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Centre de Mathématiques Appliquées, Ecole Polytechnique,
F-91128 Palaiseau, France. Rama.Cont@polytechnique.fr

Summary. Time series of financial asset returns often exhibit the volatility cluster-
ing property: large changes in prices tend to cluster together, resulting in persistence
of the amplitudes of price changes. After recalling various methods for quantifying
and modeling this phenomenon, we discuss several economic mechanisms which have
been proposed to explain the origin of this volatility clustering in terms of behavior
of market participants and the news arrival process. A common feature of these
models seems to be a switching between low and high activity regimes with heavy-
tailed durations of regimes. Finally, we discuss a simple agent-based model which
links such variations in market activity to threshold behavior of market participants
and suggests a link between volatility clustering and investor inertia.

1 Introduction

The study of statistical properties of financial time series has revealed a wealth
of interesting stylized facts which seem to be common to a wide variety of
markets, instruments and periods (Ding et al., 1993, Guillaume et al., 1997,
Pagan, 1996 , Cont, 2001):

• Excess volatility: many empirical studies point out to the fact that it
is difficult to justify the observed level of variability in asset returns by
variations in “fundamental” economic variables. In particular, the occur-
rence of large (negative or positive) returns is not always explainable by
the arrival of new information on the market (Cutler et al., 1989).

• Heavy tails: the (unconditional) distribution of returns displays a heavy
tail with positive excess kurtosis.
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• Absence of autocorrelations in returns: (linear) autocorrelations of
asset returns are often insignificant, except for very small intraday time
scales (� 20 minutes) where microstructure effects come into play.

• Volatility clustering: as noted by Mandelbrot (1963), “large changes
tend to be followed by large changes, of either sign, and small changes
tend to be followed by small changes.” A quantitative manifestation of this
fact is that, while returns themselves are uncorrelated, absolute returns
|rt| or their squares display a positive, significant and slowly decaying
autocorrelation function: corr(|rt|, |rt+τ |) > 0 for τ ranging from a few
minutes to a several weeks.

• Volume/volatility correlation: trading volume is positively correlated
with market volatility. Moreover, trading volume and volatility show the
same type of “long memory” behavior (Lobato and Velasco, 2000).

Among these properties, the phenomenon of volatility clustering has intrigued
many researchers and oriented in a major way the development of stochas-
tic models in finance –GARCH models and stochastic volatility models are
intended primarily to model this phenomenon. Also, it has inspired much de-
bate as to whether there is long-range dependence in volatility. We review
some of these issues in Section 2. As noted by the participants of this econo-
metric debate (Willinger et al., 1999, Mikosch and Stărică, 2003), statistical
analysis alone is not likely to provide a definite answer for the presence or
absence of long-range dependence phenomenon in stock returns or volatility,
unless economic mechanisms are proposed to understand the origin of such
phenomena.

Some insights into these economic mechanisms are given by agent-based
models of financial markets. Agent-based market models attempt to explain
the origin of the observed behavior of market prices in terms of simple, styl-
ized, behavioral rules of market participants, (Chiarella et al., 2003, Lux, 1998,
Lux and Marchesi, 2000, LeBaron 2001a): in this approach a financial mar-
ket is modeled as a system of heterogeneous, interacting agents and several
examples of such models have been shown to generate price behavior similar
to those observed in real markets. We review some of these approached in
Section 3 and discuss how they lead to volatility clustering.

Most of these agent-based models are complex in structure and have been
studied using Monte Carlo simulations. As noted also by LeBaron (2000), due
to the complexity of such models it is often not clear which aspect of the model
is responsible for generating the stylized facts and whether all the ingredients
of the model are indeed required for explaining empirical observations. In
Section 4 we present an agent-based model capable of generating time series
of asset returns with properties similar to the stylized facts above, but which
is simple enough in structure so the origins of volatility clustering can be
traced back to agents behavior. This model points to a link between investor
inertia and volatility clustering and provide an economic explanation for the
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switching mechanism proposed in the econometrics literature as an origin of
volatility clustering.

2 Volatility Clustering in Financial Time Series

Denote by St the price of a financial asset — a stock, an exchange rate or a
market index — and Xt = lnSt its logarithm. Given a time scale ∆, the log
return at scale ∆ is defined as:

rt = Xt+∆ −Xt = ln(
St+∆

St
). (1)

∆ may vary between a minute (or even seconds) for tick data to several days.
Observations are sampled at discrete times tn = n∆. Time lags will be denoted
by the Greek letter τ ; typically, τ will be a multiple of ∆ in estimations. For
example, if ∆ =1 day, corr[rt+τ , rt] denotes the correlation between the daily
return at period t and the daily return τ periods later.

2.1 Empirical Behavior of Autocorrelation Functions

A typical display of daily log-returns is shown in figure 1: the volatility cluster-
ing feature is seen graphically from the presence of sustained periods of high
or low volatility. As noted above, the autocorrelation of returns is typically
insignificant at lags between a few minutes and a month. An example is shown
in figure 2 (left). This “spectral whiteness” of returns can be attributed to
the activity of arbitrageurs who exploit linear correlations in returns via trend
following strategies, see Mandelbrot (1971). By contrast, the autocorrelation
function of absolute returns remains positive over lags of several weeks and
decays slowly to zero: figure 2 (right) shows this decay for SLM stock (NYSE).
This observation is remarkably stable across asset classes and time periods and
is regarded as a typical manifestation of volatility clustering (Bollerslev et al.,
1992, Ding et al., 1993, Cont et al., 1997, Guillaume et al., 1997). Similar be-
havior is observed for the autocorrelation of squared returns, see Bollerslev et
al. (1992), and more generally for |rt|α (Ding et al., 1993, Ding and Granger,
1996, Cont et al., 1997), but it seems to be most significant for α = 1, i.e.
absolute returns (Ding et al., 1993).

GARCH models (Bollerslev et al., 1992, Engle, 1995) were among the
first models to take into account the volatility clustering phenomenon. In a
GARCH(1,1) model the (squared) volatility depends on last periods volatility:

rt = σtεt, σ2
t = a0 + aσ2

t−1 + bε2t , 0 < a+ b < 1, (2)

leading to positive autocorrelation in the volatility process σt, with a rate of
decay governed by a+ b: the closer a+ b is to 1, the slower the decay of the
autocorrelation of σt. The constraint a + b < 1 allows for the existence of a
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Fig. 1. Large changes cluster together: BMW daily log-returns. ∆ = 1 day

stationary solution, while the upper limit a+ b = 1 corresponds to the case of
an integrated process. Estimations of GARCH(1,1) on stock and index returns
usually yield a+ b very close to 1 (Bollerslev et al., 1992). For this reason the
volatility clustering phenomenon is sometimes called a “GARCH effect”; one
should keep in mind however that volatility clustering is a “non-parametric”
property and is not intrinsically linked to a GARCH specification.

While GARCH models give rise to exponential decay in autocorrelations
of absolute or squared returns, the empirical autocorrelations are similar to a
power law; see Cont et al. (1997), Guillaume et al. (1997):

C|r|(τ) = corr(|rt|, |rt+τ |) �
c

τβ
,

with an exponent β ≤ 0.5, (Cont et al., 1997, Breidt et al., 1998), which
suggests the presence of “long-range” dependence in amplitudes of returns,
discussed below.
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Fig. 2. SLM stock, NYSE, ∆ = 5 minutes. Left: autocorrelation function of log-
returns. Right: autocorrelation of absolute log-returns

2.2 Long Range Dependence

Let us recall briefly the commonly used definitions of long range dependence,
based on the autocorrelation function of a process:

Definition 1 (Long range dependence). A stationary process Yt (with
finite variance) is said to have long range dependence if its autocorrelation
function C(τ) = corr(Yt, Yt+τ ) decays as a power of the lag τ :

C(τ) = corr(Yt, Yt+τ ) ∼
τ→∞

L(τ)

τ1−2d
, 0 < d <

1

2
, (3)

where L is slowly varying at infinity, i.e. verifies ∀a > 0, L(at)
L(t) → 1 as t→ ∞.

By contrast, one speaks of “short range dependence” if the autocorrelation
function decreases at a geometric rate:

∃K > 0, c ∈]0, 1[, |C(τ)| ≤ Kcτ . (4)

Obviously, (3) and (4) are not the only possibilities for the behavior of the
autocorrelation function at large lags: there are many other possible decays
rates, intermediate between a power decay and a geometric decay. However,
it is noteworthy that in all stochastic models used in the financial modeling
literature, the behavior of returns and their absolute values fall within one of
the two categories.

The long range dependence property (3) hinges upon the behavior of the
autocorrelation function at large lags, a quantity which may be difficult to
estimate empirically, see Beran (1994). For this reason, models with long-range
dependence are often formulated in terms of self-similar processes, which allow
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to extrapolate across time scales and deduce long time behavior from short
time behavior, which is more readily observed. A stochastic process (Xt)t≥0

is said to be self-similar if there exists H > 0 such that for any scaling factor
c > 0, the processes (Xct)t≥0 and (cHXt)t≥0 have the same law:

(Xct)t≥0
d
=(cHXt)t≥0. (5)

H is called the self-similarity exponent of the process X . Note that a self-
similar process cannot be stationary, so the above definition of long-range
dependence cannot hold for a self-similar process, but eventually for its in-
crements (if they are stationary). The typical example of self-similar process
whose increments exhibit long range dependence is fractional Brownian mo-
tion (Mandelbrot and Van Ness, 1968).

But self-similarity does not imply long-range dependence in any way: α-
stable Lévy processes provide examples of self-similar processes with inde-
pendent increments. Nor is self-similarity implied by long range dependence:
Cheridito (2004) gives several examples of Gaussian semimartingales with the
same long range dependence features as fractional Brownian noise but with no
self-similarity (thus very different “short range” properties and sample path
behavior). The example of fractional Brownian motion is thus misleading in
this regard, since it conveys the idea that these two properties are associated.
When testing for long range dependence in a model based on fractional Brow-
nian motion, we thus test the joint hypothesis of self-similarity and long-range
dependence and strict self-similarity is not observed to hold in asset returns
(Cont et al., 1997, Cont, 2001).

A fallacy often encountered in the literature is that long range dependence
in returns is incompatible with absence of (continuous-time) arbitrage. Again,
the origin of this idea can be traced back to models based on fractional Brown-
ian motion: since fractional Brownian motion is not a semimartingale, a model
in which the (log)-price are described by a fractional Brownian motion is not
arbitrage-free (in the continuous-time sense); see Rogers (1997). This result
(and the fact that fractional Brownian motions fails to be a semimartingale)
crucially depends on the local behavior of its sample paths, not on its long
range dependence property. Cheridito (2004) gives several examples of Gaus-
sian processes with the same long range dependence features as fractional
Brownian motion, but which are semimartingales and lead to arbitrage-free
models.

2.3 Dependence in Stock Returns

The volatility clustering feature indicates that asset returns are not indepen-
dent across time; on the other hand the absence of linear autocorrelation
shows that their dependence is nonlinear. Whether this dependence is “short
range” or “long range” has been the object of many empirical studies.
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The idea that stock returns could exhibit long range dependence was first
suggested by Mandelbrot (1971) and subsequently observed in many empir-
ical studies using R/S analysis (Mandelbrot and Taqqu, 1979). Such tests
have been criticized by Lo (1991) who pointed out that, after accounting for
short range dependence, they might yield a different result and proposed a
modified test statistic. Lo’s statistic highly depends on the way “short range”
dependence is accounted for and shows a bias towards rejecting long range
dependence, see Teverovsky et al. (1999). The final empirical conclusions are
therefore less clear (Willinger et al., 1999).

However, the absence of long range dependence in returns may be compat-
ible with its presence in absolute returns or “volatility”. As noted by Heyde
(2002), one should distinguish long range dependence in signs of increments,
when sign(rt) verifies (3), from long range dependence in amplitudes, when
|rt| verifies (3). Asset returns do not seem to possess long range dependence
in signs (Heyde, 2002). Many authors have thus suggested models, such as
FIGARCH (Baillie et al., 1996), in which returns have no autocorrelation but
their amplitudes have long range dependence; see Doukhan et al. (2003).

It has been argued (LeBaron, 2001b, Barndorff-Nielsen and Shephard,
2001) that the decay of C|r|(τ) can also be reproduced by a superposition
of several exponentials, indicating that the dependence is characterized by
multiple time scales. In fact, an operational definition of long range depen-
dence is that the time scale of dependence in a sample of length T is found
to be of the order of T : dependence extends over the whole sample. Interest-
ingly, the largest time scale in LeBaron (2001b) is found to be of the order of
. . . the sample size, a prediction which would be compatible with long-range
dependence!

Many of these studies test for long range dependence in returns, volatil-
ity,etc. by examining sample autocorrelations, Hurst exponents etc. but if time
series of asset returns indeed possess the two features of heavy tails and long
range dependence, then many of the standard estimation procedures for these
quantities may fail to work (Resnick, 1998). For example, sample autocorrela-
tion functions may fail to be consistent estimators of the true autocorrelation
of returns in the price generating process: Resnick et al. (1999) give examples
of such processes where sample autocorrelations converge to random values as
sample size grows! Also, in cases where the sample ACF is consistent, its esti-
mation error can have a heavy-tailed asymptotic distribution, leading to large
errors. The situation is even worse for autocorrelations of squared returns,
see Mikosch and Stărică (2000). Thus, one must be cautious in identifying
behavior of sample autocorrelation with the autocorrelations of the return
process.

Slow decay of sample autocorrelation functions may possibly arise from
other mechanism than long-range dependence. For example, note that non-
stationarity of the returns may also generate spurious effects which can be
mistaken for long-range dependence in the volatility. However, we will not go
to the extreme of suggesting, as in Mikosch and Stărică (2003), that the slow
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decay of sample autocorrelations of absolute returns is a pure artefact due
to non-stationarity. “Non-stationarity” does not suggest a modeling approach
and it seems highly unlikely that unstructured non-stationarity would lead to
such a robust, stylized behavior for the sample autocorrelations of absolute
returns, stable across asset classes and time periods. The robustness of these
empirical facts call for an explanation, which “non-stationarity” does not pro-
vide. Of course, these mechanisms are not mutually exclusive: a recent study
by Granger and Hyung (2004) illustrates the interplay of these two effects
by combining an underlying long memory process with occasional structural
breaks.

Independently of the econometric debate on the “true nature” of the return
generating process, one can take into account such empirical observations
without pinpointing a specific stochastic model by testing for similar behavior
of sample autocorrelations in agent-based models (described below), and using
sample autocorrelations for indirect inference (Gourieroux et al., 1993), of the
parameters of such models.

3 Mechanisms for Volatility Clustering

While GARCH, FIGARCH and stochastic volatility models propose statistical
constructions which mimick volatility clustering in financial time series, they
do not provide any economic explanation for it. We discuss here possible
mechanisms which have been proposed for the origin of volatility clustering.

3.1 Heterogeneous Arrival Rates of Information

Heterogeneity in agent’s time scale has been considered as a possible origin for
various stylized facts (Guillaume et al., 1997). Long term investors naturally
focus on long-term behavior of prices, whereas traders aim to exploit short-
term fluctuations.

Granger (1980) suggested that long memory in economic time series can
be due to the aggregation of a cross section of time series with different persis-
tence levels. This argument was proposed by Andersen and Bollerslev (1997)
as a possible explanation for volatility clustering in terms of aggregation of
different information flows.

The effects of the diversity in time horizons on price dynamics have also
been studied by Lebaron (2001a) in an artificial stock market, showing that
the presence of heterogeneity in horizons may lead to an increase in return
variability, as well as volatility-volume relationships similar to those of actual
markets.

3.2 Evolutionary Models

Several studies have considered modeling financial markets by analogy with
ecological systems where various trading strategies co-exist and evolve via
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a “natural selection” mechanism, according to their relative profitability,
(Arthur et al., 1997, Arifovic and Gencay, 2000, LeBaron et al., 1999, LeBaron,
2001a). The idea of these models, the prototype of which is the Santa Fe ar-
tificial stock market, (Arthur et al., 1997, LeBaron et al., 1999), is that a
financial market can be viewed as a population of agents, identified by their
(set of) decision rules. A decision rule is defined as a mapping from an agents
information set (price history, trading volume, other economic indicators) to
the set of actions (buy, sell, no trade). The evolution of agents decision rule
is often modeled using a genetic algorithm (Holland, 1992). The specification
and simulation of such evolutionary models can be quite involved and spe-
cialized simulation platforms have been developed to allow the user to specify
variants of agents strategies and evolution rules. Other evolutionary models
represent the evolution by a deterministic dynamical system which, through
the complex price dynamics it generate, are able to mimick some “statistical”
properties of the returns process, including volatility clustering; see Hommes
et al. (2003).

Though the Santa Fe market model is capable of qualitatively replicating
some of the stylized facts (LeBaron et al., 1999) precise comparisons with
empirical observations are still lacking. Indeed, given the large number of
parameters, it is not possible to calibrate the parameters in order to interpret
the time periods in the simulations as “days” or “minutes” etc. thereby leading
to a lack of reference for empirical comparisons.

More importantly, the competition between numerous strategies in such
complex simulation models does not allow to pinpoint a single mechanism as
being responsible for volatility clustering or other stylized properties. Models
in which a dominant mechanism is at work are more helpful in this respect;
we will now discuss some instances of such models.

3.3 Behavioral Switching

The economic literature contains examples where switching of economic agents
between two behavioral patterns leads to large aggregate fluctuations, Kirman
(1993): in the context of financial markets, these behavioral patterns can be
seen as trading rules and the resulting aggregate fluctuations as large move-
ments in the market price i.e. heavy tails in returns. Recently, models based
on this idea have also been shown to generate volatility clustering (Kirman
and Teyssière, 2002, Lux and Marchesi, 2000).

Lux and Marchesi (2000) study an agent-based model in which heavy tails
of asset returns and volatility clustering arise from behavioral switching of
market participants between fundamentalist and chartist behavior. Funda-
mentalists expect that the price follows the fundamental value in the long
run. Noise traders try to identify price trends, which results in a tendency to
herding. Agents are allowed to switch between these two behaviors accord-
ing to the performance of the various strategies. Noise traders evaluate their
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performance according to realized gains, whereas for the fundamentalists, per-
formance is measured according to the difference between the price and the
fundamental value, which represents the anticipated gain of a “convergence
trade”. This decision-making process is driven by an exogenous fundamental
value, which follows a Gaussian random walk. Price changes are brought about
by a market maker reacting to imbalances between demand and supply. Most
of the time, a stable and efficient market results. However, its usual tranquil
performance is interspersed by sudden transient phases of destabilization. An
outbreak of volatility occurs if the fraction of agents using chartist techniques
surpasses a certain threshold value, but such phases are quickly brought to
an end by stabilizing tendencies. This behavioral switching is believed be the
cause of volatility clustering, long memory and heavy tails in the Lux-Marchesi
(2000) model.

Kirman and Teyssière (2002) have proposed a variant of Kirman (1993) in
which the proportion α(t) of fundamentalists in the market follows a Markov
chain, of the type used in epidemiological models, describing herding of opin-
ions. Simulation of this model exihibit autocorrelation patterns in absolute
returns with a behavior similar to that described in Section 2.

3.4 The Role of Investor Inertia

As argued by Liu (2000), the presence of a Markovian regime switching mech-
anism in volatility can lead to volatility clustering, is not sufficient to generate
long-range dependence in absolute returns. More important than the switch-
ing is the fact the time spent in each regime –the duration of regimes– should
have a heavy-tailed distribution (Pourahmadi, 1988, Taqqu and Levy, 1986).
By contrast with Markov switching, which leads to short range correlations,
this mechanism has been called “renewal switching”.2

Bayraktar et al. (2003) study a model where an order flow with random,
heavy-tailed, durations between trades leads to long range dependence in re-
turns. When the durations τn of the inactivity periods have a distribution of
the form P(τn ≥ t) = t−αL(t), conditions are given under which, in the limit of
a large number of agents randomly submitting orders, the price process in this
models converges to a a process with Hurst exponent H = (3−α)/2 > 1/2. In
this model the randomness (and the heavy tailed nature) of the durations be-
tween trades are both exogenous ingredients, chosen in a way that generates
long range dependence in the returns. However, as noted above, empirical
observations point to clustering and persistence in volatility rather than in
returns so such a result does not seem to be consistent with the stylized facts.

By contrast, as noted above, regime switching in volatility with heavy-
tailed durations could lead to volatility clustering. Although in the agent-
based models discussed above, it may not be easy to speak of well-defined

2 See the chapter by Giraitis, Leipus and Surgailis in this volume for a review on
renewal switching models.
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“regimes” of activity, but Giardina and Bouchaud (2003) argue that this
is indeed the mechanism which generates volatility clustering in the Lux-
Marchesi (2000) and other models discussed above. In these models, agents
switch between strategies based on their relative performance; Giardina and
Bouchaud argue that this (cumulative) relative performance index actually
behaves in time like a random walk, so the switching times can be interpreted
as times when the random walk crosses zero: the interval between successive
zero-crossings is then known to be heavy-tailed, with a power-law decay of
exponent 3/2.

4 Volatility Clustering and Threshold Behavior

While switching between high and low volatility states is probably the mech-
anism leading to volatility clustering in many of the agent-based models dis-
cussed above, this explanation is not easy to trace back to the level of agent
behavior, partly because the models described above contain various other
ingredients whose contribution to the overall behavior is thus blurred. We
now discuss a simple model (Cont et al., 2004) reproducing several stylized
empirical facts, where the origin of volatility clustering can be clearly traced
back to investor inertia, caused by threshold response of investors to news
arrivals.

4.1 An Agent–Based Model for Volatility Clustering

Our model describes a market where a single asset, whose price is denoted
by St, is traded by N agents. Trading takes place at discrete periods t =
0, 1, 2, . . .. We will see that, provided the parameters of the model are chosen
in a certain range, we will be able to interpret these periods as “trading days”.
At each period, agents have the possibility to send an order to the market for
buying or selling a unit of asset: denoting by φi(t) the demand of the agent,
we have φi(t) = 1 for a buy order and φi(t) = −1. We allow the value φi(t) to
be zero; the agent is then inactive at period t. The inflow of public information
is modeled by a sequence of IID Gaussian random variables (εt, t = 0, 1, 2, . . .)
with εt ∼ N(0, D2). εt represents the value of a common signal received by all
agents at date t−1. The signal εt is a forecast of the future return rt and each
agent has to decide whether the information conveyed by εt is significant, in
which case she will place a buy or sell order according to the sign of εt.

The trading rule of each agent i = 1, . . . , N is represented by a (time–
varying) decision threshold θi(t). The threshold θi(t) can be viewed as the
agents (subjective) view on volatility. The trading rule we study may be seen
as a stylized example of threshold behavior: without sufficient external stim-
ulus (|εt| ≤ θi(t)), an agent remains inactive φi(t) = 0 and if the external
signal is above a certain threshold, the agent will act: if εt > θi(t), φi(t) = 1,
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if εt < −θi(t), φi(t) = −1. The corresponding demand generated by the agent
is therefore given by:

φi(t) = 1εt>θi(t) − 1εt<−θi(t). (6)

The excess demand is then given by Zt =
∑N

i=1 φi(t). A non-zero value of Z
produces a change in the price given by

rt = ln
St

St−1
= g(

Zt

N
), (7)

where the price impact function g : R �→ R is an increasing function with
g(0) = 0. We define the (normalized) market depth λ by : g′(0) = 1

λ . Examples
are a linear price impact g(z) = z/λ or g(z) = arctan(z/λ), both having been
used in various disequilibrium models.

Initially, we start from a population distribution F0 of thresholds: θi(0), i =
1, . . . , N are positive IID variables drawn from F0. Updating of strategies is
asynchronous: at each time step, any agent i has a probability 0 ≤ s ≤ 1
of updating her threshold θi(t). Thus, in a large population, q represents
the fraction of agents updating their views at any period; 1/q represents the
typical time period during which an agent will hold a given view θi(t). If
periods are to be interpreted as days, q is typically a small number s �
10−1 − 10−3. When an agent updates her threshold, she sets it to be equal to
the recently observed absolute return, which is an indicator of recent volatility
|rt| = | ln St

St−1
|. Introducing IID random variables ui(t), i = 1, . . . , N, t ≥ 0

uniformly distributed on [0, 1], which indicate whether agent i updates her
threshold or not:

θi(t) = 1ui(t)<s|rt| + 1ui(t)≥sθi(t− 1). (8)

This way of updating can be seen as a stylized version of various estimators of
volatility based on moving averages of absolute or squared returns. It is also
corroborated by a recent empirical study by Zovko and Farmer (2002), who
show that traders use recent volatility as a signal when placing orders.

The asynchronous updating scheme proposed here avoids introducing an
artificial ordering of agents as in sequential choice models. As noted above, the
heterogeneity of time scales of intervention of agents is a feature believed to
be important for generating persistence in volatility (Andersen and Bollerslev,
1997, Granger, 1980, LeBaron, 2000). The random nature of updating in this
model is a parsimonious way to introduce heterogeneity in time scales without
introducing extra parameters. Given this random updating scheme, even if
we start from an initially homogeneous population θi(0) = θ0, heterogeneity
creeps into the population through the updating process and evolves in a
random manner, leading to a history-dependent disordered system.

Let us recall the main ingredients of the model. At each time period:

1. agents receive a common signal ε(t) ∼ N(0, D2)
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2. each agent i compares the signal to her threshold θi(t)
3. if |ε(t)| > θi(t) the agent considers the signal as significant and generates

an order φi(t) according to (6).
4. The market price is impacted by the excess demand and moves according

to (7).
5. Each agent updates, with probability q, her threshold according to (8).

Compared to most agent–based models considered in the literature, there is
no exogenous “fundamental price” process and we do not distinguish between
“fundamentalist” and “chartist” traders. Also, the same information is avail-
able to all agents but they differ in the way they process the information. We
do not introduce any “social interaction” among agents: no notion of locality,
lattice or graph structure is introduced. The model has very few parameters:
q describes the average updating frequency, D the standard deviation of the
noise representing the news arrival process, the market depth λ and the num-
ber of agents N which is typically large. We will observe nevertheless that
this simple model generates time series of returns with interesting dynamics
and properties similar to empirically observed properties of asset returns.

4.2 Simulation Results

In order for a direct comparison with empirical stylized facts to be mean-
ingful, we compute sample moments as in the case of empirical data, by
averaging over the (single) sample path. After simulating a sample path of
the price St for T = 104 periods, we compute the time series of returns
rt = ln(St/St−1), t = 1, . . . , T , their histogram, a moving average estimator
of the standard deviation of returns (“volatility”), the sample autocorrelation
function of returns and the sample autocorrelation function of absolute re-
turns. In order to decrease the sensitivity of results to initial conditions, we
allow for a transitory regime and discard the first 103 periods before averaging.

In order to interpret the trading periods as “days” and compare the results
with properties of daily returns, we note that when g is linear |rt| ≤ 1

λ and
choose 5 ≤ λ ≤ 20 which allows a (maximal) range of daily returns between
5% and 20%. Also, the amplitude D of the input noise can be chosen such
as to reproduce a realistic range of values for the (annualized) volatility: this
leads to choosing D in the range 10−3 − 10−2. Let us emphasize that we are
discussing the calibration of the order of magnitude of parameters, not fine–
tuning them to a set of critical values. The results discussed in the sequel
are generic within this range of parameters. Figures 3 and 4 illustrate typical
sample paths obtained with different parameter values: they all generate series
of returns with realistic ranges and realistic values of annualized volatility.
For each series, we represent the histogram of returns both in linear and
logarithmic scales, the ACF of returns Cr, the ACF of absolute returns C|r|.
The return series obtained possess regularities which match the properties
outlined in the introduction (Cont et al., 2004):
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Fig. 3. Numerical simulation of the model with updating frequency q = 0.01 (aver-
age updating period: 100 “days”) N = 1000 agents, D = 0.001 and λ = 10

1. Excess volatility: the sample standard deviation of returns can be much
larger than the standard deviation of the input noise representing news
arrivals σ̂(t) � D.

2. Mean-reverting volatility: the market price fluctuates endlessly and the
volatility, as measured by the moving average estimator σ̂(t), does neither
to zero nor to infinity and displays a mean-reverting behavior.

3. The simulated process generates a leptokurtic distribution of returns with
(semi)heavy tails, with an excess kurtosis around κ � 7. As shown in the
logarithmic histogram plots in figures 3–4, the tails exhibit an approxi-
mately exponential decay, as observed in various studies of daily returns
(Ding et al., 1993).

4. The returns are uncorrelated: the sample autocorrelation function of the
returns exhibits an insignificant value (very similar to that of asset re-
turns) at all lags, indicating the absence of linear serial dependence in the
returns.

5. Volatility clustering: the autocorrelation function of absolute returns re-
mains significantly positive over many time lags, corresponding to persis-
tence of the amplitude of returns a time scale � 1/q.
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Fig. 4. Numerical simulation of the model with updating frequency q = 0.1 (average
updating period: 10 “days”) N = 1500 agents, D = 0.001 and λ = 10

4.3 Theoretical Analysis

Contrarily to some of the models discussed above, this model is simple enough
to allow for a theoretical study of its qualitative studies (Cont et al., 2004).
Let us being by examining two limiting cases:

1. Feedback without heterogeneity: In the case where q = 1, all agents
synchronously update their threshold at each period. Consequently, the
agents have the same thresholds, given by the last periods absolute return:
θi(t) = |rt−1| and will therefore generate the same order: Zt = Nφ1(t) ∈
{0, N,−N}. So, the return rt depends on the past only through the abso-
lute return |rt−1|:

rt = f(|rt−1, εt|) = g(N)1εt>|rt−1| + g(−N)1εt<−|rt−1|,

a dependence structure typical of ARCH models (Engle, 1995), leading
to uncorrelated returns and volatility clustering. In this case, the dis-
tribution of rt conditional on |rt−1| is actually a trinomial distribution:
rt ∈ {0, g(N), g(−N)}, which is not realistic. Simulation studies show that
a similar behavior persists for 1 − q � 1, leading to tri-modal distribu-
tions. This confirms our intuition that the updating probability q should
be chosen small.
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2. Heterogeneity without feedback: In the case where q = 0, no updat-
ing takes places: the trading strategies, given by the thresholds θi, are
unaffected by the price behavior and the feedback effect is not present
anymore. Heterogeneity is still present: the distribution of the thresholds
remains identical to what it was at t = 0. The return rt depends only on
εt :

rt = g(
1

N

N∑
i=1

1εt>θi
− 1εt<−θi

) = F (εt).

We conclude therefore that the returns are IID random variables, obtained
by transforming the Gaussian IID sequence (εt) by the nonlinear function
F given in (9), whose properties depend on the (initial) distribution of
thresholds (θi, i = 1, . . . , N). The log–price then follows a (non–Gaussian)
random walk and the model does not exhibit volatility clustering.

The two limiting cases above show that, in order to obtain the interesting
statistical properties observed in the simulated examples shown above, it is
necessary to have 0 < q � 1: both feedback and heterogeneity are essential
ingredients. In the general case we have the following properties:

• Markovian dynamics: the thresholds [θi(t), i = 1, . . . , N ] follow a
Markov chain in {g(k), k = 0, . . . , N}. We have θi(t + 1) = θi(t) with
probability 1 − q and

θi(t+ 1) = |rt| = |g( 1

N

N∑
i=1

[1εt>θi
− 1εt<−θi

])| with probability q.(9)

In fact given that agents are indistinguishable and only the empirical
distribution of threshold values affects the returns, defining Nk(t) =∑N

i=1 1[0,ak[(θi(t)) then (Nk(t), k = 0, . . . , N − 1)t=0,1,... evolves as a
Markov chain in {0, . . . , N}N . N(t) = (Nk(t), k = 0, . . . , N − 1) is none
other than the (cumulative) population distribution of the thresholds. The
fact that N(t) itself follows a Markov chain means that the population
distribution of thresholds is a random measure on {0, . . . , N}, which is
characteristic of disordered systems (Mézard et al., 1984), even if we start
from a deterministic set of values for the initial thresholds (even identical
ones). Here the disorder is endogenous and is generated by the random
updating mechanism.

• Excess volatility: In this model, the volatility of the news arrival process
is quantified by D which is the standard deviation of the external noise εt,
whereas the volatility of the returns can be measured a posteriori as the
(conditional or unconditional) standard deviation of rt. As seen from the
nonlinear relation between εt and rt,

rt = g(

∑N
i=1 1εt>θi(t) − 1εt<−θi(t)

λN
), (10)
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even after conditioning on the current states of agents θi(t), i = 1, . . . , N ,
equation (10) yields a nonlinear relation between the input noise εt and
the returns which can have the effect of amplifying the noise by an order of
magnitude or more. In the simulation example shown in figure 3,D = 10−3

which corresponds to an annualized volatility of 1.6%, while the annualized
volatility of returns is in the range of 20%, an order of magnitude larger:
the order of magnitude of the volatility of returns may be quite different
from that of the input noise.

• Absence of autocorrelation
From the dynamic equations of the model

Zt =
1

N

N∑
i=1

φi(t) =
1

N

N∑
i=1

[1εt>θi
− 1εt<−θi

], (11)

rt = g(Zt) = g(
1

N

N∑
i=1

[1εt>θi
− 1εt<−θi

]), (12)

one can deduce that, if g is an odd function (in particular if g is linear) then
asset returns (rt)t≥0 are uncorrelated: cov(rt, rt+1)=0. This is due to the
fact that the trading/ nontrading decision is based only on the amplitude
of the signal, not its sign. The sign of the return is determined by the sign
of the common signal, which is independent across periods.

• Investor inertia
Except in times of crisis or market crash, at a given point in time only
a small proportion of stockholders are actually trading in the market. As
a result, the (daily) order flow for a typical stock can be much smaller
than the market capitalization. This phenomenon, sometimes referred to
as investor inertia, is a generic outcome in our model due to threshold
behavior of agents. Starting from an initial holding of πi(0), the quantity of
asset held by agent i is given by πi(t) =

∑t
τ=0 φi(τ). Figure 4.3 displays the

evolution of the portfolio πi(t) of a typical agent: short periods of activity
(trading) are separated by long periods of inertia, where the portfolio
remains constant. This “inertia” increases in periods of high volatility, an
effect similar to the behavior of risk-averse agent.

• Mean reversion and clustering of volatility
Many market microstructure models –especially those with learning or
evolution– converge over large time intervals to an equilibrium where prices
and other aggregate quantities cease to fluctuate randomly. By contrast,
in the present model, prices fluctuate endlessly and the volatility exhibits
mean-reverting behavior. Suppose we are in a period of “low volatility”;
the amplitude |rt| of returns is small. Agents who update their thresholds
will therefore update them to small values, become more sensitive to news
arrivals, thus generating higher excess demand and thus increasing the
amplitude of returns. Conversely, in a period of high volatility, agents will
update their threshold values to high values and become less reactive to
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Fig. 5. Evolution of the portfolio of a typical agent, with long periods of inactivity
punctuated by bursts of activity

the incoming signal: this increase in investor inertia will thus decrease the
amplitude of returns. The mean reversion time in the volatility corresponds
here to the time it takes for agents to adjust their thresholds to current
market conditions, which is of order τc = 1/q.
When the amplitude of the noise is small it can be shown (Cont et al., 2004)
that volatility decays exponentially in time and increases through upward
“jumps”. This behavior is actually similar to that of a class of stochastic
volatility models, introduced by Barndorff-Nielsen and Shephard (2001)
and successfully used to describe various econometric properties of returns.

5 Conclusion

Volatility clustering is recognized as a stylized property present in most fi-
nancial time series. Agent-based models seek to explain volatility clustering
in terms of behavior of market participants, described in terms of simple rules.
We have discussed several agent-based models capable of generating volatility
clustering. A common feature of these models seems to be the “switching” of
the market between periods of high and low activity, with long durations of
periods. Models differ in the mechanism which leadsz to this switching at the
level of agents.

While the econometric debate on the short range or long range nature of
dependence in volatility still goes on (and may probably never be resolved),
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agent-based models can provide motivation for choosing between alternative
econometric specifications which are otherwise equally plausible in statistical
terms, thus providing a useful complement to econometric analysis.
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