this building block appears in both box A
and box B suggests that position does not need to be a hard constraint in the
probabilistic model, as is the case with EDA–GP. The sub-tree in box C does
not contribute to the overall fitness of this individual. Thus, it is an intron
and can be removed. Adding or removing box C would not change the fitness
but it will change the position of the sub-tree in box B. The sub-tree in box
B is always a building block for this problem no matter how many introns are
inserted in front of it. This suggests that introns may change the position of
the building block and thus is another cause of position independence. This
example shows that it may be desirable for probabilistic models of EDA–
GP to have a flexible positional reference, as it may assist the discovery and
promotion of building blocks.

+

* x − *
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Fig. 6.5. Position independence and modularity in a tree-shaped individual
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6.3.4 Modularity

In a tree representation, it is common that building blocks, which are relatively
independent sub-solutions, may need to be shared among tree branches and
individuals. Therefore, one building block may occur multiple times, either in
one individual or across the population.

This has been validated by numerous studies, such as ADF [33], GLiB [4]
and AR [57]. In these studies, the “useful” sub-trees are identified, either by
means of evolution or by some other heuristics, and are then encapsulated as
intermediate building blocks so that they can be used multiple times within
both one individual and also shared across the population. By identifying and
reusing the useful structures, these studies have reported improvement over
conventional GP.

An example of an ADF can be found in Fig. 6.6. When using ADFs, a
GP tree has two parts, the result producing branch and a function defining
branch. The function defining branch, on the left hand side in Fig. 6.6, defines
a sub-tree as a function so that it can be called multiple times in the result
producing branch. The result producing branch is a normal GP tree which can
return the value of the entire program, but in addition to using the predefined
functions, it can also refer to the functions defined by the function defining
branches.

Let us again look at the example used earlier. The same sub-tree in Fig. 6.5
occurs twice, in the boxes A and B. It is desirable that these common struc-
tures are regarded as one single building block which can be shared within the
individual and across the population. Furthermore, this makes learning more
efficient, because it does not need to re-learn the common structure in different
positions. This example clearly demonstrates the importance of modularity as
a desirable characteristic of the probabilistic model for EDA–GP.

6.3.5 Complexity, Generalisation, and Minimum Encoding
Inference

GP individuals usually do not have fixed complexity. This is one of the im-
portant properties of GP. In this, it differs radically from GA, which uses
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a fixed length string to encode individuals. GP is aimed at problems where
no prior knowledge is available regarding the complexity of their solution.
Hence, theoretically, there is no complexity constraint on individual GP
trees.

Even if we do impose some limits, such as maximum depth or maximum
number of nodes, the individual complexity still varies significantly from indi-
vidual to individual, from generation to generation. A fixed-complexity model,
resembling some models in conventional EDA in having a fixed size in terms
of number of variables, may have difficulty in reflecting this variation. Note
that variable complexity does not necessarily imply greater complexity. In
a fixed complexity model, the initial model must be sufficiently complex to
model solutions. Otherwise search will fail. Hence, there is a temptation to
start with a high complexity model, leading to a high search cost. By contrast,
a variable complexity system can start with a low complexity model, relying
on the learning method to increase its complexity as required.

Another perspective of looking at complexity is generalisation. Solutions
to problems are usually required to be not only correct, but robust. In par-
ticular, most GP problems involve some form of learning in the presence of
noise, hence the well-known relationship between generalisation and complex-
ity means that, assuming other things being equal, simpler models are pre-
ferred. This implies a necessity to trade off model complexity against model
accuracy. While a wide range of approaches to this trade-off have been used
in GP, in the more theoretically-based EDA approaches, these trade-offs have
usually been based on minimum encoding inference, more commonly referred
to as the minimum message length (MML) principle [74–76] or minimum
description length (MDL) principle [54]. In this chapter, the term MML is
employed to refer to both. The basic idea of MML is that a preferred model
should give the minimum cost for describing the given data. In more detail,
it should minimise the sum of the description length of the model, and the
description length of the error of the model, given the data. The first part
represents the complexity of the model and the second part is the cost of
representing the data with respect to the model. It is very intuitive that the
preferred model should be simple (short description length of the model) and
accurate (short description length of error). Further, although a too-complex
model may have better accuracy, it is very probable that it will not generalise
well, i.e. it will not work well on unseen data. Conversely, a too-simple model
may have very bad accuracy, and thus should also be penalised. MML is an
important information-theoretic inference method, which has both intuitive
appeal, and a solid theoretical support.

In order to effectively extend conventional EDA to tree representation,
we may take lessons from GP research, which also employs the same rep-
resentation. From the perspective of current GP research, we have identi-
fied the above five properties to be important for probabilistic models of
EDA–GP.
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6.4 PIPE Model

The first stream of EDA–GP work will be reviewed in this section. The earli-
est EDA–GP work was PIPE [63]. PIPE was motivated by the corresponding
work in conventional EDA and GP. A number of studies based on the proba-
bilistic model of PIPE have followed, including ECGP [64] and estimation of
distribution programming (EDP) [82].

Interestingly, PIPE and its related works can fit into the same framework
as conventional EDA. This is possible because the prototype tree of PIPE
is a model assuming independence between random variables, while EDP
considers pairwise dependences only, and ECGP extends this to multivariate
dependence.

6.4.1 Probabilistic Incremental Program Evolution

PIPE [63] uses the probabilistic prototype tree (PPT) to represent the prob-
ability distribution of tree form programs. Its basic algorithm is consistent
with the EDA illustrated in Fig. 6.1, and the learning method to update the
PPT resembles the probability learning methods of PBIL [6].

PIPE iteratively generates successive populations of tree form programs
according to an adaptive probability distribution over all possible programs
of a given maximum depth, represented as a PPT. For example, in Fig. 6.7
which is adopted from [63], the left hand side is a PPT in which each node
is a probability vector (more abstractly, each node is a random variable),
indicating the probability of occurrence of different symbols. The right hand
side is one of the possible GP trees, sampled from the PPT.

More specifically, the basic procedure of PIPE is as follows. Firstly, proba-
bilities in the prototype tree are initialised uniformly. Starting from the root,
we keep visiting nodes on the prototype tree until a valid tree, acting as an
individual, is generated. When visiting each node, we choose a symbol accord-
ing to the probabilities in the probability table of that node. In this way, a
set of individuals (i.e. a population) is generated. Good individuals are then

P(rlog)= 0.03

+

exp %
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P(R) = 0.01
P(x) = 0.01

Fig. 6.7. Probabilistic incremental program evolution (adopted from [6])
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selected from the population, and all of the probabilities of the entries in the
probability table, which were used to generate those selected individuals, are
increased. In other words, the probabilities of generating those good individ-
uals are increased. Therefore, in each iteration, the probability distribution
is updated using the best programs. Thus the structures of promising indi-
viduals are learnt and encoded in the PPT. This is the learning process for
one step of a prototype tree. A new population is then generated from this
updated prototype tree and a new iteration starts.

PIPE is significant as the first research in this area. It can be regarded as a
tree-based extension of the linear string-based PBIL [6]. In PIPE, each node of
the PPT is treated as an independent random variable, in that its probability
is learnt independently from the other nodes. Therefore, what PIPE tries to
learn is the probability of particular functions in particular loci. PIPE also
implicitly assumes that the building blocks are position dependent. That is, in
the PPT, the useful sub-trees/building blocks are attached to specific positions
and cannot be moved to other positions.

6.4.2 Extended Compact Genetic Programming

ECGP [64] is a direct extension of ECGA [26] to the tree representation which
is based on the PIPE prototype tree.

In ECGA, marginal product models (MPMs) are used to model the inter-
action among genes, represented as random variables, given a population of
GA individuals. MPMs are represented as measures of marginal distributions
on partitions of random variables. For example, in ECGA, an MPM for a
four-bit problem might be

[1, 3][2][4].

This represents that the first and third genes have intensive interaction, and
the second and fourth genes are independent. That MPM would consist of
the following marginal probabilities. {p(x1 = 0, x3 = 0), p(x1 = 0, x3 = 1),
p(x1 = 1, x3 = 0), p(x1 = 1, x3 = 1), p(x2 = 0), p(x2 = 1), p(x4 = 0),
p(x4 = 1)}, where xi is the value of the ith gene.

This idea has been extended to the GP tree representation in ECGP.
ECGP is based on the PIPE prototype tree, and thus each node in the proto-
type tree is a random variable. ECGP decomposes or partitions the prototype
tree into sub-trees, and the MPM factorises the joint probability of all nodes
of the prototype tree, to a product of marginal distributions on a partition of
its sub-trees.

A greedy search heuristic is used to find an optimal MPM mode under the
framework of minimum encoding inference (see Sect. 6.3.5).

ECGP can represent the probability distribution for more than one node
at a time. Thus, it extends PIPE in that the interactions among multiple
nodes are considered.
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Fig. 6.8. Probability distribution model in EDP

6.4.3 Estimation of Distribution Programming

EDP is another extension of PIPE. Instead of treating each node as an in-
dependent random variable, EDP tries to model the conditional dependency
among adjacent nodes in the PIPE prototype tree.

It is argued in [82] that strong dependence should exist between each par-
ticular node and its parent, grandparent and sibling nodes. (This is consistent
with the argument of locality of dependence made in Sect. 6.3.2.) Some pos-
sible combinations of these dependences are illustrated in Fig. 6.8. The basic
structure is again a PIPE prototype tree. For example, if node X4 is under
examination, then the thick lines indicate the important dependences. The
right-most model is the most comprehensive model, which captures all the
dependences believed to be important, while the left-most one is the most
simplified model, in which only the dependence between one node and its im-
mediate parent node is considered. Because of the computational overhead,
among these possible models, the left-most model is implemented in [82]. In
this work, the conditional probability between a child node and its parent
are estimated, based on the selected individuals. Thus, EDP extends PIPE in
that the probability distribution between two nodes is considered.

6.4.4 Summary

A visualised comparison of PIPE, ECGP and EDP can be found in Fig. 6.9.
Each grey circle stands for a node of a PIPE prototype tree. The dependences
considered in each model are illustrated by the bounded regions.

The left most figure in Fig. 6.9 corresponds to PIPE. Each node is treated
as an independent variable. The figure in the middle is ECGP. The prototype
tree is divided into sub-trees and there is no dependence considered between
different sub-trees. The right most figure is EDP, which models the conditional
probability of the node given its parent.

In summary, all these works are based on the prototype tree of PIPE, in
which the probability tables of a prototype tree are organised in tree form.
Therefore, these PIPE-based works can handle well the GP-style tree struc-
ture. In the original PIPE, each node is an independent random variable and
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ECGP EDPPIPE

Fig. 6.9. Comparison of PIPE prototype tree-based probabilistic models of
EDA–GP

thus its probability does not depend on any neighbouring nodes. The ex-
tensions, made in EDP and ECGP, make it possible to consider interactions
among nodes. Further, the PIPE prototype tree does not have a problem
in handling individuals with varying complexity. PIPE and related methods
can also be very computationally efficient, due to the simplicity of using the
prototype tree as their probabilistic model. However, because of the position
reference embedded in the prototype tree, we cannot see any obvious way
for PIPE-based methods to efficiently recognise building blocks with no fixed
position.

One perspective on EDA–GP is to view it as a search through the space of
all distributions on tree structures, gradually narrowing towards a distribution
concentrated on solutions to the problem in question. Distributions over tree
structures are a probabilistic generalisation of sets of tree structures – in other
words, of languages. But if we view EDA–GP as a search through the space
of probabilistic languages, the natural question arises, can we model this as
a search through the space of some family of probabilistic grammars? And
if so, can we use a family of grammars as the base models for representing
the distributions? This leads naturally to the grammar-based methods for
EDA–GP.

6.5 Grammar Model

Grammar model-based EDA–GP has a close connection with grammar guided
genetic programming (GGGP). In GGGP, the grammar, as a formal model,
effectively imposes a constraint on the search space, but the main search
mechanism is still conventional genetic search. Grammar model-based EDA–
GP takes grammars as probabilistic models, just like any other probabilistic
model used in EDA research. Grammars are well-studied formalisms, origi-
nally proposed to model the internal hierarchical structure of languages, ei-
ther natural languages or formal languages. They are particularly suitable for
modelling GP-style tree structures because GP-style tree structures are just
another kind of hierarchical structure.

Grammar model-based EDA–GP work can also be fitted into the same
framework as conventional EDA. In a grammar model, each rule describes the
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dependence between the LHS symbols and the RHS symbols. Therefore, it is
primarily a model of pairwise dependence. Through the chain of dependency,
it is also adequate to describe structures which have more than two closely
related nodes.

In this section, we first present a brief introduction to grammar, followed
by related work from GGGP. EDA–GP with a grammar model is discussed in
the last two subsections. These subsections are divided according to the types
of grammar learning methods used.

6.5.1 Stochastic Context-free Grammar

There are a variety of grammar models in the field of natural language
processing (NLP). Among them, context-free grammars (CFG) and stochas-
tic context-free grammars (SCFG) [39] are most relevant to this chapter. The
CFG is the commonest grammar formalism used in GGGP. SCFG can be
viewed as a straightforward extension of the CFG, i.e. a CFG with an extra
probability component.

Minimum encoding inference methods, such as minimum message length
(MML) [74, 75] and minimum description length (MDL) [54], are widely used
for inferring grammar models, in particular, inferring SCFGs [16, 70].

Formally, a SCFG M consists of:

– A set of non-terminal symbols N .
– A set of terminal symbols (or alphabet) Σ.
– A start non-terminal S ∈ N .
– A set of productions or rules R. The productions are of the form

X → λ,

where X ∈ N and λ is in the union of all powers of the elements of N ∪Σ,
i.e. λ ∈ (N ∪Σ)∗. X is called the left-hand side (LHS) of the production,
while λ is the right-hand side (RHS).

– Production probabilities p(r) for all r ∈ R. For any given LHS symbol X,
the sum of the probabilities of rules which have LHS X must be 1, i.e.∑

r has LHS X

p(r) = 1.

The naming convention is as follows. The non-terminal symbols are dis-
tinguished by starting with a capital letter. Terminal symbols are defined
by lower-case letters. A string that may be composed of both terminal and
non-terminal symbols is represented by lower-case Greek letters.

Figure 6.10 is an example of a SCFG for a symbolic regression problem.
This grammar can generate all the mathematical functions which involve op-
erators +,−,×, /, sin, cos, log, e∧. The symbol “|” represents disjunction which
means the particular LHS may be rewritten with any of the RHSs connected
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S → Exp (0)
Exp → Exp Op Exp | (1)

→ Pre Exp | (2)
→ x (3)

Op → + | (4)
→ − | (5)
→ × | (6)
→ / (7)

Pre → sin | (8)
→ cos | (9)
→ eˆ | (10)
→ ln (11)

Fig. 6.10. A commonly used SCFG for symbolic regression problems. The proba-
bilities attached to the rules follow a uniform distribution, and are therefore omitted

by |. For example, LHS symbol Exp may be rewritten with either rule 1, 2
or 3. Similarly, Op may be written as +,−,× or / under rules, 4, 5, 6 and
7, respectively. For this example, we assume that the probabilities follow a
uniform distribution, and therefore the probabilities attached to the rules are
omitted.

Derivation

For any strings γ and δ in (N ∪Σ)∗, if string γSδ can be transformed to string
γαδ by rule S → α, we say that γSδ directly derives γαδ in grammar M , or
γαδ is directly derived from γSδ. This is denoted as follows.

γSδ
S→α⇒ γαδ.

If there exists a sequence of direct derivations α0 ⇒ α1, α1 ⇒ α2, . . . ,
αn−1 ⇒ αn, where α0 = α, αn = β, αi ∈ (N ∪ Σ)∗, and n ≥ 0, which
transforms string α to string β, we say α derives β, or β is derived from α,
denoted as follows.

α
∗⇒ β

Such a sequence is called a derivation. Thus a derivation corresponds to
a sequence of applying productions to generate a string. A derivation can be
represented in a parse tree format, called a derivation tree or parse tree. For
example, Fig. 6.11 is a derivation tree of string x − (x + x).

In SCFGs, the probability of a derivation (or a derivation tree) is the
product of the probabilities of all the production rules involved. Formally, the
probability of a derivation α0 ⇒ α1, α1 ⇒ α2, . . . , αn−1 ⇒ αn, where each
step of derivation is a direct derivation, is

p(α0
∗⇒ αn) =

i=n−1∏
i=0

p(Xi = λi), (6.1)
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Fig. 6.11. Derivation tree of string x − (x + x)

where production rule Xi = λi is used to derive αi+1 from αi and p(Xi = λi)
is the probability of using the rule Xi = λi.

CFG theory and GP theory use the term “parse tree” inconsistently with
each other; to avoid confusion, this chapter will use the term “derivation tree”
(which is not otherwise used in GP) rather than “parse tree”. Note: although
a derivation corresponds to only one string, a string without bracketing to
represent its internal structure, may (in general) be derived in a number of
different ways from a given grammar. In NLP, this phenomenon, known as
ambiguity, causes severe difficulty when inferring grammars from sentence
examples. However, in GGGP, and in the research presented in this chapter,
this is generally not an issue, because in both fields of research, the derivations
of the individuals/examples from the given grammar are preserved, and thus
correct, unique derivations are known.

In this chapter, sampling an SCFG grammar means deriving a set of strings
from the given SCFG grammar. When deriving a string, an LHS may have
more than one RHS. As previously defined, an SCFG has a probability com-
ponent attached to each rule (more accurately to each RHS). The RHS is
chosen based on this probability.

For example, a common SCFG grammar for the symbolic regression prob-
lem is illustrated in Fig. 6.10. An individual, which may be derived or sampled
from this grammar, is illustrated in Fig. 6.11. The individual in Fig. 6.11 is
derived by applying the following sequence of rules. Starting from the starting
symbol S, rule 0 is chosen to rewrite S and obtain

Exp Op Exp.

After probabilistically choosing rules 3, 5 and 1 to respectively rewrite these
three symbols, the following string is obtained:

x − (Exp Op Exp).

Symbols “x” and “−” are terminals because there is no rule which can rewrite
them. Therefore, only the last three symbols are written with rules 3, 4 and
3, respectively. The eventual result is:

x − (x + x).



6 A Survey of Probabilistic Model Building Genetic Programming 141

As defined in (6.1), the probability of the earlier derivation can be calcu-
lated as the product of the probabilities of all the rules involved. The rules
involved in this derivation were used in the following order

0 3 5 1 3 4 3.

The probability of rule 0 is 1 because there is no other alternative. Given
the assumption of uniform distribution, because “Exp” can be written with
rule 1, 2 or 3, the probability of rule 3 is 1/3. Similarly we may work out the
probability of other rules. Thus, the probability of this derivation is

1 × 1
3
× 1

4
× 1

3
× 1

3
× 1

4
× 1

3
≈ 0.00077.

As mentioned earlier, some symbols can be rewritten with more than one
rule. For example, the symbol “Exp” can be rewritten using either rule 1, 2 or
3. In conventional GGGP, a uniform distribution of the probabilities of rules
is assumed. Therefore, the choice of which rule to apply is made uniformly
randomly. However, it does not have to be so. In some work, such as [77],
weights, which roughly correspond to the probabilities attached to rules, are
assigned to rules, so that this choice can be made to stochastically favour
some rules over others.

Learning Grammars with Minimum Encoding Inference

Since grammars originated in the field of NLP, and it is an important means to
model language, grammar inference (learning) has been extensively studied in
NLP [62]. In EDA–GP research, we are particularly interested in the inference
of SCFGs.

An SCFG can be understood as a CFG with probabilities attached. There-
fore, it has two parts: the structure (the CFG part) and the probability part.
To learn an SCFG model, we have to learn these two parts. The inference of
the structure (CFG) [5, 60, 61] and of the probabilities given CFG [35, 36, 51]
were initially studied separately. However, recent works address the inference
of the full SCFG simultaneously, including both the structure and the proba-
bilities of SCFG [15, 24, 32, 47, 70]. The methods used to infer the SCFG are
usually based on minimum encoding inference (see Sect. 6.3.5).

Inferring an SCFG is a difficult problem. Given the MML principle, most
of the current methods in SCFG inference are based on greedy search. In
greedy search, the SCFG is altered using some variation operators. If, after
a given number of variations, a better SCFG is found, it is accepted as the
basis for the next iteration. Otherwise, the search usually stops. During the
search, the MML principle is used to compare competing models.

From this perspective, grammar-model-based EDA may be viewed as a
form of iterated grammar inference method, which tries to iteratively find
better grammar models favouring high fitness individuals (i.e. grammar mod-
els which have an increased probability of generating high fitness individuals),
by means of search methods, usually under an MML framework.



142 Y. Shan et al.

6.5.2 Conventional GGGP with Grammar Learning

GGGP [23, 77, 81] is a GP approach relying on a grammar constraint. All
kinds of grammars can be used to describe the constraint but this thesis will
mainly focus on CFG. Similar to Strongly-typed GP [41], grammars in GGGP
provide a systematic way to handle typing.

GGGP usually has a predefined fixed grammar to impose the constraint.
For example, the grammar in Fig. 6.10 is a commonly used grammar in GGGP
for symbolic regression problem. The initial population is generated by sam-
pling this grammar. The tree structure in Fig. 6.11 is a typical individual of
GGGP. Once the initial population is obtained, the genetic operators, such as
crossover and mutation, are applied. The use of a grammar requires that the
genetic operators must respect the grammar constraint, i.e. after imposing
a genetic operation, the child must still be grammatically correct. In other
words, the child must still be consistent, after genetic operations, with the
given grammar. To ensure this consistency, the crossover and mutation oper-
ators are modified. For example, only sub-trees which have the same symbol
in their roots can be swapped in crossover. The selection procedure is identical
to conventional GP. After selection, the next iteration starts.

Due to the introduction of a grammar, GGGP can constrain the search
space so that only grammatically correct individuals can be generated. Thus,
it can be used to reduce the search space or to introduce some background
knowledge.

The recent grammar-based EDA research was prefigured by two studies
which incorporated learning into the GGGP process. In conventional GGGP,
it had been noticed early on that a grammar can not only be used to impose
an initial bias, but can also be revised during search to further bias the search
according to updated available experience. There are two studies in this field.

Whigham’s Work

In [78], grammar refinement was introduced into conventional GGGP. More
specifically, it functions as a conventional GGGP system but the grammar
is refined during the search, and new individuals generated from the refined
grammar are fed back into the population.

The refinement of the grammar has two components. The first updates the
probabilities of rules. Merit, derived from probability, is attached to each rule
to reflect the frequency of the rule use. This merit is updated according to its
use in superior individuals. Then, when generating new individuals, the merit
has a similar function to the probability in SCFG. The second component
adds new production rules. New productions are learnt from the superior
individuals, and they are chosen in a way to have minimum impact on the
original grammar.

The population in the new generation not only has individuals obtained by
applying genetic operators, but also individuals generated from the updated
grammar.
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As can be seen, this work is essentially a conventional GGGP, because its
main search mechanism is conventional genetic search, and the incorporation
of individuals generated from the refined grammar is only an aid to further
bias the search. The grammar learning is also ad hoc. However, the importance
of this work is that it first showed that grammars may be a good model for
incrementally guiding the search.

Tanev’s Work

A similar approach is proposed in [71]. Tanev incorporated learning Stochastic
Context-sensitive Grammars (SCSG) into conventional GGGP.

This work is in the context of a dynamic environment. At the end of a
run, a grammar is learnt from the best-of-run individuals. It is then moved
to the new environment. In the new environment, part of the new population
is generated from the learnt grammar, and the mutation operator must also
respect the learnt grammar.

The grammar used here is an SCSG, which in this circumstance can be
loosely understood as an SCFG with a context constraint. With the extra
constraint, whether a rule is admissible is not only decided by matching the
LHS, but also by matching the context. In [71], the probabilities and context
are learnt in order to favour some rules, and to restrict the places where a
rule can be applied.

More specifically, SCSG grammar learning happens at two levels. One is
the probability learning. The other is the context learning. A fixed amount of
context is added to the grammar to make the grammar more specific, so that
some areas of the search space can be more intensively investigated.

This research is an enhancement of GGGP with the aid of a grammar
model. The grammar learning occurs only once, and the main search mecha-
nism is still genetic search. Through a comparison with conventional GGGP,
this work empirically verifies that grammars can be used to efficiently bias
search to promising areas and thus obtain superior performance.

6.5.3 Learning Parameters of a Grammar Model

As Whigham’s work showed that grammar learning could form a useful ad-
junct to the genetic operators of genetic programming, it is not surprising that
other researchers proceeded to investigate whether the genetic operators were
necessary at all. Most grammar-based EDA–GP works have concentrated on
some form of SCFGs. We know that an SCFG model can be understood as
a normal CFG with a probability component. Therefore, the inference of an
SCFG model usually consists of inferring these two parts, namely the struc-
ture of the SCFG (which is essentially a CFG) and its associated probability
component. Accordingly, we identify two streams of EDA–GP with gram-
mar models. One stream learns the probability only. The other learns both
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structure and probability. The former will be discussed in this section and the
latter will be left to the Sect. 6.5.4.

We note in passing, that theoretically, there is no intrinsic difference be-
tween grammar structure learning and probability learning. The grammar
structure is actually only a form of probability table, where absence of a par-
ticular rule implies that the probability attached to the rule is zero. Therefore,
theoretically we may specify a (possibly infinite) grammar which includes all
possible rules, and where probability learning will assign probability 0 to the
unnecessary or incorrect rules. Distinguishing grammar structure learning and
probability learning is largely a matter of implementation convenience, effi-
ciency and comprehensibility.

Stochastic Grammar-Based GP

Stochastic grammar-based GP (SG-GP) [53] is an interesting but often-
overlooked work proposed by Ratle et al. To the best of our knowledge, it
is the earliest attempt to introduce grammar models into EDA–GP.

In essence, SG-GP learns the probability of an SCFG while keeping the
structure of the grammar fixed. The basic algorithm of SG-GP is consistent
with the EDA algorithm described in Sect. 6.1.2, i.e. it is an iteration of model
learning and sampling.

SG-GP starts with a CFG and weights attached to each rule (the probabil-
ity can be obtained by normalising the weights). Initially, because we have no
prior knowledge, all of the weights are set to equal values (corresponding to a
uniform distribution). Generating individuals from the grammar is similar to
generating individuals from an SCFG, as discussed previously. Also similarly,
at each generation, the probabilities are updated. To do this, the weight of
those rules which contribute to superior individuals are increased, while the
weights of those rules involved in generating inferior individuals are decreased.
More precisely, assuming rule ri is used in a superior individual and rj in an
inferior individual, their weights wi and wj are updated as follows:

wi ← wi(1 + lr)

wj ← wj

1 + lr
,

(6.2)

where lr is a predefined learning rate.
There are two variants of SG-GP proposed in [53], namely scalar and

vectorial SG-GP. What we have discussed is scalar SG-GP, while vectorial is
a straightforward extension of scalar SG-GP. Note that in scalar SG-GP, tree
depth does not play a role. Each rule can be used to generate any depth of
the tree as long as its LHS matches the non-terminal. However, this causes
serious problems when the number of rules is small, which is usually the case.
For example, the grammar in Fig. 6.10 has only 11 rules. No matter how we
update the probability attached to each rule, it is unlikely that this grammar
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would be able to hold enough information to progressively bias the search. In
other words, the model is too simple to be able to adequately describe the
solution space. For example, suppose one particular rule is only beneficial if
it is applied at depth d, but not at depth d′, where d �= d′. In scalar SG-GP
there is no way to record this information.

To alleviate this problem, vectorial SG-GP was proposed. In vectorial
SG-GP, a weight vector is attached to each rule. Each element of the vector
represents the weight of the rule at a particular depth. Therefore, the depth
information is used to effectively increase the total number of rules, i.e. the
model complexity is increased.

However, in both scalar and vector SG-GP the overall structure of the
grammar is fixed and it does not change with the progress of the search.
Clearly, in this method, because of the fixed grammar structure, i.e. the num-
ber of rules is fixed, the complexity of the grammar model does not change.
Therefore, the search may either stop very quickly, especially when the num-
ber of rules is very small, which is usually the case, or the search may con-
verge very slowly if too many redundant rules are involved in the probability
learning.

6.5.4 Learning Structure and Parameter of Grammar Model

PEEL

Program evolution with explicit learning (PEEL) [68] uses a specialised sto-
chastic parametric Lindenmayer system (L-system) [52]. The reason for this
specialised SCFG is a desire to balance between expressiveness of the gram-
mar model and learning efficiency. This L-system is equivalent to a standard
SCFG with two extra conditions on the LHS.

The two conditions introduced are depth and location. So the modified
form of a production rule is

X(d, l) → λ (p).

The first parameter, depth d is an integer, indicating that when gener-
ating individuals, this rule may be applied only at level d (in this respect,
PEEL closely resembles vectorial SG-GP). The second parameter is a loca-
tion l, indicating the relative location where this rule may be applied, p is
the attached probability. In this approach, matching the LHS does not mean
merely matching the LHS symbol X, but also matching these two conditions
on the left hand side.

The location information is encoded as the relative coordinate in the tree,
somewhat similar to the approach of [20]. The position of each node in a
rooted tree can be uniquely identified by specifying the path from the root to
this specific node.

The learning in PEEL involves two iterative stages: probability learning
and grammar structure refinement. The basic idea of probability learning is
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to increase the probabilities of production rules which are used to generate
good individuals. If the probability learning alone is not sufficient, grammar
refinement starts to add more rules by splitting existing rules, so that the
complexity of the grammar model progressively increases. As the grammar
model becomes more complex, its expressiveness increases, and thus more
complicated interaction among tree nodes may be represented and learnt.

The initial grammar will usually be minimal, representing the search space
at a very coarse level. Then, when necessary, through structure learning, rules
are added to focus the search to a finer level. New rules are added by split-
ting existing rules, thus adding more context information. Once more context
information has been added, one production can be split into several.

For example, we have the following grammar rule:

X(d = 1, l = #) → λ(p = 0.33).

This rule could be applied to rewrite a predecessor X at depth 1. l = #
implies that no location information will be considered. Therefore, at depth 1,
as long as predecessor X is matched, the rule would be applied with probability
p = 0.33 no matter where the predecessor X is. Suppose, however, that the
location does have a strong impact on the fitness of an individual, and thus
should be learnt. Hence, it is necessary for the system to be able to increase
the expressiveness of the grammar through refinement. For example, if we
split the above rule into three:

X(d = 1, l = 0) → λ(p0),
X(d = 1, l = 1) → λ(p1),
X(d = 1, l = 2) → λ(p2),

then the location information can be represented. For example, at depth 1
(d = 1) an X at location 2 will be rewritten as λ with probability p2 while at
location 0, it will be rewritten with probability p0.

Briefly, PEEL is an EDA–GP method which learns a specialised form of
SCFG grammar. Both the probability component and the structure of the
grammar is learnt in PEEL. The structure is learnt by incrementally splitting
the existing rules so that more location information can be added.

Bosman’s Work

Bosman’s work [14] intentionally extends EDA to EDA–GP, and infers a full
grammar (both grammar structure and probabilities).

In [14], the derivation trees are not preserved – an unusual practise in
GGGP – so ambiguity occurs when re-parsing the individual. Therefore, a
large amount of effort is put into correctly re-parsing the derived sentence
(individual), and a highly complex method is used.

The basic idea of [14] is as follows. It starts with a minimum SCFG. In
each iteration, the grammar is learnt and sampled to obtain the next popu-
lation. The grammar structure learning method is rule expansion (with some
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constraints to ensure correct parsing). The learning method is a greedy search
similar to most EDA work, and MDL is used to choose between competing
models. In MDL, the model complexity term is measured by the number of
symbols in the grammar. When estimating the probabilities of rules, depth is
introduced as an extra dimension, similar to SG-GP.

Through the expansion of grammar rules, more production rules are added
and their probabilities are estimated accordingly. Thus the grammar becomes
more specific, enabling the system to progressively bias search.

GMPE

Grammar model-based program evolution (GMPE) [67], is based on grammar
learning methods from the field of NLP. NLP provides a strong theoretical ba-
sis, and avoids re-inventing the wheel. GMPE tries to learn a standard SCFG
model, which is then used to direct its search. MML is used to guide the
search for an SCFG model. It appears that most types of building blocks pre-
viously considered in GP research can be explicitly represented and preserved
in GMPE.

The grammar learning method of GMPE is mainly inspired by [70]. This
approach uses a specific-to-general search method, where the inference of the
SCFG model is regarded as searching for the optimal model among the pos-
sible model solutions. The search operator is a modified merge operator –
the Initial-Grammar-Consistent merge operator (IGC merge) a variant of the
standard merge operator [70], modified to enforce consistency between the
learnt grammar and the initial grammar.

This merge operator takes two rules and unifies their LHSs to one symbol
(a necessary check of consistency is omitted for simplicity of explanation).

X1 → λ1,
X2 → λ2,
⇓ merge(X1, X2) = Z,
Z → λ1,
Z → λ2.

After the merge, all the occurrences of X1 and X2 in the grammar are
replaced by Z. As can be seen, before merge, X1 can only be rewritten with
λ1, while after merge, X1 and X2 are not distinguishable, so that the places
where X1 appears can be rewritten with either λ1 or λ2. The same applies
to X2. It is not hard to see that the merge operator usually generalises the
grammar. Before the merge, the two rules had different LHSs; after the merge,
the two rules share LHSs, so the merged grammar can cover more strings.

The basic algorithm is as follows. A model which only covers the training
samples is initially constructed, i.e. this grammar can generate only the se-
lected individuals of the current population. Search operators, consisting of
IGC merges, are then imposed on the model to vary it, usually to generalise
it. Since it is not possible to enumerate all the possible sequences of merges,
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a hill-climbing method is adopted. The metric derived from MML determines
which search operations to accept, and also when to stop the search. Thus,
IGC merge is repeatedly applied to the grammar to generalise it until the
grammar does not improve any more with respect to the MML metric.

GMPE is a highly flexible method. It employs standard SCFG models and
a well-known learning method. Theoretically, various forms of the building
blocks studied in the GP literature can be represented. However, GMPE is
very computationally expensive because the MML metric for grammar learn-
ing has to be frequently calculated to compare competing grammars, and the
number of competing models is enormous.

6.5.5 Summary

A number of typical grammar model-based EDA–GP approaches have been
surveyed in this section. An informal impression of the relationships among
these works may be gained from Fig. 6.12. It gives a conceptual overview
of some of the main EDA–GP approaches: PIPE [63], EDP [82], vector SG-
GP [53], ECGP [64], Bosman’s work [14], PEEL [68] and GMPE [67].

Different approaches are organised according to the degree of constraint
imposed on their handling of dependence, and their consequent computational
cost. The constraint has two-dimensions, the type of interactions among nodes
(i.e. the complexity of the interaction relationships that can be represented),
and position dependence (i.e. whether the dependence between nodes is posi-
tional). These two properties are summarised in brackets under the name of
each method. The lower part of the figure lists approaches based on grammar
models, while the upper part lists systems based on the PIPE prototype tree.

Among all these approaches, the earliest – PIPE – is the most rigid in
representing building blocks. In PIPE, probabilities sit at particular positions
of the prototype tree and thus cannot be moved around, and the probabilities
in each node are independent. GMPE, at the other extreme, is the most flexible

Low High

EDP
(fixed, pairwise)

ECGP
(fixed, multivariate)

Computational Cost / Flexibility of Representing Building Blocks

SG-GP (Vector)
(depth, pairwise)

Bossman’s
(depth, pairwise/multivariate)

PEEL
(depth, pairwise/multivariate)

GMPE
(no position constraint,
pairwise/multivariate)Grammar Based

Prototype Tree Based 

(fixed, independent)
PIPE

Fig. 6.12. Relations among EDA–GP methods
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in representing building blocks, in that its probability model does not have
any positional reference, and the probabilities on the grammar productions
can represent pairwise or even multivariate interaction among nodes. Some
methods in the middle of the spectrum, such as SG-GP, take only depth,
instead of full position, as a reference.

From the perspective of computation cost, the methods on the left, such
as PIPE, have the least computational overhead while those on the right,
such as GMPE although very flexible in representing building blocks, are the
most expensive to compute. There is no best algorithm as such. Whether
the algorithm is suitable for a particular problem depends on the type of the
building blocks needed, and the computing resources available.

6.6 Inference of Probabilistic Graph Model

Besides the traditional perspective of model dependence or the formalism of
the model, there is an alternative perspective for viewing EDA. That is the
perspective of probabilistic graph models. This view is applicable to both
conventional EDA and EDA–GP. In this section, due to space constraints, we
only discuss EDA–GP from this perspective. For more discussion of conven-
tional EDA please refer to [66]. Because most models used in EDA can be
regarded as a kind of probabilistic graph model, the EDA approaches can be
conceptualised into three categories, based on the learning methods for the
probabilistic graph model:

1. Inferring only the probability of the probabilistic graph model (assuming
a fixed structure) [1, 53, 63, 82].

2. Inferring only the structure of the probabilistic graph model (assuming a
crisp binary value of probability - not, to our knowledge, studied yet).

3. Inferring both the structure and probability of the probabilistic graph
model [14, 64, 67, 68].

This perspective provides a unified view to understand EDA–GP regardless
of the specific form of model. Interestingly, we are not aware of any work of
category 2 in EDA–GP, though such approaches do exist in conventional EDA
(LEM). However, we cannot see any intrinsic difficulty in applying this kind of
method to EDA–GP. For example, inferring a crisp CFG model for EDA–GP
is a way of achieving this.

6.7 Ant Colony Optimisation and Automatic Program
Synthesis

EDA may also be viewed as a model-based search (MBS) [83]. In MBS algo-
rithms, candidate solutions are generated using a parameterised probabilistic
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model, which is updated using the previously selected solutions in such a
way that the search will concentrate in the regions containing high-quality
solutions.

ACO [11] is another well-studied field of MBS. The similarity between
ACO and EDA methods which only consider univariate probability distri-
bution, such as PBIL [6], can be easily seen, because of the similarity in
the probabilistic model and the probability updating methods. However, it is
harder to make a direct analogy between EDA using more complicated de-
pendency structures, and ACO, at the level of their probabilistic models and
their mechanisms of updating probability, although they are almost identical
at the abstract level. For a more detailed description of the MBS classification,
and a discussion of ACO and EDA from the MBS perspective, please refer
to [83].

In this section, given the major emphasis of this survey, a number of closely
related works the use ACO to synthesise programs will be reviewed. With a
few exceptions, most ACO-based automatic synthesis methods simply try to
translate a conventional program synthesis problem by converting the program
space to a representation, such as a graph, amenable to search by ACO. In
the following subsections, as with the review of EDA–GP in the previous
section, these works are grouped into grammar-based and non-grammar-based
categories.

6.7.1 Grammar-Based Works

Ant-TAG [1] uses a grammar and ACO to synthesise programs. In this work,
tree-adjunct grammars (TAGs) [30], instead of CFGs, are used. The indi-
viduals are assembled by combining elementary trees, which can be loosely
understood as repetitively applying rules of an SCFG to non-terminal symbols.

Ant-TAG starts with a given grammar with uniform distribution because
it does not have any prior knowledge. At each generation, the probabilities
are updated by increasing the probabilities of those rules which contributed
to superior individuals. In some variants, crossover of population members is
used as a local search operator.

Note that in each iteration, only the probabilities are updated, while the
structure of the grammar is fixed. From the perspective of EDA–GP, ant-TAG
is very similar to SG-GP [53], except that different grammar formalisms are
used. We anticipate that ant-TAG may suffer from the same difficulties as SG-
GP due to the fixed grammar structure, namely due to its fixed complexity,
it might not be able to capture all the necessary information for constructing
a good solution, hence the authors foreshadow extensions using incremental
grammar learning methods. The name ant-TAG reflects its probability update
mechanism, which is motivated by ACO [11], and the representation, which
uses TAG grammars.

Generalised ant programming (GAP) [31] is a CFG grammar-based sys-
tem. It differs from ant-TAG in that it deals with a model of variable structure.
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Instead of updating only the probabilities of the grammar, and keeping the
structure unchanged, GAP records the whole path which an ant has visited.
In this respect, it is very much like PIPE-based EDA–GP work, especially
EDP, because the probabilities in GAP are attached to the rules, and thus
are conditional probabilities, representing pairwise interactions.

However, because the probabilities in GAP are attached to rules, they are
conditional probabilities representing pairwise interactions, while probabilities
in PIPE are independent of other nodes.

6.7.2 Non-Grammar-Based Works

Of the non-grammar-based methods, ant programming (AP) [58] appears to
be the earliest attempt at using ACO to synthesise programs. It is elegant,
and consistent with PIPE-based EDA–GP works. ACO search is used to ex-
plore good paths along the PIPE prototype tree, representing programs. The
probability update mechanism (pheromone update policy) is the major char-
acteristic that discriminates it from PIPE.

Other non-grammar-based works, such as ant colony programming (ACP)
[12, 22], employ arbitrarily predefined graphs whose nodes could be either a
GP symbol (terminal or non-terminal) or a program statement. ACO search
is used to find a path representing a program. A variant, grid ant colony
programming (GACP) [55], introduces a temporal index, which closely cor-
responds to the depth constraint of some EDA–GP grammar-based methods,
so that the probability (pheromone) can have a depth reference.

6.8 Conclusion and Future Research

We have presented what we hope is a critical and comprehensive survey of
EDA with GP-style tree representations, referred to as EDA–GP. We have
identified two streams of work in EDA–GP, based on their model formalism.
One is based on the PIPE prototype tree, while the other is based on a gram-
mar model. PIPE-based work is relatively less computationally expensive than
grammar-based work, while the latter is more flexible in terms of capturing
different kinds of interactions among nodes. An alternative perspective for
understanding this work – inference of probabilistic graph models – is also
provided.

In addition to strictly EDA–GP methods, we have also surveyed the syn-
thesis of programs using ACO, due to the strong similarity between EDA and
ant-based approaches.

It is clear that, given the limited number of studies, the field of EDA–GP is
still in its infancy. However, as tree representations, which have been widely
used in GP, are suitable for a number of problems, the limited research in
EDA–GP is a significant gap. This gap may result from two causes. The first
is the strong connection between EDA and GA. Since EDA research stemmed
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from addressing problems in GA, it is natural that most studies focus on the
GA side of EDA research. The second reason is the complication resulting
from the complex tree structure. Suitable probabilistic models are needed
to model the GP-style tree structure, but common probabilistic models are
not directly applicable to EDA–GP. Because of this, we have witnessed slow
progress in this field. The earliest EDA–GP work [63] dates back to 1997, and
there appears to have been no subsequent work until 2001 [53]. Most EDA–GP
publications have appeared in the last three or four years, which may suggest
that appropriate probabilistic models are emerging. We hope that this survey
may contribute to the awareness of the existing EDA–GP algorithms and thus
facilitate the communication among researchers in the field.

We suggest a number of future research issues later. Some are applicable
not only to EDA–GP, but more widely to EDA in general.

1. Exploring a variety of relevant model formalism and their learning meth-
ods. For example, in the field of grammar-based EDA–GP, investigating
whether other forms of grammar, such as context-sensitive grammars,
may be suitable for EDA–GP. Even with SCFG, there are many gram-
mar learning methods. Only two have been studied [67, 68]. It is worth
investigating the pros and cons of other grammar learning methods in the
context of EDA–GP.

2. Knowledge extraction, reuse and incorporation. In EDA–GP, as well as
EDA in general, a well-formed model is used to encode the knowledge
accumulated in the course of the search. Extraction and study of the
knowledge embedded in a model is an important research direction.
The EDA model, being a probabilistic model, is more interpretable than
a population. More importantly, even if it turns out to be too complex
for human comprehension, it may still be possible to extract some form
of knowledge that can be used by the EDA algorithm in other applica-
tions. This leads to one possible way of incorporating knowledge. If the
knowledge can be extracted from other EDA models in similar applica-
tions, and represented in a standard format, such as symbolic logic, it
is then perfectly possible to exploit this information. While this has not
yet happened in EDA–GP, related fields, such as Bayesian networks and
artificial neural networks, have explored the possibility of such knowledge
extraction and reuse [19, 25, 38, 73].
The second way to incorporate knowledge is to make use of prior human
knowledge. For real world problems, domain experts usually have some
level of background knowledge. The model used in EDA provides a mech-
anism to incorporate background knowledge. By incorporating domain de-
pendent knowledge into EDA, we hope to achieve superior performance.
In more general EDA, it has been shown in [7] that incorporating prior
knowledge may improve EDA performance. In grammar-based EDA–GP,
this may be done by using a carefully designed initial grammar (rather
than a general grammar) to include prior knowledge. Similar methods
have already been tested in GGGP [80].
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3. Parsimony pressure and noisy data. Usually, EDA–GP has a built-in Oc-
cam’s razor, which causes small individuals to be preferred. We conjecture
that this parsimony pressure results from sampling bias - the more com-
plex an individual is, the more difficult it is to produce in the sampling
process, and especially, the more difficult it is to reproduce its effective
code without error. It is well known in machine learning that less com-
plicated models generalise better than more complicated ones. Hence, we
expect EDA–GP to perform particularly well in learning from noisy data.
This is very important for real world applications where training data are
noisy and generalisation is critical. Research in this direction is promising.

4. Incremental learning. It would be desirable to update the model in each
generation rather than learn a new model from scratch. One possible way
to do this, may be to use the model of the previous generation as a prior,
and then incorporate more information from the fitness distribution of the
current generation into the model. This approach fits well into a Bayesian
framework.

5. Making use of negative examples. In most EDA work, only the positive
examples, i.e. high fitness individuals, are used for inferring the models.
The high fitness individuals may indicate promising search areas, while
the low fitness ones may tell us about the less potential areas which we
need to avoid. The use of both examples may improve the efficiency of
model inference, and therefore is worth further investigation.
In the field of EDA, LEM [40] uses both positive and negative examples.
However, in the field of EDA–GP, we are not aware of any work of this
kind. There is no obvious reason that this option should not be explored
in EDA–GP.

6. Developing theory. EDA eschews genetic operators and maintains a well-
structured model. This provides an opportunity to develop a series of
theories to characterise EDA. In conventional EC, this has proven to be
very difficult because of the highly complex behaviours of genetic op-
erators and the dynamics of the population. In EDA, these are greatly
simplified, and there has been some progress in theoretical analysis, for
example some EDA algorithms have been based on sound theory [43] and
there are interesting attempts at characterising conventional EDA [49].
So far, there have been no theoretical analyses of EDA–GP. For EDA–GP
approaches using a fixed model, such as the PIPE prototype tree model,
there seem no insuperable difficulties in extending the analyses of conven-
tional EDA. EDA–GP approaches incorporating model structure learning
are clearly more complex to analyse, because of the interaction between
model structure learning and probability learning. The well-known equiv-
alence between MML measures and probability, provide some reason for
hope, that it might be possible to study these two components within a
common framework.

7. Contributing to the understanding of GP. EDA–GP is partially motivated
by GP, and due to the similarity in the representations they share many
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characteristics. EDA–GP has a neat probability model to replace the
population of GP. This provides some potential to study the dynamics of
EDA–GP which may in turn shed light on understanding GP. We believe
it may assist in understanding some important questions in GP, such as
what form building blocks take, and how building blocks contribute to
problem solving.
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Efficiency Enhancement of Estimation
of Distribution Algorithms

Kumara Sastry, Martin Pelikan, and David E. Goldberg

Summary. Efficiency-enhancement techniques speedup the search process of esti-
mation of distribution algorithms (EDAs) and thereby enable EDAs to solve hard
problems in practical time. This chapter provides a decomposition and an overview
of different efficiency-enhancement techniques for estimation of distribution algo-
rithms. Principled approaches for designing an evaluation-relaxation, and a time-
continuation technique are discussed in detail.

Key words: Efficiency enhancement, evolutionary computation, estimation
of distribution algorithms, parallelization, evaluation relaxation, hybridiza-
tion, time continuation, speedup

7.1 Introduction

A key challenge in genetic and evolutionary algorithm research is the design
of competent genetic algorithms (GAs) that can solve hard problems quickly,
reliably, and accurately. Estimation of distribution algorithms (EDAs) are
one such class of competent GAs. In essence, EDAs take problems that were
intractable with first-generation GAs and render them tractable, oftentimes
requiring only a polynomial (usually subquadratic) number of fitness evalu-
ations. However, for large-scale problems, the task of computing even a sub-
quadratic number of function evaluations can be daunting. This is especially
the case if the fitness evaluation is a complex simulation, model, or compu-
tation. For example, if a search problem requires over a million evaluations,
and if each evaluation takes about 10 s, EDAs would take over 120 days to
successfully solve the problem. This places a premium on a variety of effi-
ciency enhancement techniques . In essence, while competence leads us from
intractability to tractability , efficiency enhancement takes us from tractability
to practicality . In addition to function evaluations, in EDAs, the probabilistic
model building process can also be computationally intensive, especially with
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increasing problem sizes, making a variety of model-efficiency-enhancement
techniques also a necessity.

A distinct advantage of EDAs over many other evolutionary algorithms
is that the probabilistic models contain useful information about problem
structure that can be exploited in the principled design of various efficiency-
enhancement methods. Systematically incorporating problem knowledge
mined through the model-building process of EDAs into the design of an
efficiency-enhancement technique makes it adaptive and can potentially en-
hance the speed-up of the method. For example, when a simple surrogate
(approximate fitness function) is used as an alternative to an expensive and
accurate fitness evaluation, we obtain a moderate speed-up of about 1.3[75].
On the other hand, when the probabilistic model is used to design a surro-
gate, we obtain a speed-up of about 50 [64]. That is, by incorporating problem
knowledge contained in the probabilistic model into the design of the surro-
gate, we obtain about 39-fold increase in the speed-up.

In this chapter, we present an overview of different efficiency-enhancement
techniques, used to speedup not only the search process, but also the model-
building process. We will also illustrate systematic and principled ways
of incorporating and integrating the knowledge gained through probabilis-
tic models in the efficiency-enhancement methods – specifically, evaluation
relaxation [72], and time continuation [24] – to yield maximum speedup.
Additionally, subsequent chapters will discuss in detail some of the efficiency-
enhancement methods outlined here.

This chapter is organized as follows. We start with a brief outline of funda-
mental tradeoffs exploited by different EDA efficiency-enhancement methods
and discuss four broad classes of efficiency enhancement techniques (1) Paral-
lelization, (2) hybridization, and (3) time continuation, and (4) evaluation re-
laxation. We then provide examples of two principled efficiency-enhancement
techniques (1) An evaluation-relaxation scheme where we build an endoge-
nous fitness-estimate model using the probabilistic models built by EDAs –
specifically, the Bayesian optimization algorithm (BOA) [62, also see chapter
by Pelikan et al] – in Sect. 7.3, and (2) a time-continuation scheme where we
develop a scalable mutation operator in the extended compact GA (eCGA)
[37, also see chapter by Harik et al] that searches locally in the substructural
neighborhood in Sect. 7.4. Summary and key conclusions are given in Sect. 7.5.

7.2 Decomposition of Efficiency Enhancement
Techniques

In practical optimization problems we are often faced with limited computa-
tion resources, which brings forth different tradeoffs involving (1) time, which
is the product of population size, number of generations per epoch, and the
number of convergence epochs, and (2) solution quality assessment. Note that
the time includes both the function-evaluation time and the EDA time (time



7 Efficiency Enhancement of EDAs 163

for selection, model building, model sampling, and replacement). It should
be noted that the EDA time – especially the model building, sampling, and
replacement – can be very significant and sometimes comparable to – if not
more than – the function-evaluation time.

One or more of the following tradeoffs are exploited by efficiency-
enhancement techniques to speedup EDAs:

Quality-Duration Tradeoff: Usually, the longer we run an EDA (with a
sufficient population size), the higher will be the solution quality. However,
in real-world scenarios, the computational resources are often limited, which
leads to a tradeoff between solution quality and the search duration. There-
fore, efficiency can be gained by choosing a search procedure that maximizes
solution quality given the computational resource requirements. For example,
quality-duration tradeoff might result in deciding between running a single
epoch of an EDA with large population, as opposed to multiple epochs of the
EDA with small population.

In addition to the search process, building a high quality model in EDAs
might require longer time. On the other hand, reasonably accurate models
might be built in less amount of time. Therefore, efficiency in EDAs can be
gained by correctly deciding model accuracies during the search process.

Accuracy-Cost Tradeoff: Oftentimes, many complex real-world optimiza-
tion problems involve computationally expensive function evaluation. How-
ever, an array of cheaper fitness functions can be easily developed, but at the
cost of accuracy of fitness estimation. That is, the approximate fitness func-
tions (or surrogates) suffer from various levels of error, and typically, cheaper
the fitness function, larger the error in it. This introduces a tradeoff between
fitness functions that are computationally cheap, but less accurate and fit-
ness functions that are accurate, but computationally expensive. Therefore,
we have to decide on the level of solution-quality assessment accuracy required
during the search process, such that high-quality solutions can be obtained at
minimum computational cost.

Additionally, in EDAs, a similar tradeoff exists between the probabilistic
model accuracy and the cost. Typically, high-quality models are more expen-
sive than low-quality models and striking an appropriate balance between
model accuracy and model cost can significantly improve the model-building
efficiency of EDAs.

Time Budget and Resource Allocation Tradeoff: Given limited com-
putational resource its allocation in terms of population size, run duration,
and number of convergence epochs can significantly influence the efficiency
of the search algorithm. Time budgeting tradeoffs are often faced when dis-
tributing the EDA process between multiple processors (to strike a balance
between communication and computation times), dividing the overall search
time between different variation operators of an EDA such as crossover and
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mutation, or dividing the search time between different local and global search
methods.

Additionally, in EDAs time budgeting tradeoffs can also be faced when
dividing resources between model building and model usage (in terms of ex-
ploration via model sampling and evaluation of sampled individuals).

Efficiency-enhancement techniques that exploit one or more of the afore-
mentioned tradeoffs can be broadly classified into four categories:

Parallelization: EDAs are run on multiple processors and the computations
are distributed among these processors [14]. The use of parallelization –
of both the search process and the model-building process – in EDAs is
discussed in detail elsewhere in this book (see chapter by Ocenasek et al).

Hybridization: Domain-specific knowledge and other techniques are coupled
with EDAs to create a search bias and to accelerate the search process
[16, 26, 39, 44, 54, 80]. In addition to traditional hybridization methods,
prior knowledge can be incorporated in the probabilistic models of EDAs,
details of which are provided elsewhere in this book (see chapter by
Baluja). Additionally, the effectiveness of hybridizing EDAs with local
search methods is empirically demonstrated for the spin-glass problems
elsewhere in this book (see chapter by Pelikan and Hartmann).

Time continuation/utilization: Capabilities of both mutation and recom-
bination are utilized to the fullest extent, and time budgeting issues are
addressed depending on the problem type [24, 47, 73, 74, 82, 83]. In this
chapter, we will illustrate a principled manner of incorporating neigh-
borhood information, contained in the probabilistic models, with time-
continuation operators to yield maximum speedup.

Evaluation relaxation: Accurate, but expensive fitness functions are re-
placed by less accurate, but inexpensive fitness functions (or surrogates),
and thereby the total number of costly fitness evaluations is reduced
[2, 8, 31, 43, 53, 64, 72, 75, 76, 81]. In this chapter, we will illustrate a prin-
cipled approach for using substructural knowledge provided by proba-
bilistic models of EDAs to develop an endogenous surrogate that can be
used instead of the expensive fitness function to obtain high-quality so-
lutions and thus provide maximum speedup. In addition to relaxing the
solution-quality assessment measures, we can also relax the model-quality
assessment in EDAs [66].

The speedup obtained by employing an efficiency-enhancement technique
(EET) is measured in terms of a ratio of the computation effort required by
an EDA when the is not used to that required when the EET is used. That
is, η = Tbase/Tefficiency−enhanced. The speedup obtained by employing even a
single EET can potentially be significant. Furthermore, assuming that the
performance of one of the above methods does not affect the performance of
others, if we employ more that one EET, the overall speedup is the product
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of individual speedups. That is, if the speedups obtained by employing par-
allelization, hybridization, time continuation and evaluation relaxation be ηp,
ηh, ηt, and ηe respectively, then the overall speedup obtained is

ηtotal = ηpηhηtηe.

Even if the speedup obtained by a single EET is modest, a combination of
two or more EETs can yield a significant speedup. For example, if we use
a parallel EDA that yields linear speedup with 100 processors, and each of
the other three EETs makes EDAs 25% more efficient, then together they
yield a speedup of 100 ∗ 1.253 = 195.3. That is evaluation relaxation, time
continuation, and hybridization would give slightly more than 95 processors’
worth of additional computation power.

Before we demonstrate principled methodologies for utilizing information
from probabilistic models of EDAs for maximum efficiency enhancement, we
present a brief outline of each of the four classes of efficiency-enhancement
techniques.

7.2.1 Parallelization

In parallelization, EDAs are run on multiple processors and the computations
are distributed among these processors [13, 14]. Evolutionary algorithms are
by nature parallel, and many different parallelization approaches such as a
simple master-slave [9, 30], coarse-grained [32, 67, 84], fine-grained [27, 28, 50,
70], or hierarchical [23, 29, 33, 48] architectures can be readily used. Regardless
of how parallelization is done, the key idea is to distribute the computational
load of EDAs on several processors thereby speeding-up the search process.
A principled design theory exists for developing an efficient parallel GA and
optimizing the key facts of parallel architecture, connectivity, and deme size
[14], some of which are discussed in the next chapter. Apart from parallelizing
the function evaluations, the probabilistic model building process can also be
parallelized [56–58] which is also discussed in the chapter by Ocenasek et al.

7.2.2 Hybridization

In hybridization, domain-specific knowledge and other local-search techniques
are coupled with evolutionary algorithms to obtain high-quality solutions in
reasonable time [16, 26, 39, 44, 54, 80]. Most industrial-strength evolutionary
algorithms employ some sort of local search for a number of reasons such
as achieving faster convergence [12, 39, 80], repairing infeasible solutions into
legal ones [42, 59], initializing the population [21, 68], and refining of solutions
obtained by a GA [41]. In addition to traditional ways of hybridizing EDAs
[34, 46, 60, 61, 71], prior knowledge of the search problem can be incorporated
into the probabilistic models as discussed elsewhere in this book (see chapter
by Baluja).
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While evolutionary-algorithm practitioners have often understood that
real-world or commercial applications require hybridization, there have been
limited efforts in developing a principled design framework on answering crit-
ical issues such as the optimal division of labor between global and local
searches (or the right mix of exploration and exploitation) [26, 79], the effect
of local search on sampling [39, 40], and the optimal duration of local search
[39, 45], and similar efforts are yet to be attempted for understanding and
designing hybrid EDAs.

7.2.3 Time Continuation

In time continuation, capabilities of both mutation and recombination are
optimally utilized to obtain a solution of as high quality as possible with a
given limited computational resource [24, 47, 73, 74, 82, 83]. Time utilization
(or continuation) exploits the tradeoff between the search for solutions with
large population and a single convergence epoch and using a small population
with multiple convergence epochs.

Early theoretical investigations indicate that when the subsolutions are
of equal (or nearly equal) salience and both recombination and mutation op-
erators have the linkage information, then a small population with multiple
convergence epochs is more efficient. However, if the fitness function is noisy
or has overlapping subsolutions, then a large population with single conver-
gence epoch is more efficient [73, 74]. On the other hand, if the subsolutions
of the problem are of nonuniform salience, which essentially requires serial
processing, then a small population with multiple convergence epochs is more
efficient [24]. While early efforts on developing adaptive continuation opera-
tors using probabilistic models of EDAs are promising [35, 47, 73], much work
needs to be done to develop a principled design theory for efficiency enhance-
ment via time continuation and to design adaptive continuation operators to
reinitialize population between convergence epochs.

7.2.4 Evaluation relaxation

In evaluation relaxation, an accurate, but computationally expensive fitness
evaluation is replaced with a less accurate, but computationally inexpensive
fitness estimate. The low-cost, less-accurate fitness estimate can either be (1)
exogenous, as in the case of approximate fitness functions [8, 43, 49], where
external means can be used to develop the fitness estimate, or (2) endogenous,
as in the case of fitness inheritance [81] where, some of the offspring fitness is
estimate based on fitness of parental solutions.

Evaluation relaxation in GAs dates back to early, largely empirical work of
Grefenstette and Fitzpatrick [31] in image registration [20] where significant
speedups were obtained by reduced random sampling of the pixels of an im-
age. Approximate models have since been used extensively to solve complex
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optimization problems in many engineering applications such as aerospace
and structural engineering [8, 11, 19].

While early evaluation-relaxation studies were largely empirical in nature,
design theories have since been developed to understand the effect of approx-
imate evaluations via surrogates on population sizing and convergence time
and to optimize speedups in approximate fitness functions with known vari-
ance [51, 53], in integrated fitness functions [3, 4], in simple functions of known
variance or known bias [72], and in fitness inheritance [75]. While exogenous
surrogates can be readily used in EDAs, the probabilistic models of EDAs can
be effectively used to develop endogenous surrogates that provide significant
speedup [64, 76], details of which are provided in the next section. In addition
to relaxing the solution-quality assessment measures, we can also relax the
model-quality assessment in EDAs. For example, we can use sporadic model
building, where the structure of the probabilistic model is built once every
few generations and the probabilities are updated every generation [66].

7.3 Evaluation Relaxation: Designing Adaptive
Endogenous Surrogates

As mentioned earlier, a distinct advantage of EDAs over first-generation GAs
is the availability of variable-interaction information in terms of the proba-
bilistic models mined from a population of promising solutions. Therefore, we
can use the probabilistic models to infer the structural form of the surrogate.
This is in contrast to surrogates often used to speedup evolutionary algo-
rithms, which are of fixed form and do not adapt to key variable interactions
of the underlying search problem. In other words, with the help of probabilis-
tic models built in EDAs, we can use the probabilistic models to decide on
the form of the surrogate and use one of the system identification, estimation,
or regression methods to estimate the coefficients of the surrogate.

For example, the probabilistic model of eCGA represents nonoverlapping
partitions of variables. The resulting surrogate inferred from the model would
then be a polynomial, whose order and terms are decided based on the sub-
structures identified by the model, and the coefficients of the surrogate rep-
resent the partial contribution of the subsolutions to the overall fitness of the
individual [76]. The surrogates designed with the information provided by the
probabilistic models are quite accurate and yield substantial speedups. For
example, on a class of boundedly difficult additively decomposable problems
endogenous surrogates in BOA yields speedups of about 50 [64]. This is in con-
trast to a moderate speed-up of about 1.3 obtained by using a simple fitness
inheritance method [75, 81].

In the remainder of this section, we illustrate the design of adaptive en-
dogenous surrogates in the Bayesian optimization algorithm. We note that the
design method can be extended to other EDAs and the key idea is to using
the probabilistic model to infer the structural form of the surrogate and to
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use system-identification and estimation tools for computing the coefficients
of the surrogate.

7.3.1 Evaluation Relaxation: Endogenous Surrogates in BOA

The Bayesian optimization algorithm (BOA) uses Bayesian networks to model
candidate solutions [62, also see chapter by Pelikan et al]. The structure of
the Bayesian network is encoded by a directed acyclic graph with the nodes
corresponding to the variables in the modeled data set and the edges cor-
responding to conditional dependencies. A Bayesian network encodes a joint
probability distribution given by

p(X) =
n∏

i=1

p(Xi|Πi), (7.1)

where X = (X0, . . . , Xn−1) is a vector of all the variables in the problem; Πi

is the set of parents of Xi (the set of nodes from which there exists an edge to
Xi); and p(Xi|Πi) is the conditional probability of Xi given its parents Πi.

The parameters of the Bayesian networks are represented by a set of condi-
tional probability tables (CPTs) specifying a conditional probability for each
variable given any instance of the variables that the variable depends on. CPTs
store conditional probabilities p(Xi|Πi) for each variable Xi. Local structures
– in the form of decision trees or decision graphs – can also be used in place
of full CPTs to enable more efficient representation of local conditional prob-
ability distributions in Bayesian networks. While we describe the design of
endogenous surrogate in BOA with CPTs, similar methodology can be used
for BOA with decision trees and graphs.

Given the probabilistic model (in form of a Bayesian network), we can
infer the form of the surrogate as an acyclic tree whose nodes correspond to
the variables and the edges correspond to the marginal fitness contributions of
subsolutions (or the coefficients of the surrogate). That is, for every variable
Xi and each possible value xi of Xi, an estimate of the marginal fitness con-
tribution of a subsolution with Xi = xi must be stored for each instance πi of
Xi’s parents Πi. In the binary case, each row in the CPT is thus extended by
two additional entries. Figure 7.1 shows an example of the probability model
and the substructural surrogate in BOA. The substructural fitness can be
estimated as

fest(X1, X2, . . . , X�) = f̄ +
�∑

i=1

(
f̄(Xi|Πi)

)
, (7.2)

where f̄(Xi|Πi) denotes the average fitness of solutions with Xi and Πi. That
is,

f̄(Xi|Πi) =
1
nh

∑
{j|yj⊃xi,πi}

f (yj) − f̄(Πi), (7.3)
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Fig. 7.1. Substructural fitness estimation model in Bayesian optimization algo-
rithm. The estimated fitness for the model is given by fest(X1, X2, . . . , X7) =
f̄ + f̄(X1) + f̄(X2|X1) + f̄(X3|X2X1) + f̄(X5) + f̄(X4|X5) + f̄(X7) + f̄(X6|X7)

where nh is the total number of individuals that contain the schema πi, yj is
the jth individual and f(yj) is its fitness, and f̄(Πi) is the average fitness of
all solutions with Πi.

Similar to earlier fitness-inheritance studies, we begin with fully evaluating
the initial population, and thereafter evaluating an offspring with a probability
1−pi. In other words, we use the endogenous surrogate to estimate the fitness
of an offspring with probability pi. One question remains as to where to obtain
information for computing the coefficients of the surrogate, which is addressed
in Sect 7.3.2.

7.3.2 Where to Estimate the Marginal Fitnesses From?

In the proposed method, for each instance xi of Xi and each instance πi of
Xi’s parents Πi, we must compute the average fitness of all solutions with
Xi = xi and Πi = πi. In this section, we discuss two sources for computing
the coefficients of the surrogate:

1. Selected parents that were evaluated using the actual fitness function
2. The offspring that were evaluated the actual fitness function

The reason for restricting computation of the coefficients of the surrogate to
selected parents and offspring is that the probabilistic model used as the basis
for selecting relevant statistics represents nonlinearities in the population of
parents and the population of offspring. Since it is best to maximize learn-
ing data available, it seems natural to use both populations to compute the
marginal fitness of the components of the surrogate. The reason for restricting
input for computing these statistics to solutions that were evaluated using the
actual fitness function is that the fitness of other solutions was estimated only
and it involves errors that could mislead the surrogate and propagate through
generations.
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We have extensively tested the proposed evaluation-relaxation scheme on
a class of boundedly difficult additively decomposable problems. Before pre-
senting the key results, we now briefly introduce facetwise models to predict
the scalability and speed-up of using endogenous surrogates as an alternative
to expensive fitness evaluation.

7.3.3 Scalability and Speedup

Facetwise and dimensional models can be used to analyze the scalability of
and the speedup provided by endogenous surrogates in EDAs. In this section,
we present the key results of the analysis and the details are given elsewhere
[76].

The error introduced by the surrogate can be modeled as additive Gaussian
noise with zero mean and variance piσ

2
f,t, where pi is the probability of an

individual receiving estimated fitness, and σ2
f,t is the true fitness variance.

However, this approximation is not valid for very high pi values as the sub-
structural fitness is estimated from very few individuals, which increases the
error in the estimate significantly. Empirically, we observed that the noise
variance becomes significantly higher than the above approximation when
pi ≥ 0.85. Error due to variance (as in additive Gaussian noise) increases both
the population size and run duration required for EDA success [25, 38, 52, 72].

The increase in the required population size due to the use of the sub-
structural surrogate is given by

nr =
n

no
= (1 + pi) . (7.4)

where no is the minimum population size required to obtain a solution of
quality (m− 1)/m when the endogenous surrogate is not used. Here, m is the
number of key substructures of the search problem.

The increase in the run duration due to the use of the surrogate is given
by

tc,r =
tc
tc,o

=
√

1 + pi. (7.5)

where tc,o is the run duration – in other words, the number of generations –
taken by the EDA to successfully solve the search problem when the surrogate
is not used.

Using (7.4) and (7.5) and, after further simplifications and approximations,
we can estimate the increase in the total number of function evaluations re-
quired to obtain a solution with at least m−1 out of m substructures at their
optimal values as

nfe,r ≈ (1 + pi)
1.5 (1 − pi) . (7.6)

Therefore, the speedup provided by using endogenous fitness-estimation
model is given by the inverse of the function-evaluation ratio:
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ηendogenous fitness model =
1

(1 + pi)
1.5 (1 − pi)

. (7.7)

Equation (7.6) indicates that the number of function evaluations initially
increases with pi, reaching a maximum at pi = 0.2. The function-evaluation-
ratio model indicates that the number of function evaluations decreases with
pi for pi > 0.2 and reaches a minimum at pi = 1. In other words, the speedup
decreases initially (pi < 0.2) and then increases reaching a maximum at pi = 1.
However, as mentioned earlier, the facetwise models for the population sizing
and the convergence time are not valid at very high values of pi. Nevertheless,
the models are suggestive and as shown in the results, we obtain maximum
speedups when pi is close to 1.0.

It should be noted that in our scalability and speedup analysis, we only
considered the cost of actual fitness evaluation. In other words, we ignored
the time complexity of selection, fitness model construction, generation of new
candidate solutions, and fitness estimation. Combining these factors with the
complexity estimate for the actual fitness evaluation can be used to compute
the optimal proportion of candidate solutions whose fitnesses can be estimated
using the endogenous surrogate. We reiterate that the proposed evaluation-
relaxation scheme is beneficial when the actual fitness evaluation is expensive,
in which case the above costs are indeed negligible and the models developed
in this section valid.

7.3.4 Results and Discussion

We use two test functions for verifying and validating the use of the endoge-
nous surrogate instead of costly, but accurate function-evaluation method. Our
approach in verifying the models and observing if the proposed evaluation-
relaxation scheme yields speedup is to consider bounding adversarial problems
that exploit one or more dimensions of problem difficulty [25]. Particularly, we
are interested in problems where substructure identification and exchange is
critical for the EDA success. Specifically, we use OneMax – where the fitness
function is the number of ones in the binary string – and m−k deceptive trap
problem [1, 17, 18, 22].

While the optimization of the OneMax problem is easy, the probabilistic
models built by EDAs such as eCGA and BOA, however, are known to be only
partially correct and include spurious linkages [63]. Therefore, the speed-up
results on the OneMax problem will indicate if the effect of using partially
correct linkage mapping on the endogenous surrogate is significant. For an
ideal surrogate developed for the OneMax problem, the average fitness of a 1
in any leaf should be approximately 0.5, whereas the average fitness of a 0 in
any leaf should be approximately −0.5.

Unlike, the OneMax problem, m − k deceptive problems are boundedly
difficult and the accurate identification and exchange of key substructures
are critical to EDA success. For the m − k trap problem, f̄(Xi = 0) and
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f̄(Xi = 1) depend on the state of the search because the distribution of
contexts of each bit changes over time and bits in a trap are not independent.
The context of each leaf also determines whether f̄(Xi = 0) < f̄(Xi = 1) or
f̄(Xi = 0) > f̄(Xi = 1) in that particular leaf.

Figure 7.2(a) and 7.2(b) present the scalability and speedup results of the
evaluation-relaxation scheme for BOA on a 50-bit OneMax, 10-4 and 10-5
deceptive trap functions. We considered a binary (s = 2) tournament selec-
tion without replacement. For each test problem, the following proportions of
using the surrogate, pi, were considered: 0–0.9 with step 0.1, 0.91–0.99 with
step 0.01, and 0.991–0.999 with step 0.001. For each test problem and pi value,
30 independent experiments were performed. Each experiment consisted of 10
independent runs with the minimum population size to ensure convergence to
a solution within 10% of the optimum (i.e., with at least 90% correct bits) in
all 10 runs. For each experiment, bisection method was used to determine the
minimum population size, and the number of evaluations (excluding the evalu-
ations done using the model of fitness) was recorded. The average of 10 runs in
all experiments was then computed and displayed as a function of the propor-
tion of candidate solutions for which fitness was estimated using the surrogate.
Therefore, each point in Figs. 7.2(a) and 7.2(b) represents an average of 300
BOA runs that found a solution that is at most 10% from the optimum.

In all experiments, the number of actual fitness evaluations decreases with
pi. Furthermore, the surrogates built in BOA are applicable at high pi values,
even as high as 0.99. That is, by evaluating less than 1% of candidate solutions
and estimating the fitness for the rest using the endogenous surrogate, we
obtain speedup of 31 (for OneMax) to 53 (for m k-Trap). In other words,
by developing and using the endogenous surrogate to estimate the fitness of
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Fig. 7.2. The effect of using the endogenous surrogate on the total number of
function evaluations required for BOA success, and the speedup obtained by using
the evaluation relaxation-scheme in BOA. The empirical results are obtained for a
50-bit OneMax, 10 4-Trap and 10 5-trap problems
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99% of the individuals, we can reduce the number of actual fitness evaluation
required to obtain high quality solutions by a factor of up to 53.

Overall, the results suggest that significant efficiency enhancement can
be achieved through an endogenous surrogate that incorporates knowledge of
important subsolutions of a problem and their partial fitnesses. The results
clearly indicate that using the surrogate in EDAs can reduce the number of
solutions that must be evaluated using the actual fitness function by a factor of
31–53. Consequently, if fitness evaluation is a bottleneck, there is a lot of room
for improvement using endogenous surrogates in EDAs in general, and BOA,
in particular. For real-world problems, the actual savings may depend on the
problem being considered. However, it can be expected that developing and
using the fitness-estimate model enables significant reduction in the number of
fitness evaluations on many problems because deceptive problems of bounded
difficulty bound a large class of important nearly decomposable problems.

The probabilistic models are not only useful for the design of surrogates,
but can be exploited in other facets of efficiency enhancement as well. In the
following section, we illustrate the use of probabilistic models in the principled
design of time continuation operators.

7.4 Time Continuation: Mutation in EDAs

In time continuation, we investigate and decide between the fundamental
tradeoff between using an evolutionary algorithm with a large population for a
single convergence epoch or with a small population for multiple convergence
epochs, as illustrated in Fig. 7.3. A continuation operator is required when
using a small-population, multiple-epoch evolutionary algorithm for maintain
diversity in population between epochs. In the ideal case, the continuation op-
erator perturbs only bad building blocks (BBs) at the end of each convergence
epoch. However, in practice, the continuation operator not only perturbs bad
building blocks, but also some good ones, and a regeneration cost – or cost of
reduction in solution quality between two epochs – is incurred. Since the con-
tinuation operator modifies only a few individuals to seed the population in
subsequent epochs, it is assumed to be some form of mutation or local search
method. Therefore, the decision making involved in time continuation can also
be posed as choosing between two key genetic operators – recombination and
mutation.

Goldberg [24] developed an analytical framework to optimally solve the
time continuation problem. Early studies considered the effect of the salience
structure and observed that while a large population run is preferable for
problems with near-uniform salience structure, a small population run is ad-
vantageous for problems with exponential-salience structure [24, 82, 83]. More
recent studies considered the effectiveness of incorporating the building-block
structure into both global and local evolutionary algorithm operators and the
effect of noise, salience structure and the crosstalk between different building
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Fig. 7.3. Two scenarios of resource utilization: (a) Large population, single con-
vergence epoch, and (b) Small population, multiple convergence epochs

blocks on time continuation [74, 77]. When both global and local operators
are given the substructural information (or good neighborhood information),
a small population run is beneficial for deterministic problems with near-
uniform salience structure. On the other hand, for noisy problems, a large
population is preferred.

One of the key challenges in time continuation is the design of effective con-
tinuation operators that searches in the correct neighborhoods. Existing muta-
tion (or continuation) operators usually search in the local neighborhood of an
individual, without taking into account the global neighborhood information.
In genetic algorithms, mutation is usually a secondary search operator which
performs random walk locally around a solution. On the other hand, in evolu-
tion strategies, while powerful mutation operators are used [6, 10, 36, 69, 78],
the neighborhood information is still local around a single or few solutions.
In local-search literature, while the importance of using a good neighbor-
hood operator is often highlighted [5, 7, 15, 85, 86], no systematic methods for
designing neighborhood operators that can solve a broad class of bounding
problems have been developed.

However, for solving boundedly difficult problems, local neighborhood in-
formation is not sufficient, and a mutation operator which uses local neighbor-
hoods requires O(mk log m) number of evaluations [55]. Therefore, we utilize
the probabilistic models built in eCGA for automatically building global neigh-
borhood (or linkage) information into the mutation operator. Unlike, adaptive
mutation techniques in evolution strategies, which usually have local neigh-
borhood information adapted over time, our method leads to a more global
induction of the neighborhood.

In Sect. 7.4.1, we illustrate the design of an efficient operator that utilizes
the global neighborhood information mined by the probabilistic models of the
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extended compact genetic algorithm (eCGA) [37, also see chapter by Harik
et al] to search among competing subsolutions.

7.4.1 Mutation in eCGA: Searching in Substructural
Neighborhood

As described in the chapter by Harik et al, eCGA builds marginal product
models that yields a direct mapping of linkage groups among successful indi-
viduals. Therefore, we use the model-building procedure of eCGA to identify
the key substructures of a problem. Once the linkage-groups are identified,
we use an enumerative building-block-wise mutation operator [74] to search
for the best among competing subsolutions. For example, if the model builder
identifies m BBs of size k each, the eCGA continuation operator will select
the best subsolution out of 2k possible ones in each of the m partition.

That is, from a sample of randomly generated candidate solution the top
solutions (as determined by the selection mechanism) are used to build prob-
abilistic model in eCGA. The best solution in the population is used for
substructural mutation: Consider the first nonmutated substructure, where
the substructures are arbitrarily chosen from left-to-right, however, different
schemes can be – or may required to be – chosen to decide the order of
choosing substructures to mutate. For example, substructural partitions that
contain most active variables might be mutated before those that contain less
active variables. For the substructure in consideration, create 2k − 1 unique
individuals with all possible subsolutions in the chosen partition, where k is
order of the substructure. The subsolutions in other partitions are not modi-
fied. Evaluate all 2k − 1 individuals and retain the best for mutation of other
substructures. Thus at each convergence epoch the best subsolution in each
partition is chosen and the search ends after m convergence epochs, where m
is the number of substructures in the problem.

Note that the performance of the above mutation can be slightly improved
by using a greedy heuristic to search for the best among competing BBs, how-
ever, as shown later, the scalability of the mutation operator is determined by
the population-size required to accurately identify the building blocks. Fur-
thermore, we perform linkage identification only once in the initial generation.
This offline linkage identification works well on problems with BBs of nearly
equal salience. However, for problems with BBs of nonuniform salience, we
would have to perform linkage identification and update BB information in
regular intervals. The key idea in designing the mutation operator in other
EDAs such as BOA is that the operator should effectively use the neighbor-
hood information contained in the probabilistic models.

We now present the scalability of the enumerative BB-wise mutation op-
erator and followed by an analysis of the efficiency enhancement provided by
time continuation in eCGA.
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7.4.2 Scalability of Building-Block-Wise Mutation

The scalability of the BB-wise mutation operator depends on two factors (1)
the population size required to build accurate probabilistic models of the link-
age groups, and (2) the total number of evaluations required by the BB-wise
mutation operator to find optimal subsolutions in all the partitions. Pelikan,
Sastry, and Goldberg [65] developed facetwise models for predicting the critical
and maximum population-size required to correctly identify good interactions
among variables. They showed that the minimum population size scales as

nmin = Θ
(
2km1.05

)
, (7.8)

and the maximum population size which avoids discovery of false dependencies
between independent variables is given by

nmax = Θ
(
2km2.1

)
. (7.9)

In other words, to avoid incorrect identification of BBs, the population size
should be less than nmax. Since we require that all the BBs be correctly
identified in the first generation itself, the population size required should be
greater than nmin, but less than nmax. That is,

Θ
(
2km1.05

) ≤ n ≤ Θ
(
2km2.1

)
. (7.10)

Since the model building is performed only once, the total number of function
evaluations scales as the population size. That is,

Θ
(
2km1.05

) ≤ nfe,1 ≤ Θ
(
2km2.1

)
. (7.11)

During BB-wise mutation, we evaluate 2k − 1 individuals for determining
the best BBs in each of the m partitions. Therefore, the total number of
function evaluations used during BB-wise mutation is

nfe,2 =
(
2k − 1

)
m = O (

2km
)
. (7.12)

From Equations 7.11 and 7.12, the total number of function evaluations scales
as

Θ
(
2km1.05

) ≤ nfe ≤ Θ
(
2km2.1

)
. (7.13)

We now empirically verify the scale-up of the population size and the
number of function evaluations required for successfully solving the m−k de-
ceptive trap problem in Figs. 7.4(a) and 7.4(b), respectively. For the empirical
runs, we use tournament selection without replacement with a tournament size
of 8. The average number of subsolutions correctly converged are computed
over 30 independent runs. The minimum population size required such that
m− 1 subsolutions converge to the correct value is determined by a bisection
method [72]. The results of population-size is averaged over 30 such bisection
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Fig. 7.4. Population size (7.10) and the number of function evaluations (7.13)
required by BB-wise mutation for solving m − k Trap function. The results are
averaged over 900 runs for the number of function evaluations and 30 bisection runs
for the population size. The relative deviation for the empirical results is less than
0.2%. The population size and the number of function evaluations both scale as
Θ(2km1.5)

runs, while the results for the function-evaluation ratio is averaged over 900
independent runs.

In contrast to fixed mutation operators which require O(mk log m) num-
ber of function evaluations to solve additively separable GA-hard problems
[55], the proposed eCGA-based BB-wise mutation operator that automatically
identifies the linkage groups requires only O(2km1.5) (polynomial) number of
evaluations.

7.4.3 Crossover vs. Mutation in eCGA

We know that eCGA scales as Θ
(
2k
√

km1.5 log m
)

[73, also see chapter by
Harik et al], and from (7.13), we know that the BB-wise mutation scales as
Θ

(
2km1.5

)
for additively separable problem of bounded difficulty. Therefore,

the BB-wise mutation operator in eCGA is Θ
(√

k log m
)

faster than eCGA in
solving boundedly difficult additively separable problems. That is, the speedup
– which is defined as the ratio of number of function evaluations required by
eCGA to that required by the selectomutative GA – is given by

η =
nfe(eCGA)

nfe(BBwise Mutation)
= Θ

(√
k log m

)
, (7.14)

which is empirically verified in Fig. 7.5. The results clearly indicate the effi-
ciency enhancement provided by the time continuation operator that automat-
ically and adaptively searches for the subsolution neighborhood as identified
by eCGA.
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Fig. 7.5. Empirical verification of the speedup (7.14) obtained by using the proba-
bilistic model building BB-wise mutation over eCGA for the m − k Trap function.
The results show that the speedup scales as Θ(

√
k log m)

Time-continuation scenarios have also been studied when dealing with
noisy problems and problems with overlapping building blocks, where a com-
petent crossover is often more efficient than a competent mutation, and
therefore a large-population, single convergence epoch eCGA run is preferred
[74, 77]. One of the important efforts directly motivated by this study, which is
currently underway, is the design and development of adaptive time continu-
ation operators that utilize the substructural models built by eCGA not only
in mutation and recombination operators, but also to automatically decide
between using a large population with single convergence epoch or a small
population eCGA with multiple convergence epochs [47]. Simply stated, the
model building is used to identify the appropriate population size regime and
whether local or global operators are used. For example, for noisy problems
an adaptive time continuation operator should implicitly switch from local
to global search operator as the problem becomes more noisy. The decision
making depends upon the type of the problem being solved, and results in
significant savings even for modestly sized problems.

7.5 Summary and Conclusions

Like any industrial-strength search algorithm, practical deployment of EDAs
strongly rely on one or more efficiency-enhancement techniques such as
parallelization, hybridization, time continuation, and evaluation relaxation.
While EDAs take problems that were intractable by first generation genetic
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algorithms, and render them tractable, principled efficiency-enhancement
techniques take us from tractability to practicality. In this chapter, we pre-
sented an overview of various efficiency-enhancement techniques for speeding-
up EDAs. We also provided two examples of principled efficiency-enhancement
techniques, both of which utilize the probabilistic models built by the EDAs.
The first example was an evaluation-relaxation method, where we build an
endogenous substructural surrogate to estimate fitness of majority of the
population, while actual fitness is computed for only a small portion of the
population. The second example developed a competent mutation (or time
continuation) operator in the extended compact genetic algorithm, which uses
the probabilistic models and searches locally in the subsolution neighborhood.

The two examples clearly demonstrate that by systematically incorporat-
ing problem knowledge gained through the probabilistic models built in EDAs
into the efficiency-enhancement technique, the speedup can be significantly
enhanced. Furthermore, the overall efficiency of combining such nearly inde-
pendent efficiency-enhancement techniques is multiplicative. For example, if
we use a parallel EDA that yields linear speedup with 100 processors, and each
of the other three EETs makes EDAs 25% more efficient, then together they
yield a speedup of 100 ∗ 1.253 = 195.3. That is, evaluation relaxation, time
continuation, and hybridization would give slightly more than 95 processors’
worth of additional computation power.
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Design of Parallel Estimation of Distribution
Algorithms

Jiri Ocenasek, Erick Cantú-Paz, Martin Pelikan, and Josef Schwarz

Summary. This chapter focuses on the parallelization of Estimation of Distribution
Algorithms (EDAs). More specifically, it presents guidelines for designing efficient
parallel EDAs that employ parallel fitness evaluation and parallel model building.
Scalability analysis techniques are employed to identify and parallelize the main
performance bottlenecks to ensure that the achieved speedup grows almost linearly
with the number of utilized processors. The proposed approach is demonstrated on
the parallel Mixed Bayesian Optimization Algorithm (MBOA). We determine the
time complexity of parallel MBOA and compare this complexity with experimental
results obtained on a set of random instances of the spin glass optimization problem.
The empirical results fit well the theoretical time complexity, so the scalability and
efficiency of parallel MBOA for unknown spin glass instances can be predicted.

Key words: Estimation of distribution algorithms, Parallelization, Efficiency
enhancement, Evolutionary computation, Bayesian networks

8.1 Introduction

Estimation of Distribution Algorithms (EDAs) [1, 2], also called Probabilis-
tic Model-Building Genetic Algorithms (PMBGAs) [3] and Iterated Density
Estimation Evolutionary Algorithms (IDEAs) [4], often require fewer fitness
evaluations than standard evolutionary algorithms. However, the overall exe-
cution time is still a limiting factor that determines the size of problems that
are tractable in practice.

A promising way to reduce the execution time is through parallelization.
Most papers on parallel Estimation of Distribution Algorithms concentrate
on parallel construction and sampling of probabilistic models. The algorithms
employing parallel construction of Bayesian networks include the Parallel
Bayesian Optimization Algorithm (PBOA) [5] designed for pipelined archi-
tecture, the Distributed Bayesian Optimization Algorithm (DBOA) [6] de-
signed for message passing architecture (MPI), the Parallel Estimation of
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putational Intelligence (SCI) 33, 187–203 (2006)
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Bayesian Network Algorithm (EBNABIC) [7] designed for MIMD architecture
with shared memory, and variants of EBNABIC [8] designed both for MPI
and POSIX threads. The parallel Mixed Bayesian Optimization Algorithm
(MBOA) [9], which uses Bayesian networks with local structures in the form
of decision trees to model and sample solutions, was first designed and simu-
lated for multithreaded environment in [10], and the real implementation of
parallel MBOA suited for MPI appeared in [11].

In contrast to prior work on parallel EDAs, we provide general guide-
lines for designing the whole parallel EDA, including the detailed scalability
analysis of each part. Without loss of generality, the proposed techniques are
demonstrated on the MBOA example.

The following section explains the main paradigms used for designing par-
allel EDAs. Section 8.3 briefly describes MBOA. Section 8.4 analyzes the time
complexity of each MBOA part. Section 8.5 provides the scalability analysis of
parallel MBOA, identifies the important parts of MBOA that should be paral-
lelized, and derives the guidelines that can be used to design effective parallel
EDAs. Section 8.6 presents the performance prediction methods. Section 8.7
analyzes the performance of parallel MBOA on a real-world problem – spin
glass optimization. Finally, Sect. 8.8 provides conclusions.

8.2 Main Paradigms of EDA Parallelization

There are two main approaches to parallelize EDAs: distribute the load of
evaluating fitness among several processors and parallelize the model building.
This section provides a brief description of these approaches.

8.2.1 Distributed Fitness Evaluation

One of the approaches to exploit parallelism with EDAs is to emulate the par-
allelization methods used by classical evolutionary algorithms (EAs). Classical
EAs are usually parallelized either by parallelizing only the fitness evaluation
component or by using multiple populations.

Single-population master–slave EAs have a master node that stores the
population and executes the EA operations of selection, crossover, and mu-
tation. In the case of a master–slave EDA, the master executes selection and
builds and samples the probabilistic model. The evaluation of fitness is dis-
tributed among several slave processors. Despite being very simple algorithms,
master–slave implementations can be very efficient. The master–slave archi-
tecture is visualized in Fig. 8.1a.

Multiple-population EAs are the most sophisticated and popular type of
parallel EAs. They consist of several subpopulations or demes that evolve
mostly independently on different processors, but occasionally exchange indi-
viduals by using a migration operator (see Fig. 8.1b for an illustration).
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Master

Slaves

(a) Master Slave (b) Multiple
Populations

Fig. 8.1. Classical models of parallel EAs

In general, the communication requirements of parallel EAs are low, and
inexpensive Beowulf clusters or Web-based computations can be practical. In
fact, the behavior of GAs with spatially-distributed populations is interest-
ing, regardless of their implementation on serial or parallel computers [12–14].
Having a spatially distributed population may have some algorithmic bene-
fits that are independent of the efficiency gains obtained from using multiple
processors (e.g., [15–18]).

The term islands model is easily understandable; the GA behaves as if the
world was constituted of islands where populations evolve isolated from each
other. On each island the population is free to converge toward different opti-
mum. The migration operator is supposed to mix good features that emerge
locally in the different demes.

For more detailed discussion of parallel fitness evaluation see [19].

8.2.2 Distributed Model Building

The most significant difference between classical genetic algorithms (GAs)
and EDAs lies in the complexity of creation of the new population. In GAs,
the recombination and mutation operator do not introduce significant compu-
tational costs: they are inexpensive binary and unary operators that can be
performed locally in case of the island topology. In most EDAs, the building
and sampling of the probabilistic model is computationally expensive. Ad-
ditionally, sequential model building can be considered an N -ary operator,
where N is the size of parent population, and that is why it is not straight-
forward to parallelize this operator.

Some algorithms – such as the Distributed Probabilistic Model-Building
Genetic Algorithm (DPMBGA) [20] – are based on the straightforward par-
allelization of EDAs, where in each island the local model is constructed from
a portion of population located on each island and migration is used to ex-
change locally generated individuals between islands. For simple problems this
approach yields good results, especially if the class of utilized models is best
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suited for solving unimodal problems. Building several such models locally and
migrating sampled individuals is then equivalent to using one mixture model,
which is more general and better suited for solving multimodal problems.

In this chapter, we focus on models capable of learning higher-order link-
age (interactions) between optimized variables. The accuracy of these mod-
els decreases rapidly with decreasing size of the parent population because
the more sophisticated models involve the estimation of a large number of
parameters that may not be supported adequately by a small population.
In other words, sampling several distributed models constructed from frag-
mented parent population yields worse solutions than sampling one global
model. Therefore, we focus on the parallel construction and sampling of a
single probabilistic model in the pseudo-sequential manner.

8.3 Mixed Bayesian Optimization Algorithm

The Mixed Bayesian Optimization Algorithm (MBOA) [9] is based on BOA
with Bayesian networks, but it uses more effective structure for representing
conditional probability distributions in the form of decision trees, as proposed
in the hierarchical Bayesian Optimization Algorithm (hBOA, [21]). MBOA
can be also formulated for continuous domains, where it tries to find the par-
titioning of a search space into subspaces where the variables seem to be mu-
tually independent. This decomposition is captured globally by the Bayesian
network model with decision trees and the Gaussian kernel distribution is
used locally to approximate the variable values in each resulting partition.
The implementation details are described in [22].

Parallel MBOA was first simulated in the TRANSIM tool [10] and its real
implementation was reported in [11].

In this chapter, we focus only on the binary domain, where MBOA can be
seen as a variant of hBOA described earlier in this book.

8.4 Complexity Analysis

To parallelize any algorithm, it is important to understand time complexity
of its different parts, so that one can identify the parts that are suitable for
parallelization. To understand the overall complexity of MBOA, this section
examines the complexity of each component of MBOA: selection, model con-
struction, model sampling, replacement, and fitness evaluation.

8.4.1 Complexity of Selection Operator

The most commonly used selection operator in EDAs is tournament selection,
where pairs of randomly chosen individuals compete to take place in the parent
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population that serves for model learning. Denoting the population size by N
and the number of bits in solution strings by n, the number of tournaments
is O(N) and for each tournament we perform O(n) steps to copy the winner,
so the total complexity is O(nN). This also holds for most other selection
operators, such as truncation selection.

8.4.2 Complexity of Model Construction

As described elsewhere in this book, Bayesian networks with decision trees
use one decision tree per variable. The sequential MBOA builds all the de-
cision trees at once. It starts with empty trees and it greedily adds decision
nodes. The quality of potential decision nodes is determined by the Bayesian–
Dirichlet metric [23–25], which is able to determine the significance of statis-
tical correlations between combinations of variable values in the population.
This greedy algorithm picks the best candidate and never looks back to re-
consider earlier choices. A necessary condition for adding a new split is that
the Bayesian network remains acyclic after the split; that is, there does not
exist a sequence of nodes in which each node contains its predecessor in its
decision tree (as a split) and the last node is in the decision tree of the first
node.

A straightforward approach to parallelizing model building in MBOA
would be to distribute nodes of the Bayesian network to a number of proces-
sors, where each processor would compute the decision trees for the nodes
it received. Nonetheless, this approach would require the processors to com-
municate after performing each split operation to avoid introducing cycles
into the network. Furthermore, the work may be divided unevenly, causing
ineffective utilization of the available computational resources.

Earlier, we proposed a method that solves the acyclicity problem [10,
11]. In each generation the algorithm uses a random permutation o =
(o0, o1, . . . , on−1) to predetermine the topological ordering of variables in ad-
vance. That means that only the variables Xo0 · · ·Xoi−1 can serve as splits
in the binary decision tree for Xoi

. In this manner, no cycles can be intro-
duced and the splits in different decision trees can thus be executed in parallel
without the need for extensive communication.

Restricting the nodes to contain the dependencies on their predecessors in
a particular permutation restricts the class of models that can be expressed.
Consequently, the resulting model may not be as good as the one created
by the standard model-building procedure. Nonetheless, experimental results
indicate that this restriction does not lead to negative effects on reliability or
efficiency of MBOA. Most importantly, given the constraint on the topological
ordering of the nodes, each processor can create the whole decision tree asyn-
chronously and independently of the other processors. Consequently, higher
speedup is achieved by removing the communication overhead.
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The code for building each decision tree can be described using this
skeleton:

Function BuildTree(Population Pop, TargetVariable Xi,
ListOfCandidateSplitVariables Pa): DecisionTreeNode;

Begin
Initialize the frequency tables; ...O(n)
For each Variable Xj in Pa ...O(n)

Evaluate the metrics of Xj split for Xi target; ...O(N)
End for
Pick up the split Xj′ with the highest quality; ...O(n)
Pop1 := SelectIndividuals (Pop, "Xj′ = 0"); ...O(N)
Pop2 := SelectIndividuals (Pop, "Xj′ = 1"); ...O(N)
return new SplitNode(new SplitCondition("Xj′"),

BuildTree(Pop1, Xi, Pa\Xj′),
BuildTree(Pop2, Xi, Pa\Xj′));

End;

To express the time complexity of the whole model-building algorithm,
we start with the complexity of one run of BuildTree() procedure, which is
O(n + nN + n + N + N) = O(n) + O(nN). The total number of BuildTree()
calls is O(2h), where h is the average height of final decision tree, but note
that the population size N is decreased exponentially in the recursion:

h∑
i=1

2h(O(n) + O(nN/2h)) ≈
h∑

i=1

2hO(nN/2h) =
h∑

i=1

O(nN) = O(hnN)

(8.1)
To be precise, the time spent on initializing the frequency tables and the time
spent on picking-up the best split is not compensated by this exponential de-
crease of population size, since it does not depend on N . However, in practice
we can neglect these terms because, due to the need for a reliable statistical
support for each decision node, the recursion stops with a sufficiently large
number of individuals in a node to neglect the frequency initialization and
split selection. The final complexity of building the entire decision tree is
thus O(hnN) and the complexity of building the entire probabilistic model
composed of n decision trees is O(hn2N).

Because the sample size must be at least linearly proportional to the num-
ber of model parameters and because the decision trees are usually nearly
balanced, the tree height is usually upper bounded by O(log N). Hence, the
time complexity of model building can be rewritten as O(n2N log N). This
time complexity also holds for hBOA.

8.4.3 Complexity of Model Sampling

Model sampling generates O(N) individuals of length n, where each variable
value is generated by traversing down a decision tree to a leaf. On average,
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it takes O(h) = O(log N) decisions before a leaf is reached. Thus, the overall
complexity of model sampling is O(nN log N).

8.4.4 Complexity of Replacement Operator

MBOA uses restricted tournament replacement (RTR) to replace a part of
the target population by generated offspring. RTR was proposed in [26] and
its code can be specified as follows:

For each offspring individual ...O(N)
For a ∗ N randomly chosen individuals from target ...O(a ∗ N)

Compute the distance between chosen individual
and offspring individual; ...O(n)

End for
If fitness of offspring individual is higher than the

fitness of nearest chosen individual then
Replace the nearest chosen individual

by offspring individual; ...O(n)
End if

End for

The overall time complexity is then O(N(anN + n)) = O(anN2), where
the coefficient a determines the percentage of randomly chosen individuals
in the target population that undergo the similarity comparison with each
offspring. The greater the a, the stronger the pressure on diversity preserva-
tion. Note that the complexity of RTR exceeds the complexity of most other
existing replacement operators. Nonetheless, the benefits of effective diversity
maintenance usually overshadow the computational effort.

8.4.5 Complexity of Fitness Evaluation

Clearly, the time complexity of fitness evaluation depends on the application.
In the experimental part of this chapter, we use the problem of determin-

ing ground states of random two-dimensional ±J Ising spin glasses, which is
described in the chapter “Searching for Ground States of Ising Spin Glasses
with Hierarchical BOA and Cluster Exact Approximation”. The spin glass
problem was chosen because of its interesting properties that make it a chal-
lenging benchmark for any optimization method. The evaluation time of one
spin glass configuration is linearly proportional to the number of bonds, which
is linearly proportional to the number of spins O(n). For N individuals the
evaluation time grows with O(nN). This complexity also holds for many other
decomposable problems for which each variable participates in at most a con-
stant number of subproblems (for example, cluster optimization in physics).

Optionally, MBOA can use a simple hill climber to improve the fitness of
each individual. The hill climber tries to flip each bit and chooses the change
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with the highest fitness increase. This step is repeated until no flip with a
positive outcome exists.

In our application, empirically, the number of successful acceptances per
individual is O(

√
n). After each acceptance, it takes O(1) time to recompute

the outcomes of neighboring flips and O(n) time to pick the best flip for the
next change. The total complexity of the hill climber for the whole population
is thus O(nN

√
n) = O(n1.5N). The algorithm for picking the best flip for the

next change can be implemented even more effectively using bookkeeping, so a
total complexity of O(Nn log n) can be achieved. In our analysis, we consider
the case without heuristics, but even in that case the complexity of evaluating
a solution with the hill climber and the complexity of evaluating a solution
without the hill climber are nearly the same.

8.5 Scalability Analysis

The overall time complexity of one generation of MBOA can be computed
by summing up the complexity of selection (weighted by c1), model building
(weighted by c2), model sampling (weighted by c3), replacement (weighted by
c4), and fitness evaluation (weighted by c5)

c1O(nN) + c2O(n2N log(N)) + c3O(nN log(N)) + c4O(anN2) + c5O(nN).
(8.2)

To develop scalable and efficient parallel MBOA it is necessary to identify the
main parts that are candidates for parallelization.

Apparently, one of the most complex parts of sequential MBOA is the con-
struction of the probabilistic model. In Sect. 8.4.2, we outlined an algorithm
for asynchronous construction of decision trees. To ensure that the load on
all processors is approximately equal, the overall construction of an n-node
Bayesian network can be partitioned into at most P = n/2 equally complex
subtasks (if the first processor builds the tree for Xo0 and Xon−1 , the sec-
ond processor builds the tree for Xo1 and Xon−2 , etc.). As the first scenario
of our analysis, we consider only this parallelization of probabilistic model
construction and keep the remaining parts sequential.

With P processors, the overall time complexity of parallel MBOA is

c1O(nN) +
1
P

c2O(n2N log(N)) + c3O(nN log(N)) + c4O(anN2) + c5O(nN).

The proportion between the time spent in the sequential part and the parallel
part of MBOA is given by

c1O(nN) + c3O(nN log(N)) + c4O(anN2) + c5O(nN)
1
P c2O(n2N log(N))

. (8.3)

To obtain an algorithm that effectively utilizes available computational re-
sources, this proportion should approach zero as n grows.
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8.5.1 Scalability for a Fixed Number of Processors

We first analyze scalability in the case of constant P and increasing n. This
is the typical scenario when the computational resources are fixed but the
problem to be solved is very large. The detailed analysis of the terms in
fraction (8.3) for a constant P and n → ∞ gives us the following suggestions
for design of parallel MBOA:

– The terms with c1 and c5 are negligible for scalability:

lim
n→∞

c1O(nN) + c5O(nN)
1
P c2O(n2N log(N))

= 0. (8.4)

In another words, neither the selection operator nor the population eval-
uation have to be implemented in parallel. Of course, this outcome is
valid only for fitness functions of complexity O(n). For fitness functions
of quadratic complexity, the scalability will depend on the absolute values
of constants c5, c2 and on the problem-dependent relation between n and
N . Theoretically, if the population size grows nearly linearly with problem
size (N ∝ n) as suggested by [27], it is still possible to keep the fitness eval-
uation sequential, because the log N term in the denominator dominates.
Nevertheless, in practical applications we suggest parallel evaluation of
problems with quadratic and higher complexity. For the parallelization
of fitness evaluation, the techniques mentioned in Sect. 8.2.1 can be used;
detailed guidelines for effectively distributing fitness evaluations can be
found in [19].

– The sampling of the model does not have to be performed in parallel,
since for all possible assignments to constants c2, c3 and P ,

lim
n→∞

c3O(nN log N)
1
P c2O(n2N log N)

= 0 (8.5)

always holds.
– The restricted tournament replacement has not to be performed in parallel

if

lim
n→∞

c4O(anN2))
1
P c2O(n2N log N)

= 0. (8.6)

In this case, the scalability highly depends on the problem-dependent
relation between n and N . Theoretically, even if the population size grows
linearly with the problem size (N ∝ n), the above fraction approaches
zero because the log N term in the denominator dominates. However, in
practical applications we suggest, RTR to be performed in parallel.

8.5.2 Scalability for an Increasing Number of Processors

So far we have analyzed the scalability of sequential MBOA for a fixed number
of processors. Now we will analyze how the scalability changes if the number
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of available processors scales up with n. In this case the execution time is
reduced by an order of n. By assuming P ∝ n, we obtain from (8.3)

c1O(nN) + c3O(nN log(N)) + c4O(anN2) + c5O(nN)
c2O(nN log(N))

. (8.7)

We see that the selection operator and the simple evaluation of the population
(terms with constants c1 and c5) can still be implemented sequentially, but
it does not hold for fitness evaluation with quadratic and higher complexity
any more. The decision about implementation of model sampling strongly
depends on the required speedup. If sequential model sampling is performed,
then the speedup is saturated at c2/c3. RTR must be necessarily implemented
in parallel, because for fixed c4, c2, and a, the numerator always dominates
the denominator.

8.6 Performance Prediction

This section applies the described approach to the parallelization of MBOA
on two-dimensional spin glasses (see the chapter “Searching for Ground States
of Ising Spin Glasses with Hierarchical BOA and Cluster Exact Approxima-
tion”).

8.6.1 Fitting Complexity Coefficients

We performed a series of experiments on random instances of 2D Ising spin
glass benchmarks of size 100, 225, 400, 625, 900 for population sizes N = 500,
N = 1,000, N = 1,500, N = 2,000, N = 4,000, N = 6,000 and N = 8,000.
We measured separately the duration of each part of the sequential MBOA in
order to determine the coefficients c1, c2, c3, c4, and c5. The fitted coefficients
are stated in Table 8.1. We observed that for larger problems the fit is in
agreement with the empirical data, but for smaller problems the measured
time is lower than that expected from the theoretical complexity. This can be
explained by the effects of cache memory and the assumptions of asymptotic
bounds.

8.6.2 Using Complexity Coefficients

The obtained coefficients can be used to predict the speedup of MBOA with
parallel model building. Given the problem size n, the population size N , and
the number of processors P , we get:

S =
c1nN + c2n

2N log(N) + c3nN log(N) + c4anN2 + c5nN

c1nN + 1
P c2n2N log(N) + c3nN log(N) + c4anN2 + c5nN

. (8.8)
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Table 8.1. The resulting values of coefficients c1, c2, c3, c4, c5

MBOA part Coefficient Estimated value R2 value

Selection c1 8.73E−09 0.978
Model building c2 1.00E−07 0.979
Model sampling c3 1.58E−07 0.934
Replacement (RTR) c4 ∗ a 2.18E−10 0.989
Evaluation c5 1.34E−07 0.918
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Fig. 8.2. The comparison of the speedup predicted from the numerical model and
the speedup computed from the empirical data measured on sequential MBOA solv-
ing 2D Ising spin glass instances of size 20 × 20, 25 × 25, and 30 × 30. Population
size was scaled approximately linearly with the problem size

For each Ising spin glass size 100, 225, 400, 625, 900 and each population
size N = 500, N = 1,000, N = 1,500, N = 2,000, N = 4,000, N = 6,000, and
N = 8,000 we choose 10 random benchmark instances and average the dura-
tion of each MBOA part. The coefficients hold for one generation of MBOA
performed on Intel Pentium-4 at 2.4 GHz.

Figure 8.2 shows how the predicted speedup changes for increasing P and
compares it with the speedup computed from the measured duration of each
part of sequential MBOA. We considered three different sizes of spin glass
instances 20×20, 25×25, and 30×30 and we linearly increased the population
size with problem size (N = 4,000, 6,000, 8,000). The predicted speedup fits
nicely the empirical speedup, especially for large problems. Additionally, it can
be seen that – in the idealized case without communication – it is possible to
use a large number of processors (more than P = 50) without observing any
significant speedup saturation.
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8.7 Experiments

The speedup presented in Fig. 8.2 was calculated using the time measurements
from sequential MBOA and it assumed that the model building is ideally par-
allelized with no communication cost or delays. However, in the real world,
communication significantly influences the achieved speedup. This section ver-
ifies the proposed approach using an actual MPI implementation of MBOA
on a cluster of PCs. Two-dimensional spin glass problem instances are used
in all tests.

All experiments were done at the Asgard cluster, which is an Intel Pen-
tium III Beowulf cluster located at the Swiss Federal Institute of Technology
(ETH) in Zürich. Asgard consists of 502 CPUs on 251 dual-CPU nodes. The
computational nodes are connected through 100 Mbps Ethernet switches and
communicate via MPI.

8.7.1 Implementation Details

Based on the design guidelines given in Sect. 8.5, we implemented parallel
MBOA. We use a master–slave architecture where CPU0 acts as the master
controlling the distribution of jobs to slaves CPU1 . . . CPUm. Due to the dy-
namic workload assignment, parallel MBOA does not require a homogeneous
cluster of workstations and it is adaptable to various parallel architectures.

The operation of the master can be illustrated by this simplified pseudo-
code:

Set t := 0;
Randomly generate Population(0) of size N;
Evaluate Population(0);
While termination criteria are not satisfied do

Parents(t) := Tournament selection(Population(t));
Broadcast Parents(t) to CPU1...CPUm;
Generate random permutation o = (o0...on−1);
Broadcast the permutation o to CPU1...CPUm;
For i:= 0 to n-1 do

Wait for any idle slave processor CPUj;
Send job i to CPUj;

End for
Gather all decision trees T0...Tn−1 from CPU1...CPUm;
For all individuals in Offspring(t) do

For i:= 0 to n-1 do
Traverse the tree Ti conditionally on Xo0...Xoi−1;
Generate Xoi

according to the reached leaf in Ti;
End for

End for
Evaluate Offspring(t);
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Population(t+1) := RTR(Population(t),Offspring(t));
Set t := t+1;

End while

The operation of slave processors can be illustrated as follows:

While termination criteria are not satisfied do
Receive Parents(t) from CPU0;
Receive permutation o = (o0...on−1) from CPU0;
While job-queue in CPU0 is not empty do

Receive next job number i from CPU0;
Ti := BuildTree(Parents(t), Xoi

, Xo0...Xoi−1);
End while
Send all constructed decision trees to CPU0;

End while

In the above code, each job corresponds to one call of BuildTree() defined in
Sect. 8.4.2. Note that not all (m + 1) processors are necessary; one processor
can be spared because the processes CPU0 and CPU1 do not overlap much and
can be physically mapped to the same processor. For the spin glass problem we
decided to keep the fitness evaluation sequential, as suggested in Sect. 8.4.5.

8.7.2 Results

The results shown in Fig. 8.3 confirm high efficiency of parallel MBOA. First
we measured separately the speedup of parallel model construction. The model
construction appears to be successfully parallelized; for example, for 50 proces-
sors and population size N = 8,000, we achieved a speedup of 45. Moreover,
the speedup grows when the population size is increased, because the pro-
portion between decision trees construction and decision trees communication
increases. This is good news for solving large problems where very large popu-
lations are usually needed. The results thus confirm that model building can
be effectively parallelized even for large parallel computers with a distributed
memory and relatively slow communication.

Then, we measured the speedup of the entire algorithm (including sequen-
tial selection, model sampling, fitness evaluation, and replacement). Figure 8.3
shows that the speedup of the whole algorithm is also acceptable for a small
number of processors, but it easily gets saturated and for a large number of
processors it is hard to achieve speedup better than 20. This indicates that the
additional parallelization of the remaining sequential parts might be necessary
to achieve a better speedup in this setting. Nonetheless, note that the achieved
speedup gets better as the computational complexity of MBOA increases due
to the problem size or the population size; consequently, the speedup should
be much better for problems where parallel implementation is necessary.
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Fig. 8.3. Speedup of the whole parallel MBOA and the speedup of model building
part (including true MPI communication) on random spin glass instance with 30×30
spins

8.8 Conclusions and Future Work

In this chapter we derived guidelines for designing efficient parallel estimation
of distribution algorithms (EDAs). Especially, we focused on the scalability
analysis that identifies the parts of EDAs that are best candidates for paral-
lelization.

The detailed scaleup analysis was demonstrated on the example of the
Mixed Bayesian Optimization Algorithm (MBOA). We fitted the complexity
of MBOA to experimental data obtained by solving random instances of the
spin glass optimization problem. The empirical results fit well the theoreti-
cal model. Consequently, the scalability and algorithmic efficiency of parallel
MBOA can be predicted accurately; for example, the expected speedup can
be estimated from the problem size and the number of processors.

In the experimental part of this chapter, we designed and implemented
parallel MBOA on a Beowulf cluster of 502 processors. Parallel MBOA par-
allelizes the construction of the Bayesian network with decision trees for the
selected population of parents. Parallel MBOA was tested on the challenging
problem of finding ground states of two-dimensional ±J Ising spin glasses.
The empirical results indicate that parallel MBOA can effectively utilize even
a large number of processors.
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Incorporating a priori Knowledge in
Probabilistic-Model Based Optimization

Shumeet Baluja

Summary. Recent studies have examined the effectiveness of using probabilistic
models to guide the sample generation process for searching high dimensional spaces.
Building complex dependency networks that can account for the interactions be-
tween parameters are often used; however, they may necessitate enormous amounts
of sampling. In this chapter, we demonstrate how a priori knowledge of parameter
dependencies, even incomplete knowledge, can be incorporated to efficiently obtain
accurate models that account for parameter interdependencies. This is achieved by
effectively putting priors on the network structures that are created. These more
accurate models yield improved results when used to guide the sample generation
process for search. We demonstrate the results on a variety of graph coloring prob-
lems, and examine the benefits of a priori knowledge as problem difficulty increases.

9.1 Introduction

Within the past few years, there has been increased interest in using prob-
abilistic modeling for combinatorial optimization. Unlike hillclimbing meth-
ods, which operate by sampling solutions neighboring the current solution,
probabilistic methods explicitly maintain statistics about the search space by
creating models of the good solutions found so far. These models are sampled
to generate the next query points to be evaluated. The high-performing sam-
pled solutions are then used to update the model, and the cycle is continued.
Comprehensive survey papers of this literature are available [28, 31, 39–41].

Some of the first work in using probabilistic modeling for optimization,
such as PBIL [1] and BSC [43], used extremely simple models. In these mod-
els, no inter-parameter dependencies were taken into account; each bit was
generated independently. Although this simple probabilistic model was used,
PBIL was successful when compared to a variety of standard genetic algo-
rithms and hillclimbing algorithms on numerous benchmark and real-world
problems [2, 3, 18]. A more theoretical analysis of PBIL can be found in
[16, 17, 22, 25, 27]. An analysis of PBIL in the Univariate Marginal Distribu-
tion framework is given in [33]. Despite the successes, limitations to the PBIL
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algorithm were described in [12]: PBIL and BSC may not perform as well
as pair-wise operators, such as those found in genetic algorithms [10, 15, 23],
when tested on problems explicitly designed with a high degree of interdepen-
dence between parameters. More complex models in the form of probabilistic
networks were introduced to overcome the limitations of models that assumed
each parameter was independent. Although these models provided a more ac-
curate representation of the high evaluation solutions, they also required more
samples in order to be used effectively. To reduce the amount of required data,
studies were conducted with networks that modeled only a subset of the pos-
sible dependencies [4, 5, 11].

In this chapter, we show how a priori knowledge of the problem or of the
search space can be used to direct the creation of the probabilistic networks.
The interactions of variables in the objective function can be more accurately
ascertained from the sampled points if knowledge of the problem is incor-
porated. This helps to overcome the drawbacks of limited sample sizes by
ensuring that the modeled dependencies are reflective of real dependencies in
the problem and not merely spurious correlations in the sampled solutions. We
empirically demonstrate that by creating more accurate models, we improve
the quality of the final solutions found through the search.

In the next section, we describe the simple tree-based model that we will
use as the basis for this study; this work was originally presented in [4]. Sec-
tion 9.3 gives an introduction to how a priori knowledge can be incorporated
into model creation. Section 9.4 empirically demonstrates its effectiveness on
a variety of graph coloring problems. Finally, Section 9.5 closes the paper with
conclusions and suggestions for future work.

9.2 Probabilistic Models

In the simplest model-based optimization techniques, such as PBIL or BSC, all
parameters are examined independently. Here we will give a brief background
into the probabilistic models that we use to overcome the independence as-
sumption. The probabilistic models attempt to capture dependencies, or more
specifically mutual information, between the parameters to determine which
parameters are dependent upon each other. These dependencies are used to
generate the new candidate solutions. The reader is referred to texts by Pearl
[38] and Jensen [24] for an introduction to probabilistic modeling and Bayesian
networks.

The overall structure of our approach is similar to PBIL. After evaluating
each member of the current generation, the best members of that population
are used to update a probabilistic model from which the next generation’s
population will be generated. From the set of solutions evaluated in each
generation, the best samples are added into a dataset, termed S. Rather than
recording the individual members of S, our algorithm maintains a sufficient
set of statistics in an array A. For models that use pair-wise interactions, this
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contains a number A[Xi = a, Xj = b] for every pair of variables Xi and Xj

and every combination of binary assignments to a and b. A[Xi = a, Xj = b]
is as an estimate of how many recently generated “good” bit-strings (from S)
have bit Xi = a and bit Xj = b. To give more weight to recently generated
bit-strings, the contributions of bit-strings that were previously added to the
dataset are decayed. All A[Xi = a, Xj = b] are initialized to some constant
Cinit before the first iteration of the algorithm; this causes the algorithm’s first
set of bit-strings to be generated from the uniform distribution. See Fig. 9.1
for the algorithm with bit-strings; extension to real-valued optimization have
been explored [7, 14, 29, 42].

The values of A[Xi = a, Xj = b] at the beginning of an iteration may
be thought of as specifying a prior probability distribution over “good” bit-
strings. As the algorithm progresses, we only select the top members of the
population to contribute to the probabilistic model. Although arbitrarily com-
plex probabilistic models can be used, we use a simple one that is capable of
capturing pair-wise dependencies: optimal dependency trees.

Given a dataset, S, of previously generated good bit-strings, we try to
model a probability distribution P (X) = P (X1, . . . , Xn) of bit-strings of
length n, where X1, . . . , Xn are variables corresponding to the values of
the bits. We try to learn a simplified model P ’(X1, . . . , Xn) of the empirical

For all bits i and j and all binary assignments to a and b, initialize A[x1 = a,
xj = b] to Cinit.
Repeat until Termination Condition is met:

1. Generate probabilistic model base on A. See Figure 9.2.
2. Stochastically generate K bit-strings based on the probabilistic model.

Evaluate these bit-strings.
3. Multiply all entries in A by decay factor α from (0, 1).
4. Choose the best M of the K bit-strings generated in step 2. For each bit-

sting V of these M, add 1.0 to every A[xi = a, xj = b] such that V has
xi = a and xj = b.

CONSTANTS (Values used in this study)

Cinit: Constant used to initialize matrix A-Number of examples “seen” at
initialization (1000).

K: Number of samples generated in each iteration. This is the population size
(200).

M: Number of best samples (from the K generated) that are used to update
the statistics (4).

α: How much to decay the effect of older examples (1.99).

Fig. 9.1. Outline for using a probabilistic model. The values in the parenthesis are
those that will be used in the experiments presented later in this paper
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probability distribution P (X1, . . . , Xn) entailed by the bit-strings in S. We
restrict our model P ’(X1, . . . , Xn) to the following form:

P ′(X1, . . . , Xn) =
n∏

i=1

P (Xi|ParentXi
), (9.1)

where ParentXi
is Xi’s single “parent” variable (the variable on which Xi

will be conditioned). We require that there be no cycles in these “parent-of”
relationships: formally, there must exist some permutation m = (m1, . . ., mn)
of (1, . . . , n) such that (ParentXi

= Xj) ⇒ m(i) < m(j) for all i. (The “root”
node, XR, will not have a parent node; however, this case can be handled with
a “dummy” node X0 such that P (XR|X0) is by definition equal to P (XR).)
In other words, we restrict P ’ to factorizations representable by Bayesian
networks in which each node (except XR) has one parent, i.e., tree-shaped
graphs.

A method for finding the optimal model within these restrictions is given
in [9]. A complete weighted graph G is created in which every variable Xi is
represented by a corresponding vertex Vi, and in which the weight Wij for the
edge between vertices Vi and Vj is set to the mutual information I(Xi, Xj)
between Xi and Xj :

I(Xi, Xj) =
∑
a,b

P (Xi = a, Xj = b) · log
P (Xi = a, Xj = b)

P (Xi = a) · P (Xj = b)
(9.2)

The empirical probabilities of the form P (Xi = a) and P (Xi = a, Xj = b) are
computed directly from S for all combinations of i, j, a, and b (a and b are
binary assignments to Xi and Xj). Once these edge weights are computed,
the maximum spanning tree of G is calculated, and this tree determines the
structure of the network used to model the original probability distribution.
Since the edges in G are undirected, a decision must be made about the di-
rectionality of the dependencies with which to construct P ’; however, all such
orderings conforming to the restrictions described earlier model identical dis-
tributions. Among all trees, this algorithm produces a tree that minimizes the
Kullback–Leibler divergence, D(P ||P ’), between P (the true empirical distri-
butions exhibited by S) and P ’ (the distribution modeled by the network):

D(P ||P ′) =
∑
X

P (X)log
P (X)
P ′(X)

. (9.3)

As shown in [9], this produces the tree-shaped network that maximizes the
likelihood of S (this means that of all the tree shaped networks, this is the
most likely to have generated S). This tree generation algorithm, summarized
in Fig. 9.2, runs in time O(n2), where n is the number of bits in the solution
encoding.

The arcs which remain in the maximum spanning tree represent the de-
pendencies to be modeled. Since it is a tree, each variable will be conditioned
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Generate an optimal dependency tree:

• Set the root to an arbitrary bit Xroot

• For all other bits Xi, set bestMatchingsBitInTree [Xi] to Xroot.
• While not all bits have been added to the tree:

– Of all the bits not yet in the tree, pick bit Xadd with the maximum
mutual information I (Xadd, bestMatchingBitInTree [Xadd]), using A
(which contain sufficient statistics for S) to estimate the relevant prob-
ability distributions.

– Add Xadd to tree, with bestMatchingBitInTree[Xadd] as parent.
– Fro each bit Xout not in the tree, if I(Xout, bestMatchingBitInTree[Xout])

< I(Xout, Xadd) then set bestMatchingBitInTree [Xout] = Xadd.

Fig. 9.2. Procedure for generating the dependency tree

on exactly one other variable (its parent). The exception to this is the root
of the tree, which is set according to its unconditional probabilities. With the
generated dependency tree that models P (X1, . . . , Xn), we use it to gener-
ate K new bit-strings. Each bit-string is generated in O(n) time during a
depth-first traversal of the tree. Each bit-string is then evaluated. The best
M of these bit-strings are selected and effectively added to S by updating the
counts in A. Based on the updated A, a new dependency tree is created, and
the cycle is continued.

9.2.1 Discussion of Related Models

Another extension to PBIL that captured pair-wise dependencies was termed
Mutual Information Maximization for Input Clustering (MIMIC) [11]. MIMIC
used a greedy search to generate a chain in which each variable is conditioned
on the previous variable. The first variable in the chain, X1, is chosen to be the
variable with the lowest unconditional entropy H(X1). When deciding which
subsequent variable Xi+1 to add to the chain, MIMIC selects the variable with
the lowest conditional entropy H(Xi+1|Xi). While MIMIC was restricted to
a greedy heuristic for finding chain-based models, the algorithm described in
this paper uses a broader class of models, trees, and finds the optimal model
in the class.

Example dependency graphs, shown in Fig. 9.3, illustrate the types of
probability models learned by PBIL, a dependency-chain algorithm similar
to MIMIC, and our dependency tree algorithm. We use Bayesian network
notation for our graphs: an arrow from node Xp to node Xc indicates that
Xc’s probability distribution is conditionally dependent on the value of Xp.
These models were learned while optimizing a noisy version of a two-color
graph coloring problem (shown in Fig. 9.3a) in which there is a 0.5 probabil-
ity of adding 1 to the evaluation function for every edge constraint satisfied
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Fig. 9.3. A: The underlying graph in a noisy two color graph coloring problem. B:
The empty dependency graph used by PBIL. C: The graph learned by our implemen-
tation of the dependency chain algorithm. D: The graph learned by our dependency
tree algorithm.

by the candidate solution. Note that the dependency tree algorithm is able
to discover the underlying structure of the graph, in terms of which bits are
dependent on each other (as shown in Fig. 9.3D).

The clear next step after modeling pair-wise dependencies is modeling
higher-order dependencies. The need for this has been demonstrated in [6].
However, generating models which are capable of representing higher-order de-
pendencies may be computationally expensive. The hope is that the expense
of generating the models will be offset by the savings obtained by the smaller
number of function evaluations that will be required due to the more accurate
modeling. A large amount of work has been done exploring different models to
use. The Factorized Distribution Algorithm (FDA) [32–35] uses a fixed model
throughout the search, with the model being specified by an expert. The FDA
algorithm is designed to work with problems that are decomposable into inde-
pendent parts. This work has been extended to incorporate learning with low
complexity networks and Junction-Trees [36, 37]. The Bayesian Optimization
Algorithm (BOA) and related work [13, 30, 39, 40] is the closest method to the
optimization techniques presented here. The model used in BOA is able to
represent arbitrary dependencies. When general Bayesian Networks are used
for modeling, the scoring function used to determine the quality of the net-
work plays a vital role in finding accurate networks. The quality of networks
can be assessed through a variety of measures. For example, both Minimum
Description Length and Bayesian Dirichlet metrics have been explored in [40].
The models that are found by BOA are similar to those used in FDA; however,
BOA is designed to learn the models as the search progresses. Because the
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models used by BOA are general Bayesian Networks, it is clear that a priori
information can be incorporated [19, 20]. This is the focus of the next section.

9.3 Incorporating a priori Knowledge

In this section, we describe how to incorporate information into the process
of learning the probabilistic model. The method is general and can be used
in MIMIC [11], COMIT [5], BOA [39] or any other algorithm which has a
learning component in the model generation process. Although the a priori
information that is available for a problem is often high level and specifies
complex dependencies, we show how the knowledge can be used even when
simple probabilistic models are employed.

To this point, we have restricted the probabilistic models that we have
examined to dependency trees that only model pair-wise interactions. This
was done to mitigate the need for a large number of samples that arises
when higher-order dependencies are modeled. Nonetheless, in some cases more
complex models are required. Additionally, even when simple models such
as trees are used, by using a priori information to constrain the number of
possible trees that are considered, the samples can be more effectively used
since they must only select trees from a reduced set. In this paper, we use
a priori knowledge about the function to be optimized to constrain the arcs
that are modeled in the probabilistic models. This technique is applicable to
optimization procedures regardless of whether a multiply connected Bayesian
network is used or a simple dependency tree is employed.

As an introductory example, the potential for using a priori knowledge
is clearly demonstrated in problems in which the dependencies are evident,
such as graph coloring. Consider the graph coloring problem as shown in
Fig. 9.3A. In this simple problem, it is clear that the color of node 5 should
be dependent upon the color of nodes 1 and 10, and that the color of node
10 should be dependent on the colors of nodes 4, 5, and 20. There are several
ways to incorporate this information into a probabilistic model. The first is to
employ a model that captures more than pair-wise dependencies. For example,
if we allowed arbitrary dependencies, we could create models with more than
a single parent; thereby mimicing the graph structure shown in Fig. 9.3A.
Although this would require maintaining more than pair-wise statistics, only
a subset of these higher-order statistics would be required since we could
specify the dependencies to be modeled from our knowledge of the underlying
graph structure. The second approach is to select the model from a family of
low complexity models (such as the set of all trees – as we have described in
Sect. 9.2) but to allow the arcs to be selected only from the subset of those that
exist in the graph. Continuing with the same example, the allowed parents
for node 5 would be either node 10 or node 1, but not both (since that would
violate the tree property).
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Throughout the remainder of this paper, we concentrate on the second ap-
proach described above: constraining the tree structures that can be created.
This approach has the benefit of not requiring exact information of which de-
pendencies must be modeled; although we do not specify the specific parents
of each of the nodes, we restrict the possibilities. This method also has benefits
as problem sizes increase. Modeling higher-order dependencies, even when the
structure of the network is known, requires a large number of samples. In the
graph coloring task, this problem becomes significant when the connectivity
of the graph increases.

One of many ways to implement constraints on the dependency graph is
to impose a prior over network structures in which the prior likelihood of a
network decreases exponentially with the number of arcs in the network that
do not correspond to edges in a pre-specified set. With the optimal depen-
dency trees, such a prior can be simply implemented. We need only subtract
a penalty term from the mutual information between any two variables that
are not connected by an edge (E) in the pre-specified preferred set (S) and
run the maximum spanning tree algorithm on these modified weights instead.
The modified mutual information calculation is shown in (9.4).

I′(Xi, Xj) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

if(Ei,j ∈ S) :
∑
a,b

P (Xi = a, Xj = b) · log
P (Xi=a,Xj=b)

P (Xi=a)·P (Xj=b)

if(Ei,j /∈ S) :
∑
a,b

P (Xi = a, Xj = b) · log
P (Xi=a,Xj=b)

P (Xi=a)·P (Xj=b)
− αi,j

.

(9.4)
As shown above, the penalty, α, does not need to be constant, and can

vary per dependency arc. The severity of the penalty provides a means to
convey confidence in the a priori information. The more confident we are that
an arc should not be modeled, the larger the penalty can be.

For simplicity, however, we do not use a complex penalty setting. Instead,
the penalty term is constant for every arc. In the experiments presented in
this paper, a sufficiently severe penalty term was used to ensure that arcs in
the pre-specified set were always favored over arcs not in the set. This simple
penalty procedure was chosen to ensure that the focus of the experiments
remain on demonstrating that improvements in the final search result were
obtainable by incorporating a priori information into the probabilistic models.
Nonetheless, we do not suggest that this will work well on all problems; in
problems in which the information should be regarded only as a preferred
dependency instead of one that must be enforced, a less severe penalty may
yield improved results.

9.4 Empirical Demonstration

In this section, we will use the graph coloring (vertex coloring) problem to
demonstrate the effectiveness of incorporating a priori knowledge into model
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creation. In each of the graph coloring problems, there are n nodes in a par-
tially connected graph to be assigned one of c colors. The goal is to assign
each of the connected nodes different colors. In these problems, the graphs are
not planar, and a solution in which all of the constraints are met is not guar-
anteed to exist. The evaluation, to be maximized, is the number of constraints
(connected nodes that have different colors) that are met. Graph coloring is
an ideal problem to show the benefits of a priori knowledge. Without a priori
knowledge, an optimization technique would simply use the evaluations of all
of the previously evaluated solutions to create a new sample point to eval-
uate. With a priori knowledge, the underlying graph structure can be used
to constrain the set of dependencies that are allowed so that only dependen-
cies that have corresponding edges in the underlying graph are allowed in the
dependency tree.

To examine the benefits of using a priori knowledge, we vary the problem
difficulty along three axes. The first is by simply varying the number of nodes,
n, in the graph. As the problem size grows, we expect that providing knowl-
edge of which dependencies are important to model will grow in importance.
Along the second axis, we vary the number of connections in the graph. As the
number of connections grows, the problem becomes more difficult. Finally, we
vary the number of colors, c, that can be assigned to each node. The number
of colors has an interesting effect on the problem difficulty. As the number of
colors grows, the easier it is to find a color that does not violate constraints.
However, using a dependency tree with a binary solution-string encoding is
challenging with more than two colors. The solution is encoded as follows:
each node is assigned log2c bits. The bits specify which color is assigned to
the node. With only two colors, each color can be represented as a single bit.
The tree structure maps very well onto the model since it is setup to capture
pair-wise dependencies between bits. However, with more than two colors, the
color of each node is represented with more than a single bit. To represent
the dependency between nodes, it is unclear which bits should be dependent
on each other. As will be shown, we do not specify which bits should be de-
pendent on each other, only which sets of bits may be dependent (i.e., all the
bits that represent node A can be dependent on any of the bits that represent
node B); this is enough information to provide benefits to the optimization
procedure.

Note that the results in the section are not intended to represent a
comparison of different optimization algorithms. For more comprehensive
comparisons between optimization methods, such as genetic algorithms, prob-
abilistic optimization methods, and hillclimbing methods, the reader is re-
ferred to [2, 4, 5, 12, 18]. For the experiments presented in this section, we
keep the probabilistic modeling algorithms as simple as possible to concen-
trate our examination on the effects of incorporating knowledge into the
models. We have not included operators such as mutation, local hillclimb-
ing or any of the numerous heuristics that can be used in conjunction
with optimization techniques to create a general purpose optimization tool
[15, 26].
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In the first set of experiments, we attempted graph coloring problems with
two colors. We tried five sizes of problems, with 100, 500, 1,000, 1,500 and
2,000 nodes. We also varied the connectivity at each size – each node was
randomly connected to 2, 5, 10 or 20 nodes (a node’s color must be different
from the nodes directly connected to it). For each problem and connectivity
combination (20 in total), we randomly created 20 instantiations which had
different connectivity structures. In total, 400 two-color problems were tried
with three algorithms:

1. NO: No dependencies are modeled.
2. FULL: Dependency arcs can be selected from any node to any other

node.
3. GRAPH: a priori knowledge of the graph was used; arcs in the depen-

dency tree were only chosen from nodes that are actually connected in the
underlying graph.

Table 9.1 shows the mean number of constraints satisfied by each of the
different algorithms. The second set of three result columns show the number
of trials (out of 20) that the FULL satisfied more constraints than NO ,
GRAPH satisfied more constraints than NO , and GRAPH satisfied more
constraints than FULL. The last set of three results columns shows which of
the averages are significantly different at the p = 0.01 confidence level; this
is measured by a pair-wise t-test. Based on the results shown in Table 9.1,
several points are of interest.

– It is never the case that all of the constraints are met. This is not surpris-
ing, since the connectivity of the graph is chosen randomly, and there is
no guarantee that there is a solution that will satisfy all the constraints.

– When the problem sizes are small (100 nodes), there is little difference
between the algorithms. Although the differences in performance are sig-
nificant in a small number of cases, the absolute differences are quite
small.

– At 500 nodes, the procedures which incorporate dependency modeling
(FULL & GRAPH ) perform significantly better than not modeling any
dependencies. However, there is little difference between the performance
of using a priori knowledge (GRAPH ) and not using any a priori knowl-
edge (FULL).

– As the problem size increases (1,000, 1,500, 2,000 nodes), both the FULL
algorithm and the GRAPH algorithm perform better than the NO al-
gorithm in nearly every instantiation of every problem size.

– For the large problem sizes (1,000, 1,500, 2,000 nodes), the GRAPH
algorithm, which incorporates knowledge of the graph structure, performs
better than the FULL algorithm for every size problem examined (at the
p = 0.01 significance level).

The results largely match our expectations. As the problem size increases,
the benefit of incorporating a priori knowledge increases. In almost all of
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Table 9.1. Results on graph coloring problem with two colors

Mean
constraints

satisfied with
different

probabilistic
models

No. of trials
Model A

better than
Model B (out

of 20)

Paired t-tests
on means
p = 0.01

confidence
level

No.
of

nodes
(no.
of

bits)

Connec
tivity

No
arcs
(NO)

All arcs
(FULL)

a
priori
knowl.
arcs

(GRAPH)

Full
>
no

Graph
>
no

Graph
>
full

No &
full

No &
graph

Full
&

graph

100 (100)

2 168 170 170 16 14 5 *
5 358 363 363 18 17 8 * *
10 656 662 660 17 12 7
20 1,222 1,228 1,227 13 11 6

500 (500)

2 794 842 846 20 20 14 * *
5 1,726 1,778 1,792 20 20 16 * * *
10 3,183 3,238 3,242 20 19 13 * *
20 5,967 6,023 6,044 17 19 14 * *

1000 (1000)

2 1,382 1,527 1,646 20 20 20 * * *
5 3,127 3,239 3,370 20 20 20 * * *
10 5,895 6,015 6,145 20 20 20 * * *
20 11,269 11,378 11,521 20 20 19 * * *

1500 (1500)

2 1,894 2,017 2,358 20 20 20 * * *
5 4,415 4,511 4,814 20 20 20 * * *
10 8,429 8,533 8,813 20 20 20 * * *
20 16,320 16,467 16,700 19 20 20 * * *

2000 (2000)

2 2,405 2,496 3,011 20 20 20 * * *
5 5,661 5,739 6,192 20 20 20 * * *
10 10,927 11,043 11,411 20 20 20 * * *
20 21,323 21,455 21,793 19 20 20 * * *

the problems, GRAPH performed significantly better than NO (17/20);
additionally, GRAPH performed better than FULL in 13/20 problems –
and consistently in the larger problems. On the smaller problems (for example
when the no. of nodes = 100,500), the FULL algorithm was able to discover
an underlying structure on the graph that improved its performance over
NO in most cases. It is interesting to note that with a connectivity of 20
when the number of nodes equaled 100 and 500 the differences between all
three algorithms were usually very small. These problems may have been too
constrained for there to be any significant advantage to be seen.

In the next set of experiments, we use the same problem sizes in terms
of the number of bits; however, we increase the number of possible colors to
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4. Note that this also doubles the size of the solution encoding in terms of
the number of bits that are required to represent the solution. The results are
shown in Table 9.2, as with the previous set of results, the results represent
400 problem instantiations. In comparison to the previous experiments with
two colors, there are several interesting points to note:

– In the first problem (no. of nodes = 100 and connectivity = 2), all of the
algorithms were able to solve the problem optimally.

– As with the previous experiments with two colors, there is little perfor-
mance difference in the smallest problems (no. of nodes = 100).

Table 9.2. Results on graph coloring problem with four colors

Mean
constraints

satisfied with
different

probabilistic
models

No. of trials
Model A

better than
Model B (out

of 20)

Paired t-tests
on Means
p = 0.01

confidence
level

No.
of

nodes
(no.
of

bits)

Connec
tivity

No
arcs
(NO)

All
arcs

(FULL)

a priori
knowl-
edge
arcs

(GRAPH)

Full
>
no

Graph
>
no

Graph
>
full

No &
full

No &
graph

Full
&

graph

100
(200)

2 200 200 200 0 0 0

5 484 487 486 16 14 9 *
10 918 922 920 14 10 8
20 1,747 1,751 1,751 14 16 9

500 (1,000) 2 883 920 977 20 20 20 * * *
5 2,103 2,141 2,221 20 20 20 * * *
10 4,082 4,136 4,198 18 20 20 * * *
20 7,976 8,057 8,099 20 20 19 * * *

1,000 (2,000) 2 1,652 1,672 1,847 19 20 20 * * *
5 4,004 4,030 4,174 18 20 20 * * *
10 7,861 7,890 8,024 18 20 20 * * *
20 15,514 15,546 15,655 15 20 20 * *

1,500 (3,000) 2 2,422 2,433 2,680 16 20 20 * * *
5 5,898 5,918 6,115 18 20 20 * * *
10 7,799 7,812 8,048 15 20 20 * *
20 23,063 23,092 23,210 18 20 20 * * *

2,000 (4,000) 2 3,190 3,193 3,500 11 20 20 * *
5 7,799 7,812 8,048 15 20 20 * *
10 15,438 15,446 15,636 14 20 20 * *
20 30,604 30,636 30,781 16 20 20 * *
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– In every problem above 100 nodes, the GRAPH algorithm was signifi-
cantly better than the NO algorithm – working better in each problem
instantiation (320/320) of each problem size and complexity.

– In every problem above 100 nodes, the GRAPH algorithm was signifi-
cantly better than the FULL algorithm – working better in almost each
problem instantiation (319/320) of each problem size and complexity.

– As the problem sizes increased (2,000 nodes), the FULL algorithm was
not significantly better than the NO algorithm, but the GRAPH algo-
rithm remained better than both FULL and NO .

The results are promising. First, it should be noted that although the colors
of each node were represented by two bits, and we did not specify on which of
the bits the dependencies should be modeled, this did not hurt the ability of
GRAPH in making improvements over NO . For all the problems, we only
specified which sets of bits were allowed for inclusion into the probabilistic
model. In almost each of the problem instantiations above 100 nodes (319/320
instantiations) GRAPH performed better than FULL, and in all of the
instantiations GRAPH performed better than NO . For the largest problem
sizes that we examined (2,000 nodes), the FULL algorithm was unable to find
a good probabilistic model; the GRAPH algorithm performed consistently
better.

Although the differences are not significant with small problem of 100
nodes, one interesting trend may be interesting to explore further: the FULL
algorithm slightly outperforms the GRAPH algorithm on a number of small
problem instantiations. For the smaller problem sizes, the FULL algorithm
can find a set of dependencies to model that achieve results at least comparable
to the GRAPH algorithm. It is possible that the FULL algorithm may find
a dependency outside the graph structure that captures a logical dependency
that GRAPH was not allowed to model. As the problem size increases,
however, the chances of finding these outside of the underlying graph structure
decreases; thereby allowing the GRAPH algorithm to outperform the FULL
algorithm for larger problems.

In summary, although it is usually accepted that using a probabilistic
model to guide exploration helps optimization procedures to find better so-
lutions, as the problem sizes get large, having enough samples to accurately
determine the correct dependencies may be impractical. By using problem
specific knowledge, in this case the underlying graph structure, we were able
to narrow down the number of potential dependencies from which to choose.
For example, in the four-color problem with 2,000 nodes, the total number
of dependencies that can be modeled is 4,000*3,998 (15,992,000)1; this is the
number of dependencies from which the FULL algorithm can select in order
1 This assumes that the bits representing the color of a node cannot be dependent

on other bits (including itself) representing the same node. In this counting, A→B,
B→A are counted individually.
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to build the dependency tree. By using the underlying graph structure, we can
significantly reduce the number of connections that we must consider. For the
20 connectivity case, there are at most 320,000 connections ((4,000 * 20 *
2)*2), or 2% of the total connections. For the two connectivity case there are
only 32,000 ((4,000 * 2 * 2)*2) connections, or 0.2% of the total connections.
Here, the number of connections considered for inclusion in the model scales
with the complexity of the underlying graph structure.

9.5 Conclusions and Extensions

This study has demonstrated the effectiveness of incorporating a priori knowl-
edge into the probabilistic models that are used to guide search. The knowl-
edge was used to pre-select the set of arcs that were allowed for inclusion in
the optimal dependency trees. We have also demonstrated that the knowledge
that is included does not need to be exact. In all of the experiments conducted,
we limited the set of edges that could be included in the tree; however, the
exact tree was never specified – and was automatically generated during the
search. In this study, the knowledge that was incorporated into the optimiza-
tion process was straight-forward, the underlying graph is a clear source of
information. In other domains, finding a good source of domain information
may be less intuitive. Nonetheless for using a priori knowledge in real domains,
it is important to find good sources; incorrect information has the potential
to yield results worse than using a full or even no probabilistic model.

Although not explored in this paper, using a priori knowledge can be used
in conjunction with other problem-specific heuristics. For example, if we are
trying to solve a well studied optimization problem, for example Satisfiability,
Bin Packing, Jobshop, VLSI Layout, etc. there already exist a wide variety of
specialized stochastic heuristics to address these problems. We would like to
be able to use the probabilistic modeling techniques in conjunction with these
specialized procedures. Here, the probabilistic models are used to generate
points with which to initialize search with the specialized heuristics. For ex-
ample, once we make several runs with the specialized heuristic, we can model
the better points found during these runs with the probabilistic models. These
probabilistic models can then be used to generate new initialization points. In
this manner, the probabilistic models “wrap-around” the specialized search
heuristics [4]. Similar to the manner in which a priori information was incor-
porated into the probabilistic models in this study, we can incorporate any a
priori information in the models created in this approach. Note that the wrap-
per approach may also be employed for computational benefits, irrespective of
whether a specialized search algorithm is used. In the wrapper approaches, the
probabilistic model may be created much less frequently, which can provide
benefits in terms of speed since model creation is a computationally intensive
procedure (even for the trees, it is O(n2) where n is the number of bits in
the parameter encoding, for more complex networks the expense can be much
greater [8]).
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We have not attempted to propose a complete optimization “system” in
this paper; there is a vast amount of literature available on heuristics that can
be used in conjunction with the algorithms proposed here. Extensions to the
algorithms proposed here will include such heuristics as elitist selection, mu-
tation operators, adaptive operator probabilities, and domain-dependent op-
erators. Future research should also examine the effects of using non-uniform
penalty settings. The magnitude of the penalty can be used as a means to
convey the confidence in the a priori information including whether the infor-
mation is mandatory or a suggestion. Another direction for future research is
to examine the convergence properties of probabilistic optimization techniques
with a priori knowledge. Convergence studies have been conducted with op-
timization with fixed networks, which may be viewed as an extreme form of
the knowledge incorporated in this paper [44].

In previous papers, we have shown that the performance of optimization
algorithms consistently improves as the accuracy of their statistical models
increases. In [4] we showed that trees generally performed better than chains,
and chains generally performed better than models which assumed all vari-
ables were independent, such as those used in PBIL. The accuracy of the mod-
els can be improved through either using more complex models or by ensuring
that the models that are created are more representative of the structure of
the underlying search space. Unfortunately, when we move toward models in
which variables can have more than one parent variable, the problem of finding
an optimal network with which to model a set of data becomes NP-complete
[8]. The methods presented in this paper provide a means to reduce the set of
probabilistic models that must be considered – whether pair-wise or higher-
order dependencies are included. The incorporation of a priori information
improves the accuracy of the models that are created given a limited number
of samples. As shown, improved accuracy in the models leads to improved
search results.
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[29] Larrañaga, P., Etxeberria, R., Lozano, A., and Peña, J. (2000), “Opti-
mization in continuous domains by learning and simulation of Gaussian
networks,” Optimization By Building and Using Probabilistic Models
Workshop in the GECCO-2000 Conference, pp. 201–204
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Multiobjective Estimation of Distribution
Algorithms

Martin Pelikan, Kumara Sastry, and David E. Goldberg

Summary. Many real-world optimization problems contain multiple competing ob-
jectives and that is why the design of optimization techniques that can scalably
discover an optimal tradeoff between given objectives (Pareto-optimal solutions)
represents an important challenge. This chapter discusses estimation of distribution
algorithms (EDAs) that address this challenge. The primary focus is on scalability on
discrete multiobjective decomposable problems and the multiobjective hierarchical
BOA (mohBOA); other approaches to the multiobjective EDA design are discussed
briefly.

Key words: Multiobjective optimization, evolutionary computation, estima-
tion of distribution algorithms, multiobjective decomposable problems

10.1 Introduction

Many real-world optimization problems contain multiple competing objec-
tives. For example, in engine design, one objective may be to maximize per-
formance whereas the other objective may be to maximize fuel efficiency.
Nonetheless, most optimization algorithms are applicable to only single-
objective problems. One of the approaches to multiobjective optimization is
to create a new objective function that is defined as a weighted sum of the
competing objectives; a single-objective optimizer can then be used. The sec-
ond approach is to modify the optimizer to consider all objectives and discover
an optimal tradeoff (Pareto-optimal front) between these objectives.

Since it is often impossible to choose appropriate weights without trying
many settings by trial and error, designing optimization algorithms that can
scalably and reliably discover the set of all Pareto-optimal solutions represents
an important challenge [6, 7]. This chapter discusses multiobjective estimation
of distribution algorithms (moEDAs), which address this challenge within the
EDA framework.
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The chapter starts with an introduction to multiobjective optimization
in Sect. 10.2. Section 10.3 discusses multiobjective decomposable problems
and analyzes the scalability of several multiobjective genetic and evolution-
ary algorithms and EDAs on this class of problems. Section 10.4 describes
the multiobjective hierarchical Bayesian optimization algorithm (mohBOA),
which is shown to solve difficult multiobjective decomposable problems scal-
ably and reliably. Section 10.5 then reviews and discusses other multiobjective
EDAs. Finally, Sect. 15.7 summarizes and concludes the chapter.

10.2 Multiobjective Optimization and Pareto Optimality

In multiobjective optimization, the task is to find a solution or solutions that
are optimal with respect to multiple objectives. For example, one may want to
optimize a telecommunication network to both maximize its performance as
well as minimize its cost. In many problems, objectives compete and improv-
ing the value of one objective comes at the expense of the other objectives.
This section introduces multiobjective optimization and the basic procedure
of NSGA-II, which illustrates this class of optimization problems.

10.2.1 Basic Approaches and Pareto Optimality

There are two basic approaches to solving multiobjective optimization
problems:

(1) Weigh the objectives in some way, yielding a single-objective problem
where the objective consists of a weighted sum of all objectives.

(2) Find the Pareto-optimal front, which is defined as the set of solutions
that can be improved with respect to any objective only at the expense of
their quality with respect to at least one other objective; for example, the
performance of an engine on the Pareto-optimal front could be improved
only at the expense of its fuel consumption and the other way around (see
Fig. 10.1).

Pareto optimality can be easily explained using the concept of dominance.
We say that a candidate solution A dominates a candidate solution B if A is
better than B with respect to at least one objective but A is not worse than
B with respect to all other objectives. For example, in telecommunication
network optimization, network A dominates network B if A is better than B
with respect to both performance as well as cost. The Pareto-optimal front is
then a subset of all candidate solutions that are not dominated by any other
candidate solution.

The primary advantage of finding the Pareto-optimal front as opposed
to finding the optimum to a single-objective problem created by weighing
the objectives is that sometimes it is difficult or impossible to weigh the
objectives appropriately to find satisfactory solutions. Furthermore, finding
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Fig. 10.1. Pareto-optimal front for two-objective engine design

the Pareto-optimal front reveals the tradeoff between the objectives, which
can be used to decide which of the solutions on this front is best for each
particular problem instance.

This chapter focuses on EDAs for finding the set of all Pareto-optimal
solutions because the application of EDAs or other advanced evolutionary
algorithms to any single-objective problem is straightforward. The task is to
find the set of all Pareto-optimal solutions or to cover this set evenly if storing
all solutions is intractable.

An overview of multiobjective genetic and evolutionary algorithms and
their comparison can be found in Deb [7] and Coello Coello [6]. Section 10.3
describes the basic procedure of NSGA-II [9], which is one of the most popular
multiobjective genetic algorithms.

10.2.2 NSGA-II

To apply genetic and evolutionary algorithms to multiobjective problems, it
is common to modify selection and replacement operators. NSGA-II [9] uses
nondominated crowding selection, which makes tournaments among different
solutions and decides on the winner of each tournament using two criteria:
dominance and crowding distance.

NSGA-II starts by ranking solutions based on dominance. The ranking
starts by assigning rank 1 to the set of solutions that are not dominated by
any other solution in the population. Next, solutions that are not dominated
by any of the remaining solutions are assigned rank 2. That is, all solutions
with rank 2 are dominated by at least one solution with rank 1, but are
not dominated by others in the population. The sorting and ranking process
continues until all solutions are ranked by assigning increasing ranks to those
solutions that are not dominated by any of the remaining, unranked solutions.
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After nondominated sorting, we are left with subsets of population with dif-
ferent ranks. Solutions with a given rank are not dominated by solutions that
have the same or higher rank but they are dominated by at least one solution
with a lower rank. Therefore, with respect to Pareto optimality, solutions with
lower ranks should be given priority. See Fig. 10.2 for an illustration of the
ranking procedure of NSGA-II.

Apart from finding solutions in the Pareto front, it is also essential to
achieve good coverage or spread of solutions in the front. The diversity of so-
lutions in the objective space is usually maintained with a niching mechanism.
NSGA-II uses a niching procedure based on crowding distance, which depends
on the density of solutions in the neighborhood of each solution. The higher
the crowding distance of the solution, the less dense the neighborhood of the
solution. Solutions with higher crowding distance are favored to ensure that
the population spreads evenly on the Pareto-optimal front. The pseudocode
for computing the crowding distance is outlined in Fig. 10.3.

To compare quality of two solutions, their ranks are compared first. If
the ranks of the two solutions differ, the solution with the lower rank is bet-
ter regardless of the crowding distance. If the ranks of the two solutions are
equal, the solution with a greater crowding distance wins. If both the ranks
as well as the crowding distances are equal, the winner is determined ran-
domly. A pseudocode for the comparison of two solutions is shown in Fig. 10.4.
This comparison procedure can be used in any standard selection operator,
such as tournament or truncation selection. NSGA-II uses binary tournament
selection.

Section 10.3 discusses multiobjective decomposable problems and proposes
a simple combination of NSGA-II and EDAs. Then, the section presents initial

Fig. 10.2. Illustration of the ranking procedure of NSGA-II for a two-objective
minimization problem
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crowding-distance-assignment(P)

for each rank r (nondominated sorting)

P’ = select solutions with rank r from P;

N = size(P’);

for each solution X in P’

d(X)=0;

for each objective m

Q = sort P’ using m-th objective;

d(Q(1))=infinity;

d(Q(N))=infinity;

for i=2 to N-1

d(Q(i))=d(Q(i))+Q(i+1).m-Q(i-1).m;

return d;

Fig. 10.3. Crowding distance assignment in NSGA-II. For a solution X, X.m denotes
the value of mth objective for X. Q(i) denotes ith candidate solution in population Q

compare(A,B)

if (rank(A)<rank(B)) then better(A,B)=A;

if (rank(A)>rank(B)) then better(A,B)=B;

if (rank(A)=rank(B))

then if (crowding(A)>crowding(B))

then better(A,B)=A;

if (crowding(A)<crowding(B))

then better(A,B)=B;

if (crowding(A)=crowding(B))

then better(A,B)=random(A,B);

Fig. 10.4. Nondominated crowding selection in NSGA-II

experiments with various multiobjective optimizers on several multiobjective
decomposable problems and discusses the poor scalability of all algorithms on
the tested problems.

10.3 Initial Experiments

Since much research in EDAs focused on the design of robust, scalable, and ef-
ficient EDAs for decomposable problems of bounded difficulty, the assumption
of bounded-order decomposability appears to be a good starting point for the
design of robust and scalable multiobjective EDAs. The purpose of this sec-
tion is to describe a class of decomposable problems for testing multiobjective
optimization techniques and to discuss performance of several multiobjective
genetic algorithms and EDAs on these problems.
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Fig. 10.5. A two-objective decomposable problem of m subproblems of order 5

The section starts by discussing multiobjective decomposable problems.
The section then introduces a class of multiobjective decomposable problems
that can test whether a multiobjective optimizer can scalably find a diverse
set of representatives on the Pareto-optimal front of multiobjective decompos-
able problems of bounded difficulty. Initial experiments with multiobjective
EDAs and other multiobjective evolutionary algorithms are then presented
and discussed. The results indicate that when there are many subproblems
for which the multiple objectives compete, niching in multiobjective evolution-
ary algorithms becomes overwhelmed, leading to poor, exponentially scaled
performance.

10.3.1 Multiobjective Decomposable Problems

In the study on multiobjective decomposable problems, we make several
important assumptions. First of all, we assume that the problem can be addi-
tively decomposed into subproblems of bounded order and that the decompo-
sition is identical for all objectives. We also assume that out of m subproblems,
md ≤ m subproblems compete in at least one objective, which means that
the optimal solution to the subproblem is not the same for all objectives.

Figure 10.5 illustrates this concept with a two-objective problem with m
subproblems of order 5 and two objectives. In the remainder of this chapter we
assume two objectives, although the results of the chapter can be generalized
to any fixed number of objectives in a straightforward manner.

An example of a multiobjective decomposable problems is a two-objective
onemax-zeromax [5, 30, 33], where the first objective counts the ones in the
input string whereas the second objective counts the zeros (see Sect. 10.3.3);
the task is to maximize both objectives.

10.3.2 Initial Approach to Multiobjective EDAs

The most intuitive way to extend EDAs to find Pareto-optimal solutions is
to replace selection and replacement operators of standard EDAs by those of
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multiobjective evolutionary algorithms, such as NSGA-II [9] or SPEA2 [40].
This approach was taken in two extensions of BOA [28] and hierarchical
BOA (hBOA) [26, 30]: The multiobjective hierarchical BOA (mhBOA) of
Khan [16, 17], who combined hBOA with NSGA-II, and the multiobjective
mixed BOA (mmBOA) of Laumanns et al. [18], who combined mixed BOA [23]
with SPEA2 [40].

In this work, we use the selection operator of NSGA-II, but similar re-
sults can be expected for other multiobjective selection techniques. That is,
nondominated crowding with binary tournament selection is used to select of
promising solutions (see Sect. 10.2.2).

For replacement, two operators are evaluated (1) Elitist replacement of
NSGA-II [9] and (2) restricted tournament selection [15]:

1. Elitist replacement. The first replacement operator is the elitist replace-
ment of NSGA-II, where the selected population and the population of
new candidate solutions are first evaluated with the nondominated crowd-
ing evaluation of NSGA-II, and then the best candidate solutions accord-
ing to nondominated ranking form the next population.

2. Restricted tournament selection. The second replacement operator is the
restricted tournament selection [15]. Also in this case, the selected popu-
lation and the population of new candidate solutions are first evaluated
with the nondominated crowding evaluation of NSGA-II. Then, each new
candidate solution X is incorporated into the original population using
the following three steps (1) select a random subset W of size w from the
original population, (2) find the solution Y in W that is most similar to
X, and (3) make a tournament between X and Y where X replaces Y
if it is better than Y according to the nondominated ranking comparison
of NSGA-II. The parameter w is called window size, and a good rule of
thumb for this parameter is w = min{n,N/20}, where n is the problem
size and N is the population size [29].

To perform initial experiments, the nondominated crowding selection and
the two replacement schemes were incorporated into the extended compact
genetic algorithm (ECGA) [12], which is an advanced EDA based on mul-
tivariate probabilistic models. The multiobjective variant of ECGA will be
referred to as mECGA. Since ECGA is described in detail in another chapter
of this book, we omit any discussion of this algorithm.

ECGA can automatically identify and exploit appropriate problem decom-
position to scalably solve decomposable problems of bounded difficulty [12,
32]. That is why mECGA should not suffer from ineffective recombination of
standard variation operators of genetic algorithms, providing a good start-
ing point for the design of robust and scalable optimizers for multiobjective
decomposable problems.

Additionally, the multiobjective selection and replacement schemes were
incorporated into UMDA [25], which represents a simple EDA with a univari-
ate probabilistic model that assumes independence of all variables.
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10.3.3 Test Problems

There were four primary objectives in the design of test problems used in
initial experiments:

1. Scalability. Test problems should be scalable, that is, it should be possible
to increase problem size.

2. Decomposability. Objective functions should be decomposable into sub-
problems of bounded order.

3. Known solution. Test problems should have a known Pareto-optimal front
in order to be able to verify the results.

4. Linkage learning. Some test problems should require the optimizer to be
capable of linkage learning [10, 15], that is, of identifying and exploiting
interactions between decision variables to provide effective exploration.

Two test problems are used in this initial set of experiments: Onemax-
zeromax, and trapk-invtrapk:

(1) Onemax-zeromax. The first test problem is inspired by [5]. It consists of
two objectives (1) onemax and (2) zeromax. Onemax is defined as the
sum of bits in the input binary string X = (X1, X2, . . . , Xn):

onemax(X) =
n∑

i=1

Xi (10.1)

The task is to maximize the function and thus the optimum of onemax is
in the string of all ones. See Fig. 10.6 to visualize onemax for 5-bit strings.
Zeromax is defined as the number of positions containing a 0:

zeromax(X) = n − onemax(X) (10.2)
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Fig. 10.6. Onemax-zeromax for 5 bits
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The task is to maximize the function and thus the optimum of zeromax
is in the string of all zeros. See Fig. 10.6 to visualize zeromax for 5-bit
strings.

Onemax and zeromax are conflicting objectives; in fact, any modifica-
tion that increases one objective decreases the other objective. In onemax-
zeromax, any binary string is located on the Pareto-optimal front.

(2) Trapk-invtrapk. The second test problem is inspired by [16]. It consists of
two objectives: (1) trap of order k and (2) inverse trap of order k. String
positions are first (before running the optimizer) divided into disjoint
subsets or partitions of k bits each (string length is assumed to be a
multiple of k). The partitioning is fixed during the entire optimization
run, but the algorithm is not given information about the partitioning in
advance. Bits in each partition contribute to trap of order k using a trap
function [1, 8] defined as

trapk(u) =

{
1 if u = k

(1 − d)
(
1 − u

k−1

)
otherwise (10.3)

where u is the number of ones in the input string of k bits. The task is
to maximize the function and thus the optimum of order-k trap is in the
string of all ones. See Fig. 10.7 to visualize order-5 trap for one block of
5 bits and d = 0.2.

Traps deceive the algorithm away from the optimum if interactions be-
tween the bits in each partition are not considered [4, 27, 35]. That is why
standard crossover operators of genetic algorithms – such as uniform, one-
point, and two-point crossover – fail to solve traps unless the bits in each
partition are located close to each other in the chosen representation;
in fact, standard crossover operators require exponentially scaled pop-
ulation sizes to solve traps [35]. Mutation operators require O(nk log n)
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evaluations to solve order-k traps and, therefore, are also highly inefficient
in solving traps of moderate to large order.

Inverse trap of order k is defined using the same partitions as trap
of order k, but the basis function, which is applied to each partition, is
modified as follows:

invtrapk(u) =

{
1 if u = 0
(1 − d)u−1

k−1 otherwise
(10.4)

The task is to maximize the function and thus the optimum of order-k
inverse trap is in the string of all zeros. Therefore, in trapk-invtrapk the
two objectives compete in every partition of the problem decomposition.

10.3.4 Description of Experiments

The primary focus of our experiments is to analyze scalability of different mul-
tiobjective EDAs and other evolutionary algorithms on the aforementioned
multiobjective decomposable problems. Algorithm performance is measured
in terms of the minimum number of function evaluations required to find and
maintain at least one copy of all representative Pareto-optimal solutions. In
some experiments, we relax the requirements by considering all Pareto-optimal
solutions that have equal values of both objectives equivalent; in this scenario,
we require the algorithm to find one representative for each combination of
values of the two objectives that lies on the Pareto-optimal front.

Three recombination operators are included in the initial set of experi-
ments:

– UMDA recombination [25], which uses a probabilistic model with no
interactions to model and sample solutions,

– ECGA recombination [12], which uses a probabilistic model that is a prod-
uct of multivariate marginal probabilities, and

– two-point crossover and bit-flip mutation.

For all test problems and all algorithms, different problem sizes were
examined to study scalability. For each problem type, problem size and algo-
rithm, bisection was used to determine a minimum population size to cover
the Pareto-optimal front in 10 out of 10 independent runs. To reduce noise,
the bisection method was ran 10 times. Thus, the results for each problem
type, problem size, and algorithm correspond to 100 successful runs.

10.3.5 Results

Although we have tried trapk-invtrapk for k = 3, 4, and 5, for brevity, we only
show results for k = 3 here. Nonetheless, the results for other values of k are
qualitatively similar and those for k = 3 are representative of the behavior of
the multiobjective evolutionary algorithms.
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Fig. 10.8. Scalability of mECGA with crowding and with RTS for the trap3-
invtrap3 with problem size. Here, we plot the minimum number of function evalua-
tions required to search and maintain at least one copy of (a) all the 2m solutions
in the Pareto-optimal front, and (b) only the m +1 solutions in the Pareto-optimal
front with different objective-value pairs where we treat the gentotypically (and
phenotypically) different Pareto-optimal solution with the same values in both ob-
jectives to be equivalent

Figure 10.8a, shows the scalability of mECGA with problem size for trap3-
invtrap3. We plot the minimum number of function evaluations required
to allocate at least one copy of all solutions in the Pareto-optimal front.
As shown in the figure, all algorithms scale up exponentially. The scale-up
does not improve even if we relax the requirement to finding only those
m + 1 Pareto-optimal solutions with different objective-value pairs as shown
in Fig. 10.8b. That is, even if we consider genotypically (and phenotypically)
distinct solutions that have the same value in both objectives to be equiva-
lent, all algorithms scale exponentially. This is despite the linkage information,
which should be identified by mECGA, and the tight linkage assumption for
NSGA-II. Additionally, the scalability does not improve if the niching or spe-
ciation is performed in the objective space (as in the elitist replacement of
NSGA-II) or in the variable space (as in restricted tournament selection).

Therefore, the exponential scale-up is not due to incorrect linkage identifi-
cation and ineffective mixing [11, 36, 39], but because the niching mechanism
gets quickly overwhelmed due to the exponential growth in the number of
Pareto-optimal solutions. Furthermore, the distribution of the 2m solutions
in the Pareto-optimal front is not uniform. There are exponentially as many
solutions in the middle of the front than at the edges (see Table 10.1). That
is, there is only one solution – a binary string with all 0s and all 1s – at each
extreme of the Pareto-optimal front. In contrast, there are

(
m

m/2

) ≈ O (em)
genotypically different solutions in the middle of the Pareto-optimal front with
same values in both objectives.
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Table 10.1. Distribution of genotypically and phenotypically different solutions in
the Pareto-optimal front with same values in both objectives. n1,BBs refers to the
number of k-bit partitions (substructures) with 1s and n0,BBs is the number of k-bit
partitions with 0s

n1,BBs 0 1 · · · i · · · m
n0,BBs m m − 1 · · · m − i · · · 0

# solutions 1 m · · ·
(

m
i

)
· · · 1
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Fig. 10.9. Probability of finding and maintaining different solutions on the Pareto-
optimal for the 10-3 deceptive trap and inverse trap problem as a function of pop-
ulation size.

This highly nonlinear distribution of solutions in the Pareto-front has two
effects on the niching mechanism used in MOEAs in general, and MOEDAs
in particular:

– Since the extremes of the Pareto-optimal front (maximizing most parti-
tions or substructures with respect to one particular objective) have expo-
nentially fewer representatives than the middle part, it takes exponentially
longer time, or exponentially larger population size [10, 36] to search and
maintain the solutions at the extremes of the Pareto-optimal front. When
the population size is fixed, the probability of maintaining a solution in
the middle of the Pareto-optimal front is higher than doing so in extremes
of the front, as shown in Fig. 10.9.

– Since there are multiple points that are genotypically and phenotypically
different, but lie on the same point on the Pareto-optimal front (the solu-
tions have same values in both objectives), some of them vanish over time
due to drift. The drift affects both the solutions in the middle as well as
the ones near the extremes of Pareto-optimal front.
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Fig. 10.10. Scalability of NSGA-II and UMDA on the onemax-zeromax problem.
Both algorithms with two different niching methods scale-up exponentially with the
problem size

10.3.6 Overwhelming the Niching Method

To better illustrate how competition in all the partitions of a decomposable
problem can overwhelm a nicher, we use the onemax-zeromax problem. We
specifically choose the onemax-zeromax problem to isolate the effects of link-
age identification or lack there of from those of the niching methods on the
scalability of the MOEAs. Unlike trapk-invtrapk, linkage identification is not
necessary for the onemax-zeromax problem. Furthermore, both onemax and
zeromax are GA-easy problems, which can be solved by a simple selectore-
combinative GA with uniform crossover and tournament selection in nearly
linear time [13, 26, 38].

Nonetheless, Fig. 10.10 shows that MOEAs scale-up exponentially even on
onemax-zeromax. The results clearly indicate that the niching methods – both
those that work in the parameter space (RTS) as well as those that work in the
objective space (crowding) – get overwhelmed due to the exponentially large
number of solutions in the Pareto-optimal front. Additionally, the results also
show that even if the requirement is relaxed by treating all candidate solutions
that lie on the same point in the Pareto-optimal front to be equivalent, the
scale-up does not improve. Finally, the results suggest that in decomposable
problems, if all or majority of partitions compete in the two objectives, then
the niching method fails to maintain good coverage, leading to the exponential
scale-up.

10.3.7 Circumventing the Burden on the Niching Method

The initial results clearly indicate that MOEDAs scale-up exponentially with
problem size regardless of the niching method used. We also demonstrated that
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the exponential scalability is due to the niching method being overwhelmed
because of the exponentially large number of solutions in the Pareto-optimal
front. One way to circumvent the niching method from being overwhelmed is
to control the growth rate of the number md of partitions that compete in the
two objectives. That is, for a problem with m partitions, the two objectives
compete in only md partitions and agree in the remaining m−md partitions.
Since the total number of Pareto-optimal solutions is nopt = 2md , by con-
trolling the number of competing partitions, we implicitly control the total
number of Pareto-optimal solutions.

The growth-rate of the number of competing partitions should be such
that the effect of niching on the population sizing is at most as strong as the
effect of the model accuracy, decision making and initial supply. The effect
of the model accuracy, decision making and initial supply on the population
sizing of EDAs is given by [29, 32]:

Neda ∝ c1 · 2k · m log m. (10.5)

The effect of the niching method on the population-sizing of GAs was modeled
by Mahfoud [20] and is reproduced below:

Nniching ∝ log
[(

1 − γ1/t
)
/nopt

]
log [(nopt − 1) /nopt]

≈ c2 · 2md , (10.6)

where t is the number of generations we need to maintain all the niches.
While Mahfoud derived the population-sizing estimate for fitness-sharing, it
is generally applicable to other niching methods and MOEAs as well [16, 31].

To circumvent the niching method from being overwhelmed, we require
Neda ≥ Nniching; that is,

c2 · 2md ≥ c1 · 2k · m log m. (10.7)

The above equation can be approximated by neglecting log2 (c1 log m/c2),
obtaining a conservative estimate of the maximum number of competing par-
tial solutions that circumvent the niching mechanism from being overwhelmed:

md ≈ k + log2(m). (10.8)

The above growth rate is compared to empirical results for different values
of k as a function of total number of partial solutions in the problem and the
results are shown in Fig. 10.11. As shown in Fig. 10.12, the results indicate that
once the growth of the number competing partitions is controlled, MOEDAs
scale-up polynomially with problem size, even on the onemax-zeromax
problem.

10.4 Multiobjective Hierarchical BOA (mohBOA)

Section 10.3 argued that in order to solve multiobjective decomposable prob-
lems with straightforward extensions of evolutionary algorithms and EDAs,
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Fig. 10.11. The growth rate of number of partial solutions that compete in the two
objectives for different values of k as a function of total number of partial solutions
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Fig. 10.12. The scalability of mECGA with the crowding mechanism of NSGA-II
and RTS for both onemax-zeromax and trap3-invtrap3 problems. The growth rate
of the number of partitions that compete in the two objectives for a given problem
size is controlled as given by (10.8)

the number of competing partitions must be controlled to grow at most as a
logarithm of problem size. This leads to an important question: Is it possible
to scalably find representative solutions of the Pareto-optimal front even when
the number of competing partitions grows faster than a logarithm of problem
size? For example, is it possible to scalably solve multiobjective decomposable
problems where all subproblems compete (that is, md = m)?

This section answers the above question by proposing a multiobjective
EDA that can solve even problems with a large number of competing parti-
tions. Specifically, the section introduces the multiobjective hierarchical BOA
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(mohBOA), which combines hBOA, NSGA-II, and clustering in the objec-
tive space. Compared to the multiobjective hBOA proposed by Khan [16, 17],
mohBOA adds clustering in the objective space to provide a polynomially
scalable solution to problems with many competing partitions.

The basic procedure of mohBOA is described first. Next, the k-means clus-
tering algorithm is described, which is used in mohBOA to ensure equal supply
of candidate solutions for all regions of the Pareto-optimal front. Finally, the
section presents experimental results for verification of mohBOA scalability.

10.4.1 Basic Procedure of mohBOA

Like hBOA, mohBOA generates the initial population of candidate solutions
at random. The population is first evaluated. Similarly as in other evolutionary
algorithms, each iteration starts with selection. However, instead of using
standard selection methods, mohBOA first uses the nondominated crowding of
NSGA-II to rank candidate solutions and assign their crowding distances. The
ranks and crowding distances then serve as the basis for applying standard
selection operators. For example, binary tournament selection can then be
used where the winner of each tournament is determined by the ranks and
crowding distances obtained from the nondominated crowding.

To ensure equal coverage of all regions of the Pareto-optimal front, after
selecting the population of promising solutions, k-means clustering [19] in the
objective space (space of fitness values) is applied to this population to obtain
a specified number of clusters. Some clusters may remain empty; empty clus-
ters are not considered in the recombination phase. A separate probabilistic
model is built for each cluster and used to generate a part of the offspring pop-
ulation. To encourage an equal coverage of the entire Pareto-optimal front, the
model for each cluster is used to generate the same number of new candidate
solutions.

The population consisting of all newly generated solutions is then com-
bined with the original population to create the new population of candidate
solutions. As in the initial experiments, we use two methods to combine the
two populations (1) the elitist replacement based on the nondominated crowd-
ing of NSGA-II, and (2) the restricted tournament replacement (RTS) [15]
based on the nondominated crowding comparison operator. The pseudocode
of the multiobjective hBOA is shown in Fig. 10.13.

10.4.2 Making Niching Easier with Clustering

Given a set X of N points, k-means clustering [19] splits X into k clusters
or subsets with approximately same variance. The algorithm proceeds by up-
dating a set of k cluster centers where each center defines one cluster. The
cluster centers can be initialized randomly but more advanced algorithms can
also be used to initialize the centers.

Each iteration consists of two steps. In the first step, each point in X is
attached to the closest center (ties can be resolved arbitrarily). In the second



10 Multiobjective Estimation of Distribution Algorithms 239

multiobjective-hBOA(N, k, objectives)

t := 0;

generate initial population P(0) of size N;

evaluate P(0);

while (not done) {

rank members of P(t) using nondom. crowding;

select S(t) from P(t) based on the ranking;

cluster S(t) into k clusters;

build Bayesian network with local structures

for each cluster;

create O(t) of size N by sampling the model

for each cluster to generate N/k solutions;

evaluate O(t);

combine O(t) and P(t) to create P(t+1);

t:=t+1;

}

Fig. 10.13. Pseudocode of the multiobjective hBOA

step, cluster centers are recomputed so that each center is the center of mass
of the points attached to it. The algorithm terminates when all points in X
remain in the same cluster after recomputing cluster centers and reassigning
the points to the newly computed centers. Points attached to each cluster
center define one cluster. The numbers of points in different clusters can differ
significantly if points in X are not distributed uniformly and some clusters
may even become empty. Sometimes it is necessary to rerun k-means several
times and use the result of the best run.

As was argued earlier, in decomposable multiobjective problems where the
objectives compete in a number of problem partitions, using traditional selec-
tion and replacement mechanisms necessitates exponentially scaled popula-
tions to discover the entire Pareto-optimal front. The reason for this behavior
is that the niches on the extremes of the Pareto-optimal front (maximizing
most partitions with respect to one particular objective) can be expected to be
exponentially smaller than the niches in the middle. To alleviate this problem,
it is necessary to process different parts of the Pareto-optimal front separately
and allocate a sufficiently large portion of the population to each part of the
Pareto-optimal front. Of course, if the number of Pareto-optimal solutions
grows exponentially, we could never find all those points with a polynomially
sized population. However, it is still possible to find at least one representa-
tive solution for each combination of objective-function values that lies in the
Pareto-optimal front, considering all solutions with the same values of both
objectives equivalent.

It is important to note that other multiobjective evolutionary algorithms,
such as NSGA-II and SPEA2, also include mechanisms that attempt to deal
with a good coverage of a wide Pareto-optimal front. However, these mecha-
nisms are insufficient for some multiobjective decomposable problems because
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they result in creating exponentially large niches in the middle of the Pareto-
optimal front while eliminating extremes. As was argued earlier, this over-
whelms the nichers and leads to poor scalability, which was shown both
theoretically and empirically in Sect. 10.3.

Allocating comparable space to each part of the Pareto-optimal front can
be ensured by using clustering in the objective space as suggested by Thierens
and Bosman [37]. X thus consists of m-dimensional vectors where m is the
number of objectives. To reduce the number of iterations until the creation of
reasonable clusters, the cluster centers can be initialized by ordering points
according to one objective and assigning the ith center to (N/(2k)+i[N/k])th
point in this ordering. Since k-means clustering divides the points into clusters
of approximately same variance, by forcing each cluster to produce an equal
number of new candidate solutions, regular coverage of the Pareto-optimal
front can be ensured even for difficult decomposable multiobjective problems.

10.4.3 Experiments

Experimental design is similar to that in Sect. 10.3.4. Solutions with the same
values of both objectives are considered equivalent and thus the goal is to find
at least one representative for each combination of objective-function values
on the Pareto-optimal front.

To focus only on the effects of different recombination and replacement
strategies, the number of clusters in k-means clustering was set to the number
of unique solutions on the final Pareto-optimal front. If the number of clusters
cannot be approximated in advance, it can be obtained automatically using
for example the Bayesian information criterion (BIC) [34].

Bisection is used to determine a sufficient population size to find repre-
sentatives of all Pareto-optimal solutions in 10 independent runs. Each run
of mohBOA and UMDA is allowed to proceed for 5n generations, whereas
each run of NSGA-II is allowed to run for 20n generations due to the less
effective recombination. To alleviate the effects of noise, ten bisection runs
are performed for each combination of the algorithm, problem and problem
size, and the results are averaged.

Figure 10.14 shows the growth of the number of evaluations with problem
size for onemax-zeromax. The results indicate that clustering in the objective
space is necessary for a scalable solution for onemax-zeromax. Furthermore,
the results show that here RTS based on nondominated crowding performs
better than the elitist replacement of NSGA-II. Finally, the results indicate
that UMDA with RTS solves onemax-zeromax in a low-order polynomial num-
ber of evaluations.

Figure 10.15 shows the results on trap5-invtrap5. The results show that,
as expected, trap5-invtrap5 necessitates not only clustering in the objective
space like onemax-zeromax but also effective identification and exploitation
of interactions between different problem variables also called linkage learn-
ing. That is why standard crossover and UMDA fail to solve this problem
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Fig. 10.14. Results on onemax-zeromax indicate that k-means clustering in the
objective space leads to a dramatic improvement in performance for both UMDA
and GA (NSGA-II). Furthermore, they indicate that RTS performs better than the
elitist replacement of NSGA-II and that multiobjective UMDA with RTS is capable
of solving onemax-zeromax in low-order polynomial time
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Fig. 10.15. Results on trap5-invtrap5 indicate that for some multiobjective decom-
posable problems it is necessary to also identify and exploit interactions between
interacting string positions or decision variables

efficiently and become intractable already for relatively small problems. The
algorithm mohBOA with RTS and clustering in the objective space provides
best performance and scales up polynomially with problem size. Again, RTS
outperforms the elitism (see Fig. 10.16).

Figure 10.17 shows that the performance of UMDA on onemax-zeromax
does not change much if the distance metric in RTS is based on the objectives
(as opposed to measuring the Hamming distance between binary strings). The
figure also confirms that using RTS in the objective space is still not capable
of ensuring scalable performance if clustering in the objective space is not
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Fig. 10.16. Results on trap5-invtrap5 also indicate that in mohBOA, RTS outper-
forms the elitist replacement of NSGA-II
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Fig. 10.17. The results of multiobjective UMDA with RTS using a distance metric
in the objective space on onemax-zeromax indicate that clustering in the objective
space cannot be replaced with this variant of RTS and that the choice of metric in
RTS does not significantly affect performance

used, indicating that it is insufficient to incorporate niching via replacement
based on the distribution of solutions no matter whether the niching method
is based on the candidate solutions themselves or their objective values.

10.5 Overview of Other Multiobjective EDAs

So far, this chapter focused on solving multiobjective decomposable prob-
lems and the scalability of moEDAs on this class of problems. Nonetheless,
a number of multiobjective EDAs were proposed in the past and this section
attempts to provide their overview.
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10.5.1 Multiobjective Mixture-Based IDEAs

Thierens and Bosman [37] proposed several variants of the multiobjective
mixture-based iterated density estimation algorithm (mMIDEA), which com-
bines EDAs, truncation selection based on dominance, and clustering.

In all variants of mMIDEA, for each candidate solution in the population,
selection starts by determining the number of other solutions in the population
that dominate this candidate solution. Then, truncation selection is used that
selects the top �τN� candidate solutions (solutions dominated by fewer other
solutions are given preference), where the truncation threshold τ < 1.

Clustering is then used to split the population into multiple subpopula-
tions. A separate probabilistic model is then built for each subpopulation and
these models are sampled to generate new candidate solutions. The number of
candidate solutions generated by each model is equal to the number of candi-
date solutions in the corresponding subpopulation. Consequently, the cluster-
ing mechanism of mMIDEA does not provide a specific mechanism to ensure
equal coverage of the Pareto-optimal front if the number of representatives in
some parts of the front is much larger than the number of representatives in
some other parts.

The proposed mMIDEAs considered several types of probabilistic models
for both discrete and continuous problems. For discrete variables, a mixture
of univariate distributions and a mixture of tree distributions were used. For
continuous variables, a mixture of univariate Gaussian models and a mixture
of multivariate Gaussian factorizations were used.

mMIDEAs were tested on the multiobjective 0/1 knapsack and several
continuous multiobjective functions. Experimental results showed good per-
formance of the proposed methods, including those with simple univariate
models.

10.5.2 Multiobjective mixed BOA

Laumanns [18] incorporated the selection and replacement operators of SPEA2
[40] into mixed BOA (mBOA) [23], which extends BOA with decision graphs
to solve problems with both discrete as well as continuous variables. The pro-
posed method will be referred to as the multiobjective mBOA (mmBOA).

The algorithm mmBOA maintains a population of candidate solutions and
an archive, which is yet another population. Initially, the population is gen-
erated randomly and the archive is empty. Each iteration starts by filling the
archive with nondominated solutions from the current population and the
current archive. The size of the archive is always equal to the population size.
If the archive gets too big, it is truncated to have the same size as the popula-
tion. If the archive is smaller than the population, mmBOA adds dominated
individuals from the archive and the population. Then, the iteration proceeds
by applying binary tournament selection to the archive population, selecting a
population of parents. A Bayesian network with decision graphs is then built
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for the selected population and sampled to generate the offspring population.
The population is then replaced by the offspring.

The algorithm mmBOA was tested on the multiobjective knapsack where
it was shown to dominate NSGA-II, SPEA, and SPEA2 in most instances [18].

10.5.3 Multiobjective hBOA

Khan [16, 17] proposed multiobjective BOA (mBOA) and multiobjective
hBOA (mhBOA) by combining BOA and hBOA with the selection and
replacement operators of NSGA-II [9]. Tests on challenging decomposable
multiobjective problems indicated that without identifying and exploiting
interactions between different string positions, some decomposable problems
become intractable using standard variation operators (crossover and muta-
tion). On the other hand, mBOA and mhBOA could solve decomposable and
hierarchical problems relatively efficiently.

The algorithm mohBOA presented in this chapter is an extension of Khan’s
mhBOA, which incorporates the clustering mechanism into mhBOA.

10.5.4 Multiobjective Real-Coded BOA

Ahn [2] combined the real-coded BOA (rBOA) [3], the selection procedure
of NSGA-II, and adaptive sharing and crowding, creating the multiobjective
rBOA (MrBOA).

MrBOA modifies the selection procedure of the single-objective rBOA. The
selection procedure uses the ranking scheme of NSGA-II as the primary selec-
tion criterion. Additionally, the selection procedure applies adaptive sharing
to discriminate solutions with the best rank. For the remaining solutions, the
crowding mechanism of NSGA-II is used to provide a measure for comparing
individuals with the same rank. Truncation selection is then used to select the
best solutions based on the ranking, adaptive sharing, and crowding. New can-
didate solutions are created by building a factorized Gaussian mixture model
of the selected solutions and sampling the model.

In comparison with the continuous variants of mMIDEA and NSGA-II,
MrBOA was shown to provide competitive or better results on a number of
newly designed and standard multiobjective test problems [2].

10.6 Summary and Conclusions

This chapter discussed multiobjective decomposable problems and their dif-
ficulty. The chapter argued that if there are many competing subproblems,
standard approaches to multiobjective optimization with evolutionary algo-
rithms fail to scale up polynomially.

The chapter then presented the multiobjective hierarchical BOA (mo-
hBOA), which is shown to scalably solve multiobjective decomposable prob-
lems with a large number of competing subproblems. The algorithm mohBOA
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is capable of effective recombination by building and sampling Bayesian net-
works with decision trees, and it thus significantly outperforms multiobjective
evolutionary algorithms with standard variation operators on problems that
necessitate effective linkage learning. Furthermore, mohBOA is shown to scal-
ably solve even multiobjective decomposable problems with many competing
objectives by employing clustering.

Finally, the chapter reviewed other multiobjective EDAs to provide a start-
ing point for pursuing other important topics and approaches in the design of
multiobjective EDAs.

EDAs can be combined with multiobjective genetic and evolutionary al-
gorithms in a straightforward manner. Since EDAs can solve many problems
intractable with standard variation operators of genetic and evolutionary al-
gorithms, multiobjective extensions of EDAs should solve many difficult prob-
lems intractable with state-of-the-art multiobjective genetic and evolutionary
algorithms. Real-world applications are expected to soon confirm this hypoth-
esis as was the case in the research on single-objective EDAs; nonetheless,
extensive testing on the boundary of the design envelope clearly indicates
that multiobjective hBOA and other multiobjective EDAs provide a powerful
class of multiobjective optimization algorithms and can be expected to provide
tractable solutions for many previously intractable multiobjective problems.
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Effective and Reliable Online Classification
Combining XCS with EDA Mechanisms

Martin Butz, Martin Pelikan, Xavier Llorà, and David E. Goldberg

Summary. Learning Classifier Systems (LCSs), such as XCS and other accuracy-
based classifier systems, evolve a distributed problem solution online. During the
learning process, rule quality is assessed iteratively using techniques based on
gradient-descent, while the rule structure is evolved using selection and variation op-
erators of evolutionary algorithms. While using standard variation operators suffices
for solving some problems, it does not assure an effective evolutionary search in many
difficult problems that contain strong interactions between features. Specifically, it
was shown that standard crossover operators can frequently disrupt important com-
binations of features, which often results in poor performance. This chapter describes
how advanced EDAs can be integrated into XCS in order to ensure effective explo-
ration even for problems in which features strongly interact and standard variation
operators lead to poor XCS performance. In particular, the chapter incorporates
the model building and sampling techniques from BOA and ECGA into XCS. The
chapter shows that the two proposed algorithms ensure that the solution is found
efficiently and reliably. The results presented in this chapter thus suggest that the
research on combining standard LCSs with advanced EDAs holds a big promise and
represents an important area for future research on LCSs and EDAs.

Key words: Learning classifier systems, Hierarchical problem solving, Evo-
lutionary computation, Bayesian networks, Classification, Reinforcement
learning, Gradient-descent, Scalability, Decomposable problems

11.1 Introduction

The accuracy-based classifier system XCS may be considered the most
advanced learning classifier system (LCS) to-date. The system learns distrib-
uted problem solutions both in classification (or concept learning) as well as in
reinforcement learning. XCS is designed to learn online a maximally accurate
and maximally general problem solution represented by a set of rules, called
the population of classifiers. The population of classifiers is evolved using an
accuracy-based fitness measure, and selection and variation (crossover and
mutation) operators of genetic algorithms (GAs). XCS has been successfully
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applied to a wide variety of real-world classification problems [1–3], yielding
results comparable to the most common machine learning algorithms.

Empirically, it was shown that crossover can improve XCS’s performance,
particularly in problems with strong fitness guidance towards the solution
and many irrelevant attributes [12, 13]. However, from the research on GAs,
we know that crossover can be advantageous, when recombining attributes
effectively, but also disruptive, when destroying important subsets of corre-
lated attributes or substructures [21, 38]. When the mixing effects overshadow
the disruptive effects, GAs ensure reliable convergence to the optimum in
quadratic or subquadratic number of fitness evaluations [21]. On the other
hand, when the disruptive effects overshadow the mixing effects, GAs require
populations of size that grows exponentially with the number of attributes
[38]. It is also known that mutation alone can yield inefficient search when at-
tributes interact strongly [30]. Specifically, mutation may require time propor-
tional to nk log n where n is problem size and k is the order of interactions [30].

As in GAs, also XCS needs to process interdependent subsets of features –
often referred to as building blocks (BBs) – effectively [6]. In problems with
strong interactions between attributes, XCS with standard or no recombina-
tion operators active often shows poor learning performance [6].

This chapter discusses the importance of processing interdependent subsets
of features effectively in XCS. Additionally, the chapter describes two methods
that combine XCS and EDAs, which are shown to be capable of automatic
identification and processing of interdependent subsets of features in XCS.
Specifically, crossover in XCS is replaced by probabilistic model building and
sampling using either marginal product models (MPMs), also used in the
extended compact GA (ECGA) [22], or Bayesian networks (BNs), also used
in the Bayesian optimization algorithm (BOA) [35].

The result consists of two LCSs that yield efficient and reliable perfor-
mance on problems that cannot be efficiently solved with XCS with standard
variation operators. In fact, the results show that the two discussed meth-
ods achieve performance similar to that with an informed crossover operator,
which exploits provided feature-subset information for optimal recombination.
Thus, we create the first competent LCSs, XCS/ECGA and XCS/BOA, that
detect dependency structures online and propagate lower-level dependency
structures effectively without any information about these structures given in
advance.

The chapter starts with an introduction to the XCS classifier system, in-
cluding an overview of the most important theoretical achievements as well as
a discussion of the problem of crossover disruption in XCS. Section 11.3 intro-
duces several problems for which the disruptive effects of standard crossover
operators lead to inefficient search in standard XCS. Section 11.4 provides
an empirical study of the performance of XCS with and without the model
building and sampling techniques of BOA on a variety of Boolean function
problems. The chapter concludes with an outlook on the future impact of this
line of research.
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11.2 The XCS Classifier System

The creation of the accuracy-based classifier system XCS [40] can be consid-
ered a milestone in classifier system research. The XCS system solves the most
severe challenges in LCSs. By deriving fitness values from an accuracy esti-
mate of reward predictions, instead of from reward predictions themselves,
the problem of strong overgenerals has overcome [27, 28]. Generalization is
achieved by enforcing a niche-based reproduction combined with population-
wide deletion. Thus, XCS is designed not only to evolve solutions that yield
maximum feedback (or reward), but also to evolve a complete and accurate
payoff map of all possible solutions for all possible problem instances.

This section introduces the XCS classifier system. For the interested
reader, further details on the system including a precise algorithmic descrip-
tion can be found elsewhere [5, 14]. After the introduction, we proceed with a
theoretic overview and crossover considerations.

11.2.1 System Introduction

The accuracy-based classifier system XCS is a learning classifier system (LCS)
that learns distributed problem solutions online. A solution is represented by
a population of classifiers that is evolved by a combination of two general
learning principles: (1) a reinforcement learning-based gradient mechanism
optimizes predictions and updates fitness estimates and (2) an evolutionary-
based mechanism evolves classifier condition structures.

Problem Types

XCS may be applied to two basic problem types, classification problems
and reinforcement learning problems. In this paper we focus on classification
problems.

A classification problem is defined by a set of problem instances s ∈ S.
Each problem instance belongs to one class a ∈ A (traditionally termed an
action in LCSs). In machine learning terms, s may be termed a feature vector
and a a concept class. The mapping from S to A is represented by a target
concept belonging to a set of concepts (i.e., the concept space). The goal is to
learn the target concept. Most desirable properties of such a learning system
are that the learner learns a maximally accurate problem solution, measured
usually by the percentage of correct problem instance classifications, and a
maximally general problem solution, which can be characterized as a solution
that generalizes well to other (unseen) problem instances.

Since this chapter focuses on binary classification problems, we constrain
our problem space to S = {0, 1}l and use two classes A = {0, 1}. Such bi-
nary classification problems with two classes are often referred to as Boolean
function problems.
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Knowledge Representation

The population of classifiers represents a problem solution. Each classifier can
be regarded as an expert, endowed with a confidence measure, in the problem
subspace its condition is satisfied.

Each classifier consists of five main components and several additional
estimates: (1) Condition part C specifies when the classifier is applicable. (2)
Action part A ∈ A specifies the proposed action (or classification). (3) Reward
Prediction R ∈ � estimates the average reward received when executing action
A given condition C is satisfied. (4) Reward prediction error ε estimates the
mean absolute deviation of R with respect to the actual reward. (5) Fitness
F estimates the scaled, relative accuracy (scaled, inverse error) with respect
to other, overlapping classifiers.

In the binary case, condition part C is coded by C ∈ {0, 1,#}l where
l is the number of attributes and # is a don’t-care symbol that matches
both 0 and 1; for example, a condition #10## matches an instance 01011 or
any other 5-bit instance that contains a substring 10 starting in the second
position. Each condition thus identifies a hyperrectangle in which the classifier
is applicable, or matches.

Each classifier maintains several additional parameters. The action set
size estimate as estimates the moving average of the action sets it is applied
in. The time stamp ts specifies the time when the classifier participated in
its last GA competition. The experience counter exp counts the number of
parameter updates the classifier underwent so far. The numerosity num speci-
fies the number of identical micro-classifiers, this (macro-)classifier actually
represents.

Learning Interaction

XCS usually starts with an empty population. Initial classifiers are gener-
ated by a covering mechanism described below. Later, the genetic discovery
component is in charge of generating new classifiers.

Given current problem instance s ∈ S at iteration time t, the match set [M ]
is formed, containing all classifiers in [P ] whose conditions match s. If some
action is not represented in [M ], a covering mechanism is applied. In this case,
new classifiers are generated whose condition parts match the current input
(each attribute in the condition part is set to a #-symbol with probability
P#) and whose action parts specify the unrepresented actions.

Given a match set [M ], XCS estimates the payoff for each possible action
by forming a prediction array P (A), which reflects the fitness-weighted reward
predictions for each possible action:

P (A) =

∑
cl.A=A∧cl∈[M ] cl.R · cl.F∑

cl.A=A∧cl∈[M ] cl.F
. (11.1)
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We use the dot notation to refer to classifier parameters in XCS. The predic-
tion array is used to determine the appropriate classification. Several action
selection policies (i.e., behavioral policies) may be applied. Usually, XCS
chooses actions randomly during learning, and it chooses the best action
Amax = arg maxAP (A) during testing. All classifiers in [M ] that specify the
chosen action A comprise the action set [A].

After the execution of the chosen action, feedback is received in the form
of scalar reward R ∈ �, which is used to update classifier parameters. Next,
the GA may be applied. Finally, the successive problem instance is received
and the iteration time t is increased by one. The overall learning process is
illustrated in Fig. 11.1.

Rule Evaluation

XCS iteratively updates its population of classifiers with respect to the succes-
sive problem instances received from the environment using gradient-decent
techniques.

In a classification problem, parameters of each classifier in the current
action set [A] are updated with respect to the immediate feedback r. Reward
prediction error ε of each classifier in [A] is updated by

ε ← ε + β(|r − R| − ε), (11.2)

where parameter β ∈ [0, 1] denotes the learning rate influencing accuracy
and adaptivity of the moving average reward prediction error. Next, reward
prediction R of each classifier in [A] is updated by

R ← R + β(r − R), (11.3)
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with the same notation as in the update of ε. The fitness value of each classifier
in [A] is updated with respect to its current scaled relative accuracy κ′, which
is derived from the current reward prediction error ε as follows:

κ =

⎧⎨
⎩

1 if ε < ε0,

α
(

ε
ε0

)−ν

otherwise,
(11.4)

κ′ =
κ · num∑

cl∈[A] cl.κ · cl.num
. (11.5)

Parameter κ measures the current absolute accuracy of a classifier, which
is scaled by a power function. The relative accuracy κ′ reflects the relative
accuracy with respect to the other classifiers in the current action set. The
fitness estimate F is then updated with respect to κ′ as follows:

F ← F + β(κ′ − F ). (11.6)

Fitness loosely reflects the moving average, set-relative accuracy of a classifier.
The action set size estimate as is updated similar to the reward prediction R
but with respect to the current action set size |[A]|.

Each time the parameters of a classifier are updated, experience counter
‘exp’ is incremented. If genetic reproduction is applied to classifiers of the
current action set, all time stamps ts are set to the current iteration t.

Rule Evolution

XCS applies a GA for rule evolution. Genetic reproduction is invoked in the
current action set [A] if the average time since the last GA application (stored
in parameter ts) upon the classifiers in [A] exceeds threshold θGA.

The GA selects two parental classifiers using tournament selection [12]
where the tournament size is proportional to the size of the current action
set [A]. After mutation (changing an attribute in C with probability μ) and
recombination (applied with probability χ), the offspring is inserted into the
population to compete with their parents. In the insertion process, subsump-
tion deletion may be applied [41] to further stress generalization. The pop-
ulation of classifiers [P ] is of maximum size N . Excess classifiers are deleted
from [P ] with probability proportional to their action set size estimates as.

Due to the accuracy-based fitness approach, XCS strives to evolve maxi-
mally accurate predictions. XCS tends to evolve a general problem solution
since reproduction favors classifiers that are frequently active (part of an ac-
tion set) whereas deletion selects from the whole population preferring deletion
of classifiers that occupy overrepresented niches. Thus, the learning processes
in XCS are designed to achieve one common goal: to evolve a complete,
maximally accurate, and maximally general representation of the underlying
payoff-map. This representation was previously termed the optimal solution
representation [O] [25, 26].
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11.2.2 A Note on XCS Learning Complexity

Computational complexity theory on XCS has shown that XCS is able to
PAC-learn k-DNF problems [3, 7]. To ensure structural growth, it was shown
that XCS’s population size needs to grow proportionally to lk if there is no
fitness guidance to the optimal solution [9], where l is the number of attributes
in the problem and k is the maximum size of a clause in a k-DNF problem.
The analysis is purely based on selection pressure and mutation influences.
Crossover was not considered in the analysis. Neither potential disruptive
effects of crossover were considered nor any types of innovative effects. These
effects are investigated and analyzed in Sect. 11.3.

11.3 Structural Processing in XCS

While many studies of XCS have shown that the system is able to reliably
learn challenging Boolean function problems [9, 41] as well as real-world data
classification problems [1, 2], few results have focused on the crossover opera-
tor. Traditionally, simple crossover operators, such as one-point and uniform
crossover, were applied with a certain fixed probability.

This section studies crossover mechanisms in simple count ones problem
instances [9]. The problem is comparable to a one-max problem in GAs in
that the initial specialization of each relevant attribute yields equal accuracy
(and thus fitness) increase; it differs, however, in its final solution since many
overlapping subsolutions need to be maintained.

The count ones problem is defined for binary problems of length l, in
which k ≤ l bits are relevant. A problem instance is in class 1 if more than
half of its k relevant bits are one. Thus, the more ones (or zeros) a classifier
condition specifies, the more accurate the classifier will be. Table 11.1 lists
some classifiers with expected reward prediction R and error ε values.

11.3.1 Effective Recombination in the Count Ones Problem

To illustrate the equally strong fitness pressure on all relevant attributes in
the count ones problem, we ran XCS on a small count ones problem instance
with k = 5 and l = 10 (10/5). Starting with a completely general population

Table 11.1. Expected reward prediction R and reward prediction error ε on the
count ones problem (l = 5, k = 5) for classifiers with action part A = 1

C R ε C R ε C R ε C R ε

##### 500.0 500.0 ####0 312.5 429.7 ##0#0 125.0 218.8 111## 1000.0 0.0

1#### 687.5 429.7 11### 875.0 218.8 00### 125.0 218.8 11##1 1000.0 0.0
##1## 687.5 429.7 ##11# 875.0 218.8 #0#01 250.0 375.8 0#0#0 0.0 0.0

0#### 312.5 429.7 #1##1 875.0 218.8 110## 750.0 375.0 0##00 0.0 0.0
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Fig. 11.2. The specificity curves on the 10/5 count ones problem (left-hand side)
show that XCS exhibits strong specialization effects on the relevant condition at-
tributes. The 20/7 count ones problem on the right-hand side shows how crossover
helps to solve the problem effectively and reliably

(P# = 1.0), Fig. 11.2 (left-hand side) shows how specificity, that is, the per-
centage of specialized attributes in classifier conditions, behaves. Soon, fitness
pressure causes the reproduction of classifiers that specify more of the k rel-
evant attributes. Specificity increases in all relevant attributes while it stays
low on all irrelevant attributes.

Performance of XCS without and with crossover as well as different mu-
tation rates in the 20/7 count ones problem are shown on the right-hand side
of Fig. 11.2. While a larger mutation rate helps increasing specificity and thus
performance initially, uniform crossover ensures effective recombination yield-
ing maximally accurate problem solutions. When crossover is not applied,
performance is more strongly dependent on mutation rate and a completely
accurate performance is reached less reliably with the chosen population size
(N = 3,000).

The results show that if the problem structure consists of BBs of order
one, then uniform crossover yields effective recombination and the problem
is solved more efficiently when crossover is applied. However, problems may
consist of BBs of larger order as illustrated in the following section. On such
problems, standard crossover and mutation operators yield poor performance.

11.3.2 Crossover Disruption in Hierarchical Problem Structures

We construct BB-hard classification problems by forming a two-level hier-
archical problem structure. On the lower-level, small Boolean functions are
evaluated which provide the input to the higher level. For example, we may
use a parity-count ones combination in which the smaller lower-level blocks
are evaluated by parity functions, whose results are used as input to the count-
ones function, effectively counting the number of parity blocks that evaluate
to one.
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Table 11.2. Expected reward prediction R and reward prediction error ε for exem-
plar condition parts in the hierarchical 3-parity, 5-count ones problem with l = 18
(3 additional problem-irrelevant bits) and classifiers with action part A = 1

C R ε C R ε

### ### ### ### ### ### 500.0 500.0 101 ### 111 ### ### ### 500.0 500.0

#1# ### #11 #1# #11 ### 500.0 500.0 ### 000 ### ### 000 ### 125.0 218.8

111 ### ### ### ### ### 687.5 429.7 101 111 ### 100 ### ### 750.0 375.0

### ### 111 ### ### ### 687.5 429.7 100 010 111 ### ### ### 1000.0 0.0

### #1# ### 100 ##1 ### 687.5 429.7 100 ### 001 010 ### ### 1000.0 0.0

### 0## ### ### 000 ### 312.5 429.7 ### 100 ### 111 010 ### 1000.0 0.0

### 111 ### 010 ### ### 875.0 218.8 ### 000 ### 011 110 ### 0.0 0.0

##1 111 ##0 100 #0# ### 875.0 218.8 000 000 000 ### ### ### 0.0 0.0

For readability, the lower-level 3-parity blocks are tightly coded and separated by
spaces. Parity blocks evaluate to one if there is an odd number of ones in the block

Note that we are not interested in creating a problem to force BB process-
ing for its own sake. In fact, many indications in nature and engineering
suggest that typical natural problems are hierarchical and nearly decompos-
able [20, 21, 37]. The introduced problems are intended to serve as the test-of-
fire for machine learning systems that attempt to solve such hierarchical and
decomposable problems.

How can XCS solve this problem? If a parity block is not completely
specified, its probability of evaluating to one remains unchanged. Thus, to
discover the structure of the higher level function, first, lower-order parity
blocks need to be discovered and then recombined effectively. Table 11.2 shows
exemplar conditions with expected reward prediction and error values for the
hierarchical 3-parity, 5-count ones problem. The next section shows that XCS
is able to solve this problem efficiently only if it recombines the parity blocks
effectively without disrupting them.

Since entropy in the class distribution decreases only if a classifier con-
dition specifies all parity-relevant attributes, the parity problem is a hard
classification problem. Nonetheless, other lower-level functions possibly with
different numbers of relevant attributes may be used in the introduced two-
level problem design.

Performance of XCS on the hierarchical 3-parity, 5-count ones problem is
shown in Fig. 11.3.1 It can be seen that XCS is not able to solve the prob-
lem if uniform crossover is applied. One and two-point crossover are slightly
less disruptive than uniform crossover but still yield poor performance. Since
the attributes are randomly distributed over the input string, the potential
1 All results in this chapter are averaged over ten experiments. Performance is

assessed by test trials in which no learning takes place and the better classification
is chosen. During learning, classifications are chosen at random. Parameters were
set as follows: N = 20,000, β = 0.2, α = 1, ε0 = 10, ν = 5, θGA = 25, χ = 1.0,
μ = 0.01, θdel = 20, δ = 0.1, θsub = 20, and P# = 0.6
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Fig. 11.3. Performance (a) and population size (b) of XCS (N = 20k) in the
hierarchical 3-parity, 5-count ones problem. Efficient BB recombination strongly
improves XCS’s performance. One-point and two-point crossover are only beneficial
if the BBs are tightly coded. Mutation alone gradually improves performance but is
much less effective that BB-wise crossover

recombinatory benefits of one-point or two-point crossover are overshadowed
by their disruptive effects, preventing efficient learning. Mutation alone slowly
improves performance but does not reach significantly higher accuracy than
the runs with crossover.

To investigate the potential of EDA operators in XCS, we also applied
XCS with BB-wise uniform crossover to the same problem. BB-wise uniform
crossover is given information about the important BBs in advance; then, it
proceeds similarly as standard uniform crossover, but it exchanges entire BBs
(parity blocks) instead of single bits. Consequently, BB-wise uniform crossover
provides effective mixing without any disruption of BBs. XCS with BB-wise
crossover solves the problem efficiently and reliably (see Fig. 11.3).

We can conclude that, to solve hierarchical problems efficiently, XCS neces-
sitates a mechanism for identifying lower-level BBs. Once the BB identification
is successful, effective BB processing and recombination can be applied.

11.3.3 Building Block Identification and Processing

To face the BB-challenge (linkage learning) in XCS, it is necessary to develop
a mechanism that learns effective recombination online. Because of the suc-
cess in the area of effective identification and processing of BBs using EDAs,
advanced EDAs are a good candidate for providing such a mechanism.

However, the evolutionary component in XCS differs from the usual GA
application in several respects. Due to XCS’s niche reproduction in action
sets and since action sets are generally rather small compared to the whole
population, structure extraction is hard to apply successfully in an action set
alone. On the other hand, extracting structural information from the whole
classifier population makes it difficult to generate classifier offspring for the
current problem niche.
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Our investigations show that at least two structure identification mecha-
nisms are suitable for competent BB processing in XCS: (1) marginal product
models (MPMs), used in ECGA [22], and (2) Bayesian networks with deci-
sion trees, used in BOA [34, 35]. The former is easier to understand and to
apply but is limited to the identification and processing of non-overlapping
BBs only. The latter is more complicated but is able to model overlapping
dependency structures as well.

In the following section, we show how to integrate either mechanism into
the XCS framework. We show that both mechanisms are suitable to learn
the global lower-level problem structure and can be used to generate or im-
prove local classifier offspring. Since other chapters of this book give a concise
introduction to ECGA and BOA, we focus primarily on discussing how the
mechanisms of ECGA and BOA are integrated into XCS.

BB Identification with the ECGA Model Builder

ECGA [22] uses a marginal product model (MPM) to model and sample
candidate solutions. MPM can encode non-overlapping subsets of problem
features (BBs) that interact significantly. To measure model quality, ECGA
uses a minimum description length (MDL) metric, which consists of the sum
of the model complexity (MC) and the compressed population complexity
(CPC). While MC biases the model building toward simpler models (with
smaller BBs), CPC biases the model building toward more accurate models
(with all dependencies covered).

The model building in ECGA starts with each attribute forming one block.
Each iteration merges two blocks that yield the maximum gain in the sum of
MC and CPC. The learning is terminated when no more model improvement
can be achieved by merging two blocks. The MDL mechanisms used to learn
MPMs in XCS were taken from the available ECGA implementation [29].

BB Identification with the BOA Model Builder

The Bayesian optimization algorithm (BOA) [34, 35] uses BNs [24, 32] to
model and sample candidate solutions. The structure of a BN is defined by
a directed acyclic graph where the nodes correspond to different attributes
and the directed edges between the nodes encode conditional dependencies.
BNs are a more general class of models than MPMs; while the MPM assumes
structural independence between attribute subsets, BNs also allow the mod-
eling of overlapping attribute subsets. In this work, we use BNs with decision
trees [15, 18], where decision trees are used to store conditional probabilities
for each attribute.

Also in BOA, a greedy algorithm is used to learn a BN that adds new
edges iteratively based on the resulting improvement of model quality, starting
with a network with no edges (dependencies). In this work, model quality is
measured using a combination of the Bayesian Dirichlet metric with likelihood
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equivalence [16, 23] and the Bayesian information criterion [36]; this metric
was previously used in BOA with decision graphs [33] and the hierarchical
BOA (hBOA) [34], and is described in the chapter on the hierarchical BOA
along with the learning and sampling algorithms.

11.3.4 Dependency Structures in XCS

Similarly to the BB-identification mechanisms in ECGA and BOA, which
search for BBs in the selected population of individuals, it is possible to learn
dependency structures from the current population in XCS. However, two
aspects need to be considered: (1) Selection from the global population is not
straightforward. (2) To use the available implementations of ECGA and BOA,
classifiers need to be suitably transferred into binary representation.

To identify important BBs, the model needs to be built from the best
individuals in the population of XCS. To select the best individuals, we use
a filtering mechanism that extracts the most accurate classifiers out of the
current population. The mechanism extracts those classifiers that have a min-
imum experience θbe and a maximum error θbε. The parameters were set to
θbe = 20 and θbε = 400 throughout the subsequent experiments, filtering out
the young and high-error classifiers.

Given a filtered population, we need to transform the classifier set into
a representation suitable to build the model. In order to use the available
implementation of model building and sampling algorithms of BOA and
ECGA, classifiers are encoded as binary string. Specifically, each condition
attribute is encoded by two bits: The first bit encodes whether the condi-
tion attribute is general (i.e., don’t care) or specific. The second bit encodes
the value of the attribute. If the attribute is a don’t care symbol, we choose
zero or one uniformly randomly for the second bit. Finally, the classification
(action) is coded by an additional bit. Table 11.3 shows a set of classifiers and
the corresponding encoding that is used to learn the MPM or the Bayesian
network with decision graphs. With a binary coded set of individuals at hand,
we are able to learn the model in the form of either an MPM or a Bayesian
network.

Table 11.3. Sample condition and action parts and their corresponding binary
encoding for model learning

C A Binary encoding C A Binary encoding

##11## 1 10 11 01 01 11 10 1 0#11## 0 00 11 01 01 11 11 0

##00## 1 11 11 00 00 10 11 1 001### 1 00 00 01 10 10 10 1

0#1### 0 00 11 01 11 11 10 0 10##0# 0 01 00 11 11 00 10 0

0#0### 0 00 10 00 11 10 10 0 000### 1 00 00 00 11 10 10 1

0#11## 1 00 11 01 01 11 10 1 01#1## 0 00 01 11 01 11 11 0

Spaces are added for clarity. If an attribute is a don’t care symbol, the second bit in
the corresponding binary code is chosen randomly
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Since XCS applies a steady-state niche GA, the dependency structure does
not need to be rebuilt every time step. We rebuild the network after a fixed
number of time steps θbs, set to N/2 in our experiments. It seems appropriate
to set θbs to half the population size since each iteration, two new classifiers are
generated, so that after N/2 iterations, approximately N offspring classifiers
will be generated.

11.3.5 Sampling From the Learned Dependency Structures

As shown above, recombination of parent classifiers using simple crossover
operators may lead to disruptive effects, potentially destroying important BB
structures. Once the dependency model is learned, XCS may use the model
to recombine or directly generate offspring classifiers more effectively.

XCS generates offspring from parental classifiers selected from the current
action set, which is selected from classifiers that match the current problem
instance (match set). When using the globally learned probabilistic model to
generate offspring, we consequently need to adjust the model to fit the local
problem niche specified by the current problem instance. We investigate the
following two options: (1) sample classifiers using the model with parameters
updated to the local probability distribution of the current action set; and (2)
update the selected classifier using the model with global or local probabilities
using Markov–Chain Monte Carlo (MCMC) sampling [31].

Generating offspring by simply sampling from the global probabilistic
model is not considered, because the probabilistic model created for the entire
population of classifiers cannot be expected to accurately reflect the distrib-
ution in a specific niche. Similarly, updating parent classifiers using MCMC
sampling with the probabilistic model with global probabilities is expected to
be disruptive because of its bias toward the distribution of the entire pop-
ulation as opposed to the current problem niche. Both offspring generation
methods are introduced next.

Sampling Using Local Probabilities

Reproducing classifiers in action sets yields offspring classifiers with average
specificity that corresponds to the average specificity distribution in the action
sets. Fitness may increase the average specificity due its pressure towards
higher accuracy, which often leads to an implicit specialization pressure.

To sample offspring from the learned probabilistic model, the model para-
meters (marginal and conditional probabilities) should reflect the local speci-
ficity distribution in the current action set. To ensure this, we update the
parameters of the model to reflect the best classifiers in the current action set,
selecting classifiers from the set using the usual tournament selection mech-
anism. Consequently, the updated probabilistic model reflects the dependen-
cies detected globally but also mimics the local probability distribution. The
globally detected dependencies are thus combined with the local parameters,
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resulting in an offspring sampling mechanism that combines global and local
problem knowledge. BBs that are important in the current problem niche will
be recombined effectively as long as the global dependency structure or its
parts apply in the local problem niche.

Structure Optimization

Another approach to sampling new classifiers is structure optimization, which
starts by selecting a parent classifier from the action set using the usual tour-
nament selection. The selected classifier is then updated using MCMC, which
proceeds by perturbing the parent classifier and accepting each change with
probability that depends on the likelihood of the instance before and after the
change. Since sampling by perturbing an actual classifier from the local niche
biases the sampling to this niche, in this scenario we can use both the global
parameters as well as the local ones. However, without fitting the model pa-
rameters to the local niche, it can be expected that the more update steps we
perform, the more likely we disrupt important BBs and overspecialize.

MCMC [31] was first introduced in the statistical physics literature in the
1950s in the so-called Metropolis Algorithm. As mentioned above, MCMC pro-
ceeds by making small changes to the current classifier and evaluating each
potential change by computing the likelihoods before and after the change.
Here each perturbation flips a random bit in the classifier. Each change is ac-
cepted with the probability equal to the ratio of the likelihood of the classifier
before the change and the likelihood of the classifier after the change. The
likelihood is determined directly from the probabilistic model by parsing the
model for the particular classifier. To avoid zero likelihoods, all conditional
are linearly normalized to values ranging from 0.05 to 0.95.

11.3.6 Experimental Evaluation

We evaluate XCS’s performance on the aforementioned hierarchical problems
and compare both offspring generation methods under several different set-
tings. To learn the model structure, the population of XCS is filtered as de-
scribed above. If the filtered population is empty, no model is learned. As long
as no model is learned, XCS applies uniform crossover. Parameters are set as
above if not stated differently.

The results in the hierarchical 3-parity, 5-count ones problem (Fig. 11.4)
show that XCS/ECGA and XCS/BOA are able to successfully learn the
problem. XCS/ECGA does not show any problems in solving the problem
(Fig. 11.4a,b). All runs converge to the near-optimal solution nearly as fast as
the informed BB-wise crossover runs. Even with a lower mutation rate (effec-
tively decreasing supply and probability of randomly generating completely
specified parity blocks), performance is hardly influenced.

Similarly, XCS/BOA successfully learns the problem (Fig. 11.4c,d). XCS/
BOA is slightly slower than XCS/ECGA early in the run but then it reaches a
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Fig. 11.4. The hierarchical 3-parity, 5-count ones problem can be efficiently solved
with any of the tested model-based offspring generation methods. The ECGA com-
bination appears slightly more robust in this case, indicating that the Bayesian
network might include unnecessary, spurious dependencies that delay convergence.
The A/B variations refer to the number A of selected classifiers used to set the prob-
abilities to the local probability distribution and the number B of MCMC updates
executed on the parent classifier (B=0 indicates that the model is sampled directly).
The results confirm that if many MCMC updates are used with the global model
with global parameters (0/90), learning becomes inefficient

slightly higher performance level. Apparently, BOA initially models spurious
dependencies that may slow down the overall learning process. Since in this
problem the propagation of all five BBs independently is nearly the most
effective approach, the Bayesian learning algorithm appears to over-model
and thus delay the learning early on. On the other hand, late in the run, BOA
may allow a more effective prevention of BB disruption.

Performance of both methods clearly outperforms the runs without
crossover as well as the runs with uniform crossover. Similar results were
obtained on various parity-multiplexer problem instances including sizes 3–6
and 2–11 [5].
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In sum, the results confirm that XCS can be successfully combined with
a number of structural learners to improve offspring generation. The im-
plemented XCS/ECGA and XCS/BOA combinations showed to be able
to achieve performance similar to the performance with BB-wise uniform
crossover, which relies on explicit problem knowledge. XCS/ECGA as well as
XCS/BOA do not require any global problem knowledge and thus allow XCS
to flexibly adjust its recombination operators to the encountered problem.
Section 11.4 provides further evidence for the generality of the model-building
approach in XCS, applying XCS/BOA to several other typical Boolean func-
tion problems.

11.4 Results in Other Boolean Functions

While Sect. 11.3 showed that the methods created by combining XCS and
EDAs can outperform XCS with simple crossover operators, robustness was
not addressed. This section applies XCS/BOA to several benchmark Boolean
function problems used in the LCS and XCS literature. For further results on
XCS/ECGA the reader is referred to the available literature [3, 5].

11.4.1 More Hierarchical Problems

One of the important questions regarding the promising results with XCS/
ECGA and XCS/BOA is whether the binary representation by itself does
not introduce a strong bias that makes the problem easier for XCS. In other
words, the performance might have improved simply due to the conversion to
the binary encoding and there was no need for advanced variation operators
of ECGA and BOA.

Figure 11.5 shows the performance of several variants of XCS on the hi-
erarchical 3-parity, 3-multiplexer problem (N = 2k, μ = 0.01, P# = 0.8).
XCS/BOA shows similar performance as in the previous test problems; for
most settings, XCS/BOA finds the problem solution efficiently, but the algo-
rithm overspecializes if too many MCMC steps with the global parameters are
used. Even more importantly, the figure shows the performance of XCS with
the same binary encoding as XCS/BOA but with a univariate probabilistic
model that does not encode any interactions between attributes. The perfor-
mance comparison shows that the coding by itself is insufficient for good XCS
performance and that it is necessary to find an appropriate model of depen-
dencies between the attributes. Additionally, due to the higher population size
in the univariate probabilistic model, it can be seen that the coding induces
specialization and diversification effects in the population.

Another important question is whether XCS/BOA is able to handle a large
number of irrelevant attributes and focus its search on relevant attributes. To
investigate this issue, we applied XCS/BOA to the hierarchical 3-parity, 3-
multiplexer problem with a large number of irrelevant attributes (l = 100,
that is, 201 bits in the binary coding). Figure 11.6 (P# = 1.0) shows that
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Fig. 11.5. Performance comparison of XCS with BNs and the univariate proba-
bilistic model (with no interactions) confirms that (1) the binary coding alone is
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Fig. 11.6. XCS/BOA yields reliable performance on the 3-parity, 3-multiplexer
problem with 91 additional irrelevant bits (l = 100)

XCS/BOA (setting with model sampling using 50 locally selected classifiers to
update model probabilities) actually outperforms XCS with uniform crossover
in the problem. While mutation also has a significant impact on the perfor-
mance, both XCS/BOA runs reach 100% performance while neither simple
XCS run does. The population sizes point out that there is more specialization
and diversification in the XCS/BOA runs. However, the overall performance
confirms that these effects are not random but targeted towards the more
promising search subspaces.

11.4.2 The Multiplexer Problem

The multiplexer problem has been investigated throughout the LCS literature
[11, 17, 39–41]. The problem is defined for instances encoded by binary strings
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of length l = k + 2k where k address bits encode the location of the correct
classification located in one of the remaining 2k bits.

Figure 11.7 shows the performance and population size curves for the 20-
and 37-multiplexer problems (P# = 0.8). XCS/BOA exhibits slightly slower
learning performance, which is most likely caused by the lower mutation rate
(μ = 0.001). In the 20-multiplexer case, we see yet another confirmation of
the overspecialization effect when the global model with global probabilities
is used to optimize local offspring with many update steps (setting 0/90). In
the 37-multiplexer, though, we see that performance becomes unreliable when
sampling from the Bayesian model. Model probabilities appear too noisy and
additional specialization effects due to the chosen binary coding appear to stall
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Fig. 11.7. On the 37-multiplexer, the BOA-based model learning and sampling
slightly delays learning in XCS. Most likely, the reason for slower learning is that
the specialization effect of mutation becomes too strong. In all experiments shown
in this figure, XCS/BOA uses mutation rate μ = 0.001
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learning, yielding large population sizes and poor learning. The more cautious
MCMC-based classifier optimization methods, on the other hand, learn the
solution reliably and robustly. The most robust setting appears to optimize
classifiers with the model adjusted to the local probability distribution (setting
10/18). This is certainly the most cautious setting causing least disruption but
still providing effective recombination and structure optimization.

Since optimizing the classifier locally yielded most robust performance,
we also ran experiments on the 70-multiplexer with this setting. The large
Boolean function was recently solved successfully with the XCS system
[11, 12]. Figure 11.8 (left-hand side) shows the performance of XCS in the
70-multiplexer problem with population sizes N = 20 k, N = 30 k, N = 40 k,
a mutation rate of μ = 0.01, and an initially completely general population
(P# = 1.0). The curves are averaged over 25 experiments. The graphs show
that XCS with a population size of 40 k solves the problem within 1, 700 k
learning iterations. Decreasing the population size to 20 k results in a much
harder problem. All runs except one converged after 4, 500 k problems. The
last run took more than 5,000 k problems to find the optimal solution. Due
to the small size of the population, XCS struggles to allocate reproductive
opportunities to more accurate classifiers, often loosing the detected higher
accurate classifiers.

Interestingly, XCS/BOA yields more robust performance in the 70 mul-
tiplexer. Figure 11.8 (right-hand side) shows the performance of XCS/BOA
(setting 10/18) on the 70-multiplexer. Due to the model-based classifier opti-
mization, performance becomes more reliable so that 100% accuracy is reached
in all runs even when N = 20 k. The comparison shows that XCS/BOA with
the local offspring optimization mechanism yields a highly reliably search
mechanism in XCS.
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Fig. 11.8. XCSTS reliably solves the very large 70-multiplexer problem. A smaller
population size delays the learning progress. Substituting uniform crossover with
the Bayesian network-based recombination results in more effective search and thus
faster and more reliable learning
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11.4.3 The xy-Biased Multiplexer

The xy-biased multiplexer problem was introduced elsewhere [10, 11] to inves-
tigate fitness guidance. The problem combines the difficulty of the multiplexer
problem iteratively. A first multiplexer function with x address bits chooses
the y (biased-) multiplexer that decides on the current class of the problem.
The xy-biased multiplexer is biased because the y multiplexer is slightly mod-
ified in that if all address bits are zero (or one) the result is a zero (one)
regardless of the value bits, depending on whether the biased multiplexer is
zero (or one) biased, respectively. This biases the problem in that the special-
ization of an address bit can increase accuracy slightly.

Figure 11.9 shows the performance of several variants of XCS on various
large instances of the xy-biased multiplexer problem. Curves are averaged
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Fig. 11.9. Larger biased multiplexer problem instances are particularly challenging
because the minimal order of problem difficulty increases. XCS/BOA can detect
and propagate lower-level dependency structures more effectively than XCS with
standard variation operators
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over 20 runs and population size is set to N = 15 k (P# = 0.8, μ = 0.001). To
get an idea of how complex the final solutions are, we use the function |[O]|
that specifies the optimal classifier population [25, 26]. The measure defines
the complexity of the problem as the size of the minimal, accurate, non-
overlapping population that covers all environmental niches accurately. We
note that |[O]|(5, 1) = 192(l = 69), |[O]|(4, 2) = 224(l = 84), |[O]|(3, 3) =
244(l = 83), |[O]|(2, 4) = 248(l = 78), and |[O]|(1, 5) = 252(l = 63). The
[O]-measure suggests that (5, 1) is the simplest problem, while (1, 5) is the
most difficult one. However, the plots in Fig. 11.9a show that the (5, 1) setting
is very hard to solve for XCS with simple crossover and the solution is not
learned even after 1, 500k learning steps. In the XCS/BOA (10/18) setting
(Fig. 11.9c), however, (5, 1) is solved the fastest, which indicates disruptive
effects of uniform crossover.

The results indicate that on the xy-multiplexer, problem structure and
fitness guidance are the main factors for a fast and reliable development of
an accurate problem solution. For example, on the (5, 1) problem, the per-
formance reaches the 75% level very fast but has a hard time to evolve a
maximally accurate solution. The challenge in the (5, 1) problem is that the
minimal order of difficulty is larger than one since the first bit of the five
address bits is easily detected, but a specialization of any or even all of the
other address bits does not increase accuracy until at least one value bit is
correctly set.

On the simpler problem instances, XCS/BOA is outperformed by stan-
dard XCS recombination. The problem is simpler with respect to evolutionary
search but becomes harder with respect to initial accuracy. The extreme initial
gain in accuracy in the (5, 1) problem can cause disruption in the later learn-
ing progress. XCS/BOA detects relevant dependencies much more effectively
and alleviates the disruptive effects of simple, uniform crossover.

11.5 Summary and Conclusions

This chapter focused on XCS, which is an accuracy-based learning classifier
system. The chapter first argued that since many complex real-world systems
are hierarchical and nearly decomposable [20, 37], solving difficult hierarchi-
cal classification problems represents an important challenge. It was shown
that, analogously to GAs, also in LCSs simple crossover operators may be
more disruptive than innovative. Especially in hierarchical problems in which
subsets of attributes that interact on the lower-level need to be processed
and recombined effectively, simple crossover operators can prevent effective
learning.

The chapter then integrated the model building and sampling techniques
from the extended compact genetic algorithm (ECGA) and the Bayesian
optimization algorithm (BOA) into XCS, creating two competent LCSs:
XCS/ECGA and XCS/BOA. XCS/ECGA and XCS/BOA were shown to
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provide efficient and reliable solutions for all difficult hierarchical problems
that are intractable with XCS with standard variation operators.

Additionally to the hierarchical problems, we tested XCS and XCS/BOA
on several benchmark binary classification problems used throughout the
LCS literature and showed that XCS/BOA yields efficient and reliable per-
formance in a variety of problem settings. XCS/BOA was able to solve the
70-multiplexer problem more reliably than simple XCS. In the xy-biased mul-
tiplexer problems, XCS/BOA was able to solve a large problem instance,
which simple XCS was not able to solve. Finally, XCS/BOA was shown to
be robust with respect to additional, problem-irrelevant bits, yielding more
reliable performance than simple XCS.

In conclusion, XCS/ECGA and XCS/BOA are competent LCSs that com-
bine advanced LCSs and EDAs to scalably solve difficult hierarchical prob-
lems. Results confirmed that XCS/BOA and XCS/ECGA are able to solve
challenging binary problems efficiently, accurately and reliably. It is expected
that this capability extends to all decomposable classification problems of
bounded order. Further studies providing extended experimental evidence on
this conjecture are in preparation.

There are several important directions for future research in this area. Both
XCS/ECGA and XCS/BOA are currently applicable to discrete problems and
one important area of future research is to extend these algorithms to handle
real-valued conditions [4, 42]. Moreover, XCS is not restricted to the domain
of classification and XCS/ECGA and XCS/BOA should be extensively tested
on other types of problems suitable for XCS. Finally, XCS may be applied to
more challenging predictive tasks, such as the prediction of actual changes in
the world, similarly to the ACS system [8] or the modular MACS system [19],
and an interesting area of future research is to analyze how incorporating the
model building and sampling techniques from advanced EDAs would affect
the performance of XCS on such predictive tasks.
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Military Antenna Design Using a Simple
Genetic Algorithm and hBOA

Tian-Li Yu, Scott Santarelli, and David E. Goldberg

Summary. This chapter describes the optimization of an antenna design problem.
A simple genetic algorithm (SGA) and the hierarchical Bayesian optimization algo-
rithm (hBOA) were applied to this problem. Three objective functions were designed
in an effort to find a solution that meets the system requirements/specifications.
Empirical results indicate that the SGA and hBOA perform comparably when the
objective function is “easy” (i.e., traditional mask). When the objective function
more accurately reflects the true objective of the problem (i.e., “difficult”), how-
ever, hBOA consistently outperforms the SGA both computationally and electro-
magnetically.

Key words: Antenna design, Simple genetic algorithm, Hierarchical Bayesian
optimization algorithm, Estimation of distribution algorithm, Competent ge-
netic algorithm, Real-world application

12.1 Introduction

Simple genetic algorithms (SGAs) [3] have been applied to a wide variety of
antenna applications over past decades [13]. Over roughly the same period,
researchers in the GA field have devoted themselves to the design of compe-
tent genetic algorithms (GAs), such as estimation of distribution algorithms
(EDAs), that solve hard problems quickly, reliably, and accurately [4]. Re-
search in EDAs have shown that EDAs outperform SGAs in many artificial
and real-world problems [1, 6, 8, 11].

In this chapter, we apply the hierarchical Bayesian optimization algorithm
(hBOA) [8, 9] – one of the most successful EDAs – to the optimization of
a constrained feed network for a linear antenna array. We designed three
objective functions, from simple to difficult, to adequately solve the problem,
and to demonstrate the capability of hBOA. The performance of hBOA is
compared and contrasted with that of an SGA using the same number of
function evaluations.
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This chapter is organized as follows. Section 12.2 describes the constrained
feed network for a linear antenna array. The three manually-designed objective
functions are described in Sect. 12.3. Details about the encoding, parameter
settings, and implementation for both the SGA and hBOA can be found in
Sect. 12.4. Following this, Sect. 12.5 compares and contrasts the results for the
SGA and hBOA. Finally, in Sect. 12.6, we summarize our results and draw
some interesting conclusions concerning the fundamental differences between
simple and competent GAs.

12.2 Problem Statement

This section describes an antenna system designed for space-based and air-
borne radar applications. The goal of this system is to produce a far-field
radiation pattern having at least 30 dB sidelobes over a 20% bandwidth. This
is accomplished by implementing an optimized, constrained-feed network. The
following overview is intended to provide the reader with enough background
information to understand the details of the system optimization. For fur-
ther information about the system design and implementation, the reader is
referred to [7].

The following discussion assumes an ideal system. A single section of the
system is shown in Fig. 12.1. At the front end is an N -element, linear array. It
can be shown that when the array is illuminated by a plane wave, the element
excitations can be computed via the following [5]:

an(θ) = ej 2π
λ nd sin θ, (12.1)

where n is the element index, λ is the wavelength of the incoming plane wave,
d is the inter-element spacing, θ is the angle of incidence with respect to the
normal, and j is the square root of −1.

Each element is connected to a single input port of an N by M Rotman
lens. Thus, the element excitations become the inputs to the Rotman lens.
It can be shown that the Rotman lens output signals are described by the
following:

Ii(θ) =
N∑

n=1

ej 2π
λ nd(sin θ− i

N ), (12.2)

where i is the Rotman lens output index. Each output signal is then multiplied
by a complex weight, wi.

Next, these signals are input to an M by M Butler matrix, the outputs of
which are computed from:

Jm(θ) =
M∑
i=1

Ii(θ)wie
j2πi( m

M )
(

λ0
λ

)
, (12.3)
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Fig. 12.1. Single section of antenna system, including front-end array, Rotman lens,
and Butler matrix

where m is the Butler-matrix output index, and λ0 is the center-frequency
wavelength of the system. The center M/2 output signals from each of P sec-
tions are time-delayed, weighted (e.g., fixed weights like a Taylor distribution,
etc.), and combined to compute the final radiation pattern of the system.

In order to optimize the system, the set of complex weights, wi, must
be determined for each of P sections, such that the final radiation pattern
exhibits −30 dB sidelobes over a 20% bandwidth. For our particular system,
the specifications and parameter values are as follows:

– Frequency band of operation: 9.0–11.0 GHz.
– Center frequency f0 = 10.0 GHz (where λ0 = c/f0, and c is the velocity

of electromagnetic waves in free space, roughly 3 × 108 m s−1).
N = 64.
d = 0.5λ0.
M = 8.
P = 3.
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Figure 12.2 shows far-field radiation patterns for an ideal system at 9.0,
10.0, and 11.0 GHz. The x-axis represents U -space (where U = sin θ), and
the y-axis shows the amplitude of the pattern measured in decibels (dB). The
peak of each pattern is normalized to 0 dB. This system was optimized for a
beam-steering angle of 45◦ (i.e., u � 0.7071) using the method of alternating
projections [7]. The weights, wi, were assumed to be real-valued, and the
weights for a particular index i were assumed identical across the three sections
(i.e., w5 for section 1 = w5 for section 2 = w5 for section 3). Note that when
these weights are applied to the ideal system, the maximum sidelobe level is
well below −30 dB across the entire 20% bandwidth, thus meeting the system
requirements.

We built three Rotman lenses and measured the transfer function for each
of them. Figure 12.3 illustrates the system radiation patterns when the ideal
Rotman lens transfer functions are replaced with the experimental transfer
functions. We applied the same weights, wi, found in [7] for the ideal system.
Not only is the integrity of the main beam compromised, but also the maxi-
mum sidelobe level well exceeds the −30 dB limit across the entire frequency
band. In other words, the weights that we successfully implemented for the
ideal system cause the experimental system to break down. Thus, we need
to re-optimize the system now that the experimental Rotman lens data is
incorporated.

Fig. 12.2. Far-field radiation patterns as a function of frequency for the ideal sys-
tem. The ideal system is optimized by applying the method of alternating projec-
tions [7] to 12.3



12 Military Antenna Design Using a SGA and hBOA 279

Fig. 12.3. Far-field radiation patterns as a function of frequency when the experi-
mental Rotman lens data is incorporated into the system model and the ideal system
weights from [7] are applied. The figure indicates that the weights obtained from
the ideal system mathematically cannot be directly applied to the real system. The
weights need to be tuned again based on the real system

12.3 Objective Function

The objective function is essentially a subroutine written in MATLAB, which
was used by both the SGA and hBOA to evaluate potential solutions to
the problem (i.e., chromosomes). When the user inputs a set of 24 complex
weights, the subroutine computes the corresponding far-field radiation pat-
terns for five discrete frequencies (9.0, 9.48, 10.0, 10.52, and 11.0 GHz). This
experiment employed three variations of the objective function, which are de-
scribed below as Cases 1, 2, and 3. (Note that for this experiment, we defined
fitness such that lower values correspond to higher quality solutions. Tradi-
tionally, fitness is defined such that higher values correspond to higher quality
solutions).

Figure 12.4 shows the objective function for Case 1. The gray curve is a
typical far-field radiation pattern produced by the system for a given frequency
and set of complex weights. The x-axis represents u-space (i.e., sin θ), and the
y-axis measures the normalized amplitude of the pattern in decibels. The mask
represents the objective function, showing a main-beam and sidelobe region.
For this case, we perform a point-by-point subtraction of the mask from the
pattern. For a given frequency and set of complex weights, an error value Ek
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Fig. 12.4. Objective function for Case 1

is computed by calculating the mean sum of the squared differences between
the pattern and mask:

Ek(w, fk) =
1
U

[ ∑
i∈main-beam region

(patterni − maski)2

+
∑

i∈sidelobe region and patterni>maski

(patterni − maski)2

⎤
⎦ , (12.4)

where w represents the vector of complex weights, fk is the kth discrete fre-
quency, and U represents the total number of points in the radiation pattern.
Note that no penalty is administered when the pattern lies below the mask
in the sidelobe region (i.e., if the difference between the pattern and mask is
negative, it is not used in the computation). In essence, we are trying to force
the pattern to conform to the mask in the main-beam region while forcing the
pattern to lie below the mask in the sidelobe region. Also note that we are
“overshooting” by trying to force the algorithm to find a solution with −40 dB
sidelobes in hopes that it will at least be able to obtain −30 dB sidelobes. This
lack of efficiency is an inherent weakness of this approach. The overall Case
1 fitness value, F1(w), is the average of the error across the entire frequency
band:

F1(w) =
1
K

K∑
k=1

Ek, (12.5)

where K is the total number of discrete frequencies (and is equal to 5 for our
experiment).

Figure 12.5 shows the general objective function used for both Cases 2 and
3. For Case 2, for a given frequency and set of complex weights, the error has
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Fig. 12.5. Objective function for Cases 2 and 3

two components, the first of which is

Ek,1(w, fk) = [1 − pattern(u0)]
2
, (12.6)

where u0 is the desired steering angle of the pattern peak (u0 = 0.7071,
corresponding to θ = 45◦ , for this experiment). In essence we need to ensure
that the peak of the normalized pattern in the main-beam region coincides
with the desired steering angle u0. The second error component is as follows:

Eu,2(w, fk) = MSL2, (12.7)

where MSL refers to the “maximum sidelobe level” (i.e., the maximum level
of the radiation pattern in the sidelobe region). In other words, we are try-
ing to maximize the difference between the normalized pattern peak and the
maximum sidelobe level as illustrated in Fig. 12.5. The overall Case 2 fitness
value, F2(w), is the mean summation of the error components across the entire
frequency band:

F2(w) =
1
K

∑
k=1

K (Ek,1 + Ek,2) . (12.8)

It is clear that the objective function for Case 2 involves only two subtractions,
rather than a point-by-point comparison of the pattern to the mask – this
property renders Case 2 more computationally efficient than Case 1. Similar
to Case 1, however, the overall fitness value for a given set of complex weights
is the average of the error across the entire frequency band.

Case 3 is identical to Case 2, except the overall fitness value, F3(w), is
equal to the maximum error across frequency:

F3(w) = max
k

(Ek,1 + Ek,2) . (12.9)
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In other words, Cases 1 and 2 aim at minimizing the mean error across
frequency, whereas Case 3 minimizes the maximum error across frequency.
Among the three objective functions, Case 3 is the most relevant to our par-
ticular problem, since we are ultimately trying to minimize the maximum
sidelobe level across frequency.

12.4 Method Description

This section describes the implementation of the SGA and hBOA. In partic-
ular, the encodings and parameter settings are detailed.

12.4.1 Implementation of the Simple Genetic Algorithm

Here we describe our first optimization approach, which involves the imple-
mentation of an SGA. Recall that our antenna system consists of three sec-
tions, each containing eight complex weights (i.e., amplitude and phase). Our
goal then is to obtain a set of 24 complex weights that will allow us to meet
the system requirements outlined in Sect. 12.2.

We used the chromosome representation shown in Fig. 12.6. We chose a
binary encoding scheme and chose to represent each complex weight with 16
bits (i.e., 8 bits amplitude and phase). Therefore, the length of our chromo-
some was: 24 weights × 2 components/weight × 8 bits/component = 384 bits.
We arbitrarily chose to encode the complex-weight amplitudes along the first
half of the chromosome and the phases along the latter half. Both the ampli-
tudes and phases are numbered sequentially along their respective halves of
the chromosome. We restricted the amplitudes to lie in the interval [0, 1] and
the phases to lie in the interval [0 2π]. It has been shown that Gray coding are
mutation friendly and can be beneficial for real-world problems [2, 14]. There-
fore, we used an 8-bit gray code for both the amplitude and phase encoding
schemes.

At the start of the algorithm, we formed a random population of 200 chro-
mosomes (parents). The population size is so set via a series of experiments

Fig. 12.6. Chromosomal encoding scheme
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given the limitation of a one-million function evaluations. Each member of the
population was evaluated and ranked (the details of the objective function is
described in Sect. 12.3). Then, we formed a mating pool of 200 individuals via
binary tournament selection [3]. Next, two individuals from the mating pool
(i.e., parents) were chosen randomly to create a child via two-point crossover.
This process was repeated until 200 children had been generated. Each child
was passed to an operator having a constant mutation rate of 0.005. The chil-
dren were evaluated, ranked, and proceeded to become the parents of the next
generation. For this experiment, we always ran the SGA for 5,000 iterations
with a constant population size of 200 for a total of one-million objective-
function evaluations.

12.4.2 Implementation of the Hierarchical Bayesian Optimization
Algorithm

This section describes the implementation and parameter settings of our sec-
ond optimization approach – hBOA. Details about hBOA can be found else-
where [8–10, 12]. Here we only focus on the encoding and parameter settings.

The encoding scheme is exactly the same as that used for the SGA. Each
candidate solution was encoded into a 384-bit binary string. Also, gray coding
was used. Given the same number of function evaluations (one-million), a pop-
ulation size of 5,000 was found to be suitable. and hence the maximum number
of generations was set to 200 for a total of one-million function evaluations
(i.e., same as SGA case).

Restricted tournament selection was adopted for the purpose of preserv-
ing good candidate solutions [8]. The window size was set to the problem size
(384) to perform niching globally; the tournament size was set to 12 based on
empirical observations. Bit-wise mutation was used, with a mutation proba-
bility of 0.005. A series of experiments showed that the maximum number of
incoming edges for a single node in the Bayesian network should be limited to
4 so as to avoid unnecessary linkage complexity. Elitism was adopted. Every
generation, the worst half of the parents is replaced by the newly generated
candidate solutions. In each generation, parental candidate solutions were
evaluated, and the bottom half were replaced by newly generated offspring.

12.5 Empirical Results: SGA versus hBOA

This section analyzes the results for Cases 1, 2, and 3 by considering the
computational performance of SGA versus hBOA. We also compare SGA and
hBOA on the basis of sidelobe attenuation.

Each case was run three times for both the SGA and hBOA, the results of
which are tabulated in Tables 12.1–12.3. For convenience, the runs are sorted
according to fitness from best to worst. (Note that for this experiment, we
defined fitness such that lower values correspond to higher quality solutions.
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Table 12.1. The results of the SGA and hBOA for CASE 1

SGA

F (GHz) 9.00 9.48 10.0 10.52 11.00 F1 (×10−3)
Run 1 error (×10−3) 0.2009 0.0743 0.1307 0.0711 0.1212 0.1196

Run 2 error (×10−3) 0.2310 0.1471 0.2196 0.1225 0.1629 0.1766
Run 3 error (×10−3) 0.2920 0.1117 0.2456 0.0889 0.1793 0.1835
Mean error (×10−3) 0.2413 0.1110 0.1986 0.0942 0.1545 0.1599
Standard deviation (×10−3) 0.0464 0.0364 0.0603 0.0261 0.0300 0.0351

hBOA

F (GHz) 9.00 9.48 10.0 10.52 11.00 F1 (×10−3)
Run 1 error (×10−3) 0.1912 0.0800 0.1407 0.0619 0.1232 0.1194
Run 2 error (×10−3) 0.2034 0.0760 0.1433 0.0588 0.1167 0.1196

Run 3 error (×10−3) 0.1927 0.0785 0.1447 0.0608 0.1225 0.1198
Mean error (×10−3) 0.1958 0.0782 0.1429 0.0605 0.1208 0.1196
Standard deviation (×10−3) 0.0067 0.0020 0.0020 0.0016 0.0036 0.0002

Although the SGA and hBOA give solutions with comparable mean errors, hBOA’s
performance is more stable and consistent

Table 12.2. The results of the SGA and hBOA for CASE 2

SGA

F (GHz) 9.00 9.48 10.0 10.52 11.00 F1 (×10−3)
Run 1 error (×10−3) 3.0140 2.0519 2.2108 1.3882 1.7584 2.0847

Run 2 error (×10−3) 2.8931 1.9392 2.5851 2.0724 1.8038 2.2587
Run 3 error (×10−3) 4.1890 1.6209 2.0234 1.4106 2.8395 2.4167
Mean error (×10−3) 3.3654 1.8707 2.2731 1.6237 2.1339 2.2534
Standard deviation (×10−3) 0.7158 0.2235 0.2860 0.3887 0.6115 0.1661

hBOA

F (GHz) 9.00 9.48 10.0 10.52 11.00 F1 (×10−3)

Run 1 error (×10−3) 2.3269 1.1383 1.5282 1.5482 1.6063 1.6296
Run 2 error (×10−3) 2.1459 1.2727 1.5955 1.5421 1.9166 1.6946
Run 3 error (×10−3) 2.1133 1.3130 1.6334 1.5957 1.8963 1.7103
Mean error (×10−3) 2.1954 1.2413 1.5857 1.5620 1.8064 1.6782

Standard deviation (×10−3) 0.1151 0.0915 0.0533 0.0293 0.1736 0.0428

The solutions produced by hBOA have smaller mean errors and a smaller variance

Traditionally, fitness is defined such that higher values correspond to higher
quality solutions). Table 12.1 contains the results for Case 1. If we compare
the performance of the best run for each algorithm (i.e., Run 1), we see that
the overall fitness value F1 is practically identical for the SGA and hBOA. In
addition, Figure 12.7 shows that there is virtually no difference between the
maximum sidelobe levels of the resulting radiation patterns at 9.0 GHz. Thus,
one may be tempted to assume that both algorithms perform equally well for
this objective function. However, it is also evident from the table that the
mean fitness across runs is 33% higher for the SGA compared to hBOA, and
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Table 12.3. The results of the SGA and hBOA for CASE 3

SGA

F (GHz) 9.00 9.48 10.0 10.52 11.00 F1 (×10−3)
Run 1 error (×10−3) 0.9338 0.4556 0.8370 0.1015 0.0007 0.9338

Run 2 error (×10−3) 1.0124 0.3198 0.8681 0.0953 0.0026 1.0124
Run 3 error (×10−3) 1.4588 0.3618 0.1016 0.0240 0.0006 1.4588
Mean error (×10−3) 1.1350 0.3791 0.6022 0.0736 0.0013 1.1350
Standard deviation (×10−3) 0.2832 0.0695 0.4338 0.0431 0.0011 0.2832

hBOA

F (GHz) 9.00 9.48 10.0 10.52 11.00 F1 (×10−3)
Run 1 error (×10−3) 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019
Run 2 error (×10−3) 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019

Run 3 error (×10−3) 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019
Mean error (×10−3) 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019
Standard deviation (×10−3) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

hBOA consistently outperformed the SGA in all runs, and the solution quality
of hBOA is extremely stable

Fig. 12.7. SGA versus hBOA performance, CASE 1, Run 1. Solid : hBOA, dotted :
SGA. The performances were comparable

the standard deviation of the fitness across runs for the SGA exceeds that
for hBOA by a factor of 175! These results imply that, given enough runs,
the best-quality SGA solution may be comparable to the best-quality hBOA
solution; however, hBOA seems to be a much more consistent and reliable
search mechanism.



286 T.-L. Yu et al.

Fig. 12.8. SGA versus hBOA performance, CASE 2, Run 1. Solid : hBOA, dotted :
SGA. hBOA slightly outperformed the SGA

Case 2 (Table 12.2 and Fig. 12.8) exhibits the same general trends as seen
for Case 1, namely the mean of the fitness F2 across runs is 34% greater for the
SGA versus hBOA, and the standard deviation of F2 across runs for the SGA
exceeds that for hBOA by almost a factor of 4. However, for this case, the
best-quality hBOA solution is 28% better than the best-quality SGA solution.
This is apparent in the figure, where we see that the highest sidelobe resulting
from the SGA solution exceeds that of hBOA by approximately 2.5 dB. Thus,
for this case, the SGA performance trails that of hBOA for both best fitness
and average fitness.

The performance of the SGA is by far the worst for Case 3 (Table 12.3 and
Fig. 12.9). hBOA outperforms the SGA by several orders of magnitude when
comparing both best fitness and average fitness. In addition, the standard
deviation of the fitness F3 across runs is zero for hBOA! The sidelobe atten-
uation of hBOA solution is −27 dB, which is quite close to the desired value
of −30 dB. By contrast, in the best SGA solution, it is difficult to identify a
mainlobe and worst-case sidelobes exist at −6 dB.

Overall, these results are not surprising. The different objective functions
represent drastically different solution spaces. Case 1 involves forcing a func-
tion to a mask, which is considered a GA-easy problem because taking aver-
age makes the fitness function landscape smooth. Thus, we see that in this
case the SGA performs comparably to hBOA. Case 2 is somewhat more dif-
ficult because the objective is to minimize the averaged maximal errors over
the bandwidth. Case 3 is the most difficult problem for GAs, because the
min/max nature of the objectives give rise to a solution space that contains
many local minima. The SGA, therefore, easily fell into some local minimum
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Fig. 12.9. SGA versus hBOA performance, CASE 3, Run 1. Solid : hBOA, dotted :
SGA. The SGA totally failed on finding solutions with an acceptable quality, while
hBOA was able to give a solution with the sidelobe attenuation of only −27 dB

and was not capable of exploring the landscape globally. hBOA, on the other
hand, was able to better identify the linkage of the problem, which allowed it
to recombine salient pieces of information without disrupting good building
blocks. The solutions obtained from hBOA for Case 3 correspond to -27 dB
sidelobes across the entire frequency band of operation. Thus, hBOA allowed
us to come within 3 dB of our goal (i.e., −30 dB across frequency). This result
is quite satisfactory, considering the slightly degraded state of the experimen-
tal Rotman lenses as discussed in Sect. 12.2.

12.6 Summary and Conclusions

This chapter investigated the application of both a simple GA and hBOA
to the optimization of a constrained feed network for an antenna linear ar-
ray. Three objective functions were designed to compare the performance of
the SGA and hBOA. The first objective function was designed to be GA-
easy but did not completely reflect the desired objective of the problem. The
third objective function was GA-difficult but was much more relevant to the
problem objectives. For the GA-easy objective function, the performance of
the SGA and hBOA were comparable. When the objective functions became
more complicated (i.e., GA-difficult), the competent GA technique demon-
strated significant improvement over the SGA. In all three cases, the quality
of the solutions that hBOA gave is more reliable than that the SGA gave.
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This chapter demonstrates the power of solving difficult problems of a new
breed of GA – EDAs. EDAs are designed to learn the correlations between
variables encoded along the chromosome. In this manner, the recombination
operator can be designed to exploit these correlations and minimize the prob-
ability of disrupting good building blocks [4] while maximizing the probability
of finding a global solution to the problem.

A specific type of EDA – the hierarchical Bayesian optimization algorithm
(hBOA) – was applied to an antenna design problem. The SGA and hBOA en-
gaged in head-to-head competition, both attempting to find an acceptable so-
lution to a challenging optimization problem involving a complex, constrained
feed network for an antenna array. The results demonstrated that the SGA
competes hBOA when the problem was GA-easy. When the problem became
more and more difficult, however, hBOA constantly outperformed the SGA
in both computational and electromagnetic aspects. This case study demon-
strates the utility of using more advanced GA techniques to obtain acceptable
solution quality as problem difficulty increases.

To conclude, for simple problems, SGAs are preferred since they are com-
putationally inexpensive and the solution quality is comparable to that of
competent GAs. However, for difficult problems, competent GA techniques
should be adopted, because based on our observations, competent GA tech-
niques are able to achieve higher-quality solutions than SGAs. For most of the
real-world applications, there is no easy way to determine the problem diffi-
culty for GAs. In this case, it is always beneficial to adopt competent GAs
since competent GAs perform well on both simple and difficult problems.
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13

Feature Subset Selection with Hybrids of
Filters and Evolutionary Algorithms

Erick Cantú-Paz

Summary. The performance of classification algorithms is affected by the features
used to describe the labeled examples presented to the inducers. Therefore, the
problem of feature subset selection has received considerable attention. Approaches
to this problem based on evolutionary algorithms (EAs) typically use the wrapper
method, treating the inducer as a black box that is used to evaluate candidate feature
subsets. However, the evaluations might take a considerable time and the wrapper
approach might be impractical for large data sets. Alternative filter methods use
heuristics to select feature subsets from the data and are usually considered more
scalable than wrappers to the dimensionality and volume of the data. This chapter
describes hybrids of evolutionary algorithms (EAs) and filter methods applied to the
selection of feature subsets for classification problems. The proposed hybrids were
compared against each of their components, two feature selection wrappers that are
in wide use, and another filter-wrapper hybrid. The objective of this chapter is to
determine if the proposed evolutionary hybrids present advantages over the other
methods in terms of accuracy or speed. The experiments used are decision tree and
naive Bayes (NB) classifiers on public-domain and artificial data sets. The experi-
mental results suggest that the evolutionary hybrids usually find compact feature
subsets that result in the most accurate classifiers, while beating the execution time
of the other wrappers.

13.1 Introduction

The problem of classification in machine learning consists of using labeled
examples to induce a model that classifies objects into a set of known classes.
The objects are described by a vector of features, some of which may be
irrelevant or redundant and may have a negative effect on the accuracy of the
classifier. There are two basic approaches to feature subset selection: wrapper
and filter methods [1]. Wrappers treat the induction algorithm as a black
box that is used by the search algorithm to evaluate each candidate feature
subset. While giving good results in terms of the accuracy of the final classifier,
wrappers are computationally expensive and may be impractical for large
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data sets. Filter methods are independent of the classifier and select features
based on properties that good feature sets are presumed to have, such as class
separability or high correlation with the target. Although filter methods are
much faster than wrappers, filters may produce disappointing results, because
they completely ignore the induction algorithm.

This chapter presents experiments with hybrid algorithms that combine
the strengths of filters and wrappers and attempt to avoid their weaknesses.
The hybrids consist of an evolutionary algorithm (EA) used in its traditional
role as a wrapper, but initialized with the output of a filter. The objective of
this study is to determine if the EA-filter hybrids present advantages over EAs
and conventional feature selection algorithms in terms of accuracy or speed.
The experiments described in this chapter use public-domain and artificial
data sets and consider decision tree and naive Bayes (NB)classifiers, which
can be induced quickly and have been shown to have good accuracy in many
problems [2].

I proposed earlier [3] the combination of EAs and filters studied in this
chapter. My previous paper reported promising experiments initializing a sim-
ple genetic algorithm (GA) with the output of a filter and using NB as the
induction algorithm. The present chapter extends my previous work [3] in sev-
eral directions: (1) It examines the scalability of the hybrids by experimenting
with additional data sets that are larger and of higher dimensionality than in
the original study; (2) since the performance of wrapper algorithms depends
on the classifier, this chapter presents experiments with decision trees in ad-
dition to the NB considered previously; (3) the experiments consider a simple
distribution estimation algorithm in addition to the simple GA of my previous
work; (4) experiments examine the effect of the single additional parameter
introduced in the filter-EA hybrids; and (5) the proposed filter-EA hybrids
are compared with a recently proposed combination of filters and wrappers.

The goal of this study was to maximize the accuracy of classification. The
experiments demonstrate that, in most cases, the hybrids find subsets that
result in the best accuracy (or in an accuracy not significantly different from
the best), while finding compact feature subsets, and performing faster than
popular wrapper methods.

Section 13.2 reviews previous applications of EAs to feature subset se-
lection. Section 13.3 describes the class separability filter and the proposed
hybridization with EAs. Section 13.4 describes the algorithms, data sets, and
the fitness evaluation method used in the experiments reported in Sect. 13.5.
Finally, Sect. 13.6 concludes this chapter with a summary and a discussion of
future research directions.

13.2 Feature Selection

Reducing the dimensionality of the vectors of features that describe each ob-
ject presents several advantages. As mentioned above, irrelevant or redundant
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features may affect negatively the accuracy of classification algorithms. In ad-
dition, reducing the number of features may help decrease the cost of acquiring
data and might make the classification models easier to understand.

There are numerous techniques for dimensionality reduction [4]. Some com-
mon methods seek transformations of the original variables to lower dimen-
sional spaces. For example, principal components analysis (PCA) reduces the
dimensions of the data by finding orthogonal linear combinations with the
largest variance. In the mean square error sense, PCA yields the optimal linear
reduction of dimensionality. However, the principal components that capture
most of the variance are not necessarily useful to discriminate among objects
of different classes. Moreover, the linear combinations of variables obscure the
effect of the original variables on class discrimination. For these reasons, this
chapter focuses on techniques that select subsets of the original variables.

Among feature subset selection algorithms, wrapper methods have received
considerable attention [1, 2, 4]. Wrappers are attractive because they seek to
optimize the accuracy of a classifier, tailoring their solutions to a specific
inducer and a domain. Wrappers search for a good feature subset using the
induction algorithm to evaluate the merit of candidate subsets, and numerous
search algorithms have been used to search for feature subsets [5]. In some
small problems, it is possible to use exhaustive search, but it quickly becomes
impractical as the dimensionality d of the data grows, as there are 2d possible
feature subsets. Popular wrappers use greedy search strategies in forward
selection and backward elimination modes. Forward selection methods start
from the empty set and iteratively add features, while backward elimination
starts from the full set of features and iteratively eliminates what it considers
the least important ones. There are variations of these greedy algorithms that
try to alleviate the problem of getting stuck in local optima by using different
strategies to add or remove features. This chapter compares the results of the
proposed algorithms against popular greedy forward selection and backward
elimination algorithms that add or delete a single feature in each iteration
and which are described later.

The remainder of this section focuses on EAs as feature selectors. For
comprehensive reviews of feature selection methods, the reader can refer to
the survey articles by Kohavi and John [2], Blum and Langley [6], and Guyon
and Elisseeff [4].

Applying EAs to the feature selection problem is straightforward: the chro-
mosomes of the individuals contain one bit for each feature, and the value of
the bit determines whether the feature will be used in the classification. Using
the wrapper approach, the individuals are evaluated by training the classifiers
using the feature subset indicated by the chromosome and using the resulting
accuracy to calculate the fitness.

Siedlecki and Sklansky [7] were the first to describe the application of GAs
in this way. GAs have been used to search for feature subsets in conjunction
with several classification methods such as neural networks [8, 9], decision
trees [10], k-nearest neighbors [11–14], rules [15], and naive Bayes [16, 17]. GAs
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usually deliver good results as wrappers, but exceptions have been reported
where simpler (and faster) algorithms result in higher accuracies on particular
data sets [5, 16].

Besides selecting feature subsets, GAs can extract new features by search-
ing for vector of numeric coefficients that is used to transform linearly the
original features [11, 12]. In this case, a value of zero in the transformation
vector is equivalent to avoiding the feature. Raymer et al. [13, 18] combined the
linear transformation with explicit feature selection flags in the chromosomes,
and reported an advantage over the pure transformation method.

Inza et al. [16] pioneered the use of distribution estimation algorithms
(DEAs) to search for optimal feature subsets. Similarly to traditional EAs,
DEAs select the most promising solutions to create the next generation,
but DEAs do not use the traditional crossover or selection operators. Instead,
DEAs create a probabilistic model of the selected individuals and use the
model to generate new solutions. Sophisticated DEAs explicitly model the re-
lationships among the variables of a problem to avoid the disruption of groups
of related variables that might prevent a simple GA from reaching the global
optimum. However, multiple experimental studies suggest that – in terms of
accuracy – DEAs do not significantly outperform simple GAs when searching
for feature subsets [16, 17, 19, 20]. Despite this, DEAs seem like a good fit for
the problem of feature selection and the present work investigates, for the first
time, DEAs initialized with the output of a filter.

The wrappers’ evaluation of candidate feature subsets can be computa-
tionally expensive on large data sets. Filter methods are computationally ef-
ficient and offer an alternative to wrappers. GAs have been used as filters in
regression problems to optimize a cost function derived from the correlation
matrix between the features and the target value [21]. Lanzi used GAs as a
filter in classification problems by minimizing the inconsistencies present in
subsets of the features [22]. An inconsistency between two examples occurs if
the examples match with respect to the feature subset considered, but their
class labels disagree. Lanzi demonstrated that this filter method efficiently
identifies feature subsets that were as predictive as the original set of features
(the results were never significantly worse). However, the accuracy using the
reduced subsets was not much different (better or worse) than with all the
features. The present study shows that the proposed methods can reduce the
dimensionality of the data and increase the predictive accuracy considerably.

13.3 Class Separability

The idea of using a measure of class separability to select features has been
used in machine learning and computer vision [4, 23]. The filter described in
this section calculates the class separability of each feature using the Kullback–
Leibler (KL) divergence between histograms of feature values. For each fea-
ture, there is one histogram for each class. Numeric features are discretized
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using
√|D|/2 equally-spaced bins, where |D| is the number of examples in

the training data. The histograms are normalized dividing each bin count by
the total number of elements to estimate the probability that the jth feature
takes a value in the ith bin of the histogram given a class k, pj(i|k). For each
feature j, the filter calculates the class separability as

Δj =
c∑

m=1

c∑
n=1

δj(m,n), (13.1)

where c is the number of classes and δj(m,n) is the KL divergence between
histograms corresponding to classes m and n:

δj(m,n) =
b∑

i=1

pj(i|m) log
(

pj(i|m)
pj(i|n)

)
, (13.2)

where b is the number of bins in the histograms. Of course, other metrics
could be used instead of KL divergence.

The features are then sorted in descending order of the divergence Δj

(larger divergence mean better separability). Heuristically, the filter considers
that two features are redundant if their divergences differ by less than 1%,
and if there is a decrease of 50% or more in the divergences of consecutive
features, the filter considers the remainder features as irrelevant.

These heuristics may fail if the thresholds chosen are not adequate for a
particular classification problem. The heuristics were calibrated using artificial
data sets that are described later. However, perhaps the major disadvantage
of this and most filter methods is that they ignore pairwise (or higher) in-
teractions among variables. It is possible that features that appear irrelevant
(not discriminative) when considered alone are relevant when considered in
conjunction with other variables. For example, consider the two-class data
displayed in Fig. 13.1. Each of the features alone does not have discrimina-
tive power, but taken together the two features perfectly discriminate the two
classes.

The initial motivation for the present work was to investigate methods to
alter the feature subset output by the filter to examine feature combinations
that the filter cannot consider. A simple way of doing this is to represent the
feature subset as a vector of ones and zeroes that indicate which features were
selected by the filter, and then randomly flip elements of this vector to produce
several new alternative feature subsets. It is possible that some of these feature
subsets perform better than the subset output by the filter. This simple idea
can be improved in two ways. The first improvement is to recognize that the
filter does not output only a binary decision for including each feature, but it
also gives an indication of their relative importance that can be used to bias
the inclusion of features in the new feature subsets. A feature that is deemed
important by the filter should have a higher chance of being included in new
feature subsets than a feature considered unimportant. Second, we can select
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Fig. 13.1. Example of a data set where each feature considered alone does not dis-
criminate between the two classes, but the two features taken together discriminate
the data perfectly

the best subsets and examine how often each feature appears in them and
bias the generation of new subsets to prefer features that appear often in the
selected solutions. Iterating this procedure essentially results in a distribution
estimation algorithm. As discussed in the previous section, EAs and DEAs
have been used extensively for feature subset selection, but never in the role
of trying to improve the output of a filter.

After executing the filter algorithm, we have some knowledge about the
relative importance of each feature considered individually. This knowledge
can be incorporated into the EAs by using the KL distances to initialize the
EA. The distances Δj are linearly normalized between ε = 0.1 and 1− ε = 0.9
to obtain the probability pj that the jth bit in the chromosomes is initialized
to 1 (and thus that the corresponding feature is selected). By making the lower
and upper limits of pj different from 0 and 1, the EA can explore combinations
that include features that the filter had eliminated. It also allows a chance
to delete features that the filter identified as important. The parameter ε
regulates how much importance is given to the output of the filter. Setting
ε = 0 results in the most biased initialization, while setting ε = 0.5 corresponds
to the usual unbiased initialization of EAs. Section 13.5.3 will examine the
effect of the parameter ε in detail.

After the EA is initialized with the output of the filter, the EA runs as
a wrapper feature selection algorithm. The EA manipulates a population of
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candidate feature subsets using the conventional randomized EA operators.
Each candidate solution is evaluated using an estimate of the accuracy of
a classifier on the feature subset indicated in the chromosome and the best
solution is reported to the user.

13.4 Methods

This section describes the data sets and algorithms used in this study, the
method used to evaluate the fitness, and the method used to compare the
algorithms.

13.4.1 Data Sets and Algorithms

The data sets used in the experiments are described in Table 13.1. With the
exception of Random21 and Redundant21, the data sets are available in the
UCI repository [24]. Random21 and Redundant21 are two artificial data sets
with 21 features each and were proposed originally by Inza et al. [16]. The
target concept of these two data sets is whether the first nine features are closer
to (0,0,. . . ,0) or (9,9,. . . ,9) in Euclidean distance. The features were generated
uniformly at random in the range [3,6]. All the features in Random21 are
random, and the first, fifth, and ninth features are repeated four times each
in Redundant21.

The classifiers used in the experiments were a naive Bayes (NB) and a de-
cision tree (DT). These classifiers were chosen for their speed and simplicity,
and they have been considered in numerous studies of feature selection. Of
course, the proposed hybrid method can be used with any other supervised
classifiers. In the NB, the probabilities for nominal features were estimated

Table 13.1. Description of the data used in the experiments

Features
Domain Instances Classes Numeric Nominal Missing

Anneal 898 6 9 29 Y
Arrhythmia 452 16 206 73 Y
Credit-A 690 2 6 9 Y
Euthyroid 3,163 2 7 18 Y
Ionosphere 351 2 34 – N
Isolet-5 1,559 26 617 – N
Pendigits 10,992 10 16 – N
Pima 768 2 8 – N
Segmentation 2,310 7 19 – N
Soybean 683 19 – 35 Y
Random21 2,500 2 21 – N
Redundant21 2,500 2 21 – N
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from the data using maximum likelihood estimation (their observed frequen-
cies in the data) and applying the Laplace correction. Numeric features were
assumed to have a normal distribution. The DT split the data using the Gini
criterion and the trees were pruned using Quinlan’s pessimistic error prun-
ing [25]. Missing values in the data were ignored by the algorithms.

The GA used uniform crossover with probability 1.0, and mutation with
probability 1/l, where l was the length of the chromosomes and corresponds
to the total number of features in each problem. The population size was set
to �3√l�, following the gambler’s ruin model for population sizing that asserts
that the population size required to reach a solution of a particular quality
is O(

√
l) [26]. Promising solutions were selected with pairwise binary tourna-

ments without replacement. The algorithms were terminated after observing
no improvement of the best individual over consecutive generations. Inza et
al. [16] and Cantú-Paz [17] used similar algorithms and termination criterion.

In addition to the GA, the experiments consider a simple distribution
estimation algorithm that assumes that the variables (bits) that represent the
problem are independent of each other, and therefore models the population
as a product of Bernoulli distributions. The algorithm maintains a vector p
of length equal to the problem’s length, l. Each element of p contains the
probability that a sample will take the value 1. If the Bernoulli trial is not
successful the sample will be 0. Usually, all positions of p are initialized to
0.5 to simulate the usual uniform random initialization of simple GAs, but
we initialize p with the normalized outputs of the filter as described in the
previous section. New individuals are obtained by sampling consecutively from
each position of p and concatenating the values obtained. We used the same
number of individuals as the simple GA (�3√l�) in each generation. The
probabilities vector is updated once every generation by selecting the top
20% of offspring and computing the proportion of selected individuals with
a 1 in each position. The algorithm iterates until all positions in p contain
either zero or one.

The compact GA [27], PBIL [28], and the UMDA [29] are other DEAs
that use univariate models. They differ from the algorithm used here in the
method to update the probabilities vector. Preliminary experiments with a
compact GA yielded results that were not significantly different from those
obtained with the simple algorithm described above.

We compare the results of the class separability filter and the EAs with two
greedy feature selection wrappers. Greedy feature selection algorithms that
add or delete a single feature from the candidate feature subset are common.
There are two basic variants: sequential forward selection (SFS) and sequential
backward elimination (SBE). Forward selection starts with an empty set of
features. In the first iteration, the algorithm considers all feature subsets with
only one feature. The feature subset with the highest accuracy is used as the
basis for the next iteration. In each iteration, the algorithm tentatively adds
to the basis each feature not previously selected and retains the feature subset
that results in the highest estimated performance. The search terminates after
the accuracy of the current subset cannot be improved by adding any other
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feature. Backward elimination works in an analogous way, starting from the
full set of features and tentatively deleting each feature not deleted previously.

We also compare the results of the evolutionary filter-wrapper hybrids with
a filter-wrapper hybrid recently proposed by Das [30]. Das’ algorithm starts
with an empty feature set and in each iteration greedily adds one feature, so
it is similar to SFS. The differences lie in the way the feature is selected and
in how the algorithm terminates.

In each iteration, using a user-supplied filter, Das’ algorithm ranks the fea-
tures that have not been selected so far and adds the highest-ranking feature
to the feature subset. For this ranking, the algorithm uses the class separa-
bility filter described in Sect. 13.3. Then, a “re-weighting” classifier is trained
using the current subset and is used to classify the instances in the training
set. The weights of the instances are updated using the standard AdaBoost
procedure [31] (giving more weight to instances misclassified by the classifier)
and the algorithm iterates.

We follow Das and train the re-weighting classifier ignoring the instances’
weights. The weights are only used by the filter to rank the unselected features
in each iteration. In this way, the filter is asked to identify the feature that
best discriminates the instances that are hard to classify using the features
selected previously.

The algorithm is stopped when the accuracy of a “stopping” classifier
trained with all the selected features does not improve from the previous it-
eration. Das argued that using the accuracy on the training set was adequate
for stopping the algorithm. We performed experiments using cross-validation
estimates of the accuracy, but confirmed that the results were not different.
In the experiments reported in the next section the “re-weighting” and “stop-
ping” classifiers were of the same type (either a DT or NB, as indicated in
the experiments).

The algorithms were developed in C++ and compiled with g++ version
2.96 using -O2 optimizations. The experiments were executed on a single
processor of a Linux (Red Hat 7.3) workstation with dual 2.4 GHz Intel Xeon
processors and 1024 MB of memory. A Mersenne Twister random number gen-
erator [32] was used in the EAs and the data partitioning. The random number
generator was initialized with 32-bit numbers obtained from www.random.org.

13.4.2 Measuring Fitness

Since we are interested in classifiers that generalize well, the fitness calcula-
tions must include an estimate of the generalization of the classifiers using
the candidate subsets. We estimate the generalization of the classifiers using
cross-validation. In k-fold cross-validation, the data D is partitioned randomly
into k non-overlapping sets, D1, . . . , Dk. At each iteration i (from 1 to k), the
classifier is trained with D\Di and tested on Di. Since the data are parti-
tioned randomly, it is likely that repeated cross-validation experiments return
different results. Although there are well-known methods to deal with “noisy”
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fitness evaluations in EAs [33], we chose to limit the uncertainty in the ac-
curacy estimate by repeating tenfold cross-validation experiments until the
standard deviation of the accuracy estimate drops below 1% (or a maximum
of five repetitions). This heuristic was proposed by Kohavi and John [2] in
their study of wrapper methods for feature selection, and was adopted by Inza
et al. [16]. We use the accuracy estimate as the fitness function.

Even though cross-validation can be expensive computationally, the cost
was not prohibitive in our case, since the data sets were relatively small and
the classifiers are very efficient. If larger data sets or other inducers were used,
we would deal with the uncertainty in the evaluation by other means, such
as increasing slightly the population size (to compensate for the noise in the
evaluation) or by sampling the training data. We defer a discussion of possible
performance improvements until the final section.

The fitness measure does not include any term to bias the search toward
small feature subsets. However, the algorithms found small subsets, and in
some cases the algorithms consistently found the smallest subsets that describe
the target concepts. This suggests that the data sets contained irrelevant or
redundant features that decreased the accuracy of the classifiers. Extending
the fitness evaluation to explicitly penalize large feature subsets is a possibility
for future work.

13.4.3 Comparing the Algorithms

To evaluate the generalization accuracy of the feature selection methods, we
used five iterations of twofold cross-validation (5×2 cv). In each iteration, the
data were randomly divided in halves. One half was input to the feature
selection algorithms. The final feature subset found in each experiment was
used to train a final classifier (using the entire training data), which was then
tested on the other half of the data that has not been shown to the algorithm
during the search. The accuracy results presented in Tables 13.2 and 13.6 are
the means of the ten tests.

Note that the data input to the feature selection method is further di-
vided during the search to estimate the accuracy using (possibly multiple)
tenfold cross-validations as described in the previous section. Using an outer
5×2 cross-validation allows us to use a proper statistical test to compare the
results [34, 35] and to avoid over-fitting in the comparison of feature selection
algorithms, an issue that has received attention recently [36, 37].

To determine if the differences among the algorithms were statistically
significant, we used a combined F test proposed by Alpaydin [35]. Let pi,j

denote the difference in the accuracy rates of two classifiers in fold j of the
ith iteration of 5×2 cv, p̄ = (pi,1 + pi,2)/2 denote the mean, and s2

i = (pi,1-
p̄)2 + (pi,2-p̄)2 the variance, then

f =

∑5
i=1

∑2
j=1 (pi,j)

2

2
∑5

i=1 s2
i

(13.3)
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Table 13.2. Means of the accuracies found in the 5×2 cv experiments using the
naive Bayes classifier

Domain All Filter FiltGA sGA FiltDEA DEA SFS SBE Boost

Anneal 89.93 93.43 93.07 92.47 94.36 93.49 90.36 93.47 93.30
Arrhythmia 56.95 62.08 64.16 59.78 66.59 64.77 58.67 59.73 59.29
Credit-A 71.30 72.52 71.97 71.42 71.65 71.44 81.25 77.28 81.57
Euthyroid 87.33 89.06 94.20 94.92 94.40 94.03 94.57 94.48 94.56
Ionosphere 83.02 89.57 90.54 88.95 91.56 90.02 85.23 89.17 87.29
Isolet 80.24 80.24 84.00 81.08 86.32 85.43 51.28 61.13 15.65

Pendigits 85.72 85.82 84.63 84.77 86.77 85.66 86.16 85.99 77.21
Pima 74.87 74.45 75.49 75.29 75.62 75.65 73.46 74.45 75.39

Random21 93.89 82.24 95.41 92.45 95.34 94.11 82.12 80.61 82.02
Redundant 77.12 80.29 83.68 86.70 87.44 90.34 79.74 80.32 80.79
Segment 79.92 85.40 87.97 84.73 88.29 86.19 90.85 91.28 80.03

Soybean 84.28 86.01 81.23 81.79 83.81 94.93 78.63 86.27 80.56

Mean 80.38 81.76 83.86 82.86 85.18 85.51 79.36 81.18 75.64

Best 3 4 8 6 10 9 5 6 4

The best result and those not significantly different from the best are displayed in
bold, and the number of times each method found these results is reported in
the last line

is approximately F distributed with 10 and 5 degrees of freedom. We rejected
the null hypothesis that the two algorithms have the same error rate at a
0.05 significance level if f > 4.74 [35]. Care was taken to ensure that all the
algorithms used the same training and testing data in the two folds of the five
cross-validation experiments.

13.5 Experiments

The next two subsections presents experiments with NB and DTs. Each sub-
section presents experiments that compare the proposed filter-GA and filter-
DEA hybrids against (1) their filter and EA components separately, (2) the
popular SFS and backward elimination wrappers, (3) a recently proposed
filter-wrapper hybrid, and (4) classifiers built on all the features. Section 13.5.3
presents experiments that evaluate the effect of the parameter ε on the filter-
EA hybrids.

13.5.1 Experiments with Naive Bayes

Table 13.2 has the mean accuracies obtained with each feature selection
method. The best observed result in the table is highlighted in bold type
as well as those results that according to the combined F test are not sig-
nificantly different from the best at a 0.05 significance level. There are two
immediate observations that we can make from the results. First, the feature
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selection algorithms result in an improvement of accuracy over using a NB
with all the features. However, this difference is not always significant (Isolet,
Pendigits, Pima). Second, the proposed filter-DEA hybrid reaches the highest
accuracy or accuracies that are not significantly different from the highest
more often than the other algorithms (in 10 out of 12 data sets). In terms
of accuracy, there seems to be a small difference between the filter-DEA hy-
brid and the DEA that was initialized randomly (which found best accuracies
in nine of the data sets). The filter-GA hybrid also did slightly better than
the GA initialized randomly, finding solutions indistinguishable from the best
for eight data sets. The other wrappers (SFS and SBE) and Das’ hybrid did
noticeably worse than the evolutionary wrappers in these data sets.

In terms of the size of the final feature subsets (Table 13.3), forward se-
quential selection consistently found the smallest subsets. This was expected,
since this algorithm is heavily biased toward small subsets (because it starts
from an empty set and adds features only when they show improvements in
accuracy). However, as noted above, in most cases SFS resulted in significantly
worse accuracies than the proposed EA hybrids. The proposed hybrids usu-
ally found significantly – and sometimes substantially – smaller feature subsets
than the filter alone or the EAs that were initialized randomly. This is inter-
esting because the smaller subsets did not result in accuracy degradations.

Table 13.4 shows the mean number of feature subsets examined by each
algorithm. In most cases, the GAs examine fewer subsets than SFS and SBE,
and the Filter-GA examined much fewer subsets than the GA initialized at
random. This suggests that the search of the Filter-GA was highly biased
towards good solutions. In contrast, while the Filter-DEA examined fewer
subsets than the simple DEA, the difference is not as marked as with the
GAs.

Table 13.3. Means of the sizes of final feature subsets in experiments using the
naive Bayes classifier

Domain Original Filter FiltGA sGA FiltDEA DEA SFS SBE Boost

Anneal 38 23.8 12.8 22.1 12.6 23.1 5.4 16.4 29.20
Arrhythmia 279 212.5 86.2 138.9 79.5 137.8 3.9 261.1 11.10
Credit-A 15 1 4.7 8.40 4.3 7.3 3.1 10.1 3.0
Euthyroid 25 1 6.3 13.7 6.7 13.5 1.3 1.2 10.2
Ionosphere 34 31.0 11.2 16.0 10.3 14.4 4.4 30.9 4.6

Isolet 617 617 224.2 317.6 218.3 296.6 12.1 221.5 4.8
Pendigits 16 16.00 9.90 13.30 9.8 10.4 10.60 9.60 7.20
Pima 8 4.3 2.9 4.9 2.8 3.7 1.6 5.3 4.2
Random21 21 10.2 10.3 13.6 10 12.9 9.3 12.6 10.6

Redundant 21 8.8 8.1 10.6 8.1 10.4 8.6 9.1 9.0
Segmentation 19 11.0 9.9 9.6 8.6 8.8 4.0 7.7 3.2

Soybean 35 32.9 19.50 21.7 22.2 13.5 10.6 30.7 24.6

Mean 94.00 80.79 33.83 49.20 32.77 46.03 6.24 51.35 10.14

The best result and those not significantly different from the best are in bold
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Table 13.4. Means of the number of feature subsets examined by each algorithm
using the naive Bayes classifier

Domain FiltGA sGA FiltDEA DEA SFS SBE

Anneal 38.84 48.08 252 293.4 225.50 569.20
Arrhythmia 105.23 120.26 3,100 3,835 1,356.0 4,706.9
Credit-A 25.56 27.89 93.6 98.4 53.50 71.20
Euthyroid 36.00 37.50 204.8 257.6 55.8 324.8
Ionosphere 38.48 41.98 288 257.4 170.5 131.5
Isolet 63.60 36.00 113.70 99.00 105.4 287.1

Pendigits 28.80 48.00 67.2 70.8 124.00 94.30

Pima 12.73 20.36 25.6 32.8 18.5 24.1

Random21 35.74 64.61 105 126 168.0 147.9
Redundant21 32.99 42.62 67.2 70 159.9 193.9
Segmentation 37.92 30.08 65.8 84 84.8 160.3
Soybean 42.60 42.60 241.2 257.6 342.5 171.5

Mean 41.54 46.67 385.34 456.83 238.70 573.56

The best result and those not significantly different from the best are in bold

The number of examined subsets can be used as a coarse surrogate for
the execution time, but the actual times depend on the number of features
present in each candidate subset and may vary considerably from what we
might expect. The execution times (user time in CPU seconds) for the entire
5×2 cv experiments are reported in Table 13.5. For the filter method, the time
reported includes the time to compute and sort class separabilities and the
time to evaluate the NB on the feature subset found by the filter method.
The proposed filter method is by far the fastest algorithm, beating its closest
competitor by two orders of magnitude. However, the filter found significantly
less accurate results for nine of the 12 datasets. Among the wrapper methods,
SFS and the hybrid of the filter and the GA are the fastest. The filter-EA
hybrids were faster than the EAs initialized randomly, but the differences are
more pronounced in the GA than in the DEA.

13.5.2 Experiments with Decision Trees

The mean accuracies found by feature selection methods using DTs are re-
ported in Table 13.6. The relative performance of different algorithms is more
pronounced with DTs than with NB. The filter-DEA hybrid always finds
feature subsets that result in the best accuracy or accuracies that are not sig-
nificantly different from the best. In contrast, SFS and Boosting always find
results that are significantly lower from the best. In terms of accuracy, the
results suggest that initializing the EAs with the filter output is advantageous.

The size of the resulting feature subsets is reported in Table 13.7. As in
the experiments with the NB, SFS clearly dominates the other algorithms.
The second smallest feature subsets were usually found by the Boosting filter.
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Table 13.5. Execution time (in CPU seconds) of the 5×2cv experiments with each
feature selection algorithm using the naive Bayes classifier

Domain Filter FiltGA sGA FiltDEA DEA SFS SBE Boost

Anneal 0.28 44.2 66.4 203.1 325.4 26.1 190 12.56
Arrhythmia 4.37 926.0 1,322.9 19,091 31,837 775 32,497 14.75
Credit-A 0.05 5.5 7.6 15.7 21.9 3.2 9.9 0.28
Euthyroid 0.31 62.4 91.9 257.7 434.1 21.2 290.3 4.63
Ionosphere 0.12 9.9 12.8 54.9 57.9 10.4 22.1 0.26
Isolet 115 19,689 24,287 17,775 21,987 46,757 2,88,980 107

Pendigits 4.94 368 626 629 835 504 594 29
Pima 0.03 2.1 2.8 3.1 4.6 0.9 2.3 0.26

Random21 0.46 44.8 80.6 112.1 150.2 71.9 119.6 3.60
Redundant21 0.45 44.0 54.6 65.9 78.3 67.1 148.6 3.11
Segmentation 0.64 77.3 65.5 105.1 136.6 31.6 138.6 1.78

Soybean 1.81 94.5 99.7 482.9 503.7 137.2 293.4 41.08

Mean 10.71 1,780 2,226 3,232 4,697 4,033 26,940 18.19

Median 0.46 53.60 73.50 157.60 237.80 49.35 169.30 4.12

The Filter method is always the fastest algorithm (denoted with bold type)

Table 13.6. Means of the accuracies found in the 5×2 cv experiments using the
decision tree

Domain All Filter FiltGA sGA FiltDEA DEA SFS SBE Boost

Anneal 87.54 85.79 85.95 86.17 85.69 86.14 83.96 83.96 35.26
Arrhythmia 54.20 57.96 57.08 66.59 67.30 69.12 64.25 59.12 58.23
Credit-A 81.91 85.51 84.43 82.23 85.87 84.71 79.78 84.78 78.32
Euthyroid 94.12 90.71 96.50 97.33 96.36 97.22 96.13 97.04 95.61
Ionosphere 88.15 88.15 88.71 87.97 89.12 88.03 80.68 88.32 80.97
Isolet 9.52 9.52 38.03 28.46 42.01 35.54 21.73 – 21.26
Pendigits 89.49 89.49 85.90 88.86 88.73 89.03 71.13 78.65 66.84
Pima 73.70 72.14 73.23 72.97 72.66 72.08 66.35 73.23 66.77
Random21 72.90 74.43 74.05 72.83 74.18 72.79 71.56 72.48 63.87

Redundant 72.92 74.23 74.27 73.45 73.80 73.74 72.94 73.46 63.98
Segment 93.88 94.29 93.99 93.96 94.48 94.15 85.88 88.51 70.15
Soybean 89.76 90.11 95.12 91.97 95.54 92.03 88.15 91.41 84.41

Mean 75.67 76.03 78.94 78.57 80.48 79.55 73.55 81.00 65.47
Best 4 7 8 6 12 8 0 5 0

The best result and those not significantly different from the best are displayed
in bold

However, the accuracies reached using the feature subsets found by SFS and
Boosting were always lower than the best results. Notably, the filter-DEA
hybrid that always found the most accurate results found feature subsets
that are approximately one fourth of the size of the original feature set. The
filter-GA hybrid also successfully found compact subsets that were on average
approximately one third of the original set. As in the case with NB, the EAs
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Table 13.7. Means of the sizes of final feature subsets in experiments using the
decision tree

Domain Original Filter FiltGA sGA FiltDEA DEA SFS SBE Boost

Anneal 38 23.8 9.7 19.7 9.8 19.6 1.6 8.6 1.3
Arrhythmia 279 212.5 86.8 139.4 84.5 129.9 4.4 191.2 6.9
Credit-A 15 1 3.5 7.4 3.4 7.2 3.4 12.8 3.1
Euthyroid 25 1 5.7 13.6 6.6 13.6 2.6 5.5 4.3
Ionosphere 34 31 11.2 16.4 11.1 16.5 3.1 31.8 30.2

Isolet 617 617 213.9 343.1 98.1 190.1 8.7 – 12.5
Pendigits 16 16 9.3 11.6 10.7 12.5 7.0 14.30 6.3
Pima 8 4.3 3.1 4.2 3.0 4.0 2.1 6.6 8.00

Random21 21 10.2 9.9 12.7 9.7 13.1 6.8 17.2 6.7
Redundant 21 8.8 10.7 11.8 9.7 12.0 6.7 16.7 3.4
Segment 19 11 10.7 10.7 9.4 10.2 4.1 14.6 4.7
Soybean 35 32.9 19.4 24.3 19.7 20.1 22.7 32.8 17.9

Mean 94.00 80.79 32.83 51.24 22.98 37.40 6.10 31.37 8.78

The best result and those not significantly different from the best are in bold

initialized randomly found noticeably larger feature subsets than the EAs
initialized with the filter’s output.

The number of subsets examined is reported in Table 13.8 and the execu-
tion times of each algorithm is in Table 13.9. There is a noticeable increase
from the execution times with NB and the differences between feature selec-
tion algorithms are more pronounced with DTs than with naive Bayes. The
distance filter and the boosting filter are again the fastest algorithms, but as
mentioned above the accuracies of DTs trained on the features identified with
these methods were always significantly different from the best result. Among
the wrapper algorithms, the filter-GA hybrid is clearly the fastest and SBE
the slowest.

To better appreciate the relative performance of the algorithms we tried,
Fig. 13.2 contains plots of the average accuracy versus average execution time.
Ideal algorithms would be close to the bottom right corner of the plots, which
represents minimum time and maximum accuracy. The plots clearly show that
the filter is the fastest algorithm on average and that SBE is the slowest. When
the EAs are hybridized with the filter, they produce more accurate results and
converge faster than without the hybridization.

13.5.3 Effect of Normalizing the Filter Output

Recall that in the previous experiments the outputs of the filter are linearly
normalized between ε = 0.1 and 1 − ε = 0.9 and used as the probabilities of
including features in the initial populations for the EAs. This section examines
the impact of ε on the results with experiments on the segmentation and the
two artificial data sets used previously. For the experiments in this section,
the value of ε varies between 0, which is the setting that gives the most weight
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Table 13.8. Means of the number of feature subsets examined by each algorithm
using the decision tree

Domain FiltGA sGA FiltDEA DEA SFS SBE

Anneal 36.99 22.19 315.00 343.80 96.60 195.6
Arrhythmia 100.22 107.42 3,695.00 3,840.00 1,494.30 20,754.30
Credit-A 27.48 32.60 54.65 59.90 63.40 89.90
Euthyroid 33.00 39.00 214.40 201.60 84.80 304.60
Ionosphere 34.99 26.24 295.20 356.40 131.80 104.90
Isolet 46.79 49.15 66.64 65.23 – 197.21
Pendigits 37.20 42.00 80.40 87.60 98.90 174.2
Pima 16.12 11.03 20.00 28.80 21.00 17.40
Random21 28.87 30.24 110.60 148.40 135.90 90.60
Redundant 31.62 32.99 109.20 128.80 135.60 97.90
Segment 18.31 27.46 102.20 130.20 86.2 86.8
Soybean 32.90 43.91 87.15 90.13 290.1 343.1

Mean 37.04 38.09 429.20 456.74 239.87 1,871.38

The best result and those not significantly different from the best are in bold

Table 13.9. Execution time (in CPU seconds) of the 5×2 cv experiments with each
feature selection algorithm using the decision tree

Domain Filter FiltGA sGA FiltDEA DEA SFS SBE Boost

Anneal 0.54 19 19 80 126 114 384 1.20

Arrhythmia 8.8 2,984 2,444 62,353 70,600 2,993 1,34,880 13
Credit-A 0.1 690 1,090 998 1,320 2,560 12,520 12
Euthyroid 1.5 225 454 1,522 1,326 299 1,433 9.8

Ionosphere 0.6 44.4 58.3 249.4 475.5 124.2 2,790 70.8
Isolet 46.1 31,089 34,583 96,843 1,32,780 1,12,322 – 111.7
Pendigits 17.7 3,003 4,163 5,822 7,759 22,533 87,994 532
Pima 1.3 16.1 15.5 19.2 53.0 22.1 123.5 7.7
Random21 0.9 551 665 993 1,884 635 2,457 57.6
Redundant 2.1 554 696 1,014 1,339 367 4,559 13.3
Segment 3.3 251 295 735 969 2,033 12,634 66.4

Soybean 2.56 101 111 427 435 243 890 16

Mean 7.13 3,293.96 3,716.15 14,254 18,255 12,020 23,696 75.88
Median 1.80 401.00 559.50 995.50 1,323.00 501.00 2,790.00 14.65

The Filter method is always the fastest algorithm (denoted with bold type)

to the filter outputs, to 0.5 where the filter outputs are ignored and the GA
is initialized without bias.

The results of the experiments with the Random21, Redundant, and Seg-
mentation data are in Figs. 13.3–13.5. Each panel in the figures shows re-
sults with the NB and DT classifiers. The top row in each figure corresponds
to results with the GA-Filter and the bottom row to experiments with the
Filter-DEA. The figures show the average accuracy of 5×2 cv experiments,
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Fig. 13.2. Plot of mean accuracies versus mean execution time for experiments
with the naive Bayes and decision trees

the average number of features in the final subsets, and the execution time in
CPU seconds.

Examining the results on Random21 in Fig. 13.3, it is clear that as ε in-
creases the accuracy tends to decrease, more features are included in the
feature subsets, and the execution time is longer. Qualitatively, the results
with the GA and the DEA are very similar.

The filter correctly identifies that only nine features are relevant in this
data set, that is, the KL divergence for the relevant features is much higher
than for the irrelevant ones. Making ε = 0 gives the most weight to the outputs
of the filter and is the best choice for these data, because the EA is initialized
with very small probabilities of considering the irrelevant features and very
high probabilities of considering the relevant ones. Increasing ε diminishes the
influence of the filter on the initialization of the EAs and there are greater
chances that the irrelevant features are considered.

The accuracy of the DT is noticeably lower than the NB. This data set is
difficult for axis-parallel DTs for two reasons. The most important reason is
that the data are separated into classes by a hyperplane that is not parallel to
any of the axes. The DT is forced to approximate this “oblique” hyperplane by
a series of axis-parallel partitions that resemble a staircase. The other reason
is that the tree building algorithm consistently selects irrelevant features that
accidentally appear relevant in lower levels of the tree after the data have
been partitioned several times.

For the Redundant21 data, Fig. 13.4 shows that as the value of ε increases,
more features are included in the final subsets, and the execution time is
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Fig. 13.3. Experimental results on Random21 varying the value of ε and using a
GA (top row) and an DEA (bottom row) as the wrapper. The left panels present the
classification accuracy, the middle panels present the number of features, and the
right panels present the execution time in CPU seconds. The error bars represent
95% confidence intervals

longer. The Redundant21 data is difficult for DTs for the same reasons that
Noisy is difficult, and again DTs have noticeably lower accuracies than NB.

In these data, the first nine features define the class of each instance and
the first, fifth, and ninth features are copied four times each, resulting in a
total of 21 features. The KL divergence for the repeated features is, of course,
the same, and since all the features contribute the same to define the class, all
KL divergences should be equal, and there should be no effect of ε. However,
these data were generated randomly, and the ninth feature appears to be the
less relevant because it has the lowest KL divergence. After scaling the KL
divergences, the probability that the ninth feature is included in the initial
population is only ε. The figure shows that the accuracy is significantly lower
than the best accuracy only for low settings of ε (0 for the GA, and 0 and
0.05 for the DEA). It is expected that as ε increases, the ninth feature (or any
of its copies) has a higher chance of being considered.

The results on the Segmentation data in Fig. 13.5 show that the accuracy
with the DT is mostly unaffected by the choice of ε but the accuracy with the
NB benefits from smaller values of ε (i.e., with larger influence of the biased
initialization). With all settings of ε, the GA and DEA reduced the number of
features from 26 to between 8 and 10.5 on average. The execution time of the
GA seems insensitive to the setting of ε, but the DEA has the same increasing
trend in execution time that we observed with the other data sets.
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Fig. 13.4. Experimental results on Redundant21 varying the value of ε and using a
GA (top row) and an DEA (bottom row) as the wrapper. The left panels present the
classification accuracy, the middle panels present the number of features, and the
right panels present the execution time in CPU seconds. The error bars represent
95% confidence intervals

The experiments in this subsection suggest that the optimal choice of ε
depends on the data set. The setting of ε = 0.1 used in the previous subsections
never resulted in a significantly lower accuracy than with the optimal setting
on these three data sets. The previous subsections showed that ε = 0.1 often
resulted in improvements over the unbiased initialization, and therefore 0.1
seems like a good initial setting for experimenting with this parameter.

13.6 Conclusions

The results of experiments with the proposed filter-EA hybrids suggest that
these algorithms find feature subsets that result in accurate classifiers more
often than the other feature selection algorithms examined. Together with the
increased accuracy, the filter-EA hybrids identify compact feature subsets that
reduce the dimensionality to one fourth or one third of the original data, on
average. Other methods, notably SFS and the Boosting filter-wrapper hybrid
identify much smaller feature subsets, but these subsets result in substantially
lower accuracy.

In terms of execution time, the simple class-separability filter and the
boosting filter-wrapper hybrid are clearly much faster than the wrapper algo-
rithms. Notably, the filter sometimes finds results that are more accurate than
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Fig. 13.5. Experimental results on Segmentation varying the value of ε and using a
GA (top row) and an DEA (bottom row) as the wrapper. The left panels present the
classification accuracy, the middle panels present the number of features, and the
right panels present the execution time in CPU seconds. The error bars represent
95% confidence intervals

the wrappers that are slower by orders of magnitude. These results confirm
that it is a good idea to begin the analysis with a simple and fast filter algo-
rithm. On average, however, the EAs and the EA-filter hybrids found more
accurate feature subsets than the filter.

In machine learning applications, EAs are frequently assessed as being
competitive or superior than traditional methods in terms of accuracy, but
usually require much more computational resources [38]. In contrast, the ex-
periments reported here suggest that EAs – and especially the EA-filter hy-
brids – can find more accurate results and in shorter times than traditional
wrapper algorithms.

Comparing the two EAs, the results indicate that the DEA and the filter-
DEA hybrid find slightly more accurate solutions and more compact feature
subsets than the GA and the filter-GA, but at a considerably higher cost. The
experiments also indicate that biasing the EAs with the output of the filter
is beneficial in terms of accuracy as well as the compactness of the selected
feature subsets and execution time.

This work can be extended with experiments with other EAs, classification
methods, additional data sets, and other filter algorithms. There are numer-
ous opportunities to improve the computational efficiency of the algorithms
to deal with much larger data sets. In particular, sub-sampling the training
sets and parallelizing the fitness evaluations seem like promising alternatives.
Note that SFS and SBE are inherently serial methods and cannot benefit
from parallelism as much as EAs. Additional future work should explore ef-
ficient methods to deal with the accuracy estimates, instead of the relatively
expensive multiple cross-validations used in this chapter.
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ias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph,
J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke,
and N. Jonoska, (Eds.), pp. 303–310, Morgan Kaufmann, San Francisco,
CA, 2002

[18] M. L. Raymer, W. F. Punch, E. D. Goodman, L. A. Kuhn, and A. K. Jain,
“Dimensionality reduction using genetic algorithms,” IEEE Transactions
on Evolutionary Computation, vol. 4, no. 2, pp. 164–171, 2000
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BOA for Nurse Scheduling

Jingpeng Li and Uwe Aickelin

Summary. Our research has shown that schedules can be built mimicking a human
scheduler by using a set of rules that involve domain knowledge. This chapter
presents a Bayesian Optimization Algorithm (BOA) for the nurse scheduling prob-
lem that chooses such suitable scheduling rules from a set for each nurse’s assign-
ment. Based on the idea of using probabilistic models, the BOA builds a Bayesian
network for the set of promising solutions and samples these networks to generate
new candidate solutions. Computational results from 52 real data instances demon-
strate the success of this approach. It is also suggested that the learning mechanism
in the proposed algorithm may be suitable for other scheduling problems.

Key words: Nurse Scheduling, Bayesian Optimization Algorithm, Proba-
bilistic Modeling

14.1 Introduction

Personnel scheduling problems have been studied extensively over the past
three decades (see survey papers by Baker, Tien and Kamiyama, Bradley and
Martin, Bechtold et al., Ernst et al. [4, 5, 7, 14, 27]). Personnel scheduling is the
problem of assigning employees to shifts or duties over a scheduling period so
that certain constraints (organizational and personal) are satisfied. It involves
constructing a schedule for each employee within an organization in order for
a set of tasks to be fulfilled. In the domain of healthcare, this is particularly
challenging because of the presence of a range of different staff requirements
on different days and shifts. In addition, unlike many other organizations,
healthcare institutions work 24 hours a day for every single day of the year.
In this chapter, we focus on the development of new approaches for nurse
scheduling.

Most nurse scheduling problems are extremely difficult and complex. Tien
and Kamiyama [27], for example, say nurse scheduling is more complex than
the traveling salesman problem. A general overview of various approaches
for nurse scheduling can be found in [9, 10, 25]. Early research [18, 28, 29]
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concentrated on the development of mathematical programming models. To
reduce computational complexity, researchers had to restrict the problem di-
mensions and consider a smaller size of constraints in their models, resulting
in solutions that are too simple to be applied in real hospital situations.

The above observations have led to other attempts, trying to solve the
real nurse scheduling problems within reasonable time. Besides heuristic ap-
proaches (e.g., [6, 26]), artificial intelligence approaches such as constraint pro-
gramming [20], expert systems [11] and knowledge based systems [24] were
investigated with some success. Since the 1990s, most papers have tackled the
problem with metaheuristic approaches, including simulated annealing (Isken
and Hancock 1991), tabu search [12] and genetic algorithms [2].

This chapter solves a nurse scheduling problem arising at a major UK
hospital [1, 13]. In this problem, the number of nurses is fixed (up to 30) and
the target is to create a weekly schedule by assigning each nurse one out of up
to 411 predefined shift patterns in the most efficient way. Due to the limitation
of the traditional mathematical programming approach, a number of meta-
heuristic approaches have been explored for this problem. For example, in
[1–3] various approaches based on Genetic Algorithms (GAs) are presented,
in [17] an approach based on a learning classifier system is investigated, in [8] a
tabu search hyperheuristic is introduced, and in [16] a Bayesian Optimization
Algorithm (BOA) is described. In this chapter, we demonstrate a novel BOA
approach.

In our proposed BOA, we try to solve the problem by applying a suit-
able rule, from a set containing a number of available rules, for each nurse’s
assignment. A schedule can be then created from a rule string (or a rule se-
quence) corresponding to nurses from the first to the last. To evolve the rule
strings Bayesian networks [21] are used. The Bayesian network in our case is
a directed acyclic graph with each node corresponding to a nurse/rule pair,
by which a schedule will be constructed step by step. The causal relationship
between two nodes is represented by a directed edge between the two nodes.

Based on the idea of using probabilistic models, the BOA builds a Bayesian
network for the set of promising solutions and generates new candidate so-
lutions by sampling these networks [22, 23]. In our proposed BOA for nurse
scheduling, the conditional probabilities of all nurse/rule pairs in the network
are first computed according to an initial set of rule strings. Subsequently,
new instances of each node are generated by using conditional probabilities to
obtain new rule strings. A new set of rule strings is thus generated, some of
which will replace previous strings based on roulette-wheel fitness selection.
If the stopping criterion is not reached, the conditional probabilities for all
nodes in the network are updated again using the current set of rule strings.

14.2 The Nurse Scheduling Problem

The problem described in this chapter is that of creating weekly schedules for
wards containing up to 30 nurses at a major UK hospital. These schedules
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must respect working contracts and meet the demand for a given number of
nurses of different grades on each shift, while being perceived to be fair by
the nurse themselves. The day is partitioned into three shifts: two day shifts
called “earlies” and “lates”, and a longer night shift. Until the final scheduling
stage, “earlies” and “lates” are merged into day shifts. Due to hospital policy,
a nurse would normally work either days or nights in a given week, and due to
the difference in shift length, a full week’s work normally includes more days
than nights. For example, a full-time nurse works 5 days or 4 nights, whereas
a part-time nurse works 4 days or 3 nights, 3 days or 3 nights, or 3 days or
2 nights. However, exceptions are possible and some nurses specifically must
work both day- and night- shifts in one week.

As described in [13], the problem can be decomposed into three indepen-
dent stages. The first stage uses a knapsack model to check if there are enough
nurses to meet demand. If not, additional nurses are allocated to the ward, so
that the second stage will always admit a feasible solution. The second stage is
the most difficult and is concerned with the actual allocations of days or nights
to be worked by each nurse. The third stage then uses a network flow model
to assign those on days to “earlies” and “lates”. The first and the third stages,
and in this chapter we only concern with the highly constrained second stage.

The numbers of days or nights to be worked by each nurse defines the set
of feasible weekly work patterns for that nurse. These will be referred to as
shift patterns in the following. For example, (1111100 0000000) would be a
pattern where the nurse works the first 5 days and no nights. Depending on
the working hours of a nurse, there are a limited number of shift patterns
available to her/him. Typically, there will be between 20 and 30 nurses per
ward, 3 grade-bands, 9 part time options and 411 different shift patterns.
Depending on the nurses’ preferences, the recent history of patterns worked,
and the overall attractiveness of the pattern, a penalty cost is allocated to
each nurse-shift pattern pair. These values were set in close consultation with
the hospital and range from 0 (perfect) to 100 (unacceptable), with a bias to
lower values. Further details can be found in [12].

This second stage problem is described as follows. Each possible weekly
shift pattern for a given nurse can be represented as a 0–1 vector with 14
elements, where the first 7 elements represent the 7 days of the week and
the last 7 elements the corresponding 7 nights of the week. A “1”/“0” in the
vector denotes a scheduled day or night “on”/“off”. For each nurse there are a
limited number of shift patterns available to her/him. For instance, a full-time
nurse working either 5 days or 4 nights has a total of 21 (i.e., C5

7 ) feasible day
shift patterns and 35 (i.e., C4

7 ) feasible night shift patterns. Typically, there
are between 20 and 30 nurses per ward, 3 grade-bands, 9 part time options and
411 different shift patterns. Depending on the nurses’ preferences, the recent
history of patterns worked, and the overall attractiveness of the pattern, a
penalty cost is allocated to each nurse-shift pattern pair. These values were
set in close consultation with the hospital and range from 0 (perfect) to 100
(unacceptable), with a bias to lower values. Further details can be found
in [12].
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This problem can be formulated as follows. The decision variable xij as-
sumes 1 if nurse i works shift pattern j and 0 otherwise. Let parameters m, n,
p be the number of shift patterns, nurses and grades, respectively. Parameter
ajk is 1 if shift pattern j covers day/night k, 0 otherwise. qis is 1 if nurse i
is of grade s or higher, 0 otherwise. Furthermore, pij is the preference cost of
nurse i working shift pattern j, and F (i) is the set of feasible shift patterns
for nurse i. Then we can use the following integer programming formulation
from [12]:

Min
n∑

i=1

m∑
j∈F (i)

pijxij , (14.1)

s.t.
∑

j∈F (i)

xij = 1, ∀i = {1, . . . , n}, (14.2)

∑
j∈F (i)

n∑
i=1

qisajkxij ≥ Rks, ∀k = {1, . . . , 14}, s = {1, . . . , p},

xij ∈ {0, 1}, ∀i, j. (14.3)

The objective function (14.1) is to minimize total preference cost of all
nurses. Constraint (14.2) ensures that every nurse works exactly one shift
pattern from his/her feasible set, and constrain (14.3) ensures that the demand
for nurses is fulfilled for every grade on every day and night. This problem can
be regarded as a multiple-choice set-covering problem. The sets are given by
the shift pattern vectors and the objective is to minimize the cost of the sets
needed to provide sufficient cover for each shift at each grade. The constraints
described in (14.2) enforce the choice of exactly one pattern (set) from the
alternatives available for each nurse.

14.3 A BOA for Nurse Scheduling

In the nurse scheduling problem we are tackling, the number of nurses is fixed
(approximately 30 depending on data instance), and the goal is to create
weekly schedules by assigning each nurse one shift pattern in the most efficient
way. The problem can be solved by using a suitable rule, from a rule set that
contains a number of available rules, for each nurse’s assignment. Thus, a
potential solution is represented as a rule string, or a rule sequence connecting
all nurses.

We chose this rule-base building approach, as the longer-term aim of our
research is to model the explicit learning of a human scheduler. Human sched-
ulers can provide high quality solutions, but the task is tedious and often
requires a large amount of time. Typically, they construct schedules based
on rules learnt during scheduling. Due to human limitations, these rules are
typically simple. Hence, our rules will be relatively simple, too. Nevertheless,
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human generated schedules are of high quality due to the ability of the sched-
uler to switch between the rules, based on the state of the current solution.
We envisage the proposed BOA to perform this role.

14.3.1 The Construction of a Bayesian Network

Bayesian networks are also called directed graphical models, in which each
node corresponds to one variable, and each variable corresponds to one posi-
tion in the strings representing the solutions. The relationship between two
variables is represented by a directed edge between the two corresponding
nodes.

Bayesian networks are often used to model multinomial data with both
discrete and continuous variables by encoding the relationship between the
variables contained in the modeled data, which represents the structure of
a problem. Furthermore, they are used to generate new data instances or
variables instances with similar properties as those of given data.

Figure 14.1 is the Bayesian network constructed for our nurse scheduling
problem, which is a hierarchical and acyclic directed graph representing the
solution structure of the problem. The node Nij(i ∈ {1, 2, . . . , m}; j ∈
{1, 2, . . . , n}) in the network is a nurse/rule pair which denotes that nurse
i is assigned by rule j, where m is the number of nurses and n is the number

. . . 

. . . 

. . . 

. . . 

. . . 

. . . . . . . . . . . . 

N11 N12 N1,n

N21 N22 N2,n

N31 N32 N3,n

Nm-1,1 Nm-1,2 Nm-1,n

Nm,1 Nm,2
Nm,n

Fig. 14.1. A Bayesian network for nurse scheduling
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of available rules. The directed edge from node Nij to node N ′
i+1,j denotes a

causal relationship of “Nij causing N ′
i+1,”, i.e., if nurse i is scheduled by rule

j then the next nurse will be scheduled by rule j′. In this network, a potential
solution is shown as a directed path from nurse 1 to nurse m connecting m
nodes.

14.3.2 Learning Based on the Bayesian Network

In BOAs, the structure of the Bayesian network can be either fixed [23] or
variable [19]. In our proposed nurse scheduling model, we use a fixed network
structure because all variables are fully observed. In essence, our Bayesian
network is a fixed nurse-size vector of rules and the goal of learning is to
find the variable values of all nodes Nij that maximize the likelihood of the
training data containing a number of independent cases.

Thus, the learning in our case amounts to “counting” based on a multino-
mial distribution and we use the symbol “#” meaning “the number of” in the
following equations. It calculates the conditional probabilities of each possible
value for each node given all possible values of its parent nodes. For example,
for node N ′

i+1,j with a parent node Nij , its conditional probability is

P (Ni+1,j′ |Nij) =
P (Ni+1,j′ , Nij)

P (Nij)

=
#(Ni+1,j′ = true, Nij = true)

#(Ni+1,j′ = true, Nij = true) + #(Ni+1,j′ = false Nij = true
. (14.4)

Note that nodes N1j have no parents. In this circumstance, their proba-
bilities are computed as

P (N1j) =
#(N1j = true)

#(N1j = true) + #(N1j = false)
=

#(N1j = true)
#Training sets

. (14.5)

To help the understanding of how these probabilities are computed, let
us consider a simple example of using three rules to schedule three nurses
(shown in Fig. 14.2). The scheduling process is repeated 50 times, and each
time, rules are randomly used to get a solution, disregarding the feasibility of
the solution. The Arabic numeral adjacent to each edge is the total number of
times that this edge has been used in the 50 runs. For instance, if a solution
is obtained by using rule 2 to schedule nurse 1, rule 3 to nurse 2 and rule 1 to
nurse 3, then there exists a path of “N12 → N23 → N31”, and the count of
edge “N12 → N23” and edge “N23 → N31” are increased by one, respectively.

Therefore, we can calculate the probabilities of each node at different states
according to the above count. For the nodes that have no parents, their prob-
abilities are computed as:

P (N11) =
10 + 2 + 3

(10 + 2 + 3) + (5 + 11 + 4) + (7 + 5 + 3)
=

15
50

, P (N12) =
20
50

,

P (N13) =
15
50

.
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7
N11 N12

N13

N21 N22 N23

N31 N32 N33

10 2

3
5

11
4

5 3

7 9

3 11
1

5
10

4 0

Fig. 14.2. A dummy problem with three nurses and three rules

For all other nodes (with parents), the conditional probabilities are:

P (N21|N11) =
10

10 + 2 + 3
=

10
15

, P (N22|N11) =
2
15

, P (N23|N11) =
3
15

,

P (N21|N12) =
5

5 + 11 + 4
=

5
20

, P (N22|N12) =
10
20

, P (N23|N12) =
4
20

,

P (N21|N13) =
7

7 + 5 + 3
=

7
15

, P (N22|N13) =
5
15

, P (N23|N13) =
3
15

,

P (N31|N21) =
7

7 + 9 + 3
=

7
19

, P (N32|N21) =
9
19

, P (N33|N21) =
3
19

,

P (N31|N22) =
11

11 + 1 + 5
=

11
17

, P (N32|N22) =
1
17

, P (N33|N22) =
5
17

,

P (N31|N23) =
10

10 + 4 + 0
=

10
14

, P (N32|N23) =
4
14

, P (N33|N23) =
0
14

.

These probability values can be used to generate new rule strings, or new
solutions. Since the first rule in a solution has no parents, it will be chosen
from nodes N1j according to their probabilities. The next rule will be chosen
from nodes Nij according to the probabilities conditioned on the previous
nodes. This building process is repeated until the last node Nmj has been
chosen, where m is number of the nurses. A path from nurse 1 to nurse m
is thus formed, representing a new potential solution. Since all probability
values for each nurse are normalized, we suggest the roulette-wheel method
as a suitable strategy for rule selection [15].

For further clarity, consider the following example of scheduling five nurses
with two rules (1: random allocation, 2: allocate nurse to low-cost shifts). In
the beginning of the search, the probabilities of choosing rule 1 or rule 2
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for each nurse is equal, i.e., 50%. After a few iterations, due to the selection
pressure and reinforcement learning, we experience two solution pathways:
Because pure low-cost or random allocation produces low quality solutions,
either rule 1 is used for the first 2–3 nurses and rule 2 on remainder or vice
versa. Therefore for this simple example, the Bayesian network learns “use
rule 2 after 2–3 times of using rule 1” or vice versa.

14.3.3 Our BOA Approach

Based on the estimation of conditional probabilities, this section introduces a
BOA for nurse scheduling. It uses techniques from the field of modeling data
by Bayesian networks to estimate the joint distribution of promising solutions.
The nodes, or variables, in the Bayesian network correspond to the individual
nurse/rule pairs by which a schedule will be built step by step.

The conditional probability of each variable in the Bayesian network is
computed according to an initial set of promising solutions. Subsequently,
each new instance for each variable is generated by using the corresponding
conditional probabilities, until all variables have been generated. Hence, in
our case, a new rule string has been obtained. Another set of rule strings
will be generated in this way, some of which will replace previous strings
based on fitness selection. If the stopping criterion not reached, the conditional
probabilities for all nodes in the Bayesian network are updated again using
the current set of promising rule strings. In more detail, the steps of our BOA
for nurse scheduling are described as follows:

1. Set t = 0, and generate an initial population P (0) at random;
2. Use roulette-wheel to select a set of promising rule strings S(t) from P (t);
3. Compute the conditional probabilities for the values of each node accord-

ing to this set of promising solutions;
4. For each nurse’s assignment, use the roulette-wheel method to select one

rule according to the conditional probabilities of all available nodes for
this nurse, thus obtaining a new rule string. A set of new rule strings O(t)
will be generated in this way;

5. Create a new population P (t+1) by replacing some rule strings from P (t)
with O(t), and set t = t + 1;

6. If the termination conditions not met, go to step 2.

14.3.4 Four Heuristic Rules for Solution Building

Using our domain knowledge of nurse scheduling, the BOA can choose from
the following four rules. The first two rules are quite simple, while the rest
twos are a bit complex. Note that there are many more heuristic rules that
could be used to build schedules.

(1) “Random” Rule.

This “Random” rule is used to assign shift patterns to individual nurses in
a totally random manner. Its purpose is to introduce randomness into the
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search thus enlarging the search space, and most importantly to ensure that
the proposed algorithm has the ability to escape from local optima. This rule
mirrors much of a scheduler’s creativeness to come up with different solutions
if required.

(2) “k-Cheapest” Rule.

The second “k-Cheapest” rule is purely towards the solution cost, and disre-
gards the feasibility of the solution. For each nurse’s assignment, it randomly
selects one candidate shift pattern from a set containing the cheapest k shift
patterns available to that nurse, in an effort to reduce the solution cost of a
schedule as much as possible.

(3) “Overall Cover” Rule.

The “Overall Cover” rule is designed to consider only the feasibility of the
schedule. It schedules one nurse at a time in such a way as to cover those days
and nights with the most number of uncovered shifts.

This rule constructs solutions as follows. For each shift pattern in a nurse’s
feasible set, it calculates the total number of uncovered shifts that would be
covered if the nurse worked that shift pattern. For instance, assume that a
shift pattern covers Monday to Friday nights. Further assume that the current
requirements for the nights from Monday to Sunday are as follows: (−4, 0, +1,
−3, −1, −2, 0), where a negative number means undercover and a positive
overcover. The Monday to Friday shift pattern hence has a cover value of 8 as
the sum of undercover is −8. In this example, a Tuesday to Saturday pattern
would have a cover value of 6 as the sum of undercover is −6.

For nurses of grade s, only the shifts requiring grade s nurses are counted
as long as there is a single uncovered shift for this grade. If all these are
covered, shifts of the next lower grade are considered and once these are filled
those of the next lower grade, etc. This operation is necessary as otherwise
higher graded nurses might fill lower graded demand, whilst higher graded
demand might not be met at all.

Due to the nature of this rule, nurses’ preference costs pij are not taken into
account. Therefore, the “Overall Cover” rule can be summarized as assigning
the shift pattern with the largest amount of undercover for the nurse currently
being scheduling.

(4) “Contribution” Rule.

The fourth “Contribution” rule is biased towards solution quality but includes
some aspects of feasibility. It cycles through all shift patterns of a nurse,
assigns each one a score, and chooses the one with the highest score. In case
of more than one shift pattern with the best score, the first such shift pattern
is chosen. Compared with the third “Overall Cover” rule, this “Contribution”
rule is more complex because it considers the preferences of the nurses and
also tries to look ahead a little.

The score of a shift pattern is calculated as the weighted sum of the nurse’s
pij value for that particular shift pattern and its contribution to the cover of
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all three grades. The latter is measured as a weighted sum of grade one, two
and three uncovered shifts that would be covered if the nurse worked this shift
pattern, i.e., the reduction in shortfall. Obviously, nurses can only contribute
to uncovered demand of their own grade or below.

More precisely, using the same notation as before, the score Sij of shift
pattern j for nurse i is calculated as

Sij = wp(100 − Pij) +
3∑

s=1

wsqis

(
14∑

k=1

ajkdks

)
, (14.6)

where parameter wp is the weight of the nurse’s, pij value for the shift pattern
and parameter ws is the weight of covering an uncovered shift of grade s.
Variable ajk is 1 if shift pattern j covers day k, 0 otherwise. Variable dks is
1 if there are still nurses needed on day k of grade s, 0 otherwise. Note that
(100 − pij) must be used in the score, as higher pij values are worse and the
maximum for pij is 100.

14.3.5 Fitness Function

Our nurse scheduling problem is complicated by the fact that higher qualified
nurses can substitute less qualified nurses but not vice versa. Furthermore,
the problem has a special day–night structure as most of the nurses are con-
tracted to work either days or nights in one week but not both. These two
characteristics make the finding and maintaining of feasible solutions in any
heuristic search is extremely difficult. Therefore, a penalty function approach
is needed while calculating the fitness of completed solutions. Since the chosen
encoding automatically satisfies constraint set (14.2) of the integer program-
ming formulation, we can use the following formula to calculate the fitness of
solutions (the fitter the solution, the lower its fitness value):

Min
n∑

i=1

m∑
j=1

pijxij + wdemand

14∑
k=1

p∑
s=1

max

⎛
⎝

⎡
⎣Rks −

n∑
i=1

m∑
j=1

qisajkxij

⎤
⎦ , 0

⎞
⎠.

(14.7)
Note that only undercovering is penalized not overcovering, hence the use

of the max function. The parameter wdemand is the penalty weight used to
adjust the penalty that a solution has added to its fitness, and this penalty
is proportional to the number of uncovered shifts. For example, consider a
solution with an objective function value of 22 that undercovers the Monday
day shift by one shift and the Tuesday night shift by two shifts. If the penalty
weight was set to 20, the fitness of this solution would be 22+(1+2)∗20 = 82.

14.4 Computational Results

This section describes the computational experiments that are used to test
the proposed BOA. For all experiments, 52 real data sets as given to us by
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the hospital are available. Each data set consists of one week’s requirements
for all shift and grade combinations and a list of available nurses together
with their preference costs pij and qualifications. The data was collected from
three wards over a period of several months and covers a range of scheduling
situations, e.g., some data instances have very few feasible solutions whilst
others have multiple optima.

For all data instances, we used the following set of fixed parameters to
implement our experiments. These parameters are based on our experience
and intuition and thus not necessarily the best for each instance. We have
kept them the same for consistency.

– Stopping criterion: number of generations = 200, or an optimal solution
is found;

– Population size = 140;
– The number of solutions kept in each generation = 40;
– For the “k-Cheapest” rule, k = 5;
– Weight set in formula (14.6): wp = 1, w1 = 8, w2 = 2 and w3 = 1;
– Penalty weight in fitness function (14.7): wdemand = 200;
– Number of runs per data instance = 20.

The BOA was coded in Java 2, and all experiments were run on the same
Pentium 4 2.0GHz PC with 512MB RAM under the Windows XP operating
system. To test the robustness of the BOA, each data instance was run 20
times by fixing the above parameters and varying the pseudorandom number
seed at the beginning. The executing time per run and per data instance varies
from half second to half a minute depending on the difficulty of the individual
data instance. For example, data instances 27, 29, 31 and 51 are harder to
solve than others due to a shortage of nurses in these weeks.

The detailed computational results over these 52 instances are listed in
Table 14.1, in which the last row (headed with “Av.”) contains the mean
values of all columns using following notations:

– IP: optimal solutions found with an integer programming software [13];
– Rd-1: random search, i.e., only the first “Random” rule is in use;
– Rd-2: random rule-selection, i.e., using four rules but every rule has an

equal opportunity to be chosen all the time for all nurses;
– Best: best result out of 20 runs of the BOA;
– Mean: average result of 20 runs of the BOA;
– Fea: number of runs terminating with the best solution being feasible;
– #: number of runs terminating with the best solution being optimal;
– ≤3: number of runs terminating with the best solution being within three

cost units of the optimum. The value of three units was chosen as it corre-
sponds to the penalty cost of violating the least important level of requests
in the original formulation. Thus, these solutions are still acceptable to
the hospital.
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Table 14.1. Comparison of results over 52 instances

Data IP RD1 RD2 Best Mean Fea # ≤ 3

01 8 N/A 27 8 8.1 20 19 20
02 49 N/A 85 56 74.5 20 0 0
03 50 N/A 97 50 72.0 20 2 5
04 17 N/A 23 17 17.0 20 20 20
05 11 N/A 51 11 12.4 20 8 16

06 2 N/A 51 2 2.4 20 17 17

07 11 N/A 80 14 16.8 20 0 3
08 14 N/A 62 15 17.5 20 0 11
09 3 N/A 44 14 17.3 20 0 0
10 2 N/A 12 2 4.9 20 2 10
11 2 N/A 12 2 2.8 20 2 20
12 2 N/A 47 3 7.8 20 0 2
13 2 N/A 17 3 3.6 20 0 20

14 3 N/A 102 4 6.5 20 0 7
15 3 N/A 9 4 5.1 20 0 20

16 37 N/A 55 38 38.8 20 0 20
17 9 N/A 146 9 11.3 20 4 11
18 18 N/A 73 19 20.8 20 0 20
19 1 N/A 135 10 12.0 20 0 0
20 7 N/A 53 7 8.3 20 5 19
21 0 N/A 19 1 1.6 20 0 20
22 25 N/A 56 26 27.5 20 0 15
23 0 N/A 119 1 1.6 20 0 20
24 1 N/A 4 1 1.0 20 20 20
25 0 N/A 3 0 0.2 20 18 20
26 48 N/A 222 52 66.8 20 0 1
27 2 N/A 158 28 35.6 20 0 0
28 63 N/A 88 65 65.5 20 0 3
29 15 N/A 31 109 169.2 20 0 0
30 35 N/A 210 38 83.5 20 0 3
31 62 N/A 253 159 175.0 20 0 0
32 40 N/A 102 43 80.4 20 0 4
33 10 N/A 30 11 15.6 20 0 8
34 38 N/A 95 41 63.8 20 0 2
35 35 N/A 118 46 60.2 20 0 0
36 32 N/A 130 45 47.6 20 0 0
37 5 N/A 28 7 8.2 20 0 7
38 13 N/A 130 25 33.0 20 0 0
39 5 N/A 44 8 10.8 20 0 3
40 7 N/A 51 8 8.8 20 0 10
41 54 N/A 87 55 56.2 20 0 15

42 38 N/A 188 41 73.3 20 0 1
43 22 N/A 86 23 24.2 20 0 13
44 19 N/A 70 24 77.4 20 0 0

45 3 N/A 34 6 8.1 20 0 2
46 3 N/A 196 7 9.4 20 0 0

47 3 N/A 11 3 3.4 20 13 20

48 4 N/A 35 5 5.7 20 0 10

49 27 N/A 69 30 47.8 20 0 2

50 107 N/A 162 109 175.5 20 0 1

51 74 N/A 197 171 173.6 20 0 0

52 58 N/A 135 67 98.6 20 0 0
Av. 21.1 N/A 82.9 29.7 39.8 20 2.5 8.5
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According to the computational results in Table 14.1, one can see that
using the “Random” rule alone does not yield a single feasible solution, as
the “Rd1” column shows. This underlines the difficulty of this problem. In
addition, without learning, the results of randomly selecting one of the four
rules at each move are much weaker, as the “Rd2” column shows. Thus, it is
not simply enough to use the four rules to build schedules that are acceptable
to the hospital for practical use. For the proposed BOA, 38 out of 52 data
instances are solved to or near to optimality (i.e., within three cost units) and
feasible solutions are always found for all instances.

The behavior of an individual run of the BOA is as expected. Figure 14.3
depicts the BOA search process for data instance 04. In this figure, the x-axis
represents the number of generations and the y-axis represents the solution
cost of the best individual in each generation. As shown in Fig. 14.3, the
optimal solution, with a cost of 17, is produced at the generation of 57. The
actual values may differ among various instances, but the characteristic shapes
of the curves are similar for all seeds and data instances.

To understanding the results further, we have developed a graphical in-
terface to visualize the BOA’s learning process, instead of simply outputting
the final numerical values from a “black box”. The software package is devel-
oped as a Java applet, which enables the BOA to run real problems online at
http://www.cs.nott.ac.uk/∼jpl/BOA/BOA Applet.html.

In our graphical interface, the conditional probability of choosing a rule
for a specific nurse has been mapped into a 256-gray value and the causal
relationship between two nodes (i.e., nurse/rule pairs) is denoted by drawing
an edge in this grey value to connect the nodes. For instance, a probability of
50% would give a grey gradient of 128. The darker the edge, the higher the
chance this edge (building block) will be used.

Please note that in our online demonstration two further rules can be
selected. These rules are still experimental and currently under evaluation.

Fig. 14.3. a sample run of the BOA
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The two additional rules are the “Highest Cover” rule and the “Enhanced
Contribution” rule. The “Highest Cover” rule is very similar to the “Overall
Cover” rule described in 3.4, with the difference in their ways of calculating
the undercover: a “Highest Cover” rule is to find shift patterns which cover
those days and nights with the highest number of uncover, while a “Over-
all Cover” rule is to find the largest total number of uncovered shifts. The
second “Enhanced Contribution” rule is similar to the “Contribution” rule
(described in Sect. 14.3.4), and also uses formula (14.6) to assign each feasible
shift pattern a score. However, this rule uses a different definition of dks: dks

is the actual number of required nurses if there are still nurses needed on day
k of grade s, 0 otherwise.

Figures 14.4–14.6 show the graphic results equivalent to the experiments
carried out in this paper, i.e., same parameter selection and 4 rules. The
pictures show a single run for the “01” data instance which involves the
scheduling of 26 nurses. Figure 14.4 shows the beginning, Fig. 14.5 the in-
termediate and Fig. 14.6 the final stages of the learning process respectively.

The graphic results in Figs. 14.4–14.6 are in accordance with our hypothe-
sis. In the early process of the BOA, any edge (i.e., any building block) can
be used to explore the solution space as much as possible. Thus, no particu-
lar edge stands out in Fig. 14.4. With the BOA in progress, some edges are

Fig. 14.4. Graphic display of the probability distributions at the initial generation

Fig. 14.5. Graphic display of the probability distributions after 50 generations

Fig. 14.6. Graphic display of the probability distributions after 100 generations
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becoming more remarkable, while some ill-fitting paths become diminishing
(shown in Fig. 14.5). Eventually, the BOA converges to several optimum so-
lutions depicted as clear paths with some common parts, such as the segment
of path from node 10 to node 21 (shown in Fig. 14.6). This is particularly
true for our problem instances because we know from the hospital that the
optimum schedules are often not unique.

Based on the summary results of 20 runs on the same 52 benchmark in-
stances, Table 14.2 give a comparison of our BOA with some other approaches,
which are briefly described as follows:

– LCS: a learning classifier system.
– Basic GA: a GA with standard genetic operators;
– Adaptive GA: the same as the basic GA, but the algorithm also tries to

self-learn good parameters during the runtime;
– Multi-population GA: the same as the adaptive GA, but it also features

competing sub-populations;
– Hill-climbing GA; the same as the multi-population GA, but it also in-

cludes a local search in the form of a hill-climber around the current best
solution;

– Indirect GA: a novel GA-based approach that first maps the constrained
solution space into an unconstrained space, then optimizes within that new
space and eventually translates solutions back into the original space. Up
to four different rules and hill-climbers are used in this algorithm.

Let us discuss the summary results in Table 14.2. Compared with the opti-
mal results of the IP approach which can take more than 24 h runtime for each
instances, the BOA’s results are still more expensive on average but they are
achieved within half minute. Compared with other meta-heuristic approaches
which are all executed quickly, our BOA performs best in terms of feasibil-
ity. In terms of solution quality, in general our BOA performs better than
the LCS, the basic GA, the adaptive GA and the multi-population GA, and
performs slightly worse than the hill-climbing GA and the indirect GA. How-
ever, it is worth mentioning that the hill-climbing GA includes the features of

Table 14.2. Summary results of various approaches

Algorithm References Best Mean Feasibility (%) Runtime

BOA [16] 29.7 39.8 100 23.0 s
LCS [17] 35.5 47.7 100 44.5 s
Optimal IP [13] 21.4 21.4 100 >24 h
Basic GA [3] 79.8 88.6 33 18.9 s
Adaptive GA [3] 65.0 71.4 45 23.4 s
Multi-population GA [3] 37.1 59.8 75 13.4 s
Hill-climbing GA [3] 23.2 44.7 89 14.9 s
Indirect GA [2] 22.0 25.5 95 11.9 s
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multiple populations and elaborate local search which are not available in the
proposed BOA, and the indirect GA uses the best nurses’ ordering together
with a local search to produce the final solution while our BOA only uses the
ordering given in the original data sets throughout the search.

14.5 Conclusions

A BOA is presented for the nurse scheduling problem. Unlike most existing
rule-based approaches, the proposed BOA has the ability to build schedules
by using flexible, rather than fixed rules. Experimental results from real-world
nurse scheduling problems have demonstrated the strength of the approach.

Although we have presented this work in terms of nurse scheduling, it is
suggested that the main idea of the BOA could be applied to many other
scheduling problems where the schedules will be built systematically accord-
ing to specific rules. It is also hoped that this research will give some pre-
liminary answers about how to include human-like learning into scheduling
algorithms and thus may be of interest to practitioners and researchers in
areas of scheduling and evolutionary computation.
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Searching for Ground States of Ising Spin
Glasses with Hierarchical BOA and Cluster
Exact Approximation

Martin Pelikan and Alexander K. Hartmann

Summary. This chapter applies the hierarchical Bayesian optimization algorithm
(hBOA) to the problem of finding ground states of Ising spin glasses with ±J and
Gaussian couplings in two and three dimensions. The performance of hBOA is com-
pared to that of the simple genetic algorithm (GA) and the univariate marginal
distribution algorithm (UMDA). The performance of all tested algorithms is im-
proved by incorporating a deterministic hill climber based on single-bit flips. The
results show that hBOA significantly outperforms GA and UMDA on a broad spec-
trum of spin glass instances. Cluster exact approximation (CEA) is then described
and incorporated into hBOA and GA to improve their efficiency. The results show
that CEA enables all tested algorithms to solve larger spin glass instances and that
hBOA significantly outperforms other compared algorithms even in this case.

Key words: Hierarchical Bayesian optimization algorithm, genetic algo-
rithm, cluster exact approximation, spin glass, ground states, scalability

15.1 Introduction

Ising spin glasses are prototypical models for disordered systems and have
played a central role in statistical physics during the last three decades
[5, 9, 22, 42]. Examples of experimental realizations of spin glasses are metals
with magnetic impurities, e.g., gold with a small fraction of iron added. The
interaction between two magnetic spins, each sitting on an iron atom, is mod-
ulated by the conducting material leading to an effective interaction between
these spins, which varies with the distance in magnitude and in sign. Due to
the random distribution of the spins, competing interactions arise, where it is
not possible to satisfy all interactions at the same time. This effect is called
frustration. At low temperatures, this leads to an ordered low-temperature
phase exhibiting the so-called spin-glass order, which is characterized by frozen
local moments, but which does not exhibit a global magnetization. This spin
glass phase poses a challenging, unsolved problem in theoretical physics be-
cause the nature of its phase-space structure is still not well understood [28]
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despite the three decades of intensive research. It is widely believed that spin
glasses exhibit a rough energy landscape leading to this intrinsic complexity.

Spin glasses represent also a large class of challenging problems for opti-
mization algorithms [18–20] where the task is to minimize energy of a given
spin glass instance [10, 17, 24, 27, 31, 40]. States with the lowest energy are
called ground states and thus the problem of minimizing energy of spin glass
instances can be formulated as the problem of finding ground states of these
instances. There are two main challenges that must be tackled to find ground
states of spin glasses efficiently and reliably (1) there are many local optima
in the energy landscape (the number of local optima may grow exponentially
with problem size) and (2) the local minima are often surrounded by high-
energy configurations, which make it difficult for local operators to escape the
local optimum once they get trapped in it.

The purpose of this chapter is to apply the hierarchical Bayesian opti-
mization algorithm (hBOA) [29, 30] to a broad spectrum of instances of the
problem of finding ground states of Ising spin glasses. The performance of
hBOA is compared to that of the simple genetic algorithm (GA) and the
univariate marginal distribution algorithm (UMDA). We also describe cluster
exact approximation (CEA) [16], which provides an efficient method to per-
form large updates of spin glass configurations to decrease their energy. CEA
is then incorporated into hBOA and GA to improve their performance, and
the resulting hybrids are tested on a number of spin glass problem instances.

The chapter is organized as follows. Section 15.2 describes the problem of
finding ground states of Ising spin glasses. Section 15.3 briefly describes algo-
rithms hBOA, GA, and UMDA; additionally, the section describes the deter-
ministic hill climber (DHC), which is incorporated into all tested algorithms
to improve their performance. Section 15.4 presents initial experiments with
hBOA, GA, and UMDA on several types of Ising spin glass instances. Sec-
tion 15.5 describes CEA and discusses how CEA can be incorporated into evo-
lutionary algorithms to improve their performance. Section 15.6 tests hBOA
with CEA and GA with CEA on a number of spin glass instances. Finally,
Sect. 15.7 summarizes and concludes the chapter.

15.2 Ising Spin Glass

A very simple model to describe a finite-dimensional Ising spin glass is typi-
cally arranged on a regular 2D or 3D grid where each node i corresponds to a
spin si and each edge 〈i, j〉 corresponds to a coupling between two spins si and
sj . Each edge has a real value associated with it that defines the relationship
between the two connected spins. To approximate the behavior of the large-
scale system, periodic boundary conditions are often used that introduce a
coupling between the first and the last element along each dimension.

For the classical Ising model, each spin si can be in one of two states:
si = +1 or si = −1. Note that this simplification corresponds to highly
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anisotropic systems, which do indeed exist in some experimental situations.
Nevertheless, the two-state Ising model comprises all basic effects also found
in models with more degrees of freedom. A specific set of coupling constants
define a spin glass instance. Each possible setting of the states of all spins is
called a spin configuration.

Given a set of coupling constants Ji,j , and a configuration of spins
C = {si}, the energy can be computed as

E(C) =
∑
〈i,j〉

siJi,jsj , (15.1)

where i, j ∈ {0, 1, . . . , n − 1} and 〈i, j〉 denote the nearest neighbors in the
underlying grid (allowed edges).

Given a set of coupling constants, the usual task in statistical physics is
to integrate a known function over all possible configurations of spins, where
the configurations are distributed according to the Boltzmann distribution;
that is, the probability of encountering a configuration C at temperature T is
given by

p(C) =
exp (−E(C)/T )∑
C̃ exp

(
−E(C̃)/T

) , (15.2)

where the sum in the denominator runs over all possible spin configurations.
From the physics point of view, it is interesting to know the ground states

(configurations associated with the minimum possible energy). Finding ex-
tremal energies then corresponds to sampling the Boltzmann distribution with
temperature approaching 0 and thus the problem of finding ground states is
simpler a priori than integration over a wide range of temperatures. However,
most of the conventional methods based on sampling the above Boltzmann
distribution see (15.2) fail to find the ground states because they get often
trapped in a local minimum.

The problem of finding ground states for a given set of coupling con-
stants is a typical optimization problem, where the task is to find an opti-
mal configuration of spins that minimizes energy (see Fig. 15.1). Although
polynomial-time deterministic methods exist for 2D spin glasses [2, 4, 12, 13],
most algorithms based on local search operators, including a (1+1) evolution
strategy, conventional Monte Carlo simulations, and Monte Carlo simulations
with Wang-Landau [41] or multicanonical sampling [3], scale exponentially [8]
and are thus impractical for solving this class of problems. The origin for this
slowdown is due to the suppressed relaxation times in the Monte Carlo simula-
tions in the vicinity of the extremal energies because of the enormous number
of local optima in the energy landscape. Recombination-based genetic algo-
rithms succeed if recombination is performed in a way that interacting spins
are located close to each other in the representation; k-point crossover with
a rather small k can then be used so that the linkage between contiguous
blocks of bits is preserved (unlike with uniform crossover, for instance). How-
ever, the behavior of such specialized representations and variation operators



336 M. Pelikan and A.K. Hartmann

Fig. 15.1. Finding ground states of Ising spin glasses on a 2D system with no
periodic boundary conditions. The left-hand side shows the input, which consists of
a 2D grid with coupling constants between adjacent spins. The right-hand side shows
the output, which consists of one of the ground states (the spin configurations with
the minimum energy). The energy of the ground state shown in this figure is −10

cannot be generalized to similar slowly equilibrating problems that exhibit
different energy landscapes, such as protein folding or polymer dynamics.

In order to obtain a quantitative understanding of the disorder in a spin
glass system introduced by the random spin–spin couplings, one generally an-
alyzes a large set of random spin glass instances for a given distribution of the
spin–spin couplings. For each spin glass instance, the optimization algorithm
is applied and the results are analyzed to obtain a measure of computational
complexity. Here we consider two types of initial spin–spin coupling distribu-
tions, the ±J spin glass and the Gaussian spin glass.

15.2.1 ±J Spin Glass

In the ±J spin glass, each spin–spin coupling constant is set randomly to
either +1 or −1 with equal probability. Energy minimization in this case can
be transformed into a constraint satisfaction problem, where the constraints
relate spins connected by a coupling constant. For any two connected neigh-
bors i and j, if Ji,j = +1, then the constraint requires spins i and j to be
different, whereas if Ji,j = −1, then the constraint requires spins i and j to
be the same. Energy is minimized when the number of satisfied constraints is
maximized.

15.2.2 Gaussian Spin Glass

In the Gaussian spin glass, coupling constants are generated according to a
zero-mean Gaussian distribution with variance one. For real-valued couplings,
energy minimization can be casted as a constraint satisfaction problem with
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weighted constraints. Gaussian spin glass instances are usually easier for meth-
ods based on local operators (such as MCMC) [8], whereas for recombination-
based algorithms (such as hBOA), Gaussian spin glass instances tend to be
slightly more difficult than ±J instances [32].

15.3 Compared Algorithms

This section briefly describes the algorithms compared in this chapter (1) The
hierarchical Bayesian optimization algorithm (hBOA), (2) the genetic algo-
rithm (GA), and (3) the univariate marginal distribution algorithm (UMDA).
Additionally, the section describes the DHC that is used in all compared al-
gorithms to locally improve candidate solutions.

15.3.1 Hierarchical Bayesian optimization algorithm (hBOA)

The hBOA [29, 30] evolves a population of candidate solutions. Each candidate
solution is represented by an n-bit binary string where each bit specifies the
value of one of the n spins (0 represents state −1 and 1 represents state
+1). The population is initially generated at random according to a uniform
distribution over all n-bit strings.

Each iteration starts by selecting a population of promising solutions using
any common selection method of genetic and evolutionary algorithms, such
as tournament and truncation selection. In this chapter, binary tournament
selection is used. Binary tournament selection selects one solution at a time
by first choosing two random candidate solutions from the current population
and then selecting the best solution out of this subset. Random tournaments
are repeated until the selected population has the same size as the original
population and thus each candidate solution is expected to participate in two
tournaments.

New solutions are generated by building a Bayesian network with decision
trees [6, 11] for the selected solutions and sampling the built Bayesian network.

To ensure useful diversity maintenance, the new candidate solutions are
incorporated into the original population using restricted tournament replace-
ment (RTR) [15]. RTR incorporates the new candidate solutions into the orig-
inal population one solution at a time. For each new candidate solution X,
a random subset of candidate solutions in the original population is first se-
lected. The solution that is closest to X is then selected from this subset. The
new candidate solution replaces the selected closest solution if it is better.
Here we measure the distance of two solutions by counting the number of
bits where solutions differ. The size of the subsets selected in RTR is called
window size.

The run is terminated when termination criteria are met; for example, the
run can be terminated when the global optimum is found or when the number
of iterations reaches some threshold.
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15.3.2 Genetic algorithm (GA)

The GA [14, 21] also evolves a population of candidate solutions represented
by fixed-length binary strings. The first population is generated at random.

Each iteration starts by selecting promising solutions from the current
population. New solutions are created by applying variation operators to the
population of selected solutions. Specifically, crossover is used to exchange bits
and pieces between pairs of candidate solutions and mutation is used to per-
turb the resulting solutions. Here we use one-point crossover that exchanges
the tails of two binary strings starting in a randomly chosen position. As a mu-
tation operator, bit-flip mutation is used, which flips each bit with a specified
probability pm (pm is usually small). The new candidate solutions are incor-
porated into the original population using RTR [15]. The run is terminated
when termination criteria are met.

15.3.3 Univariate Marginal Distribution Algorithm (UMDA)

The UMDA [25] also evolves a population of candidate solutions represented
by binary strings, starting with a random population.

Each iteration starts by selection. Then, the probability vector is learned
that stores the proportion of 1s in each position of the selected population.
Each bit of a new candidate solution is then set to 1 with the probability
equal to the proportion of 1s in this position; otherwise, the bit is set to 0.
Consequently, the variation operator of UMDA preserves the proportions of
1s in each position while decorrelating different string positions. The new can-
didate solutions are incorporated into the original population using restricted
tournament replacement (RTR) [15]. The run is terminated when termination
criteria are met.

The only difference between hBOA and the UMDA variant discussed in
this paper is the type of the probabilistic model used to model promising can-
didate solutions and generate the new ones. The comparison between hBOA
and UMDA should therefore indicate whether in this problem domain effec-
tive exploration necessitates complex probabilistic models that can efficiently
encode large-order interactions between spins. For analogical reasons, the com-
parison between hBOA and GA will indicate whether it is important to use
advanced variation operators that adapt to the problem at hand like in hBOA.

15.3.4 Deterministic Hill Climber

The DHC is incorporated to hBOA, GA, and UMDA to improve their per-
formance. DHC takes a candidate solution represented by an n-bit binary
string on input. Then, it performs one-bit changes on the solution that lead
to the maximum improvement of solution quality (maximum decrease in en-
ergy). DHC is terminated when no single-bit flip improves solution quality
and the solution is thus locally optimal. Here, DHC is used to improve every
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solution in the population before the evaluation is performed. The hybrids
created by incorporating DHC into hBOA, GA, and UMDA are referred to as
hBOA+DHC, GA+DHC, and UMDA+DHC, respectively.

DHC improves the performance of hBOA, GA, and UMDA by a constant
factor [29]. In Sect. 15.5 we describe cluster exact approximation (CEA), which
is capable of making large updates of spin glass configurations, providing a
much more effective search for low-energy configurations than DHC.

15.4 Initial Experiments

This section presents the results of initial experiments on various instances of
the problem of finding ground states of Ising spin glasses. Three algorithms are
compared: hBOA+DHC, GA+DHC, and UMDA+DHC. The section starts
by describing problem instances used in the tests. Next, experiments are de-
scribed. Finally, the experimental results are presented and discussed.

15.4.1 Tested Spin Glass Instances

Three types of spin glass instances have been considered in the initial experi-
ments:

1. Two-dimensional Ising spin glass with ±J couplings.
2. Two-dimensional Ising spin glass with Gaussian couplings.
3. Three-dimensional Ising spin glass with ±J couplings.

In all instances, periodic boundary conditions are used.
To analyze scalability, for 2D spin glasses, instances of size 6 × 6 (n = 36

spins) to 20×20 (n = 400 spins) have been considered; 1,000 random instances
have been generated for each problem size. For 3D spin glasses, instances of
size 4×4×4 (n = 64 spins) to 7×7×7 (n = 343 spins) have been considered; in
this case, only eight random instances have been generated for each problem
size because of the increased computational resources required to solve the
3D instances.

15.4.2 Description of Experiments

All compared algorithms use binary tournament selection to select promising
solutions. As a replacement strategy, RTR is used where the window size w is
set to the number of bits in solution strings but it is always ensured to be at
most 5% of the population size, w = min(n,N/20). In GA+DHC, one-point
crossover is used and the probability of crossover is pc = 0.6. GA+DHC uses
also bit-flip mutation, where the probability of flipping a bit is set to 1/n.

For each problem instance, bisection is run to determine the minimum
population size to ensure convergence in five independent runs (out of five
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runs total). Each run is terminated either when the algorithm has found the
optimum or when the algorithm has failed to find the optimum for a large
number of iterations. The optimum for most 2D instances was verified with
the branch-and-cut algorithm provided at the Spin Glass Ground State Server
at the University of Köln [35]. The remaining 2D instances with ground states
were obtained from S. Sabhapandit and S. N. Coppersmith from the University
of Wisconsin who identified the ground states using flat-histogram Markov
chain Monte Carlo simulations [8]. All 3D instances with their ground states
were obtained from previous simulations of one of the authors [17].

The upper bound on the number of iterations (generations) is determined
empirically so that the number of iterations is sufficiently large for all tests.
In general, the bound on the number of iterations for GA+DHC is larger than
that for hBOA+DHC and UMDA+DHC because of the slower mixing with
one-point crossover [34].

The performance of the compared algorithms is measured by the number
of evaluated spin glass configurations until the optimum has been found. Ad-
ditionally, we show the number of DHC updates until the optimum has been
found.

15.4.3 Results

Figure 15.2 compares the performance of hBOA+DHC, UMDA+DHC, and
GA+DHC on two-dimensional spin glasses with ±J couplings and periodic
boundary conditions. The results indicate that the number of evaluations and
the number of DHC flips for hBOA+DHC grows with a low-order polynomial
of problem size, i.e., with O(n1.63) and with O(n2.46), respectively. Further-
more, the results show that hBOA significantly outperforms GA+DHC and
UMDA+DHC in both the number of evaluations and the number of DHC flips.
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Fig. 15.2. Performance of hBOA+DHC, UMDA+DHC, and GA+DHC on random
2D ±J Ising spin glasses
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Fig. 15.3. Performance of hBOA+DHC and GA+DHC on random 2D Gaussian
Ising spin glasses

The worst performance is achieved by UMDA+DHC, the time complexity of
which grows faster than polynomially.

Recall that for spin glasses, one-point crossover performs relatively well be-
cause one-point crossover rarely breaks important interactions between spins
due to the used representation. Nonetheless, this behavior cannot be gen-
eralized to other similar slowly equilibrating problems that exhibit different
energy landscapes, such as protein folding or polymer dynamics.

Figure 15.3 compares the performance of hBOA+DHC and GA+DHC on
2D spin glasses with Gaussian couplings and periodic boundary conditions.
The results indicate similar behavior as for ±J couplings in two dimensions;
hBOA+DHC outperforms both GA+DHC and UMDA+DHC; UMDA+DHC
performs worst and its time complexity grows faster than polynomially. The
results also show that Gaussian couplings are harder for all tested algorithms.
The reason for this is that in Gaussian spin glasses the constraints are scaled
nonuniformly and it is known that most selectorecombinative evolutionary
algorithms perform better on uniformly scaled problems than on nonuniformly
scaled ones [26, 38]. Additionally, it seems that for Gaussian couplings, the
number of flips grows slower than for ±J couplings, which indicates that for
nonuniformly scaled spin glass couplings the impact of DHC on performance
becomes much less significant.

For 2D Ising spin glasses, a polynomial algorithm [12, 13] with complexity
O(n3.5) exists that computes the number of states at each energy level, in-
cluding the ground state. It was shown [32] that on 2D ±J Ising spin glasses,
hBOA+DHC achieves asymptotic performance of the polynomial algorithm
without any prior knowledge about spin glasses. The performance becomes
slightly worse for the Gaussian spin glasses, although hBOA+DHC still re-
tains low-order polynomial complexity.
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Fig. 15.4. Performance of hBOA+DHC on random 3D ±J Ising spin glasses

Figure 15.4 shows the performance of hBOA+DHC on 3D ±J spin glasses.
Since both GA+DHC and UMDA+DHC have not been capable of solving
most 3D instances even with enormous computational resources, we only in-
clude the results for hBOA+DHC. The results show that the performance
of hBOA+DHC appears to grow exponentially fast. This behavior is ex-
pected because the problem of finding ground states of 3D spin glasses is
NP-complete [1] and it is thus unlikely that there exists an algorithm that
can solve this class of problems in polynomial time. However, we see that
hBOA+DHC is still capable of solving instances of several hundreds spins,
which are intractable with most standard optimization algorithms, such as
genetic algorithms and simulated annealing.

15.5 Cluster Exact Approximation (CEA)

Due to the complex structure of the energy landscape of spin glasses, many
local minima exist, which have energies very close to the ground-state en-
ergy. Usually these minima differ from the true ground states by flips of large
domains. Hence, as already mentioned, the minima are surrounded by high
energy barriers from the viewpoint of single-spin-flip dynamics. This leads to
a very small efficiency of algorithms which apply single-bit (spin) changes as
DHC. For this reason, we also consider cluster exact approximation [16], which
provides an efficient method that can change many spins at the same time
optimally (assuming that the remaining spins remain fixed).

CEA constructs iteratively and randomly a nonfrustrated cluster of spins.
During the construction of the cluster a local gauge-transformation of the
spin variables s′i = hisi (hi = ±1) is applied so that all interactions between
cluster spins become ferromagnetic (J ′

i,j = hiJi,jhj < 0), which is always
possible for nonfrustrated systems by definition. For each spin, which has not
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Fig. 15.5. Example of the cluster-exact approximation method. A part of a spin
glass is shown, ferromagnetic bonds are denoted by −1, while antiferromagnetic
bonds are denoted by +1, see (15.1). The construction starts with the spin i0 at
the center, the gauge field is set to hi0 = +1. The right part displays the final
situation. The spins which belong to the cluster carry a plus or minus sign which
indicates how each spin is gauge-transformed, i.e., the gauge-field hi, such that only
ferromagnetic interactions remain inside the cluster. All other spins cannot be added
to the cluster because it is not possible to multiply them by ±1 to turn all adjacent
bonds ferromagnetic. Please note that many other combinations of spins can be
found to build a cluster without frustration

been considered so far, it is tested whether a value hi = ±1 can be found,
which makes all adjacent bonds ferromagnetic. If this is possible, the spin is
added to the cluster, if not, it becomes a noncluster spin. Figure 15.5 shows
an example of how the construction of the cluster works for a small spin-
glass system. The order in which the spins are considered can be random or
governed by some heuristics; here pure random order was used. Note that the
clusters constructed in this way are typically very large, e.g., For 3D ±J spin
glasses, each cluster contains typically 55% of all spins.

The noncluster spins remain fixed during the following calculation; they act
like local magnetic fields on the cluster spins. Consequently, the ground state of
the gauge-transformed cluster is not trivial, although all interactions inside the
cluster are now ferromagnetic. Since the cluster exhibits no bond-frustration,
an energetic minimum state for its spins can be calculated in polynomial
time by an algorithm which has been applied successfully for ferromagnetic
random-field Ising models [18]. This algorithm is based on graph-theoretical
methods [7, 36]: an equivalent network is constructed [33], the maximum flow
is calculated [37, 39] and the spins of the cluster are set to orientations leading
to a minimum in energy.

The CEA update step ensures that the spins in the cluster minimize energy
of the considered spin glass assuming that the remaining (noncluster) spins
remain fixed to their current values. Each CEA iteration either decreases the
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energy or the energy remains the same, which is the case when all cluster
spins were already set to their optimal values.

15.5.1 Combining evolutionary algorithms and CEA

It is fairly straightforward to incorporate CEA into GA, hBOA or any other
evolutionary algorithm. In this work, we repeat the CEA update step until
the update fails to decrease the energy for a predefined number of iterations;
more specifically, the bound on the number of failures is

√
n for 2D spin

glasses and it is 3
√

n for 3D spin glasses, where n is the number of spins. The
hybrids created by incorporating CEA into hBOA and GA are referred to as
hBOA+CEA and GA+CEA, respectively.

There are two important differences between DHC and CEA. DHC makes
only single-bit updates and that is why it is able to reach the local optimum
(with respect to one-bit flips) quickly but it is often trapped in a not-so-
good local minimum. CEA makes much bigger updates, leading to a much
more significant decrease in the energy, but also requiring more computational
resources for each update; for example, the time complexity of each CEA step
on 3D spin glasses can be expected to be about O(n4/3) [23], whereas each
single-bit update using DHC can be done in only O(log n) time.

Section 15.6 shows that CEA significantly improves the performance of
both hBOA and GA, allowing these algorithms to solve much bigger problem
instances efficiently.

15.6 Experiments

This section tests hBOA+CEA and GA+CEA on a broad range of 2D and
3D ±J Ising spin glass instances. Since the initial experiments indicated that
UMDA can be expected to perform significantly worse than both hBOA and
GA, we do not include UMDA in the comparison.

15.6.1 Tested Spin Glass Instances

Two types of spin glass instances have been considered in this set of experi-
ments:

1. 2D Ising spin glass with ±J couplings.
2. 3D Ising spin glass with ±J couplings.

In all instances, periodic boundary conditions are used.
In the 2D case, instances of size 15 × 15 (n = 225 spins) to 50 × 50

(n = 2, 500 spins) have been considered; 10, 00 random instances have been
generated for each problem size. In the 3D case, instances of size 6 × 6 × 6
(n = 216 spins), 8× 8× 8 (n = 512 spins), and 10× 10× 10 (n = 1, 000 spins)
have been considered; 1, 000 random instances have been generated for each
problem size.
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15.6.2 Description of Experiments

All parameters have been set like in the initial set of experiments in Sect. 15.4
of this chapter. The only difference from the set-up of the initial experiments
is that here CEA is used to improve all candidate solutions instead of DHC.

Since one update step of CEA is usually more computationally expensive
than the entire evaluation [23], the time complexity of the compared algo-
rithms is measured by the number of iterations of CEA as opposed to the
number of evaluations.

15.6.3 Results

Figure 15.6a shows the performance of hBOA+CEA and GA+CEA on 2D
Ising spin glasses with ±J couplings. The results indicate that hBOA+CEA
significantly outperforms GA+CEA and thus hBOA retains superior perfor-
mance even with CEA. The results also show that incorporating CEA leads to
a somewhat faster asymptotic growth of time complexity with problem size;
on the other hand, the use of CEA provides a significant decrease of running
time for the tested range of problems and, consequently, much larger prob-
lem sizes can be treated currently as compared to hBOA+DHC. Nonetheless,
based on these results, it can be hypothesized that hBOA+DHC will become
faster than hBOA+CEA for much larger spin glass instances.

Figure 15.6b shows the performance of hBOA+CEA and GA+CEA on
3D Ising spin glasses with ±J couplings. The results indicate that the perfor-
mance of both algorithms grows faster than polynomially even with the use
of CEA as is expected from the NP-completeness of this problem. However,
CEA improves the performance of GA significantly and makes the difficult
3D instances tractable even with GA. Nonetheless, hBOA+CEA still retains
superior performance.
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Fig. 15.6. Performance of hBOA+CEA and GA+CEA on ±J Ising spin glasses
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15.7 Summary and Conclusions

This paper tested the hBOA on a large number of instances of the problem
of finding ground states of Ising spin glasses with random couplings in two
and three dimensions. The performance of hBOA was compared to that of the
simple GA and the UMDA. All algorithms were hybridized by using either a
simple DHC or the CEA. The results showed that hBOA significantly outper-
forms all other compared methods in all cases and that in some classes of Ising
spin glasses, it achieves the performance of best polynomial-time analytical
methods.

The problem of finding ground states of Ising spin glasses can be formu-
lated as a constraint satisfaction problem and it has many features that can
be found in other difficult constraint satisfaction problems, such as MAXSAT
or graph coloring. Furthermore, this problem shares many challenges with
other important classes of problems, such as protein folding. The most impor-
tant source of problem difficulty is the enormous number of local optima that
may grow exponentially with problem size. Additionally, to ensure effective
exploration of the space of low-energy configurations, large-order interactions
between spins must be considered.

The results presented in this paper thus confirm that using hierarchical
decomposition for solving difficult optimization problems with little problem-
specific knowledge holds a big promise and that this line of computational-
optimization research is likely to advance a number of areas that crucially
depend on solving difficult optimization problems scalably.
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