
15 Cooling Techniques

15.1 Standard Cooling Schedules

Using the theory of Markov processes, several authors (see, e. g., [64, 142,
78, 65]) have proved the general existence of cooling schedules for simulated
annealing (SA) with which the simulation ends up in the global optimum of
the considered problem, however, after an infinite amount of time. Geman
and Geman [65] showed for the classical case that it is necessary and suffi-
cient for having a probability of one of ending in a global optimum that the
temperature decreases like

T =
a

b+ log(t)
, (15.1)

with a and b being positive constants that depend on the specific problem.
t is the time elapsed since the start of the simulation and is usually measured
in Monte Carlo steps. There are also cooling functions T (t) for the other algo-
rithms introduced in the previous chapters that lead to the globally optimum
solution for some specific problem.

In practical applications, the available amount of time to produce a solu-
tion is finite. Therefore, faster ways of cooling the system down were devel-
oped that could be applied generally and that lead to very good solutions.
These empirically found cooling schedules let the temperature decrease much
faster to zero. However, they do not guarantee a convergence to the global
optimum of the problem. Mostly two main cooling schedules are used:

• Linear/arithmetic cooling:

T = a− b× t , (15.2)

where a is the initial temperature and b is the decrement by which the
temperature is decreased. Usually, b is chosen in the interval [0.01; 0.2].
The initial temperature strongly depends on the problem considered.

• Exponential cooling:
T = a× bt . (15.3)

Again a is the initial temperature and b is a cooling factor, usually in
the interval [0.8; 0.999]. In the literature, this cooling schedule is called by
many names: “logarithmic”, “geometric”, or “exponential”. We refer to it
as exponential cooling.

120 15 Cooling Techniques

The best cooling schedule will depend on the problem and the computing re-
sources available (see, e. g., [207], where an optimal annealing schedule with
a fixed number of steps was created for a particular problem). Much more
complex cooling schedules than Eqs. (15.2) and (15.3) have been employed,
with the decrease in temperature adapting to evidence of rapid or slow equili-
bration. The temperature need not even decrease monotonically. An example
of these approaches is the following consideration for SA. One considers the
relative weight WT (σ) of a configuration σ in relation to the weight of the
ground state configuration with minimum energy H0, i. e.,

WT (σ) =
πequ(σ)
πequ(σ0)

= exp
(

−H(σ) −H0

kBT

)

(15.4)

and demands that WT (σ) not change too much if the temperature T is de-
creased from a value Tk to a new value Tk+1; thus, one demands

1
1 + δ

<
WTk

(σ)
WTk+1(σ)

< 1 + δ , (15.5)

with some small constant δ > 0. For Tk+1 < Tk, the left inequality is always
fulfilled. Solving the right inequality for Tk+1, one gets

Tk+1 >
Tk

1 +
Tk log(1 + δ)
H(σ) −H0

. (15.6)

Of course, one will not check how to fulfill this inequality for all states σ.
Instead, one considers either the thermal average at temperature Tk and
replaces the deviation H(σ)−H0 in the last formula by 〈H〉Tk

−H0. However,
usually the optimum value for a specific problem instance is not known.
In these cases, one considers the variance VarTk

(H) and approximates the
mean deviation from the minimum energy value with 3

√
VarTk

(H), as the
individual configurations are supposed to occur according to the Gaussian
distribution, in which 99.7% of all occurrences are within three times of the
standard deviation range around the mean value. Thus, the formula reduces
in its applicable version to

Tk+1 >
Tk

1 +
Tk log(1 + δ)
3
√

VarTk
(H)

. (15.7)

But if there is no time for implementing and testing such a tuned cooling
schedule, which is usually based on additional measurements that also require
calculation time, the two schedules of linear and exponential cooling are the
obvious choice. To choose between them, consider the characteristics of the
specific heat: if C(T) is more or less symmetric when plotted on a linear
temperature scale, then linear cooling is preferable. If, however, the peak
only becomes rather symmetric when plotted against log(T), then the system

15.1 Standard Cooling Schedules 121

organizes itself over several orders of magnitude in temperature, and the
exponential schedule is preferred.

It is rather straightforward to find a proper initial value of the tempera-
ture. At the beginning of the optimization run, a random walk is performed
and |ΔH|max, the largest absolute value of the energy differences occurring
between successive configurations, is saved. Then, if using SA, the initial
value of the temperature is chosen in such a way that the acceptance rate
of all moves exceeds a chosen value, e. g., it should be at least 90% at the
beginning. Then the rule of thumb

Tinitial = −|ΔH|max

ln(0.9)
≈ 10 × |ΔH|max (15.8)

is applied. It is even simpler with threshold accepting:

Thinitial = |ΔH|max . (15.9)

In contrast, the maximum occurring energy value Hmax has to be saved when
using the great deluge algorithm (GDA). One simply sets

Tinitial = Hmax . (15.10)

Instead of the maximum energy difference (or the maximum energy in the
case of the GDA), often the mean value of the measurements is considered
because the choice above might lead to too large initial temperatures and
therefore some waste of calculation time. However, if the various moves used
show different ranges of energy differences, then the problem occurs that if
the initial temperature is chosen too small, the system might explore only
a restricted area of the energy landscape.

Of course, other possibilities for choosing the initial value of the tem-
perature are imaginable. In summary, if one starts at too low temperatures,
the problem arises that the quality of the results decreases as the system is
restricted to the local valley of the initial configuration. The Monte Carlo
walker can only climb down to the local minimum and fails to reach better
solutions for which he/she would have to leave the local valley and climb
over barriers. Alternatively, too much calculation time might be wasted at
high temperatures if the initial temperature was chosen too large. Therefore,
sometimes the following procedure is chosen: a rather fast run with an ini-
tial temperature chosen as described above is performed. The decrease in the
energy and the progression of the specific heat are plotted vs. the tempera-
ture T . Then a smaller initial temperature is chosen for the production runs.
Besides guessing intuitively a good value for the initial temperature, one can
set the initial temperature in the range of the peak of the specific heat C:
let τ be the temperature at which C is maximum and Δτ be the width of
the peak. Then one usually chooses the initial temperature as

Tinitial = τ ± Δτ . (15.11)

122 15 Cooling Techniques

The three points (τ − Δτ, 0), (τ, Cmax), and (τ + Δτ, 0) in the specific heat
vs. temperature diagram form a “magic triangle”, which indicates both the
temperature range in which most rearrangements of the system take place
and nearly the whole amount of energy the system loses while being cooled
down. The final temperature has to be chosen in such a way that the system
is really frozen or only trivial moves with ΔH = 0 are accepted. Therefore,
the acceptance rate of the nontrivial moves has to vanish at the end of the
optimization run. However, there is no good criterion for how long one has
to wait to be absolutely sure that no nontrivial move would no longer be
accepted, as this depends on the underlying energy landscape. (Of course,
all possible moves from the actual solution to neighboring configurations
could be considered. However, how many neighbors a configuration exhibits
depends on the move set and the size of the system. The number of neighbors
might be so large that it is impossible to check them all in order to prove that
a certain state is really a local minimum in the energy landscape.) Therefore,
one usually performs a few greedy steps at the end of each optimization run,
which last long enough to be quite sure to be in a local minimum. One simply
sets T = 0, Th = 0, and T = “best result so far”.

15.2 Nonmonotonic Cooling Schedules

So far, we have only considered monotonic cooling schedules by which the
control parameter, e. g., the temperature is not increased during the opti-
mization run. This approach is motivated by the physical picture of a molten
metal block: if it is cooled down very fast, i. e., quenched down, then only
a polycrystalline structure can develop, in contrast to the nice results one
gets if the melting is cooled down very slowly.

This physical picture can be extended even further by looking at the
work of a blacksmith in former times: after cooling down the molten metal
rather fast in a special form, the blacksmith treats it with a certain iterated
reheating-cooling down strategy: first of all, the metal is reheated, but only up
to a certain temperature at which it, e. g., glows red but does not start to melt.
While the block cools down again, the blacksmith works on the block in order
to improve it. Sometimes he also quenches the block down again with, e. g.,
water. Usually, he only works on the block during the cooling-down phase and
not during the reheating phase. Due to this special treatment, the blacksmith
can perform larger structural rearrangements on the considered block without
having to melt his already partially completed work and therefore to start
again. The temperature up to which the block is reheated usually determines
the amount by which the block can be changed.

This approach can be transferred to SA and related optimization algo-
rithms in various ways in order to get an optimum cooling schedule. However,
it is usually impossible to determine an optimum cooling schedule, which
is an optimization problem on its own, but there are still many ways to

15.2 Nonmonotonic Cooling Schedules 123

develop nonmonotonic cooling schedules that perform well if one considers
the basic finding of Romeo and Sangiovanni–Vincentelli [173] that a result
nearly as good as the global optimum can only be reached if there is always
a probability large enough for leaving any configuration, i. e., also any local
optimum.

Strenski and Kirkpatrick showed in their early work [207] on this subject,
in which they optimized the annealing schedule for a very simple problem us-
ing a fixed number of iterations, that if the amount of calculation time avail-
able is very small, then the optimum annealing schedule is nonmonotonic:
their results for various systems indicate that after starting at a random so-
lution, one should proceed with the greedy algorithm, i. e., the T = 0 mode
of SA and its relatives. By this approach, the system is quenched down in the
fastest possible way, until it freezes in a local optimum. After that the system
is reheated up to a certain problem-dependent temperature. At this temper-
ature, the system is able to cross smaller barriers in the energy landscape
and therefore to leave a local valley in order to get to a better local optimum.
Depending on the calculation time available, the system should either imme-
diately switch to the greedy mode again in order to get stuck in a better local
optimum nearby or go through a more or less pronounced cooling procedure
(this “more or less” depends on the computing time available), which mono-
tonically decreases the control parameter from the reheating temperature and
ends up in the greedy mode.

Another approach is called bouncing [114, 190]: after a first conventional
optimization run, in which the control parameter is reduced monotonically
from a large initial value T0 to 0, such that the system is transferred from
a random configuration to a locally optimum solution, the final configuration
is used as the initial configuration of a further optimization run. This second
optimization run starts at a value TB < T0 of the control parameter in order
to correspond to the blacksmiths approach, who holds the metal block in
the fire while not working on it. (This approach could be called an inverse
quench.) Now the system is again at least partially able to move through the
energy landscape. The amount of rearrangement possible is determined by the
value of the bouncing temperature TB. In this bouncing iteration, a standard
optimization run is performed, i. e., the control parameter is decreased step
by step from TB to 0. Then the new final configuration is used as the initial
configuration for the next bouncing iteration in which the control parameter
is again reduced from TB to 0. This approach is iterated several times.

The main advantage of this bouncing approach compared to the mono-
tonic cooling approach is that the standard monotonic optimization run starts
at a totally random system, whereas the bouncing scheme can start from pre-
optimized solutions in the bouncing iterations. These preoptimized solutions
already inherit some structure, i. e., some information about the system. The
question is now up to which value TB of the control parameter will the system
be reheated, i. e., which TB is appropriate for the cooling process TB ≥ T ≥ 0?
On the one hand, local information will be kept and only a small number of

124 15 Cooling Techniques

structures shall be destroyed. On the other hand, the optimization process
will be able to leave a bad local optimum and get to a better one.

One can distinguish three regimes for TB:

• Bouncing as “slightly warming up”:
After the first conventional cooling process, the reheating is done only
very slightly, i. e., in a temperature range below the critical temperature
TC, at which the ordering transition of the system happens. This critical
temperature can be determined for systems for which an order parameter
can be defined. In that case, one can measure the susceptibility, which
peaks at the critical temperature.
In this regime, the energy values of the final configurations of successive
bouncing iterations first decrease monotonically and then stay nearly con-
stant [190]. Only seldom does the system jump to a worse solution, and
then it is able to jump back in the next bouncing iteration. In this regime,
bouncing more than ten iterations under the same external constraints
seldom gives any further significant improvement.

• Bouncing up to the maximum of the specific heat:
The system is reheated nearly to the freezing temperature Tf , i. e., TC <
TB < Tf . This temperature range corresponds to a partially ordered phase
of the system. A transition to the totally unordered range is not performed,
similar to the approach of the blacksmith, who reheats the metal block in
order to perform some structural rearrangements but does not melt it. The
results of previous reheating iterations of the considered item do not get
lost completely.
In this temperature regime, the energy values of the final configurations
of successive bouncing iterations also decrease monotonically, but only on
average: there are now large fluctuations; sometimes a bouncing iteration
leads to an improvement, sometimes it leads to a deterioration. But all in
all, in this regime, it is possible to arrive at much better solutions than in
the small TB regime. The system is able to climb also over larger barriers
in the energy landscape and therefore to leave a suboptimal local area.
Generally, the optimum TB value depends on the calculation time spent in
each bouncing iteration: if the amount of calculation time is increased, the
system has a greater ability to climb over barriers such that a smaller TB

value can be used than if spending less calculation time in order to get the
same number of improvements [190].

• Bouncing above Tf :
Finally, one can also consider the behavior of a bouncing process with
TB > Tf : the system melts such that no qualitative change of the results
compared to a standard monotonically cooled optimization can exist, as
the system is kicked up into the unordered high-energy regime.

Summarizing, one must work along these lines: one performs a conventional
optimization run in which the specific heat C and, if possible, the susceptibil-
ity χ are measured during the cooling process. The peak of the specific heat

15.2 Nonmonotonic Cooling Schedules 125

marks the freezing temperature Tf , the peak of the susceptibility the critical
temperature TC. One can define a gain that can be achieved with bouncing
by

gi =
〈H0〉E − 〈Hi〉E
〈H0〉E −Hopt

, (15.12)

with i being the number of the bouncing iteration and 〈Hi〉E the ensemble
average of the energy values of the final configurations of the bouncing iter-
ation i (where i = 0 denotes the initial monotonically cooled optimization
run). This gain gi is normalized in such a way that it vanishes if no improve-
ments can be achieved and that it reaches a value of 1 if the optimum is
reached.

The extent of this gain gi depends on the value of TB; it is largest for TB

slightly smaller than Tf if only a small amount of calculation time is used in
each bouncing iteration. When spending more calculation time, one should
reduce this TB. If TB > Tf , then there is no gain at all. Similarly, the gain
vanishes in the limit TB → 0 as expected as the Monte Carlo walker is stuck
in the local valley in the energy landscape, and cannot leave. A lower bound
for TB is the critical temperature TC and also the width τ of the peak of
the specific heat, such that one should not choose a TB smaller than TC or
smaller than Tf − τ/2.

However, the question remains why this bouncing approach works: the
algorithm works with random moves that could also lead to deterioration.
However, the algorithm obviously can make use of the information stored
in the initial configuration, i. e., the final result of the previous optimization
run. By not melting the system, many structures of the previous solution
are retained—they need not be found again—such that the optimization run
has some preoptimized background on which it works, which leads to better
solutions if TB is chosen correctly.

A further explanation for the success of this bouncing idea can be obtained
by measuring the Hamming distance between successive results of bouncing
iterations: first of all, one must consider the mean Hamming distance between
quasioptimum solutions produced by independent optimization runs. Then
one will find that there are really three TB regimes that can be distinguished
also in the Hamming distance graphics: if TB > Tf , then the Hamming dis-
tance between successive results of bouncing iterations is of the same size
as that of independent results. On the contrary, if TB is very small, the
Hamming distance is (nearly) zero, as successive bouncing iterations lead to
(roughly) the same result. One should therefore plot the graphic Hamming
distance vs. bouncing iteration number for TB = Tf and TB = TC and choose
a TB in such a way that the curve in this graphic is between these extreme
curves but nearer to the curve for TB = Tf , e. g., the distance to the curve for
TB = TC should be one to three times larger than the distance to the curve
for TB = Tf [190].

126 15 Cooling Techniques

Instead of using a fixed value for TB, one can also think of a variable TB.
One can even go so far as to introduce a cooling schedule for TB; for example,
one could use the same type of cooling schedulte for TB as for the control
parameter itself, thus bouncing the system more and more gently, such that
it is at first enabled to climb over larger barriers in the energy landscape and
then only able to cross smaller barriers. This approach also leads to (quasi)
optimum results [190].

There are also other opportunities to bounce: for example, one can per-
form a conventional optimization run, in which the control parameter is de-
creased monotonically. However, after a certain number of control parameter
steps, one or more greedy steps are introduced in order to quench the system
in a local optimum. After these greedy steps, the conventional optimization
run is continued at the next value of the control parameter. After one or
more additional control parameter steps, again some greedy steps are per-
formed, and the system is again led to a local optimum. This approach is
repeated until the value of the control parameter is so small that the system
is mostly in the greedy mode. At the end of the optimization run, the best
local optimum solution found is returned as the result of the optimization
procedure.

15.3 Ensemble Based Schedules

There are also ways to find either good or fast cooling schedules by using
parallel computers. In this case, usually the same instance of a problem is
treated simultaneously on several processors. The number of the processor or
the process number often serves as a seed for the random number generator,
such that all processors start with different initial solutions or depart from
a common initial solution in different directions.

These schedules have to avoid wasting too much calculation time in large
values of the control parameter, in which the system performs a quasi-RW. On
the other hand, the schedule should not start at too small values and should
not decrease the control parameter too fast in important ranges as then only
bad results will be achieved. The ensemble based simulated annealing (EBSA)
approach tries to fulfill these requirements: if the system to be optimized is
equilibrated at a certain temperature, then the energy values of the successive
configurations fluctuate in a certain range around the mean value of the
energy at this temperature. If the temperature T is decreased, then the energy
values decrease until they oscillate around the new and smaller mean value
of the energy at this smaller temperature. This decrease in the energy values
of the successive configurations does not occur monotonically, but it is quite
noisy. If the temperature is only decreased very slightly, it is hard to detect
this decrease in an energy value vs. time diagram. However, if one averages
over many optimization runs, then the fluctuations during the decrease of

15.3 Ensemble Based Schedules 127

the mean energy cancel out, such that one usually gets a strongly monotonic
decreasing curve until the new equilibrium value is reached. Small oscillations
remain in the equilibrium phase, as the number of parallel optimization runs
is finite. This property of such an averaging is used on parallel computers
for determining for an ensemble of optimization runs whether the proposed
amount of calculation time was sufficient to reach the equilibrium at the new
temperature.

Therefore, EBSA starts on an ensemble of p processors with one SA step,
using different initial configurations at a large value of the temperature. At
the end of this step, the ensemble average 〈H0〉E over the energy values of
the p configurations is calculated. Then the following steps are iterated in
a loop (i denotes the number of the iteration):

• The p slaves perform one SA step at the current value of the temperature T .
• Then they send the energy values of their final configurations to the master

processor.
• This master processor calculates the new ensemble average 〈Hi+1〉E and

the corresponding variance VarE(Hi+1).
• If the condition

〈Hi+1〉E − 〈Hi〉E ≥ γ

(
VarE(Hi+1)

p− 1

)ν

(15.13)

(containing two parameters γ and ν) is fulfilled (often a > sign is used
instead of ≥ in the literature, but according to our experience ≥ is better),
then the temperature is decreased; otherwise the old value of the control
parameter is kept.

• The master processor overwrites the old ensemble average with the new
one and sends the temperature value back to the slaves.

This way, the communication time between the master and the slaves can
be kept to a minimum. Even the decision to finish the run can be easily
transferred from the master to the slaves, i. e., by sending a negative value
for the control parameter from the master to the slave processors, by which
the slaves can identify the end of the simulation, at which they simply have
to send their final configuration to the master, which chooses the best of
these.

The main parameter of this parallel approach is the factor γ, which can
be chosen in various ways:

• γ → −∞
In this case, one gets the so-called exponential cooling scheme, because
Eq. (15.13) reduces to

〈Hi+1〉E ≥ −∞ . (15.14)

128 15 Cooling Techniques

This condition is always fulfilled, leading to an automatic decrease of the
control parameter after each step.

• γ = 0
Here one speaks of the simple adaptive cooling scheme. Equation (15.13)
is simplified to

〈Hi+1〉E ≥ 〈Hi〉E . (15.15)

The current value of the temperature is kept constant as long as the en-
semble average of the energy decreases in a monotonic way and is then
decreased if this average increases or stays the same.

• γ > 0
This case is called the weakened adaptive scheme. For this scheme, only
small values for γ, e. g., γ = 0.5, are used. If one looks again at a simplified
version of Eq. (15.13),

〈Hi+1〉E ≥ 〈Hi〉E + ε , (15.16)

with

ε = γ

(
VarE(Hi+1)

p− 1

)ν

≥ 0 , (15.17)

then one finds that the temperature is decreased only if the deterioration
of the ensemble average of the energy values exhibits this ε.
This approach must be used instead of the adaptive cooling scheme if
the number p of available processors is rather small, e. g., p < 100, as in
this case the fluctuations during the decrease of the energy are too large,
such that the system thinks that it is already equilibrated at the new
temperature whereas there was only a fluctuation. This would lead to too
rapid a decrease in the temperature. However, one must be careful in the
choice of ν in this case: in the literature, ν is usually chosen as 1. However,
how large the ensemble variance can become depends on the problem. If
it is too large, then the condition is never fulfilled and the algorithm is in
an endless loop at some value of the control parameter. For every problem,
the appropriateness of the ν value has to be tested. For example, ν = 1

2 is
a good value for the traveling salesman problem, for which ν = 1 already
leads to endless loops at rather high values of the control parameter.

Summarizing, the basic thought of this ensemble based approach is to let
the ensemble average of the energy values drop again and again at a fixed
temperature. If it does not decrease any further, then the system is believed
to have reached equilibrium at the given new temperature. Therefore, the
temperature can be decreased again. At the end of the optimization run, all
ensemble members get stuck as the control parameter is very small.

This ensemble based approach is defined in the context of the equilibrium
properties of SA. However, this approach can also be transferred to other
control strategies: for example, ensemble based threshold accepting (EBTA)

15.3 Ensemble Based Schedules 129

works in the same way as EBSA. The temperature is simply replaced by the
threshold. Analogously, this approach can be transferred to the temperature
in the Tsallis-based methods or to the water level in the GDA.

The bouncing approach is also suited for parallel enablement. For exam-
ple, one could simply use the best configuration of bouncing iteration i as an
input for the next iteration on all p processors. But one could also define an
ensemble based bouncing (EBB): in this case, the bouncing temperature TB,
up to which the temperature T is increased at the beginning of each bouncing
iteration, is not held constant but decreased according to the ensemble based
rule, i. e., if using the adaptive scheme, TB is decreased if 〈Hi+1〉E ≥ 〈Hi〉E.
However, here the ensemble average 〈Hi〉E is the average over the energies
of the final configurations of bouncing iteration i. Note that in contrast to
EBSA and EBTA, it is not the temperature and the threshold that are de-
creased inside a bouncing iteration but the bouncing start temperature TB is
decreased according to the ensemble-based rule. Of course, it is also possible
to use the ensemble-based approach twice for this bouncing approach: first,
it is used for decreasing TB, but secondly one can also decrease the control
parameter inside a bouncing iteration according to the ensemble-based rules.
This combines EBB and EBSA/EBTA.

It is also interesting to combine the ensemble-based approach with search
space smoothing (SSS). Let us use the greedy algorithm as the underlying
local search technique inside SSS. As therefore no energy deteriorations are
allowed during one α step, the adaptive rule (15.15) of EBSA and EBTA
is modified as follows: if 〈Hi+1〉E = 〈Hi〉E, then decrease α, otherwise keep
the current value of α. However, the question arises as to which Hamiltonian
will be used in this case, such that one can define three different rules for
ensemble based search space smoothing (EBSSS):

• “Smoothed” rule:
The smoothed Hamiltonian Hα is used for calculating the ensemble average
〈Hα

i 〉E. After changing α, the smoothed Hamiltonian changes, such that
sometimes ensemble averages of different Hamiltonians are compared with
each other.

• “Original” rule:
The ensemble average is calculated with the original Hamiltonian H0.

• “Both” rule:
One can also consider both Hamiltonians and must therefore change
the condition above: α is decreased only if both 〈Hα

i+1〉E = 〈Hα
i 〉E and

〈H0
i+1〉E = 〈H0

i 〉E.

130 15 Cooling Techniques

15.4 Simulated Tempering and Parallel Tempering

Simulated tempering (ST) was introduced by Marinari and Parisi [132]. It
works like SA, i. e., the simulation starts with an initial configuration and
applies a series of moves that are accepted or rejected according to the
Metropolis criterion. In contrast to SA, ST does not automatically change
the temperature according to a proposed cooling schedule. Instead, the tem-
perature is also seen as a configuration variable and is changed according
to the Metropolis criterion. One considers a set of M temperatures Ti with
T1 < T2 < · · · < TM , which play the role of the various temperatures in SA.
Thus, T1 must be chosen so small that the system is already frozen, whereas
TM has to be large enough so that the system can explore the whole config-
uration space. One wants to apply a move Ti → Tj . The question is now how
to choose an appropriate transition probability.

For this purpose, one extends the configuration space by a further dimen-
sion, in which a variable i takes the discrete values 1, 2, . . . ,M , denoting the
individual temperature steps. The configuration in this joint configuration
space has to be considered as a pair (σ, i) ∈ Γ × {1, . . . ,M}, with σ being
the configuration of the original space Γ and i a number between 1 and M .
Then one considers the partition sum of this joint system, for which a new
parameter gi is introduced:

Z(Ti) =
∑

σ∈Γ

exp(−βiH(σ) + gi) , (15.18)

with βi = 1/(kBTi). The gi parameters are a function of parameter i and
thus of the corresponding temperature Ti. They have to be chosen in a way
such that

Z(Ti) = const = Z , (15.19)

i. e., such that the partition sum of the joint system does not depend on the
temperature value Ti, as this dependency will cancel out with the dependency
of gi. The equilibrium probability for the state (σ, i) is thus given by

π(σ, i) =
1
Z

exp
(

−H(σ)
kBTi

+ gi

)

. (15.20)

There are now two types of moves:

• First, one can apply as usual a move σ → τ , which is now the move
(σ, i) → (τ, i). The detailed balance condition leads to

p((σ, i) → (τ, i))
p((τ, i) → (σ, i))

=
π(τ, i)
π(σ, i)

= exp
(

−H(τ) −H(σ)
kBTi

)

. (15.21)

Thus, this move type can be accepted with the Metropolis criterion as
usual at the given temperature Ti.

15.4 Simulated Tempering and Parallel Tempering 131

• Secondly, one can apply a move to change the temperature Ti → Tj . Ap-
plying detailed balance leads to

p((σ, i) → (σ, j))
p((σ, j) → (σ, i))

=
π(σ, j)
π(σ, i)

=
exp (−H(σ)/(kBTj) + gj)
exp (−H(σ)/(kBTi) + gi)

= exp(−(βj − βi)H(σ) + (gj − gi)) .

(15.22)

Thus, the transition probability can be chosen in a Metropolis-like criterion
as

p((σ, i) → (σ, j)) =

⎧
⎨

⎩

1 if Δ ≤ 0 ,

exp(−Δ) otherwise ,
(15.23)

with
Δ = (βj − βi)H(σ) − (gj − gi) . (15.24)

As the acceptance probability decreases exponentially with the difference
between the inverse temperatures βi and βj , one usually only chooses moves
Ti → Tj=i±1, i. e., to the neighboring temperature values.

• Of course, these two moves can also be combined in one move (σ, i) → (τ, j).
One can derive a Metropolis-like criterion as (15.23) but with

Δ = (βjH(τ) − βiH(σ)) − (gj − gi) . (15.25)

Usually, however, one only uses the two moves above.

However, the main question still remains as to how to choose the gi parame-
ters. They are not a priori known and are usually determined by iterations of
simulations that can be rather difficult for complex systems. One of the sim-
plest approaches is first to determine the thermal expectation values 〈H〉(Ti)
for each temperature by an ordinary SA run. Then the differences gi±1 − gi

are given by the differences 〈H〉(Ti±1) − 〈H〉(Ti).
Thus, the outline of ST is as follows:

1. First, determine the gi parameters.
2. Then start the simulation at some temperature Ti, preferably a large one.
3. Perform a few Monte Carlo sweeps at the given temperature Ti.
4. Then, try a move Ti → Ti±1 with the transition probability Eq. (15.23).
5. If some final condition is not fulfilled, return to step 3.

Note that in contrast to SA, the system of ST does not need any time to
equilibrate at the new temperature as the temperature is also changed with
a Metropolis-like criterion.

132 15 Cooling Techniques

A related method to overcome the difficulty of determining the gi pa-
rameters is the replica-exchange method (REM) [98, 99], which is also called
parallel tempering (PT) [41]. It was developed as an extension of ST. Again
a set of M temperatures Ti with T1 < T2 < · · · < TM is considered.
In contrast to SA and ST, one has M different Markov chains, one at
each temperature Ti. At each of these constant temperatures, a simulation
as with SA at the corresponding temperature Ti is performed; thus each
move is accepted according to the Metropolis criterion. The most important
point of PT is that these simulations are performed independently of each
other.

Thus, after some time, one has M configurations σi. The probability π(σ)
is given by the usual Boltzmann weight exp(−H(σi)/(kBTi))/Z(Ti). In con-
trast to ST, PT considers not the joint configuration space Γ × {1, . . . ,M}
but the configuration space Γ ×Γ × · · · ×Γ = ΓM . The probability P of the
product state S = σ1×σ2×· · ·×σM is given as the product of the Boltzmann
weights of the single states due to the independence of the simulations, i. e.,

P(S) = P(σ1, σ2, . . . , σM)

=
M∏

i=1

πequ(σi)

=
exp(−H(σ1)/(kBT1))

Z(T1)
× · · · × exp(−H(σM)/(kBTM))

Z(TM)

(15.26)

with Z(Ti) being the partition sum at the temperature Ti.
The new point of PT now is that it introduces a varied type of the move of

ST to change the temperature: the temperatures at which two configurations
σi and σj are exchanged by exchanging these two configurations between the
corresponding Markov chains at the temperatures Ti and Tj. This means:
after having applied a sequence of moves in process 1 at temperature T1 with
the final configuration σ1, a sequence of moves in process 2 at T2 with the
final σ2, and analogously in the other processes, one randomly selects two
processes i and j and wants to move the configuration σi to process j while
shifting the configuration σj to process i. The question is now with what
probability this move

S1 = (σ1, . . . , σi, . . . , σj , . . . , σM)
→ S2 = (σ1, . . . , σj , . . . , σi, . . . , σM) (15.27)

will be accepted. Of course, again the detailed balance condition will be
fulfilled, such that

P(S1) × p(S1 → S2) = P(S2) × p(S2 → S1) . (15.28)

15.4 Simulated Tempering and Parallel Tempering 133

Thus, one gets the relation

p(S1 → S2)
p(S2 → S1)

=
P(S2)
P(S1)

=
πequ(σj , Ti) × πequ(σi, Tj)
πequ(σi, Ti) × πequ(σj , Tj)

=
exp(−H(σj)/(kBTi)) × exp(−H(σi)/(kBTj))
exp(−H(σi)/(kBTi)) × exp(−H(σj)/(kBTj))

= exp(−ΔH/(kBTi)) × exp(ΔH/(kBTj))

= exp(−βiΔH) × exp(βjΔH)

= exp(−(βi − βj)(H(σj) −H(σi)))

= exp(−Δβ × ΔH) ,

(15.29)

with ΔH = H(σj) −H(σi) and Δβ = βi − βj .
As in the derivation of the Metropolis criterion, there is some arbitrariness

in the explicit choice of the transition probability. Here one can use a Metro-
polis-like acceptance criterion:

p(S1 → S2) =

⎧
⎨

⎩

1 if Δβ × ΔH ≤ 0 ,

exp(−Δβ × ΔH) otherwise .
(15.30)

Thus, if σj is better than σi, i. e., if H(σj) < H(σi), these two configurations
are always exchanged if βi > βj and thus if Ti < Tj. The energetically lower
configuration is thus with larger probability put to the smaller temperature
and thus cooled down. The various temperatures Ti can stay constant all the
time as the cooling can be achieved by the PT exchange mechanism, but one
can also lower the M temperatures Ti during the simulation run.

Usually, a restriction similar to the one in ST is applied to this exchange
process: as the transition probability decreases exponentially with the dif-
ference between the inverse temperatures, only exchanges of configurations
are performed between neighboring temperature pairs (Ti, Ti+1) [98]. The in-
dividual temperature values have to be distributed in such a way that the
smallest temperature is in a range where the system is already frozen, whereas
the highest temperature should be well above the peak of the specific heat.

Like the problem of determining a good cooling schedule for the ordinary
SA, one now has, both for ST and PT, the problem of what temperatures to
use. Good results can be achieved by concentrating the temperature values
around the peak of the specific heat of the problem.

There are various elaborate ways to determine these temperature values.
An iterative way was proposed, e. g., by Kerler and Rehberg [109]: first, they

134 15 Cooling Techniques

fix a minimum β1 and a maximum βM . Then they start with βi, which
are equally distributed between these marginal values and measure the stay
time τi at each βi, which is the time between two accepted exchange moves
at the corresponding βi. The time for β1 and βM is divided by two, as these
processes have only one neighboring process. Next they calculate the auxiliary
variables

ai = (βi+1 − βi)/(τi+1 + τi) (15.31)

and their sum A =
∑
ai. Then they set the βi to new values,

βnew
i =

⎧
⎨

⎩

β1 if i = 1 ,

βnew
i−1 +

ai−1

A
(βM − β1) otherwise .

(15.32)

This procedure is iteratively repeated until the values of βi have converged
to some fixed points.

The individual implementations of these algorithms differ not only in the
techniques for choosing these inverse temperature values but also in whether
the individual values are kept constant during the optimization run or de-
creased. A cooling schedule for these temperature values can be either rather
simple, e. g., the temperatures can be decreased exponentially, but they can
also make use of acceptance criteria like those above [98].

The advantage of PT compared with ST is that there are no parameters
gi that have to be determined either beforehand or during the simulation pro-
cess. Furthermore, one can explore the configuration space in one run much
more thoroughly as there are several Markov chains. However, simulating M
Monte Carlo walkers walking around obviously costs M times the compute
effort of simulating only one. However, this is not necessarily a disadvantage
as PT is very well suited for parallel enablement: the single processes can be
run on the single nodes without interaction, except for the exchange moves
that are sometimes performed.

