18 Application of Searching
for Backbones to TSP

18.1 Definition of a Backbone

Now the searching for backbones (SfB) algorithm will be applied to the travel-
ing salesman problem (TSP). As was already mentioned in Chap. 24 in Part I,
one starts by creating a set of solutions and compares these for common parts.
Figure 18.1 shows two quite good solutions for the PCB442 problem. At first
glance, one finds the differences between these solutions. On the other hand,
there are also common parts, namely, sequences of nodes, that are identical
in both solutions.

Therefore, it is quite clear that this type of similarity should be used for
the TSP for defining a backbone: as the TSP is a sequencing problem, this
definition corresponds to the nature of the problem. Let us here now only
consider the case of a symmetric TSP, i.e., D(i,7) = D(j,1) for all pairs (4,)

m ¥

Fig. 18.1. Comparison of two quite good but not optimal solutions for the PCB442
problem. One finds many differences between these two solutions. However, there
are also many sequences of nodes identical in both solutions

472 18 Application of Searching for Backbones to TSP

of nodes. Traversing each configuration either clockwise or counterclockwise
leads to the same overall tour length.

The basic parts of the system are the individual nodes. The simplest
relation between them is to ask whether they are neighbors of each other in
one of the solutions. Let o” be the solution of the run with number v and let
p be the number of compared solutions, which shall be kept constant here.
Then the overlap matrix ng for the symmetric TSP is defined as follows: the
overlap between nodes ¢ and j is given as

US(%]) - Z

v=1

M=

Siov k) * (8j.ov (k1) + Gjov (k1)) (18.1)

>
Il

1

with ¢”(0) = ¢”(N) and ¢ (1) = o”(IN 4 1). Therefore, one gets an overlap
between two nodes i and j in the solution ¢ if j is either the predecessor or
the successor of 4 in the solution ¢”. If ng(i, j) = p, then j is a neighbor of ¢
in all solutions. In this case, they belong in one backbone. Using this overlap
matrix, one can determine the backbones easily. A backbone is a sequence of
nodes il,ig, . ,in with ns(il,iQ) = ?’]S(Zé,ig) =...= T]S(’L'nfl,’in) = p. There
is no node ig with iy # i and ns(ip, 1) = p. Analogously, there is no such
node iy1 with iy41 # in—1 and 0g(in, iny1) = p.

After the backbones have been determined, they are supposed to be used
for further optimization runs, in which they must not be destroyed. The
simplest approach for achieving this is to ask in every move whether a chosen
connection may be cut or not. This question can simply be answered by, e. g.,
looking at the corresponding entry in the overlap matrix ng and checking
whether it is maximal. However, this costs a large amount of calculation
time. The more backbones one finds, the worse this situation is. Therefore,
one must simplify this situation for subsequent optimization runs.

An obvious way to achieve this is to represent each backbone by a pair
of nodes. Let us visualize this approach with a small example of a symmetric
TSP instance with N = 10 nodes, for which the following four solutions were
produced:

0912345678
0321456789
0976548123
0456783219

18.1 Definition of a Backbone 473

From these solutions one derives the overlap matrix

000210001 4
004010001 2
0404000000
20401000710
|1t 101040010
=10 000404000
0000040400
00000O04TC0 3 1
1101100301
42000007110

(Of course, the maximum entries here are identical to the number of solu-
tions p = 4) and from that (using the first solution for splitting it into the
backbones) the following set of backbones:

4 5 6 7

n .
[\
w

These backbones, which must not be destroyed in subsequent optimization
runs, are now coded for the next iteration in such a way that the work for
the processors is as easy as possible. One obvious way to do this is to code
every backbone as a pair of nodes. In the next optimization runs, the tour
may only be cut after pairs of nodes, i. e., after the second, fourth, sixth, etc.
node. This can easily be achieved by producing only even integer random
numbers.

Using this approach, all edge points of the backbones get a new number,
and the nodes inside the backbones are removed. Therefore, the backbone set
of the example above is coded in the following way:

\0 9|:>|0 1\

|1 2 3|=>|2 3\

|4 5 6 7|:s|4 5\

#]=1¢]

One gets the following tour:

0-1 23 45 66

474 18 Application of Searching for Backbones to TSP

This tour is identical with the first solution of the previous SfB iteration. The
“—” signs indicate that these connections must not be destroyed. Note that
backbones containing only one node are doubled in the tour, such that this
approach of choosing only even edges in the moves can be used.
Furthermore, one derives a smaller 7 x 7 distance matrix D from the
original 10 x 10 distance matrix D, which contains for example the following

entries:
D(0,1) = D(0,9),D(2,3) = D(1,2) + D(2,3), D(0,6) = D(0,8).

This distance matrix and this tour are used for the next optimization runs.
Of course, this coding never leads to a distance matrix D with more entries
than D. However, the tour could contain twice as many nodes as the original
tour if the solutions are so different that no backbone containing at least two
nodes can be found. If there are many backbones containing only one node,
this coding costs additional time; on the other hand, it pays off if the solutions
are rather similar to each other. Using either this or a related coding or the
overlap matrix is necessary so as not to destroy the backbones.

In the second iteration of the algorithm, again a number of solutions is
generated, but with a slightly altered program in which only edges after an
even tour position number are allowed to be cut such that the backbones
are not destroyed. Again the solutions shall be generated independently of
each other. These new solutions must be decoded with the old backbones.
Extending the example above, the new solutions could be

)—‘O)—‘O

-1
-0
-1
-0

OT@OTC}J
CDOJ[\D@

—6
-3
—2
6

Q.')O‘l@»-lk
[\DHAChO'l

»Jk@rlkl\.’)

These solutions are decoded to:

0912384567
9045671238
0983217654
9045678321

As already described in Chap. 24 in Part I, these new solutions are supposed
to be better than the previous ones and furthermore supposed to give a better
representation of those parts of the problem instance that are already solved
optimally. Therefore, the old solutions are discarded, but their inheritance
consists of the backbones that were not allowed to be destroyed, such that
they are also part of the new solutions. The new set of backbones is only

18.2 Application to the Completely Asymmetric TSP 475

constructed with the new solutions:

With an increasing number of iterations, one gets fewer but longer backbones.
The system to be optimized becomes smaller, and the calculation time per
iteration therefore decreases. In this example, the tour now contains only six
nodes and the distance matrix is of size 6 x 6.

18.2 Application to the Completely Asymmetric TSP

The asymmetric TSP (ATSP) exhibits a nonsymmetric distance matrix, i. e.,
there is at least one entry D(,j) with D(i,j) # D(j,4). However, one must
distinguish two cases for the ATSP: a completely asymmetric TSP has the
property that for all pairs (4,j) of nodes D(i,j) # D(j,4) and furthermore
there is no sequence of nodes whose length stays the same if turned around.
However, one usually finds the partially ATSP in practical applications in
which there are some one-way streets in the problem instance by which only
some percentage of distances becomes asymmetric.

The outline for the SfB algorithm for an ATSP is identical to that for the
symmetric TSP; however, the definition of the overlap matrix, the determi-
nation and coding of the backbones, and the decoding of the coded solutions
are different.

In the case of the completely asymmetric TSP, for which there is a prefer-
able direction for any subsequence of nodes and for which there is no symme-
try between clockwise and anticlockwise traversing the tour, the backbones
must be determined in the following way: again the various solutions gener-
ated in the first iteration are compared with each other. However, only the
traversion direction that is actually used in the individual solutions is used,
ie.,

N
na(i,j) = Z Z 8o (k) * 0j.ov (k41) » (18.2)

v=1 k=1

with o”(N + 1) = ¢¥(1). This overlap matrix for the completely asymmetric
TSP is therefore asymmetric. Then the backbones are determined accord-
ing to the maximum entries, which again must have the value p. As these
backbones are traversed in only one direction, it is sufficient to code them
by only one node as they are not allowed to be either cut or turned around.
This will be demonstrated in the following example. Let us consider a com-

476 18 Application of Searching for Backbones to TSP

pletely asymmetric TSP with N = 10 nodes, for which p = 4 solutions of the
following form have been produced:

0912345678
0932145678
0945671238
0984567123

Then the overlap matrix is given by

00000O0GO0O0GO0 4
0030100000
0103000000
1010100010
oo o0oo0oo040000
=10 000004000
0000000400
0200000020
3000100000
01011000710

From this matrix the following backbone set is created:

HHHE

at
D
-3

(=]~

These backbones are coded as follows:

[l =11=]

18.3 Application to Partially Asymmetric TSP 477
From this one creates the new tour
01 2 3 4 5,

which may be cut after each position, and a smaller 6 x 6 distance matrix D
with asymmetric distances between the various backbones, e. g.,

D(0,1) = D(9,1), D(1,0) = D(1,0), D(0,4) = D(9,4), D(4,0) = D(7,0),

and furthermore distances inside the one-node backbones that have to be
considered, e. g.,

D(0,0) = D(0,9), D(4,4) = D(4,5) 4+ D(5,6) + D(6,7)..

In contrast to the symmetric TSP, the number of nodes in the tour, the
number of nodes in the distance matrix, and the number of backbones are
identical. Here also the diagonal elements of the distance matrix are used in
order to calculate the length of a configuration. In conclusion, this coding
already pays off if at least two nodes can be combined to one backbone when
using a basic serial optimization algorithm that does not require a calculation
of the total energy of the configuration when performing a change.

18.3 Application to Partially Asymmetric TSP

The coding is most difficult for the partially asymmetric TSP, as both sym-
metric and asymmetric backbones must be determined. Analogously to the
two marginal cases of the completely symmetric and the completely asym-
metric TSP above, first, the overlap matrices ng and na are created. Then,
again one of the solutions is chosen according to which the backbones are
built. If ns(i,j) = p for a pair (¢, j) of nodes, then these nodes belong to one
backbone. After the construction of the backbone set by using the symmetric
overlap matrix ng one must check, for all backbones containing more than
one node, whether 74 (i1,i2) = p for the first two nodes in it. If this is the
case, then automatically na (ie,i3) = ... = na(in—1,i,) = p. In this case, the
backbone must be marked as an asymmetric backbone; otherwise it is a sym-
metric backbone. Incidentally, if all backbones containing at least two nodes
are marked as asymmetric, then the asymmetries in the distance matrix ob-
viously dominate the system, such that one can proceed as in Sect. 18.2.
Otherwise, one must represent each backbone by two nodes in the tour, as in
the case of the symmetric TSP. However, the symmetric backbones are then
coded with two different nodes, whereas the asymmetric backbones and the
one-node backbones are represented by only one node, which is doubled in
the tour. Again the diagonal elements of the distance matrix D also must be
added up when calculating the length of the solution.

478 18 Application of Searching for Backbones to TSP

At the end of the algorithm, all solutions will be identical, so that only
one backbone containing all nodes is left. If the ground state of the problem
is degenerate, a small number of backbones will remain at the end.

Generally, this algorithm is based on the idea that the backbones are con-
sidered to be optimal and, even more, to be part of the globally optimum
solution. Of course, it is impossible to determine a priori which part belongs
to an optimum solution. The assumption in this algorithm is that the sta-
tistical averaging over many good solutions will reproduce these backbones.
This requires comparing an appropriate number of solutions. If there are too
few solutions, then the backbones are too long already at the very beginning.
Often they consist of nodes not connected in an optimum way. On the other
hand, if there are too many solutions, then there are so many differences
between them that pieces cannot be connected with each other as there is at
least one solution voting for another possibility. The algorithm cannot con-
verge in such a case. Therefore, the question of whether there is an optimum
number of used solutions is of central importance.

We will present results for symmetric TSP instances. The calculations
were performed on the massive parallel computer jump of the John von Neu-
mann Institute for Computing at the Research Center Jiilich, Germany. The
IBM Fortran compiler mpxlf for the programming language Fortran 77 and
the parallelization library MPI were used, working on 2™,1 <n <7 (2, 4, 8,
16, 32, 64, and 128) processors. Each processor created one solution in each
SfB iteration.

Note that in all applications of the SfB algorithm, only the nearest-
neighbor interaction between the nodes is considered, as described above:
if two nodes are neighbors of each other in all solutions, then the link be-
tween them is added to the backbone list. Of course, this nearest-neighbor
interaction is only a marginal case of the vast variety of correlations between
various parts of a problem instance. However, due to the success this appli-
cation has, it is sufficient to work with this nearest neighbor interaction only.

18.4 Computational Results

Now we investigate the results for an implementation of the SfB algorithm.
We will concentrate here on the PCB442 instance, as this instance might be
rather hard to solve for this algorithm due to the degeneracy of the ground
state and of higher energy states of this instance. As the basic serial opti-
mization algorithm used for providing solutions, we use simulated annealing
(SA), as SA has the property that there are no restrictions in the search
for good solutions due to the absence of constructive elements in SA. We
always start with an initial temperature of 10* and cool the system down
to a final temperature of 0.1 exponentially with a cooling factor of 0.99 and
add a greedy step at the end. Thus, we used the same parameters for SA
as in Sect. 7.4. Furthermore, each run starts with a random configuration,

18.4 Computational Results 479

which is created by putting the nodes in a random order in the first iteration
and the backbones in a random order in the other iterations. We use the
node insertion move (NIM), the Lin-2-opt (L20), and the four variants of
the Lin-3-opt (L30) with equal probability and leave out the exchange here.
From the second iteration on, in which two-node-backbones instead of single
nodes are used, the node insertion move becomes an edge insertion move:
this move, which is also widely used for the standard TSP, shifts a pair of
neighboring nodes to a new position. Please note again that also the moves
used do not contain any constructive elements. The SfB algorithm ends either
after a maximum of 1000 iterations or if less than three backbones are left,
as at least three backbones are needed for performing a L3O or a NIM.

In [187] and [183], results for several observables describing the behavior
of the SfB algorithm were already studied for several numbers p of compared
solutions, but only for one fixed amount of calculation time. Thanks to the
generous grant of computing time by the John von Neumann Institute, here
we can study the quality of the algorithm both for various values of p (p = 4,
8, 16, 32, 64, and 128) and for various numbers of sweeps per temperature
step in the SA algorithm (1, 3, 10, 30, 100, 300, 1000, and 3000 sweeps). If
looking again at the graphics for the PCB442 instance in Fig. 7.9, we find
that the quality of the results depends very strongly on the calculation time.
For 10,000 and 30,000 sweeps per temperature step, we already obtained
with some probability a ground state of the PCB442 instance with such
a serial run such that we restrict ourselves now to shorter computing times
for each SfB iteration. Furthermore, we must notice from Fig. 7.9 that rather
different solutions are compared for these different computing times: for very
short computing times, one compares rather bad solutions, which surely have
much less in common with each other and with the global optimum, as there
was no time to freeze these systems in locally minimum configurations, than
those produced with larger amounts of computing time.

Thus, the question generally arises as to whether also for short computing
times backbones can be found. To investigate this question we additionally
performed some test SfB runs in which random configurations were com-
pared for common parts. In the first iteration, the random configurations
were created as usual; in the next iterations, the backbones were placed in
a random order. If comparing only two random configurations in each itera-
tion of the SfB algorithm for common parts, the algorithm converges to one
random configuration within 1000 iterations. A small number of short back-
bones containing more than one node is even found in this time when using
p = 3. For p > 4, no common structures in p different random configurations
can be found within this time limit of 1000 iterations. Now we return to
comparing solutions generated with SA.

Figure 18.2 shows the maximum number of nodes within a backbone
for various computing times and numbers p of compared solutions. When
working with p = 128, p = 64, p = 32, and p = 16, we find that the maximum
number of nodes in a backbone remains 1 or close to 1 for short computing

480 18 Application of Searching for Backbones to TSP

p=128 p=64
30 T T T T T 35 T T T T T g
25 L B 30 + ——
20t ; . a7 . |
P =
3 % 20 ' =
8 45 | aessssassd sem — | g : :
< A c 15 4 ee— T
10 4w Eunga‘“ ol 1
e |
0! ———
1 3 10 30 100 300 1000 1 3 10 30 100 300 1000
iteration i iteration i
p=32 p=16
55 : : : : ‘ 140 : : : : ——
50 | JAS—
45] 120 t .
40 | —_—] 100 |]
35 - 1
%30 | e g 80y]
F o5t - — < g0t]
20 + —
5L i 40t o D]
. o -
107 B 20 :]
5% R q et o SR e
0 : : ‘ ‘ 0 s
1 3 10 30 100 300 1000 1 3 10 30 100 300 1000
iteration i iteration i
p=8
450 T T T ——
400 | 1 3 e]
350 + q 10 = 1
300 + 1 30 e]
5 250 D] 190 e
£ 1 = 300 ---o---
< 200 .] 1000 e 4
150 ‘] 3000 e
30 100 300 1000 1 3 10 30 100 300 1000

iteration i iteration i

Fig. 18.2. Results for the application of SfB to the PCB442 instance for various
numbers p (p = 128,64, 32, 16, 8,4) of compared solutions and for various calcula-
tion times. For the basic SA optimization algorithm, we use 1, 3, 10, 30, 100, 300,
1000, or 3000 sweeps per temperature step. These graphics show the maximum
number of nodes nmax within a backbone vs. iteration ¢

times. Thus, either no backbone can be created or only very short ones. The
solutions exhibit too many differences as the optimization processes hardly
had any time to push the systems into local minima. If more computing
time is invested, the maximum backbone size increases with an increasing
number of iterations, but it never reaches the overall number of nodes in the
system. Thus, ultimately the processors do not agree on a common solution.
Contrarily, when working with p = 8 or p = 4, the maximum number of
nodes in a backbone increases toward the system size within 1000 iterations
for all calculation times. However, one cannot deduce from this behavior

18.4 Computational Results 481

that the SfB algorithm would then always lead to the optimum solution.
This behavior only shows that one can often find common structures if the
number of solutions is appropriately small.

The relative mean deviation of the quality of the results achieved with the
SfB algorithm to the optimum value of 50,783.5... of the PCB442 instance
is shown in Fig. 18.3. For large numbers of processors, we get that this mean
deviation, and therefore the average quality of the solutions, decreases only
slightly with an increasing number of iterations. For short computing times,

p=128 p=64
1 T T T T T 1 T T T T T
10 b,] 0L]
i=4 c
g ©--8-8-0 g SoTy g
£ - IS -
2= ° 7:7" 2=}
102 byt i m—"'q 102
10 ' : ; : ' 1078 : 5 ; ' :
1 3 10 30 100 300 1000 1 3 10 30 100 300 1000
iteration i iteration i
p=32 p=16
1 T T T T T 1 T T T T T
I I
107 b
c c
3 3
£ IS -
w w .
102 &
107 .
1 3 10 30 100 300 1000 1 3 10 30 100 300 1000
iteration i iteration i
p=8 p=4
1 T T T T T -
3 e
-
£ £ .
= w
1 3 10 30 100 300 1000 1 3 10 30 100 300 1000
iteration i iteration i

Fig. 18.3. Results of applying SfB to the PCB442 instance for various numbers
p (p=128,64,32,16,8,4) of compared solutions and for various calculation times:
for the basic SA optimization algorithm, we use 1, 3, 10, 30, 100, 300, 1000, or
3000 sweeps per temperature step. These graphics show the mean deviation of the
results achieved in iteration ¢ from the optimum

482 18 Application of Searching for Backbones to TSP

the average quality of the results is basically determined by the amount of
calculation time invested. Given more time, some longer backbones could be
created, such that obviously the SfB algorithm could lead to a decrease in
the mean deviation with an increasing number of iterations. For p = 32 and
p = 16, we find that the SfB algorithm does a really good job improving
the average quality of the results if the serial calculation time is sufficiently
long. For a small number of solutions, we also find strong improvements in
the average quality of the solutions. However, the final average quality is also
determined by the serial calculation time.

Figure 18.4 shows analogously the deviation of the best result found in an
iteration from the optimum value for the PCB442 instance. Again we see that
both the serial calculation time in each iteration and the number of processors
have an influence on the results. Generally, one finds that if already a very
good solution is found in some iteration, this does not necessarily mean that
the best result of the next iteration will be either equally good or even better,
as one might think because the backbones of the previous best solution are
of course part of the new solutions. Thus, one should also always store the
best solution found so far with the SfB algorithm, as the final solution might
be worse.

Following the discussion about the improvement of the quality of the
results by the SfB algorithm, we consider the convergence behavior of this
algorithm. As the SfB algorithm unites several nodes to backbones, which will
finally unite to only one backbone containing all nodes, it is useful to have
a look at the number of backbones in the system, shown in Fig. 18.5. We find
that this number gradually decreases with an increasing number of iterations.
Thus, the system is always able to create new backbones consisting of a few
former one-node backbones or to unite some longer backbones. However, only
in the cases p = 8 and p = 4 is the algorithm able to converge to only one
backbone within 1000 iterations.

Besides the number of backbones, which our coding routine makes equal to
half the number of nodes in the tour, one can also investigate the convergence
behavior by looking at the number of nodes in the distance matrix, which
of course also decreases due to our coding as the system converges. This
number is shown in Fig. 18.6. Like the number of backbones, the number of
nodes in the distance matrix decreases gradually with an increasing number
of iterations. Thus, the SfB algorithm also saves memory space, such that
even for originally large TSP instances the distance matrix might finally fit
in the cache, speeding up the calculation considerably.

This convergence behavior can best be described by the introduction of
some order parameters for the algorithm. First, we want to define a parameter

> bustiirp
]

pls) = L (18.3)

«

18.4 Computational Results 483

f=4
€
2=
1 3 10 30 100 300 1000 1 3 10 30 100 300 1000
iteration i iteration i
p=32 p=16
£ £
=] w
e g 10 . : B .
1 3 10 30 100 300 1000 1 3 10 30 100 300 1000
iteration i iteration i
p=8 p=4
1
] 107 i
c] . 102 £ 8]
K’)E K’)é
i 1078 i
] 10% | i
10° e ; : ' 10° : 5 ; ' :
1 3 10 30 100 300 1000 1 3 10 30 100 300 1000
iteration i iteration i

Fig. 18.4. Results of applying SfB to the PCB442 instance for various numbers
p (p = 128,64, 32,16, 8,4) of compared solutions and for various calculation times.
For the basic SA optimization algorithm, we use 1, 3, 10, 30, 100, 300, 1000, or
3000 sweeps per temperature step. These graphics show the deviation of the best
results in iteration ¢ from the optimum

with o = 2N for the symmetric TSP. In the case of the completely asymmetric
TSP, one sets o = N and uses 74 instead of ng. If all solutions coincide,
then two arbitrarily chosen nodes 7 and j are connected with each other
in every solution, if they are connected in at least one solution, such that
@ = 1. Contrarily, if there are so many differences between the solutions that
no backbone consisting of at least two nodes can be created, then ¢ = 0.
Figure 18.7 shows the results for this order parameter. We find that these
graphics are like mirror images of the graphics for the number of nodes in
the distance matrix shown in Fig. 18.6.

484 18 Application of Searching for Backbones to TSP

p=128

450
400
350 [

2 300 Liget
250
200

150 : — p—
1 3 10 30 100 300 1000 1 3 10 30 100 300 1000

iteration i iteration i

p=32 p=16
450 —
400}
350
300
o 250

RSty Z o0l i
MT?;Q\\ 200 =S
150 ¢ . 100 o
100 | -ﬁ 50
50 ‘ ‘ ‘ 0 ‘ ‘ ‘

1 3 10 30 100 300 1000 1 3 10 30 100 300 1000
iteration i iteration i

p=8 p=4
450
400
350 *.
300
o 250 &
200 }
150
100
50

1 3 10 30 100 300 1000 1 3 10 30 100 300 1000
iteration i iteration i

Fig. 18.5. Results of applying SfB to the PCB442 instance for various numbers
p (p =128, 64,32, 16, 8,4) of compared solutions and for various calculation times.
For the basic SA optimization algorithm, we use 1, 3, 10, 30, 100, 300, 1000, or
3000 sweeps per temperature step. These graphics show the number of backbones,
which is identical with half the number of nodes in the tour

A further order parameter that depends not on the maximum value of the
entries in the edge matrix but on the number of zeroes in it can be defined

as
—Q —|— Z(l — 6778(7:,]-),0)
2%

alp—1)
If all solutions are the same, then there are only 2N nonvanishing entries in
the edge matrix of a symmetric TSP or N nonvanishing entries in the edge

P(ns)=1-— (18.4)

18.4 Computational Results 485
p=128 p=64
460 T T T T T 460 T T T T T
440
440 pros
420 400 P
400 380 [~ ™
° 360 %o
z 380 340 |
360 320
340 300 r
280 r
820 260 -
300 240 - - - - -
3 10 30 100 300 1000 1 3 10 30 100 300 1000
iteration i iteration i
p=32 p=16
450 ¢
400 x
350 § e
300
z 250
200
‘ ; 150
200 e —— 100
150 - 50
3 1 3 10 30 100 300 1000
iteration i
p=4
= 450 &= —
o 400 [™ 3 e]
350 & . 10 omes
Sop 300 &. 30 D]
. 100 ---=
) 250 300 o |
z 200 1000 - 1
150 150 3000 s
100 100 1
50 50 1
0 : — 0 : :
3 10 30 100 300 1000 1 3 10 30 100 300 1000
iteration i iteration i

Fig. 18.6. Results of applying SfB to the PCB442 instance for various numbers
p (p = 128,64, 32,16, 8,4) of compared solutions and for various calculation times.
For the basic SA optimization algorithm, we use 1, 3, 10, 30, 100, 300, 1000, or
3000 sweeps per temperature step. These graphics show the number of nodes in the
distance matrix

matrix of an ATSP that are nonzero, thus ¢ = 1. If all solutions are totally
different (i.e., if node 7 is connected to node j in one solution, then these
two nodes are not connected in any other solution), then there is a maximum
number of nonzeroes in the edge matrix, namely, 2/Np in the symmetric case
and Np in the case of the ATSP, thus ¢ = 0.

The results for the order parameter ¢ are shown in Fig. 18.8. One sees at
first glance that there are significant differences from the results for the order
parameter ¢ in Fig. 18.7 for large values of p. In all cases, v is significantly

486 18 Application of Searching for Backbones to TSP

p=128 p=64

S
1 3 10 30 100 300 1000 1 3 10 30 100 300 1000
iteration i iteration i
p=32 p=16
=S
1 3 10 30 100 300 1000 1 3 10 30 100 300 1000
iteration i iteration i
p=4
=S =S

100 300 1000 1 3 10 30 100 300 1000
iteration i iteration i

Fig. 18.7. Results of applying SfB to the PCB442 instance for various numbers
p (p =128, 64,32,16,8,4) of compared solutions and for various calculation times.
For the basic SA optimization algorithm, we use 1, 3, 10, 30, 100, 300, 1000, or
3000 sweeps per temperature step. These graphics show the order parameter ¢ as
defined in the text

larger than 0 already at the beginning. We get the smallest values for small p.
For p = 128 and p = 64, 1 stays virtually constant, whereas 1) reaches a value
of 1 for p=8 and p=4.

In the case p = 2, which is not shown here, ¢ and 1 generally coincide.
For p > 2, one always gets ¢ > . The difference between these parameters
increases with an increasing number p. One can also provide a mathemati-
cal proof for this relation, which was done by Froschhammer and which is
published in [187, 181, 182].

18.4 Computational Results 487

p=128
1 T T T T - 1
protet s ———
0.99 F e 0.98
0.98 & 7 0.95
0.97 q :
L Z 0.94
s 0.96 [. e s
0.95] 0.92
0.94 q 0.9
0.93]
002 i 0.58 s———
0.91 : : : : : 0.86 : : : : :
1 3 10 30 100 300 1000 1 3 10 30 100 300 1000
iteration i iteration i
p=32 p=16
1 1
0.94 09 F
0.92 0.85
0.9 :
> >
0.88 0.8
0.86
0.84 0.75
0.82
08 , 0.7
0.78 - . : - - 0.65 - . : - -
1 3 10 30 100 300 1000 1 3 10 30 100 300 1000
iteration i iteration i
p=8 p=4
4 ‘ 1 ‘
3 i
] 10 -~
i 30 e i
| 100 ---=---
> > 300 ---e--]
1 1000 -+
i 3000 - i
0.55 : : : : : : : : :
1 3 10 30 100 300 1000 1 3 10 30 100 300 1000
iteration i iteration i

Fig. 18.8. Results of applying SfB to the PCB442 instance for various numbers
p (p = 128,64, 32,16, 8,4) of compared solutions and for various calculation times.
For the basic SA optimization algorithm, we use 1, 3, 10, 30, 100, 300, 1000, or
3000 sweeps per temperature step. These graphics show the order parameter ¢ as
defined in the text

Finally, we want to define a parameter for the overlap that measures the
percentage of those nodes that have another specific node as predecessor or
successor in all solutions. One can write this order parameter as

~ N-—-N,
-
& vanishes if each backbone consists of one node only. This parameter is shown

in Fig. 18.9. Of course, these curves are related to the curves in Fig. 18.5,
which shows the number of backbones in the system.

3 (18.5)

488 18 Application of Searching for Backbones to TSP

0.0045

0.004

0.0035

0.003

0.0025

0.002
1

0.011

p=128

10 30
iteration i

100 300 1000

p=32

0.01
0.009 -
0.008 -
0.007
0.006 -
0.005 -

0.004 .=t 3iss
0.003 -

0.002

100 300 1000
iteration i

p=8

10 30
iteration i

100 300 1000

0.006
0.0055
0.005
0.0045
0.004

0.0035 &

0.003
0.0025

0.002
1

0.03

100 300 1000
iteration i

p=16

0.025
0.02
0.015
0.01
0.005

1 3 10 30 100 300 1000
iteration i
p=4
1 . - . . .
09t | e
08 10 e
0.7 : 30 e]
0.6 - ' 100 —=—
0.5 : 300 ---e--- |
04 | ! 1000 -+ i
03| i 3000 |
0.2 | ‘ 1
041 e]
0 w4 L n L L
1 3 10 30 100 300 1000

iteration i

Fig. 18.9. Results of applying SfB to the PCB442 instance for various numbers
p (p =128, 64,32, 16, 8,4) of compared solutions and for various calculation times.
For the basic SA optimization algorithm, we use 1, 3, 10, 30, 100, 300, 1000, or
3000 sweeps per temperature step. These graphics show the order parameter ¢ as
defined in the text

