
3 Monte Carlo

3.1 Pseudorandom Numbers

As most of the algorithms we introduce later include some randomization in
their rules, we start with the question of how random events can be produced
on a computer. After all, a computer is a machine working off a sequence of
instructions in a deterministic way. A computer is therefore unable to produce
any real random event. However, there has long been the need for simulating
random events on a computer. (Think, e. g., of game simulations like roulette,
blackjack, or poker.)

Therefore, many algorithms have been developed that produce a sequence
of numbers that appears to be a sequence of random numbers. These so-called
pseudorandom numbers are used instead of real random numbers in order
to decide about the results of some sequence of events. For any unknowing
spectator, the sequence of pseudorandom events should look like real random
events.

As the city of Monte Carlo has been famous for decades for its casinos
with roulette tables and many other games with random results, algorithms
that make use of pseudorandom numbers are generally called Monte Carlo
(MC) algorithms. The name inspired by the casino at Monte Carlo was first
used by von Neumann and Ulam, when they used random numbers for simu-
lating nuclear reactions in developing the atomic bomb. Usually, one speaks
of random numbers instead of pseudorandom numbers.

It is worth mentioning here that the possible amount of generable pseudo-
random numbers is always finite. After a certain number of calls the sequence
of random numbers that has already been produced is repeated again. The
larger this sequence length is, the better the random number generator should
be. Random number generators always need at least one integer, an initial
value x0, called the seed, to get started. Different seeds do not usually lead
to different sequences of random numbers, but the random number generator
starts at different points in its finite sequence of random numbers.

The type of problem determines whether the knowledge of the seed, and
therefore of the random numbers, is important or not. Sometimes one keeps
a record of the seed in order to be able to reproduce the results of a MC
program. The seed may be either encoded in the program or otherwise saved.

32 3 Monte Carlo

This is important, e. g., when trying to set new world records for some bench-
mark problems, because only if the seed is known can the result be repro-
duced, providing the proof that it was that program that generated the new
record. However, in programming an application like a poker game, one would
like to start every time with a new seed, one that cannot be controlled by
the players. Here often the exact time of day, perhaps including even the
milliseconds, is used as a seed.

Although “Monte Carlo” is commonly used to describe any randomized al-
gorithm, some researchers distinguish between MC and Las Vegas (LV) algo-
rithms. In contrast to MC algorithms, LV algorithms always lead to a correct
result, whereas MC algorithms lead to the correct result only with a certain
probability. A further difference is that MC algorithms have a deterministic
running time whereas the running time of LV algorithms varies according
to the random events. It it is also possible for a LV algorithm not to ter-
minate. A subset of these LV algorithms are the Macao algorithms, which
have a deterministic running time and which are guaranteed to terminate. In
summary, different random seeds often lead to different results for a MC algo-
rithm, such that its outcome is random, but a LV algorithm always produces
the same result. The seed only influences the way to get there and therefore
the running time [151].

3.2 Random Number Generation
and Random Number Tests

Various algorithms leading to random numbers and tests checking the quality
of such random numbers for their “randomness” have been developed. That
is, the tests compare the results of using pseudorandom numbers instead of
truly random numbers in the specific problems for which they are intended.
The so-called random number generators are distinguished in different classes:
“good” random numbers pass most of these elaborate tests. Some generators
produce random numbers of a low quality but with low computational over-
head. The resulting “quick and dirty” random numbers do not pass all tests
checking their randomness. However, they should pass at least some basic
tests to be useful for some MC techniques.

There are several ways to produce “quick and dirty” random numbers.
A common way is to use the linear congruential method [128]: starting from
the seed value x0 the following iterative rule is applied to produce a sequence
of random numbers:

xi+1 = (a× xi + b) mod c . (3.1)

The parameters a, b, c, which are integers, define the random number gen-
erator. Each generated random number only depends on its predecessor. As
the random numbers are calculated modulo the integer number c, they can
only take the values 0, 1, . . . , c−1. The basic sequence of the random number

3.2 Random Number Generation and Random Number Tests 33

generator can therefore only have a length of up to c; after that the sequence
repeats. Therefore, the chosen parameter c must be rather large. (You can
also get longer sequences if you keep more previous states, see, e. g., the R250
random number generator [115].) One can also accelerate the speed of the
random number generator: as the modulo operation takes more time than
addition or multiplication, one wants to avoid performing this modulo oper-
ation. This can be done by making use of the fact that integers are stored in
a finite amount of bits on a computer: if one is added to the largest positive
integer that can be represented on a computer, then the smallest negative
number that can be represented is returned as the result. This overflow is
used for a natural type of the modulo operation. Working with signed in-
tegers of 32 bits, the largest positive number is 231 − 1 and the smallest
negative number is −231 such that c is effectively set to 232 and only the rule
xi+1 = a × xi + b is applied. Then the following values for a and b provide
some good quick and dirty random numbers:

• a = 1,664,525, b = 1,013,904,223
• a = 16,807, b = 0
• a = 65,539, b = 0
• a = 65,549, b = 0

In the multiplicative congruential cases where b = 0, only odd seed val-
ues shall be used; otherwise correlations are apparent even in the screen
pixel test. Some such random number generators are famous; for example,
75 = 16,807 is often called magic due to some of its properties. Throughout
this book, we use only random numbers generated with a = 1,664,525 and
b = 1,013,904,223.

From integer random numbers xi, uniformly distributed in the interval
[−231; 231 − 1], random numbers ri are derived by dividing by the largest
possible absolute random number (in this case 231) and taking the absolute
value:

ri = abs
(
xi × 4.656612 · 10−10

)
. (3.2)

These ri are uniformly distributed in the interval [0; 1].
Other methods also exist for producing random numbers very quickly,

some of them leading to fairly good random numbers, for example the
Kirkpatrick–Stoll random number generator [115].

More elaborate random number generators, which produce random num-
bers of a high quality, often use the basic generation methods, introduced
above, not just once but several times and in a combined way. However, it
takes more time to produce a sequence of random numbers using one of these
generators [166]. One must be careful when trying this because there are
ways of combining random number generators that lead to lower quality in
the resulting random numbers. See [166] on this.

Therefore, one has to weigh the necessity of such good random numbers.
For most purposes in optimization, the quick and dirty random numbers

34 3 Monte Carlo

are quite sufficient. Furthermore, one must even be careful when using such
a mathematically proved good random number generator: it has been shown
that sometimes (e. g., if they are correlated with the proposed problem) these
lead to worse results than the quick and dirty generators [70].

To investigate the test routines of random numbers, let us consider here
only random numbers that are uniformly distributed in some interval. The
simplest test is the histogram test. In this test, the interval is divided into
a certain number of subintervals. A counter is assigned to each subinterval and
initialized with zero. Then a long sequence of random numbers is calculated.
For each random number the counter for the subinterval in which it lies is
incremented. For a large amount of random numbers, these counters should
exhibit roughly the same value, i. e., they should be roughly equal to the
overall number of random numbers divided by the number of subintervals, as
seen in Fig. 3.1.

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.2 0.4 0.6 0.8 1

bi

n
co

un
ts

interval

histogram
expected average value

Fig. 3.1. Example of a histogram generated from 10,000 random numbers uni-
formly distributed in the unit interval. The unit interval is divided into 100 subin-
tervals, also called bins, with a width of 0.01 each. As the random numbers are
chosen uniformly, we expect to get on average 100 random numbers in each bin

However, even for very many random numbers, the heights of the his-
togram bars differ significantly. Actually they must differ with a certain vari-
ation if the random numbers are independent as well as random. Let us denote
the overall number of random numbers as N , the number of bins as Nb, the
probability that a random number gets sorted in bin No. i as pi, and the
expected number of random numbers in bin i as Nexp(i) = N × pi. As our

3.2 Random Number Generation and Random Number Tests 35

random numbers are uniformly chosen, pi is given as pi = 1/Nb such that
Nexp = Nexp(i) ≡ N/Nb. The variations should be of order O(

√
N).

The χ2-test is a good means for determining whether the random numbers
are truly random: the normalized χ2-measure is given as

χ2 =
1

Nb − 1

Nb∑

i=1

(Ni −N × pi)2

N × pi
, (3.3)

with Ni being the actual number of random numbers falling in bin i in the
test. If Ni are identical toNexp, the normalized χ2-measure would give a value
of 0. But with the usual fluctuations, the normalized χ2-measure should have
a value of roughly 1. For our example in Fig. 3.1, we get χ2 = 0.909.

We performed many more tests for various values of Nb and Nexp. The
results are shown in Fig. 3.2. For example, we get χ2 = 1.0019697± 0.0045
for Nexp = 100 and Nb = 100, averaged over 1000 sequences. The minimum
value we find here is 0.687676768, and the maximum value is 1.7. Generally,
we get that χ2 is roughly 1, independent of the number of bins and the
expected number of counts per bin. Moreover, the variation of our normalized
χ2-measure around 1 decreases with an increasing number of bins. For the
precise values of the probability distribution of χ2 without our normalization
by 1/(Nb − 1), see [1]. It can also be evaluated in popular math packages,
such as Mathematica.

Now let us consider normalized χ2-values of distributions tampered with
by people thinking, e. g., that each bin should have the same number of

 10

 100

 1000

Nb
 1

 10

 100

 1000

Nexp

 0

 1

 2

 3

 4

χ2

Fig. 3.2. χ2-values for random numbers generated with a quick and dirty random
number generator: for various numbers Nb of bins and for various expected values
Nexp of counts per bin, we generated 1000 sequences containing Nb ×Nexp random
numbers each. The graphic shows the minimum, average, and maximum χ2-values
taken from the 1000 sequences each. The deviation of the minimum χ2-value and
the maximum χ2-value from the average χ2-value decreases with increasing Nb

36 3 Monte Carlo

counts. As already mentioned, the ideal normalized χ2-value for large Nb is
1. If each bin had exactly the same number of counts, such that it was equal
to Nexp, then the nominator in Eq. (3.3) would vanish, such that χ2 = 0.
Thus, people showing you a “perfect” looking histogram with bins of the
same size created by an “excellent” newly invented random number generator
are simply trying to fool you. Then there are those who mess around with
histograms trying to reduce the visible amount of randomness in order to
impress their bosses, who do not have a clue as to what randomness is about.

There are approaches in which some people simply change Ni to Ni +
(Nexp(i) − Ni)/2, thus reducing the “distance” between the actual and the
desired value by a factor of 2. Applying this approach to the instance in
Fig. 3.1, χ2 decreases to 0.245. If the distance were further reduced, e. g.,
even by a factor of 4, then χ2 would be only 0.06 for this instance. But using
the numbers from our experiment of Fig. 3.2, the values of χ2 lie well outside
the range we encountered in 1000 trials. Thus, their likelihood of coming from
real independent random variables is less than one in 1000. In fact, much,
much less.

Another widely used way of tampering with histograms is setting some of
the histogram counts to their expected values. But if we, e. g., select randomly
half of the bins and set their counters Ni to the expected number Nexp = 100
for our example instance above, we get χ2 = 0.531; if we do this for even
three quarters of the bins, then we get χ2 = 0.276.

One could also think of other strategies to reduce the randomness in
a histogram, but most of this removing of true randomness can be detected
with the χ2-test, as shown above, as the value of χ2 is not roughly 1 then, as
it should be, as our results for thousands of runs in Fig. 3.2 show.

One might also wonder whether to add additional randomness to such
a histogram. This can be done, e. g., by changing Ni into Ni + 2(Nexp −
Ni). Applying this change to our histogram instance, we get χ2 = 2.026.
Thus, values much larger than 1 are achieved when adding randomness. It is
basically impossible to get such a large value of χ2 if the number of bins is
sufficiently large.

A more elaborate test, one that checks for correlations between the ran-
dom numbers, is the screen pixel test: the successive random numbers xi are
considered to be the coordinates of the points pj = (x2j−1, x2j). These points
are printed as pixels on the screen. If the pixels fill the screen completely and
smoothly, then also the requirement of the uniform distribution in the whole
interval is fulfilled. Furthermore, the pixels should not form any patterns
when printed on the screen, such that the correlation between successive ran-
dom numbers is not too large. One can proceed further and look in three and
even higher dimensions at pixels with the coordinates (xdj−d+1, . . . , xdj) [133],
with d denoting the number of dimensions. Looking from the right angle, one
finds that the random points lie in only a small amount of (hyper)planes
instead of being distributed randomly over the whole space. This Marsaglia
effect reveals bad instances of the multiplicative random number genera-

3.3 Transformation of Random Numbers 37

tor. These three eye checks only show whether these basic requirements are
fulfilled, but such checks are, of course, no replacement for a real test of
“randomness”.

3.3 Transformation of Random Numbers

Nonuniform distributions of random numbers may be necessary. The simplest
case is a uniform distribution over a different random interval, say, [a; b].
In this case, the following linear transformation is applied to the random
numbers:

r̃i = a+ (b − a) × ri . (3.4)

The new random numbers r̃i are uniformly distributed in the interval [a; b].
Sometimes one wants to work with uniformly distributed integer random

numbers 1, . . . , N . For this purpose, the following rule is used: let ri again
be random numbers that are uniformly distributed in the interval [0; 1]; then
the integer random numbers ni are created according to

ni = [1 +N × ri] , (3.5)

with [x] denoting the Gaussian brackets, which simply take the integer part
of x. One must be careful when applying this rule, as ri could be exactly 1,
so that ni = N + 1. In this marginal case, either a new random number is
calculated or ni is simply set to one of the integer numbers in its range. Of
course, if the real-valued random numbers ri are derived from integer-value
random numbers xi, as in Sect. 3.2, it is faster to turn the xi directly into
the ni by

ni = |xi modN | + 1 . (3.6)

However, if N is rather large, then an error occurs: simply assume that N is 2
3

of the maximum possible random number. Then the first half of the numbers
are generated twice as often as the second half of the numbers.

So far, we have only generated uniformly distributed random numbers.
But often also other distributions are needed. For generating random numbers
that are distributed in a different way, one usually starts out with a random
number generator as discussed above that creates random numbers ri that are
uniformly distributed in the unit interval [0; 1]. Now if one needs a distribution
of the random numbers according to some distribution function P , which for
simplicity we assume to lie in the range between 0 and 1, there is always the
possibility of using the von Neumann rejection principle: first, one determines
the interval in which the desired random numbers will be found; let this
interval be [a; b]. Then the random numbers ri are transformed in a linear
way, as discussed above, such that they are uniformly distributed in the
interval [a; b]; one sets r̃i = a + (b − a) × ri. Then one chooses a second
random number si for each r̃i; these si are also uniformly distributed in the
interval [0; 1]. Now there are two cases, either si ≤ P (r̃i) or si > P (r̃i). As

38 3 Monte Carlo

the si are uniformly distributed in the range [0; 1], the case si ≤ P (r̃i) occurs
with the exact probability P (r̃i). Thus, the von Neumann rejection principle
works as follows. Create pairs (ri, si) of random numbers. Then, if required,
transform the ri into r̃i. For each i, determine whether si ≤ P (r̃i). If this
is the case, then keep r̃i; otherwise delete it from the sequence of random
numbers. The remaining r̃i are then distributed according to the distribution
function P .

The von Neumann method can be used for creating any desired proba-
bility distribution. However, it often consumes a lot of computing time for
generating random numbers that are thrown away later on, especially if the
desired distribution peaks in some areas of the interval and nearly vanishes
in other areas. Furthermore, it converges rather slowly toward the desired
distribution function. Therefore, other techniques for creating a certain dis-
tribution must be given preference.

In another widely used approach, uniformly distributed random numbers
are transformed directly into random numbers that are distributed accord-
ing to the desired distribution function P . Let (ri) be a set of uniformly
distributed random numbers. Then the task is to transform this set into
a set (si) of random numbers distributed according to the probability dis-
tribution P . Here one makes use of the fundamental transformation law of
probabilities [166], according to which one gets

|dr| = |P (s)ds| . (3.7)

This equation can be transformed into

P (s) =
∣
∣
∣
∣
dr
ds

∣
∣
∣
∣ . (3.8)

Now we want to derive the transformation for the widely used exponential
distribution

P (s) = exp(−s) . (3.9)

Thus, one gets r(s) = exp(−s), i. e., s(r) = − ln(r). Therefore, one can trans-
form the random numbers ri, which are uniformly distributed in the unit
interval, into the random numbers si = − ln(ri), which are exponentially
distributed over the interval [0; +∞[. One has only to address the fact that
the random number generator for the ri might create ri = 0. This random
number is dropped, and another random number ri is then generated, from
which the si can be derived.

Another widely used distribution of random numbers is the Gaussian or
normal distribution. The Gaussian probability distribution P is given by the
formula

P (x) =
1√
2πσ

exp
(

− (x− μ)2

2σ2

)

. (3.10)

A simple way of generating such a distribution would be to generate first
a set of random numbers (ri)i=1,...,N that are uniformly distributed in the

3.3 Transformation of Random Numbers 39

interval [μ − ασ;μ + ασ]. α has to be chosen large enough such that P (μ+
ασ) is sufficiently small. Usually, α is chosen to be ≥ 3. Then a second
set of random numbers (si)i=1,...,N is generated; these random numbers are
uniformly distributed in the interval [0; 1/

√
2πσ]. Now the following rule is

applied: if si ≤ P (ri), then the random number ri is accepted, otherwise it
is rejected. The remaining accepted random numbers are roughly Gaussian
distributed. However, the tails of a real Gaussian distribution are missing in
this distribution. Therefore, one has to find some compromise: if α is chosen
very large, then most of the random numbers are rejected. However, the tails
are at least partially represented. If α is small, then the tails are completely
missing but little calculation time is wasted for calculating random numbers
that are rejected afterwards. As was already mentioned, other techniques for
creating a certain distribution must be given preference.

For the Gaussian distribution, a very simple approach based on the cen-
tral limit theorem can be used for getting quick and dirty Gaussian random
numbers: according to the central limit theorem, the sum over several prob-
ability distributions (which are either bounded or have a finite variance) al-
ways tends toward the Gaussian distribution. Therefore, summing up several
uniformly distributed random numbers leads to Gaussian random numbers:

gi = −N
2

+
N∑

j=1

ri,j . (3.11)

N/2 has to be subtracted as 1
2 is the expectation value of a [0; 1] uniformly

distributed random number, such that the resulting gis are centered at 0.
The larger N is, the better is the approximation to the Gaussian distribution.
A natural choice is N = 12, as then the standard deviation of the resulting
Gaussian distribution is 1: the expectation value of a uniformly distributed
random number ri in the interval [0; 1] is 〈ri〉 = 1

2 , 〈r2i 〉 = 1
3 , 〈rirj〉 = 1

4 for
i �= j. Therefore,

σ2(gi) =
〈(

−6 +
∑12

j=1 ri,j

)2
〉

−
〈
−6 +

∑12
j=1 ri,j

〉2

=
〈(∑12

j=1 ri,j

)2
〉

− 12
〈∑12

j=1 ri,j

〉
+ 36 − 0

=
〈
(ri,1 + ri,2 + . . .+ ri,12)

2
〉
− 12 × 6 + 36

= 12
〈
ri,j

2
〉

+ 2 × (11 + 10 + . . .+ 1) × 〈ri,j × ri,k �=j〉 − 36

= 12 × 1
3 + 2 × 11×12

2 × 1
4 − 36

= 4 + 33 − 36 = 1 .

(3.12)

40 3 Monte Carlo

Note that the disadvantage of summing up only 12 uniformly distributed
random numbers is that only Gaussian random numbers in the interval [−6; 6]
can be obtained. Beyond that, the tails of the Gaussian distribution are
completely missing.

There is another method leading to very good Gaussian random numbers
with zero mean and unit variance, the Box–Muller method: the trick of this
method consists of creating two Gaussian random numbers a and b from two
uniformly distributed random numbers u and v in the interval [0; 1] at the
same time. Let

f(x, y) =
1
2π

exp
(

−x
2 + y2

2

)

(3.13)

be the density distribution and

�2 = x2 + y2 , tan(ϕ) =
y

x
(3.14)

be the transformation to polar coordinates. Then the relation between the
area elements is given by

dxdy = �d�dϕ . (3.15)

The local distribution has to be equal for both coordinate systems:

f(x, y)dxdy = f(�, ϕ)d�dϕ (3.16)

such that

f(�, ϕ) =
1
2π
� exp

(

−�
2

2

)

. (3.17)

The goal is to generate the radius � according to the distribution � exp(−�2/2)
by using the first random number u and ϕ being homogenously distributed
in [0; 2π] by using the second random number v. Therefore,

F (�) =
1
2π

∫ 2π

0

dϕ
∫ �

0

�′ exp

(

−�
′2

2

)

d�′ = 1 − exp
(

−�
2

2

)

(3.18)

can be equalized with some uniformly distributed random number z in the
interval [0; 1]. The radius � is therefore given by

� =
√
−2 ln(1 − z) . (3.19)

u = 1 − z is also a uniformly distributed random number from the unit
interval. Let v be the second uniformly distributed random number and set
ϕ = 2πv. With the relations x = � cos(ϕ) and y = � sin(ϕ), one obtains the
two Gaussian distributed random numbers

a = cos(2πv)
√

−2 ln(u) (3.20)

and
b = sin(2πv)

√
−2 ln(u) . (3.21)

3.3 Transformation of Random Numbers 41

However, this method of calculating Gaussian distributed random numbers
is very time consuming, as the functions natural logarithm, sine, cosine, and
the square root must be calculated. Furthermore, it is recommended that v
should not depend strongly on u, as then a and b are not truly independently
normally distributed.

Of course, this distribution can simply be transferred to a Gaussian dis-
tribution with another mean value μ or another standard deviation σ.

The Box–Muller method was improved by Marsaglia and Bray in 1964
[134]. Their improved method, which eliminates the calculation of the sine
and the cosine, has become known as the polar method. As in the Box–Muller
method, first two uniformly distributed random numbers u and v are chosen.
Then they are linearly transformed to the interval [−1; 1]:

ũ = 2u− 1 and ṽ = 2v − 1 . (3.22)

Then
w = ũ2 + ṽ2 (3.23)

is calculated. If w > 1, then the algorithm jumps back to its start. Otherwise,
let

t =

√
−2 lnw
w

. (3.24)

Then the Gaussian random numbers a and b are given by

a = t× ũ and b = t× ṽ . (3.25)

The savings from eliminating the calculation of one sine and one cosine is
balanced by having to apply a rejection rule such that two new random
numbers might have to be chosen. Note that in contrast to the Box–Muller
method, in which u was used to calculate the radius and v was used to
determine the phase, here u and v are used together. The rejection principle
is applied in order to accept only those pairs of (u, v) for which this trick can
be used, namely, those inside the unit circle.

Finally, we compare the four methods for creating Gaussian distributed
random numbers. Table 3.1 shows the calculation times of the various meth-
ods. It turns out that the rejection method is the slowest method, although
only α = 3 was used for creating the random numbers, whereas the polar
method is the fastest method.

Table 3.1. Comparison of calculation times of four methods creating Gaussian
random numbers: in each case, an array containing 1 million Gaussian distributed
random numbers was created 100 times. The times are given for a 400-MHz Pen-
tium II

Method Calculation time

Rejection method 200 s
Summing up 12 81 s
Box–Muller method 74 s
Polar method 55 s

42 3 Monte Carlo

3.4 Example: Calculation of π with MC

A famous example for the usage of the MC technique is the calculation of
the number π by means of MC. Figure 3.3 shows the geometry used for this
calculation: one shoots randomly into a square of edge length r and counts
the hits in the quarter circle of a radius r. The position of the random point,
i. e., both its x- and y-coordinates, is determined by two successive calls of
a random number generator. It is simply checked with x2 + y2 ≤ r2 to see
whether the point is inside the quarter circle or not. The area of the square
is given by r2, and the area of the quarter circle is given by 1

4πr
2. Therefore,

the ratio of the number of hits divided by the number of shots approximates
1
4π, if the number of shots is chosen large enough.

 r

Fig. 3.3. A quarter circle in a square

Table 3.2. For each number of shots, 100 runs were performed. The minimum and
maximum approximations for π for the corresponding number of shots are given,
as are the mean value and the error bar of these approximations

Shots πmin πmax πmean ± Δπ

10 1.6 4.0 3.148 ± 0.06
100 2.64 3.40 3.1408 ± 0.015

1000 3.032 3.284 3.14484 ± 0.0052
10,000 3.1044 3.1852 3.143668 ± 0.0016

100,000 3.12500 3.15344 3.1415816 ± 0.00057
1,000,000 3.138464 3.14534 3.1415648 ± 0.00015

10,000,000 3.1408864 3.142138 3.14159355 ± 0.000023

Table 3.2 shows results for various numbers of shots. As can be easily
seen, it is much better to calculate π with the formula

π = 4 × arctan(1) (3.26)

or to memorize the first 15 digits of π. These can be remembered as the
lengths of the words in the sentence “Now I want a drink: alcoholic, of course,
after the heavy lectures involving quantum mechanics!”

