
Preconditioned Eigensolver LOBPCG in hypre
and PETSc

Ilya Lashuk, Merico Argentati, Evgueni Ovtchinnikov, and Andrew Knyazev

Department of Mathematical Sciences, University of Colorado at Denver and
Health Sciences Center, P.O. Box 173364, Campus Box 170, Denver, CO
80217-3364, USA.
{na.ilashuk,na.rargenta,na.eovtchin,na.knyazev}@na-net.ornl.gov

Summary. We present preliminary results of an ongoing project to develop codes of
the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) method
for symmetric eigenvalue problems for hypre and PETSc software packages. hypre
and PETSc provide high quality domain decomposition and multigrid precondi-
tioning for parallel computers. Our LOBPCG implementation for hypre is publicly
available in hypre 1.8.2b and later releases and in PETSc. We describe the current
state of the LOBPCG software for hypre and PETSc and demonstrate scalability
results on distributed memory parallel clusters using domain decomposition and
multigrid preconditioning.

This work is partially supported by the Center for Applied Scientific Computing,
Lawrence Livermore National Laboratory and the National Science Foundation DMS
0208773.

1 Introduction

We implement a parallel algorithm, the Locally Optimal Block Preconditioned Con-
jugate Gradient Method (LOBPCG) [5, 6], for the solution of eigenvalue problems
Ax = λBx for large sparse symmetric matrices A and B > 0 on massively parallel
computers for the High Performance Preconditioners (hypre) [3] and Portable, Exten-
sible Toolkit for Scientific Computation (PETSc) [2] software libraries. Our software
package, the Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX)
is available at http://math.cudenver.edu/˜ aknyazev/software/BLOPEX/
which contains, in particular, our MATLAB, hypre and PETSc codes of LOBPCG.
Our native hypre LOBPCG version efficiently takes advantage of powerful hypre
algebraic and geometric multigrid preconditioners. Our native PETSc LOBPCG
version gives the PETSc users community an easy access to a customizable code of
a high quality modern preconditioned eigensolver.



I. Lashuk et al.

The LOBPCG method has recently attracted attention as a potential competi-
tor to the Lanczos and Davidson methods due to its simplicity, robustness and fast
convergence. Implementations in C++ (by R. Lehoucq, U. Hetmaniuk et al. [1, 4],
Anasazi Trilinos), in FORTRAN 77 (by Randolph Bank, a part of PLTMG 9.0 and
above) and in FORTRAN 90 (by G. Zèrah, a part of ABINIT v4.5 and above, com-
plex Hermitian matrices) of the LOBPCG are being developed by different groups
for such application areas as structural mechanics, mesh partitioning and electronic
structure calculations.

2 Abstract LOBPCG implementation for hypre/PETSc

For computing only the smallest eigenpair, we take the block size m = 1 and then
the LOBPCG gets reduced to a local optimization of a 3-term recurrence:

x(i+1) = w(i) + τ (i)x(i)+γ(i)x(i−1),

w(i) = T (Ax(i) − λ(i)Bx(i)), λ(i) = λ(x(i)) = (x(i), Ax(i))/(Bx(i), x(i))

with properly chosen scalar iteration parameters τ (i) and γ(i) . The easiest and most
efficient choice of parameters is based on an idea of local optimality [5, 6], namely,

select τ (i) and γ(i) that minimize the Rayleigh quotient λ(x(i+1)) by using the
Rayleigh–Ritz method. For finding the m smallest eigenpairs the Rayleigh–Ritz
method on a 3m –dimensional trial subspace is used during each iteration for the
local optimization.

LOBPCG description in [6] skips important details. The complete description of
the LOBPCG algorithm as it has been implemented in our MATLAB code rev. 4.10
and the hypre code 1.9.0b follows:

Input: m starting linearly independent multivectors in X ∈ R
n×m ,

l linearly independent constraint multivectors in Y ∈ R
n×l , devices to

compute A ∗X , B ∗X and T ∗X .
1. Allocate memory for ten multivectors

W,P,Q,AX,AW,AP,BX,BW,BP,BY ∈ R
n×m .

2. Apply constraints to X :

BY = B ∗ Y ; X = X − Y ∗
“
Y T ∗BY

”−1

∗XT ∗BY .

3. B -orthonormalize X : BX = B ∗X;R = chol(XT ∗BX);X = X ∗ R−1;

BX = BX ∗ R−1 ; AX = A ∗X . (”chol ” is the Cholesky decomposition)
4. Compute the initial Ritz vectors: solve the eigenproblem

(XT ∗ AX) ∗ TMP = TMP ∗ Λ;
and compute X = X ∗ TMP ;AX = AX ∗ TMP ; BX = BX ∗ TMP .

5. Define index set I to be {1, . . . ,m}
6. for k = 0, . . . ,MaxIterations
7. Compute residuals: WI = AXI −BXI ∗ ΛI .
8. Exclude from index set I those indices which correspond to residual

vectors for which the norm has become smaller than the tolerance.
If I then becomes empty, exit loop.

9. Apply preconditioner T to the residuals: WI = T ∗WI .

636



Preconditioned Eigensolver LOBPCG in hypre and PETSc

10 Apply constraints to the preconditioned residuals WI :

WI = WI − Y ∗
“
Y T ∗BY

”−1

∗W T
I ∗BY .

11. B -orthonormalize WI : BWI = B ∗WI ; R = chol(W T
I ∗BWI) ;

WI = WI ∗R−1 ; BWI = BWI ∗ R−1 .
12. Compute AWI : AWI = A ∗WI .
13. if k > 0

14. B -orthonormalize PI : R = chol(P TI ∗ BPI);PI = PI ∗R−1 ;

15. Update API = API ∗R−1 ; BPI = BPI ∗ R−1 .
16. end if

Perform the Rayleigh Ritz Procedure:
Compute symmetric Gram matrices:

17. if k > 0

18. gramA =

2
4Λ XT ∗AWI XT ∗ API

· W T
I ∗AWI W T

I ∗ API
· · P TI ∗API

3
5 .

19. gramB =

2
4 I XT ∗ BWI XT ∗ BPI

· I W T
I ∗ BPI

· · I

3
5 .

20. else

21. gramA =

»
Λ XT ∗ AWI

· W T
I ∗ AWI

–
.

22. gramB =

»
I XT ∗BWI

· I

–
.

23. end if
24. Solve the generalized eigenvalue problem:

gramA ∗ Y = gramB ∗ Y ∗ Λ , where the first m eigenvalues in
increasing order are in the diagonal matrix Λ and the
gramB -orthonormalized eigenvectors are the columns of Y .
Compute Ritz vectors:

25. if k > 0

26. Partition Y =

2
4 YX
YW
YP

3
5 according to the number of columns in

X, WI , and PI , respectively.
27. Compute P = WI ∗ YW + PI ∗ YP ;

AP = AWI ∗ YW + API ∗ YP ; BP = BWI ∗ YW + BPI ∗ YP .
28. X = X ∗ YX + P ;AX = AX ∗ YX + AP ;BX = BX ∗ YX + BP .
29. else

30. Partition Y =

»
YX
YW

–
according to the number of columns in

X and WI respectively.
31. P = WI ∗ YW ;AP = AWI ∗ YW ;BP = BWI ∗ YW .
32. X = X ∗ YX + P ;AX = AX ∗ YX + AP ;BX = BX ∗ YX + BP .
33. end if
37. end for

Output: Eigenvectors X and eigenvalues Λ .

637



I. Lashuk et al.

The LOBPCG eigensolver code is written in C-language and calls a few LA-
PACK subroutines. The matrix–vector multiply and the preconditioner call are done
through user supplied functions. The main LOBPCG code is abstract in the sense
that it works only through an interface that determines the particular software en-
vironment: hypre or PETSc, in order to call parallel (multi)vector manipulation
routines.

A block diagram of the high-level software modules is given in Figure 1.

PETSc driver for LOBPCG hypre driver for LOBPCG

Interface PETSc-LOBPCG Interface hypre-LOBPCG

PETSc libraries Abstract LOBPCG in C hypre libraries

�� ��

�� �� �� ��

Fig. 1. LOBPCG hypre/PETSc software modules.

hypre supports four conceptual interfaces: Struct, SStruct, FEM and IJ. At
present, LOBPCG has been tested with all but the FEM interface. hypre test drivers
for LOBPCG are simple extensions of the hypre test drivers for linear system. We
anticipate that both types of drives will be merged in the post 1.9.0b hypre release.

We do not use shift-and-invert strategy. Preconditioning is implemented directly
as well as through calls to the hypre/PETSc preconditioned conjugate gradient
method (PCG). Specifically, in the latter case the action x = Tb of the precon-
ditioner T on a given vector b is performed by calling a few steps of PCG to solve
Ax = b .

LOBPCG-hypre has been tested with all available hypre PCG-capable precon-
ditioners in Struct, SStruct and IJ interfaces, most notably, with IJ AMG–PCG
algebraic multigrid, IJ DS–PCG diagonal scaling, IJ additive Schwarz–PCG, and
Struct PFMG-PCG geometric multigrid. LOBPCG-PETSc has been tested with
PETSc native Additive Schwarz and PETSc linked IJ AMG from hypre.

3 hypre/PETSc LOBPCG Numerical Results

3.1 Basic Accuracy of Algorithm

In these tests LOBPCG computes the smallest 50 eigenvalues of 3D 7–Point 200×
200×200 and 200×201×202 Laplacians. In the first case we have eigenvalues with
multiplicity and in the second case the eigenvalues are distinct, but clustered. The
initial eigenvectors are chosen randomly. We set the stopping tolerance (the norm of
the maximum residual) equal to 10−6 . The numerical output and exact eigenvalues
are compared. In both cases for all eigenvalues the maximum relative error is less
than 10−8 and the Frobenius norm ‖V TV − Im×m‖ < 10−12, where V ∈ R

n×m

638



Preconditioned Eigensolver LOBPCG in hypre and PETSc

contains the approximate eigenvectors. These tests suggest that LOBPCG is cluster
robust, i.e. it does not miss (nearly) multiple eigenvalues.

The LOBPCG code may become unstable because of ill-conditioned Gram matri-
ces in some tests, which is typically a result of bad initial guesses, e.g., generated by a
poor quality random number generator. When the ill-conditioning appears restarts
are helpful. The simplest restart is to drop the matrix P from the basis of the
trial subspace. Such restarts improve the stability of the LOBPCG code as observed
in MATLAB tests, and are planned to be implemented in a future hypre/PETSc
LOBPCG revision.

3.2 Performance Versus the Number of Inner Iterations

Let us remind the reader that we can execute a preconditioner x = Tb directly or
by calling PCG to solve Ax = b . We do not attempt to use shift-and-invert strategy,
but instead simply take T to be a preconditioner for A . Therefore, we can expect
that increasing the number of “inner” iterations of the PCG might accelerate the
overall convergence, but only if we do not make too many iterations. In other words,
for a given matrix A and a particular choice of a preconditioner, there should be
an optimal finite number of inner iterations.

5 10 15 20 25

100

150

200

250

PCG Additive Schwarz Performance

T
ot

al
 L

O
B

P
C

G
 T

im
e 

in
 s

ec

Number of Inner PCG Iterations

Hypre Additive Schwarz
PETSc Additive Schwarz

0 0.5 1 1.5 2 2.5 3
15

20

25

30

35

40

45

50

55

60

65
PCG MG Performance

T
ot

al
 L

O
B

P
C

G
 T

im
e 

in
 s

ec

Number of Inner PCG Iterations

Hypre AMG through PETSc

Hypre AMG

Hypre Struct PFMG

Fig. 2. Performance versus the number of inner iterations. 7–Point 3-D Laplacian,
1,000,000 unknowns. Dual 2.4-GHz Xeon 4GB.

In numerical example illustrated on Figure 2, we try to find this optimal number
for the Schwarz–PCG and AMG-PCG preconditioners in hypre and PETSc. We
measure the execution time as we vary the quality of the preconditioner by changing
the maximum number of inner iterations in the corresponding PCG solver. We find
that for this problem the optimal number of inner iterations is approximately 10 −
15 for Schwarz-PCG, but AMG-PCG works best if AMG is applied directly as a
preconditioner, without even initializing the AMG-PCG function.

Our explanation of this behavior is based on two facts. First, the Schwarz method
is somewhat cheaper, but not of such a good quality, compared to AMG in these
tests. Moreover, the costs for matrix vector multiplies and multivector linear algebra

639



I. Lashuk et al.

in LOBPCG is a relatively small proportion of the AMG application, but compa-
rable to the computational cost of Schwarz here. Second, one PCG iteration is less
computationally expensive compared to one LOBPCG iteration because of larger
number of linear algebra operations with multivectors in the latter. A single direct
application of AMG as the preconditioner in LOBPCG gives enough improvement in
convergence to make it the best choice, while Schwarz requires more iterations that
are less time consuming if performed using PCG, rather than by direct application
in LOBPCG.

3.3 LOBPCG Performance vs. Block Size

We test both hypre and PETSc LOBPCG codes on a 7–Point 3-D Laplacian with
2,000,000 unknowns with hypre AMG Preconditioner on a Sun Fire 880, 6 CPU 24GB
system by increasing the block size m , i.e. the number of computed eigenvectors,
from 1 to 16. We observe that the growth of the total CPU time with the increase of
the block size is linear, from approximately 100 sec for m = 1 to 2,500 sec for m =
16. We expect that for larger m the complexity term m2n will become visible. We
note, however, that neither hypre nor PETSc currently has efficiently implemented
multivectors, e.g., in the current implementation the number of MPI communications
in the computation of the Gram matrices grows with m . An efficient implementation
of the main multivector functions is crucial in order to significantly reduce the overall
costs for large m .

3.4 Scalability with the Schwarz–PCG and Multigrid–PCG
preconditioners

We test scalability by varying the problem size so it is proportional to the number
of processors. We use a 7–Point 3–D Laplacian and set the block size to m = 1 .

For the Schwarz–PCG, we set the maximum number of inner iterations of the
PCG to 10. The tests are performed on the Beowulf cluster at CU Denver that
includes 36 nodes, two PIII 933MHz processors and 2GB memory per node, running
Linux RedHat and a 7.2SCI Dolpin interconnect and on MCR cluster (dual Xeon
2.4-GHz, 4 GB nodes) at LLNL. In all these tests, the time per iteration is reasonably
scalable, but the number of LOBPCG iterations grows with the problem size i.e.,
the Schwarz–PCG preconditioner in hypre and in PETSc is not optimal in this case.

For the Multigrid–PCG preconditioners, we apply the preconditioners directly,
without calling the PCG. We test here hypre IJ AMG–PCG algebraic multigrid,
hypre Struct PFMG-PCG geometric multigrid and PETSc linked IJ AMG from
hypre on the LLNL MCR cluster, see Figure 3.4 left.

Good LOBPCG scalability can be seen in Figure 3.4, left. The Struct PFMG
takes more time compared to AMG here because of the larger convergence factor. To
satisfy the reader curiosity, we also provide the scalability data for the preconditioner
setup on Figure 3.4 right.

Conclusions

• We present the world’s apparently first parallel code for generalized symmet-
ric definite eigenvalue problems, that can apply preconditioning directly. The

640



Preconditioned Eigensolver LOBPCG in hypre and PETSc

One Eight
0

50

100

150

MG Iterations scalability

LO
B

P
C

G
 T

im
e 

in
 s

ec

Number of 2−CPU 2.4 GHz Xeon nodes

1.8.4a Hypre PFMG

1.8.4a Hypre AMG

1.8.2 Hypre AMG by PETSc

One Eight
0

50

100

150

MG Setup scalability

S
et

up
 T

im
e 

in
 s

ec

Number of 2−CPU 2.4 GHz Xeon nodes

1.8.4a Hypre PFMG

1.8.4a Hypre AMG

1.8.2 Hypre AMG by PETSc

Fig. 3. 7–Point Laplacian, 2,000,000 unknowns per node. Preconditioners: AMG
and PFMG. System: LLNL MCR. LOBPCG scalability (left) and preconditioner
setup (right).

LOBPCG is our method of choice for preconditioned eigensolver because of its
simplicity, robustness and fast convergence.

• Our hypre/PETSc LOBPCG code illustrates that the LOBPCG “matrix-free”
algorithm can be successfully implemented using parallel libraries that are de-
signed to run on a great variety of multiprocessor platforms.

• In the problems tested with AMG preconditioning, 90%–99% of the computa-
tional effort is required for the preconditioner setup and in the applying the pre-
conditioner and thus the LOBPCG scalability is mainly dependent on the scal-
ability of hypre/PETSc preconditioning. Initial scalability measurements look
promising, but more testing is needed by other users.

• The LOBPCG hypre software has been integrated into the hypre software at
LLNL and has been publicly released in hypre–1.8.2b and above. The LOBPCG
PETSc software is now available in PETSc at Argonne as a part of our BLOPEX,
which is an external PETSc package.

The results of this work have been presented at: 11th and 12th Copper Mountain
Conferences on Multigrid Methods, Preconditioning 2003, SIAM Parallel Process-
ing for Scientific Computing 2004, and 16th International Conference on Domain
Decomposition Methods. Earlier results and the pecularities of our LOBPCG im-
plementation in hypre–1.8.0b can be found in [7].

We are grateful to all members of the Scalable Algorithms Group of the Center
for Applied Scientific Computing, Lawrence Livermore National Laboratory and, in
particular, to Rob Falgout, Edmond Chow, Charles Tong, and Panayot Vassilevski,
for their patient support and help. We thank Matthew Knepley and other members
of the PETSc team for their help with incorporating our BLOPEX as an external
package into the PETSc library.

641



I. Lashuk et al.

References

1. P. Arbenz, U. L. Hetmaniuk, R. B. Lehoucq, and R. S. Tuminaro,
A comparison of eigensolvers for large-scale 3D modal analysis using AMG-
preconditioned iterative methods, Internat. J. Numer. Methods Engrg., 64 (2005),
pp. 204–236.

2. S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G.

Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, PETSc users manual,
Tech. Rep. ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2004.

3. R. D. Falgout, J. E. Jones, and U. M. Yang, Pursuing scalability for hypre’s
conceptual interfaces, ACM Trans. Math. Software, 31 (2005), pp. 326–350.

4. M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu,

T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps,

A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring,

A. Williams, and K. S. Stanley, An overview of the Trilinos project, ACM
Trans. Math. Software, 31 (2005), pp. 397–423.

5. A. V. Knyazev, Preconditioned Eigensolvers: practical algorithms, SIAM,
Philadelphia, 2000, pp. 352–368.

6. , Toward the optimal preconditioned Eigensolver: Locally optimal block pre-
conditioned conjugate gradient method, SIAM J. Sci. Comput., 23 (2001), pp. 517–
541.

7. A. V. Knyazev and M. E. Argentati, Implementation of a preconditioned
Eigensolver using Hypre, Tech. Rep. UCD-CCM 220, Center for Computational
Mathematics, University of Colorado at Denver, April 2005.

642




