
23 Belief Propagation and Survey Propagation

23.1 Belief Propagation, Message Passing, and Cavities

Belief propagation [162] is a fairly old strategy, popular in artificial intelli-
gence, for using the calculus of probabilities to estimate where solutions to
complicated discrete problems such as constraint satisfaction are most likely
to be found. The mathematics behind it is usually not rigorous, but it offers
the promise of replacing a difficult integer program with a more tractable
linear or quadratic evaluation, which may often give a solution in which all
the variables are in fact integers as desired, or may be accurately rounded
off to the nearest integers. Belief propagation is generally performed as an
iterative algorithm in which each probability, of “belief”, is updated in the
light of the information currently available for the beliefs of the other vari-
ables with which the variable on which the belief is based directly interact.
To physicists, this sort of iterative update procedure is reminiscent of the
“cavity models”, of mean field theory used in early treatments of magnetic
ordering. Finally, because the iterative evaluation of beliefs is carried out by
passing information in messages that flow from one variable to another along
the graph that is defined by the interactions in a problem, it is natural to
think of distributing the calculation so that it can proceed asynchronously
and in parallel without central coordination.

To make these ideas concrete, we shall show how they can be applied
to constraint satisfaction, in particular to K-SAT. A recent series of papers
drawing upon some general ideas from the statistical mechanics of disor-
dered materials have given deep insight into the nature of the SAT-UNSAT
phase transition [138, 139, 27, 161]. This work relies on the concept of “repli-
cas” of the random system being studied, identical copies of that system
that are studied together. The basic insight, going back to Edwards and
Anderson [56], is that ordering in random systems is a matter of stability,
rather than regular structure evident by its symmetry. Thus an ordered struc-
ture is observed because it forms repeatedly in the different replicas of the
system. The simplest forms of order in random systems are called “replica
symmetric”.



530 23 Belief Propagation and Survey Propagation

The ground states of the XOR-SAT problem discussed in the previous
chapter were first understood using the replica analysis. More complicated
structures with additional hierarchy are now known. The clustered solutions
found in the XOR-SAT problem in the hard-SAT region are one example of
these. Most of the formal methods that follow this line of investigation are
beyond the scope of this book, but practical methods of obtaining some
of the results using message passing and iterative “cavity” evaluation of
quantities called “surveys” that are similar in spirit to the standard beliefs
have become available, and will be explored next, following the derivation
in [12].

An iterative “belief propagation” (BP) [162] algorithm for K-SAT can be
derived to evaluate the probability, or “belief”, that a variable will take the
value TRUE in the set of configurations that satisfy the formula considered.
To calculate this, we first define a message (“transport”) sent from a variable
to a clause:

• ti→a is the probability that variable xi satisfies clause a.

In the other direction, we define a message (“influence”) sent from a clause
to a variable:

• ia→i is the probability that clause a is satisfied by another variable than xi.

In 3-SAT, where clause a depends on variables xi, xj , and xk, BP gives the
following iterative update equation for its influence:

i
(l)
a→i = t

(l)
j→a + t

(l)
k→a − t

(l)
j→at

(l)
k→a . (23.1)

The BP update equations for the transport ti→a involve the products of
influences acting on a variable from the clauses that surround xi, forming its
“cavity”, Vi, sorted by which literal (xi or ¬xi) appears in the clause:

A0
i =

∏

b∈Vi, yi,b=¬xi

ib→i and A1
i =

∏

b∈Vi, yi,b=xi

ib→i , (23.2)

with

yi,b =

{
xi if xi is part of clause b

¬xi if ¬xi is part of clause b
. (23.3)

The update equations are then

t
(l)
i→a =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

i
(l−1)
a→i A

1
i

i
(l−1)
a→i A

1
i +A0

i

if yi,a = ¬xi ,

i
(l−1)
a→i A

0
i

i
(l−1)
a→i A

0
i +A1

i

if yi,a = xi .

(23.4)



23.2 Message Passing as Side Information for Decimation 531

The superscripts (l) and (l − 1) denote iteration. The probabilistic interpre-
tation is as follows: suppose we have i(l)b→i for all clauses b connected to vari-
able i. Each of these clauses can either be satisfied by another variable (with
probability i

(l)
b→i) or not be satisfied by another variable (with probability(

1 − i
(l)
b→i

)
) and also be satisfied by variable i itself. If we set variable xi to 0,

then some clauses are satisfied by xi, and some must be satisfied by other
variables. The probability that they will all be satisfied is

∏
b�=a,yi,b=xi

i
(l)
b→i.

Similarly, if xi is set to 1, then all these clauses b are satisfied with probability
∏

b�=a,yi,b=¬xi
i
(l)
b→i. The products in Eq. (23.4) can therefore be interpreted

as joint probabilities of independent events. Variable xi can be 0 or 1 in a so-
lution if the clauses in which xi appears are satisfied either directly by xi

itself or by other variables. Hence

Prob(xi) =
A0

i

A0
i +A1

i

and Prob(¬xi) =
A1

i

A0
i +A1

i

. (23.5)

23.2 Message Passing as Side Information
for Decimation

To use BP for decimation, we select the variables with the largest probability
to be either true or false. We then assign them their likely value, recalculate
the beliefs for the reduced formula, and repeat. As with removal of 1-variables
in K-XOR-SAT, decimation using BP proceeds until there are no clauses
left and leaves the remaining variables untouched. The entropy is therefore
given by the number of remaining variables, or 1—the “depth of decimation”
plotted with the dashed line in Fig. 23.1. This method succeeds in finding
satisfying configurations (ground states) of large 3-SAT formulas up to nearly
α = 3.9, which is believed to be the beginning of a Hard-SAT regime for
this problem. Since we studied only large formulas, and the SAT-UNSAT
transition is now understood to occur at α = 4.267 . . . [139], the formulas
studied were almost certainly all satisfiable. On the rising part of the BP
depth of decimation curve in Fig. 23.1, the decimation stops when the BP
equations fail to converge. At this point, use of the full WalkSAT algorithm
in the form described in the previous chapter finds a satisfying configuration
in every case studied.

In the hard-SAT region, a hierarchical decomposition into clusters of so-
lutions that are more separated from each other, as occurs in XOR-SAT, is
plausible. A more complicated set of messages, designed for use in a single
cluster of solutions, has been called survey propagation (SP) [27] and shown
to provide a viable decimation scheme in this region. To arrive at SP we
introduce a modified system of beliefs: every variable falls into one of three
classes: TRUE in all solutions (1), FALSE in all solutions (0), and TRUE in
some and FALSE in other solutions (free). Thus a decimation scheme will



532 23 Belief Propagation and Survey Propagation

Fig. 23.1. Depth of decimation achieved by BP, SP, and two mixed cases (ρ = 0.95
and ρ = 1.05) as a function of α, the ratio of the number of clauses to the number
of variables in 3-SAT (from [12])

attempt to identify the most frozen variables, those that are constant over
a cluster of solutions. The message from a clause to a variable (an influence)
is the the same as in BP above. Although we will again only need to keep
track of one message from a variable to a clause (a transport), it is convenient
to first introduce three ancillary messages:

• T̂i→a(1) is the probability that variable xi is true in clause a in all solutions,
• T̂i→a(0) is the probability that variable xi is false in clause a in all solutions,
• T̂i→a(free) is the probability that variable xi is true in clause a in some

solutions and false in others.

Note that there are here three transports for each directed link i → a, from
a variable to a clause, in the graph. As in BP, these numbers will be functions
of the influences from clauses to variables in the preceeding update step.
Taking again the incoming influences independently, we have

T̂
(l)
i→a(free) ∝

∏
b∈Vi\a i

(l−1)
b→i ,

T̂
(l)
i→a(0) + T̂

(l)
i→a(free) ∝

∏
b∈Vi\a,yi,b=xi

i
(l−1)
b→i ,

T̂
(l)
i→a(1) + T̂

(l)
i→a(free) ∝

∏
b∈Vi\a,yi,b=¬xi

i
(l−1)
b→i .

(23.6)



23.2 Message Passing as Side Information for Decimation 533

The proportionality indicates that the probabilities are to be normalized. We
see that the structure is quite similar to that in BP. But we can make it closer
still by introducing ti→a with the same meaning as in BP. In SP it will then, as
the case might be, be equal to Ti→a(free)+Ti→a(0) or Ti→a(free)+Ti→a(1).
That gives [cf. Eq. (23.4)]:

t
(l)
i→a =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

i
(l−1)
a→i A

1
i

i
(l−1)
a→i A

1
i +A0

i −A1
iA

0
i

if yi,a = ¬xi ,

i
(l−1)
a→i A

0
i

i
(l−1)
a→i A

0
i +A1

i −A1
iA

0
i

if yi,a = xi .

(23.7)

The update equations for ti→a are the same in SP as in BP, i. e., one uses
Eq. (23.1) in SP as well. Similarly to Eq. (23.5), decimation now removes
the most fixed variable, i. e., the one with the largest absolute value of (A0

i −
A1

i )/(A
0
i + A1

i − A1
iA

0
i ). Given the complexity of the original derivation of

SP [138, 139], it is remarkable that the SP scheme can be interpreted as a type
of belief propagation in another belief system. And even more remarkable is
the fact that the final iteration formulas differ so little.

A modification of SP that we will consider in what follows is to interpolate
between BP (ρ = 0) and SP (ρ = 1)1 by considering

t
(l)
i→a ∝

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

i
(l−1)
a→i A

1
i

i
(l−1)
a→i A

1
i +A0

i − ρA1
iA

0
i

if yi,a = ¬xi ,

i
(l−1)
a→i A

0
i

i
(l−1)
a→i A

0
i +A1

i − ρA1
iA

0
i

if yi,a = xi .

(23.8)

We do not have an interpretation of the intermediate cases of ρ as belief
systems.

Figure 23.1 shows the depth of decimation resulting from SP as well as
the variants that are shifted by use of the ρ parameter slightly in the direc-
tion of BP and slightly away from BP (“overrelaxed”). We see that the SP
decimation is effective only in the hard-SAT region, since below α = 3.9 it
considers all variables as “free” to take either value in the configurations that
can be constructed. In the hard-SAT region, it has the effect of removing
the core variables, leaving WalkSAT with a problem to solve that is no more
difficult than finding ground states at α = 3.9 . . ., the entry to the hard-SAT
1 This interpolation has also been considered and implemented by Zecchina and

coworkers.



534 23 Belief Propagation and Survey Propagation

3.4 3.6 3.8 4 4.2
10

0

10
5 Median WalkSat Cost 

α

N=1000
N=2000
N=5000
N=10000
N=20000

Fig. 23.2. Median cost of a WalkSAT solution close to the SAT-UNSAT transi-
tion, with and without first performing the SP-induced decimation to reduce the
complexity of the formula (from [12])

region. This is suggested by the cost data contained in Fig. 23.2. Setting the
parameter ρ to 0.95 produces an interesting result. The decimation proceeds
to completion, just as in BP, but the method continues working in the hard-
SAT region of the parameter space. Overrelaxed SP (ρ = 1.05) gives what
may be reasonable recommendations even above the SAT–UNSAT boundary,
where these methods can be used to arrive at configurations with the smallest
number of unsatisfied clauses.

23.3 Belief Propagation and Sudoku

The Sudoku puzzle that we showed in Fig. 20.1 poses a difficult challenge for
stochastic methods of resolving constraint problems. The puzzles are gener-
ated in apparently limitless quantities on popular Web sites. In our study,
we made use of puzzles from www.websudoku.com. Programs that automat-
ically solve the puzzles exist and are used in the filtering process that leads
to automatic generation of good puzzles, but to the best of our knowledge all
employ a long list of complex logic rules, followed by exhaustive search and
backtracking to explore the hardest cases.

The puzzles are graded by level of difficulty. “Easy” puzzles typically have
about 35 squares already filled in. “Medium” puzzles will have 32 clues. One
can solve puzzles at these levels by repeatedly using the rule that no square
can have a value that is already taken by another square in the same row,
column, or 3 × 3 square. As soon as you discover a square that has only



23.3 Belief Propagation and Sudoku 535

one possible value available to it, you insert that value and see what other
discoveries the assignment may enable. A second rule is essential. If a square
is the only place in a given row, column, or 3 × 3 square that can take on
a particular value, then it must be assigned that value. These two rules can
solve any “easy” or “medium” Sudoku puzzle, and many “hard” puzzles as
well. “Hard” puzzles typically have 28 to 30 squares filled in initially. “Evil”,
sometimes called “diabolical”, puzzles start with 24 to 26 squares filled in,
and these two simple rules seldom provide more than one or two additional
assignments.

A plausible way to develop a stochastic Sudoku solver is to use belief
propagation to replace a hard discrete optimization problem with a softer
problem using real numbers. For each square, we might calculate the nine
probabilities that the square contains each one of the nine allowed numbers.
If we let P (i, j) be the probability of square j taking value i, then we can
evaluate this probability as the product of the probabilities that no other
square in the same row, column, or 3 × 3 square will take value i:

P (i, j) =
∏

k in ngbhd of j

(1 − P (i, k)) . (23.9)

After evaluating Eq. (23.9) for each of the nine choices of i, we normalize
the results so that the probabilities in a single square sum to unity. Unfortu-
nately, this takes advantage of only one of the two basic rules. After iterating
a while, we may find that the total probability of finding a “3” somewhere
in a given row does not sum to unity but can take almost any value. Since
we have already normalized the beliefs after iterating with Eq. (23.9), there
is no convenient place left to incorporate the second rule in the evolution
of the probabilities. Use of decimation, however, gets around some of this
difficulty [22].

After iterating the beliefs to convergence, one selects the square and the
value that are most strongly indicated and asserts that value in that square.
One can augment this procedure with rules to prevent making assignments
that are manifestly wrong (e. g., assigning the same number to two squares
in the same row, column, or 3 × 3 square). The result is much stronger than
simply applying the two basic rules to eliminate choices and solves nearly all
“easy” to “hard” puzzles, and some “evil” puzzles as well. Probably the fact
that the use of only nine numbers for the squares is now built in adds some
of the effects of the second logical rule, which forces values when they cannot
be assigned elsewhere in their local neighborhood.



536 23 Belief Propagation and Survey Propagation

6 7 8 2 5 1 3 9 4
3 1 4 7 9 8 2 6 5
2 5 9 3 4 6 7 1 8

9 2 1 4 8 7 5 3 6
7 3 6 1 2 5 8 4 9
8 4 5 6 3 9 1 2 7

5 8 2 9 6 3 4 7 1
4 9 7 5 1 2 6 8 3
1 6 3 8 7 4 9 5 2

Fig. 23.3. Solution to the puzzle posed in Fig. 20.1. A human puzzle solver solved
this “evil” puzzle in only 12 min. It appears to be at about the limit for automatic
solution (using belief propagation) today (March 2006)

The puzzle in Fig. 20.1 was solved by a practiced human Sudoku solver
in 12min (Fig. 23.3) and by belief propagation in seconds, but the belief
propagation program needed several tries to find a successful solution. The
program solved another “evil” puzzle on the first try, while the human solver
required 14min to solve it. This work is still in progress, but it appears
likely that these extremely complicated logical inference puzzles will yield to
stochastic optimization with modest further effort.




