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Summary Optic flow describes the displacement field in an image sequence. Its
reliable computation constitutes one of the main challenges in computer vision, and
variational methods belong to the most successful techniques for achieving this goal.
Variational methods recover the optic flow field as a minimiser of a suitable energy
functional that involves data and smoothness terms. In this paper we present a survey
on different model assumptions for each of these terms and illustrate their impact
by experiments. We restrict ourselves to rotationally invariant convex functionals
with a linearised data term. Such models are appropriate for small displacements.
Regarding the data term, constancy assumptions on the brightness, the gradient,
the Hessian, the gradient magnitude, the Laplacian, and the Hessian determinant
are investigated. Local integration and nonquadratic penalisation are considered in
order to improve robustness under noise. With respect to the smoothness term, we
review a recent taxonomy that links regularisers to diffusion processes. It allows
to distinguish five types of regularisation strategies: homogeneous, isotropic image-
driven, anisotropic image-driven, isotropic flow-driven, and anisotropic flow-driven.
All these regularisations can be performed either in the spatial or the spatiotemporal
domain. After discussing well-posedness results for convex optic flow functionals,
we sketch some numerical ideas in order to achieve real-time performance on a
standard PC by means of multigrid methods, and we survey a simple and intuitive
confidence measure.

1 Introduction

Finding the displacement field between subsequent frames of an image sequence
has become a classical computer vision problem. This displacement field is called
optic flow. Solving the optic flow problem does not only have an impact in fields
like video coding or robot navigation, it is also a prototype for the entire class of
correspondence problems, where one seeks a sufficiently smooth mapping that maps
the features in one image to the structures in another one. Other applications where
such problems appear include the fields of stereo reconstruction and medical image
registration.

Already in 1981, Horn and Schunck introduced the first variational method for
computing the optic flow field in an image sequence [44]. This method is based on
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two assumptions that are characteristic for many variational optic flow methods: a
brightness constancy assumption and a smoothness assumption. These assumptions
enter a continuous energy functional whose minimiser yields the desired optic flow
field.

Performance evaluations such as [9, 35] showed that variational methods be-
long to the best performing techniques for computing the optic flow field. It is
thus not surprising that a lot of research has been carried out in order to im-
prove these techniques even further: These amendments include refined model
assumptions with discontinuity-preserving constraints [2, 28, 42, 62, 65, 73, 91]
or spatiotemporal regularisation [11, 61, 92], improved data terms with modi-
fied constraints [3, 26, 62, 74] or nonquadratic penalisation [11, 43, 56, 26], and
efficient multigrid algorithms [15, 22, 39, 38, 78, 95] for minimising these energy
functionals.

The goal of the present chapter is to analyse the data term and the smoothness
term in detail and to survey some of our recent results on variational optic flow com-
putation. For the sake of simplicity we focus on small displacements, where Taylor
linearisations of the data term are valid approximations. This restriction allows to
consider convex functionals where many theoretical and practical aspects become
significantly easier and more transparent.

Our chapter is organised as follows: In Section 2 we sketch the general structure
of these techniques. While Section 3 analyses the data term in more detail, a dis-
cussion of the different possibilities for smoothness constraints is given in Section
4. Suitable combinations of data and smoothness tersm are investigated in Section
5, well-posedness results are presented in Section 6, and algorithmic aspects are
sketched in Section 7. A simple but general confidence measure for energy-based
optic flow methods in discussed in Section 8. Our chapter is concluded with a sum-
mary in Section 9. A significantly shorter early version of the present chapter has
been presented at a workshop [90].

2 General Structure

Let f(x1, x2, x3) denote some scalar-valued image sequence, where (x1, x2) is the
location and x3 denotes time. Often f is obtained by preprocessing some initial
image sequence f0 by convolving it with a Gaussian Kσ of standard deviation σ:

f = Kσ ∗ f0. (1)

Let us assume that Dkf describes the set of all partial (spatial and temporal) deriv-
atives of f of order k, and that the optic flow field u(x1, x2, x3) = (u1(x1, x2, x3),
u2(x1, x2, x3), 1)� gives the displacement rate between subsequent frames with
temporal frame distance 1. In the present paper we consider variational methods
that are based on the minimisation of the continuous energy functional
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E(u) =
∫

Ω

(M(Dkf, u)︸ ︷︷ ︸
data term

+α S(∇f,∇u)︸ ︷︷ ︸
regulariser

) dx (2)

where the integration domain Ω is either a spatial or a spatiotemporal domain.
In the spatial case we have x := (x1, x2)� and ∇ := ∇2 := (∂x1 , ∂x2)

�,
and in the spatiotemporal case we use the notations x := (x1, x2, x3)� and
∇ := ∇3 := (∂x1 , ∂x2 , ∂x3)

�. The optic flow field u(x1, x2, x3) is obtained as a
function that minimises E(u). The energy functional E(u) penalises all deviations
from model assumptions. Typically is consists of a data termM(Dkf, u) which ex-
presses e.g. a brightness constancy assumption, and a regulariser S(∇f,∇u) with
∇u := (∇u1,∇u2)� that penalises deviations from (piecewise) smoothness. The
weight α > 0 serves as regularisation parameter: Larger values correspond to more
simplified flow fields.

The simplest and oldest representative of the class (2) is given by the method of
Horn and Schunck [44]. It is based on the minimisation of the spatial functional

E(u) =
∫

Ω

(
(u�∇3f)2 + α

2∑
i=1

|∇ui|2
)
dx. (3)

As will be detailed in the forthcoming sections, the Horn–Schunck functional com-
bines a data term that describes the brighness constancy of moving patterns with a
smoothness term which involves homogeneous (Tikhonov [79]) regularisation.

It should be noted that continuous energy functionals of type (2) may be for-
mulated in a rotationally invariant way: Apart from very few exceptions such as
[6, 28, 52], almost all continuous optic flow functionals that have been proposed
are rotationally invariant. Results from numerical analysis then show that consis-
tent discretisations approximate this invariance under rotations arbitrarily well if the
sampling is sufficiently fine. Moreover, if the energy functional is convex, a unique
minimiser exists that can be found in a relatively simple way by globally convergent
algorithms. Variational optic flow methods are global methods: If there is not suffi-
cient local information, the data termM(Dkf, u) is so small that it is dominated by
the smoothness term αS(∇f,∇u) which fills in information from more reliable sur-
rounding locations. Thus, in contrast to local methods, the filling-in effect of global
variational approaches always yields dense flow fields and no subsequent interpola-
tion steps are necessary: Everything is automatically accomplished within a single
variational framework.

3 Data Terms

In the design of data terms for optic flow methods prior knowledge plays an impor-
tant role. This knowledge may include information on the imaging device (e.g. the
quality of the images with respect to noise), on the conditions during the acquisition
of the video material (e.g. the occurrence of frequent illumination changes) as well
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as information on the expected type of motion (e.g. mainly translational motion of
cars in traffic sequences). For a specific problem, this information may allow to se-
lect a data term that is especially appropriate and thus improves the quality of the
estimation significantly. For this reason, the following section gives an overview on
data terms that are frequently used in literature. Moreover, a detailed discussion on
their advantages and shortcomings should guide the reader to select an appropriate
data term for a specific problem.

3.1 Constancy Assumptions

In order to analyse motion within subsequent frames of an image sequence, temporal
constancy has to be imposed on certain image features. The most frequently used
feature in this context is the image brightness. Many differential methods are based
on the assumption that this brightness is constant, i.e. that the grey value of objects
does not change over time. If we denote the motion of some image structure by
(x1(x3), x2(x3))� this assumptions can be formulated as

df(x1(x3), x2(x3), x3)
dx3

= 0. (4)

By applying the chain rule and defining fxi
:= ∂xi

f the following optic flow con-
straint (OFC) is obtained:

fx1u1 + fx2u2 + fx3 = 0. (5)

Note that the optic flow field satisfies (u1, u2, 1)� = (∂x3x1, ∂x3x2, 1)�.
It also is instructive to derive this constraint in a second way: Assuming a frame
distance of 1, the brightness constancy constraint between two subsequent frames at
time x3 and x3 + 1 can be expressed as

0 = f(x1+u1, x2+u2, x3+1) − f(x1, x2, x3) (6)

such that (5) follows from a Taylor linearisation in the point (x1, x2, x3)�. How-
ever, this Taylor linearisation is only a reasonable approximation if the flow field
varies sufficiently smooth and the displacement rates are small, i.e. in the order of
one pixel or below. In the following we assume that this is the case, because it would
be much more burdensome to deal with the unlinearised constraint (6) than its lin-
earised counterpart (5).
In order to use equation (5) within the energy functional (2), we penalise all devia-
tions from zero by considering the quadratic data term [44]

M1(D1f, u) := (u�∇3f)2. (7)

As long as the image data does not violate the brightness constancy assumption,
the use of M1 can give good results. In particular with regard to image data with
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non-constant brightness, however, constancy assumptions should be based on im-
age features that are less sensitive to illumination changes. A simple and efficient
strategy in this context is the consideration of derivatives. Instead of imposing con-
stancy to the image brightness f along the path (x1(x3), x2(x3))�, one may e.g.
assume that the spatial brightness gradient (fx1 , fx2)

� does not change along the
same path [83]:

dfx1(x1(x3), x2(x3), x3)
dx3

= 0, (8)

dfx2(x1(x3), x2(x3), x3)
dx3

= 0. (9)

This gives the two equations

u�∇3fx1 = 0, (10)
u�∇3fx2 = 0. (11)

Squaring and adding them produces the data term

M2(D2f, u) :=
2∑

i=1

(u�∇3fxi
)2. (12)

In a straightforward way, constancy assumptions can also be imposed on higher-
order derivatives, e.g. on the (spatial) Hessian H2f . Squaring and adding the corre-
sponding equations we obtain the following data term:

M3(D3f, u) :=
2∑

i=1

2∑
j=1

(u�∇3fxixj
)2. (13)

WithM2 andM3 we have proposed data terms that are designed for sequences with
illumination changes. However, one should note that their performance depends sig-
nificantly on the occurring type of motion. This has the following reason: In contrast
to the image brightness both gradient and Hessian contain directional information.
As a consequence, any constancy assumption on these expressions implies a con-
stancy assumption on their orientation. On one hand, this property may be useful if it
comes to the estimation of translational, divergent or slow rotational motion. In this
case the orientation of the features does hardly change and the combination of two
or three constraints in one data term may improve the results. On the other hand,
poor results have to be expected if fast rotations are dominating and the implied
orientation constancy does not hold.

A way to overcome this limitation is to create motion invariant image features
from these ”oriented” derivatives. Instead of imposing constancy on the (spatial)
brightness gradient and therewith on its orientation, one may e.g. assume that only
its magnitude is constant over time. Then, the following data term is obtained:
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M4(D2f, u) := (u�∇3|∇f |)2. (14)
This idea can also be extended to higher-order derivatives. As an example, let

us consider the (spatial) Hessian H2f . In this case, one may either think of impos-
ing constancy on the (spatial) Laplacian ∆2f or on the determinant of the (spatial)
Hessian H2f . While the data term associated to the Laplacian is given by

M5(D3f, u) := (u�∇3(∆2f))2, (15)
the data term based on the constancy of the determinant of the Hessian reads

M6(D3f, u) := (u�∇3 det(H2f))2. (16)
This example shows that in general multiple of such scalar valued expressions

can be derived from the set of derivatives of a single order. However, there is no
general rule which expression gives the best performance. An overview of all data
terms presented so far is given in Table 1. It may also be useful to combine multiple
of these terms by means of a linear combination. Moreover, one should note that
M2–M6 can be more sensitive to noise thanM1, since they involve higher orders of
derivatives of the image sequence.

In Figure 1 we illustrate the impact of different constancy assumptions on the
computed flow field. To this end we use the data terms M1–M6 within a spatial
energy functional based on homogeneous regularisation of Horn–Schunck type, i.e.
we minimise

E(u) =
∫

Ω

(
Mj + α

2∑
i=1

|∇ui|2
)
dx. (17)

Table 1. Comparison of the data terms M1–M6.

data term constancy assumption illum. changes motion type

M1 (u�∇3f)2 brightness no any

translational
M2

2∑
i=1

(u�∇3fxi)
2 gradient yes divergent

slow rotational

translational
M3

2∑
i=1

2∑
j=1

(u�∇3fxixj )
2 Hessian yes divergent

slow rotational

M4 (u�∇3|∇f |)2 gradient magnitude yes any

M5 (u�∇3(∆2f))2 Laplacian yes any

M6 (u�∇3 det(H2f))2 Hessian determinant yes any
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Fig. 1. From left to right, and from top to bottom: (a) Frame 8 of the Yosemite sequence with
clouds of size 316 × 256. (b) Ground truth. (c) Computed flow field for a spatial approach
with data term M1 (brightness constancy) and homogeneous regularisation as smoothness
term. (d) Data term M2 (gradient constancy). (e) Data term M3 (constancy of Hessian). (f)
Data term M4 (gradient magnitude constancy). (g) Data term M5 (constancy of Laplacian).
(h) Data term M6 (constancy of Hessian determinant).
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Table 2. Impact of the constancy assumption on the quality of the optic flow field. We
used a spatial energy functional with homogeneous regularisation, and computed the average
angular error (AAE) for the Yosemite sequence with clouds. The parameters σ and α have
been optimised.

constancy assumption data term σ α AAE
brightness M1 1.30 500 7.17◦

gradient M2 2.10 20 5.91◦

Hessian M3 2.70 1.8 6.46◦

gradient magnitude M4 1.90 14 6.37◦

Laplacian M5 2.50 3.0 6.18◦

Hessian determinant M6 3.00 0.1 8.10◦

for j = 1,...,6. As test sequence we take the popular Yosemite sequence with clouds.
It consists of 15 frames of size 316 × 252 and combines divergent and translational
motion under varying illumination. Both the sequence and its ground truth flow field
are available from ftp://csd.uwo.ca under the directory pub/vision. In
order to allow for a quantitative comparison of the different data terms we computed
the so-called average angular error (AAE) as proposed in [9] :

AAE(uc,ue) =
1
|Ω|

∫
Ω

arccos
(
u�c ue

|uc||ue|

)
dx. (18)

In this context the subscripts c and e denote the correct respectively the estimated
spatiotemporal optic flow vectors uc = (uc1, uc2, 1)� and ue = (ue1, ue2, 1)�.
Moreover, |Ω| =

∫
Ω
dx is the integration domain, and |u| =

√
u2

1 + u2
2 + 1. The

obtained results for optimised Gaussian presmoothing parameter σ (cf. equation
(1)) and regularsiation parameter α are presented in Table 2. As one can see, the
commonly used grey value constancy assumption is outperformed by almost all
other constraints that involve higher derivatives. This quantitative impressions are
also confirmed qualitatively by the corresponding flow fields shown in Figure 1.
While M1 gives slightly better results at the mountain site, the other data terms are
significantly superior in estimating the sky region where illumination changes are
present. This shows that it can be worthwhile to replace the brightness constancy
constraint by constraints that involve higher derivatives, in particular when varying
illumination has to be expected. We also observe that constancy assumptions based
on higher order derivatives require a larger Gaussian width σ in order to give optimal
results.

3.2 Increasing the Robustness of the Data Term

WithM1–M6 we have proposed data terms for different illumination conditions and
different types of motion. Let us now discuss by the example of M1 how these data
terms can be modified such that they become more robust. To this end we inves-
tigate three strategies: local least square fitting, adaptive averaging with nonlinear
diffusion, and nonquadratic penalisation.
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Local Least Square Fitting A useful strategy to make optic flow estimation more
robust under noise is the consideration of neighbourhood information within the
data term [26]. To this end one may e.g. assume that the optic flow is constant
within some spatial or spatiotemporal neighbourhood of size ρ. Then, simple statis-
tical methods such as least square regressions can be applied to estimate the flow
vector from the considered neighbourhood [54]. In this context it is common to de-
crease the weight of neighbours with increasing distance to the center. Let us now
apply such a Gaussian weighted least square fit to M1 = u�∇3f ∇3f

�u. Then the
corresponding data term reads

M7(D1f, u) := u�Jρ(∇3f)u (19)

where the structure tensor (see e.g. [10, 33, 69]

Jρ(∇3f) := Kρ ∗ (∇3f ∇3f
�) (20)

results from componentwise Gaussian convolution of the tensor product J0 =
∇3f ∇3f

�. In this case the standard deviation ρ of the Gaussian Kρ is called inte-
gration scale. One should note that for ρ = 0 this least square fit by minimisingM7

comes down to the original data term M1.

Adaptive Averaging with Nonlinear Diffusion Although the preceding integra-
tion of local information by means of a Gaussian convolution is a good concept for
achieving robustness under noise, the integration relies on the underlying assump-
tion that the optic flow field is constant within the local neighbourhood described
by the Gaussian kernel. Especially in the area of discontinuities in the flow field this
assumption is not valid, and thus the Gaussian convolution compromises the flow es-
timation. As a remedy, one can assume that the flow field is only piecewise constant.
Then one replaces the (linear) structure tensor in (20) that is based on Gaussian con-
volution – or equivalently linear diffusion – by a nonlinear structure tensor [89, 20]
that uses nonlinear tensor-valued diffusion for the local integration. Since nonlin-
ear diffusion reduces the amount of smoothing at discontinuities, it avoids the in-
tegration of unrelated data beyond these discontinuities and therefore leads to less
ambiguity in the least square regression.

Since the structure tensor is a matrix field, a matrix-valued scheme for nonlinear
diffusion is needed. Such a scheme is proposed in [81] where the matrix channels
are coupled by a joint diffusivity. With J0 = ∇3f∇3f

� as initial value for the
nonlinear diffusion process

∂tĴij = div

⎛
⎝g

⎛
⎝ 3∑

k,l=1

|∇Ĵkl|2
⎞
⎠∇Ĵij

⎞
⎠ (i, j = 1, 2, 3) (21)

the solution Ĵt constitutes a nonlinear structure tensor for a certain diffusion time t.
The diffusion time is the scale parameter of the nonlinear structure tensor, similar to
the standard deviation of the Gaussian kernel used in (20), and steers the size of the
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local neighbourhood. The so-called diffusivity function g is a decreasing function
that reduces the amount of smoothing at discontinuities in the data. An appropriate
choice is the regularised total variation (TV) diffusivity [5]

g(s2) = ε1 +
1√

s2 + ε22
(22)

where the small positive constants ε1 and ε1 are introduced for theoretical reasons
and in order to avoid unbounded diffusivities. In practice they can be set, for in-
stance, to 0.001.
If we apply the nonlinear structure tensor to M1, we obtain the data term

M8(D1f, u) := u�Ĵt(∇3f)u, (23)

which is a nonlinear alternative to M7.
Alternative ways of creating adaptive structure tensors are studied in [63] and

[19]. It is also worth noting that if one chooses the diffusivity function

g(s2) = 1 (24)

one ends up with homogeneous diffusion, which does not adapt to the data. Homo-
geneous diffusion with diffusion time t is equivalent to Gaussian convolution with
standard deviation ρ =

√
2t. This shows the direct relation between the employment

of the structure tensor Jρ and the nonlinear structure tensor Ĵt.
In our second experiment we compare different data terms regarding their ro-

bustness under noise. To this end we have added Gaussian noise with zero mean and
varying standard deviation σn to the Yosemite sequence with clouds. Apart from the
data terms M7 and M8 that are based on the concept of local integration, we also
considered the ordinary data terms M1 and M2. As expected, the results in Table
3 show a better performance of the data terms M7 and M8 when noise is present.
Figure 2 depicts the corresponding flow field for the data term M7 and σn = 40.
Although the original sequence was degraded severely, the computed flow field still
looks reasonable. In this context one should also note the worse performance ofM2.
It shows that higher-order derivatives are more sensitive to noise.

Nonquadratic Penalisation So far we have only considered data terms that pe-
nalise deviations from constancy assumptions in a quadratic way. From a statistical
viewpoint, however, it seems desirable to penalise outliers less severely than in a
quadratic setting. In particular with regard to the preservation of discontinuities in
the data term, this concept from robust statistics [41, 45] proves to be very useful;
see e.g. [11, 43, 56]. In order to guarantee well-posedness for the remaining problem
and allow the construction of simple globally convergent algorithms it is advanta-
geous to use penalisers Ψ(s2) that are convex in s. Such penalisers comprise e.g. the
regularised TV penaliser [70, 64]

Ψ(s2) = ε21 s
2 + 2

√
s2 + ε22, (25)
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Table 3. Comparison of data terms M1, M2, M7 and M8 under noise. We added Gaussian
noise with varying standard deviations σn to the Yosemite sequence with clouds and used a
spatial energy functional with homogeneous regularisation to compute the average angular
error (AAE). The parameters σ, α, ρ, and t have been optimised.

noise data term σ α integration parameter AAE
σn = 0 M1 1.30 500 - 7.17◦

M2 2.10 20 - 5.91◦

M7 1.30 500 ρ = 1.80 7.14◦

M8 1.30 300 t = 250 6.97◦

σn = 20 M1 2.08 2200 - 12.17◦

M2 3.60 35 - 12.26◦

M7 2.09 1600 ρ = 10.70 11.71◦

M8 2.10 1600 t = 225 11.76◦

σn = 40 M1 2.45 4100 - 16.80◦

M2 4.20 55 - 18.00◦

M7 2.38 2000 ρ = 17.60 15.82◦

M8 2.40 2500 t = 500 16.29◦

Fig. 2. (a) Left: Frame 8 of the Yosemite sequence with clouds degraded by Gaussian of
standard deviation σn = 40. (b) Right: Computed flow field for a spatial approach with data
term M7 (least squares) and homogeneous smoothness term.

where ε1 and ε2 are small positive constants.
In Figure 3 the graphs of the corresponding functions are depicted. Apart from

TV penalisation also an example for a nonconvex function is shown. However, one
should note that in the case of such nonconvex functions multiple minima have to
be expected. As a consequence, minimisation strategies do usually not succeed in
finding the global minimum. Let us now replace the quadratic penaliser in M1 and
M7 by one of the proposed convex functions. Then we obtain the data terms given
by

M9(D1f, u) := Ψ((u�∇3f)2),
M10(D1f, u) := Ψ(u�Jρ(∇3f)u).

An overview on the data terms M7–M10 and their capability of handling disconti-
nuities in the data is given in Table 4.
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Fig. 3. Comparison of different penalising functions. From left to right: (a) Tikhonov
(quadratic). (b) Total variation (linear). (c) Example of a nonconvex function.

Table 4. Comparison of data terms M7–M10 and their suitability for respecting discontinu-
ities in the image sequence.

data term concept discontinuities
M7 u�Jρ(∇3f) u least squares no
M8 u�Ĵt(∇3f) u nonlinear diffusion yes
M9 Ψ((u�∇3f)2) nonquadratic penaliser yes

least squares
M10 Ψ(u�Jρ(∇3f) u) and yes

nonquadratic penaliser

Table 5. Comparison of quadratic and nonquadratic penalisers for the data term M1 (bright-
ness constancy). We used a spatial energy functional with homogeneous regularisation, and
computed the average angular error (AAE) for the Yosemite sequence with clouds. The para-
meters σ, α and ρ have been optimised.

penaliser data term σ α ρ AAE
quadratic M1 1.30 500 - 7.17◦

nonquadratic M9 1.40 190 - 7.08◦

nonquadratic + least squares M10 1.40 200 2.0 6.76◦

In our last experiment on the impact of data terms we investigate the advantages
of nonquadratic penalisers. This is done in Table 5 where the termsM1,M9 andM10

are compared. Again, the listed results refer to the Yosemite sequence with clouds.
Obviously, one can improve the average angular error by replacing the quadratic
penaliser with a nonquadratic one. The reason for this improvement can be found in
Figure 4. It depicts a zoom into the lower left corner of frame 8 and 9, the ground
truth as well as the computed flow fields for the different data terms. As one can
see, those boundary pixels from frame 8 that are not present in frame 9 have a
large impact on the estimated flow field when penalised in a quadratic way. By
using a nonquadratic approach, however, their influence is reduced significantly.
As a consequence, the estimation at these locations becomes more precise and the
average angular error decreases.
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Fig. 4. From left to right: (a) Detail from Frame 8 of the Yosemite sequence with clouds (48×
128 pixels). (b) Frame 9. (c) Ground truth. (d) Computed flow field for a spatial approach
with data term M1 (quadratic penaliser) and homogeneous regularisation. (e) Data term M9

(nonquadratic penaliser). (f) Data term M10 (nonquadratic penaliser and least squares).

4 Smoothness Terms

So far we have analysed different possibilities for modelling the data term. Let us
now explore different models for the smoothness term. This is done in two steps:
First we survey a taxonomy that links the regularisers in optic flow functionals to
vector-valued diffusion processes. In a second step we investigate the impact of
replacing a spatial smoothness assumption by a spatiotemporal one.

4.1 A Diffusion Taxonomy for Smoothness Terms

A taxonomy of the different possibilities to design smoothness constraints has been
presented in [91]. It exploits the connection between regularisation methods and
diffusion filtering. In order to describe this taxonomy we derive the steepest de-
scent equations for the optic flow functionals. Since they come down to a diffusion–
reaction system, we analyse diffusion filters for vector-valued images. Finally we
transfer this classification into the optic flow setting.

From Energy Functionals to Diffusion–Reaction Systems Minimising the en-
ergy functional (2) can be done in two ways:
One possibility is to compute the so-called Euler–Lagrange equations. They consti-
tute necessary conditions a minimiser of E(u) has to satisfy [29, 36]. In the specific
case of a spatial energy functional (2) they are given by the two-dimensional system
of partial differential equations (PDEs)

0 = ∂x1Su1x1
+ ∂x2Su1,x2

− 1
α∂u1M, (26)

0 = ∂x1Su2x1
+ ∂x2Su2,x2

− 1
α∂u2M (27)

equipped with homogeneous Neumann (reflecting) boundary conditions. The term
Sui,xj

denotes the partial derivative of S with respect to ∂xj
ui.
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Alternatively we can minimise E(u) by means of the steepest descent method. In
the case of a spatial functional we obtain a system of two-dimensional diffusion–
reaction equations, where the diffusion term results from the regulariser S(∇f,∇u),
and the reaction term is induced by the data term M(Dkf, u):

∂tu1 = ∂x1Su1,x1
+ ∂x2Su1,x2

− 1
α∂u1M, (28)

∂tu2 = ∂x1Su2,x1
+ ∂x2Su2,x2

− 1
α∂u2M (29)

The parameter t is a pure numerical parameter that should not be confused with
the time x3 of the image sequence. If E(u) is strictly convex, a unique minimiser
exist and the steepest descent evolution is globally convergent, i.e. its steady–state
does not depend on the initialisation. For t→ ∞, this steady–state of the diffusion–
reaction system is given by the Euler–Lagrange equations (26)–(27).

Since we are interested in a taxonomy for optic flow regularisers, it it sufficient
to restrict ourselves to the diffusion part of (28)–(29). This leads to the vector-valued
diffusion process

∂tui = ∂xi
Sui,x1

+ ∂xi
Sui,x2

(i = 1, 2). (30)

In order to get a better understanding of such processes, it is instructive to make a
little excursion to diffusion filters for multichannel images. This shall be done next,
following the description in [89].

Diffusion of Vector-Valued Images Vector-valued images arise for example as
colour images, multispectral satellite images and multi-spin echo MR images. Dif-
fusion filtering of some multichannel image f = (f1(x), ..., fm(x))� with x ∈ �2

may be based on one of the following evolutions:

(a)Homogeneous diffusion (introduced in [46] in the scalar case):

∂tui = ∆ui (i = 1, ...,m) (31)

(b)Linear isotropic diffusion (introduced in [34] in the scalar case):

∂tui = div
(
g
(∑

j

|∇fj |2
)
∇ui

)
(i = 1, ...,m) (32)

(c)Linear anisotropic diffusion (introduced in [47] in the scalar case):

∂tui = div
(
D
(∑

j

∇fj∇f�j
)
∇ui

)
(i = 1, ...,m) (33)

(d)Nonlinear isotropic diffusion [37]:

∂tui = div
(
g
(∑

j

|∇uj |2
)
∇ui

)
(i = 1, ...,m) (34)
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(e)Nonlinear anisotropic diffusion [87]:

∂tui = div
(
D
(∑

j

∇uj∇u�j
)
∇ui

)
(i = 1, ...,m) (35)

where f(x) acts as initial condition for the solution u(x, t):

ui(x, 0) = fi(x) (i = 1, ...,m). (36)

Here, g denotes a scalar-valued diffusivity, and D is a positive definite diffusion
matrix. The diffusivity g(s2) is a decreasing function in its argument. Moreover, we
assume that the flux function g(s2)s is nondecreasing in s. One may e.g. use the reg-
ularised TV diffusivity (22). In the linear case this ensures that at edges of the initial
image f , where

∑
j |∇fj |2 is large, the diffusivity g(

∑
j |∇fj |2) is close to zero.

Consequently, diffusion at edges is inhibited. In the nonlinear case one introduces
a feedback by adapting the diffusivity g to the evolving image u. In physics, a dif-
fusion process with a scalar-valued diffusivity is called isotropic, since its diffusive
behavior does not depend on the direction. Anisotropic diffusion with a direction
depending behavior may be realised by replacing the scalar-valued diffusivity g by
some positive definite diffusion matrix D. One may design the diffusion matrix D
such that diffusion along edges of f or u is preferred and diffusion across edges is
inhibited. This may be very useful in cases when noisy edges are present.

How can edge directions in some vector-valued image f be measured? Di Zenzo
[30] has proposed to consider the matrix

∑
j ∇fj∇f�j . It serves as a structure ten-

sor for vector-valued images since its eigenvectors v1, v2 describe the directions of
highest and lowest contrast. This contrast is given by the corresponding eigenvalues
µ1 and µ2.

A natural choice for the design of some diffusion matrix D as a function of a
vector-valued image f would thus be to specify its eigenvectors as the eigenvectors
v1, v2 of

∑
j ∇fj∇f�j , and its eigenvalues λ1, λ2 via

λ1 = g(µ1), (37)
λ2 = g(µ2), (38)

with a diffusivity function g as e.g. in (22).
Three remarks are in order here:

1. The fact that in the preceding models the same diffusivity or diffusion matrix
is used for all channels ensures that the evolutions between the channels are
synchronised. This prevents e.g. that discontinuities evolve at different locations
in each channel.

2. Let J ∈ �2×2 be symmetric with eigenvectors v1, v2 and eigenvalues µ1, µ2:

J = µ1v1v
�
1 + µ2v2v

�
2 . (39)

A formal way to extend some scalar-valued function g(s2) to a matrix-valued
function g(J) is to define
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g(J) := g(µ1)v1v�1 + g(µ2)v2v�2 . (40)

With this notation we may characterise the linear and nonlinear isotropic mod-
els by their diffusivities g(

∑
j ∇f�j ∇fj) and g(

∑
j ∇u�j ∇uj), while their

anisotropic counterparts are given by g(
∑

j ∇fj∇f�j ) and g(
∑

j ∇uj∇u�j ).
Hence, isotropic and anisotropic models only differ by the location of the trans-
position.

3. The preceding models are not the only PDE methods that have been proposed
for processing vector-valued images. For alternative approaches the reader is
referred to [14, 50, 72, 82, 88] and the references therein. Our classification is
based on diffusion processes in divergence form that can be derived as steepest
descent methods for minimising suitable energy functionals.

Figure L illustrates the effect of the different smoothing strategies for a noisy
color image with three channels corresponding to the red, green and blue compo-
nents. We observe that homogeneous diffusion performs well with respect to de-
noising, but does not respect image edges. Space-variant linear isotropic diffusion,
however, may suffer from noise sensitivity as strong noise may be misinterpreted
as an important edge structure where the diffusivity is reduced. Anisotropic linear
diffusion allows smoothing along edges, but reduces smoothing across them. This
leads to a better performance than isotropic linear diffusion if images are noisy. We
can also observe that nonlinear models give better results than their linear counter-
parts. This is not surprising, since the nonlinear models adapt the diffusion process
to the evolving image instead of the initial one.

From Vector-Valued Diffusion to Optic Flow Regularisation Having discussed
a taxonomy for vector-valued diffusion, we can transfer it to the optic flow set-
ting. The idea is to identify the optic flow regularisers S(∇f,∇u) that produce
homogeneous, linear isotropic, linear anisotropic, nonlinear isotropic, and nonlin-
ear anistropic diffusion. It should be noted that now that we returned to the optic
flow setting, f denotes the image sequence again, and u is the flow field.

The simplest optic flow regulariser is the homogeneous regularisation of Horn
and Schunck [44]. This quadratic regulariser of type S(∇u) = |∇u1|2 + |∇u2|2
penalises all deviations from smoothness of the flow field. It can be related to lin-
ear diffusion with a constant diffusivity. Thus, the flow field is blurred in a ho-
mogeneous way such that motion discontinuities may loose sharpness and get dis-
located. It is thus not surprising that people have tried to construct a variety of
discontinuity-preserving regularisers. Depending on the structure of the resulting
diffusion term, we can classify a regulariser S(∇f,∇u) as image-driven or flow-
driven, and isotropic or anisotropic.

For image-driven regularisers, S is not only a function of the flow gradient ∇u
but also of the image gradient ∇f . This function is chosen in such a way that it
respects discontinuities in the image data. If only the gradient magnitude |∇f | mat-
ters, the method is called isotropic. It can avoid smoothing at image edges. An
anisotropic technique depends also on the direction of ∇f . Typically it reduces
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smoothing across edges of f (i.e. along ∇f ), while smoothing along edges of f is
still permitted. Image-driven regularisers can be related to linear diffusion processes.

Flow-driven regularisers take into account discontinuities of the unknown flow
field u by preventing smoothing at or across flow discontinuities. If the resulting
diffusion process uses a scalar-valued diffusivity that only depends on |∇u|2 :=
|∇u1|2 + |∇u2|2, it is an isotropic process. Cases where also the direction of ∇u1

and ∇u2 matters are named anisotropic. Flow-driven regularisers lead to nonlinear
diffusion processes.

Table 6 gives an overview of the different regularisers and their corresponding
diffusion filters. As a rule of thumb, one can expect that flow-driven regularisers
offer advantages over image-driven ones for highly textured sequences, where the
numerous texture edges create an oversegmentation of the flow field. Moreover,
anisotropic methods may give somewhat better results than isotropic ones, since the
latter ones are too “lazy” at noisy discontinuities.

Figure 5 presents an experiment that illustrates the impact of the smoothness
terms we have discussed so far. We compare the regularisers S1–S5 from Table 6
within a spatial approach based on the brightness constancy assumption M1. In or-
der to illustrate their impact on the flow field, we use the 512 × 512 Marble scene by
Otte and Nagel. This sequence that is available at http://i21www.ira.uka.
de/image-sequences consists of 31 frames and requires the estimation of flow
discontinuities within a globally translational motion. Figure 5 depicts a zoom into
the computed flow fields, where one of these discontinuities is shown. The perfor-
mance of the different regularisers is not surprising: Homogeneous regularisation
is fairly blurry and cannot preserve the discontinuity. Flow-driven and image-driven
regularisers perform better whereby the usage of flow information offers advantages
in textured regions. And finally, one observes that anisotropic regularisation yields
slightly more accurate results than the isotropic one.

4.2 Spatiotemporal Regularisation

While our general functional (2) allows either spatial or spatiotemporal models, the
regularisers that we have discussed so far use only spatial smoothness constraints.
Thus, it would be natural to impose some amount of (piecewise) temporal smooth-
ness as well. Let us now investigate what happens if we consider such spatiotempo-
ral models.

Going from spatial to spatiotemporal models is not very difficult in principle: All
one has to do is to replace the spatial integration domain Ω in (2) by a spatiotempo-
ral one, and to consider spatiotemporal instead of spatial derivatives. As a resulting
steepest descent method, one obtains the three-dimensional diffusion–reaction sys-
tem

∂tu1 = ∂x1Su1,x1
+ ∂x2Su1,x2

+ ∂x3Su1,x3
− 1

α∂u1M, (41)

∂tu2 = ∂x1Su2,x1
+ ∂x2Su2,x2

+ ∂x3Su2,x3
− 1

α∂u2M (42)

instead of its two-dimensional counterpart (28)–(29).



120 Joachim Weickert, Andrés Bruhn, Thomas Brox, and Nils Papenberg

Fig. 5. (a) Top left: Detail from Frame 16 of the Marble sequence (128×128 pixels). (b) Top
right: Computed optic flow magnitude for a spatial approach with data term M1 (brightness
constancy) and smoothness term S1 (homogeneous regularisation). (c) Middle left: Smooth-
ness term S2 (image-driven isotropic regularisation). (d) Middle right: Smoothness term S3

(image-driven anisotropic regularisation). (e) Bottom left: Smoothness term S4 (flow-driven
isotropic regularisation) (f) Bottom right: Smoothness term S5 (flow-driven anisotropic reg-
ularisation). From [91].



A Survey on Variational Optic Flow Methods for Small Displacements 121

Table 6. Vector-valued diffusion processes and their corresponding optic flow regularisers.
In the diffusion context, f denotes the vector-valued initial image and u its evolution. In the
optic flow setting, f is the scalar-valued image sequence and u describes the optic flow field.

vector-valued diffusion process optic flow regulariser
∂tui = ∂x1Suix1

+ ∂x2Suix2
S(∇f,∇u)

homogeneous homogeneous

∂tui = ∆ui S1 =
2∑

i=1

|∇ui|2

(scalar case: Iijima 1959 [46]) (Horn/Schunck 1981 [44])

linear isotropic image-driven, isotropic

∂tui = div
(
g(
∑

j
|∇fj |2) ∇ui

)
S2 = g(|∇f |2)

2∑
i=1

|∇ui|2

(scalar case: Fritsch 1992 [34]) (Alvarez et al. 1999 [2])

linear anisotropic image-driven, anisotropic

∂tui = div
(
g(
∑

j
∇fj∇f�

j ) ∇ui

)
S3 =

2∑
i=1

∇u�
i D(∇f)∇ui

(scalar case: Iijima 1962 [47]) (Nagel 1983 [60])

nonlinear isotropic flow-driven, isotropic

∂tui = div
(
Ψ ′(
∑

j
|∇uj |2) ∇ui

)
S4 = Ψ

( 2∑
i=1

|∇ui|2
)

(Gerig et al. 1992 [37]) (Schnörr 1994 [73])

nonlinear anisotropic flow-driven, anisotropic

∂tui = div
(
Ψ ′(
∑

j
∇uj∇u�

j ) ∇ui

)
S5 = trace Ψ

( 2∑
i=1

∇ui∇u�
i

)

(Weickert 1994 [87]) (Weickert/Schnörr 2001 [91])

In practice, spatiotemporal models have not been used too often so far. An early
suggestion for spatiotemporal anisotropic image-driven regularisers goes back to
Nagel [61], followed by spatiotemporal flow-driven approaches such as [11, 92]. It
appears that the limited memory of previous computer architectures prevented many
researchers from studying approaches with spatiotemporal regularisers, since they
require to keep the entire image stack in the computer memory. On contemporary
PCs, however, these memory requirements are no longer a severe restriction in most
cases. With respect to the computing time, the additional requirements are moderate
if the entire sequence has to be analysed anyway. Often spatiotemporal models re-
ward their users by significantly improved optic flow estimates. It is thus likely that
spatiotemporal regularisers will become more important in the future.
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Fig. 6. (a) Left: Detail of Frame 8 of the Copenhagen hallway sequence. (b) Middle: Com-
puted flow field for the spatial approach with data term M1 (brightness constancy) and
smoothness term S4 (isotropic flow-driven regularisation). (c) Right: Ditto for the spatiotem-
poral approach. From [92].

In Figure 6 we study the effect of replacing spatial by spatiotemporal regulari-
sation. This is done by the example of the 256×256 Copenhagen hallway sequence
by Olsen and Nielsen. This real-world sequence consists of 16 frames and shows a
person who walks along a hallway towards the camera. Comparing the quality of
both flow fields, one sees that the additional assumption of temporal smoothness
may lead to significantly improved results. In particular the displacements of fast
moving body parts such as arms and legs are estimated with a much higher preci-
sion.

5 Experiments with Suitable Combinations

In the previous experiments we have focused either on the data or on the smoothness
term. Let us now present experiments that illustrate how useful suitable combina-
tions of these terms are.

We start by considering a spatial approach with the least square regression data
termM7 and homogeneous regulariser S1. Then we replace the quadratic penalisers
in both the data and the smoothness term by nonquadratic penalising functions.
Thus, a spatial approach with data termM10 and isotropic flow-driven regulariser S4

is obtained. And finally, the energy functionals of both the original and the modified
variant are extended to the spatiotemporal domain.

A comparison of these four approaches is performed in Table 7 where average
angular errors for the Marble sequence are listed. The improvements of the results
thereby clearly show that established concepts in data and smoothness term should
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Fig. 7. (a) Top left: Frame 16 of the Marble sequence. (b) Top right: Ground truth magnitude.
(c) Middle left: Computed flow field for a spatial approach with data term M7 (least squares)
and smoothness term S1 (homogeneous regularisation). (d) Middle right: Ditto with data
term M10 (nonquadratic and least squares) and smoothness term S4 (isotropic flow-driven
regularisation). (e) Bottom left: Spatiotemporal approach with data term M7 (least squares)
and smoothness term S1 (homogeneous regularisation). (f) Bottom right: Ditto with data
term M10 (nonquadratic and least squares) and smoothness term S4 (isotropic flow-driven
regularisation). Adapted from [26].
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Table 7. Results for different combinations based on local integration. The average angular
error (AAE) has been computed for the Marble sequence. Adapted from [26].

approach data term smoothness term AAE
2-D quadratic M7 S1 5.30◦

2-D nonquadratic M10 S4 5.14◦

3-D quadratic M7 S1 2.06◦

3-D nonquadratic M10 S4 1.70◦

be combined in order to obtain the best performance. This is also confirmed by Fig-
ure 7, where we depict the computed flow fields. One can see that each component
contributes to the overall improvement: The non-quadratic data term improves the
estimation for outliers in the boundary region, the flow-driven isotropic regulariser
allows a better preservation of the discontinuities at the marbled blocks and the tem-
poral extension produces a more homogeneous estimation of the floor.

In a second experiment we replace the brightness constancy assumption within
M10 by the gradient constancy assumption used in M2. Let us denote this new
data term by M11. In Table 8 the resulting spatial and spatiotemporal approach are
compared to other methods from the literature, when being applied to the Yosemite
sequence with clouds. With 2.78◦ respectively 3.50◦ very low average angular er-
rors are obtained1. The corresponding flow fields for the spatiotemporal method are
depicted in Fig. 8. Obviously, they match the ground truth very well. This shows
that sophisticated variational approaches belong to the qualitatively best performing
optic flow methods.

6 Well-Posedness Results

One specific advantage of convex variational methods for optic flow computations
results from the fact that they allow a rigorous mathematical analysis. As an exam-
ple, the following result has been proven in [91] for spatial or spatiotemporal energy
functionals with the brightness constancy assumption as data term M1 and any of
the smoothness terms S1,...,S5:

Theorem (Well-Posedness of Optic Flow Functionals).
Assume that the following properties hold:

(a)The penalising function Ψ(s2) is differentiable and strictly convex in s ∈ �.
(b)There exist c1, c2 > 0 such that c1s2 ≤ Ψ(s2) ≤ c2s

2 for all s.
(c)The initial data are sufficiently smooth: f ∈ H1(Ω).
(d)fx1 and fx2 are linearly independent in L2(Ω) and have finite L∞(Ω) norm.

Then the (spatial or spatiotemporal) energy functional

1This method has been further modified in [18] where it yielded the best results in the
literature so far.
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Table 8. Comparison between results from the literature with 100 % density and our re-
sults using a 3-D functional with data term M11 (nonquadratic penalised gradient constancy)
and smoothness term S4 (isotropic flow-driven regulariser). All data refer to the Yosemite
sequence with cloudy sky. Multiscale means that some focusing strategy using linear scale-
space or pyramids has been applied. AAE = average angular error.

technique multiscale AAE
Horn/Schunck, original [9] no 31.69◦

Singh, step 1 [9] no 15.28◦

Anandan [9] no 13.36◦

Singh, step 2 [9] no 10.44◦

Nagel [9] no 10.22◦

Horn/Schunck, modified [9] no 9.78◦

Uras et al., unthresholded [9] no 8.94◦

Alvarez/Weickert/Sánchez [3] yes 5.53◦

Mémin/Pérez (IEEE TIP) [56] yes 5.38◦

Bruhn/Weickert/Schnörr [26] no 5.18◦

Mémin/Pérez (ICCV ’98) [57] yes 4.69◦

2-D nonquadratic / gradient constancy (M11 + S4) no 3.50◦

3-D nonquadratic / gradient constancy (M11 + S4) no 2.78◦

Fig. 8. (a) Top left: Ground truth for the Yosemite sequence with clouds. (b) Top right: Mag-
nitude of the ground truth. (c) Bottom left: Computed flow field for a spatiotemporal approach
with data term M11 (nonquadratic gradient constancy) and smoothness term S4 (isotropic
flow-driven regularisation). (d) Bottom right: Magnitude of the computed flow field.
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E(u) =
∫

Ω

(
〈u,∇3f〉2 + αSj(∇f,∇u)

)
dx (43)

with j ∈ {1,...,5} has a unique minimiser w := (u1, u2) ∈ H1(Ω)×H1(Ω) =: H.
It depends in a continuous way on the image sequence f .

The proof of this theorem combines methods from [75] and from [91] where
two essential properties are required:

1. In order to guarantee strict convexity of the smoothness term, a convexity esti-
mate for matrices is needed:
Let Ψ : �→ � be strictly convex, A and B two positive semidefinite symmet-
ric m×m matrices with A �= B, and β ∈ (0, 1). Then

traceΨ(βA+ (1 − β)B) < β traceΨ(A) + (1 − β) traceΨ(B). (44)

2. On the other hand, strict convexity of the data term requires to address degen-
eracies by showing that there exists a constant c > 0 such that

∫
Ω

(
(∇f�w)2 + γ|∇w|2

)
dx ≥ c ‖w‖2

H , ∀w ∈ H. (45)

It should be noted that such a well-posedness proof is much more than a pure
theoretical result: In practise it also guarantees e.g. stability of the optic flow field
with respect to noise that perturbs the image data. In this sense it is the real reason
behind the high robustness that distinguishes good variational approaches from a
number of alternative ways to estimate the optic flow field. For alternative ways to
obtain well-posedness results for optic flow functionals we refer to [6, 7, 43].

7 Algorithms

For the numerical minimisation of the energy functional (2), two strategies are used
very frequently:

In the first strategy, one discretises the parabolic diffusion–reaction system (28),
(29) and recovers the optic flow field as the steady–state solution for t → ∞. The
simplest numerical scheme would be an explicit (Euler forward) finite difference
scheme [58, 59, 76]. More efficient methods include semi-implicit approaches that
offer better stability properties at the expense of the need to solve linear systems of
equations.

Alternatively, one can directly discretise the elliptic Euler-Lagrange equations
(26), (27), either by finite differences [58, 59, 76] or finite elements [27, 85].
This also requires to solve large linear or nonlinear systems of equations. Efficient
methods for this task include successive overrelaxation (SOR) methods [84, 94],
preconditioned conjugate gradient (PCG) algorithms [55, 71] and multigrid tech-
niques [16, 17, 40, 80, 93].
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Fig. 9. Example of a full multigrid implementation for four levels. Starting from a coarse
scale the solution is refined step by step. From [22].

Table 9. Performance benchmark for the 316 × 252 Yosemite sequence with clouds. FPS
= frames per second. Runtimes refer to the computation of all 14 frames with a numerical
precision of 10−3. The implementation was done in C on a 3.06 GHz Pentium 4 PC. The
obtained average angular error is 7.17◦. From [22].

solver iterations/frame runtime [s] FPS [s−1] speedup
Gauß–Seidel 21931 543.799 0.026 1
SOR 286 10.140 1.381 54
Gauß–Seidel, coarse-to-fine 237 8.399 1.667 65
SOR, coarse-to-fine 25 1.723 8.125 316
full multigrid 1 0.768 18.229 708

Figure 9 illustrates an example of a full multigrid cycle with 4 levels. Such
strategies have been used in [22, 23] for finding the minimum of a variational ap-
proach with data term M2 and a homogeneous regulariser. Thus, it was possible to
compute up to 18 dense flow fields of size 316 × 252 pixels on 3.06 GHz Pentium
4 PC within a single second. Table 9 compares the performance of this numerical
scheme to widely used iterative solvers like the Gauß-Seidel method or its extrap-
olated SOR variant. As one can see, the full multigrid cycle is almost three orders
of magnitude more efficient than the Gauß-Seidel relaxation scheme and 13 times
faster than the SOR method. Even frequently used coarse-to-fine strategies with-
out error correction steps are outperformed clearly. This shows that computational
efficiency is no problem for variational optic flow methods, when state-of-the-art
numerical methods are used.

While this example refers to a quadratic energy functional that leads to linear
Euler–Lagrange equations, it is also possible to achieve real-time performance with
nonquadratic functionals that give rise to nonlinear Euler–Lagrange equations. This
is shown in [24] as well as in [25] where a larger variety of methods is studied.

8 A Simple and General Confidence Measure

While global, energy-based optic flow methods yield dense flow fields due to the
filling-in effect, it is clear that the flow estimates cannot have the same reliability
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at all locations. It would thus be interesting to find a confidence measure that al-
lows to assess the reliability of a dense optic flow field. In 1994 Barron et al. [9]
have identified the absence of such good measure as one of the main drawbacks
of energy-based global optic flow techniques: Simple heuristics such as using |∇f |
as a confidence measure did not work well. As a remedy, we present a confidence
measure that is not only very simple, but also suited for any variational optic flow
method. In our description we follow [26].

Since the energy functional E penalises deviations from model assumptions by
summing up the deviations Ei from all pixels i in the image domain, it appears
natural to use Ei for assessing the local reliability of the computation. All we have
to do is to consider the cumulative histogram of the contributionsEi of all pixels i ∈
{1,...,N} in the image domain. As an approximation to the p percent locations with
the highest reliability, we look for the p percent locations where the contribution Ei

is lowest. There are very efficient algorithms available for this purpose; see e.g. [67,
Section 8.5].

Let us now evaluate the quality of our energy-based confidence measure. To this
end we consider the spatiotemporal energy functional with the local least square fit
data term M7 and the isotropic flow-driven regulariser S4. In [26], this technique
is named 3-D CLG (combined local–global) method. Figure 10(a) depicts the 20
% quantile of locations where the 3-D CLG method has lowest contributions to the
energy. A comparison with Figure 10(b) – which displays the result of a theoretical
confidence measure that would be optimal with respect to the average angular error
– demonstrates that the energy-based confidence method leads to a fairly realistic
sparsification of flow fields. In particular, we observe that this confidence criterion
is very successful in removing the cloudy sky regions. These locations are well-
known to create large angular errors in many optic flow methods [9]. A number of
authors have thus only used the modified Yosemite sequence without cloudy sky,
or they have neglected the flow values from the sky region for their evaluations

Fig. 10. Confidence criterion for the Yosemite sequence with clouds. (a) Left: Locations with
the lowest contributions to the energy (20 % quantile). The non-black grey values depict the
optic flow magnitude. (b) Right: Locations where the angular error is lowest (20 % quantile).
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[8, 12, 13, 31, 32, 48, 49, 53, 77]. As we have seen one may get significantly lower
angular errors than for the full sequence with cloudy sky.

A quantitative evaluation of our confidence measure is given in Table 10. Here
we have used the energy-based confidence measure to sparsify the dense flow field
such that the reduced density coincides with densities of well-known optic flow
methods. Most of them have been evaluated by Barron et al. [9]. We observe that
the sparsified 3-D CLG method performs very favourably: It has a far lower angular
error than all corresponding methods with the same density. In several cases there
is an order of magnitude between these approaches. At a flow density of 2.4 %,
an average angular error of 0.76 ◦ is reached. To our knowledge, these are the best
values that have been obtained for this sequence in the entire literature. It should be
noted that these results have been computed from an image sequence that suffers
from quantisation errors since its grey values have been stored in 8-bit precision
only.

In Table 10 we also observe that the angular error decreases monotonically un-
der sparsification over the entire range from 100 % down to 2.4 %. This in turn
indicates an interesting finding that may seem counterintuitive at first glance: Re-
gions in which the filling-in effect dominates give particularly small angular errors.
In such flat regions, the data term vanishes such that a smoothly extended flow field
may yield only a small local contribution to the energy functional. If there were

Table 10. Comparison between the “nondense” results from Barron et al. [9], Weber and
Malik [86], Ong and Spann [66] and our results for the Yosemite sequence with cloudy sky.
AAE = average angular error. CLG = average angular error of the 3-D CLG method with the
same density. The sparse flow field has been created using our energy-based confidence crite-
rion. The table shows that using this criterion clearly outperforms all results in the evaluation
of Barron et al.

Technique Density AAE CLG
Singh, step 2, λ1 ≤ 0.1 97.7 % 10.03◦ 6.04◦

Ong/Spann 89.9 % 5.76◦ 5.26◦

Heeger, level 0 64.2 % 22.82◦ 3.00◦

Weber/Malik 64.2 % 4.31◦ 3.00◦

Horn/Schunck, original, |∇f | ≥ 5 59.6 % 25.33◦ 2.72◦

Ong/Spann, tresholded 58.4 % 4.16◦ 2.66◦

Heeger, combined 44.8 % 15.93◦ 2.07◦

Lucas/Kanade, λ2 ≥ 1.0 35.1 % 4.28◦ 1.71◦

Fleet/Jepson, τ = 2.5 34.1 % 4.63◦ 1.67◦

Horn/Schunck, modified, |∇f | ≥ 5 32.9 % 5.59◦ 1.63◦

Nagel, |∇f | ≥ 5 32.9 % 6.06◦ 1.63◦

Fleet/Jepson, τ = 1.25 30.6 % 5.28◦ 1.55◦

Heeger, level 1 15.2 % 9.87◦ 1.15◦

Uras et al., det(H) ≥ 1 14.7 % 7.55◦ 1.14◦

Singh, step 1, λ1 ≤ 6.5 11.3 % 12.01◦ 1.07◦

Waxman et al., σf = 2.0 7.4 % 20.05◦ 0.95◦

Heeger, level 2 2.4 % 12.93◦ 0.76◦
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large angular errors in regions with such low energy contributions, our confidence
measure would not work well for low densities. This also confirms the observation
that |∇f | is not necessarily a good confidence measure [9]: Areas with large gradi-
ents may represent noise or occlusions, where reliable flow information is difficult
to obtain. The filling-in effect, however, may create more reliable information in
flat regions by averaging less reliable information that comes from all the surround-
ing high-gradient regions. A more extensive experimental evaluation of the energy
based confidence measure is presented in [21].

9 Summary and Extensions

In this chapter we have outlined some basic design principles for variational optic
flow methods and studied their performance in a number of experiments. For the-
oretical and practical reasons we have restricted ourselves to convex energy func-
tionals that use linearised data terms. They are valid approximations when the tem-
poral sampling is sufficiently fine such that the displacements between subsequent
frames are small. We have seen that contemporary variational optic flow models
have reached a high degree of sophistication that allows to achieve highly accurate
computations of the displacement fields. Moreover, they are mathematically well-
founded, they allow real-time computations on standard hardware, and it is possible
to apply a simple and intuitive confidence measure.

There are several possibilities to improve the performance of these methods even
further: One may for instance use data terms that renounce linearisations [3, 11, 62].
They create models that are better suitable for large displacements between subse-
quent frames. Unfortunately they lead to nonconvex functionals that may possess
numerous local minimisres. In such a case one often uses multilevel strategies that
encourage convergence towards a global minimiser [3, 4, 56]. Another extension
that becomes relevant for large displacements consists of using modified functionals
in order to deal with occlusion problems [1, 68]. On the numerical side, paralleli-
sation strategies can be investigated, e.g. domain decomposition methods [51]. A
detailed discussion of these extensions is beyond the scope of the present chapter.

It is our hope that the models we have described do not remain restricted to optic
flow computation, but will also prove their use in related correspondence problems
such as stereo reconstruction and image registration.
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74. C. Schnörr. Unique reconstruction of piecewise smooth images by minimizing strictly
convex non-quadratic functionals. Journal of Mathematical Imaging and Vision, 4:189–
198, 1994.
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