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Preface

Long–range dependent, or long–memory, time series are stationary time series
displaying a statistically significant dependence between very distant obser-
vations. We formalize this dependence by assuming that the autocorrelation
function of these stationary series decays very slowly, hyperbolically, as a
function of the time lag.

Many economic series display these empirical features: volatility of asset
prices returns, future interest rates, etc. There is a huge statistical literature
on long–memory processes, some of this research is highly technical, so that
it is cited, but often misused in the applied econometrics and empirical eco-
nomics literature. The first purpose of this book is to present in a formal and
pedagogical way some statistical methods for studying long–range dependent
processes.

Furthermore, the occurrence of long–memory in economic time series
might be a statistical artefact as the hyperbolic decay of the sample autocor-
relation function does not necessarily derive from long–range dependent pro-
cesses. Indeed, the realizations of non-homogeneous processes, e.g., switching
regime and change–point processes, display the same empirical features. We
thus also present in this book recent statistical methods able to discriminate
between the long–memory and change–point alternatives.

Going beyond the purely statistical analysis of economic series, it is of
interest to determine which economic mechanisms are generating the strong
dependence properties of economic series, whether they are genuine, or spuri-
ous. The regularities of the long–memory and change–point properties across
economic time series, e.g., common degree of long–range dependence and/or
common change–points, suggest the existence of a common economic cause.
A promising approach is the use of the class of micro–based models in which
the set of economic agents is represented as a (self)–organizing and interact-
ing society whose composition evolves over time, i.e., something resembling
the realization of a non–homogeneous stochastic process. Some of these mod-
els, inspired by the works of entomologists, are able to mimic some empirical
properties of financial and non–financial markets. This implicitly suggests that
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what is termed as “long–memory” in economics is more complex than a stan-
dard (nonlinear) long–range dependent process, and mastering a wide range
of statistical tools is a great asset for studying economic time series.

This volume starts with the chapter by Liudas Giraitis, Remis Leipus and
Donatas Surgailis, who have been awarded this year the Lithuanian National
Prize for Science for their work on “Long–memory: models, limit distribu-
tions, statistical inference”. Donatas Surgailis and his numerous former stu-
dents have made, and are still making, essential contributions to this topic.
Their (encyclopedic) survey chapter reviews some recent theoretical findings
on ARCH type volatility models. They focus mainly on covariance station-
ary models which display empirically observed properties which have come
to be recognized as ”stylized facts”. One of the major issues to determine is
whether the corresponding model for squares r2k of ARCH sequences has long–
memory or short memory. It is pointed out that for several ARCH-type models
the behavior of Cov(r2k, r

2
0) alone is sufficient to derive the limit distribution

of
∑

k(r2k − Er2k) and statistical inferences, without imposing any additional
(e.g. mixing) assumptions on the dependence structure. This first chapter also
discusses ARCH(∞) processes and their modifications such as linear ARCH,
bilinear models and stochastic volatility, regime switching stochastic volatility
models, random coefficient ARCH and aggregation. They give an overview of
the theoretical results on the existence of a stationary solution, dependence
structure, limit behavior of partial sums, leverage effect and long–memory
property of these models. Statistical estimation of ARCH parameters and
testing for change-points are also discussed.

Bhansali, Holland and Kokoszka consider a new and an entirely different
approach to modeling phenomena exhibiting long–memory, intermittency and
heavy-tailed marginal distributions, namely through the use of chaotic inter-
mittency maps. This class of maps has witnessed considerable development in
recent years and it represents an important emerging branch of the subject
area of Dynamical Systems Theory. Three principal properties of these maps
are relevant and these properties qualify them as a plausible class of models
for financial returns. First, unlike some of the standard chaotic maps, the in-
termittency maps display long–memory and have correlations decaying at a
sub-exponential rate, meaning at a polynomial rate or even slower. Secondly,
the invariant density of these maps can display ’Pareto’ tails and thus go to
zero at a polynomial rate. Thirdly, as their name implies, these maps display
intermittency and generate time series, called the orbit of the map, which
display intermittent chaos, meaning the orbit of the map alternates between
laminar and chaotic regions.

Brousseau analyzes the time series of the euro–dollar exchange rate as the
realization of a continuous–time physical process, which implies the use of
different degrees of time resolution. The analysis takes into account various
statistical indicators, but puts special emphasis on the spectrum of the pro-
cess. Brousseau finds that this spectrum has an identifiable pattern, which is
a core characteristic of the process. Then he simulates a process having the
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same spectrum, and the behavior of the actual process and of the simulated
process are compared using various statistical indicators. It appears that the
simulated process provides a good, but not perfect, replication of the behavior
of the actual euro–dollar exchange rate.

The next two chapters deal with the issue of change–point detection.
Račkauskas and Suquet present the invariance principle by Donsker and
Prokhorov, which can be used for analyzing structural changes. They focus on
invariance principles with respect to Hölder topologies, as Hölder spaces bring
out well variations properties of processes. They present some applications of
the Hölderian invariance principles to the problem of testing the stability of
a sample against epidemic change–points alternatives.

Lavielle and Teyssière consider the multiple change–point problem for time
series, including strongly dependent processes, with an unknown number of
change–points. They propose an adaptive method for finding the sequence
of change–points τ with the optimal level of resolution. This optimal seg-
mentation is obtained by minimizing a standard penalized contrast function
J(τ ,y)+βpen(τ ). The adaptive procedure is such that the optimal segmenta-
tion does not strongly depend on the penalization parameter β. This algorithm
is applied to the problem of detection of change–points in the volatility of fi-
nancial time series, and compared with the binary segmentation procedure by
Vostrikova.

The chapter by Henry is on the issue of bandwidth selection for semipara-
metric estimators of the long–memory parameter. The spectral based estima-
tors are derived from the shape of the spectral density at low frequencies,
where all but the lowest harmonics of the periodogram are discarded. This
allows one to ignore the specification of the short range dynamic structure of
the time series, and avoid the bias incurred when the latter is misspecified.
Such a procedure entails an order of magnitude loss of efficiency with respect
to parametric estimation, but may be warranted when long series (earth sci-
entific or financial) can be obtained. This chapter presents strategies proposed
for the choice of bandwidth, i.e., the number of periodogram harmonics used
in estimation, with the aim of minimizing this loss of efficiency.

Teyssière and Abry present and study the performance of the semipara-
metric wavelet estimator for the long–memory parameter devised by Veitch
and Abry, and compare this estimator with two semiparametric estimators
in the spectral domain: the local Whittle and the “log–periodogram” esti-
mators. The wavelet estimator performs well for a wide range of nonlinear
long–memory processes in the conditional mean and the conditional variance,
and is reliable for discriminating between change–points and long–range de-
pendence in volatility. The authors also address the issue of the selection of
the range of octaves used as regressors by the weighted least squares esti-
mator. It appears that using the feasible optimal bandwidths for either the
spectral estimators, surveyed by Henry in the previous chapter, is a useful
rule of thumb for selecting the lowest octave. The wavelet estimator is applied
to volatility and volume financial time series.
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Kateb, Seghier and Teyssière study a fast version of the Levinson–Durbin
algorithm, derived from the asymptotic behavior of the first column of the
inverse of TN(f), the (N + 1)× (N + 1) Toeplitz matrix with typical element
f , the spectral density of a long–memory process. The inversion of TN(f) with
Yule–Walker type equations requires O(N3) operations, while the Levinson–
Durbin algorithm requires O(N2) elementary operations. In this chapter, an
asymptotic behavior of (TN(f)), for large values of N is given so that the
computations of the inverse elements are performed in O(N) operations. The
numerical results are compared with those given by the Levinson–Durbin algo-
rithm, with particular emphasis on problems of predicting stationary stochas-
tic long–range dependent processes.

Gaunersdorfer and Hommes study a simple nonlinear structural model of
endogenous belief heterogeneity. News about fundamentals is an independent
and identically distributed random process, but nevertheless volatility cluster-
ing occurs as an endogenous phenomenon caused by the interaction between
different types of traders, fundamentalists and technical analysts. The belief
types are driven by adaptive, evolutionary dynamics according to the success
of the prediction strategies as measured by accumulated realized profits, con-
ditioned upon price deviations from the rational expectations fundamental
price. Asset prices switch irregularly between two different regimes – periods
of small price fluctuations and periods of large price changes triggered by ran-
dom news and reinforced by technical trading – thus, creating time varying
volatility similar to that observed in real financial data.

Cont attempts to model the volatility clustering of asset prices: large
changes in prices tend to cluster together, resulting in persistence of the
amplitudes of their changes. After recalling various methods for quantify-
ing and modeling this phenomenon, this chapter discusses several economic
mechanisms which have been proposed to explain the origin of this volatility
clustering in terms of behavior of market participants and the news arrival
process. A common feature of these models seems to be a switching between
low and high activity regimes with heavy-tailed durations of regimes. Finally,
a simple agent-based model is presented, which links such variations in mar-
ket activity to threshold behavior of market participants and suggests a link
between volatility clustering and investor inertia.

Kirmans chapter is devoted to an account of the sort of micro-economic
founded models that can give rise to long memory and other stylised facts
about financial and economic series. The basic idea is that the market is
populated by individuals who have different views about future prices. As
time unfolds they may change their ways of forecasting the future. As they
do so they change their demands and thus prices. In many of these models
the typical rules are “chartist” or extrapolative rules and those based on the
idea that prices will revert to some “fundamental” values. In fact, any finite
number of rules can be considered. The switching between rules may result
in “herding” on some particular rule for a period of time and give rise to
long memory and volatility clustering. The first models were used to generate
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data which was then tested to see if the stylised facts were generated. More
recently theoretical results have been obtained which characterise the long
run distribution of the price process.

Alfarano and Lux present a very simple model of a financial market with
heterogeneous interacting agents capable of reproducing empirical statistical
properties of returns. In this model, the traders are divided into two groups,
fundamentalists and chartists, and their interactions are based on herding
mechanism. The statistical analysis of the simulated data shows long-term
dependence in the auto-correlations of squared and absolute returns and hy-
perbolic decay in the tail of the distribution of the raw returns, both with
estimated decay parameters in the same range like empirical data. Theoretical
analysis, however, excludes the possibility of “true” scaling behavior because
of the Markovian nature of the underlying process and the finite set of possible
realized returns.

The purpose of the chapter by de Peretti is to determine whether hysteretic
series can be confused with long–memory series. The hysteretic effect is a
persistence in the series like the long–memory effect, although hysteretic series
are not mean reverting whereas long–memory series are. Hysteresis models
have in fact a short memory, since dominant shocks erase the memory of the
series, and the persistence is due to permanent and non-reverting state changes
at a microstructure level. In order to check whether hysteretic models display
spurious long–range dependence, a model possessing the hysteresis property is
used for simulating hysteretic data to which statistical tests for short–memory
against long–memory alternatives are applied.

We wish to thank all contributors to this book, all the referees for their
careful and fast reports which made the selection of the chapters easier, the
Springer Verlag editor, Dr Martina Bihn, for efficient and patient manage-
ment, and Mrs Ruth Milewski for correcting the first series of manuscripts
and the final version. Teyssière managed chapters 1 to 8 and 10, while Kir-
man managed chapters 9, 11, 12 and 13.

Gilles Teyssière thanks Paul Doukhan for his help to return to the aca-
demic system on serious grounds, and the SAMOS (Statistique Appliquée et
MOdélisation Stochastique) University Paris 1. He wants to express his grati-
tude to Rosa Maria to whom he owes bunches of flowers as the completion of
this volume spilt over into their spare time. Alan Kirman would like to thank
the other people with whom he has investigated this sort of problem, and in
particular, Hans Foellmer, Ulrich Horst, Richard Topol and Romain Ricciotti.

Paris, Gilles Teyssière
Alan KirmanJune 2006
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Recent Advances in ARCH Modelling

Liudas Giraitis1 �, Remigijus Leipus2, and Donatas Surgailis3

1 University of York, Department of Mathematics and Economics. lg8@york.ac.uk
2 Vilnius University, Institute of Mathematics and Informatics.
Remigijus.Leipus@maf.vu.lt

3 Vilnius Institute of Mathematics and Informatics. sdonatas@ktl.mii.lt

1 Introduction

Econometric modelling of financial data received a broad interest in the last 20
years and the literature on ARCH and related models is vast. Starting with
the path breaking works by Engle (1982) and Bollerslev (1986), one of the
most popular models became the Generalized AutoRegressive Conditionally
Heteroscedastic (GARCH) process. The classical GARCH(p, q) model is given
by equations

rt = σtεt, σ2
t = α0 +

p∑
i=1

βiσ
2
t−i +

q∑
j=1

αjr
2
t−j , (1)

where α0 > 0, αj ≥ 0, βi ≥ 0, p ≥ 0, q ≥ 0 are model parameters and
{εj, j ∈ Z} are independent identically distributed (i.i.d.) zero mean random
variables. The variables rt, σt, εt in (65) are usually interpreted as financial
(log)returns (rt), their volatilities or conditional standard deviations (σt), and
so-called innovations or shocks (εt), respectively; in (65) the innovations are
supposed to follow a certain fixed distribution (e.g., standard normal). Later,
a number of modifications of (65) were proposed, which account for asymme-
try, leverage effect, heavy tails and other ”stylized facts”. For statistical and
econometric aspects of ARCH modelling, see the surveys of Bollerslev et al.
(1992), Shephard (1996), Bera and Higgins (1993), Bollerslev et al. (1994); for
specific features of modelling the financial data, including ARCH, see Pagan
(1996), Rydberg (2000), Mikosch (2003). Berkes et al. (2002b) review some re-
cent results. One should mention here, besides the classical reference to Taylor
(1986), the related monographs by Gouriéroux (1997), Fan and Yao (2002),
Tsay (2002). Let us note that the GARCH model for returns is also related
to the Autoregressive Conditional Duration (ACD) model proposed by Engle
and Russell (1998) for modelling of durations between events.

� Supported by the ESRC grant R000239538.
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Under some additional conditions, similarly as in the case of ARMA mod-
els, the GARCH model can be written as ARCH(∞) model (see (3) below),
i.e., σ2

t can be represented as a moving average of the past squared returns
r2s , s < t, with exponentially decaying coefficients (see Bollerslev, 1988) and
absolutely summable exponentially decaying autocovariance function.

However, empirical studies of financial data show that sample autocorre-
lations of power series and volatilities (such as absolute values |rt| or squares
r2t ) remain non-zero for very large lags; see, e.g., Dacorogna et al. (1993),
Ding et al. (1993), Baillie et al. (1996a), Ding and Granger (1996), Breidt et
al. (1998), Mikosch and Stărică (2003), Andersen et al. (2001). These studies
provide a clearcut evidence in favor of models with autocovariances decaying
slowly with the lag as k−γ , for some 0 < γ < 1.

A number of such models (FIGARCH, LM-ARCH, FIEGARCH) were sug-
gested in the ARCH literature. The long memory property was rigorously
established for some of these models including the Gaussian subordinated
stochastic volatility model (Robinson, 2001), with general form of nonlinear-
ity, the FIEGARCH and related exponential volatility models (Harvey, 1998;
Surgailis and Viano, 2002), the LARCH model (Giraitis et al., 2000c), the
stochastic volatility model of Robinson and Zaffaroni (1997, 1998). The long
memory property (and even the existence of stationary regime) of some other
models (FIGARCH, LM-ARCH) has not been theoretically established; see
Giraitis et al. (2000a) Mikosch and Stărică (2000, 2003), Kazakevičius et al.
(2004). Covariance long memory was also proved for some regime switching
SV models (Liu, 2000; Leipus et al., 2005). One should also mention that some
authors (Mikosch and Stărică, 1999, 2004) argue that the observed long mem-
ory in sample autocorrelations can be explained by short memory GARCH
models with structural breaks and/or slowly changing trends.

The present paper reviews some recent theoretical findings on ARCH
type models. We focus mainly on covariance stationary models which dis-
play empirically observed properties known as ”stylized facts”. One of the
major issues to determine is whether the corresponding model r2t for squares
has long memory or short memory, i.e. whether

∑∞
k=0 |Cov(r2k, r

2
0)| = ∞ or∑∞

k=0 |Cov(r2k, r
2
0)| < ∞ holds. It is pointed out that for several ARCH-type

models the behavior of Cov(r2k, r
2
0) alone is sufficient to derive the limit dis-

tribution of
∑N

j=1(r
2
j −Er2j ) and statistical inferences, without imposing any

additional (e.g. mixing) assumptions on the dependence structure.
The review discusses ARCH(∞) processes and their modifications such as

linear ARCH (LARCH), bilinear models, long memory EGARCH and stochas-
tic volatility, regime switching SV models, random coefficient ARCH and ag-
gregation. We give an overview of the theoretical results on the existence of
a stationary solution, dependence structure, limit behavior of partial sums,
leverage effect and long memory property of these models. Statistical estima-
tion of ARCH parameters and testing for change-points are also discussed.
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2 ARCH(∞)

A random sequence {rt, t ∈ Z} is said to satisfy ARCH(∞) equations if
there exists a sequence of i.i.d. zero mean random variables {εt, t ∈ Z} and
a deterministic sequence bj ≥ 0, j = 0, 1, . . . such that for any t

rt = σtεt, σ
2
t = b0 +

∞∑
j=1

bjr
2
t−j . (2)

Clearly, if E(εt|rs, s < t) = 0, E(ε2t |rs, s < t) = 1 then rt has conditional
mean zero and a random conditional variance σ2

t , i.e.

E(rt|rs, s < t) = 0, Var(rt|rs, s < t) = σ2
t .

The general framework leading to the model (2) was introduced by Robin-
son (1991) in the context of testing for strong serial correlation and has been
subsequently studied by Kokoszka and Leipus (2000) in the change-point prob-
lem context. The class of ARCH(∞) models include the finite order ARCH
and GARCH models of Engle (1982) and Bollerslev (1986). For instance, the
GARCH(p, q) process {rt, t ∈ Z} of (65) can be written as rt = σtεt,

σ2
t = (1 − β(1))−1α0 + (1 − β(L))−1α(L)r2t , (3)

where β(L) = β1L+...+βpL
p and L stands for the back-shift operator,LjXt =

Xt−j . This leads to ARCH(∞) representation (2) for GARCH(p, q) model
with b0 = (1 − β(1))−1α0 and with positive exponentially decaying weights
bj , j ≥ 1 defined by the generating function α(z)/(1 − β(z)) =

∑∞
i=1 biz

i.
It is interesting to note that the non-negativity of the regression coefficients
αj , βj in (65) is not necessary for non-negativity of bj in the corresponding
ARCH(∞) representation, see Nelson and Cao (1992).

2.1 Existence of Second and Fourth Order Stationary Solutions

One of the first questions which usually arise in the study of recursion equa-
tions of the type (2) is to find conditions for the existence of a stationary
solution. We first discuss conditions on the coefficients bj and the random
variables εt which guarantee the existence of a stationary solution to equa-
tions (2) with finite second or fourth moments.

Formally, recursion relations (2) give the following Volterra series expan-
sion of r2t :

r2t ≡ ε2tσ
2
t = ε2t b0

(
1 +

∞∑
k=1

∞∑
j1,...,jk=1

bj1 . . . bjk
ε2t−j1 . . . ε

2
t−j1−···−jk

)
(4)

= ε2t b0

(
1 +

∞∑
k=1

∞∑
−∞<sk<···<s1<t

bt−s1bs1−s2 . . . bsk−1−sk
ε2s1

. . . ε2sk

)
.
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By taking the expectation on both sides and using the independence of εt’s,
one obtains

Er2t = (Eε2t )b0

{
1 +

∞∑
k=1

∞∑
−∞<sk<···<s1<t

bt−s1bs1−s2 . . . bsk−1−sk
Eε2s1

. . . Eε2sk

}
= (Eε2t )b0

{
1 +

∞∑
k=1

(
Eε20

∞∑
j=1

bj

)k}
=

b0Eε
2
0

1 − Eε20
∑∞

j=1 bj
.

Hence it easily follows that

Eε20

∞∑
j=1

bj < 1 (5)

is sufficient for the existence of stationary solution (4) with Er2t < ∞. The
uniqueness and the necessity of (5) for the existence of such a solution also
follow easily, see Kokoszka and Leipus (2000), Giraitis et al. (2000a).

It is also easy to obtain a sufficient condition for the existence of a station-
ary solution with finite fourth moment. To that end, apply to (4) the norm

(Minkowski) inequality: (E
(∑

i ξi
)2

)1/2 ≤
∑

i(Eξ
2
i )1/2. Similarly as above,

this yields

(Er4t )1/2 ≤ (Eε4t )
1/2

×b0
{
1+

∞∑
k=1

∞∑
−∞<sk<···<s1<t

bt−s1bs1−s2 . . . bsk−1−sk
(Eε4s1

)1/2 . . . (Eε4sk
)1/2

}
=

b0(Eε
4
0)

1/2

1 − (Eε40)
1/2

∑∞
j=1 bj

.

Hence if condition

(Eε40)
1/2

∞∑
j=1

bj < 1 (6)

is satisfied, then rt of (4) is a fourth order stationary solution to (2), see
Giraitis et al. (2000a). A similar norm inequality works in the case of E(r2t )p

and arbitrary p ≥ 1, yielding a sufficient condition (E|ε0|2p)1/p
∑∞

j=1 bj < 1.
Condition (6) is not necessary for the existence of fourth order stationary

solution. For example, in the case of GARCH(1,1) rt = εtσt, σ
2
t = α0 +

αr2t−1 + βσ2
t−1, (6) translates to αλ

1/2
2 + β < 1, λi = Eε2i, i = 1, 2, while a

fourth order stationary solution is known to exist under the weaker conditions

αλ1 + β < 1, α2λ2 + β2 < 1, (7)

see Karanasos (1999), He and Teräsvirta (1999). To obtain a sufficient and
necessary condition in the general case, one needs to study orthogonal Volterra
representation of r2t .
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The orthogonal Volterra representation (9) of r2t is obtained by centering
the innovations in the (nonorthogonal) representation (4), i.e. by replacing the
ε2j ’s by κζj +λ1 = ε2j , where the standardized ζj = (ε2j −Eε2j)/κ, κ2 = Var(ε20)
have zero mean and unit variance.

The resulting expression appears rather complicated, but nevertheless it
can be identified and studied (Giraitis and Surgailis, 2002). In order to describe
it, denote gj the coefficients of the generating function

∞∑
j=0

gjz
j =

(
1 − λ1

∞∑
i=1

biz
i

)−1

.

More explicitly,

gj =

j∑
k=1

λk
1

∑
0<i1<...<ik−1<j

bi1bi2−i1 ...bik−2−ik−1
bj−ik−1

(j ≥ 1), g0 = 1.

(8)
Also introduce hj = (κ/λ1)gj , j ≥ 1,

B =

∞∑
j=1

bj , H2 =

∞∑
j=1

h2
j .

Then

r2t = µ+ (κ/λ1)µ

∞∑
k=1

∑
sk<···<s2<s1≤t

gt−s1hs1−s2 . . . hsk−1−sk
ζs1 . . . ζsk

, (9)

where µ = Er2t = λ1b0/(1 − λ1B). The series (9) converges in mean square if
and only if

λ1B < 1, H < 1 (10)

hold, and define a stationary solution of (2).
In fact, conditions (10) are sufficient and necessary for the existence of

fourth order stationary solution of (2) (Giraitis and Surgailis, 2002). By or-
thogonality, it easily follows that

Cov(r2t , r
2
0) = (κ/λ1)

2µ2
∞∑

k=1

∑
sk<···<s1≤0

g−s1gt−s1h
2
s1−s2

. . . h2
sk−1−sk

= (κ/λ1)
2µ2

∑
s≤0

gsgt−s

∞∑
k=1

H2(k−1)

=
(κ/λ1)

2µ2

1 −H2

∞∑
s=0

gsgs+t. (11)

For the GARCH(1,1) model
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rt = εtσt, σ2
t = α0 + αr2t−1 + βσ2

t−1

the above formulas are more explicit. The model itself can be rewritten in the
ARCH(∞) form

σ2
t = α0(1 − β)−1 + α

∞∑
j=1

βj−1r2t−j .

In this case, gj = αλ1(λ1α+ β)j−1, conditions (7) and (10) coincide, and (9)
becomes

r2t = µ+ µκλ−1
1 ζt

(
1 +

∞∑
k=1

(ακ/γ)k
∑

sk<···<s1<t

γt−skζs1 . . . ζsk

)
+ µ

∞∑
k=1

(ακ/γ)k
∑

sk<···<s1<t

γt−skζs1 . . . ζsk
, (12)

where γ = λ1α + β, µ = α0λ1/(1 − γ). From (12) or (11) one can explicitly
find the variance and covariance function of the GARCH(1,1) model in terms
of the coefficients α0, α, β and the moments λ1, λ2:

Var r20 =
α2

0κ
2(1 − γ2 + γαλ1)

(1 − γ)2(1 − γ2 − α2κ2)
,

Cov(r2k, r
2
0) =

α2
0αλ1κ

2(1 − γ2 + γαλ1)

(1 − γ)2(1 − γ2 − α2κ2)
γk−1, k ≥ 1,

which were also obtained in Teräsvirta (1996). We also note an alternative
approach in Kazakevičius et al. (2004) to the problem of the existence of fourth
order stationary solution of ARCH(∞), which leads to equivalent necessary
and sufficient conditions as (10).

For necessary and sufficient conditions of the existence of high order mo-
ments for the family of GARCH processes see Ling and McAleer (2002a,
2002b). Ling and McAleer (2003a) studied theoretical properties of the mul-
tivariate ARMA-GARCH model.

2.2 Dependence Structure, Association and Limit Theorems

The equation (11) for the covariance of ARCH(∞) squares r2t allows to directly
study its summability and decay properties. From (8) and the summability
of bj ’s it follows the summability of gj ’s which in turn implies by (11) the
summability of the autocovariances of r2t :

∞∑
k=−∞

Cov(r2k, r
2
0) <∞. (13)

(Note that Cov(r2k, r
2
0) ≥ 0 for all k, which follows from (11) and also from

the associativity property of r2t , see below.) Equation (13) indicates that the
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squares r2t of a fourth order stationary solution of ARCH(∞) have short mem-
ory. The above mentioned papers Giraitis et al. (2000a), Giraitis and Surgailis
(2002) also prove that a hyperbolic decay bj ∼ Cj−γ with γ > 1 implies

Cov(r2k, r
2
0) � k−γ .

(Here and below, xk ∼ yk means xk/yk → 1 while xk � yk means that
there are positive constants C1 and C2 such that C1yk < xk < C2yk for
all k.) Thus, even though condition (6) implies absolute summability of the
covariances, it allows for a very slow rate of decay of the autocorrelation
function when γ > 1 is close to 1. The last property may be characterized as
moderate memory. Near epoch dependence and moderate memory property of
the so-called HYGARCH model were studied by Davidson (2004).

The above discussion basically concerns second-order properties of r2t only.
Some further insight about these properties can be obtained from the moving
average representation

r2t = Er2t +

∞∑
j=0

gjνt−j , (14)

where gj (8) and νt ≡ σ2
t (ε2t − Eε2t ) are martingale differences. The above

representation is a direct consequence of (9), from which the νt’s can be also
expressed as a Volterra series in the standardized variables ζs, s < t. Of course,
(14) yields the same covariance formula as (11). On the other hand, the νt’s are
not independent, meaning that “higher order” dependence and distributional
properties of (14) may be very different from the usual moving average in i.i.d.
random variables.

ARCH(∞) sequences have important property of associativity. A random
sequence {Xt} is said to be associated (or positively correlated) if the inequality

Cov(f(Xt1 , . . . , Xtn
), g(Xt1 , . . . , Xtn

)) ≥ 0,

holds for any coordinate nondecreasing functions f, g : Rn → R and any
t1, . . . , tn, n = 1, 2, . . . . In particular, the covariance function (if it exists)
of associated sequence is nonnegative: Cov(Xs, Xt) ≥ 0 for any s, t. Associ-
ated sequences are widely encountered in applications, see e.g. Barlow and
Proschan (1981), Newman (1984), Cox and Grimmett (1984). Association is
a very strong property, under which uncorrelatedness implies independence
similarly as in Gaussian case. A number of limit theorems have been proved
for associated sequences under covariance restrictions only. One of the most
celebrated results, due to Newman and Wright (1981), says that if {Xt, t ∈ Z}
is strictly stationary and associated and σ2 =

∑
t∈Z

Cov(X0, Xt) < ∞ then
the partial sums’ process{

N−1/2

[Nτ ]∑
t=1

(Xt − EXt), τ ∈ [0, 1]

}
→D[0,1] {σW (τ), τ ∈ [0, 1]} , (15)
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in the Skorokhod spaceD[0, 1], where {W (τ)} is a standard Brownian motion.
It is well known that independent random variables are associated, and

that this property is preserved by coordinate-nondecreasing (nonlinear) trans-
formations. In particular, the ARCH(∞) process of (4) is a coordinate-
nondecreasing transformation of the i.i.d. sequence {ε2t}. It is clear from non-
negativity bj ≥ 0, j ≥ 0 that r2t can only increase if any of ε2s, s ≤ t on
the r.h.s. of (4) is replaced by some larger quantity. Therefore the ARCH(∞)
process (4) is associated.

An immediate consequence of (15), (13) and the association property of is
the functional central limit theorem for squares r2t of ARCH(∞):

{
N−1/2

[Nτ ]∑
t=1

(r2t − Er2t ), τ ∈ [0, 1]

}
→D[0,1] {σW (τ), τ ∈ [0, 1]} , (16)

where σ2 equals to the sum in (13). This result is quite surprising given a
rather complicated nonlinear structure of ARCH(∞), since it holds for any
stationary solution rt such that Er4t < ∞. Giraitis et al. (2000a) obtained a
similar result by using finite memory approximation to ARCH(∞).

It seems that the implications of association property to the study of
ARCH models have been not yet fully explored. This remark applies e.g.
to the covariance structure and dependence properties of general nonlinear
transformations of ARCH(∞), Rosenthal inequalities, rate of convergence,
empirical processes and many other questions. See the dissertation of Louichi
(1998) for references.

2.3 Stationary Solution of ARCH(∞) Without Moment
Assumptions

A rather unusual feature of ARCH equations is the fact that they may admit
a stationary solution which does not have any moments, even if the i.i.d.
“shocks” εt’s are N(0, 1). In such case, the Volterra series (4) converge in
probability but not in any moment sense, and the properties of the infinite
series are much more difficult to study. Nelson (1990) showed, using the theory
of products of random matrices, that a necessary and sufficient condition for
the existence of a strictly stationary GARCH(1,1) process is

E log(αε20 + β) < 0. (17)

This condition is of course much weaker than any of conditions (5), (6), (7)
given above (which imply in particular the existence of finite moment Er2t <
∞ or Er4t < ∞). Nelson’s result was extended to the GARCH(p, q) case by
Bougerol and Picard (1992), who showed that, under condition Eε20 = 1, a
stationary solution to (65) exists if and only if the top Lyapunov exponent
γ is strictly negative. Moreover, in such case there exists only one stationary
GARCH(p, q) process. The top Lyapunov exponent is defined by
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γ = lim
n→∞

n−1 log ‖A1 · · ·An‖, (18)

where {Ak} are i.i.d. (p+q−1)×(p+q−1) random matrices (depending only
on ε2k) such that the (p+q−1)-valued process Xt = (σ2

t+1, . . . , σ
2
t−p+2, r

2
t , . . . ,

r2t−q+2)
′ satisfies the random coefficient matrix AR(1) equation

Xt = AtXt−1 +B,

with B = (α0, 0, . . . , 0)′; see Bougerol and Picard (1992).
Further progress in this direction was made by Kazakevičius and Leipus

(2002), who discussed the general case of ARCH(∞). They observed that the
volatility can be written as

σ2
t = b0

(
1 +

∞∑
n=1

σ2
t,n

)
, (19)

the convergence of the series being equivalent to the existence of a stationary
solution rt = εtσt, where

σ2
t,n =

n∑
k=1

∑
i1,...,ik≥1

i1+···+ik=n

bi1bi2 · · · bik
ε2t−i1ε

2
t−i1−i2 · · · ε

2
t−i1−···−ik

(n ≥ 1),

σ2
t,n = 0 (n ≤ 0), satisfy the recurrent equation

σ2
t,n = ε2t−n

n∑
i=1

biσ
2
t,n−i, n ≥ 1. (20)

Equation (20) is a “stochastic” version of the corresponding equation satisfied
by gn = Eσ2

t,n of (8) in the case λ1 = Eε20 < ∞. For a fixed t (say, t = 0),
equation (20) can be written in the matrix form:

Σn = BnΣn−1,

where Σn = (σ2
0,n, σ

2
0,n−1, . . . , σ

2
0,1, 0, . . . )

′ and where {Bn} are random i.i.d.
(infinite) matrices:

Bn =

⎛⎜⎜⎝
b1ε

2
−n b2ε

2
−n b3ε

2
−n · · ·

1 0 0 · · ·
0 1 0 · · ·
· · · · · · · · · · · ·

⎞⎟⎟⎠ . (21)

Kazakevičius and Leipus (2002) showed that in the GARCH(p, q) case, the
top Lyapunov exponent satisfies

γ = − logR, (22)
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where R =
(
lim sup n

√
σ2

0,n

)−1

∈ [0,∞] is the convergence radius of the ran-

dom power series

σ2
t (z) = b0

(
1 +

∞∑
n=1

σ2
t,nz

n

)
, (23)

see equation (19). It turns out that in general ARCH(∞) case, R is nonrandom
and therefore γ defined by (22) can be considered an the analog of of the top
Lyapunov exponent. Similarly as in the GARCH case, γ < 0 implies the
existence of a stationary solution rt = εtσt of ARCH(∞), with σ2

t given by
(19). The last condition is of course not necessary and a stationary solution
may as well exist if γ = 0. In fact, using the argument of Kazakevičius and
Leipus (2003) one can show that a stationary solution of ARCH(∞) with
finite mean and coefficients bj � j−q, q > 1 satisfies γ = 0. This shows that
vanishing of the top Lyapunov exponent is typical for stationary solutions of
ARCH(∞) with a power-like decay of coefficients.

Kazakevičius and Leipus (2002) also proved the uniqueness of the above
stationary solution under some additional condition on the coefficients bj
(which is satisfied, for example, if these coefficients monotonically decay start-
ing with j large enough).

2.4 Existence of Integrated ARCH(∞) Process

To invoke the widely discussed and notable analogy between ARCH and
ARMA, one has to rearrange the GARCH(p, q) equation (65) so that r2t
satisfies ARMA(p + q, q) equation with martingale difference innovations
νt = r2t − σ2

t :
(1 − α(L) − β(L))r2t = α0 + (1 − β(L))νt (24)

(we assume Eε20 = 1 for simplicity). Then

q∑
i=1

αi +

p∑
j=1

βj = 1 (25)

is the unit root condition. The corresponding GARCH model, called the
Integrated GARCH(p, q), was introduced by Engle and Bollerslev (1986) in
analogy with integrated ARMA model in order to explain the observed
IGARCH effect in financial data when the estimated parameters α1, . . . , αq

and β1, . . . , βp of the (65) model sum up to a value which is close to one.
A similar rearrangement of (2) leads to the notion Integrated ARCH(∞), or
IARCH(∞), which is defined as a solution to (2) with

Eε20

∞∑
j=1

bj = 1. (26)

Integrated processes constitute an important class of ARCH processes
where the similarities and the differences between ARCH and ARMA most
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distinctly appear. It is easily seen (see also (5)) that stationarity and (26) im-
ply Er2t = ∞ and therefore a stationary IARCH(∞) process rt necessarily has
infinite variance. Moreover, in this case even the interpretation of νt as mar-
tingale innovations becomes peculiar as the νt’s have infinite unconditional
absolute mean. Nevertheless, differently from AR(∞) case, the IGARCH(∞)
equation may admit a stationary solution.

The most famous example of IARCH processes is the FIGARCH process
defined by

rt = σtεt, σ
2
t = b0 + (1 − (1 − L)d)r2t , (27)

where b0 > 0 and (1 − L)d, 0 < d < 1 is the fractional differencing operator.
This model, introduced by Baillie et al. (1996a) in order to capture long mem-
ory effect in volatility, allows a hyperbolic decay of the coefficients bj which
are positive, summable, and satisfy the unit root condition (26). However, the
proof of existence of stationary solution to (27) given in Baillie et al. (1996a)
does not seem to be correct. The question of the existence a stationary solu-
tion to FIGARCH equation (the “FIGARCH problem”) is open at the present
and seems very hard. See Giraitis et al. (2000a), Mikosch and Stărică (2000,
2003), for discussion and controversies surrounding the FIGARCH case.

Bougerol and Picard (1992) obtained the existence of a stationary Inte-
grated GARCH(p, q) process as a corollary to their more general result dis-
cussed above. Essentially, their conditions (which ensure that the top Lya-
punov exponent γ < 0) require that all coefficients αi, βi are strictly positive.
Kazakevičius and Leipus (2003) discussed a similar problem in the general
IARCH(∞) case, by using the definition of γ (22) via the convergence radius
R. They replaced the positivity condition of the coefficients of Bougerol and
Picard (1992) by the requirement that the weights bj decay exponentially,
more precisely, that ∑∞

j=1 bjq
j <∞ for some q > 1.

If γ is negative then rt = εtσt with σt (19) is a stationary IARCH(∞) solution.
They also showed (assuming E log− ε20 < ∞) that if this decay condition of
bj is not satisfied (as in the FIGARCH case), then γ = 0. The last result
can be considered as a further confirmation of the difficulty of the FIGARCH
problem, and indicates the limitations of the random matrices approach to
the existence problem of stationary solution of ARCH equations.

Our final remark concerns the question of long memory. The result (13)
can be interpreted as the fact that the squares r2t of covariance stationary
ARCH(∞) always have short memory. However, the last fact does not rule out
the possibility that absolute values |rt| or some (fractional) powers |rt|δ, δ > 0
may have non-summable autocorrelations, under the same conditions which
guarantee the existence of covariance stationary solution and especially in the
case of IARCH when r2t has infinite variance. Such possibility seems unlikely,
because of the summability of the coefficients bj in ARCH(∞) and the as-
sociativity property discussed above. Nevertheless, several empirical studies
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indicate that sample autocovariances of absolute powers of asset returns ex-
hibit ”maximal memory” for δ = 1, see Ding et al. (1993). While absolute
powers |rt|δ of ARCH(∞) are mathematically hard to handle (unless δ is an
even integer), this was one of the reasons for introducing stochastic volatility
models, which allow modelling of long memory; see below.

3 Other ARCH and Related Models

In a wider sense, the term “ARCH process” refers to the class of processes rt
with zero conditional mean E(rt|rs, s < t) = 0 and the conditional variance
σ2

t = Var(rt|rs, s < t) being a general function of the past information set
rs, s < t (which may also include some additional “exogenous” variables). The
possibilities of choices of functional forms of σ2

t are very numerous, leading
to a vast family of ARCH models and modifications, only part of which is
mentioned in our reference list. This review focuses on the probabilistic aspects
of ARCH modelling, and we do not attempt to cover the whole econometric
literature on ARCH. Of course, the topics and models discussed below are
motivated in some sense by the interests of the authors of the review.

3.1 The LARCH Model

The Linear ARCH (LARCH) model, introduced by Robinson (1991), is de-
fined by

rt = σtεt, σt = α+

∞∑
j=1

βjrt−j , (28)

where {εt, t ∈ Z} is an i.i.d. sequence with zero mean and finite variance, and
the coefficients βj satisfy

βj ∼ cjd−1, (29)

for some 0 < d < 1/2, c > 0. The particular case

rt = σtεt, σt = (1 − L)−drt

corresponds to the LARCH equation with FARIMA(0, d, 0) coefficients.
The main advantage of LARCH is that it allows modelling of long memory

as well as some characteristic asymmetries (the “leverage effect”). Both these
properties cannot be modeled by the classical ARCH(∞) with finite fourth
moment. The condition (29) implies only

∑
j β

2
j < ∞ which is weaker than

assumption
∑

j bj < ∞ for the ARCH(∞) model (2). Neither α nor the βj

are assumed positive and, unlike in (2), σt (not σ2
t ), is a linear combination

of the past values of rt, rather than their squares.
A not so pleasant feature of the LARCH model is that σt may be negative

or vanish, being a linear combination of martingale differences rt with zero
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mean, and so it lacks some of the usual volatility interpretation. Recently,
Koulikov (2003) considered a particular case of LARCH which he claims has
the property that σt > 0 a.s. If Koulikov’s claim is correct, this would certainly
increase the interest to the LARCH model and statistical inferences.

By the definition (28), the conditional variance is Var(rt|rs, s < t) = σ2
t ,

where

σ2
t =

(
α+

∞∑
j=1

βjrt−j

)2

is the squared linear combination of rs, s < t and so the LARCH model
formally appears a particular case of Sentana’s Quadratic ARCH (QARCH)
models (Sentana, 1995). In the QARCH case, the conditional variance is an
arbitrary nonnegative second order polynomial of the past information set
rs, s < t, which may contain both linear and quadratic terms. While the
discussion in Sentana (1995) seems limited to finite memory Markov models,
his model allows considerable flexibility and asymmetry. It is not clear if the
method of Volterra expansions can be applied to the study of the QARCH
model, as these expansions might appear intractable.

Long memory properties of the LARCH model were studied in Giraitis et
al. (2000c), Giraitis et al. (2004). Similarly as the ARCH(∞) case, it is easy
to show that a covariance stationary solution rt to (28) exists if and only if

b =
{ ∞∑

j=1

β2
j

}1/2

< 1 (30)

(we assume Eε2 = 1), in which case it can be represented by the convergent
orthogonal Volterra series

rt = σtεt, σt = α
(
1 +

∞∑
k=1

∞∑
j1,...,jk=1

βj1 . . . βjk
εt−j1 . . . εt−j1−···−jk

)
. (31)

The above fact holds independently of (29) and requires (30) only. Whence or
directly from the LARCH equations (28), the representation

Cov(σt, σ0) = b−2
∞∑

j=1

βjβt+j

immediately follows, which coincides with the covariance of the linear filter
with coefficients b−1βj . Clearly, under condition (29), σt displays the covari-
ance long memory similar to FARIMA(0, d, 0) models.

The long memory property of the “observable” process rt is more difficult
to establish, as it requires the study of dependence properties of nonlinear
functions of rt. One of the simplest such functions is r2t , however, even in
such case, the expression for Cov(r2k, r

2
0) is quite complicated and involves a

combinatorial formalism of diagrams (Giraitis et al., 2000c). As shown in this
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paper, under some additional boundedness condition on b (30), the squares
r2t of the LARCH model (28), (29) exhibit long memory, in the sense that

Cov(r2k, r
2
0) ∼ Ck2d−1, (32)

as k → ∞, where the constant C > 0 is explicitly written in terms of parame-
ters α, b, c, d. The above paper also obtains the convergence of the partial sums’
process of r2t to a fractional Brownian motion Wd(τ), EW

2
d (τ) = τ2d+1:⎧⎨⎩ 1

N1/2+d

[Nτ ]∑
j=1

(r2j − Er2j )

⎫⎬⎭ →D[0,1] {cdWd(τ)} , (33)

where cd is a positive constant. Similar results under increasingly stringent
bounds on b (30) were proved for arbitrary powers rk

t , σ
k
t , k = 2, 3, . . . .

These result indicate that long memory properties of LARCH may be
somewhat similar to the properties of linear moving average process with
coefficients (29). In fact, the first term of the expansion (31) (correspond-
ing to k = 1) is exactly the linear process

∑∞
j=1 βjεt−j , up to the con-

stant α. The nonlinearity of the LARCH comes out when analyzing the be-
havior of higher-order multiple sums in (31). It turns out that every term∑

j1,...,jk
βj1 . . . βjk

εt−j1 . . . εt−jk
behaves similarly as the first (linear) term

and contributes to the limiting constants C and cd in (32) and (33) respec-
tively, although these “contributions decay geometrically” with k. Further
important results on long memory LARCH processes can be found in Berkes
and Horváth (2003b).

Short memory versions LARCH(p), GLARCH(p, q) of (28) can be in-
troduced, similarly as in ARCH(∞) case. In fact, LARCH(1) turns out to
be a particular case of the asymmetric ARCH model of Engle (1990), and
GLARCH(p, q) a particular case of Sentana’s QARCH model. As mentioned
above, the main reasons for introducing these models was the desire to model
asymmetric behavior, in particular, the leverage effect. This effect, first de-
scribed by Black (1976), is the empirically observed property for volatility
of asset returns to move in the opposite direction to returns, after a delay,
as happens when the conditional variance is negatively correlated with past
returns. Engle (1990) and Sentana (1995) discussed the (potential) leverage
property in their models. For the LARCH model, the leverage property was
rigorously proved in Giraitis et al. (2004). They showed that if the coefficient
α and β1, . . . , βk have opposite signs, i.e.

αβj < 0, j = 1, . . . , k,

and some additional conditions are satisfied, then σ2
t and rt−1, . . . , rt−k are

negatively correlated:

Cov(σ2
t , rt−j) < 0, j = 1, . . . , k,
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where k = 1, 2, . . . can be arbitrary.
A heuristic explanation of this phenomenon from the LARCH equations

is the following. Consider LARCH(1) σt = α + β1rt−1 and α > 0, β1 < 0.
Clearly an increase of rt−1 results in a decrease of σt because of β1 < 0. On
the other hand, because of α > 0, σt spends more time on the positive side,
or σt > 0 is more likely to happen than σt < 0. This means that a decrease
of σt is more likely to cause a decrease of σ2

t , too, or that rt−1 and σ2
t should

be negatively correlated.
Giraitis et al. (2003) developed R/S-type tests for long memory in LARCH

processes against their short memory counterparts. Giraitis et al. (2000b)
discussed the estimation of the long memory parameter in the LARCH model.

3.2 Bilinear Process

Formally, the classes AR, ARCH, LARCH (at least, their finite memory coun-
terparts ARMA, GARCH, GLARCH) all belong to the general class of bilinear
models introduced by Granger and Andersen (1978). The existing literature
on bilinear time series models is quite large, see the monographs by Subba Rao
and Gabr (1984) and Terdik (1999), however, it does not have much in com-
mon with the ARCH literature, probably because it focuses on homoscedastic
case. Giraitis and Surgailis (2002) studied the heteroscedastic bilinear equa-
tion

Xt = ζt

(
a0 +

∞∑
j=1

ajXt−j

)
+ c0 +

∞∑
j=1

cjXt−j, (34)

where {ζt, t ∈ Z} are i.i.d. random variables, with zero mean and variance 1,
and aj , cj, j ≥ 0 are real (not necessary nonnegative) coefficients. Equation
(34) appears naturally when studying the class of processes with the property
that the conditional mean µt = E(Xt|Xs, s < t) is a linear combination of
Xs, s < t, and the conditional variance σ2

t = Var(Xt|Xs, s < t) is the square
of a linear combinations of Xs, s < t, as it is in the case of (34):

σ2
t =

(
a0 +

∞∑
j=1

ajXt−j

)2

, µt = c0 +

∞∑
j=1

cjXt−j .

Clearly, the case aj ≡ 0, j ≥ 1 gives the linear AR(∞) equation, while cj ≡
0 (j ≥ 0) results in the LARCH equation (28).

It is less obvious that the ARCH(∞) equation (2) is also a special case of
the bilinear equation (34). To see this, put Xt = r2t , ζt := (ε2t − λ1)/κ, λ1 =
Eε20, κ

2 = Var(ε20). Then (2) can be rewritten as

Xt = ζt

(
κb0 + κ

∞∑
j=1

bjXt−j

)
+ λ1b0 + λ1

∞∑
j=1

bjXt−j ,

which is a particular case of (34).
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Heteroscedastic models with non-zero conditional mean (combinations of
the type ARMA-ARCH) have been studied in the literature; see e.g. Baillie
et al. (1996b), Ling and Li (1998), Teyssière (2000), Li et al. (2002). The
paper Giraitis and Surgailis (2002) attempts a systematic study of bilinear
models (34) with long memory. For (34), it defines long memory in condi-
tional mean and long memory in conditional variance, and describes a class
of fractional bilinear models which exhibit both types of long memory, with
arbitrary (fractional) parameters 0 < d1, d2 < 1/2.

The bilinear model (34) in the cases c0 
= 0 and c0 = 0 has different
properties. The first case (to which the ARCH(∞) reduces) does not essen-
tially allow for covariance stationary long memory in (34). Let c0 = 0 below.
Introduce the generating functions

G(z) := (1 − C(z))−1 =

∞∑
j=0

gjz
j, H(z) := A(z)G(z) =

∞∑
j=1

hjz
j,

where A(z) :=
∑∞

j=1 ajz
j, C(z) :=

∑∞
j=1 cjz

j . Under some natural conditions
on coefficients gj, hj , the most important of which is

H2 =

∞∑
j=1

h2
j < 1,

it was proved that equation (34) admits a unique stationary and ergodic so-
lution Xt = ζtσt + µt given by the convergent orthogonal Volterra series

σt = a0

(
1 +

∞∑
k=1

∑
sk<···<s1<t

ht−s1hs1−s2 . . . hsk−1−sk
ζs1 . . . ζsk

)
, (35)

µt = a0

∞∑
k=1

∑
sk<···<s1<t

gt−s1hs1−s2 . . . hsk−1−sk
ζs1 . . . ζsk

. (36)

Note that here σt 
=
√
σ2

t , similarly as in the LARCH case, as σt may assume
negative values. From (35), (36) it follows that the processes Xt, µt, σt admit
the moving average representations:

σt = a0 +

∞∑
j=1

hjνt−j , µt =

∞∑
j=1

gjνt−j , Xt =

∞∑
j=0

gjνt−j (37)

w.r.t. martingale differences νs = ζsσs, implying in particular

EXt = 0, Cov(Xk, X0) = a2
0(1 −H2)−1

∞∑
j=0

gjgj+k.

If |gj | and |hj | are summable, then Xt, µt and σt have short memory (abso-
lutely summable autocovariances). For example, this holds when
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(
∞∑

j=1

|aj |2)1/2 +
∞∑

j=1

|bj |2 < 1.

The long memory in conditional mean (respectively, in conditional vari-
ance) is defined in terms of the coefficients of the linear filters (37), namely

gj ∼ C1j
d1−1 (respectively, hj ∼ C2j

d2−1), (38)

where Ci 
= 0, 0 < di < 1/2, i = 1, 2. Giraitis and Surgailis (2002)
presented concrete examples of generating functions of the form C(z) =
1 − P1(z)(1 − z)d1, A(z) = P2(z)(1 − z)d1−d2 , where Pi(z), i = 1, 2 satisfy
some root conditions, for which the corresponding G(z), H(z) satisfy (38).
Consequently, the bilinear equation (34) may exhibit double long memory
(i.e. long memory both in conditional mean and in conditional variance). A
natural question arises which of these two long memories plays a dominating
role. The asymptotic behavior of the covariance of Xt depends on d1 only
(Cov(Xk, X0) decays as k2d1−1), so the above question concerns nonlinear
functionals, in particular the squared process X2

t . The answer to this ques-
tion depends on which of the two quantities 2(1 − 2d1), 1 − 2d2 is larger:
if 2(1 − 2d1) < 1 − 2d2, then the long memory in conditional mean domi-
nates, meaning that the covariance Cov(X2

k , X
2
0 ) decays as k2(2d1−1) and that

a suitably normalized sum
∑N

t=1(X
2
t − EX2

t ) converges to a non Gaussian
distribution, similarly as if Xt were a linear FARIMA process. On the other
hand, if 2(1 − 2d1) > 1 − 2d2 holds, then the long memory in conditional
variance dominates, in the sense that the covariance Cov(X2

k , X
2
0 ) decays as

k2d2−1 and
∑N

t=1(X
2
t − EX2

t ) converges after normalization to a Gaussian
distribution, similarly as in the LARCH model. An econometric discussion of
double long memory and other models can be found in Teyssière (2000).

3.3 EGARCH and Stochastic Volatility Models

By stochastic volatility (SV) one usually means a model of the form

rt = εtσt, εt i.i.d., Eεt = 0, Var εt = 1, (39)

where σt > 0 is a measurable function of the past “information set” Ft−1

which contains all information rs, εs ≤ t − 1 up to time t − 1, and may
contain some other “unobservable information” as well, with the property,
that εs, s ≥ t are independent of Ft−1. This implies of course E(rt|Ft−1) = 0
and σ2

t = Var(rt|Ft−1). It is often assumed that the volatility is of the form

σt = f(ηt), (40)

where f is a (nonlinear) function, and ηt is a stationary process of some
familiar type, e.g. Gaussian or ARMA.
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The choice of σt as a function of Gaussian process imposes distributional
assumptions on the volatility which one would like to avoid, of course. On the
other hand, it has several important advantages, as explained in Robinson
(2001). Firstly, it allows modelling of long memory volatility, by taking ηt

a long memory Gaussian process. Secondly, it allows a very general form
of nonlinearity f in (40) by using the techniques of expansions of nonlinear
functions of Gaussian random variables in Hermite polynomials. It is clear
that a nonlinear function of σt, say |σt|δ, where δ > 0 is arbitrary, is again
of the form (40) and so this choice of volatility form allows the study of
covariance behavior and other properties of general nonlinear transformations
of rt and σt. An appropriate choice of Gaussian nonlinearity leads to long
memory SV models (39) which have infinite fourth moment and for which the
autocovariances of r2t are not well-defined. Robinson (2001) discusses a very
general class of SV models with Gaussian nonlinearities, where εt = f1(η1t)
in (39) is also a nonlinear function of another Gaussian process η1t which is
uncorrelated with ηs, s ≤ t, and the processes η1t, ηt may be vector-valued.
He obtains the asymptotic formulas for autocovariances of general nonlinear
functions of f1(η1t)f(ηt) and exhibits various forms of long memory behavior.

Another popular choice of (40) is f(ηt) = eηt , where ηt is a moving average
process of ARMA or FARIMA type. The corresponding SV model known
as the Exponential Generalized ARCH (EGARCH) model, was proposed by
Nelson (1991). More precisely, the EGARCH model is given by equations

rt = σtεt, σt = exp

{
a+

∞∑
j=1

bjg(εt−j)

}
, (41)

where
g(z) = θz + γ(|z| −E|ε0|) (42)

and where θ, γ are parameters which account for certain asymmetries ob-
served in financial data. The particular case EGARCH(p, q) corresponds
to ηt = log σt being an ARMA(p, q) process, i.e. a stationary solution of
φ(L)ηt = ψ(L)g(εt), where φ(z), ψ(z) are polynomials of order p and q, re-
spectively. The case of FARIMA(p, d, q) ηt solving φ(L)(1−L)dηt = ψ(L)g(εt)
corresponds to the Fractional Integrated Exponential GARCH (FIEGARCH)
model of Bollerslev and Mikkelsen (1996).

A related class of long memory SV models was introduced in Breidt et al.
(1998) and Harvey (1998):

rt = σtεt, σt = eηt , ηt = a+

∞∑
j=1

bjξt−j , (43)

where ξt, t ∈ Z is a sequence of standard i.i.d. random variables, independent
of the sequence εt, t ∈ Z, and where bj are as in FARIMA case.

Long memory properties of powers |rt|δ, δ > 0 of the SV model of (43)
were first obtained in Harvey (1998). In the case when ξt are normal i.i.d., he
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obtained the autocorrelation function

Cov(|rt|δ, |r0|δ) = (E|r0|δ)2(eδ2Cov(ηt,η0)−1) ∼ (δE|r0|δ)2Cov(ηt, η0), (44)

which shows that the decay of autocovariances of |rt|δ is proportional to the
decay of autocovariances of (FARIMA) process ηt.

Surgailis and Viano (2002) obtained similar results without imposing dis-
tributional assumptions. They considered a generalization of (43), where εt

and ξt are not necessary independent; it is only assumed that the bivariate
sequence (εt, ξt), t ∈ Z is i.i.d., with zero means Eεt = Eξt = 0 and unit
variances. Their model also includes the FIEGARCH model as the particular
case ξt = g(εt). By assuming

bj ∼ c0j
d−1, (c0 
= 0, 0 < d < 1/2) (45)

and appropriate moment conditions on ε0, ξ0, they proved for any real δ > 0

Cov(|rt|δ, |r0|δ) ∼ (δE|r0|δc1)2t2d−1, (46)

similarly as in (44), where c1 depends only on c0, d. They also proved the
convergence to a fractional Brownian motion:{

N−d−1/2

[Nτ ]∑
s=1

(|rs|δ − E|rs|δ)
}

→D[0,1] {c2E|r0|uWd(τ)} , (47)

where c2 = c1/(d(2d+ 1)).
The last paper also discussed the case where the process ηt in (43) is short

memory, in the sense that the coefficients bj are summable:
∑∞

j=1 |bj | < ∞.
Under similar moment conditions, it proved that in such case the autocovari-
ances of powers |rt|δ are also summable, that partial sums of |rt|δ converge to
a standard Brownian motion, under normalization growing asN1/2. The proof
of the last result uses cumulants and some combinatorial formulas for cumu-
lants of exponents of linear combinations in independent random variables
which seem to be new even in the Gaussian case.

As mentioned above, the specific form ξs = g(ζs) of (42) allows to model
certain asymmetries observed in financial data (leverage effect). Nelson (1991)
obtained the formula for the covariance between logσt and ζt−k. This leverage
effect was also discussed by Bollerslev and Mikkelsen (1996). Surgailis and
Viano (2002) showed that if the distribution of ε0 in the EGARCH model
(41) is symmetric, then the covariance Cov(σδ

t , rt−k) has always the sign of
the product θbk, in particular Cov(σδ

t , rt−k) < 0 if θbk < 0.

3.4 Regime Switching SV and Related Models

Mikosch and Stărică (1999, 2004) argue that the observed long memory in fi-
nancial data is spurious and can be explained by structural breaks in GARCH
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models. Dahlhaus and Subba Rao (2003) investigated properties and estima-
tion of nonstationary ARCH models with time-varying coefficients. A popular
approach to modelling of structural breaks is Markov switching (Hamilton,
1989). Markov switching ARCH models are discussed in Hamilton and Sus-
mel (1994), Cai (1994), Dueker (1997), Francq et al. (2001).

An alternative to Markov regime switching (which generally leads to short
memory processes) is renewal regime switching, with independent and heavy
tailed consecutive regime durations. Empirical evidence of heavy tailed regime
durations is discussed in Jensen and Liu (2001) (lengths of the US business
cycle’s), Chow and Liu (1999) (dividend series from the CRSP data), Liu
(2000) (daily S&P composite price index). Jensen and Liu (2001), Gourier-
oux and Jasiak (2001) argue that regime switching with heavy tails may lead
to a new forecasting methodology, as an alternative to FARIMA forecast-
ing. Various regime switching models leading to the long memory property
and related econometrical issues were discussed in Parke (1999), Granger and
Hyung (1999), Diebold and Inoue (2001), Liu (2000), Jensen and Liu (2001),
Gourieroux and Jasiak (2001), Leipus and Viano (2003).

Liu (2000), Leipus et al. (2005) discussed regime switching SV model rt =
σtεt, where volatility

σt = ζj , Sj−1 < t ≤ Sj (48)

assumes i.i.d. values ζj > 0 on random intervals (Sj−1, Sj] of a stationary
renewal process with i.i.d. durations Uj = Sj −Sj−1. If Eζ2 <∞ and the tail
distribution P (U > u) decays as

P (U > u) ∼ c1u
−β (u→ ∞) (49)

with some c1 > 0, β > 1, then the autocovariance of σt decays as t1−β so that
for 1 < β < 2, the SV model in (48) has covariance long memory (Liu, 2000).
Moreover, for any δ > 0

|rt|δ − E|rt|δ = σδ
t νt + (σδ

t − Eσδ
t )E|ε|δ, (50)

where νt = |εt|δ − E|εt|δ are zero mean i.i.d., and σδ
t has the same form

(48) with ζj replaced by ζδ
j . Let E|ε|2δ < ∞, Eζ2δ < ∞. Then

∑N
t=1 σ

δ
t νt =

Op(N
1/2) and the limit distribution of the partial sums process

∑[Nτ ]
t=1 (|rt|δ −

E|rt|δ) is determined by the second term on the r.h.s. of (50) which is asymp-
totically β−stable; more precisely,{

N−1/β

[Nτ ]∑
s=1

(|rs|δ − E|rs|δ)
}

→f.d.d. {Zβ(τ)} (51)

in the sense of convergence of finite dimensional distributions, where Zβ(τ) is
a β−stable Lévy process with independent increments, see Taqqu and Levy
(1986), Pipiras et al. (2004).
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The result (51) is typical for ”renewal type long memory” and is in deep
contrast with the fBM asymptotics of the corresponding partial sums pro-
cesses in (47) and (33) for the EGARCH and LARCH models. The limit pro-
cess Zβ(τ) has infinite variance while |rt|δ has finite variance, which means
an increase of variability in the distributional limit (51). On the other hand,
the limit process in (51) has independent increments while the summands
have (covarance) long memory, meaning that this long memory does not per-
sist in the distributional limit. A similar lack of persistence of long mem-
ory seems characteristic to some other econometric models, in particular to
Parke’s (1999) model (see Davidson and Sibbertsen, 2002). Similar properties
were proved in Mikosch et al. (2002) for some models arising in telecommu-
nications.

A general renewal regime switching scheme leading to a similar ”increase
of variability” and stable limit distribution of partial sums is discussed in
Leipus et al. (2005), in particular, the linear model

Xt = µt + atXt−1 + σtεt

with renewal switching in levels (µt), slope (at) and/or volatility (σt). The case
of AR(1) equation with at perfoming a heavy tailed regime switching in the
interval [0, 1] including the unit root at = 1 and its neighborhood is discussed
in Leipus and Surgailis (2003). Let us note that the existence of covariance
long memory in AR(1) model with at switching between two values 0 and 1
was first observed by Pourahmadi (1988).

As noted above, similar results can be expected for finite memory ARCH
models with heavy tailed switching coefficients. The simplest case is the
GARCH(1,1) equation

r2t = ε2t
(
α0t + αr2t−1 + βσ2

t−1

)
, (52)

where α, β are nonrandom, and {α0t} is a (stationary) process, independent
of {εt}. In particular, α0t may assume only two values 0 and 1 on consecutive
intervals of a stationary renewal process with a heavy-tailed inter-renewal dis-
tribution U , similarly as in Pourahmadi (1988). Equation (52) can be rewritten
as

r2t = α0tr
2
0t,

where {r20t} is a GARCH(1,1) process with (nonrandom) coefficients α0 = 1,
α, β, which is independent of {α0t}. Clearly,

Cov(r2t , r
2
0) = (Er200)

2Cov(α0t, α00) +E[α0tα00]Cov(r20t, r
2
00),

see equation (53) where the second term on the r.h.s. vanishes exponentially,
but the first term may decay very slowly, e.g. as t1−β in the case of renewal
switching α0t with inter-renewal distribution (49). Moreover, in the above
example (52) one can show a similar covariance decay for arbitrary powers
|rt|δ, provided at assumes values 0, 1 only. While this example might be too
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simple and not characteristic, it also demonstrates the possibility of modeling
long memory with the help of classical GARCH models with time-varying
random coefficients.

4 Random Coefficient ARCH and Aggregation

A natural generalization of GARCH(1,1) (more generally, of ARCH(∞)) is to
assume the coefficients α0, α, β random and/or time-varying. There exists a
considerable literature on random coefficient AR models (AR(1) in particu-
lar), and the interest in such generalizations recently has increased in connec-
tion with the studies of models which involve regime switching and structural
breaks. The corresponding ARCH models with constant random coefficients
lead to non-ergodic processes whose parameters cannot be consistently esti-
mated. The motivation for such studies follows the important Granger’s idea
of aggregation.

4.1 Aggregation

The basic scheme of contemporaneous aggregation usually starts with N “el-

ementary” individual processes {X(1)
t }, . . . , {X(N)

t }, which evolve according
to a random parametric short memory dynamics, and the aggregated process

is the limit of the normalized averages N−1
∑N

i=1X
(i)
t , as N → ∞. Granger

(1980) found that aggregation of random coefficient autoregressive AR(1) pro-
cess can lead to Gaussian long memory aggregated process. Since Granger’s
pioneering work, this question has attracted considerable attention in the
econometric and time series literature, see Gonçalves and Gouriéroux (1988),
Lippi and Zaffaroni (1999), and Oppenheim and Viano (1999) among others.

A related problem of generating long memory by aggregation of short
memory models in ARCH set-up was analyzed in Ding and Granger (1996).
They studied the so-called N -component GARCH(1,1) aggregation scheme

rN,t = σtεt, σ2
t = N−1

N∑
i=1

σ2
i,t

based on averaging of GARCH(1,1) volatilities

σ2
i,t = σ2(1 − αi)(1 − βi) + αi(1 − βi)r

2
N,t−1 + βiσ

2
i,t−1,

where εt are i.i.d. (0, 1) random variables and αi, βi are i.i.d. random coeffi-
cients. Then σ2

i,t and σ2
t can be written in ARCH(∞) form

σ2
i,t = a

(i)
0 +

∞∑
k=1

a
(i)
k r2N,t−k, σ2

t = ā0 +

∞∑
k=1

ākr
2
N,t−k,
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where a
(i)
0 = σ2(1 − αi), a

(i)
k = αi(1 − βi)β

k−1
i , and āk = N−1

∑N
i=1 a

(i)
k ,

k ≥ 0. By ergodicity, āk → Ea
(i)
k . Ding and Granger (1996) conjectured that,

similarly as in AR(1) case, the limiting aggregated model

r2t = ε2tσ
2
t = ε2t

(
b0 +

∞∑
k=1

bkr
2
t−k

)
,

which is an ARCH(∞) model with deterministic coefficients bk = Ea
(i)
k , can

exhibit long memory, if αi and βi are properly chosen. Further investigation
of this model was conducted by Kazakevičius et al. (2004), who assumed that
σ2 > 0 is a constant, αk are i.i.d. random variables on [0, 1] with the mean
Eαk = µ > 0 and βk are i.i.d. Beta(p, q) random variables independent of αk.
For p+ q = 1 and 0 < q < 1/2, they showed that

ā0 → Ea
(i)
0 = σ2(1 − µ), āk → Ea

(i)
k = µb̃k, k ≥ 1, a.s.,

where b̃k = E(1−βi)β
k−1
i ∼ ck−q−1 (k → ∞) are coefficients of the expansion∑∞

k=1 b̃k z
k = 1 − (1 − z)q,

∑∞
k=1 b̃k = 1. If µ

√
λ2 < 1, then4 r2N,t

L2−→ r2t =

σ2
t ε

2
t , see Kazakevičius et al. (2004), where the limit r2t is ARCH(∞) model

with

σ2
t = σ2(1 − µ) + µ (1 − (1 − L)q) r2t = σ2(1 − µ) + µ

∞∑
k=1

b̃kr
2
t−k.

Since the covariance function r2t is absolutely summable, differently from
AR(1) case the aggregation procedure does not lead to the long memory.
On the other hand, a similar aggregation procedure of random coefficient
GLARCH(1,1) is likely to result in a long memory limiting process, but this
possibility was not yet studied.

Leipus and Viano (2002) also discussed the aggregation (averaging) pro-
cedure

r2N,t = N−1
N∑

i=1

(r
(i)
t )2,

of squared random coefficient ARCH models

r
(i)
t = σ

(i)
t εt, (σ

(i)
t )2 = b

(i)
0 +

∞∑
k=1

b
(i)
k (r

(i)
t−k)2,

where εt are an i.i.d. noise variables and the weights (b
(i)
0 , b

(i)
1 , b

(i)
2 ...) are in-

dependent copies of the random sequence (b0, b1, b2...). They have shown that
under additional restrictions on random weights b0, b1, . . . ensuring existence

4 We say that ξN
L2−→ ξ if E|ξN − ξ|2 → 0 as N → ∞.



26 Liudas Giraitis, Remigijus Leipus, and Donatas Surgailis

of stationary solution with a finite moment Er4t < ∞, the aggregated model
can be written as Volterra series

r2N,t = ε2t

(
βN (0) +

∞∑
k=1

∞∑
j1,...,jk=1

βN (j1, . . . , jk)ε2t−j1 . . . ε
2
t−j1−···−jk

)
,

with random coefficients βN (j1, . . . , jk) = N−1
∑N

i=1 b
(i)
0 b

(i)
j1

· · · b(i)jk
. Since

βN (j1, . . . , jk) → β(j1, . . . , jk) = E[b0bj1 · · · bjk
] a.s. by the Strong Law of

Large Numbers, for all j1, . . . , jk ≥ 1, the aggregated model, as N → ∞,
converges in L2 norm to the ARCH model with deterministic coefficients,

r2N,t
L2−→ r̄2t = ε2t

(
β(0) +

∞∑
k=1

∞∑
j1,...,jk=1

β(j1, . . . , jk)ε2t−j1 . . . ε
2
t−j1−···−jk

)

in view of general result by Kazakevičius et al. (2004) on stability of random
coefficient ARCH models. The covariance function of the limit process r̄2t is
absolutely summable, i.e. r̄2t has short memory, but the aggregated process
r2N,t and the limit process r̄2t are no longer ARCH(∞) processes.

Zaffaroni (2000) investigated contemporaneous aggregation of GARCH
processes. A number of papers in the ARCH literature deal with the tem-
poral aggregation, partially motivated by the need of bridging between low
and high frequency ARCH models (including their continuous time counter-
parts), see Drost and Nijman (1993), Drost and Werker (1996), Corradi (2000)
among others.

Kazakevičius et al. (2004) studied general properties of ARCH(∞) ran-
dom coefficient model rt defined by equations (2), in the case when the co-
efficients {b0, b1, . . . } =: b form a sequence of non-negative random variables,
and εt, t ∈ Z is and i.i.d zero mean sequence independent of b. Under similar
conditions as in the non-random coefficient case, they showed the existence of
a stationary solution rt with a finite moment Er4t . However, differently from
the deterministic coefficient case, in this case the covariance function

Cov(r2h, r
2
0) → VarEbr20 > 0 (53)

tends as h → ∞ to a nonzero constant VarEbr20 , where Eb denotes a con-
ditional expectation given b, which can be easily seen from the equality
Cov(r2k+h, r

2
k) = ECovb(r2k+h, r

2
k) + VarEbr2k. Then

E(r2h − Ebr2h)(r20 − Ebr20) ≡ ECovb(r2h, r
2
0) → 0,

which implies the convergence N−1
∑N

h=1 r
2
h

d−→ Ebr20 
= Er20 to the ran-
dom limit Ebr20 , thus showing that the ARCH(∞) process {r2t } with constant
random coefficients is non-ergodic.
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5 Statistical Inference

5.1 Estimation of Parameters

Earlier works on (quasi) maximum-likelihood estimation in GARCH(p, q)
model used the assumption of Gaussianity of errors, which was later dropped.
Asymptotic properties of such estimators were considered in several papers.

Engle (1982) and Bollerslev (1986) considered the maximum likelihood
estimator (MLE) for conditionally Gaussian ARCH(p) and GARCH(p, q)
models, which extends readily to ARCH(∞) of (2). Given observations rt,
t = 1, ..., N , the log-likelihood, apart from an additive constant, is equal to

�N(θ, b) = −1

2

N∑
t=1

{
log σ∗t

2(θ, b) +
r2t

σ∗t
2(θ, b)

}
, (54)

where

σ∗t
2(θ, b) = b+

t−1∑
j=1

bj(θ)r
2
t−j ,

b is any admissible value of b0 and bj(θ) depend on a parameter θ ∈ Rp. The
likelihood (54) was used by Robinson (1991) for testing for long memory in
ARCH(∞). Note that (54) is only approximate because σ∗t

2(θ, b) is not equal
to Eθ,b(r

2
t |rt−1, . . . , r1).

The MLE of (θ0, b0) is defined by

(θ̃, b̃) = arg max �N (θ, b),

where the maximization is taken over a suitable subset of Rp+1. For infer-
ence, the limiting distribution of (θ̃, b̃) is of interest. Weiss (1986) showed that

(θ̃, b̃) is
√
N -consistent and asymptotically normal in the case of ARCH(p)

and finite p, while Lee and Hansen (1994), Lumsdaine (1986) established
similar properties of the MLE in the case of GARCH(1,1). The asymp-
totic theory developed by these authors makes significantly weaker assump-
tions than conditional Gaussianity, by considering �N(θ, b) as a quasi-log-
likelihood. The analysis of �N(θ, b) becomes more complicated in the case
of GARCH(p, q) and general p, q. Asymptotic properties of the correspond-
ing estimators for general GARCH(p, q) models were established by Hall and
Yao (2003), who used in (54) the following approximation of the conditional
variance σ2

t = Var(rt|r1, ..., rt−1):

σ̃t(θ)
2 =

α0

1 −
∑p

i=1 βi

+

min(q,t−1)∑
i=1

αi

(
r2t−i +

t−i−1∑
k=1

∑
1≤j1,...,jk≤p:

j1+...+jk≤t−i

βj1 ...βjk
r2t−i−j1−...−jk

)
.



28 Liudas Giraitis, Remigijus Leipus, and Donatas Surgailis

Hall and Yao (2003) showed that if εt in (65) have finite fourth moment,
then the quasi-maximum likelihood estimate of parameters of GARCH(p, q)
is

√
N -consistent and the asymptotic distribution is normal. In the case of

heavy-tailed errors with Eε40 < ∞, the class of possible limit distributions is
extremely large, the rate of convergence is slower than N1/2 and the limit
distributions of estimators are no longer Gaussian. Hall and Yao (2003) also
devised a bootstrap procedure for estimation of parameters of the limit dis-
tribution.

Peng and Yao (2003) suggested the modified least absolute deviation esti-
mator

θ̂2 = argminθ

n∑
t=1

| log(r2t ) − log(σ̃2
t (θ))|

which is less sensitive to heavy-tailed errors. This estimator has the stan-
dard

√
N -rate of convergence and the asymptotically normal limit distribu-

tion regardless whether the errors are heavy-tailed or not. Their study sug-
gests using of the least absolute deviation estimator θ̂2 when the errors have
very heavy tails as E(|εt|3) < ∞, and using the quasi-maximum likelihood
estimator θ̃ as long as εt are not very heavy tailed. Peng and Yao (2003)
also investigated asymptotic properties of the absolute deviation estimator
θ̂1 = argminθ

∑n
t=1 |r2t /σ̃2

t (θ) − 1|, and by the regression motivated estima-

tor θ̂3 = argminθ

∑n
t=1 |r2t − σ̃2

t (θ)|. Let us note that asymptotic normality
of quasi–maximum likelihood estimator of parameters of GARCH(p, q) under
mild moment conditions was obtained in Berkes et al. (2003a), Berkes and
Horváth (2004).

Straumann and Mikosch (2003) discussed quasi-maximum likelihood es-
timation in a general heteroscedastic time series model Xt = σtεt, where
unobservable volatility σt is a parametric function of (Xt−1, σt−1), and εt is a
standard i.i.d. noise. They showed the existence and uniqueness of a stationary
solution Xt, established the consistency and asymptotic normality of the es-
timator and applied their results to GARCH(1, 1), asymmetric GARCH(1, 1)
and EGARCH models. For some recent results, see also Berkes et al. (2003a),
Francq and Zaköıan (2004), Ling and McAleer (2003b).

Giraitis and Robinson (2001) considered Gaussian or Whittle estimation
based on r2t , t = 1, . . . , N . The idea of such estimation in the GARCH case
was pointed out by Bollerslev (1986) who noted that r2t generated by (65)
has an ARMA type representation, albeit with conditionally heteroscedastic
innovations, and it was employed in Harvey (1998) and Robinson and Zaffaroni
(1997, 1998) for certain class of stochastic volatility and non-linear moving
average processes.

Rewrite ARCH(∞) model (2) as

r2t = b0 +

∞∑
j=1

bj(θ)r
2
t−j + νt,
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where νt = r2t −σ2
t are martingale differences bj(θ) are depend on a parameter

θ. Assuming rt is a fourth-order stationary sequence, under some additional
conditions r2t has spectral density

f(λ) =
σ2

2π
g(λ, θ), g(λ, θ) =

∣∣∣1 −
∞∑

j=1

bj(θ)e
ijλ

∣∣∣−2

, −π < λ ≤ π,

where σ2 := Eν2
t . Consider the objective function

wN (θ) =

N−1∑
j=1

I(λj)

g(λj ; θ)
,

where I(λ) = 1
2πN

∣∣∣∑N
t=1 r

2
t e

itλ
∣∣∣2 is the periodogram of the r2t , λj = 2πj/N .

The Whittle estimate is defined by

θ̂ = argmin
θ∈Θ

wN (θ), (55)

where Θ is a compact subset of Rp. The normalized spectral density g(λ; θ)
is often explicitly given, for example, for GARCH(p, q) models it equals (see
Bollerslev, 1986)

g(λ; θ) =

∣∣∣∣ 1 − β(eiλ)

1 − α(eiλ) − β(eiλ)

∣∣∣∣2 , (56)

where α(z) =
∑q

j=1 αjz
j, β(z) =

∑p
j=1 βjz

j. Under some additional regular-
ity and moment conditions and the normalizing assumption∫ π

−π

log g(λ; θ)dλ = 0, (57)

Giraitis and Robinson (2001) showed that

N1/2(θ̂ − θ0)
d−→ N

(
0, 2W−1 +W−1VW−1

)
,

where

W =
1

2π

∫ π

−π

∂ log g(λ; θ0)

∂θ

∂ log g(λ; θ0)

∂θ′
dλ,

and

V =
2π

σ2

∫ π

−π

∫ π

−π

∂g(λ; θ0)
−1

∂θ

∂g(ω; θ0)
−1

∂θ′
f(λ,−ω, ω) dλ dω,

where f(λ, ω, ν) is the fourth-order cumulant spectrum of r2t . Note that the
matrices V and W can be consistently estimated.

The following two remarks should be made in this context. Firstly, the
above Whittle estimation in the case of GARCH(p, q) processes requires that
their spectral density (56) is sufficiently regular and satisfies condition (57).
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Secondly, the above results apply to weights which decrease much more slowly
than exponentially, e.g. as

bj = c1j
−ζ ,

where ζ > 1 and c1 > 0, in which case we have in the above example, θ =
(θ1, θ2) and

g(λ; θ) =
∣∣∣1 − (θ1 − 1)θ2

∞∑
j=1

j−θ1eijλ
∣∣∣−2

,

where the true θ1 equals ζ, θ2 is bounded by 1 from above, and g(λ; θ) satisfies
(57). Of course, the lack of a closed form representation of the above spectral
density is a practical disadvantage.

Although the Whittle estimation method is simple and easy to use, θ̂
has a different limiting variance from θ̃ as shown in Lee and Hansen (1994),

Lumsdaine (1996), and is asymptotically less efficient than θ̃ when the rt’s
are conditionally Gaussian.

Let us note, finally, the result of Mikosch and Straumann (2002), who
showed some non-standard properties of the Whittle estimator in a heavy-
tailed GARCH(1, 1) model.

5.2 Change-point Problem

In order to avoid spurious inference, an important problem in financial data
analysis is testing for parameter constancy against some kind of instability in
the conditional variance, in particular for structural breaks of variance Var rt.

Kokoszka and Leipus (1999) studied the CUSUM type tests for a change-
point in the parameters of the conditional variance of the ARCH(∞) model
defined by equations (2), which results in the change of the variance Var rt.
They assumed the following condition

(Eε80)
1/4

∞∑
j=1

bj < 1 (58)

guarantying the existence of an eighth order strictly stationary solution rt and
the validity of the Functional Limit Theorem for the squares r2t .

Denote by b := (b0, b1, . . . ) the parameter sequence of ARCH(∞) process
r2t , (2), and write {rt} ∈ R(b) if b satisfies condition (58).

Suppose we want to test the null hypothesis

H0 : r21 , . . . , r
2
N is a sample from {rt} ∈ R(b) for some b

against the alternative that the sample r21 , . . . , r
2
N has the form

r2t =

⎧⎨⎩ (r
(1)
t )2 , if 1 ≤ t ≤ k∗,

(r
(2)
t )2 , if k∗ < t ≤ N,

(59)
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where k∗ = [Nτ∗], 0 < τ∗ < 1 is fixed, and sequences {r(1)t } ∈ R(b(1)),

{r(2)t } ∈ R(b(2)) with b(1) 
= b(2) have different variances Var r
(1)
t 
= Var r

(2)
t .

The sequences {r(1)t } and {r(2)t } are generated by the same noise sequence
{εt}.

Kokoszka and Leipus (1999) studied CUSUM type tests based on the pro-
cess {UN(τ), τ ∈ [0, 1]}, where

UN (τ) = N1/2 [Nτ ](N − [Nτ ])

N2

⎛⎝ 1

[Nτ ]

[Nτ ]∑
j=1

r2j − 1

N − [Nτ ]

N∑
j=[Nτ ]+1

r2j

⎞⎠ .

(60)
The partial sums in (60) are empirical estimates of the variance of the rt,
so the tests are designed to detect a change in parameters which leads to a
change in variance of returns.

Under the null hypothesis H0,{
UN(τ), τ ∈ [0, 1]

}
→D[0,1]

{
σW 0(τ), τ ∈ [0, 1]

}
,

where σ2 =
∑∞

k=−∞ Cov(r2k, r
2
0) and W 0(τ) = W (τ) − τW (1) is a Brown-

ian bridge. Under H0, this implies the convergence of the following standard
statistics

sup
0≤τ≤1

|UN (τ)| d−→ σ sup
0≤τ≤1

|W 0(τ)|,
∫ 1

0

U2
N (τ)dτ

d−→ σ2

∫ 1

0

(W 0(τ))2dτ.

(61)
The tests based on such continuous functionals of the process {UN(τ)} have
positive asymptotic power against the alternative H1.

Note that under H0, the process r2t has short memory and σ2 < ∞. To
construct the asymptotic critical regions, the only unknown parameter σ2 of
the limit distributions in (61) can be estimated by

ŝ2N,q =
∑
|j|≤q

(
1 − |j|

q + 1

)
γ̂(j),

where q → ∞, q/N → 0 is the bandwidth parameter, γ̂(j) = N−1
∑N−|j|

i=1 (r2i −
r̄2)(r2i+|j|−r̄2) are the sample covariances and r̄2 = N−1

∑N
j=1 r

2
j is the sample

mean. Then, as N → ∞,

ŝ2N,q
P−→ σ2.

To estimate the change-point τ∗ Kokoszka and Leipus (2000) have used

the estimator τ̂ = k̂/N , which is based on the CUSUM statistic (60), setting

k̂ = min{k : |Uk| = max
1≤j<N

|Uj|},

where Uk = UN (k/N). Then
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|τ̂ − τ∗| = OP

(
1

N∆4

)
,

where ∆ = E(r
(2)
k )2 −E(r

(1)
k )2 
= 0. Here E(r

(i)
k )2 = λ1b

(i)
0 /(1−λ1

∑∞
j=1 b

(i)
j ),

i = 1, 2.
Andreou and Ghysels (2002, 2003) applied these results to the stock and

FX markets. Tests for changes in volatility, based on squared model residuals
and applicable to the GARCH model were designed by Kokoszka and Teyssière
(2002); for related research see Horvàth et al. (2001), Berkes and Horváth
(2003a), Berkes et al. (2003b). Berkes et al. (2004) used a test based on the
likelihood ratio. Sequential monitoring scheme for detection of changes in
the parameters of GARCH sequence model was studied by Berkes, Gombay,
Horváth and Kokoszka (2004).
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10. Berkes, I. and Horvàth, L. (2003a). Limit results for the empirical process of
squared residuals in GARCH models. Stochastic Processes and their Applica-
tions, 105, 271–298.
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14. Berkes, I., Horvàth, L. and Kokoszka, P. S. (2003b). Asymptotics for GARCH
squared residual correlations. Econometric Theory, 19, 515–540.
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117. Teräsvirta, T. (1996). Two stylized facts and the GARCH(1,1) model. Stock-

holm School of Economics. SSE/EFI Working Paper Series in Economics and
Finance, No. 96.



38 Liudas Giraitis, Remigijus Leipus, and Donatas Surgailis

118. Terdik, G. (1999). Bilinear Stochastic Models and Related Problems of Non-
linear Time Series Analysis: A Frequency Domain Approach. Lecture Notes in
Statistics, volume 142. Springer Verlag, New York.

119. Teyssière, G. (2000). Double long-memory financial time series. Preprint.
120. Tsay, R. S. (2002). Analysis of Financial Time Series. Wiley, New York.
121. Weiss, A. A. (1986). Asymptotic theory for ARCH models: estimation and

testing. Econometric Theory, 2, 107–131.
122. Zaffaroni, P. (2000). Contemporaneous aggregation of GARCH processes.

Preprint.



Intermittency, Long–Memory and Financial
Returns

Raj Bhansali1, Mark P. Holland2, and Piotr S. Kokoszka3

1 The University of Liverpool, U.K. sa17@liverpool.ac.uk
2 University of Surrey, U.K. Mark.Holland@eim.surrey.ac.uk
3 Utah State University, U.S.A. piotr@math.usu.edu

1 Introduction

There is now a vast literature supporting the empirical stylized fact that the
volatility of financial returns, as measured either by the absolute values or
the squares of the returns series, exhibits long-memory and has correlations
which remain positive for long lags and decay slowly to zero, and an associ-
ated stylized fact that the marginal distribution of the returns has heavy tails.
There is also evidence to suggest that the returns display ’intermittency’, of-
ten called ’volatility clustering’, and the relatively benign periods of market
activity are often interrupted by the occurrence of violent market movements.
Reference may be made to Greene and Fielitz (1977), Akgirav and Booth
(1988), Ding, Granger and Engle (1993), Kokoszka and Taqqu (1996), Podob-
nik et al. (2000), Mittnik and Rachev (2000), Kirman and Teyssière (2002),
Cont (2001), among others, and which are just a few among hundreds of pub-
lications in this area. At the same time, it is also recognised that the standard
ARCH and GARCH models, introduced originally to describe the dependence
structure of the volatility, exhibit short range dependence and thus do not cap-
ture the long-memory property of the returns, though they do imply volatility
clustering and a heavy-tailed marginal distribution. Consequently, several dif-
ferent modifications of the basic ARCH specification have been introduced
so as to incorporate the slow decay of correlations, see Baillie et al. (1996),
for a review. Many of these modifications are, however, rather ad-hoc and a
mathematical theory behind some is not fully developed as yet and indeed a
few appear in fact not to exhibit long memory, at least asymptotically, see
Giraitis, Kokoszka and Leipus (2000).

In this chapter, we consider a new and an entirely different approach to
modelling phenomena exhibiting long-memory, intermittency and heavy-tailed
marginal distributions, namely by chaotic intermittency maps. This class of
maps has witnessed much development in recent years and it marks an im-
portant emerging branch of the subject area of Dynamical Systems Theory. It
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should also be stressed that the idea of using deterministic maps as a candi-
date class of non-linear, non-stochastic models for Economic time series has
an established pedigree by now and their use has previously been considered
by several different authors; see, for example, Brock and Hommes (1997). For
the purpose of the present discussion, three principal properties of these maps
are relevant and which qualify them as a plausible class of models for finan-
cial returns. First, unlike some of the standard chaotic maps, for example, the
Logistic, Tent and Bernoulli shift maps, the intermittency maps display long
memory and have correlations decaying at a sub-exponential rate, meaning
at a polynomial rate or even slower. Secondly, the invariant density of these
maps can display ’Pareto’ tails and thus go down to zero at a polynomial rate.
Thirdly, as their name implies, these maps display intermittency and gener-
ate time series, called the orbit of the map, which display intermittent chaos,
meaning the orbit of the map alternates between laminar and chaotic regions.
A brief outline of the main theoretical properties of these maps is given in Sec-
tion 2; for a more detailed discussion, reference may also be made to Bhansali,
Holland and Kokoszka (2004). A further motivation for considering the use of
intermittency maps for modelling financial data comes from the work of Mon-
dragon (1999), who has successfully applied a sub-class of intermittency maps
for modelling the internet traffic, which is a related yet different example of
phenomena exhibiting long-memory and heavy-tailed marginal distributions,
see, for example, Park and Willinger (2000).

The generic characteristic features of intermittency maps described above
are, however, asymptotic and apply, for example, as the lag, u, of the cor-
relation function tends to infinity. Moreover, the bounds on the correlations
have been developed for some Hölder continuous function of the map time
series, wt, say, and it is as yet not known precisely for which functions this
bound would actually hold in practice. In Section 3, therefore, we present
results of a simulation study aimed at investigating the empirical behaviour
of the estimated correlations for three different categories of intermittency
maps, namely the Polynomial, Logarithmic and Cusp maps, and for a range
of different parameter values defining these maps. In addition, we examine the
behaviour of the estimated invariant density for these three categories of maps
and also that of the partial correlations and the associated ’linear Gaussian’
statistics but when these are computed from a simulated realization of the
map.

The invariant distribution of the Polynomial and Logarithmic intermit-
tency maps is concentrated on a compact interval, [0, 1]. On the other hand,
however, the absolute returns on financial time series could in principle take
values over the entire non-negative real line, R+. In Section 4, we accordingly
consider transformations, h(wt), which have distributions defined over [0,∞)
and investigate empirically the correlation structure and related properties of
the transformed series by a simulation study.

Currently, there are very few theoretical results on the modelling of abso-
lute returns as they are difficult to treat analytically, see, however, Granger
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and Ding (1996). The paper concludes in Section 5, where we examine the
modelling potential of the intermittency maps for absolute returns and present
concluding remarks for direction of future research.

2 Chaotic Intermittency Maps

2.1 General Properties

By a map time series we mean a deterministic sequence, {wt, t = 0, 1, . . .},
generated by iteratively applying a one-dimensional map of the following form:

wt+1 = ζ(wt) (t = 0, 1, . . .), (1)

where w0 is real-valued and specifies the initial condition for the iterative
scheme specified by (1), ζ : J → J is a non-linear map (function), J denotes
a closed interval of the real line, R.

It is recognized, see Rasband (1990), that such maps can generate chaotic
dynamics and although the successive values of wt evolve in a deterministic
way from the immediately preceeding one, they could still be chaotic and
sensitive to the choice of the initial condition, w0. This is in contrast to a
random system in which the present observation does not entirely depend on
the previous observation.

If, in addition, the map, ζ : J → J, is ergodic and admits an invariant den-
sity, χ(w), say, then provided the initial condition, w0, is a random number
from this invariant distribution, {wt} defines a strictly stationary stochastic
process, see Berliner (1992), Bhansali, Holland and Kokoszka (2004), among
others, and hence such maps qualify as alternative non-linear, non-stochastic
models for an observed time series, and can be considered for describing phe-
nomena which appear random.

As discussed in Section 1, the correlation functions for some of the popular
and widely-studied examples of deterministic maps, for example the Logistic,
Tent and Beta transformations, decay exponentially and thus these maps im-
ply that the observed time series has short-memory; see Lawrance and Bal-
akrishna (2001), Hall and Wolff (1995), among others. Lately, there has been
much development on devising maps exhibiting slowly-decaying correlations
and intermittency. Some of the early work on this class of maps, see Manneville
and Pomeau (1980), was in connection with continuous-time Lorenz systems
and the main motivation was to construct a mathematical model for intermit-
tent chaos, that is, phenomena exhibiting long periods of laminar behaviour
together with short bursts of erratic behaviour. The intermittency maps also
differ from the more popular short-memory maps as regards their recurrence
properties, and, in particular, in the behaviour of the probability distribution
of the time taken by the orbit of the map to return back to a given fixed in-
terval C ⊂ J , having started from within this interval; an important property
of intermittency maps is that there may exist sub-intervals, C, for which the
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distribution function of this recurrence time decays at a sub-exponential rate;
see Bhansali, Holland and Kokoszka (2004), for details.

Below, we briefly outline some of the known statistical properties of four
categories of intermittency maps, namely the Polynomial, Logarithmic, Gen-
eralised Polynomial-Logarithmic and Cusp maps, focusing particularly on the
results concerning their invariant densities and the rate of decay of correla-
tions.

Most theoretical results concerning the rate of decay of correlations are
however valid for all Hölder continuous functions of the map time series, {wt}.
Hence, we first give a formal mathematical definition of this class of functions:
A function, ϕ, is said to be Hölder continuous if there exist a γ ∈ (0, 1) and a
C <∞, independent of x, y, such that

|ϕ(x) − ϕ(y)| ≤ C|x − y|γ , ∀x, y ∈ J,

where J denotes the domain of the function, ϕ.
Moreover, on the assumption that the map, ζ : J → J, is ergodic and

admits an invariant density, χ(w), it would also be useful to state at the
outset a formal definition of the mean and variance functions of ϕ(wn) for
each n ∈ N, and also of the covariance between ϕ(wn) and ψ(w0), where
ϕ, ψ : J → R are two Hölder continuous functions. The expectation and
variance of ϕ(wn) are given by

E
{
ϕ(wn)

}
=

∫
J

ϕ(w)χ(w)dw, (2)

V
{
ϕ(wn)

}
= E

{
ϕ(wn)2

}
− (E

{
ϕ(wn)

}
)2. (3)

Similarly, for each n ∈ N, the covariance, Rϕ,ψ(n), between ϕ(wn) and ψ(w0)
is defined as follows:

Rϕ,ψ(n) = E
{
ϕ(wn)ψ(w0)

}
− E

{
ϕ(wn)

}
E
{
ψ(w0)

}
=

∫
J

ϕ(ζn(w))ψ(w)χ(w)dw −
∫

J

ϕ(w)χ(w)dw

∫
J

ψ(w)χ(w)dw.
(4)

If ψ(w) = ϕ(w) = w, then Rϕ,ψ(n) = Rw(n) is the autocovariance function of
the weakly stationary process {wt, t ∈ N}. Ergodic theory however enables us
to consider also more general functions of wn and w0; for example, ϕ(wn) = w2

n

and ψ(w0) = w2
0 (Lawrance, 2001).

2.2 Polynomial Maps

A celebrated example, with J = [0, 1], of this category of maps is:

ζα(w) =

{
w(1 + 2αwα) if 0 ≤ w ≤ 1/2,

2w − 1 if 1/2 < w ≤ 1,
(5)
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where α > 0; see Liverani et al. (1999), Young (1999).
When α ∈ (0, 1), an explicit expression for the invariant density, χα(w),

is as yet unknown, but it is known that, see Thaler (1980), χα(w) is of the
following form:

χα(w) =
Vα(w)

wα
, (6)

where Vα(w) depends on the value of α and, for each fixed α, it is a piecewise
continuous, uniformly bounded function ofw which is also bounded away from
zero.

For the map (5), the asymptotic behaviour of the correlation function for
large values of the lag, n, has been studied by several authors, and, as discussed
in Section 2.1, the results obtained on the rate of decay of correlations are
quite general and apply to all Hölder continuous functions of the map time
series, {wt}. The most general results are due to Sarig (2001) and Gouëzel
(2004), who show that

lim
n→∞

n(1/α−1)Rϕ,ψ(n) = U, (7)

where ϕ and ψ are Hölder continuous and U is a constant.
By contrast, the rate of decay of correlations for a standard ARFIMA(p, d, q)
process is, Hosking (1981):

Rϕ,ψ(n) ∼ Bn2d−1, (8)

where d ∈ (−0.5, 0.5) is the fractional-differencing or the memory parameter;
the process is said to have long-memory if d ∈ (0, 0.5) and an intermediate
memory if d ∈ (−0.5, 0.0). On comparing (7) with (8), the following equiva-
lence relationship between d and α may be established:

d = 1 − (2α)−1. (9)

Hence, if α ∈ (0.5, 1.0), the result, (7), implies that the correlations for
some Hölder continuous functions, ϕ and ψ, of the map time series, {wt},
behave like that of a long-memory time series, and if α ∈ (0.0, 0.5), they
behave like that of a time series with intermediate memory. In Section 3, we
examine by simulations the extent to which this result in fact holds for the
map time series itself.

2.3 Logarithmic Maps

A second category of intermittency maps has recently been introduced by
Holland (2002), and is defined on J = [0, 1] by:

ζβ(w) =

{
w
[
1 + Y (β)w(− logw)1+β

]
if 0 ≤ w ≤ 1/2,

2w − 1 if 1/2 < w ≤ 1,
(10)
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where Y (β) = 2(log 2)−(1+β) is chosen to ensure that limw→1/2− ζβ(w) = 1.
The invariant density, χβ(w), for the logarithmic map (10) exists for all

β ∈ (0, 2 log 2 − 1), and takes the following form on (0, 1/2):

χβ(w) =
Vβ(w)

w log(1/w)β+1
∀w ∈ J, (11)

where Vβ(w) depends on β and for each fixed β it is a uniformly bounded piece-
wise continuous function, that is also bounded away from zero. On [1/2, 1],
the invariant density is a bounded piecewise continuous function. By contrast,
for the polynomial map, (5), the invariant density exists only if α ∈ (0, 1),
and it diverges to infinity as w → 0 at a much faster rate than χβ(w).

For the logarithmic map, Holland (2002) also examined the rate of decay
of the correlation function of {wt : t ∈ N} and shows that

Rϕ,ψ(n) ≤ B(log n)−β , (12)

where B is a uniform constant. Thus, within the class of all Hölder continuous
functions, the correlations for this map could decay at a slower rate than for
the polynomial map. It should be emphasized, nevertheless that (12) only
provides an upper bound on the rate of decay of the correlations; a lower
bound analogous to (7) has recently been obtained by Gouëzel (2004).

2.4 Generalised Polynomial-Logarithmic Maps

Holland (2002) also considers the possibility of combining and generalising
the polynomial and logarithmic maps by introducing an extended category of
maps of the following general form, with J = [0, 1]:

ζβ(w) =

{
w [1 + Y (β)wα∆(w)] if 0 ≤ w ≤ 1/2,
2w − 1 if 1/2 < w ≤ 1,

(13)

where α > 0, Y (β) = 2α/∆(1/2) and ∆(1/w) is a slowly-varying function
at infinity and such that it is twice differentiable for all w ∈ [M,∞] and M
denotes a bounded constant. Holland (2002) has also investigated the rate of
decay of correlations for this extended category of maps and shows that

Rϕ,ψ(n) ≤ B∆∗(n)n1−1/α, (14)

where B > 0 is a uniform constant and ∆∗(w) is another slowly-varying
function at infinity and its precise functional form may be derived from that
of ∆(w). The result (14) shows that by choosing an appropriate functional
form for ∆(w), it is possible to construct intermittency maps belonging to this
category whose rate of decay of correlations is bounded above by a function
that has a prescribed decay rate.
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2.5 Cusp Maps

This category of intermittency maps has been investigated by Balakrishnan
et al. (1997, 2001), Balakrishnan and Theunissen (2001). A specific example
of the maps they consider, with J = [−1, 1], is as follows:

ζ(w) =

{
1 − 2

√
(−w) if − 1 ≤ w ≤ 0,

2
√

(w) − 1 if 0 < w ≤ 1.
(15)

The invariant density, χC(w), say, for the cusp map exists and it coincides
with that of a Uniform distribution on J = [−1, 1].

Although an explicit expression for the rate of decay of the correlation
function for the cusp map is as yet not available, from the results of Young
(1999), it may be hypothesized that

Rϕ,ψ(n) = O(n−1) (n→ ∞). (16)

It should be noted that the rate of decay of correlations specified by (16) is at
the boundary of that given in (8) for distinguishing between a long-memory
and an intermediate process, and it is not possible to attain this particular
rate of decay if only the standard ARFIMA(p, d, q) models are considered.

Indeed, a comparison of the results (16), (14), (12) and (7) with (8) re-
veals that the rate of decay of correlations for the class of intermittency maps
could either equal or be slower than that for a standard ARFIMA(p, d, q)
process, and in this sense the class of intermittency maps offers a wider choice
of possible models for describing phenomena exhibiting slowly-decaying corre-
lations; in addition, these maps mostly imply a heavy-tailed invariant density,
which is also not possible within the standard ARMA framework, though
there have been developments on extending this framework to allow for in-
novations with a stable distribution, see Kokoszka and Taqqu (1995), among
others. In Section 3, we examine by simulations the extent to which these
theoretical results hold empirically, and especially if the correlation function
is estimated by a standard ’non-parametric’ method.

3 Simulation Results for the Intermittency Maps

3.1 The Invariant Density

The Polynomial Map

Since a closed-form analytic expression for the invariant density of the poly-
nomial map is as yet not available, we decided to simulate this density for
three different values of α, namely α = 0.25, 0.5 and 0.75. To this end, a total
of N = 107 iterations, wt, 0 ≤ t ≤ N , of the map (5) were obtained, starting
with an initial value, w0, generated from a uniform distribution on [0, 1]. A
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kernel estimate of the density of the last N −m observations, wt, m < t ≤ N ,
with m = 103, was then computed by adopting a rectangular kernel of width
0.02. Other kernels of similar lengths were also applied and gave comparable
results. To avoid edge effects, the kernel estimate was computed at 350 equi-
spaced points over the interval [0.01, 0.99]. We found that with N = 107, the
choice of the initial value, w0, and the “burn in” period, m, did not mate-
rially influence the shape of the estimated densities. A plot of the estimated
densities is shown in Figure 1.

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

alpha=.25
alpha=.50
alpha=.75

Fig. 1. Estimated invariant densities for the Polynomial intermittency maps

In a neighbourhood of w = 0, the estimated invariant densities take val-
ues close to w−α, and their shape accords with the asymptotic theoretical
result, (6). Moreover, in this neighbourhood, the unknown function, Vα(w),
may be approximated by a constant, namely Cα = (1 − α), whose value de-
pends on that of α. But, for values of w outside this neighbourhood, the
estimated density assumes values which are much smaller than w−α and this
asymptotic result does not provide a good approximation to the actual shape
of the simulated densities. A more detailed analysis, which is not reported
here, nevertheless showed that now the simulated densities could in fact be
approximated by a function of the form χ∗

α(w) = K∗
αw

−α∗

with some α∗ < α
and K∗

α > 0.

The Logarithmic Map

Figure 2 shows the estimated invariant densities for the map (10), with β =
0.1, 0.2, 0.3. The same method of kernel density estimation as used in Section
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3.1 was applied, but we generated N = 107 + 104 iterations of the map (10),
starting with an initial value of w0 = 0.2, and discarded the initial m = 104

points.

0.0 0.2 0.4 0.6 0.8 1.0

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

beta=0.3
beta=0.2
beta=0.1

Fig. 2. Estimated invariant densities for the Logarithmic intermittency maps

For w ∈ (0.0, 0.5), the estimated density is seen to decrease monotoni-
cally as w increases; by contrast, for w ∈ [0.5, 1.0), the estimated density
increases monotonically with w. This behaviour does however accord with the
asymptotic results described in Section 2.3, since the result (11) holds only for
w ∈ (0.0, 0.5) and for w ∈ [0.5, 1.0], an explicit analytic form for the invariant
density is not as yet available.

3.2 The Correlations, Partial Correlations and the Autoregressive
Order Selected

Plan of the Study

For studying the behaviour of the estimated correlations and the associ-
ated model selection procedures used in a linear Gaussian analysis of time
series, a slightly different approach to that described in Section 3.1 was
adopted. A stretch of N = 107 iterations of the Polynomial, Logarithmic
and Cusp maps was generated, but only the last T = 104 observations,
{wt, t = m+ 1, ...,m+ T }, with m = 107 − 104, were actually used for com-
puting the estimated correlations and the related statistics, and thus the first
m generated values of wt were discarded so as to avoid the possible ’transient’
effects. Two higher values of N , namely N = 108 and 109, but with the value
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of T = 104 remaining unchanged, were also considered. A principal effect
was to reduce the simulated variances of the estimated correlations, without
noticeably changing their means; at the same time, however, there was a con-
siderable, more than five-fold, increase in the computational costs and it was
therefore decided to adopt N = 107 as a suitable compromise between the
computational effort and a suitably large ’burn-in’ period.

The initial value, w0, for the Polynomial and Logarithmic maps was
generated from a truncated Exponential distribution with mean 0.2, the
truncation point being set equal to 1.0, the upper limit of the interval,
J , over which these two maps are defined. The initial value for the Cusp
map was, however, generated from the known invariant density for this
map, namely that for the Uniform distribution over [−1, 1]. Several differ-
ent values of the parameter, α, for the Polynomial map were considered,
namely α = 0.05, 0.1, 0.2, 0.3, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95; simi-
larly, we set β = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35 for the Logarithmic map.
For each generated realization of the corresponding maps, the standard ’non-
parametric’ estimates of correlations, r(T )(u) (u = 0, 1, . . . , 100), were com-
puted as follows:

r(T )(u) = RT (u)/RT (0), (17)

where

RT (u) = T−1
T−u∑
t=1

(wt − w̄)(wt+u − w̄) (18)

denotes a ’positive-definite’ estimate of the covariance function of {wt} and

w̄ = T−1
T∑

t=1

wt

denotes the estimated mean of the generated sequence.
The associated values of the estimated partial correlations, π̂(k) (k =

0, 1, . . . , 50), were then computed by applying the NAG library routine
G13ACF ; in this routine, the partial correlations are computed by imple-
menting the Durbin-Levinson algorithm.

For examining the behaviour of the standard linear Gaussian model selec-
tion procedures when these are applied to the generated sequence, the order
of an appropriate linear autoregressive approximation was also determined by
applying the BIC criterion:

BIC(k) = T log σ̂2(k) + (logT )k (k = 0, 1, . . . , 50), (19)

where σ̂2(k) = σ̂2(k − 1){1 − π̂2(k)}, was computed recursively by setting
σ̂2(0) = RT (0); see Bhansali (1993) for a further discussion of this and the
related autoregressive order selection procedures.
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As discussed in Section 2, the intermittency maps that we consider are er-
godic and hence the estimated correlations, r(T )(u), converge with probability
one to the corresponding autocorrelation function of these maps, where the
convergence is pointwise, for each fixed u, and hence so do the partial corre-
lations and related statistics used for model selection and described above.

The computations described above were replicated 1000 times, but with
a different initial condition each time. The simulated sampling means, vari-
ances and standard deviations, SD, of the various estimates over these repli-
cations were determined. In addition, the simulated sampling distributions of
r(T )(u), u = 1, 2, 3 and also that of w̄ and the autoregressive order selected by
the BIC criterion were obtained. For convenience, however, the discussion of
the results given below is based largely on an analysis of the simulated sam-
pling means and variances of the various estimates, though we do consider the
simulated sampling distributions of r(T )(1) and w̄.

The Polynomial Map

A plot of the simulated means of the r(T )(u) (u = 1, . . . , 100) for α =
0.95, 0.8, 0.45, 0.3 is shown in Figure 3 together with two curves represent-
ing mean+SD and mean-SD. A reason why we use the simulated standard
deviations is that an explicit expression for the correlation function of the
Polynomial map is as yet unknown and the standard asymptotic results on the
sampling variance of the r(T )(u) involve the unknown correlation function; an
additional difficulty, which we further discuss below, is that for α ∈ (0.5, 1.0)
these asymptotic results do not apply. Furthermore, some preliminary cal-
culations, not reported here, suggested that the mean-SD curve provides a
rough approximation to the simulated lower 90% confidence limits for these
estimates when the limits are calculated from their simulated sampling dis-
tributions.

Although, in the interest of space, the results for other values of α are not
shown, they are nevertheless consistent with those presented in Figure 3.

Consider first the behaviour of the mean-correlations for α = 0.95, equiv-
alent d = 0.474. The mean-correlations are positive for all 100 lags and show
persistence in the sense that their numerical magnitudes remain noticeably
large even at large values of the lag, u, and decrease very slowly as the value
of u increases. Although the simulated standard deviations, SD, of the r(T )(u)
increase steadily as u increases, reflecting the greater variability of the esti-
mated correlations at high lags, the curve corresponding to mean - SD lies
above the 0 value even when u is as high as 100. Thus, the empirical behaviour
of the mean-correlations is incompatible with a rapid exponential decay of cor-
relations observed with a standard ’short-memory’ model, and accords with
the theoretical ’long memory’ property (7) of the Polynomial maps discussed
in Section 2.2. The simulation results thus indicate that this property could
in fact hold when ψ(w) = ϕ(w) = w.
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Fig. 3. Plots of means of r(T )(u) versus u, with solid curve representing r(T )(u)
and the dotted curves r(T )(u)± SD

The behaviour of the mean-correlations for α = 0.8 and 0.6 is similar
to that with α = 0.95. The numerical magnitudes of the mean-correlations,
and also of the simulated standard deviations of these estimates decrease
monotonically, however, as α decreases and the rate at which they approach
0 increases, and the mean-corelations with α = 0.3, and to a slightly lesser
extent with α = 0.45 behave in a manner that is akin to that of a ’short-
memory’ time series. The simulation results for these two values of α are
nevertheless in agreement with the asymptotic result (7), which shows that
for α < 0.5, the map exhibits ’intermediate memory’ and the theoretical rate
of decay of correlations with α = 0.3, in particular, is quite rapid.

The asymptotic result (7) suggests that a plot of log[r(T )(u)] against
log(u) may be useful for constructing an initial estimate of the parameter, α,
especially if the bound given by this result were to hold actually for ψ(w) =
ϕ(w) = w. Figure 4 shows a plot of the logarithm of the mean of r(T )(u)
against log(u) for α = 0.95. The log-log plot of the mean correlations appears
linear. The line of best fit was determined by an Ordinary Least Squares
regression. Note, however, that the result (7) only applies asymptotically as
the lag u → ∞. Hence, the regression line was estimated only for the values
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of u > n, where we allowed n to vary by setting n = 3, 4, 5, 6, 8, 26. We found
that the estimated slope of this line varies considerably as the value of n
changes and only the plot for n = 6 is shown in Figure 4. The results however
do not support the use of such a graphical procedure for estimating α from an
observed realization of the map. On the other hand, however, this finding is
not surprising since (7) provides only an upper bound on the rate of decrease
of correlations and it shows that this rate is not any slower as n→ ∞. Similar
plots for all other values of α considered in the paper were also obtained but
the results are omitted in the interest of space.
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Fig. 4. Plot of the logarithm of the mean of r(T )(u) against log(u) for α = 0.95

The corresponding plots of the simulated means of the estimated partial
correlations are shown in Figure 11 together with two curves representing
mean+SD and mean-SD. To save space, the results are only presented for
α = 0.95, 0.8, 0.45 and 0.3. It is again convenient to first consider the detailed
results for α = 0.95. The mean partial correlations, like the mean correla-
tions, are positive at all lags, u, and decrease steadily to zero as u increases.
Moreover, the first partial correlation substantially dominates all other partial
correlations, in the sense that its numerical magnitude is very much bigger
than that of all others. On the other hand, however, the curve corresponding
to mean - SD lies above the value of 0 for all u < 10 and in this sense the
corresponding mean partial correlations are significantly different from 0. A
similar pattern of results is also observed for the other three values of α con-
sidered in Figure 11, but now the values of the partial correlations at each lag
decrease monotonically as the value α decreases and for α = 0.3, in particular,
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the mean partial correlations for all u ≥ 2 are close to the 0 value, though the
curve corresponding mean - SD falls below 0 only for u > 4.

An examination of the plots of the mean correlation and mean partial
correlations for the Polynomial maps in accordance with the standard graph-
ical approach to model identification suggests that a low-order autoregressive
model could well be fitted to a typical realization of this map for approximat-
ing its second-order behaviour, especially for values of α not too close to 1.0.
We investigated this hypothesis further by determining the order of a linear
autoregressive model selected when the BIC-criterion, (19), is applied, albeit
uncritically, to simulated realizations of a Polynomial map. To save space,
the detailed results are omitted and Figure 5 only shows the average autore-
gressive order selected by this criterion in 1000 replications of the Polynomial
maps with different values of α.
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Fig. 5. Plot of average autoregressive order selected for different values of α

For α ≤ 0.3, the average order selected is close to 1.0 and this model does
describe the estimated correlations, as judged by a comparison of the mean
correlations with the corresponding theoretical value implied by an autore-
gressive process of order 1, but with the parameter set equal to the value of
the first mean correlation coefficient. A further check was also carried out by
separately fitting an AR(1) model at each simulation and applying the Box-
Ljung diagnostic test, see Ljung and Box (1978), for checking the adequacy of
the fitted model; this test also did not reject the AR(1) model in all 1000 sim-
ulations. By contrast, for α > 0.5, higher order autoregressions are selected,
and the average order selected increases noticeably as α increases from 0.55
to 0.8, and thereafter it increases rather slowly and reaches a plateau. For
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α ≥ 0.8, the equivalent value of the long-memory parameter, d, is quite close
to its upper limit and, by (7), the asymptotic rate of decay of correlations
is rather slow and in this sense the simulation results do accord with this
theoretical result.

An additional feature of the results for α ≥ 0.8 was that the actual fre-
quency distribution of the autoregressive order selected is not adequately de-
scribed by its mean and increasing α also increases the frequency of selecting
the more extreme orders. This point is illustrated in Table 1, where the fre-
quency of selecting an AR(1) model and that of selecting a very long model,
that is, an AR(k) model with k ≥ 40 is shown as α varies over this interval.

Table 1. Frequency of selecting extreme autoregressive orders in 1000 realizations
of the Polynomial Maps with α ∈ [0.8, 1.0)

α AR(1) ≥ AR(40)

0.8 55 9
0.85 117 6
0.9 201 11
0.95 258 17

A further feature of the results for α ≥ 0.8 was that there were simulations
for which the orbit of the map remained close to 0 in the laminar region and
changed very slowly and hence the estimated correlations were close to 1 for
many lags, and even for lags as large u = 50. An example of this phenomenon
is shown in Figure 6, where the orbit of the map for a particular simulation
with α = 0.95 and wm+1 = 0.96403486 × 10−6 is shown. The orbit of the
map for the entire stretch of T = 10, 000 observations remains in the laminar
region, close to the neutral fixed point of 0, and increases monotonically as t
increases. As discussed by Bhansali et al. (2003), this behaviour is congruent
with the characteristic behaviour of all intermittency maps. On the other
hand, however, for such orbits, the estimated correlations approximately equal
1, at lags as large as u = 100 and lie along a straight line, while the value of
the partial correlations for all u ≥ 2 is very close to 0 and that of the first
partial correlation is close to unity; in addition, the mean, w̄, takes a value
very close to 0.

To understand these results, observe that, see Aaronson (1997), by defini-
tion, (5), of the Polynomial map,

wt ≈
1

2

(
(2δ)−α − αt

)− 1
α

, w0 = δ and wt � 1, (20)

where w0 = δ and this approximation holds for all wt such that wt � 1. Hence,
if, for some t ≥ 0, wt = O(10−6), then the subsequent orbit of the map will
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Fig. 6. An orbit of the Polynomial map with α = 0.95 and wm+1 = 0.96403486 ×
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Fig. 7. A different orbit of the Polynomial map with α = 0.95 and wm+1 =
0.54495027

take values of this magnitude for the next N = 10−5 iterates before its mag-
nitude increases to 10−5. To compare the results for this particular simulation
with the corresponding results for a simulation in which the orbit of the map
visits the chaotic and laminar regions more frequently, in Figure 7 we show
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the orbit for another simulation with α = 0.95 and wm+1 = 0.54495027. Al-
though the orbit of the map remains in the laminar region and approximately
equals a constant for the last 2000 observations, the graph of the estimated
correlations and partial correlations for this orbit was similar in appearance
to that of the mean correlations and mean partial correlations in Figures 3
and 11 and it is not shown here. We also plotted the orbits of the maps with
several other values of α but with the same starting values as used in the
Figure 7. To save space, the detailed results are not shown here. Suffice to
say, however, that the behaviour of the orbit is consistent with the theoretical
results described in Section 2 and as α increases, the time spent by the orbit
in the laminar region increases also, but for small values of α the orbit appears
rather chaotic and it rarely displays the laminar behaviour shown in Figures
6 and 7.

To further provide a perspective on the unusual behaviour of the estimated
correlations for the Polynomial map when α takes a value close to 1.0, Figure
8 shows the estimated kernel density of the simulated sampling distribution
of r(T )(1).

In 255 simulations, the simulated values of r(T )(1) exceeded 0.999 and thus
approximately equaled 1; these values were omitted when constructing the ker-
nel density estimate. One reason for excluding this discrete mass was that its
inclusion gave rise to a bimodal density. It is also pertinent to note that since
{wt} is not a linear process, the classical results on the asymptotic sampling
distribution of the estimated correlations, see Anderson (1971), do not apply
to the r(T )(u) as defined by (17), and nor do the results of Brillinger (1969),
who does not require that the observed process is linear but nevertheless as-
sumes that its joint cumulants of all orders are summable. The simulations
therefore provide an insight into the empirical behaviour of the sampling dis-
tributions of these estimates and provide a warning against an unjustified
application of the standard asymptotic results to the present context. For a
visual comparison of the shape of the truncated density estimate with that of
a Normal distribution, see Figure 8, we have also superimposed the density
curve of a Normal distribution with the same mean and variance as that of
the truncated distribution. The kernel estimate even after truncation is seen
to be skewed with a long right hand tail, indicating that the sampling dis-
tribution has many more estimated correlation values greater than 0.9 than
implied by the fitted Normal distribution. Similar results were also obtained
for α = 0.8, 0.9. As may be gleaned from Figure 9, for α = 0.3, however, for
smaller values of α, the fitted Normal distribution provides a good approxi-
mation for the estimated density.

A similar set of somewhat unusual results for α close to 1.0, arising mainly
because the orbit of the corresponding map may remain in the laminar region
close to 0, the neutral fixed point, for a very long time, was also evident in the
simulated sampling distributions of the mean, w̄, but now the discrete mass
occurred for values close to 0. Thus, for α = 0.95, there were 256 simulations
in which w̄ < 0.0001 and these were omitted before constructing a kernel
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Fig. 8. Estimated kernel density of r(T )(1) with the asymptotic Normal curve
superimposed for α = 0.95
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Fig. 9. Estimated kernel density of r(T )(1) with the asymptotic Normal curve
superimposed for α = 0.3

estimate of its density, shown in Figure 10. The kernel estimate, even after
excluding the discrete mass close to 0, is skewed to the left and not well
approximated by the fitted Normal distribution. As α decreases, however, the
shape of the estimated Kernel density does get closer to that of a Normal
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distribution, and for α < 0.5, the fitted Normal distribution does provide a
good approximation to the estimated density. It is also relevant to note that,
see Bhansali et al. (2003) and Young (1999), the known central limit theorem
for w̄ is only valid for α ∈ (0, 1/2) and the simulation results thus provide
a caution against presuming that a result of this type would also hold for
α ∈ [0.5, 1.0) and suggest that a more delicate theoretical analysis is needed
for the latter case.
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Fig. 10. Estimated kernel density of ω̄ with the asymptotic Normal curve super-
imposed for α = 0.95

The Logarithmic Map

Although results similar to those described above in Section 3.2 were also
obtained for the Logarithmic map with several different values of β, to save
space, only the results for β = 0.05 are discussed in detail.

Figure 12 shows a plot of the simulated means of the r(T )(u) (u =
1, . . . , 100) for β = 0.05 together with two curves representing mean+SD
and mean-SD. The graph of the mean correlations is similar in shape to that
for the Polynomial map with α = 0.8 but now the mean correlations de-
crease to 0 somewhat more slowly and for all u > 16 the curve of mean -
SD takes negative values. In the interest of space, the corresponding results
for the mean partial correlations are not shown, but their behaviour is also
somewhat similar to that for the Polynomial maps. Increasing the value of β
reduces the numerical magnitudes of the correlations, but it does not alter the
overall appearance of the mean correlation curves. Indeed, the behaviour of



58 Raj Bhansali, Mark P. Holland, and Piotr S. Kokoszka

k

/h
a
t 
p
i(
k)

0 10 20 30 40 50

0
.0

0
.4

0
.8

Alpha=0.95.

k

/h
a

t 
p

i(
k)

0 10 20 30 40 50

0
.0

0
.4

0
.8

Alpha=0.8.

k

/h
a

t 
p

i(
k)

0 10 20 30 40 50

0
.0

0
.4

Alpha=0.45.

k

/h
a
t 
p
i(
k)

0 10 20 30 40 50
0

.0
0

.2
0

.4
0

.6

Alpha=0.3.

Fig. 11. Plots of means of partial correlation π̂(k) against k, with solid curve
representing π̂(k) and dotted curve π̂(k)±SD

the mean-correlations for the Logarithmic maps was broadly consistent with
the asymptotic result (14), which shows that unlike the Polynomial maps,
the asymptotic rate of decrease of the correlations for the Logarithmic maps
is directly related to that of the map parameter, β, implying that this rate
decreases as β decreases; moreover, this rate of decrease is logarithmic rather
than polynomial and hence much slower.

The result (14) also suggests that a plot of the log[r(T )(u)] against
log[log(u)] may be useful for estimating the value of β and if the bound given
by this result were to hold for ψ(w) = ϕ(w) = w, then this plot would be
linear and an estimate of β would be provided by the slope of the result-
ing line. This suggestion was investigated but with somewhat mixed results.
Thus, the resulting plot for β = 0.05 is shown in Figure 13 and which is almost
quadratic in appearance and far from being linear. Although as β increases,
this plot does get closer to being linear, the estimated slope provides a some-
what poor approximation to the actual value of β and which moreover varies
considerably depending on how many initial values of the mean correlations
are ignored before fitting a straight line.

A useful way of quantifying the slower rate of decay of the correlations for
the Logarithmic maps relative to the Polynomial maps is by an inspection of
Figure 14, which shows the average autoregressive order selected by the BIC
criterion for the former map. The average autoregressive order decreases, al-
most linearly, as the value of β increases, but very slowly and even for values
of β close to the upper limit of the admissible range, the selected values of the
autoregressive order are generally high. On the other hand, however, as with
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Fig. 12. The simulated means of r(T )(u) for the Logarithmic map; the solid curve
shows the means and the dotted curves show mean ±SD
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Fig. 13. Plot of the logarithm of the mean of r(T )(u) against log(log(u)) for β = 0.05

the Polynomial maps, the average autoregressive order selected does not ade-
quately describe the actual frequency distributions of the autoregressive order
selected with small values of β and, in particular, with β = 0.05 there were
several simulations, 42 out of 1000, for which the orbit of the map remained
close to the value of 0 in the laminar region for all T = 10, 000 values and for
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which the selected autoregressive order equaled 1, and the estimated corre-
lations even at very high lags were close to unity. Although not unexpected,
this behavior also gave rise to a discrete mass in the simulated sampling dis-
tributions of the estimated correlations. Moreover, the latter, which to save
space is not shown here, even after removing this discrete mass, is skewed to
the right and its appearance is similar to that of the corresponding sampling
distribution shown in Figure 8 for the Polynomial map.
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Fig. 14. Plot of the average autoregressive order selected for the Logarithmic map
with different values of β

The Cusp Map

A typical orbit of the Cusp map, with w1 = 0.79971443, is shown in Figure
15. The orbit displays the characteristic intermittent behaviour of all intermit-
tency maps: for values close to the two neutral fixed points, w̃ = ±1, the orbit
is in the laminar region and displays monotonic behaviour and away from
these points it displays chaotic behaviour. However, the length of time the
orbit stays in the laminar region is now much smaller than for the Polynomial
maps with α close to 1 or the Logarithmic maps with β close to 0.

Figure 16 shows the means of the estimated correlations for the Cusp map
together with the associated mean ±SD curves. The mean correlations typi-
cally take quite large values for small values of the lag, u, but decrease more
rapidly to zero than for either of the other two categories of maps considered
earlier. Although a plot of the mean partial correlations is not shown here,
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Fig. 15. Orbit of the Cusp map with ω1 = 0.79971443
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Fig. 16. The simulated means of r(T )(u) for the Cusp map; the solid curve shows
the means and the dotted curves show mean ±SD

their behaviour is also analogous to that of the correlations and the simulation
results broadly accord with the asymptotic results described in Section 2.5.

The simulated sampling distributions of the first three estimated correla-
tions for the Cusp map were also examined and in contrast to the correspond-
ing distributions for the Polynomial and Logarithmic maps, these were closer
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to Normality. While pleasant, this result is not surprising and in agreement
with the known asymptotic results concerning this map and the estimated
correlations. Thus, as discussed in Section 2.5, the rate of decay of correla-
tions for this category of maps is on the boundary of the rate distinguishing
a long-memory and an intermediate memory process and, as discussed above
in Section 3.2, even for the Polynomial maps with α < 0.5, the simulated
sampling distributions of the estimated correlations are close to Normality.

4 Transformed Polynomial Map Sequences

The map time series, {wt}, produced by the Polynomial or Logarithmic Maps
is restricted to take values over the unit interval, [0, 1]. On the other hand,
many financial series such as asset prices and absolute returns could in prin-
ciple take values over the entire positive real line, [0,∞) and admit a heavy-
tailed marginal distribution. Indeed, there is much empirical evidence, see
Gopikrishnan et al. (1998), among others, to suggest that the probability dis-
tribution for many financial returns may have ’Pareto’ tails with tail index,
τ ≈ 3.1, meaning that

P (rt > g) ∼ g−τ (g → ∞), (21)

with τ ≈ 3.1 and thus the probability that the returns take a value equal to
or greater than a threshold value, g, say, is well-approximated, as g → ∞,
by an inverse cubic law. For modelling such series using the Polynomial or
Logarithmic maps, we consider an instantaneous family of transformations,
yt = h(wt), of the following form:

h(w) = δwp + γ(1 − w)−q, (22)

where −∞ < p < ∞, q > 0, δ ≥ 0, γ ≥ 0 are some fixed constants such that
yt is distributed on [0,∞).

To study the effect of such a transformation on the invariant distribution
of yt, consider the Polynomial maps and suppose first that δ = 0. As discussed
in Section 3.1, Figure 1 suggests that for w ∼ 0 the invariant density, χα(w) ∼
Cαw

−α where Cα is a constant that does not depend on w. It then readily
follows from (6) that

P (γ(1 − wt)
−q > x) = P (1 − wt > (γ/x)1/q) ≈ Cα(γ/x)1/q.

Thus, the tail index of yt = γ(1 − wt)
−q is τ = 1/q. Similarly, if γ = 0, the

tail index of yt = δwp is τ = p(1 − α). Moreover, the relative sizes of γ and δ
would also influence the tail index of yt,

In the simulations reported here, we consider the following three different
sets of transformations, two of which are special cases of the transformation
(22), while the third is closely related to this transformation:
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In the first set of transformations, we set p = 1, γ = δ = 1.0, and only
vary q, and thus the transformed series of the following form are considered:

Transformation A : yt = wt + (1 − wt)
−q, (23)

with q = 0.1, 1/3 and 4.3.
The computations described in Section 3.2 for the Polynomial and Loga-

rithmic maps were repeated for the series obtained by applying Transforma-
tion A, but for the Polynomial map only three different values of α, namely
α = 0.3, 0.6, 0.95 are considered and for the Logarithmic map only one value,
β = 0.05, of β is considered. Detailed results are too extensive to be presented
here. Suffice to say, however, that for q = 0.1, the shape of the mean corre-
lation curve and that of the associated mean ±SD curves is quite similar in
appearance to that for the untransformed series, and so is the behaviour of
the autoregressive order selected by the BIC criterion. Increasing q to 1/3 re-
duces the numerical magnitudes of the correlations and thus pulls these curves
downwards without essentially altering their respective shapes; moreover, it
also leads to selecting lower order autoregressions. An example of the former
effect is shown in Figure 17 where the mean correlations for the Polynomial
map with α = 0.95, q = 1/3 are shown.

By contrast, taking a very large value of q, namely q = 4.3 gave rise to
mean correlations whose appearance is qualitatively different from that of the
untransformed maps and resembled that of an MA(1) process with a very
small parameter value. Moreover, in this case, the variability of the estimates
also increases considerably as α increases and indeed it seemed plausible that
the transformed maps may behave quite differently than the untransformed
map and in particular the sampling properties of the estimated correlations
could have changed substantially as a consequence of the very heavy tails
induced by a large value of q. Analogous set of results were also obtained for
the Logarithmic map; the details are omitted.

A second set of transformations we consider is of the following form:

Transformation B : yt = wt + w−q
t , (24)

and wt is generated by the Polynomial map. Although several different values
of α and q were considered, we only present the results for α = 0.3, q =
1/3. Figure 18 shows a typical orbit of the transformed map, and Figure
19 shows the mean correlations in 1000 simulations. The orbit does display
the presence of many large values interrupted by medium to small values. In
addition, as compared with the untransformed maps, the mean correlations
for the transformed map are much larger and decrease slightly more slowly.
The variability of the correlations is however also much greater than that for
the untransformed map, as is evident by the fact that the mean + SD and
mean - SD curves take rather large values for values of u close to 20. Indeed,
the shape of the mean correlation curve is consistent with that of an AR(1)
process with a parameter value close to 0.9, and which was also the model
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Fig. 17. The simulated means of r(T )(u) for Transformation A; the solid curve
shows the means and the dotted curves show mean ±SD

selected by the BIC criterion in 99.3 per cent of all simulations. Moreover, an
application of the Box-Ljung diagnostic test did not reject the fitted AR(1)
model in all these simulations. It should be noted that although an AR(1)
model is also selected quite frequently under Transformation A and for the
untransformed series, the value of the parameter value is now much greater
and almost close to the unit root.

A third set of transformations we consider is of the following form:

Transformation C : yt = δwt + γ(1 − wt)
−1/3, (25)

and wt is generated by the Polynomial map with α = 0.625. This transfor-
mation is thus related to Transformation A, but now the potential effects of
varying the constants (γ, δ) are studied by considering two different sets of
values of these constants, namely

i): (γ = 0.01, δ = 0.001);
ii):(γ = 0.004, δ = 0.007).

A stretch of N = 107 values of wt were generated and only the last T =
3000, were retained. The corresponding transformed sequences, yt, according
to the choice of constants given in i) and ii) above were obtained from this
stretch. Their time series plots, which are not shown here, indicated that the
transformed series still display intermittent behaviour and for values of yt

close to 0 the orbit remain in the laminar region and increases slowly but
monotonically and away from this region it appeared chaotic. The estimated
correlations basically remain unchanged as the values of the constants, γ and
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Fig. 18. A realization of the series transformed according to transformation B
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δ are varied and indeed the appearance of the graph is also consistent with the
correlation function of a low-order autoregressive process. A kernel estimate
of the density function for the transformed sequence was also obtained. This
confirmed that the transformation does produce a sequence with a heavy-
tailed marginal distribution; the details are omitted to save space.
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5 Modelling Absolute Returns

For examining how effective the intermittency maps considered in this paper
might be for modelling the absolute returns of financial data, we considered
T = 3, 000 consecutive daily returns on the SP500 and NASDAQ indices for
the period ending in November 2002. We also considered the same length
of consecutive daily returns on the Pound-Dollar and Deutschmark-Dollar
exchange rates for a period ending in mid 1990, well before the introduction
of the Euro, but well after the introduction of the European Monetary System
in 1979. The returns for the two share index series thus include a period of
marked change in volatility which occurred in late 1990, whereas the returns
on FX rates correspond to a relatively uneventful period.

The sample paths, the dependence structure, that is, the estimated corre-
lation functions and the GPH estimate of the long-memory parameter of these
four series were computed and compared with those of the intermittency maps
discussed earlier in Sections 3 and 4.

The results are omitted to save space. Suffice to say, however, that there
are three features of intermittency maps which could make them unsuitable for
modelling absolute returns. First, their correlations are generally greater than
those usually observed with absolute returns. Secondly, for certain values of
parameters, the orbit of the Polynomial and Logarithmic maps could remain
in the laminar region for a very long time and increase monotonically but still
take values very close to 0, which are features not usually present in observed
absolute returns. Thirdly, although the transformed maps considered in this
paper could produce time series with a heavy-tailed marginal distribution,
the behaviour of the resulting densities does not accord with that of absolute
returns. As the intermittency maps are not specially designed for modelling
financial data, this finding is perhaps altogether not surprising.

On the other hand, however, the simulation results for the three intermit-
tency maps presented in this paper show that the map time series, wt, itself
could possess long-memory and have slowly-decaying correlations. Moreover,
the results for Transformations A and C show that it is possible to define map
time series which could take values over the entire positive real line and yet
retain their long-memory property; Transformation B, by contrast, produces
time series which behave like a non-Gaussian AR(1) process with a parame-
ter value close to the unit circle. Moreover, it is possible that time series with
some random component may be constructed from these maps, for example,
by adding a suitable random error term or allowing the parameter defining
the maps to be a random variable itself, which could prove more useful for
financial and related Economic time series and this possibility should be in-
vestigated further.

Acknowledgment. Thanks are due to Mr. Aonan Zhang, Utah State Uni-
versity, for his help in producing the graphs included in this paper.
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Summary. The purpose of this study is to analyse the time series of the euro–
dollar exchange rate. This exchange rate is studied as if it was a continuous–time
physical process, which implies that we systematically make use of different degrees
of time resolution. The analysis takes into account various statistical indicators,
but puts a special emphasis on the spectrum of the process. In other words, we
consider the process of the returns of the euro–dollar exchange rate as produced by
a superposition of oscillations with different frequencies and we try to determine
the relative weight of those frequencies within the returns process. The spectrum of
this process is the function giving those relative weights. We find that this spectrum
has an identifiable pattern and we claim that this pattern is a core characteristic
of the process. We simulate then a process having the same spectrum and compare
the behaviours of actual process and of the simulated process in terms of various
statistical indicators. We find that the simulated process provides a good, but not
perfect, replication of the behaviour of the actual euro–dollar exchange rate.

1 Introduction

The euro–dollar exchange rate is the archetype of the liquid market price.
Trades and quotations occur so frequently that it can be thought as a
continuous–time process. Probably no other economic or financial time-series
can produce, or has ever produced, databases comparable both in term of size
and of accuracy. In short, the euro–dollar exchange rate is one of the rare
economic phenomena, if not the only one, that can be studied as if it was a
physical phenomenon. Physical phenomena, indeed, can be described by data

� I wish to thank Sandrine Corvoisier, Simone Manganelli, Andres Manzanares,
Ben Weller and Flemming Würtz for their help in the difficult process of the
capture of the data. I am especially indebted to Gilles Teyssière for his very
careful reading of this chapter. I accept sole responsibility for any remaining
errors. The views expressed therein are those of the author and not necessarily
those of the European Central Bank.
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whose precision and whose quantity are virtually unbounded, and physical
phenomena are frequently thought in continuous time.

This being said, it is tempting to examine whether or not the phenomenon
“euro–dollar exchange rate” obeys to some analogue of physical laws. In con-
crete terms, this would mean to identify statistical regularities in the sample
path of the exchange rate process, which could be simply described in math-
ematical terms and which would remain present over time. Answering to this
question is in principle feasible owing to the enormous number of available
data, and to the considerable accuracy of those data.

The idea that the dynamics of liquid prices could be regarded as physical
phenomena are regarded by physicists is probably due to Benôıt Mandelbrot.
In 1973, Mandelbrot gave three conferences at the Collège de France, in which
he was in essence introducing a methodology applicable to “self–similar” phe-
nomena. Those phenomena were mostly physical ones, and the methodology
aimed at discovering in those phenomena useful empirical regularities that
could lead to the formulation of law: This is nothing else, of course, that the
most classical physicist approach. However, Mandelbrot was also considering,
among those physical phenomena, a class of more economics ones, namely the
dynamics of some market prices. His point was that the proposed methodology
was equally valid for those economical phenomena.

In 1973, nonetheless, this was not much more than an appealing idea. The
data that would have permit to explore the question with precision were sim-
ply not existing. The best price data that were available had daily frequencies.
Mandelbrot proudly presented an astonishingly long series of cotton prices,
more than one century of daily data. The daily records of the Dow Jones index
were also available up to the First World War. Even with a history of one or
two centuries, daily data only make 10,000 or 20,000 records. This is a bit
insufficient to start a physics–like study.

Things changed when a few core market instruments became liquid, around
the mid–eighties or the beginning of the nineties. Those few core market in-
struments “main exchange rates, main future contracts” were traded and
quoted with high frequency, and the traded or quoted prices started to be
recorded. At that point, the Mandelbrot vision became feasible.

The availability of tick–data has created a new domain of research. We
will not here attempt to give an exhaustive description of this domain, but
rather briefly evoke some of its sub-area.

• Let us mention first the direct application of Mandelbrot concepts to tick–
data sets. In this area, Mandelbrot himself of course played a major role,
but he was followed by many others. This type of literature assesses the
presence or the absence of “Noah effect” and “Joseph effect”. It researches
in the time series the property of self–similarity, it applies the Hurst test
to them. It makes uses of the notion of fractal, the notion of dimension.
This sort of research is undoubtedly the one that is the closer to what
could be called “a physics of finance”.



The Spectrum of Euro–Dollar 71

• Let us then mention the volatility trend. This type of literature is con-
cerned with the notion, the definition, and the practical measurement, of
volatility (This means here the historical or empirical volatility, by oppo-
sition to the implied one). The potential applications of this literature lie
primarily in the area of risk management.

• Let us also mention the market microstructure area. Those papers tend
to derive, to prove or to calibrate market microstructure models from tick
data sets.

This classification is obviously not clear–cut, it is easy to find examples
of papers falling into two of those categories. Furthermore, this classification
is not complete. It is only intended to, say give the reader a flavour of what
exists and of what can be done. The present study would probably fall more
in the first above–mentioned category, the “physics of finance”.

Tick–data have granted many empirical findings of heterogeneous mean-
ing, heterogeneous precision, and heterogeneous simplicity. Only two of them
are generally valid, i.e., valid for all liquid prices, abundantly documented and
relatively simple to express or to explain. Those two findings can therefore be
regarded as the fundaments of our empirical knowledge about the topic. It
is interesting to note that any of those two findings can also be found from
daily data, instead of tick–data or of high frequencies data, albeit with less
precision. Those two findings are the followings:

1. Leptokurtosis: A probability distribution is leptokurtic when it gives a
relatively high weight to high (in absolute value) outcomes, to small out-
comes, and thus a relatively low weigh to medium–sized outcomes. For
example, a uniform distribution is less leptokurtic than the Gaussian dis-
tribution, while a Levy–stable distribution, other than the Gaussian one
itself, is more leptokurtic. It is well established and well documented that
the returns of liquid market prices have leptokurtic distributions. How lep-
tokurtic, this may depend of the market instrument, of the time–scaled
considered, of the measurement method. Leptokurtosis, however, is a gen-
eral feature of the distributions of the returns.

2. Correlation structures: It is well established and well documented that the
subsequent returns of liquid market prices are not correlated, while their
squares or their absolute values are positively correlated. More precisely,
subsequent returns might exhibit a negative correlation at very fine time
scale but this memory vanishes anyway very quickly, after at most some
minutes. On the contrary, the positive correlation among the absolute
values, or the squares, of returns, persists in time and decays only slowly
at a hyperbolic rate. Squared returns or absolute values of returns are said
to have “long–memory”.

The present study is focused on one market instrument, the euro–dollar
exchange rate, because of its tremendous liquidity. In addition, it is specially
focused on one mathematical property of time series, namely their spectral
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decomposition, or their decomposition as the sum of oscillations (of fixed fre-
quency). This particular focus involves a technical difficulty. In short, we used
tick data of quoted prices extracted from Reuters. In those data, quotes of het-
erogeneous quality and accuracy succeed one another, triggering a noise with
low amplitude but high frequency. Such a noise must be eliminated if what
we are interested in is the measurement of the spectrum, i.e., the frequency
decomposition, of the process.

This technicality is treated in the Section 2, whose theme is the available
data, the way to understand them, and the way to filter them. The analysis of
the empirical regularities of the euro–dollar takes place in Section 3. To start
with, we examine several statistical indicators with the idea to cross–check
the output of those indicators and of the spectral analysis. Those several indi-
cators are the probability densities, the autocorrelation functions, henceforth
ACF, and the realised variations of the returns of the euro–dollar at different
time–scale. Then we tackle the spectral analysis itself, and try to reproduce
this spectral structure and other statistical properties in a simulated random
process. Section 4 concludes.

2 The Methodology

In order to enable the reader to reproduce, or simply to judge, the results,
a precise description of the methodology is useful. The present part has a
technical scope, and it is subdivided in two headings: The data, and the various
algorithms of data filtering. A reader who does not intend to reproduce the
experiment may nevertheless find those technical sections useful. The first
section clarifies things about Reuters data, what they are, what they mean,
what they don’t mean. The second section does not only expose the details of
the methodology that has been applied to the data. It also makes the point
that once this methodology has been used, the Reuter data actually reveal a
precise description of the history of the market price.

2.1 The Data

About Reuters Quotes

The data set that we will be using contains real–time quotes contributed on
Reuters. It is therefore necessary to examine what are exactly those Reuters
quotes, what information they are likely to carry, and what noise is likely to
affect them.

The system, which works according to the same principles since several
years, can be described as follows. First, a certain number of banks place
quotes, i.e., indicative bid and ask quoted prices, on one of their so–called
pages. Those pages, which are readable by any other user, unless otherwise
specified, are made of x lines of y ASCII characters, typically 25 lines of
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81 characters. The quotes appear in this rectangles of ASCII characters as
ASCII strings of various formats, such as “1.0768-73”, or “1.0768 1.0773”,
or “1.0768/73”, or other formats. Those strings of characters have of course
an unambiguous meaning for the human reader to whom they are destined.
However, the problem of converting them towards numerical figures in an
automated and reliable way is not completely easy. It implies to locate in the
page where the quote is written, to recognise the format, and to avoid being
fooled by a variety of things, the enumeration of which would be tedious.

The system has this ability to automatically perform conversion. This con-
version is usually referred to with the word “parsing”, and the information
obtained after conversion is usually referred to as the “parsed” or “logicised”
information. Whenever a page is updated, the system fishes the updated
quotes, converts them from ASCII strings to numerical figures and update
an appropriate structure, called “RIC”, with the converted bid price, the con-
verted ask price, the time stamp, the identifiers of the contributing bank,
the page from which the data have been read (the so–called “background
page”), and possibly other items of informations. Of course, some items of
the parsed information can be redundant, for example the knowledge of the
background page implies the knowledge of the quoting bank. This produces
an uninterrupted flow of numbers that are readable and understandable not
only by human readers, but also by software packages such as spreadsheets
or other dedicated applications. For example, the RIC of the euro–dollar ex-
change rate may receive some 10,000 or even 20,000 updates a day. During
the period 2001–2002, this has represented for this instrument slightly more
than 10 million of quotes.

Those quotes are of diverse nature or significance. At least for the foreign
exchange market, they are never legally binding and when calling a dealer
at the very moment when he contributes the quote, this dealer is not legally
forced to trade on that bid price or on that ask price. For major market players,
the quote nevertheless reflects, at the precise time when it is quoted, the price
that a dealer would agree to trade with another bank of the same importance
(not with a customer). For others banks, the price is more indicative because
the incentives to hold the quotes are less strong. Finally, other banks use the
contribution of quotes purely as an advertising medium, to be seen on the
screens. It should also be noted that some banks produce their quotes in an
automated way, and the input needed by the automated process can be, purely
and simply, the content of the RIC itself.2 This introduces some circularity
in the quotes–generating process. In short: the quality of the informational
content of raw data is heterogeneous.

2 This can be observed when two or three of them remain by mistake active during
the weekend, when all the others are silent. Then the two or three automated
quoted react on their own output and on nothing else. After a while, it becomes
even possible to disentangle the algorithm(s) of quote production that they are
using, as those algorithms can be rather simple.
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It is therefore clear that the sequence of quoted price, despite its huge size
and impressive accuracy, does not in itself provide a perfect continuous–time
description of the euro–dollar price process. As will be shown below, however,
there is a way to recover such a description from the sequence of quoted prices
and quoting banks. The way to do so is called in this paper the “dynamical
filtering”.

The Data Set

The three items of information we are interested in are then the quoted bid
price, the quoted ask price and some key identifying the quoting bank. This
corresponds, in the Reuters terminology, to three “fields”, namely the bid
field, the ask field and, for example, the field indicating the background page.
The paper uses a data set containing records of those three fields for the
RIC of the euro–dollar exchange rate.3 On the top of those three fields, of
course, the records contain the time stamp and the identity of the quoted
instrument. For what concerns the time stamp, it is not the one that can be
found in the Reuters RIC because in the case of quoted exchange rate this
information gives only the minute, but not the second.4 Thus, the time stamp
of the recording computer has been used. For what concerns the identity of the
quoted instrument, several choices would have been possible but the simplest
one, of course, was the RIC name itself, which is, for the exchange rate we
are interested in, “EUR=”. The following table summarises the descriptive
statistics of the data set:

Table 1. Descriptive statistics of the data. (13,642,666 observations)

Mid Price Time Stamp

First 0.86605 07/09/2000 10:28:53
Last 1.07635 22/02/2003 08:03:58
Low 0.8227 26/10/2000 09:37:31
High 1.0937 05/02/2003 09:36:22

In short, this is slightly more than two years, encompassing the whole year
2001 and the whole year 2002.

Contributions have been provided by circa 200 banks, some of them may
have shifted their background page at some point within the period under

3 The reader wishing to reproduce the experiment may find useful to know the
following: The name of the RIC having been used is “EUR=”. The names of the
three fields recorded within this RIC are “BID”, “ASK” and “BACKGROUND
PAGE”. The numbers of those three fields are 22, 25 and 105.

4 This is likely a consequence of the early implementation of those RICs. For in-
struments that have been introduced more recently in the system, the time stamp
gives also the second.
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study, while others have contributed anonymously and then cannot be distin-
guished.

2.2 Data Filtering

It is clear that in a database of this size, erroneous data are inevitably present.
Moreover, the quality of the informational content of raw data is heteroge-
neous, as was explained above. Finally, owing to the absence of legal binding,
no isolated raw data can be a priori deemed as carrying the information we
are really interested in, namely: At a given instant, where stands the market.

For all those reasons, it is necessary to manipulate the raw data so as to
eliminate errors and to reconstruct the hidden reality of the market price.
For those purposes, we will apply three filtering algorithms to the raw data.
We refer to those three algorithms as to the simple filtering, the dynamical
filtering and the retroactive filtering. The simple filtering is mainly about
the elimination of obvious errors. The dynamical filtering can be seen as the
reconstruction of the reality hiding behind the sequence of raw quotes, but
it has also the effect of filtering out bad quality data. Applying only those
two filters would nonetheless allow a certain class of isolated erroneous data
to survive, as will be explained below. The so–called retroactive filtering is
specially designed to eliminate those ones.

The three algorithms are to be applied to the data in the following order:
Firstly, the retroactive filtering, secondly, the simple filtering, thirdly, the
dynamical filtering. One may hope that after having submitted the raw data
to those three procedures, one obtains something more accurate. But it is not
necessary to rely on hope only: There exist a possibility to check and measure
the gain of accuracy. This can be done by comparing the filtered data to traded
data, which contain (anonymously posted) bid and ask prices that can actually
be hit. Such tradable prices happen to exist, since an important proportion

of the euro–dollar market is traded on an electronic market, namely EBSTM .
We will compare the EBS mid–price, the mid price of the raw quoted data
and the mid price of the filtered data over three sample days. This will give a
sense of the accuracy of the information that can be extracted from the raw
data when filtering them.

Simple Filtering

The so–called simple filtering is, as the name indicates, the most rudimentary
of the three filtering algorithms. It simply rejects any data differing from the
previous data from more than twenty pips. More precisely, the rejection occurs
when the absolute value of the logarithm of the ratio of the two subsequent
mid prices exceeds 0.002. After 1 hour, however, this rejection rule ceases to
operate. The value of twenty pips has no scientific “raison d’être”. It has been
chosen because of the two following motives:
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• It eliminates an anomaly in the chart of a statistical indicator to be pre-
sented below, see Figure 5. This anomaly, strong enough to trigger a visible
effect of the chart of the indicator, was generated by only two data. It is
impressive to think that the twelve millions other data were correct enough
to avoid triggering visible anomaly.

• It does it at a low cost, i.e., rejecting a extremely small number of data.

The so–called simple filtering is certainly an elementary precaution, but
clearly it cannot be seen as sufficient to eliminate all errors, and it does not
do any job of extracting the market price from a bunch of quotes of mixed
quality.

Dynamical Filtering

The principle of the dynamical filtering is simple. The idea is the reconstruc-
tion of the set of “currently valid” quotes “around” a given point in time. It
is thinkable to try something in this direction, provided only that one has at
one’s disposal, not only the quoted bid and ask prices, but also some key iden-
tifying the quoting bank, which can be its name, the name of its background
page or something else. As it has been said, the database used for this paper
contained records of the background page, bid prices, and ask prices.

Now how can this principle be implemented in practise? No perfect method
exists, as shows the following observation. Even if a quote is valid, i.e., repre-
sents the true intentions of the quoting bank, at the second where it is posted,
there can be no guarantee that it is still valid a few seconds after, because
the market may have shifted. The only thing that can be hoped for is that, if
the market actually shifts during those few seconds, then a more recent quote
will tell about this shift within those few seconds. It is reasonable to hope it
because liquid markets have frequent quotes. For the euro–dollar, the average
frequency of quotation lies around two seconds.

The problem becomes then to design an algorithm that tentatively recon-
structs the relevant quotations of banks and performs this reconstruction at a
low cost in term of complexity. Indeed, given that the reconstruction can never
be absolutely sure, it is useless to design a too complex algorithm. Something
which works reasonably well reasonably often and which is reasonably simple
is the best that can be achieved. Once the problem is stated in these terms, its
solution is easy to find. We construct the dynamically filtered bid–ask spread
by:

1. Associating to each bank its most recent quoted bid–ask price,
2. Sorting the quotations, and thus the banks, in chronological order starting

from the most recent,
3. Computing the best bid and the best ask for the n most recent banks,

starting for n = 1, and incrementing n.
4. Stopping when the best bid is equal to or bigger than the best ask price,
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5. Eliminating the bank on which we have stopped, this is bank number n,
as well as all the less recent ones,

6. Taking the best bid and the best ask of the remaining banks, which are
the n− 1 most recent banks.

The following figure shows the output of this filtering method.

Fig. 1. Comparison between raw data and filtered data. Thin dotted line: raw data,
bold line: filtered data (Source of raw data: Reuters)

The system is quite robust. For example, a quotation with large bid–ask
spread encompassing the filtered bid–ask spread will not modify this filtered
bid–ask spread. This is a good thing, since this quotation with large bid–ask
spread is actually bringing no valuable information. The reader is invited to
imagine other configurations and should find that the system produces always
the reasonable reaction, except in one case. This is the case of a plainly false
quote, which would be arbitrageable if it were to be really hold. Either its
bid is higher than the market price, or its ask is lower than the market price.
In this case, the response of the algorithm is to select this false quote only.
To cope with those arbitrageable quotes, it will be necessary to rely on a
complementary filtering, to be described in the next paragraph. However, this
situation occurs rarely.

The dynamical filtering has a graphical effect, which is noteworthy. To
expose this, let us consider some charts of tick data ranging over periods of
circa 10–20 minutes. One can face two sorts of graphical patterns. In the
first case, the chart represents the bid, or the ask, that are posted on some
electronic trading system for some liquid instrument. It can be for example the
Bund, the Bobl, the Schatz, on the trading system of Eurex, or the dollar–yen,
the euro–dollar, the cable, on the EBS system. In the second case, the chart
represents the quoted bid of some liquid instrument, having its liquidity, or
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having some liquidity, on the OTC market. It can be for example the dollar–
yen, the euro–dollar, the cable, from the Reuters RIC EUR=, JPY=, GBP=,
or some OAT or Bund from their corresponding RIC. The charts of the first
type will look similar to each others, and the charts of the second type also
will look similar to each other, but there will be a clear difference between
the charts of two different types. The charts of the second type will indeed
exhibit a kind of high–frequency oscillation which will be completely absent
of the charts of the first type.

This, of course, is the result of the quick succession of banks producing the
quotes. The narrowly quoting banks and of the largely quoting banks alterna-
tively generate the price contained in the RIC and this produces the graphical
impression of some high frequency shivering. Naturally, this high frequency
shivering is not really there and should be eliminated. This is especially rel-
evant for a study that focuses on the spectral decomposition of the returns
process.

When plotting a chart of quoted data coming from RICs, but having been
dynamically filtered in accordance to the method described above, one gets
a chart of the first type instead of a chart of the second type. This small
graphical experience, in itself, does not prove that the noise has been correctly
killed: Only the test described in the second next paragraph below can do this
job. However, it is quickly done and already suggests that, at least for what is
regarding the spectral structure of the time series, dynamically filtered data
are more advisable than raw data.

Retroactive Filtering

As was said, there is a type of erroneous data that are resistant against the
dynamical filtering. This is the case of a quoted spread lying plainly out of the
market. If the bank issuing such a spread was actually willing to trade on it,
it could be arbitraged. The way to eliminate those data relies on the fact that
they are usually isolated and surrounded by plenty of good data. In such a
case, the sequence of prices should present a high price increase immediately
followed by a price decrease of a comparable magnitude (or conversely). The
method for taking advantage of the likely existence of this signal is therefore,
before accepting a data, to read a few of the following data, and to validate
the data only if this kind of statistical symptom is not found. One must thus
implement a data buffer, in which a record extracted from the database must
stay a while before being actually read (or rejected). This test implies to read
a little bit of the future and to use the information found in the near future to
assess the validity of a quote, consequently, this test could not be implemented
in real time. This is why we will call it the “retroactive” filtering.

So much for the principle of it. There are two difficulties, which are imme-
diately springing to the mind.

1. This retroactive test could possibly eliminate also good data,
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2. This retroactive test could modify the chronological order of data in the
case of several instruments.

Let us start by devoting some attention to the second point. The present
study, of course, is concerned with just one instrument, which is the euro–
dollar exchange rate. However, developing an algorithm of retroactive filtering
which would require that only one instrument is considered at the same time
would not be an excellent idea. It could not be re–used in the situations for
which the simultaneous knowledge of several instruments prices is needed, and
those situations are by far the most common ones. Here are two examples of
it:

1. Studying the FX market for more of two currencies obliges of course to
consider at least two exchange rates. Those two exchange rates continu-
ously react on each other, and therefore it is not advisable to loose their
common chronological structure.

2. The second example, on which we will not insist, is the case of yield curves.

Hence, there is a good case for building a retroactive filtering algorithm
that can be consistently applied to more than one instrument at the same
time. The way of doing so is to implement a cut–off time and to decide that
whenever a data has not been rejected after this cut–off time, it is deemed to
be accepted. One just need to read from the buffer only when the time stamp
of the last data included in the buffer is more than the time stamp of the data
to be read from the buffer, plus the cut–off time. Of course, when the end
of the file is reached, the rule does not have to apply any more. This way of
filling and emptying the buffer does not allow for a chronological distortion,
even when the data pertain to several instruments.

This system of the cut–off time provides us with a solution for the other
problem, which is that the retroactive filtering could very well also reject good
data. The solution, actually, is not to preclude such unjustified rejections, but
rather is to make those unjustified rejections unimportant. This can be easily
done by choosing a small cut–off time. In this case, a “good” data can be
unduly rejected only when it is surrounded by other good data, which are
chronologically very closed to it, and which are not rejected. For example,
choosing a cut–off time of two seconds ensures that in any circumstance, non–
rejected data are not older than two seconds. This is fairly enough for practical
purposes and as a matter of fact we will apply a cut–off time of two seconds.

The choice of the cut–off time does not entirely specify the algorithm,
one must moreover specify the criterion that triggers the rejection. Let us
consider the returns, i.e., the difference of the logarithms of the mid prices
of two subsequent quotes. When the product of two subsequent returns is
less than some (negative) threshold constant, then the intermediate quote is
rejected if one of the four following inequalities hold true:

• First inequality: Its bid is bigger or equal to the ask of the proceeding
quote and strictly superior to the ask of the next quote.
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• Second inequality: Same condition, but exchanging the role of the next
quote and of the previous quote.

• Third and fourth inequalities: Same conditions, but exchanging the role of
the bid and the ask.

In short: When one of those four inequalities is true and moreover the
product of the returns is below the threshold and moreover the next quote
does not occur two seconds or more than the tested quote, then the tested
quote is rejected.

The threshold value that has been retained is -4e-8, which corresponds
to minus the square of two pips. This value and the value of the cut-off
time, which is two seconds, entirely specify the algorithm. Concretely, out
of 13,642,666 data, 13,525,729 data pass the simple filtering and the retroac-
tive filtering, and therefore 0.86% of the data are rejected. The retroactive
filtering accounts for nearly all of those rejections.

Testing the Validity of the Filtering Algorithms

As was said, the three algorithms are to be applied to the data in the following
order: Firstly, the retroactive filtering, secondly, the simple filtering, thirdly,
the dynamical filtering. This sequence of transformations represents a rela-
tively complex task. This task aims at improving the quality of the knowledge
of the price sample path. One can check that it actually does so, if one also
possesses data of traded prices. In the case of the euro–dollar exchange rates,
those data are to be found on the EBS system.

We have used three days of EBS tick–data, namely the 3rd of January,
the 24th of January and the 28th of January 2003, starting from 8 hours,
Frankfurt time, and finishing at 20 hours. For each of those three test days
we have considered the period between 8 hours and 16 hours, and the period
between 8 hours and 20 hours. The rationale for those two test periods is
the following: Between 8 hours and 16 hours, the average EBS spread remains
remarkably steady, around 1.3 pip. After 16 hours, it increases, reaches a peak
around 1.6 pip at 18 hours and evolves between 1.5 and 1.6 afterwards. This
is at least what suggests the data of our three test days. It suggests that the
behaviour of the market is different before and after 16 hours, and it suggests
that typical behaviour of EBS prices is the one that can be observed between
8 hours and 16 hours

We have then six test periods. For each of them, we examine the proportion
of (physical) time during which the difference between the EBS mid price and
the OTC quoted mid price, was at some given levels. For the OTC quoted
mid price, we take first the non–filtered data (the raw tick data), and then the
filtered data (with the three filtering presented above). Those proportions, for
the levels comprised between -2 pips and 2 pips, are reported in the following
table:

From the proportions reported in Table 2, it is easy to derive the propor-
tions of time in which the difference between the quoted mid and the EBS bid
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Table 2. Non filtered data (raw tick data)

03-Jan 24-Jan 28-Jan 03-Jan 24-Jan 28-Jan
8h-16h 8h-16h 8h-16h 8h-20h 8h-20h 8h-20h

-2 pips 2% 1% 1% 2% 1% 1%
-1 1/2 pip 2% 2% 3% 2% 2% 2%
-1 pip 6% 6% 6% 6% 5% 5%
- 1/2 pip 10% 12% 11% 10% 10% 10%
0 pip 29% 33% 25% 30% 30% 23%
1/2 pip 25% 19% 18% 24% 19% 20%
1 pip 13% 13% 18% 14% 16% 19%
1 1/2 pip 7% 5% 7% 6% 6% 8%
2 pips 2% 2% 4% 3% 3% 4%

Filtered data (simple, dynamical and retroactive filtering)

03-Jan 24-Jan 28-Jan 03-Jan 24-Jan 28-Jan
8h-16h 8h-16h 8h-16h 8h-20h 8h-20h 8h-20h

-2 pips 1% 1% 1% 2% 2% 1%
-1 1/2 pip 1% 1% 1% 1% 1% 1%
-1 pip 10% 15% 8% 10% 12% 7%
- 1/2 pip 7% 7% 5% 8% 7% 5%
0 pip 47% 47% 46% 42% 39% 39%
1/2 pip 17% 8% 10% 17% 11% 13%
1 pip 15% 17% 20% 16% 18% 21%
1 1/2 pip 1% 1% 2% 2% 4% 5%
2 pips 1% 2% 4% 2% 4% 6%

have been majored by two pips, by one pip, or have been zero. Those propor-
tions summarise quite well the result of the experiment; they are reported in
the following table:

The proportions reported in Table 3 show that the filtering procedures
have bettered the informational content of the quoted data, and they also
show by how much. The proportion of time where the difference EBS-OTC
is zero is nearly doubled when applying the filters, and one reaches then a
confidence level of 2% that the difference does not exceed two pips. Two pips
is something quite small for this market, it corresponds to the width of a good
price.

We conclude this exercise with two remarks:

Remark 1. The first remark is about the traded data used for the test. Those
data have the clear advantage that they are made of bids and ask that can
actually be traded, while the “tradability” of the quoted data is not enforced
by law or by technical reasons. One should however not forget that the traded
data have also a disadvantage: They concern small sizes, which can be as low as
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Table 3. Non filtered data (raw tick data)

03-Jan 24-Jan 28-Jan 03-Jan 24-Jan 28-Jan
8h-16h 8h-16h 8h-16h 8h-20h 8h-20h 8h-20h

= 0 pip 29% 33% 25% 30% 30% 23%
≤ 1 pip 83% 84% 77% 83% 80% 76%
≤ 2 pips 95% 94% 93% 95% 93% 92%

Filtered data (simple, dynamical and retroactive filtering)

03-Jan 24-Jan 28-Jan 03-Jan 24-Jan 28-Jan
8h-16h 8h-16h 8h-16h 8h-20h 8h-20h 8h-20h

= 0 pip 47% 47% 46% 42% 39% 39%
≤ 1 pip 96% 93% 89% 93% 87% 85%
≤ 2 pips 99% 98% 98% 99% 97% 97%

1 million euro. The quoted data are meant for standard size that are of a bigger
magnitude, at least 10 millions. It is thus only normal if they exhibit higher
spreads and it is not completely obvious that their informational content is
poorer than the one of the traded data, once the wrong quotations have been
taken out.

Remark 2. The second remarks pertain to the general usefulness of the dy-
namical filtering. As the Figure 1 suggests, the impact of filtering on bids and
on asks is much stronger than its impact on mid prices. This is because a non–
negligible proportion of the large quotes are nevertheless correctly centred or
nearly correctly centred. Consequently they cause much less noise on the mid
than on the ask or on the bid. If one computes a table similar to Figure 1, but
taking the asks or bids instead of mids, one finds the same level of quality for
the filtered data, but a much poorer quality for the non–filtered data. As the
present study is only concerned by the mid price, we do not further elaborate.

3 The Results

3.1 Discretisation of Time

All the results pertain to the time series of the euro–dollar exchange rates
discretised in physical time. This means that the euro–dollar exchange rates
are considered at regular intervals of constant length in physical time. This
constant length is called the period of discretisation.

We have been considering 11 periods of discretisation, namely 15 seconds,
30 seconds, 1 minute, 2 minutes, 4 minutes, 8 minutes, 15 minutes, half an
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hour, 1 hour, 2 hours and 4 hours. Each period is thus the double of the
immediately smaller period, except the period of 15 minutes.

All the results have been obtained after exclusion of nights and weekends.
Weekends mean Saturdays and Sundays. Non working days other than Satur-
days or Sundays are not excluded. Nights mean the period between 20 hours,
Frankfurt time, and 8 hours, Frankfurt time. The length of the day is thus 12
hours, which is convenient because it is an integer multiple of all the periods
of discretisation. To each period of discretisation corresponds thus a discreti-
sation grid, with equally spaced points, starting at 8 hours and finishing at
20 hours.

3.2 General Statistical Indicators

Before tackling the spectral analysis of the euro–dollar, it is useful to con-
sider some simpler indicators. We will examine the distribution of returns,
the quadratic variation, and similarly defined variations, and the autocorrela-
tion function. We will briefly say word of a less classical indicator, namely the
Hausdorff–Besicovitch dimension, nowadays known as the fractal dimension,
of the trajectory of the process. In all case, we will investigate what would
have been the answer of the statistical indicator in the case of a standard
Wiener process.

Distribution of Returns

Returns are defined as the first difference of the logarithm of the mid price of
the discretised series. However, given the small order of magnitude of those
returns, the concavity of the logarithm function has hardly a chance to play
a role. Consequently, returns are either approximately an integer number of
pips, or a half–integer number of pips.

Regarding the unconditional distribution of the returns, two observations
should be made. The first one is that, quite surprisingly, the unconditional
distribution of short period returns can be deemed constant. The second one
is that, less surprisingly, the unconditional distribution of returns is leptokur-
tic and that the distribution of short–period returns is more leptokurtic than
the distribution of long–period returns. The longest period taken into consid-
eration is 4 hours.

The invariance of the distribution of short–term returns has been tested
only on the 15–second returns because, as those returns are the more numer-
ous, the results of the test will be more conclusive. We consider the quarters
that are covered by our sample of data. They range from the fourth quarter of
2000 to the fourth quarter of 2002. We compute the empirical density function
of the 15–second returns for each of those 9 quarters, as well as for the sample
as a whole. The sample size of a quarter lies between 180,000 and 190,000
15–second returns, while the total sample size is 1,848,347 15–second returns,
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Table 4. Distribution of the 15–second euro–dollar returns computed for the entire
sample and for several sub–samples

Pips All 00 Q4 01 Q1 01 Q2 01 Q3 01 Q4 02 Q1 02 Q2 02 Q3 02 Q4

-5 pips 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.1% 0.1% 0.1%
-4 1/2 pips 0.2% 0.3% 0.4% 0.4% 0.3% 0.2% 0.2% 0.2% 0.1% 0.0%
-4 pips 0.2% 0.3% 0.3% 0.2% 0.2% 0.1% 0.1% 0.1% 0.3% 0.2%
-3 1/2 pips 0.6% 1.0% 0.7% 1.0% 0.9% 0.7% 0.5% 0.4% 0.1% 0.1%
-3 pips 0.6% 0.6% 0.9% 0.5% 0.4% 0.3% 0.3% 0.4% 0.9% 0.5%
-2 1/2 pips 1.3% 2.8% 0.7% 2.4% 1.8% 0.7% 1.7% 0.6% 0.4% 0.3%
-2 pips 2.1% 1.3% 4.0% 1.4% 2.0% 1.8% 0.4% 2.2% 3.4% 2.3%
-1 1/2 pip 1.5% 1.4% 2.0% 1.3% 1.5% 1.5% 1.2% 1.2% 1.9% 1.5%
-1 pip 11.8% 10.6% 13.0% 11.6% 11.8% 10.9% 10.5% 12.6% 13.2% 11.4%
- 1/2 pip 6.5% 6.5% 6.3% 6.4% 6.3% 6.4% 5.5% 5.2% 7.5% 7.7%
0 pip 49.7% 48.8% 42.4% 48.2% 48.4% 53.9% 58.9% 53.5% 44.1% 52.0%
1/2 pip 6.2% 6.2% 6.1% 6.1% 6.2% 6.1% 5.1% 5.0% 7.0% 7.2%
1 pip 12.0% 11.3% 13.5% 12.4% 11.8% 10.8% 10.7% 12.9% 13.1% 11.3%
1 1/2 pip 1.6% 1.4% 2.0% 1.3% 1.6% 1.7% 1.3% 1.3% 1.9% 1.6%
2 pips 2.1% 1.3% 3.9% 1.4% 2.0% 1.8% 0.4% 2.1% 3.4% 2.3%
2 1/2 pips 1.2% 2.6% 0.6% 2.3% 1.8% 0.8% 1.7% 0.5% 0.4% 0.3%
3 pips 0.6% 0.6% 0.8% 0.5% 0.4% 0.3% 0.2% 0.5% 0.9% 0.6%
3 1/2 pips 0.6% 0.9% 0.7% 0.9% 0.9% 0.7% 0.6% 0.4% 0.1% 0.1%
4 pips 0.2% 0.2% 0.2% 0.2% 0.2% 0.1% 0.1% 0.2% 0.3% 0.2%
4 1/2 pips 0.2% 0.3% 0.3% 0.3% 0.3% 0.2% 0.2% 0.2% 0.1% 0.0%
5 pips 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.1% 0.1% 0.1%

excluding those of more of 25 pips. The results are shown in the following
table:

In short, this shows that all the distributions look similar. The visual
equivalent of this table is the chart plotting the densities:

The densities, without being strictly identical, appear difficult to distin-
guish. Another way to emphasise this resemblance is to consider the cumula-
tive probability distribution functions corresponding to the various quarters
as functions of the global cumulative probability distribution function. Such
a scatter plot is called a “Q–Q plot”.

The Figure 3 reveals tiny differences affecting the area beyond 1.5 pip:
2002Q1 exhibits relatively less 2 pips 15–second returns than the global dis-
tribution, while 2002Q3 exhibits relatively more of them. All in all, the quarter
distributions are similar to the global one. They show therefore some common
features, which are:

• Symmetry,
• Strong leptokurtosis,
• Overweight of the returns of an integer number of pips, underweight of the

returns of a half–integer number of pips.
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Fig. 2. Unconditional density functions of 15–second returns. Bold line: over all
pdf, thin lines: pdf of quarters (Source of raw data: Reuters)

Fig. 3. Unconditional distribution functions of 15–second returns. Horizontal line:
overall pdf, vertical axis: pdf of quarters (Source of raw data: Reuters)

The last feature is explained by the fact that the bid–ask spread, after
dynamical filtering, is frequently 1 pip, thus the mid–price is frequently a
half–integer number of pips. When two consecutive mid prices are a half–
integer, number of pips, then the return is an integer number of pips. It is
clear that no satisfactory continuous–time model can accommodate this third
feature, but there would be no need for that, as it is only an artefact. Below,
when we will construct a simulated process aiming at replicate the statistical
behaviour of the euro–dollar, we will eliminate this feature. The distributions
of returns for different period of discretisation, however, are not the same,
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and cannot be made the same by a simple change of scale. All of those are
symmetrical and leptokurtic, but the shorter is the period of discretisation,
the more pronounced is the leptokurtosis. This is immediately apparent when
one plots the unconditional distribution functions of returns for the eleven
periods of discretisation, from 15 seconds to 4 hours:

Fig. 4. Unconditional distribution function of returns (Source of raw data: Reuters)

Apart from the ones corresponding to the two longer periods, in dot lines
on the graph, 2–hour and 4–hour, the curves are smooth, symmetrical and
nicely ordered. Leptokurtosis is indicated by on this graph by the curvature
of the curves around the level of 0% and around the level of 100%. The
distribution function of the 15–second return, in bold on the graph, exhibits
the stronger one, followed by the one of the 30–second returns, etc.

To get a more precise sense of the structure underlying those distributions
of returns, it is useful to take recourse to the notion of cumulants. Briefly,
the cumulant of a random variable is defined as the logarithm of the char-
acteristic function of this random variable, which is in turn defined as the
Fourier transform of the density function of this variable. We will denote with
p its argument variable: the cumulant is a function f(p) of a variable p. The
justification for such a definition is as follows. When two random variables
are independent, the density function of their sum is the convolution product
of their density functions. The Fourier transform changes convolution prod-
ucts into usual products. Hence, the characteristic function of their sum is the
product of their characteristic functions. The logarithm transforms products
into sums. Hence, the cumulant of the sum of the two independent random
variables is simply the sum of their cumulant.

This notion has a natural field of application in the case of random pro-
cesses with independent increments. Indeed, the increment over a period of
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length t is the sum of two subsequent increments over periods of length t/2,
so the cumulant of the t–increment must be twice the cumulant of the t/2–
increment. We do not elaborate further here. Let us simply say that for a
Wiener process, the cumulant of the increment over a time interval t is neces-
sarily proportional to t, and proportional to the square of p. In other words,
it takes the form tp2. We are now going to glance at the cumulants of the
returns of the euro–dollar.

The increments of the euro–dollar are always an integer or a half–integer
number of pips, up to a small correction due to the concavity of the log-
arithm function, but as was said above it can be neglected. Therefore, the
density functions of the returns are concentrated on a small number of points.
Consequently, the cumulants can be computed only for a small number of
points, and it is not possible to exactly specify which functional form they
may have. It appears nonetheless that they are not proportional to the square
of p. If a power function fits them, then this power function has a slightly
lower exponent, lying around 1.6.

Another thing is that the cumulants do not add up. The cumulant of
the 30–second return is smaller than twice the cumulant of the 15–second
return, and so forth. The ratio, which would have been 2 for a process with
independent increments, seems to lie around 1.6 or 1.7.

To conclude this paragraph, let us compare the euro–dollar log–exchange
rate with a Wiener process:

• In the case of a Wiener process, we would also have found that the distri-
butions of the first differences are the same for different time sub intervals.
This is a similarity between the log euro–dollar and the Wiener process.

• We would have found that distributions corresponding to different periods
of discretisation are the same, up to a scale factor, and in particular have
the same level of leptokurtosis, i.e., a mild leptokurtosis. This is a difference
between the log euro–dollar and the Wiener process.

The examination of the cumulants leads to precise this. For a Wiener pro-
cess, the cumulants would have been a power function of exponent 2 (because
of the normality of the increments). In addition, for a Wiener process, the cu-
mulants of increments over 2t should have been the double of the increments
of returns over t (because of the independence of the increments). Instead of
that, we find that the cumulants of the returns of the euro–dollar are fitted by
a power function of exponent less than 2. Furthermore, the cumulants of the
returns of the euro–dollar less than double when the period of discretisation
is doubled. This second feature suggests the existence of short–term negative
correlations. It gives already some idea of what should be examined in the
spectral decomposition of the exchange rate.
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Quadratic Variations and Similar Objects

The next elementary indicator we will consider is the quadratic variation
(QV). This one is simply defined as the cumulative sum of the squared in-
crements of the process, along some discretisation grid. This is therefore an
increasing function of time, starting from zero. It is a priori defined only on
the points of the discretisation grid, but one can always extend it definition
by interpolating, for example.

We discretise time with regularly spaced points, skipping only nights and
weekends. Hence, we have as many quadratic variations as periods of discreti-
sation, and namely eleven. All of them are well–defined (without interpolation)
at 8 hours, 12 hours, 16 hours and 20 hours of any non–weekend day. It is
then possible to compare them to each others:

Fig. 5. Euro: spot and realized quadratic variations (Source of raw data: Reuters)

Figure 5 shows the eleven quadratic variations. Their ranking on the graph
corresponds to the ranking of their discretisation period. The higher one on
the graph is the 15–second quadratic variation and the lower one is the 4–hour
quadratic variation. The slopes of those eleven increasing functions are roughly
constant. The smaller the discretisation period, the smoother the quadratic
variation, and the less varying its slope.

Having looked at the graph of those eleven quadratic variations, let us
remind which behaviour they should have had in the case of a Wiener process.

In the case of the Wiener process, the behaviour to be expected is simple.
The quadratic variations with increasingly low periods of discretisation are
the increasingly good approximations of a limit, and the form of this limit is
extremely simple: It is a linear function of time. For a Wiener process, Figure 5
should theoretically show eleven confounded straight lines. A simulation shows



The Spectrum of Euro–Dollar 89

that even with a smaller size sample, a simulated Wiener process actually
produces those eleven confounded straight lines. So, Figure 5 can be seen as
a (complicated) test that the log euro–dollar is not a Wiener process. It tells
however a little more than simply that:

1. First, it questions the very notion of empirical volatility. If the discre-
tised quadratic variations displayed in Figure 5 were converging towards
some limit, this limit would be the conceptual or theoretical quadratic
variation of the process. This would provide a natural definition of the
volatility, which would simply be the square root of the slope of this limit
quadratic variation. Unfortunately, the data do not speak in favour of the
plausibility of such a limit. One can at most define “empirical volatilities
of discretisation period of 15–second”, “of 30–second”, etc. Those several
empirical volatilities do not happen to be the increasingly good approx-
imation of something that could be named “the” empirical volatility. In
essence, Figure 5 tells us that there is no such thing like “the” empirical
volatility of the euro–dollar exchange rate. In other words, the empirical
volatility does not appear to be intrinsically defined.

2. Notwithstanding the ambiguity about the right definition of the volatility,
Figure 5 suggests the existence of something like general level of volatility
that is slowly fluctuating over months. Indeed, the fluctuations of the
eleven quadratic variations appear to be in line with each other. There
are times when all the different quadratic variations increase more rapidly,
and times where they all increase less rapidly. This creates, on the graphic,
the appearance of slow undulations of the quadratic variations. Those
undulations suggest the existence of persistent positive correlations of the
squared returns. Of course, a more direct way to see that would be to
consider the ACF of those squared returns. This will be done in the next
paragraph.

3. Figure 5 suggests the existence of short–term negative correlations. This
message was already brought by the study of the cumulants. Here, it arises
from the increasingly high slopes of the quadratic variations of increasingly
short period of discretisation. Assuming that those returns would have a
finite variance, this patterns means in essence that the variance of the
return of period 2t is less than twice the variance of period t. Hence, the
correlation between two subsequent returns of period t must be negative.
A more direct way to see that would be to consider the ACF of the returns.
This will be done in the next paragraph.

Those undulations will be also observable on two (similar) statistical indi-
cators, the absolute variations and the squared root variations. The absolute
variation (AV) is the cumulative sum of the absolute values of the returns. The
squared root variation (SV) is the cumulative sum of the absolute values of the
squared roots of the returns. Just as the quadratic variations, the absolute and
squared root variations are defined with respect to a period of discretisation
and we consider therefore eleven representative of each sort, corresponding to
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the eleven periods of discretisation specified above. Unlike the quadratic vari-
ations, the absolute and squared root variations must be normalised by some
power of the period of discretisation, otherwise they could not be compared
with each other. Specifically, the cumulative sum of the absolute values of the
returns must be multiplied by the squared root of the period of discretisation.
The cumulative sum of the absolute values of the squared roots of the returns
must be multiplied by the power of the period of discretisation. When so
defined, the AV and the SV converge, for a Wiener process, towards a linear
function of the time. Considering the AV and the SV of the log euro–dollar
will show, once more, that it definitely differs from a Wiener process.

Fig. 6. Euro: spot and realized absolute variations (Source of raw data: Reuters)

The figures 6 and 7 exhibit several similarities with the Figure 5 . In
every case, the variations have the appearance of smooth functions. There
are differences too: the variation with shorter discretisation periods do not
appear to be smoother than the other ones, contrarily to what was the case
with quadratic variations. Also the ranking in term of slopes is different. It
is reversed for the square root variations. The SV with longer discretisation
period grow quicker that the ones with shorter discretisation period. For what
regards the AV, no clear ranking emerges.

Autocorrelation Functions

The ACF of the returns rt, denoted by ρ(k), is defined as

ρ(k) =
E(rt − r̄)(rt−k − r̄)

E(rt − r̄)2
(1)

The following table gives the ACF computed for the seven shorter periods
of discretisation.
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Fig. 7. Euro: spot and realized squared root variations (Source of raw data: Reuters)

Table 5. Autocorrelation function of the euro–dollar returns computed for several
discretisation steps

15 sec. 30 sec. 1 min. 2 min. 4 min. 8 min. 1/4 h

0 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
1 -14.4% -6.5% -0.1% 0.6% -2.0% -4.0% -2.2%
2 1.3% 2.8% 0.8% -1.1% -2.1% 0.2% 0.8%
3 0.9% 0.6% -0.3% -1.3% -1.0% -1.1% 1.3%
4 1.6% 0.6% -0.6% -1.0% 0.0% 0.2% -0.3%
5 0.5% 0.1% -0.6% -1.0% -0.8% 1.7% 1.3%
6 0.3% -0.2% -0.7% -0.3% -0.1% 0.3% 1.3%
7 0.0% -0.5% -0.7% -0.2% 0.3% 0.0% -0.8%
8 0.5% -0.1% -0.4% 0.1% 0.4% 0.3% 0.5%
9 0.0% -0.6% -0.5% -0.2% 0.0% 0.0% 0.3%
10 0.1% 0.0% -0.6% -0.5% 0.9% 1.5% -1.0%

The 1–minute returns appear to be perfectly non–correlated, they behave
absolutely like a white noise. The 15–second and 30–second returns exhibit
rather important negative correlations at the first lag, but after a few lags
any trace of correlation disappear. Finally, the longer returns seem to show
weakly negative correlations at the first lag.

The overall message of Table 5 is rather ambiguous. As it was the case with
the indicators previously considered, it suggests the existence of short–term
negative correlations. However, it does not suggest clearly what could be the
structure of those negative correlations. To get some idea about it, one has to
take a direct look at the spectral structure of the process. It is also worthwhile
to examine the ACF of the squared returns or of the absolute value of returns.
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We will focus on the first ones. The equivalent table for squared returns reads
as follows:

Table 6. Autocorrelation function of the squared euro–dollar returns computed for
several discretisation steps

15 sec. 30 sec. 1 min. 2 min. 4 min. 8 min. 1/4 h

0 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
1 1.1% 1.0% 1.3% 2.3% 3.1% 4.5% 6.6%
2 0.6% 0.7% 0.8% 1.3% 1.9% 2.7% 5.8%
3 0.5% 0.6% 0.8% 1.3% 1.3% 2.5% 3.0%
4 0.4% 0.4% 0.6% 0.9% 1.7% 1.9% 4.3%
5 0.4% 0.4% 0.5% 1.0% 1.5% 2.4% 4.5%
6 0.4% 0.5% 0.5% 0.7% 1.1% 1.9% 4.9%
7 0.3% 0.4% 0.5% 0.8% 1.2% 1.9% 3.4%
8 0.4% 0.3% 0.4% 1.0% 1.1% 1.6% 2.2%
9 0.4% 0.3% 0.4% 1.1% 0.8% 2.4% 2.6%
10 0.3% 0.3% 0.4% 0.7% 1.0% 2.1% 0.9%

The picture is here quite different. All the correlations are positive, all ACF
are slowly and smoothly decreasing, ACF or shorter discretisation periods are
dominated by ACF of longer ones. Those are the symptoms of the well–known
phenomenon of the long-term memory of the squared returns.

In the case of a theoretical continuous–time Wiener process, both tables
5 and 6 would have given a correlation of 100% at row 0, and of 0 at other
rows, independently of the period of discretisation. The actual log euro–dollar
does not extremely differ from the Wiener process for what regards returns,
with the exception of the short–term negative correlations observable for dis-
cretisation periods below 1 minute. For what regards squared returns, though,
the difference is clear–cut: The phenomenon of long–memory is a well–defined
and well–observable empirical regularity that should be entirely absent in the
case of a Wiener process.

The long–memory of squared returns, or of absolute returns, which is well
documented and which is observable also from daily data, has a connection
to the so–called persistence of volatility.

The persistence of volatility refers to the fact that the empirical volatility
defined as the standard deviation of returns over a given time–length, e.g.
daily returns, tends to remain high (low) after having been high (low).5

5 The persistence of volatility may also apply to implied volatility, instead of em-
pirical volatility. The persistence of the one can cause the persistence of the other,
and conversely, because they exist channels by which the empirical volatility can
influence the implied volatilities, and channels by which the implied volatility can
influence the empirical volatility.
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The long–memory means in essence that high returns, in absolute value,
appeal subsequent high returns, and thus that high returns are clustered. The
long–memory is thus made graphically visible in the aforementioned undula-
tions affecting the variations displayed on Figures 5–7.

To summarise, it seems legitimate to say that the undulations of the vari-
ations shown on Figures 5–7, the long–memory of squared returns shown by
Table 6 and the persistence of the volatility are three aspects of the same
empirical pattern of the log–price process.

Hausdorff–Besicovitch Dimension

So far, we have found only reasons to distinguish the sample path of the log
euro–dollar from a Wiener process. Is this to say that the representation of
(logarithms of) prices with Wiener processes is at all a wrong idea?

The history of the Wiener representation starts in 1900 with Bachelier.
It has been the central intuition (rather than the central “finding”) of his
dissertation. At that occasion, Bachelier invented the Wiener process without
grounding it in a totally mathematically rigorous way. Bachelier also gave in-
tuitive, but logically not rigorous reasons to believe that speculative prices
should behave according to a Wiener process (he did not mention about
the logarithmic transformation, but that is not essential). In the opinion of
Poincaré, those reasons were not convincing.

The idea that (log-) prices are Wiener remained. This idea has been at the
origin of two important chapters of the history of finance (in both cases, the
grounding paper has been published in the year 1973). First, Mandelbrot no-
ticed that Wiener processes were only a special case of a more general family of
processes possessing the important characteristic of being self–similar. Man-
delbrot launched the idea that one might obtain a more accurate and more
realistic representation of the log prices processes without loosing this prop-
erty of self–similarity. Second, Black and Scholes (1973) invented the concept
of pricing by replication, that was applicable to options under the hypothe-
sis that the log price was following a Wiener process (or more precisely, was
probabilistically equivalent to it). The Black and Scholes concept, model and
formula were later applied by Garman and Kohlhagen (1983) to the specific
case were the price is an exchange rate.

The vision of log prices as Wiener processes has a rich and fecund his-
tory. This suggests that it is neither inappropriate nor unrealistic. Likely, it
represents some sort of optimal compromise between realism, mathematical
tractability and conceptual richness. To remain aware of it, it is useful to un-
derline also non–trivial resemblances between Wiener processes and the log
euro–dollar. This is why we will conclude this section with a short glance at a
statistical indicator of a special sort, namely the fractal dimension of the sam-
ple path or trajectory of the log euro–dollar. This will also be the opportunity
to present the contrary situation of the case of the quadratic variations: They
did not seem to be a quadratic variation of the log euro–dollar because its



94 Vincent Brousseau

discretised approximations did not seem to converge towards an identifiable
limit. In the case of the fractal dimension, the approximations will exhibit the
required convergence.

We will not say a lot about what is the fractal dimension. In short, one
should keep in mind the following points:

• There exist an intuitive notion of dimension, which is clear to everybody.
According to this notion, a line has dimension 1, a surface has dimension
2, and a volume has dimension 3.

• There exists a technical way to define this dimension in terms of the limits
of something. Actually, there exists several variants, but their technical
differences do not matter here.

• Once so defined, the notion of dimension applies not only to lines, surfaces
and volumes, but also to structures that are more complex.

• Among those structures, there is the sample path of a Wiener process.

The Hausdorff–Besicovitch dimension of a shape S is the real value D such
that the Hausdorff measure d is infinite for d < D and vanishes for d > D. D
is also called a critical dimension.

The technical way to define the dimension that we will refer to is the
so–called Hausdorff–Besicovitch dimension; see Hausdorff (1918), Besicovitch
(1929), Ito and McKean (1974) Chap. 2 §5 note 2 pp. 53–54. Not any geo-
metrical structure has a dimension: as it is defined of the limit of something,
it may be not defined. The sample path of a Wiener process, however, has a
dimension of 1.5: Therefore, it lies, from the point of view of dimensionality,
between the lines and the surfaces.

One may wonder whether the log euro–dollar sample path have a dimen-
sion and if yes which one. Numerical estimations performed on the data set
seem to indicate that there is one, and moreover that this one is equal to 1.5,
as for a Wiener process.

3.3 The Spectral Analysis

The four families of indicators considered so far have delivered several mes-
sages about the path of the log euro–dollar:

• This path shows statistical regularities,
• Also, it exhibits some likelihood with a Wiener process,
• Even so, it exhibits clear differences from a Wiener process,
• An important difference is that returns are too leptokurtic (the returns of

a Wiener process being normal),
• Another important difference is that returns exhibit short term negative

correlations (the returns of a Wiener process being independent).

The focus, hereafter, will be put on that last difference. The most sys-
tematic way to tackle its study is probably to decompose the returns as a
superposition of oscillations of various frequencies. In other words, this is to
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determine the spectrum of the process of returns, by computing the Fourier
transform of the returns sequence.

Theoretical Definition of the Spectrum

The Fourier transform of the sequence of returns converts this sequence of
returns into a superposition of sinusoidal oscillations. This transform conveys,
in principle, information about the relative weights of frequencies and about
the phases of the oscillations. We are here interested in the relative weights of
frequencies, but not in the phases. Because of that, it is appropriate to define
the spectrum as the modulus of the Fourier transform.

The Fourier transform applies to functions defined on the real axis and
taking values in the complex plane. The result of the transform is also a
function defined on the real axis and taking values in the complex plane.
When moreover the function f takes real values, then its transform g = F (f)
is such that its real part is symmetrical (or even) and that its imaginary part
is antisymmetrical (or odd). This amounts as saying that Reg(x)= Reg(−x)
and Im (g)(x)= -Im(g)(−x) for any x, where Re(x) and Im(x) respectively
stand for the real and the complex part of x. Hence, the modulus of g is also
symmetrical (or even): |g|(x) = |g|(−x). As we define the spectrum as the
modulus of the Fourier transform of the returns, it results that this spectrum
is symmetrical and therefore that its graph is symmetrical around the vertical
axis.

The spectrum is an even function whose argument is a frequency and
whose value is the weight with which this frequency is present in the returns
process.

So defined, the spectrum of a Gaussian white noise would be a constant
function. The spectrum of a theoretically defined random process would be
some even real function. We are interested in the process of the returns of the
euro–dollar, this process is an empirical one and not a theoretical one. It is
not necessarily legitimate to speak of the spectrum of an empirical process. If
it is legitimate, then this spectrum is a even real function.

One may speak of the spectrum (of the dimension, of the quadratic varia-
tion, etc.) of some empirical process if the discretised equivalent of this spec-
trum (of this dimension, of this quadratic variation) seems to converge to-
wards some limit when the discretisation becomes thinner. This may or not
be the case, and we have so far encountered examples of the two situations.
As we have seen, there is no quadratic variation of the log euro–dollar, while
there is one of a simulated Wiener process. In contrast, there is a Hausdorff–
Besicovitch dimension of the path of the log euro–dollar, as well as of a simu-
lated Wiener process. A study about the spectrum of some empirical process
is not only about the computation of some Fourier transform, but also about
the check that those transforms, computed for increasingly thinner discreti-
sations, do converge towards something. Therefore, we will have to know how
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to consider jointly the spectrum of, say, the 15–second and the 30–second
discretisations. We deal with this issue in the next paragraph.

Applied Construction of the Spectrum

Our problem is an applied one and not a purely mathematical one: we are
obliged to perform numerical calculations to estimate an empirical spectrum.
Thus, we have to proxy the mathematical objects (the functions from and to
the real axis) by numerical objects, a finite sequence of numbers, and to replace
the mathematical Fourier transform by the relevant numerical algorithm. This
one, of course, is the standard discrete Fourier transform. When the finite
sequence of numbers has length 2n for some integer n, then the celebrated
Fast Fourier Transform (FFT) algorithm applies.

We encounter two practical difficulties:

1. The number of returns is not of the form 2n,
2. The number of returns is too big to be plotted, or the graph would be

difficult to understand.

The solutions we apply are the following:

• We transform the series of returns into a series of 2n returns, for the highest
possible n, as follows. We consider the sequence of returns as a stepwise
constant function, defined on some continuous time interval. We take its
primitive, which is thus a stepwise linear function on the same continuous
time interval. We cut the interval in 2n subintervals of equal length. We
consider the (left side) derivative of the stepwise linear function at the
ends of each of those subintervals. Those are our 2n returns, to which we
can apply the FFT. The procedure has no effect if the number of returns
has already the 2n form, which is obviously quite unlikely. For example,
the number of 15–second returns is 1,848,364, whose logarithm of base 2
lies between 20 and 21. The transformed series counts then 220 returns.

• Regarding the reduction of the number of elements of the spectrum, we
proceed as follows. We will divide the size of the spectrum by 211, so
for example the spectrum of the 15–second returns should contain only
512 = 29 points instead of 220 points. The construction of this “aggregated
spectrum” is done by the way of quadratic averages. The value of range k
of the aggregated spectrum is the square root of the average of the squares
of the values of range 211k, 211k+1, . . . , 211(k+1), where the first and the
last one enter with half weight only. One easily sees that this results into
a symmetrical aggregated spectrum, where the kth first value is equal to
the kth last value.

Plotting the Spectra

We plot those Fourier transform and the resulting spectra according to the
convention that the zero frequency is at the centre, the highest positive fre-
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quency is on the right and the highest negative frequency on the left of the
graph.

The following graph shows the Fourier transform (two thin dotted lines)
and the resulting aggregated spectrum (one bold line) of the 15–second re-
turns. (The scale of the spectrum has been doubled.)

Fig. 8. Euro: Fourier transform of returns (Source of raw data: Reuters)

The two thin dotted lines of the Fourier transform correspond to its real
part and its imaginary part. Actually, they look confounded in some cloud of
points, due to the high number of data. Even so, the Figure 8 already delivers
a message, namely that the high frequencies have slightly, but clearly, more
weight than the low frequencies.

The spectrum captures the shape of this “cloud” of frequencies. The over-
weight of high frequencies gives it some convexity. The information that it
carries is nonetheless not limited to this convexity. To get it fully, one needs
to zoom on the vertical axis. One obtains the following figure:

On that figure, not only the 15–second spectrum, but also several spectra
have been represented. The other ones, which occupy central sub-parts of the
figure, overlap with the 15–second spectrum and are practically confounded
with it. (Frequencies are designated by their reciprocal period.)

Figure 9 reveals that the actual form of the spectrum of the returns is not
completely elementary. One can describe this form by three observations

1. Between zero and 10 minutes, frequencies have increasing weights,
2. Frequencies lying in the range 10 minutes to 2 minutes have decreasing

weights,
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Fig. 9. Euro: spectra of returns (Source of raw data: Reuters)

3. Frequencies higher than 2 minutes have increasing weights, those weights
seem to indefinitely increase and the highest weight overall are obtained
for the highest frequencies.

The third observation, which was already suggested by Figure 8, points
towards the spectrum of a fractionally derived white noise or of an Ohrstein–
Uhlenbeck process. In the words of Mandelbrot, this is a “negative Joseph
effect”. This effect is clearly responsible for the negative correlations we found
when studying the ACF, and for the symptoms of negative correlations we
found by studying the repartitions of returns and the quadratic variations.

All together, those three observations capture the pattern, or the form, of
the spectrum. Details that are more precise could be artefacts or the effect of
randomness. However, the two peaks in the area of 30–40 seconds are striking,
but we do not propose any explanation for them: They could be an artefact
or have a real meaning. In any case, we do not account for them in the
important remaining task of getting a stylised representation of the spectrum.
A good stylised representation would be a depiction of the spectrum that
simultaneously achieves an acceptable accuracy and keeps an acceptable level
of simplicity. Figure 9 suggests that correct stylised representation of the
spectrum describes it as the juxtaposition of three linear parts. We will rely on
this muster when we will simulate a process whose spectral structure replicates
the one of the euro–dollar.

The spectrum computation has been also conduced on subsets of the total
data sample. It is remarkable that the form revealed by Figure 9 is already
recognisable for time intervals of only some months. This form seems to be
some constant characteristic of the process, just as the forms of the histograms,
figures 11 and 12, in sub–section 3.4. As far as one can judge from the ex-
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amination of our data sample, the ternary scheme of Figure 9 is the spectral
signature of the euro–dollar.

3.4 Reconciling the Results

So far, we have examined various statistical indicators and characteristics of
the log-price process of the euro–dollar. A successful description of this process
would be a mathematical specification of this process such that the process
must fit with this statistical behaviour. This means that

• The distributions of returns, variations, ACF and spectra should obey to
some mathematical forms (preferably explicit ones),

• Those mathematical forms are recognisable on the tables and graphs shown
so far,

• For a sample whose size is the size we have used, between 220 and 221 15–
second returns, those forms are obtained with the precision that is shown
on those tables or graphs,

• A simulation of the mathematical process whose sample size is the same
provides comparable tables and graphs.

This would be the criteria of a complete success, and their achievement
would mean that the “physics” of the euro–dollar have been found. To see
how far we are from this ambitious goal, the simplest is actually to rely on a
simulation experiment. Specifically, one can build in a simulated process both
the distribution of the 15–second returns and their spectrum, achieving so
a partial reconciliation of our results. Then, we have to see how the process
behaves regarding other statistical indicators.

Construction of the Simulated Process

We construct of the simulated process in two phases.
First, we generate N independent random variables whose distribution

coincides with the empirical distribution of the 15–second returns.
The algorithm used for the underlying generation of N uniformly dis-

tributed variables follows Knuth’s suggestion and has been taken from Press
et al. (1988) (chap. 7, §1, p. 212). As it has an effective period of 714,025, we
have to choose N below this limit (by comparison, the size of the actual sam-
ple of 15–second returns is 1,848,364). Actually, we have to choose N below
or equal to the highest integer power of 2 which is less than 714,025, and that
is 219 = 524, 288.

We want to reproduce the conditions in which we studied the empirical
process with the maximum of fidelity. We choose therefore a number which is
in the same proportion to the immediately proceeding integer power of two
than 1,848,364 is to 220. This leads us to take N = 458, 488.

We generate 219 = 524, 288 uniformly distributed deviates. Those are then
transformed into as many euro–dollar-return-like distributed deviates. To do
that,



100 Vincent Brousseau

1. We symmetrise the empirical distribution of those returns,
2. We fit the symmetrised distribution function, between 0 and 25 pips, with

the ratio of two polynomials (each of degree four),
3. And we apply the reciprocal of this rational function to the uniform de-

viates.

This sequence of 524,288 deviates has a flat spectrum because the deviates
are independents: it is a white noise, albeit a non–Gaussian one. Then, all
what remains to do is to modify the spectral structure of this sequence. This
is done by applying a direct Fast Fourier Transform, by multiplying the result
with the desired spectrum, and by applying a reverse Fast Fourier Transform.
The spectrum we have used was not directly the empirical spectrum, but
its three–part piecewise–linear muster. We have then a sequence of 524,288
deviates having the required spectrum. Out of those ones, we select only the
458,488 first ones, in order to reproduce the case of the empirical sample,
whose cardinal was not a power of two. Those 458,488 simulated returns
constitute our new sample and we apply to it exactly the same algorithms
that we applied to the sample of empirical 15–seconds returns.

In particular, we compute their spectrum, which looks as follows:

Fig. 10. Simulation: spectra of returns

The two peaks in the area of 30–40 seconds that were visible on Figure
9 are absent from Figure 10 because we did not take them on board of the
stylised representation of the spectrum. Apart from that, the simulated spec-
trum reproduces the empirical spectrum.
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Similarly, the actual distribution of the 15–second returns, see Figure 11,
is well reproduced by the distribution of the simulated returns displayed by
Figure 12.

Fig. 11. Euro: Histogram of 15–second returns (Source of raw data: Reuters)

Fig. 12. Simulation: Histogram of 15–second returns

The only apparent difference concerns the slight over–representation of the
returns with integer number of pips and under–representation of the returns
with half integer number of pips. This empirical pattern, explained above in
3.2.1, is visible on Figure 11 but not on Figure 12. (The elimination of this
empirical pattern was wishable. It was obtained when we fitted the probability
distribution of the returns with a smooth function, namely a rational fraction,
which was too rigid to account for it.)
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The ACF, the Variations and the Dimension of the Simulated
Process

The simulated process has the correct distribution of 15–second returns and
the correct spectrum. It replicates the behaviour of the actual process with
respect to those two statistical indicators. The remaining question is whether
it also replicates the behaviour of the actual process with respect to the others
statistical indicators that have been considered so far. We shall restrict our
attention to the case of the ACF and to the cases of the quadratic variation
(QV), absolute variation (AV) and squared root variation (SV).

We consider the ACF of the simulated process for the same discretisation
periods than for the actual process. We obtain the following results:
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Table 7. Autocorrelation function of the returns of the simulated process computed
for several discretisation steps

15 sec. 30 sec. 1 min. 2 min. 4 min. 8 min. 1/4 h

0 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
1 -17.5% -8.7% -2.9% 0.1% -0.8% -3.3% -3.5%
2 2.1% 0.5% 1.4% -0.4% -2.8% -2.0% -2.2%
3 -1.1% 1.4% 0.1% -0.9% -1.4% -1.5% 3.2%
4 0.9% 0.6% -0.2% -1.6% -0.3% -0.2% -1.4%
5 0.2% 0.4% -0.3% -1.2% -0.3% 0.6% -0.6%
6 0.7% 0.2% -0.8% -0.6% -0.3% 1.3% 0.0%
7 0.4% -0.1% -0.3% -0.6% -1.5% -0.2% 1.4%
8 0.1% 0.0% -1.1% 0.2% -0.2% -0.8% 0.6%
9 0.3% -0.6% -0.4% -0.4% 0.5% -0.6% -1.3%
10 0.2% 0.1% -0.5% -0.3% 0.3% 1.0% -1.1%

Those results are to be compared with the ones contained in Table 5.
The structures revealed by Table 5 and by Table are quite similar. There is
only one noticeable difference: The 1–minute ACF of the actual process was
practically identical to the one of a white noise, namely a Dirac, i.e., 1 for lag
zero, 0 for other lags. This is not so precisely done by the 1–minute ACF of
the simulated process. This might be because the simulated sample is 4 times
shorter than the actual one.

Apart from that, the comparison of the two tables displays the same quan-
titative order of magnitudes of the individual correlations and the same overall
picture.

Let us consider now the ACF of the squared returns. For the simulated
process, it is given by the following table:

Table 8. Autocorrelation function of the squared returns of the simulated process
computed for several discretisation steps

15 sec. 30 sec. 1 min. 2 min. 4 min. 8 min. 1/4 h

0 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
1 1.6% 0.6% 0.9% 0.9% 0.5% 1.1% 0.3%
2 -0.1% 0.6% -0.2% 0.3% 0.1% 0.3% 0.5%
3 0.5% 0.0% 0.3% -0.3% 0.8% -0.7% 0.2%
4 -0.1% 0.1% 0.0% -0.3% 0.0% -0.8% 0.1%
5 0.1% -0.1% 0.0% 0.3% 0.9% -0.5% -1.6%
6 -0.1% 0.0% -0.1% 0.2% -1.0% 0.2% 1.9%
7 0.1% 0.1% -0.1% 0.2% 0.0% -1.2% -0.4%
8 -0.1% 0.0% 0.0% 0.8% -0.3% 0.3% 0.4%
9 0.0% 0.1% -0.1% -0.2% -0.4% -1.5% 0.0%
10 0.1% -0.3% 0.2% -0.1% -0.4% -0.4% 0.0%
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Here, the discrepancy between Tables 6 and 8 is blatant. The simulated
process does not exhibit the slightest trace of long–memory of the squared
returns or of persistence of the volatility. This is not surprising since we did
not explicitly build this pattern in the simulated process. It simply proves that
the long–memory of the squared returns or the persistence of the volatility
was not a hidden consequence of the spectral structure of the process and/or
of the form of the distribution of the returns.

As the undulations of the variations were linked to this long–memory pat-
tern, one should logically expect that they are absent for our simulated pro-
cess.

Let us therefore finally consider the three types of variations (QV, AV,
SV) that we computed for the eleven periods of discretisations for the actual
process. As we expected, the behaviours of the actual and simulated processes
do not perfectly coincide, as the undulations actually disappeared. The two
behaviours show however resemblances in other regards.

Fig. 13. Simulation: spot and realized quadratic variations

We compare figures 5–7 with figures 13–15 and make the following obser-
vations:

• The figures show that the variations are straight lines with different slopes.
They are actually straighter than it was the case for the actual log euro–
dollar. So we see at once that the “persistence of the volatility”, which
is a characteristic feature of the actual process, is not reproduced by the
simulated process.

• The ranking of the slopes of the quadratic variations is correctly repro-
duced. The highest slope corresponds to the quadratic variation of lowest
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Fig. 14. Simulation: spot and realized absolute variations

Fig. 15. Simulation: spot and realized squared root variations

discretisation period and the higher a slope, the lower the discretisation
period. This common ranking was a feature of the actual log euro–dollar
that we interpreted as a symptom of negative short–term correlations; we
find it again in the simulated process.

• The reverse ranking (15–second, lower slope, 4–hour, higher slope) that
we found for the squared root variation in the case of the actual process is
equally present in the case of the simulated process. This reverse ranking is
also conserved for the absolute variation, however here there is a difference:
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The slopes are clearly more differentiated in the case of the simulated
process than in the case of the actual process.

Finally, let us mention that the simulated process has a dimension which
is as well fitted and as closed to 1.5 that was the case of the actual process
and that would be the case of a Wiener process of comparable size.

The overall assessment seems to be that the simulated process reproduces
well enough some statistical regularities and misses some other ones. The
regularities that are missed are the ones that are linked to that empirical
pattern showing through the undulations of the variations, through the long–
memory of squared returns and through the persistence of the volatility.

Can we better that? This empirical pattern could be built in a simulated
process by introducing a distortion of time. Instead of a process Z(t), without
long–memory of the squared returns, consider the process Y (t) = Z(θ(t)),
where θ(t) is increasing, but non–linear, function of t, θ(t) can be random,
provided that it is independent of Z. The process Y will display some memory
of squared returns, and the variations of Y will exhibit the required undula-
tions. However, the shape of the distributions of the returns and/or the spec-
tral structure of Z might be also affected by this transformation. The design
of a process reproducing together the spectral structure, the distribution of
returns and the long–memory of returns is probably not as simple as what we
have done here. If it could be obtained with an acceptably simple mathemat-
ical construction, this would be a satisfactory description of the behaviour of
the euro–dollar.

4 Conclusion

We have tried to categorise some empirical regularities of the euro–dollar log–
price process and to disentangle some simple mathematical structure that
would cause or explain each of those regularities. One of the empirical regu-
larity on which we give a special attention was the spectral structure of euro–
dollar log–price process. We were interested in the identification of a simple
and recurrent shape for the spectrum of this process. To correctly measure
this particular empirical regularity, the spectral structure, we have been led to
examine some points regarding the quoted prices that constitute the data set.
In particular, we identified a problem, namely the quick and random succes-
sion of quotes of heterogeneous qualities. This quick and random succession
generates a high frequency noise that can severely perturb the measurement
of the spectrum of the process.

To cope with this technical problem, we introduced a specific filtering
algorithm, called “dynamical filtering”, and we compare the output of this
algorithm to traded (instead of quoted) data that are certainly free of this
high–frequency noise. We actually identified a particular shape, form, or pat-
tern, for the spectrum of the log–price of the euro–dollar. We also considered
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two other empirical regularities of this process, one being the shape of the
short–term returns, the other being the long–memory of the squared returns.
We did not find a tractable way to simulate a process that would reproduce the
three empirical regularities, namely the spectrum, the distribution of short–
term return and the long–memory. We shown that it was easy to simulate a
process that would reproduce two out of those three empirical regularities,
namely the spectrum and the distribution of short–term returns.
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1 Introduction

The well known invariance principle of probability theory introduced by
Donsker and Prokhorov received and continue to receive many compliments
from both theoreticians and practitioners in very broad area of researches.
Econometricians use it to tackle the “unit root” problems (see e.g. Stock
(1994) and cited literature therein) to analyze structural changes (see e.g.
Csörgő and Horváth (1997) and cited literature therein) or “bubbles” phe-
nomenon (see e.g. Kirman and Teyssière (2002) and cited literature therein)
etc. It is impossible to name all problems even in econometrics only, the solu-
tions of which were obtained with help of invariance principle. In this review
we present some of recent results (mainly obtained by the authors of this
review) on invariance principles with respect to Hölder topologies. We em-
phasize a new construction of polygonal line process and applications to the
structural change problems.

In more modern mathematical form, invariance principle can be formulated
as follows. A sequence of stochastic processes {ξn(t), t ∈ T }n∈N induces a
sequence of measures {µn, n ∈ N} on some suitable topological function space,
say, E. One proves then that the measures converge weakly to a measure µ
corresponding to a limiting process, say {ξ(t), t ∈ T }. Weak convergence of
measures, in the case where E is a separable metric space, gives

f(ξn)
D−→ f(ξ), (1)

for any f a real-valued function continuous µ-almost everywhere on E, where
D−→ denotes convergence in distribution. Usually ξn, n ∈ N, are polygo-

nal line processes constructed from partial sums of random variables. More
modern theory deals also with polygonal line processes based on data with
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values in a completely arbitrary, perhaps infinite-dimensional sample space.
This general approach is important for statisticians either working with data
such as “functions” or “pictures” (seismographs, electrocardiograms, high-
dimensional biomedical data, high-frequency finance etc.) or dealing with
“infinite-dimensional parameters” such as distribution function, density, char-
acteristic function etc. For statistical inference it is usually necessary to rely
on the asymptotic convergence result (1) for a certain class F of functions f.
The class F aims to highlight appropriate geometry of paths of processes un-
der consideration which on its turn, in the case of partial sums polygonal line
process, reflects certain properties of the data under consideration. Examples
of paths spaces customary include L2, Skorohod’s D[0, 1] and C[0, 1] the space
of continuous functions. Each of these spaces corresponds to a particular ge-
ometry of paths of processes. So, L2 spaces describe mean square properties
(variance, mean square errors, energy etc.) the space D[0, 1] is responsible
for extreme values and C[0, 1] deals with continuity (increments, modulus of
continuity etc.) of processes.

This review bestow attention to Hölder spaces which particularly well
highlight variation properties (p-variation, α-slopes) of processes. Variation
of polygonal line process reflects various epidemic type changes in a struc-
ture of data (epidemic or bubble type changes in a mean, in distribution or
other perhaps infinite-dimensional parameters). That’s precisely why we ad-
vocate to use Hölder continuous functionals of polygonal line processes as
test statistics of structural stability in data under various epidemic alterna-
tives. Another motivations to bestow Hölder spaces is many-sided properties
of Wiener process. Paths of Wiener process are not only square integrable,
bounded or continuous. They have also certain Hölder continuity. This fact
to our opinion is not yet exploited in full extent.

The paper is organized as follows. In Section 2 we introduce Hölder spaces
of continuous functions. Sections 3 and 4 are devoted to invariance principles
with respect to Hölder spaces. Firstly we consider classical polygonal line pro-
cess constructed from partial sums of random variables (elements with values
in a Banach space). Necessary and sufficient conditions for their convergence
in a Hölder space are discussed. Next we advocate another construction of
polygonal line process. Differently from the classical case, this new construc-
tion puts abscissas of vertices at random points. It is shown that so constructed
polygonal line process in many aspects behaves better than the classical one.

Sections 5 and 6 present in a rather broad perspective some applications
of Hölderian invariance principles to the problem of testing stability in the
sample under epidemic alternatives.

2 Some Facts About Hölder Spaces

The introduction of Hölder spaces answers the purpose to quantify the global
smoothness of functions by controlling their modulus of uniform continuity.
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Let us precise this by an informal description of the most familiar case. For
fixed 0 < α < 1, Hα is the set of functions x : [0, 1] → R such that |x(t) −
x(s)| ≤ K|t − s|α for some constant K depending only on x and α. The
best constant K in this uniform estimate defines a semi-norm on the vector
space Hα. By adding |x(0)| to this semi-norm we obtain a norm ‖x‖α which
makes Hα a non separable Banach space. Clearly if 0 < α < β < 1, Hβ is
topologically embedded in Hα and all these Hölder spaces are topologically
embedded in the classical Banach space C of continuous functions [0, 1] → R.

To remedy the non separability drawback of Hα, one introduces its sub-
space Hα,o of functions x such that |x(t)− x(s)| = o(|t− s|α) uniformly. This
subspace is closed (hence also a Banach space for the same norm ‖x‖α) and
separable.

One interesting feature of the spaces Hα,o is the existence of a basis of
triangular functions, see Ciesielski (1960). It is convenient to write this basis
as a triangular array of functions, indexed by the dyadic numbers. Let us
denote by Dj the set of dyadic numbers in [0, 1] of level j, i.e.

D0 = {0, 1}, Dj =
{
(2l− 1)2−j; 1 ≤ l ≤ 2j−1

}
, j ≥ 1.

Write for r ∈ Dj , j ≥ 0,

r− := r − 2−j , r+ := r + 2−j.

For r ∈ Dj , j ≥ 1, the triangular Faber-Schauder functions Λr are continuous,
piecewise affine with support [r−, r+] and taking the value 1 at r:

Λr(t) =

⎧⎨⎩ 2j(t− r−) if t ∈ (r−, r];
2j(r+ − t) if t ∈ (r, r+];
0 else.

When j = 0, we just take the restriction to [0, 1] in the above formula, so

Λ0(t) = 1 − t, Λ1(t) = t, t ∈ [0, 1].

The sequence {Λr; r ∈ Dj , j ≥ 0} is a Schauder basis of C. Each x ∈ C has a
unique expansion

x =

∞∑
j=0

∑
r∈Dj

λr(x)Λr, (2)

with uniform convergence on [0, 1]. The Schauder scalar coefficients λr(x) are
given by

λr(x) = x(r) − x(r+) + x(r−)

2
, r ∈ Dj , j ≥ 1, (3)

and in the special case j = 0 by

λ0(x) = x(0), λ1(x) = x(1). (4)

The partial sum
∑n

j=0 in the series (2) gives the linear interpolation of x by
a polygonal line between the dyadic points of level at most n.
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Fig. 1. The Faber-Schauder triangular function Λr

Ciesielski (1960) proved that {Λr; r ∈ Dj , j ≥ 0} is also a Schauder basis
of each space Hα,o (hence the convergence (2) holds in the Hα topology when
x ∈ Hα,o) and that the norm ‖x‖α is equivalent to the following sequence
norm :

‖x‖seq
α := sup

j≥0
2jα max

r∈Dj

|λr(x)|.

This equivalence of norms provides a very convenient discretization procedure
to deal with Hölder spaces and is extended in Račkauskas and Suquet (2001b)
to the more general setting of Hölder spaces of Banach space valued functions
x, with a modulus of continuity controlled by some weight function ρ.

Let (B, ‖ ‖) be a separable Banach space. We write CB for the Banach
space of continuous functions x : [0, 1] → B endowed with the supremum
norm ‖x‖∞ := sup{‖x(t)‖ ; t ∈ [0, 1]}. Let ρ be a real valued non decreasing
function on [0, 1], null and right continuous at 0. Put

ωρ(x, δ) := sup
s,t∈[0,1],
0<t−s<δ

‖x(t) − x(s)‖
ρ(t− s)

.

Denote by Hρ
B

the set of continuous functions x : [0, 1] → B such that
ωρ(x, 1) <∞. The set Hρ

B
is a Banach space when endowed with the norm

‖x‖ρ := ‖x(0)‖ + ωρ(x, 1).

Define
Hρ,o

B
= {x ∈ CB : lim

δ→0
ωρ(x, δ) = 0}.

Then Hρ,o
B

is a closed separable subspace of Hρ
B
. We shall abbreviate CR, Hρ

R

and Hρ,o
R

in C, Hρ and Hρ,o correspondingly. Our main examples of Hölder
spaces use as weight function ρ = ρα,β, 0 < α < 1, β ∈ R defined by:
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ρα,β(h) := hα lnβ(c/h), 0 < h ≤ 1,

for a suitable constant c. For ρ = ρα,β , we shall write Hα,β
B

and Hα,β,o
B

for

Hρ
B

and Hρ,o
B

respectively and we abbreviate Hα,0,o
B

in Hα,o
B

. As above, the
subscript B will be omitted when B = R.

In what follows, we assume that the modulus of smoothness ρ satisfies the
following technical conditions where c1, c2 and c3 are positive constants:

ρ(0) = 0, ρ(δ) > 0, 0 < δ ≤ 1; (5)

ρ is non decreasing on [0, 1]; (6)

ρ(2δ) ≤ c1ρ(δ), 0 ≤ δ ≤ 1/2; (7)∫ δ

0

ρ(u)

u
du ≤ c2ρ(δ), 0 < δ ≤ 1; (8)

δ

∫ 1

δ

ρ(u)

u2
du ≤ c3ρ(δ), 0 < δ ≤ 1. (9)

For instance, elementary computations show that the functions ρα,β satisfy
Conditions (5) to (9), for a suitable choice of the constant c, namely c ≥
exp(β/α) if β > 0 and c > exp(−β/(1− α)) if β < 0. For any ρ satisfying (5)
to (9), we have the equivalence of norms :

‖x‖ρ ∼ ‖x‖seq
ρ := sup

j≥0

1

ρ(2−j)
max
r∈Dj

‖λr(x)‖ ,

where the B-valued coefficients λr(x) are still defined by (3) and (4).
The space E = Hρ,o

B
may be used as the topological framework for func-

tional central limit theorems. Among various continuous functionals f to
which we can then apply the convergence (1), let us mention the norms
f1(x) = ‖x‖ρ and f2(x) = ‖x‖seq

ρ , which are closely connected to the test
statistics UI(n, ρ) and DI(n, ρ) proposed below for the detection of epidemic
changes. Other examples of Hölder continuous functional and operators like
p-variation, fractional derivatives are given in Hamadouche (2000).

To deal with convergences in distribution of stochastic processes considered
as random elements in Hρ,o

B
, a key tool is the following tightness criterion

established in Račkauskas and Suquet (2003b).

Theorem 1. Suppose the Banach space B is separable. Then the sequence
(ξn)n≥1 of random elements in Hρ,o

B
is tight if and only if it satisfies the two

following conditions.

(i) For each dyadic t ∈ [0, 1], the sequence of B-valued random variables
(ξn(t))n≥1 is tight on B.

(ii)For each positive ε,

lim
J→∞

sup
n≥1

P

{
sup
j>J

1

ρ(2−j)
max
r∈Dj

‖λr(ξn)‖ > ε

}
= 0.
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3 Hölderian Invariance Principles

LetX1, . . . , Xn, . . . be i.i.d. random elements in the separable Banach space B.
Set S0 = 0,

Sk = X1 + · · · +Xk, for k = 1, 2, . . .

and consider the partial sums processes

ξn(t) = S[nt] + (nt− [nt])X[nt]+1, t ∈ [0, 1].

In the familiar case where B is the real line R, classical Donsker-Prohorov
invariance principle states, that if EX1 = 0 and EX2

1 = σ2 <∞, then

n−1/2σ−1ξn
D−→W, (10)

in C[0, 1], where (W (t), t ∈ R) is a standard Wiener process. The finiteness
of the second moment of X1 is clearly necessary here, since (10) yields that
n−1/2ξn(1) satisfies the central limit theorem.

Lamperti (1962) was the first who considered the convergence (10) with
respect to some Hölderian topology. He proved that if 0 < α < 1/2 and
E |X1|p < ∞, where p > p(α) := 1/(1/2 − α), then (10) takes place in Hα,o.
This result was derived again by Kerkyacharian and Roynette (1991) by an-
other method based on Ciesielski (1960) analysis of Hölder spaces by triangu-
lar functions. Further generalizations were given by Erickson (1981) (partial
sums processes indexed by [0, 1]d), Hamadouche (2000) (weakly dependent se-
quence (Xn)), Račkauskas and Suquet (2002) (Banach space valued Xi’s and
Hölder spaces built on the modulus ρ(h) = hα lnβ(1/h)). The following result
is proved in Račkauskas and Suquet (2002a).

Theorem 2. Let 0 < α < 1/2 and p(α) = 1/(1/2− α). Then

n−1/2σ−1ξn
D−−−−→

n→∞
W in the space Hα,o

if and only if EX1 = 0 and

lim
t→∞

tp(α)P{|X1| ≥ t} = 0. (11)

Condition (11) yields the existence of moments E |X1|p for any 0 ≤ p <
p(α). If α approaches 1/2 then p(α) → ∞. Hence, stronger invariance principle
requires higher moments.

To describe more general results, some preparation is needed. Let B′ be
the topological dual of B. For a random element X in B such that for every
f ∈ B′, E f(X) = 0 and E f2(X) <∞, the covariance operator Q = Q(X) is
the linear bounded operator from B′ to B defined by Qf = E f(X)X, f ∈ B′.
A random element X ∈ B (or covariance operator Q) is said to be pregaussian
if there exists a mean zero Gaussian random element Y ∈ B with the same
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covariance operator as X , i.e. for all f, g ∈ B′, E f(X)g(X) = E f(Y )g(Y ).
Since the distribution of a centered Gaussian random element is defined by its
covariance structure, we denote by YQ a zero mean Gaussian random element
with covariance operator Q.

For any pregaussian covarianceQ there exists a B-valued Brownian motion
WQ with parameter Q, a centered Gaussian process indexed by [0, 1] with
independent increments such that WQ(t) −WQ(s) has the same distribution
as |t− s|1/2YQ.

We say that X1 satisfies the central limit theorem in B, which we denote
by X1 ∈ CLT(B), if n−1/2Sn converges in distribution in B. This implies
that EX1 = 0 and X1 is pregaussian. It is well known (e.g. Ledoux and
Talagrand, 1991) that the central limit theorem forX1 cannot be characterized
in general in terms of integrability of X1 and involves the geometry of the
Banach space B.

We say that X1 satisfies the functional central limit theorem in B, which
we denote by X1 ∈ FCLT(B), if n−1/2ξn converges in distribution in CB.
Kuelbs (1973) extended the classical Donsker-Prohorov invariance principle
to the case of B-valued partial sums by proving that n−1/2ξn converges in
distribution in CB to some Brownian motion W if and only if X1 ∈ CLT(B)
(in short X1 ∈ CLT(B) if and only if X1 ∈ FCLT(B)). Of course in Kuelbs
theorem, the parameter Q of W is the covariance operator of X1.

The convergence in distribution of n−1/2ξn in Hρ,o
B
, which we denote by

X1 ∈ FCLT(B, ρ), is clearly stronger than X1 ∈ FCLT(B).
An obvious preliminary requirement for the FCLT in Hρ,o

B
is that the B-

valued Brownian motion has a version in Hρ,o
B

. From this point of view, the

critical ρ is ρc(h) =
√
h ln(1/h) due to Lévy’s Theorem on the modulus of

uniform continuity of the Brownian motion. So our interest will be restricted
to functions ρ generating a weaker Hölder topology than ρc. More precisely,
we consider the following class R of functions ρ.

Definition 1. We denote by R the class of functions ρ satisfying

i) for some 0 < α ≤ 1/2, and some function L which is normalized slowly
varying at infinity,

ρ(h) = hαL(1/h), 0 < h ≤ 1, (12)

ii) θ(t) = t1/2ρ(1/t) is C1 on [1,∞),
iii) there is a β > 1/2 and some a > 0, such that θ(t) ln−β(t) is non decreasing

on [a,∞).

The following result is proved in Račkauskas and Suquet (2002a).

Theorem 3. Let ρ ∈ R. Then X1 ∈ FCLT(B, ρ) if and only if X1 ∈ CLT(B)
and for every A > 0,

lim
t→∞

tP
{
‖X1‖ ≥ At1/2ρ(1/t)

}
= 0. (13)
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If ρ ∈ R with α < 1/2 in (12) then it suffices to check condition (13) for A = 1
only. Of course the special case B = R and ρ(h) = hα gives back Theorem 2.

In the case where ρ(h) = h1/2 lnβ(c/h) with β > 1/2, Condition (13) is
equivalent to

E exp
(
d ‖X1‖1/β

)
<∞, for each d > 0.

Let us note, that for the spaces B = Lp(0, 1), 2 ≤ p < ∞, as well as for each
finite dimensional space, Condition (13) yields X1 ∈ CLT(B). On the other
hand it is well known that for some Banach spaces existence of moments of
any order does not guarantee central limit theorem. It is also worth noticing
that like in Kuelbs FCLT, all the influence of the geometry of the Banach
space B is absorbed by the condition X1 ∈ CLT(B).

It would be useful to extend the Hölderian FCLT to the case of dependent
Xi’s. This was done by Hamadouche (2000) in the special case where B = R

and under weak dependence (association and α-mixing). The result presented
in Račkauskas and Suquet (2002a) provides a general approach for B-valued
Xi’s and any dependence structure, subject to obtaining a good estimate of
the partial sums. Laukaitis and Račkauskas (2002) obtained Hölderian FCLT
for a polygonal line process based on residual partial sums of a stationary
Hilbert space valued autoregression (ARH(1)) and applied it to the problem
of testing stability of ARH(1) model under different types of alternatives.

4 Adaptive Self-Normalized Partial Sums Process

Various partial sums processes can be built from the sums Sn = X1 + · · · +
Xn of independent identically distributed mean zero random variables. In
Račkauskas and Suquet (2001a) the so called adaptive self-normalized partial
sums processes are defined. Self-normalized means that the classical normal-
ization by

√
n is replaced by

Vn = (X2
1 + · · · +X2

n)1/2.

Adaptive means that the vertices of the corresponding random polygonal line
have their abscissas at the random points V 2

k /V
2
n (0 ≤ k ≤ n) instead of the

deterministic equispaced points k/n. By this construction the slope of each
line adapts itself to the value of the corresponding random variable.

By ζn (respect. ξn) we denote the random polygonal partial sums process
defined on [0, 1] by linear interpolation between the vertices (V 2

k /V
2
n , Sk),

k = 0, 1, . . . , n (respect. (k/n, Sk), k = 0, 1, . . . , n), where

Sk = X1 + · · · +Xk, V 2
k = X2

1 + · · · +X2
k .

For the special case k = 0, we put S0 = 0, V0 = 0. By convention the random
functions V −1

n ξn and V −1
n ζn are defined to be the null function on the event
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{Vn = 0}. Figure 2 displays the polygonal lines n−1/2ξn and V −1
n ζn built on

a simulated sample of size n = 1000 of the symmetric distribution given by
P(|X1| > t) = 0.5 t−2.31[1,∞)(t).

From this picture one can observe how adaptive partition of the time
interval improves slopes of polygonal line process.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−1.675

−1.419

−1.163

−0.907

−0.651

−0.395

−0.140

0.116

0.372

0.628

0.884

classical partial sums process
adaptative self−normalized

Fig. 2. Partial sums processes n−1/2ξn and V −1
n ζn

Recall that “X1 belongs to the domain of attraction of the normal distri-
bution” ( denoted by X1 ∈ DAN) means that there exists a sequence bn ↑ ∞
such that

b−1
n Sn

D−→ N(0, 1).

The following result is proved in Račkauskas and Suquet (2001a).

Theorem 4. Assume that ρ satisfies Conditions (5) to (9) and

lim
j→∞

2jρ2(2−j)

j
= ∞. (14)

If X1 is symmetric then

V −1
n ζn

D−→W, in Hρ,o

if and only if X1 ∈ DAN .
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When tested with ρ(h) = h1/2 lnβ(c/h), (14) reduces to j2β−1 → ∞. Due
to the inclusions of Hölder spaces, this shows that Theorem 4 gives the best
result possible in the scale of the separable Hölder spaces Hα,β,o. Moreover,
no high order moments are needed except the condition X1 ∈ DAN which
due to well known O’Briens result is equivalent to

V −1
n max

1≤k≤n
|Xk| P−→ 0.

It seems worth noticing here, that without adaptive construction of the polyg-
onal process, the existence of moments of order bigger than 2 is necessary for
Hölder weak convergence. Indeed, if the process V −1

n ξn converges weakly to W
in Hα,o for some α > 0, then its maximal slope n−1/2V −1

n max1≤k≤n |Xk| con-
verges to zero in probability. This on its turn yields V −1

n max1≤k≤n |Xk| → 0
almost surely, and according to Maller and Resnick (1984), EX2

1 <∞. Hence
n−1V 2

n converges almost surely to EX2
1 by the strong law of large numbers.

Therefore n−1/2ξn converges weakly to W in Hα,o and by Theorem 2 the
moment restriction (11) is necessary.

Naturally it is very desirable to remove the symmetry assumption in The-
orem 4. Although the problem remains open, we can propose the following
partial result in this direction (for more on this problem see Račkauskas and
Suquet (2001a)).

Theorem 5. If for some ε > 0, E |X1|2+ε <∞, then for any β > 1/2, V −1
n ζn

converges weakly to W in the space H1/2,β,o.

Some extensions of this result for the non i.i.d. case are given in Račkauskas
and Suquet (2003a).

5 Hölder Norm Test Statistics

An important question in the large area of change point problems involves
testing the null hypothesis of no parameter change in a sample versus the
alternative that parameter changes do take place at an unknown time. For
a survey we refer to the books by Brodsky and Darkhovsky (1993, 2000)
or Csörgő and Horváth (1997). A widely accepted methodology to construct
tests is to start with a functional limit theorems for processes build from
partial sums S(k), k = 0, . . . , n. Functionals of paths of these processes can be
used as tests statistics for null hypothesis under certain alternatives. In this
way various test statistics are proposed in the literature. To name a few, the
KPSS statistic by Kwiatkowski et al. (1992) and the V/S statistic by Giraitis
et al. (2003) are based on the L2 space continuous functionals of partial sums
process whereas Hurst (1951) R/S exploits D[0, 1] continuous functionals.

It is clear that a larger choice of admissible functionals on paths of polyg-
onal line process corresponds to a bigger class of possible alternatives. There-
fore it is important to have functional limit theorems established in a suffi-
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ciently rich functional framework. Working in the stronger topological frame-
work of a space of Hölder functions allows to consider functionals based
on increments (Ŝ(k) − Ŝ(j), 0 ≤ k < j ≤ n) as well as on their ϑ-slopes

(|Ŝ(k) − Ŝ(j)|/ϑ(k − j), 0 ≤ k < j ≤ n), where ϑ is certain function.
Using this methodology in Račkauskas and Suquet (2004) we propose some

new statistics for testing change in the mean under the so called epidemic al-
ternative. More precisely, given a sample X1, X2, . . . , Xn of random variables,
we want to test the standard null hypothesis of constant mean

(H0): X1, . . . , Xn all have the same mean denoted by µ0,

against the epidemic alternative

(HA): there are integers 1 < k∗ < m∗ < n and a constant µ1 
= µ0

such that EXi = µ0 + (µ1 − µ0)1{k∗<i≤m∗}, i = 1, 2, . . . , n.

Let us note, that other type of epidemics can be considered as well. If either
k∗ = 1 orm∗ = n, then we have one abrupt change in the mean. This is a quite
well studied case in the literature. If eiher k∗/n ≥ c0 > 0 or m∗/n ≤ c1 < 1
then the problem can be considered with existing tests based on weighted
partial sums processes. The situation when one naturally comes to Hölder
topology concerns the cases, where either l∗/n → 0 or l∗/n → 1. Here l∗ :=
m∗ − k∗ denotes the length of the epidemic.

To motivate the definition of some test statistics, let us assume just for
a moment that the changes times k∗ and m∗ are known. Suppose moreover
under (H0) that the (Xi, 1 ≤ i ≤ n) are i.i.d. with finite variance σ2. Under
(HA), suppose that the (Xi, i ∈ In) and the (Xi, i ∈ Ic

n) are separately i.i.d.
with the same finite variance σ2, where

In :=
{
i ∈ {1, . . . , n}; k∗ < i ≤ m∗

}
, Ic

n := {1, . . . , n} \ In.

Then we simply have a two sample problem with known variances. It is then
natural to accept (H0) for small values of the statistics |Q| and to reject it for
large ones, where

Q :=
S(In) − l∗S(n)/n√

l∗
− S(Ic

n) − (n− l∗)S(n)/n√
n− l∗

.

After some algebra, Q may be recast as

Q =

√
n√

l∗(n− l∗)

(
S(In) − l∗

n
S(n)

)[√
1 − l∗/n+

√
l∗/n

]
As the last factor into square brackets ranges between 1 and

√
2, we may drop

it and introducing the notation

tk = tn,k :=
k

n
, 0 ≤ k ≤ n,
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replace |Q| by the statistics

R = n−1/2

∣∣S(m∗) − S(k∗) − S(n)(tm∗ − tk∗)
∣∣[

(tm∗ − tk∗)
(
1 − (tm∗ − tk∗)

)]1/2
.

Now in the more realistic situation where k∗ and m∗ are unknown it is
reasonable to replace R by taking the maximum over all possible indexes for
k∗ and m∗. This leads to consider

UI(n, 1/2) := max
1≤i<j≤n

∣∣S(j) − S(i) − S(n)(tj − ti)
∣∣[

(tj − ti)
(
1 − (tj − ti)

)]1/2
.

It is worth to note that the same statistics arises from likelihood arguments in
the special case where the observations Xi are Gaussian, see Yao (1993). The
asymptotic distribution of UI(n, 1/2) is unknown, due to difficulties caused
by the denominator (for historical remarks see Csörgő and Horváth p.183).

In our setting, the Xi’s are not supposed to be Gaussian. Moreover it
seems fair to pay something in terms of normalization when passing from
R to n−1/2UI(n, 1/2). Intuitively the cost should depend on the moment as-
sumptions made about theXi’s. To discuss this, consider the polygonal partial
sums process ξn. Then UI(n, 1/2) appears as the discretization through the
grid (tk, 0 ≤ k ≤ n) of the functional T1/2(ξn) where

T1/2(x) := sup
0<s<t<1

∣∣x(t) − x(s) −
(
x(1) − x(0)

)
(t− s)

∣∣[
(t− s)

(
1 − (t− s)

)]1/2
. (15)

This functional is continuous in the Hölder space H1/2,o. Obviously finite
dimensional distributions of n−1/2σ−1ξn converge to those of a standard
Brownian motion W . However Lvy’s theorem on the modulus of uniform
continuity of W implies that H1/2,o has too strong a topology to support
a version of W . So n−1/2ξn cannot converge in distribution to σW in the
space H1/2,o. This forbid us to obtain limiting distribution for T1/2(n

−1/2ξn)

by invariance principle in H1/2,o via continuous mapping. As discussed in
the previous section, Hölderian invariance principles do exist for, roughly
speaking, all the scale of Hölder spaces Hρ,o, provided that the weight
function ρ satisfies limh↓0 ρ(h)(h ln |h|)−1/2 = ∞. This leads us to replace
T1/2(n

−1/2ξn) by Tα(n−1/2ξn) obtained substituting the denominator in (15)

by (t− s)α
(
1 − (t − s)

)α
. Going back to the discretization we finally suggest

the class UI (uniform increments) of statistics which includes particularly

UI(n, α) := max
1≤i<j≤n

∣∣S(j) − S(i) − S(n)(j/n− i/n)
∣∣[

(j/n− i/n)
(
1 − (j − i)/n

)]α .

and similar ones UI(n, ρ) built with a general weight ρ(h) instead of hα. To-
gether with UI we consider the class of DI (dyadic increments) statistics, which
includes particularly
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DI(n, α) = max
1≤j≤log n

2jα max
r∈Dj

∣∣∣S(nr) − 1

2

(
S(nr + n2−j) + S(nr − n2−j)

)∣∣∣,
where Dj is the set of dyadic numbers of the level j. We use here log to
denote the logarithm with basis 2, while ln denotes the natural logarithm
(log(2t) = t = ln(et)). DI(n, α) and UI(n, α) have similar asymptotic behav-
iors. Moreover, dyadic increments statistics are of particular interest since
their limiting distributions are completely specified (see Theorem 11 below).

To simplify notation put

�(h) := ρ
(
h(1 − h)

)
, 0 ≤ h ≤ 1.

For ρ ∈ R, define (recalling that tk = k/n, 0 ≤ k ≤ n),

UI(n, ρ) = max
1≤i<j≤n

∣∣S(j) − S(i) − S(n)(tj − ti)
∣∣

�(tj − ti)

and

DI(n, ρ) = max
1≤j≤log n

1

ρ(2−j)
max
r∈Dj

∣∣∣S(nr) − 1

2

(
S(nr+) + S(nr−)

)∣∣∣.
Let W = (W (t), t ∈ [0, 1]) be a standard Wiener process and B =

(B(t), t ∈ [0, 1]) the corresponding Brownian bridge B(t) = W (t) − tW (1),
t ∈ [0, 1]. Consider for ρ in R, the following random variables

UI(ρ) := sup
0<t−s<1

|B(t) −B(s)|
�(t− s)

(16)

and

DI(ρ) = sup
j≥1

1

ρ(2−j)
max
r∈Dj

∣∣∣W (r) − 1

2
W (r+) − 1

2
W (r−)

∣∣∣ = ‖B‖seq
ρ . (17)

These variables serve as limiting for uniform increment (UI) and dyadic in-
crement (DI) statistics respectively. No analytical form seems to be known
for the distribution function of UI(ρ), whereas the distribution of DI(ρ) is
completely specified below.

To obtain limiting distribution for statistics UI(n, ρ) and DI(n, ρ) we con-
sider a bit stronger null hypothesis, namely

(H ′
0): X1, . . . , Xn are i.i.d. random variables.

Theorem 6. Under (H ′
0), assume that ρ ∈ R and for every A > 0,

lim
t→∞

tP
{
|X1| > At1/2ρ(1/t)

}
= 0.

Then

σ−1n−1/2UI(n, ρ)
D−−−−→

n→∞
UI(ρ) and σ−1n−1/2DI(n, ρ)

D−−−−→
n→∞

DI(ρ),

where σ2 = VarX1 and UI(ρ), DI(ρ) are defined by (16) and (17).
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Remark 1. In the case where the variance σ2 is unknown the results remain
valid if σ2 is substituted by its standard estimator σ̂2.

Remark 2. Under (H0), the statistics n−1/2UI(n, ρ) keeps the same value when
each Xi is substituted by X ′

i := Xi − EXi. This property is only asymptoti-
cally true for n−1/2DI(n, ρ). For practical use of DI(n, ρ), it is preferable to re-
placeXi by X ′

i if µ0 is known or else byXi−X whereX = n−1(X1+· · ·+Xn).
This will avoid a bias term which may be of the order of |EX1| ln−β n in the
worst cases.

To see a consistency of tests to reject null hypothesis versus epidemic
alternative HA for large values of n−1/2UI(n, ρ), we naturally assume that
the numbers of observations k∗, m∗ − k∗, n − m∗ before, during and after
the epidemic go to infinity with n. Write l∗ := m∗ − k∗ for the length of the
epidemic.

Theorem 7. Let ρ ∈ R. Assume under (HA) that the Xi’s are independent
and σ2

0 := supk≥1 VarXk is finite. If

lim
n→∞

n1/2 hn

ρ(hn)
= ∞, where hn :=

l∗

n

(
1 − l∗

n

)
, (18)

then
n−1/2UI(n, ρ)

P−−−−→
n→∞

∞, and n−1/2DI(n, ρ)
P−−−−→

n→∞
∞.

When ρ(h) = hα, (18) allows us to detect short epidemics such that l∗ = o(n)
and l∗n−δ → ∞, where δ = (1−2α)(2−2α)−1. Symmetrically one can detect
long epidemics such that n− l∗ = o(n) and (n− l∗)n−δ → ∞.

When ρ(h) = h1/2 lnβ(c/h) with β > 1/2, (18) is satisfied provided that
hn = n−1 lnγ n, with γ > 2β. This leads to detection of short epidemics such
that l∗ = o(n) and l∗ ln−γ n→ ∞ as well as of long ones verifying n−l∗ = o(n)
and (n− l∗) ln−γ n→ ∞.

One of the disadvantages of DI and UI statistics is the moment restriction
for their convergence. The introduction of adaptive self-normalized analogues
for these statistics resolves this problem.

For any index set A ⊂ {1, . . . , n}, define

V 2(A) :=
∑
i∈A

X2
i .

Then V 2
k = V 2({1, . . . , k}), V 2

0 = 0. To simplify notation we write vk for the
random points of [0, 1]

vk :=
V 2

k

V 2
n

, k = 0, 1, . . . , n.

For ρ ∈ R define
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SUI(n, ρ) := max
1≤i<j≤n

∣∣S(j) − S(i) − S(n)(vj − vi)
∣∣

�(vj − vi)
.

Introduce for any t ∈ [0, 1],

τn(t) := max{i ≤ n; V 2
i ≤ tV 2

n }

and
Jn := log(V 2

n /X
2
n:n) where Xn:n := max

1≤k≤n
|Xk|.

Now define

SDI(n, ρ) := max
1≤j≤Jn

1

ρ(2−j)
max
r∈Dj

∣∣∣∣S(τn(r)
)
− 1

2

[
S
(
τn(r+)

)
+ S

(
τn(r−)

)]∣∣∣∣.
Theorem 8. Assume that under (H ′

0), µ0 = 0 and the random variables
X1, . . . , Xn are either symmetric and belong to the domain of attraction of
normal law or E |X1|2+ε <∞ for some ε > 0. Then for every ρ ∈ R,

V −1
n SUI(n, ρ)

D−−−−→
n→∞

UI(ρ) and V −1
n SDI(n, ρ)

D−−−−→
n→∞

DI(ρ).

We restricted the null hypothesis assuming that µ0 = 0. Practically the
reduction to this case by centering requires the knowledge of µ0. Although
this seems a quite reasonable assumption, it should be pointed out that this
knowledge was not required for the UI and DI statistics.

Theorem 9. Let ρ ∈ R. Under (HA), assume that the Xi’s satisfy

S(In) = l∗µ1 +Op

(√
l∗
)
, S(Ic

n) = Op

(√
n− l∗

)
, (19)

and
V 2(In)

l∗
P−−−−→

n→∞
b1,

V 2(Ic
n)

n− l∗
P−−−−→

n→∞
b0, (20)

for some finite constants b0 and b1. Assume that l∗/n converges to a limit
c ∈ [0, 1] and when c = 0 or 1, assume moreover that

lim
n→∞

n1/2 hn

ρ(hn)
= ∞, where hn :=

l∗

n

(
1 − l∗

n

)
. (21)

Then
V −1

n SUI(n, ρ)
P−−−−→

n→∞
∞.

Note that in Theorem 9, no assumption is made about the dependence struc-
ture of theXi’s. It is easy to verify the general hypotheses (19) and (20) in var-
ious situations of weak dependence like mixing or association. Under indepen-
dence of the Xi’s (without assuming identical distributions inside each block
In and Ic

n), it is enough to have supk≥1 E |Xk|2+ε <∞ and EV 2(In)/l∗ → b1,
EV 2(Ic

n)/(n − l∗) → b0. This follows easily from Lindebergh’s condition for
the central limit theorem (giving (19)) and of Theorem 5 p.261 in Petrov
(1975) giving the weak law of large numbers required for the Xi’s.
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Theorem 10. Let ρ ∈ R and set X ′
i := Xi−E (Xi). Under (HA) with µ0 = 0,

assume that the random variables X ′
i are independent identically distributed

and that E |X ′
1|2+ε is finite for some ε > 0. Then under (21),

V −1
n SDI(n, ρ)

P−−−−→
n→∞

∞.

The distribution function of DI(ρ) may be conveniently expressed in terms
of the error function:

erf x =
2√
π

∫ x

0

exp(−s2) ds.

Theorem 11. Let c = lim sup
j→∞

j1/2/θ(2j), where θ(t) = t1/2ρ(1/t).

i) If c = ∞ then DI(ρ) = ∞ almost surely.
ii) If 0 ≤ c < ∞, then DI(ρ) is almost surely finite and its distribution func-

tion is given by

P
(
DI(ρ) ≤ x

)
=

∞∏
j=1

{
erf

(
θ(2j)x

)}2j−1

, x > 0.

The distribution function of DI(ρ) is continuous with support [c
√

ln 2,∞).

Figure 1 below displays a table of the distribution function of DI(ρ) with
ρ(h) = h0.4.

Theorems 6 to 11 are proved in Račkauskas and Suquet (2003a).

6 Testing Changes of Infinite Dimensional Parameters

As mentioned in the introduction, polygonal line processes based on sample
taking values in an infinite dimensional sample space gives tools for statisti-
cians working with functional data or using nonparametric approach to the
testing problems. In this section we just provide one example showing how
general approach to the simple problem of testing stability in the mean allows
to obtain prototypical Cramér-von Mises test statistic for change in distribu-
tion problem. In Račkauskas and Suquet (2003c) more examples are available
including the prototypical Kolmogorov-Smirnov test.

Let X1, . . . , Xn be the real valued random variables with distribution func-
tions F1, . . . , Fn respectively. Consider the null hypothesis

(H0): F1 = · · · = Fn = F

and the following epidemic alternative:

(HA): there are integers 1 < k∗ < m∗ < n such that
F1 = F2 = · · · = Fk∗ = Fm∗+1 = · · · = Fn,
Fk∗+1 = · · · = Fm∗ and Fk∗ 
= Fk∗+1.



Hölderian Invariance Principle for Testing for Epidemic Changes 125

Table 1. Distribution function F (x) = P(DI(h0.4) ≤ x)

x F(x) x F(x) x F(x) x F(x)

1.06 0.0000075 1.40 0.5110985 1.74 0.9424161 2.08 0.9940030
1.08 0.0000573 1.42 0.5615323 1.76 0.9495661 2.10 0.9947547
1.10 0.0003004 1.44 0.6084394 1.78 0.9558321 2.12 0.995413
1.12 0.0011653 1.46 0.6515890 1.80 0.9613221 2.14 0.9959895
1.14 0.0035455 1.48 0.6909226 1.82 0.9661314 2.16 0.9964943
1.16 0.0088640 1.50 0.7265088 1.84 0.9703438 2.18 0.9969363
1.18 0.0188969 1.52 0.7585053 1.86 0.9740332 2.20 0.9973232
1.20 0.0353857 1.54 0.7871269 1.88 0.9772645 2.22 0.9976618
1.22 0.0596012 1.56 0.8126221 1.90 0.9800944 2.24 0.9979582
1.24 0.0920395 1.58 0.8352537 1.92 0.9825729 2.26 0.9982175
1.26 0.1323403 1.60 0.8552866 1.94 0.9847436 2.28 0.9984444
1.28 0.1794090 1.62 0.8729782 1.96 0.9866448 2.30 0.9986428
1.30 0.2316604 1.64 0.8885729 1.98 0.9883099 2.32 0.9988163
1.32 0.2872905 1.66 0.9022985 2.00 0.9897684 2.34 0.9989680
1.34 0.3445122 1.68 0.9143643 2.02 0.9910458 2.36 0.9991006
1.36 0.4017209 1.70 0.9249609 2.04 0.9921647 2.38 0.9992165
1.38 0.4575890 1.72 0.9342602 2.06 0.9931446 2.40 0.9993176

For simplicity let us consider only the case of continuous function F . Then we
can restrict to uniform empirical process.

Let U1, . . . , Un be independent uniformly on [0, 1] distributed random vari-
ables. Define u0 = 0,

uv(t) =
∑
j≤v

(
1{Uj≤t} − t

)
, 1 ≤ v ≤ n; t ∈ [0, 1].

For r ∈ D set

D2unr = unr −
1

2

(
unr+ + unr−

)
and

T 2(n, r) =

∫ 1

0

∣∣D2unr(t)
∣∣2 dt.

The Cramér-von Mises type dyadic increments statistic is defined by

T 2(n, ρ) = max
1≤j≤log n

1

ρ2(2−j)
max
r∈Dj

T 2(n, r).

Its limiting distribution is completely defined by the limiting distribution of
the classical Cramr-von Mises statistic, namely, by the distribution function

L2(x) = P

{∫ 1

0

B2(t) dt ≤ x

}
, x ≥ 0,

where B(t), t ∈ [0, 1] is a standard Brownian bridge. The distribution function
L2(x) is well known and several its representations are available (see Shorack
and Wellner, 1986).
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Theorem 12. If ρ ∈ R then

lim
n→∞

P(n−1T 2(n, ρ) ≤ x) = L2,ρ(x),

for each x > 0, where

L2,ρ(x) =

∞∏
j=1

[
L2

(
2θ(2j)x

)]2j−1

.

The result is an application of functional central limit Theorem 3 to the
random elements Y1, . . . , Yn with values in the space L2(0, 1) defined by

Xk(t) = 1{Uk≤t} − t, t ∈ [0, 1], k = 1, . . . , n.

If
∑

j jθ
−2(2j) < ∞, for practical uses the following estimate of the tails

of L2,ρ can be helpful. Define for x > 0

L
(J)
2,ρ(x) =

J∏
j=1

[
L2

(
2θ(2j)x

)]2j−1

.

Proposition 1. Put for J = 0, 1, 2, . . .

cJ := inf
γ>0

{
γ + 8

∞∑
j=J+1

2j

θ2(2j)
exp

(−γθ2(2j)

4

)}
.

i) If x > 0 then

1 − L2,ρ(x) ≤ 4 exp
{
− 3x

4c0

}
.

ii) For each x > 0 and J ≥ 1(
1 − 4 exp

{
− 3x

8cJ

})
L

(J)
2,ρ (x) ≤ L2,ρ(x) ≤ L

(J)
2,ρ (x).

The null hypothesis (H0) is rejected for big values of the statistic T 2(n, ρ)
calculated with Ui = F (Xi), i = 1, . . . , n.
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19. Račkauskas, A. and Suquet, Ch. (1999b). Random fields and central limit the-
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Summary. This chapter considers the multiple change–point problem for time se-
ries, including strongly dependent processes, with an unknown number of change–
points. We propose an adaptive method for finding the segmentation, i.e., the se-
quence of change–points τ with the optimal level of resolution. This optimal segmen-
tation τ̂ is obtained by minimizing a penalized contrast function J(τ , y)+βpen(τ ).
For a given contrast function J(τ , y) and a given penalty function pen(τ ), the adap-
tive procedure for automatically choosing the penalization parameter β is such that
the segmentation τ̂ does not strongly depend on β. This algorithm is applied to the
problem of detection of change–points in the volatility of financial time series, and
compared with Vostrikova’s (1981) binary segmentation procedure.

1 Introduction

The change–point analysis of volatility processes is a recent and important
research topic in financial econometrics. Volatility processes, i.e., absolute
and squared returns on asset prices, are characterized by a hyperbolic decay
of their autocorrelation function (ACF), and then have been first considered
as the realization of a strongly dependent, or long–range dependent or long–
memory process. Most of the applied research works in this field resorted to
the class of long–range dependent volatility processes introduced by Robinson
(1991), developed by Granger and Ding (1995) and other authors, defined as

Yt = σtεt, εt ∼ iid, Eε0 = 0, Var ε0 = 1, σ2
t = ω +

∞∑
j=1

αjY
2
t−j , (1)

with hyperbolically decaying positive weights αj � j−(1+ϑ/2), ϑ ∈ (0, 1),∑
j αj � 1. Volatility processes were then implicitly viewed as the realization

of a homogeneous process defined by the single scaling parameter ϑ. The
estimated intensity of long–range dependence ϑ̂ of asset price volatility is
usually strong, near the stationarity limit.
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Alternatively, the returns series are modeled by the Integrated ARCH(∞)
volatility process, defined by equation (1) with exponentially decaying coeffi-
cients αj and

∑
j αj = 1, i.e., a process with infinite variance since ω > 0. This

IARCH representation is incompatible with the conclusion on the presence of
long–memory in volatility grounded on the hyperbolic decay of the sample
ACF of power transformations of this returns process, since this sample ACF
is not properly defined. This contradiction should have questioned the rele-
vance of the hypothesis of a homogeneous volatility process as it was already
well known in the statistical literature that change–point processes, nonsta-
tionary processes and long–range dependent processes might be confused; see
e.g., Bhattacharya et al. (1983).

Pioneering works by Mikosch and Stărică (1999, 2003, 2004) advocated
the change–point alternative for the analysis of volatility processes, and
claimed that the empirical long–range dependence of volatility process was
the consequence of nonstationarities. The standard short–range dependent
volatility models still provide an accurate representation of the volatility
process, provided that we estimate them on intervals of homogeneity. This
idea of approximating nonstationary processes with locally stationary pro-
cesses has been considered by Dalhaus (1997). The statistical theory for
volatility processes with a change–point was developed very recently; see,
besides the references mentioned above, Chu (1995), Kokoszka and Leipus
(1999, 2000), Horváth, Kokoszka and Teyssière (2001), Kokoszka and Teyssière
(2002), Berkes, Horváth and Kokoszka (2004), Berkes, Gombay, Horváth and
Kokoszka (2004). Interested readers are referred to the chapter on GARCH
volatility models by Giraitis, Leipus and Surgailis (2005) in this volume.

Furthermore, if we stick to the parametric framework of long–range depen-
dent volatility processes, the estimates of the long memory parameter on the
whole sample and on different subsamples significantly differ. Statistical tests
for change in the memory parameter by Horváth (2001), Horváth and Shao
(1999) and Beran and Terrin (1999) would reject the null hypothesis of con-
stant long–memory parameter. Thus, even in this framework, the hypothesis
of a homogeneous process might be too strong.

We consider here a semiparametric approach, i.e., without reference to a
parametric volatility model. The time series cannot be modeled as a stationary
process but rather as a piecewise stationary process. Some abrupt changes
affect the variance of the time-series at random times, but the distribution
of the data does not vary between two successive sudden changes. In what
follows, we propose a method which allows to systematically detect these
sudden changes and to locate their positions. This method also allows the
estimation of the distribution of the data between the abrupt changes. This
semiparametric approach is also of interest in a parametric framework, as
it might suggest a partition of the series in intervals of homogeneity were
stationary volatility models can be estimated; see Aggarwal et al. (1999).

The issue of multiple change–points detection has been first viewed as an
extension of the single change–point problem by using Vostrikova’s (1981) bi-
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nary segmentation (BS) procedure, which consists in iteratively applying the
single change–point detection procedure, i.e., apply first the test for change–
point on the whole sample of observations, and if such a point is found, use the
same testing procedure on the two resulting sub–segments and on subsequent
partitions, until no further change–point is found. This method has been ex-
tended by Whitcher et al. (2002) to the case of long–range dependent processes
by applying it to the discrete wavelet transform of the long–memory process
with changes in variance. The BS method was also used by Berkes, Horváth,
Kokoszka and Shao (2003) for adjudicating between multiple change–points
and long–range dependence in levels.

The BS method is very simple, but has a serious drawback: the number of
change–points might be overestimated and their location might be wrong, as
one transforms the global problem of change–point detection in a sequence of
local change–point detections. The resulting segmentation is not optimal.

We shall adopt here a global approach, where all the change–points are
simultaneously detected by minimizing a penalized contrast function of the
form

J(τ ,y) + βpen(τ ),

see Braun et al. (2000), Lavielle (1999), Lavielle and Ludeña (2000) and Yao
(1988). Here, J(τ ,y) measures the fit of τ with y, with y = Y1, . . . , Yn. Its
role is to locate the change–points as accurately as possible. The penalty term
pen(τ ) only depends on the dimension K(τ ) of the model τ and increases
with K(τ ). Thus, it is used for determinating the number of change–points.
The penalization parameter β adjusts the trade-off between the minimization
of J(τ ,y) (obtained with a high dimension of τ ), and the minimization of
pen(τ ) (obtained with a small dimension of τ ). Lavielle (1999) applied this
method, with an arbitrary choice for β, to the series of French CAC 40 index
and uncovered changes in the distribution of returns.

Asymptotic results concerning penalized least–squares estimates have been
obtained in theoretical general contexts in Lavielle (1999) and Lavielle and
Ludeña (2000), extending the previous results by Yao (1988). We shall show
that this kind of contrast can also be useful in practice. The main problem is
the optimal choice for a penalty function and a coefficient β. In the Gaussian
case, Yao (1988) suggested the Schwarz criterion. A complete discussion of the
most popular criteria (AIC, Mallow’s Cp, BIC), and many other references can
be found in Birgé and Massart (2001). In a more general context, we can use
a contrast other than the least-squares criterion, since the variables are not
necessarily Gaussian and independent. We propose an adaptive procedure for
automatically choosing the penalty parameter β in section 2. We present in
section 3 the binary segmentation procedure. An application to financial time
series, daily returns on the FTSE 100 index and on 30–minutes spaced returns
on FX rates, and simulated returns from artificial financial markets based on
microeconomic models with interactive agents, is considered in section 4.
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2 A Penalized Contrast Estimate for the Change–Point
Problem

2.1 The Contrast Function

We assume that the process {Yt} is abruptly changing and is characterized
by a parameter θ ∈ Θ that remains constant between two changes. We will
strongly use this assumption to define our contrast function J(τ ,y).

Let K be some integer and let τ = {τ1, τ2, . . . , τK−1} be an ordered se-
quence of integers satisfying 0 < τ1 < τ2 < . . . < τK−1 < n. For any
1 � k � K, let U(Yτk−1+1, . . . , Yτk

; θ) be a contrast function useful for es-
timating the unknown true value of the parameter in the segment k. In other
words, the minimum contrast estimate θ̂(Yτk−1+1, . . . , Yτk

), computed on seg-
ment k of τ , is defined as a solution to the following minimization problem:

U
(
Yτk−1+1, . . . , Yτk

; θ̂(Yτk−1+1, . . . , Yτk
)
)

� U(Yτk−1+1, . . . , Yτk
; θ) , ∀θ ∈ Θ.

(2)
For any 1 � k � K, let G be defined as

G(Yτk−1+1, . . . , Yτk
) = U

(
Yτk−1+1, . . . , Yτk

; θ̂(Yτk−1+1, . . . , Yτk
)
)
. (3)

Then, define the contrast function J(τ ,y) as

J(τ ,y) =
1

n

K∑
k=1

G(Yτk−1+1, . . . , Yτk
), (4)

where τ0 = 0 and τK = n.
For the detection of changes in the variance of a sequence of random vari-

ables, the following contrast function, based on a Gaussian log–likelihood func-
tion, can be used:

Jn(τ ,y) =
1

n

K∑
k=1

nk log(σ̂2
k), (5)

where nk = τk − τk−1 is the length of segment k, σ̂2
k is the empirical variance

computed on that segment k, σ̂2
k = n−1

k

∑τk

i=τk−1+1(Yi − Ȳ )2, and Ȳ is the
empirical mean of Y1, . . . , Yn.

When the true number K� of segments is known, the sequence τ̂n of
change–point instants that minimizes this kind of contrast function has the
property, that under extremely general conditions, for any 1 � k � K� − 1,

P(|τ̂n,k − τ�
k | > δ) → 0, when δ → ∞ and n→ ∞, (6)

see Lavielle (1999), Lavielle and Ludeña (2000). In particular, this result holds
for weakly and strongly dependent processes.
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2.2 Penalty Function for the Change–Point Problem

When the number of change–points is unknown, we estimate it by minimizing
a penalized version of the function J(τ ,y). For any sequence of change–point
instants τ , let pen(τ ) be a function of τ that increases with the number K(τ )
of segments of τ . Then, let {τ̂n} be the sequence of change–point instants that
minimizes

U(τ ) = J(τ ,y) + βpen(τ ). (7)

The procedure is intuitively simple: the adjustment criteria must be com-
pensated for in a way such that the over-segmentation would be penalized.
However, the compensation must not be very important as a too large penalty
function yields an underestimation of the number of segments.

If β is a function of n that goes to 0 at an appropriate rate as n goes
to infinity, the estimated number of segments K(τ̂n) converges in probability
to K� and condition (6) still holds; see Lavielle (1999), Lavielle and Ludeña
(2000) for more details.

In practice, asymptotic results are not very useful for selecting the penalty
term βpen(τ ). Indeed, given a real observed signal with a fixed and finite
length n, the parameter β must be fixed to some arbitrary value. When the pa-
rameter β is chosen to be very large, only the more significant abrupt changes
are detected. However, a small value of β produces a high number of the esti-
mated changes. Therefore, a trade-off must be made, i.e., we have to select a
value of β which yields a reasonable level of resolution in the segmentation.

Various authors suggest different penalty functions according to the model
they consider. For example, the Schwarz criterion is used by Braun et al.
(2000) for detecting changes in a DNA sequence.

Consider first the penalty function pen(τ ). By definition, pen(τ ) should
increase with the number of segments K(τ ). Following the most popular in-
formation criteria such the AIC and the Schwarz criteria, we suggest to use
in practice the simplest penalty function pen(τ ) = K(τ ).

Remark 1. We can argue this specific choice for the penalty function with
theoretical considerations. Indeed, precise results have been recently obtained
by Birgé and Massart (2001) in the following model:

Yi = s�(i) + σεi, 1 � i � n, (8)

where s�(i) =
∑K�

k=1mk1{τ�
k−1+1�i�τ�

k
} is a piecewise constant function. The

sequence {εi} is a sequence of Gaussian white noise, with variance 1. A pe-
nalized least-squares estimate is obtained by minimizing

J(τ ,y) =
1

n

K(τ)∑
k=1

τk∑
i=τk−1+1

(Yi − Ȳk)2 + βpen(τ ). (9)

In a non asymptotic context, Birgé and Massart (2001) have shown that a
penalty function of the form
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pen(τ ) = K(τ )

(
1 + c log

n

K(τ )

)
, β =

2σ2

n
, (10)

is optimal for minimizing E
(
‖ŝτ − s�‖2

)
, where the estimated sequence of

means {ŝτ (i)} is defined as ŝτ (i) =
∑K(τ)

k=1 Ȳk1{τk−1+1�i�τk}. Based on some
numerical experiments, the authors suggest to use c = 2.5. Note that when the
number K� of segments is small in comparison with the length n of the series,
this optimal penalty function is an almost linear function of K. Furthermore,
Yao (1988) has proved the consistency of the Schwarz criterion for this model,
with pen(τ ) = K(τ ) and β = 2σ2(logn)/n.

2.3 An Adaptive Choice for the Penalization Parameter

For a given contrast function J and a given penalty function pen(τ ), the
problem now reduces to the choice for the parameter β.

Let KMAX be an upper bound on the dimension of τ . For any 1 � K �

KMAX , let TK be the set of all the models of dimension K:

TK = {τ = (τ0, . . . , τK) ∈ NK+1, τ0 = 0 < τ1 < τ2 < . . . τK−1 < τK = n}.

By definition the best model τ̂K of dimension K minimizes the contrast func-
tion J :

τ̂K = arg min
τ∈TK

J(τ ,y). (11)

Note that the sequence {τ̂K , 1 � K � KMAX} can easily be computed. Indeed,
let G be the upper triangular matrix of dimension n×n such that the element
(i, j), for j � i is Gi,j = G(Yi, Yi+1, . . . Yj), where G(Yi, . . . Yj) is the contrast
function computed with (Yi, Yi+1, . . . Yj). Thus, for any 1 � K � KMAX , we
have to find a path τ0 = 0 < τ1 < τ2 < . . . , < τK−1 < τK = n that minimizes
the total cost

J(τ ,y) =
1

n

K∑
k=1

Gτk−1,τk
. (12)

A dynamic programming algorithm can recursively compute the optimal paths
(τ̂ K , 1 � KMAX), see Kay (1998). This algorithm requires O(n2) operations.
Then, let

JK = J(τ̂K ,y), (13)

pK = pen(τ ), ∀τ ∈ TK . (14)

As mentioned above, we suggest to use pK = K.
Thus, for any penalization parameter β > 0, the solution τ̂ (β) minimizes

the penalized contrast:

τ̂ (β) = argmin(J(τ ,y) + βpen(τ )) (15)

= τ̂ K̂(β) (16)
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where
K̂(β) = arg min

K�1
{JK + βpK}. (17)

The way how the solution K̂(β) varies with the penalization parameter β is
given by the following proposition:

Proposition 1. There exists a sequence {K1 = 1 < K2 < . . .}, and a se-
quence {β0 = ∞ > β1 > . . .}, with

βi =
JKi

− JKi+1

pKi+1 − pKi

, i � 1, (18)

such that K̂(β) = Ki, ∀β ∈ [βi, βi−1).
The subset {(pKi

, JKi
), i � 1} is the convex hull of the set {(pK , JK),K � 1}.

Proof. For any K � 1, let K̂(β) = K. Then

JK + βpK < min
L>K

(JL + βpL), (19)

JK + βpK < min
L<K

(JL + βpL). (20)

Thus, β must satisfy

max
L>K

JK − JL

pL − pK
< β < min

L<K

JL − JK

pK − pL
. (21)

�

The estimated sequence τ̂ should not strongly depend on the choice for
the penalization coefficient β. In other words, a small change of β should
not lead to a radically different solution τ̂ . This stability of the solution with
respect to the choice for β will be ensured if we only retain the largest intervals
[βi, βi−1), i � 1.

In summary, we propose the following procedure:

1. For K = 1, 2, . . . ,KMAX , compute τ̂ K , JK = J(τ̂ K ,y) and pK =
pen(τ̂K),

2. compute the sequences {Ki} and {βi}, and the lengths {lKi
} of the inter-

vals [βi, βi−1),
3. retain the greatest value(s) of Ki such that lKi

� lKj
, for j > i.

Remark 2. Choosing the largest interval usually underestimates the number
of changes. Indeed, this interval usually corresponds to a very small number
of change–points and we only detect the most drastic changes with such a
penalty function. This explains why we should better look for the highest
dimension Ki such that lKi

� lKj
, for any j > i, to recover the smallest

details.
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Instead of computing only one configuration of change–points, this method
allows us to put forward different solutions with different dimensions. Indeed,
it would be an illusion to believe that a completely blind method can give
the “best” solution in any situation. If two dimensions Ki and Kj satisfy the
criteria suggested in step 3, it is more suitable to propose these two solutions
to the user, instead of removing one of them with an arbitrary criterion.

Remark 3. A classical and natural graphical method for selecting the dimen-
sion K can be summarized as follows:

i) examine how the contrast JK decreases when K (that is, pK) increases,
ii) select the dimension K for which JK ceases to decrease significatively.

In other words, this heuristic approach looks for the maximum curvature in
the plot (pK , JK). Proposition 1 states that the second derivative of this curve
is directly related to the length of the intervals ([βi, βi−1), i � 1). Indeed, if
we represent the points (pK , JK), for 1 � K � KMAX , βi is the slope between
the points (pKi

, JKi
) and (pKi+1 , JKi+1). Thus, looking for where JK ceases

to decrease means looking for a break in the slope of this curve. Now, the
variation of the slope at the point (pK , JK) is precisely the length lKi

of the
interval [βi, βi−1).

2.4 An Automatic Procedure for Estimating K

Without any changes in the variance, the joint distribution of the sequence
{JK} is very difficult to compute in a closed form, but some Monte-Carlo
experiments show that this sequence decreases as c1K + c2K log(K).

A numerical example is displayed Figure 1. We have simulated ten se-
quences of i.i.d. Gaussian variables and computed the series (JK) for each
of them. The fit with a function c1K + c2K log(K) is always almost perfect
(r2 > 0.999). Nevertheless, the coefficients c1 and c2 are different for each of
these series. Thus, we propose the following algorithm:

Algorithm 1
For i = 1, 2, . . .,

1. Fit the model
JK = c1K + c2K log(K) + eK ,

to the sequence {JK ,K � Ki}, assuming that {eK} is a sequence of iid
centered Gaussian random variables,

2. Evaluate the probability that JKi−1 follows also this model, i.e., estimate
the probability

PKi
= P (eKi−1 � JKi−1 − ĉ1(Ki − 1) + ĉ2(Ki − 1) log(Ki − 1)) , (22)

under this estimated model.

Then, the estimated number of segments will be the largest value of Ki such
that the P–value PKi

is smaller than a given threshold α. We set α = 10−5

in the numerical examples.
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Fig. 1. Ten sequences of contrast functions (JK) computed from ten sequences of
i.i.d. Gaussian variables

3 An Alternative Method: The Binary Segmentation
Procedure

We present here the local approach for finding multiple change–points, i.e.,
finding the configuration τ = (τ1, . . . , τK−1) with break dates {0 < τ1 <
. . . < τK−1 < n}, which rely on single change–points tests. Since financial
time series are very large, i.e., over several thousands of observations, single
change–point tests are of limited practical interest.

The binary segmentation procedure, studied by Vostrikova (1981), is the
standard method for detecting multiple change–points by using a test for
single change–point: we split the series at the point detected by the single
change–point test, i.e., the point where the test statistic reaches its maxi-
mum over the critical value, and repeat the detection procedure on the new
segments until no further change–point is found. However, the problem of op-
timal resolution in the segmentation τ is not solved as no penalized objective
function is considered.

Remark 4. Most applied econometrics research papers supposedly using the
multiple change–point tests by Lavielle (1999) and Lavielle and Moulines
(2000) do in fact resort to the binary segmentation algorithm, which is the
less we can say missleading.
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3.1 Weakly Dependent Processes

We present here the tests for single change–point in the variance of time series
by Inclán and Tiao (1994) and Kokoszka and Leipus (1999). The test by Inclán
and Tiao (1994) for change in the variance of a weakly dependent process {Yt}
is based on the process {Dn(h), h ∈ [0, 1]} defined as

Dn(h) :=

∑[nh]
j=1 Y

2
j∑n

j=1 Y
2
j

− [nh]

n
, h ∈ [0, 1]. (23)

Under the null hypothesis of constant unconditional variance, the process
{Dn(h), h ∈ [0, 1]} converges to a Brownian bridge on [0, 1]. A test for con-
stancy of the unconditional variance is based on the following functional of the
process {Dn(h)}, which under this null hypothesis of constant unconditional
variance converges in distribution to the supremum of a Brownian bridge on
[0, 1] √

n/2 sup
0�h≤1

|Dn(h)| d−→ sup
0�h�1

∣∣W 0(h)
∣∣ . (24)

where W 0(h) is the Brownian bridge on the unit interval [0, 1] defined as
W 0(h) = W (h) − hW (1), W (h) is the Wiener process.

Kokoszka and Leipus (1999) made the assumption that the process {Yt}
follows an ARCH(∞) process defined as

Yt = σtεt, εt ∼ iid, Eε0 = 0, Var ε0 = 1, (25)

σ2
t = ω +

∞∑
j=1

αjY
2
t−j , t = 1, . . . , t0,

σ2
t = ω� +

∞∑
j=1

α�
jY

2
t−j , t = t0 + 1, . . . , n,

with the assumption that the unconditional variance of the process changes
at an unknown time t0, i.e.,

∆(n) =
ω

1 −
∑∞

j=1 αj
− ω�

1 −
∑∞

j=1 α
�
j


= 0. (26)

The null hypothesis is H0 : ω = ω�, αj = α�
j for all j, while under the

alternative hypothesis HA : ω 
= ω� or αj 
= α�
j for some j. The change–point

test is based on the process {Un(h), h ∈ [0, 1]} defined as

Un(h) :=
√
n

[nh](n− [nh])

n2

⎛⎝ 1

[nh]

[nh]∑
j=1

Y 2
j − 1

n− [nh]

n∑
j=[nh]+1

Y 2
j

⎞⎠ , (27)

which under H0 converges to the process
{
σW 0(h), h ∈ [0, 1]

}
, i.e.,
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Un(h)
D[0,1]−→ σW 0(h), (28)

where
D[0,1]−→ means weak convergence in the space D[0, 1] endowed with the

Skorokhod topology. We consider here as test statistic the functional based
on the process {Un(h), h ∈ [0, 1]}

sup
0�h�1

|Un(h)| /σ d−→ sup
0�h�1

∣∣W 0(h)
∣∣ , (29)

where the long–run variance σ2 is usually estimated by nonparametric ker-
nel methods. We use here the heteroskedastic and autocorrelation consis-
tent (HAC) estimator by Newey and West (1987) with the truncations order
q = 0, 2, 5, 10, 15.

The location of the change–point τ̂ is detected by the CUSUM–type esti-
mator based on the same process {Un(h), h ∈ [0, 1]}, and defined by

τ̂ = [nĥ], ĥ = min

{
h : |Un(h)| = max

0<h�1
|Un(h)|

}
. (30)

This estimator is consistent if ∆(n) → 0 as n→ ∞ but at a slower rate than
n1/2 as

|∆(n)|n1/2 → ∞, n→ ∞,

see Kokoszka and Leipus (2000) for further details.

3.2 Strongly Dependent Processes

In the previous section, the process {Yt} was assumed weakly dependent.
Whitcher et al. (2002) proposed to deal with long–range dependent processes
with an unknown number of change–points in the unconditional variance, by
applying the BS procedure to the discrete wavelet transform of the long–
memory process {Yt}.

4 Detecting Change–Points in the Volatility of Financial
Time Series

We consider two series, the FTSE 100 index and the US dollar–Japanese yen
intra–day foreign exchange (FX) rate.

4.1 Application to The FTSE 100 Index

The FTSE 100 index, or Footsie, consists of 100 blue chip stocks that trade
on the London Stock Exchange. This series of 4381 observations has been
observed between January 1984 and November 2002. Figure 2 displays the
series of indices in levels:
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Fig. 2. The series of FTSE 100 indices

Table 1 below displays the sequence of change–points Ki, lengths lKi
and

P–values given by Algorithm 1, see also equation (22).

Table 1. Sequences of number of change–points Ki, lengths lKi
and corresponding

P–values PKi
given by Algorithm 1

Ki lKi
PKi

1 ∞ 5.0000e-05
3 152.9601 9.7200e-07
4 68.9379 6.8018e-04
6 50.9085 9.1889e-07
7 32.4764 6.5439e-06
8 7.4296 2.8738e-01
11 5.6321 2.6108e-01
13 5.6107 1.3535e-03
15 5.4152 3.7485e-02

Figure 3 below shows that Algorithm 1 is able to pick the main changes
in the unconditional variance of the series of returns on FTSE 100 .
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Fig. 3. Above: the series with the estimated change–points represented by vertical
lines; Middle: The sequence of contrasts (JK , 1 � K � KMAX), the vertical line in-
dicates the estimated number of segments (K̂, JK̂); Below: the sequence of contrasts

{JK , K̂ � K � KMAX} are indicated with +, the fitted function ĉ1(K)+ ĉ2K log(K)
is in solid line and JK̂ is represented with a circle

We obtain the segmentation τ̂ = {112, 568, 624, 1840, 3020, 4272}. The
point τ 1 = 112 matches a change in the sampling frequency, as we have weekly
data before January 1986, and daily observations after that date. Thus, the
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procedure detects this heterogeneity in the process. The point τ 2 = 568 is
simply the 14th October 1987, i.e., the stock market crash, while the increase
of volatility after τ 5 = 3020 (June 26, 1997) indicates the conjunction of two
opposite phenomena: the Footsie has broken the psychological 5,000 barrier
in August 1997, as a consequence of a series of positive earnings for the com-
panies composing the index. On the other side, the Asian crisis of Summer
1997 increased the uncertainty, and then the volatility, as the extent of the
consequences of this crisis on economic activity were unpredictable.

Figure 4 below displays the sample autocorrelation function (ACF) for the
whole series of absolute returns on the FTSE index:
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Fig. 4. Sample ACF of the absolute value of returns |rt| on FTSE

This sample ACF has a hyperbolic decay which is similar to the one of
a strongly dependent process: the ACF are always positive, with a plateau
for the larger orders of autocorrelation. However, when displaying the sam-
ple ACF for the sub–intervals defined by Algorithm 1, we get the following
pictures, the shape of which are very different from Figure 4:
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Fig. 5. Sample ACFs of the absolute value of returns |rt| on FTSE for the time
interval [1, 112] (left), and for the time interval [113, 568] (right)
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Fig. 6. Sample ACF of the absolute value of returns |rt| on FTSE for the time
interval [569, 624] (left), and for the time interval [625, 1840] (right)
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Fig. 7. Sample ACF of the absolute value of returns |rt| on FTSE for the time
interval [1841, 3020] (left), and for the time interval [3021, 4272] (right)

The sample ACF of the absolute value of returns |rt| on FTSE for the time
interval [4273, 4380] displays a pattern similar to Figure 6 (right) and is not
displayed here.

For all the sub–samples, the sample ACF displayed in figures 5–7 do not
indicate the same degree of persistence as the one observed for the whole
sample in Figure 4: some autocorrelations are negative, and these ACF do not
display the “plateau effect” for the higher orders. Thus, as mentioned in the
introduction of this chapter, the hypothesis of homogeneity and stationarity
of the returns process is inappropriate, and the global procedure for finding
the optimal resolution for the process is able to pick the nonstationarities of
the process out.

Choosing the level of resolution just below, i.e., with 6 segments, would
have given τ̂ = {112, 568, 624, 3048, 4272}. However, considering the period
between t = 624 and t = 3048, i.e., between the 5th of January 1988 and the
4th of August 1997 as homogeneous is rather unlikely. Figure 8 below displays
the sample ACF for the absolute returns for this time interval.
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Fig. 8. Sample ACF of the absolute value of returns |rt| on FTSE for the time
interval [624, 3047]

The sample ACF resembles the one of a long–range dependent process,
with a mild degree of persistence. However, we have seen before that the sam-
ple ACF for the two sub–periods [624, 1847] and [1848, 3019] have a different
shape, which indicates that the mild persistence for the interval [624, 3047] is
a statistical artefact. Thus, the resolution with 7 segments looks preferable.

We compare the selected segmentation with the one obtained with the
binary segmentation procedure. Table 2 below reports the segmentation yield
by the BS method, using both statistics given by equations (24) and (29).
We observe that the two statistics give a quite similar segmentation, which
however has a higher resolution than the one yield by Algorithm 1. The seg-
mentation given by the BS method includes the points found by Algorithm
1, or points close to those of τ̂ .
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Table 2. Segmentation found by the BS method, Inclán and Tiao (1994), henceforth
IT, and Kokoszka and Leipus (1999), henceforth KL

KL statistic Change–point date IT statistic Change–point date

9.0585 110 5.5376 110
12.2929 570 6.1560 570
13.2107 648 10.0611 648
1.8179 1062 1.6352 1062
1.3997 1113 1.9091 1273
2.6116 1273 2.0503 1324
2.5349 1324 2.3089 1703
2.6729 1703 2.6606 1838
2.8486 1838 1.5992 1943
2.3037 2117 2.3103 2117
2.1048 2458 2.2611 2458
4.2924 3000 4.3451 3000
1.6788 3173 1.3736 3173
11.2412 3284 7.4494 3284
4.8933 3418 2.4585 3418
3.2717 3654 1.9844 3654
2.6650 3761 1.7056 3761
5.0372 3955 2.5301 3955
3.2697 4128 1.7171 4128
8.6904 4270 4.3607 4270

If we try to refine the segmentation by choosing a number of change–points
similar to the BS method, we get the following picture
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Fig. 9. The series with the 20 estimated change–points represented by vertical lines

We capture more and more details of the variations of the process, but the
gain is rather marginal, as the main variations are captured with 7 segments.
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4.2 Application to the US Dollar–Japanese Yen FX Rate

We consider here a sample of 30 minute–spaced observations observed in the
year 1996. These data, provided by Olsen & Associates are in ϑ time, i.e., all
intra–day seasonal components have been removed.
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Fig. 10. Above: the series with the estimated change–points represented by vertical
lines; Middle: The sequence of contrasts (JK , 1 � K � KMAX), the vertical line in-
dicates the estimated number of segments (K̂, JK̂); Below: the sequence of contrasts

{JK , K̂ � K � KMAX} are indicated with +, the fitted function ĉ1(K)+ ĉ2K log(K)
is in solid line and JK̂ is represented with a circle

Figure 10 displays the series with the estimated change–points, the con-
trast function JK , and the fitted function ĉ1(K) + ĉ2K log(K).
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The detected number of change points is rather low for the sample size
considered, but we have to keep in mind that this series represents only a
year of observations, so that structural changes are rather rare, even for data
sampled with a high frequency.

Table 2 below displays the sequence of the number of change–points Ki

found by Algorithm 1.

Table 3. Sequences of number of change–points Ki, lengths lKi
and corresponding

P–values PKi
given by Algorithm 1

Ki lKi
PKi

1 ∞ 5.0000e-05
2 183.5677 6.8982e-05
4 72.2762 3.1535e-05
7 21.4666 2.4397e-04
9 16.3938 9.4880e-03
12 1.7163 1.7154e-01

The chapter by Teyssière and Abry (2005) in this volume considers the
wavelet analysis of this series: they compare the wavelet estimator of the de-
gree of persistence for the absolute returns of this series with the local Whittle
and log–periodogram estimators. The discrepancy between the estimation re-
sults obtained with the wavelet based estimator and the ones obtained from
the spectral based estimators is interpreted as the consequence of nonstation-
arities in the returns process.

The BS procedure finds a far larger number of change–points, i.e., 103 for
the KL statistic and 95 for the IT statistic. The graphical representation of
the segmentation yield by algorithm 1 looks however more sensible.

In fact, the segmentations yield by competing statistical methods are very
different. Mikosch and Stărică (1999) and Granger and Hyung (2004) studied
the series of S&P 500, using respectively parametric and semiparametric tests.
While Mikosch and Stărică (1999) found a rather parsimonious segmentation,
the number of change–points found by Granger and Hyung (2004) is huge.

However, this parsimonious segmentation looks relevant when comparing
the sample ACF of the absolute returns of the whole series and of the sub–
intervals defined by Algorithm 1, see figures 11–13: while the sample ACF,
computed on the whole sample, Figure 11, is similar to the one of a strongly
dependent process, the patterns of the sample ACFs for the sub–intervals
defined by Algorithm 1 show that the persistence on these sub–intervals is far
smaller than the one for the whole sample.
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Fig. 11. Sample ACF of the absolute value of returns |rt| on USD–JPY FX rate
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Fig. 12. Sample ACF of the absolute value of returns |rt| on USD–JPY FX rate
for the time interval [1, 2736] (left), and for the time interval [2737, 10386] (right)
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Fig. 13. Sample ACF of the absolute value of returns |rt| on USD–JPY FX rate
for the time interval [10387, 14454] (left), and for the time interval [14455, 17508]
(right)
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4.3 Application to Micro–Simulated Data

We consider here simulated series from an artificial financial market, i.e.,
a dynamic system which models financial markets with interacting agents.
Although these models do not resort to statistical distributions leading to the
generation of long–range dependent processes, the volatility series generated
by these models display the same dependence properties as the ones of the
volatility of asset prices.

We consider that agents i on financial markets differ by their forecasting
function Ei(Pt+1|It) of the future price as a function of the information set
It. Chartists extrapolate the exchange rate Pt+1 by using is a linear function
of the previous prices, i.e.,

Ec (Pt+1|It) =

Mc∑
j=0

hjPt−j , (31)

where hj, j = 0, . . . ,M c are constants, M c is the ’memory’ of the chartists,
while fundamentalists forecast this next price as:

Ef (Pt+1|It) = P̄t +

Mf∑
j=1

νj(Pt−j+1 − P̄t−j), (32)

where νj , j = 1, . . . ,Mf are positive constants, representing the degree of
reversion to the fundamentals, Mf is the ’memory’ of the fundamentalists.
We assume that the series of ‘fundamentals’ P̄t, which can be thought as the
price if it were only to be explained by a set of relevant variables, follows a
random walk:

P̄t = P̄t−1 + εt, εt ∼ N(0, σ2
ε). (33)

Agents have the possibility of investing at home in a risk free asset or
investing abroad in a risky asset. We denote by ρt the foreign interest rate,
by di

t the demand by the ith agent for foreign currency, and by r the domestic
interest rate, with ρt > r. The exchange rate Pt and the foreign interest rate ρt

are considered by agents as independent random variables, with ρt ∼ N(ρ, σ2
ρ).

The cumulated wealth of individual i at time t+ 1, W i
t+1 is given by:

W i
t+1 = (1 + ρt+1)Pt+1d

i
t + (W i

t − Ptd
i
t)(1 + r). (34)

Agents i have a standard mean–variance utility function:

U(W i
t+1) = E(W i

t+1) − λVar(W i
t+1), (35)

where λ denotes the risk aversion coefficient, and

E(W i
t+1|It) = (1 + ρ)Ei(Pt+1|It)di

t + (W i
t − Ptd

i
t)(1 + r), (36)

Var(W i
t+1|It) = (di

t)
2ζt, ζt = Var (Pt+1(1 + ρt+1)) . (37)
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Demand di
t is found by maximizing utility. First order condition gives

(1 + ρ)Ei(Pt+1|It) − (1 + r)Pt − 2ζtλd
i
t = 0, (38)

where Ei(.|It) denotes the forecast of an agent of type i. Let kt be the pro-
portion of fundamentalists at time t, the market demand is:

dt =
(1 + ρ)

(
ktE

f (Pt+1|It) + (1 − kt)E
c(Pt+1|It)

)
− (1 + r)Pt

2ζtλ
. (39)

Now consider the exogenous supply of foreign exchange Xt, then the mar-
ket is in equilibrium if aggregate supply is equal to aggregate demand, i.e.,
Xt = dt, which gives

Pt =
1 + ρ

1 + r

(
ktE

f (Pt+1|It) + (1 − kt)E
c(Pt+1|It)

)
− 2ζtλXt

1 + r
. (40)

From equation (40), the dynamics of the price process {Pt} depends on the
evolution of the process {kt}, i.e., the proportion of fundamentalists, which
governs the transition between the two forecast functions Ef (Pt+1|It) and
Ec(Pt+1|It). Several mechanisms for the evolution of the opinion process {kt}
have been proposed in the literature, which are either based on epidemiologic
phenomenon, or on a preference given to the most performing forecasting
function, or on the accumulated wealth gained with each forecast function,
etc. Interested readers are referred to Teyssière (2003), and the chapter by
Gaunersdorfer and Hommes (2005) in this volume.

We consider a multivariate extension of this model, i.e., a bivariate process
(P1,t, P2,t) of foreign exchange rates. This is motivated by the fact that struc-
tural changes do not affect singles markets, i.e., the same swing in opinions
from chartists to fundamentalists affects linked markets. It has been suggested
in the 1999 version of the work by Granger and Hyung that these common
breaks might explain the common persistence of asset prices volatility. Indeed,
the bivariate common break process by Teyssière (2003) used here, generates
the same type of dependence as the one observed in multivariate financial
time series.

We then consider that the opinion process {kt} is the same for both mar-
kets. This bivariate foreign exchange rate process depends on a pair of foreign
interest rates (ρ1, ρ2). We assume that 2ζi,tλXi,t/(1+ρi) = γiP̄i,t for i = 1, 2,
and Mf = M c = 1, the equilibrium price for the bivariate model is given by(

P1,t

P2,t

)
=

(
kt−γ
A1

P̄1,t − ktν1,1

A1
P̄1,t−1 +

(1−kt)h1,1

A1
P1,t−1

kt−γ
A2

P̄2,t − ktν2,1

A2
P̄2,t−1 +

(1−kt)h2,1

A2
P2,t−1

)
, (41)

with

Ai =
1 + r

1 + ρi
− (1 − kt)hi,0 − ktνi,1. (42)
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We assume that the bivariate process of fundamentals (P̄1,t, P̄2,t) is positively
correlated as follows:(

P̄1,t

P̄2,t

)
=

(
P̄1,t−1

P̄2,t−1

)
+

(
ε1,t

ε2,t

)
,

(
ε1,t

ε2,t

)
∼ N

[(
0
0

)
,

(
σ2

1,1 σ1,2

σ1,2 σ
2
2,2

)]
, (43)

with σ1,2 > 0. In the example considered here, we set σ1,2 so that the coeffi-
cient of correlation between the two processes ε1,t and ε2,t is equal to 0.75, a
choice motivated by empirical results; see Teyssière (1997, 2003).

We generate here a bivariate series of returns. Figure 14 below displays
the two generated series of returns r1,t, r2,t, with r1,t = ln(P1,t/P1,t−1)
and r2,t = ln(P2,t/P2,t−1), and the detected changes in their uncondi-
tional variance. We can see that the detected changes for the series r2,t

are very close to some of the detected changes for the series r1,t, i.e.,
τ̂ = {676, 868, 1360, 1584, 2408, 4032, 4148} for the series r1,t, while τ̂ =
{1360, 1580, 4144} for the series r2,t, which is not very surprising as the opinion
process {kt} is common for both processes r1,t and r2,t. The joint detection of
change–points in multivariate time series is considered in a subsequent paper;
see Lavielle and Teyssière (2005).
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Fig. 14. The two jointly simulated series, r1,t above and r2,t below, with the
estimated change–points represented by vertical lines

We focus on the second returns series r2,t, with the lowest resolution level:
its sample ACF, see Figure 15, is similar to the one of a strongly dependent
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process. However, the sample ACF for the sub–intervals defined by Algorithm
1, see figures 16 and 17, display a different pattern with both positive and
negative autocorrelations, a property similar to what has been observed with
the two previous examples.

Thus, Algorithm 1 is able to detect the nonstationarities of the returns
process generated by the artificial financial market.
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Fig. 15. Sample ACF of the absolute value of simulated returns |r2,t|
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Fig. 16. Sample ACF of the absolute value of simulated returns |r2,t| for the time
interval [1, 1360] (left), and for the time interval [1361, 1580] (right)
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Fig. 17. Sample ACF of the absolute value of simulated returns |r2,t| for the time
interval [1581, 4144] (left), and for the time interval [4145, 4500] (right)
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5 Conclusion: Detecting Break in the Variance of
Returns or in the Mean of Absolute Returns?

Since we checked the adequacy of the resolution by looking at the ACF of the
sequence of absolute returns, one might think that changes in the volatility
are uncovered by detecting changes in the mean of the absolute returns series,
i.e., instead of the contrast function given by equation (5) one might consider
the following contrast function based again on a Gaussian likelihood function

Jn(τ ,y) =
1

n

K∑
k=1

‖Yτk
− Ȳτk

‖. (44)

Applying again Algorithm 1 to the series of absolute returns |rt| on the FTSE
100 index, we select different values for the number of change–points Ki from
9 to 12, and obtained the following segmentations:

• τ̂ = {112, 568, 576, 624, 3300, 3348, 4080, 4092, 4272},
• τ̂ = {112, 568, 576, 624, 3300, 3348, 4080, 4092, 4284, 4304} ,
• τ̂ = {112, 568, 576, 624, 3300, 3340, 3348, 4080, 4092, 4284, 4304},
• τ̂ = {112, 568, 576, 624, 1856, 3004, 3312, 3348, 4080, 4092, 4284, 4304},
i.e., we have to consider a large number of segments, 13, for splitting the
interval [624, 3300]. Thus, considering the series of absolute returns is not
suitable for finding the optimal resolution of the volatility series.

Alternatively, one might detect both changes in the mean and the variance
for the series of absolute returns by considering the following contrast function:

Jn(τ ,y) =
1

n

K∑
k=1

‖Yτk
− Ȳτk

‖
σ̂2

k

+ nk log(σ̂2
k). (45)

In that case, algorithm 1 selected the following partition with 12 change–
points:

τ̂ = {112, 568, 576, 624, 1796, 1828, 3020, 3304, 3348, 4080, 4128, 4272},

which has a level of resolution far higher than the one obtained when detecting
changes in the unconditional variance of the returns process. We obtain similar
results for the series of returns on US dollar–Japanese Yen FX rate, and the
series of results generated by the artificial microeconomic model. Thus, the
straightforward and natural way for detecting changes in the volatility is to
consider the contrast function defined by equation (5).
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Bandwidth Choice, Optimal Rates and
Adaptivity in Semiparametric Estimation of

Long Memory
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Summary. Semiparametric estimation of long memory refers to periodogram based
estimation of the shape of the spectral density f(λ) at low frequencies, where all but
the lowest harmonics of the periodogram are discarded, so as to forego specification
of the short range dynamic structure of the time series, and avoid bias incurred
when the latter is misspecified. Such a procedure entails an order of magnitude loss
of efficiency with respect to parametric estimation, but may be warranted when long
series (earth scientific or financial) can be obtained. This paper presents strategies
proposed for the choice of bandwidth, i.e. the number of periodogram harmonics
used in estimation, with the aim of minimizing this loss of efficiency. Such strate-
gies are assessed with respect to minimax rates of convergence, that depend on the
smoothness of |λ|−2df(λ) (where d is the long memory parameter) in the neigh-
bourhood of frequency zero. The plug-in strategy is discussed in the case where
the degree of local smoothness is known a priori, and adaptive estimation of d is
discussed for the case where the degree of local smoothness is unknown.

1 Local Spectral Estimation of Long Memory

Throughout this chapter, we shall consider n observations X1, . . . , Xn from a
covariance stationary time series {Xt}∞t=−∞ with mean µ and spectral density
f satisfying

f(λ) = c|λ|−2d h(λ), λ ∈ [−π, π], d ∈ (−1

2
,
1

2
), (1)

where c ∈ (0,∞), and h(λ) converges to 1 when λ converges to 0, and the
condition on d is necessary for stationarity and invertibility of the process.
Such a process may be derived through fractional filtering

Xt = (1 − L)−d Yt, (2)

of a short memory process Yt with spectral density h(λ) |2 sin(λ/2)/λ|−2d,
where L is the lag operator, and
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(1 − L)−d =
∞∑
−∞

Γ (d+ j)

Γ (d)Γ (j + 1)
Lj, (3)

with Γ (.) denoting the Gamma function.
The process {Xt} is said to exhibit long memory when 0 < d < 1/2,

short memory when d = 0, and “intermittent memory” or “antipersistence”
when −1/2 < d < 0. The latter case is empirically relevant insofar as it may
characterize first-differences of series that were incorrectly believed to hold a
unit root.

Estimation of parametric versions of (1) is discussed in Giraitis and Robin-
son (2003b). However, when the parameter of interest is d, and the sample
size is deemed large enough (as in most financial applications), local methods
are preferable, and we shall concentrate on the latter.

We call “local,” estimation methods which rely on versions of (1), where
h(λ) is left unspecified outside a neighbourhood of zero frequency to avoid
bias in the estimation of d under certain misspecifications of the short-range
dynamics (i.e. the shape of h(λ)) outside a neighbourhood of frequency zero).
One thereby incurs an order of magnitude loss of efficiency, and much of the
focus of the present chapter will be on strategies to minimize this loss of
efficiency through optimal choice of smoothing parameter (called bandwidth
by analogy with kernel estimation).

The minimum order of magnitude loss of efficiency is identified by minimax
lower bounds for the quadratic risk of any estimator d̂ of d under local-to-zero
smoothness assumptions on h(λ). Bearing in mind that the parametric rate
of convergence is

√
n (see for instance Giraitis and Robinson, 2003b), the

best attainable rate for local estimators is ns/(1+2s), where the degree of local
smoothness s of h(λ) is defined as follows: for 0 < s ≤ 1, h(λ) has smoothness s
if it satisfies a Lipschitz condition of degree s around λ = 0; and for s > 1, h(λ)
has degree of smoothness s if it is [s] times differentiable in a neighbourhood
of λ = 0 and its [s]th derivative satisfies a Lipschitz condition of degree s− [s]
around λ = 0.

Several “semiparametric” estimators of d have been proposed (they are
“semiparametric” in the sense that they rely only on extensions of the local
specification (1)), two of which, the “local Whittle” (proposed by Künsch
(1987), hereafter LW), and the “log-periodogram” (proposed by Geweke and
Porter–Hudak (1983), hereafter LP) have been shown by Robinson (1995a,
1995b) to be asymptotically normal with asymptotic variances that are free
of unknown parameters. Both LW and LP are based on the periodogram of
the observations

I(λ) = |φ(λ)|2 (4)

where φ(λ) is the Discrete Fourier Transform (hereafter DFT) of the data,
defined as

φ(λ) = (2πn)−1/2
n∑

t=1

Xt exp (itλ). (5)
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Both estimators rely only on the first m harmonics of the periodogram, i.e.
Ij = I(λj), j = 1, . . . ,m, with λj = 2πj/n, and the thus defined “bandwidth”
satisfies at least

1

m
+
m

n
→ 0, when n→ 0, (6)

so as to conform to local-to-zero specifications.
Finally, both LW and LP can be construed as special cases of a general

class of m-estimators d̂ proposed by Robinson and Henry (2003), which solve1

m∑
j=1

wjψ(Ij/λ
−2d̂
j ) = 0, (7)

where wj are suitably defined weights and ψ(z) is a real valued monotonic
function. The weights are chosen to satisfy at least

m∑
j=1

wj = 0 (8)

to avoid the presence of higher-order cumulants in the asymptotic variances
of such estimators (under A2 below).

When

wj = νj
def
= log j − 1

m

m∑
l=1

logλl, (9)

the LW obtains with

ψ(z) = z − 1, (10)

and the LP obtains with

ψ(z) = log z. (11)

The LP has the computational advantage of being defined in closed form
as the least squares estimator for d in the simple regression

log Ij = α+ d(−2 logλj) + εj , (12)

for j = 1, . . . ,m, with α the “intercept” and εj the “error term.”
The LW is not defined in closed form, so that a consistency proof is required

prior to a proof of asymptotic normality based on a mean value argument and
the Bartlett decomposition:

1 Note that the omission of λ0 = 0 permits Xt to have unknown mean µ since Ij

is invariant to location shift for 1 ≤ j < n/2.
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I(λ) = 2πf(λ)Iε(λ) +Q(λ), (13)

where Iε denotes the periodogram of the innovations driving the generalized
linear process Xt (i.e. the εt’s in assumption A2 below), and Q(λ) is a remain-
der term. The principle of the proof is then to prove a central limit theorem for
the relevant function (i.e. the function G from (27) in the case of the LW) of
the “pseudo-periodogram” 2πf(λ)Iε(λ) and show that the relevant function
of the remainder term is asymptotically negligible. Given the method of proof,
however, the linearity of ψ in the LW case allows derivation of asymptotic re-
sults under much weaker assumptions on the process (A2 with weak conditions
on the conditional moments of the martingale difference innovations).

Since the central limit theorem is applied to averages of rescaled peri-
odogram ordinates, a short discussion of their properties is in order. When
the data has long memory, Hurvich and Beltrao (1993) showed that the peri-
odogram fails to be asymptotically unbiased for the spectral density, and that
periodogram ordinates at distinct frequencies generally fail to be asymptoti-
cally uncorrelated. However, the maintained use of periodogram ordinates in
this framework is vindicated by the analogous, if weaker, results under long
memory proved in Robinson (1995b) and summarized below: for all n, and
1 ≤ k ≤ [(n− 1)/2], and k < j ≤ [(n− 1)/2], and putting fk = f(λk),

|E(Ik/fk) − 1| ≤ αk, lim
k
αk = 0 (14)

|Cov(Ik/fk, Ij/fj)| ≤ αk,j ,∑
1≤k<j<[(n−1)/2]

αk,j = O(logr n), r > 0, (15)

[
Ik1

fk1

, . . . ,
Ikl

fkl

]
→d Vector of X 2

2 /2, (16)

for a given l-uple k1, . . . , kl.
The properties above underlie asymptotic results for semiparametric esti-

mators of long memory under a variety of assumptions on the process including
the following:

A1: {Xt} is a Gaussian process.
A2: Xt = µ +

∑∞
j=0 αjεt−j , where

∑∞
j=0 α

2
j < ∞ and εj are martingale

differences with finite fourth moments.
A3: A2 is satisfied with i.i.d. εj.

The linearity of LW allows for asymptotic normality under A2, as proved
in Robinson (1995a), and Robinson and Henry (1999) for an extension to
time dependent conditional variances in the innovations εj. Robinson (1995b)
shows asymptotic normality for LP under A3, and Robinson and Henry (2003)
base formal expansions in the general m-estimation case on assumption A1.
Asymptotic variances are all proportional to 1/m, so that restrictions needed
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on the rate of divergence ofm for asymptotic normality to hold are restrictions
on efficiency. Higher-order local-to-zero smoothness in h(λ) (cases with s ≥ 2)
can be exploited to implement bias reduction techniques and achieve in all
cases asymptotic normality under

1

m
+

ms

n1+s
→ 0, as n→ ∞, (17)

which results in ns/(1+2s) rates of convergence, which can be arbitrarily close
to

√
n when h(λ) is infinitely differentiable in the neighbourhood of zero.

This rate was shown by Giraitis, Robinson and Samarov (1997) to be the
minimax rate, assuming a priori knowledge of the local smoothness. The next
two sections consider bandwidth choice in the implementation of rate opti-
mal estimators when s is assumed known a priori, whereas the last section
considers estimators that are adaptive to an unknown degree of smoothness
s.

2 Optimal Rates of Convergence

Before assessing the quality of local estimation techniques, one needs to iden-
tify the best achievable rates of convergence by any measurable function of
the data consistent with predefined compact sets of spectral densities f(λ).

For ease of exposition, all such results will be expressed in terms of
quadratic risk

Ef

[
d̂− d

]2

(18)

where the expectation is taken under the law of a process with spectral density
f , and d̂ is a measurable function of (X1, . . . , Xn).

Using notation from Andrews and Guggenberger (2003), let s, δ, and the
elements of K = (K1,K2)

′ and a = (a0, a00, a1, . . . , a[s/2])
′ be positive finite

constants, and define the following class of integrable spectral densities:

F(s, a, δ,K) =

{
f : f(λ) = c|λ|−2d h(λ),

∫ π

−π

f ≤ K1, −
1

2
< d <

1

2

}
(19)

where h(λ) is an even function on [−π, π] satisfying

a0 < c < a00 (20)

h(λ) = 1 +

[s/2]∑
k=1

hkλ
2k

(2k)!
II{s≥2} +R(λ) (21)

where the hk’s are constants satisfying
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|hk| ≤ ak, k = 1, . . . , [s/2], (22)

and

|R(λ)| ≤ K2|λ|s, for all |λ| < δ. (23)

The following theorem is proved in Giraitis, Robinson and Samarov (1997),
with the extension to s > 2 given in Andrews and Guggenberger (2003).

Theorem 1.

lim inf
n

inf
d̂

sup
f∈F(s,a,δ,K)

n−
2s

1+2s Ef (d̂− d)2 > 0. (24)

This theorem shows how smoothness restricts the rate of convergence of
local estimators. Upper bounds presented below will show that these rates are
attained.

Note 1. Note that the condition s ≥ 1 and (iii) of Andrews and Guggenberger
(2003) are not necessary for the lower bound result of Theorem 1.

Note 2. Implicit in the bound on the integral of the spectral density
∫
f ≤ K1,

is the fact that d needs to be bounded away from 1/2.

Note 3. The lower bound on d need not be -1/2, but since this chapter is
concerned with stationary and invertible processes, we impose it here for ease
of notation.

Note 4. We have substituted a local condition on R(λ) to the global condition
in Giraitis, Robinson and Samarov (1997) which runs contrary to the spirit
of local estimators.

Note 5. Condition K1 ≥ 2πa00 would be necessary to insure that the family
of spectral densities considered is not empty.

3 Semiparametric M-estimation of Long Memory

We now turn to estimation strategies that can be expected to produce esti-
mators of d which attain the optimal rates of convergence.

3.1 Plug-in Method for the LW

Let us first consider the case where the spectral density f(λ) of Xt satisfies
the following extension of (1):

f(λ) = c|λ|−2d(1 + Eβλ
β + o(λβ)) when λ→ 0, (25)
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with 0 < Eβ <∞ and β > 0. Note that (25) is satisfied for spectral densities
that belong to any F(s, a, δ,K), s ≤ β and either β ≤ 2 or aj = 0, all j ≥ 1
(the latter being a very specific configuration which is relaxed later in this
section).

First, we briefly recall the plug-in method first proposed by Henry and
Robinson (1996) to select bandwidth optimally for the LW estimator, denoted

d̂LW . Recall from (7), (9) and (10) that d̂LW solves

G(d̂LW ) = 0, (26)

with

G(d) =

m∑
j=1

νj

(
Ij

λ−2d
j

− 1

)
. (27)

The heuristics of the Henry and Robinson (1996) approach can be summarized
as follows: the mean value theorem yields

d̂LW − d = − G(d)

G′(d̃)
, |d̃− d| ≤ |d̂LW − d|. (28)

Robinson (1995b) shows that

1

m
G′(d̃) →p 4. (29)

The expectation of G(d) can be approximated by

m∑
j=1

νj

(
fj

λ−2d
j

− 1

)
(30)

which has first order term, from (25), equal to

Eβ

m∑
j=1

νjλ
β
j (31)

so that the first order component of the asymptotic bias ABLW for the LW
was suggested to be

ABLW = − β

2(1 + β)2
Eβλ

β
m

def
= −θ

(m
n

)β

. (32)

Similarly, the variance of G(d) was approximated, using (15), by

m∑
j=1

νjE

[
Ij

λ−2d
j

− EIj

λ−2d
j

]
∼

m∑
j=1

ν2
j ∼ 1. (33)
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Finally, balancing squared asymptotic bias and asymptotic variance yielded
the “optimal bandwidth”

mopt =

[
(1 + β)4

2β3E2
β(2π)2β

] 1
1+2β

n
2β

1+2β (34)

allowing
√
m-consistent LW to attain the minimax rate of convergence (i.e.

rate nβ/(1+2β)).
The bias approximation above is vindicated by result (2.15) of Giraitis

and Robinson (2003a), which states that, under assumption A1, (25), and

m ∼ Kn
2β

1+2β , 0 < K <∞, (35)

the following expansion holds:

sup
y∈IR

∣∣∣P {√
m(d̂LW − d) ≤ y

}
− Φ(y +

√
mθ)

∣∣∣ = o(1), (36)

where Φ is the standard normal cumulative distribution function, and θ is
defined in (32).

Even when the degree of smoothness β is known, the constant Eβ needs to

be estimated. Henry and Robinson (1996) proposed Êβ equal to the ratio of the
second and first coefficients in the least squares regression of the periodogram
against

|λ|−2d̂LW (m)
[
1 λβ

j

]′
, j = 1 . . . ,m′, (37)

where d̂LW (m) denotes an initial LW estimate computed with bandwidth m.
Giraitis and Robinson (2003b) show that when m′ diverges faster than m,
more precisely when

nm− 1
2β

+ε ≤ m′ ≤ n1−ε, some ε > 0, (38)

then θ̂ obtained as θ in (32), where Eβ is substituted with Êβ , converges
almost surely to θ, so that

m̂opt

mopt
→a.s. 1, (39)

where m̂opt is the feasible version ofmopt with Eβ replaced by Êβ in (34). This
feasible version is shown in Henry and Robinson (1996) and Henry (2001) to
perform well in small samples on a wide variety of models, including condi-
tionally heteroscedastic ones.

This approach has two main drawbacks: the first is that selecting band-
width satisfying (39) does not guarantee that we are as close as possible to
minimum quadratic risk
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min
m

E(d̂LW (m) − d)2; (40)

and the second is that it assumes a known value of the smoothness param-
eter β, and, as we shall see in the following example, this greatly limits the
empirical relevance of this method at least when the degree of smoothness is
believed to be strictly smaller than 2.

3.2 Long Memory in Stochastic Volatility

The example of long memory in stochastic volatility we develop below shows
the relevance of considering local smoothness β < 2, and shows the incom-
patibility of a priori knowledge of β in the estimation of the long memory
parameter d, since β turns out to be a function of d.

A large amount of research has recently been focused on the degree of
dependence in squared, log-squared and other nonlinear transformations of
financial returns, themselves generally uncorrelated, as part of a general in-
vestigation of long memory in financial volatilities (see for instance Henry
and Zaffaroni (2003) and references therein). Such estimation often relies on
a mixture of distributions hypothesis on the market microstructure (first pro-
posed by Clark, 1973), and the resulting stochastic volatility model, where
the observables are martingale differences of the form

Yt = εtσt, (41)

where the innovations εt are i.i.d. and independent of the volatilities σt, and
the transformation of interest, say

Xt = |Yt|α, α > 0, (42)

has spectral density

f(λ) = f̃(λ) +
τ

2π
, λ ∈ [−π, π], (43)

where f̃ is the spectral density of |εtσt|α and

τ2 = V (|εt|α)E|σt|2α. (44)

So, if we let f̃(λ) = c|λ|−2dh̃(λ), no matter how smooth h̃, the short memory
part of the spectrum of Xt, i.e. h(λ) = f(λ)|λ|2d/c satisfies a Lipschitz condi-
tion of order at most 2d < 1, thus ruling out differentiability (as initially noted
by Deo and Hurvich, 2001). This also rules out rate optimal estimation of d
under the assumption that the local degree of smoothness of h(λ) is known a
priori.
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3.3 Smooth Models

In view of the preceeding example, the correct way to proceed in the choice of
bandwidth, is via a procedure that is adaptive to unknown degrees of smooth-
ness in h(λ).

However, certain models are known to satisfy (1), where h(λ) is smooth of
arbitrary order (i.e. infinitely continuously differentiable). One example is the
popular ARFIMA(p, d, q), defined as the model for a process Xt satisfying

Xt = (I − L)−db−1(L)a(L)εt (45)

where a(z) and b(z) are polynomials of order q and p respectively, with zeros
outside the unit circle in the complex plane.

Such a process does not, in general, satisfy (25) with β arbitrarily large.
It does, however, satisfy an expansion of (1) of the form

f(λ) = c|λ|−2d

{
1 +

q∑
k=1

hkλ
2k

(2k)!
+ o(λ2q)

}
, λ→ 0, (46)

for q and arbitrary integer. Note that hk is the (2k)th derivative of h(λ) at
λ = 0, and that a spectral density satisfying (46) belongs to F(s, a, δ,K) for
all s ≤ q.

In cases where h is infinitely differentiable at 0, bias reduction techniques
described below can be implemented, which increase the rate at which m is
allowed to diverge at the cost of an increased constant term in the asymptotic
variance. So, theoretically, rates can be achieved that are arbitrarily close to
the parametric rate. However, the constant term in the variance of higher-
order bias reducing estimators may be very large, so that, even with very
large samples, only limited bias reduction may be envisaged, and in practice,
the hypothesized degree of smoothness becomes, for all intents and purposes,
a user chosen integer, so that it makes sense in those cases to rely on a priori
“knowledge” of q for optimal estimation of d (when both rate and constant
are considered).

It is apparent in expansion (46) that the extra smoothness can be exploited
to control bias terms of increasing order and thus attain the rate lower bound.
Two related strategies to do so have been proposed.

The first strategy, proposed by Robinson and Henry (2003) relies on basing
the weights wj in the m-estimates solving (7) on higher-order kernels in the
following way: let kq(u), 0 ≤ u ≤ 1, called a q-th order kernel, satisfy∫ 1

0

kq(u)du = 1, (47)

∫ 1

0

(1 + log u)u2ikq(u)du
def
= Uiq = 0, 0 ≤ i < q, (48)


= 0, i = q. (49)
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Let the higher-order kernel m-estimating weights be defined by

wj = kq

(
j

m

){
logλj −

∑m
j=1 kq

(
j
m

)
logλj∑m

j=1 kq

(
j
m

) }
, (50)

and call d̂qψ(m) a solution to (7) under (50).
Assuming kq(u) is boundedly differentiable except perhaps at finitely many

points, and that ψ(z) is infinitely differentiable and such that there is some
0 < K <∞ such that for all k ≥ 1,

E
∣∣∣(cZ)kψ(k)(cZ)

∣∣∣ = ekψ ≤ K. (51)

where ψ(k)(z) denotes the kth derivative of ψ(z), and Z is a X 2
2 /2 random

variable, the same heuristics can be applied here as in section 2.1 to show
how the bias terms of increasing order are eliminated by the kernel weights to
yield asymptotic bias of order (m/n)2q, so that the optimal rate is attained
when square bias and variance are balanced by m = Kn4q/(1+4q).

More precisely, if we define

Vq =

∫ 1

0

(1 + log u)2kq(u)du, (52)

Wq =

∫ 1

0

(1 + log u)2k2
q(u)du, (53)

and

Q(ψ) = Var(ψ(cZ)), (54)

P (ψ) = (2π)2q

q∑
u=1

euψ

u!

∑
r1+...+ru=q

(
u∏

l=1

hrl

(2rl)!

)
,

Robinson and Henry (2003) derive expressions for the asymptotic bias AB:

AB = −UqqP (ψ)

2e1ψVq

(m
n

)q

, (55)

and variance AV :

AV =
Q(ψ)Wq

(e1ψVq)2
1

m
, (56)

so that the asymptotic mean squared error is minimized by

mopt =

(
e1ψWq

4qU2
qqP

2(ψ)

) 1
1+4q

n
4q

1+4q . (57)
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Andrews and Sun (2004) also achieve the optimal rate under (46) by a
transformation of the LW that allows for joint estimation of the memory
parameter d and the shape of h(λ) in the neighbourhood of frequency zero.
log h(λ) is fitted with a polynomial of order q in λ2, with coefficients θk,
k = 1, . . . , q, so that the loss function that defines the LW becomes

L(d, c, θ) =
1

m

m∑
j=1

{
Ij

cλ−2d
j exp

∑q
k=1 θkλ2k

j

+log

[
cλ−2d

j exp

q∑
k=1

θkλ
2k
j

]}
(58)

where θ = (θ1, . . . , θq)
′, and the estimator minimizes L(d, c, θ).

3.4 Faster Rate or Smaller Constant?

The asymptotic variance of the local polynomial Whittle estimator defined
above, and that of the higher-order kernel m-estimator, shrink at the faster
rate 1/m = n−2q/1+2q at the cost of a larger constant term. In the case of the
local polynomial Whittle, the constant inflation term is

cq = (1 − µ′qΓ
−1
q µq)

−1, (59)

with

µq =

(
2k

(1 + 2k)2

)q

k=1

(60)

and

Γq =

(
4lk

(1 + 2l+ 2k)(1 + 2l)(1 + 2k)

)q

l,k=1

. (61)

For instance, for smoothness s ∈ (2, 4], q = 2 and c2 = 3.52. In the same way,
c3 = 4.79 and c4 = 6.06 are the inflating constants in the higher smoothness
cases.

In the special case of higher-order kernel m-estimation of long memory
corresponding to higher-order kernel LW estimation, since Q(ψ)/e1ψ in (56)
equals 1 under (10), the inflating constant is(

Wq

V 2
q

)4

q=2

= (5.82 10799 13.4)′ (62)

where Vq and Wq, defined in (52) and (53 respectively) are computed in the
case

kq(u) =

q∑
j=0

aju
2j , (63)
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and the aj are such that (47) and (48) are satisfied. Of course, it is doubtful
that this form yields anything close to the optimal kernel, in the sense of
delivering the lowest quadratic risk. In any case, if we look only at the variance,
the sample size will need to be very large for the faster rate to dominate the
effect of an inflating constant larger than 10: for instance, in the case of the
local polynomial Whittle, the constant doubles from q = 2 to q = 4, and the
rate increases from n8/9 to n16/17. They break even around n = 50000.

4 Adaptive Estimation of Long Memory

We now consider an alternative to plug-in estimation which does not presume
prior knowledge of the degree of smoothness of h(λ) in the neighbourhood of
zero and achieves the optimal rates up to logarithmic factors.

The key to the adaptive estimation procedures is to select a bandwidth m
as a function of an adaptively chosen level of smoothness ŝ, first obtained by
Giraitis, Robinson and Samarov (2000), who refer to a method first proposed
by Lepskii (1990) in a different nonparametric setting.

Roughly speaking, ŝ is chosen as the largest s, such that the estimator
based on the bandwidth m = m(s) is not significantly different from all such
estimators using m(ζ), 0 < ζ < s; and m(s), instead of balancing variance
squared bias, allows squared bias to exceed variance by a factor logn. More
precisely, let d̂(m) denote a semiparametric estimator of d based on m har-
monics of the periodogram. Let b(m) designate the bias of such an estimator,
and σ(m) the highest order of magnitude component of the stochastic fluctu-

ation term of d̂(m). A value m of the bandwidth is called “admissible” if, for
some positive constant K, chosen large enough,

|d̂(m′) − d̂(m)| ≤ Kσ(m′)(log n)
1
2 for all m′ ≤ m. (64)

The adaptive value of m, called m̂, is chosen as the largest admissible band-
width (i.e. the largest integer that satisfies (64)). The principle of this adap-
tive estimation method is then to show that m̂ thus chosen is sufficiently close
with sufficiently high probability to the value of the bandwidth which balances
b(m) and σ(m)(log n)1/2. This requires the exponential inequalities (3.11) in
Giraitis, Robinson and Samarov (2000) for instance.

For the class of spectral densities F(s, a, δ,K) where aj = 0, all j ≥ 1,
Corollary 7.1 of Moulines and Soulier (2003) shows that a tapered version of
the LP achieves the rate

m̂ = ns/1+2s(logn)1/2 (65)

when K satisfies K > 6 (required by their exponential inequality (T3)). Ta-
pering is needed for better control of the bias, and is achieved by replacing
the DFT’s in (5) by
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φh(λ) =

(
2π

n∑
t=1

h2
t

)− 1
2 n∑

t=1

h2
tXte

itλ, (66)

where the tapering sequence ht can be taken equal, in the case of the “cosine
bell taper,” to

ht =
1

2
(1 − cosλt), t = 1, . . . , n. (67)

The earlier adaptive estimator proposed by Giraitis, Robinson and Sama-
rov (2000) was built on a variant of Lepskii’s method in the following way:
the unknown degree of smoothness s is bounded above and below by s∗ and
s∗ respectively. The interval [s∗, s

∗] is endowed with the net

B = {s ≥ 0 : s = s∗ − k

logn
, k = 1, . . .} (68)

and the smoothness estimator is defined as

ŝ = sup
s∈B

{
|d̂(m(s′)) − d̂(m(s))| ≤ 2(s∗ − s′)

(1 + 2s′)2

(
log2 n

n

) s
1+2s

, s′ ∈ B
}
, (69)

where

m(s) = (logn)
2

1+2s n
2s

1+2s (70)

thereby defining an adaptive estimator that achieves the rate

m(ŝ) ∝
(

n

logn

) s
1+2s

. (71)

Both rates (65) and (71) reach the optimal rate of convergence identified
by Theorem 1 up to logarithmic factors. However, both fail to reach the opti-
mal adaptive rate lower bound identified by the following theorem, proved in
Giraitis, Robinson and Samarov (2000), with a restricted to the case aj = 0,
all j ≥ 1:

Theorem 2.

lim inf
n

inf
d̂

sup
s∗≤s≤s∗

(
n

logn

)− 2s
1+2s

sup
f∈F(s,a,δ,K)

Ef (d̂− d)2 > 0. (72)

It is conjectured that this lower bound is the adaptive minimax rate for the
class F(s, a, δ,K) (including the case where a is unrestricted), but so far, the
upper bounds in the literature do not coincide with the lower bound of Theo-
rem 2. In the case of smooth models (s ≥ 2) with a unrestricted, the method
of choosing the largest admissible bandwidth in (64) can still be applied, but
needs to be modified to take account of the fact that when s reaches even
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integers, the estimator changes (to a higher-order kernel version in Robin-
son and Henry (2003), or a higher-order polynomial version in Andrews and
Guggenberger (2003) and Andrews and Sun (2004)) to achieve bias reduction,
and so does the first order of magnitude σ(m) in the stochastic fluctuation
term.

Andrews and Sun (2004) construct an adaptive version of their local poly-
nomial Whittle, i.e. the estimator minimizing (58), in a way that mimics very
closely the construction in Giraitis, Robinson and Samarov (2000), and which
may also be used with higher-order kernel m-estimators. Call σq(m) the first
order of magnitude term of the stochastic fluctuation term for an estimator
d̂q(m) based on a kernel of order q (Robinson and Henry, 2003) or a local
polynomial of order 2q (Andrews and Sun, 2004). Now the two user chosen
parameters are the bandwidth m(s) and the kernel or polynomial order q(s).
Set

m(s) = n
2s

1+2s (73)

q(s) = u, s ∈ (2u, 2(u+ 1)], (74)

and select ŝ as the largest admissible value, i.e.

ŝ = sup
s≥1

{
|d̂q(s′)(m(s′)) − d̂q(s)(m(s))| ≤ Kζnσq(s′)(m(s′))

}
, (75)

with ζn = logn(log logn)
1
2 .
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Summary. We present and study the performance of the semiparametric wavelet
estimator for the long–memory parameter devised by Veitch and Abry (1999). We
compare this estimator with two semiparametric estimators in the spectral domain,
the local Whittle (LW) estimator developed by Robinson (1995a) and the “log–
periodogram” (LP) estimator by Geweke and Porter–Hudak (1983). The wavelet
estimator performs well for a wide range of nonlinear long–memory processes in
the conditional mean and the conditional variance, and is reliable for discriminating
between change–points and long–range dependence in volatility. We also address the
issue of selection of the range of octaves used as regressors by the weighted least
squares estimator. We will see that using the feasible optimal bandwidths for either
the LW and LP estimators, respectively studied by Henry and Robinson (1996) and
Henry (2001), is a useful rule of thumb for selecting the lowest octave. We apply the
wavelet estimator to volatility series of high frequency (intra–day) Foreign Exchange
(FX) rates, and to the volatility and volume of stocks of the Dow Jones Industrial
Average Index.

1 Introduction

The occurrence of long–range dependence, or strong dependence or long–
memory, in economics is documented by numerous research works. Although
it is widely accepted that squared or absolute returns on financial assets dis-
play long–range dependence, we are still unsure that what is observed is ei-
ther genuine long–memory or a statistical artefact, as statistical tools used
for the study of long–range dependent processes made the assumption that
the process under investigation is homogeneous and stationary. Thus, it has

� We thank Carlos Velasco and Olsen & Associates for providing some of the data
used in this chapter, Liudas Giraitis for a very careful reading and Gabriel Lang
for useful discussions.
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been claimed, see e.g., Mikosch and Stărică (1999, 2003, 2004a, 2004b) that
the observed long–range dependence is spurious and the consequence of non–
stationarity in the data.

Discriminating long–range dependence from single (or multiple) change–
point(s) is a very active research area in statistics, see e.g., Lavielle (1999),
Berkes, Horváth, Kokoszka and Shao (2003). Change–points and long–range
dependence might coexist, and finding the optimal number of change–points
and their location requires a more elaborated approach than Vostrikova’s
(1981) binary segmentation procedure, see Lavielle and Teyssière (2005), al-
though most econometrics research papers still resort to the binary segmen-
tation methods, or a mix of this algorithm and the tests by Lavielle (1999)
and Lavielle and Moulines (2000), a combination giving incorrect results.

We consider here a statistical method for the analysis of long–range de-
pendence, based on wavelets, which does not require these strong stationarity
assumptions and is robust to some departures from the previous hypotheses.
Empirical research works by Kokoszka and Teyssière (2002) and Teyssière
(2003) reached the conclusion that the intensity of strong dependence in
volatility processes measured with wavelet based estimators is lower than what
is usually found using estimators in either the time or the frequency domain,
and then volatility processes mix a moderate level of long–range dependence
and change–points.

As empirical evidence suggests that financial time series are highly non-
linear, in particular volatility processes exhibit a combination of nonlinearity,
long–range dependence and change–points, we study in this chapter the es-
timation of the scaling coefficient for some nonlinear long–memory processes
used in the statistical and econometrics literature, and compare the perfor-
mance of the wavelet estimator with the one of two semiparametric estimators
in the frequency domain: the local Whittle (LW) estimator by Künsch (1987)
and Robinson (1995a), and the “log–periodogram” (LP) estimator by Geweke
and Porter–Hudak (1983). These semiparametric estimators are of interest for
researchers dealing with real data, as the Data Generating Process (DGP) of
the observed data is unknown, the estimation of a misspecified parametric
model might lead to serious biases in estimation. Since one has to resort to
semiparametric methods, it is then useful to know the performance of these
estimators for a wide range of nonlinear dependent processes.

We consider some nonlinear long–memory processes that were not studied
in Abry et al. (2003): the linear ARCH (LARCH) process, the long–memory
stochastic volatility (LMSV) process, the nonlinear moving average (NLMA)
process, and some nonlinear transformations of fractionally integrated pro-
cesses. We also study the performance of the wavelet estimator for the case
of change–point processes, i.e., the non–stationary GARCH process, a pro-
cess with non constant coefficients. The relevance of wavelet analysis for
dealing with the issue of change–point and spurious strong dependence in
GARCH processes has been conjectured in previous works, see e.g., Kokoszka
and Teyssière (2002), Teyssière (2003), but never systematically analyzed. We



Wavelet Analysis of Financial Time Series 175

also consider the case of a volatility process mixing both strong dependence
and change in regimes, the non homogeneous LMSV process, and the case of
dependent processes with polynomial and broken trends.

We also address a standard issue in semiparametric estimation of strongly
dependent processes, the cutoff between short–range and long–range depen-
dence. The bandwidth selection problem has been studied for the LW and LP
estimators by Henry and Robinson (1996), Hurvich, Deo and Brodsky (1998)
and Henry (2001). For the wavelet estimators, we have to select the range of
octaves used as regressors by the weighted least squares estimator. On the
basis of some simulations, we suggest some choices for the lowest octave, and
we will see that using the optimal bandwidth for the LW estimator is a useful
rule of thumb for selecting this lowest octave.

We also report some simulation results for the use of the feasible optimal
bandwidth for the LP estimator, and will see that this data–driven bandwidth
works well for a large variety of nonlinear long–range dependent processes, and
often better than the fixed bandwidths [T b], with b ∈ (0, 1), usually considered.

We will see that although the wavelet estimator has been devised for the
standard Gaussian case, it still works for a broader class of nonlinear processes,
provided in the case of highly nonlinear processes, that the sample size is
large enough for disentangling the long–memory component from the other
nonlinear ones. Since the performance of the wavelet estimator is satisfactory
enough, we consider an application of this estimator to high–frequency (intra–
day) foreign exchange (FX) rates, and to trading volume.

This chapter is organized as follows: section 2 presents the long–range
dependent processes that we will study with the wavelet estimator, while sec-
tion 3 presents the wavelet and semiparametric spectral estimators. Section
4 compares the performance of the wavelet estimator with other standard
semiparametric estimators in the spectral domain for a large variety of non-
linear strongly dependent processes. Section 6 gives several applications to
high–frequency Foreign Exchange (FX) rates and to trading volume of stocks
of the Dow Jones Industrial Average Index.

2 Long–Memory or Long–Range Dependence

2.1 Definition and Consequence

Definition 1. Let {Yt, t ∈ IR} be a second–order stationary process. This pro-
cess is a long–memory process if its spectrum fY (λ) is such that in a close
positive neighborhood of the zero frequency,

fY (λ) ∼ cfλ
−α, λ→ 0+, cf ∈ (0,∞), (1)

or equivalently, if its autocorrelation function ρY (k) has the following hyper-
bolic rate of decay3

3 xk � yk means that ∃ two constants C1, C2 such that C1yk � xk � C2yk, k → ∞.
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ρY (k) � kα−1, (2)

with α ∈ (0, 1).

As a consequence of equation (2), the autocorrelations of a long–memory
process are not summable, i.e.,

∞∑
k=−∞

ρY (k) = ∞. (3)

Long–memory received an interesting non standard exposition based on the
covariance under aggregation of the sum of covariances in Gefferth et al.
(2003).

2.2 Standard Linear Long–Range Dependent Processes

• Fractionally Integrated Process

The Fractionally Integrated process, denoted as either FI(d) or I(d), defined
as

(1 − L)d(Yt − µ) = εt, εt ∼ N(0, σ2
ε), (4)

where µ is the unknown mean of the process, L stands for the lag operator,
i.e., LYt = Yt−1, the fractional difference operator (1 − L)d associated with
the degree of fractional integration d ∈ (−0.5, 0.5), is defined as

(1 − L)d =

∞∑
j=0

bjL
j , b0 = 1, bj =

j∏
k=1

(
1 − 1 + d

k

)
, (5)

bj ∼ − 1

Γ (−d)j
−(1+d) −→ ∞,

where Γ (·) denotes the Gamma function. When d ∈ (0, 0.5) (respectively, d ∈
(−0.5, 0)) the process is said to be persistent (respectively, anti-persistent).
For this process, one has:

α = 2d. (6)

• Fractional ARIMA (FARIMA) Process

The FI(d) process is nested into the class of Fractional ARIMA processes,
defined as

φ(L)(1 − L)d(Yt − µ) = θ(L)εt, εt ∼ N(0, σ2
ε), (7)

where φ(L) = 1 −
∑p

j=1 φjL
j and θ(L) = 1 +

∑q
j=1 θjL

j are lag polynomials
of respective orders p and q with root outside the unit circle. This model,
which is denoted as FARIMA(p, d, q), generalizes the class of ARIMA(p, d, q)
models with integer degree of differentiation.
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The spectrum of a FARIMA(p, d, q) process is equal to

fY (λ) =
σ2

ε

2π

|θ(exp(−iλ))|2
|φ(exp(−iλ))|2 |1 − exp(−iλ)|−2d. (8)

With
α = 2d, (9)

then the spectrum of a FARIMA(p, d, q) process is of the form of equation (1).

• Estimation Issues

Under the hypothesis of Gaussian error terms, the parameters ζ = {θi, φj , µ, d}
are estimated by maximizing the log–likelihood function, in either the time or
the frequency domain; see Beran (1994), Robinson (1994) and Hauser (1999)

for a survey. The parameters ζ̂ have the rate of convergence equal to T 1/2,
where T denotes the sample size, except the parameter µ, the rate of conver-
gence of which is equal to T 1/2−d. This illustrates the difficulty to disentangle
long–range dependence from changes in the mean parameter µ of the process.

• Empirical Volatility: The Need for Nonlinear Long–Memory
Processes

While returns on asset prices, defined as rt = log(Pt/Pt−1), where Pt denotes
the asset price at time t, are uncorrelated, empirical evidence from the series
of absolute returns |rt| and squared returns r2t has shown that the spectrum
and the autocorrelation function, henceforth ACF, for both series behave like
equations (1) and (2). Both the series |rt| or r2t are commonly used as empirical
measures for the volatility, which hence appear to be strongly dependent.
Figures 1 and 2 below display the periodogram and the ACF of absolute
returns on dollar-deutschmark FX rate.
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Fig. 1. Periodogram of absolute returns on dollar-deutschmark FX rate
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Fig. 2. ACF of absolute returns on dollar-deutschmark FX rate

The rich dynamics of these volatility processes cannot be parsimoniously
fitted by standard FARIMA processes. Moreover, as emphasized by Granger
(2000, 2002) absolute and squared returns do not display trends, unlike
FARIMA processes. Thus, there is a need to resort to long–range dependent
nonlinear processes.

2.3 Nonlinear Long–Range Dependent Volatility Processes

• ARCH(∞) Processes

Robinson (1991) introduced the class of ARCH(∞) processes, further devel-
oped by Granger and Ding (1995) and other authors. The ARCH(∞) is defined
as

rt = σtεt, εt ∼ D(0, 1), σ2
t = ω + ϕ(L)ε2t , (10)

where D(0, 1) is a zero-mean unit-variance random variable, and ϕ(L) =∑∞
i=1 ϕiL

i is an infinite order lag polynomial the coefficients of which are
positive and have asymptotically the following hyperbolic rate of decay

ϕj = O
(
j−(1+d)

)
. (11)

However, the existence of a stationary solution to the equation (10) defining
an ARCH(∞) process imply

∑∞
i=1 ϕi < ∞, then the model has moderate

memory; see Giraitis, Kokoszka and Leipus (2000) for further details.
With these assumptions, the autocorrelation function (ACF) of the se-

quence of squared returns {r2t } satisfies

Cov(r20 , r
2
k) � k2d−1. (12)

Setting α = 2d, and Yt = r2t , the squared returns process defined by a sta-
tionary ARCH(∞) has moderate memory. In the applied econometrics and
financial econometrics literature, the conditions for the existence of a station-
ary solution are disregarded, and it is wrongly claimed that the ARCH(∞)
defined by equation (10) has long–memory.
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• Linear ARCH

Robinson (1991) introduced the linear ARCH, henceforth LARCH, further
studied by Giraitis, Robinson and Surgailis (2000), and defined as

rt = σtεt, εt ∼ D(0, 1), σt = ω + β(L)rt, (13)

where β(L) =
∑∞

i=1 βiL
i is an infinite order lag polynomial the coefficients of

which have asymptotically the following hyperbolic rate of decay

βj = O
(
jd−1

)
, (14)

for some d ∈ (0, 1/2). For instance, the lag polynomial β(L) can be the one
of the moving average form of a FARIMA process.

Giraitis, Robinson and Surgailis (2000) proved the following theorem:

Theorem 1. Suppose Eε40 < ∞ and L(Eε40)
1/2

∑∞
j=1 β

2
j < 1, where L = 7 if

the {εk} is Gaussian and L = 11 in the other cases. Then, there is a stationary
solution to equations (13) and (14) given by orthogonal Volterra series

rt = σtεt, σt = ω

∞∑
l=0

∞∑
j1,...,jl=1

βj1 · · ·βjl
εt−j1 · · · εt−j1−···−jl

. (15)

The sequence {r2t } is covariance stationary and

Cov(r20 , r
2
k) � k2d−1. (16)

Setting α = 2d, and Yt = r2t , the ACF of the squared returns process has
the hyperbolic decay of a long–memory process given by equation (2). See
the chapter by Giraitis, Leipus and Surgailis (2005) in this volume for further
details. Giraitis, Kokoszka, Leipus and Teyssière (2000) considered “pox–plot”
based estimators and the local Whittle estimator for the estimation of the
scaling parameter α. We consider in section 4.1 the estimation of the scaling
parameter with wavelet methods.

• The Long–Memory Stochastic Volatility Process

The long–memory stochastic volatility process, proposed by Breidt et al.
(1998), is defined as

rt = σtζt, ζt ∼ N(0, 1), (17)

σt = σ exp(Xt/2), Xt ∼ FARIMA(p, d, q), (18)

where σ is a scale parameter, the processes {Xt} and {ζt} are independent.
The process {r2t } is linearized as follows

log r2t = log σ2 + E(log ζ2
t ) +Xt +

(
log ζ2

t − E(log ζ2
t )
)

= µ+Xt + εt, (19)
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where {εt} is i.i.d, E(εt) = 0 and Var(εt) = σ2
ε . Since ζ ∼ N(0, 1), then log ζ2

is distributed as the logarithm of a χ2
1 random variable, thus E(log ζ2) = 1.27

and σ2
ε = π2/2.

The spectral density of the process {log r2t } is given by:

f(λ) =
σ2

e

2π

|θ(exp(−iλ))|2

|φ(exp(−iλ))|2
|1 − exp(−iλ)|−2d

+
σ2

ε

2π
, λ ∈ (−π, π), (20)

where σ2
e denotes the variance of the innovations of the FARIMA process

{Xt}. Thus, the spectral density of the process {log r2t } is the sum of the
spectral density of a FARIMA(p, d, q) process and the spectral density of a
white noise process. Setting α = 2d and Yt = log r2t , then the spectrum fY (λ)
given by equation (20) satisfies equation (1).

Deo and Hurvich (2003) studied the estimation of the long–memory param-
eter using the semiparametric log–periodogram (LP) estimator in the spectral
domain by Geweke and Porter–Hudak (1983). In section 4.2, we compare the
estimations of the long–memory parameter obtained from the wavelet and LP
estimators using Henry’s (2001) feasible optimal bandwidths.

• The Nonlinear Moving Average Process

The nonlinear moving average process, proposed by Robinson and Zaffaroni
(1997), is an extension of Robinson’s (1977) short range dependent nonlinear
moving average process:

rt = µ+ σt−1εt, σt−1 = ρ+

∞∑
i=1

βiεt−i,

∞∑
i=1

β2
i <∞, (21)

where the innovation process {εt} is i.i.d and satisfy the following conditions:

E(εt) = E(ε3t ) = 0, (22)

E(ε2t ) = σ2, 0 < σ2 <∞,

E(ε4t ) = κ+ 3σ4,

where κ is the fourth cumulant of the process {εt}. If the process {εt} is
Gaussian, κ = 0.

The autocorrelation function of the process {r2t } is given by

γr2(k) = 2σ8β2
|k|δββ(0) + 2σ8δββ(k) + 4ρ2σ6δββ(k) (23)

+σ4κ
(
β2
|k|δββ(0) + δβ2β2(k)

)
+ 4σ4µβ|k|

(
ρ2 + σ2δββ(k)

)
+2ρ2σ6β2

|k| + νyδ(k, 0), k = 0,±1, . . . ,

where νr is a strictly positive constant, δβ� =
∑∞

i=1 βi�i+u, u = 0,±1, . . . for
any square summable sequence {βi} {�i}, δ(·, ·) is the Kronecker delta.
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When the sequence {βi} of the MA form of equation (21) verifies the
convergence rate given by equation (14) and ρ 
= 0, setting α = 2d and
Yt = r2t , then the autocorrelation function has the rate of decay given by
equation (2).

2.4 Nonlinear Transformations of Fractionally Integrated
Processes

Another approach for modeling non–Gaussian LRD processes consists in tak-
ing nonlinear transformations of Gaussian LRD processes satisfying (2); see
Surgailis (1981), the third chapter by Beran (1994), Giraitis and Surgailis
(1985, 2005) and references therein for further details.

We consider here the case of a Gaussian process {Xt} and its transforma-
tion by a function G(·) such that EG2(Xt) < ∞, then this function can be
expanded in series of Hermite polynomials:

G(x) =

∞∑
k=0

ck
k!
Hk(x), (24)

where

ck = E[G(X)Hk(X)] =
1√
2π

∫ ∞

−∞

G(x)Hk(x)e−x2/2dx, (25)

so that H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x, Hk(x) =

(−1)ke(x
2/2)(e−x2/2)(k), k � 0.

If {Xt} is a Gaussian LRD process with scaling parameter α, satisfying
equation (2), then the expansion

Yt = G(Xt) =

∞∑
J=1

cJ
J !
HJ(Xt), (26)

has the following properties:

• The processes {HJ(Xt), t ∈ ZZ} are orthogonal,
• For 1 � J � 1/(1 − α), the process {HJ(Xt)} satisfies equation (2) as

Cov(HJ (X0), HJ (Xk)) = J !Cov(X0, Xk)J � J !cJγk
J(α−1), (27)

thus, the memory parameter of {HJ(Xt), t ∈ ZZ} decreases with J .

The index of the lowest nonzero coefficient ck, k � 1, of the transformation
G(·) is called the Hermite rank of the transformation, denoted by R. For a
transformation G(Xt) of rank 1,

Yt = G(Xt) = c1H1(Xt) +
∑
J�2

cJHJ(Xt)/J ! = c1Xt + St, (28)



182 Gilles Teyssière and Patrice Abry

the linear term c1Xt dominates the memory of the nonlinear term St. As a
consequence, Yt has the same scaling parameter of Xt: the transformation
G(Xt) does not increase the memory of Xt.

The intensity of long–range dependence of the nonlinear transformed pro-
cess {Yt} coincides with the scaling parameter of the lowest nonzero term
k � 1, as for a transformation G(Xt) of Hermite rank R,

Yt = G(Xt) = cRHR(Xt) +
∑

J�R+1

cJHJ(Xt)/J !, (29)

the memory of the leading term cRHR(Xt) dominates the memory of the
remainder term

∑
J�R+1 cJHJ(Xt)/J !.

Dittman and Granger (2002) considered the particular case Xt ∼ FI(d),
then {Yt = G(Xt), t ∈ ZZ} is a long–memory process with long–memory pa-
rameter d̃ = max{0, (d−0.5)R+0.5}. Here, α = 2d̃. We consider in section 4.4
the estimation of the scaling parameter for some nonlinear transformations of
FI(d) processes.

3 Estimation of the Long–Memory Parameter

We compare the statistical performance of the wavelet estimator with the
two standard semiparametric estimators in the spectral domain used in the
statistical and econometric literature for estimating the scaling parameter α
of the processes introduced in section 2 and of real data, namely the local
Whittle estimator and the LP estimator. The remainder of this section recalls
the definitions and compare the key properties of the wavelet, local Whittle
and LP estimators (hereafter denoted by α̂W , α̂LW and α̂LP ).

Remark 1. All three estimators are sharing similar features:

• They are based on the same semiparametric hypothesis: in the neighbor-
hood of the zero frequency, the spectrum of the process under investigation
satisfies equation (1).

• They imply the estimation of a second-order statistical quantity from the
observed times series (the periodogram IY (λj) or the scalogram SY (j)).

• They involve the choice of a range of frequencies or scales over which the
estimation is to be performed. This crucial step will be addressed with
care as this is one of the main practical issue that strongly controls the
actual performance of these estimators.

• For the LP and LW estimators in the spectral domain, we will select the
range of frequencies using plug–in methods; see Henry (2001), Moulines
and Soulier (2003) for a detailed presentation. For the wavelet estimator,
we will derive the lowest octave using the optimal bandwidth provided by
these plug–in methods.



Wavelet Analysis of Financial Time Series 183

3.1 Local Whittle Estimator

• Definition. The local Whittle estimator α̂LW has been proposed by
Künsch (1987) and further developed by Robinson (1995a). It is defined as

α̂LW = argmin
α
G(α,m) :=

⎧⎨⎩ln

⎛⎝ 1

m

m∑
j=1

IY (λj)

λ−α
j

⎞⎠− α

m

m∑
j=1

ln(λj)

⎫⎬⎭ , (30)

where IY (λj) is the periodogram evaluated on a set of m Fourier frequencies
λj = 2πj/T, j = 1, . . . ,m � [T/2], where [·] denotes the integer part, the
bandwidth parameter m tends to infinity with the sample size T but more
slowly since 1/m + m/T → 0 as T → ∞. The process does not need to be
Gaussian, but its spectrum is differentiable near the zero frequency, and the
process has a moving average representation.

• Performance. The LW estimator has the following asymptotic distribu-
tion √

m(α̂LW − α)
d−→ N(0, 1), (31)

where
d−→ means convergence in distribution. The normality result comes

from the assumption that the spectrum

fY (λ) = Cλ−α
[
1 + Eβ(α)λβ + o(λβ)

]
, 0 < |Eβ(α)| <∞, (32)

as λ → 0+, with β ∈ (0, 2] controls the smoothness of the spectrum near
the zero frequency, C is a strictly positive constant, and the bandwidth m
satisfying

1

m
+
m2β+1 log2m

T 2β
−→ 0, T −→ ∞, (33)

see Robinson (1995a) and Henry (2001) for further details.

Remark 2. In this framework, Giraitis, Robinson and Samarov (1997) have
demonstrated that the best attainable rate for an estimator α̂ is T−r(β), with
r(β) = β/(1 + 2β) < 1/2, thus slower than the rate T−1/2 of parametric
estimators. For the LW estimator, the rate of convergence is T−r(β)Mn where
(logm)−1/(1+2β)Mn = o(1).

• Range of Frequencies. In this framework, i.e., when fY (λ) satisfies (32)
the optimal bandwidth in the sense of minimization of the mean square error
(MSE) has been provided by Henry and Robinson (1996) as

mopt
LW =

[
(β + 1)4

2β3Eβ(α)2(2π)2β

]1/(1+2β)

T 2β/(1+2β). (34)

With the additional assumption that β = 2, i.e., the smoothest case for the
spectrum, we obtain the optimal bandwidthmopt

LW with the iterative procedure:
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α̂(k) = argmin
α
G(α,m(k)), (35)

mopt
LW

(k+1)
=

(
3T

4π

)4/5 ∣∣∣E2(α
(k))

∣∣∣−2/5

, (36)

this iterative procedure starting at m(0) = T 4/5, with α ∈ (0, 1). Without
additional knowledge on E2(α

(k)), this procedure is infeasible. If we further
assume the following specification for the spectrum

fY (λ) = |2 sin(λ/2)|−α
f�(λ), (37)

where f�(·) is twice continuously differentiable and positive at λ = 0, then a
feasible optimal bandwidth is obtained with this approximation (see Delgado
and Robinson, 1996):

E2(α
(k)) =

f ′′� (0)

2f�(0)
+
α

24
(38)

where f�(0) and its second derivative f ′′� (0) are the first and last coefficients of
the regression of the periodogram I(λj) against |1− exp(iλ)|−α(0)(1, λj , λ

2
j/2)

for the range of Fourier frequencies λj for j = 1, . . . ,m(0). This iterative
procedure defined by equations (35) and (36) converges very quickly.

Remark 3. The choice for this optimal bandwidth is motivated by two reasons:

• This bandwidth, the theory of which has been developed for linear LRD
processes, is also robust to the presence of (long–memory) conditional
heteroscedasticity in the process; see Henry (2001).

• This bandwidth works well, even for nonlinear LRD processes, such as the
LARCH process; see Giraitis, Kokoszka, Leipus and Teyssière (2000).

3.2 Log–Periodogram Regression

• Definition. Geweke and Porter–Hudak (1983) proposed an estimator
α̂LP for α that consists in performing a least squares regression on the log–
periodogram (LP) over a range of frequencies λj :

log IY (λj) = log cf − α log λj + ej , j = 1, . . . ,m, (39)

where the sequence {ej} is interpreted as error terms; see Henry (2005) in this
volume for more details.

• Performance. The LP estimator α̂LP has the following asymptotic dis-
tribution

√
m(α̂LP − α)

d−→ N

(
0,
π2

6

)
. (40)
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Remark 4. This central limit theorem requires that the bandwidth m satisfies
equation (33). As mentioned in the remark 2 above, this estimator has the
slow rate of convergence m1/2. The best rate of convergence T−r(β), with
r(β) = β/(1 + 2β) is attained with Robinson’s (1995b) version of the LP
estimator.

• Regression Range. Usually, to select m, one chooses m = [T 4/5] for
long–memory processes in the conditional mean, e.g., FARIMA processes or
nonlinear transformations of FI(d) processes, see e.g., Dittman and Granger
(2002), and m = [T 1/3] for the LMSV process, see e.g., Deo and Hurvich
(2003). For the LMSV process, this usual choice yields estimates with a
slightly lower bias than he one obtained with m = [T 4/5], while the Root
Mean Squared Error of the estimator is increased by a factor equal to 2. For
other nonlinear processes, like the ones considered in this chapter, this choice
yields strongly biased and then unreliable estimates. Under the restriction
that the spectrum has the specification given by equation (37), Hurvich et al.
(1998) proposed an optimal bandwidth mopt

LP minimizing the MSE for the LP
estimator

mopt
LP =

[
27(2f�(0))2

512π2(f ′′� (0))2

]1/5

T 4/5. (41)

A feasible bandwidth is obtained by estimating f�(0) and f ′′� (0) as above for
the case of the optimal bandwidth for the LW estimator; see the useful paper
by Henry (2001) for further details.

Remark 5. The choice m = cT r(β) gives the best rate, and with a suitable
choice of cminimizes the MSE. However, this choice does not imply the central
limit theorem of equation (40).

Remark 6. Unlike for the optimal bandwidth of the LW estimator, the proper-
ties of robustness of α̂LP to heteroskedasticity have to be established, so that
we tend to prefer α̂LW .

3.3 Wavelet Based Estimator

A Short Introduction to Wavelet Analysis

For complete and thorough introductions to wavelet analysis and decompo-
sitions, the reader is referred to e.g., the books by Daubechies (1992) and
Mallat (1998).

• Mother–Wavelet.

Definition 2. A wavelet is a function ψ(·) defined on IR such that∫
IR

ψ(t) dt = 0, (42)

i.e., satisfies the admissibility condition.
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We also assume that ψ(t) satisfies some integrability condition, i.e., ψ(t) ∈
L1(IR)∩L2(IR). The wavelet function is then a band–pass function, i.e., a small
“wave” the support of which is almost limited in both the time and frequency
domains. To perform a wavelet analysis, one choose a reference wavelet, called
the mother–wavelet, hereafter denoted ψ0.
• Wavelet–Basis. From this ψ0, a entire family of wavelets is designed
using two operators:

1. A times–shift operator: (Tτψ0)(t) = ψ0(t− τ),

2. A dilation (or change of scale) operator: (Daψ0)(t) =
1√
a
ψ0

(
t

a

)
.

For the particular purpose of this work, we consider here only a particu-
lar type of wavelet decomposition, the so-called Discrete Wavelet Transform
(DWT). From the time-shift and dilation operators above, the specific collec-
tion of translated and dilated templates of ψ0, defined as{

ψj,k = 2−j/2ψ0(2
−jt− k), j ∈ ZZ, k ∈ ZZ

}
, (43)

forms (a possibly orthonormal) basis of L2(IR).

• Wavelets Coefficients of the Discrete Wavelet Transform. The
wavelet coefficients of the DWT for an analyzed process or function Yt are
labeled dY (j, k) and defined as

dY (j, k) = 〈Y, ψj,k〉 =

∫
IR

Y (t)ψj,k(t) dt, (44)

where ψj,k is the wavelet basis defined in (43). It is worth noting that
the dY (j, k)s can be computed at a very low cost (of the order of that
of a FFT) from a recursive pyramidal algorithm on the condition that the
mother-wavelet ψ0 is chosen to belong to a Multiresolution analysis; see e.g.,
Daubechies (1992) or Mallat (1998).

• Number of Vanishing Moments and Polynomial Trends. The
mother wavelet ψ0 is further characterized by an integer N , called the number
of vanishing, or zero, moments and defined as:∫

IR

tkψ0(t)dt ≡ 0, ∀k = 0, . . . , N − 1. (45)

Obviously, from the admissibility condition, equation (42) above, one has
N ≥ 1. This integer N constitutes a key degree of freedom in wavelet analysis
that can be freely chosen by the user and tuned to a given purpose. We will
show that the use of this degree of freedom plays a central role in the analysis
of long–range dependent processes as well as in the discrimination between
genuine strong dependence, and non–stationarities such as those existing in
change–points processes or trended processes. Indeed, by definition of N , the
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wavelets coefficients of any polynomial of order P < N will be strictly null
dP (j, k) ≡ 0. By linearity of the wavelet transform, it implies that wavelet
coefficients are identical for the processes {Yt} and {Yt + Pt}. This implies,
for instance, that when Yt is a zero-mean long–range dependent process, the
potential superposition of a non–stationary polynomial mean will not affect
the measure of the long–memory parameter as long as the degree of the poly-
nomial remain strictly lower than the number of vanishing moment, that can
be varied by the user. It has been shown elsewhere, see e.g., Abry and Veitch
(1999) or Veitch and Abry (2001), that increasing N reduces the impact of
the superimposed trend even if it is not strictly a polynomial one. This will be
further discussed in Section 5. The counterpart to the increase of N however
usually lies in the corresponding increase in the time support of the wavelet,
an important practical drawback as discussed below.

Wavelet Analysis of Long–Range Dependent Processes

Let Yt denote a second order stationary random process. It can be shown that
its wavelet coefficients constitute a zero-mean random field that satisfies:

EdY (j, k)dY (j′, k′) =∫
IR

fY (λ)2j/2Ψ0(2
jλ)2j′/2Ψ∗

0 (2j′λ) exp(−ı2π(2jk − 2j′k′))dλ, (46)

where Ψ0(λ) denotes the Fourier transform of the mother wavelet ψ0.
From this general general result, it can be shown that when Yt is a sec-

ond order stationary long–range dependent process, the coefficients dY (j, k)
possess the two following key properties:

P1 : The process {dY (j, k), k ∈ ZZ} is stationary if N ≥ (α − 1)/2, and its
variance reproduces in the limit of large scales the power law behavior of
the spectrum of Yt,

2j → +∞, EdY (j, ·)2 � 2jαcfC(α, ψ0), C(α, ψ0) =

∫
|λ|−α|Ψ0(λ)|2dλ,

(47)
P2 : The process {dY (j, k), k ∈ ZZ} is stationary and short–range dependent,

if N > α/2. The residual correlations between the elements of the sequence
{dY (j, k), k ∈} is in reverse relationship with N ; see Flandrin (1989):

EdY (j, k)dY (j, k′) ≈ C |k − k′|α−1−2N
, |k − k′| −→ ∞. (48)

Properties P1 and P2 above constitute the main rationale for the wavelet
analysis of long–range dependent data. Indeed, P1 yields

log2

(
EdY (j, ·)2)

)
= jα+ log2(cfC(α, ψ0)). (49)

This invites to perform a linear regression in a log-log plot. However, the
expectation EdY (j, ·)2 needs to be estimated from a (single, finite duration)
observation. This is where P2 plays a key role: the ensemble average can be
efficiently replaced with the time average 1/nj

∑nj

k=1 dY (j, k)2.
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Estimation of the Long–Memory Parameter

This estimator was first proposed and studied in Abry et al. (1995) and Abry
and Veitch (1998) and further developed and analyzed in Veitch and Abry
(1999).

• Definition. Let SY (j) = 1/nj

∑nj

k=1 dY (j, k)2, where nj denotes the num-
ber of wavelet coefficients dY (j, k) available at octave j. Roughly, nj varies as
2−jT , where T denotes the number of observed samples. The wavelet-based
estimator consists of a (weighted) linear regression in the so-called logscale
diagram: log2 SY (j) versus log2 2j = j. Precisely, it is defined as:

α̂W =

j2∑
j1

wj(log2 SY (j) − (ψ(nj/2)/ log 2 − log2(nj/2))), (50)

where ψ(z) := Γ ′(z)/Γ (z) is the Psi function and the weights are chosen to
satisfy the two constraints:

j2∑
j1

jwj ≡ 1,

j2∑
j1

wj ≡ 0. (51)

A natural form for the wjs reads:

wj =
1

aj

S0j − S1

S0S2 − S2
1

, (52)

where Sp =
∑j2

j1
jp/aj, p = 0, 1, 2. The ranges of octaves j ∈ [j1, j2] is assumed

to be a priori chosen; this will be discussed below. The ajs are arbitrary
coefficients used to weight the estimation according to the confidence given
to log2 S(j). Precisely, for the estimation of the LRD parameter, we chose
aj ≡ ζ(2, nj/2), with ζ(2, z) :=

∑∞
n=0 1/(z + n)2 a generalized Riemann Zeta

function, that provides us with an approximation of Var log2 S(j). ζ(2, nj/2)
turns out to be asymptotically proportional to 1/nj (see below). It implies
that the larger j, the smaller nj , the less log2 S(j) contributes to the estimate
of α.
• Performance. To study approximately but analytically the performance
of this estimator, the three following assumptions are assumed to hold:

H1: For each j, the sequences {dY (j, ·)} are stationary and uncorrelated,
H2: The processes {dY (j, ·)} and {dY (j′, ·)}, j 
= j′ are uncorrelated,
H3: The processes {dY (j, ·)}, j ∈ [j1, j2], are Gaussian.

The two first points constitute idealizations of the decorrelation property P2.
The third point is obviously satisfied when {Yt} is a Gaussian process.

Using these assumptions, it can be shown that
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E log2 S(j) = log2EdY (j, ·)2 + (ψ(nj/2)/ log 2 − log2(nj/2)), (53)

Var log2 S(j) = ζ(2, nj/2)/ log2 2. (54)

From this, one shows that

Eα̂W = α, (55)

Varα̂W =
(1 − 2−J)/ log2 2

1 − 2−(J+1)(J2 + 4) + 2−2J

1

T
, (56)

where J = j2 − j1 + 1 is the width of the regression range. Veitch and Abry
(1999) conjectured the asymptotic approximation of the wavelet estimator

√
T (α̂W − α) ≈ N

(
0,

1

ln2(2)21−j1

)
, (57)

where j1 is the lowest octave, the long–memory behavior being captured by
the octaves larger than j1.

This analytical yet only approximative performance turns out to be ex-
tremely close to the actual ones, even when Yt are non Gaussian processes.
In practice, α̂W has a negligible bias and presents a Gaussian statistic with a
variance (approximately) known without the estimation of any quantity. An
effective confidence interval can hence be constructed.

Under some assumptions, i.e., nj1 → ∞, but more slowly than the sample
size T , Bardet, Lang, Moulines and Soulier (2000) proved the asymptotically
Normal distribution of this estimator

√
nj1(α̂W − α)

d−→ N(0,Kv(α)), (58)

where the expression of Kv(α) depends on the unknown scaling parameter α.
• Regression Range. Let us turn now to the choice of the regression range
j ∈ [j1, j2]. One might first use the graphical representation of the logscale
diagram, i.e., the graphical plot of the yj against the octaves j from which
is estimated the scaling parameter α̂W . A graphical analysis might help to
select the upper and lower octaves that have a too high leverage effect on the
regression line; see Belsley et al. (1980).

Obviously, as LRD implies a power law behavior in the limit of large scales,
2j → +∞, the upper bound j2 for the octaves has to be chosen as large as
allowed by the observation length. We chose

j2 = [log2 T − log2(2N + 1)] , (59)

where [·] denotes the integer part, so that borders effects do not affect the
estimation of the variance. This is equivalent to the fact that the range of
frequencies for the LP and LW estimators starts at λj = π/T .

The choice for j1, i.e., the cutoff between short–range dependence and
long–range dependence, is similar to the bandwidth selection problem in semi-
parametric/nonparametric statistics and is exactly equivalent to the choice of



190 Gilles Teyssière and Patrice Abry

the m parameter for the local Whittle and log-periodogram estimators intro-
duced above. This choice consists in optimizing a bias-variance trade-off: a too
small j1 should induce bias as the regression range would include octaves with
departures from the power law due to short-range dependencies, conversely,
a too large j1 decreases the bias but implies an increase of the variance, as
shown in relation (57). Abry et al. (2003) discussed the issue of the selec-
tion for the lower octave j1 in connexion with the bandwidth selection issue
for the local Whittle (LW) estimator, which has been addressed by Robinson
and Henry (1996) and Henry (2001, 2005); see equation (36). The frequency
cutoff, associated with the optimal bandwidth mopt

LW for the LW estimator, is

then equal to mopt
LW /T , and corresponds to the scale 2−j1 . Thus, using mopt

LW

we could define the optimal lower scale as

jopt
1 =

[
logT − logmopt

LW

log 2

]
. (60)

A similar decision rule is possible using the feasible optimal bandwidth mopt
LP

for the log–periodogram (LP) estimator; see equation (39). Indeed, estimation
results given by equation (60) with mopt

LW and mopt
LP are very close, with a slight

advantage for mopt
LW as the RMSE is slightly lower with this bandwidth.

In Veitch, Abry and Taqqu (2003), it has been proposed that the choice of
the lowest octave j1 might be guided using a goodness–of–fit function, such
as the generalized Pearson statistic defined as

Q =

j2∑
j=j1

(yj − α̂W j − â)
2

σ2
j

, (61)

where â is the unbiased estimator for log2(ĉfC), and σ2
j = Var(yj) . Under

the null hypothesis of Gaussian residuals, the statistic Q ∼ χ2(J − 2), where
J = j2 − j1 + 1. The statistic Q can be viewed as a function of j1, denoted
Q(j1). Studying the evolution ofQ as a function of j1, Veitch, Abry and Taqqu
(2003) proposed an empirical criterion to choose automatically j1. It turns
out that this procedure amounts for most cases to select the j1 that ensures
the lowest RMSE, and hence the bias-variance trade-off. Bardet et al. (2000)
provided an analytical expression for the choice of an asymptotically optimal
j1 minimizing the MSE, and conjectured that a feasible approximation of this
optimal bandwidth using estimates of α, f�(0) and f ′′� (0) as for the LW and
LP estimators might be obtained. This procedure is beyond the scope of this
chapter.

• Choosing the Number of Vanishing Moments. On one hand, equa-
tion (48) may lead to think that the larger N , the weaker the correlation
amongst wavelet coefficients, however we saw that the LRD is turn in SRD
as soon as N > α/2. On the other hand, as already mentioned, increasing N
induces an increase of the wavelet size and hence of the border effects. In turn,
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this produces a decrease of j2, as summarized in equation (59). Therefore, an
optimal practical choice for the estimation of the parameter α of true LRD pro-
cesses is N = 2 or N = 3, as will be seen on numerical simulations conducted
in next sections. However, in disentangling LRD from non–stationarities, the
possibility of varying N and using larger N is fruitful.

• Discrete Time. By definition, the DWT applies to continuous time
processes, see equation (44). However, in most practical cases, only a collection
of discrete samples {yk, k = 1, . . . , n} is available. This specific difficulty was
carefully addressed in Veitch, Taqqu and Abry (2001). Numerical simulations
such as those proposed in the next two sections taking into account this point
are under investigation; see Abry and Teyssière (2005).

4 Estimation of the Long–Memory Parameter for
Nonlinear Long–Range Dependent Processes

• Protocol. In this section, we compare by means of numerical simulations,
the performance of the local Whittle, log-periodogram and wavelet estimators
for the long–memory parameter. Because wavelet based estimation of the
long–memory parameter for linear FARIMA processes has been considered
in Veitch and Abry (1999), we consider in this section the estimation of the
scaling parameter of the nonlinear processes described in section 2 .

For each process of interest, 5000 replications, with sample sizes T were
numerically synthetised. In general, we used T = 10000, in some cases, we went
up to T = 20000, for having a better idea on the asymptotic bias for some
highly nonlinear processes. For each simulation, bias and Root Mean Squared
Error (RMSE) defined respectively asB = 〈α̂〉−α and RMSE =

√
B2 + 〈〈α̂〉〉),

where 〈·〉 and 〈〈·〉〉 denote respectively the sample mean and sample variance
estimators computed from the 5000 replications.

For the wavelet-based estimator, we used the Daubechies wavelets with the
number of vanishing moments ranging from N = 2, . . . , 10. We considered the

range of lowest octaves j1 = 1, . . . , 7 and denoted by α̂
(j1)
W the corresponding

estimates. We computed the “optimal” j1 according to equation (60), α̂m
W

denotes the wavelet estimator with the lowest octave j1 derived from equation
(60). We also chose the j1 and N that minimize the Root Mean Squared Error
(RMSE) of α̂W . We denote by jRMSE

1 and α̂RMSE
W the corresponding j1 and

estimate. Systematically, we compare this RMSE to that obtained with the
choice j1 = 6 and N = 2. As we will see below, the RMSE for this choice of
(j1, N) is not too far from the minimum one and the bias is lower. On the
basis of simulation results for T = 20000, we also conjecture that for some of
these nonlinear processes we could get rid off the bias with very large samples,
so that we could select a higher value for j1 which minimizes the RMSE. For
each simulation, Tables are reporting the results and logscale diagrams are
displayed.
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For the local Whittle and the log–periodogram estimators, we respectively
denote by α̂opt

LW and α̂opt
LP those obtained with the optimal bandwidth mopt as

in equations (36) and (41).

4.1 The Long–Memory Linear ARCH Process

The long–memory LARCH process is defined as:

rt = σtεt, εt ∼ D(0, 1), σt = ω + β(L)rt, (62)

where the coefficients βj of the lag polynomial β(L) have the rate of decay
βj = O

(
jα/2−1

)
, for some 0 < α < 1. We choose here three parameteriza-

tions for β(L) from the moving average representation of a FARIMA(0,d,0),
a FARIMA(1,d,0) and a FARIMA(0,d,1) processes, with α = 2d, that we re-
spectively denote as LARCH A, LARCH B and LARCH C. For LARCH
B and LARCH C, we respectively set φ = −0.20 and θ = 0.20.

We consider the following values for the scaling parameter α = 0.10, 0.15,
0.20, . . . , 0.60. For values of α over 0.60, the sequence of coefficients {βj}
must be largely rescaled for satisfying the stationarity condition of theorem
1, i.e., L(Eε40)

1/2
∑

j=1 β
2
j < 1. We estimate the scaling parameter using the

wavelet estimator and the two spectral estimators LW and LP. We report
in Table 2 the LP results only as they are very close to the LW estimator,
although with a slightly higher RMSE as theoretically expected, and so far
there are no results for the estimation results of the LARCH process with the
LP estimator, while Giraitis, Kokoszka, Leipus and Teyssière (2000) already
report estimation results for LARCH processes with the LW estimator for
T = 3000, 6000. Tables 1 and 2 below report estimation results for the LARCH
processes for T = 10, 000 while Tables 3 and 4 give the results for T = 20, 000.
For T = 20, 000, estimation results for the LW estimator are reported on Table
4.

Figures 3 to 5 below display the logscale diagrams for LARCH A pro-
cesses, with T = 10000 and T = 20000. We can see that the “correct” LRD
behavior is captured by the octaves j greater than 5. When T increases, the
number of octaves that can be used for the wavelet regression is obviously
larger, so that wavelet estimates are more reliable.
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Logscale Diagram,  N=2    [ (j_1,j_2)=  (1,11),  Estimated scaling parameter = 0.178]
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Fig. 3. Logscale diagram for the realization of a LARCH A process, with α = 0.40,
T = 10000. We select here j1 = 1, j2 = 11, N = 2
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Logscale Diagram,  N=2    [ (j_1,j_2)=  (6,9),  Estimated scaling parameter = 0.381]
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Fig. 4. Logscale diagram for the realization of a LARCH A process, with α = 0.40,
T = 10000. We select here j1 = 6, j2 = 9, N = 2
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Logscale Diagram,  N=2    [ (j_1,j_2)=  (6,11),  Estimated scaling parameter = 0.456]

y_j estimated
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Regression line

Fig. 5. Logscale diagram for the realization of a LARCH A process, with α = 0.40,
T = 20000. We select here j1 = 6, j2 = 11, N = 2

From the results in Tables 1 to 4, we can conclude that even for T =
10, 000, both the LW and LP estimators perform slightly better than the
wavelet estimator as both their bias and RMSE are slightly lower. For this
sample size, choosing the wavelet estimator with j1 = 6 andN = 2 reduces the
bias, which becomes smaller than the one of the LW estimator, but increases
the variance. However, for T = 20, 000, the RMSE of the estimates for j1 = 6
is reduced and becomes closer to the one of the LW estimator. For T = 20, 000,
jRMSE
1 is often equal to 5, the wavelet estimates are closer to the LW estimates,

and we conjecture that for larger samples j1 = 6 would minimize the RMSE,
so that the performance of the wavelet, LP and LW estimator would become
very close.

We also note that the estimations for the wavelet estimator with j1 chosen
according to equation (60) gives interesting results, not as good as those given
by jRMSE

1 , but that can be used as a first approximation.
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Table 1. Estimation of the scaling parameter for LARCH processes. T = 10000,
N = 2

Model α α̂RMSE
W jRMSE

1 Eα̂RMSE
W − α RMSE α̂

(6)
W Eα̂

(6)
W − α RMSE

LARCH A 0.10 0.0255 3 -0.0745 0.0824 0.0445 -0.0555 0.1350
0.15 0.0690 4 -0.0810 0.0971 0.0966 -0.0534 0.1357
0.20 0.1199 4 -0.0801 0.0980 0.1622 -0.0378 0.1330
0.25 0.1785 4 -0.0715 0.0937 0.2325 -0.0175 0.1329
0.30 0.2394 4 -0.0606 0.0891 0.3046 0.0046 0.1381
0.35 0.3010 4 -0.0490 0.0891 0.3618 0.0118 0.1487
0.40 0.3349 4 -0.0650 0.1028 0.3994 -0.0006 0.1549
0.45 0.3880 5 -0.0620 0.1252 0.4228 -0.0272 0.1585
0.50 0.4060 5 -0.0940 0.1442 0.4463 -0.0537 0.1663
0.55 0.4234 5 -0.1266 0.1677 0.4697 -0.0803 0.1778
0.60 0.4928 6 -0.1072 0.1924 0.4928 -0.1072 0.1923

LARCH B 0.10 0.0125 1 -0.0875 0.0898 0.0039 -0.0961 0.1554
0.15 0.0128 2 -0.1372 0.1399 0.0314 -0.1185 0.1704
0.20 0.0633 5 -0.1367 0.1581 0.0824 -0.1176 0.1706
0.25 0.1222 5 -0.1278 0.1514 0.1531 -0.0969 0.1586
0.30 0.1938 5 -0.1062 0.1354 0.2351 -0.0649 0.1441
0.35 0.2712 5 -0.0788 0.1180 0.3190 -0.0310 0.1367
0.40 0.3483 5 -0.0517 0.1069 0.3977 -0.0023 0.1397
0.45 0.4202 5 -0.0298 0.1061 0.4669 0.0169 0.1504
0.50 0.4249 4 -0.0751 0.1117 0.5216 0.0216 0.1640
0.55 0.4901 5 -0.0599 0.1281 0.5375 -0.0125 0.1641
0.60 0.4987 5 -0.1013 0.1520 0.5530 -0.0470 0.1709

LARCH C 0.10 0.1014 1 0.0014 0.0306 0.0725 -0.0275 0.1332
0.15 0.1369 1 -0.0131 0.0375 0.1232 -0.0268 0.1382
0.20 0.1477 1 -0.0523 0.0635 0.1641 -0.0359 0.1426
0.25 0.1567 1 -0.0933 0.1004 0.2032 -0.0468 0.1479
0.30 0.1979 4 -0.1021 0.1243 0.2406 -0.0594 0.1545
0.35 0.2500 5 -0.1000 0.1413 0.2766 -0.0734 0.1624
0.40 0.2803 5 -0.1197 0.1570 0.3114 -0.0886 0.1717
0.45 0.3092 5 -0.1408 0.1745 0.3451 -0.1049 0.1824
0.50 0.3368 5 -0.1632 0.1939 0.3777 -0.1223 0.1945
0.55 0.4093 6 -0.1407 0.2081 0.4093 -0.1407 0.2081
0.60 0.4398 6 -0.1602 0.2230 0.4398 -0.1602 0.2230
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Table 2. Estimation of the scaling parameter for LARCH processes. T = 10000,
N = 2. The optimal bandwidth mopt

LP is used for the LP estimator

Model α α̂m
W Eα̂m

W − α RMSE α̂opt
LP Eα̂opt

LP − α RMSE

LARCH A 0.10 0.0289 -0.0711 0.0847 0.0323 -0.0677 0.0821
0.15 0.0654 -0.0845 0.0981 0.0778 -0.0722 0.0869
0.20 0.1149 -0.0851 0.1011 0.1379 -0.0621 0.0826
0.25 0.1756 -0.0744 0.0967 0.2085 -0.0415 0.0754
0.30 0.2412 -0.0588 0.0934 0.2792 -0.0208 0.0749
0.35 0.3097 -0.0403 0.0964 0.3482 -0.0018 0.0785
0.40 0.3485 -0.0515 0.1090 0.3889 -0.0111 0.0902
0.45 0.3672 -0.0827 0.1310 0.4138 -0.0362 0.1014
0.50 0.4285 -0.0715 0.1317 0.4421 -0.0579 0.1089
0.55 0.4081 -0.1419 0.1788 0.4668 -0.0831 0.1313
0.60 0.4284 -0.1715 0.2041 0.4935 -0.1064 0.1495

LARCH B 0.10 0.0001 -0.0999 0.1102 -0.0019 -0.1019 0.1119
0.15 0.0130 -0.1370 0.1448 0.0196 -0.1304 0.1379
0.20 0.0415 -0.1585 0.1658 0.0605 -0.1395 0.1480
0.25 0.0876 -0.1624 0.1711 0.1216 -0.1284 0.1408
0.30 0.1507 -0.1493 0.1617 0.2042 -0.0958 0.1178
0.35 0.2314 -0.1186 0.1417 0.2905 -0.0595 0.1015
0.40 0.3228 -0.0772 0.1205 0.3803 -0.0197 0.0899
0.45 0.4041 -0.0459 0.1127 0.4571 0.0071 0.0964
0.50 0.4688 -0.0312 0.1153 0.5192 0.0192 0.1056
0.55 0.4813 -0.0687 0.1318 0.5381 -0.0119 0.1075
0.60 0.4921 -0.1079 0.1565 0.5569 -0.0431 0.1178

LARCH C 0.10 0.0640 -0.0360 0.0661 0.0631 -0.0339 0.0596
0.15 0.1066 -0.0434 0.0751 0.1094 -0.0406 0.0643
0.20 0.1380 -0.0620 0.0889 0.1473 -0.0527 0.0758
0.25 0.1675 -0.0825 0.1063 0.1842 -0.0658 0.0875
0.30 0.1971 -0.1029 0.1248 0.2206 -0.0794 0.1022
0.35 0.2256 -0.1244 0.1459 0.2574 -0.0926 0.1160
0.40 0.2542 -0.1458 0.1674 0.2940 -0.1060 0.1302
0.45 0.2824 -0.1676 0.1893 0.3308 -0.1192 0.1440
0.50 0.3113 -0.1887 0.2110 0.3662 -0.1338 0.1598
0.55 0.3404 -0.2096 0.2327 0.4022 -0.1478 0.1736
0.60 0.3694 -0.2306 0.2541 0.4383 -0.1617 0.1874
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Table 3. Estimation of the scaling parameter for LARCH processes. T = 20000,
N = 2

Model α α̂RMSE
W jRMSE

1 Eα̂RMSE
W − α RMSE α̂

(6)
W Eα̂

(6)
W − α RMSE

LARCH A 0.10 0.0315 4 -0.0685 0.0767 0.0475 -0.0525 0.0925
0.15 0.0858 5 -0.0642 0.0821 0.1022 -0.0478 0.0910
0.20 0.1464 5 -0.0536 0.0757 0.1701 -0.0299 0.0850
0.25 0.2132 5 -0.0368 0.0675 0.2419 -0.0081 0.0830
0.30 0.2802 5 -0.0198 0.0642 0.3107 0.0107 0.0880
0.35 0.3433 5 -0.0067 0.0680 0.3726 0.0226 0.0972
0.40 0.3809 5 -0.0191 0.0746 0.4113 0.0113 0.1003
0.45 0.4007 5 -0.0493 0.0880 0.4361 -0.0139 0.1018
0.50 0.4202 5 -0.0798 0.1085 0.4612 -0.0388 0.1092
0.55 0.4862 6 -0.0638 0.1213 0.4862 -0.0638 0.1213
0.60 0.5110 6 -0.0890 0.1371 0.5110 -0.0890 0.1371

LARCH B 0.10 0.0120 1 -0.0880 0.0891 0.0065 -0.0935 0.1208
0.15 0.0249 5 -0.1251 0.1347 0.0368 -0.1132 0.1368
0.20 0.0913 6 -0.1087 0.1335 0.0913 -0.1086 0.1335
0.25 0.1653 6 -0.0847 0.1157 0.1653 -0.0847 0.1157
0.30 0.2491 6 -0.0509 0.0955 0.2491 -0.0509 0.0955
0.35 0.3356 6 -0.0164 0.0855 0.3356 -0.0164 0.0855
0.40 0.3612 5 -0.0388 0.0726 0.4120 0.0120 0.0895
0.45 0.4337 5 -0.0163 0.0697 0.4808 0.0308 0.1009
0.50 0.4943 5 -0.0057 0.0764 0.5357 0.0357 0.1122
0.55 0.5059 5 -0.0441 0.0885 0.5533 0.0033 0.1074
0.60 0.5705 6 -0.0295 0.1121 0.5705 -0.0295 0.1121

LARCH C 0.10 0.1019 1 0.0019 0.0218 0.0743 -0.0257 0.0851
0.15 0.1435 1 -0.0065 0.0245 0.1270 -0.0230 0.0878
0.20 0.1562 1 -0.0438 0.0504 0.1696 -0.0304 0.0915
0.25 0.1910 5 -0.0590 0.0862 0.2104 -0.0396 0.0966
0.30 0.2259 5 -0.0741 0.1243 0.2494 -0.0506 0.1033
0.35 0.2869 6 -0.0631 0.1113 0.2869 -0.0631 0.1113
0.40 0.3232 6 -0.0768 0.1210 0.3232 -0.0768 0.1210
0.45 0.3585 6 -0.0915 0.1321 0.3584 -0.0915 0.1321
0.50 0.3928 6 -0.1072 0.1446 0.3928 -0.1072 0.1446
0.55 0.4261 6 -0.1239 0.1585 0.4261 -0.1239 0.1585
0.60 0.4583 6 -0.1717 0.1737 0.4583 -0.1417 0.1786
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Table 4. Estimation of the scaling parameter for LARCH processes. N = 2, T =
20000. The optimal bandwidth mopt

LW is used for the LW estimator

Model α α̂m
W Eα̂m

W − α RMSE α̂opt
LW Eα̂opt

LW − α RMSE

LARCH A 0.10 0.0299 -0.0701 0.0774 0.0349 -0.0651 0.0736
0.15 0.0687 -0.0813 0.0888 0.0826 -0.0674 0.0771
0.20 0.1239 -0.0761 0.0872 0.1470 -0.0530 0.0692
0.25 0.1926 -0.0574 0.0780 0.2229 -0.0271 0.0584
0.30 0.2678 -0.0322 0.0684 0.2990 -0.0010 0.0563
0.35 0.3355 -0.0145 0.0694 0.3663 0.0163 0.0635
0.40 0.3754 0.0246 0.0765 0.4086 0.0086 0.0659
0.45 0.3969 -0.0531 0.0907 0.4372 -0.0128 0.0690
0.50 0.4178 -0.0822 0.1108 0.4671 -0.0329 0.0776
0.55 0.4381 -0.1119 0.1350 0.4975 -0.0525 0.0900
0.60 0.4573 -0.1427 0.1620 0.5285 -0.0715 0.1040

LARCH B 0.10 0.0002 -0.0088 0.1050 -0.0003 -0.1003 0.1055
0.15 0.0155 -0.1345 0.1385 0.0237 -0.1263 0.1308
0.20 0.0471 -0.1529 0.1570 0.0686 -0.1314 0.1369
0.25 0.0999 -0.1501 0.1564 0.1375 -0.1125 0.1226
0.30 0.1800 -0.1200 0.1333 0.2305 -0.0695 0.0904
0.35 0.2751 -0.0749 0.0972 0.3278 -0.0222 0.0647
0.40 0.3592 -0.0408 0.0748 0.4141 0.0141 0.0652
0.45 0.4326 -0.0174 0.0704 0.4862 0.0362 0.0782
0.50 0.4931 -0.0069 0.0789 0.5429 0.0429 0.0789
0.55 0.5057 -0.0433 0.0915 0.5652 0.0152 0.0790
0.60 0.5190 -0.0810 0.1160 0.5883 -0.0117 0.0806

LARCH C 0.10 0.0650 -0.0350 0.0525 0.0650 -0.0350 0.0525
0.15 0.1066 -0.0434 0.0751 0.1094 -0.0406 0.0640
0.20 0.1425 -0.0575 0.0736 0.1523 -0.0477 0.0629
0.25 0.1756 -0.0744 0.0898 0.1921 -0.0579 0.0739
0.30 0.2094 -0.0906 0.1066 0.2321 -0.0679 0.0848
0.35 0.2439 -0.1061 0.1229 0.2731 -0.0769 0.0952
0.40 0.2796 -0.1204 0.1373 0.3140 -0.0860 0.1047
0.45 0.3137 -0.1363 0.1529 0.3551 -0.0949 0.1143
0.50 0.3460 -0.1540 0.1696 0.3955 -0.1045 0.1239
0.55 0.3756 -0.1744 0.1888 0.4351 -0.1149 0.1343
0.60 0.4032 -0.1968 0.2098 0.4743 -0.1257 0.1451

4.2 The Long–Memory Stochastic Volatility Process

We consider the long–memory stochastic volatility (LMSV) process defined
by equation (17) with the scale parameter σ = 0.8. The process {Xt} is a
FARIMA(0,d,0) process generated using the Durbin–Levinson algorithm. Ta-
bles 2 and 6 report the estimation results for the long–memory parameter
α = 2d obtained from the local Whittle, wavelet and log–periodogram esti-
mators. The comparison with the LP estimator is of interest as the use of
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this estimator for LMSV processes is theoretically justified. Deo and Hurvich
(2003) report few simulation results for m = [T 0.3], [T 0.4], [T 0.5]: the bias in-
creases with m, while the RMSE decreases. We use both the optimal feasible
bandwidth given by (41) and m = [T 0.3].

Figures 6 and 7 below display the logscale diagrams for one realization of
a LMSV process, with different choices for the range of octaves [j1, j2]: the
long–range dependent behavior of the LMSV process is captured for j1 ≥ 6.
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Fig. 6. Logscale diagram for the realization of a LMSV process, with α = 0.90. We
select here j1 = 1, j2 = 11, N = 2

These three estimators give here very similar results, when the optimal
bandwidth is used for the LP estimator. This set of simulation results should
stimulate further theoretical research on this wavelet estimator for volatility
processes. We mention that in that case, the choice for j1 using equation (60),
with either mopt

LW or mopt
LP , does not yield the best results.

When using the standard bandwidth m = [T 0.3], the mean of the α̂LP

estimates are equal to -0.0598, -0.111, 0.0722, 0.1794, 0.2986, 0.4224, 0.5437,
0.6584, 0.7680, for scaling parameters respectively equal to 0.10, 0.20, 0.30,
0.40, 0.50, 0.60, 0.70, 0.80, 0.90, with a RMSE ranging from 0.4897 to 0.5139,
i.e., the bias is slightly reduced only for α > 0.40, but the RMSE is always
very high so that the estimates obtained with m = [T 0.3] are not reliable.
As we will see for other volatility processes, the choice m = [T 0.3] does not
appear very sensible.



200 Gilles Teyssière and Patrice Abry

 0

 2

 4

 6

 8

 6  7  8  9  10  11

Logscale Diagram,  N=2    [ (j_1,j_2)=  (6,11),  Estimated scaling parameter = 0.818]

y_j estimated
Confidence Intervals

Regression line

Fig. 7. Logscale diagram for the realization of a LMSV process, with α = 0.90. We
select here j1 = 6, j2 = 11, N = 2

Table 5. Estimation of the scaling parameter for LMSV processes, wavelet estima-
tor. T = 10000

α α̂RMSE
W jRMSE

1 Eα̂W − α RMSE α̂
(6)
W Eα̂

(6)
W − α RMSE

0.10 0.0183 2 -0.0817 0.0847 0.0213 -0.0787 0.0898
0.20 0.0519 4 -0.1481 0.1559 0.0492 -0.1508 0.1569
0.30 0.1043 5 -0.1957 0.2092 0.0876 -0.2124 0.2170
0.40 0.1872 6 -0.2128 0.2441 0.1872 -0.2128 0.2441
0.50 0.2764 6 -0.2236 0.2536 0.2764 -0.2236 0.2536
0.60 0.3807 6 -0.2193 0.2499 0.3807 -0.2193 0.2499
0.70 0.4959 6 -0.2051 0.2367 0.4959 -0.2051 0.2367
0.80 0.6177 6 -0.1823 0.2184 0.6177 -0.1823 0.2184
0.90 0.7423 6 -0.1577 0.1986 0.7423 -0.1577 0.1986

Remark 7. The results reported here for the wavelet estimator α̂RMSE
W are ob-

tained with N = 2. When N increases, both bias and RMSE (slightly) in-
crease, but the octave which minimizes the RMSE does not depend on the
choice of N .
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Table 6. Estimation of the scaling parameter for LMSV processes, LW and LP
estimator. T = 10000. The optimal bandwidths mopt

LP and mopt
LW are respectively used

for the LP and LW estimators

α α̂opt
LP Eα̂opt

LP − α RMSE α̂opt
LW Eα̂opt

LW − α RMSE

0.10 0.0153 -0.0847 0.1102 0.0186 -0.0814 0.0927
0.20 0.0516 -0.1484 0.1644 0.0508 -0.1492 0.1557
0.30 0.1049 -0.1951 0.2075 0.0971 -0.2029 0.2082
0.40 0.1764 -0.2236 0.2346 0.1622 -0.2378 0.2437
0.50 0.2656 -0.2344 0.2453 0.2525 -0.2475 0.2555
0.60 0.3715 -0.2285 0.2405 0.3679 -0.2321 0.2433
0.70 0.4914 -0.2085 0.2234 0.4978 -0.2022 0.2169
0.80 0.6198 -0.1802 0.1991 0.6313 -0.1687 0.1876
0.90 0.7511 -0.1489 0.1732 0.7634 -0.1366 0.1611

4.3 The Nonlinear Moving Average Process

Full Whittle estimation, i.e., with an exact specification of the spectrum, of
the parameters for the Nonlinear Moving Average (NLMA) process has been
considered by Robinson and Zaffaroni (1997) and studied by Zaffaroni (2003).
Due to the incomplete specification used for the local Whittle estimator, see
equation (1), we expect the bias for the LW estimator to be greater.
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Fig. 8. Logscale diagram for the realization of a NLMA process, with α = 0.90. We
select here j1 = 1, j2 = 11, N = 2
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Figures 8 and 9 display the logscale diagrams for the realization of a NLMA
process. As for the LMSV process, the long–memory behavior is captured by
the octaves j ≥ j1 = 6.
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Fig. 9. Logscale diagram for the realization of a NLMA process, with α = 0.90. We
select here j1 = 6, j2 = 10, N = 2

Table 7. Estimation of the scaling parameter for NLMA processes, wavelet esti-
mator. T = 10000, N = 2

α α̂RMSE
W jRMSE

1 Eα̂RMSE
W − α RMSE α̂

(6)
W Eα̂

(6)
W − α RMSE

0.10 0.2717 1 0.1717 0.1752 0.3120 0.2120 0.2529
0.20 0.3187 1 0.1187 0.1263 0.2936 0.0936 0.1807
0.30 0.3294 1 0.0294 0.0542 0.2684 0.0316 0.1692
0.40 0.3354 1 -0.0646 0.0793 0.2761 -0.1239 0.2132
0.50 0.3637 2 -0.1363 0.1487 0.3164 -0.1836 0.2565
0.60 0.4028 3 -0.1972 0.2106 0.3816 -0.2184 0.2858
0.70 0.4636 4 -0.2364 0.2554 0.4633 -0.2364 0.3033
0.80 0.5436 5 -0.2564 0.2891 0.5540 -0.2460 0.3130
0.90 0.6205 5 -0.2795 0.3094 0.6469 -0.2531 0.3197

As can be seen from Tables 3 and 8, the wavelet estimator performs slightly
better than both the LW and LP estimators, as its bias and RMSE are on
average smaller. The wavelet estimator with j1 selected using equation (60),
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with either mopt
LW or mopt

LP , gives results close to the LW estimator and the
wavelet estimator with j1 = jRMSE

1 . Again in this case, equation (60) might
serve as a rule of thumb for selecting j1.

Table 8. Estimation of the scaling parameter for NLMA processes, local Whittle
and log–periodogram estimators. T = 10000. The optimal bandwidths mopt

LP and
mopt

LW are respectively used for the LP and LW estimators

α α̂opt
LP Eα̂opt

LP − α RMSE α̂opt
LW Eα̂opt

LW − α RMSE

0.10 0.3028 0.2028 0.2124 0.3025 0.2025 0.2109
0.20 0.2899 0.0899 0.1157 0.2892 0.0892 0.1143
0.30 0.2689 -0.0311 0.0942 0.2679 -0.0321 0.0932
0.40 0.2732 -0.1268 0.1620 0.2731 -0.1269 0.1620
0.50 0.3092 -0.1908 0.2204 0.3091 -0.1909 0.2205
0.60 0.3744 -0.2256 0.2556 0.3714 -0.2286 0.2574
0.70 0.4557 -0.2443 0.2756 0.4537 -0.2463 0.2766
0.80 0.5470 -0.2530 0.2845 0.5469 -0.2531 0.2847
0.90 0.6458 -0.2542 0.2895 0.6456 -0.2544 0.2872

When using the standard bandwidth m = [T 0.3], the mean of the α̂LP

estimates is equal to 0.3024, 0.3161, 0.3170, 0.3350, 0.3672, 0.4071, 0.4483,
0.4847, 0.5105, with a RMSE ranging from 0.0563 to 0.3927. The advantage
provided by the optimal bandwidth mopt

LP is not as obvious as for the LMSV
model, but in the absence of the knowledge on the true Data Generating
Process (DGP), using this optimal bandwidth does not yield any significant
loss for the estimation of the parameter.

4.4 Nonlinear Transformations of Fractionally Integrated
Processes

We also consider some nonlinear transformations of FI(d) processes, i.e.,
processes {Yt} defined as Yt = G(Xt), where Xt ∼ FI(d), and G(·) can
be written as a sum of Hermite polynomials. As in Dittman and Granger
(2002), we choose the transformations G(x) = x2, G(x) = x3, G(x) = x4,
G(x) = x3 − 3x, and G(x) = x4 − 6x2, the Hermite rank of which are re-
spectively equal to R = 2, 1, 2, 3, 4. We also consider some trigonometric and
exponential transformations: G(x) = sin(x), G(x) = cos(x), G(x) = exp(x),
and G(x) = (1 + exp(−x))−1. The Hermite rank of these transformations are
all equal to 1, except for the cosine transformation, the Hermite rank of which
is R = 2.

Granger and Dittman (2002) report simulation results for smaller sample
sizes and the LP estimator with bandwidthm = [T ]4/5. The use of the optimal
bandwidth mopt

LP results for some transformations in a marginal increase of the
bias and RMSE, but not very significant, so that we can reliably stick to that
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optimal bandwidth. We observe that for all nonlinear transformations, the
estimators α̂LW and α̂LP give very close results.

The FI(d) processes have been generated using the Durbin–Levinson al-
gorithm. Consider the first series of transformations, see Tables 4 and 10:
the wavelet estimator performs generally better than the LP and LW estima-
tors, i.e., its bias and RMSE are most of the times lower than those of the
LP and LW estimators, the advantage of the wavelet estimator being obvi-
ous for the largest values of α̃. For the highly nonlinear transformations, e.g.,
G(x) = x3−3x and G(x) = x4−6x2, the bias is huge for all estimators for the
lowest values of α̃, and choosing a higher value for j1, even for samples of size
T = 20, 000, does not yield any significant improvement. Estimation results
with j1 computed from equation (60) are not as good as the ones with either
jRMSE
1 or the LP and LW estimators, but might be considered as informative

for a first analysis.

Remark 8. When N increases, the wavelet estimates do not differ too much
in terms of bias and RMSE, except for the case j1 = 7 and N = 6 for which
the RMSE is very large.

Figures 10 to 18 below display the logscale diagrams for the 9 transforma-
tions G(x) considered here.
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Fig. 10. Logscale diagram for the realization of a nonlinear transformation of a
FI(d) process, with G(x) = x2, d = 0.45 then α = 0.80, T = 10000. We select here
j1 = 1, j2 = 11, N = 2



Wavelet Analysis of Financial Time Series 205

-2

 0

 2

 4

 6

 2  4  6  8  10

Logscale Diagram,  N=2    [ (j_1,j_2)=  (1,11),  Estimated scaling parameter = 0.653]

y_j estimated
Confidence Intervals

Regression line

Fig. 11. Logscale diagram for the realization of a nonlinear transformation of a
FI(d) process, with G(x) = x3, d = 0.45 then α = 0.90, T = 10000. We select here
j1 = 1, j2 = 11, N = 2
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Fig. 12. Logscale diagram for the realization of a nonlinear transformation of a
FI(d) process, with G(x) = x4, d = 0.45 then α = 0.80, T = 10000. We select here
j1 = 1, j2 = 11, N = 2



206 Gilles Teyssière and Patrice Abry

-2

 0

 2

 4

 6

 8

 2  4  6  8  10

Logscale Diagram,  N=2    [ (j_1,j_2)=  (1,11),  Estimated scaling parameter = 0.706]

y_j estimated
Confidence Intervals

Regression line

Fig. 13. Logscale diagram for the realization of a nonlinear transformation of a
FI(d) process, with G(x) = x3 − 3x, d = 0.45 then α = 0.80, T = 10000. We select
here j1 = 1, j2 = 11, N = 2
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Fig. 14. Logscale diagram for the realization of a nonlinear transformation of a
FI(d) process, with G(x) = x4 − 6x, d = 0.45 then α = 0.60, T = 10000. We select
here j1 = 1, j2 = 11, N = 2
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Fig. 15. Logscale diagram for the realization of a nonlinear transformation of a
FI(d) process, with G(x) = sin(x), d = 0.45 then α = 0.90, T = 10000. We select
here j1 = 1, j2 = 11, N = 2
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Fig. 16. Logscale diagram for the realization of a nonlinear transformation of a
FI(d) process, with G(x) = cos(x), d = 0.45 then α = 0.80, T = 10000. We select
here j1 = 1, j2 = 11, N = 2
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Fig. 17. Logscale diagram for the realization of a nonlinear transformation of a
FI(d) process, with G(x) = exp(x), d = 0.45 then α = 0.90, T = 10000. We select
here j1 = 1, j2 = 11, N = 2
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Fig. 18. Logscale diagram for the realization of a nonlinear transformation of a
FI(d) process, with G(x) = (1 + exp(−x))−1, d = 0.45 then α = 0.90, T = 10000.
We select here j1 = 1, j2 = 11, N = 2
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Table 9. Estimation of the scaling parameter for nonlinear transformations of FI(d)
processes, with α = 2d̃ and d̃ = max{0, (d − 0.5)R + 0.5}. N = 2, T = 10000

G(x) α α̂RMSE
W jRMSE

1 Eα̂RMSE
W − α RMSE α̂m

W Eα̂m
W − α RMSE

x2 0.00 0.1176 5 0.1176 0.1488 0.1403 0.1403 0.1527
(R = 2) 0.20 0.2627 1 0.0627 0.0705 0.2449 0.0449 0.0919

0.40 0.3964 1 -0.0036 0.0578 0.3786 -0.0214 0.1136
0.60 0.5769 2 -0.0231 0.0861 0.5396 -0.0604 0.1530
0.80 0.7447 2 -0.0553 0.0888 0.7145 -0.0855 0.1935

x3 0.10 0.0608 2 -0.0392 0.0464 0.0653 -0.0347 0.0599
(R = 1) 0.20 0.1341 3 -0.0659 0.0810 0.1385 -0.0615 0.0790

0.30 0.2224 4 -0.0775 0.0948 0.2122 -0.0808 0.0962
0.40 0.3087 4 -0.0913 0.1066 0.3062 -0.0938 0.1097
0.50 0.3966 4 -0.1034 0.1178 0.3974 -0.1026 0.1213
0.60 0.4841 4 -0.1159 0.1304 0.4882 -0.1118 0.1335
0.70 0.5705 4 -0.1295 0.1454 0.5759 -0.1241 0.1493
0.80 0.6596 4 -0.1404 0.1596 0.6640 -0.1360 0.1712
0.90 0.7564 3 -0.1436 0.1587 0.7589 -0.1411 0.1971

x4 0.00 0.1272 1 0.1272 0.1348 0.1129 0.1129 0.1374
(R = 2) 0.20 0.2094 1 0.0094 0.0522 0.2047 0.0047 0.0961

0.40 0.3392 2 -0.0608 0.0962 0.3222 -0.0778 0.1466
0.60 0.4796 2 -0.1204 0.1469 0.4591 -0.1409 0.2143
0.80 0.6105 2 -0.1600 0.1839 0.6097 -0.1903 0.2803

x3 − 3x 0.00 0.1483 1 0.1483 0.1557 0.1633 0.1633 0.1863
(R = 3) 0.10 0.2781 1 0.1781 0.1878 0.3188 0.2188 0.2474

0.40 0.4368 1 0.0368 0.0782 0.4884 0.0884 0.1646
0.70 0.6703 2 -0.0297 0.0929 0.6651 -0.0349 0.1736

x4 − 6x2 0.00 0.1738 1 0.1738 0.1949 0.1676 0.1676 0.2268
(R = 4) 0.20 0.3333 1 0.1333 0.1664 0.3327 0.1327 0.2341

0.60 0.5350 1 -0.0650 0.1197 0.5270 -0.0730 0.2459
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Table 10. Estimation of the scaling parameter for nonlinear transformations of
FI(d) processes, with α = 2d̃ and d̃ = max{0, (d − 0.5)R + 0.5}. T = 10000. The
optimal bandwidths mopt

LP and mopt
LW are respectively used for the LP and LW esti-

mators

G(x) α α̂opt
LP Eα̂opt

LP − α RMSE α̂opt
LW Eα̂opt

LW − α RMSE

x2 0.00 0.1193 0.1193 0.1371 0.1192 0.1192 0.1369
(R = 2) 0.20 0.2248 0.0248 0.0975 0.2225 0.0225 0.0960

0.40 0.3644 -0.0356 0.1315 0.3599 -0.0401 0.1302
0.60 0.5223 -0.0777 0.1735 0.5190 -0.0810 0.1736
0.80 0.6953 -0.1047 0.2133 0.6867 -0.1132 0.2149

x3 0.10 0.0638 -0.0362 0.0580 0.0636 -0.0364 0.0576
(R = 1) 0.20 0.1410 -0.0590 0.0754 0.1409 -0.0591 0.0750

0.30 0.2277 -0.0723 0.0882 0.2276 -0.0724 0.0881
0.40 0.3217 -0.0783 0.0964 0.3216 -0.0784 0.0964
0.50 0.4184 -0.0816 0.1029 0.4185 -0.0815 0.1028
0.60 0.5134 -0.0866 0.1099 0.5134 -0.0866 0.1099
0.70 0.6019 -0.0981 0.1261 0.6020 -0.0980 0.1245
0.80 0.6877 -0.1123 0.1495 0.6866 -0.1134 0.1446
0.90 0.7755 -0.1245 0.1755 0.7728 -0.1272 0.1699

x4 0.00 0.0981 0.0981 0.1180 0.0978 0.0978 0.1176
(R = 2) 0.20 0.1934 -0.0066 0.0936 0.1906 -0.0094 0.0910

0.40 0.3158 -0.0842 0.1474 0.3157 -0.0843 0.1475
0.60 0.4609 -0.1391 0.2043 0.4593 -0.1407 0.2048
0.80 0.6185 -0.1815 0.2566 0.6105 -0.1895 0.2568

x3 − 3x 0.00 0.1856 0.1856 0.2029 0.1850 0.1850 0.2022
(R = 3) 0.10 0.3542 0.2542 0.2759 0.3533 0.2533 0.2743

0.40 0.5286 0.1286 0.1789 0.5259 0.1259 0.1736
0.70 0.6893 -0.0107 0.1423 0.6866 -0.0134 0.1377

x4 − 6x2 0.00 0.1736 0.1736 0.2114 0.1732 0.1732 0.2107
(R = 4) 0.20 0.3506 0.1506 0.2204 0.3502 0.1502 0.2195

0.60 0.5487 -0.0513 0.1992 0.5435 -0.0565 0.1934
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For the second series of transformations, see Tables 11 and 12, the wavelet
estimator performs better than the two other estimators, except for the ex-
ponential transformation.

Table 11. Estimation of the scaling parameter for nonlinear transformations of
FI(d) processes, with α = 2d̃ and d̃ = max{0, (d − 0.5)R + 0.5}. N = 2, T = 10000

G(x) α α̂RMSE
W jRMSE

1 Eα̂RMSE
W − α RMSE α̂m

W Eα̂m
W − α RMSE

sin(x) 0.10 0.0822 2 -0.0178 0.0352 0.0871 -0.0129 0.0450
(R = 1) 0.20 0.1694 2 -0.0306 0.0382 0.1777 -0.0223 0.0492

0.30 0.2652 3 -0.0348 0.0474 0.2704 -0.0296 0.0544
0.40 0.3556 3 -0.0444 0.0553 0.3642 -0.0358 0.0620
0.50 0.4577 4 -0.0423 0.0639 0.4585 -0.0415 0.0711
0.60 0.5413 4 -0.0587 0.0761 0.5496 -0.0504 0.0824
0.70 0.6353 5 -0.0647 0.1013 0.6235 -0.0765 0.1051
0.80 0.6648 5 -0.1352 0.1671 0.6561 -0.1439 0.1716
0.90 0.6606 5 -0.2394 0.2606 0.6556 -0.2444 0.2654

cos(x) 0.00 0.1505 1 0.1505 0.1520 0.1310 0.1310 0.1421
(R = 2) 0.20 0.2394 1 0.0394 0.0473 0.2333 0.0333 0.0779

0.40 0.3749 2 -0.0251 0.0519 0.3644 -0.0356 0.1015
0.60 0.5192 3 -0.0808 0.1043 0.5177 -0.0823 0.1389
0.80 0.6407 4 -0.1593 0.1751 0.6435 -0.1565 0.1890

exp(x) 0.10 0.0628 3 -0.0372 0.0598 0.0643 -0.0357 0.0648
(R = 1) 0.20 0.1326 3 -0.0674 0.0826 0.1361 -0.0639 0.0851

0.30 0.2169 4 -0.0831 0.1035 0.2152 -0.0848 0.1034
0.40 0.2986 4 -0.1014 0.1202 0.2967 -0.1033 0.1221
0.50 0.3798 4 -0.1202 0.1389 0.3807 -0.1193 0.1414
0.60 0.4573 4 -0.1427 0.1626 0.4599 -0.1401 0.1664
0.70 0.5276 4 -0.1724 0.1953 0.5320 -0.1680 0.2005
0.80 0.5868 4 -0.2132 0.2420 0.5885 -0.2114 0.2557
0.90 0.6260 3 -0.2740 0.3022 0.6265 -0.2735 0.3384

(1 + e−x)−1 0.10 0.0871 1 -0.0129 0.0202 0.0980 -0.0020 0.0429
(R = 1) 0.20 0.1905 2 -0.0095 0.0245 0.1964 -0.0036 0.0439

0.30 0.2879 2 -0.0121 0.0260 0.2945 -0.0055 0.0464
0.40 0.3842 2 -0.0158 0.0277 0.3935 -0.0065 0.0531
0.50 0.4799 2 -0.0201 0.0307 0.4946 -0.0054 0.0614
0.60 0.5878 3 -0.0121 0.0349 0.5961 -0.0039 0.0697
0.70 0.6848 3 -0.0152 0.0363 0.6951 -0.0049 0.0816
0.80 0.7796 3 -0.0204 0.0395 0.7925 -0.0075 0.0958
0.90 0.8669 3 -0.0331 0.0508 0.8796 -0.0204 0.1196
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Table 12. Estimation of the scaling parameter for nonlinear transformations of
FI(d) processes, with α = 2d̃ and d̃ = max{0, (d − 0.5)R + 0.5}. T = 10000. The
optimal bandwidths mopt

LP and mopt
LW are respectively used for the LP and LW esti-

mators

G(x) α α̂opt
LP Eα̂opt

LP − α RMSE α̂opt
LW Eα̂opt

LW − α RMSE

sin(x) 0.10 0.0855 -0.0145 0.0465 0.0856 -0.0144 0.0461
(R = 1) 0.20 0.1779 -0.0221 0.0518 0.1779 -0.0221 0.0517

0.30 0.2736 -0.0264 0.0581 0.2736 -0.0264 0.0579
0.40 0.3709 -0.0291 0.0649 0.3710 -0.0290 0.0647
0.50 0.4689 -0.0311 0.0728 0.4697 -0.0303 0.0712
0.60 0.5618 -0.0382 0.0795 0.5620 -0.0380 0.0791
0.70 0.6417 -0.0583 0.0972 0.6425 -0.0575 0.0950
0.80 0.6788 -0.1212 0.1582 0.6793 -0.1207 0.1569
0.90 0.6587 -0.2413 0.2735 0.6603 -0.2397 0.2704

cos(x) 0.00 0.1135 0.1135 0.1303 0.1129 0.1129 0.1296
(R = 2) 0.20 0.2147 0.0147 0.0883 0.2141 0.0141 0.0881

0.40 0.3512 -0.0488 0.1243 0.3510 -0.0490 0.1240
0.60 0.5121 -0.0879 0.1633 0.5108 -0.0892 0.1622
0.80 0.6441 -0.1559 0.2050 0.6450 -0.1550 0.2026

exp(x) 0.10 0.0617 -0.0383 0.0592 0.0615 -0.0385 0.0588
(R = 1) 0.20 0.1370 -0.0630 0.0787 0.1369 -0.0031 0.1194

0.30 0.2203 -0.0797 0.0952 0.2204 -0.0796 0.0951
0.40 0.3085 -0.0915 0.1089 0.3086 -0.0914 0.1087
0.50 0.3978 -0.1022 0.1226 0.3979 -0.1021 0.1223
0.60 0.4818 -0.1182 0.1442 0.4821 -0.1179 0.1406
0.70 0.5587 -0.1413 0.1671 0.5590 -0.1410 0.1666
0.80 0.6206 -0.1794 0.2136 0.6201 -0.1799 0.2092
0.90 0.6627 -0.2273 0.2743 0.6618 -0.2382 0.2727

(1 + exp(−x))−1 0.10 0.0962 -0.0038 0.0441 0.0961 -0.0039 0.0439
(R = 1) 0.20 0.1943 -0.0057 0.0482 0.1942 -0.0058 0.0475

0.30 0.2922 -0.0078 0.0529 0.2923 -0.0077 0.0529
0.40 0.3913 -0.0087 0.0636 0.3915 -0.0085 0.0601
0.50 0.4904 -0.0096 0.0686 0.4905 -0.0095 0.0684
0.60 0.5885 -0.0115 0.0822 0.5880 -0.0120 0.0766
0.70 0.6834 -0.0166 0.0903 0.6833 -0.0167 0.0902
0.80 0.7766 -0.0234 0.1053 0.7764 -0.0236 0.1041
0.90 0.8614 -0.0386 0.1350 0.8610 -0.0390 0.1245

5 Robustness: Long–Memory Versus Non–Stationarity

This section aims at contributing to the issue of disentangling long–memory
and non–stationarity. This can be addressed through two major questions.
Can one estimate correctly the long–memory parameter of an actual long–
range dependent process when non–stationarities are superimposed to it? Can
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one figure out that a given time series is non–stationary and has no long–
memory? The first question is illustrated in Sections 5.1, 5.2 and 5.4 where
trends, change points or both are respectively superimposed to long–memory
processes. The second one is considered in Section 5.3 where change points in
a short–range memory process may be confused with long–memory.

5.1 Long–Memory Plus Trends: Polynomial Trends Superimposed
to Fractionally Integrated Processes

As mentioned earlier, the wavelets coefficients dY (j, ·) are the same for the
processes {Yt} and {Yt +Pt} where Pt is a polynomial of order at most N −1,
where N is the number of vanishing moments of the mother wavelet ψ0. Thus,
with an appropriate choice for N , we can discriminate between trended and
long–range dependent processes. This separation is also possible with Fourier
based methods, when replacing the periodogram by a tapered version of it,
see e.g., Lobato and Velasco (2000).

We consider here the accuracy of the wavelet based estimator, as we will
use this estimator in section 6.2 for estimating the dependence of financial
time series with a trend, i.e., transactions volume. We consider the following
process

Yt = Xt + Tt, Xt ∼ FI(d), Tt =

q∑
l=0

ξlt
l, (63)

which additively mixes a long–range dependent process and a polynomial
trend. We consider q = 1, 2, 3. Table 13 below reports simulation results for
N = q + 1 only.

For the relevant choices of N , i.e., those for which N > q, the wavelet
estimates are the same as those for the FARIMA process without polynomial
trend, since we used the same sequence of pseudo–error terms for all the FI(d)
process.

Remark 9. In this section, we do not compare the performance of the wavelet
estimator with the one of the LP and LW estimators. For the LW estimator,
we would have to consider the tapered periodogram, as in Lobato and Velasco
(2000), and very likely perform a similar transformation for the LP estimator.
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Table 13. Estimation of the scaling parameter for an additive combination of a
FI(d) processes and a polynomial trend of order q. T = 10000

Order α α̂RMSE
W jRMSE

1 Eα̂RMSE
W − α RMSE α̂

(5)
W Eα̂

(5)
W − α RMSE

q = 1 0.10 0.0860 2 -0.0140 0.0205 0.1016 0.0016 0.0744
(N=2) 0.20 0.1907 2 -0.0093 0.0235 0.2017 0.0017 0.0745

0.30 0.2868 2 -0.0132 0.0254 0.3018 0.0018 0.0747
0.40 0.3833 2 -0.0167 0.0275 0.4020 0.0020 0.0748
0.50 0.4800 2 -0.0200 0.0297 0.5022 0.0022 0.0751
0.60 0.5771 2 -0.0229 0.0318 0.6023 0.0023 0.0753
0.70 0.6934 3 -0.0066 0.0338 0.7025 0.0025 0.0757
0.80 0.7929 3 -0.0713 0.0341 0.8026 0.0026 0.0761
0.90 0.8924 3 -0.0076 0.0345 0.9027 0.0027 0.0766

q = 2 0.10 0.0875 2 -0.0125 0.0196 0.1022 0.0022 0.0771
(N=3) 0.20 0.1930 2 -0.0070 0.0234 0.2023 0.0023 0.0772

0.30 0.2899 2 -0.0101 0.0246 0.3023 0.0023 0.0773
0.40 0.3870 2 -0.0130 0.0259 0.4024 0.0024 0.0776
0.50 0.4842 2 -0.0158 0.0275 0.5024 0.0024 0.0779
0.60 0.5817 2 -0.0183 0.0291 0.6024 0.0024 0.0783
0.70 0.6792 2 -0.0208 0.0308 0.7042 0.0042 0.0788
0.80 0.7769 2 -0.0231 0.0325 0.8025 0.0025 0.0794
0.90 0.8747 2 -0.0253 0.0342 0.9026 0.0026 0.0800

q = 3 0.10 0.0880 1 -0.0120 0.0194 0.1030 0.0030 0.0817
(N=4) 0.20 0.1937 2 -0.0063 0.0237 0.2030 0.0030 0.0817

0.30 0.2909 2 -0.0091 0.0247 0.3031 0.0031 0.0817
0.40 0.3881 2 -0.0119 0.0259 0.4031 0.0031 0.0818
0.50 0.4855 2 -0.0145 0.0272 0.5030 0.0030 0.0819
0.60 0.5830 2 -0.0170 0.0287 0.6030 0.0030 0.0820
0.70 0.6806 2 -0.0194 0.0303 0.7029 0.0029 0.0823
0.80 0.7783 2 -0.0217 0.0319 0.8028 0.0028 0.0826
0.90 0.8761 2 -0.0239 0.0335 0.9027 0.0027 0.0830

5.2 Long–Memory Plus Trends Plus Change–Points:
Change–Points in Fractionally Integrated Processes

Since economic processes are subject to changes in regime, we consider the
extreme case of the following change–point process

Yt = Xt, Xt ∼ FI(d), t � k,

Yt = Xt + Tt, Xt ∼ FI(d), Tt =

q∑
l=0

ξl(t− k + 1)l, t > k, (64)

i.e., a process with a broken polynomial trend. In some sense, here two types
of difficulties are mixed up together. The non–stationarity superimposed to
long–memory results both from trends and change points. However, in that
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particular extreme case, a visual inspection of the series will suggest to split
the series at the break points.

Remark 10. These results reported here obviously hold provided that the poly-
nomial trend series are of the same order of magnitude as the series Xt.

Table 14. Estimation of the scaling parameter for an additive combination of a
FI(d) processes and with a broken polynomial trend of order q = 1, q = 2 and q = 3,
defined by equation (64). Columns 3 to 6 report estimation results for k = [T/10],
while columns 7 to 10 report estimation results for k = [T/2], T = 10000

N α α̂RMSE
W jRMSE

1 Eα̂RMSE
W − α RMSE α̂RMSE

W jRMSE
1 Eα̂RMSE

W − α RMSE

q = 1 0.10 0.0970 2 -0.0030 0.0232 0.0971 2 -0.0029 0.0232
N = 6 0.20 0.1942 2 -0.0057 0.0238 0.1943 2 -0.0057 0.0238

0.30 0.2915 2 -0.0085 0.0246 0.2916 2 -0.0084 0.0246
0.40 0.3889 2 -0.0111 0.0258 0.3889 2 -0.0111 0.0258
0.50 0.4863 2 -0.0137 0.0270 0.4863 2 -0.0137 0.0271
0.60 0.5838 2 -0.0162 0.0285 0.5838 2 -0.0162 0.0285
0.70 0.6814 2 -0.0186 0.0301 0.6814 2 -0.0186 0.0301
0.80 0.7790 2 -0.0210 0.0317 0.7790 2 -0.0210 0.0317
0.90 0.8767 2 -0.0233 0.0334 0.8767 2 -0.0233 0.0334

q = 2 0.10 0.0915 1 -0.0085 0.0178 0.1018 1 0.0018 0.0159
N = 6 0.20 0.1981 2 -0.0019 0.0232 0.2046 2 0.0046 0.0243

0.30 0.2941 2 -0.0059 0.0240 0.2991 2 -0.0009 0.0239
0.40 0.3906 2 -0.0094 0.0251 0.4050 2 0.0050 0.0239
0.50 0.4874 2 -0.0126 0.0265 0.4996 2 -0.0004 0.0234
0.60 0.5846 2 -0.0154 0.0281 0.6023 2 0.0023 0.0233
0.70 0.6819 2 -0.0181 0.0299 0.6960 2 -0.0040 0.0237
0.80 0.7793 2 -0.0207 0.0315 0.7903 2 -0.0097 0.0255
0.90 0.8769 2 -0.0231 0.0332 0.8851 2 -0.0149 0.0281

q = 3 0.10 0.0996 2 -0.0004 0.0231 0.0981 2 -0.0019 0.0162
N = 6 0.20 0.1960 2 -0.0040 0.0235 0.2018 2 0.0018 0.0244

0.30 0.2927 2 -0.0073 0.0243 0.3039 2 0.0039 0.0242
0.40 0.3897 2 -0.0103 0.0255 0.3990 2 -0.0010 0.0238
0.50 0.4869 2 -0.0131 0.0268 0.5041 2 0.0041 0.0237
0.60 0.5842 2 -0.0158 0.0283 0.6037 2 0.0037 0.0235
0.70 0.6816 2 -0.0184 0.0299 0.6972 2 -0.0028 0.0235
0.80 0.7792 2 -0.0208 0.0315 0.7913 2 -0.0087 0.0251
0.90 0.8768 2 -0.0232 0.0333 0.8858 2 -0.0142 0.0276

We note that for this particular process, the value of the statistic Q for
j1 = jRMSE

1 does not differ too much for the one when j1 is given following the
arguments in Veitch, Abry, Taqqu (2003) when the number of moments N is
adequately chosen, i.e., large enough for fitting all possible variations of the
process. Figures 19 and 20 display the logscale diagrams for trended processes
with change–points.
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Logscale Diagram,  N=6    [ (j_1,j_2)=  (1,9),  Estimated scaling parameter = 0.79]
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Fig. 19. Logscale diagram for the realization of an additive combination of a FI(d)
process (α = 0.8) and a broken polynomial trend of order q = 1, with k = [T/10].
We select here j1 = 1, j2 = 9, N = 6
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Fig. 20. Logscale diagram for the realization of an additive combination of a FI(d)
process (α = 0.8) and a broken polynomial trend of order q = 1, with k = [T/2].
We select here j1 = 1, j2 = 11, N = 6
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For both cases, provided that N is large enough, N = 6 there, the long–
memory behavior quite always captured from the lowest octave j1 = 2.

5.3 Short–Memory and Change–Points: Change–Point GARCH
Process

Volatility, GARCH Process and Change–Points?

As mentioned in the introduction, a potentially useful application of wavelet
methods is the analysis of volatility series, the volatility of asset prices Pt

being commonly defined by either the absolute returns |rt| or the squared
returns r2t , where the returns rt are defined as rt = ln(Pt/Pt−1).

Volatility processes are modeled using either GARCH type models, or
stochastic volatility models, although GARCH type models are more often
used as they are easy to estimate, parsimonious as a simple GARCH(1,1)
model with three parameters can fit most of the series of asset returns, and
have nice properties for asset pricing, see e.g., Duan (1995) and Kallsen and
Taqqu (1998).

A standard GARCH(1,1) process is defined as

rt = σtεt, εt ∼ N(0, 1), σ2
t = ω + βσ2

t−1 + γr2t−1. (65)

The literature on the properties of GARCH–type processes is pretty impres-
sive; interested readers are referred to the chapter by Giraitis, Leipus and
Surgailis (2005) in this volume.

However, GARCH–type homogeneous processes have several drawbacks
and inconsistencies:

1. They cannot fit the heavy tails of the returns rt,
2. When the sample size increases, the sum of estimated parameters β̂ + γ̂

tends to 1, a property called the “IGARCH effect”. As a consequence, the
variance of the process {rt} is infinite since ω > 0,

3. For large samples, the ACF of the series |rt| and r2t behave like equation
(2), this is the so called long–range dependence in the volatility.

Mikosch and Stărică (1999, 2003, 2004a, 2004b) emphasized in a series of
research works that points 2 and 3 are inconsistent, as the ACF of the power
transformation of a process with infinite variance is not properly defined.
Thus, the GARCH(1,1) model might be the “right” model, provided that
it is estimated on the sample for which the parameters of the process are
constant, and that IGARCH, long–range dependence and tail effects might
be the consequence of the non–stationarity of the GARCH process, and, for
instance, of changes in the parameters so that the unconditional variance
of the process is not constant. A major issue in practical time series analysis
hence consists in being able to decide whether long–memory is truly present in
the analyzed data or if a change–point type non–stationary property actually
exists and is likely to be misinterpreted as long–memory.
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Discriminating Between True Long–Memory and Change–Points?

There is a large number of research works dealing with the issue of change–
point detection, see e.g., Berkes et al. (2004), Berkes, Horváth and Kokoszka
(2004), Kokoszka and Teyssière (2002), Mikosch and Stărică (1999, 2004b),
Chu (1995). So far, none of the change–point tests proposed in research papers
is based on wavelets. More precisely, the relevance of the use of the wavelet
analysis in the context of non–homogeneous GARCH processes has not been
studied, since as it is discussed below, is does not fit in the standard framework
of change–point in the conditional mean processes. Such an analysis is the
purpose of this section.

We consider a GARCH(1,1) process with change–point at time k:

rt = σtεt, εt ∼ N(0, 1), (66)

σ2
t = ω + βσ2

t−1 + γr2t−1 t � k,

σ2
t = ω� + β�σ2

t−1 + γ�r2t−1, t > k.

with ω 
= ω� or β 
= β� or γ 
= γ�. The parameter of interest is the un-
conditional variance of the process σ2 = ω/(1 − β − γ), and we consider two
cases: small change and large change in the unconditional variance. We choose
k = [T/2] and set for the first part of the process

ω = 0.1, β = 0.3, γ = 0.3, σ2 = 0.25, (67)

while the parameters for the second part of the two processes are:

• GARCH A (small change): ω� = 0.125, β� = 0.6, γ� = 0.1, σ2 = 0.4667,
• GARCH B (large change): ω� = 0.15, β� = 0.65, γ� = 0.25, σ2 = 1.5.

Since financial time series of size T = 10000 are likely affected by several
changes in regimes, we consider the following GARCH process, denoted by
GARCH C, with two un-periodic changes in regimes at times k and k

′

:

rt = σtεt, εt ∼ N(0, 1), (68)

σ2
t = 0.15 + 0.65σ2

t−1 + 0.25r2t−1, t � k σ2 = 1.5,

σ2
t = 0.1 + 0.3σ2

t−1 + 0.3r2t−1, k < t � k
′

, σ2 = 0.25,

σ2
t = 0.25 + 0.6σ2

t−1 + 0.2r2t−1, t > k
′

, σ2 = 1.25.

We set k = [T/6] and k
′

= [5T/6], i.e., near the end–points of the sample,
which is always the most difficult configuration to detect. Let us note that
the absolute value and squares of change–point GARCH processes are not
genuine change–point processes in the conditional mean, which makes the
standard theory for change–point in the conditional mean not applicable.

We consider also the performance of the estimators for the case without
change points, i.e., the Data Generating Process (65) with parameters given
by equation (67) that we denote as DGP 0.



Wavelet Analysis of Financial Time Series 219

Let us first analyze the logscale diagrams (presented in figures 21–26)
for various realizations of the GARCH A, GARCH B and GARCH C
processes. One can see that fitting the entire logscale diagram (i.e., starting
from j1 = 1) would lead to the conclusion that long-memory exists in the
data. However, we also see that the spurious long–memory property caused
by the non–stationarity of the process is gotten rid-off by selecting the lowest
octave j1 ≥ 5.

Remark 11. The optimal choice jRMSE
1 is the same for all values of the number

of vanishing moments N . Thus, we cannot use lower j1 by increasing N .
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Fig. 21. Logscale diagram for the realization of the absolute value GARCH A
process. We select here j1 = 1, j2 = 11, N = 2
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Fig. 22. Logscale diagram for the realization of the squares of a GARCH A
process. We select here j1 = 5, j2 = 11, N = 2
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Fig. 23. Logscale diagram for the realization of the squares of a GARCH B
process. We select here j1 = 1, j2 = 11, N = 2
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Fig. 24. Logscale diagram for the realization of the squares of a GARCH B
process. We select here j1 = 5, j2 = 10, N = 2
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Fig. 25. Logscale diagram for the realization of the squares of a GARCH C
process. We select here j1 = 1, j2 = 11, N = 2
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Fig. 26. Logscale diagram for the realization of the squares of a GARCH C
process. We select here j1 = 5, j2 = 11, N = 2

For the GARCH A process, i.e., with a constant unconditional variance,
both the LW and the LP estimators do not detect any long–range dependence,
while the wavelet estimator detects a very moderate intensity of long–memory,
although the Gaussian confidence intervals contains the value zero (let us
remind that α ≡ 0 corresponds to short memory processes). The wavelet
estimate with the octave j1 selected using the optimal bandwidth, see equation
(60), gives estimates from α̂W = 0.0392 to α̂W = 0.0333, depending on the
number of vanishing moments N .

Table 15. Estimation of the scaling parameter for change–points GARCH pro-
cesses, wavelet estimators. T = 10000, N = 2

Model α̂RMSE
W jRMSE

1 Eα̂RMSE
W − α RMSE α̂

(5)
W Eα̂

(5)
W − α RMSE

GARCH 0 0.0369 4 0.0369 0.0719 0.0151 0.0151 0.0866
GARCH A 0.0495 4 0.0495 0.0791 0.0241 0.0241 0.0900
GARCH B 0.0520 5 0.0520 0.1086 0.0865 0.0865 0.1238
GARCH C 0.0219 4 0.0219 0.0708 0.0682 0.0682 0.1126

There is a significant discrepancy between the estimators for both GARCH
B and GARCH C processes. While the wavelet estimator does detect a very
moderate intensity of long–range dependence, both the LW and LP estima-
tors give a high value for α̂, with a RMSE far greater than the one of the
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Table 16. Estimation of the scaling parameter for change–points GARCH pro-
cesses, LP and LW estimators. T = 10000. The optimal bandwidths mopt

LP and mopt
LW

are respectively used for the LP and LW estimators

Model α̂opt
LP Eα̂opt

LP − α RMSE α̂opt
LW Eα̂opt

LW − α RMSE

GARCH 0 0.0038 0.0038 0.0669 0.0015 0.0015 0.0612
GARCH A 0.0043 0.0043 0.4735 0.0065 0.0065 0.0651
GARCH B 0.1921 0.1921 1.4738 0.4015 0.4015 0.4043
GARCH C 0.2440 0.2440 1.4087 0.4188 0.4188 0.4227

wavelet estimator. For the LP, the results obtained with m = [T 0.3] are very
high, as α̂LP = 0.0595 for GARCH A, α̂LP = 1.4454 for GARCH B, and
α̂LP = 1.3801 for GARCH C. This advocates again the use of the optimal
bandwidth (41) for volatility processes.

When selecting the lowest octave j1 that maximizes the goodness–of–fit
function (61), the estimated long–memory parameter for the GARCH B
process is α̂W = 0.0539 for N = 4 with a maximum for α̂W = 0.0877 for
N = 2. For the GARCH C process, α̂W = 0.0069 for N = 4, with a max-
imum α̂W = 0.0723 for N = 2. This shows that increasing N helps to get
rid of spurious long–memory. The wavelet estimates with the lowest octave j1
given by equation (60) are equal to 0.0053 for the GARCH A, 0.0575 for the
GARCH B, and −0.0281 for the GARCH C, in all three cases this “opti-
mal” octave is j1 = 7, which yields a very large variance as well emphasizes
the need for further research in this direction.

This example clearly shows that in spite of the octaves selection issue due
to the nonlinearity and non Gaussianity of the sequence {r2t }, the wavelet esti-
mator detects a very moderate level of long–range dependence, i.e., α < 0.0520
in the worst case, while both the LW and the LP estimators are “fooled” by
the occurrence of a large change in the unconditional variance for the short
memory GARCH process. This advocates the use of the wavelet estimator,
in conjunction with other estimators, for adjudicating between strong depen-
dence and change–point for volatility processes.

5.4 Long–Memory and Change–Points: The Non–Homogeneous
Long–Memory Stochastic Volatility Process

We consider here a nonlinear process that displays long–range dependence in
conditional variance with a change–point, defined as:

rt = σtζt, ζt ∼ N(0, 1), σt = σ exp(Xt/2), Xt ∼ FARIMA(p, d, q),

E Xt = 0, t � k, E Xt = µ, t > k, (69)

i.e., the process {Xt} mixes long–range dependence and a change–point at
time k. We consider here samples of size T = 10000, k = [T/2], and µ = 2.0.
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Remark 12. The magnitude of the jump µ = 2.0 has to be compared with the
square root of the variance of the Xt process,

Var(Xt) = σ2
ε

Γ (1 − 2d)

Γ 2(1 − d)
.

Here, we set σ2
ε = 1, so that

√
Var(Xt) ranges from 1.0022 (d = 0.05) to

1.9085 (d = 0.45), i.e., the change is of significant magnitude.

Figures 27 and 28 display the logscale diagram for one realization of a non–
homogeneous LMSV process for different regression ranges [j1, j2]. Provided
that j1 ≥ 5, the long–range dependent behavior is satisfactorily captured.
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Fig. 27. Logscale diagram for the realization of a change–point LMSV process, with
α = 0.90. We select here j1 = 1, j2 = 11, N = 2
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Fig. 28. Logscale diagram for the realization of a change–point LMSV process, with
α = 0.90. We select here j1 = 5, j2 = 11, N = 2

Table 17. Estimation of the scaling parameter for change–point LMSV processes,
wavelet estimator. T = 10000, N = 2

α α̂RMSE
W jRMSE

1 Eα̂RMSE
W − α RMSE α̂

(6)
W Eα̂

(6)
W − α RMSE

0.10 0.0959 3 -0.0041 0.0317 0.4740 0.3740 0.3878
0.20 0.1777 4 -0.0223 0.0509 0.4748 0.2748 0.2939
0.30 0.3079 5 0.0079 0.0690 0.4820 0.1820 0.2109
0.40 0.3385 5 -0.0605 0.0925 0.4984 0.0984 0.1473
0.50 0.5274 6 0.0274 0.1164 0.5274 0.0274 0.1164
0.60 0.5720 6 -0.0280 0.1120 0.5720 -0.0280 0.1120
0.70 0.6337 6 -0.0663 0.1367 0.6337 -0.0663 0.1367
0.80 0.7122 6 -0.0878 0.1496 0.7122 -0.0878 0.1496
0.90 0.8047 6 -0.0953 0.1546 0.8047 -0.0953 0.1546
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Table 18. Estimation of the scaling parameter for change–point LMSV processes,
LW and LP estimators. T = 10000. The optimal bandwidths mopt

LP and mopt
LW are

respectively used for the LP and LW estimators

α α̂opt
LP Eα̂opt

LP − α RMSE α̂opt
LW Eα̂opt

LW − α RMSE

0.10 0.5308 0.4308 0.4365 0.9026 0.8026 0.8034
0.20 0.5377 0.3377 0.3451 0.8931 0.6931 0.6940
0.30 0.5514 0.2514 0.2617 0.8829 0.5829 0.5842
0.40 0.5751 0.1751 0.1899 0.8734 0.4734 0.4751
0.50 0.6103 0.1103 0.1334 0.8657 0.3657 0.3684
0.60 0.6577 0.0577 0.0968 0.8625 0.2625 0.2678
0.70 0.7173 0.0173 0.0826 0.8676 0.1676 0.1795
0.80 0.7877 -0.0123 0.0851 0.8864 0.0064 0.1160
0.90 0.8675 -0.0325 0.0947 0.9251 0.0251 0.0927

Since the sequence of pseudo–error terms is the same for LMSV processes
with and without change–point, the results of Tables 17 and 18 can be directly
compared to those of Tables 2 and 6. The wavelet estimator is affected by the
presence of this change point, but in a far lower extent than both the LW and
LP estimators. What is really informative here is the strong discrepancy be-
tween the wavelet estimator and the spectral based estimators, which suggests
the presence of a break. For that case, the use of the optimal bandwidth for
the LP estimator is justified as the mean estimates obtained for m = [T 0.3]
are between 1.4114 and 1.8578, with a RMSE ranging from 0.6349 to 1.7718.

Remark 13. The best results, i.e., with the lowest RMSE, are obtained with
N = 2.

6 Financial Time Series

6.1 Intra–day Foreign Exchange (FX) Rates

• Financial data. We consider four high–frequency time series on intra–
day FX rates provided by Olsen and Associates, i.e., the US dollar–Swiss franc
(USD–CHF), the US dollar–Japanese yen (USD–JPY), the US dollar–German
deutsche mark (USD–DEM), and the British pound–US dollar (GBP–USD).
The data are observed for the whole year 1996 every 30 minutes in a time
scale denoted as ϑ–time, where all intra–day periodic components have been
removed: time scale with high volatility (activity) are expanded while time
scale with low activity are shortened. The ϑ–time scale can be interpreted as
a business scale, and then removes the seasonality in the volatility process;
see Dacorogna et al. (1993) for further details. Since the activity (volatility) is
not the same for the series considered, they do not have the same time scale.

We consider here the logarithmic middle price x(t) defined by
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xt ≡
xbid

t + xask
t

2
with xbid

t = ln(pbid
t ), xask

t = ln(pask
t ), (70)

where pbid
t and pask

t respectively denote the “bid” and “ask” price at time
t. This variable behaves symmetrically when the price is inverted. Next, we
define the returns rt as

rt = xt − xt−∆t, (71)

where ∆t represents the time interval between two consecutive observations;
here, ∆t = 30 minutes. The sample sizes of the series are quite large, as T =
17524, 17529, 17508 and 17520 for the log of returns on USD–DEM, USD–
CHF, USD–JPY and GBP–USD respectively.

Figures 29 and 30 below display the ACF of the series of absolute returns
|rt| and squared returns r2t on US dollar–Japanese yen, up to the order 2500.
The hyperbolic decay of the ACF is typical or strongly dependent processes,
and is slower for the series of absolute returns than for the series of squared
returns: this is the so–called “Taylor effect”, i.e., the persistence of the se-
ries |rt|δ is the strongest for δ = 1. Unlike daily returns, intra–returns are
correlated, this negative correlation, which can be modeled by antipersistent
processes, is the consequence of market microstructure effects.
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Fig. 29. ACF of absolute returns on US dollar-Japanese yen FX rate
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Fig. 30. ACF of squared returns on US dollar-Japanese yen FX rate
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• Long–Memory Analysis. The estimation of the long–memory param-
eter for the series of high frequency financial time series has been considered
by Müller et al. (1990). A wavelet analysis of financial volatilities has been
conducted in Kokoszka and Teyssière (2002) and Teyssière (2003). They esti-
mated the degree of long–range dependence of absolute and squared returns
on FX rates and equities using the wavelet estimator by Veitch and Abry
(1999) and the local Whittle estimator. Their empirical results show that the
scaling parameter estimated with the wavelet estimator is far lower than the
one obtained with the local Whittle estimator.

In the present work, we estimate the degree of persistence for the series of
absolute returns and squared returns for the four intra–day FX rates, denoted
by |rusd−chf |, |rusd−dem|, |rusd−jpy |, |rgbp−usd|, r2usd−chf , r2usd−dem, r2usd−jpy

and r2gbp−usd. The choices for j1 and N are guided by the inspection of the
logscale diagrams.

We observe that the wavelet-based estimates of the long–memory param-
eter are significantly lower than the spectral-based estimates, confirming the
earlier finding mentioned above. Because the wavelet estimator benefits from
robustness against non–stationarities (change points and trends), such dis-
crepancies are in favor of the conjecture that the empirical high intensity of
strong dependence in asset price volatilities is a statistical artefact caused by
the occurrence of change–point(s). However, the results obtained here also
indicate that the estimates significantly depart from 0, i.e., the volatility se-
ries do display long–range dependence. This has implications for forecasting
purposes, as mentioned by Granger and Hyung (2004) who mix both long–
memory and change–point processes for forecasting absolute returns.
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Table 19. Estimation of the long–memory parameter for volatilities of intra–day FX
rates, N = 2. Standard errors are between parentheses, every other line. The optimal
bandwidths mopt

LP and mopt
LW are respectively used for the LP and LW estimators

Series α̂W j1 j2 α̂m
W α̂opt

LP mopt
LP α̂opt

LW mopt
LW

|rusd−chf | 0.4309 5 9 0.4837 0.5956 549 0.5255 510
(0.0594) (0.0541) (0.0547) (0.0443)

|rusd−dem| 0.4511 5 11 0.4586 0.5863 557 0.5637 470
(0.0520) (0.0804) (0.0543) (0.0461)

|rusd−jpy | 0.3581 4 9 0.4017 0.4981 543 0.5597 467
(0.0381) (0.0572) (0.0550) (0.0463)

|rgbp−usd| 0.2923 5 11 0.3029 0.4126 555 0.5335 447
(0.0526) (0.0541) (0.0544) (0.0472)

r2
usd−chf 0.3088 3 10 0.3056 0.5808 594 0.5548 604

(0.0242) (0.0346) (0.0526) (0.0406)
r2

usd−dem 0.2543 4 9 0.2663 0.2583 694 0.3250 749
(0.0376) (0.0346) (0.0486) (0.0365)

r2
usd−jpy 0.2566 5 12 0.2794 0.4163 577 0.4351 527

(0.0513) (0.0572) (0.0533) (0.0436)
r2

gbp−usd 0.0982 5 9 0.1204 0.2796 753 0.2859 784
(0.0603) (0.0346) (0.0467) (0.0357)

Table 20. Wavelet estimates of the long–memory parameter for volatilities of
intra–day FX, for different values of the number of moments N . Standard errors are
between parentheses, every other line.

N = 3 N = 4 N = 5 N = 6

Series α̂W j1 j2 α̂W j1 j2 α̂W j1 j2 α̂W j1 j2

|rusd−chf | 0.4365 4 9 0.4137 4 9 0.4605 5 9 0.4630 5 9
(0.0380) (0.0385) (0.0621) (0.0631)

|rusd−dem| 0.4924 5 11 0.4277 5 11 0.4371 6 10 0.4328 6 10
(0.0541) (0.0573) (0.0963) (0.1005)

|rusd−jpy | 0.3591 4 8 0.3449 4 8 0.3776 4 10 0.3879 4 10
(0.0418) (0.0426) (0.0383) (0.0391)

|rgbp−usd| 0.2569 4 11 0.2125 5 10 0.2078 5 10 0.2126 4 9
(0.0356) (0.0581) (0.0600) (0.0401)

r2
usd−chf 0.3831 4 10 0.3856 4 10 0.4765 5 10 0.4400 5 10

(0.0362) (0.0374) (0.0599) (0.0617)
r2

usd−dem 0.2340 3 11 0.2977 5 11 0.2415 5 10 0.2871 5 10
(0.0240) (0.0573) (0.0600) (0.0617)

r2
usd−jpy 0.2851 4 11 0.2618 4 9 0.2871 4 10 0.2616 4 10

(0.0380) (0.0390) (0.0383) (0.0391)
r2

gbp−usd 0.1208 5 11 -0.0324 5 11 0.1541 4 10 -0.0217 4 10
(0.0541) (0.0573) (0.0383) (0.0391)
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Remark 14. We observe that the estimated scaling parameter does not signif-
icantly vary for different values of the number of moments N , which confirms
the presence of long–range dependence in the volatility series. The series of
squared returns r2gbp−usd on dollar/pound FX rate, is a noticeable exception;
in fact, this highly nonlinear series was always very difficult to fit, see e.g.,
Gallant, Hsieh and Tauchen (1991).

6.2 Application to Trading Volume

• Bivariate Time Series. Lobato and Velasco (2000) considered the bi-
variate process (volatility, log trading volume) of asset prices of stocks con-
stituting the Dow Jones Average Industrial Index, observed from July 1962
to December 1994, i.e., 8176 daily observations, and investigated the issue of
common degree of long–range dependence for these two processes.

We consider here few of the series used by Lobato and Velasco (2000),
and check whether the wavelet based estimator gives the same results, i.e.,
the commonality of strong dependence between volatility and log of trading
volume.

Figures 31, 32, and 33 below display the log trading volume on three
stocks, Eastman Kodak, Chevron and ATT. These three series display strong
and clear upward trends.
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Fig. 31. Logarithm of trading volume on Eastman Kodak stock
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Fig. 32. Logarithm of trading volume on Chevron stock
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Fig. 33. Logarithm of trading volume on ATT stock

• Long–Memory Analysis. We estimate the long–memory parameters
for the log of trading volume and the absolute value of returns of six stocks:
AT & T Corp., Allied Signal Inc., Chevron Corp., Eastman Kodak Corp.,
Exxon Corp. and IBM.

Table 21. Estimation of the scaling parameter α for log of trading volume, and
absolute value of returns on stocks. Standard errors are between parentheses, every
other line. The optimal bandwidth mopt

LW is used for the LW estimator

Stocks α̂W (Volume) N j1 j2 α̂W (|rt|) j1 j2 α̂LW (|rt|)

AT & T 0.7632 6 1 9 0.6422 5 10 0.3465
(0.0179) (0.0871) (0.0533)

Allied Signal 0.6564 6 1 9 0.3126 5 8 0.4546
(0.0181) (0.1051) (0.0546)

Chevron 0.6548 6 1 9 0.3715 7 10 0.5108
(0.0181) (0.2530) (0.0572)

Eastman Kodak 0.7051 6 1 9 0.2484 5 8 0.4146
(0.0181) (0.1051) (0.0516)

Exxon 0.7151 6 1 9 0.5331 6 10 0.3088
(0.0182) (0.1431) (0.0515)

IBM 0.8532 6 1 9 0.3626 4 10 0.2553
(0.0181) (0.0556) (0.0462)

For the series of volume, estimation results no longer differ as soon as
N > 6, see also Table 22. As we can see from figures 34 and 35, the logscale
diagrams consist of straight lines for all octaves, except for Chevron, see Figure
36. Together with the estimated values of the long–memory parameter, this
tells that there does exist long–memory in the trading volume times series.
The wavelet based estimator is not fooled by the obvious trends that also exist
on top of long–memory. We also observe that the estimated long–memory
parameters for the series of absolute returns are lower than the estimated
scaling parameters for the series of log of volume. In fact, logscale diagrams
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for the series of absolute returns are more difficult to interpret than the ones
of the series of log–volume.

-4

-3

-2

-1

 0

 1

 2

 3

 1  2  3  4  5  6  7  8

Logscale Diagram,  N=6    [ (j_1,j_2)=  (1,8),  Estimated scaling parameter = 0.6902]

y_j estimated
Confidence Intervals

Regression line

Fig. 34. Logscale diagram for the logarithm of volume on AT& T , N = 6
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Fig. 35. Logscale diagram for the logarithm of volume on IBM , N = 10
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Fig. 36. Logscale diagram for the logarithm of volume on Chevron , N = 10

Table 22. Estimation of the scaling parameter α for log of trading volume, and
absolute value of returns on stocks, for different values of the number of moments
N . Standard errors are between parentheses, every other line

N = 7 N = 8 N = 9 N = 10

Series α̂W j1 j2 α̂W j1 j2 α̂W j1 j2 α̂W j1 j2

AT & T 0.7548 1 9 0.7475 1 8 0.7518 1 8 0.7337 1 8
(0.0180) (0.0183) (0.0187) (0.0189)

Allied Signal 0.6405 1 9 0.6385 1 8 0.6367 1 8 0.6316 1 8
(0.0180) (0.0183) (0.0187) (0.0189)

Chevron 0.6459 1 9 0.6435 1 8 0.6432 1 8 0.6384 1 8
(0.0180) (0.0183) (0.0187) (0.0189)

Eastman Kodak 0.7118 1 9 0.7041 1 8 0.6896 1 8 0.6896 1 8
(0.0180) (0.0183) (0.0187) (0.0189)

Exxon 0.7070 1 9 0.7099 1 8 0.7046 1 8 0.7089 1 8
(0.0180) (0.0183) (0.0187) (0.0189)

IBM 0.8351 1 9 0.8451 1 8 0.8301 1 8 0.8235 1 8
(0.0180) (0.0183) (0.0187) (0.0189)
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7 Conclusion

In nominal situations, i.e., when the analyzed time series corresponds to an
actual non corrupted long–range dependent process, the wavelet estimator
for the long–memory parameter works satisfactorily well and this for a large
variety of linear and nonlinear strongly dependent processes in conditional
mean an in conditional variance. In the same situations, the local Whittle
estimator slightly outperforms the log periodogram and wavelet estimators
whose performance are mostly comparable. From our point of view, the key
advantage of the wavelet based estimator lies in the possibility of varying N
which indeed constitutes a key degree of freedom in the wavelet based anal-
ysis of long–memory: as long as the logscale diagrams and the corresponding
estimates of the long–memory parameter vary with N , it shows that non–
stationarities exist in the time series and may impair a correct analysis of
the long–memory or confused with long–memory. When, for large enough N ,
no variation with N are observed, we know we have untangled long–memory
from non–stationarity and can accurately estimate the corresponding param-
eter. Section 5 consistently showed that the wavelet estimator significantly
outperformed the two other estimators in situations where non–stationarities
were added to long–memory or confused with.

Also, for financial time series, the possibility of varying N enabled to
show that the intensity of the long–range dependence of volatility processes is
lower than the one measured with spectral based semiparametric estimators.
Thus, it reveals that volatility processes mix non–stationarities with long–
range dependence. It also showed however that long–memory truly exists both
in the volatility and volume time series. The wavelet analysis of the series of
volume and volatility finally showed that the dynamics of volatility processes
is more complex than the one of volume processes.
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54. Mikosch, T. and Stărică, C. (1999). Change of structure in financial time series,
long range dependence and the GARCH model. Preprint.

55. Moulines, E. and Soulier, P. (2003). Semiparametric spectral estimation for
fractional processes. In: Doukhan, P., G. and Taqqu, M.S. (Eds.), Long–Range
Dependence: Theory and Applications. Birkhauser, Boston, pp. 251–301.

56. Müller, U.A., Dacorogna, M.M., Olsen, R.B., Pictet, O.V., Schwarz, M. and
Morgenegg, C. (1990). Statistical study of foreign exchange rates, empirical
evidence of a price change scaling law, and intraday analysis. Journal of Banking
and Finance, 14, 1189–1208.

57. Robinson, P.M. (1995a). Gaussian semiparametric estimation of long–range de-
pendence. The Annals of Statistics, 23, 1630–1661.

58. Robinson, P.M. (1995b). Log periodogram regression of time series with long
range dependence. The Annals of Statistics, 23, 1048–1072.

59. Robinson, P.M. (1994). Time Series with Strong Dependence, in C.A. Sims (Ed),
Advances in Econometrics, Sixth World Congress. Cambridge University Press,
pp. 47–95.

60. Robinson, P.M. (1991). Testing for strong serial correlation and dynamic con-
ditional heteroskedasticity in multiple regression. Journal of Econometrics, 47,
67–84.

61. Robinson, P.M. (1977). The estimation of a nonlinear moving average model.
Stochastic Processes and their Applications, 5, 81–90.

62. Robinson, P.M. and Zaffaroni, P. (1997). Modelling nonlinearity and long–
memory in time series. Fields Institute Communications, 11, 161–170.

63. Surgailis, D. (1981). Convergence of sums of nonlinear functions of moving av-
erages to self–similar processes. Soviet Mathematics, 23, 247–250.



238 Gilles Teyssière and Patrice Abry

64. Teyssière, G. (2003). Interaction models for common long–range dependence in
asset price volatility. In: Rangarajan, G. and Ding, M. (Eds.), Processes with
Long Range Correlations: Theory and Applications, Lecture Notes in Physics,
Vol. 621. Springer Verlag, Berlin, pp. 251–269.

65. Veitch, D. and Abry, P. (1999). A wavelet based joint estimator of the parameters
of long–range dependence. IEEE Transactions on Information Theory, 45, 878–
897.

66. Veitch, D., Taqqu, M.S. and Abry, P. (2000). Meaningfull MRA initialisation for
discrete time series. Signal Processing, 80, 1971–1983. EURASIP Best Paper
Award.

67. Veitch, D. and Abry, P. (2001). A statistical test for the time constancy of
scaling exponents. IEEE Transactions on Signal Processing, 49, 2325–2334.

68. Veitch, D., Abry, P. and Taqqu, M.S. (2003). On the automatic selection of the
onset of scaling. Fractals, 11, (4), 377-390.

69. Vostrikova, L.Ju. (1981). Detection of “disorder” in multidimensional random
processes. Soviet Mathematics Doklady, 24, 55–59.

70. Zaffaroni, P. (2003). Gaussian inference on certain long–range dependent volatil-
ity models. Journal of Econometrics, 115, 199–258.



Prediction, Orthogonal Polynomials and
Toeplitz Matrices. A Fast and Reliable

Approximation to the Durbin–Levinson
Algorithm

Djalil Kateb1, Abdellatif Seghier2 and Gilles Teyssière3
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Orsay Cedex. Abdelatif.Seghier@math.u-psud.fr

3 Statistique Appliquée et de MOdélisation Stochastique, Université Paris 1.
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Summary. Let f be a given function on the unit circle such that f(eiθ) =| 1−eiθ |2α

f1(e
iθ) with | α |< 1

2
and f1 a strictly positive function that will be supposed to

be sufficiently smooth. We give the asymptotic behavior of the first column of the
inverse of TN (f), the (N +1)× (N +1) Toeplitz matrix with elements (fi−j)0≤i,j≤N

where fk = 1
2π

R 2π

0
f(eiθ)e−ikθ dθ. We shall compare our numerical results with those

given by the Durbin-Levinson algorithm, with particular emphasis on problems of
predicting either stationary stochastic long–range dependent processes, or processes
with a long–range dependent component.

1 Introduction

Let f ∈ L1(T) be a function defined on the unit circle with Fourier coefficients

fk = f̂(k) =
1

2π

∫ 2π

0

f(eiθ)e−ikθ dθ, k ∈ Z, (1)

we consider the (N + 1) × (N + 1) Toeplitz matrix

TN (f) =
(
f̂(i− j)

)
0≤i,j≤N

, (2)

with symbol f . Such matrices, their corresponding determinants and inverses
arise in many applications in mathematics, statistics, mathematical physics
and chemistry; see Fisher and Hartwig (1968) and Wu (1966) for more details.
The transformation that defines a Toeplitz matrix is the discrete analogue of
a convolution and serve naturally to model the action of linear digital filters.
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If we suppose f to be the spectral density of a stationary stochastic process
{Xk} ,−∞ < k <∞, of random variables with

E(XiX̄j) = fj−i, (3)

with f−i = f̄i, we can try to estimate the value of Xj from the observed values
of neighboring Xi. This is the problem of prediction: we have the forward
prediction if the (Xk) precede Xj and the backward prediction if they follow.
In the classical backward prediction of X0 from X1, . . . , XN , we have to find,
in the subspace spanned by X1, . . . , XN , the element that is closest to X0 in
the norm defined by the inner product

[v, w] = 〈TN(f)v, w〉. (4)

To solve the problem, we have to take the residual error prediction X0 +∑N
k=1 ekXk such that

[X0 +

N∑
k=1

ekXk, Xj] = 0, 1 ≤ j ≤ N, (5)

or
TN(f) (1, e1, . . . , eN )T = µ2

N (1, 0, . . . , 0, 0)T , (6)

where the prediction error µ2
N is given by

µ2
N = [EN , EN ], (7)

where EN = (, e1, e2, . . . , eN )T . A remarkable aspect is that we need only
the first (resp. the last) column inverse for the backward (resp. the forward)
prediction. We point out that it is classical to invert TN (f) through Yule–
Walker type equations, with complexity in O(N3) operations, or through its
improved version the Durbin–Levinson algorithm with complexity in O(N2)
elementary operations.
The purpose of our chapter is to show how one can compute best predictors
without having to perform any matrix inversions or a recursive scheme. To be
more precise, we give an asymptotic behavior of (TN(f))

−1
k,1 , 0 ≤ k ≤ N , for

large values of N ; the computations of the inverse elements are performed in
O(N) operations with a fixed tolerance ε. The idea is very simple : thanks to
the classical formula of Wu and Bleher for inverting Toeplitz matrix and the
determinant formula for Fisher–Hartwig symbols, straightforward calculations
enable us to study the asymptotic behavior of the first elements. The elements
of the inverse which are in the ”heart” are computed thanks to Rambour and
Seghier (2003) and are inspired from the paper by Bleher (1981). Concerning
the last elements, we use a general machinery developed by Szegö for solving
prediction problems. It uses the theory of orthogonal polynomials. To give an
idea, we know how the first and last column are connected to the coefficients of
some orthogonal polynomials ΦN of degreeN on the unit circle with respect to
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the nonsingular measure dµ(θ) = f(eiθ) dθ
2π . Thanks to the Szegö recurrences

satisfied by the orthogonal polynomials, we know how to deduce the asymp-
totic behavior of the remaining last terms (TN(f))

−1
N−k+1,1 from the elements

(TN−m(f))−1
N−m+1,1, 0 ≤ m ≤ k and (TN−m−1(f))−1

k−m+1,1, 0 ≤ m ≤ k.
To illustrate our theory, we consider the modeling of the volatility of asset

prices. The volatility of asset prices Pt is defined by either the absolute value
of returns |rt|, or the squared returns r2t , where the returns are defined as rt =
log(Pt)− log(Pt−1). The series of absolute returns and squared returns display
a very rich dynamics, which mixes long–range dependence and nonlinearity.
Recent works by Granger and Hyung (2004) propose to forecast the volatility
by the sum of a fractionally integrated process and a change point process.
The issue of volatility forecasting is of interest in finance as option pricing
formulas rely on a “plug–in” estimate of the volatility.

Before we state our main theorem, let us introduce some preliminaries
notations and known results.

2 Notations and Definitions. Preliminary Results

2.1 Wiener–Hopf Factorization

The Wiener–Levy theorem, see Zygmund (1959), on analytic functions of
Fourier series ensures the existence of the Wiener–Hopf factorization of f1:

f1 = (f1)−GM(f1)(f1)+, (8)

where

GM(f1) = exp

(∫ 2π

0

log f1(χ(θ))
dθ

2π

)
, (9)

is the geometric mean of f1, and where

(f1)+(χ) = exp

(
∞∑

n=1

χn l̂og f1(n)

)
, (10)

and

(f1)−(χ) = exp

(
−1∑

n=−∞

χn l̂og f1(n)

)
. (11)

The notation χ stands for χ(θ) = eiθ.

2.2 The Szegö Function

When the function is of form f(χ) = eL(χ) with L ∈ L1, Szegö defines a
function g(z), defined on the open unit disk D:
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g(z) = exp

(
1

2

∫ 2π

0

χ(θ) + z

χ(θ) − z
log f(eiθ) dθ

)
, | z |< 1, (12)

which belongs to the Hardy space H2(D). Furthermore, we know that

lim
r↑1

g(reiθ) ≡ g(eiθ),

exists for a.e θ and that
| g(eiθ) |2= f(eiθ), (13)

the function g is called the outer function of f . The Cauchy’s integral formula
learns us that

ĝ(0) =
√
GM(f). (14)

Before we state the main result, we need some notations. We denote by

(β
(α)
k )k∈N the Fourier coefficients of 1

g

1

g
(χ) =

∞∑
k=0

β
(α)
k χk,

and by (g
(α)
k ) the Fourier coefficients of (1−χ)−α. A straightforward calcula-

tion shows that

β
(α)
k =

k∑
p=0

g
(α)
k

1̂

g1
(k − p),

where g1 is the outer function of f1. From the elementary fact that

g
(α+1)
k =

k∑
p=0

g(α)
p ,

it comes that β
(α+1)
k =

∑k
p=0 β

(α)
p .

Here is the main theorem

Theorem 2.1 Let α be a real such that | α |< 1
2 and k be a nonnegative

integer such that k
N → 0 when N → ∞. If the generating function f is such

that f(χ) =| 1 − χ |2α f1(χ) where f1 is a sufficiently smooth and strictly
positive on the unit circle then

i )

((TN (f))−1)k+1,1 =

√
GM(

1

f1
)

(
β̄

(α)
k − α2

N
β̄

(α+1)
k

)
+ o(

1

N
), (15)

when N → ∞.
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ii ) Given 0 < x < 1, we have

((TN (f))−1)[Nx]+1,1 =

√
GM(

1

f1
)Nα−1Kα(x) + o

(
Nα−1

)
, (16)

where

Kα(x) =
1

Γ (α)
xα−1(1 − x)α. (17)

iii ) We have

((TN (f))−1)N+1−k,1 =

(√
GM(

1

f1
)
(f1)−(1)

(f1)+(1)
β̄

(α)
k

)
αN−1 + o(N−1).

(18)

3 A Brief Overview on Orthogonal Polynomials on the
Unit Circle

In his investigation into the inversion of Toeplitz matrices, Szegö introduced
orthogonal polynomials on the circle. If dµ(t) = f(eit) dt is a measure without
singular part, we denote the scalar product

〈h1, h2〉f :=

∫
T

h1(χ)h2(χ)dµ(t),

and the associated norm as ‖ ‖. It is natural to consider the monic orthogonal
polynomials Φn(χ) = Φn(χ, µ) defined by

Φn(z) = zn +
n−1∑
k=0

Φk,nz
k,

〈Φn(χ), χj〉f = 0, j = 0, . . . , n− 1, (19)

if Φ∗
n denotes the reversed polynomials,

Φ∗
n(z) = znΦn(

1

z̄
), (20)

we know, thanks to Szegö and Atkinson, the following theorem

Theorem 3.1 There exists a sequence of numbers (ρn,f )∞n=0 so that

Φn(z) = zΦn−1(z) + ρn,fΦ
∗
n−1(z). (21)

Moreover, the sequence of (ρn,f ) belongs to the open unit disk and

‖ Φn ‖2

‖ Φn−1 ‖2
= 1− | ρn,f |2, (22)

and

‖ Φn ‖= f̂(0)

n∏
i=1

(
1− | ρi |2

)
. (23)
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We know that the last column of (TN (f))−1 is made of the coefficients of
‖ΦN‖
‖ΦN‖2 , indeed we have

TN (f) (ΦN,0, ΦN,1, . . . , ΦN,N−1, 1)
T

=
(
0, 0, . . . , 0, . . . , 0, ‖ ΦN ‖2

)T
, (24)

where ΦN (z) = zN +
∑N−1

k=0 ΦN,kz
k. We know also that the first column of

the inverse is made of the coefficient of the polynomial
Φ∗

N

‖ΦN‖2 :

TN(f)
(
1, ΦN,N−1, . . . , ΦN,1, ΦN,N

)T
=
(
‖ ΦN ‖2

N , 0, 0, . . . , 0
)T
, (25)

with ΦN,N = ΦN (0). The sequence
(
1, ΦN,N−1, . . . , ΦN,1, ΦN,N

)
will be de-

noted as (1, pN,1, . . . , pN,N−1, pN,N).

3.1 The Determinant of Toeplitz Matrices

An interesting aspect is that we know how to connect the determinant Dn(f)
to the sequence of reflection coefficients (ρn,f ) = (Φn(0)). Indeed , we have

Proposition 3.1

Dn(f) = f̂(0)

n∏
i=1

µ2
i,f = (f̂(0))n+1

n∏
i=1

i∏
j=1

(1− | ρj,f |2). (26)

Let us point out that the sequence of coefficients (1, pN,1, . . . , pN,N−1, pN,N =
ΦN (0)) of Φ∗

N satisfy an interesting relation that will be crucial for the proof
of the main theorem. We have:

Lemma 3.1 Given an integer k 
= 0, we have

pN,N−k =

k∑
m=0

pN−m,N−mpk−m,N−m−1. (27)

Proof From the relation

Φ∗
s(z) = Φ∗

s−1(z) + ps,szΦs−1(z),

we get after identification

pN,N−m = pN−1,N−m + pN,NpN−1,m, (28)

for a fixed k and all m ≤ k we obtain

pN−m,N−k = pN−m−1,N−k + pN−m,N−mpN−m−1,k−m, (29)

and then

k∑
m=0

(pN−m,N−k − pN−m−1,N−k) =

k∑
m=0

pN−m,N−mpN−m−1,k−m.

To end the proof, it suffices to remark that since pN−k−1,0 = 1, the telescopic

sum
∑k

m=0 (pN−m,N−k − pN−m−1,N−k) is reduced to pN,N−k.
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4 The Inversion of a Toeplitz Matrix

4.1 Some Preliminary Results and Estimates

We denote by (β
(α)
k )k∈N the Fourier coefficients of the outer function 1

g of
1
f , by (g

(α)
k )k∈N the Fourier coefficients of (1 − eiθ)−α and by (γ

(α)
k )k∈Z the

Fourier coefficients of g
ḡ . We recall some useful results, the proofs of which

can be found in Zygmund (1959).

Lemma 4.1 When N → +∞, we have

i )

g
(α)
N =

Nα−1

Γ (α)
(1 + o(1)) ,

ii )

β
(α)
N =

Nα−1

g1(1)Γ (α)
+ o(Nα−1),

where g1 is the outer function of f1.
iii )

γ
(α)
N =

g1(1)

ḡ1(1)

sin(πα)

π(α−N)
+ o(N−1).

4.2 The Bleher–Wu Inversion Formula

The next results need some notations: for p ≥ 1 Hp(T) denotes the Hardy

space of those f ∈ Lp(T) with f̂(k) = 0 for all k < 0. We shall denote
H2− = L2(λ) �H2. We introduce the orthogonal projectors

Π+ : L2(T) �→ H2(T),

ΠN : L2(T) �→ PN = span{χ0, χ1, . . . , χN},
Π+

N : L2(T) �→ span{χN+1, χN+2, . . . , },
Π−

N = I −Π+
N .

Given N ≥ 1, let

φN =
g

ḡ
χN+1, (30)

and the Hankel operator HφN
: H2 �→ H2− be as

HφN
(ψ) = Π−(φNψ), ψ ∈ H2, (31)

its adjoint H∗
φN

satisfies

H∗
φN

(ψ) = Π+(φ̄Nψ), ψ ∈ H2−. (32)

We are ready to give a result enabling to compute the elements of the inverse.
We have the following theorem:
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Theorem 4.1 Given some integers 0 ≤ k, l ≤ N , we have

(T−1
N (f))k+1,l+1 = A

(N)
k+1,l+1 −B

(N)
k+1,l+1, (33)

where

A
(N)
k+1,l+1 = 〈Π+(

χk

ḡ
), Π+(

χl

ḡ
)〉, (34)

and where

B
(N)
k+1,l+1 = 〈

∞∑
s=0

(H∗
φN
HφN

)sΠ+(φNΠ+(
χk

ḡ
)), φNΠ+(

χl

ḡ
)〉. (35)

Since we are interested by the first column of the inverse, we have to compute

explicitly the two terms A
(N)
k+1,1 and B

(N)
k+1,1. We have

Lemma 4.2 Given 0 ≤ k ≤ N we have

A
(N)
k+1,1 = β

(α)
0 β̄

(α)
k .

Concerning B
(N)
k+1,1 where 0 ≤ k ≤ N , we have

Lemma 4.3 i) Let Nα = N + 1 + α. When N → ∞, we have

B
(N)
k+1,1 =

∞∑
m=0

(
k∑

u=0

β̄
(α)
k−uF

(α)
2m,N (u)

)(
sin(πα)

π

)2m+2

+ o

(
1

N

)
, (36)

where

F
(α)
2m,N (u) =

∞∑
j0

1

j0 +Nα

∞∑
j1=0

1

j0 + j1 +Nα
. . .

∞∑
j2m−2=0

1

j2m−2 + j2m−1 +Nα
,

∞∑
j2m=0

1

j2m + j2m−1 +Nα

1

j2m +Nα − u
.

We get the following explicit asymptotic formula for inverting.

Corollary 4.1 Let k be an integer 0 ≤ k ≤ N . When N → ∞ we have

(TN (f))−1
k+1,1 =β

(α)
0

(
β̄

(α)
k −

∞∑
m=0

(
k∑

u=0

β̄(α)
u F

(α)
2m,N (k − u)

)(
sin(πα)

π

)2m+2
)

+ o

(
1

N

)
.



Prediction with an Approximation to the Durbin–Levinson Algorithm 247

5 The Determinant of Toeplitz Matrices with a
Fisher–Hartwig Symbol

The large behavior of the determinant of a Toeplitz matrix have seen many
physical applications from the phase transition in Ising models, from com-
binatorics and string theory. The Fisher–Hartwig asymptotics refer to the
asymptotic behavior of the determinant DN(f) of a class of (N +1)× (N +1)
Toeplitz matrix TN (f). When the symbol has no zeros nor jumps in the unit
disk, is strictly positive on the circle and satisfies some additional regularity
assumptions , the asymptotic behavior is known and described by the cele-
brated classical Szegö limit theorem. Explicitly, let

ln f(eiθ) =

∞∑
p=−∞

cpe
ipθ (37)

with the condition
∞∑

p=−∞

| p | cpc−p <∞, (38)

then the strong limit theorem of Szegö asserts that

lnDN (f) = (N + 1)c0(f) +

∞∑
n=1

ncnc−n + o(1). (39)

However, the formula becomes harder to determine when the symbol f has
singularities on the circle; indeed the condition (38) does not hold when the
symbol is of form

f(eiθ) = f1(e
iθ)

T∏
r=1

sβr
(θ − θr)tαr

(θ − θr), (40)

where
sβ(θ) = e−iβ(π−θ), 0 < θ < 2π, (41)

and where

tα(θ) =| 1 − eiθ |2αr , | α |< 1

2
. (42)

The multiplicative function f1 is supposed to be sufficiently smooth, non van-
ishing, with winding number zero and satisfying the condition (38). When
f1 = 1, the symbol f is a called a symbol with a pure Fisher–Hartwig singu-
larity symbol. The Fisher–Hartwig conjecture asserts that for N → ∞

DN (f) = GM(f1)
N+1(N + 1)

PR
r=1(α2

r−β2
r)Ef1 + o(1), (43)

where



248 Djalil Kateb, Abdellatif Seghier and Gilles Teyssière

Ef1 = E[f1]

R∏
r=1

(
(f1)+(χr)

−αr+βr(f1)+(χr)
−αr−βr

)
×

∏
1≤s�=r≤R

(
1 − ei(θ−θr))−(αr+βr)(αs−βs)

)
×G(1 + αr + βr)(G(1 + αr − βr)

G(1 + 2αr)
,

where

E[f1] = exp

(
∞∑

k=1

k ̂log f1(θ)(k) ̂log f1(θ)(−k)
)
,

the notation G stands for the Barnes G-function: an entire analytic function
defined by

G(z) = (2π)
z
2 e−

z(z+1)
2 −Cz2

2

∞∏
n=1

{(
1 +

z

n

)n

e−z+ z2

n

}
,

where C = 0.577 is the Euler’s constant. We have G(z + 1) = Γ (z)G(z),
G(0) = 0 and G(1) = 1. The first result on the conjecture has been completely
solved by Ehrarhdt and Silbermann (1997) in the case of one singularity (R =
1). Thanks to the pioneering works of Basor, Boettcher, Widom and their
collaborators, the conjecture has been completely solved in the general case.

6 A Sketch of the Proof of the Main Result

We give only a sketch of the proof of i). The interested reader will find more
details in Kateb et al. (2004).
To prove i), we begin to study the asymptotic behavior of the first element
(T−1

N (f))1,1. By some elementary algebraic manipulations based on Cramer’s
rule, we get

(TN (f))−1
1,1 =

DN−1(f)

DN (f)
, (44)

the formula giving the asymptotic behavior of the determinants implies

(TN (f))−1
1,1 =

1

G(f1)

Nα2

(N + 1)
α2 (1 + o(1))

and then

(TN (f))−1
1,1 =

1

G(f1)

(
1 − α2

N
+ o

(
1

N

))
.

The formula contains a useful information; indeed after setting k = 0 in
formula (38), we deduce after identification
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∞∑
m=0

F2m,N (0)

(
sin(πα)

π

)2m+2

=
α2

N
(1 + o(1)). (45)

This relation is important to guess the asymptotic behavior of the other first
elements. Indeed since the inverting formula learns us that

(TN (f))−1
k+1,1 = β̄

(α)
k β

(α)
0

−β(α)
0

k∑
u=0

β̄(α)
u

∞∑
m=0

F2m,N (k − u)

(
sin(πα)

π

)2m+2

(1 + o(1)) ,

and since for small values of k we have

k

N
= o(1) ⇒ F2m,N (k − u) = F2m,N (0) +O

(
1

N2

)
,

we then obtain

(TN(f))
−1
k+1,1 = β̄

(α)
k β

(α)
0

− β
(α)
0

k∑
u=0

β̄(α)
u

(
∞∑

m=0

F2m,0(k − u)

(
sin(πα)

π

)2m+2
)

(1 + o(1))

= β
(α)
0

(
β̄

(α)
k − α2

N

k∑
u=0

β̄(α)
u

)
+ o

(
1

N

)
(46)

= β
(α)
0

(
β̄

(α)
k − α2

N
β̄

(α+1)
k

)
+ o

(
1

N

)
. (47)

The detailed proof of ii) and iii) is out of the scope of this work. We refer the
reader to the papers by Kateb et al. (2004) and Rambour and Seghier (2003).

7 Application to the Prediction of Long–Range
Dependent Processes

Generating long–range dependent processes is of interest for statisticians who
whish to analyze the finite sample properties of statistics and estimators re-
lated to this type of processes. Usually, for linear processes in the conditional
mean, one uses the Durbin–Levinson, henceforth DL, algorithm, which con-
sists in computing recursively the autoregressive coefficients for a fractional
Gaussian noise process. Assume that we wish to generate samples of a frac-
tional ARMA, FARIMA(0,d,0), process {νt}∞−∞ defined as

(1 − L)dνt = ξt, ξt ∼ N(0, σ2
ξ ). (48)

We generate the sequence {Yt} with the same finite dimensional distribution
as {νt} as follows:
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Y0 = v
1/2
0 ξ0 (49)

Yt =

t∑
j=1

φtjYt−j + v
1/2
t ξt, t ≥ 1,

v0 = Var(ν0), φtt =
d

t− d
, vt = vt−1(1 − φ2

tt), (50)

φti = φt−1,i − φttφt−1,t−i, 0 ≤ i ≤ t− 1.

A FARIMA(p, d, q) sequence can be generated from this FARIMA(0, d, 0) se-
quence.

As mentioned above, this algorithm is of order N2, which is not com-
putationally demanding for very large samples, e.g., 10,000 observations. For
simulation purpose, the triangular matrix of coefficients φij is computed once,
stored in memory, which is largely feasible using the storage capacities of mod-
ern computers, and then used for each replication. Thus, for that particular
purpose, there is no advantage in computing the elements of the triangu-
lar matrix [φij ] using the approximation method defined by equations (15),
(16) and (18). Furthermore, Bardet al. (2003) compared several generators of
long–range dependent processes using several tests, and concluded that the
Durbin–Levinson, although it is a good algorithm, is not the best one. Later
in this chapter, we will compare simulations obtained with both methods for
computing the coefficients φij , using in each case the same sequence of error
terms {ξt} for illustrating the accuracy of the approximation.

The point of view is completely different if we are observing a sample of
observations Y0, . . . , YT , and we whish to forecast the realization of Yt at time
t+ 1, i.e., compute Ŷt+1:

Ŷt+1 = φt+1,1Yt + φt+1,2Yt−1 + · · · + φt+1,t+1Y0. (51)

In that case, there is no need to recursively compute the elements φij , i < t+1
for computing the sequence {φt+1,j}, j = 1, . . . , t+1. We approximate it with
the sequence {ψt+1,j} computed using formulas (15), (16) and (18).

An open question is then the choice for the threshold kinf i.e., the switch
between approximations (15) and (16), and the threshold ksup, for the choice
between the approximations (16) and (18). We consider several sample sizes,
N = 100, 200, . . . , 1000, 1500, . . . , 18500, several values for the degree of long–
range dependence, d = 0.05, 0.10, . . . , 0.45, and find for each configuration the
optimal values kinf and ksup which minimize the distance:

N∑
j=1

(φN,j − ψN,j)
2, (52)

where {φN,j} and {ψN,j} respectively denote the sequence of coefficients com-
puted with the Durbin–Levinson algorithm and the approximation formulas.
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Table 1 below reports the optimal values for kinf and ksup for N = 100
and various values for d, and the fraction of the sequence {ψN,j} below each
threshold, i.e., kinf/N and ksup/N .

Table 1. Optimal values for kinf and ksup, for N = 100 and various values for the
memory parameter d

d kinf ksup kinf/N ksup/N

0.05 20 98 0.2 0.98
0.10 20 98 0.2 0.98
0.15 20 97 0.2 0.97
0.20 20 97 0.2 0.97
0.25 20 97 0.2 0.97
0.30 20 97 0.2 0.97
0.35 20 97 0.2 0.97
0.40 20 97 0.2 0.97
0.45 20 97 0.2 0.97

Figure 1 illustrates the difference between the coefficients ψ100,i − φ100,i

for these optimal values for kinf and ksup. The magnitude of the difference
ψ100,i −φ100,i is very small, and takes its highest values at the thresholds kinf

and ksup between the approximation formulas.

0 10 20 30 40 50 60 70 80 90 100

−0.00004

−0.00002

0.00000

0.00002

0.00004

Fig. 1. Difference between the coefficients ψ100,i and φ100,i, i = 1, . . . , 100 respec-
tively given by the approximation formula and by the Durbin–Levinson algorithm.
N = 100, kinf = 20, ksup = 97, d = 0.35
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Table 2. Optimal values for kinf and ksup, for d = 0.35 and various values for the
polynomial size N

N kinf ksup kinf/N ksup/N

200 32 196 0.1600 0.9800
300 42 295 0.1400 0.9833
400 52 394 0.1300 0.9850
500 60 493 0.1200 0.9860
600 68 593 0.1133 0.9883
700 76 692 0.1086 0.9886
800 83 791 0.1037 0.9887
900 90 891 0.1000 0.9900

1000 96 990 0.0960 0.9900
1500 127 1488 0.0847 0.9920
2000 154 1987 0.0770 0.9935
2500 180 2485 0.0720 0.9940
3000 203 2984 0.0677 0.9947
3500 225 3482 0.0643 0.9949
4000 247 3981 0.0617 0.9952
4500 267 4480 0.0593 0.9956
5000 287 4979 0.0574 0.9958
5500 306 5478 0.0556 0.9960
6000 324 5977 0.0540 0.9962
7000 360 6975 0.0514 0.9964
8000 393 7974 0.0491 0.9967
9000 426 8972 0.0473 0.9969

10000 457 9971 0.0457 0.9971
11000 487 10969 0.0443 0.9972
12000 517 11968 0.0431 0.9973
13000 545 12967 0.0419 0.9975
14000 573 13965 0.0409 0.9975
15000 600 14964 0.0400 0.9976
16000 627 15963 0.0392 0.9977
17000 653 16962 0.0384 0.9978
18000 678 17961 0.0377 0.9978
19000 703 18960 0.0370 0.9979
20000 728 19959 0.0364 0.9979
30000 955 29949 0.0318 0.9983
40000 1158 39942 0.0289 0.9985
50000 1345 49935 0.0269 0.9987
60000 1520 59929 0.0253 0.9989
70000 1685 69923 0.0241 0.9990
80000 1843 79918 0.0230 0.9990
90000 1994 89913 0.0221 0.9990

100000 2134 99908 0.0214 0.9991
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Since the choice for kinf and ksup is not much affected by the value of the
memory parameter d, we report on table 2 the optimal values for kinf and ksup

for various polynomial sizes N , from N = 200 to N = 100, 000, and d = 0.35.
As N gets large, both kinf and ksup increases, but more slowly as kinf/N → 0
and (N − ksup)/N → 0, i.e.,

1/kinf +kinf/N → 0, 1/(N−ksup)+(N−ksup)/N → 0 as N → ∞. (53)

The choice for kinf and ksup resembles a bandwidth selection problem.
Figure 2 below illustrates the difference between the coefficients ψ15000,i −

φ15000,i, i = 1, . . . , 15000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000

−1.5e−8

−1e−8

−5e−9

0

5e−9

1e−8

1.5e−8

Fig. 2. Difference between the coefficients ψ15000,i and φ15000,i, i = 1, . . . , 15000
respectively given by the approximation formula and by the Durbin–Levinson algo-
rithm. N = 15000, kinf = 600, ksup = 14964, d = 0.30

7.1 Monte Carlo Analysis

As we can see from figures 1 and 2, even for small sample size, there is no sig-
nificant difference between the coefficients generated by the DL algorithm, and
the coefficients generated by the approximation formula. As a consequence,
long range dependent series generated by both formula, should not differ too
much, provided that the same sequence of pseudo–error terms {ξt} is used for
both series. We generate the two processes:
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Y0 = v
1/2
0 ξ0 (54)

Yt =

t∑
j=1

φtjYt−j + v
1/2
t ξt, t ≥ 1, (55)

Z0 = v
1/2
0 ξ0 (56)

Zt =

t∑
j=1

ψtjZt−j + v
1/2
t ξt, t ≥ 1, (57)

where the sequence {vt} is defined by equation (50). In fact, the 100 first
observations of the process {Zt} are generated by the Durbin–Levinson algo-
rithm, the next ones are generated using equation (57). We also do not use at
each time t the optimal values for kinf and ksup. Using the results from table
2, we set kinf = [0.05t] and ksup = [0.99t], i.e., the lower and upper thresholds
are respectively set to 5% and 99% of the polynomials. As we will see later,
this rough choice works remarkably well.

We check the accuracy of the approximation by estimating the long mem-
ory parameter of the two processes with the wavelet estimator by Veitch and
Abry (1999), the local Whittle (LW) estimator proposed by Künsch (1987)
and further analyzed by Robinson (1995), and the estimator based on a log–
periodogram (LP) regression in the spectral domain proposed by Geweke and
Porter–Hudak (1983). See also the chapter by Teyssière and Abry (2005) in
this volume which compares these three estimators for various processes.

Since we are using the wavelet estimator, we consider samples of size N =
10, 000. For this estimator, we consider the ranges of lowest octaves j1 =
1, . . . , 7 and the number of vanishing moments N = 2, . . . , 6. For the LW
estimator, we select the optimal bandwidth m using the iterative procedure
proposed by Henry and Robinson (1996); see also Henry (2001). For the LP
estimator, we set the optimal bandwidth m = [N0.8].4 For the choice of the
optimal bandwidth for both LW and LP, see the chapter by Henry (2005) in
this volume.

We consider several values for d = 0.05, 0.10, . . . , 0.45. Because of the large
number of results, we only report some of them. Since the coefficients φtj and
ψtj do not differ too much, and we are using the same sequence of pseudo
error terms {ξt}, the estimation results between each simulated sequence are
very similar. Table 3 below reports some estimates obtained from a fractional
Gaussian noise with d = 0.25:

4 We also used Henry’s (2001) optimal bandwidth for the LP estimator. Since
results do not differ too much from the LW estimator, with a slightly higher Root
Mean Squared Error (RMSE), we do not report the results here.
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Table 3. Estimates of the long memory parameter for the two series Yt and Zt

respectively generated using equations (54)–(55) and equations (56)–(57). For the
wavelet estimator, we set j1 = 5 and N = 2. d = 0.25, N = 10000

Replication LWY LPY WavY LWZ LPZ WavZ

1 0.3366 0.2140 0.3069 0.3365 0.2140 0.3069
2 0.2473 0.2507 0.1933 0.2471 0.2507 0.1933
3 0.2314 0.2400 0.2565 0.2313 0.2400 0.2565
4 0.2092 0.2552 0.2576 0.2092 0.2552 0.2576
5 0.2334 0.2541 0.2737 0.2381 0.2541 0.2737

For the LP and wavelet estimators, the difference is of order 10−5. The
slight difference for the Local Whittle (LW) estimator is due to a difference in
the selection of the optimal bandwidth m for the processes {Yt} and {Zt}: as
we will see in Figure 3 in section 7.2, there is a negligible discrepancy between
the periodogram of both processes, which results in a small difference in the
optimal bandwidth parameter.

Table 4 below reports the average estimates over 5000 replication of the
memory parameter of both processes {Yt} and {Zt}.

Table 4. Average estimates of the long memory parameter for the processes {Yt}
and {Zt} respectively generated using equations (54)–(55) and equations (56)–(57).
For the wavelet estimator, we set j1 = 5 and N = 2. N = 10000, 5000 simulations.
The Root Mean Squared Errors are between parentheses

d LWY LPY WavY LWZ LPZ WavZ

0.05 0.0486 0.0493 0.0508 0.0486 0.0493 0.0508
(0.0220) (0.0162) (0.0372) (0.0220) (0.0162) (0.0372)

0.10 0.0979 0.0992 0.1009 0.0979 0.0992 0.1008
(0.0238) (0.0162) (0.0373) (0.0237) (0.0162) (0.0373)

0.15 0.1471 0.1492 0.1508 0.1469 0.1492 0.1509
(0.0271) (0.0162) (0.0367) (0.0266) (0.0162) (0.0373)

0.20 0.1961 0.1993 0.2010 0.1961 0.1993 0.2010
(0.0297) (0.0162) (0.0374) (0.0297) (0.0162) (0.0374)

0.25 0.2458 0.2494 0.2511 0.2457 0.2494 0.2511
(0.0335) (0.0162) (0.0375) (0.0337) (0.0162) (0.0375)

0.30 0.2938 0.2996 0.3012 0.2939 0.2996 0.3012
(0.0395) (0.0162) (0.0377) (0.0389) (0.0162) (0.0377)

0.35 0.3420 0.3498 0.3512 0.3419 0.3498 0.3512
(0.0458) (0.0162) (0.0378) (0.0458) (0.0162) (0.0378)

0.40 0.3895 0.4001 0.4013 0.3894 0.4001 0.4013
(0.0528) (0.0162) (0.0381) (0.0529) (0.0162) (0.0381)

0.45 0.4371 0.4505 0.4514 0.4369 0.4505 0.4514
(0.0615) (0.0163) (0.0383) (0.0616) (0.0163) (0.0383)
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Although the thresholds parameters kinf and ksup have not been optimally
chosen, the memory properties for both processes look very similar, which
emphasizes the accuracy of the approximation formulas (15), (16) and (18)
even for generating long–range dependent processes. Thus, these formulas are
reliable for 1–step ahead forecasting.

7.2 Goodness–of–Fit Test for the Spectral Density

Besides the comparison of the semiparametric estimation of the long–memory
parameter for the series generated by the DL algorithm and the approximation
formula, we conducted a parametric goodness–of–fit test based on the spectral
density, and test whether the spectral densities of the processes generated by
the DL algorithm and the approximation formula are the same. Figure 3
below displays an example of the periodogram IDL(λ) of a series generated
with the DL algorithm with the periodogram of the series generated with the
approximation formula IA(λ) using the same sequence of pseudo–error terms:
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Fig. 3. Periodograms of two series generated by the DL algorithms (above) and
the approximation formula (below)

The difference between the two estimated spectra is not noticeable, which
explains the negligible difference between the LW estimators for the series
generated with either processes; see discussion of table 3 above.

Bardet et al. (2003) use the goodness–of–fit test by Chen and Deo (2004)
and concluded that the DL algorithm, although a good one, is not the best
algorithm for generating long–range dependent data. We carried a little scale
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experiment using the goodness–of–fit test by Fay and Philippe (2002) based on
the information measure, or logarithmic contrast, which compares the spectral
densities f and g

S(f, g) = log

∫ 2π

0

f(λ

g(λ)

dλ

2π
−
∫ 2π

0

log
f(λ

g(λ)

dλ

2π
. (58)

The test by Fay and Philippe compares the (possibly) pooled and (possibly)
tapered periodogram of the series with the “plug–in” estimated spectra, using
the Whittle estimator, of a FARIMA(0, d, 0) process. According to these au-
thors, this test has a better size than the test by Chen and Deo (2002). Both
algorithms give close values for this test, which is not surprising as tapering
the periodogram will reduce again the difference between the spectra of the
series generated by the two algorithms.5

7.3 Forecasting Volatility

We consider here the issue of volatility forecasting, which is important in risk
management, and present several volatility models which could rely on the
forecasting property of the Durbin–Levinson algorithm as the best one–step
ahead linear predictor. Since this algorithm is recursive, the approximation
formula considered here is of interest as very large samples, e.g., samples of
size over 10,000 observations, are common in finance. For instance, the chapter
by Lavielle and Teyssière (2005) in this volume consider samples over 16,000
observations. The application, evaluation and comparison of the forecasting
performance6 of these different models will be carried in a subsequent research
work that will deal with the issue of h–steps ahead prediction.

Standard volatility models are the Generalized ARCH processes and the
stochastic volatility models. Robinson (1991) generalized the class of GARCH
processes to the long–memory case, while Breidt et al. (1998) introduced the
long–memory stochastic volatility process, henceforth LMSV, defined as:

rt = σtζt, ζt ∼ N(0, 1), (59)

σt = σ exp(Xt/2), Xt ∼ FARIMA(p, d, q), (60)

where σ is a scale parameter, and Xt are independent of ζt. The process {r2t }
is linearized as follows:

log r2t = log σ2 + E(log ζ2
t ) + ut +

(
log ζ2

t − E(log ζ2
t )
)

= µ+ ut + εt, (61)

where {εt} is iid, E(εt) = 0 and Var(εt) = σ2
ε . Since ζ ∼ N(0, 1), then log ζ2

is distributed as the log of a χ2
1 random variable, thus E(log ζ2) = 1.27 and

σ2
ε = π2/2.

5 As in Fay and Philippe (2002) we set the tapering order p = 1, and the size of
the pooling block m = 5.

6 See Christoffersen and Diebold (2000), Diebold, Gunter and Tay (1998).
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The spectral density of the process {log r2t } is given by:

f(λ) =
σ2

e

2π

∣∣θ(e−iλ)
∣∣2

|φ(e−iλ)|2
∣∣1 − e−iλ

∣∣−2d
+
σ2

ε

2π
, λ ∈ (−π, π) (62)

which is the sum of the spectrum of the long–range dependent process {Xt}
+ σ2

ε/2π, and then has the same shape as the spectrum of a long–range
dependent process.

Since the series {log |rt|δ}, with δ > 0 displays long–range dependence,
the intensity of which is the highest for δ = 1, we can forecast log r2T+1 hav-
ing observed a sample log r20 , . . . , log r2T ; see Chen, Hurvich and Lu (2004).7

Since the DL algorithm provides the best linear forecast ̂log r2T+1, our fast
approximation method can provide the same forecast more quickly.

Brockwell and Dalhaus (2004) generalized the DL algorithm for the case
of step–h prediction, i.e., predicting XT+h having observed only the sample
X1, . . . , XT . Lux (2003) considered the application of this generalized DL
algorithm for the prediction of the volatility process using the multifractal
model of asset returns (MMAR) by Mandelbrot, Fisher and Calvet (1997),
although the modeling of the volatility by a FARIMA(0, d, 0) process is a
rather rough approximation of the statistical properties of the MMAR process.

A third application of the (generalized) DL algorithm is the prediction
of the series of absolute asset prices returns |rt|. The periodogram and the
autocorrelation function (ACF) of absolute (and squared) returns have the
typical shape of a long–range dependent process, i.e., a pole near the zero
frequency and a hyperbolic decay of the ACF. However, as emphasized by
Granger (2000), absolute (and squared) returns share the properties of the
second moments of strongly dependent processes, but not the properties of
the first moments as unlike FARIMA processes, absolute (and squared) returns
empirical processes do not display local trends. Thus, modeling the absolute
returns by a simple FARIMA process is irrelevant.

It has been claimed that the best way to model the volatility of the re-
turns rt is by using a change–point GARCH(1,1) process, i.e., a GARCH(1,1)
process with changing coefficients so that the unconditional variance of the
process changes significantly, the magnitude of the jumps in the uncondi-
tional variance being positively correlated with the intensity of long–range
dependence in the absolute (and squared) returns process; see e.g., Mikosch
and Stărică (1999, 2003, 2004). Stărică and Granger (2001) even modeled the
returns process by a simple change in variance process.

However, since absolute returns are used as a measure of risk, see Granger
and Ding (1995), modeling this process is of interest. Granger and Hyung
(2004) reconcile both approaches by modeling the absolute returns using both
a FARIMA(0, d, 0) process and a change–point (occasional break) process,

7 Deo, Hurvich and Lu (2003) propose to forecast |rT+1|
δ from |r0|

δ , . . . , |rT |
δ,

where δ is a “scaling” factor which makes the distribution of {|rt|
δ} close to the

normal distribution.
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(1 − L)d|rt| = mo + εt +

t∑
j=1

qtζt, ζt ∼ iid(0, σ2
ζ ), (63)

where qt ∈ {0, 1} is a two–state process governed by a Markov process.
Granger and Hyung (2004) found that this combination improves the fore-
casting of the absolute returns.
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1 Introduction

Volatility clustering is one of the most important ‘stylized facts’ in finan-
cial time series data. Whereas price changes themselves appear to be unpre-
dictable, the magnitude of those changes, as measured e.g., by the absolute or
squared returns, appears to be predictable in the sense that large changes tend
to be followed by large changes – of either sign – and small changes tend to be
followed by small changes. Asset price fluctuations are thus characterized by
episodes of low volatility, with small price changes, irregularly interchanged
by episodes of high volatility, with large price changes. This phenomenon was
first observed by Mandelbrot (1963) in commodity prices.3 Since the pioneer-
ing papers by Engle (1982) and Bollerslev (1986) on autoregressive conditional
heteroskedastic (ARCH) models and their generalization to GARCH models,
volatility clustering has been shown to be present in a wide variety of finan-
cial assets including stocks, market indices, exchange rates, and interest rate
securities.4

In empirical finance, volatility clustering is usually modeled by a statisti-
cal model, for example by a (G)ARCH model or one of its extensions, where
the conditional variance of returns follows a low order autoregressive process.
Other approaches to modeling volatility clustering and long memory by statis-
tical models include fractionally integrated GARCH or similar long memory
models, see e.g., Granger and Ding (1996), Baillie et al. (1996), Breidt et al.
(1998), and multi-fractal models, see Mandelbrot (1997, 1999). Whereas all
these models are extremely useful as a statistical description of the data, they
do not offer a structural explanation of why volatility clustering is present
in so many financial time series. Rather the statistical models postulate that
the phenomenon has an exogenous source and is for example caused by the
clustered arrival of random ‘news’ about economic fundamentals.

The volatility of financial assets is a key feature for measuring risk underly-
ing many investment decisions in financial practice. It is therefore important to
gain theoretical insight into economic forces that may contribute to or amplify
volatility and cause, at least in part, its clustering. The need for an equilibrium
theory and a possible relation with technical trading rules and overreaction
was e.g., already suggested in Lo and MacKinlay (1990), p. 176: ‘. . . ‘the stock
market overreaction’ hypothesis, the notion that investors are subject to waves
of optimism and pessimism and therefore create a kind of ‘momentum’ that
causes prices to temporarily swing away from their fundamental values,’ and
‘. . . , a well-articulated equilibrium theory of overreaction with sharp empirical
implications has yet to be developed.’ More recent work in behavioral finance
has also emphasized the role of ‘market psychology’ and ‘investor sentiment’

3 Mandelbrot (1963), pp. 418–419 notes that Houthakker stressed this fact for daily
cotton prices, at several conferences and private conversation.

4 See, for example, Pagan (1996) or Brock (1997) for further discussion of ‘stylized
facts’ that are observed in financial data.
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in financial markets; see e.g., Shleifer (2000), Shefrin (2000), and Hirshleifer
(2001) for recent surveys.

In this paper we present a simple nonlinear structural equilibrium model
where price changes are driven by a combination of exogenous random news
about fundamentals and evolutionary forces underlying the trading process
itself. Volatility clustering becomes an endogenous phenomenon caused by
the interaction between heterogeneous traders, fundamentalists and technical
analysts, having different trading strategies and expectations about future
prices and dividends of a risky asset. Fundamentalists believe that prices will
move towards its fundamental rational expectations (RE) value, as given by
the expected discounted sum of future dividends.5 In contrast, the technical
analysts observe past prices and try to extrapolate historical patterns. The
chartists are not completely unaware of the fundamental price however, and
condition their technical trading rule upon the deviation of the actual price
from its fundamental value. The fractions of the two different trader types
change over time according to evolutionary fitness, as measured by accumu-
lated realized profits or wealth, conditioned upon price deviations from the
RE fundamental price.

The heterogeneous market is characterized by an irregular switching be-
tween phases of low volatility, where price changes are small, and phases of
high volatility, where small price changes due to random news are reinforced
and may become large due to trend following trading rules. Volatility clus-
tering is thus driven by heterogeneity and conditional evolutionary learning.
Although our model is very simple, it is able to generate autocorrelation pat-
terns of returns, and absolute and squared returns similar to those observed
in daily S&P 500 data.

Recently, closely related heterogeneous agent models generating volatility
clustering have been introduced e.g., in LeBaron et al. (1999), Lux and March-
esi (1999, 2000), Kirman and Teyssière (2002), and DeGrauwe and Grimaldi
(2004). An interesting feature of our model is that, due to heterogeneity in
expectations and switching between strategies, the deterministic skeleton (i.e.,
the model with exogenous shocks shut off to zero) of our evolutionary model is
a nonlinear dynamical system exhibiting (quasi)periodic and even chaotic fluc-
tuations in asset prices and returns. Nonlinear dynamic models can generate a
wide variety of irregular patterns. In particular, our nonlinear heterogeneous
agent model exhibits an important feature naturally suited to describe volatil-
ity clustering, namely coexistence of attractors. This means that, depending
upon the initial state, different types of long run dynamical behavior can
occur. In particular, our evolutionary model exhibits coexistence of a stable

5 As a special case we will discuss an example where traders do not believe that
prices move towards a fundamental value, but believe that markets are efficient
and (since the fundamental value is held constant in our model) that fluctuations
are completely random. Thus, they believe that the last observed price is the best
predictor for the future price.



268 Andrea Gaunersdorfer and Cars Hommes

steady state and a stable limit cycle. Hence, depending on initial conditions
of the market, prices will either settle down to the locally stable fundamental
steady state price, or converge to a stable cycle, fluctuating in a regular pat-
tern around the fundamental steady state price. In the presence of dynamic
noise, the market will then switch irregularly between close to the fundamental
steady state fluctuations, with small price changes, and periodic fluctuations,
triggered by technical trading, with large price changes. It is important to
note that coexistence of attractors is a structurally stable phenomenon, which
is by no means special for our conditionally evolutionary systems, but occurs
naturally in nonlinear dynamic models, and moreover is robust with respect
to small perturbations.

Whereas the fundamentalists have some ‘rational valuation’ of the risky
asset, the technical analysts use a simple extrapolation rule to forecast asset
prices. An important critique from ‘rational expectations finance’ upon het-
erogeneous agent models using simple habitual rule of thumb forecasting rules
is that ‘irrational’ traders will not survive in the market. Brock and Hommes
(1997a, 1998) have discussed this point extensively and stress the fact that
in an evolutionary framework technical analysts are not ‘irrational,’ but they
are in fact boundedly rational, since in periods when prices deviate from the
RE fundamental price, chartists make better forecasts and earn higher profits
than fundamentalists. See also the survey in Hommes (2001) or the interview
with William Brock in Woodford (2000).

We would like to relate our work to some other recent literature. Agent
based evolutionary modeling of financial markets is becoming quite popular
and recent contributions include the computational oriented work on the Santa
Fe artificial stock market, see Arthur et al. (1997), LeBaron et al. (1999), the
stochastic multi-agent models of Lux and Marchesi (1999, 2000), genetic learn-
ing in Arifovic and Gencay (2000), the multi-agent model of Youssefmir and
Huberman (1997), and the evolutionary markets based on out-of-equilibrium
price formation rules by Farmer and Joshi (2002). 6 Another recent branch of
work concerns adaptive learning in asset markets. Timmermann (1993, 1996)
e.g., shows that excess volatility in stock returns can arise under learning pro-
cesses that converge (slowly) to RE. Routledge (1999) investigates adaptive
learning in the Grossman-Stiglitz (1980) model where traders can choose to
acquire a costly signal about dividends, and derives conditions under which
the learning process converges to RE.7 An important characteristic that dis-

6 An early example of a heterogeneous agent model is Zeeman (1974); other exam-
ples include Frankel and Froot (1986), Kirman (1991), Chiarella (1992), Brock
(1993), and Lux (1995).

7 In Routledge (1999), the fraction of informed traders is fixed over time. De Font-
nouvelle (2000) investigates a Grossman-Stiglitz model where traders can choose
to buy a costly signal about dividends, with fractions of informed and uninformed
traders changing over time according to evolutionary fitness. de Fontnouvelle
(2000) is in fact an application of the Adaptive Rational Equilibrium Dynamics
(ARED) framework of Brock and Hommes (1997a), which is also underlying our
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tinguishes our approach is the heterogeneity in expectation rules, with time
varying fractions of trader types driven by evolutionary competition. These
adaptive, evolutionary forces can lead to endogenous asset price fluctuations
around the (stable or unstable) benchmark RE fundamental steady state, thus
creating excess volatility and volatility clustering.

We view our model as a simple formalization of general ideas from behav-
ioral finance, where markets are populated by different agents using trading
strategies (partly) based on ‘psychological heuristics.’ In our framework the
fractions of trading strategies change over time driven by evolutionary fit-
ness, such as profits and wealth, conditioned upon market indicators.8 In
such a heterogeneous boundedly rational world simple trading strategies sur-
vive evolutionary competition. A convenient feature of our model is that the
traditional benchmark rational expectations model is nested as a special case
within the heterogeneous framework. Our model thus provides a link between
the traditional theory and the new behavioral approach to finance.

The paper is organized as follows. Section 2 presents the conditional evolu-
tionary asset pricing model with fundamentalists and technical analysts. The
dynamics of the deterministic skeleton of the model is discussed in section 3.
In section 4 we compare the time series properties of the model, in particular
the autocorrelation patterns of returns, squared returns, and absolute return
with those of daily S&P 500 data. Finally, section 5 presents some concluding
remarks.

2 A Heterogeneous Agents Model

Our nonlinear model for volatility clustering will be a standard discounted
value asset pricing model with two types of traders, fundamentalists and tech-
nical analysts. The model is closely related to the Adaptive Belief Systems
(ABS), that is, the present discounted value asset pricing model with hetero-
geneous beliefs and evolutionary learning introduced by Brock and Hommes
(1998). However, our technical analysts condition their price forecasts upon
the deviation of the actual price from the rational expectations fundamental
price, similar to the approach taken in the Santa Fe artificial stock market in
Arthur et al. (1997) and LeBaron et al. (1999).

Agents can either invest their money in a risk free asset, say a T-bill, that
pays a fixed rate of return r, or they can invest their money in a risky asset,
for example a large stock or a market index traded at price pt (ex-dividend)
at time t, that pays uncertain dividends yt in future periods t, and therefore
has an uncertain return. Wealth in period t+ 1 of trader type h is given by

heterogeneous agent asset pricing model, to the Grossman-Stiglitz model leading
to unpredictable (chaotic) fluctuations in asset prices.

8 Goetzmann and Massa (2000) and Manzan (2003) provide recent empirical ev-
idence for the existence of different trader types in the market and that their
impact on the market changes over time.
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Wh,t+1 = (1 + r)Wh,t + (pt+1 + yt+1 − (1 + r)pt)zht, (1)

where zht is the demand of the risky asset for trader type h. Let Eht and Vht

denote the ‘beliefs’ (forecasts) of trader type h about conditional expectation
and conditional variance. Agents are assumed to be myopic mean-variance
maximizers so that the demand zht for the risky asset by type h solves

max
zht

{Eht[Wh,t+1] −
a

2
Vht[Wh,t+1]}, (2)

where a is the risk aversion parameter. The demand zht of type h for the risky
asset is then given by

zht =
Eht[pt+1 + yt+1 − (1 + r)pt]

aVht[pt+1 + yt+1 − (1 + r)pt]
=
Eht[pt+1 + yt+1 − (1 + r)pt]

aσ2
, (3)

where the beliefs about conditional variance Vht[pt+1 + yt+1 − (1 + r)pt] = σ2

are assumed to be constant over time and equal for all types.9 Let zs denote
the supply of outside risky shares per investor, assumed to be constant, and
let nht denote the fraction of type h at date t. Equilibrium of demand and
supply yields

H∑
h=1

nht
Eht[pt+1 + yt+1 − (1 + r)pt]

aσ2
= zs, (4)

where H is the number of different trader types.
In the case of zero supply of outside risky assets, i.e., zs = 0,10 the market

equilibrium equation may be rewritten as

(1 + r)pt =
H∑

h=1

nhtEht(pt+1 + yt+1). (5)

In a world where all traders are identical and expectations are homogeneous
the arbitrage market equilibrium equation (5) for the price pt of the risky
asset reduces to

(1 + r)pt = Et(pt+1 + yt+1), (6)

where Et denotes the common conditional expectation of all traders at the
beginning of period t, based on a publically available information set Ft such
as past prices and dividends. The arbitrage equation (6) states that today’s
price of the risky asset must be equal to the sum of tomorrow’s expected price
and expected dividend, discounted by the risk free interest rate. It is well
known that in a world where expectations are homogeneous, where all traders

9 Gaunersdorfer (2000) analyzes the case with time varying beliefs about variances
and shows that, in the case of an IID dividend process, the results are quite similar
to those with constant ones. Therefore we concentrate on this simple case.

10 In the general case one can introduce a risk adjusted dividend y#
t+1 = yt+1−aσ2zs

to obtain the market equilibrium equation (5), as in Brock (1997).
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are rational, and where it is common knowledge that all traders are rational,
the fundamental rational expectations equilibrium price, or the fundamental
price is

p∗t =

∞∑
k=1

Et(yt+k)

(1 + r)k
, (7)

given by the discounted sum of expected future dividends. We will focus on
the simplest case of an IID dividend process yt with mean Et(yt+1) = ȳ, so
that the fundamental price is constant and given by11

p∗ =

∞∑
k=1

ȳ

(1 + r)k
=
ȳ

r
. (8)

It is important to note that so-called speculative bubble solutions, growing
at a constant rate 1 + r, also satisfy the arbitrage equation (6) at each date.
In a homogeneous, perfectly rational world the existence of these speculative
bubbles is excluded by the transversality condition

lim
t→∞

E(pt)

(1 + r)t
= 0,

and the constant fundamental solution (8) is the only solution of (6) satisfying
this condition. Along a speculative bubble solution traders would have perfect
foresight, but prices would diverge to infinity. In a homogeneous, perfectly
rational world traders realize that speculative bubbles cannot last forever and
therefore, they will never get started.

In the asset pricing model with heterogeneous beliefs, market equilibrium
in (5) states that the price pt of the risky asset equals the discounted value of
tomorrow’s expected price plus tomorrow’s expected dividend, averaged over
all different trader types. In such a heterogeneous world, temporary bubbles
with prices deviating from the fundamental, may arise, when the fractions of
traders believing in those bubbles is large enough. Notice that, within our
heterogeneous agents equilibrium model (5) the standard present discounted
value model is nested as a special case. In the nested RE benchmark, asset
prices are only driven by economic fundamentals. In contrast, the heteroge-
neous agent model generates excess volatility driven by evolutionary com-
petition between different trading strategies, leading to unpredictability and
volatility clustering in asset returns.

In order to complete the model, we have to be more precise about traders’
expectations (forecasts) about future prices and dividends. For simplicity we
focus on the case where expectations about future dividends are the same for
all traders and given by

Eht(yt+1) = Et(yt+1) = ȳ, (9)

11 Notice that in our setup, the constant benchmark fundamental p∗ = ȳ/r could
easily be replaced by another, more realistic time varying fundamental price p∗

t .
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for each type h. All traders are thus able to derive the fundamental price
p∗ = ȳ/r in (8) that would prevail in a perfectly rational world. Traders
nevertheless believe that in a heterogeneous world prices will in general deviate
from their fundamental value. We focus on a simple case with two types of
traders, with expected prices given respectively by12

E1t[pt+1] ≡ pe
1,t+1 = p∗ + v(pt−1 − p∗), 0 ≤ v ≤ 1, (10)

E2t[pt+1] ≡ pe
2,t+1 = pt−1 + g(pt−1 − pt−2), g ≥ 0. (11)

Traders of type 1 are fundamentalists, believing that tomorrow’s price will
move in the direction of the fundamental price p∗ by a factor v. Of special
interest is the case v = 1, for which

E1t[pt+1] ≡ pe
1,t+1 = pt−1. (12)

We call this type of traders EMH-believers, since the naive forecast of the
last observed price as prediction for tomorrow’s price is consistent with an
efficient market where prices follow a random walk. Trader type 2 are simple
trend followers, extrapolating the latest observed price change. The market
equilibrium equation (5) in a heterogeneous world with fundamentalists and
chartists as in (10)–(11), with common expectations on dividends as in (9),
becomes

(1 + r)pt = n1t(p
∗ + v(pt−1 − p∗)) + n2t(pt−1 + g(pt−1 − pt−2)) + ȳ, (13)

where n1t and n2t represent the fraction of fundamentalists and chartists,
respectively, at date t. At this point we also would like to introduce (additive)
dynamic noise into the system, to obtain

(1 + r)pt = n1t(p
∗ + v(pt−1 − p∗)) +n2t(pt−1 + g(pt−1 − pt−2)) + ȳ+ εt, (14)

where εt are IID random variables representing the fact that this deterministic
model is in fact too simple to capture all dynamics of a financial market.
Our model can at best be only an approximation of the real world. One can
interprete this noise term also as coming from noise traders, i.e., traders,
whose behavior is not explained by the model but considered as exogenously
given; see, for example, Kyle (1985).

The market equilibrium equation (14) represents the first part of the
model. The second, conditionally evolutionary part of the model describes
how the fractions of fundamentalists and technical analysts change over time.
The basic idea is that fractions are updated according to past performance,
conditioned upon the deviation of actual prices from the fundamental price.
Agents are boundedly rational in the sense that most of them will choose the
forecasting rule that performed best in the recent past, conditioned upon de-
viations from the fundamental. Performance will be measured by accumulated

12 For example, Frankel and Froot (1986) and Kirman (1998) have been using exactly
the same fundamental and chartist trader types.
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realized past profits. Note that realized excess returns per share over period t
to period t+ 1, can be computed as

Rt+1 = pt+1 + yt+1 − (1 + r)pt = pt+1 − p∗ − (1 + r)(pt − p∗) + δt+1, (15)

where δt+1 = yt+1 − ȳ, Et(δt+1) = 0. In the general case where the dividend
process yt is not IID, δt+1 is a martingale difference sequence w.r.t. Ft. This
term represents intrinsic uncertainty about economic fundamentals in a fi-
nancial market, in our case unexpected random news about future dividends.
Thus, realized excess returns (15) can be decomposed in an EMH-term δt and
a speculative endogenous dynamic term explained by the theory represented
here.

The first, evolutionary part of the updating of fractions of fundamentalists
and technical analysts is described by the discrete choice probabilities13

ñht = exp[βUh,t−1]/Zt−1, h = 1, 2 (16)

where Zt−1 =
∑2

h=1 exp[βUh,t−1] is just a normalization factor such that the
fractions add up to one. Uh,t−1 measures the evolutionary fitness of predictor
h in period t− 1, given by accumulated realized past profits as discussed be-
low. The key feature of (16) is that strategies or forecasting rules are ranked
according to their fitness and the higher the ranking, the more traders will fol-
low that strategy. The parameter β is called the intensity of choice, measuring
how fast the mass of traders will switch to the optimal prediction strategy. In
the special case β = 0, both fractions ñht will be constant and equal to 1/2.
In the other extreme case β = ∞, in each period all traders will use the same,
optimal strategy.

We assume that traders use observed data for evaluating their prediction
rules. Thus, a natural candidate for evolutionary fitness is accumulated realized
profits,14 as given by

Uht := Rtzh,t−1 + ηUh,t−1

= (pt + yt − (1 + r)pt−1)
Eh,t−1[pt + yt − (1 + r)pt−1)

aσ2
+ ηUh,t−1

=
1

aσ2
(pt + yt − (1 + r)pt−1)(p

e
h,t + ȳ − (1 + r)pt−1) + ηUh,t−1. (17)

13 The discrete choice probabilities coincide with the well known ‘Gibbs’-probabili-
ties in interacting particle systems in physics. Discrete choice probabilities can be
derived from a random utility model when the number of agents tends to infinity.
See Manski and McFadden (1981) and Anderson, de Palma and Thisse (1993) for
an extensive discussion of discrete choice models and applications in economics.

14 Gaunersdorfer and Hommes (2000) analyze the model with risk adjusted real-
ized profits or, equivalently, utilities derived from realized profits, as performance
measure. The results are very similar to the model presented here, showing the
robustness of the dynamic behavior of the model w.r.t. the evolutionary fitness
measure.
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The first term defines realized excess return of the risky asset over the risk free
asset times the demand for the risky asset by trader type h. The parameter η,
0 ≤ η ≤ 1 + r, in the second term is a memory parameter measuring how fast
past fitness is discounted for strategy selection. In the extreme case η = 0,
fitness equals realized net profit in the previous period. In the case with infinite
memory, i.e., η = 1, fitness equals accumulated realized net profits over the
entire past. In the intermediate case 0 < η < 1, the weight given to past
realized profits decreases exponentially with time. Notice also that for η =
1 + r fitness (17) coincides exactly with the hypothetical accumulated wealth
(1) of a trader who always would have used trading strategy h. It should
be emphasized that the key feature of this evolutionary mechanism is that
traders switch to strategies that have earned more money in the recent past.
The memory parameter simply measures the weight given to past earnings for
strategy selection.

In the second step of updating of fractions, the conditioning on deviations
from the fundamental by the technical traders is modeled as

n2t = ñ2t exp[−(pt−1 − p∗)2/α], α > 0 (18)

n1t = 1 − n2t. (19)

According to (18) the fraction of technical traders decreases more, the further
prices deviate from their fundamental value p∗. As long as prices are close
to the fundamental, updating of fractions will almost completely be deter-
mined by evolutionary fitness, that is, by (16)–(17). But when prices move
far away from the fundamental, the correction term exp[−(pt−1 − p∗)2/α]
in (18) becomes small, representing the fact that more and more chartists
start believing that a price correction towards the fundamental price is about
to occur. Our conditional evolutionary framework thus models the fact that
technical traders are conditioning their charts upon information about fun-
damentals, as is common practice in real markets. A similar approach is for
example in DeGrauwe et al. (1993). The conditioning of their charts upon
economic fundamentals may be seen as a ‘transversality condition’ in a het-
erogeneous agent world, allowing for temporary speculative bubbles but not
for unbounded bubbles; see Hommes (2001) for a discussion of this point.

The timing of the coupling between the market equilibrium equation (14)
and the conditional evolutionary selection of strategies in (16)–(19) is im-
portant. The market equilibrium price pt in (14) depends upon the fractions
nht. The notation in (16), (18) and (19) stresses the fact that these fractions
depend upon past fitnesses Uh,t−1, which in turn depend upon past prices
pt−1 and dividends yt−1 in periods t − 1 and further in the past. After the
equilibrium price pt has been revealed by the market, it will be used in evo-
lutionary updating of beliefs and determining the new fractions nh,t+1. These
new fractions nh,t+1 will then determine a new equilibrium price pt+1, etc. In
the adaptive belief system, market equilibrium prices and fractions of different
trading strategies thus coevolve over time.
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3 Model Dynamics

The noisy conditional evolutionary asset pricing model with fundamentalists
versus chartists is given by (14), (16)–(19). In this section, we briefly discuss
the dynamical behaviour of the deterministic skeleton of the model, where
the noise terms δt and εt are both set equal to zero. Understanding of the
dynamics of the underlying deterministic skeleton will be useful when we
discuss the time series properties of the stochastic model in section 4.

Using the pricing equation (14) it follows easily that the unique steady
state price level is the fundamental price, i.e., p = p∗. Since both forecasting
rules (10) and (11) yield the same forecast at the steady state, the steady state
fractions must satisfy n∗1 = n∗2 = 0.5. The model thus has a unique steady
state where price equals its fundamental value and fractions of the two types
are equal.

In order to investigate the stability of the steady state it is useful to rewrite
the model in terms of lagged prices. The actual market price pt in (14) depends
on lagged prices pt−1 and pt−2 and on fractions n1t and n2t. According to (16)
these fractions depend on the fitness Uh,t−1, which by (17) depend on pt−1,
pt−2, Uh,t−2 and the forecasts pe

h,t−1. Finally, the forecasts pe
h,t−1 depend on

pt−3 and pt−4. We thus conclude that the market price pt in (14) depends
upon four lagged prices pt−j , 1 ≤ j ≤ 4, and the fitnesses Uh,t−2, so that
the system is equivalent to a six dimensional (first order) dynamical system.
A straightforward computation shows that the characteristic equation for the
stability of the steady state is given by (see Gaunersdorfer (2001) for details)15

λ2(η − λ)2
(
λ2 − 1 + g + v

2(1 + r)
λ+

g

2(1 + r)

)
= 0. (20)

Thus, the eigenvalues of the Jacobian are 0, η (both of multiplicity 2) and the
roots λ1, λ2 of the quadratic polynomial in the last bracket. Note that these
roots satisfy the relations

λ1 + λ2 =
1 + g + v

2(1 + r)
and λ1λ2 =

g

2(1 + r)
. (21)

Also note that the eigenvalues 0 and η always lie inside the unit circle. Thus,
the stability of the steady state is determined by the absolute values of λ1

and λ2.
The fundamental value p∗ is a unique steady state, which is locally stable

if the trend chasing parameter g < 2(1+r). That is, if price does not differ too
much from the fundamental value, it will converge towards it. As g is increased,

15 Gaunersdorfer et al. (2003) present a detailed mathematical analysis of the de-
terministic skeleton of a slightly different version of the model, where the fitness
measure is defined by risk adjusted past realized profits. The dynamics of the
model presented here is very similar and in particular, the local stability analysis
of the steady state is exactly the same.
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the steady state is destabilized by a Hopf bifurcation16 at g = 2(1 + r) and a
stable invariant ‘circle’ with periodic or quasiperiodic dynamics (stable limit
cycle) emerges. The invariant circle may undergo bifurcations as well, turning
into a strange (chaotic) attractor. This means, if trend chasing parameter g
is large enough price will not settle down at the fundamental value but will
fluctuate around it.

But even when trend chasing is weak (i.e., g < 2(1 + r)) price needs not
converge to the fundamental value. There exists a region in parameter space
for which two attractors, a stable steady state and a stable (quasi)periodic
cycle or even a chaotic attractor, coexist (see figure 1, in this example the
dynamics on the ‘circle’ which surrounds the fundamental steady state is
quasiperiodic). Thus, it depends on the initial price if price will converge to
the fundamental value or not. 17 18

So our nonlinear evolutionary system exhibits coexistence of a locally sta-
ble fundamental steady state and (quasi)periodic as well as chaotic fluctua-
tions of asset prices and returns. When buffeted with dynamic noise, in such a
case irregular switching occurs between close to the fundamental steady state
fluctuations and (quasi)periodic fluctuations triggered by technical trading.

In the next section we analyze time series properties of the model buf-
feted with noise and present an example where the endogenous fluctuations
in returns is characterized by volatility clustering.

4 Time Series Properties

We are interested in the statistical properties of time series generated by our
model and how they compare with those of real data. In particular, we are
interested in the autocorrelation structure of the returns, and absolute and
squared returns generated from the heterogeneous agents market equilibrium
model (14), (16), (17)–(19). Returns are defined as relative price changes,

16 A bifurcation is a qualitative change in the dynamics when parameters change.
See, for example, Kuznetsov (1998) for an extensive mathematical treatment of
bifurcation theory.

17 As a technical remark, Gaunersdorfer et al. (2003) show that the mathematical
generating mechanism for these coexisting attractors is a so-called Chenciner or
degenerate Hopf bifurcation (see Kuznetsov (1998), pp. 404–408). Any (noisy)
model with two coexisting attractors produces some form of volatility clustering.
We emphasize that the Chenciner bifurcation is not special, but it is a generic
phenomenon in nonlinear dynamic models with at least two parameters.

18 Coexistence of attractors is a generic, structurally stable phenomenon, occurring
for an open set of parameter values. When the stable cycle disappears and the
system has a strange (chaotic) attractor intermittency occurs. Recent mathemat-
ical results on homoclinic bifurcations have shown that strange attractors are
persistent in the sense that they typically occur for a positive Lebesgue measure
set of parameter values, see e.g., Palis and Takens (1993) for a mathematical
treatment.
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rt =
pt+1 − pt

pt
. (22)

We focus on a typical example in which strong volatility clustering occurs,
with ‘EMH-believers’ (v = 1 in (10)) and technical traders. In the absence of
random shocks (εt ≡ δt ≡ 0), there are two coexisting attractors in the exam-
ple, a locally stable fundamental steady state and an attracting quasiperiodic
cycle, as illustrated in figure 1.19 Depending upon the initial state, the system
will settle down either to the stable fundamental steady state or to the stable
cycle.

Fig. 1. Top panel: Left figure: phase space projection of prices pt for deterministic
skeleton without noise, where pt is plotted against pt−1: coexisting limit cycle and
stable fundamental steady state p∗ = 1000 (marked as a square). Right figure:
corresponding time series along the limit cycle. Bottom panel: Time series of prices,
returns, and fractions of trend followers. Parameter values: β = 2, r = 0.001, v = 1,
g = 1.9, ȳ = 1, α = 1800, η = 0.99, aσ2 = 1, δt ≡ 0 and εt ≡ 0

The time series of the deterministic skeleton of prices, returns, and frac-
tions of EMH believers along the cycle, as shown in the bottom pannel of fig-
ure 1, yield important insight into the economic mechanism driving the price

19 The memory parameter for all simulations in this paper is η = 0.99, so that for the
strategy selection decision past realized profits are slowly discounted. Simulations
with other memory parameters yield similar results.
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movements. Prices start far below the fundamental price p∗ = 1000. Since
the trend followers condition their trading rules upon the deviation from the
fundamental price, the market will be dominated by EMH believers. Prices
will slowly increase in the direction of the fundamental and the fraction of
trend followers starts increasing. As the fraction of trend followers increases,
the increase in prices is reinforced and trend followers earn a lot of money,
which in turn causes the fraction of trend followers to increase even more, etc.
At some critical phase from periods 283–288 prices rapidly move to a higher
level. During this phase returns increase and volatility jumps to a high value,
with a peak around period 286. As the price level moves to a high level of
about 1070 far above the fundamental price p∗ in period 288, the fraction of
trend followers drops to a low level of about 0.08, so that the market becomes
dominated by EMH believers again. Prices decrease and move slowly in the
direction of the fundamental price again20 with small negative returns close to
zero and with low volatility. Thereafter, the fraction of trend followers slowly
increases again, finally causing a rapid decrease in prices to a value of about
930, far below the fundamental, in period 640. Prices slowly move into the di-
rection of the fundamental again to complete a full price (quasi)cycle of about
700 periods. The price cycle is thus characterized by a period of small changes
and low volatility when EMH-believers dominate the market, and periods of
rapid increase or decrease of prices with high volatility. The periods of rapid
change and high volatility are triggered by technical trading; the conditioning
of their charts upon the fundamental prevents the price to move too far away
from the fundamental and leads to a new period of low volatility.

Adding dynamic noise to the system destroys the regularity of prices and
returns along the cycle and leads to an irregular switching between phases of
low volatility, with returns close to zero, and phases of high volatility, initiated
by technical trading. Figure 2 compares time series observations of the same
example buffeted with dynamic noise with daily S&P 500 data.21

20 In the case where all agents are EMH believers, the market equilibrium equation
without noise (13) reduces to pt = (pt−1+rp∗)/(1+r), which is a linear difference
equation with fixed point p∗ and stable eigenvalue 1/(1+r), so that prices always
move slowly into the direction of the fundamental. Notice also that when all agents
are EMH believers, the market equilibrium equation with noise (14) becomes
pt = (pt−1 + rp∗ + εt)/(1 + r), which is a stationary AR(1) process with mean
p∗ and root 1/(1 + r) close to 1, for r small. Hence, in the case when all traders
believe in a random walk, the implied actual law of motion is very close to a
random walk and EMH-believers only make small forecasting errors which may
be hard to detect in the presence of noise.

21 The noise level was chosen high enough to destroy the regularity in the price
series such that autocorrelations in returns become insignificant for lags higher
than one. But the noise should also not be too high in order not to destroy the
structure imposed by the deterministic part of the model.
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Fig. 2. Daily S&P 500 data (left panel; prices: 07/11/1996–05/10/2000, returns:
08/17/1961–05/10/2000) compared with data generated by our model (right panel),
with dynamic noise εt ∼ N(0, 102) and other parameters as in figure 1: price series
(top panel) return series (middle panel), and autocorrelation functions of returns,
absolute returns, and squared returns (bottom panel)

Prices in our evolutionary model are highly persistent and close to having
a unit root.22 In fact, simulated price series including only a sample size of
1000 observations look ‘similar’ to real price series and the null hypothesis

22 For v = 1 and r = 0 the characteristic polynomial of the Jacobian at the steady
state has an eigenvalue equal to 1. Note that the Jacobian of a linear difference
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of a unit root is not rejected, though the series is generated by a stationary
model.23 24 The model price series exhibits sudden large movements, which
are triggered by random shocks and amplified by technical trading. (Notice
the big price changes between periods 650 and 750 in the right top panel when
prices are close to the fundamental p∗ = 1000, similar to the big changes in
the deterministic model, cf. figure 1.) When prices move too far away from
the fundamental value 1000, technical traders condition their rule upon the
fundamental and switch to the EMH-belief. With many EMH believers in the
market, prices have a (weak) tendency to return to the fundamental value.
As prices get closer to the fundamental, trend following behavior may become
dominating again and trigger another fast price movement. However, in con-
trast to the deterministic version of the model these big price movements do
not occur regularly.

The middle panel of figure 2 compares return series of the S&P 500 over
40 years (where the October 1987 crash and the two days thereafter have been
excluded25) with return series including 10000 observations generated by our
model. The simulated return series is qualitatively similar to the S&P 500
daily return series and exhibits clustered volatility.

Table 1 shows some descriptive statistics for both return series. The means
and medians of both return series are close to 0 and the range and standard de-
viations are comparable in size. The S&P 500 returns have negative skewness,
which is not the case in our example.26 This should not come as a surprise,
because our simple stylized model is in fact symmetric around the fundamen-
tal steady state equilibrium, since both type of traders behave symmetrically
with respect to high or low prices and with respect to positive or negative
changes in prices. Finally, both return series show excess kurtosis, though
the kurtosis coefficient of our example is smaller than the coefficients for the

equation yt = α0 +
PL

k=1 αkyt−k has an eigenvalue 1 if and only if the time series

yt = α0 +
PL

k=1 αkyt−k + εt has a unit root equal to 1.
23 For the price series presented in figure 2 test statistics for the simulated series are:

Augmented Dickey-Fuller: −0.8237 (S&P 500: −1.1858), Phillips-Perron: −0.8403
(S&P 500: −1.2238). The MacKinnon critical values for rejection of the hypothesis
of a unit root are: 1%: −3.4396, 5%: −2.8648, 10%: −2.5685.

24 Notice that for price series with only 1000 observations the assumption of a sta-
tionary fundamental value seems quite reasonable. Whereas, if we would like to
compare longer price series with real data we have to replace our IID dividend
process by a non-stationary dividend process, e.g., by a geometric random walk.
We intend to study such non-stationary evolutionary systems in future work.

25 The returns for these days were about −0.20, +0.05, and +0.09. In particular,
the crash affects the autocorrelations of squared S&P 500 returns, which drop to
small values of 0.03 or less for all lags k ≥ 10 when the crash is included.

26 Skewness statistics are not significant nor of the same sign for all markets. Never-
theless, some authors examine the skewness in addition to excess kurtosis. Harvey
and Siddique (2000) argue that skewness may be important in investment deci-
sions because of induced asymmetries in realized returns.
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S&P 500 returns. This may be due to the fact that in our simple evolutionary
system chartists’ price expectations are always conditioned upon the same
distance function of price deviations from the fundamental price, i.e., upon
the weighted distance (p2

t−1 − p∗)2/α as described by (18). Nevertheless, our
simple stylized evolutionary model clearly exhibits excess kurtosis.

Table 1. Descriptive statistics for returns shown in figure 2. (**) null hypothesis
of normality rejected at the 1% level

S&P 500 Simulation

Mean 0.000348 0.000076
Median 0.000214 0.000028
Maximum 0.051152 0.065194
Minimum −0.082789 −0.070051
Std. Dev. 0.008658 0.011038
Skewness −0.187095 (**) 0.044317
Kurtosis 8.512094 (**) 5.579890 (**)

We next turn to the time series patterns of returns fluctuations and the
phenomenon of volatility clustering. In real financial data autocorrelation
functions (ACF) of returns are roughly zero at all lags. For high frequen-
cies they are slightly negative for individual securities and slightly positive
for stock indices. Autocorrelations functions of volatility measures such as ab-
solute or squared returns are positive for all lags with slow decay for stock
indices and a faster decay for individual stocks. This is the well-known stylized
fact known as volatility clustering.

Figure 2 (bottom panel) shows autocorrelation plots of the first 50 lags of
the return series and the series of absolute and squared returns. Both return
series have significant, but small autocorrelations at the first lag (ρ1 = 0.092
for the S&P 500 and ρ1 = 0.099 for our example). For the S&P 500 the
autocorrelation coefficient at the second lag is insignificant and at the third
lag slightly negative significant (ρ2 = 0.005, ρ3 = −0.025), whereas in our
simulation the autocorrelation coefficient is small but significant at the second
lag (ρ2 = 0.070) and insignificant for the third lag (ρ3 = 0.007). For all higher
order lags autocorrelations coefficients are close to zero and almost always
insignificant. Our noisy conditional evolutionary model thus has almost no
linear dependence in the return series. 27

27 Brock and Hommes (1997b) calibrate their evolutionary asset pricing model to
ten years of monthly IBM prices and returns. They present (noisy) chaotic time
series with autocorrelations of prices and returns similar to the autocorrelation
structure in IBM prices and returns. In particular, the noisy chaotic return series
have (almost) no significant autocorrelations. However, these series do not exhibit
volatility clustering, since there are no significant autocorrelations in squared
returns.
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The bottom panel in figure 2 also shows that for the absolute and squared
returns the autocorrelations coefficients of the first 50 lags are strongly sig-
nificant and positive. Although our model is only six dimensional it is able to
generate apparent long memory effects. Table 2 reports the numerical values
of the autocorrelation coefficients at the first 5 lags, which are comparable in
size for both series.

Table 2. Autocorrelations of the absolute and squared returns shown in figure 2

S&P 500 Simulation

lag n |rt| r2
t |rt| r2

t

1 0.179 0.190 0.193 0.219
2 0.158 0.144 0.156 0.123
3 0.153 0.133 0.147 0.127
4 0.164 0.126 0.131 0.112
5 0.186 0.122 0.124 0.098

Finally, we estimate a simple GARCH(1,1) model on the return series. 28

As is well known, for many financial return series the sum of the ARCH(1)
coefficient γ1 and the GARCH(1) coefficient γ2 is smaller than but close to
unity, representing the fact that the squared error term in the return equation
follows a stationary, but highly persistent process. The estimated parameters
are given in table 3.

Table 3. GARCH(1,1) estimations for the returns shown in figure 2

γ1 γ2 γ1 + γ2

S&P 500 0.069 0.929 0.998
Simulation 0.034 0.963 0.997

Our conditional evolutionary model thus exhibits long memory with long
range autocorrelations and captures the phenomenon of volatility clustering.

Let us finally briefly discuss the generality of the presented example. In or-
der to get strong volatility clustering, the parameter v = 1 (or v very close to 1)
is important, but the results are fairly robust with respect to the choices of
the other parameter values.29 We find volatility clustering also for parameters

28 The estimations are done with EViews.
29 As mentioned above, for v = 1 the system is close to having a unit root and prices

are highly persistent (cf. footnotes 22 and 23). Gaunersdorfer (2001) presents an
example of strong volatility clustering for v = 0.9 for shorter time series. However,
the null hypothesis of a unit root is clearly rejected.
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where the fundamental value is a globally stable steady state. For parameter
values close to the region where a stable steady state and a stable limit cycle
coexist, price paths only converge slowly towards the fundamental value and
look similar to price paths converging to a limit cycle. Especially, when the
system is buffeted with dynamic noise it is difficult to decide if parameters
are chosen in or out of the global stability region.

In general, when 0 ≤ v < 1 volatility clustering becomes weaker, and
sometimes also significant autocorrelations in returns may arise. The fact that
v = 1 or v very close to 1 (so that type 1 are EMH-believers or fundamen-
talists adapting only slowly into the direction of the fundamental), yields the
strongest volatility clustering results may be understood as follows. When
EMH-believers dominate the market asset prices are highly persistent and
mean reversion is weak, since the evolutionary system is close to having a unit
root (see footnote 20). Apparently, the interaction between unit root behav-
ior far from the fundamental steady state with relatively small price changes
driven only by exogenous news, and larger price changes due to amplification
by trend following rules in some neighborhood around the fundamental price
yields the strongest form of volatility clustering. We emphasize that all these
results have been obtained for an IID dividend process and a corresponding
constant fundamental price p∗. Including a non-stationary dividend process
and accordingly a non-stationary time varying fundamental process p∗t may
lead to stronger volatility clustering also in the case 0 ≤ v < 1. We leave this
conjecture for future work.

5 Concluding Remarks

We have presented a nonlinear structural model for volatility clustering. Fluc-
tuations in asset prices and returns are caused by a combination of ran-
dom news about economic fundamentals and evolutionary forces. Two typical
trader types have been distinguished. Traders of the first type are fundamen-
talists (‘smart money’ traders), believing that the price of an asset returns
to its fundamental value given by the discounted sum of future dividends or
‘EMH-believers,’ believing that prices follow a random walk. Traders of the
second type are chartists or technical analysts, believing that asset prices are
not solely determined by fundamentals, but that they may be predicted in
the short run by simple technical trading rules based upon patterns in past
prices, such as trends or cycles. The fraction of each of the two types is de-
termined by an evolutionary fitness measure, given by accumulated profits,
conditioned upon how far prices deviate from their fundamental value. This
leads to a highly nonlinear, conditionally evolutionary learning model buffeted
with noise.

The time series properties of our model are similar to important stylized
facts observed in many real financial series. In particular, the autocorrelation
structure of the returns and absolute and squared return series of our noisy
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nonlinear evolutionary system are similar to those observed in daily S&P 500
data, with little or no linear dependence in returns and high persistence and
long memory in absolute and squared returns. Although the model is simple,
it captures the first two moments of the distribution of real asset returns. Our
model thus might serve as a good starting point for a structural explanation
– by a tractable model – of further stylized facts in finance, such as cross
correlation between volatility and volume.

The generic mathematical mechanism generating volatility clustering is
the coexistence of a stable fundamental steady state and a stable (quasi)perio-
dic cycle. But there is also a strikingly simple economic intuition of why the
phenomenon of volatility clustering should in fact be expected in our con-
ditionally evolutionary system. When EMH-believers dominate the market
prices are highly persistent, changes in asset prices are small and only driven
by news, returns are close to zero and volatility is low. As prices move towards
the fundamental, the influence of trend followers gradually increases, which
reinforces the price trend. When trend followers start dominating the market,
a rapid change in asset prices occurs with large (positive or negative) returns
and high volatility. The price trend cannot persist forever, since prices cannot
move away too far from the fundamental because technical traders condition
their charts upon the fundamental. In the noisy conditionally evolutionary
system both, the low and the high volatility phases, are persistent and the
interaction between the two phases is highly irregular. The nonlinear interac-
tion between heterogeneous trading rules in a noisy environment thus causes
unpredictable asset returns and at the same time volatility clustering and the
associated predictability in absolute and squared returns.

Our model is also able to explain empirical facts like ‘fat tails,’ i.e., it gen-
erates excess kurtosis in the returns. This is due to the fact that the model
implies a decomposition of returns into two terms, one martingale difference
sequence part according to the conventional EMH theory, and an extra specu-
lative term added by the evolutionary theory. The heterogeneity in the model
thus creates excess volatility.

However, because of the simplicity of the model there are also some short-
comings compared to real financial data, which we would like to discuss briefly.
Our model does not generate return series which exhibit strong skewness. This
is due to the fact that our agents use trading rules which are exactly sym-
metric with respect to the constant fundamental value of the risky asset. As
a consequence, the evolutionary model is also symmetric with respect to the
fundamental price. Another shortcoming is that our model is stationary and
therefore it is not able to generate long growing price series. By replacing our
IID dividend process by a non-stationary dividend process, e.g., by a geomet-
ric random walk, prices will also rapidly increase, similar to real series. We
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intend to study such non-stationary models within the presented framework
in future work.30

Other important topics for future work are concerned with the welfare
implications and the wealth distribution of our heterogeneous agents economy.
What can be said about the total wealth in a multi-agent financial market
where prices may (temporary) deviate from their fundamental compared to
the RE benchmark? How will wealth be distributed among traders? What
would be an optimal investment strategy, a fundamentalists strategy, a trend
following strategy or a switching strategy, in such a heterogeneous world?
Notice that these are nontrivial questions, because although the number of
trading types or strategies is only two in our setup, an underlying assumption
of the discrete choice model for strategy selection is that the number of traders
in the population is large, in fact infinite. To investigate wealth dynamics one
thus has to keep track of the wealth distribution over an infinite population
of traders. One could of course consider hypothetical wealth generated by a
trader always sticking to the same type or strategy, but in our evolutionary
world the majority of traders switch strategy in each time period based upon
accumulated realized profits in the recent past. Addressing these important
issues is beyond the scope of the present paper, but we plan to study welfare
implications and wealth dynamics in future work.

In our model excess volatility and volatility clustering are created or rein-
forced by the trading process itself, which seems to be in line with common
financial practice. If the evolutionary interaction of boundedly rational, spec-
ulative trading strategies amplifies volatility, this has important consequences
for risk management and regulatory policy issues in real financial markets.
Our model predicts that ‘good’ or ‘bad’ news about economic fundamentals
may be amplified by evolutionary forces. Small fundamental causes may thus
occasionally have big consequences and trigger large changes in asset prices.
In the time of globalization of international financial markets, small shocks in
fundamentals in one part of the world may thus cause large changes of asset
prices in another part of the world. Our simple structural model shows that a
stylized version of this theory already fits real financial data surprisingly well.
Our results thus call for more financial research in this area to build more re-
alistic models to asses investors’ risk to speculative trading and evolutionary
amplification of changes in underlying fundamentals.

30 Hommes (2002) contains some simulations of the model with a non-stationary
fundamental.
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Volatility Clustering in Financial Markets:
Empirical Facts and Agent–Based Models

Rama Cont�

Centre de Mathématiques Appliquées, Ecole Polytechnique,
F-91128 Palaiseau, France. Rama.Cont@polytechnique.fr

Summary. Time series of financial asset returns often exhibit the volatility cluster-
ing property: large changes in prices tend to cluster together, resulting in persistence
of the amplitudes of price changes. After recalling various methods for quantifying
and modeling this phenomenon, we discuss several economic mechanisms which have
been proposed to explain the origin of this volatility clustering in terms of behavior
of market participants and the news arrival process. A common feature of these
models seems to be a switching between low and high activity regimes with heavy-
tailed durations of regimes. Finally, we discuss a simple agent-based model which
links such variations in market activity to threshold behavior of market participants
and suggests a link between volatility clustering and investor inertia.

1 Introduction

The study of statistical properties of financial time series has revealed a wealth
of interesting stylized facts which seem to be common to a wide variety of
markets, instruments and periods (Ding et al., 1993, Guillaume et al., 1997,
Pagan, 1996 , Cont, 2001):

• Excess volatility: many empirical studies point out to the fact that it
is difficult to justify the observed level of variability in asset returns by
variations in “fundamental” economic variables. In particular, the occur-
rence of large (negative or positive) returns is not always explainable by
the arrival of new information on the market (Cutler et al., 1989).

• Heavy tails: the (unconditional) distribution of returns displays a heavy
tail with positive excess kurtosis.

� The author thanks Alan Kirman and Gilles Teyssière for their infinite patience
and participants in the CNRS Summer School on Complex Systems in the Social
Sciences (ENS Lyon, 2004) for their stimulating feedback. The last section of this
paper is based on joint work with F. Ghoulmie and J.P. Nadal.
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• Absence of autocorrelations in returns: (linear) autocorrelations of
asset returns are often insignificant, except for very small intraday time
scales (� 20 minutes) where microstructure effects come into play.

• Volatility clustering: as noted by Mandelbrot (1963), “large changes
tend to be followed by large changes, of either sign, and small changes
tend to be followed by small changes.” A quantitative manifestation of this
fact is that, while returns themselves are uncorrelated, absolute returns
|rt| or their squares display a positive, significant and slowly decaying
autocorrelation function: corr(|rt|, |rt+τ |) > 0 for τ ranging from a few
minutes to a several weeks.

• Volume/volatility correlation: trading volume is positively correlated
with market volatility. Moreover, trading volume and volatility show the
same type of “long memory” behavior (Lobato and Velasco, 2000).

Among these properties, the phenomenon of volatility clustering has intrigued
many researchers and oriented in a major way the development of stochas-
tic models in finance –GARCH models and stochastic volatility models are
intended primarily to model this phenomenon. Also, it has inspired much de-
bate as to whether there is long-range dependence in volatility. We review
some of these issues in Section 2. As noted by the participants of this econo-
metric debate (Willinger et al., 1999, Mikosch and Stărică, 2003), statistical
analysis alone is not likely to provide a definite answer for the presence or
absence of long-range dependence phenomenon in stock returns or volatility,
unless economic mechanisms are proposed to understand the origin of such
phenomena.

Some insights into these economic mechanisms are given by agent-based
models of financial markets. Agent-based market models attempt to explain
the origin of the observed behavior of market prices in terms of simple, styl-
ized, behavioral rules of market participants, (Chiarella et al., 2003, Lux, 1998,
Lux and Marchesi, 2000, LeBaron 2001a): in this approach a financial mar-
ket is modeled as a system of heterogeneous, interacting agents and several
examples of such models have been shown to generate price behavior similar
to those observed in real markets. We review some of these approached in
Section 3 and discuss how they lead to volatility clustering.

Most of these agent-based models are complex in structure and have been
studied using Monte Carlo simulations. As noted also by LeBaron (2000), due
to the complexity of such models it is often not clear which aspect of the model
is responsible for generating the stylized facts and whether all the ingredients
of the model are indeed required for explaining empirical observations. In
Section 4 we present an agent-based model capable of generating time series
of asset returns with properties similar to the stylized facts above, but which
is simple enough in structure so the origins of volatility clustering can be
traced back to agents behavior. This model points to a link between investor
inertia and volatility clustering and provide an economic explanation for the
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switching mechanism proposed in the econometrics literature as an origin of
volatility clustering.

2 Volatility Clustering in Financial Time Series

Denote by St the price of a financial asset — a stock, an exchange rate or a
market index — and Xt = lnSt its logarithm. Given a time scale ∆, the log
return at scale ∆ is defined as:

rt = Xt+∆ −Xt = ln(
St+∆

St
). (1)

∆ may vary between a minute (or even seconds) for tick data to several days.
Observations are sampled at discrete times tn = n∆. Time lags will be denoted
by the Greek letter τ ; typically, τ will be a multiple of ∆ in estimations. For
example, if ∆ =1 day, corr[rt+τ , rt] denotes the correlation between the daily
return at period t and the daily return τ periods later.

2.1 Empirical Behavior of Autocorrelation Functions

A typical display of daily log-returns is shown in figure 1: the volatility cluster-
ing feature is seen graphically from the presence of sustained periods of high
or low volatility. As noted above, the autocorrelation of returns is typically
insignificant at lags between a few minutes and a month. An example is shown
in figure 2 (left). This “spectral whiteness” of returns can be attributed to
the activity of arbitrageurs who exploit linear correlations in returns via trend
following strategies, see Mandelbrot (1971). By contrast, the autocorrelation
function of absolute returns remains positive over lags of several weeks and
decays slowly to zero: figure 2 (right) shows this decay for SLM stock (NYSE).
This observation is remarkably stable across asset classes and time periods and
is regarded as a typical manifestation of volatility clustering (Bollerslev et al.,
1992, Ding et al., 1993, Cont et al., 1997, Guillaume et al., 1997). Similar be-
havior is observed for the autocorrelation of squared returns, see Bollerslev et
al. (1992), and more generally for |rt|α (Ding et al., 1993, Ding and Granger,
1996, Cont et al., 1997), but it seems to be most significant for α = 1, i.e.
absolute returns (Ding et al., 1993).

GARCH models (Bollerslev et al., 1992, Engle, 1995) were among the
first models to take into account the volatility clustering phenomenon. In a
GARCH(1,1) model the (squared) volatility depends on last periods volatility:

rt = σtεt, σ2
t = a0 + aσ2

t−1 + bε2t , 0 < a+ b < 1, (2)

leading to positive autocorrelation in the volatility process σt, with a rate of
decay governed by a+ b: the closer a+ b is to 1, the slower the decay of the
autocorrelation of σt. The constraint a + b < 1 allows for the existence of a
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Fig. 1. Large changes cluster together: BMW daily log-returns. ∆ = 1 day

stationary solution, while the upper limit a+ b = 1 corresponds to the case of
an integrated process. Estimations of GARCH(1,1) on stock and index returns
usually yield a+ b very close to 1 (Bollerslev et al., 1992). For this reason the
volatility clustering phenomenon is sometimes called a “GARCH effect”; one
should keep in mind however that volatility clustering is a “non-parametric”
property and is not intrinsically linked to a GARCH specification.

While GARCH models give rise to exponential decay in autocorrelations
of absolute or squared returns, the empirical autocorrelations are similar to a
power law; see Cont et al. (1997), Guillaume et al. (1997):

C|r|(τ) = corr(|rt|, |rt+τ |) �
c

τβ
,

with an exponent β ≤ 0.5, (Cont et al., 1997, Breidt et al., 1998), which
suggests the presence of “long-range” dependence in amplitudes of returns,
discussed below.
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Fig. 2. SLM stock, NYSE, ∆ = 5 minutes. Left: autocorrelation function of log-
returns. Right: autocorrelation of absolute log-returns

2.2 Long Range Dependence

Let us recall briefly the commonly used definitions of long range dependence,
based on the autocorrelation function of a process:

Definition 1 (Long range dependence). A stationary process Yt (with
finite variance) is said to have long range dependence if its autocorrelation
function C(τ) = corr(Yt, Yt+τ ) decays as a power of the lag τ :

C(τ) = corr(Yt, Yt+τ ) ∼
τ→∞

L(τ)

τ1−2d
, 0 < d <

1

2
, (3)

where L is slowly varying at infinity, i.e. verifies ∀a > 0, L(at)
L(t) → 1 as t→ ∞.

By contrast, one speaks of “short range dependence” if the autocorrelation
function decreases at a geometric rate:

∃K > 0, c ∈]0, 1[, |C(τ)| ≤ Kcτ . (4)

Obviously, (3) and (4) are not the only possibilities for the behavior of the
autocorrelation function at large lags: there are many other possible decays
rates, intermediate between a power decay and a geometric decay. However,
it is noteworthy that in all stochastic models used in the financial modeling
literature, the behavior of returns and their absolute values fall within one of
the two categories.

The long range dependence property (3) hinges upon the behavior of the
autocorrelation function at large lags, a quantity which may be difficult to
estimate empirically, see Beran (1994). For this reason, models with long-range
dependence are often formulated in terms of self-similar processes, which allow
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to extrapolate across time scales and deduce long time behavior from short
time behavior, which is more readily observed. A stochastic process (Xt)t≥0

is said to be self-similar if there exists H > 0 such that for any scaling factor
c > 0, the processes (Xct)t≥0 and (cHXt)t≥0 have the same law:

(Xct)t≥0
d
=(cHXt)t≥0. (5)

H is called the self-similarity exponent of the process X . Note that a self-
similar process cannot be stationary, so the above definition of long-range
dependence cannot hold for a self-similar process, but eventually for its in-
crements (if they are stationary). The typical example of self-similar process
whose increments exhibit long range dependence is fractional Brownian mo-
tion (Mandelbrot and Van Ness, 1968).

But self-similarity does not imply long-range dependence in any way: α-
stable Lévy processes provide examples of self-similar processes with inde-
pendent increments. Nor is self-similarity implied by long range dependence:
Cheridito (2004) gives several examples of Gaussian semimartingales with the
same long range dependence features as fractional Brownian noise but with no
self-similarity (thus very different “short range” properties and sample path
behavior). The example of fractional Brownian motion is thus misleading in
this regard, since it conveys the idea that these two properties are associated.
When testing for long range dependence in a model based on fractional Brow-
nian motion, we thus test the joint hypothesis of self-similarity and long-range
dependence and strict self-similarity is not observed to hold in asset returns
(Cont et al., 1997, Cont, 2001).

A fallacy often encountered in the literature is that long range dependence
in returns is incompatible with absence of (continuous-time) arbitrage. Again,
the origin of this idea can be traced back to models based on fractional Brown-
ian motion: since fractional Brownian motion is not a semimartingale, a model
in which the (log)-price are described by a fractional Brownian motion is not
arbitrage-free (in the continuous-time sense); see Rogers (1997). This result
(and the fact that fractional Brownian motions fails to be a semimartingale)
crucially depends on the local behavior of its sample paths, not on its long
range dependence property. Cheridito (2004) gives several examples of Gaus-
sian processes with the same long range dependence features as fractional
Brownian motion, but which are semimartingales and lead to arbitrage-free
models.

2.3 Dependence in Stock Returns

The volatility clustering feature indicates that asset returns are not indepen-
dent across time; on the other hand the absence of linear autocorrelation
shows that their dependence is nonlinear. Whether this dependence is “short
range” or “long range” has been the object of many empirical studies.
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The idea that stock returns could exhibit long range dependence was first
suggested by Mandelbrot (1971) and subsequently observed in many empir-
ical studies using R/S analysis (Mandelbrot and Taqqu, 1979). Such tests
have been criticized by Lo (1991) who pointed out that, after accounting for
short range dependence, they might yield a different result and proposed a
modified test statistic. Lo’s statistic highly depends on the way “short range”
dependence is accounted for and shows a bias towards rejecting long range
dependence, see Teverovsky et al. (1999). The final empirical conclusions are
therefore less clear (Willinger et al., 1999).

However, the absence of long range dependence in returns may be compat-
ible with its presence in absolute returns or “volatility”. As noted by Heyde
(2002), one should distinguish long range dependence in signs of increments,
when sign(rt) verifies (3), from long range dependence in amplitudes, when
|rt| verifies (3). Asset returns do not seem to possess long range dependence
in signs (Heyde, 2002). Many authors have thus suggested models, such as
FIGARCH (Baillie et al., 1996), in which returns have no autocorrelation but
their amplitudes have long range dependence; see Doukhan et al. (2003).

It has been argued (LeBaron, 2001b, Barndorff-Nielsen and Shephard,
2001) that the decay of C|r|(τ) can also be reproduced by a superposition
of several exponentials, indicating that the dependence is characterized by
multiple time scales. In fact, an operational definition of long range depen-
dence is that the time scale of dependence in a sample of length T is found
to be of the order of T : dependence extends over the whole sample. Interest-
ingly, the largest time scale in LeBaron (2001b) is found to be of the order of
. . . the sample size, a prediction which would be compatible with long-range
dependence!

Many of these studies test for long range dependence in returns, volatil-
ity,etc. by examining sample autocorrelations, Hurst exponents etc. but if time
series of asset returns indeed possess the two features of heavy tails and long
range dependence, then many of the standard estimation procedures for these
quantities may fail to work (Resnick, 1998). For example, sample autocorrela-
tion functions may fail to be consistent estimators of the true autocorrelation
of returns in the price generating process: Resnick et al. (1999) give examples
of such processes where sample autocorrelations converge to random values as
sample size grows! Also, in cases where the sample ACF is consistent, its esti-
mation error can have a heavy-tailed asymptotic distribution, leading to large
errors. The situation is even worse for autocorrelations of squared returns,
see Mikosch and Stărică (2000). Thus, one must be cautious in identifying
behavior of sample autocorrelation with the autocorrelations of the return
process.

Slow decay of sample autocorrelation functions may possibly arise from
other mechanism than long-range dependence. For example, note that non-
stationarity of the returns may also generate spurious effects which can be
mistaken for long-range dependence in the volatility. However, we will not go
to the extreme of suggesting, as in Mikosch and Stărică (2003), that the slow
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decay of sample autocorrelations of absolute returns is a pure artefact due
to non-stationarity. “Non-stationarity” does not suggest a modeling approach
and it seems highly unlikely that unstructured non-stationarity would lead to
such a robust, stylized behavior for the sample autocorrelations of absolute
returns, stable across asset classes and time periods. The robustness of these
empirical facts call for an explanation, which “non-stationarity” does not pro-
vide. Of course, these mechanisms are not mutually exclusive: a recent study
by Granger and Hyung (2004) illustrates the interplay of these two effects
by combining an underlying long memory process with occasional structural
breaks.

Independently of the econometric debate on the “true nature” of the return
generating process, one can take into account such empirical observations
without pinpointing a specific stochastic model by testing for similar behavior
of sample autocorrelations in agent-based models (described below), and using
sample autocorrelations for indirect inference (Gourieroux et al., 1993), of the
parameters of such models.

3 Mechanisms for Volatility Clustering

While GARCH, FIGARCH and stochastic volatility models propose statistical
constructions which mimick volatility clustering in financial time series, they
do not provide any economic explanation for it. We discuss here possible
mechanisms which have been proposed for the origin of volatility clustering.

3.1 Heterogeneous Arrival Rates of Information

Heterogeneity in agent’s time scale has been considered as a possible origin for
various stylized facts (Guillaume et al., 1997). Long term investors naturally
focus on long-term behavior of prices, whereas traders aim to exploit short-
term fluctuations.

Granger (1980) suggested that long memory in economic time series can
be due to the aggregation of a cross section of time series with different persis-
tence levels. This argument was proposed by Andersen and Bollerslev (1997)
as a possible explanation for volatility clustering in terms of aggregation of
different information flows.

The effects of the diversity in time horizons on price dynamics have also
been studied by Lebaron (2001a) in an artificial stock market, showing that
the presence of heterogeneity in horizons may lead to an increase in return
variability, as well as volatility-volume relationships similar to those of actual
markets.

3.2 Evolutionary Models

Several studies have considered modeling financial markets by analogy with
ecological systems where various trading strategies co-exist and evolve via
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a “natural selection” mechanism, according to their relative profitability,
(Arthur et al., 1997, Arifovic and Gencay, 2000, LeBaron et al., 1999, LeBaron,
2001a). The idea of these models, the prototype of which is the Santa Fe ar-
tificial stock market, (Arthur et al., 1997, LeBaron et al., 1999), is that a
financial market can be viewed as a population of agents, identified by their
(set of) decision rules. A decision rule is defined as a mapping from an agents
information set (price history, trading volume, other economic indicators) to
the set of actions (buy, sell, no trade). The evolution of agents decision rule
is often modeled using a genetic algorithm (Holland, 1992). The specification
and simulation of such evolutionary models can be quite involved and spe-
cialized simulation platforms have been developed to allow the user to specify
variants of agents strategies and evolution rules. Other evolutionary models
represent the evolution by a deterministic dynamical system which, through
the complex price dynamics it generate, are able to mimick some “statistical”
properties of the returns process, including volatility clustering; see Hommes
et al. (2003).

Though the Santa Fe market model is capable of qualitatively replicating
some of the stylized facts (LeBaron et al., 1999) precise comparisons with
empirical observations are still lacking. Indeed, given the large number of
parameters, it is not possible to calibrate the parameters in order to interpret
the time periods in the simulations as “days” or “minutes” etc. thereby leading
to a lack of reference for empirical comparisons.

More importantly, the competition between numerous strategies in such
complex simulation models does not allow to pinpoint a single mechanism as
being responsible for volatility clustering or other stylized properties. Models
in which a dominant mechanism is at work are more helpful in this respect;
we will now discuss some instances of such models.

3.3 Behavioral Switching

The economic literature contains examples where switching of economic agents
between two behavioral patterns leads to large aggregate fluctuations, Kirman
(1993): in the context of financial markets, these behavioral patterns can be
seen as trading rules and the resulting aggregate fluctuations as large move-
ments in the market price i.e. heavy tails in returns. Recently, models based
on this idea have also been shown to generate volatility clustering (Kirman
and Teyssière, 2002, Lux and Marchesi, 2000).

Lux and Marchesi (2000) study an agent-based model in which heavy tails
of asset returns and volatility clustering arise from behavioral switching of
market participants between fundamentalist and chartist behavior. Funda-
mentalists expect that the price follows the fundamental value in the long
run. Noise traders try to identify price trends, which results in a tendency to
herding. Agents are allowed to switch between these two behaviors accord-
ing to the performance of the various strategies. Noise traders evaluate their
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performance according to realized gains, whereas for the fundamentalists, per-
formance is measured according to the difference between the price and the
fundamental value, which represents the anticipated gain of a “convergence
trade”. This decision-making process is driven by an exogenous fundamental
value, which follows a Gaussian random walk. Price changes are brought about
by a market maker reacting to imbalances between demand and supply. Most
of the time, a stable and efficient market results. However, its usual tranquil
performance is interspersed by sudden transient phases of destabilization. An
outbreak of volatility occurs if the fraction of agents using chartist techniques
surpasses a certain threshold value, but such phases are quickly brought to
an end by stabilizing tendencies. This behavioral switching is believed be the
cause of volatility clustering, long memory and heavy tails in the Lux-Marchesi
(2000) model.

Kirman and Teyssière (2002) have proposed a variant of Kirman (1993) in
which the proportion α(t) of fundamentalists in the market follows a Markov
chain, of the type used in epidemiological models, describing herding of opin-
ions. Simulation of this model exihibit autocorrelation patterns in absolute
returns with a behavior similar to that described in Section 2.

3.4 The Role of Investor Inertia

As argued by Liu (2000), the presence of a Markovian regime switching mech-
anism in volatility can lead to volatility clustering, is not sufficient to generate
long-range dependence in absolute returns. More important than the switch-
ing is the fact the time spent in each regime –the duration of regimes– should
have a heavy-tailed distribution (Pourahmadi, 1988, Taqqu and Levy, 1986).
By contrast with Markov switching, which leads to short range correlations,
this mechanism has been called “renewal switching”.2

Bayraktar et al. (2003) study a model where an order flow with random,
heavy-tailed, durations between trades leads to long range dependence in re-
turns. When the durations τn of the inactivity periods have a distribution of
the form P(τn ≥ t) = t−αL(t), conditions are given under which, in the limit of
a large number of agents randomly submitting orders, the price process in this
models converges to a a process with Hurst exponent H = (3−α)/2 > 1/2. In
this model the randomness (and the heavy tailed nature) of the durations be-
tween trades are both exogenous ingredients, chosen in a way that generates
long range dependence in the returns. However, as noted above, empirical
observations point to clustering and persistence in volatility rather than in
returns so such a result does not seem to be consistent with the stylized facts.

By contrast, as noted above, regime switching in volatility with heavy-
tailed durations could lead to volatility clustering. Although in the agent-
based models discussed above, it may not be easy to speak of well-defined

2 See the chapter by Giraitis, Leipus and Surgailis in this volume for a review on
renewal switching models.



Volatility Clustering in Financial Markets 299

“regimes” of activity, but Giardina and Bouchaud (2003) argue that this
is indeed the mechanism which generates volatility clustering in the Lux-
Marchesi (2000) and other models discussed above. In these models, agents
switch between strategies based on their relative performance; Giardina and
Bouchaud argue that this (cumulative) relative performance index actually
behaves in time like a random walk, so the switching times can be interpreted
as times when the random walk crosses zero: the interval between successive
zero-crossings is then known to be heavy-tailed, with a power-law decay of
exponent 3/2.

4 Volatility Clustering and Threshold Behavior

While switching between high and low volatility states is probably the mech-
anism leading to volatility clustering in many of the agent-based models dis-
cussed above, this explanation is not easy to trace back to the level of agent
behavior, partly because the models described above contain various other
ingredients whose contribution to the overall behavior is thus blurred. We
now discuss a simple model (Cont et al., 2004) reproducing several stylized
empirical facts, where the origin of volatility clustering can be clearly traced
back to investor inertia, caused by threshold response of investors to news
arrivals.

4.1 An Agent–Based Model for Volatility Clustering

Our model describes a market where a single asset, whose price is denoted
by St, is traded by N agents. Trading takes place at discrete periods t =
0, 1, 2, . . .. We will see that, provided the parameters of the model are chosen
in a certain range, we will be able to interpret these periods as “trading days”.
At each period, agents have the possibility to send an order to the market for
buying or selling a unit of asset: denoting by φi(t) the demand of the agent,
we have φi(t) = 1 for a buy order and φi(t) = −1. We allow the value φi(t) to
be zero; the agent is then inactive at period t. The inflow of public information
is modeled by a sequence of IID Gaussian random variables (εt, t = 0, 1, 2, . . .)
with εt ∼ N(0, D2). εt represents the value of a common signal received by all
agents at date t−1. The signal εt is a forecast of the future return rt and each
agent has to decide whether the information conveyed by εt is significant, in
which case she will place a buy or sell order according to the sign of εt.

The trading rule of each agent i = 1, . . . , N is represented by a (time–
varying) decision threshold θi(t). The threshold θi(t) can be viewed as the
agents (subjective) view on volatility. The trading rule we study may be seen
as a stylized example of threshold behavior: without sufficient external stim-
ulus (|εt| ≤ θi(t)), an agent remains inactive φi(t) = 0 and if the external
signal is above a certain threshold, the agent will act: if εt > θi(t), φi(t) = 1,
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if εt < −θi(t), φi(t) = −1. The corresponding demand generated by the agent
is therefore given by:

φi(t) = 1εt>θi(t) − 1εt<−θi(t). (6)

The excess demand is then given by Zt =
∑N

i=1 φi(t). A non-zero value of Z
produces a change in the price given by

rt = ln
St

St−1
= g(

Zt

N
), (7)

where the price impact function g : R �→ R is an increasing function with
g(0) = 0. We define the (normalized) market depth λ by : g′(0) = 1

λ . Examples
are a linear price impact g(z) = z/λ or g(z) = arctan(z/λ), both having been
used in various disequilibrium models.

Initially, we start from a population distribution F0 of thresholds: θi(0), i =
1, . . . , N are positive IID variables drawn from F0. Updating of strategies is
asynchronous: at each time step, any agent i has a probability 0 ≤ s ≤ 1
of updating her threshold θi(t). Thus, in a large population, q represents
the fraction of agents updating their views at any period; 1/q represents the
typical time period during which an agent will hold a given view θi(t). If
periods are to be interpreted as days, q is typically a small number s �
10−1 − 10−3. When an agent updates her threshold, she sets it to be equal to
the recently observed absolute return, which is an indicator of recent volatility
|rt| = | ln St

St−1
|. Introducing IID random variables ui(t), i = 1, . . . , N, t ≥ 0

uniformly distributed on [0, 1], which indicate whether agent i updates her
threshold or not:

θi(t) = 1ui(t)<s|rt| + 1ui(t)≥sθi(t− 1). (8)

This way of updating can be seen as a stylized version of various estimators of
volatility based on moving averages of absolute or squared returns. It is also
corroborated by a recent empirical study by Zovko and Farmer (2002), who
show that traders use recent volatility as a signal when placing orders.

The asynchronous updating scheme proposed here avoids introducing an
artificial ordering of agents as in sequential choice models. As noted above, the
heterogeneity of time scales of intervention of agents is a feature believed to
be important for generating persistence in volatility (Andersen and Bollerslev,
1997, Granger, 1980, LeBaron, 2000). The random nature of updating in this
model is a parsimonious way to introduce heterogeneity in time scales without
introducing extra parameters. Given this random updating scheme, even if
we start from an initially homogeneous population θi(0) = θ0, heterogeneity
creeps into the population through the updating process and evolves in a
random manner, leading to a history-dependent disordered system.

Let us recall the main ingredients of the model. At each time period:

1. agents receive a common signal ε(t) ∼ N(0, D2)
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2. each agent i compares the signal to her threshold θi(t)
3. if |ε(t)| > θi(t) the agent considers the signal as significant and generates

an order φi(t) according to (6).
4. The market price is impacted by the excess demand and moves according

to (7).
5. Each agent updates, with probability q, her threshold according to (8).

Compared to most agent–based models considered in the literature, there is
no exogenous “fundamental price” process and we do not distinguish between
“fundamentalist” and “chartist” traders. Also, the same information is avail-
able to all agents but they differ in the way they process the information. We
do not introduce any “social interaction” among agents: no notion of locality,
lattice or graph structure is introduced. The model has very few parameters:
q describes the average updating frequency, D the standard deviation of the
noise representing the news arrival process, the market depth λ and the num-
ber of agents N which is typically large. We will observe nevertheless that
this simple model generates time series of returns with interesting dynamics
and properties similar to empirically observed properties of asset returns.

4.2 Simulation Results

In order for a direct comparison with empirical stylized facts to be mean-
ingful, we compute sample moments as in the case of empirical data, by
averaging over the (single) sample path. After simulating a sample path of
the price St for T = 104 periods, we compute the time series of returns
rt = ln(St/St−1), t = 1, . . . , T , their histogram, a moving average estimator
of the standard deviation of returns (“volatility”), the sample autocorrelation
function of returns and the sample autocorrelation function of absolute re-
turns. In order to decrease the sensitivity of results to initial conditions, we
allow for a transitory regime and discard the first 103 periods before averaging.

In order to interpret the trading periods as “days” and compare the results
with properties of daily returns, we note that when g is linear |rt| ≤ 1

λ and
choose 5 ≤ λ ≤ 20 which allows a (maximal) range of daily returns between
5% and 20%. Also, the amplitude D of the input noise can be chosen such
as to reproduce a realistic range of values for the (annualized) volatility: this
leads to choosing D in the range 10−3 − 10−2. Let us emphasize that we are
discussing the calibration of the order of magnitude of parameters, not fine–
tuning them to a set of critical values. The results discussed in the sequel
are generic within this range of parameters. Figures 3 and 4 illustrate typical
sample paths obtained with different parameter values: they all generate series
of returns with realistic ranges and realistic values of annualized volatility.
For each series, we represent the histogram of returns both in linear and
logarithmic scales, the ACF of returns Cr, the ACF of absolute returns C|r|.
The return series obtained possess regularities which match the properties
outlined in the introduction (Cont et al., 2004):
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Fig. 3. Numerical simulation of the model with updating frequency q = 0.01 (aver-
age updating period: 100 “days”) N = 1000 agents, D = 0.001 and λ = 10

1. Excess volatility: the sample standard deviation of returns can be much
larger than the standard deviation of the input noise representing news
arrivals σ̂(t) � D.

2. Mean-reverting volatility: the market price fluctuates endlessly and the
volatility, as measured by the moving average estimator σ̂(t), does neither
to zero nor to infinity and displays a mean-reverting behavior.

3. The simulated process generates a leptokurtic distribution of returns with
(semi)heavy tails, with an excess kurtosis around κ � 7. As shown in the
logarithmic histogram plots in figures 3–4, the tails exhibit an approxi-
mately exponential decay, as observed in various studies of daily returns
(Ding et al., 1993).

4. The returns are uncorrelated: the sample autocorrelation function of the
returns exhibits an insignificant value (very similar to that of asset re-
turns) at all lags, indicating the absence of linear serial dependence in the
returns.

5. Volatility clustering: the autocorrelation function of absolute returns re-
mains significantly positive over many time lags, corresponding to persis-
tence of the amplitude of returns a time scale � 1/q.
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Fig. 4. Numerical simulation of the model with updating frequency q = 0.1 (average
updating period: 10 “days”) N = 1500 agents, D = 0.001 and λ = 10

4.3 Theoretical Analysis

Contrarily to some of the models discussed above, this model is simple enough
to allow for a theoretical study of its qualitative studies (Cont et al., 2004).
Let us being by examining two limiting cases:

1. Feedback without heterogeneity: In the case where q = 1, all agents
synchronously update their threshold at each period. Consequently, the
agents have the same thresholds, given by the last periods absolute return:
θi(t) = |rt−1| and will therefore generate the same order: Zt = Nφ1(t) ∈
{0, N,−N}. So, the return rt depends on the past only through the abso-
lute return |rt−1|:

rt = f(|rt−1, εt|) = g(N)1εt>|rt−1| + g(−N)1εt<−|rt−1|,

a dependence structure typical of ARCH models (Engle, 1995), leading
to uncorrelated returns and volatility clustering. In this case, the dis-
tribution of rt conditional on |rt−1| is actually a trinomial distribution:
rt ∈ {0, g(N), g(−N)}, which is not realistic. Simulation studies show that
a similar behavior persists for 1 − q � 1, leading to tri-modal distribu-
tions. This confirms our intuition that the updating probability q should
be chosen small.
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2. Heterogeneity without feedback: In the case where q = 0, no updat-
ing takes places: the trading strategies, given by the thresholds θi, are
unaffected by the price behavior and the feedback effect is not present
anymore. Heterogeneity is still present: the distribution of the thresholds
remains identical to what it was at t = 0. The return rt depends only on
εt :

rt = g(
1

N

N∑
i=1

1εt>θi
− 1εt<−θi

) = F (εt).

We conclude therefore that the returns are IID random variables, obtained
by transforming the Gaussian IID sequence (εt) by the nonlinear function
F given in (9), whose properties depend on the (initial) distribution of
thresholds (θi, i = 1, . . . , N). The log–price then follows a (non–Gaussian)
random walk and the model does not exhibit volatility clustering.

The two limiting cases above show that, in order to obtain the interesting
statistical properties observed in the simulated examples shown above, it is
necessary to have 0 < q � 1: both feedback and heterogeneity are essential
ingredients. In the general case we have the following properties:

• Markovian dynamics: the thresholds [θi(t), i = 1, . . . , N ] follow a
Markov chain in {g(k), k = 0, . . . , N}. We have θi(t + 1) = θi(t) with
probability 1 − q and

θi(t+ 1) = |rt| = |g( 1

N

N∑
i=1

[1εt>θi
− 1εt<−θi

])| with probability q.(9)

In fact given that agents are indistinguishable and only the empirical
distribution of threshold values affects the returns, defining Nk(t) =∑N

i=1 1[0,ak[(θi(t)) then (Nk(t), k = 0, . . . , N − 1)t=0,1,... evolves as a
Markov chain in {0, . . . , N}N . N(t) = (Nk(t), k = 0, . . . , N − 1) is none
other than the (cumulative) population distribution of the thresholds. The
fact that N(t) itself follows a Markov chain means that the population
distribution of thresholds is a random measure on {0, . . . , N}, which is
characteristic of disordered systems (Mézard et al., 1984), even if we start
from a deterministic set of values for the initial thresholds (even identical
ones). Here the disorder is endogenous and is generated by the random
updating mechanism.

• Excess volatility: In this model, the volatility of the news arrival process
is quantified by D which is the standard deviation of the external noise εt,
whereas the volatility of the returns can be measured a posteriori as the
(conditional or unconditional) standard deviation of rt. As seen from the
nonlinear relation between εt and rt,

rt = g(

∑N
i=1 1εt>θi(t) − 1εt<−θi(t)

λN
), (10)
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even after conditioning on the current states of agents θi(t), i = 1, . . . , N ,
equation (10) yields a nonlinear relation between the input noise εt and
the returns which can have the effect of amplifying the noise by an order of
magnitude or more. In the simulation example shown in figure 3,D = 10−3

which corresponds to an annualized volatility of 1.6%, while the annualized
volatility of returns is in the range of 20%, an order of magnitude larger:
the order of magnitude of the volatility of returns may be quite different
from that of the input noise.

• Absence of autocorrelation
From the dynamic equations of the model

Zt =
1

N

N∑
i=1

φi(t) =
1

N

N∑
i=1

[1εt>θi
− 1εt<−θi

], (11)

rt = g(Zt) = g(
1

N

N∑
i=1

[1εt>θi
− 1εt<−θi

]), (12)

one can deduce that, if g is an odd function (in particular if g is linear) then
asset returns (rt)t≥0 are uncorrelated: cov(rt, rt+1)=0. This is due to the
fact that the trading/ nontrading decision is based only on the amplitude
of the signal, not its sign. The sign of the return is determined by the sign
of the common signal, which is independent across periods.

• Investor inertia
Except in times of crisis or market crash, at a given point in time only
a small proportion of stockholders are actually trading in the market. As
a result, the (daily) order flow for a typical stock can be much smaller
than the market capitalization. This phenomenon, sometimes referred to
as investor inertia, is a generic outcome in our model due to threshold
behavior of agents. Starting from an initial holding of πi(0), the quantity of
asset held by agent i is given by πi(t) =

∑t
τ=0 φi(τ). Figure 4.3 displays the

evolution of the portfolio πi(t) of a typical agent: short periods of activity
(trading) are separated by long periods of inertia, where the portfolio
remains constant. This “inertia” increases in periods of high volatility, an
effect similar to the behavior of risk-averse agent.

• Mean reversion and clustering of volatility
Many market microstructure models –especially those with learning or
evolution– converge over large time intervals to an equilibrium where prices
and other aggregate quantities cease to fluctuate randomly. By contrast,
in the present model, prices fluctuate endlessly and the volatility exhibits
mean-reverting behavior. Suppose we are in a period of “low volatility”;
the amplitude |rt| of returns is small. Agents who update their thresholds
will therefore update them to small values, become more sensitive to news
arrivals, thus generating higher excess demand and thus increasing the
amplitude of returns. Conversely, in a period of high volatility, agents will
update their threshold values to high values and become less reactive to
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Fig. 5. Evolution of the portfolio of a typical agent, with long periods of inactivity
punctuated by bursts of activity

the incoming signal: this increase in investor inertia will thus decrease the
amplitude of returns. The mean reversion time in the volatility corresponds
here to the time it takes for agents to adjust their thresholds to current
market conditions, which is of order τc = 1/q.
When the amplitude of the noise is small it can be shown (Cont et al., 2004)
that volatility decays exponentially in time and increases through upward
“jumps”. This behavior is actually similar to that of a class of stochastic
volatility models, introduced by Barndorff-Nielsen and Shephard (2001)
and successfully used to describe various econometric properties of returns.

5 Conclusion

Volatility clustering is recognized as a stylized property present in most fi-
nancial time series. Agent-based models seek to explain volatility clustering
in terms of behavior of market participants, described in terms of simple rules.
We have discussed several agent-based models capable of generating volatility
clustering. A common feature of these models seems to be the “switching” of
the market between periods of high and low activity, with long durations of
periods. Models differ in the mechanism which leadsz to this switching at the
level of agents.

While the econometric debate on the short range or long range nature of
dependence in volatility still goes on (and may probably never be resolved),
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agent-based models can provide motivation for choosing between alternative
econometric specifications which are otherwise equally plausible in statistical
terms, thus providing a useful complement to econometric analysis.
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19. Engle, R.F. (1995). ARCH Models. Oxford University Press, Oxford.
20. Giardina, I. and Bouchaud, J.-P. (2003). Bubbles, crashes and intermittency in

agent based market models. European Physical Journal, B. 31, 421–437.
21. Giraitis, L., Leipus, R. and Surgailis, D. (2004). Recent advances in ARCH

modelling. This volume.
22. Gourieroux, C., Monfort, A. and Renault, E. (1993). Indirect inference. Journal

of Applied Econometrics, 8 , S85–S118.
23. Granger, C.W.J. (1980). Long memory relationships and the aggregation of

dynamic models. Journal of Econometrics, 14, 227–238.
24. Granger, C.W.J. and Hyung, N. (2004). Occasional structural breaks and long

memory with an application to the S&P 500 absolute stock returns. Journal of
Empirical Finance, 11, 399-421.
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1 Introduction

There are a number of salient features of financial time series, which are hard
to explain with standard analysis. The efficient markets hypothesis as well as
the idea of rational expectations, seem to be incompatible with the presence
of “bubbles” and “herding” behaviour in financial markets, The existence of
long memory in financial price series is well documented also, and is not easy
to generate with standard financial market models. Yet the existence of all
these phenomena seems to be widely accepted. This has led economists to
try to develop theoretical models, which generate such phenomena. There is a
real need to explain these phenomena since they are inextricably linked with
the instability of foreign exchange markets for example. There has been grow-
ing concern over what is perceived to be the increasing volatility of financial
markets in general and this is widely regarded as a recent phenomenon.

The purpose of this chapter is to present the building blocks of a class
of models which have been proposed as an alternative to the more standard
models associated with the CAPM paradigm. These models generate data,
which, in some configurations, reproduce many of the stylised facts of the
empirical series and in particular are capable of generating “long memory”.
The essential feature of the models is that they involve interaction between
the various agents in the market. Agents forecast changes in prices and the
actions that they take will be based on their forecasts. Their forecasts and
their actions may be highly interdependent and it is this that generates the
properties we are interested in. Perhaps the most characteristic feature of
this model is that agents tend to herd on one type of behaviour and then to
move together to another. This sort of “herding” behaviour is by no means

� This chapter draws heavily on joint work with Hans Foellmer, Ulrich Horst, Ro-
man Riccioti, Gilles Teyssière, and Richard Topol. I would like to thank all of
them and to insist on the fact that they bear no responsibility for any of the
defects in what is presented here.
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irrational, since the actions of agents reveal something about the information
that the individuals possess; for a detailed account of how rational herding
can occur see Chamley (2002).

In fact, bubbles and herding behaviour are far from new. Although we now
tend to associate, ”price bubbles” with financial markets such bubbles have
been documented for a wide variety of markets over a considerable period of
time. One of the earliest bubbles was that in the price of red mullet in the
first century A.D. Cicero, Horace, Juvenal and Martial describe the red mullet
fever. Interestingly, from our point of view, all of these authors attributed
the high price of this Mediterranean fish to some sort of collective fad and
regarded the behaviour of those who paid high prices for the fish as irrational.
Although it is difficult to assess the real price now, good specimens could
fetch the equivalent of the average monthly salary at the height of the craze.
The bubble was ended by the imposition by the emperor of a sumptuary tax,
which radically reduced the demand.

There have been many other historical bubbles, such as the Tulip, South
Sea and Mississippi bubbles, and an excellent survey of these may be found
in Garber (2000). However, Garber takes a particular stance and argues that
these so-called bubbles do not correspond to what is usually meant by a
bubble. It would be fair to say that, for most economists, a bubble occurs when
there is a prolonged departure of the price of an asset from any value that
might have been derived from some reasonable fundamentals associated with
the asset in question. Garber’s suggestion is that one can find fundamentals,
which justify the prices that were observed but many contest his position, of
course.

If we accept the idea that prolonged departures form fundamentals may
occur then there are two possible approaches. We can attribute them to what
Alan Greenspan referred to as “irrational exuberance” and simply argue that
the market loses its head from time to time. Alternatively we might proceed
in two steps. First give a careful definition of what we mean by “bubbles” and
then devise tests for detecting them in empirical series and then, seek models,
which would provide a theoretical basis for the existence of bubbles without a
simple appeal to irrationality. There has indeed been a substantial literature
on both of these aspects of the subject, (see for example, Blanchard and
Watson (1982), Flood and Garber (1980), Meese (1986), Tirole (1985), West
(1988), Woo (1987), Stiglitz (1990), Flood and Hodrick,(1990), Donaldson and
Kamstra (1996), Avery and Zemsky (1998), Shiller (2000), and Brooks and
Katsaris (2003).

A possibility suggested by several authors, see for example Lux and Sor-
nette (2002), is that there are self-reinforcing swings of opinion which can
cause departures from fundamentals, Shiller (1981) observes that attention
seems to become focused on one share to another in financial markets with-
out any particular change in the fundamentals associated with the share in
question. Yet when he pursues this analysis further (Shiller (2000)) as the title
of his book indicates, he takes up the phrase used by Greenspan, “Irrational
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Exuberance” and he suggests, that such behaviour is indeed irrational. My
basic purpose here is to argue that this may not the case.

Before going any further it is worth reflecting on what standard mod-
els would predict for financial market prices and then to see what sort of
deviations from the predicted behaviour occur. A first observation is that a
standard view of the evolution of the prices of financial assets is that they
behave as a random walk or more precisely as geometric Brownian motion.
This is what is at the basis of the Black-Scholes model. In such a case prices
at time t would be characterised by the following equation:

dSt = St(µdt+ σdWt). (1)

Such an equation has the advantage that it is useful for pricing derivatives
but misses some essential features of financial time series that we would like
to capture. Consider the following example illustrated in Figure 1. The time
series, which is that of the German Dax stock market, index from May 1994
to May 1999 seems to behave very much as predicted by (1).

Fig. 1. Dax 30, May 1994–May 1999

However, if we now complete the series by the observations from 1999
onwards the picture changes and we now have to explain the sudden turning
point as seen clearly in Figure 2.

We need some explanation for the sudden turn-around of the market. One
idea is to suggest that there was some major exogenous shock. Another is to
try to build models, which will produce such turning points as endogenous
phenomena.

My aim in this chapter is to examine the building blocks of models, which
have as their goal to explain the sort of evolution illustrated in this example.
I will then analyse in more detail a situation in which the participants in
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Fig. 2. Dax 30, May 1994–May 2004

the market can choose between several forecasting rules. The nature of these
speculative and self-reinforcing rules will determine the demands of the various
agents and determine the evolution of the equilibrium prices. I will give a
simple example in which people have a prospect of investing at home or abroad
and they are influenced in their choices of rules and hence in their decisions
by the yields obtained by their past choices and by, of course, the movements
of the exchange rate. In this model self-reinforcing changes in the exchange
rate can occur, since as the number of individuals following a rule increases
the success of that rule increases and more people tend to follow it. If the rule
is an extrapolative one then the exchange rate will leave its “fundamental”
value and a “bubble” will occur. Switches in, and transmission of, expectation
formation cause this sort of bubble. For the reason mentioned this is self-
reinforcing and causes people to herd on one particular alternative type of
forecast and eventually to switch back to another rule. In this case, what is
important is that there will be a substantial demand for the asset in question
even if the underlying fundamentals do not seem to justify this.

In switching in this way, market participants are not being irrational. They
will have good reason to focus on one opinion; one share or one currency for
a period and then shift to another and a model of a stochastic process that
results from such behaviour is proposed. Thus, it is the shifting composition of
expectations that drives asset movements, in our case the exchange rate, and
this is of course, at variance with the standard model in which expectations
are homogeneous and rational and, of course, where no trade takes place. This
is at variance with simple empirical observation of the spot market for foreign
exchange where approximately $1.2 trillion per day was traded in 2001, for
example.
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As Bachetta and Van Wincoop (2003) point out, the obvious explanation
lies in the heterogeneity of the agents on the market and, in particular, in the
heterogeneity of their expectations. In the standard “representative agent”
model there is no place for such heterogeneity and many authors have sug-
gested that this is the reason for the poor predictive power of such models,
(evidence for the latter is given by Meese and Rogoff (1983), Frankel and Rose
(1995) and Cheung et al. (2002)). Furthermore, empirical observations suggest
that expectations of actors on financial markets are indeed heterogeneous, see
Chionis and MacDonald (2002).

A number of authors have introduced heterogeneous expectations into
markets in different ways. One idea is simply to introduce agents who system-
atically have “wrong” expectations but who may survive nevertheless, (such
models were pioneered by De Long et al. (1989, 1990) who introduced the now
well known “noise traders”. Such a solution to the problem is not very appeal-
ing and, if one takes account of the idea that agents may learn, it is difficult to
accept that certain actors will persist in their error. Another alternative is to
introduce dispersed information into the model and one approach suggested
by Townsend (1983) is to have symmetrically dispersed information and to
analyse the consequences of “higher order expectations”, expectations about
others expectations. The idea here is that a small amount of non-fundamental
trade may generate considerable volatility since traders perceive movements
in asset prices as conveying information about future values of fundamentals,
(see Allen et al. (2003)). Again, despite the more sophisticated reasoning at-
tributed to agents, in these models, a certain degree of irrational behaviour is
needed to generate the results.

The building blocks of micro models, which may explain the empirical
phenomena

I will focus in this chapter on models of single markets, so the analysis
remains partial. Nevertheless, the link between the micro behaviour and ag-
gregate phenomena will come out clearly. The micro models that we use to
explain empirical phenomena use certain basic building blocks. Each of these
is chosen, by those who analyse these problems, to create a coherent whole,
which will be capable of explaining the observed empirical phenomena. Per-
haps wrongly, we typically try to build models, which keep as much of the
standard model as possible. There is no compelling reason to do this other
than to answer the criticism that, a more conventional model could have made
similar predictions. Indeed, in what follows I will stray from the conventional
path but could no doubt, as I will suggest, stray even further.

The building blocks that we will need are: Firstly a specification of the
objectives of the agents in the market. Secondly, the definition of the rules by
which the individuals make their forecasts and how they make their choices
between different rules. Thirdly, how from the previous two features demand
is derived. Fourthly what equilibrium notion is used to make demands consis-
tent? Fifthly, how the feedback from prices to forecasts works. Lastly, is there
some appropriate notion of long-term equilibrium in such economies and how
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will its features reflect those found in observed empirical data? I shall take
these one by one and with the aid of examples attempt to show the importance
of these assumptions.

2 Agents Objective Function

The natural first approach for an economist, is to assume that agents have
a utility function and furthermore to assume that the current utility of the
agents on the markets in question depends on their expectations of future
utility. A number of basic questions have to be answered if one takes this line.
What sort of horizon should these agents have, and should their utility be
influenced by the uncertainty of the outcomes on the market, for example?
Then there is the question as to what form the utility function should take.
One of the most commonly used utility functions is that based on the mean
and variance of future wealth. This captures in a rudimentary way the trade
off between risk and gain. It has obvious advantages from an analytical point
of view, and well-known disadvantages as a description of human behaviour.
One of its advantages is that the choices of economic agents who have this type
of utility do not depend on their current wealth. Whilst this seems strange
from an intuitive point of view, it is very attractive for the economist. If at
any point in time the agents’ choices are only influenced by current prices
and anticipated prices there is no need to keep track of the evolution of each
individual’s wealth over time. Thus the system can be described by a very
simple state space. Many other utility functions have been suggested in the
literature, but my emphasis here is on the simplest interaction between agents
as a motor for generating prices and not on the specific type of utility function
that might produce plausible price dynamics. So in what follows it will be
useful to keep this example in mind, for it can serve as a basis for the sort
of model which will illustrate the way in which micro-behaviour leads to such
phenomena as fat tails, volatility clustering and long memory in financial time
series. Notice one important thing here which is that the objective function
is typically the expectation of utility today. To simplify matters it is usually
assumed that utility is separable and that what is maximised is the expected
sum of future utilities discounted appropriately.

The horizon over which agents operate depends on many things. The
traders on financial markets typically have very short horizons. Those who
operate on the foreign exchange market are frequently constrained to clear
their positions at the end of the day. This means that exchange rates for hori-
zons beyond that are of no relevance to them. Those who place orders with
brokers and with traders may well have longer horizons and the distribution
of horizons over the participants in financial activity is undoubtedly one of
the explanations of the enormous volume of trade observed on financial mar-
kets. Once again to simplify matters I will assume, in the two models used
as examples, as do many others, that agents maximise tomorrow’s expected
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utility. This sort of myopia can be thought of as corresponding to a very high
discount rate and is worth looking at. Not so long ago it would have been con-
sidered unreasonable to make the assumption of myopia, but with the advent
of a serious consideration of the notion of time preference and its origins, this
assumption now seems no more unreasonable than many others. Strotz was
probably the first to point out that exponential discounting was a very special
form of time preference and has nothing particular to recommend it. Apart
form hyperbolic discounting which attaches more weight to the present than
would standard discounting, many alternative structures have been proposed.
(For a good survey see Frederick et al. (2002)). The myopic case is just a
special case of the β, δ preferences introduced for individual decision making
by Elster (1989), which capture many of the qualitative features of hyperbolic
discounting. Varying the assumptions on time preferences has also been sug-
gested as a way of explaining some the anomalies observed in behaviour on
financial markets.

In particular relaxing the standard assumption of exponential discounting
provides a simple explanation for the volume of trade. If individuals attach
more importance to the immediate future than to more distant horizons they
may well, as is the case with hyperbolic discounting, take time inconsistent
decisions. This means that they will constantly have to adjust their positions
at each point in time and this is one explanation for the trade observed on
financial markets.

For those economists who feel uncomfortable with this move away from
standard rationality it is worth noting that we can always get back to one pe-
riod ahead maximisation by introducing an “overlapping generations” model.
In that setting agents only live for two periods and their assets are inherited
by the next generation. The defects of this approach are too obvious to ex-
plain here and it is clearly a way to get around the horizon difficulty without
weakening the standard assumptions.

The other side of the coin is the length of individuals’ memory. This will
be important when we examine how agents make their forecasts. In a sense,
we have to reconcile the idea of how far ahead an agent can predict with how
far back he can remember. We have also to consider the rate at which an
agent discounts the future as opposed to how he discounts past gains.

3 Agents’ Forecasts

Investment and speculation clearly depend, on the forecasts that people make
as to future prices. The obvious question is then, how do agents make their
forecasts? In keeping with everything I have said up to now it seems rea-
sonable to assume that agents have different possible forecasting rules and
must somehow choose between them. This is very different from the rational
expectations approach in economics, which assumes that agents all have the
correct vision of the stochastic process that governs prices in the future. In
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the latter case we take away any possibility that agents might learn over time
about how prices evolve and simply assume, to close the model, that all of
them understand the “true process” and forecast appropriately. There is no
place in that equilibrium view for learning about the price process.

The rational expectations approach seems to be just a convenient construct
for making equilibrium consistent but does not tell us anything about how
agents actually form their forecasts and modify them. Furthermore, whilst it
is true that rational expectations are consistent, it is not at all obvious that
learning will lead to them. To be a little clearer, if we take the position that
agents have to learn how to form their expectations, then as they learn, they
will modify the latter. This, in turn will modify their demand and this will
then change prices. Now, using the updated forecasting rule they will make
a new forecast given the prices that have been realised and so forth. Why,
as everybody learns in this way, the process should converge and why, in
particular, it should converge to rational expectations, is not clear.

If we admit this then we should try to model the learning process and
incorporate it directly into our model of a financial market. In the examples
that I will use I suggest a rather simple approach. Agents have a number of
forecasting rules amongst which they must choose and the way in which they
choose amongst them has to be specified.

Let me look at two problems posed by this restriction, in turn. What we
need to know is how many forecasting rules there are and what form they
take. Provided that they are well defined, we can have any finite number of
such rules. It is often the case that authors choose two rules as an example
but there is no specific reason for this.

What form the rules should take poses an important question. Should
they be based on past prices alone or should they be based on the values of
certain economic variables, which are considered to be “fundamental” to the
economy. In the first case future prices are forecast by extrapolating from past
prices and, however sophisticated, such rules are referred to as “chartist”. On
the other hand, rules, which use the values of other economic variables, are
frequently referred to as “fundamentalist“.2

In the chartist case we have to specify the sort of extrapolation that the
agent does. It could be a very simple moving average or some rather sophis-
ticated time series construct. In either case we have to specify how many
observations from the past the agent uses. That is, how long a memory he
has. This choice is not innocent and the stability of the price process can be
seriously affected by the presence of agents forecasting on the basis of very
limited memory.

For the fundamentalist forecasters, there is one thing that is important and
that is the choice of the variables that are considered as being fundamental in
determining the price of the asset in question. Typically, the fundamentals are

2 These terms were first coined in the foreign exchange literature by Frankel and
Froot (1986).
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considered as evolving exogenously. In fact, what are the fundamentals and
how related they are to the price of the asset in question is a question that re-
mains largely unanswered. What is worse, the view of the relationships linking
economic variables is not fixed and if agents are persuaded of the relevance
of some new variable it may actually become relevant. Michael Woodford
(1990) showed how people could learn rationally to believe that some exoge-
nous phenomenon has an effect on prices. In his case the exogenous variable
was referred to as “sunspots” which, by their nature, have no intrinsic impact
on the prices of assets. Yet, as people come to believe that sunspots affect
prices they modify their demand for assets and this, in turn, causes them
to be correlated with the sunspots. Thus, what are initially irrational beliefs
become rational. This illustrates the very basic idea that what is fundamental
depends to a large extent on what is perceived to be fundamental.

Once the set of rules, whether “fundamentalist”, extrapolative, or some
combination of the two, is established, we have to specify how agents choose
amongst the rules.

4 The Choice Among Forecasting Rules: An
Epidemiological Rule

There are various views that one could have as to how agents might reasonably
choose their rule. A first example, which I will call an “epidemiological” rule,
would be based on the influence of other market agents. The simplest idea is
that, if I, as a chartist, meet a fundamentalist, there is a certain probability
that I will be converted to using his rule. A stochastic process to describe this
sort of stochastic process was developed with Hans Foellmer, (see Kirman
(1993)).3 Consider the following example.

Agents are faced with a price process st for a financial asset and form ex-
pectations about tomorrow’s prices. There are two different ways4 of forming
expectations and each agent uses one of them. However, random meetings
influence the expectations of the individual agents with other agents. Call the
two methods of forming expectations the two “opinions” in the model and
then if there are N agents define the state of the system by the number k of
agents holding opinion one, i.e.

k ∈ {0, . . . , N}.

The stochastic process governing the state evolves as follows. Two agents
meet at random and the first is converted to the second’s view with probability
1 − δ. There is also a small probability ε that the first agent will change her

3 The original model was built to explain the asymmetric behaviour of foraging
ants.

4 As observed previously, there could be any finite number of ways of forming
expectations and this would not change the nature of the results.
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opinion independently of whom she meets. This is a technical necessity to
prevent the process from being “absorbed” into one of the two states 0 or N,
but can be allowed to go to zero as N becomes large.5 Indeed, it is important
in what follows, that ε be small.

The process then evolves as follows:

p(k, k + 1) =

(
1 − k

N

)(
ε+ (1 − δ)

k

N − 1

)
,

p(k, k) = 1 − p(k, k + 1) − p(k, k − 1), (2)

p(k, k − 1) =
k

N

(
ε+ (1 − δ)

N − k

N − 1

)
.

The first problem is to look at the equilibrium distribution µ(k), k =
0, 1, . . . , N , of the Markov Chain defined by (2).

This is important in the economic model since it describes the proportion
of time that the system will spend in each state in the long run. Now the form
of µ(k) will depend, naturally, on the values of δ and ε. The case of particular
interest here is that in which µ(k) has the form indicated in figure 3:

Fig. 3. µ(k), with ε = 0.005 and δ = 0.01

It is easy to see that if ε ≤ 1−δ
N−1 then µ(k) will indeed be convex. Thus this

case, in which the process spends most of its time in the extremes, corresponds
to the case in which the probability ε of “self conversion” is small relative to
the probability of being converted by the person one meets. Although this

5 This ε can be thought of as the replacement of some old agents in each new
period by agents who may hold either opinion (see for example the evolutionary
model of Young and Foster, 1991) or by some external shock which influences
some people’s expectations.
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probability of conversion is independent of the numbers in each group, which
type will actually meet which type depends on the relative numbers in each
type at any moment, i.e. on the state of the system. Thus when one type is
in the minority, conversion of any individual to that type is much less likely
than when the numbers of the two types are fairly equal. It is this that yields
a distribution which is concentrated on the extreme values.

Using this type of rule generates swings from a majority using one sort
of rule to a majority using the other. This is a basis for models that yield
time series with some of the characteristics found in empirical financial time
series, (see Kirman (1991) and Kirman and Teyssiere (2002)). This line of
research was pursued in Kirman and Teyssiere (2005) and different criteria
were examined there for determining the probabilities of making forecasts.
One important addition in that model was to add a second step, as in Kirman
(1991) in which, once people had formed their opinion, they received a signal,
which gave them an indication of the current majority opinion. This can lead
them then to revise their opinion. In particular, this addition of a signal of
market sentiment can make the swings between different opinions much more
extreme when the signal is fairly accurate. Another idea is that the frequency
with which agents have been met in the past should influence the probability
of being converted by them. The latter idea was also used in Kirman and
Teyssiere (2005) and they analysed the long range dependence properties of
the resultant time series. They came to the conclusion that the behaviour of
the time series of the volatility generated by these models was a combination
of long-range dependence and of switching regimes.

Yet there is an objection to the type of probabilistic choice used in the
epidemiological type of model. It depends on whom one has met, but not on
the success of the rule adopted. It would seem reasonable to base the adoption
of rules by individuals on some measure of how much was earned in the past
b the various rules, or alternatively on how accurate those rules have proved
to be.

5 A Choice Rule Based on Experience

Consider then an alternative type of rule in which the choice of a rule does
depend on its success in the past. Now, in this case, to establish the transition
probabilities for the agents we must first define their profit from following each
of the possible forecasts. Suppose, to simplify matters that the cumulated
wealth of each agent that he reinvests on the market for the asset at each
point in time is given by W i

t+1 and the profit at time t+ 1 by,

Πi
t+1 = W i

t+1 −W i
t . (3)

What we have to do then, is to separate the wealth gained by following
each of the forecasting rules in the past. Here we will make the assumption
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that the agent discounts, at each period, the gains he has made with a given
forecast. This reflects the fact that he attaches less importance to information
he gained in the past than to more current information. Making a further
simplification, assume that there are two rules, a “fundamentalist” and a
“chartist” rule. The updated profit from following the fundamentalist point
of view is then given by, adding the current profit if the agent is following
that rule and adding zero otherwise to the discounted wealth he has obtained
in the past from following the same rule. More formally

Πif
t+1 = Πi

t+1, (4)

if, at time t agent i held the fundamentalist view and Π if
t+1 = 0 otherwise.6

Then we have the accumulated fundamentalist profit that is given by:

W if
t+1 = W if

t (1 − ω) +Πif
t+1. (5)

Similarly for the chartist profit we have,

Πic
t+1 = Πi

t+1, (6)

if the individual was following the chartist rule at t and

Πic
t+1 = 0 otherwise. (7)

This gives accumulated profit from following the chartist rule of

W ic
t+1 = W ic

t (1 − ω) +Πic
t+1. (8)

Now, we have to explain how accumulated profits are mapped into the
probabilities of choosing the forecasting rules. Here we assume that the prob-
ability of following the fundamentalist rule is given by,

P if
t =

eβW if
t

eβW if
t + eβW ic

t

, (9)

where β is a constant that reflects the importance the individual attaches to
previous experience and obviously, since we only have two rules, the proba-
bility of becoming a chartist is given by:

P ic
t = 1 − P if

t . (10)

6 We could have assumed that the agents know, ex post, how the two rules have
performed. In this case everybody would have the same experience and the prob-
ability of switching would be the same for everyone. Which approach is more
acceptable depends on one’s view as to the information available to the agents
on the market, for a discussion of these two types of learning individual or social,
see Vriend (2000).
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The particular rule chosen here for the probability for the transition from
one rule to another will be familiar from a number of economic applica-
tions (see McFadden (1974), Anderson et al. (1990), Brock (1993), Brock and
Durlauf (2001a, 2001b). It has been widely used in the psychological literature
on reinforcement learning, and in game theory, where it is referred to as the
”quantal response rule”. One way of deriving it is to consider the problem
of the trade-off between obtaining information about sources of profit and
exploiting those which have proved profitable in the past. This ”exploration”
versus ”exploitation” arbitrage can be analysed by maximising a linear com-
bination of the gain to be had from trying new alternatives and the expected
gain given the experience in the past with the different rules, (see Brock (1993)
and Weisbuch et al. (1998)).

It is clear that if β tends to infinity the individual tends toward being a
”best responder” in the sense that he just chooses with certainty the opinion
which has been most profitable in the past (see Blume (1993)). However, as
β tends towards 0, the individual chooses each alternative with equal prob-
ability. In other words the individual learns nothing from his experience in
using the alternatives. Other rules might be used to define the probabilities
of switching but the logit rule is often used since it has rather plausible be-
havioural characteristics and it is analytically easy to use. A full discussion of
the properties of the alternative ways of mapping previous profits into proba-
bilities can be found in Weisbuch et al. (1998). One might also want to change
the performance criterion on which the probabilities are based and Teyssiere
(2003) has suggested the accuracy of the forecasting rule as an alternative.
The problem with this is that, while it provides a sensible way of evaluating
forecasting rules, it may lead to less profitable behaviour. Consider the case
in which a rule or guru gives a forecast of a price rise which turns out to be
inaccurate but in the right direction. It could then happen that ex post the
trader will make more money as the result of the mistake, than he would have,
had he had the correct forecast. Yet, if this is the case, perhaps one should
choose a simpler rule based on the percentage of the time that the rule or
guru gets the sign of the change right. There are many possibilities and no
good reason to exclude most of them.

As observed earlier, the memory involved in evaluating the cumulated
profit recursively in (8) could be limited to some finite number of periods.
Alternatively, one might use the equivalent of hyperbolic discounting or quasi-
hyperbolic discounting for discounting the past. This would mean giving much
more weight to recent profits. The notion of limiting memory is akin to the
idea that agents only forecast for a finite number of periods, and if this is
the case, it does not seem reasonable to give them an unlimited memory. The
statistician’s response to this is to remark that one does not, with conventional
discounting, need to keep the whole past history since the last cumulative
observation is sufficient.

Again, the forecasting horizon of an agent may be closely linked to his
objective function. As I have said, a trader who is judged on day to day
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performance has little interest in long term forecasting. However, no such
stricture applies to his memory.

As has been mentioned, in expression (9) the constant β plays an important
role and it would be of some interest to perform simulations with varying
values of β and then comparing this to varying the discount factor. In any
event, whatever the way in which the probabilities are constructed, once the
forecasting rule is determined, agents will form their demand.

6 Agents’ Demand

If agents have objective functions and forecasts we can determine their de-
mand. This will also depend on their wealth, which will be a result of their
behaviour in the past. Certain objective functions, as I have mentioned, lead
to demands that do not depend on wealth. However, in general, this will not
be the case and, fortunately, the formal analysis does not depend on this very
arbitrary assumption. A reasonable alternative to the maximisation of some
rather arbitrary objective function is to assume from the outset that we work
with demand as a primitive concept and do not try to derive it. This is diffi-
cult for economists to accept, but given the unfounded nature of the standard
assumptions on preferences, it is difficult to quarrel with. Such an approach
pushes the problem off one step further since, if we do this, we have to decide
on the nature of demand. However, this approach has one particular merit. It
starts with something that is, at least in principle, observable.

A further step would be to start with aggregate demand, which is in an
old tradition in economics. Doing this, however, would undermine the basic
aim of explaining aggregate behaviour from the interaction of individuals. So,
in the first of the examples that I will give I will stick to specified objective
functions and in the other, specify individual demands directly.

Before I continue a note of caution is in order. Although the choice of rule
by agents has been specified as stochastic, there are two ways of handling this.
One way is to reduce the stochastic process to a deterministic one by using
the “mean field” approach widely used in physics. This is what was done in
Brock and Hommes (1997) and in Weisbuch et al. (2000). This is always open
to the criticism that this is nothing more than an approximation and how
good that approximation is has to be justified. An alternative approach is to
analyse the stochastic process itself and to try to obtain results directly and
I will come back to this in the last section.

7 The Type of Equilibrium Envisaged

Once demands are determined, then the standard approach is to define an
equilibrium notion. Here again, there are various possibilities. A first idea
would be to define what is called a “temporary equilibrium” for each period.
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In this case today’s demands are set equal to today’s supply but markets will
reopen in subsequent periods. This implies two things. Firstly that agents do
not have a “correct” view of the future at each point in time and, secondly,
that we have a series of temporary equilibria but no overall equilibrium. At
each point in time there is a price but these prices do not necessarily converge
to a steady state, though much of the early work on this theme did focus on
the characterisation of such steady states.

Notice also that there is a hole in the literature dealing with the sort of
model developed here. In general, it is not shown that there exists a temporary
equilibrium at each point in time nor that it is unique. This is done in Kirman
et al.(2006) but does not solve the problem of the analysis of the dynamic
evolution of the sequence of temporary equilibria.

More ambitiously one might seek an equilibrium in which agents expecta-
tions are consistent with the stochastic price process. Such so-called “rational
expectations” equilibria, have the advantage of inter-temporal consistency,
but do not explain how agents arrive at the appropriate expectations. Fur-
thermore, as mentioned, Woodford (1990) for example, has shown that if one
tries to introduce a reasonable learning process for individuals, the economy
or market can learn to have consistent expectations but which have no con-
nection with the fundamental variables of the economy. People can learn to
believe that “sunspots” are important in determining economic outcomes and,
what is more, their beliefs will be self-fulfilling.

An alternative and more appealing approach would be to try to model
the process of price formation in a more realistic fashion. On many financial
markets, the prices that are announced at each point in time are those for
each transaction and some system such as an “order book” is used to match
bids and offers. In this case one would model the supplies and demands of
individuals as resulting form current and expected prices and would use the
type of algorithm actually used on markets such as the Paris stock exchange
to match the bids and offers. The evolution of prices in an electronic order
book has been studied extensively and particular attention has been paid to
limit orders. To use this analysis in our context would require establishing
how agents place their orders, and a specification of the mechanism through
which orders are met and a price established. The particular protocol used
can have considerable consequences for the evolution of prices as Domowitz
(1993) has shown.

8 The Feedback from Equilibrium Prices to Forecasts
and hence Demand

An important feature of financial market models is the feedback from past
prices to current demand. Excess demands in one period determine the market
price in that period but this price is then added to the price history and it
is the latter, which will condition agents’ forecasts. However, as soon as an
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agent modifies his forecast he modifies his demand for the financial asset in
question. This in turn will mean that the equilibrium price in that period
will be changed. In many cases, economists look for a steady state of this
process, (see e.g. Grandmont (1983)). Yet, if agents choose their forecasting
rules probabilistically, or if there is some other randomness in the model such
a notion would not be appropriate. Depending on the source of randomness in
the model, which might be in terms of the agents’ incomes, or in terms of some
exogenous demand for the asset, prices might follow a mean reverting random
walk, geometric Brownian motion or some other such process. Perhaps most
interesting is the case where agents choose their forecasts randomly and then
with certain restrictions it can be shown that the price process is ergodic
and has a unique limit distribution, (see Foellmer et al (2005)). This gives an
alternative notion of equilibrium and I will come back to this. In particular,
in the presence of chartists, the limit distribution exhibits fat tails and long
memory.

9 An Example of a Model Exhibiting the Properties
Described

This example is a simplified version of that used in Kirman et al (2006) and
is closely related to the model developed in Kirman and Teyssiere (2005)
There is an exchange market on which are traded two assets each of which
is denominated in one of the two currencies domestic d and foreign f whose
values are linked by the exchange rate s. s is the price of one unit of foreign
currency in units of domestic currency, so that, from the point of view of a
domestic investor a devaluation of her currency means an increase in the value
of s. There are n domestic investors, and they measure their wealth in units
of d. They have the same risk aversion and the same utility functions but they
may hold one of two views as to the evolution of the exchange rate. Thus the
driving force behind the dynamics in this model will be the variations in the
proportions of those following each of the forecasting rules. In Kirman et al.
(2006) we consider the investors in both countries, but for the example here
consider all the investors as being domestic.

The first building block of this model is the choice of the set of forecasting
rules. Here, we shall choose two types of rule, fundamentalist and chartist but,
as I observed in my earlier remarks, any finite number of rules would fit into
the same framework.

Consider the case of the investor who wishes to forecast the value of st+1.
If she is a fundamentalist she believes there is an equilibrium value s̄t to which
the exchange rate will revert. We attribute the following form to these beliefs:

Ef (st+1|It) = s̄t +

Mf∑
j=0

νj(st−j+1 − s̄t−j),

Mf∑
j=0

νj = 1, (11)



The Microeconomic Foundations of Instability in Financial Markets 327

where Mf is the finite memory length of the fundamentalists.
If she is a chartist her forecast as to the future value of the exchange rate

will be an extrapolation of its past values. We give these extrapolations the
following form:

Ec(st+1|It) =

Mc∑
j=0

hjst−j , (12)

where the hj are positive constants and Mc is the finite memory length of the
chartists.

Now define the following variables at time t:

• ρ is the dividend in foreign currency paid on one unit of foreign currency,
• st is the exchange rate,
• f i

t is the demand by individual i for foreign currency,
• di

t is the demand by individual i for domestic currency,
• r is the interest rate on domestic assets.

The individual’s wealth at time t is determined by her investments in
foreign and domestic assets and what she earned on each of them respectively.
That is,

W i
t = (1 + r)di

t−1 + st(1 + ρ)f i
t−1. (13)

At each point in time the individual’s demands for foreign and domestic assets
must satisfy the budget constraint:

W i
t = di

t−1 + stf
i
t . (14)

The gain for an individual in period t is given by:

gi
t = W i

t − (1 − ω)W i
t−1, (15)

where ω is the discount factor and the cumulative gain is is given by:

Gi
t = W i

t − (1 − ω)t−1W i
1, (16)

where W i
1 is individual i’s wealth at the beginning of period one (before she

chooses the rule to be used).
However, the gains at each period are determined by the demands for

domestic and foreign currency in the previous period and these are in turn
determined by the forecast that the individual made as to the exchange rate
in the next period. The latter depends on whether she was following the
fundamentalist or chartist rule.

Now we move to the next building block, how the rule is chosen. The
particular assumption made here is that the choice of rule is probabilistic
and the probabilities of choosing a rule are an individual behavioural learning
process. As I explained earlier, in this case, the choice will depend on the
success of the rules in the past in terms of the profit that was obtained when
using them. Once again the probabilities could depend on other measures
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of success, such as the accuracy of the forecasting rules in the past, but in
any particular model we have to decide on what governs the choice of rule.
If it is to depend on the profitability of the rules in the past, we need to
keep a total of the gains obtained by individual i up to period t by following
the fundamentalist rule and similarly for the chartist rule. Define a random
variable θi

t which will take on two values F and C, that is:

θi
t = F with probability pi

t(F )

θi
t = C with probability 1 − pi

t(F ) = pi
t(C).

Now we can define an indicator function for the random variable and this is
simply:

It(F ) = 1 if θi
t = F and0 if θi

t = C, (17)

It(C) = 1 if θi
t = C and0 if θi

t = F. (18)

This leads to the gains for an individual when she was using each forecasting
rule as:

Gi
t(F ) =

t−1∑
r=1

Ir(F )(Gi
r −Gi

r−1), (19)

Gi
t(C) =

t−1∑
r=1

Ir(C)(Gi
r −Gi

r−1), (20)

with Gi
0(F ) = Gi

0(F ) = 0.
The investor’s first piece of information is the rule θi

t she has drawn. What
is the remaining information Ii

t of a domestic investor i at time t? She has
her observations of the past values of her demands for foreign and domestic
assets in the previous periods, the vector of observed exchange rates up to
period t− 1 and the cumulated gains that she has realised from using each of
the two forecasting rules, fundamentalist and chartist. Thus we have:

Ii
t =

{
di

t−1, f
i
t−1, St−1 = (s1, . . . , st−1), G

i
t(F ), Gi

t(C)
}
. (21)

The total information available to the individual i once her forecasting rule
has been determined is given by (Ii

t , θ
i
t).

Up to this point I have not specified how the demand function is deter-
mined and for this we will need to choose the next building block, the investor’s
objective function. Once we have made this choice we can turn our attention
to the derivation of the ith individuals’ demand for foreign assets and, given
her budget constraint this will also determine her demand for domestic assets.

10 The Demand of an Investor for Foreign Currency

To make things tractable it is useful to make a compromise here. Consider the
utility function from which the demand function is derived but, to simplify
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matters choose the very simple Mean Variance utility function which exhibits
constant absolute risk aversion (CARA), and therefore its maximisation does
not depend on the agent’s wealth in the current period. For any investor i the
expected utility function E

(
W̄ i

t+1|Ii
t , θ

i
t

)
is defined by:

E
(
U
(
W̄ i

t+1

)
|Ii

t , θ
i
t

)
= E

(
W̄ i

t+1|Ii
t , θ

i
t

)
− µV

(
W̄ i

t+1|Ii
t , θ

i
t

)
, (22)

where µ is the measure of risk aversion. Then the agent’s wealth at the next
period t+ 1 is given by:

W̄ i
t+1 = (1 + ρt+1)s̄t+1f

i
t + (W i

t − stf
i
t )(1 + r) (23)

= (1 + r)W i
t + f i

t ((1 + ρt)s̄t+1 − (1 + r)st) .

So the investor has the following problem

max
fi

t

E
(
U
(
W̄ i

t+1

)
|Ii

t , θ
i
t

)
= E

(
W̄ i

t+1|Ii
t , θ

i
t

)
− µV

(
W̄ i

t+1|Ii
t , θ

i
t

)
. (24)

Recall that the expectations of the investor depend on whether she is following
the fundamentalist or chartist rule i.e. on θ̄i

t and, whichever rule she follows
the expectations will be conditioned on the current exchange rate st. Hence
using first order conditions we can write the demand for agent i as:

f i
t = f i

t (st, θ
i
t) =

(1 + ρ)E(s̄t+1|Ii
t , θ

i
t) − (1 + r)st

2µ(1 + ρ)2V ar(s̄t+1|Ii
t , θ

i
t)

. (25)

Clearly the expectations in (24) and (25) are conditioned on which rule the
agent is following and recalling the definition of the indicator function for the
random variable given in (7) we can write:

f i
t (st, θ

i
t) = f i

t (st, F )It(F ) + f i
t (st, C)It(C). (26)

Finally we shall suppose that the demand for the individual i when she is
using the rule F or C is given by replacing the expectation in (22) by the
expectations for each rule which we have defined before, equations (11) and
(12), and which we recall

Ef (st+1|It) = s̄t +

Mf∑
j=0

νj(st−j+1 − s̄t−j),

Mf∑
j=0

νj = 1,

for the fundamentalist and:

Ec(st+1|It) =

Mc∑
j=0

hjst−j ,

for the chartist.
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11 The Market Equilibrium

The next building block involves the choice of an equilibrium notion. Here we
consider that the market clears at each period and hence that we are looking
at a series of temporary equilibrium prices. This again is a compromise, agents
could be less myopic and furthermore, some economists would insist that their
expectations should be consistent with the stochastic price process. Doing
this would change the dynamics completely and moreover, would remove the
source of the fluctuations that characterise the dynamics of the prices in our
model.

So, in order to establish our temporary equilibria, we have first to consider
first the aggregate demand for foreign currency of the investors. This is given
by:

Φt =
∑

i

f i
t (st, θ

i
t) =

∑
i

f i
t (F )It(F ) +

∑
i

f i
t (C)It(C), (27)

or if we define the number of investors who use the fundamental rule at time
t as Nt(F ) and the total number of investors as N and kt = Nt(F )

N then we
can rewrite aggregate demand as:

Φt = N [ft(F )kt + ft(C)(1 − kt)] . (28)

The equilibrium exchange rate s∗t is then given by:

Φt −
Xt

=
0, (29)

where Xt is the random liquidity supply of foreign currency coming from
underlying trade for example. Using (25) we obtain the following expression
for the equilibrium exchange rate:

s∗t = N
[
sa

t+1(F )kt + sa
t+1(C)(1 − kt)

]
− 2µ(1 + ρ)2σ2

(1 + r)
Xt, (30)

where, sa
t+1(F ) and sa

t+1(C) represent the expectations under each of the two
rules, fundamentalist and chartist as to the next exchange rate that is:

s∗t+1(F ) = E(s̄t+1|It, F ) ands∗t+1(C) = E(s̄t+1|It, C) (31)

where Xt is the exogenous supply of foreign exchange, which we will take
to be a random walk. Thus, we have the form for the exchange rate process
originally given by Frankel and Froot.

12 Some Results and Some Properties of the Model

The model I have just described is close to that in Kirman et al.(2006) and
is shown by them has the property that the temporary equilibrium is well
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defined at each point. Their model is more complicated in that there are two
populations, foreign and domestic investors, each of whom considers the value
of an investment in the other country to be stochastic. This has the advantage
that it removes the necessity for introducing an exogenous “liquidity demand”
for the foreign currency but considerably complicates the model from an an-
alytical point of view.

Models of the sort described replicate many empirical stylised facts and
a careful discussion of the values of the parameters for which these features
appear are given in Teyssière (2003) and Kirman and Teyssière (2005). De-
pending on the particular rule used to determine the probabilities of choice,
epidemiological, success of forecasting rules, either in terms of profit or fore-
cast accuracy one can observe long memory, and there are almost always
“bubbles” and periods of high volatility. The switching of regimes from ones
dominated by chartists to ones dominated by fundamentalists is likely to pro-
vide a large part of the explanation for the existence of long memory and
as suggested by Kirman and Teyssière (2002) this is really “spurious long
memory”. Teyssiere discusses the possibility of confusion between long-range
dependence and change point GARCH processes. As he points out, much of
the discussion has centered on the series with change points in the conditional
mean process. In the sort of model just outlined, however, the interest lies
in changes in the conditional variance. Periods of higher volatility typically
correspond to the predominance of chartists. Teyssière (2003) indicates the
tests for change points in the conditional variance proposed by Kokoszka and
Leipus (2000), Horvàth, Kokoszka and Teyssière (2001) and Kokoszka and
Teyssière (2002) as suitable benchmarks. Such tests can help to avoid the
pitfall of incorrectly accepting long-range dependence in the face of change
points. The early test proposed by Lo (1991) was vulnerable to this sort of
mistake.

However, the purpose of this chapter is not to do any systematic econo-
metric analysis, something which is dealt with by the econometricians and
statisticians in this book. The purpose is to suggest a model structure capa-
ble of reproducing some of the features of financial asset price series, bubbles
which always explode, kurtosis, and of course long memory whether real or
spurious. Figure 4 shows just one simulation of the model but illustrates the
fact that the bubbles correspond to periods where the chartists take over and
hence where the price path becomes detached from the fundamentals. This is,
of course, purely illustrative and does correspond to any careful testing of the
simulated data.

13 Long Run Equilibrium

There remains one final question. Even if we accept the notion of a sequence of
temporary equilibrium can we say anything about the time series that result?
If we consider the previous model, for certain configurations of parameters
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Fig. 4.

it could become explosive. There are two possible reactions to this. Since we
will never observe more than a finite sample it could well be that the real
DGP is actually explosive but this will not prevent us from trying to infer
something about the data that we observe. Supposing however, that we are
interested in being able, from a theoretical point of view, to characterise the
long run behaviour of the system. Furthermore if we treat the process as being
stochastic and do not make a deterministic approximation, then we have to
decide what constitutes an appropriate long run equilibrium notion. With
Hans Foellmer and Ulrich Horst, (Foellmer et al. (2005)), we have analysed
formally the sort of price process discussed here and we have been able to
produce some analytical results characterising the process. Furthermore, we
can give a long run equilibrium notion which is not the convergence to a
particular price vector. If prices change all the time how may we speak of
“equilibrium”? The idea is to look at the evolving distribution of prices and
to see if we can characterise its long-run behaviour. We have to examine the
process governing the evolution of prices and profits and to see under what
conditions we can show that it is ergodic i.e that the proportion of time that
the price takes on each possible value converges over time and that the limit
distribution is unique.. This means that, unlike the “anything” can happen
often associated with deterministic chaos we can say that in the long run the
price and profits process does have a well-defined structure.

If we think about the sort of model described up to this point it is clear
that what destabilises the price process is the presence of chartists. Indeed,
we know that if there were only chartists the process would explode. What
we can show in the model that I will present here, is that the distribution
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of the time averages of prices converges, if the probability of any individual
becoming a chartist is not too high. Thus although the presence of chartists
prevents the price process from being bounded, if they do not dominate for
too long, which is what is guaranteed by putting a bound on the probability
of becoming a chartist, then the distribution of the time averages of prices
is stable. In other words, although prices are always changing and cannot
be bounded, structure emerges in the time series and this is probably the
appropriate notion of equilibrium for such models.

14 The Model

The model presented here is taken from Foellmer et al. (2005) Consider a
finite set A of agents who trade a single risky financial asset on a market. At
each point in time agent a ∈ A has a log-linear excess demand function given
by:

ea
t (p, ω) = cat

(
Ŝa

t (ω) − log p
)

+ ηa
t (ω), (32)

where Ŝa
t and ηa

t represent the agents current reference. This is already a
departure from the previous models in that the excess demand is not de-
rived from any underlying utility function but such demand or excess demand
functions have been widely used in the mathematical finance literature, see
Foellmer and Schweizer (1990) for example. The advantage of working in logs
is evident since it avoids the problem of the underlying prices becoming nega-
tive. The excess demand function can be envisaged as having two components,
an excess demand based on the difference between the current price and a
reference level price and a liquidity demand which is random. The latter con-
vention is often used, but can be dispensed with in two ways. Either one can
introduce a second market, if for example one thinks of the foreign exchange
market this would be the “rest of the world” or one introduces an aggregate
excess demand for the asset or for foreign denominated liabilities, which arises
not from the financial market itself but from simple trade requirements. At
each point in time the temporary equilibrium price is that which makes the
excess demand for the asset equal to zero.

St =
1

ct

∑
a∈A

cat Ŝ
a
t (ω) + η. (33)

Thus equilibrium prices are a weighted average of individual reference prices
and their liquidity demand. Where do the reference prices of the individuals
come from. A simple idea is that they are provided by m experts or “gurus”
among whom agents choose. An alternative interpretation is that these ref-
erence prices are forecasts obtained by using one of m forecasting rules. This
can be represented as

Ŝa
t ∈ {R1

t , . . . , R
m
t }. (34)
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The proportion of agents who choose rule or guru at time t is then given by
rules. This can be represented as

πi
t =

1

ct

∑
a∈A

cat 1Ŝa
t =Ri

t
, (35)

where the last term is the indicator function for the choice of guru, that is, it
takes on value 1 if guru i is chosen and 0 otherwise. Given this, we can rewrite
the expression for the log equilibrium prices as rules. This can be represented
as

St =

m∑
i=1

πi
tR

i
t + ηt. (36)

Now the question arises as to how the reference prices are determined. The
idea is that each guru i ∈ {1, . . . ,m}, has a fundamental value F i but also
takes account of the price trend. Thus the reference value for guru i is given
by

Ri
t = St−1 + αi [Fi − St−1] + βi[St−1 − St−2]. (37)

Now we can look at the evolution of the price of the asset over time which is
given by

St = F (St−1, St−2, τt) = [1 − α(πt) + β(πt)]St−1 − β(πt)St−2 + γ(πt, ηt),
(38)

and in these expressions there are two random elements one of which, the
choice probabilities of the agents is endogenous and the other, the liquidity
demand is exogenous. Thus the random environment in which the process
evolves is given by,

{τt} = {(πt, ηt)} . (39)

Now let me look a little closer at the characteristics of the gurus and see
how they can be assimilated to the “chartists” and “fundamentalists” of the
previous models. If we think of several “gurus” or fundamentalist rules, what
identifies rule i is a fundamental value Fi to which the exchange rate or asset
price will return. So the forecast will have the form is given by,

Ri
t = St−1 + αi[F i − St−2]t, αi ∈ (0, 1). (40)

Suppose, for the moment that there were only fundamentalist rules or gurus
then the evolution of prices would behave as

St = [1 − α(πt)]St−1 + γ ((πt, etat)) ,

m∑
i=1

αiπi
t (41)

Since αi ∈ (0, 1) the sequence of temporary price equilibria will be mean-
reverting. The process can be considered as an Ornstein-Uhlenbeck process
in a random environment. In a sense fundamentalists stabilise the market
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dynamics. This is clear since the fundamental values which are finite in number
bound the range of possible prices.

Now, consider the chartists who are simply extrapolating from previous
prices. They may do so in any more or less sophisticated way, but what is
important is that their forecast should only be based on previous prices. Con-
sider the simplest case in which chartists forecast that the change in the future
will be based on the last change. Forecasts will differ in the proportion of that
change that is expected next time. Formally the recommendations take the
form

Ri
t = St−1 + βi [St−1 − St−2] + ηt, βi ∈ (0, 1). (42)

Now, we can ask what would happen if there were only chartists on the
market. In this case with m chartist rules or gurus the process would be given
by

St − St−1 = β(πt)[St−1 − St−2] + ηt, β(πt) =

m∑
i=1

βiπ
i
t. (43)

What is interesting here is that now, returns become mean reverting but
prices will explode. Thus, in contrast to fundamentalists, chartists have a
destabilising effect on prices.

Now put the two pieces together and the process becomes

St = n[1 − α((πt)) + β(πt)]St−1 − β(πt)St−2 + γ(πt, ηt). (44)

It should be clear, from the above, that when there are few chartists the
process will be stable but that the price process will become explosive if
the chartists dominate. There will be bubbles and crashes but these will be
temporary if the probability of the chartists continuing to dominate is not
“too high”.

Before proceeding a further building block has to be specified as should
be clear from the earlier part of the chapter. We now need to know how the
probability that an agent i will follow guru j is determined. In this model
we will assume that the probability of using a rule is dependent on the past
experience the agent had, using that rule. To evaluate the agent’s experience
define the profits obtained at time t associated with the rule i as

P i
t = (Ri

t − St−1) (est − est−1) , (45)

and then, by discounting past profits, we can define cumulated profits as

U i
t = αU i

t−1 + P i
t =

∑
j=0

αt−jP i
j . (46)

It will be these profits that determine the choice probabilities, i.e.

πt+1 ∼ Q(Ut, : ·). (47)
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We make the assumption that the probabilities of choosing a guru depend
on the experience with that guru in the past and will assume, in particular,
the better the performance, the higher the probability of choosing that guru.

Two features then emerge from the model:

1. The more agents adopt a guru’s recommendation, the more impact that
guru will have on the evolution of prices.

2. The stronger a guru’s impact on prices the better will be his performance.
Thus, the simple fact that agents prefer successful gurus will lead to a self
reinforcing move to the guru who is currently doing best.

Now that we have established all the building blocks we can see the overall
structure

The asset price evolves according to the linear stochastic difference equa-
tion defined in (44) i.e.

St = [1 − α(πt) + β(πt)]St−1 + γ(πt, ηt), (48)

and this in a random environment{(πt, ηt)}. The latter has an endogenous
component which depends on past prices and performances and an exogenous
component, the liquidity demand which is exogenously given. Note that the
latter may be made endogenous by introducing a second population of agents,
which has a natural interpretation in the exchange rate context. We assume
that the aggregate liquidity demand is an i.i.d. process. The past prices have an
influence on the environment because the choices made by the agents depend
on profits, which, in turn are dependent on prices.

The process governing the evolution of prices and of profits is a Markov
chain which we can write as

ξt = (St, St−1, Ut). (49)

The dynamics of this stochastic process are given by

ξt+1 =

⎡⎣ F (St, St−1, τt)
St

αUt + P (St, St−1, τt)

⎤⎦ , τt ∼ Z(Ut, : ·). (50)

This process is far from trivial to analyse and, in particular, it should be noted
that the map

(St, St−1) → P ((St, St−1, τt)) , (51)

is non-linear, and that this means that some of the standard methods for
analysing such problems cannot be applied.

Where is the fundamental problem with this model? It is quite simply that
prices might explode and that, as a consequence, no long run properties of
the system could be established. To show that this is not the case we need
to have a property known as a “mean contraction” condition. The details of
this are spelled out in Foellmer et al. (2005) from which this model is taken.
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The condition can be translated into putting a bound on the probability that
an individual becomes a chartist. For example, if only fundamentalists are
present on the market the condition holds automatically. However, what is
interesting is that it is enough to bound the probability that individuals switch
to chartism, since one might intuitively think that at some point even though
it is a low probability event almost all agents could become chartists. However,
this situation will not persist if the condition holds since the probability that
the system will stay in that configuration is very low. Thus, although a chartist
bubble may start, it inevitably collapses. The beauty of this is that it allows
for temporary swings to the dominance of chartism but guarantees that such
periods will not last. Thus without having to bound prices or the proportion
of chartists we can still get the results that we are looking for.

There are two main results. Firstly, the price and profit process will not
explode. This is expressed by the following result:

Theorem 1. (Foellmer et al. (2005)). Under the mean contraction condition
the Markov chain is tight i.e.

lim
c→∞

sup
t
P [|ξt| ≥ c] = 0.

Now, the second result says that not only do prices not explode, they actually
have a stable structure in the long run:

Theorem 2. (Foellmer et al. (2005)). Under the mean contraction condition,
the Markov chain has a unique stationary distribution µ and the time averages
of prices and profits converge to their expected value under µ.

The important thing to emphasise here is that we place no a priori bounds
on prices nor on the capital gains that can be made with the rules, but the lim-
itation on the probability that an agent will become a chartist is sufficient to
guarantee that radical departures from fundamentals will be relatively short
in duration. Although prices may, in principle “explode”, they only exhibit
this sort of transient behaviour for limited periods of time. Nevertheless, the
influence of these episodes on long run average behaviour is sufficient to mod-
ify the distribution which would have been obtained had there been only
fundamentalists and, what is more, it is this modification that produces the
features such as long memory which are the subject of this book. It is also
this sort of behaviour that makes the sort of statement that one hears from
traders, such as, “only in the long run do fundamentals matter” meaningful.

We should not look for the system to settle to some steady state but
we can see certain long run regularity in the behaviour of prices. However, in
addition to showing that, with both fundamentalists and chartists present, we
can guarantee the existence of a unique limit distribution it is also interesting
to see how the characteristics of that distribution are affected by the presence
of chartists. We can see, using simulations of a simple example, that chartists
add to the noise in the system and that bubbles and crashes appear. The
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translation of this in terms of the limit distribution is increased kurtosis and
variance. Thus, loosely speaking, chartists increase the volatility of the price
process. The switching of agents’ expectations between fundamentalist and
chartist provides an answer to the “excess volatility” puzzle mentioned in the
introduction. The following figures enable us to see this clearly

Fig. 5. The distribution of Stock Prices

Fig. 6. Log-price of asset

Fig. 7. Proportion of chartists
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It is worth observing here that some features of the model differ from
that described in the previous section. The demand function is taken as a
building block rather than being derived from an underlying utility function.
The function is of logarithmic form which rules out negative prices something
which may occur in standard models. Secondly, the demand has a stochastic,
“liquidity demand” component. This can also be assimilated to the random
aggregate supply of foreign exchange that we had in the previous model.
However, to obtain the analytic results, the stochastic process governing the
supply of exchange cannot be a simple random walk.

Another thing is worth noting. The model, as did the previous one has
different forecasting rules and a probabilistic way of choosing between them.
Although the formulation is much more general, the logit or quantal response
rule used earlier, can, in a modified form, be a candidate rule for this model.
This in turn, determines the relative numbers of agents which follow each rule
and there can be any finite number of the latter. The crucial feature here
again, is the success, or performance of the rules or gurus. What we show,
in Foellmer et al (2005) as we have seen, is that the joint price performance
process is ergodic and this means that there is long-term structure in both
the prices and the performances of the rules. The presence of bubbles, which
burst fairly rapidly, is due to the restriction that we put on the probability
of following the chartist rule. There is, as we have observed, a self-reinforcing
trend towards chartism as soon as the price moves out of the limits defined by
the fundamental values. However there is always a sufficiently high probability
that sufficient agents will adopt fundamentalist rules to prevent the process
from exploding without limit. As always, the expected time that it will take to
return to the fundamental region can be determined, but does not depend on
the current price nor on how long the process has been out of the fundamental
region.

15 Conclusion

A major puzzle in the analysis of the price series of financial markets is the ex-
istence of bubbles, crashes, and excess volatility. These phenomena themselves
and the associated statistical properties such as “long memory” are very hard
to generate with standard models. Faced with this conundrum, there are two
basic possibilities. Either to attribute the phenomena in question to irrational
behaviour of the actors in the markets or to try to construct models of the
behaviour of the traders which do generate the sort of phenomena that we
observe empirically.

Many attempts have been made to do this. These vary from endowing
individuals with substantial memories and complicated forecasting rules with
sophisticated lag structures, to the introduction of a complicated process gen-
erating external shocks to the system. Both such approaches have been used
in representative agent models with rational expectations. The failure of these
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models to capture some of the salient features of financial time series is well
documented. An alternative approach has been to allow for heterogeneous
agents. A classic example of this is given by the contributions of De Long et
al (1989). They introduced so-called “noise traders” into their models. The
objection to this sort of analysis is that it involves assuming that some agents
are systematically wrong. Other approaches have been tried and some of the
contributions appear in this book. A different avenue is that opened by Brock
(1993), for example, who shows that the process generating prices can become
unstable if agents adopt simple forecasting rules once the price converges to
a stable path. The reason for their switch to the simple rule is that it is less
costly than the more complicated rule that led the process to converge in the
first place.

The approach I have outlined in this chapter shares some of the charac-
teristics of Brock’s analysis but is rather different. The driving feature of the
price process is also the switching of agents from one forecasting rule to the
other. However, this can be attributed to the relative success of the rules.
The switching process has the characteristic that the great majority of agents
will, at any point in time, herd on one rule. When this happens agents’ fore-
casts are self-reinforcing. Thus agents are not systematically wrong and their
behaviour cannot be described as irrational.

Furthermore, neither in the model spelled out nor in the version proposed
in Foellmer et al. (2005) does the process depend on a particular form of the
demand functions, nor on any specific process generating the “fundamentals”.
Lastly there is freedom in specifying the function, which maps past profits
from the different forecasting rules into the probability of choosing those rules.
Thus the specification of the models, which generate the sort of phenomena
in which we are interested, is rather flexible.

Using this simple but general framework, we were able to capture certain
stylised facts of empirical financial price time series and to show the existence
of a long run equilibrium, which is different from the equilibrium notions com-
monly, used in the literature. It is worth repeating that an important feature
of the model is the inclusion of chartists or trend chasers who may induce
temporary bubbles and crashes. Whilst this introduces such characteristics
as “excess volatility” and “long memory” in the price process, see Kirman
and Teyssiere (2002), it presents a major difficulty from an analytical point of
view. When chartists predominate they may generate bubbles but there is no
a priori bound on the levels that prices may attain during a bubble. Thus it
is not obvious that the price process will not explode, and the most appealing
feature of the last model is that it prevents this without artificially bounding
the process.

In this chapter I have also spelled out the basic building blocks that most
models of financial markets share. It is then a question of deciding which of
each of these should be changed from the features of the standard model in
order to obtain more realistic time series. I have placed the emphasis here on
the importance of interaction and the mutual influencing of economic agents.
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There are many ways of modelling this and many different ways of charac-
terising the interaction between different agents. I have emphasised the idea
that agents modify their expectations over time and that there is a positive
feedback as more agents converge on one forecasting rule. This generates self-
reinforcing swings and if for some of the time the agents follow extrapolatory
rules then many of the features that we observe in market data will emerge.
One can think of many other ways in which interaction could take place and
it would not be useful to detail all the different models that have been pro-
posed here. It should be clear that within the class of models proposed here,
by changing the rules available or by changing the horizon and utility func-
tions of the actors in the markets one can generate rather a large range of
possibilities.. However, the rather simple interaction in the models that I have
described, between agents who believe that prices follow some “fundamentals”
and those who extrapolate already captures many of the observed features of
financial time series. This is surely not the whole story but may prove to be
a useful start.

In concluding it might be worth recalling the purpose of the whole exer-
cise. The basic goal from the economist’s point of view is to produce market
models, which are capable of generating the statistical properties of finan-
cial time series. The econometrician, on the other hand, is more concerned
with capturing the essence of the underlying stochastic process and develop-
ing powerful tests to discriminate between various candidate types of process.
These two activities are complementary. It is of limited interest to understand
the mathematical properties of stochastic processes with realistic properties
if we have no idea as to the nature of the economic activity that produces
these characteristics. Nor, on the other hand, is it very interesting to produce
economic models, which share, in some loose sense, the statistical properties
of empirical time series. We need to test as rigorously as possible, the data
generated by the sort of economic models that have been spelled out in this
chapter and this has been the thrust of the work with Gilles Teyssiere, (see
e.g.Kirman and Teyssiere, (2002)) More ambitiously, we would like to prove
formally results which enable us to pin down the characteristics of the series.
This is the goal pursued in Foellmer et al. (2005), for example. The interest
of this approach is that one can develop a notion of equilibrium for the sort
of time series of prices actually observed which is basically different from that
usually envisaged in economics. Prices never settle to an equilibrium price,
they change all the time, but the distribution of prices in the long run exists
and is unique. Thus prices do have a well-characterised structure in the long
run and we do not have to content ourselves with such statements as “any-
thing can happen”. Even if we have some notion of what the fundamental
value of an asset is, we should not expect to see the distribution of prices
concentrating itself more and more around this price. Prices will only stray
far from underlying fundamentals for relatively short periods of time but they
will never settle to those fundamental values. Being near to the latter is no
guarantee of staying near and no exogenous shocks are required to move the
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prices. This seems to be a reasonable representation of economic reality and,
what is more, seems to be consistent with the statistical properties of finan-
cial time series. Moreover, as can be seen from the contributions to this book,
many of the models based on the building blocks explained in this chapter
produce data which survive the tests recently developed by the econometri-
cians, for detecting “long memory”. This does not mean that the interaction
models developed here are the sole explanation for the interesting properties
of financial market time series but they do, at least, seem to explain facts
which escape the standard model of financial markets.
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37. Lo, A. (1991). Long term memory in stock market prices. Econometrica, 59,
1279–1313.

38. Lux, T. and Sornette, D. (2002). On rational speculative bubbles and fat tails.
Journal of Money, Credit, and Banking, 34, 589–610.

39. McFadden, D., (1974). Conditional logit analysis of qualitative choice behaviour.
In: Zarembka, P. (Ed.), Frontiers in Econometrics. New York: Academic Press

40. Meese, R.A. (1986). Testing for bubbles in exchange markets. Journal of Political
Economy, 94, 345–373.

41. Meese, R.A. and Rogoff, K. (1983). Empirical exchange rate models; do they fit
out-of-sample? Journal of International Economics 14, 3–24.

42. Shiller, R.J. (1981). Do stock prices move by too much to be justified by subse-
quent changes in dividends? American Economic Review, 71, 421–456.

43. Shiller, R. (2000). Irrational Exuberance. Princeton, Princeton University Press
44. Stiglitz, J.E. (1990). Symposium on bubbles. Journal of Economic Perspectives,

4, 13–18.
45. Teyssière, G. (2003). Interaction models for common long range dependence in

asset price volatility. In: Rangarajan G, Ding M, (eds), Processes with Long
Range Correlations:Theory and Applications Lecture Notes in Physics, 621,
Springer Verlag, Berlin, pp. 231–269.

46. Tirole, J. (1985). Asset bubbles and overlapping generations. Econometrica, 53,
1490–1528.

47. Townsend, R.M. (1983). Forecasting the forecast of others. Journal of Political
Economy, 91, 546–588.

48. Vriend, N.J. (2000). An illustration of the essential difference between individual
and social learning, and its consequences for computational analyses. Journal
of Economic Dynamics and Control, 24, 1–19.

49. Weisbuch, G., Chenevez, O., Nadal, J-P. and Kirman, A.(1998). A formal ap-
proach to market organization: choice functions, mean field approximation and
maximum entropy principle. In J. Lesourne and A. Orlean (eds.) Advances in
Self-Organization and Evolutionary Economics. Economica pp.149–159.

50. Weisbuch, G., Kirman, A. and Herreiner, D. (2000). Market organisation and
trading relationships. Economic Journal, 110, 411–436.

51. West, K.D. (1988). Bubbles, fads and stock price volatility tests: a partial eval-
uation. Journal of Finance, 43, 639–656.

52. Woo, W.T., (1987). Some evidence of speculative bubbles in the foreign exchange
markets. Journal of Money, Credit and Banking, 19, 499–514

53. Woodford, M. (1990). Learning to believe in sunspots. Econometrica, 58, 277–
307.

54. Young, P. and Foster, D. (1991). Cooperation in the short and in the long run.
Games and Economic Behavior, 3, 145–156.



A Minimal Noise Trader Model with Realistic
Time Series Properties

Simone Alfarano1 and Thomas Lux2

1 Dept. of Economics, University of Kiel. alfarano@bwl.uni-kiel.de
2 Dept. of Economics, University of Kiel. lux@bwl.uni-kiel.de

Summary. Simulations of agent-based models have shown that the stylized facts
(unit-root, fat tails and volatility clustering) of financial markets have a possible
explanation in the interactions among agents. However, the complexity, originating
from the presence of non-linearity and interactions, often limits the analytical ap-
proach to the dynamics of these models. In this paper we show that even a very
simple model of a financial market with heterogeneous interacting agents is capa-
ble of reproducing realistic statistical properties of returns, in close quantitative
accordance with the empirical analysis. The simplicity of the system also permits
some analytical insights using concepts from statistical mechanics and physics. In
our model, the traders are divided into two groups: fundamentalists and chartists,
and their interactions are based on a variant of the herding mechanism introduced
by Kirman (1993). The statistical analysis of our simulated data shows long-term
dependence in the auto-correlations of squared and absolute returns and hyperbolic
decay in the tail of the distribution of the raw returns, both with estimated decay
parameters in the same range like empirical data. Theoretical analysis, however,
excludes the possibility of “true” scaling behavior because of the Markovian nature
of the underlying process and the finite set of possible realized returns. The model,
therefore, only mimics power law behavior. Similarly as with the phenomenological
volatility models analyzed in LeBaron (2001), the usual statistical tests are not able
to distinguish between true or pseudo-scaling laws in the dynamics of our artificial
market.

1 Introduction

In the last couple of years, the study of behavioral models of dynamic in-
teraction in financial markets has brought about a better understanding of
some of the key stylized features of financial data, namely the fat tails of
the distribution of returns and the autoregressive dependence in volatility.
Although these statistical features have counted as almost universal findings
for practically all financial time series for a long time and appear to be ex-
tremely uniform across assets and sampling horizons, economic explanations
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of their behavioral origins were nonexistent until very recently. However, the
recent rush of interest in heterogeneous agents models with a diversity of in-
teracting traders, the availability of fast computers for simulations of markets
with a large number of agents, and the introduction of new analytical and
computational tools (often adapted from statistical physics) in the analysis
of multi-agent systems has led to a variety of new contributions in which the
above stylized facts (one of them or both) are shown to be emergent properties
of interacting agent dynamics. Some of these contributions show that besides
the realistic distributional properties of their models, the overall dynamics is
also undistinguishable from a unit-root process. Hence, despite having iden-
tifiable behavioral roots (in terms of the assumed speculative behavior of the
agents), no immediately recognizable traces of predictability can be found in
the presented time series, and the dynamics appears to be observationally
equivalent to a martingale process.

Early papers in this area have often been the results of collaborations
between economists and physicists, e.g. Takayasu et al. (1992), Palmer et
al. (1994) and Bak et al. (1997). While they made important contributions
to get this literature started, the similarity of the resulting time paths with
empirical data was limited. Later studies have merged this multi-agent ap-
proach with the type of noise traders - fundamentalists’ interaction intro-
duced by Beja and Goldman (1980) and Day and Huang (1990). Papers along
this line included the microscopic stock market models of Lux and March-
esi (1999, 2000), Chen et al. (2001, 2002), Iori (2002), Farmer and Joshi (2000),
LeBaron (2000) as well as the adapting belief dynamics of Gaunersdorfer and
Hommes (2000) and Gaunersdorfer, Hommes and Wagener (2000). A related
variant can be found in the artificial foreign exchange markets of Arifovic
and Gencay (2000) and Georges (2001) in which agents’ behavior is modelled
using genetic algorithmic (GA) for their selection of strategies.

Interestingly, some possible general explanations seem to emerge from this
literature: first, volatility clustering and fat tails may emerge from indetermi-
nacy in the equilibrium of the dynamics. In particular, with different strategies
performing equally well in some kind of steady state, stochastic disturbances
lead to continuously changing strategy configurations which at some point
generate bursts of activity. This type of dynamics can be found already in
Youssefmir and Huberman (1997) in the context of a resource exploitation
model and can be identified in both the papers by Lux and Marchesi (1999,
2000) and the otherwise quite different GA models by Arifovic and Gen-
cay (2000), Lux and Schornstein (2002) and Georges (2001).

Another more general approach can be attributed to Gaunersdorfer and
Hommes (2000), who show that volatility clustering can also emerge from
stochastic dynamics with multiple attractors. Small amounts of noise added
to a deterministic dynamics with two or more attractive states can lead to
recurrent switches between these attractors. As these different regimes often
have different degrees of volatility, volatility clustering is a somehow natural
result of these dynamics. Interestingly, both of these mechanisms are some-



A Minimal Noise Trader Model with Realistic Time Series Properties 347

times identified as examples of intermittency which might, therefore, be
thought of as a general conceptual framework for the explanation of the par-
ticular characteristics of financial markets.

While the above results have - due to their origin from the behavioral
finance literature - more or less complicated descriptions of agents’ expecta-
tions and strategy choice, physicists have rather tried to reduce the dynamics
to a few basic principles able to generate the required time series characteris-
tics. Recent models with only a few ingredients for activation and frustration
of agents leading to realistic simulated output include Eguiluz and Zimmer-
mann (2000), Bornholdt (2001) and variants of the so called minority game
(Challet et al., 2001). Our aim in this paper is similar to these studies: we
are interested in whether an extremely simplified model of interaction of noise
traders and fundamentalists is already sufficient to reproduce the key stylized
facts: unit roots, fat tails and volatility clustering. The model we investigate
in this paper is a simple variant of the herding dynamics introduced by Kir-
man (1993) and Lux (1995). We distinguish between two groups and allow for
mimetic contagion among agents by simply postulating that they will move
from one group to the other, with a certain probability depending on group
size. This leads to the natural emergence of majority opinion with all agents
sharing one of two available opinions. However, the stochasticity of the dynam-
ics also leads to recurrent switches between both opinions, so that we find a
bistable system with a bimodal ergodic distribution of states. Adding a simple
price adjustment rule, bi-modality carries over to prices as well. Simulations
of this model show that it can mimic in surprising quantitative accuracy the
above stylized facts. The simplicity of the model also allows some analytically
insights into its dynamics. In particular, it is straightforward to show that the
model does not exhibit ’true scaling’, neither concerning the distribution of
large returns, nor the temporal dependence structure. The apparent scaling,
in fact, results from a kind of ’regime switching’ between the two modes of
its ergodic stationary distribution. This is a phenomenon similar to the diffi-
culty of distinguishing between apparent and true scaling in certain stochastic
processes; see Anderson et al. (1999), Granger and Teräsvirta (1999), Diebold
and Inoue (2001) and LeBaron (2001). Our analysis thus demonstrates that
’apparent’ scaling is not confined to a particular class of appropriately con-
structed stochastic models, but might also prevail in behavioral models of
interacting agents.

2 A Simple Model of Contagion

Our market is populated by N agents, each of them being either in state A
or in state B. The number of agents in both groups are denoted NA and NB.
The state of the system can be described by an intensive variable:

x =
NA −NB

N
. (1)
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Every agent has a probability of switching per unit of time from one state to
the other regulated by the transition rates:

φA→B = ν
NB

N
φB→A = ν

NA

N
. (2)

where ν is a time-scaling parameter and

NA =
1 + x

2
NNB =

1 − x

2
N. (3)

The number of agents that change state per unit of time is:

ωA→B = ν
NB

N
NAωB→A = ν

NA

N
NB. (4)

The previous transition rates with the finite realizations of x specify a re-
versible Markov chain, therefore the detailed balance condition holds, see Aoki
(1996):

ω(x→ x+∆x)Pe(x) = ω(x+∆x→ x)Pe(x+∆x), (5)

where the subscript e denotes the stationary probability distribution, that can
be written as a Gibbs distribution (Aoki, 1996):

Pe(x) ∝ expU(x). (6)

Using (5) and (6), we have:

exp[U(x+∆x)−U(x)] =
(1 − x)(1 + x)

[1 − (x+∆x)][1 + (x +∆x)]
, (7)

where

∆x =
2

N
. (8)

For large N 3, we can rewrite (7) in the limit:

∆x→ 0. (9)

At the end, the result is a simple differential equation for U(x):

dU(x)

dx
= − d

dx
ln[(1 − x)(1 + x)]U(x) = − ln(1 − x2) + c. (10)

From (6), it is straightforward to derive the equilibrium distribution:

Pe(x) =
1

L

1

1 − x2
, (11)

where the normalization constant L is given by:

L =

∫ 1−ε

−1+ε

1

1 − x2
dx = ln

2 − ε

ε
(12)

ε is a positive number 4.

3 In our simulations N = 100.
4 In our simulation, we leave at least one agent in each group to avoid total ex-

tinction, i.e. we implemented reflecting boundaries at x = 1 and x = −1; so
ε = 2

N
.
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The system is bistable and generates transitions between the two ’equi-
libria’ x ≈ +1 and x ≈ −1; we can derive the first passage time T0 (Aoki,
1996):

T0 =

1−2ε∑
x=−1+ε

1

Pe(x)w(x → x+∆x)

1−ε∑
y=x+∆x

Pe(y). (13)

In the limit of a large number of agents, the previous sum can be written as
an integral; therefore we can calculate explicitly the first passage time:

T0 = N ln(N) + o(ε). (14)

This model can be used to simulate interaction between economic agents
(traders) based on imitative behavior.

The previous mechanism is inspired by Kirman’s analysis of opinion for-
mation (Kirman, 1993). The main difference with respect to Kirman’s model
is the absence of a constant term in the probability transitions (2), intro-
duced by the author to prevent the absorbing states at |x| = 1; we replaced
it by setting reflecting boundary conditions. Consequently, the only possible
scenario is a distribution concentrated in the extreme values (U shaped dis-
tribution), while in the later case a flat distribution and a distribution with
a pick around the mean are also possible, depending on the particular set-up
of the parameters.

3 The Financial Market Model

We now use this two-state dynamics as the main ingredient in a financial
market model with interacting heterogenous agents. Our market participants
are divided into two groups:

NF fundamentalists (F), who buy (sell) a fixed amount of stocks TF when
the price is below (above) its fundamental value pF .

NC noise traders (C), who are driven by herd instinct.

Depending on their expectation about future price movements, noise traders
can be either optimists (buyers or O) or pessimists (sellers or P). TC represents
the fixed number of stocks that noise traders buy or sell. While the number of F
and C is constant in time (i.e. there are no switches between them), switches
from O to P and vice versa are allowed. The two-state model, detailed in
sec.2, regulates the transition rates. The fundamental price is assumed to be
constant in time.

Assuming sluggish price adjustment, the dynamics of the price is given by

dp

pdt
= β[NFTF (pF − p) +NCTCx]x =

NO −NP

NC
, (15)

where β is the reaction parameter of the market (speed of price adjustment).
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As an approximation to the resulting non-equilibrium dynamics we assume
instantaneous market clearing (which can be interpreted as an adiabatic ap-
proximation in physics terminology). We can solve (15) for the equilibrium
price:

p = pF +
NCTC

NFTF
x. (16)

Without loss of generality, we focus attention on the following set of parame-
ters values:

NC = NF = NTC = TF = 1β = 1. (17)

By (16), the average of the price is pF because the mean of x is zero. We
can observe, however, pessimistic phases in which the asset is undervalued
(compared to the fundamental price), and switching to optimistic phases in
which it is overvalued. In the first case the majority of the noise traders
is in the ’pessimistic mood’, while the second case most of them are in an
’optimistic mood’.

This model can be viewed as a simplified version of the more complex ar-
tificial stock market introduced by Lux and Marchesi (1999). However, their
switching mechanism is influenced by two factors: the opinion of others, mod-
elled via an opinion index similar to our x, and the local dynamics of the
price, entering via the averaged trend. In addition to this, the complexity is
increased by the possibility of switching among three different states and not
only two as in our model.

As it turns out, the model is able to reproduce some of the salient char-
acteristics of financial markets. Figures 1 and 2 on p. 351–352 illustrate the
results of the model. Volatility clusters are visible in the time series of returns
in correspondence to the change of majority, and the unconditional distribu-
tion of returns seems to be leptokurtic. Dependence of absolute and squared
returns (as a measure of the volatility) is positive over an extended time hori-
zon, while the raw returns show almost no correlation. All these features are
in qualitative agreement with empirical findings.

4 Statistical Analysis of Simulated Data

In order to see how closely the statistical results from our simulated data
match empirical observations, we performed a series of experiments with a long
data set of 1, 000, 000 integer time steps. Tables 1 and 2 give some elementary
statistics from the whole sample. As can be seen, the resulting distribution
is characterized by significant excess kurtosis and slight positive skewness.
The Bera–Jarque test for normality leads to a strong rejection of its null
hypothesis.

To investigate the auto-correlation structure, we applied the Box - Ljung
test to the auto-correlations up to lags 8, 12 and 16 for the raw data as
well the squares and absolute values of returns. In harmony with empirical
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Fig. 1. The upper panel shows the behavior of the fundamental (simply assumed to
be constant) and the market price from a typical simulation. The lower panel shows
the returns of the market price, computed as log increments over unit time interval.
Underlying parameters of this run: N = 100, ν = 1, pF = 10

Table 1. Sample statistics of returns

(Probability) (0.000)

Mean 4.14 · 10−7

Variance 7.52 · 10−5

Kurtosis 2.67
Skewness 0.057
Bera-Jarque test 59, 571

records, there is only slight auto-correlation in the returns themselves, but
highly significant auto-correlation in the squares and absolute values. Since
with samples of that size, we are able to detect even very small degrees of
auto-correlation with high reliability, we would not expect the results of the



352 Simone Alfarano and Thomas Lux

Fig. 2. The upper panel shows the distribution of normalized returns; notice the lep-
tokurtic shape. The lower panel shows the auto-correlation function of raw, squared
and absolute returns. Parameters: N = 100, ν = 1, pF = 10, number of events 3 ·105

Table 2. Results of Box-Ljung test

8 12 16

Rt 58.59 96.17 116.74
R2

t 40, 198 52, 270 61, 611
|Rt| 107, 132 138, 035 160, 551

Box-Ljung test to be insignificant (in fact, they allow rejection of the null of
no auto-correlation even for the raw returns). However, what is interesting
here is that the statistics are orders of magnitude larger for the squares and
absolute values of returns.

The highly significant entries for the latter transformations lead to the
questions of whether these time series are able to mimic the empirical ob-
servations of long-term dependence, defined as an hyperbolic decline of the
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auto-correlation function:
ACF (τ) ≈ τ−γ , (18)

where γ is the decay constant. To this end we estimate the parameter of
fractional differencing, denoted by d, from a regression in frequency space
following the approach by Geweke and Porter - Hudak (1983) (GPH), and also
the Hurst exponent H from Detrended Fluctuation Analysis (DFA), (Peng et
al., 1994), see tables 3 and 4.
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Table 3. Estimated parameters of fractional differencing for 500 sub-samples

Mean Minimum Maximum

Rt −0.09 −0.46 0.24
R2

t 0.33 0.01 0.63
|Rt| 0.35 0.08 0.61
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The GPH method is based on the linear regression of the log–periodogram
on transformations of low frequencies of the Fourier spectrum. The estimated
parameter d is related to the decay rate of the auto-correlation function by:

γ = 1 − 2d (19)

A value of d = 0 would indicate absence of long memory, while d significantly
above zero speaks in favor of long-term dependence. Table 3 gives summarizing
results from 500 sub-samples of 2, 000 observations each, and the histograms
show the distribution of the 500 estimates. As it turns out, we get results in
the vicinity of zero for the raw data, but on average much higher values for
the squares and absolute returns. In fact, the latter are very close to typical
empirical estimates obtained with returns of various financial markets (Lux
and Ausloos, 2002).

Table 4. Hurst Exponent from DFA for 500 sub-samples

Mean Minimum Maximum

Rt 0.40 −0.13 0.71
R2

t 0.66 0.26 1.21
|Rt| 0.65 0.27 1.15

Estimates from the alternative DFA methods (shown in table 4 and rel-
ative histograms) confirm these results. The relationship between the two
parameters is:

H = 2d+ 0.5 (20)

therefore for the two methods we have a satisfactory agreement for raw re-
turns; for absolute and squared returns, results from both methods are qual-
itatively similar, albeit with some divergence in the numerical values. The
later might be explained, however, by different small sample biases of both
estimators.

The appearance of long term dependence is particularly interesting since
simple inspection of the model, in fact, indicates that it does not exhibit this
feature: any memory in the system is wiped out by stochastic fluctuations
between the two modes of the distribution and the time needed to switch
from one mode to the other is depended on the past behavior of the system.
However, it is well known that Markov regime-switching models can indeed
’erroneously’ give the impression of long - term dependence; see Lobato and
Savin (1998), Anderson et al. (1999), Granger and Teräsvirta (1999), Diebold
and Inoue (2001). The mechanism here is similar to Markov switching pro-
cesses, which might explain the impression of long - term memory. A similar
result is found in Kirman and Teyssière (2002), who study a more complicated
foreign exchange market model in which Kirman’s herding model is combined
with a monetary model á la Frankel and Froot (1986).
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Let’s turn now to the unconditional distribution of the synthetic data.
To complement the results for kurtosis, we compute the so-called tail index
to get information about the heaviness of the tails of the simulated data.
Empirical research indicates again a hyperbolic relationship for the decay of
the probability in the outer part of the return distribution, following:

P (|Rt| > X) ≈ X−α, (21)

with α usually in the range of [2.5, 5], (Lux and Ausloos, 2002). Here we
applied the usual maximum likelihood estimator proposed by Hill (1975),
using the same 500 sub-samples and tail sizes of 10, 5 and 2.5%. Both the
range of the estimators and the tendency towards slightly increasing numbers
are in good harmony with empirical results (see table 5 and the pertinent
histograms for more details).
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Table 5. Tail index estimators for 500 sub-samples

Mean Minimum Maximum

10% 3.27 2.45 4.17
5% 4.27 2.92 5.92
2.5% 5.33 3.66 7.90

The unit-root hypothesis of the financial data is another well-established
stylized fact of asset prices (de Vries, 1994), usually interpreted as a conse-
quence of market efficiency. In other words, one is usually not able to reject
the null hypothesis that the price of financial assets follows a random walk or
martingale process. To test the unit root, we applied the famous Dickey-Fuller
test to sub-samples of different lengths, (from 500 to 10000, see table 6), in
order to check wether the simulated time series show the same pattern as the
empirical data.

Table 6. Results of Unit-Root test. (a) Number of rejections at 95% level

Size of the sub-sample Range of ρ One-sided test a Two-sided test a

500 0.99998279 − 1.00000171 0(2000) 615(2000)
2000 0.99999562 − 1.00000042 0(500) 114(500)
5000 0.99999824 − 1.00000016 0(200) 28(200)
10000 0.99999909 − 1.00000008 0(100) 0(100)

As can be seen from table 6, we cannot reject the null hypothesis of unit-
root using a one-sided test for all the sub-samples considered. Conversely,
applying a two-sided test, we observe several cases of rejections in favor of an
explosive root of the dynamics. Inspection shows that these cases of rejection
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of a unit root in favor of explosive dynamics are driven by switching between
the two modes of the distribution. The fast change in the majority of the
noise traders creates the impression of an exponential increase of the price
(ρ > 1) for particular choices of the size of the sub-samples, even tough the
time series of the price is bounded. However, with longer sizes we observe
fewer rejections also for a two-sided test, since the time series, then, runs over
several transitions between the two ”equilibria”.

5 Discovering the Asymptotic Behavior

The incongruity between the theoretical properties of the model (absence of
long memory) and the results of the statistical investigation, described in the
previous paragraph, at the end should be a ’finite size’ effect (even though
one might recover the ’true’ behavior only with immense amounts of data). To
show the transition towards its true behavior in the case of apparent long-term
dependence of volatility, it is necessary to study the asymptotic correlation
properties of the time series.

To this end, figure 3 shows the Hurst exponent, estimated with DFA, as a
function of different time windows (ranging from 10 to 5 · 105 time steps) for
raw, squared and absolute returns.

Concerning the raw returns for a time window of few thousands data
points, we observe a vanishing Hurst exponent, that approaches zero for longer
time windows. This behavior can be explained by the boundedness of the time
series of the price, which leads to a constant variance of returns. But if we
restrict our time horizon to few hundreds time steps, the Hurst exponent is
close to 0.5, the typical value for a random walk.

The estimation for the time series of squared and absolute returns shows
different properties. In the first part it has a value greater than 0.5, within the
characteristic interval for long memory processes, but for ∼ 104 time steps, it
declines to the typical value for the random walk; and at the end we observe
a convergence to zero that means indication of a bounded time series.

The explanation of these results lies in the oscillatory pattern of the price.
These oscillations create a characteristic time scale T0 (see equation (14)),
inside which the time series is a random walk, with a linear increase of the
variance over time. But in the case of longer time series (the size of the sample
T several times greater than T0), the variance reaches a constant value since
it, then, constitutes average over numerous oscillations.

In terms of absolute returns, these oscillations create a kind of regime
switching between a calm period and a turbulent one, giving the impression
of a long memory process, at least for time windows not too large compared
to T0. This effect vanishes as soon as the size of the sample is long enough.

The time scale T0, therefore, regulates the necessary amount of data for
recovering the true behavior of the model. Samples of smaller size, on the
other hand, give rise to different ’spurious’ characteristics, which are, in fact,
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Fig. 3. Estimated Hurst exponent for raw, squared and absolute returns as a func-
tion of different time windows calculated via detrented fluctuation analysis. The
dashed line is the typical value for a random walk. T0 = 461 for N = 100, which
corresponds to 102.65

in good agreement with the empirical data; from (14) we can even calculate
the scaling of the necessary sample size with respect to the parameters of the
model.

6 Conclusions

This paper has presented an extremely simple variant of a noise trader/infec-
tion model. In contrast to many other contributions in the literature on ar-
tificial financial markets, it belongs to a class of models whose dynamical
behavior is well understood. In particular, we know that as a bounded Marko-
vian process with a bistable limiting distribution, the model should lack any
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’true’ scaling properties. Nevertheless, applying the usual statistical tests to
simulated data, we find ’apparent’ scaling with quite close agreement with
empirically observed exponents. This shows that the difficulty to distinguish
between true and spurious scaling is not confined to particular stochastic pro-
cesses, but may also emerge in the area of multi-agent behavioral models. We
argue that such apparent scaling might also occur in other models presented
in the literature.
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Summary. The aim of this chapter is to determine whether the hysteretic series
can be confused with long memory series, since the hysteretic effect is a persistence
in the series like the long memory effect.

Nevertheless, the long term behavior of the hysteretic series is very different
from the long term behavior of the long memory series: the hysteretic series are not
mean reverting whereas the long memory series are (if correctly differencied). Since
the mean reverting property is crucial for many economic models for checking the
stability of equilibria, distinguishing between hysteresis and long memory is very
important. This difference is due to the fact that hysteresis models have in fact
a short memory, since dominant shocks erase the memory of the series, and the
persistence is due to permanent and nonreverting state changes at a microstructure
level. For checking whether hysteretic series can display long memory property,
a model possessing the hysteresis property is used for simulating hysteretic data.
Statistical tests for short memory against long memory alternatives are applied to
these simulated data.

1 Introduction

The past 25 years have witnessed an explosion of interest in non-linear dynam-
ical systems, in mathematics as well as in applied sciences. This chapter deals
with a particular non-linear system modelling the hysteretic effect, empha-
sising its relevance to economics and finance. According to the mathematical
definition of hysteresis (see Krasnosel’Skii and Pokrovskii, 1989, Mayergoyz,
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1991), if a process has a memory of past shocks, to be hysteretic, this mem-
ory possesses two key properties: remanence and a selective, erasable memory
(this definition of the term is the one used in all other sciences, like physics
or biology). Remanence occurs when the application of a shock of the same
extent as an initial shock, but in the opposite direction, does not bring the
system back to its initial position. The selective, erasable memory is that
only the non-dominated extremum values of the shocks remain in the bank of
memory of the system. In economics, this “strong” hysteresis definition has
been used for modelling the behaviour of exchange rates changes (see Amable
et al., 1991, Göcke, 2002), and the unemployment (see Cross et al., 1998, Lang
and de Peretti, 2003). Conversely, van Dijk et al. (2002) argued for non-linear
long memory in US unemployment. Similarly, Coakley et al. (2002) studied
in detail the persistence and structuralism of unemployment for several coun-
tries. In addition, long memory property of volatility of exchange rates and
financial indexes is well known. Thus the analysis of the dynamics of these
series is of interest

The aim of this chapter is to determine whether the hysteretic property
can be confused with the long memory property. This idea originally comes
because hysteretic effect is a persistence in the series as long memory effect.
Nevertheless, the long term behaviour of hysteretic series is very different from
the long term behaviour of long memory series: the hysteretic series are not
mean reverting whereas the long memory series are (if correctly differentiated).
Since the mean reverting property is crucial for many economic models for
checking the stability of equilibria, distinguishing between hysteresis and long
memory is very important. This difference is due to the fact that hysteresis
models have in fact a short memory, since dominant shocks erase the memory
of the series (see section 2), and the persistence is due to permanent and
non-reverting state changes at a microstructure level. For checking whether
hysteretic series can display long memory property, a model possessing the
strong hysteresis property is constructed following Lang and de Peretti (2003),
inspired by the work of Cross et al. (2000) for building their own algorithm.
Then, the model is tested econometrically by applying empirical tests for long
memory based on de Peretti’s (2003) tests, and modified for accounting for
heteroskedasticity, on simulated hysteretic series.

The remainder of this paper proceeds as follows. In section 2, the analyt-
ical framework for hysteresis is presented, where a hysteretic model of agent-
switching activity is constructed. This section also presents the algorithm for
constructing hysteretic variables. In section 3, the various long memory tests
are presented as well as the results of the Monte Carlo experiments. Asymp-
totic and bootstrap tests for long memory in the conditional mean and in
the conditional volatility are applied on various simulated hysteretic series.
Section 4 draws the concluding remarks.
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2 Hysteresis Model

In this part, a hysteresis model possessing the property of selective memory
is presented. For modelling a macroeconomic variable, denoted the output
variable, with hysteretic effect, we first consider the “activity function” of
individual heterogeneous agents (e.g. firms). Each agent has two different
threshold values: one to become active, the other one to become inactive. For
example, in the case of unemployment study, the agent is a firm, and the firm
is active if it has, or hires, an employee. In the case of financial markets, an
agent is active if s/he buys or sells. Agents are heterogeneous in the sense that
these threshold values are different from one agent to another due to structural
reasons. The macroeconomic behaviour of the whole economy in response to
another macroeconomic economic variable, denoted the input variable, (for
example the aggregate growth fluctuations in the case of unemployment) is
then analysed for discovering its properties.

2.1 The Hysteretic Features

The term hysteresis has been used in economics to cover several distinct phe-
nomena:

• A first usage is to describe persistence in deviation from equilibria. Conse-
quently, for example, if shocks cause unemployment to deviate from nat-
ural rate equilibria, actual unemployment remains in disequilibrium for
some time, though the natural rate remains an attractor point in some
long-run sense (Layard et al., 1991 for example).

• A second usage is to describe the presence of unit or zero roots in linear
difference or differential equations. In this case, the application of a shock
changes the equilibrium path of the system, neither the initial nor the
shocked position of the system being forgotten. This property arises from
the Cauchy-Lipschitz theorem on the existence of solutions of systems of
linear differential equations, but it also implies that the application of equal
but opposite shocks will leave the equilibrium unchanged (see Amable et
al., 1995).

Neither of these usages corresponds to the use of hysteresis in physics and
mathematics, where the term was first coined, and so can be considered inap-
propriate usages. shocks continue to affect current economic equilibria can be
attributed to Marshall (1890). In hysteresis models, only the non-dominated
extremum values of the shocks remain in the memory bank. The term “hys-
teresis” was originally applied to systems that display remanence.

• In contrast to persistence in deviations from equilibria, remanence implies
that the application and removal of a shock changes the equilibrium of a
system.
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• In contrast to zero/unit root usage, remanence implies that the application
of equal but opposite shocks generates effects that do not cancel out, so
that the equilibrium changes.

2.2 Analytical Framework

In order to display remanence and the other characteristics of systems with
hysteresis, two basic hypotheses are required:

H1 the outputs of the system must respond on a non-linear way to input
shocks,

H2 the elements that make up the system must be heterogeneous: at least
some of them respond differently to a common shock (Krasnosel’Skii and
Pokrovskii, 1989).

The presence of these two hysteresis characteristics implies that the system
under consideration has a selective, erasable memory in which only the non-
dominated extremum values of the past shocks affect the current output of
the system (see Cross, 1993, for explanation of this property in an economic
context).

The Microeconomic Assumptions

In the economic field, the hysteresis definition has been applied to effects of
exchange rates changes (Amable et al., 1991, Göcke, 2002), and to unemploy-
ment (Cross et al., 1998, Lang and de Peretti, 2003). The various microeco-
nomic assumptions of the hysteretic model deal with the nature of the agents
(firms, traders, or others type of agent) and their relevant decision variables.
The assumptions under consideration are the following:

A1 When making their decisions as to whether or nor to be active, or to main-
tain their previous activity level (and therefore produce output), agents
take into account the input variable. Since the individual activity variable
is binary, the agents adjust their activity level discontinuously, jumping
from 0 to 1, and reversibly (see Figure 1). The existence of this discontinu-
ity has been analysed by, among other authors, Dixit (1989), Hammermesh
(1989), and Zoega et al. (2002).

A2 This discontinuity is modelled here as the presence of the two different
threshold values for entering into activity, and for out.

A3 The agents are heterogeneous, since each of them has different threshold
values. Heterogeneity is one of the sufficient conditions for a system to be
“strongly” hysteretic (see Cross, 1993).

A model satisfying these assumptions can capture the ‘selective memory’ fea-
ture of hysteretic behaviour, that is, the influence only of certain past events
(typically, non-dominated sequences of previous peaks and troughs). These
assumptions are the original characteristics that permit a model to display a
non-linear dynamic with hysteretic properties.
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Individual Behaviour of the Agents

Under these assumptions, the behaviour of the agents can be modelled in a
simple way. Let ai be the threshold in terms of the input variable, g, required
for the individual agent to become active, and bi the threshold for g below
which it becomes inactive 2. By construction, for every agent i, bi < ai. Let ei

be an “activity dummy”, which indicates whether the agent is active or not.
The variation of the activity dummies in response to the fluctuations of the
input variable, g, is therefore determined as follows:

• if g ≥ ai, the agent becomes active (ei,t = 1),
• if g ≤ bi, the agent becomes inactive (ei,t = 0),
• if bi < g < ai, the agent maintains its previous activity (“inaction zone”).

The activity that prevails at the level of the agent then depends, inter alia, on
the previous economic climate. The variation of the activity (dummy) function
is represented in figure 1.

Fig. 1. Illustrates this microeconomic behaviour of the agent: the activity dummy
function of an individual agent

Therefore, the activity (dummy) function can be formalised as following:

ei,t =

⎧⎪⎪⎨⎪⎪⎩
1 if ei,t−1 = 0 and g ≥ ai

1 if ei,t−1 = 1 and g > bi
0 if ei,t−1 = 0 and g < ai

0 if ei,t−1 = 1 and g ≤ bi

(1)

which can be summarised as:

ei,t = ebiai
[g(t), ei,t−1] ≡ ebiai

[g(t), g(t− 1), . . . , g(1), ei,0], (2)

where ebiai
[ . ] is the hysteresis operator, or “hysteron”. It should be noted

that the past history of the system matters.
An important feature is that there is a remanence effect, illustrated on

figure 2. Let us suppose that the input variable rises from g0 to g1, and then

2 In this model, the thresholds are assumed to be fixed. An extension of the model
can allow the threshold to vary. See Cross et al. (2001) for a time-dependent
Preisach model.
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Fig. 2. An illustrative example of the remanence effect

goes back to its initial value. If, initially, the agent was inactive, it will be-
come active, and remains so if the input variable returns to its initial value.
Nevertheless, if the input variable varies from g3 to g0, or from g3 to g1, then
in the opposite direction, the agent will be inactive in the end. The remanence
does not necessarily depend on the amplitude of the variations in the input
variable rates: the most crucial thing is whether the threshold values have
been crossed, or not. So, if the input variable rises from g0 to g2, then it goes
back to the initial level, this will have the same effect as a variation from g0
to g1, and a return to the initial value.

Aggregate Behaviour

At the aggregate level, there are many agents with significant variations in
switching values 3. Each agent i can be represented by its threshold values,
(bi, ai): see Mayergoyz’s diagram (Mayergoyz, 1991) presented in Figure 3.

Fig. 3. The border between the “A” and “NA” areas

The active agents belong to the domain marked “A”, the others corre-
sponding to the “NA” area (inactive, or “non active” agents).

The set of micro-elements (described by hysterons) all behaving hystereti-
cally. For a continuous set of hysterons, the model can be written as follows:

3 No a priori hypothesis is made here about the distribution of the threshold values
at the aggregate level.
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h [g(t)|It−1] =

∫ ∫
a≥b

eba [g(t)|It−1] f(a, b)dadb, (3)

where f(a, b) is the weighting function, that is the probability density function
of the threshold values, and It−1 is the information set on the state of the
system at time t− 1. h [g(t)|It−1] is in fact the proportion of active agents in
the economy. For example, in the context of unemployment, g is the growth
rate, f is the distribution function of the thresholds that make a firm hiring
or firing, and 1 − h the unemployment rate.

The model is hysteretic at a macro-level: the economy will retain in its
memory the sequence of past shocks of the input variable, in a selective way.
The memory is erasable, in that only non-dominated shocks remain in the
memory of the system. For example, if a negative shock occurs in the growth
rate, the unemployment rate will jump to a higher level, and will persist at
this level even if the growth rate turn back to its original level.

2.3 Computing the Hysteretic Variable

As to test the model, the hysteretic transformed variable, denoted the ”h”
variable, has to be computed. Cross et al. (2000) suggest a four steps proce-
dure to construct such a variable. However, the procedure is developed ana-
lytically only in the case where f(a, b) is uniform, and deriving the procedure
analytically for other distributions is in general difficult. Therefore, Lang and
de Peretti (2003) propose a general procedure based on simulation methods.

First Step: Choosing the Weight Function

First, the bivariate probability density function f(a, b) for the pair of thresh-
olds is chosen. This function is a weight function specifying how much each of
the agent contributes to the h variable. Since cross-sectional information on
the distribution function of switching points among the agents is not avail-
able empirically, and would be rather difficult to collect, we have to specify
the weight function ourselves. In this chapter, two density functions are con-
sidered. The first one is such that bi is the minimum of two i.i.d. uniform
random variables, and ai is the maximum of both the same variables. The
second density function is such that bi is the minimum of two i.i.d. Gaussian
variables, and ai is the maximum of both the same variables.

Both the uniform and Gaussian univariate distributions have to be cal-
ibrated. We chose the following calibration: the uniform distribution takes
values over [min g(t),max g(t)] (following Cross et al., 2000), where g is the

input variable; the Gaussian distribution has ḡ = 1
T

∑T
t=1 g(t) mean and

1
T

∑T
t=1 (g(t) − ḡ) standard deviation. The justification of this calibration is

that the agents are adapted to the economy (if the thresholds are all smaller
than min g(t) or larger than max g(t), the agents cannot react to a change
into the input variable).
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Second Step: Simulating the Agents

The number of simulated agents, denoted by N , is then chosen. It should be as
large as possible, so that the empirical distribution function of the threshold
pair is close to the theoretical probability density function. Consequently, N
simulated heterogeneous agents are generated in accordance to our microeco-
nomic model (see assumption A2): they are entirely determined by the draw
of the bi, ai pairs, for i = 1, . . . , N .

Third Step: Defining the “Initial Conditions”

For computing the activity of the agents over time, the initial activity has to
be determined arbitrarily, since the economy is not known before time t = 1.
The activity of each agent, ei,0, is chosen randomly with probability 0.5.

Consequently, the first value of the input variable, g(1), is used for deter-
mining the first value for the activity dummies in the following way:

ei,1 = ebiai
[g(1), ei,0].

The activity, as well as the input variable, are then considered from t = 1 to
t = T .

Fourth Step: Computing the Hysteretic Transformation

For each period of time, the activity dummy for each of the agents is computed
by the program using equation 2.

The hysteretic variable, that is the proportion of active agents, is given by
the mean of the activity over the periods of time:

h [g(t)|It−1] =
1

N

N∑
i=1

ei,t. (4)

In the algorithm developed in Lang and de Peretti (2003), it is not nec-
essary to select, for each period of time, the non-dominated extrema of the
“input” variable, since it is done implicitly in the recursive equation 2.

The hysteretic transformation defined in Equation 4 displays remanence.

2.4 Two Examples of Hysteresis Application

Application to Unemployment

A strong hysteresis version of the link between the fluctuations of unemploy-
ment and growth is built and tested empirically for some countries in Lang
and de Peretti (2003). The non-hysteretic version of this model is the growth
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rate version of Okun’s Law. The underlying assumption that unemployment
responds to growth shocks in a linear way can be regarded as open to question.

Arguably, fluctuations of unemployment when growth varies do not need
to be the same during booms as during recessions, and should depend on the
intensity of the economic fluctuations, and possibly on the past history of the
economic system. For example, at the microeconomic level, if the economic cir-
cumstances deteriorate, employers may want to make sure this deterioration is
not just temporary, before laying off employees. This behaviour is rational. As
argued in Oi (1962), labour is a quasi-fixed factor: there are costs associated
with redundancies, and with hiring, and training new employees; the firm may
want to make sure it will not lose key personnel to other firms during a tem-
porary decline in the demand for its output. Therefore, firms may wait some
periods before firing, and, for symmetrical reasons, before hiring persons (see
Zoega et al., 2002). Another reason for this non-linearity is the well-known
phenomenon of “discouraged workers”: during recessions, some unemployed
workers stop looking for work, therefore dropping out of the working popu-
lation, where they come back during booms. This implies that the reactions
of the unemployment to growth shocks can be asymmetric: if employers fire
a certain number of workers after a negative growth shock, they may not
hire exactly the same number of workers after a positive shock of the same
amount as the original one. Therefore, for all these reasons, the link between
the growth and the fluctuations of unemployment may be hysteretic.

In the theoretical model, a large number of heterogeneous firms adjusts
discontinuously their activity level in reaction to the fluctuations of the ag-
gregate demand level. The firms are heterogeneous since each of them has a
couple of entry-exit switching points, different from the other firms. According
to Dixit and Pindyck (1994), this heterogeneity arises in part from differences
between firms, in the sunk costs associated with their investments, and from
differences in the value of waiting to gain more information about market
opportunities. Last but not least, “intractable uncertainty” can be the source
of this heterogeneity: firms assess the uncertain future in different ways, a
problem arising because “they simply do not know” what the future will be
(see Keynes, 1936) 4.

When making their decisions as to whether or nor to be active —and
therefore produce output and employ labour—, firms take into account the
“growth shocks” variable. We concentrate on the decision to become active, to
become inactive, or to maintain the previous activity level that depends on the
aggregate growth g. The macroeconomic consequence of this behaviour is the
presence of hysteresis in the “growth-employment fluctuation” relationship.
The aggregate growth rate, which is relatively easy to obtain, obviously gives
an indication about the future state of demand and general “health” of the
economy. In fact, a firm reacts to its own demand in its market. Anyway, this

4 See Göcke (2002) for a multi-period, uncertainty and option value effect microe-
conomic modelling of hysteresis.
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demand is not independent of the growth rate of the economy: when there
is some growth in one sector, there will be a demand for products in other
sectors, and, on the contrary, when the economy is depressed, the demand for
goods coming from the other sectors will diminish. In a dynamic economy, a
market where the demand is independent from the general health as measured
by the economic growth rate may exist, but that configuration is rather an
exception than the general rule.

Furthermore, the total amount of demand in a particular market may be
difficult or impossible to know for a firm, or, if it is possible to know, this
knowledge may be expensive: the firm may have to employ an economist, to
find the relevant statistics, etc. On the contrary, the aggregate growth rate can
be known readily and freely, and may give precious information concerning the
amount of future demand. Following Keynes’ General Theory (Keynes, 1936),
the general growth rate may also influence the expectations of the employers
concerning the future state of demand (Z curve in the “principle of effective
demand”). As we said before, information about the state of demand in some
markets are difficult to find. Therefore, collecting all data for all sectors in a
particular economy would be an impossible task. That would prevent us from
being able to run the empirical tests. Seen in this light, the growth rate of the
economy can be considered as a proxy of the demand addressed to the firm.
For all these reasons, we have chosen to make the implicit assumption that
the demand in all particular markets is linked to the general growth rate, an
assumption which is underlying not only in the original law coined by Okun,
but in many macroeconomic models. And, as for all the hypotheses, this one
has, of course, its limitations.

Application to Financial Markets

One of the most important ‘stylized facts’ in financial series is that the asset
returns exhibit volatility clustering and exhibit the long memory property.
The microstructures that should cause these empirical properties are discussed
below: the heterogeneity and the non-linearity. It should be noted that these
two properties can generate hysteresis property according to the explanations
given in this Section.

Heterogeneity in Financial Markets

In a perfect rational efficient market hypothesis world, 5 all traders are ratio-
nal, and it is common knowledge that all traders are rational. In real financial

5 “An ‘efficient’ market is defined as a market where there are large numbers of
rational, profit-maximizers actively competing, with each trying to predict future
market values of individual securities, and where important current information
is almost freely available to all participants. In an efficient market, competition
among the many intelligent participants leads to a situation where, at any point in
time, actual prices of individual securities already reflect the effects of information
based both on events that have already occurred and on events which, as of now,



Long Memory and Hysteresis 373

markets, however, traders are different, especially with respect to their ex-
pectations about future prices and dividends. A quick glance at the financial
pages of newspapers is sufficient to observe that difference of opinions among
financial analysts is the rule rather than the exception. In the last decade,
a rapidly increasing number of structural heterogeneous agent models have
been introduced in the finance literature, see, Zeeman (1974), Frankel and
Froot (1988), De Long et al. (1990), Kirman (1891), Chiarella (1992), De
Grauwe et al. (1993), Brock (1993, 1997), Wang (1994), Dacorogna et al.
(1995), Lux (1995), Brock and LeBaron (1996), Arthur et al. (1997), Kurz
(1997), Brock and Hommes (1997b,1998), Farmer (1998), Le Baron et al.
(1999), Lux and Marchesi (1999a,1999b), Chiarella and He (2000), Farmer
and Joshi (2000), Gaunersdorfer (2000), Gaunersdorfer and Hommes (2005),
Kirman and Teyssière (2005) and LeBaron (2000). Some authors even talk
about a Heterogeneous Market Hypothesis as a new alternative to the Effi-
cient Market Hypothesis. In all these heterogeneous agent models, different
groups of traders, having different beliefs or expectations, co-exist.

Non-Linearity in Financial Markets

The Heterogeneity of expectations among traders introduces an important
non-linearity into the market. In an Adaptative Belief System 6 (ABS), there
are also two important sources of noise: model approximation error and in-
trinsic uncertainty about economic fundamentals. Asset price fluctuations in
an ABS are characterised by an irregular switching between phases of close-
to-the-fundamental-price fluctuations, phases of optimism where most agents
follow an upward price trend, and phases of pessimism with small or large
market crashes follow an upward price. Temporary speculative bubbles can
occur, triggered by noise and amplified by evolutionary forces.

3 Long Memory Property of Hysteretic Series

3.1 Tests for Detecting Long Memory

Many financial and macroeconomic time series exhibit the long memory prop-
erty, that is the autocorrelations of the series (or of a power of the series) are

the market expects to take place in the future. In other words, in an efficient
market at any point in time the actual price of a security will be a good estimate
of its intrinsic value.” (Fama, 1965).

6 In a series of papers, Brock and Hommes (1997a, 1997b, 1998, 1999) propose
to model economic an financial markets as Adaptative Belief System (ABS). An
ABS is an evolutionary competition between trading strategies. Different groups
of traders have different expectations about future prices and future dividends.
Traders choose their trading strategy according to an evolutionary ‘fitness of
measure’, such as accumulated past profits.
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significantly positive, even at high order lags, and decay slowly, possibly fol-
lowing a scaling law. de Peretti(2002) shows that the tests for long memory
based on the asymptotic distributions display very large size distortion and
have to be corrected. A way for correcting the distortions is to use bootstrap
methods based on simulation techniques. The foundation of the bootstrap
is presented in Efron (1979), developments are presented in Davidson and
MacKinnon (1993), and further analyses in Davidson and MacKinnon (1996a,
1996b). Bootstrap tests for long memory in volatility robust to ARCH effect
are proposed in Andersson and Gredenhoff (1998). de Peretti (2003a) propose
bilateral bootstrap tests for long memory in the conditional mean robust to
ARMA effect. This bilateral bootstrap P value greatly improves the size-power
properties of the tests and can be extended straight to tests for long memory
in the conditional mean simultaneously robust to ARMA and ARCH effects,
and to tests for long memory in volatility robust to ARCH effect. This test is
presented in this Section.7

Long Memory Model

We restrict attention to univariate, linear fractionally integrated models of
the ARFIMA8 form:

φ(L)(1 − L)dxt = θ(L)εt t ∈ {1, . . . , T}, (5)

where

• {εt} can follow a stationary GARCH process (non necessarily Gaussian),
• φ and θ are polynomials that have all roots outside the unit circle,
• σ2

ε <∞,
• L is the lag operator,
• d is the differentiating parameter and takes a real value,

In some circumstances, a long-memory process may be approximated by a
fractionally integrated model; hence testing for long-memory can be done by
a test on d. Such tests are applied to stationary and invertible series (requiring
that |d| < 1/2), and H0: d = 0 is thus a natural null hypothesis.

Bootstrap Test for Long Memory in Heteroskedastic Returns

For financial data, that often display heteroskedastic effect, the classical boot-
strap tests have to be modified for taking account the heteroskedasticity. For
the return series, the null hypothesis is an ARMA(p′; q′) against the alterna-
tive of an ARFIMA(p; d; q) process, where p′ and p are the auto-regressive

7 This kind of test is proposed and briefly presented in de Peretti (2003b) for
different values for the long memory parameter.

8 The ARFIMA model is presented in greater detail in Granger and Joyeux (1980)
and Hosking (1981).
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parameters, d is the long memory parameter, and q′ and q are the mov-
ing average parameters. However, the heteroskedasticity effect has to be cor-
rected for making robust inference. Consequently, the Data Generating Pro-
cess (DGP) under the null used in the bootstrap tests has to be changed from
an ARMA(p′; q′) process to a ARMA(p′; q′)-GARCH(p′′; q′′) (mean-variance)
process. The modified procedure is the following.

1. Estimate the long memory parameter, denoted by d̂, and then compute the
test statistic, which will be denoted by τ̂ . Robinson’s statistic test is chosen
here, however, another can be used, e.g. re-scaled adjusted range statistic
first introduced by Hurst (1951), modify re-scaled range statistic suggested
by Lo (1991), the modified Higuchi’s method based on the measure of the
fractal dimension Higuchi (1988), de Peretti (2002) the wavelet method
(Jensen, 1994). For choosing of the bandwidth, the heuristic rule proposed
in de Peretti (2002) is used 9.

2. Estimate the model 5 by maximum likelihood under the null H0: d = 0 to
obtain the estimated parameters and the residuals. The model is therefore
reduced to an ARMA(p′; q′)-GARCH(p′′; q′′) model.

3. Draw B sets of bootstrap error terms, εb, following the estimated GARCH
(p′′; q′′). The error terms of the GARCH(p′′; q′′) process are drawn by re-
sampling with replacement from the vector of residuals of the GARCH
(p′′; q′′) estimation of the series.
Use εb to generate B bootstrap samples xb. The elements of xb are gen-
erated recursively from the ARMA(p′; q′) model using the estimated pa-
rameters and εb.

4. For each bootstrap sample, estimate the long memory parameter, denoted
by d̂b, and then compute the test statistic, denoted by τ b with xb instead
of x.

5. Then compute the bilateral bootstrap P value, denoted by p̂, as follows:

p̂(τ̂ ) = 2 min{p̂uni(τ̂ ), 1 − p̂uni(τ̂ )}, (6)

where

p̂uni(τ̂ ) =
1

B

B∑
b=1

I(τb > τ̂ ),

and I( . ) is is an indicator variable.

Bootstrap Test for Long Memory in the Volatility

Consider the volatility measured, for example, by the absolute value of the
returns:

9 The effectiveness of this rule is sufficient for the purpose of Monte Carlo exper-
iments. This rule permits to avoid complicating the procedure in the context of
large number of Monte Carlo replications. For the choice of an optimal bandwidth,
see Henry and Robinson (1996).
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v1,t = |rt|. (7)

For testing the presence of long memory in the volatility, the null hypoth-
esis is that the absolute value of the returns follows the absolute value of a
GARCH(p′; q′) process against the long memory alternative d > 0 10. Similarly
to the case of long memory test in the conditional mean, the bootstrap DGP
under the null has to be changed to the absolute value of a GARCH(p′; q′)
process rather than an ARMA(p; q) process. The same reasoning holds if the
volatility is measured by the logarithm of the absolute returns or the squared
returns for example:

v2,t = r2t ,

v3,t = ln(|rt|).

The procedure is similar to the previous one:

1. Compute the test statistic (τ̂ ) with |xb|,
(
xb
)2

, or ln(|xb|) instead of |x|,
x2, or ln(|x|) as in Subsection 3.1.

2. Estimate the series using the GARCH(p′; q′) model by maximum likeli-
hood.

3. Generate B bootstrap samples xb. The elements of xb are generated re-
cursively from the GARCH(p′; q′) model using the estimated parameters.

4. For each bootstrap sample, compute the test statistic (τ b), with |xb|,
(
xb
)2

,
or ln(|xb|) instead of |x|, x2, or ln(|x|).

5. Then compute the bilateral bootstrap P value defined as previously in
Equation 6.

3.2 Monte Carlo Experiments: Conditional Mean Analysis

In these Monte Carlo experiments, (non-hysteretic) short memory series are
studied. Long memory tests are run for verifying that the short memory ef-
fect does not induce a detection of long memory effect. Simultaneously, the
same non-hysteretic short memory series are transformed using the hysteretic
transform defined in Equation 4. Long memory tests are then run on these
transformed series to see whether the hysteretic series can be confused with
long memory processes. The null hypothesis is short memory, that is d = 0,
against long memory, that is d 
= 0.

In these first experiments, the hysteretic transform is applied directly to
the series, and the tests are applied to seek long memory in the conditional
mean of the series.

10 We assume that the mean of the series is memoryless as it is often the case in
finance. Consequently, there is not the ARMA component. Otherwise, the test
can also be applied on the residuals of a regression.
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Monte Carlo Methodology

Non-Hysteretic Short Memory DGPs

To be more realistic, DGPs containing autocorrelation with leptokurtic error
terms are chosen. Zero mean AR(p) processes with Gaussian and then t(5)
error terms 11 having the characteristics presented in Table 1 are studied.

Table 1. Monte Carlo DGPs

DGP 1: AR(1) process

Characteristic Value

Autoregressive parameter 0.3
Standard deviation 1
Sample size 512
Error terms distribution N(0, σ2) or t(5)

Hysteretic DGPs

The previous short memory and non-hysteretic series are transformed using
hysteretic transform. Two distributions for the threshold pair, (ai, bi), of the
“activity function” are used (see Section 2.2). The first distribution is the
uniform distribution, the second one is Gaussian distribution: see subsection
2.3, first step.

Bootstrap Procedure

In these Monte Carlo experiments, two tests for long memory are run: the
asymptotic test with a bootstrap estimation of the standard deviation of the
long memory estimator, and the bootstrap test (again with the bootstrap
estimation of the standard deviation).

The first bootstrap procedure deals with the estimation of the standard de-
viation of the long memory estimator in the asymptotic test for long memory.
B2 = 123 bootstrap replications are used. The bootstrap DGP parameters of
this process are estimated for each series. The procedure is asymptotic in that
the distribution of the test statistic is the asymptotic one, even if the statistic
contains a bootstrap estimate.

The second bootstrap procedure deals with the bootstrap test for long
memory that is a test using the bootstrap distribution of the statistic. The
number B of bootstrap replications in the bootstrap loop for computing the

11 The t(5)-AR(p) processes are fourth order stationary and satisfy the assumption
S by Giraitis et al. (2003), that is necessary for making inference. The Gaussian
AR(p) processes satisfy obviously this assumption
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P value of the test has to be specified. B = 245 is chosen 12. For these Monte
Carlo experiments, the bootstrap DGP under the null is fixed to be an AR(2)-
GARCH(1; 1) process for all the simulated series. The ARMA and GARCH
orders are not estimated for each series for saving computation time. Never-
theless, the parameters of this process are estimated by maximum likelihood
for each simulated series.

Monte Carlo Results

The number of Monte Carlo replications is S = 1000.

Density Functions

In a first step, the density functions of the long memory estimator are plotted
on Figure 4 according to the different DGPs defined in Table 1 and its two
hysteretic transforms in the case of Gaussian error terms and then in the case
of t(5) error terms. Figure 4 shows that in the case of non-hysteretic short
memory series, the realisations of the long memory estimator are around the
true value of the long memory parameter under the null hypothesis, that is
d = 0. In the cases of hysteretic series, Figure 4 clearly shows a tendency for
the long memory estimator to obtain values for the long memory parameter
larger than 0. This feature appears for both Gaussian and Uniform hysteretic
transformations. When the error terms are t(5) distributed, the feature is
emphasised. Consequently, the hysteresis property can be confused with the
long memory property, particularly when the distribution of the error terms
are leptokurtic, as for financial series. It should be noted that since there is
no over-estimation of the long memory parameter due to the short memory
component of the process, the long memory detection for the hysteretic series
is totally due to the hysteretic characteristic.

P Values of the Asymptotic Test

For getting a rigorous presentation of the results, the P values of the asymp-
totic long memory test are presented. The true probability of rejecting the null
hypothesis of short memory against long memory is plotted against the signif-
icance level of the tests using the graphical techniques proposed in Davidson
and MacKinnon (1998a) (see Figure 5).

The non-hysteretic short memory series under consideration display clearly
short memory property: if the true Monte Carlo DGP is really an short mem-
ory process, the plot corresponds to the true size of the test for this DGP and
the size curve has to be close to the 45o line. Figure 5 shows that there is

12 The numbers B2 of bootstrap replications for the estimate of the standard de-
viation of the long memory estimator used in the test statistic has also to be
specified. B2 = 123 is chosen. This second bootstrap loop is fitted into the second
one.
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This picture presents the density functions for the long memory parameter estimator
in the case of three DGPs: the first is a Gaussian AR(1) process defined in Table
1 as “DGP 1”, the second is its uniform hysteretic transform, and the third is its
Gaussian hysteretic transform.
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This picture presents the density functions for the long memory parameter estimator
in the case of three DGPs: the first is a t(5)-AR(1) process defined in Table 1 as
“DGP 1”, the second is its uniform hysteretic transform, and the third is its Gaussian
hysteretic transform.

Fig. 4. Density functions of the long memory estimator for DGP 1
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These pictures present the true probability of rejecting the null hypothesis of short
memory against long memory plotted against the significance level. The used test is
the asymptotic Robinson’s (1995) test with a non-parametric bootstrap estimation
of the standard deviation. It is applied in the cases of DGP 1 defined in Table 1 with
Gaussian and t(5) error terms and its hysteretic transforms (uniform and Gaussian
distributions for the hysterons).

Fig. 5. True probability of rejecting the null hypothesis of short memory
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almost no excess of acceptation of the long memory hypothesis due to short
memory effect (in our experiments) since the curves corresponding to the
probability of rejection for the non-hysteretic short memory DGPs is close to
the 45o line.

In the cases of hysteretic series, Figure 5 confirms the features found for the
density functions in Figure 4: the hysteresis property can be confused with the
long memory property, particularly when the distribution of the error terms
are leptokurtic. If the true Monte Carlo DGP is a long memory process (that
is not the case in our experiments), the plot corresponds the power of the
test and should converge to 1 with the sample size. In our case, if the DGP
is a hysteretic process, the plot indicates whether a long memory test has an
excess of acceptation of the alternative hypothesis of “long memory”, or, in
other words, whether the hysteretic property is confused with long memory
property.

Results for the Bootstrap Test

The results for the bootstrap long memory test are not presented here because
they suggest that no there is no long memory in the series. However, these
results have to be interpreted correctly in the case of hysteretic series, because
when the bootstrap procedure estimates the DGP under the null having the
form of an ARMA(p′; q′) process, a root close to unity is found. A root close
to unity can be interpreted as more than long memory since it is “perfect”
memory. In fact, the bootstrap procedure suffers from its best advantage: its
adaptability. When the bootstrap test is applied, the test hypotheses are in-
terpreted as “short memory” against “long memory”. However, technically,
the hypotheses are “ARMA(p′; q′)” against “ARFIMA(p; d; q)” (with or with-
out heteroskedasticity correction). Since a ARMA(p′; q′) process can contain
a unit root, the hypotheses are in fact an “integer integration” model (with
possible integration of order 0) against a “fractionally integration” model.
Consequently, the bootstrap retains the hypothesis of a unit root in an ARMA
model (“perfect” memory) rather than a fractionally integration (long mem-
ory).

It should be noted that a unit root is not an acceptable hypothesis for a
hysteretic series, because an estimation of the long memory parameter should
lead to a value close to 1, where as the estimates are around to 0.4 – 0.5 for
the uniform hysteretic transformation for example. In fact, the bootstrap test
encounters the same problem when the long memory parameter is close to 0.5
(see de Peretti (2003). Consequently, it can be conclude that the hysteretic
series behave as long memory series with a long memory parameter close to
0.5, as found by the estimator on hysteretic series (see Figure 4).

Obviously, in practice, the bootstrap null DGP can be improved by taking
into account sophisticated characteristics such as structural breaks or other
features, but it should take us away from the purpose of this chapter: esti-
mating hysteresis with long memory tools.
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3.3 Monte Carlo Experiments: Conditional Volatility Analysis

In these second experiments, long memory tests are then run on the volatility
of these series to see whether the hysteretic in the volatility can be confused
with long memory volatility. The volatility is measured by |rt| here.

Hysteretic Volatility

In the context of financial series, no memory of a very short memory is gen-
erally found in the conditional mean of the returns. A “strong” persistence
is generally found in the conditional volatility of the returns. The model pre-
sented in Subsection 3.2 is not able to capture this feature since it deals with
the conditional mean. Consequently, building a model with hysteretic volatil-
ity is useful. The following hysteretic transform of the volatility of a series rt
is proposed:

h�(rt) = sign(rt)h(|rt|), (8)

h��(rt) = sign(rt)
√
h(r2t ), (9)

where

sign(r) = 1 if r > 0,

= 0 if r < 0,

and h( . ) is the hysteretic transform defined as in Section 2. For additional
comments on the combination of sign effects and (weighted) amplitude effects
see Heyde (2002).

Monte Carlo Methodology

Non-Hysteretic Short Memory DGPs for the Volatility

GARCH(p; q) processes with Gaussian and then t(5) error terms are studied,
with the characteristics presented in Table 2.

Table 2. Monte Carlo DGPs for the volatility

DGP 2: GARCH(1; 0) process

Characteristic Notation Value

Constant parameter δ0 0.7
Autoregressive parameter δ1 0.3
Sample size T 512
Error terms distribution N(0, σ2) or t(5)
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Hysteretic DGPs

The previous non-hysteretic short memory series are transformed using hys-
teretic transforms defined in subsection 3.3. The uniform distribution for the
threshold pair, (ai, bi), of the “activity function” is used.

Bootstrap Procedure

The first bootstrap procedure, dealing with the estimation of the standard
deviation of the long memory estimator in the asymptotic test for long mem-
ory. B2 = 123 bootstrap replications are chosen, with a GARCH(2; 1) DGP
that is estimated for each series.

The second bootstrap procedure, dealing with the bootstrap test for long
memory. B = 245 bootstrap replications are chosen, with a GARCH(2; 1)
DGP under the null that is estimated for each series (again B2 = 123 boot-
strap replications is used for the standard error estimate).

Monte Carlo Results

The number of Monte Carlo replications is S = 1000.

Density Functions

The density functions of the long memory estimator for the different DGPs are
plotted. Figure 6 presents the density functions for the DGP defined in Table
2 and its hysteretic transforms in the case of Gaussian error terms and then in
the case of t(5) error terms. As for the conditional mean case, the long memory
estimation of the hysteretic volatility series has a tendency to find values larger
than 0. This long memory finding is not due to short memory effect, since the
long memory estimation of the (non-hysteretic) short memory series seems to
be not biased. For being rigorous, the results for the long memory tests have
to be considered.

P values of Long Memory Test

The result for the asymptotic test is presented in Figure 7. The test for long
memory in non-hysteretic short memory series is absolutely not biased since
the corresponding curves are almost confused with the 45o line, even for the
t(5) error terms case. Consequently, the short memory component cannot be
the cause of the long memory detection in hysteretic series. For the hysteretic
series, the probability of retaining the long memory hypothesis is larger than
the significance level of the tests, suggesting that the hysteretic property can
be confused with the long memory property. The same feature is obtained for
both the hysteretic volatility transforms defined by equations 8 and 9, and
for Gaussian and t(5) distributed error terms. However, the probability of
retaining the long memory hypothesis is less for the hysteretic transform for
the volatility than for the hysteretic transform of the returns.
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This picture presents the density functions for the long memory parameter estimator
in the case of three DGPs: the first is a Gaussian GARCH(1; 0) process defined in
Table 2 as “DGP 2”, the second is the uniform hysteretic transform of its absolute
value, and the third is the uniform hysteretic transform of its squared value.
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This picture presents the density functions for the long memory parameter estimator
in the case of three DGPs: the first is a t(5)-GARCH(1; 0) process defined in Table
2 as “DGP 2”, the second is the uniform hysteretic transform of its absolute value,
and the third is the uniform hysteretic transform of its squared value.

Fig. 6. Density functions of the long memory estimator for DGP 2
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These pictures present the true probability of rejecting the null hypothesis of short
memory against long memory plotted against the significance level. The used test is
the asymptotic Robinson’s (1995) test with a non-parametric bootstrap estimation
of the standard deviation. It is applied in the cases of DGP 2 defined in Table 2 with
Gaussian and t(5) error terms and their hysteretic transforms (uniform distributions
applied on the absolute and squared values of the series).

Fig. 7. True probability of rejecting the null hypothesis of short memory
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4 Conclusion

In economics, the hysteresis definition has been applied to effects of exchange
rates changes (Amable et al., 1991, Göcke, 2002), and to unemployment (Cross
et al. (1998), Lang and de Peretti (2003). On another hand, Coakley et al.
(2002) studied in detail the persistence and structuralism of unemployment for
several countries. Similarly, van Dijk (2002) argued for non-linear long memory
in US unemployment. Consequently, the question of what is the dynamics of
such series, is of interest.

The aim of this paper is to determine whether the hysteretic property
can be confused with the long memory property or more generally, whether
the hysteretic microstructure can be an economic justification of the long
memory statistical stylised fact found in many macroeconomic and financial
series. The long memory property of hysteretic series is studied via Monte
Carlo experiments. Hysteretic conditional mean processes is analysed with
long memory tests as well as hysteretic conditional volatility processes. It
can be concluded that hysteretic series can very easily be confused with long
memory series.

For determining whether a series is hysteretic or has long memory, in prac-
tice, the variables that explain the series of interest have to be found first. For
example, the unemployment level should be explained by a transformation
of the growth. We have then to test whether the series of interest is a hys-
teretic transform of the explanatory variables, or whether the series is a linear
transform of long memory variables (long memory regression). However, dis-
criminating between both these hypotheses has not necessarily a sense if the
microstructure model for hysteresis explains in fact the observed long memory
in the aggregate series.

An opening way for the research is to examine the components of the hys-
teretic transform that control the observed long memory feature. Intuitively,
more a hysteretic transform is nonlinear, and thus persistent, more the esti-
mated long memory parameter should be large. More rigorously, a hysteretic
transform with uniformly distributed thresholds and a spread between the
thresholds close to zero is close to a linear transformation, and thus does not
cause any long memory effect. Consequently, a growing spread and distribu-
tions far from the uniform one, in a way that has to be studied, will generate
long memory effect.
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