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1 Background of the Conference Series

The International Conference on Domain Decomposition Methods has been
held in eleven countries throughout Asia, Europe, and North America, begin-
ning in Paris in 1987. Originally held annually, it is now spaced out at roughly
18-month intervals. A complete list of past meetings appears below.

The sixteenth instance of the International Conference on Domain Decom-
position Methods was the sixth in the United States, and the first since 1997.
In 1997, ASCI Red, the world’s first Teraflops-scale computer, was just being
placed into service at Sandia National Laboratories. The Bell Prize was won
by an application that sustained 170 Gflop/s that year. An entirely new fleet
of machines, algorithms, and codes has swept the research community in the
intervening years. Now the Top 500 supercomputers in the world all sustain
2.0 Teraflop/s or more on the ScaLAPACK benchmark and nearly 200 Tflop/s
have been sustained in simulations submitted to the Bell Prize competition.

The principal technical content of the conference has always been math-
ematical, but the principal motivation has been to make efficient use of dis-
tributed memory computers for complex applications arising in science and
engineering. Thus, contributions from mathematicians, computer scientists,
engineers, and scientists have always been welcome. Though the conference
has grown up in the wake of commercial massively parallel processors, it is
worth noting that many interesting applications of domain decomposition are
not massively parallel at all. “Gluing together” just two subproblems to effec-
tively exploit a different solver on each is also part of the technical fabric of
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This volume is the definitive technical record of advances in the analysis algo-
rithmic development, large-scale implementation, and application of domain
decomposition methods in science and engineering presented at the Sixteenth
International Conference on Domain Decomposition Methods. The conference
was held in New York City, January 11-15, 2005. The largest meeting in this
series to date, it registered 228 participants from 20 countries. The Courant
Institute of Mathematical Sciences of New York University hosted the tech-
nical sessions. The School of Engineering and Applied Science of Columbia
University hosted a pre-conference workshop on software for domain decom-
position methods.
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International Conferences on Domain Decomposition Methods:

• Paris, France, 1987
• Los Angeles, USA, 1988
• Houston, USA, 1989
• Moscow, USSR, 1990
• Norfolk, USA, 1991
• Como, Italy, 1992
• University Park (Pennsylvania), USA, 1993
• Beijing, China, 1995
• Ullensvang, Norway, 1996
• Boulder, USA, 1997
• Greenwich, UK, 1998
• Chiba, Japan, 1999
• Lyon, France, 2000
• Cocoyoc, Mexico, 2002
• Berlin, Germany, 2003
• New York, USA, 2005

International Scientific Committee on Domain Decomposition Methods:

• Petter Bjørstad, Bergen
• Roland Glowinski, Houston
• Ronald Hoppe, Augsburg & Houston
• Hideo Kawarada, Chiba
• David Keyes, New York
• Ralf Kornhuber, Berlin
• Yuri Kuznetsov, Houston
• Ulrich Langer, Linz
• Jacques Périaux, Paris
• Olivier Pironneau, Paris
• Alfio Quarteroni, Lausanne
• Zhong-ci Shi, Beijing
• Olof Widlund, New York
• Jinchao Xu, University Park

the conference. Even as multiprocessing becomes commonplace, multiphysics
modeling is in ascendancy, so the International Conference on Domain Decom-
position Methods remains as relevant and as fundamentally interdisciplinary
as ever. While research in domain decomposition methods is presented at
numerous venues, the International Conference on Domain Decomposition
Methods is the only regularly occurring international forum dedicated to in-
terdisciplinary technical interactions between theoreticians and practitioners
working in the creation, analysis, software implementation, and application of
domain decomposition methods.
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possible to offer about 20 travel fellowships to graduate students and post-
docs from the U.S. and abroad.

Sponsoring Organizations:

• Argonne National Laboratory
• Lawrence Livermore National Laboratory
• Sandia National Laboratories
• U. S. Army Research Office
• U. S. Department of Energy, National Nuclear Security Administration
• U. S. National Science Foundation
• U. S. Office of Naval Research

Cooperating Organizations:

• Columbia University, School of Engineering & Applied Sciences
• New York University, Courant Institute of Mathematical Sciences
• Society for Industrial and Applied Mathematics, Activity Group on Su-

percomputing

Local Organizing Committee Members:

• Randolph E. Bank, University of California, San Diego
• Timothy J. Barth, NASA Ames Research Center
• Marsha Berger, New York University
• Susanne Brenner, University of South Carolina
• Charbel Farhat, University of Colorado
• Donald Goldfarb, Columbia University
• David E. Keyes, Columbia University (Co-Chair)
• Michael L. Overton, Courant Institute, New York University
• Charles Peskin, New York University
• Barry Smith, Argonne National Laboratory
• Marc Spiegelman, Columbia University
• Ray Tuminaro, Sandia National Laboratory
• Panayot Vassilevski, Lawrence Livermore National Laboratory
• Olof Widlund, New York University (Co-Chair)
• Margaret H. Wright, New York University

2 About the Sixteenth Conference

The 3.5-day conference featured 14 invited speakers, who were selected from
about three times this number of nominees by the International Scientific
Committee, with the goals of mixing traditional leaders and “new blood,” fea-
turing mainstream and new directions, and reflecting the international diver-
sity of the community. There were 160 presentations altogether. Sponsorship
from several U.S. scientific agencies and organizations (listed below) made it
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VIII

which can be solved independently and concurrently. Typically, it is necessary
to iterate over the collection of smaller problems, and much of the theoretical
interest in domain decomposition algorithms lies in ensuring that the number
of iterations required is very small. Indeed, the best domain decomposition
methods share with their cousins, multigrid methods, the property that the
total computational work is linearly proportional to the size of the input data,
or that the number of iterations required is at most logarithmic in the number
of degrees of freedom of individual subdomains.

Algorithms whose work requirements are linear in the size of the input data
in this context are said to be “optimal.” Near optimal domain decomposition
algorithms are now known for many, but certainly not all, important classes
of problems that arise science and engineering. Much of the contemporary
interest in domain decomposition algorithms lies in extending the classes of
problems for which optimal algorithms are known.

Domain decomposition algorithms can be tailored to the properties of the
physical system as reflected in the mathematical operators, to the number
of processors available, and even to specific architectural parameters, such as
cache size and the ratio of memory bandwidth to floating point processing
rate.

Domain decomposition has proved to be an ideal paradigm not only for ex-
ecution on advanced architecture computers, but also for the development of
reusable, portable software. The most complex operation in a typical domain
decomposition method — the application of the preconditioner — carries out
in each subdomain steps nearly identical to those required to apply a conven-
tional preconditioner to the undecomposed domain. Hence software developed
for the global problem can readily be adapted to the local problem, instantly
presenting lots of “legacy”scientific code for to be harvested for parallel imple-
mentations. Furthermore, since the majority of data sharing between subdo-
mains in domain decomposition codes occurs in two archetypal communication
operations — ghost point updates in overlapping zones between neighboring
subdomains, and global reduction operations, as in forming an inner product
— domain decomposition methods map readily onto optimized, standardized
message-passing environments, such as MPI.

Finally, it should be noted that domain decomposition is often a natural
paradigm for the modeling community. Physical systems are often decomposed
into two or more contiguous subdomains based on phenomenological consid-
erations, such as the importance or negligibility of viscosity or reactivity, or

3 About Domain Decomposition Methods

Domain decomposition, a form of divide-and-conquer for mathematical prob-
lems posed over a physical domain, as in partial differential equations, is the
most common paradigm for large-scale simulation on massively parallel, dis-
tributed, hierarchical memory computers. In domain decomposition, a large
problem is reduced to a collection of smaller problems, each of which is easier
to solve computationally than the undecomposed problem, and most or all of
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Sébastien Loisel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Additive Schwarz Method for Scattering Problems Using the
PML Method at Interfaces
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Construction of a New Domain Decomposition Method for
the Stokes Equations
Frédéric Nataf, Gerd Rapin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

MINISYMPOSIUM 4: Domain Decomposition Methods for
Electromagnetic Field Problems
Organizers: Ronald H. W. Hoppe, Jin-Fa Lee . . . . . . . . . . . . . . . . . . . . . . . . 255

A Domain Decomposition Approach for Non-conformal
Couplings between Finite and Boundary Elements for
Electromagnetic Scattering Problems in R3

Marinos Vouvakis, Jin-Fa Lee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

MINISYMPOSIUM 5: Space-time Parallel Methods for
Partial Differential Equations
Organizers: Martin Gander, Laurence Halpern . . . . . . . . . . . . . . . . . . . . . . . 265

Optimized Schwarz Waveform Relaxation Algorithms with
Nonconforming Time Discretization for Coupling Convection-
diffusion Problems with Discontinuous Coefficients
Eric Blayo, Laurence Halpern, Caroline Japhet . . . . . . . . . . . . . . . . . . . . . . 267



XVI Contents

Stability of the Parareal Time Discretization for Parabolic
Inverse Problems
Daoud S. Daoud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

A Schwarz Waveform Relaxation Method for Advection–
Diffusion–Reaction Problems with Discontinuous Coefficients
and Non-matching Grids
Martin J. Gander, Laurence Halpern, Michel Kern . . . . . . . . . . . . . . . . . . . 283

On the Superlinear and Linear Convergence of the Parareal
Algorithm
Martin J. Gander, Stefan Vandewalle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Optimized Sponge Layers, Optimized Schwarz Waveform
Relaxation Algorithms for Convection-diffusion Problems and
Best Approximation
Laurence Halpern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

MINISYMPOSIUM 6: Schwarz Preconditioners and
Accelerators
Organizers: Marcus Sarkis, Daniel Szyld . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Numerical Implementation of Overlapping Balancing Domain
Decomposition Methods on Unstructured Meshes
Jung-Han Kimn, Blaise Bourdin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

OBDD: Overlapping Balancing Domain Decomposition
Methods and Generalizations to the Helmholtz Equation
Jung-Han Kimn, Marcus Sarkis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Developments in Overlapping Schwarz Preconditioning of
High-Order Nodal Discontinuous Galerkin Discretizations
Luke N. Olson, Jan S. Hesthaven, Lucas C. Wilcox . . . . . . . . . . . . . . . . . . 325

Domain-decomposed Fully Coupled Implicit Methods for a
Magnetohydrodynamics Problem
Serguei Ovtchinnikov, Florin Dobrian, Xiao-Chuan Cai, David Keyes . . . 333

A Proposal for a Dynamically Adapted Inexact Additive
Schwarz Preconditioner
Marcus Sarkis, Daniel B. Szyld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

MINISYMPOSIUM 7: FETI and Neumann-Neumann
Methods with Primal Constraints
Organizers: Axel Klawonn, Kendall Pierson . . . . . . . . . . . . . . . . . . . . . . . . . 347



Contents XVII

Parallel Scalability of a FETI–DP Mortar Method for
Problems with Discontinuous Coefficients
Nina Dokeva, Wlodek Proskurowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Neumann-Neumann Algorithms (Two and Three Levels)
for Finite Element Elliptic Problems with Discontinuous
Coefficients on Fine Triangulation
Maksymilian Dryja, Olof Widlund . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

The Primal Alternatives of the FETI Methods Equipped with
the Lumped Preconditioner
Yannis Fragakis, Manolis Papadrakakis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

Balancing Domain Decomposition Methods for Mortar
Coupling Stokes-Darcy Systems
Juan Galvis, Marcus Sarkis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

A FETI-DP Formulation for Compressible Elasticity with
Mortar Constraints
Hyea Hyun Kim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

Some Computational Results for Robust FETI-DP Methods
Applied to Heterogeneous Elasticity Problems in 3D
Axel Klawonn, Oliver Rheinbach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

Dual-primal Iterative Substructuring for Almost
Incompressible Elasticity
Axel Klawonn, Oliver Rheinbach, Barbara Wohlmuth . . . . . . . . . . . . . . . . . 399

Inexact Fast Multipole Boundary Element Tearing and
Interconnecting Methods
Ulrich Langer, Günther Of, Olaf Steinbach, Walter Zulehner . . . . . . . . . . 407

A BDDC Preconditioner for Saddle Point Problems
Jing Li, Olof Widlund . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

Adaptive Coarse Space Selection in the BDDC and the
FETI-DP Iterative Substructuring Methods: Optimal Face
Degrees of Freedom
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A Domain Decomposition Solver for a Parallel
Adaptive Meshing Paradigm

Randolph E. Bank ∗

Department of Mathematics, University of California at San Diego, La Jolla,
California 92093-0112, USA. rbank@ucsd.edu

Summary. We describe a domain decomposition algorithm for use in the parallel
adaptive meshing paradigm of Bank and Holst. Our algorithm has low communi-
cation, makes extensive use of existing sequential solvers, and exploits in several
important ways data generated as part of the adaptive meshing paradigm. Numeri-
cal examples illustrate the effectiveness of the procedure.

1 Bank-Holst Algorithm

In [4, 3], we introduced a general approach to parallel adaptive meshing for
systems of elliptic partial differential equations. This approach was motivated
by the desire to keep communications costs low, and to allow sequential adap-
tive software (such as the software package pltmg used in this work) to be
employed without extensive recoding. Our discussion is framed in terms of
continuous piecewise linear triangular finite element approximations used in
pltmg, although most ideas generalize to other approximation schemes.

Our original paradigm, called Plan A in this work, has three main compo-
nents:

Step I: Load Balancing. We solve a small problem on a coarse mesh, and
use a posteriori error estimates to partition the mesh. Each subregion has
approximately the same error, although subregions may vary considerably
in terms of numbers of elements or gridpoints.
Step II: Adaptive Meshing. Each processor is provided the complete
coarse mesh and instructed to sequentially solve the entire problem, with
the stipulation that its adaptive refinement should be limited largely to

∗The work of this author was supported by the National Science Foundation
under contract DMS-0208449. The UCSD Scicomp Beowulf cluster was built us-
ing funds provided by the National Science Foundation through SCREMS Grant
0112413, with matching funds from the University of California at San Diego.
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its own partition. The target number of elements and grid points for each
problem is the same. At the end of this step, the mesh is regularized such
that the global mesh described in Step III is conforming.
Step III: Global Solve. The final global mesh consists of the union
of the refined partitions provided by each processor. A final solution is
computed using domain decomposition.

With this paradigm, the load balancing problem is reduced to the numerical
solution of a small elliptic problem on a single processor, using a sequential
adaptive solver such as pltmg without requiring any modifications to the
sequential solver. The bulk of the calculation in the adaptive meshing step also
takes place independently on each processor and can also be performed with
a sequential solver with no modifications necessary for communication. The
only parts of the calculation requiring communication are (1) the initial fan-
out of the mesh distribution to the processors at the beginning of the adaptive
meshing step, once the decomposition is determined by the error estimator
in load balancing; (2) the mesh regularization, requiring communication to
produce a global conforming mesh in preparation for the final global solve in
Step III; and (3) the final solution phase, that requires communicating certain
information about the interface system (see Section 2).

In [2], we considered a variant of the above approach in which the load
balancing occurs on a much finer mesh. The motivation was to address some
possible problems arising from the use of a coarse grid in computing the load
balance. In particular, we assume in Plan A that Nc � p where Nc is the size
of the coarse mesh and p is the number of processors. This is necessary to allow
the load balance to do an adequate job of partitioning the domain into regions
with approximately equal error. We also assume that Nc is sufficiently large
and the mesh sufficiently well adapted for the a posteriori error estimates
to accurately reflect the true behavior of the error. For the second step of
the paradigm, we assume that Np � Nc where Np is the target size for the
adaptive mesh produced in Step II of the paradigm. Taking Np � Nc is
important to marginalize the cost of redundant computations.

If any of these assumptions is weakened or violated, there might be a cor-
responding decline the effectiveness of the paradigm. In this case, we consider
the possibility of modifying Steps I and II of the paradigm as follows. This
variant is called Plan B in this work.

Step I: Load Balancing. On a single processor we adaptively create a
fine mesh of size Np, and use a posteriori error estimates to partition the
mesh such that each subregion has approximately equal error, similar to
Step I of the original paradigm.
Step II: Adaptive Meshing. Each processor is provided the complete
adaptive mesh and instructed to sequentially solve the entire problem.
However, in this case each processor should adaptively coarsen regions
corresponding to other processors, and adaptively refine its own subregion.
The size of the problem on each processor remains Np, but this adaptive
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rezoning strategy concentrates the degrees of freedom in the processor’s
subregion. At the end of this step, the mesh is regularized such that the
global mesh is conforming.
Step III: Global Solve. This step is the same as Plan A.

With Plan B, the initial mesh can be of any size. Indeed, our choice of
Np is mainly for convenience and to simplify notation; any combination of
coarsening and refinement could be allowed in Step II. Allowing the mesh in
Step I to be finer increases the cost of both the solution and the load balance
in Step I, but it allows flexibility in overcoming potential deficiencies of a very
coarse mesh in Plan A.

2 A Domain Decomposition Algorithm

In developing a domain decomposition solver appropriate for Step III, we
follow a similar design philosophy. In particular, our DD solver has low com-
munications costs, and recycles the sequential solvers employed in the Steps I
and II. Furthermore, we use the existing partially refined global meshes dis-
tributed among the processors as the basis of local subdomain solves. This
results in an overlapping DD algorithm in which the overlap is global, and
provides a natural built-in coarse grid space on each processor. Thus no spe-
cial coarse grid solve is necessary. Finally, a very good initial guess is provided
by taking the fine grid parts of the solution on each processor.

The DD algorithm is described in detail in [6, 9]; some convergence analysis
for a related algorithm in the symmetric, positive definite case can be found
in [5]. To simplify the discussion, we initially consider the case of only two
processors. We imagine the fine grid solutions for each of the two regions glued
together using Lagrange multipliers to impose continuity along the interface.
This leads to a block 5× 5 system




A11 A1γ 0 0 0
Aγ1 Aγγ 0 0 I
0 0 Aνν Aν2 −I
0 0 A2ν A22 0
0 I −I 0 0







δU1

δUγ
δUν
δU2

Λ




=




R1

Rγ
Rν
R2

Uν − Uγ



. (1)

Here U1 and U2 are the solutions for the interior of regions 1 and 2, while Uγ
and Uν are the solutions on the interface. R∗ are the corresponding residuals.
The blocks A11, A22 correspond to interior mesh points for regions 1 and
2, while Aγγ , Aνν correspond to the interface. Λ is Lagrange multiplier; the
identity matrix I appears because global mesh is conforming.

In a similar fashion, we can imaging the fine grid on processor 1 glued to
the coarse grid on processor 1 using a similar strategy. This results in a similar
block 5× 5 system
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A11 A1γ 0 0 0
Aγ1 Aγγ 0 0 I
0 0 Āνν Āν2 −I
0 0 Ā2ν Ā22 0
0 I −I 0 0







δU1

δUγ
δŪν
δŪ2

Λ




=




R1

Rγ
Rν
0

Uν − Uγ




(2)

where the barred quantities (e.g. Ā22) refer to the coarse mesh. The right hand
side of (2) is a subset of (1), except that we have set R̄2 ≡ 0. If local solves
in Step II of the procedure were done exactly, then the initial guess would
produce zero residuals for all interior points in the global system (1). We thus
assume R1 ≈ 0, R2 ≈ 0 at all steps. This approximation substantially cuts
communication and calculation costs.

Next, on processor 1 we reorder the linear system (2) as




0 −I 0 I 0
−I Āνν 0 0 Āν2
0 0 A11 A1γ 0
I 0 Aγ1 Aγγ 0
0 Ā2ν 0 0 Ā22







Λ
δŪν
δU1

δUγ
δŪ2




=




Uν − Uγ
Rν
R1

Rγ
0




and formally eliminate the upper 2× 2 block. The resulting local Schur com-
plement system is given by



A11 A1γ 0
Aγ1 Aγγ + Āνν Āγ2

0 Ā2ν Ā22





δU1

δUγ
δŪ2


 =




R1

Rγ +Rν + Āνν(Uν − Uγ)
0 + Ā2ν(Uν − Uγ)


 . (3)

The system matrix in (3) is just the stiffness matrix for the conforming
mesh on processor 1. To solve this system, processor 1 must receive Rν , and
Uν from processor 2 (and in turn send Rγ , and Uγ to processor 2). With
this information, the right hand side can be computed and the system solved
sequentially with no further communication. We use δU1 and δUγ to update
U1 and Uγ ; we discard δŪ2. The update could be local (U1 ← U1 + δU1,
Uγ ← Uγ + δUγ) or could require communication. In pltmg, the update
procedure is a Newton line search. Here is a summary of the calculation on
processor 1.

1. locally compute R1 and Rγ .
2. exchange boundary data (send Rγ and Uγ ; receive Rν and Uν).
3. locally compute the right-hand-side of the Schur complement system (3).
4. locally solve the linear system (3) via the multigraph iteration.
5. update U1 and Uγ using δU1 and δUγ .

We now consider the case of the global saddle point system in the general
case of p processors. Now the global system has the form
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Ass Asm Asi I
Ams Amm Ami −Zt
Ais Aim Aii 0
I −Z 0 0






δUs
δUm
δUi
Λ


 =




Rs
Rm
Ri

ZUm − Us


 . (4)

Here Ui are the interior unknowns for all subregions, and Aii is a block di-
agonal matrix corresponding to the interiors of all subregions; as before we
expect Ri ≈ 0. For the interface system, we (arbitrarily) designate one un-
known at each interface point as the master unknown, and all others as slave
unknowns; there will be more than one slave unknown at cross points (where
more than 2 subregions share a single interface point). As before we impose
continuity at interface points using Lagrange multipliers; Z �= I in general
due to cross points. If we reorder (4) and eliminate the Lagrange multipliers
and slave unknowns, the resulting Schur complement system is

(
Amm +AmsZ + ZtAsm + ZtAssZ Ami + ZtAsi

Aim +AisZ Aii

)(
δUm
δUi

)
=

(
Rm + ZtRs − (Ams + ZtAss)(ZUm − Us)

Ri −Ais(ZUm − Us)

)
. (5)

The system matrix is just the stiffness matrix for the global conforming finite
element space. The right hand side is the conforming global residual aug-
mented by some “jump” terms arising from the Lagrange multipliers.

The situation on processor k is analogous; we imagine gluing the fine sub-
region on processor k to the p − 1 coarse subregions on processor k. The
resulting saddle point problem has the form



Āss Āsm Āsi I
Āms Āmm Āmi −Z̄t
Āis Āim Āii 0
I −Z̄ 0 0






δŪs
δŪm
δŪi
Λ


 =




R̄s
R̄m
R̄i

Z̄Ūm − Ūs


 . (6)

The matrix Āii and the vector Ūi are fine for region k and coarse for the
p − 1 other regions. The residual R̄i corresponds to Ri on region k, and is
zero for the coarse subregions. Master interface variables are chosen from
region k if possible; this part of the local interface system on processor k
corresponds exactly to the global interface system. For other parts of the local
interface system, master unknowns can be chosen arbitrarily; in pltmg, they
are actually defined using arithmetic averages, but that detail complicates the
notation and explanation here. The vectors R̄m and R̄s are subsets of Rm and
Rs, respectively.

A local Schur complement system on processor k is computed analogously
to (5). This system has the form
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(
Āmm + ĀmsZ̄ + Z̄tĀsm + Z̄tĀssZ̄ Āmi + Z̄tĀsi

Āim + ĀisZ̄ Āii

)(
δŪm
δŪi

)
=

(
R̄m + Z̄tR̄s − (Āms + Z̄tĀss)(Z̄Ūm − Ūs)

R̄i − Āis(Z̄Ūm − Ūs)

)
. (7)

As in the 2 processor case, the system matrix is just the conforming finite
element stiffness matrix for the partially refined global mesh on processor k.
To compute the right hand side of (7), processor k requires interface solution
values and residuals for the global interface system. Once this is known, the
remainder of the solution can be carried out with no further communication.
To summarize, on processor k, one step of the DD algorithm consists of the
following.

1. locally compute R̄i and parts of Rs and Rm from subregion k.
2. exchange boundary data, obtaining the complete fine mesh interface vec-

tors Rm, Rs, Um and Us.
3. locally compute the right-hand-side of (7) (using averages).
4. locally solve the linear system (7) via the multigraph iteration.
5. update the fine grid solution for subregion k using subsets of δŪi, δŪm.

3 Numerical Experiments

We now present several numerical illustrations; the details of the example
problems are summarized below.

Example 1: Our first example is the Poisson equation

−∆u = 1 in Ω, (8)

u = 0 on ∂Ω,

where Ω is the domain shown in Figure 1.

Fig. 1. The domain (left) and solution (right) for the Poisson equation (8).

Example 2: Our second example is the convection-diffusion equation
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−∆u+ βuy = 1 in Ω,

u = 0 on ∂Ω, (9)

β = 105,

where Ω is the domain shown in Figure 2.

Fig. 2. The domain (left) and solution (right) for the convection-diffusion equation
(9).

Example 3: Our third example is the anisotropic equation

−a1uxx − a2uyy − f = 0 in Ω, (10)

(a1ux, a2uy) · n = c− αu on ∂Ω,

where Ω is the domain shown in Figure 3. Values of the coefficient functions
are given in Table 1.

Region a1 a2 f side c α

1 25 25 0 left 0 0
2 7 0.8 1 top 1 3
3 5.0 10−4 1 right 2 2
4 0.2 0.2 0 bottom 3 1
5 0.05 0.05 0

Table 1. Coefficient values for equation (10). Region numbers refer to Figure 3.

Example 4: Our fourth example is the optimal control problem

min

∫

Ω

(u − u0)
2 + γλ2 dx such that

−∆u = λ in Ω ≡ (0, 1)× (0, 1), (11)

u = 0 on ∂Ω,

1 ≤ λ ≤ 10, γ = 10−4,

u0 = sin(3πx) sin(3πy).
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Fig. 3. The domain (left) and solution (right) for the anisotropic equation (10).

This problem is solved by an interior point method described in [7, 1]. Three
finite element functions are computed; the state variable u, the Lagrange mul-
tiplier v, and the optimal control λ.

Fig. 4. The state variable (left, top), Lagrange multiplier (right, top) and optimal
control (bottom) for equation (11).

Our Linux cluster consists of 20 dual 1800 Athlon-CPU nodes with 2GB of
memory each, with a dual Athlon 1800 file server, also with 2GB of memory.
Communication is provided via a 100Mbit CISCO 2950G Ethernet switch.
The cluster runs the NPACI Rocks version of Linux, using Mpich.

In the case of the original paradigm, Plan A, in Step I for each problem
we created an adaptive mesh with N ≈ 10000 vertices. This mesh was then
partitioned for p = 8, 16, 32, 64, 128 processors, and the coarse problem was
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broadcast to all processors2. In Step II of the paradigm, we adaptively created
a mesh with N ≈ 100000 vertices. In particular, we first adaptively refined to
N ≈ 40000, solved that problem, adaptively refined to N ≈ 100000, and then
regularized the mesh. In Step III, pltmg first solved the local problem with
N ≈ 100000, in order to insure that interior residuals were small and validate
the assumption that coarse interior residuals could be set to zero in the DD
solver. This local solve was followed by several iterations of the DD solver.

In the case of the variant paradigm, Plan B, in Step I we created an
adaptive mesh with N ≈ 100000. As in Plan A, this mesh was then partitioned
for p = 8, 16, 32, 64, 128 processors, and broadcast to all processors. In Step
II, through a process of adaptive unrefinement/refinement, each processor
transferred approximately 50000 vertices from outside its subregion to inside,
so that the total number of vertices remained N ≈ 100000. This mesh was
them made conforming as in Step II of Plan A. In Step III, the local problem
was solved, followed by several iterations of the DD solver.

For both Plan A and Plan B, the convergence criteria for the DD iteration
was

HereG is the diagonal of the finite element mass matrix, introduced to account
for nonuniformity of the global finite element mesh. uh and eh are the finite
element solution and a posteriori error estimate, respectively, introduced to
include the approximation error in the convergence criteria. The norms in
various terms are different, but we have not observed any difficulties arising
as a result. For the multigraph iteration on each processor, the convergence
criteria was

The stronger criteria was to insure that the approximation on coarse interior
residuals by zero remained valid.

In Tables 2-5 we summarize the results of our computations. In these
tables, p is the number of processors, N is the number of vertices on the final
global mesh, and DD is the number of domain decomposition iterations used
in Step III. Execution times, in seconds, at the end of Steps I, II, and III are
also reported. Step I is done on a single processor. For Steps II and III, average
times across all processors are reported; the range of times is also included in
parentheses.

2Since our cluster had only 20 nodes, the results are simulated using Mpich for
the larger values of p.
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• The times for Step I are much larger for Plan B than Plan A due to the
larger size of the problem. The increase in time with increasing p is due
mostly to eigenvalue problems that are solved are part of the spectral
bisection load balancing scheme.

• The distribution of times in Steps II and III is due mainly to differences
in the local sequential algorithms, for example using one instead of two
multigraph V-cycles in a local solve.

• The DD algorithm in [5] is shown to converge independently of N , which
was empirically verified in [6] for the version implemented here. There is
some slight, empirically logarithmic, dependence on p.
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• For the convection-diffusion problem a multigraph preconditioned Bi-CG
algorithm was used, while for the Poisson equation and the anisotropic
equation regular preconditioned CG was used. Details of the multigraph
solver are given in [8].

• For the optimal control problem, the block linear systems were of order
3N , and each iteration required the solution of four linear systems with
the N ×N finite element stiffness matrix, and one system with an N ×N
matrix similar to the finite element mass matrix. See [1] for details.

In viewing the results as a whole, both paradigms scale reasonably well
as a function of p; since Step III is a very costly part of the calculation, it is
clearly worthwhile to try to make the convergence rate independent of p as



14 Randolph E. Bank

well as N , or at least to reduce the dependence on p. This is a topic of current
research interest.
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Summary. This paper presents an adaptive algebraic multigrid setup algorithm for
positive definite linear systems arising from discretizations of elliptic partial differ-
ential equations. The proposed method uses compatible relaxation to select the set
of coarse variables. The nonzero supports for the coarse-space basis are determined
by approximation of the so-called two-level “ideal” interpolation operator. Then, an
energy minimizing coarse basis is formed using an approach aimed to minimize the
trace of the coarse–level operator. The variational multigrid solver resulting from the
presented setup procedure is shown to be effective, without the need for parameter
tuning, for some problems where current algorithms exhibit degraded performance.

Key words: algebraic multigrid, compatible relaxation, trace minimization

1 Introduction

In this paper, we consider solving linear systems of equations,

Au = f , (1)

via algebraic multigrid (AMG), where A ∈ 	n×n is assumed to be symmetric
positive definite (SPD). Our AMG approach for solving (1) involves a station-
ary linear iterative smoother and a coarse-level correction. The corresponding
two-grid method gives rise to an error propagation operator having the fol-
lowing form,

ETG = (I − P (P tAP )−1P tA)(I −M−1A), (2)

where P : 	nc 
→ 	n is the interpolation operator and M is the approximate
inverse of A that defines the smoother. It is well known that if A is symmetric,
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then this variational form of the correction step is optimal in the energy norm.
As usual, a multilevel algorithm is obtained by recursion, that is, by solving
the coarse-level residual problem, involving Ac = P tAP , again by using a two-
grid method. The efficiency of such an approach depends on proper interplay
between the smoother and the coarse-level correction. In AMG, the smoother
is typically fixed and the coarse-level correction is formed to compensate for
its deficiencies. The primary task is, of course, the selection of P . It is quite
common to use only the information from the current level in order to com-
pute P and, hence, the next coarser space, because such a procedure can be
implemented efficiently and at a low computational cost. A general process
for constructing P is described by the following generic two-level algorithm:

• Choose a set of nc coarse degrees of freedom;
• Choose a sparsity pattern of interpolation P ∈ R

n×nc ;
• Define the weights of the interpolation (i.e., the entries of P ), giving rise

to the next level operator as Ac = P tAP ∈ R
nc×nc .

Standard algebraic multigrid setup algorithms are based on properties of
M -matrices (e.g., the assumption that algebraically-smooth error varies slowly
in the direction of strong couplings – typically defined in terms of the relative
size of the entries of the matrix) in their setup to construct P . Although these
traditional approaches have been shown to be extremely effective for a wide
range of problems [1, 14, 13, 15], the use of heuristics based on M -matrix
properties still limits their range of applicability. In fact, the components and
parameters associated with these approaches are often problem dependent.
Developing more robust AMG solvers is currently a topic of intense research.

General approaches for selecting the set of coarse variables are presented
in [12, 4]. These approaches use compatible relaxation (CR) to gauge the qual-
ity of (as well as construct) the coarse variable set, an idea first introduced by
Brandt [2]. In [3], an energy-based strength-of-connection measure is devel-
oped and shown to extend the applicability of Classical AMG when coupled
with adaptive AMG interpolation [7]. Recent successes in developing a more
general form of interpolation include [7, 6, 17, 19]. These methods are designed
to allow efficient attenuation of error in a subspace characterized locally by
a given set of error components, regardless of whether they are smooth or
oscillatory in nature. In [7, 6], these components are computed automatically
in the setup procedure using a multilevel power method iteration based on
the error propagation operator of the method itself.

The algorithm we propose for constructing P is motivated by the recently
developed two-level theory introduced in [9] and [10]. We explore the use of
this theory in developing a robust setup procedure in the setting of classical
AMG. In particular, as in classical AMG, we assume that the coarse-level
variables are a subset of the fine-level variables. Our coarsening algorithm
constructs the coarse variable set using the CR-based algorithm introduced
by Brannick and Falgout in [4]. The notion of strength of connection we use
in determining the nonzero sparsity pattern of the columns of P is based on
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a sparse approximation of the so-called two-level ideal interpolation operator.
Given the sparsity pattern of the columns of P , the values of the nonzero en-
tries of the columns of P are computed using the trace minimization algorithm
proposed by Wan, Chan, and Smith [18], based on the efficient implementa-
tion developed by Xu and Zikatanov [19].

2 Preliminaries and motivation

We begin by introducing notation. Since, in the presented algorithm, the
coarse-level degrees of freedom are viewed as a subset of the fine-level degrees

of freedom, prolongation P has the form P =

[
W
I

]
, where I is the nc × nc

identity and W ∈ R
ns×nc , ns = n− nc, contains the rest of the interpolation

weights. In this way the coarse space Vc ⊂ R
n is defined as Range(P ).

In what follows, we use several projections on the Range(P ). These pro-
jections are defined for any SPD matrix X as follows:

πX = P (P tXP )−1P tX,

where, for X = I, we omit the subscript and write π instead of πI . To relate
the construction of interpolation to a compatible relaxation procedure, we
introduce two operators: R = [0, I] and S, where R has the dimensions of
P t and S has the dimensions of P . The fact that the coarse-level degrees of
freedom are a subset of the fine-level degrees of freedom is reflected in the form
of R. The matrix S corresponds to the complementary degrees of freedom, i.e.
fine-level degrees of freedom, and can be chosen in many different ways, as
long as RS = 0. In the approach presented here, we assume that S = [I, 0]t.
With R and S in hand, we define the 2× 2 block splitting of any X ∈ R

n×n

by

X =

[
Xff Xfc

Xcf Xcc

]
, (3)

where Xff = StXS, Xfc = StXRt, Xcf = RXS, and Xcc = RXRt. We
also need the Schur complement of X with respect to this splitting, defined
as S(X) = Xcc −XcfX

−1
ff Xfc.

Given the smoother’s M , the F -relaxation form of compatible relaxation
(CR) we use in our algorithm yields an error propagation operator having the
following form:

Ef = (I −M−1
ff Aff ). (4)

The associated symmetrized smoother is then defined as M̃ := M t(M t+M −
A)−1M , where M t + M − A is assumed to be SPD, a sufficient condition
for convergence. To simplify the presentation here, we also assume that M
is symmetric, in which case 2M − A being SPD is also necessary for the
convergence of the smoothing iteration.
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2.1 Some convergence results

The convergence result motivating our approach is a theorem proved in [10],
giving the precise convergence factor of the two-grid algorithm.

Theorem 1. Let ETG be defined as in (2). Then

Assuming that the set of coarse degrees of freedom have been selected (i.e. R
is defined), the remaining task is defining a P to minimize K(P ). Finding such
a P is of course not at all straightforward, because the dependence of K(P ) on
P given in Theorem 2 is complicated. To make this more practical we consider
minimizing an upper bound of K, which is easily obtained by replacing πfM
with π, the �2 projection on Range(P ). We then obtain a measure for the
quality of the coarse space defined as follows:

Note that µ(P ) ≥ K(P ) for all P . Also, this measure suggests that error
components consisting of eigenvectors associated with small eigenvalues (i.e.,
error not effectively treated by relaxation) must be well approximated by P .
The following result from [9] gives P� that minimizes µ(P ).

Theorem 2. Assume that R, S, and µ are defined as above. Then

Moreover, the asymptotic convergence factor of CR provides an upper bound
for the above minimum as follows (see Theorem 5.1 in [9]).

Theorem 3. If the number of non-zeros per row in A is bounded, then there
exists a constant c, such that

A conclusion that follows immediately from this theorem is that ρf provides
a computable measure of the quality of the coarse space, that is, a measure of
the ability of the set of coarse variables to represent error not eliminated by
relaxation.

The main ideas of our algorithm, described next, are based on observations
and conclusions drawn from the above results.
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3 Compatible relaxation based coarsening

In this section, we give more details on the first step of the algorithm, selecting
the coarse degrees of freedom. The quality of the set of coarse-level degrees of
freedom, C, depends on two conflicting criteria:

C1: algebraically-smooth error should be approximated well by some vec-
tor interpolated from C, and

C2: C should have substantially fewer variables than on the fine level.

In our adaptive AMG solver, the set of coarse variables is selected using the
CR-based coarsening approach developed in [4]. This coarsening scheme is
based on the two-level multigrid theory outlined in § 2: for a given splitting of
fine-level variables Ω into C and F , F denoting the fine-level only variables,
if CR is fast to converge, then there exists a P such that the resulting two-
level method is uniformly convergent. The algorithm ties the selection of C
to the smoother. The set of coarse variables is constructed using a multistage
coarsening algorithm, where a single stage consists of: (1) running several
iterations of CR (based on the current set F ) and (2) if CR is slow to converge,
adding an independent set of fine-level variables (not effectively treated by
CR) to C. Steps (1) and (2) are applied repeatedly until the convergence of
CR is deemed sufficient, giving rise to a sequence of coarse variable sets:

∅ = C0 ⊆ C1 ⊆ ... ⊆ Cm,

where, for the accepted coarse set C := Cm, convergence of CR is below a
prescribed tolerance. Hence, this algorithm constructs C so that C1 is strictly
enforced and C2 is satisfied as much as possible. The details of this algorithm
are given in [4].

An advantage of this approach, over the two-pass algorithm employed in
classical AMG, is the use of the asymptotic convergence factor of compatible
relaxation as a measure of the quality of C and, thus, the ability to adapt C
when necessary. An additional advantage of this approach is that the algorithm
does not rely on the notion of strength of connections to form C, instead,
only the graph of matrix A and the error generated by the CR process are
used to form C. This typically results in more aggressive coarsening than in
traditional coarsening approaches, especially on coarser levels where stencils
tend to grow. Additionally, this approach has been shown to work for a wide
range of problems without the need for parameter tuning [4].

We conclude this section by proving the following proposition relating the
spectral radii of Ef to the condition number of Aff .

Proposition 1. Consider compatible relaxation defined by Ef and let

ρ(Ef ) ≤ a < 1. (5)

Then

κ(Aff ) ≤ κ(Mff )
1 + a

1− a .
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Proof. Let λ be any eigenvalue of M−1
ff Aff . Then 1 − λ is an eigenvalue of

(I −M−1
ff Aff ). From (5) we have that

|1− |λ|| ≤ |1− λ| ≤ a, implying 1− a ≤ |λ| ≤ 1 + a.

Thus κ(M−1
ff Aff ) ≤ (1 + a)/(1− a). From the assumption on the CR conver-

gence factor, it follows that Mff is positive definite. The smallest eigenvalue
of Aff is then estimated as follows:

λmin(Aff ) = inf
x �=0

(Affx, x)

(x, x)
≥
λmin(M

−1/2
ff AffM

−1/2
ff )

λmax(M
−1
ff )

=
λmin(M−1

ff Aff )

λmax(M
−1
ff )

≥ (1− a)λmin(Mff).

Estimating the maximum eigenvalue of Aff in a similar fashion leads to the
inequality

λmax(Aff ) ≤ (1 + a)λmax(Mff ). (6)

The proof is then completed by using the last two inequalities in an obvious
way.

Hence, fast-to-converge CR and Mff being well conditioned imply that Aff
is well conditioned. For many discrete PDE problems, Mff is very well con-
ditioned. This, together with the result from the next section, shows that fast
convergence of CR indicates the existence of a sparse and local approximation
to the inverse of Aff and, hence, a good approximation to the two-level ideal
interpolation operator. We note that, when M is ill conditioned, simple rescal-
ing can often be used to reduce the problem to the well-conditioned case. For
example, replacing A by D−1/2AD−1/2 and M byD−1/2MD−1/2, where D
is the diagonal of A, may produce a well conditioned Mff so that the above
conclusions apply.

4 Inverse of sparse matrices and supports of coarse grid
basis vectors

We describe now the parts of our algorithm that relate to the choice of the
sparsity pattern of P . Set Ω = {1, . . . , n} and assume that the coarse grid
degrees of freedom are C = {ns + 1, . . . , n}, where ns = n − nc. This leads
to a 2 × 2 splitting of A, as given by (3). We aim to construct a covering of
Ω with nc sets {Ωi}nc

i=1, such that ∪nc

i=1Ωi = Ω contain information on the
non-zero structure of the entries of P . We desribe our approach using some
elementary tools from graph theory.

With matrix Aff , we associate a graph, G, whose set of vertices is Ω \C,
and set of edges is
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E = {(i, j) ∈ Ω \ C if and only if [Aff ]ij �= 0}.

By graph distance between vertices i and j, denoted by |i− j|G, we mean the
length (i.e., the number of edges) of a shortest path connecting i and j in G.
We assume without loss of generality that G is connected, so that the graph
distance between any i and j is well defined. An important observation (see,
for example, [11]) related to the sparsity of A is that (Akff ei, ej) = 0 holds for
all k, i, and j such that 1 ≤ k < |i − j|G. This in turn shows that, for any
polynomial p(x) of degree less than |i− j|G, we have that

[A−1
ff ]ij = (A−1

ff ei, ej) = ((A−1
ff − p(Aff ))ei, ej).

Taking the infimum over all such polynomials and using a standard approxi-
mation theory result for approximating 1/x with polynomials on the interval
[λmin(Aff ), λmax(Aff )], we arrive at the following inequality:

[A−1
ff ]ij ≤ c q|i−j|G−1, (7)

where q < 1 depends on condition number, κ, of Aff and can be taken to

be
κ1/2 − 1

κ1/2 + 1
, and c is a constant. The estimate on the decay of [A−1

ff ]ij given

in (7) was contributed by Vassilevski [16]. It is related to similar results for
banded matrices due to Demko [8]. This reference was also brought to our
attention by Vassilevski [16].

A simple and important observation from (7) is that a polynomial (or close
to polynomial) approximation to the inverse A−1

ff indicates exactly where the

large entries of A−1
ff are. Such an approximation can be constructed efficiently,

since if Aff is well-conditioned, the degree of the polynomial can taken to be
rather small and, hence, the approximation will be sparse.

We use this observation in our algorithm to construct sets Ωi in the follow-
ing way: We first fix the cardinality of eachΩi to be ni (i.e. the number of non-
zeros per column of P ). Then, starting with initial guess W0 = 0 ∈ R

ns×nc ,
we iterate towards the solution of AffW = Afc by � steps of damped Jacobi
iterations (� ≤ 5):

Wk = Wk−1 + ωD−1
ff (Afc −AffWk−1), k = 1, . . . , �. (8)

Since this iteration behaves like a polynomial approximation to A−1
ff , by (7),

it follows that the largest entries in A−1
ff will in fact show as large entries in

W�. Thus to define Ωi we pick the largest ni entries in each column of W�.
There are also other methods that we are currently implementing for ob-

taining a polynomial approximation of A−1
ff , such as a Conjugate Gradient

approximation and also changing ni adaptively. This is ongoing research. We
point out that for the numerical results reported in 6, the approximations are
based on the Jacobi iteration given in (8) with ni fixed at the beginning.



22 J. Brannick and L. Zikatanov

5 On the best approximation to P� in the trace norm

Since a covering of Ω was constructed in § 4, we proceed with the part of the
algorithm for finding the interpolation weights. From the form of the iteration
given in (8) for the sets {Ωi}nc

i=1, we have the following

Each Ωi contains exactly one index from C. (9)

To explore the relations between P obtained via trace minimization and
the minimizer of µ(·) introduced in § 2 consider the following affine subspaces
of R

n×nc :

X = {Q : Q =

[
W
I

]
, W ∈ R

ns×nc},
XH = {Q : Q ∈ X , Qji = 0, for all j /∈ Ωi; Q1c = e}.

(10)

Here, e is an arbitrary nonzero element of R
n (as seen from (9) e is subject

to the restriction that it is equal to 1 at the coarse grid degrees of freedom).
The interpolation that we use in our algorithm is then defined as the unique

solution of the following constrained minimization problem:

P = arg minJ(Q) := argmin trace(QtAQ), Q ∈ XH . (11)

Various relevant properties of this minimizer can be found in the literature.
Existence and uniqueness are shown in [18, 19]. A proof that P is piecewise
“harmonic” if e is harmonic can be found in [19]. It is also well known that
the i-th column of the solution to (11) is given by

[P ]i = IiA
−1
i ItiMae, M−1

a =

nc∑
i=1

IiA
−1
i Iti , (12)

where Ii ∈ R
n×ni and (Ii)kl = δkl if both k and l are in Ωi and zero otherwise,

and Ai = ItiAIi. Associate with each Ωi a vector space, Vi, defined as:

Vi = span{ej, j ∈ Ωi}, dimVi = ni.

where ej is the j-th standard canonical Euclidean basis vectors. Then, in (12),
the matrix M−1

a is the standard additive Schwarz preconditioner for A based

on the splitting

nc∑
i=1

Vi = R
n.

We also have that, for any pair Q1 ∈ X and Q2 ∈ X ,

(Q1 −Q2)
tAP� = 0. (13)

From this relation, in the extreme case, when each Ωi contains {1, . . . , ns} and
e = P�1c, we can easily obtain that P� ∈ XH , P� minimizes J(·) and J(P�) =
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trace(S(A)). Remember that S(A) is the Schur complement associated with
the 2× 2 splitting of A.

Since J(Q) is in fact also a norm (equivalent to the usual Frobenius norm

for Q), for convenience, we denote it by |||Q|||2A := J(Q). We have the following
result:

Theorem 4. Let P be the unique solution of (11). Then

|||P� − P |||A = min
Q∈XH

|||P� −Q|||A (14)

Proof. Let Q ∈ XH be arbitrary. We use formula (13) and write

J(Q) = J(P� + (Q− P�)) = trace(S(A)) + |||P� −Q|||2A . (15)

If we take the the minimum on the left side in (15) with respect to all Q ∈ XH ,
then we must also achieve a minimum on the right side. Hence

|||P� − P |||A = min
Q∈XH

|||P� −Q|||A ,

which concludes the proof of the theorem.

In fact, this theorem, provides a way to estimate |||P� − P |||A, and also
to choose e (an error component to be represented exactly on coarser level).
Since, as is well known (and can be directly computed), J(P ) = (Mae, e),
from (15), we have that

|||P� − P |||2A = (Mae, e)− trace(S(A)). (16)

We can now take the minimum with respect to e on both sides of (16) and
arrive at

|||P� − P |||2A = trace[S(Ma)− S(A)], (17)

where S(Ma) is the Schur complement of Ma and this equality holds for

e =

[
−M−1

a,ffMa,fc1c
1c

]
. If we want to estimate the actual error of the best

approximation, we need to estimate both quantities on the right side of (17). In
fact, the first term, trace[S(Ma)], can be obtained explicitly since (9) implies
that S(Ma) is diagonal. This can be easily seen by using the expression for
M−1
a , given in (12), in terms of Ai and Ii, and also the obvious relation

M−1
a =

[
∗ ∗
∗ [S(Ma)]

−1

]
. To get an accurate and computable estimate on the

other quantity appearing on the right side of (16), namely, trace(S(A)), we
use the result from § 4 to get the following approximation

trace(S(A)) ≈ trace(Acc −Gcc),

where, as in § 4,Gcc = Acfp(Aff )Afc, and p(x) is a polynomial approximating
x−1 on [λmin(Aff ), λmax(Aff )]. Such estimates and also the relations between
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optimizing the right hand side of (17), CR, and the optimal e (optimal for
the norm |||·|||A), are also subject to an ongoing research. Currently in the
numerical experiments we use an error component, e, obtained during the CR
iteration.

6 Numerical Results

We consider several problems of varying difficulty to demonstrate the effec-
tiveness of our approach. Our test problems correspond to the bilinear finite
element discretization of

−∇ ·D(x, y)∇u(x, y) = f in Ω = [0, 1]× [0, 1] (18)

u(x, y) = 0 on ∂Ω (19)

on a uniform rectangular grid. Our first test problem is Laplace’s equation
(D ≡ 1), a problem for which AMG works well. We consider the more dif-

ficult second problem defined by taking D =

[
1 0
0 10−1

]
. In [5], numerical

experiments demonstrate the degraded performance classical AMG exhibits
for this problem without appropriate tuning of the strength parameter (θ).
This is an example of the fragility of current AMG methods. For our last test,
we let D = 10−8 in 20 percent of the elements (randomly selected) and D = 1
in the remaining elements. This type of rough coefficient problem becomes
increasingly difficult with problem size. Classical AMG performance has been
shown to degrade with increasing problem size for this problem as well [7].

To test asymptotic convergence factors, we use f = 0 and run 40 itera-
tions of V (1, 1) cycles with Gauss-Seidel relaxation. The trace minimization
form of interpolation is computed using five iterations of an additive Schwarz
preconditioned Conjugate Gradient solver.

The results in Table 1 demonstrate that our algorithm exhibits multigrid-
like optimality for test problems one and two. Test two points to one advantage
of our approach, namely, that our solver maintains optimality without pa-
rameter tuning being necessary. Although the convergence factor of our solver
grows with increasing problem size for test problem three, this is a rather
difficult problem for any iterative solver, and our results are promising when
compared to existing multilevel algorithms. To obtain a more complete picture
of the overall effectiveness of our multigrid iteration, we examine also operator
complexity, defined as the number of nonzero entries stored in the operators
on all levels divided by the number of non-zero entries in the finest-level ma-
trix. The operator complexity can be viewed as indicating how expensive the
entire V -cycle is compared to performing only the finest-level relaxations of
the V -cycle. We note that the operator complexities are acceptable for all of
the test problems and remain bounded with repsect to problem size.
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N Problem 1 Problem 2 Problem 3

1282 .085 / 5 / 1.29 .110 / 5 / 1.31 .098 / 5 / 1.79

2562 .113 / 6 / 1.31 .124 / 6 / 1.35 .139 / 7 / 1.83

5122 .118 / 7 / 1.33 .125 / 7 / 1.38 .197 / 9 / 1.87

Table 1. Asymptotic convergence factors / number of levels / operator complexities
for test Problems 1-3.

7 Conclusions

Our current approach is only a first step towards developing a more gen-
eral AMG algorithm. Using CR in constructing C and a trace minimization
form of interpolation, we are able to efficiently solve problems arising from
scalar PDEs. For systems of PDEs, there are other approaches that fit quite
well in the framework described here. The CR algorithm can be extended in a
straightforward way to include block smoothers as well as to incorporate more
general algorithms for trace minimization (such as the one described in [17]).
Another attractive alternative is presented by using adaptive coarse space defi-
nition, namely by running simultaneous V-cycle iterations on the linear system
that we want to solve and the corresponding homogeneous system (the latter
with random initial guess) and using the error of the homogeneous iteration
to define the constraint in the trace minimization formulation. Although ex-
pensive (part of the setup process has to be performed on every iteration),
this procedure should be very robust and work in cases when there are many
algebraically smooth error components that need to be approximated.
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1 Introduction

An important indicator of the efficiency of a domain decomposition precon-
ditioner is the condition number of the preconditioned system. Upper bounds
for the condition numbers of the preconditioned systems have been the focus
of most analyses in domain decomposition [21, 20, 23]. However, in order to
have a fair comparison of two preconditioners, the sharpness of the respective
upper bounds must first be established, which means that we need to derive
lower bounds for the condition numbers of the preconditioned systems.

In this paper we survey lower bound results for domain decomposition
preconditioners [7, 3, 8, 5, 22] that can be obtained within the framework of
additive Schwarz preconditioners. We will describe the results in terms of the
following model problem.

Find uh ∈ Vh such that
∫

Ω

∇uh · ∇v dx =

∫

Ω

fv dx ∀ v ∈ Vh, (1)

where Ω = [0, 1]2, f ∈ L2(Ω), and Vh is the P1 Lagrange finite element space
associated with a uniform triangulation Th of Ω. We assume that the length
of the horizontal (or vertical) edges of Th is a dyadic number h = 2−k.

We recall the basic facts concerning additive Schwarz preconditioners in
Section 2 and present the lower bound results for one-level and two-level addi-
tive Schwarz preconditioners, Bramble-Pasciak-Schatz preconditioner and the
FETI-DP preconditioner in Sections 3–6. Section 7 contains some concluding
remarks.

2 Additive Schwarz Preconditioners

Let V be a finite dimensional vector space and A : V −→ V ′ be an SPD
operator, i.e., 〈Av1, v2〉 = 〈Av2, v1〉 ∀ v1, v2 ∈ V and 〈Av, v〉 > 0 for any
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v ∈ V \ {0}, where 〈·, ·〉 denotes the canonical bilinear form between a vector
space and its dual.

The ingredients for an additive Schwarz preconditioner B for A are (i)
auxiliary finite dimensional vector spaces Vj for 1 ≤ j ≤ J , (ii) SPD op-
erators Aj : Vj −→ V ′

j and (iii) connection operators Ij : Vj −→ V . The
preconditioner B : V ′ −→ V is then given by

B =

J∑
j=1

IjA
−1
j Itj ,

where Itj : V ′ −→ V ′
j is the transpose of Ij , i.e. 〈Itjφ, v〉 = 〈φ, Ijv〉 ∀φ ∈ V ′

and v ∈ Vj .

Under the condition V =

J∑
j=1

IjVj , the operator B is SPD and the max-

imum and minimum eigenvalues of BA : V −→ V are characterized by the
following formulas [26, 1, 25, 14, 21, 8, 23]:

λmax(BA) = max
v∈V \{0}

〈Av, v〉

min
v=

PJ
j=1 Ijvj

vj∈Vj

J∑
j=1

〈Ajvj , vj〉
, (2)

λmin(BA) = min
v∈V \{0}

〈Av, v〉

min
v=

PJ
j=1 Ijvj

vj∈Vj

J∑
j=1

〈Ajvj , vj〉
. (3)

3 One-Level Additive Schwarz Preconditioner

Let Ah : Vh → V ′
h be defined by

〈Ahv1, v2〉 =
∫

Ω

∇v1 · ∇v2 dx ∀ v1, v2 ∈ Vh.

We can precondition the operator Ah using subdomain solves from an over-
lapping decomposition, which is created by (i) dividing Ω into J = H−2

nonoverlapping squares (H is a dyadic number � h) and (ii) enlarging the
nonoverlapping subdomains by an amount of δ (≤ H) so that each of the
overlapping subdomains Ω1, . . . , ΩJ is the union of triangles from Th (cf. Fig-
ure 1). We take the auxiliary space Vj ⊂ H1

0 (Ωj) to be the finite element space
associated with the triangulation of Ωj by triangles from Th, and define the
SPD operator Aj : Vj −→ V ′

j by



Lower Bounds in Domain Decomposition 29

〈Ajv1, v2〉 =
∫

Ωj

∇v1 · ∇v2 dx ∀ v1, v2 ∈ Vj .

The space Vj is connected to Vh by the trivial extension map Ij and the
one-level additive Schwarz preconditioner [19] BOL for Ah is defined by

BOL =

J∑
j=1

IjA
−1
j Itj . (4)

Fig. 1. An overlapping domain decomposition

It is well-known that the preconditioner BOL does not scale. Here we give
a lower bound for the condition number κ(BOLAh) that explains this phe-
nomenon. We use the notation A � B (B � A) to represent the inequality
A ≤ (constant)B, where the positive constant is independent of h, J , δ and
H . The statement A ≈ B is equivalent to A � B and A � B.

Theorem 1. Under the condition δ ≈ H, it holds that

κ(BOLAh) = λmax(BOLAh)/λmin(BOLAh) � J. (5)

Proof. Since the connection maps Ij preserve the energy norm (in other words,
〈AhIjv, Ijv〉 = 〈Ajv, v〉 ∀ v ∈ Vj), it follows immediately from (2) that

λmax(BOLAh) ≥ 1. (6)

Let v∗ ∈ H1
0 (Ω) be the piecewise linear function with respect to the tri-

angulation of Ω of mesh size 1/4 such that v∗ equals 1 on the four central
squares (cf. the first figure in Figure 2). Since v∗ is independent of h, we have

〈Ahv∗, v∗〉 = |v∗|2H1(Ω) ≈ 1 (7)

as h ↓ 0. We will show that, for this function v∗ ∈ Vh, the estimate

J∑
j=1

〈Ajvj , vj〉 � J〈Ahv∗, v∗〉 (8)

holds whenever

δ
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v∗ =

J∑
j=1

Ijvj and vj ∈ Vj for 1 ≤ j ≤ J. (9)

It follows immediately from (3), (8) and (9) that

λmin(BOLAh) � 1/J, (10)

which together with (6) implies (5).

Fig. 2. Subdomains for Theorem 1

In order to derive (8), we first focus on a single subdomainΩj that overlaps
with the square where v∗ is identically 1 (cf. the second figure in Figure 2), and
without loss of generality, assume that δ = H/4. Condition (9) then implies
vj = 1 in the central area of Ωj (cf. the third figure of Figure 2).

We can construct a weak interpolation operator Π from H1(Ωj) into the
space of functions that are piecewise linear with respect to the triangulation of
Ωj by its two diagonals (cf. the fourth figure of Figure 2). For v ∈ H1(Ωj), we
define the value ofΠv at the four corners of Ωj to be the mean of v on ∂Ωj and
the value of Πv at the center of Ωj to be the mean of v on the central area of
Ωj . It follows that Πvj equals 1 at the center of ΩJ and vanishes identically on
∂Ωj . A simple calculation shows that |Πvj |2H1(Ωj)

≈ 1. On the other hand, the

weak interpolation operator satisfies the estimate |Πvj |H1(Ωj) � |vj |H1(Ωj).
We conclude that

〈Ajvj , vj〉 = |vj |2H1(Ωj)
� 1. (11)

Since there are J/4 such subdomains, (8) follows from (7) and (11).

Remark 1. The estimate (5) implies that, for a given tolerance, the number of
iterations for the preconditioned conjugate gradient method grows at the rate
of O(

√
J) = O(1/H), a phenomenon that has been observed numerically [21].

See also the discussion on page 17 of [23].

4 Two-Level Additive Schwarz Preconditioner

To obtain scalability for the additive Schwarz overlapping domain decompo-
sition preconditioner, Dryja and Widlund [10] developed a two-level precon-
ditioner by introducing a coarse space.
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Let TH be a coarse triangulation of Ω obtained by adding diagonals to the
underlying nonoverlapping squares whose sides are of length H (cf. the second
figure in Figure 1) and VH ⊂ H1

0 (Ω) be the corresponding P1 finite element
space. The coarse space VH is connected to Vh by the natural injection IH ,
and AH : VH −→ V ′

H is defined by

〈AHv1, v2〉 =

∫

Ω

∇v1 · ∇v2 dx ∀ v1, v2 ∈ VH .

The two-level preconditioner BT L : V ′
h −→ Vh is then given by

BT L = IHA
−1
H ItH +BOL = IHA

−1
H ItH +

J∑
j=1

IjA
−1
j Itj . (12)

It follows from the well-known estimate [11]

κ(BT LAh) � 1 +
H

δ
(13)

that BT L is an optimal preconditioner when δ ≈ H (the case of generous
overlap). However, in the case of small overlap where δ � H , the number
1 + (H/δ) becomes significant and it is natural to ask whether the estimate
(13) can be improved. That the estimate (13) is sharp is established by the
following lower bound result [3].

Theorem 2. In the case of minimal overlap where δ = h, it holds that

κ(BT LAh) �
H

h
. (14)

We will sketch the derivation of (14) in the remaining part of this section and
refer to [3] for the details.

First observe that, by comparing (4) and (12), the estimate

λmax(BT LAh) ≥ λmax(BOLAh) ≥ 1 (15)

follows immediately from (2) and (6).
In the other direction, it suffices to construct a finite element function

v∗ ∈ Vh such that, for any decomposition v∗ = IHvH +

J∑
j=j

Ijvj where vH ∈ VH

and vj ∈ Vj ,
H

h
〈Ahv∗, v∗〉 � 〈AHvH , vH〉+

J∑
j=1

〈Ajvj , vj〉. (16)

The estimate λmin(BT LAh) � h/H then follows from (3) and (16), and to-
gether with (15) it implies (14).
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Since the subdomains are almost nonoverlapping when δ = h, we can
construct v∗ using techniques from nonoverlapping domain decomposition.
Let Ω̂j (1 ≤ j ≤ J) be the underlying nonoverlapping decomposition of Ω
(cf. the second figure in Figure 1) from which we construct the overlapping

decomposition, and Γ =

J⋃
j=1

∂Ω̂j \ ∂Ω be the interface of Ω̂1, . . . , Ω̂J . The

space Vh(Γ ) of discrete harmonic functions is defined by

Vh(Γ ) = {v ∈ Vh :

∫

Ω

∇v · ∇w dx = 0 ∀w ∈ Vh, w
∣∣
Γ

= 0}.

We will choose v∗ from Vh(Γ ). Note that a discrete harmonic function is
uniquely determined by its restriction on Γ .

Let E be an edge of length H shared by two nonoverlapping subdomains
Ω̂1 and Ω̂2. Let g be a function defined on E such that (i) g is piecewise
linear with respect to the uniform subdivision of E of mesh size H/8, (ii) g
is identically zero within a distance of H/4 from either one of the endpoints
of E, (iii) g is L2(E)-orthogonal to all polynomials on E of degree ≤ 1. (It is
easy to see that such a function g exists by a dimension argument.) We then
define v∗ ∈ Vh(Γ ) to be g on E and 0 on Γ \ E.

It follows from property (ii) of g and standard properties of discrete har-
monic functions [2, 6, 23] that

〈Ahv∗, v∗〉 = |v∗|2H1(Ω) ≈
2∑
j=1

|v∗|2H1/2(∂Ω̂j)

≈ |g|2H1/2(E) ≈
1

H
‖g‖2L2(E) =

1

H
‖v∗‖2L2(E). (17)

Suppose v∗ = IHvH +
J∑
j=1

Ijvj where vH ∈ VH and vj ∈ Vj for 1 ≤ j ≤ J . Let

Ec be the set of points in E whose distance from the endpoints of E exceed
H/4. Since vH

∣∣
E

is a polynomial of degree ≤ 1, property (iii) of g implies that

‖v∗‖2L2(Ec)
≤ ‖v∗ − vH‖2L2(Ec)

= ‖
J∑
j=1

vj‖2L2(Ec)
= ‖v1 + v2‖2L2(Ec)

, (18)

where we have also used the fact that vj = 0 on Ec for j �= 1, 2 because δ = h.
Finally, since v1 (resp. v2) vanishes on ∂Ω1 (resp. ∂Ω2) which is within

one layer of elements from E, a simple calculation shows that

‖vj‖2L2(Ec)
� h|vj |2H1(Ωj) = h〈Ajvj , vj〉 for j = 1, 2. (19)

The estimate (16) follows from (17)–(19).

Remark 2. Theorem 2 also holds for nonconforming finite elements [7] and
mortar elements [22]. It can also be extended to fourth order problems [8, 7]
in which case the right-hand side of (14) becomes (H/h)3.
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5 Bramble-Pasciak-Schatz Preconditioner

Let Γ be the interface of a nonoverlapping decomposition of Ω and Vh(Γ )
be the space of discrete harmonic functions as described in Section 4. By a
parallel subdomain solve, we can reduce (1) to the following problem.

Find ūh ∈ Vh(Γ ) such that

〈Shūh, v〉 =
∫

Ω

fv dx ∀ v ∈ Vh(Γ ),

and the Schur complement operator Sh : Vh(Γ ) −→ Vh(Γ )′, defined by

〈Shv1, v2〉 =
∫

Ω

∇v1 · ∇v2 dx ∀ v1, v2 ∈ Vh(Γ ),

is the operator that needs a preconditioner.
The auxiliary spaces for the Bramble-Pasciak-Schatz preconditioner [2] are

the coarse space VH introduced in Section 4, and the edge spaces V� = {v ∈
Vh(Γ ) : v = 0 on Γ \ E�} associated with the edges E� of the interface Γ .
The space VH is equipped with the SPD operator AH introduced in Section 4,
and is connected to Vh(Γ ) by the map IH that maps v ∈ VH to the discrete
harmonic function that agrees with v on Γ . The edge space V� is connected to
Vh(Γ ) by the natural injection Ij , and is equipped with the Schur complement
operator S� : V� −→ V ′

� defined by

〈S�v1, v2〉 =

∫

Ω

∇v1 · ∇v2 dx ∀ v1, v2 ∈ V�.

The preconditioner BBP S : Vh(Γ )′ −→ Vh(Γ ) is then given by

BBP S = IHA
−1
H IH +

L∑
�=1

I�S
−1
� It� .

The sharpness of the well-known estimate [2]

κ(BBPSSh) �
(
1 + ln

H

h

)2

(20)

follows from the following lower bound result [8].

Theorem 3. It holds that

κ(BBP SSh) �
(
1 + ln

H

h

)2

. (21)

Since the natural injection I� preserves the energy norm, it follows imme-
diately from (2) that

λmax(BBP SSh) ≥ 1. (22)
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To complete the proof of (21), it suffices to construct v∗ ∈ Vh(Γ ) such that,

for the unique decomposition v∗ = IHvH +

L∑
�=1

v� where vH ∈ VH and v� ∈ V�,

〈AHvH , vH〉+
L∑
�=1

〈S�v�, v�〉 �
(
1 + ln

H

h

)2

〈Shv∗, v∗〉, (23)

which together with (3) implies that λmin(BBP SSh) �
(
1 + ln

H

h

)−2

and

thus, in view of (22), completes the proof of (21). Below we will sketch the
construction of v∗ and refer to [8] for the details.

Since the derivation of (20) depends crucially on the discrete Sobolev in-
equality [2, 6, 23] that relates the L∞ norm and the H1 norm of finite element
functions on two-dimensional domains, v∗ is intimately related to piecewise lin-
ear functions on an interval with special property with respect to the Sobolev

norm of order
1

2
. Let I = (0, 1). A key observation is that

|v|2
H

1/2
00 (I)

≈
∞∑
n=1

n|vn|2 ∀ v ∈ H1/2
00 (I), (24)

where
∞∑
n=1

vn sin(nπx) is the Fourier sine-series expansion of v.

Let Tρ (ρ = 2−k) be a uniform dyadic subdivision of I and Lρ ⊂ H1
0 (I) be

the space of piecewise linear functions on I (with respect to Tρ) that vanish
at 0 and 1. The special piecewise linear functions that we need come from the
functions SN (N = 2k = ρ−1) defined by

SN (x) =
N∑
n=1

( 1

4n− 3

)
sin

(
(4n− 3)πx

)
. (25)

From (24) and (25) we find

|SN |2H1/2
00 (I)

≈ lnN ≈ | ln ρ|, (26)

and a direct calculation shows that

|SN |2H1(I) ≈ N = ρ−1. (27)

Now we define σρ ∈ Lρ to be the nodal interpolant of SN . It follows from (26),
(27) and an interpolation error estimate that

|σρ|2H1/2
00 (I)

≈ | ln ρ|. (28)

Remark 3. Since ‖σρ‖L∞(I) = σρ(1/2) = SN(1/2) ≈ lnN = | ln ρ|, the esti-
mate (28) implies the sharpness of the discrete Sobolev inequality.
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Let σI

ρ be the piecewise linear interpolant of SN with respect to the coarse
subdivision {0, 1/2, 1} of I. Then a calculation using (24) yields

|σρ − σI

ρ|2H1/2
00 (0,1/2)

= |σρ − σI

ρ|2H1/2
00 (1/2,1)

≈ | ln ρ|3. (29)

Finally we take ρ = h/2H and g(x) = σρ
(
(x+H)/2H

)
. Then g is a continuous

piecewise linear function on [−H,H ] with respect to the uniform partition of
mesh size h. Note that SN is symmetric with respect to the midpoint 1/2
and hence g is symmetric with respect to 0. We can now define v∗ ∈ Vh(Γ )
as follows: (i) v∗ vanishes on Γ except on the two line segments P1P2 and
P3P4 (each of length 2H) that form the interface of the four nonoverlapping
subdomains Ω1, . . . , Ω4 (cf. the first figure in Figure 3), and (ii) v∗ = g on
P1P2 and P3P4.

Fig. 3. The four subdomains associated with v∗

It is clear that v∗ = 0 outside the four subdomains and, by the symmetry
of g, v∗ = g on one half of ∂Ωj (represented by the thick lines in the second
figure in Figure 3) and vanishes at the other half, for 1 ≤ j ≤ 4. Therefore,
we have, from (28) and standard properties of discrete harmonic functions,

〈Shv∗, v∗〉 =
4∑
j=1

|v∗|2H1(Ωj)
≈

4∑
j=1

|v∗|2H1/2(∂Ωj)

≈ |g|2
H

1/2
00 (−H,H)

= |σρ|2H1/2
00 (0,1)

≈ | ln ρ| ≈ ln
H

h
. (30)

The function v∗ admits a unique decomposition v∗ = IHvH +
4∑
�=1

v�, where

vH ∈ VH , v� ∈ V (E�) and E� (1 ≤ j ≤ 4) are the interfaces of Ω1, . . . , Ω4 (cf.
the third figure in Figure 3). On each E�, v� = v − IHvH agrees with g − gI ,
where gI is the linear polynomial that agrees with g at the two endpoints of
E�. Therefore it follows from (29) that

〈S�v�, v�〉 ≈ | ln ρ|3 ≈
(

ln
H

h

)3

for 1 ≤ � ≤ 4, (31)

and the estimate (23) follows from (30) and (31).
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6 FETI-DP Preconditioner

Let Ω1, . . . , ΩJ be a nonoverlapping decomposition of Ω aligned with Th (cf.
the first two figures in Figure 4) and Ṽh = {v ∈ L2(Ω) : v is a standard P1

finite element function on each subdomain, v is not required to be continuous
on the interface Γ except at the cross points and v = 0 on ∂Ω}. In the Dual-
Primal Finite Element Tearing and Interconnecting (FETI-DP) approach [13],
the problem (1) is rewritten as

J∑
j=1

∫

Ωj

∇uh · ∇v dx+ 〈φ, v〉 =

∫

Ω

fv dx ∀ v ∈ Ṽh,

〈µ, uh〉 = 0 ∀µ ∈Mh,

(32)

whereMh ⊂ Ṽ ′
h is the space of Lagrange multipliers that enforce the continuity

of v along the interface Γ . More precisely, for each node p on Γ that is not
a cross point, we have a multiplier µp ∈ Ṽ ′

h defined by 〈µp, v〉 = (v|Ωj )(p) −
(v|Ωk

)(p), where Ωj and Ωk are the two subdomains whose interface contains
p, and the space Mh is spanned by all such µp’s.

Fig. 4. FETI

By solving local SPD problems (associated with the subdomains) and a
global SPD problem (associated with the cross points), the unknown uh can
be eliminated from (32), and the resulting system for φ involves the operator

Ŝh : Mh −→ M ′
h defined by Ŝh = RtS̃−1

h R, where R : Mh −→ [Ṽh(Γ )]′ is the

restriction map, Ṽh(Γ ) is the subspace of Ṽh consisting of discrete harmonic
functions, and S̃h : Ṽh(Γ ) −→ Ṽh(Γ )′ is the corresponding Schur complement
operator.

Let Vj (1 ≤ j ≤ J) be the space of discrete harmonic functions on Ωj
that vanish at the corners of Ωj and Sj : Vj −→ V ′

j be the Schur complement
operator (which is SPD). The dual spaces V ′

j are the auxiliary spaces of the

additive Schwarz preconditioner for Ŝh developed by Mandel and Tezaur in
[18]. Each V ′

j is connected to Mh by the operator Ij defined by 〈Ijψ, ṽ〉 =
1

2
〈ψ, v〉 ∀ v ∈ Vj , where Ijψ is a linear combination of µp for p ∈ Γj and

ṽ ∈ Ṽh is the trivial extension of v. The preconditioner in [18] is given by
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BDP =

J∑
j=1

IjSjI
t
j ,

and the condition number estimate

κ(BDP Ŝh) �
(
1 + ln

H

h

)2

(33)

was established in [18]. The sharpness of (33) is a consequence of the following
lower bound result [4].

Theorem 4. It holds that

κ(BDP Ŝh) �
(
1 + ln

H

h

)2

.

Since the operator BDP Ŝh is essentially dual to the operator BBP SSh, The-
orem 4 is derived using the special piecewise linear functions from Section 5
and duality arguments. Details can be found in [4].

7 Concluding Remarks

We present two dimensional results in this paper for simplicity. But the gen-
eralization of the results of Sections 3 and 4 to three dimensions is straight-
forward, and the results in Section 5 have been generalized [5] to three di-
mensions (wire-basket algorithm [9]) and Neumann-Neumann algorithms [12].
Since the balancing domain decomposition by constraint (BDDC) method has
the same condition number as the FETI-DP method [17, 15], the sharpness of
the condition number estimate for BDDC [16] also follows from Theorem 4.

We would also like to mention that the special discrete harmonic function
v∗ constructed in Section 5 has been used in the derivation of an upper bound
for the three-level BDDC method [24].
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Summary. In this note, we propose Steklov-Poincaré iterative algorithms (mutu-
ated from the analogy with heterogeneous domain decomposition) to solve fluid-
structure interaction problems. Although our framework is very general, the driving
application is concerned with the interaction of blood flow and vessel walls in large
arteries.

1 Introduction

Mathematical modeling of real-life problems may lead to different kind of
boundary value problems in different subregions of the original computational
domain. The reason may be twofold.

Often, in order to reduce the computational cost of the simulation, a very
detailed model can be used only in a region of specific interest while resorting
to a simplified version of the same model sufficiently far away from where the
most relevant physical phenomena occur. This is, e.g., the strategy adopted
when one considers the coupling of advection-diffusion equations with advec-
tion equations, after neglecting the diffusive effects in a certain subregion (see,
e.g., [11]), or when the full Navier-Stokes equations are coupled with Oseen,
Stokes or even velocity potential models, the latter being adopted where the
nonlinear convective effects are negligible (see, e.g., [7, 8]).

In a second circumstance, one may be obliged to consider truly different
models to account for the presence of distinct physical problems within the
same global domain. This case is usually indicated as multi-physics or multi-
field problem.
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Typical examples are given by filtration processes such as in biomechanics
or in environmental applications where a fluid (e.g. blood or water) can filtrate
through a porous medium (e.g. the arterial wall or the soil), so that the Navier-
Stokes equations must be coupled with Darcy’s (or more complicated models,
e.g., Forchheimer or Brinkmann equations) to describe the underlying physics
(see, e.g., [5, 10, 16, 23]).

All these problems may be cast into the same common framework of het-
erogeneous domain decomposition method, which extends the classical domain
decomposition theory whenever two (or more) kinds of boundary value prob-
lems, say Liui = fi, hold in subregions Ωi of the computational domain Ω.

A major role is played by the compatibility conditions that the unknowns
ui must satisfy across the interface which separates the subdomains. In fact,
the setting of proper coupling conditions is a crucial issue to model as closely
as possible the real physical phenomena. For example, when coupling the
Navier-Stokes and the Oseen equations, the compatibility conditions require
the continuity of the velocities and of the normal stresses across the interface.
However, it is worth mentioning that they might be much less intuitive and
easy to handle than in the case just mentioned (see, e.g., [5, 25]).

In this paper, we will apply the heterogeneous domain decomposition
paradigm to a fluid-structure interaction problem arising in hemodynamics
for modeling blood flows in large arteries. To preserve stability one should
solve exactly the fluid-structure coupling, e.g. by Newton methods [9, 13] or
fixed-point algorithms [2]. A Newton method with exact Jacobian has been
investigated both mathematically and numerically in [9]. Segregated solvers
yielding a single fluid-structure interaction in each time step do not preserve
stability and may produce blow-up when the density of the structure stays
below a critical threshold. On the other hand, to relax the computational com-
plexity of fixed-point or Newton methods several inexact solution strategies
can be adopted.

The Jacobian matrix can be simplified by dropping the cross block ex-
pressing the sensitivity of the fluid state to solid motion, or by replacing it
by a simpler term that models added-mass effect (see [1, 12]). Alternative in-
exact solvers exploit the analogy of the fluid structure coupled problem with
heterogeneous domain decomposition problems.

This approach was first presented in [24, 19] for a Stokes-linearized shell
coupling and later studied also in [18], where the whole problem was first
reformulated as an interface equation. In this paper we further pursue this
approach. Iterative substructuring methods, typical of the domain decompo-
sition approach, are used to solve the interface problem, exploiting the classi-
cal Dirichlet-Neumann, the Neumann-Neumann, or more sophisticated scaling
(preconditioning) techniques.

After describing a precise setting of the problem (Sect. 2), we shall define
the associated interface equation (Sect. 3) and illustrate possible iterative
methods to solve it (Sect. 4). Finally, some numerical results will be presented
(Sect. 5).
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2 Problem setting

To describe the evolution of the fluid and the structure domains in time, we
adopt the ALE (Arbitrary Lagrangian Eulerian) formulation for the fluid (see
[6, 14]) and a purely Lagrangian framework for the structure. We denote by
Ω(t) the moving domain composed of the deformable structure Ωs(t) and the
fluid subdomain Ωf(t). If we denote by ds(x0, t) the displacement of the solid

Γ in(t) Γ out(t)
Ωf

0

Ωs
0

Γ0

Ωf
0

Γ in(t) Γ out(t)

Ωs(t)

Γ (t)

Ωf(t)

Ω(t)

Fig. 1. ALE mapping

at a time t, we can define the following mapping: ∀t, Ωs
0 → Ωs(t),

x0 → xs
t(x0) = x0 + ds(x0, t), x0 ∈ Ωs

0. (1)

Likewise, for the fluid domain: ∀t, Ωf
0 → Ωf(t),

x0 → xf
t(x0) = x0 + df(x0, t), x0 ∈ Ωf

0. (2)

The fluid domain displacement df can be defined as a suitable extension of
the solid interface displacement ds

|Γ0
: df = Ext(ds

|Γ0
) (see, e.g., [20]).

We assume the fluid to be Newtonian, viscous and incompressible, so that
its behavior is described by the following fluid state problem: given the bound-
ary data uin, gf , and the forcing term ff , and denoting wf = ∂td

f the rate of
change of the fluid domain, the velocity field u and the pressure p satisfy the
momentum and continuity equations:

ρf

(
∂u

∂t

∣∣∣∣
x0

+ (u−wf) ·∇u
)
− div[σf(u, p)] = ff in Ωf(t),

divu = 0 in Ωf(t),
u = uin on Γ in(t), σf(u, p) · nf = gf on Γ out(t).

(3)

We denote by ρf the fluid density, µ the fluid viscosity, σf(u, p) = −pId +
2µε(u) the Cauchy stress tensor, Id is the identity matrix, ε(u) = (∇u +
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(∇u)T )/2 the strain rate tensor. Note that (3) does not define univocally a
solution (u, p) as no boundary data are prescribed on the interface Γ (t).

Similarly, for given vector functions gs, fs, we consider the following struc-
ture problem whose solution is ds:

ρs
∂2ds

∂t2
− div|x0

(σs(d
s)) = fs in Ωs

0,

σs(d
s) · ns = gs on ∂Ωs

0 \ Γ0,
(4)

where σs(d
s) is the first Piola–Kirchoff stress tensor. We remark that bound-

ary values on Γ0 for (4) are missing.
When coupling the two problems together, the “missing” boundary condi-

tions are indeed supplemented by suitable matching conditions on the refer-
ence interface Γ0. If λ = λ(t) denotes the displacement of the interface, at any
time t the coupling conditions on the reference interface Γ0 are

xs
t = x0 + λ = xf

t, u ◦ xf
t =

∂λ

∂t
,

(σf(u, p) · nf) ◦ xf
t = −σs(d

s) · ns,
(5)

imposing the matching of the interface displacements of the fluid and solid
subdomains, the continuity of the velocities and of the normal stresses.

3 The interface equations associated to problem (3)-(5)

We consider the coupled problem at a given time t = tn+1 = (n + 1)δt, δt
being the discrete time-step.

According to the interface conditions (5), we can envisage two possible
natural choices for the interface variable: either we consider the displacement
λ of the fluid-structure interface, or the normal stress exerted on it. In the
following, we shall focus our attention on the case of the interface variable as
the displacement; the “dual” approach using the normal stress was presented
in [4] for a simple linear problem.

Thus, we define the fluid and structure interface operators as follows.
Sf is the Dirichlet-to-Neumann map in Ωf(t):

Sf : H1/2(Γ0)→ H−1/2(Γ0), λ→ σf(λ),

that operates between the trace space of displacements on the interface Γ0 and
the dual space of the normal stresses exerted on Γ0 by the fluid. Computing
Sf(λ) involves the extension of the interface displacement to the whole fluid
domain (in order to compute the ALE velocity), the solution of a Navier-
Stokes problem inΩf(t) with the Dirichlet boundary condition on the interface
u|Γ (t)◦xf

t = (λ−ds,n
|Γ0

)/δt, and then to recover the normal stress σf = (σf(u, p)·
nf)|Γ (t) ◦ xf

t as a residual of the Navier-Stokes equations on the interface.
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Moreover, we consider the Dirichlet-to-Neumann map Ss in Ωs
0:

Ss : H1/2(Γ0)→ H−1/2(Γ0), λ→ σs(λ),

that operates between the space of displacements on the interface Γ0 and the
space of the normal stresses exerted by the structure on Γ0. Computing Ss(λ)
corresponds to solving a structure problem in Ωs

0 with Dirichlet boundary
condition ds

|Γ0
= λ on Γ0, and then to recover the normal stress σs = σs(d

s)·ns

on the interface, again as a residual.
The definitions of Sf and Ss involve also the boundary and forcing terms,

because of the nonlinearity of the problem at hand.
Then, the coupled fluid-structure problem can be expressed in terms of

the solution λ of the following nonlinear Steklov-Poincaré interface problem:

find λ ∈ H1/2(Γ0) : Sf(λ) + Ss(λ) = 0. (6)

Remark 1. In the case of a linear coupled Stokes-shell model, Mouro [19] has
given a precise characterization of these interface operators and shown that
they are selfadjoint and positive.

The inverse operator S−1
s is a Neumann-to-Dirichlet map that for any given

normal stress σ on Γ0 associates the interface displacement λ(tn+1) = ds,n+1

by solving a structure problem with the Neumann boundary condition σs(d
s)·

ns = σ on Γ0 and then computing the restriction on Γ0 of the displacement
of the structure domain.

For nonlinear structural models (i.e. σs(d
s) is a nonlinear constitutive law

in (4), see, e.g., [17]), we will need the tangent operator S′
s

S′
s(λ̄)δλ = lim

h→0

Ss(λ̄+ hδλ)− Ss(λ̄)

h
, ∀λ̄, δλ ∈ H1/2(Γ0).

Its inverse (S′
s)

−1 is a Neumann-to-Dirichlet map that for any given variation
of the normal stress δσ on Γ0 associates the corresponding variation of the
displacement δλ of the interface by solving a linearized structure problem with
boundary condition σs(d

s) · ns = δσ on Γ0. Similarly, we define S′
f by

S′
f(λ̄)δλ = lim

h→0

Sf(λ̄+ hδλ)− Sf(λ̄)

h
, ∀λ̄, δλ ∈ H1/2(Γ0).

This is a Dirichlet-to-Neumann map that for any variation of the interface
displacement δλ computes the corresponding variation of the normal stress δσ
on Γ0 through the solution of linearized Navier-Stokes equations. To compute
S′

f(λ)δλ see, e.g, [9].
The computation of the inverse operator S′

f(λ)−1 can be simplified by
neglecting the shape derivatives. We then obtain the Oseen equations in the
fixed configuration defined by λ that we computed while evaluating Sf(λ).
S′

f(λ)−1 is a Neumann-to-Dirichlet map that for any given variation of the
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normal stress δσ on Γ0 computes the corresponding displacement δλ of the
interface through the solution of linearized Navier-Stokes equations with the
boundary condition (σf(u, p) · nf) ◦ xf = σ on Γ0.

Other possible formulations for the interface equation can be given:

find λ such that S−1
s (−Sf(λ)) = λ on Γ0, (7)

or equivalently

find λ such that S−1
s (−Sf(λ)) − λ = 0 on Γ0. (8)

These are common formulations in fluid-structure interaction problems, but
it is worth pointing out that here the unknown λ is the displacement of the
sole interface, whereas classically the displacement of the whole solid domain
is considered (see, e.g., [20, 9]).

4 Iterative methods for problems (6)-(8)

We consider the preconditioned Richardson method to solve the Steklov-
Poincaré interface problem (6): given λ0, for k ≥ 0, solve

Pk
(
λk+1 − λk

)
= ωk

(
−Sf(λ

k)− Ss(λ
k)
)
. (9)

The scaling operator Pk maps the space H1/2(Γ0) of the interface variable
onto the space H−1/2(Γ0) of normal stresses, and may depend on the iterate
λk or, more generally, on the iteration step k. The acceleration parameter ωk

can be computed via the Aitken technique (see [4]) or by line search (see [22]).
At each step k, (9) requires the solution, separately, of the fluid and the

structure problems and then to apply a scaling operator. Precisely,

1. apply Sf to λk, i.e., compute the extension of λk to the entire fluid domain
to obtain the ALE velocity, and solve the fluid problem in Ωf(t) with
boundary condition u|Γ (t) ◦ xf

t = (λ − ds,n
|Γ0

)/δt on Γ0; then, recover the

normal stress σkf on the interface;
2. apply Ss to λk, i.e., solve the structure problem with boundary condition

ds,k
|Γ (t) = λk on Γ (t) and compute the normal stress σks ;

3. apply P−1
k to the total stress σk = σkf + σks on the interface.

Note that steps 1 and 2 can be performed in parallel. The crucial issue is how
to choose the scaling operator (more precisely, a preconditioner in the finite
dimensional case) in order for the iterative method to converge as quickly as
possible.

We define a generic linear operator (more precisely, its inverse):

P−1
k = αkf S

′
f(λ

k)−1 + αks S
′
s(λ

k)−1, (10)
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for two given scalars αkf and αks , and we retrieve the following operators:

Dirichlet-Neumann (DN): Pk = PDN = S′
s(λ

k), for αkf = 0, αks = 1, (11)

Neumann-Dirichlet (ND): Pk = PND = S′
f(λ

k), for αkf = 1, αks = 0, (12)

Neumann-Neumann (NN): Pk = PNN with αkf + αks = 1, αkf , α
k
s �= 0. (13)

If the structure is linear, the computational effort of a Richardson step in the
DN case may be reduced to the solution of only one fluid Dirichlet problem
and one structure Neumann problem.

The parameters αkf , αks and ωk can be chosen dynamically using a gener-
alized Aitken technique (see [3, 4]).

Should we consider the scaling operator

Pk = S′
f(λ

k) + S′
s(λ

k), (14)

then, we would retrieve the genuine Newton algorithm applied to the Steklov-
Poincaré problem (6). Note that in order to perform the scaling step 3 in
the Richardson algorithm, one must use a (preconditioned) iterative method
(e.g., GMRES) and may approximate the tangent problems to accelerate the
computations. Thus, using the scaling operator (14) we obtain a domain
decomposition-Newton (DD-Newton) method; more precisely, given a solid
state displacement λk, for k ≥ 0, the algorithm reads

1. solve the fluid and the structure subproblems separately, as for the
Richardson method, to get σk;

2. solve the following linear system via GMRES to compute µk:

[
S′

f(λ
k) + S′

s(λ
k)
]
µk = −(Sf(λ

k) + Ss(λ
k)) (15)

3. update the displacement: λk+1 = λk + ωkµk.

The GMRES solver should in turn be preconditioned in order to accelerate
its convergence rate. To this aim, one can use one of the previously defined
scaling operators. In our numerical tests, we have considered the DN operator
S′

s(λ), so that the preconditioned matrix of the GMRES method becomes:

[S′
s(λ

k)]−1 · [S′
f(λk) + S′

s(λk)]. (16)

Let us briefly recall the Newton method for problem (8) in order to com-
pare it with the previous domain decomposition approach. For a more com-
plete discussion we refer to [4].

Let J(λ) denote the Jacobian of S−1
s (−Sf(λ)) in λ. Given λ0, for k ≥ 0:

solve (J(λk)− Id)µk = −(S−1
s (−Sf(λ

k))− λk),
update λk+1 = λk + ωkµk.

(17)

The parameter ωk can be computed, e.g., by a line search technique (see [22]).
Note that the Jacobian in λk has the following expression:
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J(λk) = −
[
S′

s

(
S−1

s (−Sf(λ
k))
)]−1 · S′

f(λ
k) = −

[
S′

s

(
λ̄k
)]−1 · S′

f(λ
k). (18)

The solution of the linear system (17) can be obtained by using an iterative
matrix-free method such as GMRES.

In general, the Newton method applied to (8) and to the Steklov-Poincaré
formulation (6) are not equivalent. However, in the case of a linear structure,
they actually are (to see this, left multiply both hand sides of (15) by S−1

s ,
exploit S′

s(λ
k) = Ss and compare (16) with (17)).

We remark that while the computation of
[
S′

s

(
λ̄k
)]−1 · δσ (for any given

δσ) does only require the derivative with respect to the state variable at the
interface, the computation of S′

f(λ
k)·δλ is nontrivial since it also requires shape

derivatives, as a variation in λ determines a variation of the fluid domain.
We finally remark that in the classical Newton method, the fluid and struc-

ture problems must be solved separately and sequentially, while the domain
decomposition formulation allows us to set up parallel algorithms to solve the
Steklov-Poincaré equation (6).

5 Numerical results

In this section, we present some numerical results which compare the domain
decomposition methods to the classical fixed point and Newton algorithms,
and illustrate their behavior with respect to the grid size h and the time step
δt.

For the domain decomposition algorithms, we consider the DN precon-
ditioner (11), and the NN preconditioner (13) in which S′

f is linearized by
neglecting the shape derivatives.

Finally, we consider the DD-Newton method (14). The fluid tangent prob-
lem is considered as in [9] in its exact form. To solve (15), we apply the
GMRES method possibly preconditioned by the operator DN (11).

Both problems (3) and (4) are discretized, and we adopt P1-bubble/P1

finite elements for the fluid and P1 elements for the structure. The simulations
are performed on a dual 2.8 Ghz Pentium 4 Xeon with 3 GB of RAM.

We simulate a pressure wave in a straight cylinder of length 5 cm and
radius 5 mm at rest. The structure of thickness 0.5 mm is linear and clamped
at both the inlet and the outlet. The fluid viscosity is set to µ = 0.03 poise,
the densities to ρf = 1 g/cm3 and ρs = 1.2 g/cm3. We impose zero body forces
and homogeneous Dirichlet boundary conditions on ∂Ωs

0 \ Γ0. The fluid and
the structure are initially at rest and a pressure (a normal stress, actually)
of 1.3332 · 104 dynes/cm2 is imposed on the inlet for 3 · 10−3 s. We consider
two computational meshes: a coarse one with 1050 nodes (4680 elements) for
the fluid and 1260 nodes (4800 elements) for the solid, and a finer mesh with
2860 nodes (14100 elements) for the fluid and 2340 nodes (9000 elements) for
the solid.
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A comparison between the fixed point iterations for problem (7) and
Richardson iterations (9) (with DN and NN preconditioners) on problem (6)
is shown in table 1 for two time steps and for the coarse and the fine mesh.
In this table, “FS eval” stands for the average number of evaluations per time
step of either (7) or (9), while “FS’ eval” represents the average number of
evaluations of the corresponding linearized system per time step (that is (10)
for DN, ND or NN preconditioners, (16) for the DD-Newton method (15), and
(18) for the classical Newton method (17)). We can see that, using the precon-
ditioned Richardson method (9), fewer FS evaluations than with the classical
fixed point algorithm are needed. However, the computational time of the
domain decomposition formulation is slightly higher than that of the fixed
point formulation. The reason is that the domain decomposition formulation
requires solving, at each iteration, the fluid and the structure subproblems, as
well as the associated tangent problems, while the latter are indeed skipped
by the fixed point procedure. Furthermore, since the operator for the struc-
ture is linear, the two approaches are very similar and since our research code
is sequential, the parallel structure of the Steklov-Poincaré formulation (6) is
not capitalized.

Moreover, we notice that using the NN preconditioner the number of it-
erations required for the convergence with respect to both parameters h and
δt, does not vary appreciably.

The same table shows also the results obtained using the Newton and DD-
Newton methods. The Jacobian matrices (14) and (18) have been computed
exactly (see [9]) and inverted by GMRES. The number of iterations of Newton
and DD-Newton is equivalent, but the inversion of the Jacobian in DD-Newton
(“FS’ eval”) needs more GMRES iterations, a number which depends on h and
δt. However, preconditioning GMRES by DN reduces the iteration numbers to
the same as in Newton, and the CPU times are then quite similar. As before,
the reasons reside in the linearity of the structure model and in the fact that
our code is sequential.

Further improvements may be obtained resorting to more sophisticated
preconditioners for the Jacobian system, derived either from the classical do-
main decomposition theory or from lower dimensional models (in a multiscale
approach, see [21]).

We now simulate a pressure wave in the carotid bifurcation using the same
fluid and structure characteristics as before. We solve the coupling using our
DD-Newton algorithm with DN preconditioner for the GMRES inner itera-
tions. The mesh that we have used was computed using an original realistic
geometry first proposed in [15].

The fluid and the structure are initially at rest and a pressure of 1.3332 ·
104 dynes/cm2 is set at the inlet for a time of 3 · 10−3 s. The average in-
flow diameter is 0.67 cm, the time step used is δt = 1e − 04 and the total
number of iterations is 200. Figure 2 displays the solution computed at two
different time steps. Table 2 shows the comparison between the classical New-
ton algorithm and our DD-Newton algorithm preconditioned by DN. Like in



50 S. Deparis et al.

Table 1. Comparison of the number of sub-iterations and computational time for
the fixed point, and domain decomposition based algorithms for the coarse mesh
(left) and fine mesh (right)

δt = 0.001

Method FS eval FS’ eval CPU time

Fixed point 19.8 0 1h16’

DN 19.8 19.8 1h17’

NN 17.9 17.9 1h42’

Newton 3 12 0h56’

DD-Newton 3 24 1h30’

DD-Newton DN 3 12 0h58’

δt = 0.0005

Method FS eval FS’ eval CPU time

Fixed point 32.1 0 3h27’

DN 29.2 29.2 3h50’

NN 22 22 4h20’

Newton 3 17 1h55’

DD-Newton 3 29 3h30’

DD-Newton DN 3 17 2h10’

δt = 0.0001

Method FS eval FS’ eval CPU time

Newton 3 19 11h41’

DD-Newton 3 35 16h21’

DD-Newton DN 3 19 12h39’

δt = 0.001

Method FS eval FS’ eval CPU time

Fixed point 19.9 0 4h28’

DN 19.5 19.5 4h40’

NN 17.7 17.7 6h12’

Newton 3 12 3h39’

DD-Newton 3 30 4h56’

DD-Newton DN 3 12 3h45’

δt = 0.0005

Method FS eval FS’ eval CPU time

Fixed point 33 0 12h40’

DN 29.6 29.6 12h50’

NN 22.1 22.1 15h44’

Newton 3 14 8h31’

DD-Newton 3 35 10h50’

DD-Newton DN 3 14 8h40’

δt = 0.0001

Method FS eval FS’ eval CPU time

Newton 3 19 26h40’

DD-Newton 3 37 40h26’

DD-Newton DN 3 19 27h01’

the previous test, “FS eval” and “FS’ eval” represent respectively the average
number of fluid/structure evaluations and the average number of linearized
fluid/structure evaluations. As expected, both methods behave in the same
way with respect to the number of operator evaluations. The total computa-
tion times are also in very good agreement for the two largest time step.

Fig. 2. Structure deformation and fluid velocity at t = 0.005 s (left) and t = 0.008 s
(right)



HDD for Fluid-Structure Interaction 51

Table 2. Convergence comparison of the computational time for the exact Newton
and DD-Newton methods (case of carotid bifurcation)

δt = 0.001 δt = 0.0005 δt = 0.0001

Method FS eval FS’ eval CPU time FS eval FS’ eval CPU time FS eval FS’ eval CPU time

Newton 3 7.5 8h51’ 3 10 19h41’ 3 19 125h20’

DD-Newton DN 3 7.5 8h12’ 3 10 19h33’ 3 19 131h08’
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Preconditioning of Saddle Point Systems by
Substructuring and a Penalty Approach

Clark R. Dohrmann∗

Structural Dynamics Research Department, Sandia National Laboratories,
Albuquerque, NM 87185-0847, USA. crdohrm@sandia.gov

Summary. The focus of this paper is a penalty-based strategy for preconditioning
elliptic saddle point systems. As the starting point, we consider the regularization
approach of Axelsson in which a related linear system, differing only in the (2,2)
block of the coefficient matrix, is introduced. By choosing this block to be negative
definite, the dual unknowns of the related system can be eliminated resulting in a
positive definite primal Schur complement. Rather than solving the Schur comple-
ment system exactly, an approximate solution is obtained using a substructuring
preconditioner. The approximate primal solution together with the recovered dual
solution then define the preconditioned residual for the original system.

The effectiveness of the overall strategy hinges on the preconditioner for the
primal Schur complement. A condition ensuring real and positive eigenvalues of the
preconditioned saddle point system is satisfied automatically in certain instances if
a Balancing Domain Decomposition by Constraints (BDDC) preconditioner is used.
Following an overview of BDDC, we show how its constraints can be chosen to ensure
insensitivity to parameter choices in the (2,2) block for problems with a divergence
constraint. Example saddle point problems are presented and comparisons made
with other approaches.

1 Introduction

Consider the linear system

[
A BT

B −C

] [
u
p

]
=

[
b
0

]
(1)

arising from a finite element discretization of a saddle point problem. The
matrix A is assumed to be symmetric and positive definite on the kernel of B.
The matrix B is assumed to have full rank and C is assumed to be symmetric

∗Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-
heed Martin Company, for the United States Department of Energy under Contract
DE-AC04-94AL85000.
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and positive semidefinite. The primal and dual vectors are denoted by u ∈ R
n

and p ∈ R
m, respectively.

Several different preconditioners for (1) have been investigated. Many are
based on preconditioning the dual Schur complement C + BA−1BT by an-
other matrix that is spectrally equivalent to the dual mass matrix. Examples
include block diagonal preconditioners [18], block triangular preconditioners
[10], and inexact Uzawa approaches [7]. Reformulation of the saddle point
problem in (1) as a symmetric positive definite system was considered in [3]
that permits an iterative solution using the conjugate gradient algorithm.
Overlapping Schwarz preconditioners involving solutions of both local and
coarse saddle point problems were investigated in [11]. More recently, sub-
structuring preconditioners based on balancing Neumann-Neumann methods
[16, 9, 8] and FETI-DP [12] were studied.

The approach presented here builds on the basic idea of preconditioning
indefinite problems using a regularization approach [1]. Preconditioning based
on regularization is motivated by the observation that the solution of a penal-
ized problem is often close to that of the original constrained problem. Results
are presented that extend [1] to cases where the penalized primal Schur com-
plement SA = A + BT C̃−1B is preconditioned rather than factored directly.
Here, C̃ is a symmetric positive definite penalty counterpart of C in (1).

The preconditioner for (1) is most readily applied to discretizations em-
ploying discontinuous interpolation of the dual variable. In such cases the dual
variable can be eliminated at the element level and SA has the same sparsity
structure as A. Not surprisingly, the effectiveness of the approach hinges on
the preconditioner for SA.

Significant portions of this paper are based on two recent technical reports
[6, 5]. Material taken directly from [6] includes a statement, without proof, of
its main result in Section 2. New material related to [6] includes additional
theory for the special case of C = 0 in Section 2, and an extension of numerical
results of the cited reference in Section 5. An overview of the BDDC precon-
ditioner is provided in Section 3. In Section 4 we show how to choose the
constraints in BDDC to accommodate problems with a divergence constraint.
Numerical examples in Section 5 confirm the theory and demonstrate the ex-
cellent performance of the preconditioner. Comparisons are also made with
block diagonal and block triangular preconditioners for saddle point systems.

2 Penalty Preconditioner

The penalized primal Schur complement SA is defined as

SA = A+BT C̃−1B

where C̃ is symmetric and positive definite. Since A is assumed to be positive
definite on the kernel of B, it follows that SA is positive definite. We consider
a preconditionerM of the form
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M =

[
I BT C̃−1

0 −I

] [
ŜA 0

0 −C̃

] [
I 0

C̃−1B −I

]

where ŜA is a preconditioner for SA. The action of the preconditioner on a
vector r (with primal and dual subvectors ru and rp) is

[
zu
zp

]
=

[
I 0

C̃−1B −I

] [
Ŝ−1
A 0

0 −C̃−1

] [
I BT C̃−1

0 −I

] [
ru
rp

]

leading to the two step application ofM−1r as

1. Solve ŜAzu = ru +BT C̃−1rp for zu,

2. Solve C̃zp = Bzu − rp for zp.

Each application of the preconditioner requires two solves with C̃ and one
solve with ŜA.

Consider the eigenvalues ν of the generalized eigenproblem

Az = νMz (2)

where A is the coefficient matrix in (1). The following theorem is taken from
[6].

Theorem 1. If α1 > 1, 0 ≤ β1 < β2 < 1, γ1 > 0, and

α1x
T ŜAx ≤ xTSAx ≤ α2x

T ŜAx ∀x ∈ R
n, (3)

β1y
T C̃y ≤ yTCy ≤ β2y

T C̃y ∀y ∈ R
m, (4)

γ1y
TBŜ−1

A BT y ≤ yT C̃y ≤ γ2y
TBŜ−1

A BT y ∀y ∈ R
m, (5)

and
0 < yT C̃y ∀y �= 0 ∈ R

m,

then the eigenvalues of (2) are real and satisfy

δ1 ≤ ν ≤ δ2

where
δ1 = min{σ2(α1/α2), β1 + σ1(1− β2)(α2γ2)

−1}

δ2 = max{2α2 − σ2, β2 + (1 − β1)(2− σ1/α2)γ
−1
1 }

and σ1, σ2 are arbitrary positive constants that satisfy σ1 + σ2 = 1.

When the eigenvalues of (2) are real and positive, conjugate gradients can be
used for the iterative solution of (1). Details are available in [6].

Notice in (3) that α1 and α2 depend on the preconditioner for SA. In order
to obtain bounds for γ1 and γ2 in (5), it proves useful to express A as

A = BTA1B +BT⊥A2B⊥ +BTA3B⊥ +BT⊥A
T
3 B
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where the columns of B⊥ form an orthonormal basis for the null space of B
and

A1 = (BBT )−1BABT (BBT )−1, A2 = B⊥AB
T
⊥, A3 = (BBT )−1BABT⊥ .

Using a similar expression for S−1
A and the identity SAS

−1
A = I we obtain

BS−1
A BT = (C̃−1 +G)−1 where G = A1 −A3A

−1
2 AT3 = RTR .

Notice that A2 is nonsingular since A was assumed positive definite on the ker-
nel of B. In addition, G is at least positive semidefinite since it is independent
of C̃ and BS−1

A B is positive definite. Application of the Sherman-Morrison-
Woodbury formula leads to

BS−1
A BT = C̃ − C̃RT (I +RC̃RT )−1RC̃ . (6)

We now consider the special case C = 0 and the parameterization C̃ = ζC̄.
The positive scalar ζ is chosen so that

ζ‖C̄RT (I + ζRC̄RT )−1RC̄‖ < ελmin(C̄) (7)

where ε > 0 and λmin(C̄) is the smallest eigenvalue of C̄. It then follows from
(3), (6), and (7) that

(1/α2)y
TBŜ−1

A BT y ≤ yT C̃y ≤ (1/α1)(1− ε)−1yTBS−1
A BT y ∀y ∈ R

m (8)

Comparison of (5) and (8) reveals that

γ1 ≥ 1/α2 and γ2 ≤ (1/α1)(1 − ε)−1 .

Notice from (4) for C = 0 that β1 = 0 and β2 can be chosen arbitrarily close
to 0. The expressions for the eigenvalue bounds with σ1 and σ2 both chosen
as 1/2 then simplify to

δ1 = (1− ε)(α1/α2)/2, δ2 = 2α2 − 1/2 .

For very small values of ε we see that the eigenvalue bounds depend only on
the parameters α1 and α2 which are related to the preconditioner. This result
is purely algebraic and does not involve any inf-sup constants. For α1 and α2

both near 1 we see that all eigenvalues are bounded between (1 − ε)/2 and
3/2. Numerical results in Section 5 suggest that these bounds could be made
even tighter. In Section 4 we show how to choose the constraints of a BDDC
preconditioner so that α1 and α2 are insensitive to mesh parameters and to
values of ε near zero.
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3 BDDC Preconditioner

A brief overview of the BDDC preconditioner is provided here for complete-
ness. Additional details can be found in [4, 14, 15]. The domain of a finite el-
ement mesh is assumed to be decomposed into nonoverlapping substructures
Ω1, . . . , ΩN so that each element is contained in exactly one substructure.
The assembly of the substructure contributions to the linear system can be
expressed as

[
A BT

B −D

] [
u
p

]
=

N∑
i=1

[
RTi P

T
i

] [Ai BTi
Bi −Di

] [
Ri
Pi

] [
u
p

]
=

[
f
0

]
(9)

where each row of Ri and Pi contains exactly one nonzero entry of unity.
Throughout this section several subscripted R matrices with exactly one
nonzero entry of unity in each row are used for bookkeeping purposes. For
discontinuous pressure elements and compressible materials the matrices D
and Di are positive definite and block diagonal. Solving the second block of
equations in (9) for p in terms of u and substituting the result back into the
first block of equations leads to

Ku = f, p = D−1Bu (10)

where the displacement Schur complement K is given by

K = A+BTD−1B =
N∑
i=1

RTi KiRi

and
Ki = Ai +BTi D

−1
i Bi .

The coarse interpolation matrix Φi for Ωi is obtained by solving the linear
system [

Ki C
T
i

Ci 0

] [
Φi
Λi

]
=

[
0
I

]
(11)

where Ci is the constraint matrix for Ωi and I is a suitably dimensioned
identity matrix. A straightforward method to calculate Φi from (11) using
solvers for sparse symmetric definite systems of equations is given in [4].

Each row of the constraint matrix Ci is associated with a specific coarse
degree of freedom (dof). Moreover, each coarse dof is associated with a par-
ticular set of nodes in Ωi that appear in at least one other substructure. Let
Si denote the set of all such nodes. The set Si is first partitioned into dis-
joint node sets Mi1, . . . ,MiMi via the following equivalence relation. Two
nodes are related if the substructures containing the two nodes are identical.
In other words, each node of Si is contained in exactly one node set, and
all nodes in a given node set are contained in exactly the same set of sub-
structures. Additional node sets called corners are used in [4] to facilitate the
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numerical implementation. Each corner is obtained by removing a node from
one of the node sets described above. For notational convenience, we refer to
{Mij}Mi

j=1 as the set of all disjoint node sets for Ωi including corners. Rows of
the constraint matrix Ci associated with node set Mij are given by RijrCi.
Similarly, columns of Ci associated with node set Mij are given by CiR

T
ijc.

In this study all node sets are used in the substructure constraint equations.
Let uci denote a vector of coarse dofs for Ωi. The dimension of uci equals

the number of rows in the constraint matrix Ci. The vector uci is related to
the global vector of coarse dofs uc by

uci = Rciuc .

The coarse stiffness matrix of Ωi is defined as

Kci = ΦTi KiΦi

and the assembled coarse stiffness matrix Kc is given by

Kc =

N∑
i=1

RTciKciRci .

Consistent with (9), the vector of substructure displacement dofs ui are
related to u by

ui = Riu .

Let uIi denote a vector containing all displacement dofs in Ωi that are not
shared with any other substructures. The vector uIi is related to ui by

uIi = RIiui .

In order to distribute residuals to the substructures, it is necessary to define
weights for each substructure dof. In this study, the diagonal substructure
weight matrix Wi is defined as

Wi = RTIiRIi +

Mi∑
j=1

αijR
T
ijcRijc

where
αij = trace(RijcKciR

T
ijc)/trace(RijcRciKcR

T
ciR

T
ijc)

and trace denotes the sum of diagonal entries. Notice that the weights of all
dofs in a node set are identical. The substructure weight matrices form a
partition of unity in the sense that

N∑
i=1

RTi WiRi = I .

Given a residual vector r associated with the iterative solution of (10a),
the preconditioned residual is obtained using the following algorithm.
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1. Calculate the coarse grid correction v1,

v1 =

N∑
i=1

RTi WiΦiRciK
−1
c rc where rc =

N∑
i=1

RTciΦ
T
i WiRir .

2. Calculate the substructure correction v2,

v2 =

N∑
i=1

RTi Wizi where

[
Ki C

T
i

Ci 0

] [
zi
λi

]
=

[
WiRir

0

]
.

3. Calculate the static condensation correction v3,

v3 =
N∑
i=1

RTi R
T
Ii(RIiKiR

T
Ii)

−1RIiRir1 where r1 = r −K(v1 + v2) .

4. Calculate the preconditioned residual M−1r = v1 + v2 + v3.

Residuals associated with displacement dofs in substructure interiors are re-
moved prior to the first conjugate gradient iteration via a static condensation
correction. These residuals then remain zero for all subsequent iterations.

4 BDDC Constraint Equations

In this section we show how to choose the constraint equations of BDDC
so that it can be used effectively as a preconditioner for the primal Schur
complement SA. Recall that at the end of Section 2, the goal was to have
a preconditioner that is insensitive to values of ε near zero. For problems
with a divergence constraint like incompressible elasticity, this means that
the performance of the preconditioner should not degrade as the norm of D
in (9) approaches zero. Additional details and work related to this section can
be found in [5] and [13].

The choice of constraints is guided by the goal to keep the volume change
of each substructure relatively small in the presence of a divergence constraint.
In particular, the volume change corresponding to a preconditioned residual
should not be too large. Otherwise, the energy associated with the precon-
ditioned residual will be excessively large and cause slow convergence of a
Krylov iterative method.

Using the divergence theorem, the volume change of Ωi resulting from ui
to first order is given by

∆Vi =

∫

Ωi

∇ · u dΩ = aTi ui (12)

where u is the finite element approximation of the displacement field. The
vector ai can be calculated in the same manner as the vector for a body
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force by summing element contributions to the divergence. All entries in ai
associated with nodes not on the boundary of Ωi are zero. We note that
a constraint of zero volume change for each substructure has been used in
augmented versions of FETI algorithms for incompressible problems [19].

The nodes in node set Mij of substructure i are also contained in one or
more node sets of other substructures. As such, define

Nij = {(k, l) : Mkl =Mij} . (13)

For notational convenience, assume that the rows of Rijc are ordered such
that Rijcui = Rklcuk for all (k, l) ∈ Nij . Let Eij denote the column concate-
nation of all vectors Rklcak such that (k, l) ∈ Nij . Consider the singular value
decomposition

Ẽij = UijSijV
T
ij (14)

where Ẽij is the matrix obtained by normalizing each column of Eij . Assuming
the singular values sijm on the diagonal of Sij are in descending numerical
order, let mij denote the largest value of m such that sikm/sij1 > tol where in
this study tol = 10−8. The singular values along with tol are used to determine
a numerical rank of Eij . Let Fij denote the matrix obtained by normalizing
each column of (RijrCiR

T
ijc)

T and define

F̃ij = Fij − ŨijŨTijFij = ŪijS̄ij V̄
T
ij (15)

where Ũ contains the first mij columns of Uij . The columns of Ũ are or-
thogonal and numerically span the range of Eij . The singular values s̄ijm on
the diagonal of S̄ij are assumed to be in descending numerical order and m̄ij

denotes the largest value of m such that s̄ijm > tol. Define

Gij =
[
Ũij Ûij

]
(16)

where Ûij contains the first m̄ij columns of Ūij . The columns of Û are or-
thogonal and numerically span the range of the projection of Fij onto the or-

thogonal complement of Ũij . Thus, the columns of Gij are orthogonal. Notice
that Gij contains a linearly independent set of vectors for the zero divergence
constraints and the original BDDC constraints for node setMij .

Finally, the original constraint matrix Ci is replaced by the row concate-
nation of the matrices GTijRijc for j = 1, . . . ,Mi. Use of the new substructure
constraint matrices ensures that preconditioned residuals will not have ex-
cessively large values of volumetric energy. The final requirement needed to
ensure good scalability with respect to the number of substructures is that
the coarse stiffness matrix Kc be flexible enough to approximate well the low
energy modes of K. This requirement is closely tied to an inf-sup condition,
but is not analyzed here. Numerical results, however, indicate good scalability
in this respect.

For 2D problems a node set consists either of a single isolated node called
a corner or a group of nodes shared by exactly two substructures called a
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face. Furthermore, mij , the number of columns in Ũij , is at most two for a
corner and one for a face. Similarly, for 3D problems mij is at most three for
a corner and one for a face. The value of mij for the remaining 3D node sets,
called edges here, depends on the mesh decomposition as well as the positions
of nodes in the mesh. In any case, performance of the preconditioner should
not degrade in the presence of nearly incompressible materials provided that
all the columns of Ũij are included in Gij . Including columns of Ûij in Gij as
well will reduce condition numbers of the preconditioned equations, but is not
necessary to avoid degraded performance for nearly incompressible materials.

Use of the modified constraints does not cause any difficulties when both
nearly incompressible materials (e.g. rubber) and materials with smaller values
of Poisson ratio (e.g. steel) are present. One can exclude the incompressibility
constraint for substructures not containing nearly incompressible materials
simply by setting all entries of ai in (12) to zero. Doing so may lead to a
slightly smaller coarse problem, but it is not necessary.

5 Numerical Examples

In this section, (1) is solved to a relative residual tolerance of 10−6 using
both right preconditioned GMRES [17] and preconditioned conjugate gradi-
ents (PCG) for an incompressible elasticity problem. For linear elasticity the
shear modulus G and Lamé parameter λ for an isotropic material are related
to the elastic modulus E and Poisson ratio ν by

G =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1 − 2ν)
.

For incompressible problems λ is infinite with the result that C = 0 in (1). All
the elasticity examples in this section use G = 1 and ν = 1/2. We consider
two different preconditioners for SA in order to better understand the saddle
point preconditioner. The first is based on a direct solver where 1.00001ŜA =
SA while the second is the BDDC preconditioner described in the previous
two sections. Note that the leading constant 1.00001 is used to satisfy the
assumption α1 > 1. The penalty matrix C̃ for the elasticity problems is chosen
as the negative (2,2) block of the coefficient matrix in (1) for an identical
problem with the same shear modulus but a value of ν less than 1/2.

Regarding assumption (3), we note that the BDDC preconditioner used for
SA has the attractive property that α1 ≥ 1 and α2 is mesh independent under
certain additional assumptions [15]. For the conjugate gradient algorithm we
scale the preconditioned residual associated with the primal Schur complement
by 1.00001 to ensure that H is positive definite.

For purposes of comparison, we also present results for block diagonal and
block triangular preconditioners for (1). Given the primal and dual residu-
als ru and rp, the preconditioned residuals zu and zp for the block diagonal
preconditioner are given by
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zu = M−1
A ru and zp = M−1

p rp

where Mp is the dual mass matrix and either MA = A (direct solver) or MA

is the BDDC preconditioner for A. Note that the shear modulus G was chosen
as 1 to obtain proper scaling of zp. Similarly, the preconditioned residuals for
the block triangular preconditioner are given by

zp = −M−1
p rp and zu = M−1

A (ru −BT zp) .

We note that the majority of computations for the block preconditioners occur
in forming and applying the BDDC preconditioner for A. Thus, the setup time
and time for each iteration are very similar for the preconditioner of this study
and the two block preconditioners.

The first example is for a 2D plane strain problem on a unit square with
all displacement degrees of freedom (dofs) on the boundary constrained to
zero. The entries of the right hand side vector b were chosen as uniformly
distributed random numbers in the range from 0 to 1. For this simple geome-
try the finite element mesh consists of stable Q2 − P1 elements. This element
uses biquadratic interpolation of displacement and discontinuous linear inter-
polation of pressure. In 2D the element has 9 nodes for displacement and 3
element pressure dofs. A description of the Q2 − P1 discontinuous pressure
element can be found in [2].

Results are shown in Table 1 for the saddle point preconditioner (SPP)
applied to a problem discretized by a 32 x 32 arrangement of square elements.
Condition number estimates of the preconditioned equations are shown in
parenthesis for the PCG results. The BDDC preconditioner is based on a
regular decomposition of the mesh into 16 square substructures. The results
shown in columns 2-5 are insensitive to changes in ν near the incompressible
limit of 1/2. Notice that the use of a direct solver to precondition SA results
in very small numbers of iterations for values of ν near 1/2. The final two
columns in Table 1 show results for BDDC constraint equations that are
not modified to enforce zero divergence of each substructure. The condition
number estimates grow in this case as ν approaches 1/2.

Table 2 shows results for a growing number of substructures with H/h = 4
where H and h are the substructure and element lengths, respectively. Very
small growth in numbers of iterations with problem size is evident in the table
for all the preconditioners. Notice that the iterations required by PCG either
equal or are only slightly larger than those for GMRES. The primary advan-
tage of PCG from a solver perspective is that storage of all search directions is
not required as it is for GMRES. The SPP preconditioner is clearly superior to
the two block preconditioners when a direct solver is used (1.00001ŜA = SA
and MA = A). The performance of the SPP preconditioner compares very
favorably with both of the block preconditioners when the BDDC precondi-
tioner is used.
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Table 1. Iterations needed to solve incompressible 2D plane strain problem using
the saddle point preconditioner. Results are shown for different values of ν used to
define C̃. Results in parenthesis are condition number estimates from PCG. The
ŜA = no mod BDDC designation is for BDDC constraint equations that cannot
enforce zero divergence of each substructure.

1.00001ŜA = SA ŜA = BDDC ŜA = no mod BDDC

ν GMRES PCG GMRES PCG GMRES PCG

0.3 8 10 (4.8) 19 23 (16) 19 22 (16)
0.4 7 10 (2.4) 15 17 (7.2) 15 17 (7.1)
0.49 4 5 (1.1) 11 11 (3.0) 13 13 (3.6)
0.499 3 3 (1.01) 10 10 (2.7) 17 18 (8.5)
0.4999 3 3 (1.01) 9 9 (2.7) 23 28 (7.0e1)
0.49999 3 3 (1.01) 9 9 (2.6) 25 44 (6.9e2)

Table 2. Iterations needed to solve incompressible plane strain problems with in-
creasing numbers of substructures (N) and H/h = 4. The value of ν used to define C̃
in the SPP preconditioner is 0.49999. Block diagonal and triangular preconditioners
are denoted by Md and Mt, respectively.

N 1.00001ŜA = SA and MA = A ŜA and MA = BDDC

SPP Md Mt SPP Md Mt

GMRES PCG GMRES GMRES GMRES PCG GMRES GMRES

4 3 3 (1.01) 17 9 6 6 (1.8) 26 16
16 3 3 (1.01) 17 9 8 8 (2.1) 30 20
36 3 3 (1.01) 17 9 9 9 (2.6) 35 23
64 3 3 (1.01) 17 9 9 10 (2.9) 38 26
100 3 3 (1.01) 17 9 10 10 (3.0) 40 28
144 3 3 (1.03) 17 9 10 10 (3.1) 42 29
196 3 3 (1.01) 17 9 10 11 (3.1) 45 30
256 3 3 (1.01) 17 9 10 11 (3.1) 47 30
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Summary. Domain decomposition methods are studied for several problems ex-
hibiting nonlinearities in terms of curved interfaces and/or underlying model equa-
tions. In order to retain as much flexibility as possible, we do not require the sub-
domain grids to match along their common interfaces. Dual Lagrange multipliers
are employed to generate efficient and robust transmission operators between the
subdomains. Various numerical examples are presented to illustrate the applicability
of the approach.

1 Introduction

We apply domain decomposition techniques to efficiently discretize nonlinear
elasticity problems. The framework of mortar methods, [1, 2, 3, 8], is employed
to deal with nonmatching grids. Especially for the applications discussed in
Section 3, we recommend the use of dual discrete Lagrange multiplier spaces
as in [5]. They are a basic ingredient for the formulation and the performance
of our numerical solution procedures presented there.

In Section 2, we focus on a type of nonlinearity arising only from the ge-
ometry of the subdomain interfaces, namely, when the interfaces are curved
and therefore require a nonlinear parametrization. The subdomain grids origi-
nating from a nonoverlapping decomposition may now overlap or even exhibit
gaps along the curved interface. Transferring the methodology of the scalar
setting to elasticity problems, we encounter a preasymptotic misbehavior when
using dual Lagrange multipliers on the coarse side and present a remedy.

Section 3 deals with nonlinear elasticity model equations. First, two-body
contact problems are studied, where we use an inexact primal-dual active set
strategy as our solution method. The last part is devoted to the geometrically
nonlinear elasticity setting and to the use of Neo–Hooke materials.

∗This work was supported in part by the Deutsche Forschungsgemeinschaft, SFB
404, B8, C12.
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2 Curvilinear boundaries

Scalar case. For simplicity, we first restrict ourselves to the case of two 2D
subdomains sharing a closed interface curve and refer to [4] for a complete
analysis for many subdomains. We consider the model problem

−∆u = f in Ω ⊂ R
2, u = 0 on ∂Ω. (1)

for the situation depicted in Figure 1. The domain Ω is partitioned into two

Ωm

Ωs Γ
Γ

γγs
h

Î

Γ s
h

Fig. 1. Left: Decomposition into subdomains Ωm, Ωs. Right: interface Γ and its
piecewise linear interpolation Γ s

h.

subdomains Ωm and Ωs by a sufficiently smooth curve Γ of length L, given
in terms of an arc length parametrization γ : Î → Γ, Î = [0, L). By in-
troducing the spaces X = H1

∗ (Ωm) × H1
∗ (Ωs) and M = H−1/2(Γ ), with

H1
∗ (Ωi) respecting the Dirichlet conditions on ∂Ω, i = m, s, the boundary

value problem (1) can be transformed into the following saddle point prob-
lem: find (u, λ) ∈ X ×M such that

a(u, v) + b(v, λ) = f(v), v ∈ X,
b(u, µ) = 0, µ ∈M,

(2)

with the obvious meanings for a(·, ·) and f(·), and with the coupling bilinear
form b(·, ·) given by

b(v, µ) = 〈[v], µ〉Γ , (v, µ) ∈ X ×M, (3)

where [·] denotes the jump across Γ . The discretization of Ω by Ωs and Ωm

with simplicial triangulations results in piecewise linearizations Γ s
h and Γm

h of
the curved interface Γ , given by piecewise linear parametrizations γs

h : Î → Γ s
h

and γm
h : Î → Γm

h , respectively. These parametrizations enable us to uniquely
identify each point on Γm

h with a point on Γ s
h, providing a projection operator

Ps : (L2(Γm
h ))2 → (L2(Γ s

h))
2, vm 
→ Psvm = vm ◦ γm

h ◦ (γs
h)

−1. (4)

In order to obtain an approximate coupling bilinear form bh(·, ·), we introduce
a mesh dependent jump over the interface grid Γ s

h by
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[v]h = vs − Psvm.

The approximationMh of M is given by one of the common discrete Lagrange
multiplier spaces on Γ s

h, see e.g. [2, 3, 8, 5]. The space X is approximated by
Xh using P1 finite elements. We define bh(·, ·) in terms of [·]h by

bh(v, µ) = ( [v]h, µ )L2(Γ s
h), (v, µ) ∈ Xh ×Mh. (5)

Approximating a(·, ·) and f(·) by ah(·, ·) and fh(·), we obtain the discrete
saddle point problem of finding (uh, λh) ∈ Xh ×Mh as the solution of

ah(uh, v) + bh(v, λh) = fh(v), v ∈ Xh,
bh(uh, µ) = 0, µ ∈Mh.

(6)

For an analysis of (6), we refer to [4]. There, in order to obtain a priori bounds
for the discretization error, we proceed in two steps. In the first step, we
introduce and analyze a new discrete variational problem based on blending
elements, where the curved interfaces are resolved exactly, see [6]. In the second
step, we interpret (6) as a perturbed blending approach, and estimate the
perturbation terms obtained from the first Strang lemma. The main result is:

Theorem 1. Let (u, λ) and (uh, λh) solve (2) and (6), respectively. Then

‖u− uh‖Xh
+ ‖λ− λh‖M ≤ C(u) max

i=m,s
hi.

In [4], several numerical tests in 2D are provided to verify the theoretical
results. Here, we focus on a 3D example. An exact parametrization of the
interface Γ is often not available. Therefore, an alternative definition of the
projection operator Ps from (4) is required. This can be achieved for each
slave element side by using the piecewise constant normal projection of the
corresponding master sides, [9]. We remark that the analysis above has to be
extended to this case in order to handle the lack of regularity of Ps. For the
following example, we use this alternative projection operator to define the
coupling bilinear form bh(·, ·).

For the domain Ω, a ball of radius 0.9 is cut out of a concentric ball of
radius 1.1. The subdomains Ω1 and Ω2 are the parts of Ω with radii greater
and less than 1, respectively, their common interface Γ being the unit sphere.
The exact solution depends only on the radius r and is set to be u(r) =
ar−2 + br with a, b chosen such that u describes the radial displacement when
the domain is subject to a uniform internal pressure of magnitude 1. We exploit
the symmetry of the problem data and reduce the computational domain to
Ωr = {(x, y, z) ∈ Ω : x, y, z > 0}, adding natural boundary conditions on
the symmetry planes. Two initial triangulations with ratios 4:1 and 8:1 of the
number of fine to coarse interface element sides are shown in Figure 2.

In Figure 3, we compare the error decays using different Lagrange multi-
plier spaces, namely, the standard Lagrange multipliers coinciding with the
trace space Wh of the P1 finite element functions on Ωs

h, with the dual
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Fig. 2. Initial triangulations: ratios 4:1 and 8:1.
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Fig. 3. 3D example: error decay using different Lagrange multiplier spaces.

ones spanned by piecewise linear discontinuous basis functions satisfying a
biorthogonality relation with the nodal basis functions of Wh, see [5]. The
choice of the basis functions, either standard or dual, does not greatly influ-
ence the numerical results. For very coarse meshes, the use of the coarser grid
for the Lagrange multipliers provides better results than the altenative. How-
ever, this effect gets small already for very moderate numbers of unknowns.

2D elasticity. We keep the same setting as above and intend to solve
(2) with spaces and (bi-)linear forms given by the weak form of the linear
elasticity problem of finding a displacement vector field u such that

−divσ(u) = f in Ω, (7)

supplemented by boundary conditions, by the Saint-Venant Kirchhoff law

σ = λ(tr ε)I + 2µ ε, (8)

with the Lamé constants µ, λ and by the linearized strain tensor

ε(u) =
1

2
(∇u + [∇u]T) . (9)

We consider the domain visualized in the left picture of Figure 4, see [5]. The
ring Ω with inner radius ri = 0.9, outer radius ro = 1.1, and moduli E = 1,
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The misbehavior of the dual Lagrange multipliers, which only occurs
preasymptotically and only if they are chosen with respect to the coarser
grid, can be explained by the fact that quantities constant in normal or tan-
gential direction are not transferred correctly between the two grids. In [5],
we introduce and analyze a modification curing this misbehavior, and at the
same time preserving the advantages of the dual approach. We modify bh(·, ·)
in (5) to

bmod
h (vh, µh) =

∫

Γ s
h

µhvs − µmod
h Psvm, vh ∈ Xh, µh ∈Mh, (10)

where we replace µh for the coupling to the master side by µmod
h = µh+∆µh.

The modification ∆µh of a discrete Lagrange multiplier µh ∈ Mh is defined
edgewise on the elements of the interface grid Γ s

h, see [5]. There, we show
that the resulting discrete problem (6) with bh(·, ·) replaced by bmod

h (·, ·) has
the following properties: a diagonal matrix for the coupling on the slave side,
symmetry, preservation of linear momentum, reduction to the unmodified dual
approach in case of straight interfaces, and preservation of quantities constant
in normal and tangential direction.

As a numerical test, we compare the error decays using the standard, dual,
and modified dual approach. For the left picture of Figure 5, the ratio of slave
to master edges is kept constant at 1:4. The modification already improves

Ωs. A part of the computational grid is shown in the second picture of Figure
4. The whole grid consists of 240 elements and is constructed in such a way
that each element edge on the slave side meets four master edges. Thus, the
discrete Lagrange multiplier space Mh is defined with respect to the coarse
grid on Γ sh . Again, we compare the standard Lagrange multipliers with the
dual ones. In the third and fourth picture of Figure 4, the isolines of the van
Mises stresses of the numerical solutions on the deformed domains are plotted.
Whereas standard Lagrange multipliers yield a visually satisfying result, the
behavior of the solution using dual Lagrange multipliers suffers from strong
oscillations along the master interface Γm

h .

Fig. 4. Model problem, grid, stress using standard and dual multipliers.

ν = 0.3, is fixed at the outer boundary, whereas at the inner boundary, a
surface traction fΓ (x, y) = −(x, y)T/ri constant in normal direction is applied.
The region is divided into two rings Ωm and Ωs such that their interface Γ is
the unit circle. We choose the inner ring to be Ωm, and the outer ring to be
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Fig. 5. Left: Decay of the energy error using standard, dual, and modified dual
Lagrange multipliers. Right: Change of the Lagrange multiplier side.

the results significantly for a very moderate number of unknowns. We observe
that the relative difference in the errors of the unmodified and the modified
approach decreases as the number of unknowns increases. This is due to the
fact that the modification only enters as a higher order term in the a priori
estimates, see [5]. The right picture in Figure 5 illustrates the robustness of
the standard and the modified Lagrange multipliers against a change of the
master and slave side. We point out that all the benefits of the dual approach
are preserved by the modification.

In many applications, symmetry of the domain and the data can be ex-
ploited to reduce the problem size. For the example above, we can reduce the
computational domain to one quarter Ωr = {(x, y) ∈ Ω : x, y > 0}. On the
artificial boundaries Σξ = {(x, y) ∈ Ω : ξ = 0}, ξ = x, y, we have to set ap-
propriate symmetry boundary conditions. For the elasticity setting, these are
given by homogeneous Dirichlet data in the normal and homogeneous Neu-
mann data in the tangential direction. In the framework of mortar methods,
this would require us to handle the nodes px = (1, 0)T and py = (0, 1)T be-
longing to the triangulation on Ωs

r as crosspoints for the normal and as usual
slave nodes for the tangential components. Since this can be a tedious task
to realize during the matrix assembly in existing codes, we suggest to use a
simple manipulation of the saddle point system matrix S =

(
A BT

B 0

)
for which

the nodes px, py are handled as usual slave nodes and no Dirichlet conditions
are imposed on them. We symmetrically exchange the lines and columns in
BT and B corresponding to the coupling of the Lagrange multipliers in the
normal direction of px and py to the displacements in the normal direction
on the master and slave side by Dirichlet lines and columns. This is exactly
the procedure often employed to enforce Dirichlet conditions by means of
Lagrange multipliers.

In Figure 6, we test four different approaches. For the calculations leading
to the first two pictures, the two Dirichlet lines are inserted in the upper
part of S. For the first (second) picture, the nodes px, py are handled as slave
(cross) points in both directions and the Lagrange multiplier space is chosen
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Fig. 6. Handling of symmetry boundaries.

with respect to the finer (coarser) grid. As is expected, both approaches give
poor results. For the third picture, we choose the Lagrange multiplier space
with respect to the coarser grid, insert only Dirichlet lines in B, and keep
BT unchanged. However, this is not enough. This is due to the fact that, in
contrast to the full setting, the normal (w.r.t. Σξ) components of the Lagrange
multipliers in px, py are different from zero in the reduced setting on Ωr, since
only contributions from Ωr are assembled. Thus, the master nodes next to
px, py are subjects to a force pushing in the wrong direction. In order to
avoid that these master nodes are affected by the nonzero contribution from
the Lagrange multipliers, one also has to insert the corresponding Dirichlet
columns in BT, resulting in the right picture of Figure 6. An equally satisfying
result is obtained if the Lagrange multipliers are chosen on the finer grid.

3 Nonlinear elasticity

Contact problems. We consider a two-body nonlinear contact problem. The
domainΩ is the union of two initially disjoint bodiesΩs,Ωm, and its boundary
Γ = ∂Ωs ∪ ∂Ωm is subdivided into three disjoint open sets ΓD, ΓN, ΓC. We
intend to solve (7)-(9) with Dirichlet and Neumann boundary conditions on
ΓD and ΓN, respectively, and frictionless Signorini contact conditions on the
possible contact boundary ΓC, given by

σT (us) = σT (um) = 0, σn(um)([un]− g) = 0,

[un]− g ≤ 0, σn(um) = σn(us) ≤ 0,
(11)

where σT (uk) and σn(uk) are the tangential part and the normal component
of the surface traction σ(uk)n, respectively, k = m,s, and [un] stands for the
jump of the normal displacement across ΓC.

We arrive at the problem: find (u, λ) ∈ X ×M+ such that

a(u, v) + b(v, λ) = f(v), v ∈ X,
b(u, µ− λ) ≤ 〈g, (µ− λ)n〉ΓC,s , µ ∈M+,

(12)

with b(v, µ) = 〈µn, [v n]〉ΓC,s and M+ = {µ ∈ M : µT = 0, 〈µn, v〉ΓC,s ≥
0, v ∈ W, v ≥ 0 on ΓC,s}, where W denotes the trace space of H1

∗ (Ωs) re-
stricted to ΓC,s and M is its dual. We use standard piecewise linear finite
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elements for X and discontinuous piecewise linear dual Lagrange multipliers
for M . The discrete convex cone M+

h is defined with respect to the scalar dual
basis funtions ψi as

M+
h = {µh ∈Mh : µh =

∑
αiψi, αi ∈ R

2, αi n ≥ 0, αi × n = 0}.

In [7], optimal a priori error bounds are obtained for the correspondig discrete
problem formulation. Concerning the numerical solution process, we employ a
primal-dual active set strategy (PDASS) in order to deal with the nonlinearity
of the contact condition (11). Starting from an initial active set, the PDASS
checks in each step the sign of the normal stress component for an active
node to determine whether the node stays active, and for an inactive node
the non-penetration condition to determine whether the node stays inactive.
Proceeding like this, a new active set is calculated, and the active nodes pro-
vide Dirichlet conditions and the inactive nodes give homogeneous Neumann
conditions for the linear system to be solved. The biorthogonality of the dual
basis functions spanning M+

h is of crucial importance for the realization of the
PDASS. In particular, the weak formulation of the non-penetration condition,
i.e., the third equation of (11), naturally reduces to a pointwise relation which
is easy to handle. Moreover, the Lagrange multiplier can be efficiently elim-
inated yielding a positive definite linear system for the remaining unknowns
in each iteration step of the PDASS. Thus, suitable multigrid solvers can be
applied. Limiting the maximum number of multigrid iterations per PDASS
step yields an inexact strategy.

As a numerical example, we consider the situation depicted in Figure 7.
In the left picture, a cross section of the problem definition is shown. The

Fig. 7. Problem setting (left), cut through the distorted domains with the effective
von Mises stress on level 3 (middle), and the contact stresses λh on level 3 (right).

lower domain Ω1 is the master, and it models a halfbowl which is fixed at its
outer boundary. Against this bowl, we press the body modeled by the domain
Ω2 which is the slave. At the top of Ω2, we apply Dirichlet data equal to
(0, 0, −0.2)�. We use ri = 0.7, ra = 1.0, r = 0.6, h = 0.5 and d = 0.3, and as
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material parameters, E1 = 400N/m2, ν1 = 0.3 and E2 = 300N/m2, ν2 = 0.3.
The second and third picture in Figure 7 show a cut through the domains and
the contact stress λh on level 3, respectively.

In Table 1, the exact PDASS is compared with the inexact version. For the

l DOF
exact strategy inexact strategy

Kl |Ak| Ml |Ak|
0 312 3 0 9 6 3 0 9 6

1 1623 4 14 26 21 21 4 14 26 22 21

2 10062 3 66 88 85 3 66 91 85

3 71082 4 306 347 336 337 5 306 341 336 336 337

Table 1. Comparison between exact and inexact active set strategy.

inexact strategy, we apply only one multigrid step per PDASS iteration. For
both strategies, we use a W-cycle with a symmetric Gauß–Seidel smoother
with 3 pre- and post-smoothing steps. The second column shows the number
of degrees of freedom on level l. For the exact strategy, we denote by Kl the
step in which the correct active set A is found for the first time, and Ml

indicates the same quantity for the inexact strategy. By |Ak|, we denote the
number of active nodes in iteration k and multigrid step k, respectively. They
are almost the same, thus, there is no need for solving the resulting linear
problems in each iteration step exactly, and the cost of our nonlinear problem
is very close to that of a linear problem, given the correct contact zone.

Geometrically nonlinear problems and nonlinear material laws.
The validity of the linearized elasticity equations (7)-(9) is restricted to small
strains and small deformations. If the strains remain small but the deforma-
tions become large, one has at least to consider the geometrically nonlinear
elasticity setting. This amounts to using the full Green–St. Venant tensor

E =
1

2
(FTF − I) =

1

2
(C − I), (13)

instead of (9), with F = I +∇u the deformation gradient and C = FTF the
right Cauchy–Green strain tensor. We keep the constitutive law (8) as

S = λ(trE)I + 2µE = CE, (14)

defining the second Piola–Kirchhoff stress tensor S, with C the Hooke-tensor.
We solve

−div (FS) = f, (15)

complemented by appropriate boundary conditions. In the weak setting, this

gives the linear form a(u, ·) given by a(u, v) =

4∑
i=1

ai(u, v), where
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a1(u, v) =

∫

Ω

Cε(u) : ε(v) dx, a2(u, v)=
1

2

∫

Ω

C
[
(∇u)�∇u

]
: ∇v dx,

a3(u, v) =

∫

Ω

∇u C ∇u : ∇v dx, a4(u, v) =
1

2

∫

Ω

∇u C
[
(∇u)�∇u

]
: ∇v dx.

Still, the applicability of (13)–(15) is limited to small strains. In order
to extend the model to large strains, we have to introduce another kind of
nonlinearity by means of nonlinear material laws. In particular, to solve (15),
we employ the Neo–Hooke law given by

S = µ(I− C−1) +
λ

2
(J2 − 1)C−1, (16)

with J = det(F ) denoting the determinant of the deformation gradient. While
in (13) the nonlinearity enters in terms of polynomials of ∇u, it is given in
terms of its inverse in (16).

Despite the complexity of the nonlinear setting, the subdomain coupling
via Lagrange multipliers remains the same as for linear problems. In order to
calculate a numerical solution, we eliminate the discrete Lagrange multipliers
and apply a Newton iteration to the constrained problem. We note that this
elimination is very efficient when we use the dual basis functions for spanning
the Lagrange multiplier space. Moreover, the Jacobian of the constrained sys-
tem is positive definite and admits the use of multigrid solvers for the linear
system in each Newton step.

For a first numerical test, we consider a square Ω = (0, 1)2, decomposed
into four quadrilaterals Ωij = ((i − 1)/2, i/2) × ((j − 1)/2, j/2), i, j = 1, 2.

The material parameter are set to E = 2000 N/m2, ν = 0.4 on Ω11, Ω22 and
to E = 300 N/m2, ν = 0.3 on Ω21, Ω12. We use the linear elasticity model
on Ω11, Ω22, and the nonlinear Neo–Hooke model on Ω21, Ω12. The domain
is fixed at its upper and lower boundary segment, whereas on the left and
right segment, a force density of magnitude 10 + y(y − 1) pointing inside the
domain is applied. The first two pictures of Figure 8 show the deformed grids
with deformations magnified by a factor 100 for two ways of dealing with
the crosspoint pc = (1/2, 1/2). In the first calculation, the crosspoint is left

Fig. 8. Deformations without (left) and with (middle) continuity requirement.
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free leading to unphysical penetrations of the subdomains. In contrast, for the
second calculation, continuity is enforced; cf. [2]. We note that the undesired
effect of the first calculation diminishes when the meshsize is reduced.

As 3D example, we consider an I-beam as illustrated in Figure 9. The beam

Fig. 9. Left: I-beam decomposed into three subdomains and urface forces on
Σ1, Σ2 ⊂ ∂Ω1. Middle and right: deformed beam.

is decomposed into three subdomains Ω1 := (0, 50)× (0, 10)× (11, 13), Ω2 :=
(0, 50)× (3, 7)× (2, 11) and Ω3 := (0, 50)× (0, 10)× (0, 2). On all subdomains,
we consider as material parameters E = 100, ν = 0.3. The beam is fixed in all
directions on the plane x3 = 0, and in x3-direction on the plane x3 = 13. On
Σ1, Σ2 ⊂ ∂Ω1 with Σ1 = (0, 50)×{0}×(11, 13),Σ2 = (0, 50)×{10}×(11, 13),
surface forces f(x) = −2 + 4x/50 in y-direction are applied.

In the middle and the right picture of Figure 9, the deformed beam is
plotted using the Neo–Hooke law on all subdomains. We note that we do not
require the subdomain triangulations to match across their common interfaces;
we can employ different meshsizes and uniformly structured grids as well as
different models on each subdomain. The deformed grid suggests that we can
employ the fully linearized one for the lower subdomain Ω3, where only small
displacements and strains occur, the geometrically nonlinear one for the upper
part Ω1 because of large displacements but small strains, and the Neo–Hooke
law for the middle beam Ω2 with both large deformations and strains.

To justify our strategy, we compare the use of different models on the
individual subdomains. We indicate a configuration by ijk, i, j, k ∈ {l, g, n},
where l, g and n stand for linear, geometrically nonlinear and Neo–Hooke, re-
spectively, and the position indicates the corresponding subdomain. In Figure
10, the displaments in x1-direction along the line (0, 50)× {3} × {11} on Ω1

are plotted for several different settings. In the left picture, the solid, dashed,
and dash-dotted lines correspond to the models nnn, lll, and ggg, respectively.
Whereas the linear model is symmetric with respect to x∗1 = 25, the nonlin-
ear ones exhibit a rather unsymmetric and more realistic behavior. Moreover,
on each line, the markers indicate the results when the model on the lower
subdomain Ω3 is switched. There is no visible difference between using the
linear or the nonlinear relationship. In the right picture, we primarly compare
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Fig. 10. Comparison of varying model equations in the subdomains.

configurations nnn and gnl, where no real difference can be observed. The
results for ngl and lnl in combination with the left picture indicate that it is
necessary to use the Neo–Hooke law on the middle subdomain Ω2, while on
the upper part Ω1, the geometrically nonlinear model is required.
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Summary. We present a new method [7] for numerically solving elliptic problems
with multi-scale data using multiple levels of not necessarily nested grids. We use a
relaxation method that consists of calculating successive corrections to the solution
in patches of finite elements. We analyse the spectral properties of the iteration
operator [6]. We show how to evaluate the best relaxation parameter and what is
the influence of patches size on the convergence of the method. Several numerical
results in 2D and 3D are presented.

1 Introduction

In numerical approximation of elliptic problems by the finite element method,
great precision of the solutions is often required in certain regions of the
domain. Efficient approaches include adaptive mesh refinement and domain
decomposition methods. The objective of this paper is to present a method
to solve numerically elliptic problems with multi-scale data using two levels
of not necessarily nested grids.

Consider a multi-scale problem with large gradients in small sub-domains.
We solve the problem with a coarse meshing of the computational domain.
Therein, we consider a patch (or multiple patches) with corresponding fine
mesh wherein we would like to obtain more accuracy. Thus, we calculate suc-
cessively corrections to the solution in the patch. The coarse and fine dis-
cretizations are not necessarily conforming. The method is a domain decom-
position method with complete overlapping. It resembles the Fast Adaptive
Composite grid (FAC) method (see, e.g., [8]) or possibly a hierarchical method
(see [3] for example). However it is much more flexible to use in comparison to

∗Supported by the Swiss CTI Innovation Promotion Agency
†Supported by the Swiss National Science Foundation
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the latter: in fact the discretizations do not need to be nested, conforming or
structured. The idea of the method is strongly related to the Chimera method
[4].

The outline of this paper is as follows. In Section 2, we introduce the
algorithm and present an a priori estimate for the approximation (Prop. 1).
In Section 3, we present the convergence result for the method (Prop. 3) and
give sharp results for the spectral properties of the iteration operator. We
give a method to estimate the optimal relaxation parameter. In Section 4,
we consider computational issues and discuss the implementation. Finally, in
Section 5, we assess the efficiency of the algorithm in simple two-dimensional
situations and give an illustration in 3D. The reader should note that this
paper contains no proofs, which can be found in [6].

2 Two-step algorithm

Let Ω ⊂ R
d, d = 2 or 3, be an open polygonal or polyhedral domain and

consider a bilinear, symmetric, continuous and coercive form a : H1
0 (Ω) ×

H1
0 (Ω) → R. The usual H1(Ω)-norm is equivalent to the a-norm defined by

||v|| = a(v, v)
1
2 , ∀v ∈ H1

0 (Ω). If f ∈ H−1(Ω), due to Riesz’ representation
Theorem there exists a unique u ∈ H1

0 (Ω) such that

a(u, ϕ) = 〈f |ϕ〉, ∀ϕ ∈ H1
0 (Ω), (1)

where 〈·|·〉 denotes the duality H−1(Ω) − H1
0 (Ω). Let us point out that (1)

is the weak formulation of a problem of type L(u) = f in Ω, u = 0 on the
boundary ∂Ω of Ω, where L(·) is a second order, linear, symmetric, strongly
elliptic operator.

A Galerkin approximation consists in building a finite dimensional sub-
space VHh ⊂ H1

0 (Ω), and solving the problem: Find uHh ∈ VHh satisfying

a(uHh, ϕ) = 〈f |ϕ〉, ∀ϕ ∈ VHh. (2)

In the following the construction of the space VHh is presented. We in-
troduce a regular triangulation TH of Ω, a union of triangles K of diameter
less than or equal to H . Consider now a multi-scale situation with a solution
that is very sharp, i.e., varies rapidly, in a small polygonal or polyhedral sub-
domain Λ of Ω, but is smooth, i.e., varies slowly, in Ω \ Λ. This means that
the solution can be well approximated on a coarse mesh in Ω \ Λ but needs
a fine mesh in Λ. We would like to stress that Λ is not necessarily the union
of several triangles K of TH . Besides Λ can be determined in practice by an a
priori knowledge of the solution behaviour or an a posteriori error estimator,
for example. Let Th be a regular triangulation of Λ with triangles K such that
diam(K) ≤ h.

We define VH = {ψ ∈ H1
0 (Ω) : ψ|K ∈ Pr(K), ∀K ∈ TH}, and Vh = {ψ ∈

H1
0 (Ω) : ψ|K ∈ Ps(K), ∀K ∈ Th and ψ = 0 in Ω \ Λ}, where Pq(K) is the
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space of polynomials of degree ≤ q on triangle K. We set VHh = VH + Vh.
Let us observe that in practice, it is not possible to determine a finite element
basis of VHh. The goal of our method is to evaluate efficiently uHh without
having a basis of VHh, but only a basis of VH and a basis of Vh.

Before to show how to compute uHh, we give the following a priori esti-
mate:

Proposition 1. Let q = max(r, s) + 1 and suppose that the solution u of (1)
is in Hq(Ω). Then the approximate problem (2) has a unique solution uHh
which satisfies the a priori error estimate

||u− uHh|| ≤ C
(
Hr||u||Hq(Ω\Λ) + hs||u||Hq(Λ)

)
, (3)

where C is a constant independent of H, h and u.

Let us mention that a priori VH ∩ Vh does not necessarily reduce to the
element zero as shown in Fig. 1(a), where a 1D situation is illustrated by the
hat functions in Ω and in Λ. In the case when TH and Th are not nested, as
illustrated by Fig. 1(b), where we have translated the patch, it is not possible
to easily exhibit a finite element-basis of VHh from the bases of VH and Vh.
Note also that moving from the situation depicted in Fig. 1(a) to the one in
Fig. 1(b), the dimension of VHh increases by 1. All these difficulties suggest
that an iterative method should be used to solve problem (2).

Λ

Ω

(a) Nested elements.

Λ

Ω

(b) Non-nested elements.

Fig. 1. Linear finite elements in 1D on Ω (plain lines) and Λ (dotted lines) .

So we suggest the following algorithm to compute uHh.

Algorithm 2

1. Set u0 ∈ VH such that a(u0, ϕ) = 〈f |ϕ〉, ∀ϕ ∈ VH ,
and choose ω ∈ (0; 2).

2. For n = 1, 2, 3, . . . find
(i) wh ∈ Vh such that a(wh, ϕ) = 〈f |ϕ〉 − a(un−1, ϕ), ∀ϕ ∈ Vh ;

un−
1
2 = un−1 + ωwh ;

(ii)wH ∈ VH such that a(wH , ϕ) = 〈f |ϕ〉 − a(un− 1
2 , ϕ), ∀ϕ ∈ VH ;

un = un−
1
2 + ωwH .
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It is readily seen that this algorithm is a Schwarz type domain decom-
position method [10] with complete overlapping but without any conformity
between the meshes TH and Th (see, e.g., the work by Chan et al. [5]). It is
similar to the Chimera or overset grid method [4, 11]. However, the algorithm
presented in [4] is an additive method which can be changed to a multiplicative
method equivalent to the above presented with ω = 1.

Our multiplicative Schwarz method is also similar to a Gauss-Seidel
method and can be put in the framework of the successive subspace cor-
rection algorithm by Xu and Zikatanov (see, e.g., [12]). The spaces VH and Vh
defined on the arbitrary triangulations TH and Th are not necessary orthognal
nor do they share only the zero element as intersection. Note in particular
that the sum which defines VHh is a priori not a direct sum. This property
makes the above algorithm different from most known iterative schemes. For
structured grid constellations, the algorithm resembles the FAC method (see,
e.g., the works from McCormick et al. [9]), or possibly a hierarchical method
(see, e.g., the papers from Yserentant [13], Bank et al. [2]) with a mortar
method (see [1]).

We emphasize that the new aspect we introduce is to link the speed of
convergence of this algorithm to the parameter γ̃, introduced here below,
corresponding to the cosine of an abstract angle between the spaces Vh and
VH . Furthermore, an optimal relaxation keeps the method competitive in cases
where the problem is badly conditioned (see Section 5).

3 Convergence analysis and consequences

We shall now analyse the convergence of the two-scale algorithm.3 If Ph :
VHh → Vh and PH : VHh → VH are orthogonal projectors from VHh upon Vh
and VH respectively with respect to the scalar product a(·, ·), and I denotes
the identity operator in VHh, we set B = (I −ωPH)(I −ωPh), and check that
uHh − un = B(uHh − un−1).

We set V0 = VH ∩ Vh and V ⊥
0 the orthogonal complement of V0 in VHh

with respect to a(·, ·). We define Ṽh = Vh ∩ V ⊥
0 and ṼH = VH ∩ V ⊥

0 . For
ω ∈ (0; 2) and γ̃ ∈ [0; 1) defined by

γ̃ =




sup
vh∈Ṽh,vh �=0

vH∈ṼH ,vH �=0

a(vh, vH)

||vh||||vH ||
, if Vh �= V0 and VH �= V0,

0, otherwise,

(4)

we introduce the functions

ρ(γ̃, ω) =



ω2γ̃2

2
− ω + 1 +

ωγ̃

2

√
ω2γ̃2 − 4ω + 4, if ω ≤ ω0(γ̃),

ω − 1, otherwise,
(5)

3An extension to a method using several patches has been analysed in [6].
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where

ω0(γ̃) =




2− 2
√

1− γ̃2

γ̃2
, for γ̃ ∈ (0; 1),

1, for γ̃ = 0,
(6)

and N(γ̃, ω) = ω(2− ω)γ̃/2 +
√
ω2(2 − ω)2γ̃2/4 + (ω − 1)2.

An abstract analysis of the spectral properties of the iteration operator B
leads to the following result:

Proposition 3.

1. If ω ∈ (0; 2), then Algorithm 2 converges, i.e. lim
n→∞

||un − uHh|| = 0.

2. The spectral norm of B induced by the scalar product a(·, ·) is given by
‖B‖ = N(γ̃, ω) < 1, when ω ∈ (0; 2).

3. The spectral radius of B is given by ρ(B) = ρ(γ̃, ω) < 1, when ω ∈ (0; 2).

Thus, we have the convergence of Algorithm 2 when ω ∈ (0; 2), the conver-
gence speed given by ρ(B), and the factor of the reduction of the error in the
norm a(·, ·)1/2 bounded by ||B||. Both functions are plotted in the graphs of
Fig 2. In the case V0 = {0}, γ̃ corresponds to the constant of the strengthened
Cauchy-Buniakowski-Schwarz inequality.

γ̃ = 0.9
γ̃ = 0.8
γ̃ = 0.6
γ̃ = 0.3

Parameter ω

ρ
(B

)

21.81.61.41.210.80.60.40.20

1

0.8

0.6

0.4

0.2

0

(a) ρ(ω) for different γ̃.

γ̃ = 0.9
γ̃ = 0.8
γ̃ = 0.6
γ̃ = 0.3

Parameter ω

||B
||

21.81.61.41.210.80.60.40.20

1

0.8

0.6

0.4

0.2

0

(b) ||B|| for different γ̃.
Fig. 2. Spectral radius and norm of B as a function of ω for different γ.

We remark that in [3], Bramble et al. present an abstract analysis of prod-
uct iterative methods and provide an upper bound for the norm of B. Even
an optimization of the constants appearing in this bound (see [6]) shows that
the estimate is not always optimal. We also point out that the minimization
of this known result with respect to ω does not lead to a significant value
for the relaxation parameter. We show that the best convergence speed, i.e. a
minimal spectral radius (5), is obtained for ω = ω0(γ̃) given by (6).

Let us briefly consider a case where Λ ⊂ K, for K ∈ TH and r = 1. Let
the scalar product be given by
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a(ψ, ϕ) =

d∑
i,j=1

∫

Ω

aij
∂ψ

∂xj

∂ϕ

∂xi
dx, ∀ψ, ϕ ∈ H1

0 (Ω), (7)

where aij ∈ L∞(Ω), aij(x) = aji(x), 1 ≤ i, j ≤ d, and

d∑
i,j=1

aij(x)ξiξj ≥

α|ξ|2, ∀ξ ∈ R
d, ∀x ∈ Ω. Set β =




d∑
j=1

(
d∑
i=1

||∂aij/∂xi||L∞(Λ)

)2



1
2

, and

δ =

√
1/λ̃, λ̃ being the Poincaré constant. In this case, we have γ̃ ≤ βδ

α
,

i.e. an upper bound for the parameter γ̃. If furthermore the aij ’s are constant
over Λ, 1 ≤ i, j ≤ d, this last result implies that the algorithm converges in
only one iteration.

A crucial question for running the algorithm is to know how to choose the
relaxation parameter ω. By Prop. 3, if ω = 1, we have ρ(B) = γ̃2. Furthermore,

we can prove that ρ(B) = lim
n→∞

n
√
||Bnu0||. Hence, given an evaluation of γ̃,

we obtain the optimal relaxation parameter ωopt = ω0(γ̃) given by the formula
(6). The parameter is optimal in the sense that it gives the minimum value
for ρ(B) directly related to the speed of convergence.

In practice, we set ω = 1 and f ≡ 0, and perform m steps of the al-
gorithm to obtain some um. Following the above, we use the approximation

ρ = m
√
||um||, and obtain with (6) and ρ = γ̃2 that ωopt =

2− 2
√

1− ρ
ρ

.

Finally, we consider Algorithm 2 with two relaxation parameters ωh and
ωH such that un−

1
2 = un−1 + ωhwh and un = un−

1
2 + ωHwH . We can prove

that the spectral radius of the corresponding iteration operator is minimum
when ωH = ωh = ω0(γ̃).

4 Implementation issues

We discuss practical aspects of constructing an efficient computer program
for implementing Algorithm 2. Handling two domains with a priori non-
conforming triangulations raises a couple of practical issues. At any stage
the coarse and the fine parts of the solution un are stored separately, that is
to say un−1 = un−1

H + un−1
h with un−1

H ∈ VH , un−1
h ∈ Vh. We write the first

step of the n-th iteration of the algorithm as follows:

Find wh ∈ Vh s.t. a(wh, ϕ) = 〈f |ϕ〉 − a(un−1
H , ϕ) − a(un−1

h , ϕ), ∀ϕ ∈ Vh .

Set u
n− 1

2

H = un−1
H and u

n− 1
2

h = un−1
h + ωwh.

The same holds for the second step which appears explicitly:
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Find wH ∈ VH s.t. a(wH , ϕ) = 〈f |ϕ〉 − a(un−
1
2

H , ϕ)− a(un−
1
2

h , ϕ), ∀ϕ ∈ VH .

Set unH = u
n− 1

2

H + ωwH and unh = u
n− 1

2

h .

We conclude that unh = un−1
h + ωwh and unH = un−1

H + ωwH .

At this point, we need to discuss the numerical integration and restrict
ourselves to linear finite elements (r = s = 1).

Two difficulties are to be taken into account whether regions of rapid
change, i.e., data needing fine meshes, of the problem comes from the right-
hand side f or originates from the form a. In the first case the evaluation of
〈f |ϕ〉 needs particular attention. In the second case scalar products evaluated
on the coarse grid must be considered with care. Another issue is the treatment
of mixed term scalar products wherein both coarse and fine functions appear.

In the sequel, we consider these problems and illustrate our proposals
with the scalar product given by (7). The evaluation of the different terms
appearing in the algorithm is conforming to the following guidelines:

• If the coefficients aij defining the scalar product a are smooth in Λ, the
homogeneous terms a(ϕH , ψH) with ϕH , ψH ∈ VH , and a(ϕh, ψh) with
ϕh, ψh ∈ Vh, of support in Ω resp. Λ are integrated using the grid TH on
Ω resp. Th in Λ. Numerical integration in 2D is done with the standard
three-point formula (in 3D we use a four-point formula). In the case of (7)
this amounts to ∀ϕH , ψH ∈ VH ,

a(ϕH , ψH) ≈
∑
K∈TH

|K|
d+ 1

d+1∑
α=1

d∑
i,j=1

aij(x
α
K)

∂ϕH
∂xj

∣∣∣∣
K

∂ψH
∂xi

∣∣∣∣
K

, (8)

where |K| denotes the area or volume, and xαK , α = 1, . . . , d + 1, the
vertices of the element K. We use the same formula for a(ϕh, ψh) where
ϕh, ψh ∈ Vh with K ∈ Th in (8).
The mixed term a(ϕh, ψH), ϕh ∈ Vh,ψH ∈ VH , of support in Λ, is approx-
imated by a(ϕh, rhψH), i.e.

a(ϕh, ψH) ≈
∑
K∈Th

|K|
d+ 1

d+1∑
α=1

d∑
i,j=1

aij(x
α
K)

∂ϕh
∂xj

∣∣∣∣
K

∂(rhψH)

∂xi

∣∣∣∣
K

, (9)

where rh is the standard interpolant to the space Vh. When implementing,
we need to introduce a transmission grid, i.e. a fine structured grid consid-
ered over the patch Λ. This enables handling of the grids and associating
fine and coarse triangles and vertices.

• If the coefficients aij are sharp in Λ, the presented approximation illus-

trated by (8) for the term a(u
n− 1

2

H , ϕ), ϕ ∈ VH , appearing in the right-hand
side of the coarse correction step needs to be rewritten in order to use a
fine integration in the domain Λ. Set a1

ij and a2
ij such that aij = a1

ij + a2
ij

and
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a1
ij =

{
aij in Ω \ Λ
0 in Λ

, a2
ij =

{
0 in Ω \ Λ
aij in Λ

.

The right-hand side of relation (8) can be rewritten as ∀ϕH , ψH ∈ VH ,

∑
K∈TH

|K|
d+ 1

d+1∑
α=1

d∑
i,j=1

a1
ij(x

α
K)

∂ϕH
∂xj

∣∣∣∣
K

∂ψH
∂xi

∣∣∣∣
K

+
∑
K∈Th

|K|
d+ 1

d+1∑
α=1

d∑
i,j=1

a2
ij(x

α
K)

∂(rhϕH)

∂xj

∣∣∣∣
K

∂(rhψH)

∂xi

∣∣∣∣
K

. (10)

As our algorithm is a correction algorithm with corrections tending to
zero, the left-hand side a(wH , ϕ), ϕ ∈ VH , is not to be rewritten. All other
terms already based on Th for integration do not need to be revised.

• The term 〈f |ϕ〉, ϕ ∈ Vh or VH , is approximated with

〈f |ϕH〉 ≈
∑
K∈TH

|K|
d+ 1

d+1∑
α=1

f1(xαK)ϕH(xαK)

+
∑
K∈Th

|K|
d+ 1

d+1∑
α=1

f2(xαK)(rhϕH)(xαK), ∀ϕH ∈ VH , (11)

and

〈f |ϕh〉 ≈
∑
K∈Th

|K|
d+ 1

d+1∑
α=1

f2(xαK)ϕh(x
α
K), ∀ϕh ∈ Vh, (12)

where f = f1 + f2 with f1 =

{
f in Ω \ Λ
0 in Λ

, and f2 =

{
0 in Ω \ Λ
f in Λ

.

5 Applications in 2D and 3D

We consider the Poisson-Dirichlet problem

{
−∆u = f in Ω = (−1; 1)d, d = 2, 3,
u = 0 on ∂Ω.

(13)

First, we implement the problem (13) in 2D (d = 2) to assess the conver-
gence of Algorithm 2 with regard to the influence of the grids used. We take

f such that the exact solution to the problem is given by u = u0 +
4∑
i=1

ui,

u0(x, y) = cos(
π

2
x) cos(

π

2
y) and ui(x, y) = ηχ(Ri) exp ε−2

f exp(−1/|ε2f −R2
i |),

where Ri(x, y) =
√

(x− xi)2 + (y − yi)2 and χ(Ri) = 1 if Ri ≤ εf , χ(Ri) = 0
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if Ri > εf ; η, εf and (xi, yi), i = 1, 2, 3, 4 are parameters. Hence the right-

hand side of (13) is given by f = f0 +

4∑
i=1

fi, where f0 = −∆u0 and

fi = −∆ui, i = 1, 2, 3, 4. We choose η = 10, εf = 0.3 and (x1, y1) = (0.3, 0.3),
(x2, y2) = (0.7, 0.3), (x3, y3) = (0.3, 0.7), (x4, y4) = (0.7, 0.7).

For the triangulation of Ω, we use a coarse uniform grid with mesh size
H and r = 1. We consider the patches Λi, i = 1, 2, 3, 4, with a fine uniform
triangulation of size h and s = 1. Choose Λi = (xi− ε;xi+ ε)× (yi− ε; yi+ ε),
with ε = 0.1. We set H = 2/N and h = 2ε/M , N,M being the number of
discretization points on one side of the squares Ω and Λi respectively.

In the following, we consider different situations including structured
nested and non-nested as well as unstructured grids on the domain Ω. We
always use the same structured grids for the patches. Our goal is to show that
the algorithm performs well when h → 0 for fixed H , and when each patch
covers only a small number of coarse elements. It is particularly competitive
when used with the optimal relaxation parameter in initially ill-conditioned
situations (see Table 1(c), with small displacement of the nodes of the nested
grid).

We introduce a stopping criterion for the algorithm, which controls the
relative discrepancy ||un − un−1||/||un|| between two iterations n − 1 and n,
n = 1, 2, . . ., and measures the stagnation of the algorithm. We call ncvg the
number of iterations required for convergence. Conforming to our problem
(13), || · || denotes here the H1-seminorm.

All results are illustrated in the following table. In each part, we depict the
considered situation by small graphics showing first the whole triangulation
TH with the patches, then a zoom to emphasize the region around one corner
of a patch to show how Th and TH are related. First, we set ω = 1 and run
our method to obtain an estimate of γ̃ and hence of the spectral radius of
the iteration operator, as discussed at the end of Section 3. Then we run
the algorithm on problem (13) until convergence and report the number of
iterations ncvg. These values are, respectively, reported in the first rows of
Tables 1(a)–1(c). Given the approximation for γ̃, we determine the optimal
relaxation parameter with (6) and give the spectral radius. The last line in
the tables reports the required iterations needed by the method to converge
under optimal relaxation.

In a first test, we choose N and M such that the ratio H/h is of magnitude
10. In these first cases, the patches cover a small number of triangles of TH
leading to small coefficients γ̃ and ρ. Hence convergence is reached after a
small number of iterations.

When doubling the number of fine triangles, see Table 1(b), the situation
remains similar. A slight over-relaxation realises a gain of a couple of itera-
tions. This suggests that the method is efficient in multi-scale situations, i.e.
in problems with fixed H and h→ 0.
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In the examples of Table 1(c), we increase the precision of the coarse
triangulation. These cases show that the algorithm is best-suited to situations
with patches covering a small number of coarse triangles. In fact, increasing
the number of coarse triangles covered by the patches leads to bad condition
numbers (ρ close to 1). Nevertheless optimal relaxation allows us to divide
by a factor 2 the number of iterations necessary to obtain convergence. This
shows that optimal relaxation is a key ingredient in our method.

These basic results show that the method is very well adapted for multi-
scale situations when applying small patches in the regions with large gradi-
ents.

Let us now turn to the 3D case (d = 3) of problem (13). We take f such
that the exact solution to the problem is given by u = u0 + u1, u0(x, y, z) =

cos(
π

2
x) cos(

π

2
y) cos(

π

2
z) and u1(x, y, z) = ηχ(R) exp ε−2

f exp(−1/|ε2f − R2|).
where R(x, y, z) =

√
x2 + y2 + z2. We choose η = 10, εf = 0.3 and take

Λ = (−0.25, 0.25)3. We set ω = 1. For the triangulation of Ω resp. Λ, we use
a uniform structured grid with mesh size H resp. h. We set H = 2/N and
h = 0.5/M , N,M being the number of points per side of the cubes Ω and
Λ. We use linear finite elements (r = s = 1). To assess the convergence of
uHh = uncvg in H and h to the exact solution u,4 we introduce the standard
relative errors en = ||u− un||/||u|| and eHh = encvg = ||u− uHh||/||u||.

Consider the coarse triangulation (N = 16, 32, 64) with a patch M =
8, 16, 32, 64. We assess the quality of the estimate un at the iteration n of the
algorithm by comparing it to the exact solution u. The results of en through
n are depicted on Fig 3(a). Note that it is useful to run the algorithm through
more than one iteration. Nevertheless only a couple of iterations are sufficient
to obtain good results. As mentioned above, in the present cases the speed
of convergence remains constant with respect to the refinement of the patch.
When the error in Ω \Λ dominates (case N = 16, M = 32, 64) a refinement of
Th does not improve the precision. The reduction of the error, in comparison
with the sequence M = 8 to M = 16, stagnates.

Let us illustrate the efficiency of the method with respect to the memory
usage. On one hand, we consider the computation of uH on one grid with
N = 16, 32, 64. On the other hand, we take a coarse grid (N = 16) with a
fine grid in the patch M = 8, 16, 32, 64. In Fig. 3(b), we plot the error eHh
with regard to the number of nodes used. Comparison of both curves leads us
to conclude that the method is efficient in terms of memory usage. As above,
the stagnation in the reduction of eHh stems from the error on the coarse grid
becoming dominant. Similar results to those of memory usage can obtained
for the CPU-time.

In Fig. 3(c), we illustrate the solution obtained after 5 iterations for the
test case N = 16, M = 32.

4An assessment of the convergence in H and h illustrating the a priori estimate
(3) is given in [6], Fig. 6.
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(a) H/h = 10 and N = 10.

H/h = 10 nested non-nested unstructured
N = M = 10 N = 11, M = 10 N = M = 10

ρ(γ̃, 1) = γ̃2 0.28 0.30 0.34

ncvg 6 8 8

ρ(γ̃, ωopt) = ωopt − 1 0.08 0.09 0.10

ncvg 5 6 8

(b) H/h = 20 and N = 10.

H/h = 20 nested non-nested unstructured
N = 10, M = 20 N = 11, M = 20 N = 10, M = 20

ρ(γ̃, 1) = γ̃2 0.28 0.31 0.38

ncvg 6 8 9

ρ(γ̃, ωopt) = ωopt − 1 0.08 0.09 0.12

ncvg 5 6 6

(c) H/h = 20 and N = 20.

H/h = 10 nested non-nested unstructured
N = M = 20 N = 21, M = 20 N = M = 20

ρ(γ̃, 1) = γ̃2 0.24 0.89 0.91

ncvg 6 24 27

ρ(γ̃, ωopt) = ωopt − 1 0.07 0.50 0.54

ncvg 5 13 15

Table 1. Comparison of the algorithm properties in 2D.
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N = 64, M = 64
N = 32, M = 32
N = 16, M = 64
N = 16, M = 32
N = 16, M = 16
N = 16, M = 8

Iteration number
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h
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(a) en versus iteration number.

with patch, N = 16, M = 8, 16, 32, 64
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e H
h

1e+06100000100001000
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(b) eHh versus number of nodes.

Fig. 3. Results in 3D and illustrations.
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On Preconditioned Uzawa-type Iterations for a
Saddle Point Problem with Inequality

Constraints

Carsten Gräser∗ and Ralf Kornhuber

Freie Universität Berlin, Fachbereich Mathematik und Informatik, Arnimallee 14,
D-14195 Berlin, Germany.

Summary. We consider preconditioned Uzawa iterations for a saddle point prob-
lem with inequality constraints as arising from an implicit time discretization of
the Cahn-Hilliard equation with an obstacle potential. We present a new class of
preconditioners based on linear Schur complements associated with successive ap-
proximations of the coincidence set. In numerical experiments, we found superlinear
convergence and finite termination.

1 Introduction

Since their first appearance in the late fifties, Cahn-Hilliard equations have
become the prototype class of phase-field models for separation processes,
e.g., of binary alloys [7, 11, 19]. As a model problem, we consider the scalar
Cahn-Hilliard equation with isotropic interfacial energy, constant mobilities
and an obstacle potential [3, 4]. In particular, we concentrate on the fast
solution of the algebraic spatial problems as resulting from an implicit time
discretization and a finite element approximation in space [4]. Previous block
Gauß-Seidel schemes [2] and the very popular ADI-type iteration by Lions and
Mercier [18] suffer from rapidly deteriorating convergence rates for increasing
refinement. In addition, the Lions-Mercier algorithm requires the solution of
an unconstrained saddle point problem in each iteration step.

Our approach is based on a recent reformulation of the spatial problems
in terms of a saddle point problem with inequality constraints [15]. Similar
problems typically arise in optimal control. In contrast to interior point meth-
ods [22] or classical active set strategies we do not regularize or linearize the
inequality constraints but directly apply a standard Uzawa iteration [14]. In
order to speed up convergence, appropriate preconditioning is essential.

Preconditioning is well-understood in the linear case [1, 6, 12, 16] and vari-
ants for nonlinear and nonsmooth problems have been studied as well [8, 9].

∗This work was supported in part by DFG under the grant KO 1806 3-1
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However, little seems to be known about preconditioning of saddle point prob-
lems with inequality constraints or corresponding set-valued operators. For
such kind of problems a reduced linear problem is recovered, once the exact
coincidence set is known. In this case, preconditioning by the associated Schur
complement would provide the exact solution in a single step. As the exact
coincidence set is usually not available, our starting point for preconditioning
is to use the Schur complement with respect to some approximation. General
results by Glowinski et al. [14] provide convergence. To take advantage of the
successive approximation of the coincidence set in the course of the iteration,
it is natural to update the preconditioner in each step. In our numerical com-
putations the resulting updated version shows superlinear convergence and
finite termination. Previous block Gauß-Seidel schemes [2] are clearly outper-
formed. The convergence analysis and related inexact variants are considered
elsewhere [15].

This paper is organized as follows. After a short review of the continuous
problem and its discretization, we introduce the basic saddle point formula-
tion. In Section 4 we present the Uzawa iterations and Section 5 is devoted to
the construction of preconditioners. We conclude with some numerical exper-
iments.

2 The Cahn-Hilliard equation with an obstacle potential

Let Ω ⊂ R
2 be a bounded domain. Then, for given γ > 0, final time T > 0

and initial condition u0 ∈ K = {v ∈ H1(Ω) : |v| ≤ 1}, we consider the
following initial value problem for the Cahn-Hilliard equation with an obstacle
potential [3].

(P) Find u ∈ H1(0, T ; (H1(Ω))′)∩L∞(0, T ;H1(Ω)) and w ∈ L2(0, T ;H1(Ω))
with u(0) = u0 such that u(t) ∈ K and

〈
du

dt
, v

〉

H1(Ω)

+ (∇w,∇v) = 0, ∀v ∈ H1(Ω),

γ (∇u,∇v −∇u)− (u, v − u) ≥ (w, v − u) , ∀v ∈ K

holds for a.e. t ∈ (0, T ).

Here (·, ·) stands for the L2 scalar product and 〈·, ·〉H1(Ω) is the duality

pairing of H1(Ω) and H1(Ω)′. The unknown functions u and w are called
order parameter and chemical potential, respectively. The following existence
and uniqueness result was shown by Blowey and Elliott [3].

Theorem 1. Let u0 ∈ K with |(u0, 1)| < |Ω|. Then (P) has a unique solution.

For simplicity, we assume that Ω has a polygonal boundary. Let Th denote
a triangulation of Ω with maximal diameter h and verticesNh. Then Sh is the
corresponding space of linear finite elements spanned by the standard nodal
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basis ϕp, p ∈ Nh. Using the lumped L2 scalar product 〈·, ·〉, we define the
affine subspace Sh,m = {v ∈ Sh | 〈v, 1〉 = m} with fixed mass m. Finally,
Kh = K ∩ Sh is an approximation of K and we set Kh,m = K ∩ Sh,m.

Semi-implicit Euler discretization in time and finite elements in space [2,
4, 13] lead to the following discretized problem.

(Ph) For each k = 1, . . . , N find ukh ∈ Kh and wkh ∈ Sh such that

〈
ukh, v

〉
+ τ

(
∇wkh,∇v

)
=
〈
uk−1
h , v

〉
, ∀v ∈ Sh,

γ
(
∇ukh,∇(v − ukh)

)
−
〈
wkh, v − ukh

〉
≥
〈
uk−1
h , v − ukh

〉
, ∀v ∈ Kh.

We select the uniform time step τ = T/N . The initial condition u0
h ∈ Sh is

the discrete L2 projection of u0 ∈ K given by 〈u0
h, v〉 = (u0, v) ∀v ∈ Sh. Note

that the mass m = 〈ukh, 1〉 = (u0, 1), k ≥ 1, is conserved in this way.
The following discrete analog of Theorem 1 is contained in [4], where op-

timal error estimates can be found as well.

Theorem 2. There exists a solution (ukh, w
k
h) of (Ph) with uniquely deter-

mined ukh, k = 1, . . . , N . Moreover, wkh is also unique, if there is a p ∈ Nh
with |ukh(p)| < 1.

Note that non-uniqueness of wkh means that either the diffuse interface is
not resolved by Th or that ukh is constant.

3 A saddle point problem with inequality constraints

We consider the discrete Cahn-Hilliard system

(CH) Find u = (u,w) ∈ Kh × Sh such that

〈u, v〉+ τ (∇w,∇v) =
〈
uold, v

〉
, ∀v ∈ Sh,

γ (∇u,∇(v − u))− 〈w, v − u〉 ≥
〈
uold, v − u

〉
, ∀v ∈ Kh,

for given uold ∈ Sh. Such a kind of problem arises in each time step of (Ph).
Following [4, 15], we introduce the pde-constrained minimization problem

(M) Find u0 = (u,w0) ∈ V ⊂ Kh × Sh,0 such that

J (u0) ≤ J(v) ∀v ∈ V ,

V = {(vu, vw) ∈ Kh × Sh,0 |
〈
uold − vu, v

〉
− τ(∇vw ,∇v) = 0 ∀v ∈ Sh}.

Denoting u0 = (u,w0),v = (vu, vw), the bivariate energy functional

J (u0) = 1
2a(u0,u0)− �(u0), u0 ∈ Kh × Sh,0, (1)
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is induced by the bilinear form

a(u0,v) = γ (∇u,∇vu) + γ 〈u, 1〉 〈vu, 1〉+ τ (∇w0,∇vw) (2)

and the bounded linear functional

�(v) = γm 〈vu, 1〉+
〈
uold, vu

〉
. (3)

The bilinear form a(·, ·) is symmetric and, by Friedrich’s inequality, coer-
cive with a constant independent of h on the Hilbert space Sh×Sh,0 equipped
with the inner product

(u0,v)Sh×Sh,0
= 〈u, vu〉+ (∇u,∇vu) + (∇w0,∇vw).

Hence, (M) has a unique solution (cf., e.g., [10, p. 34]).
Incorporating the pde-constraint u0 ∈ V occurring in (M) by a Lagrange

multiplier λ ∈ Sh we obtain the saddle point problem

(S) Find (u0, λ) ∈ (Kh × Sh,0)× Sh such that

L(u0, µ) ≤ L(u0, λ) ≤ L(v, λ) ∀ (v, µ) ∈ (Kh × Sh,0)× Sh

with the Lagrange functional

L(v, µ) = J (v) +
〈
uold − vu, µ

〉
− τ(∇vw ,∇µ).

It turns out that (S) is an equivalent reformulation of (CH) where the La-
grange parameter λ is identical with the chemical potential w. The following
result is taken from [15].

Theorem 3. Let u = (u,w) ∈ Kh × Sh be a solution of (CH). Then u0 =

(u,w0) with w0 = w −
∫

Ω

w dx/|Ω| ∈ Sh,0 is the unique solution of (M) and

(u0, w) is a solution of (S). Conversely, if (u0, λ) = ((u,w0), λ) is a solution
of (S), then u = (u, λ) solves (CH).

4 Preconditioned Uzawa-type iterations

From now on, we concentrate on Uzawa-type iterations for the saddle point
formulation (S) of the discrete Cahn-Hilliard system (CH). In the light of
Theorem 3, the Lagrange multiplier λ is identified with the chemical potential
w. We first express the Lagrangian terms by a suitable operator ΦS .

Lemma 1. Let 〈·, ·〉S be some inner product on Sh. Then there is a unique
Lipschitz continuous function ΦS : Sh × Sh,0 → Sh with the property

〈
uold − vu, µ

〉
− τ(∇vw ,∇µ) = 〈ΦS(v), µ〉S ∀µ ∈ Sh.

Furthermore 〈ΦS(·), µ〉S : Sh × Sh,0 → R is Lipschitz continuous and convex.



On Preconditioned Uzawa-type Iterations 95

Proof. Existence and uniqueness follows directly from the representation the-
orem of Fréchet-Riesz. Since ΦS is affine linear on the finite dimensional space
Sh × Sh,0, it is Lipschitz continuous. The same argument provides Lipschitz
continuity and convexity of 〈ΦS(·), µ〉S . �

Of course, ΦS depends on the choice of the inner product 〈·, ·〉S which plays
the role of a preconditioner. For given w0 ∈ Sh and ρ > 0 the corresponding
Uzawa iteration reads as follows [14, p. 91].

Algorithm 1. (Preconditioned Uzawa iteration)

uν0 ∈ Kh × Sh,0 : L(uν0, w
ν) ≤ L(v, wν ) ∀v ∈ Kh × Sh,0

wν+1 = wν + ρΦS(uν0).
(4)

As a(·, ·) is symmetric positive definite on Sh × Sh,0 and Kh × Sh,0 is a
closed, convex subset, we can apply Theorem 4.1 in Chapter 2 of [14] to obtain

Theorem 4. There are positive constants α0, α1 such that the iterates uν0
provided by Algorithm 1 converge to u0 for ν →∞ and all ρ ∈ [α0, α1].

In order to derive a more explicit formulation of Algorithm 1, it is convenient
to introduce the identity I and the operators A,C : Sh → Sh according to

〈Au, v〉 = γ (∇u,∇v) + γ 〈u, 1〉 〈v, 1〉 , 〈Cw, v〉 = τ (∇w,∇v) ∀v ∈ Sh

and the functions f, g ∈ Sh by

〈f, v〉 = γm 〈v, 1〉+
〈
uold, v

〉
∀v ∈ Sh, g = −uold.

Finally, ∂IKh
is the subdifferential of the indicator function of Kh. With this

notation, the discrete Cahn-Hilliard system (CH) can be rewritten as the
inclusion

(
A+ ∂IKh

−I
−I −C

)(
u
w

)
�
(
f
g

)
. (5)

Reformulating the minimization problem occurring in the first step of Al-
gorithm 1 as a variational inclusion, we can eliminate w0 and then insert the
above operator notation to obtain the following explicit formulation

uν = (A+ ∂IKh
)−1(f + wν)

wν+1 = wν + ρS−1(−uν − Cwν − g)
. (6)

The preconditioner S : Sh → Sh is the symmetric positive definite operator
defined by

〈Sr, v〉 = 〈r, v〉S ∀v ∈ Sh.
Observe that (6) turns out to be a classical Uzawa iteration for the nonlinear,
perturbed saddle point problem (5) with the preconditioner S.



96 C. Gräser and R. Kornhuber

5 Towards efficient preconditioning

In order to construct efficient preconditioners S, we have to find good approxi-
mations of the nonlinear Schur complement, i.e.,

S ≈ (A+ ∂IKh
)−1 + C.

Our construction is based on the observation that the discrete Cahn-Hilliard
system (5) degenerates to a reduced linear problem once the solution u on the
coincidence set

N •
h (u) = {p ∈ Nh | |u(p)| = 1} ,

is known. To be more precise, we define the reduced linear operators

〈
Â(u)ϕp, ϕq

〉
=

{
δp,q 〈ϕp, ϕq〉 if q ∈ N •

h (u)

〈Aϕp, ϕq〉 else

〈
Î(u)ϕp, ϕq

〉
=

{
0 if q ∈ N •

h (u)

〈ϕp, ϕq〉 else

p ∈ Nh

and the right hand side

〈
f̂(u), ϕq

〉
=

{
u(q) 〈ϕq, ϕq〉 if q ∈ N •

h (u)
〈f, ϕq〉 else

.

Recall that ϕp, p ∈ Nh, denotes the standard nodal basis of Sh. Then, by
construction, the discrete Cahn-Hilliard system (5) has the same solution as
the reduced linear system

(
Â(u) −Î(u)
−I −C

)(
u
w

)
=

(
f̂(u)
g

)

with the Schur complement S(u) = Â(u)−1Î(u) + C. Replacing the exact
solution u by some approximation ũ ≈ u, we obtain the preconditioner

S(ũ) = Â(ũ)−1Î(ũ) + C. (7)

Proposition 1. The operator S(ũ) is symmetric and positive semidefinite.
S(ũ) is positive definite, if and only if N •

h (ũ) �= Nh.

Proof. First note that Î(ũ) : Sh → S◦h = {v ∈ Sh | v(p) = 0 ∀p ∈ N •
h (ũ)} is

orthogonal with respect to 〈·, ·〉. The range of the restriction A◦ = Â(ũ)|S◦
h

is
contained in S◦h, because, for all v ∈ S◦h, we have by definition

〈
Â(ũ)v, ϕq

〉
=

∑
p∈Nh\N•

h (ũ)

v(p)δp,q 〈ϕp, ϕq〉 = 0 ∀q ∈ N •
h (ũ).
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Similarly, we get 〈A◦v, v′〉 = 〈Av, v′〉 ∀v, v′ ∈ S◦h so that A◦ is symmetric

and positive definite on S◦h. As a consequence, Â−1(ũ)Î(ũ) is symmetric and
positive semidefinite on Sh, because
〈
Â−1(ũ)Î(ũ)v, v′

〉
=
〈
(A◦)−1v̂, v′

〉
=
〈
Î(ũ)(A◦)−1v̂, v′

〉
=
〈
(A◦)−1v̂, v̂′

〉

denoting v̂ = Î(ũ)v, v̂′ = Î(ũ)v′. As C is also symmetric and positive semidef-

inite, the first assertion follows. It is easy to see that the kernels of Â−1(ũ)Î(ũ)
and C have a trivial intersection, if and only if N •

h (ũ) �= Nh. This concludes
the proof. �

In the light of Theorem 4, Proposition 1 guarantees convergence of the
preconditioned Uzawa iteration (6) with S = S(ũ) and suitable damping. The
condition N •

h (uν) �= Nh reflects the criterion N •
h (u) �= Nh for uniqueness of

w (cf. Theorem 2). It could be removed, e.g., by imposing mass conservation〈
wν+1, 1

〉
= 〈wν , 1〉 in the singular case N •

h (ũ) = Nh.
As a straightforward approximation of u one may choose the first iterate

ũ = u1. It is natural to update ũ in each iteration step, selecting S = S(uν).
However, in this case convergence no longer follows from Theorem 4, because
the preconditioner now depends on ν.

The following proposition is obtained by straightforward computation.

Proposition 2. Let N •
h (uν) �= Nh. Then, for S = S(uν) and ρ = 1 the

preconditioned Uzawa iteration (6) takes the form

uν = (A+ ∂IKh
)−1(f + wν)

wν+1 = S(uν)−1
(
−Â(uν)−1f̂(uν)− g

) . (8)

Note that only the actual coincidence set N •
h (uν) and the values of uν

on N •
h (uν) enter the computation of wν+1. Hence, (8) has the flavor of an

active set strategy. As an important consequence, the Uzawa iteration (8)
provides the exact solution, once the exact coincidence set N •

h (u) is detected.
In the numerical experiments to be reported below, this required only a finite
(quite moderate) number of steps. A theoretical justification will be discussed
elsewhere [15].

Multigrid solvers for the subproblems. Each step of the precondi-
tioned Uzawa iteration (8) requires a) the solution of a discretized symmetric
elliptic obstacle problem with box constraints and b) the evaluation of the
linear preconditioner S(uν).

For subproblem (8a), we apply monotone multigrid methods whose conver-
gence speed is comparable to classical multigrid algorithms for unconstrained
problems [17]. Moreover, in the non-degenerate case, the actual coincidence set
N •
h (uν) is detected after a finite number of steps. This means that we can stop

the iteration on (8a) after a finite (usually quite moderate) number of steps
without loosing exactness of the iteration (8). Using the Lipschitz-continuity
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〈A(u− uν), u− uν〉 ≤ 〈w − wν , w − wν〉

of (8a) with respect to wν , the potential accuracy of uν can be controlled by a
posteriori estimates of the algebraic error of wν . Hence, the Uzawa iteration
could be stopped and uν computed to the desired accuracy (only once!) as
soon as wν is accurate enough.

The substep (8b) amounts to the solution of the following symmetric saddle
point problem

(
Â(uν)Î(uν) −Î(uν)
−Î(uν) −C

)(
û

wν+1

)
=

(
f̃(uν)
g̃(uν)

)
(9)

with an auxiliary variable û satisfying û = uν on N •
h (uν) and the modified

right-hand sides f̃(uν) = f̂(uν)−Â(uν)(I−Î(uν))uν , g̃(uν) = g+(I−Î(uν))uν .
For the iterative solution of (9) we apply a multigrid method with a block
Gauß-Seidel smoother and canonical restriction and prolongation. Related al-
gorithms have been investigated in [5, 20, 21, 23, 24]. In particular, multigrid
convergence for a block Jacobi smoother is proved in [20].

6 Numerical experiments

We consider the Cahn-Hilliard equation (P) on the unit square Ω = (0, 1)2

in the time interval (0, T ), T = 0.5, with γ = 10−4 and its discretization by
(Ph). The underlying triangulation Thj with meshsize hj = 2−j results from

Fig. 1. Initial condition u0

j = 8 uniform refinements applied to the initial triangulation Th0 consisting of
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two congruent triangles. We choose the time step τ = γ. Figure 2 illustrates
the approximate solution for the initial condition u0 as depicted in Figure 1.
Observe that the initially fast dynamics slows down with decreasing curvature
of the interface.

Fig. 2. Evolution of the phases

We now investigate the performance of the preconditioned Uzawa itera-
tion (6). In all our experiments, we select ρ = 1, i.e. no damping is applied.
As initial iterates w0 we use the final approximations from the previous time
step. The first time step is an exception, because no initial condition is pre-
scribed for the chemical potential w. Here, we start with the the solution of
the unconstrained reduced problem (9). Reduction takes place with respect
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to N •
h (u0). The algebraic error is measured by the energy-type norm

‖v‖2 = a(v,v) + τ 〈vw, vw〉 , v = (vu, vw) ∈ Sh × Sh,

with a(·, ·) defined in (2).
It turns out that preconditioning by S(u1) does not speed up, but slows

down convergence considerably. Without preconditioning, the first spatial
problem is solved to machine accuracy by about 3000 Uzawa steps. Using
S(u1) as a preconditioner, 3000 steps only provide an error reduction by 10−1.

From now on we only consider the preconditioner S(uν) which is updated
in each iteration step ν ≥ 0. The resulting preconditioned Uzawa iteration is
called uUzawa. Figure 3 illustrates the computational work for the solution of
the spatial problems on the time levels k = 1, . . . , 500. The iteration is stopped
as soon as the exact coincidence set is detected. The left picture shows the
required number ν0 of uUzawa steps. From 13 steps in the first time level, ν0
drops down to 4 or 5 and later even to 2 or 3. This behavior clearly reflects the
quality of the initial iterates w0. The right picture shows the elapsed cpu time
measured in terms of work units. One work unit is the cpu time required by one
multigrid V (3, 3) cycle as applied to the unconstrained saddle point problem
(9) on the actual refinement level j. About 15 multigrid steps are necessary
to solve (9) to machine accuracy. Comparing both pictures, we find that the
computational cost for each spatial problem is obtained approximately by
multiplying that number with the number of Uzawa steps. The cpu time for
the 4 to 7 monotone multigrid steps for detecting the actual coincidence set
from each obstacle problem (8a) only plays a minor role.
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Fig. 3. Preconditioned Uzawa steps and cpu time over the time levels

To take a closer look at the convergence behavior of uUzawa, we now
consider the iteration history on the first two time levels, using the refined
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mesh Thj with j = 9. Figure 4 shows the algebraic error ‖u−uν‖ over the cpu
time measured in terms of work units. The “exact” solution u is precomputed
to roundoff errors. For a comparison, we consider a recent block Gauß-Seidel
iteration [2]. Reflecting the increasing accuracy of N •

h (uν), uUzawa shows
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Fig. 4. Iteration history for the first 2 time levels

superlinear convergence throughout the whole iteration process, ending up
with an error reduction by about 10−5 in the last iteration step. For bad initial
iterates w0, as encountered on the first time level, the efficiency of uUzawa

and Gauß-Seidel is comparable in the beginning of the iteration. However,
uUzawa speeds up considerably as soon as the coincidence set is approximated
sufficiently well. For good initial iterates, as available on the second and all
later time levels, such fast convergence takes place immediately. Even better
initial iterates could be expected from nested iteration. While the convergence
rates of the Gauß-Seidel scheme rapidly degenerate with decreasing mesh size,
the convergence speed of uUzawa hardly depends on the refinement level.
For example, the first spatial problem on the refinement levels j = 7, 8, 9 was
solved to machine accuracy by ν0 = 10, 12, 13 iteration steps.
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Multilevel Methods for Eigenspace
Computations in Structural Dynamics

Ulrich L. Hetmaniuk and Richard B. Lehoucq

Sandia National Laboratories †, P.O. Box 5800, MS 1110, Albuquerque, NM
87185-1110, USA. ulhetma@sandia.gov, rblehou@sandia.gov.

Summary. Modal analysis of three-dimensional structures frequently involves finite
element discretizations with millions of unknowns and requires computing hundreds
or thousands of eigenpairs. We review in this paper methods based on domain decom-
position for such eigenspace computations in structural dynamics. We distinguish
approaches that solve the eigenproblem algebraically (with minimal connections to
the underlying partial differential equation) from approaches that couple tightly the
eigensolver with the partial differential equation.

1 Introduction

The goal of our paper is to provide a brief review of multilevel methods for eigenspace
computations in structural dynamics. Our review is not meant to be exhaustive and
so we apologize for relevant work not discussed. In particular, our interest is in
multilevel algorithms for the numerical solution of the algebraic generalized eigen-
value problem arising from the finite element discretization of three-dimensional
structures. Our interest is also restricted to methods that are scalable, both with
respect to the mesh size and the number of processors of extremely large distributed-
memory architectures. We start our paper by a formal discussion of the origin of the
eigenvalue problem.

The dynamic analysis of a three-dimensional structure is modeled by the hyper-
bolic partial differential equation

ρ
∂2u

∂t2
− E(u) = f(t) in Ω (1)

where u is the vector of displacements, E is a self-adjoint elliptic differential op-
erator, ρ is the mass density, and f is a vector function for loading. We assume
that appropriate homogeneous boundary and initial conditions are specified on the
three-dimensional simply connected domain Ω.

†Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-
heed Martin Company, for the U.S. Department of Energy under contract DE-AC04-
94AL85000.
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Structural dynamic analyses are usually divided into two categories: frequency
response and transient simulation. In the former category, natural frequencies of
the structure and their mode shapes are determined to verify their separation from
frequencies of excitation or to compute the response from a given input force at a
given location. In the second category, we study the motion of the structure and its
time history under prescribed loads. For these dynamic response problems, several
solution methods are available and we refer the reader to [16] and the references
therein for an overview. Often, modal analysis is an effective solution method be-
cause, due to the orthogonality of the modes, modal superposition gives the solution.
In addition, the frequency range of excitation is usually in the low end of the nat-
ural frequencies of the structure. Consequently, high frequency modes have a much
lower participation in the response than lower modes and the contribution of high
frequency modes can be neglected.

The vibration frequencies and mode shapes of the structure are solutions of the
problem

−E(u) = λρu in Ω (2)

with the same homogeneous boundary conditions as (1). The eigenvalue λ is the
square of the natural frequency ω. A finite element discretization of the weak form
of the vibrational problem (2) leads to the generalized eigenvalue problem

Kuh = Muhλh (3)

where K and M are the stiffness and mass matrices of order n respectively that
represent the elastic and inertial properties of a structure. The parameter h is the
characteristic mesh size. We assume a choice of boundary conditions such that both
matrices are symmetric and positive definite.

Finite element discretizations of three-dimensional structures frequently involve
well over one million unknowns and modal truncation requires often hundreds or
thousands of eigenpairs. Consequently, computing these eigenpairs results in a chal-
lenging linear algebra problem. The remainder of our paper reviews two approaches
that can be used to compute the needed modes. We will focus on techniques to com-
pute eigenpairs in the low end of the spectrum for two reasons. First, the frequency
range of excitation and the dominant modes for the structural response are in the
low end of the natural frequencies. Secondly, standard results from finite element
theory [3, 48] give the following a priori error estimates

λ ≤ λh ≤ λ(1 + Ch2λ), (4)

assuming sufficient regularity. These estimates imply that the finite element dis-
cretization represents more accurately the modes with small natural frequency.

Our paper is organized as follows. Section 2 describes algebraic approaches to
solve the eigenvalue problem (3). Section 3 discusses variational methods tightly
coupled to the partial differential operator E .

2 Algebraic approach

A popular approach is to use a block Lanczos [26] code with a shift-invert transfor-
mation (K−σM)−1M. If σ is a real number, then the standard eigenvalue problem
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(K− σM)−1Muh = uhν,

„
ν =

1

λh − σ

«
, (5)

results by subtracting σM from both sides of (3) followed by cross-multiplication.
This standard eigenvalue problem is no longer symmetric. However, a careful choice
of inner product renders the operator (K− σM)−1M symmetric (for instance, the
M-inner product).

The Lanczos algorithm builds iteratively a basis for the Krylov subspace

Km+1 = span{x0, (K− σM)−1Mx0, · · · , [(K− σM)−1M]mx0} (6)

to approximate the eigenpairs (see [20, 26, 34] for further details). At every Lanczos
iteration, the action of (K − σM)−1 on a vector or a block of vectors is required.
Grimes et al. [26] solve the resulting set of linear equations by forward and backward
substitution with the factors computed by a sparse direct factorization. However,
performing sparse direct factorizations becomes prohibitively expensive when the
dimension n is large or when the distributed-memory architecture has a large number
of processors.

Other solutions are the following:

• replace the sparse direct method with a preconditioned iterative linear solver
within the shift-invert Lanczos algorithm;

• replace the shift-invert Lanczos algorithm with a preconditioned eigenvalue al-
gorithm.

These approaches are not new and we propose to review them.
For the first approach, most structural analysts choose a shift σ∗, σ∗ < λh1 , so

that the matrix K−σ∗M is symmetric positive definite. This choice is motivated by
the availability of scalable preconditioners for symmetric positive definite matrices.
A scalable preconditioner for K− σ∗M is desirable because the rate of convergence
of the resulting preconditioned conjugate gradient iteration is independent of the
mesh size and the number of processors. Recently, Farhat et al. [22] proposed a new
iterative solver for symmetric indefinite matrices, i.e. allowing an arbitrary shift σ.
Numerical experiments showed the scalability of the solver. However, to the best
of our knowledge, their approach for symmetric indefinite matrices has not been
coupled with a shift-invert Lanczos algorithm.

For a shift σ∗ such that σ∗ < λh1 , choices of scalable iterative linear solvers
include FETI-DP [21], the conjugate gradient preconditioned by balanced domain-
decompostion (BDDC) [19], or the conjugate gradient preconditioned by algebraic
multigrid (AMG) [50, 49, 1]. No comparison is available to assess the quality of each
combination. However, an efficient algorithm has been developed at Sandia National
Laboratories.

Salinas [7, 8, 44] is a massively parallel implementation of finite element anal-
ysis for structural dynamics. This capability is required for high-fidelity validated
models used in modal, vibrations, static, and shock analysis of weapons systems. A
critical component of Salinas is scalable iterative linear algebra. The modal analysis
is computed with a shift-invert Lanczos method (for a shift σ∗ < λh1 ) using parallel
ARPACK [34, 38] and the FETI-DP iterative linear solver [23, 21]. Because the
shift-invert Lanczos iteration used by ARPACK makes repeated calls to FETI-DP,
the projected conjugate iteration used for computing the Lagrange multipliers re-
tains a history of vectors computed during each FETI-DP invocation. After the first
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FETI-DP call by ARPACK, the right-hand side in the projected conjugate itera-
tion is first orthogonalized against this history of vectors. The number of projected
conjugate iterations is therefore reduced as the number of Lanczos iterations needed
by ARPACK increases. Besides the capability developed for Salinas, the authors
are not aware of any multilevel-based modal analysis capabilities for use within a
three-dimensional structural dynamics code.

Replacements for the shift-invert Lanczos algorithm include gradient schemes
that attempt to minimize the Rayleigh quotient and Newton schemes that search for
stationary points of the Rayleigh quotient. The gradient schemes include conjugate
gradient algorithms [6, 24, 28, 31, 35, 41]. The Newton-based schemes include the
Davidson-based methods [18] such as the Jacobi-Davidson algorithm [47].

All the algorithms perform a Rayleigh-Ritz analysis on a subspace S that is
computed iteratively. At the (m+1)-th iteration, the current subspace Sm+1 satisfies

Sm+1 ⊂ span(Sm,N−1R(m)) (7)

where R(m) is the block vector of residuals

R(m) = KX(m) −MX(m)Θ(m).

The current iterates X(m) are the best eigenvector approximations for (K,M) in

the subspace Sm. The matrix Θ(m) is diagonal and contains the Rayleigh quotients
for the iterates X(m).

The motivation for these preconditioned eigenvalue algorithms is to avoid the re-
quirement for a linear solve so that a single application of a preconditioner per outer
iteration can be used. So N, applied in equation (7), is in general a preconditioner
for the matrix K (the Jacobi-Davidson algorithm is one exception, see [47] for fur-
ther details). Good preconditioners are a prerequisite for any of the preconditioned
algorithms to perform satisfactorily. If a scalable preconditioner N is available for
K, then this preconditioner is a candidate for use within a preconditioned eigen-
value algorithm. Although less studied, preconditioned iterations for the eigenvalue
problem should also be independent of the mesh size. The reader is referred to
[30, 32] and [42, 43] for a review of the many issues involved and convergence the-
ory, respectively. These papers also contain numerous citations to the engineering
and numerical analysis literature.

Finally, little information is available that compares the merits of shift-invert
Lanczos methods versus preconditioned eigensolvers when hundreds or thousands
of eigenpairs are to be computed. In particular, practical experience with precon-
ditioned algorithms for computing eigenpairs in an interval inside the spectrum is
lacking. The paper [2] compares a number of preconditioned algorithms with the
shift-invert Lanczos method (for a shift σ∗ < λh1 ) on several large-scale eigenvalue
problems arising in structural dynamics when an algebraic multigrid preconditioner
is available. For these particular engineering problems, the preconditioned algorithms
were competitive when the preconditioner is applied in a block fashion and the block
size is selected appropriately.

Ultimately, maintaining numerical orthogonality of the basis vectors is the domi-
nant cost of the modal analysis as the number of eigenpairs requested increases. The
cost is quadratic in the number of basis vectors. The cost of maintaining numerical
orthogonality is a crucial limitation that motivates the next approach.
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3 Variational approach

The previous section described schemes where knowledge of the partial differen-
tial equation is only required through the application of a linear solver or a pre-
conditioner. In contrast, the approaches in this section make extensive use of the
variational form of the equation.

The leading method in the automotive industry to compute hundreds or thou-
sands of eigenpairs is the automated multilevel substructuring method (AMLS) [4, 5].
For example, in [33], the authors show how AMLS is more efficient than the shift-
invert Lanczos method [26] coupled with a sparse direct solver to compute a large
number of eigenpairs for two-dimensional problems. AMLS is a variation of a com-
ponent mode synthesis technique (CMS). Component mode synthesis techniques
[29, 17] originated in the aerospace engineering community . These schemes decom-
pose a structure into numerous components (or substructures), determine component
modes, and then synthesize these modes to approximate the eigenpairs of (3). Their
goal is to generate approximations that aptly describe the low frequency modal
subspace rather than to solve iteratively the eigenproblem. The reader is referred
to [46] for a review of CMS methods from a structural dynamics perspective. The
variational formulation and analysis of classical CMS techniques is due to Bourquin
[9, 10, 11].

To make the process concrete, suppose that the structure Ω is divided into two
subdomains Ω1 and Ω2 with the common interface Γ . We look for solutions of

−E(u) = λρu in Ω (8a)

u = 0 on ∂Ω. (8b)

Let (u1
j )1≤j≤m1 (resp. (u2

j)1≤j≤m2 ) represent eigenvectors on Ω1 (resp. Ω2) for the
same operator E with homogeneous Dirichlet boundary conditions on ∂Ω∩∂Ω1 (resp.
on ∂Ω ∩ ∂Ω2) and specific boundary conditions on Γ that will be discussed later.
Component mode synthesis techniques compute approximations to eigenpairs of (8)
via a Rayleigh-Ritz analysis on an appropriate subspace coupling the information
spanned by the vectors (u1

j)1≤j≤m1 and (u2
j )1≤j≤m2 . These techniques differ by the

boundary conditions specified on Γ and by the definition of the coupling subspace.
In practice, the eigenpairs on Ω1 and Ω2 are discretized by finite elements and are
computed numerically.

The family of fixed interface CMS methods was introduced by Hurty [29] and
improved by Craig and Bampton [17]. Fixed interface methods impose homogeneous
Dirichlet boundary condition along the interface Γ . Coupling between the local
sets of vectors (u1

j)1≤j≤m1 and (u2
j )1≤j≤m2 is achieved by adding a set of vectors

defined on Γ harmonically extended into Ω. The definition of these coupling vectors
distinguishes the various fixed interface CMS methods.

Other researchers proposed free interface methods where a homogeneous Neu-
mann boundary condition is imposed on Γ . Continuity on Γ for the approximation
of the eigenvectors of (3) is enforced so that constraints with Lagrange multipliers
appear in a subspace [36] for the final Rayleigh-Ritz analysis. The recent paper by
Rixen [45] reviews several CMS techniques and introduces a dual fixed interface
method. For a one-dimensional model problem, Bourquin [9] showed that a fixed
interface method better approximates the eigenspace than a free interface method.
Consequently, we focus our discussion on fixed interface methods.
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AMLS [5] is a fixed interface method where the coupling modes are harmonic ex-
tension of eigenmodes for the Steklov-Poincaré and the mass complement operators.
After a finite element discretization, the mass and stiffness matrices are ordered as
follows, for two subdomains,

M =

2
4 MΩ1 0 MΩ1,Γ

0 MΩ2 MΩ2,Γ

MT
Ω1,Γ MT

Ω2,Γ MΓ

3
5 and K =

2
4 KΩ1 0 KΩ1,Γ

0 KΩ2 KΩ2,Γ

KT
Ω1,Γ KT

Ω2,Γ KΓ

3
5 . (9)

The coupling mode pencil is (K̃Γ , M̃Γ ), where

K̃Γ = KΓ −
2X
i=1

KT
Ωi,ΓK−1

Ωi
KΩi,Γ

and M̃Γ ,

MΓ −
2X
i=1

“
KT
Ωi,ΓK−1

Ωi
MΩi,Γ + MT

Ωi,ΓK−1
Ωi

KΩi,Γ −KT
Ωi,ΓK−1

Ωi
MΩiK

−1
Ωi

KΩi,Γ

”
,

are the Schur and mass complement matrices. The AMLS method forms these in-
terface matrices and factors the Schur complement. For the case of two subdomains,
AMLS is summarized in the following three steps

1. Compute local eigenvectors (u1
j)1≤j≤m1 and (u2

j )1≤j≤m2 .

2. Compute coupling modes (uΓj )1≤j≤mΓ for the pencil (K̃Γ , M̃Γ ).
3. Perform a Rayleigh-Ritz analysis for the pencil (K,M) on the subspace

span
n
(u1
j )1≤j≤m1 , (u

2
j)1≤j≤m2 , (EuΓj )1≤j≤mΓ

o

where E denotes the harmonic extension.

For large structures, AMLS recursively divides the structure into thousands of sub-
structures and associated interfaces. This nested decomposition results in a hierar-
chical tree of substructures and interfaces or, analytically, in a direct sum decom-

position of
`
H1

0 (Ω)
´3

into orthogonal subspaces. The paper [5] examines a math-
ematical basis for AMLS in the continuous variational setting and the resulting
algebraic formulation. AMLS computes efficiently a large number of eigenpairs be-
cause the orthogonalizations of large scale vectors are eliminated. The orthogonality
of the approximations is obtained by the final Rayleigh-Ritz analysis. Unfortunately,
AMLS is not well suited to three-dimensional eigenvalue problems when solid ele-
ments are used. Indeed, AMLS supposes that the interface matrices are formed and,
sometimes, factored. Consequently, the cost of AMLS is that of computing a sparse
direct factorization for the stiffness matrix using multifrontal methods. As is well
known, sparse direct methods are not scalable with respect to mesh or the number
of processors.

An alternative to AMLS is to not form the Schur and mass complements. In this
case, we do not subdivide the interface into a hierarchy but consider one interface.
A preconditioner for the Schur complement, for instance BDDC [19], can be used
within a preconditioned eigensolver for the interface eigenvalue problem. Although
the interface problem is reduced in size over that of the order of (3), the application
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of the mass and Schur complements matrices and of the Schur complement precon-
ditioner remains expensive. Bourquin [10] and Namar [39] consider different pencils
to compute the coupling interface modes. But defining the most efficient choice of
pencil remains an open question.

Finally, we comment on the eigenspace error. Bourquin [9, 10, 11] derived asymp-
totic results for second order elliptic differential eigenvalue problems and their finite
element discretization. The error in the eigenspace computed by a CMS technique
depends upon the error due to modal truncation and discretization. The bounds of
Bourquin also indicate that the number of coupling modes necessary may become
small when the interface Γ is small. Similarly, when the subdomains are small, the
number of local modes needed is small. For further details, we refer the reader to
[9, 10, 11].

To conclude this section, we review overlapping techniques to compute approxi-
mations for the eigenproblem (3). Charpentier et al. [15] defined a component mode
synthesis technique using overlapping subdomains. Their approach simplifies the
definition of the coupling space as it just combines the local sets of vectors from
each subdomain. But performing the final Rayleigh-Ritz analysis on this subspace is

more complex because the decomposition of
`
H1

0 (Ω)
´3

is not a direct sum and the
local sets of vectors lack orthogonality properties.

In analogy to multiplicative Schwarz preconditioners, Chan and Sharapov [14]
define a multilevel technique that minimizes the Rayleigh quotient

min
x�=0

xTKx

xTMx
(10)

with a series of subspace and coarse grid corrections. When computing the smallest
eigenvalue, they show that convergence is obtained independently of the mesh size
and the number of overlapping subdomains. However, experience with large-scale
engineering problems is lacking.

Finally, multigrid techniques have also been used to approximate eigenpairs of
(3). Neymeyr [40] reviews multigrid eigensolvers for elliptic differential operators.
The Rayleigh quotient minimization algorithm [37, 25] uses corrections from each
geometric grid to compute eigenpairs. Cai et al. [13] have established grid indepen-
dent convergence estimates. Other researchers [27, 12] have applied multigrid as a
nonlinear solver for the eigenproblem. Unfortunately, practical experience with com-
puting many modes using multigrid techniques is lacking. Furthermore, all of the
existing algorithms make use of geometry to define their set of grids. The authors
are investigating the use of algebraic multigrid to define their grids and minimize
the Rayleigh quotient.

4 Conclusions

We have reviewed several multilevel algorithms to compute a large number of eigen-
pairs for large-scale three-dimensional structures. We can distinguish two major
approaches to solve this problem.

The first approach consists in using an efficient algebraic eigensolver coupled
with a multilevel preconditioner or linear solver. Many of the schemes discussed
are efficient. It will be interesting to see how shift-invert Lanczos can benefit from a
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scalable iterative solver for symmetric indefinite matrices. But, ultimately, maintain-
ing numerical orthogonality of the basis vectors is the dominant cost of the modal
analysis.

The second approach couples more tightly the eigensolver with the variational
form of the partial differential equation. The corresponding schemes have the ad-
vantage of minimizing or eliminating the orthogonalization steps with large scale
vectors and so are appealing. However, practical experience is needed in order to
ascertain the efficiency of the resulting approach for three-dimensional problems.
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49. K. Stüben, A review of algebraic multigrid, J. Comput. Appl. Math., 128 (2001),
pp. 281–309.
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1 Introduction

The classical Schwarz method [31] is based on Dirichlet boundary conditions. Over-
lapping subdomains are necessary to ensure convergence. As a result, when overlap
is small, typically one mesh size, convergence of the algorithm is slow. A first possible
remedy is the introduction of Neumann boundary conditions in the coupling between
the local solutions. This idea has led to the development of the Dirichlet-Neuman
algorithm [10], Neumann-Neumann method [3] and FETI methods [8]. These meth-
ods are widely used and have been the subject of many studies, improvements and
extensions to various scalar or systems of partial differential equations, see for in-
stance the following books [32], [27], [37] and [35] and references therein. A second
cure to the slowness of the original Schwarz method is to use more general interface
conditions, Robin conditions were proposed in [19] and pseudo-differential ones in
[17]. These methods are well-suited for indefinite problems [5] and as we shall see to
heterogeneous problems.

We first recall the basis for the optimized Schwarz methods in section 2 and an
application to the Helmholtz problem in section 2.2. Then, we consider equations
with highly discontinuous coefficients in section 3. We present an optimized Schwarz
method that takes properly into account of the discontinuities and make comparisons
with other domain decomposition methods.

2 Generalities on Optimized Schwarz methods

2.1 Optimal Interface Conditions

We will exhibit interface conditions which are optimal in terms of iteration counts.
The corresponding interface conditions are pseudo-differential and are not practical.
Nevertheless, this result is a guide for the choice of partial differential interface
conditions. Moreover, this result establishes a link between the optimal interface
conditions and artificial boundary conditions. This is also a help when dealing with
the design of interface conditions since it gives the possibility of using the numerous
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papers and books published on the subject of artificial boundary conditions, see e.g.
[6, 15].

We consider a general linear second order elliptic partial differential operator L
and the problem:

Find u such that L(u) = f in a domain Ω and u = 0 on ∂Ω.
The domain Ω is decomposed into two subdomains Ω1 and Ω2. We suppose that

the problem is regular so that ui := u|Ωi , i = 1, 2, is continuous and has continuous
normal derivatives across the interface Γi = ∂Ωi ∩ Ω̄j , i �= j.

Fig. 1. A two-subdomain decomposition.

Ω1

Ω2

Ω1
c

Ω2
c

Γ1

Γ2

A generalized Schwarz type method is considered.

L(un+1
1 ) = f in Ω1

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω
µ1∇un+1

1 .n1 + B1(u
n+1
1 )

= −µ1∇un2 .n2 + B1(u
n
2 ) on Γ1

L(un+1
2 ) = f in Ω2

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω
µ2∇un+1

2 .n2 + B2(u
n+1
2 )

= −µ2∇un1 .n1 + B2(u
n
1 ) on Γ2

(1)

where µ1 and µ2 are real-valued functions and B1 and B2 are operators acting along
the interfaces Γ1 and Γ2. For instance, µ1 = µ2 = 0 and B1 = B2 = Id correspond
to the original Schwarz method; µ1 = µ2 = 1 and Bi = α ∈ R, i = 1, 2, has been
proposed in [19] by P. L. Lions.

The question is:

Are there other possibilities in order to have convergence in a minimal num-
ber of steps?

In order to answer this question, we introduce the DtN (Dirichlet to Neumann) map
(a.k.a. Steklov-Poincaré) of domain Ω2 \ Ω̄1: Let

u0 : Γ1 → R

DtN2(u0) := ∇v.n2|∂Ω1∩Ω̄2
,

(2)

where n2 is the outward normal to Ω2 \ Ω̄1, and v satisfies the following boundary
value problem:

L(v) = 0 in Ω2 \ Ω̄1

v = 0 on ∂Ω2 ∩ ∂Ω
v = u0 on ∂Ω1 ∩ Ω̄2.

Similarly, we can define DtN1 the Dirichlet to Neumann map of domain Ω1 \ Ω̄2.
The following optimality result is proved in [23]:
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Result 1 The use of Bi = DtNj (i = 1, 2 and i �= j) as interface conditions in (1)
is optimal: we have (exact) convergence in two iterations.

The two-domain case for an operator with constant coefficients was first treated
in [17]. The multidomain case for a variable coefficient operator with both positive
results [25] and negative conjectures [26] were considered as well.

Remark 1. The main feature of this result is its generality since it does not depend
on the exact form of the operator L and can be extended to systems or to coupled
systems of equations as well with proper care of the well posedness of the algorithm.

As an application, we take Ω = R2 and Ω1 = ] −∞, 0 [×R. Using the Fourier
transform along the interface (the dual variable is denoted by k), it is possible to
give the explicit form of the DtN operator for a constant coefficient operator. If
L = η −∆, the DtN map is a pseudo-differential operator whose symbol is

Bi,opt(k) =
p
η + k2,

i.e., Bi,opt(u)(0, y) =

Z
R

Bi,opt(k)û(0, k)eIky dk.

The symbol is not polynomial in the Fourier variable k so that the operators
and hence the optimal interface conditions are not a partial differential operators.
They correspond to exact absorbing conditions. These conditions are used on the
artificial boundary resulting from the truncation of a computational domain. On this
boundary, boundary conditions have to be imposed. The solution on the truncated
domain depends on the choice of this artificial condition. We say that it is an exact
absorbing boundary condition if the solution computed on the truncated domain
is the restriction of the solution of the original problem. Surprisingly enough, the
notions of exact absorbing conditions for domain truncation and that of optimal
interface conditions in domain decomposition methods coincide.

2.2 Optimized Interface Conditions for the Helmholtz equation

As the above example shows, the optimal interface conditions are pseudodifferential.
Therefore they are difficult to implement. Moreover, in the general case of a variable
coefficient operator and/or a curved boundary, the exact form of these operators
is not known, although they can be approximated by partial differential operators
which are easier to implement. The approximation of the DtN has been addressed by
many authors since the seminal paper [6] by Engquist and Majda on this question.
A first natural idea is to use these works in domain decomposition methods. As
we shall see, it is better to design approximations that are optimized with respect
to the domain decomposition method. We seek approximations to the Dirichlet to
Neumann map by a partial differential operator

DtN 	 αopt − ∂

∂τ
(γopt

∂

∂τ
)

where ∂τ is the derivative along the interface. The parameters are chosen in order
to minimize the convergence rate of the algorithm. These interface conditions are
called optimized of order 2 conditions (opt2). If we take γ = 0, the optimization is
performed only w.r.t. α, they are called optimized of order 0 (opt0). The idea was
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first introduced in [34]. But the link with the optimal interface conditions was not
established and made the optimization too complex.

As an example, we present here the case of the Helmholtz equation that was
considered in [12]. We want to solve by a domain decomposition method:

L(u) = (−ω2 −∆)(u) = f

In order to find the optimized interface conditions, we first consider a very simple
geometry for which the optimization is tractable and then apply these results to
an industrial case. As a first step, the domain Ω = R

2 is decomposed into two non
overlapping subdomains Ω1 = (−∞, 0) × R and Ω2 = (0,∞) × R. The algorithm is

defined by (1) with µ1 = µ2 = 1 and B1 = B2 = α− ∂

∂τ
(γ

∂

∂τ
). A direct computation

yields the convergence rate of the iterative method in the Fourier space:

ρ(k;α, γ) ≡

8>>>><
>>>>:

˛̨
˛̨ I
√
ω2 − k2 − (α+ γk2)

I
√
ω2 − k2 + (α+ γk2)

˛̨
˛̨ if |k| < ω (I2 = −1)

˛̨̨
˛
√
k2 − ω2 − (α+ γk2)√
k2 − ω2 + (α+ γk2)

˛̨̨
˛ if ω < |k|

The convergence rate in the physical space is the maximum over k of ρ(k;α, γ).
Actually, it is sufficient to consider Fourier modes that can be represented on the
mesh used in the discretization of the operator. It imposes a truncation in the
frequencey domain of the type |k| < π/h where h is the mesh size. We have then to
minimize the convergence rate in the physical space with respect to the parameters
α and γ. We are thus led to the following min-max problem:

min
α,γ

max
|k|<π/h

ρ(k;α, γ).

Under additional simplifications, we get analytic formulas for the optimized param-
eters α and γ depending on ω and h, see [12].

For an arbitrary domain decomposition for instance obtained by an automatic
mesh partitioner as the one shown on figure 2, we proceed in the following manner.
At each node on the interface, we use the local value of the mesh size to compute
the optimized parameters using the formula established in the simple case of the
plane R

2 divided into two half-planes. In table 1, we give iteration counts for various
interface conditions: ABC0 means that the interface conditions are ∂n + Iω (i.e.
α = Iω and γ = 0, see [2]), ABC2 corresponds to absorbing conditions of order 2
that are currently used for truncation of domains see [6] but were not designed with
domain decomposition methods in mind. Notice that since the interfaces are not
straight lines and the subdomains have an irregular shape, we are very far from the
ideal case considered above. Nevertheless, the optimized interface conditions perform
quite well.
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Fig. 2. Domain decomposition of the cabin car.

Table 1. Iteration Counts for various interface conditions and numbers of subdo-
mains Ns.

Ns ABC 0 ABC 2 Optimized

2 16 it 16 it 9 it
4 50 it 52 it 15 it
8 83 it 93 it 25 it

16 105 it 133 it 34 it

3 Optimized Schwarz Method for Highly Discontinuous
Coefficients

We consider now a symmetric positive definite problem but with highy discontinuous
coefficients. The model equation is

ηu− div(κ∇u) = f in Ω

It contains some of the difficulties typical of porous media flow simulations. Indeed,
the coefficients η and κ have jumps which are typically of four orders of magnitude.
The tensor κ is anisotropic with large anisotropy ratios: 10−4 ≤ κx/κy ≤ 104. In
the situation we consider, the domain Ω is divided into two subdomains Ω1 and
Ω2 corresponding to two different geological blocks. Each subdomain is layered so
that the coefficients are discontinuous both across and along the interface, see for
instance figure 3. These kinds of problems lead to very ill-conditioned linear systems
so that there are plateaus in the convergence of Krylov methods even with otherwise
“good” preconditioners.

In order to design optimized interface conditions, we first define more precisely
the model problem we consider.

3.1 Setting of the semi-discrete problem

We consider a model problem set in an infinite tube Ω = R × ω where ω is some
bounded open set of R

p for some p ≥ 1. The domain is decomposed into two non
overlapping half tubes Ω1 = (−∞, 0) × ω and Ω2 = (0,∞) × ω. A point in Ω will
be denoted by (x,y). Let for i = 1, 2
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Fig. 3. Lithology.

Li := − ∂

∂x
ci(y)

∂

∂x
+ Ci(y) (3)

where ci is a positive real valued function and Ci is a symmetric positive definite
operator independent of the variable x. For instance, if p = 2 one might think of

Ci := ηi(y, z)−
„
∂

∂y
κi,y(y, z)

∂

∂y
+

∂

∂z
κi,z(y, z)

∂

∂z

«
(4)

with homogeneous Dirichlet boundary conditions and ηi ≥ 0, ci, κi,y, κi,z > 0 are
given real-valued functions and (y, z) ∈ ω.
We want to solve the following problem by a domain decomposition method

Li(ui) = f in Ω
u = 0 on ∂Ω

with

C1
∂u1

∂x
= C2

∂u2

∂x
on Γ

and
u2 = u1 on Γ

The problem can be considered at the continuous level and then discretized (see e.g.
[12], [11], [24] ), or at the discrete level (see e.g. [20], [28] or [13]). We choose here
a semi-discrete approach where only the tangential directions to the interface x = 0
are discretized whereas the normal direction x is kept continuous.
We therefore consider a discretization in the tangential directions which leads to

Li,h := − ∂

∂x
Ci

∂

∂x
+Bi (5)

where Bi and Ci are symmetric positive matrices of order n where n is the number of
discretization points of the open set ω ⊂ R

p. For instance if we take Ci to be defined
as in (4), Bi may be obtained via a finite volume or finite element discretization of
(4) on a given mesh or triangulation of ω ⊂ R

2.
We consider a domain decomposition method based on arbitrary interface con-

ditions D1 and D2. The corresponding Optimized Schwarz method (OSM) reads:
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L1,h(u
n+1
1 ) = f in Ω1

D1(u
n+1
1 ) = D1(u

n
2 ) on Γ

L2,h(u
n+1
2 ) = f in Ω2

D2(u
n+1
2 ) = D2(u

n
1 ) on Γ

(6)

where Γ is the interface x = 0. It is possible to both increase the robustness of
the method and its convergence speed by replacing the above fixed point iterative
solver by a Krylov type method. This is made possible by expressing the algorithm
in terms of interface unknowns

H1 = D1(u2)(0, .) and H2 = D2(u1)(0, .)

see [9].
At this point, it should be noted that the analysis of the present paper is restricted to
rather idealistic geometries. However, the same formalism can be used for a domain
decomposition into an arbitrary number of subdomains [12]. It has also been found
there that the convergence estimates provided in this simple geometry predict very
accurately the ones observed in practice even for complicated interface boundaries.

We first define interface conditions that lead to convergence in two steps of the
algorithm. Let

Λi = C
1/2
i A

1/2
i C

1/2
i (7)

where Ai := C
−1/2
i BiC

−1/2
i . Taking

D1 = (C1
∂

∂n1
+ Λ2) and D2 = (C2

∂

∂n2
+ Λ1)

leads to a convergence in two steps of (1), see [9]. This result is optimal in terms
of iteration counts. But, matrices Λi are a priori full matrices of order n costly to
compute and use. Instead, we will use approximations in terms of sparse matrices
denoted Λi,ap. We lose convergence in two steps. In order to have the best con-
vergence rate, we choose optimized sparse approximations to Λi w.r.t the domain
decomposition method.

We first consider diagonal approximations to Λi. At the continuous level, they
correspond to Robin interface conditions. For a matrix F , let λm,M (F ) denote re-
spectively the smallest and largest eigenvalues of F and diag(F ) the diagonal matrix
made of the diagonal of F . We define

Λ0
i,ap = β̃i,optD̃i (8)

where D̃i := C
1/2
i diag(Ai)

1/2C
1/2
i and

β̃i,opt =
p
βm βM

with

βm,M =
q
λm,M (diag(Ai)−1/2Ai diag(Ai)−1/2)

We also consider sparse approximations that will have the same sparsity as Ai. Let
λm,M = λm,M (D̃−2

i Ai)
1/2, the real parameters β1 and β2 are defined as follows

β1β2 = λm λM (9)

β1 + β2 =
“
2
√
λmλM (λm + λM )

”1/2

(10)

We define

Λ2
ap,β1,β2

:= C
1/2
i

D̃−1
i Ai + β1β2D̃i

β1 + β2
C

1/2
i (11)

At the continuous level, they correspond to optimized of order 2 interface conditions.
The motivation for definitions (8) and (11) are given in [9].
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3.2 Numerical results

The substructured problems are solved by a GMRES algorithm [29]. In the tables
and figures, opt0 refers to (8) and opt2 to formula (11). In figure 4, we compare
them with interface conditions obtained using a “frozen” coefficient approach. In the
latter case, the interface conditions depend only locally on the coefficients of the
problem, see [36] at the continuous level, [13] at the semi-discrete level and [28] at
the algebraic level. We see a plateau in the convergence curve which can be related
to a few very small eigenvalues in the spectrum of the substructured problem, see
figure 4. A possible cure to this problem is the use of deflation methods, [21], [16],
[22] and [30]. They rely on an accurate knowledge of the eigenvectors corresponding
to the “bad” eigenvalues. With the opt2 interface conditions, no eigenvalue is close
to zero and we need only extremal eigenvalues (and not the eigenvectors) of an
auxiliary matrix. We also give comparisons with the Neumann-Neumann [33] [4] or
FETI [18] approach, see figure 5. In the numerical tests, we have typically ten layers
in each subdomain. In each layer, the diffusion tensor is anisotropic. We have jumps
in the coefficients both across and along the interface. We are thus in a situation
where the Neumann-Neumann or FETI methods are not necessarily optimal.

Fig. 4. Left: Convergence curve for various interface conditions. Right: Eigenvalues
of the interface problem for opt2 (cross) and “frozen” (circles) interface conditions.

4 Conclusion

We have first reviewed known results on optimized Schwarz methods for smooth co-
efficients operators. We have then considered problems with highly anisotropic and
discontinuous coefficients, for which plateaus in the convergence of Krylov methods
exist even when using “good” preconditioners. A classical remedy is to use deflated
Krylov methods. We have developed in this paper a new algebraic approach in the
DDM framework. We propose a way to compute optimized interface conditions for
domain decomposition methods for symmetric positive definite equations. Compared
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Fig. 5. residual vs. subdomain solve counts.

to deflation, only two extreme eigenvalues have to be computed. Numerical results
show that the approach is efficient and robust even with highly discontinuous coef-
ficients both across and inside subdomains. The non-symmetric case is considered
in this volume at the algebraic level in a joint work with Luca Gerardo-Giorda, see
also [14]. The optimization of the interface condition is then much more difficult.
Let us mention that such interface conditions can be used on non-matching grids,
see [1] and [7].
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Schur Complement Preconditioners for
Distributed General Sparse Linear Systems∗

Yousef Saad

University of Minnesota, Department of Computer Science and Engineering, 200
Union Street SE, Minneapolis, MN 55455, USA. saad@cs.umn.edu

Summary. This paper discusses the Schur complement viewpoint when developing
parallel preconditioners for general sparse linear systems. Schur complement meth-
ods are pervasive in numerical linear algebra where they represent a canonical way
of implementing divide-and-conquer principles. The goal of this note is to give a
brief overview of recent progress made in using these techniques for solving general,
irregularly structured, sparse linear systems. The emphasis is to point out the im-
pact of Domain Decomposition ideas on the design of general purpose sparse system
solution methods, as well as to show ideas that are of a purely algebraic nature.

1 Distributed sparse linear systems

The parallel solution of a linear systems of the form

Ax = b, (1)

where A is an n×n large sparse matrix, typically begins by subdividing the problem
into p parts with the help of a graph partitioner [24, 13, 15, 23, 8, 16]. Generally, this
consists of assigning sets of equations along with the corresponding right-hand side
values to ‘subdomains’. It is common that if equation number i is assigned to a given
subdomain then unknown number i is assigned to the same subdomain. Thus, each
processor holds a set of equations (rows of the linear system) and vector components
associated with these rows.

This distinction is important when taking a purely algebraic viewpoint because
for highly unstructured or rectangular (least-squares) systems, this is no longer a
viable or possible strategy and one needs to reconsider the standard graph partition-
ing approach used in Domain Decomposition. The next section is a brief discussion
of graph partitioning issues.

∗This work was supported by NSF under grants ACI-0305120 and INT-0003274
and by the Minnesota Supercomputer Institute.
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2 Graph partitioning

Figure 1 shows two standard ways of partitioning a graph. On the left side is a
‘vertex’ partitioning which is common in the sparse matrix community. A vertex
is a pair equation-unknown (equation number i and unknown number i) and the
partitioner subdivides the vertex set into p partitions, i.e., p non-intersecting subsets
whose union is equal to the original vertex set. On the right side of Figure 1, is a
situation which is a prevalent one in finite element methods. Here it is the set of
elements (rectangular in this case) that is partitioned. This can be called an element-
based partitioning, or, alternatively, an ‘edge-based partitioning’, since in this case
it also corresponds to assigning edges to subdomains.
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11 12 13 15

17 18

21 22 23 24 25

201916
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1

14

32 4 5

7 8 9 10

11 12 13 15

17 18

21 22 23 24 25

201916
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Fig. 1. Two classical ways of partitioning a graph.

The simplest criterion used to partition a graph is to try to minimize communi-
cation costs and to ensure at the same time that the work load between processors
is well balanced. In this strategy, it is common to model communication costs by
counting the number of edge-cuts, i.e., edges that link vertices in different subdo-
mains. Graph partitioners such as Metis [15] and Chaco [13], attempt to partition
graphs wit the quality measures just mentioned, in mind. However, a simple look at
a general graph will reveal that edge-cuts will not lead to a good model for commu-
nication costs. Thus, when k edges connect a single vertex to k non-local vertices
we would count k communication instances instead of one.

This observation was exploited in [8] to devise partitioners which lead to reduced
communication costs. The authors of [8] used ’Hypergaphs’ for this purpose. Hyper-
graphs are generalizations of graphs in which edges become sets (called hyperedges
or nets) consisting of several vertices, instead of just two. Figure 2 shows a sparse
matrix along with its traditional graph representation. Figure 3 shows the hyper-
graph obtained by defining hyper-edges to be the sets of column entries for each row.
A hyperedge is represented by a square. Thus, hyperedge h6, which corresponds to
the 6-th row of the matrix, is the set of the 3 vertices: 1, 6, and 8, as indicated by the
links from h6 (square) to the vertices 1, 6, and 8 (bullets). Similarly h7 = {1, 2, 7, 8}.

Note that from one viewpoint, this new representation is really that of a bipar-
tite graph, since the nodes represented by a hyperedge (squares) are linked only to
vertices of the graph (bullets). Models similar to the one just illustrated, i.e., based
on setting hi to be the set of column entries of row i, are common in hypergraph
partitioning as they tend to yield better cost models for communication, see, [8].
Gains in communication will help reduce the overall run time but these gains are
typically in the order of 10-30%, and they often represent a small portion of the
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overall execution time. One may ask whether or not the gains could be outweighed
by the cost of a higher iteration count. In fact, experimental results suggest that
hypergraph partitioning yields as good if not better quality partitionings from the
point of convergence. More importantly, we believe that the generality and flexibility
of hypergraph models has not yet been fully exploited in Domain Decomposition.
Though it is difficult to rigorously build a partitioning that will yield an ‘optimal’
condition number for the preconditioned matrix, heuristic arguments, see, e.g., [27],
may help obtain criteria that can help build good models based on weighted hyper-
graphs.

Fig. 2. A small sparse matrix and its classical graph representation.

Fig. 3. One possible hypergraph representation of the matrix in Figure 2.

Another potential use of hypergraphs is for solving very irregularly structured
problems which do not originate from PDEs. In these situations, the adjacency
graph of the matrix may be directed (i.e., pattern of A is nonsymmetric), a situation
which is not handled by standard partitioners. A common remedy is to symmetrize
the graph before partitioning it, which tends to be wasteful. Domain decomposition
ideas can be extended to such problems with the help of hypergraphs [12] or the
closely related bipartite models [16].

3 The local system

Once a graph is partitioned, three types of unknowns can be distinguished: (1)
Interior unknowns that are coupled only with local equations; (2) Local interface
unknowns that are coupled with both non-local (external) and local equations; and
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(3) External interface unknowns that belong to other subdomains and are coupled
with local equations. Local points in each subdomain are often reordered so that
the interface points are listed after the interior points. Thus, each local vector of
unknowns xi is split into two parts: the subvector ui of internal vector components
followed by the subvector yi of local interface vector components. The right-hand
side bi is conformally split into the subvectors fi and gi. When block partitioned
according to this splitting, the local system of equations can be written as

„
Bi Fi
Ei Ci

«
| {z }

Ai

„
ui
yi

«
| {z }
xi

+

0
@ 0X
j∈Ni

Eijyj

1
A =

„
fi
gi

«
| {z }
bi

. (2)

Here, Ni is the set of indices for subdomains that are neighbors to the subdomain
i. The term Eijyj is a part of the product which reflects the contribution to the
local equation from the neighboring subdomain j. The result of this multiplication
affects only local interface equations, which is indicated by zero in the top part of
the second term of the left-hand side of (2).

4 Schur complement techniques

Schur complement techniques consist of eliminating interior variables to define meth-
ods which focus on solving in some ways the system associated with the inter-
face variables. For example, we can eliminate the variable ui from (2), which gives
ui = B−1

i (fi − Fiyi) and upon substitution in the second equation,

Siyi +
X
j∈Ni

Eijyj = gi − EiB
−1
i fi ≡ g′i, (3)

where Si is the “local” Schur complement

Si = Ci − EiB
−1
i Fi. (4)

The equations (3) for all subdomains (i = 1, . . . , p) constitute a linear system
involving only the interface unknown vectors yi. This reduced system has a natural
block structure: 0

BBB@
S1 E12 . . . E1p

E21 S2 . . . E2p

...
. . .

...
Ep1 Ep,2 . . . Sp

1
CCCA

| {z }
S

0
BBB@
y1

y2

...
yp

1
CCCA

| {z }
y

=

0
BBB@
g′1
g′2
...
g′p

1
CCCA

| {z }
g′

. (5)

The diagonal blocks in this system, the local Schur complement matrices Si, are
dense in general. The off-diagonal blocks Eij , which are identical with those of the
local system (2) are sparse.

If can solve the global Schur complement system (5) then the solution to the
global system (1) would be trivially obtained by substituting the yi’s into the first
part of (2). A key idea in domain decomposition methods is to develop precondi-
tioners for the global system (1) by exploiting methods that approximately solve the
Schur complement system (5).
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Preconditioners implemented in the pARMS library [18] rely on this general
approach. The system (5) is preconditioned in a number of ways, the simplest of
which is to use a Block-Jacobi preconditioner exploiting the block structure of (5).
The Si’s are not explicitly computed. Assuming the notation (2), and considering
the LU factorization of Ai, we note that

if Ai =

„
LBi 0

EiU
−1
Bi

LSi

«„
UBi L

−1
Bi
Fi

0 USi

«
then LSiUSi = Si .

This yields the LU (or ILU) factorization of Si as a by-product of the LU (resp.
ILU) factorization of Ai. Setting up the preconditioner is a local process which only
requires the LU (resp. ILU) factorization of Ai.

Other Schur complement preconditioners available in pARMS include methods
which solve the system (5) approximately by a parallel (multicolor) version of the
ILU(0) preconditioner, and a multicolor block Gauss-Seidel iteration (instead of
block Jacobi). In general these work better than the simple block Jacobi technique
discussed above. For details see [18].

5 Use of independent sets

Independent set orderings permute a matrix into the form

„
B F
E C

«
(6)

where B is diagonal. The unknowns associated with the B block form an independent
set (IS), which is said to be maximal if it cannot be augmented by other nodes to
form a bigger independent set. Finding a maximal independent set can be done
inexpensively by heuristic algorithms [9, 17, 25].

The main observation here is that the Schur complement S = C − EB−1F
associated with the above partitioning of the matrix is again a sparse matrix in
general since B is diagonal. Therefore, one can think of applying the reduction
recursively as is illustrated in Figure 4. When the reduced system becomes small

Fig. 4. Three stages of the recursive ILUM process

enough then it can be solved by any method. This is the idea used in ILUM [25],
and in a number of related papers [7, 6, 30].

The notion of independent sets can easily be extended to ‘group independent
sets’, in which the matrix B is allowed to be block-diagonal instead of just diagonal.
In other words, we need to find “groups” or “aggregates” of vertices which are not
coupled to each other, in the sense that no node from one group is coupled with
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a node of another group. Coupling within any group is allowed but not between
different groups.

Define the matrix at the zeroth-th level to be A0 ≡ A. The Algebraic Recursive
Multilevel Solver algorithm (ARMS), see [28], is based on an approximate block
factorization of the form

PlAlP
T
l =

„
Bl Fl
El Cl

«
≈
„

Ll 0

ElU
−1
l I

«„
I 0
0 Al+1

«„
Ul L

−1
l Fl

0 I

«
. (7)

Here, LlUl is an Incomplete LU factorization of Bl, i.e., Bl ≈ LlUl and Al+1 approx-
imates the Schur complement, so, Al+1 ≈ Cl − (ElU

−1
l )(L−1

l Fl). The matrix Al+1

is the coefficient matrix for the linear system at the next level. It remains sparse
because of the ordering selected (group independent sets) and due to the dropping
of smaller terms. The L-solves associated with the above block factorization amount
to a form of restriction in the PDE context, while the U -solve is similar to a pro-
longation. Note that the algorithm is fully recursive. At the last level (selected in
advance, or by exhaustion) a simple ILU factorization is used instead of the one
above.

6 Highly indefinite problems: nonsymmetric orderings

Perhaps one of the most significant advances on“general purpose iterative solvers” of
the last few years is the realization that permuting a matrix in a nonsymmetric way,
before applying a preconditioning, can lead to a robust iterative solution strategy
[11, 10, 2]. By permuting A nonsymmetrically we mean a transformation of A of
the form PAQT , where P and Q are two different permutations. In particular, a
significant difference between this situation and the standard one where P = Q, is
that non-diagonal entries will be moved into the main diagonal. In fact the gist of
these methods is to move large entries of the matrix onto the diagonal. This was
explored for many years by researchers in sparse direct methods, as a means of
avoiding dynamic pivoting in Gaussian elimination [22].

In [10, 11], a (one-sided) permutation P was sought by attempting to maximize
the magnitude of the product of the diagonal entries of PA. Here we briefly outline
a method which also attempts to place large entries onto the diagonal, by using a
more dynamic procedure based on Schur complements. The idea here is to adapt
the ARMS algorithm outlined earlier by exploiting nonsymmetric permutations. We
will find two permutations P (rows) and Q (columns) to transform A into

PAQT =

„
B F
E C

«
. (8)

No particular structure is assumed for the B block. The only requirement on P,Q is
that for the resulting matrix in (8), the B block has the ‘most diagonally dominant’
rows (after nonsym perm) and few nonzero elements (to reduce fill-in). Once the
permutations are found and the matrix is permuted as shown above, we can pro-
ceed exactly as for ARMS by invoking a multi-level procedure. So, at the l-th level
we reorder A into PAQT , and then carry out an approximate block factorization
identical with that of (7), except that the left-hand side is now PAQT instead of
PAP T . The rationale for this approach is that it is critical to have an accurate and
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well-conditioned B block, [3, 4, 5]. In the case when B is of dimension 1, one can
think of this approach as a form of complete pivoting ILU.

The B block is defined by the Matching set M which is a set of nM pairs (pi, qi)
where nM ≤ n with 1 ≤ pi, qi ≤ n for i = 1, . . . , nM and pi �= pj , for i �= j qi �=
qj , for i �= j The case nM = n yields the (full) permutation pair (P,Q). A partial
matching set can be easily completed into a full pair (P,Q) by a greedy approach.

The algorithm to find permutation consists of 3 phases. First, a preselection
phase is invoked to filter out poor rows by employing a criterion based on diagonal
dominance. The main goal of this preselection phase is only to reduce the cost of the
next phase. Second, a matching phase scans candidate entries in order given by the
preselection algorithm and accepts them into the M set, or rejects them. Heuristic
arguments, mostly based on greedy procedures, are used for this. Finally, the third
phase completes the matching set to obtain a pair of (full) permutations P,Q, using
a greedy procedure.
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Fig. 5. Illustration of the greedy matching algorithm. Left side: a matrix after the
preselection algorithm. Right side: Matrix after Matching permutation.

An illustration of the matching procedure is shown in Figure 5. The left side
shows a certain matrix after the preselection procedure. The circled entries are the
maximum entries in each row and they are assigned a rank based on the diagonal
dominance ratio (the higher the better) and possibly the number of nonzero entries in
the row (the fewer the better). The greedy matching algorithm will simply traverse
these nodes in the order by which they are ranked, and then determine whether
or not to assign the node to M. Thus, entries labeled 1 (a74 in original matrix)
and 2 (a4,6 in original matrix) are accepted. Entry labeled 3 (a86) is not because
it is already in the same column as a4,6. The algorithm continues in this manner
until exhaustion of all nodes. This yields a partial permutation pair which is then
completed arbitrarily. The matrix on the right shows the permuted matrix. The B
block, separated by longer dash lines, is then eliminated and the process is repeated
recursively on the Schur complement, in the same manner as the ARMS procedure.
Details can be found in [26], along with a few more elaborate matching procedures.

As an example, Figure 6 shows an algorithm of this type in action for a highly
indefinite and unstructured matrix, BP1000, obtained from the old Harwell-Boeing
collection 2. The matrix pattern is shown in the top left part of the figure. Most of
the diagonal entries of the matrix are zero and as a result standard iterative methods
will fail. Five levels are required by the procedure with the last block reaching a size

2See http://math.nist.gov/MatrixMarket/
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Fig. 6. The Diagonal Dominance PQ-ordering in action for a highly unstructured
matrix.

of n = 60. With this the resulting preconditioning, GMRES converges in 17 steps.
In addition this is achieved with a ’fill-factor’ of 2.09, i.e., the ratio of the memory
required for the preconditioner over that of the original matrix is 2.09. For additional
experiments of more realistic problems see [26].

7 Wirebaskets and hierarchical graph decomposition

It was often observed in the domain decomposition literature that“cross points”play
a significant role. This was exploited in [29] in a method known as the wirebasket
preconditioner. Recently we have considered a method of the same type from an
algebraic viewpoint [14]. This algorithm, called Parallel Hierarchical Interface De-
composition ALgorithm (PHIDAL), descends recursively into interface variables, by
exploiting a hierarchy of ‘interfaces’. Its main difference with the parallel version of
ARMS, is that it uses a static ordering instead of a dynamic one. This results in fast
preprocessing and, potentially, better parallelism.

To explain the algorithm, consider a graph G that is partitioned into p subgraphs.
However, we now consider an edge-based partitioning, i.e., there are overlapping
vertices. The illustration on the left side of Figure 7 shows the graph of a matrix
associated with a 5-point FD discretization of a Laplacean on a 2-D domain. One
can distinguish three types of nodes: interior, interface, and cross-points. Imagine
now that we order the nodes according to this division: we would label all interior
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points first, followed by the interface points followed by the cross-points. Of course
the points in the same set (in this case whether interior nodes, domain edges) are
always labeled together. The result of this reordering would be the matrix shown
on the right of Figure 7. We refer to the connected subsets as “connectors”. The
interiors of the subdomains as well as the domain edges are connectors, as are the
cross-points.

Domain

Edges

Points

Interior

Point
Cross-

Fig. 7. A small finite difference mesh (left); Pattern of the matrix after the HID
ordering.

This ordering is very appealing for parallel processing. If we do not allow any
fill-in between the connectors, then the factorization will proceed in parallel at each
level. For this example, there are 3 levels: one for the interior points, the second is
that of the domain edges, and the 3rd is that of the cross-points. An idea similar
to the one discussed here was described in [19, 20] including some analysis [21],
though the setting was that of regular meshes. In [14], the above decomposition was
extended to general graphs.

An extention of the above definition requires us to partition the graph into levels
of subgraphs with the requirements that the subgraphs at a given level separate those at
lower levels. We will call a connector a connected component in the adjacency graph.
A level consists of a collection of connectors with the following requirements: (1)
Connectors at any level should separate connectors of previous levels; (2) Connectors
of the same level are not coupled (just as in ARMS).

One of the simplest (and clearly not the best) ways to obtain this decomposition
is to use the number of domains to which a node belongs. We can label each node
u with list key(u) of domains to which it belongs and then define the Level k to
be the set of nodes such that |key(u)| = k + 1, for k = 1, 2, . . . ,. The next task
would be to refine the labeling of the connectors to make them independent. The
simplest refinement is based on a greedy approach which would relabel a connector
by a higher label if it is connected to another connector of the same level. There are
many possible refinements, and the reader is referred to [14] for details.

By reordering the nodes hierarchically at the outset, it is possible to create
Schur complements that can be made sparse. Once a Schur complement at a given
level is constructed it is then possible to create another level. The two important



136 Y. Saad

ingredients of this procedure are: (1) algorithms for building a good levelization
(few levels); and (2) good combination of effective dropping strategies and parallel
incomplete factorization. Results shown in [14] indicate almost perfect scalability for
simple model problems (Poisson’s problem on a regular mesh) and good scalability
for a much harder problem issued from a Magneto Hydrodynamics problem.

8 Concluding remarks

Schur complement techniques can lead to very successful parallel or sequential itera-
tive procedures for solving general sparse linear systems. One of the most important
ingredients that is exploited when taking a purely algebraic viewpoint is to reorder
the equations in such a way that the next Schur complement is again sparse. This
is exploited in techniques such as MRILU [7, 6] and ILUM [25], MLILU [1] and
the closely related ARMS [28], and in PHIDAL [14]. Some of these techniques have
their analogue in the classical DD literature, a good example being the PHIDAL
preconditioner. Other types of reorderings exploit nonsymmetric permutations in
order to first eliminate the easier equations. These techniques do not have obvious
analogues in the classical DD literature. Because they represent an important set
of tools to bridge the gap between the robustness of iterative methods and that
of direct solvers, their extension to parallel computing environments, which is still
lacking, is of critical importance.
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1 Introduction

High order finite element methods can lead to very high accuracy and are thus
attracting increasing attention in many fields of computational science and engi-
neering. The monographs [26, 4, 23, 15, 27] give a broad overview of theoretical and
practical aspects of high order methods.

As the problem size increases (due to small mesh-size h and high polynomial
order p), the cost of solving the linear systems that arise comes to dominate the so-
lution time. Here, iterative solvers can reduce the total simulation time. We consider
preconditioners based on domain decomposition methods [11, 13, 25, 28, 21]. The
concept is to consider each high order element as an individual subdomain. Such
methods have been studied in [17, 3, 20, 1, 2, 9, 8, 14, 24, 18, 12]. We assume that
the local problems can be solved directly. On tensor product elements, one can apply
optimal preconditioners for the local sub-problems as in [16, 6, 7].

In the current work, we study overlapping Schwarz preconditioners with large or
small overlap. The condition numbers are bounded uniformly in the mesh size h and
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the polynomial order p. To our knowledge, this is a new result for tetrahedral meshes.
We construct explicitly the decomposition of a global function into a coarse grid part
and local contributions associated with the vertices, edges, faces, and elements of
the mesh. In this paper, we sketch the analysis for the two dimensional version, and
give the result for the 3D case. All proofs are given in the longer version [22].

The rest of the paper is organized as follows: In Section 2 we state the problem
and formulate the main results. We sketch the 2D case in Section 3 and extend the
result for 3D in Section 4. Finally, in Section 5 we give numerical results for several
versions of the analyzed preconditioners.

2 Definitions and Main Result

We consider the Poisson equation on the polyhedral domain Ω with homogeneous
Dirichlet boundary conditions on ΓD ⊂ ∂Ω, and Neumann boundary conditions on
the remaining part ΓN . With the sub-space V := {v ∈ H1(Ω) : v = 0 on ΓD}, the
bilinear-form A(·, ·) : V × V → R and the linear-form f(·) : V → R defined as

A(u, v) =

Z
Ω

∇u · ∇v dx f(v) =

Z
Ω

fv dx,

the weak formulation reads

find u ∈ V such that A(u, v) = f(v) ∀ v ∈ V. (1)

We assume that the domain Ω is sub-divided into straight-sided triangular or tetra-
hedral elements. In general, constants in the estimates depend on the shape of the
elements, but they do not depend on the local mesh-size. We define the set of ver-
tices V = {V }, the set of edges E = {E}, the set of faces (3D only) F = {F}, the set
of elements T = {T}. We define the sets Vf , Ef ,Ff of free vertices, edges, and faces
not completely contained in the Dirichlet boundary. The high order finite element
space is

Vp = {v ∈ V : v|T ∈ P p ∀T ∈ T },
where P p is the space of polynomials up to total order p. As usual, we choose a basis
consisting of lowest order affine-linear functions associated with the vertices, and of
edge-based, face-based, and cell-based bubble functions. The Galerkin projection
onto Vp leads to a large system of linear equations, which shall be solved with the
preconditioned conjugate gradient iteration.

This paper is concerned with the analysis of additive Schwarz preconditioning.
The basic method is defined by the following space splitting. In Section 5 we will
consider several cheaper versions resulting from our analysis. The coarse sub-space
is the global lowest order space

V0 := {v ∈ V : v|T ∈ P 1 ∀T ∈ T }.

For each inner vertex we define the vertex patch ωV =
[

T∈T :V∈T
T and the vertex

sub-space
VV = {v ∈ Vp : v = 0 in Ω \ ωV }.
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For vertices V not on the Neumann boundary, this definition coincides with Vp ∩
H1

0 (ωV ). The additive Schwarz preconditioning operator is C−1 : V ∗
p → Vp defined

by

C−1d = w0 +
X
V ∈V

wV

with w0 ∈ V0 such that

A(w0, v) = 〈d, v〉 ∀ v ∈ V0,

and wV ∈ VV defined such that

A(wV , v) = 〈d, v〉 ∀ v ∈ VV .

This method is very simple to implement for the p-version method using a hierar-
chical basis. The low-order block requires the inversion of the sub-matrix according
to the vertex basis functions. The high order blocks are block-Jacobi steps, where
the blocks contain all vertex, edge, face, and cell unknowns associated with mesh
entities containing the vertex V . The main result of this paper is to prove optimal
results for the spectral bounds:

Theorem 1. The constants λ1 and λ2 of the spectral bounds

λ1 〈Cu, u〉 ≤ A(u, u) ≤ λ2 〈Cu, u〉 ∀ u ∈ Vp

are independent of the mesh-size h and the polynomial order p.

The proof is based on the additive Schwarz theory, which allows us to express
the C-form by means of the space decomposition:

〈Cu, u〉 = inf
u=u0+

P
V uV

u0∈V0,uV ∈VV

‖u0‖2A +
X
‖uV ‖2A.

The constant λ2 follows immediately from a finite number of overlapping sub-
spaces. In the core part of this paper, we construct an explicit and stable decompo-
sition of u into sub-space functions. Section 3 introduces the decomposition for the
case of triangles, in Section 4 we prove the results for tetrahedra.

3 Sub-space splitting for triangles

The strategy of the proof is the following: First, we subtract a coarse grid function
to eliminate the h-dependency. By stepwise elimination, the remaining function is
then split into sums of vertex-based, edge-based and inner functions. For each partial
sum, we give the stability estimate. This stronger result contains Theorem 1, since
we can choose corresponding vertices for the edge and inner contributions (see also
Section 5).
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3.1 Coarse grid contribution

In the first step, we subtract a coarse grid function:

Lemma 1. For any u ∈ Vp there exists a decomposition

u = u0 + u1 (2)

such that u0 ∈ V0 and

‖u0‖2A + ‖∇u1‖2L2
+ ‖h−1u1‖2L2

� ‖u‖2A.

Proof. We choose u0 = Πhu, where Πh is the Clément-operator [10]. The norm
bounds are exactly the continuity and approximation properties of this operator.

>From now on, u1 denotes the second term in the decomposition (2).

3.2 Vertex contributions

In the second step, we subtract functions uV to eliminate vertex values. Since vertex
interpolation is not bounded in H1, we cannot use it. Thus, we construct a new
averaging operator mapping into a larger space.

In the following, let V be a vertex not on the Dirichlet boundary ΓD, and let
ϕV be the piece-wise linear basis function associated with this vertex. Furthermore,
for s ∈ [0, 1] we define the level sets

γV (s) := {y ∈ ωV : ϕV (y) = s},

and write γV (x) := γV (ϕV (x)) for x ∈ ωV . For internal vertices V, the level set
γV (0) coincides with the boundary ∂ωV (cf. Figure 1). The space of functions being
constant on these sets reads

SV := {w ∈ L2(ωV ) : w|γV (s) = const, s ∈ [0, 1] a.e.};

its finite dimensional counterpart is

SV,p := SV ∩ Vp = span{1, ϕV , ..., ϕpV }.

We introduce the spider averaging operator

`
ΠV v

´
(x) :=

1

|γV (x)|

Z
γV (x)

v(y) dy, for v ∈ L2(ωV ).

To satisfy homogeneous boundary conditions, we add a correction term as follows
(see Figure 2)

`
ΠV

0 v
´
(x) :=

`
ΠV v

´
(x)− (ΠV v)|γV (0)(1− ϕV (x)).

Lemma 2. The averaging operators fulfill the following algebraic properties

(i)
ΠV Vp = SV,p,
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Fig. 1. The level sets γV (x) Fig. 2. Construction of ΠV
0

(ii)
ΠV

0 Vp = SV,p ∩ VV ,
(iii) if u is continuous at V , then

(ΠV u)(V ) = ΠV
0 u(V ) = u(V ).

The proof follows immediately from the definitions.

We denote the distance to the vertex V , and the minimal distance to any vertex
in V by

rV (x) := |x− V | and rV(x) := min
V ∈V

rV (x).

Lemma 3. The averaging operators satisfy the following norm estimates

(i)
‖∇ΠV u‖L2(ωV ) � ‖∇u‖L2(ωV )

(ii)
‖r−1
V {u−ΠV u}‖L2(ωV ) � ‖∇u‖L2(ωV )

(iii)
‖∇{ϕV u−ΠV

0 u}‖L2(ωV ) � ‖∇u‖L2(ωV )

(iv)
‖r−1

V {ϕV u−ΠV
0 u}‖L2(ωV ) � ‖∇u‖L2(ωV )

The proof is given in [22].

The global spider vertex operator is

ΠV :=
X
V ∈Vf

ΠV
0 .

Obviously, u −ΠVu vanishes in any vertex V ∈ Vf . These well-defined zero vertex
values are reflected by the following norm definition:

||| · |||2 := ‖∇ · ‖2L2(Ω) + ‖ 1

rV
· ‖2L2(Ω) (3)
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Theorem 2. Let u1 be as in Lemma 1. Then, the decomposition

u1 =
X
V ∈Vf

ΠV
0 u1 + u2 (4)

is stable in the sense of
X
V ∈Vf

‖ΠV
0 u1‖2A + |||u2|||2 � ‖u‖2A. (5)

The proof is given in [22]. For the rest of this section, u2 denotes the second term
in the decomposition (4).

3.3 Edge contributions

As seen in the last subsection, the remaining function u2 vanishes in all vertices.
We now introduce an edge-based interpolation operator to carry the decomposition
further, such that the remaining function, u3, contributes only to the inner basis
functions of each element.

Therefore we need a lifting operator which extends edge functions to the whole
triangle preserving the polynomial order. Such operators were introduced in Babuška
et al. [3], and later simplified and extended for 3D by Muñoz-Sola [19]. The lifting
on the reference element TR with vertices (−1, 0), (1, 0), (0, 1) and edges ER1 :=
(−1, 1)× {0}, ER2 , ER3 reads:

(R1w)(x1, x2) :=
1

2x2

Z x1+x2

x1−x2

w(s)ds,

for w ∈ L1([−1, 1]). The modification by Muñoz-Sola preserving zero boundary
values on the edges ER2 and ER3 is

(Rw)(x1, x2) := (1− x1 − x2) (1 + x1 − x2)
“
R1

w

1− x2
1

”
(x1, x2).

For an arbitrary triangle T = FT (TR) containing the edge E = FT (ER1 ), its

transformed version reads RTw := R
ˆ
w ◦ FT

˜
◦ F−1

T . The Sobolev space H
1/2
00 (E)

on an edge E = [VE,1, VE,2] is defined by its corresponding norm

‖w‖2
H

1/2
00 (E)

:= ‖w‖2H1/2(E) +

Z
E

1

rVE

w2 ds,

with rVE := min{rVE,1 , rVE,2}.
We call ωE := ωVE,1∩ωVE,2 the edge patch. We define an edge-based interpolation

operator as follows:

ΠE
0 : {v ∈ Vp : v = 0 in V} → H1

0 (ωE) ∩ Vp,
(ΠE

0 u)|T := RT trE u.
(6)

Lemma 4. The edge-based interpolation operator ΠE
0 defined in (6) is bounded in

the ||| · |||-norm:
‖∇ΠE

0 u‖L2(ωE) � |||u|||ωE
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The proof follows from [3] and [19], and properties of the norm ||| · |||.

Theorem 3. Let u2 be as in Theorem 2. Then, the decomposition

u2 =
X
E∈Ef

ΠE
0 u2 + u3 (7)

satisfies u3 = 0 on
[
E∈Ef

E and is bounded in the sense of

X
E∈Ef

‖∇ΠE
0 u2‖2L2

+ ‖∇u3‖2L2
� |||u2 |||2. (8)

3.4 Main result

Proof of Theorem 1 for the case of triangles: Summarizing the last subsections, we
have

u1 = u−Πhu, u2 = u1 −
X
V ∈Vf

ΠV
0 u1, u3 = u2 −

X
E∈Ef

ΠE
0 u2,

and the decomposition

u = Πhu+
X
V ∈Vf

ΠV
0 u1 +

X
E∈Ef

ΠE
0 u2 +

X
T∈T

u3|T . (9)

is stable in the ‖ · ‖A-norm.
For any edge E or triangle T , we can find a vertex V , such that the corresponding

term is in VV . Since for each vertex only finitely many terms appear, we can use the
triangle inequality and finally arrive at the missing spectral bound

〈Cu, u〉 = inf
u=u0+

P
V uV

u0∈V0,uV ∈VV

‖u0‖2A +
X
V

‖uV ‖2A � 〈Au, u〉 .

4 Sub-space splitting for tetrahedra

Most of the proof for the 3D case follows the strategy introduced in Section 3, so we
can use the same definitions. The only principal difference is the edge interpolation
operator, which has to be treated in more detail.

We define the level surfaces of the vertex hat basis functions

ΓV (x) := ΓV (ϕV (x)) := {y : ϕV (y) = ϕV (x)}.

As in 2D, we first subtract the coarse grid function

u1 = u−Πhu,

and secondly the multi-dimensional vertex interpolant to obtain

u2 = u1 −ΠVu1,



146 J. Schöberl et al.

where the definitions of ΠV , ΠV
0 , ΠV are the same as in Section 3, only the level

set lines γV are replaced by the level surfaces ΓV . With the same arguments, one
easily shows that

X
v∈Vf

‖ΠV
0 u1‖2A + ‖∇u2‖2L2

+ ‖r−1
V u2‖2L2

� ‖u‖2A. (10)

We define the level line corresponding to a point x in the edge-patch ωE as

γE(x) := {y : ϕVE,1(y) = ϕVE,1(x) and ϕVE,2(y) = ϕVE,2(x)}

The edge averaging operator into SE reads

`
ΠEv

´
(x) :=

1

|γE(x)|

Z
γE(x)

v(y) dy.

In [22], the edge interpolation operator is modified to preserve zero boundary condi-
tions on the whole edge patch ωE . The resulting operator is called ΠE

0 . We define Ef
as the set of are all free edges, i. e. those which do not lie completely on the Dirichlet
boundary. We continue the decomposition with

u3 = u2 −
X
E∈Ef

ΠE
0 u2.

It fulfills the stability estimate

X
E∈Ef

‖ΠE
0 u2‖2A + ‖∇u3‖2 + ‖r−1

E u3‖2 � ‖∇u2‖2 + ‖r−1
V u2‖2. (11)

Moreover, u3 = 0 on
[
E∈Ef

E. Finally, we set

u4 = u3 −
X
F∈Ff

ΠF
0 u3,

where the face interpolation operator ΠF
0 is defined similar as the edge interpolation

operator in 2D.
Proof of Theorem 1 for the case of tetrahedra. The decomposition

u = Πhu+
X
V ∈Vf

ΠV
0 u1 +

X
E∈Ef

ΠE
0 u2 +

X
F∈Ff

ΠF
0 u3 +

X
T∈T

u4|T (12)

is stable in the ‖ · ‖A-norm.

5 Numerical results

In this section, we show numerical experiments on model problems to verify the
theory elaborated in the last sections and to get the absolute condition numbers
hidden in the generic constants. Furthermore, we study two more preconditioners.

We consider the H1(Ω) inner product
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A(u, v) = (∇u,∇v)L2 + (u, v)L2

on the unit cube Ω = (0, 1)3, which is subdivided into an unstructured mesh consist-
ing of 69 tetrahedra. We vary the polynomial order p from 2 up to 10. The condition
numbers of the preconditioned systems are computed by the Lanczos method.

Example 1: The preconditioner is defined by the space-decomposition with big
overlap of Theorem 1:

V = V0 +
X
V ∈V

VV

The condition number is proven to be independent of h and p. The computed num-
bers are drawn in Figure 3, labeled ’overlapping V’. The inner unknowns have been
eliminated by static condensation. The memory requirement of this preconditioner
is considerable: For p = 10, the memory needed to store the local Cholesky-factors
is about 4.4 times larger than the memory required for the global matrix.

In Section 2 we introduced the space splitting into the coarse space V0 and the
vertex subspaces VV . However, our proof of Theorem 1 involves the finer splitting
of a function u into a coarse function, functions in the spider spaces SV , edge-, face-
based and inner functions. Other additive Schwarz preconditioners with uniform
condition numbers are induced by this finer splitting.

Example 2: Now, we decompose the space into the coarse space, the p-
dimensional spider-vertex spaces SV,0 = span{ϕV , . . . , ϕpV }, and the overlapping
sub-spaces VE on the edge patches:

V = V0 +
X
V ∈V

SV,0 +
X
E∈E

VE

The condition number is proven to be uniform in h and p. The computed values are
drawn in Figure 3, labeled ’overlapping E, spider V’. Storing the local factors is now
about 80 percent of the memory for the global matrix.

Example 3: The interpolation into the spider-vertex space SV,0 has two continu-
ity properties: It is bounded in the energy norm, and the interpolation rest satisfies
an error estimate in a weighted L2-norm, see Lemma 3 and equation (10). Now,
we reduce the p-dimensional vertex spaces to the spaces spanned by the low energy
vertex functions ϕl.e.V defined as solutions of

min
v∈SV,0, v(V )=1

‖v‖2A.

These low energy functions can be approximately expressed by the standard vertex
functions via ϕl.e.V = f(ϕV ), where the polynomial f solves a weighted 1D prob-
lem and can be given explicitly in terms of Jacobi polynomials, see the upcoming
report [5]. The interpolation to the low energy vertex space is uniformly bounded,
too. But, the approximation estimate in the weighted L2-norm depends on p. The
preconditioner is now generated by

V = V0 +
X
V ∈V

span{ϕl.e.V }+
X
E∈E

VE.

The computed values are drawn in Figure 3, labeled ’overlapping E, low energy V’,
and show a moderate growth in p. Low energy vertex basis functions obtained by
orthogonalization on the reference element have also been analyzed in [8, 24].
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Example 4: We also tested the preconditioner without additional vertex spaces,
i.e.,

V = V0 +
X
E∈E

VE .

Since vertex values must be interpolated by the lowest order functions, the condition
number is no longer bounded uniformly in p. The rapidly growing condition numbers
are drawn in Figure 4.

Fig. 3. Overlapping blocks Fig. 4. Standard vertex
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3. I. Babuška, A. Craig, J. Mandel, and J. Pitkäranta, Efficient precon-
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By simulation we refer to numerical solution of systems governed by partial dif-
ferential (or integral) equations. Tremendous strides in large-scale algorithms and
hardware have provided the framework for high fidelity simulations, to the point
that it is now practical to consider complex optimization problems. In such prob-
lems we wish to determine various parameters that typically consist the data of a
simulation: boundary and initial conditions, material properties, distributed forces,
or shape.

Due to the large size of such problems special techniques are required for their
efficient solution. Domain decomposition algorithms are among the most impor-
tant. This minisymposium brings scientists working in fast solvers for simulation-
constrained optimization together for the development of new algorithmic ap-
proaches, and interactions with the rest of the domain decomposition community.
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Summary. We introduce a multi-level restricted Schwarz preconditioner with a
special coarse-to-fine interpolation and show numerically that the new preconditioner
works extremely well for some difficult large systems of linear equations arising
from some optimization problems constrained by the incompressible Navier-Stokes
equations. Performance of the preconditioner is reported for parameters including
number of processors, mesh sizes and Reynolds numbers.

1 Introduction

There are two major families of techniques for solving Karush-Kuhn-Tucker (KKT,
or optimality) Jacobian systems, namely the reduced space and the full space meth-
ods [2, 3, 12, 11]. When memory is an issue, reduced methods are preferred, although
many sub-iterations might be needed to converge the outer-iterations and the par-
allel scalability is less ideal. As the processing speed and the memory of computers
increase, full space methods become more popular because of their increased scal-
ability. One of their main challenges, though, is how to handle the indefiniteness
and ill-conditioning of those Jacobians. In addition, some of the solution compo-
nents might present sharp jumps. Traditional multilevel preconditioning techniques
do not work well because of the cross-mesh pollution; i.e., sharp jumps are smoothed
out by inter-mesh operations.

We introduce a new multilevel restricted Schwarz preconditioner with a special
coarse-to-fine interpolation and show numerically that it works extremely well for
rather difficult large Jacobian systems arising from some optimization problems
constrained by the incompressible Navier-Stokes equations. The preconditioner is
not only scalable but also pollution-free.

Many optimization problems constrained by PDEs can be written as

∗The research was supported in part by the National Science Foundation, CCR-
0219190 and ACI-0305666, and in part by the Department of Energy, DE-FC02-
01ER25479.
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(
min
x∈W

F(x)

s.t. C(x) = 0 ∈ Y.
(1)

Here W and Y are normed spaces, W is the space of optimization variables, F :
W → R is the objective functional and C : W → Y represents the PDEs. The
associated Lagrangian functional L : W×Y∗ → R is defined as

L(x,λ) ≡ F(x) + 〈λ,C(x)〉
Y
, ∀ (x,λ) ∈W×Y∗,

where Y∗ is the adjoint space of Y, 〈·, ·〉Y denotes the duality pairing and variables
λ are called Lagrange multipliers or adjoint variables. In many cases it is possible to
prove that, if x̂ is a (local) solution of (1) then there exist Lagrange multipliers λ̂ such
that (x̂, λ̂) is a critical point of L [10]. So, with a discretize-then-optimize approach
[9] and sufficient smoothness assumptions, a solution of (1) has to necessarily solve
the KKT system ∇L(x,λ) = 0 and each iteration of a Newton’s method for solving
such problem involves the Jacobian system

»
∇xxL [∇C]T

∇C 0

–„
px

pλ

«
= −

„
∇xL
C

«
. (2)

The paper is organized as follows. Section 2 introduces a preconditioner for
(2), while in Section 3 we test it on some flow control problems and report its
performance for combinations of parameters including number of processors, mesh
sizes and Reynolds numbers. Final conclusions are given in Section 4.

2 Multilevel pollution-removing restricted Schwarz

Schwarz methods can be used in one-level or multilevel variants and, in each case, in
combination with additive and/or multiplicative algorithms [13]. They can be also
used as linear [8] and nonlinear preconditioners [6].

Let Ωh be a mesh of characteristic size h > 0, subdivided into non-overlapping
subdomains Ωj , j = 1, . . . , NS . Let H > 0 denote the characteristic diameter of {Ωj}
and let {Ω

′

j} be an overlapping partition with overlapping δ > 0. From now on we
only consider simple box domains, uniform meshes and simple box decompositions,

i.e., all subdomains Ωj and Ω
′

j are rectangular and their boundaries do not cut
through any mesh cells. Let N and Nj denote the number of degrees of freedom

associated to Ωh and Ω
′

j , respectively. Let K be a N ×N matrix of a linear system

Kp = b (3)

that needs to be solved during the application of an algorithm for the numerical
solution of a discretized differential problem. Let d indicate the number of degrees
of freedom per mesh point. For simplicity let us assume that d is the same throughout
the entire mesh. We define the Nj ×N matrix Rδ

j as follows: its d× d block element

(Rδ
j)α,β is either (a) an identity block if the integer indices 1 � α � Nj/d and

1 � β � N/d are related to the same mesh point and this mesh point belongs to Ω
′

j

or (b) a zero block otherwise. The multiplication of Rδ
j with a N×1 vector generates

a smaller Nj × 1 vector by discarding all components corresponding to mesh points
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outside Ω
′

j . The Nj ×N matrix R0
j is similarly defined, with the difference that its

application to a N × 1 vector also zeros out all those components corresponding to

mesh points on Ω
′

j \ Ωj . Let B−1
j be either the inverse of or a preconditioner for

Kj ≡ Rδ
j K Rδ

j

T
. The one-level classical, right restricted (r-RAS) and left restricted

(�-RAS) additive Schwarz preconditioners for K respectively are defined as [5, 7, 8]

B−1
δδ =

NsX
j=1

Rδ
j

T
B−1
j Rδ

j , B−1
δ0 =

NsX
j=1

Rδ
j

T
B−1
j R0

j , B−1
0δ =

NsX
j=1

R0
j
T
B−1
j Rδ

j .

For the description of multilevel Schwarz preconditioners, let us use index i =
0, 1, . . . , L − 1 to designate any of the L � 2 levels. Let Ii denote the identity
operator and, for i > 0, let RT

i denote the interpolation from level i − 1 to level
i. Multilevel Schwarz preconditioners are obtained through the combination of one-
level Schwarz preconditioners B−1

i assigned to each level. Here we focus on multilevel
preconditioners that use exact coarsest solvers B−1

0 and that can be seen as multigrid
V-cycle algorithms [4] having Schwarz preconditioned Richardson working as the
pre and the post smoother at each level i > 0, with B−1

i,pre preconditioning the

µi � 0 pre smoother iterations and B−1
i,post preconditioning the νi � 0 post smoother

iterations. Then, as iterative methods for (3), with r(�) denoting the residual at
iteration � = 0, 1, 2, . . ., they can be described in the case L = 2 as

r(�+1) = (I1 −K1B
−1
1,post)

ν1(I1 −K1R
T
1 B−1

0 R1)(I1 −K1B
−1
1,pre)

µ1r(�). (4)

Pollution removing interpolation constitutes a key procedure in our proposed
multilevel preconditioner, due to the sharp jumps that often occur for the multiplier
values over those regions of Ωh where constraints are greatly affecting the behavior
of the optimized system. Although the evidence of this discontinuity property of
Lagrange multipliers is just empirical in our paper, it is consistent with their inter-
pretation [11]: the value of a Lagrange multiplier at a mesh point gives the rate of
change of the optimal objective function value w.r.t. to the respective constraint at
that point.

In the case of the problem corresponding to Figure 2-b, for instance, an external
force causes the fluid to move clockwise and the boundary consists of rigid slip walls.
The vertical walls greatly affect the overall vorticity throughout the domain, i.e.,
the value of the objective function, because they completely oppose the horizontal
velocity component v1. The values of λ1 at the walls then reflect this situation.
In contrast, λ2 develops sharp jumps at the other two walls opposing v2. In all
our experiments the discontinuities are located only accross the boundary and not
around it, even for very fine meshes. Common coarse-to-fine interpolation techniques
will then smooth the sharp jumps present in coarse solutions, with a more gradual
change, from interior mesh points towards boundary mesh points, appearing in those
fine cells (elements, volumes) located inside coarse boundary ones. That is, the
good correction information provided by the coarse solution is lost with a common
interpolation. We refer to the smoothed jump as “pollution”, in contrast to the
“clean” sharp jump that is expected at the fine level as well.

We therefore propose a modified coarse-to-fine interpolation procedure that is
based on a general and simple “removal of the pollution”. Let RT

i denote any un-
modified interpolation procedure and Z i the operator that zeros out, from a vector
at level i, the Lagrange multipliers at all those mesh points with equations that
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have a greater influence on the objective function. For the case of PDEs describing
physical systems, the number of such points can be expected to be relatively small.
Our modified interpolation is then expressed by

RT
i,modif = RT

i −Z iR
T
i (Ii−1 −Z i−1). (5)

This procedure removes the smoothed contributions due to the coarse discontinuities,
maintaining, at the fine level, the sharp jumps originally present at the coarse level.
See Figure 1. Once RT

i is available, (5) can be applied to any mesh in any dimension,
with any number of components.

In the case of the problems in this paper, Z i zeros the Lagrange multiplier com-
ponents located at the boundary. In our tests we apply the modified interpolation
only for the Lagrange multiplier components of coarse solutions, while the optimiza-
tion variables continue to be interpolated with RT

i . Also, the restriction process
remains Ri for all variables, i.e., (4) becomes

r(�+1) = (I1 −K1B
−1
1,post)

ν1(I1 −K1R
T
1,modifB

−1
0 R1)(I1 −K1B

−1
1,pre)

µ1r(�).

The Lagrange multipliers reflect the eventual “discontinuity”of the type of equa-
tions (or their physical dimensions) between equations in different regions of Ω: in
the case of the problems in Section 3, between those in Ω and those on ∂Ω. From this
point of view, it seems “natural” to apply different interpolations to the multiplier
components depending on their location.

(1)

(2)

(3) (4)

(5)

(5)

(a) (b) (c)

(d) (e) (f)

Coarse
Solution

“Polluted”
Fine
Solution

“Clean”
Fine
Solution

Coarse
Boundary
Values

“Polluted”
Interpolation

“Pollution”

Fig. 1. Representation of the modified coarse-to-fine interpolation (5), with (a)
input ϕi−1 and (c) output ϕi. The five steps are: (1) interpolation RT

i ϕi−1, (2)
coarse jump values ϕ̃i−1 = (Ii−1 − Z i−1)ϕi−1, (3) polluted ϕ̃i = RT

i ϕ̃i−1, (4)
pollution isolation Z iϕ̃i, (5) pollution removal ϕi = RT

i ϕi−1 −Z iϕ̃i.
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3 Numerical experiments

Our numerical experiments in this paper focus on optimal control problems [9], where
the optimization space in (1) is generally given by W=S×U, with S being the state
space and U the control space. Upon discretization, one has n=ns+nu, where ns
(nu) is the number of discrete state (control) variables. More specifically, we treat
the boundary control of two-dimensional steady-state incompressible Navier-Stokes
equations in the velocity-vorticity formulation: v = (v1, v2) is the velocity and ω is
the vorticity. Let Ω ⊂ R

2 be an open and bounded smooth domain, Γ its boundary,
ν the unit outward normal vector along Γ and f a given external force defined in
Ω. Let L2(Ω) and L2(Γ ) be the spaces of square Lebesgue integrable functions in
Ω and Γ respectively. The problems consist of finding (s,u) = (v1, v2, ω, u1, u2) ∈
L2(Ω)3 × L2(Γ )2 = S×U such that the minimization

min
(s,u)∈S×U

F(s,u) =
1

2

Z
Ω

ω2 dΩ +
c

2

Z
Γ

‖u‖22 dΓ (6)

is achieved subject to the constraints8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

−∆v1 − ∂ω

∂x2
= 0 in Ω,

−∆v2 +
∂ω

∂x1
= 0 in Ω,

−∆ω +Re v1
∂ω

∂x1
+Re v2

∂ω

∂x2
−Re curl f = 0 in Ω,

v − u = 0 on Γ,

ω +
∂v1
∂x2
− ∂v2
∂x1

= 0 on Γ,Z
Γ

v · ν dΓ = 0,

(7)

where curl f = −∂f1/∂x2 + ∂f2/∂x1. The parameter c > 0 is used to adjust the
relative importance of the control norms in achieving the minimization, so indirectly
constraining their sizes. The physical objective in (6)-(7) is the minimization of
turbulence [9]. The last constraint is due to the mass conservation law, making
m �= ns and causing the complexity of the Jacobian computation to increase, since
non-adjacent mesh points become coupled by the integral. We restrict our numerical
experiments to tangential boundary control problems, i.e., u · ν = 0 on Γ , so that
m = ns.

Here we only report tests for Ω = (0, 1) × (0, 1), c = 10−2 and f = (f1, f2) =`
−sin2(πx1) cos(πx2) sin2(πx2), sin

2(πx2) cos(πx1) sin2(πx1)
´
. For comparison, we

solve simulation problems with v · ν = 0 and ∂v/∂ν = 0 on Γ .
We have performed tests on a cluster of Linux PCs and developed our soft-

ware using the Portable, Extensible Toolkit for Scientific Computing (PETSc) from
Argonne National Laboratory [1]. Table 1 shows the efficacy of the modified inter-
polation process, which performs much better than the unmodified one, causing the
two-level preconditioner to outperform the one-level preconditioner. Table 2 shows
the flexibility of the two-level preconditioner, which provides a similar average num-
ber of Krylov iterations throughout all seven situations in the table. Figure 2-a
shows the controlled velocity field: the movement near the boundary is less intense.
Figures 2-c and 2-d clearly show the stabilization on the average number of Krylov
iterations provided by the two-level preconditioner with modified interpolation. The
one-level preconditioner fails with 100 processors for Re = 250 and Re = 300.
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Table 1. Resulting average number � of Krylov iterations per Newton iteration with
Re=250, right preconditioned GMRES, a 280 × 280 mesh (631, 688 variables), 49
processors, relative overlapping δ/H = 1/4 and a 70× 70 coarse mesh, for different
combinations of number L of levels, linear interpolation type, number σ of pre and
post smoother iterations, and RAS preconditioner.

L Linear Inter- σ RAS preconditioner
polation Type �-RAS r-RAS

1 − − � = 336 � = 973

2 Unmodified 1 � = 1, 110 � = 1, 150

2 Unmodified 2 � = 356 � = 222

2 Modified 1 � = 21 �= 28

Table 2. Resulting average number � of Krylov iterations per Newton iteration
with Re=300, right preconditioned GMRES and a 70×70 coarse mesh, for different
situations of number Np of processors and mesh size. To each situation corresponds
a combination of the number σ of Richardson iterations, the RAS preconditioner
and the relative overlapping δ/H used in the pre and post smoothers. The number
of variables is 2, 517, 768 in the case of finest mesh.

Np
δ

H
140×140 280×280 560×560

25
1

4
σ = 1; r-RAS; � = 20 σ = 1; r-RAS; � = 23 −

49
1

2
σ = 1; r-RAS; � = 18 σ = 1; r-RAS; � = 21 −

100
1

2
σ = 1; �-RAS; � = 18 σ = 1; �-RAS; � = 25 σ = 2; r-RAS; � = 27

4 Conclusions

We have developed a multilevel preconditioner for PDE-constrained optimization
that has shown a robust performance when tested on some boundary flow control
problems. Our main contribution consists in the combination of a general multi-
grid V-cycle preconditioner with (1) RAS preconditioned Richardson smoothers and
(2) a modified interpolation procedure that removes the pollution often generated
by the application of common interpolation techniques to the Lagrange multipliers.
Such combination is the key for the success of the two-level method in our exper-
iments and the consequent improvement over the one-level method, handling flow
control problems with higher Reynolds number, finer meshes and more processors.
Surprisingly, RAS preconditioners performed much better than the classical ones.

Multilevel Schwarz is a flexible algorithm, and since it is also fully coupled (in
contrast to operator-splitting, Schur complement, reduced space techniques), the
original sparsity of a discretized PDE constrained optimization problem is main-
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Fig. 2. Information on cavity flow problems: (a) controlled velocity field with
Re = 200 and (b) corresponding Lagrange multiplier λ1; results for (c) one-level
and (d) two-level preconditioner with right-preconditioned GMRES, a 280 × 280
mesh (631, 688 variables), and a 70× 70 coarse mesh.

tained throughout its entire application and fewer sequential preconditioning steps
are needed. We expect this preconditioner to have wide applications in other areas
of computational science and engineering.
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Optimized Schwarz methods are based on the classical Schwarz algorithm, but they
use instead of Dirichlet transmission conditions more general transmission conditions
between subdomains to enhance the convergence speed, to permit methods to be
used without overlap, and to obtain convergent methods for problems for which the
classical Schwarz method is not convergent, such as, for example, for the Helmholtz
problem from acoustics.

Over the last decade, much progress has been made in the understanding of the
optimized Schwarz methods, in the development of effective transmission conditions,
both at the continuous and at the discrete level, and in optimization that gives rise
to methods that converge fast enough even without Krylov acceleration. This min-
isymposium gives an overview over the latest results for optimized Schwarz methods,
at the continuous, discretized and algebraic level, for stationary partial differential
equations.
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Summary. In recent years, much attention has been given to domain decomposition
methods for solving linear elliptic problems that are based on a partitioning of the
domain of the physical problem. More recently, a new class of Schwarz methods
known as optimized Schwarz methods was introduced to improve the performance
of the classical Schwarz methods. In this paper, we investigate the performance of
this new class of methods for solving the model equation (η − ∆)u = f , where
η > 0, in spherical geometry. This equation arises in a global weather model as
a consequence of an implicit (or semi-implicit) time discretization. We show that
the Schwarz methods improved by a non-local transmission condition converge in a
finite number of steps. A local approximation permits the use of the new optimized
methods on a new overset grid system on the sphere called the Yin-Yang grid.

1 Introduction

Meteorological operational centers are using increasingly parallel computer systems
and need efficient strategies for their real-time data assimilation and forecast sys-
tems. This motivates the present study, where parallelism based on domain decom-
position methods is analyzed for a new overset grid system on the sphere introduced
in [6] called the Yin-Yang grid.

We investigate domain decomposition methods for solving (η −∆)u = f , where
η > 0, in spherical geometry. The key idea underlying the optimal Schwarz method
has been introduced in [4] in the context of non-linear problems. A new class of
Schwarz methods based on this idea was then introduced in [1] and further analyzed
in [7] and [5] for convection diffusion problems. For the case of the Poisson equa-
tion, see [2], where also the terms optimal and optimized Schwarz were introduced.
Optimal Schwarz methods have non-local transmission conditions at the interfaces
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between subdomains, and are therefore not as easy to use as classical Schwarz meth-
ods. Optimized Schwarz methods use local approximations of the optimal non-local
transmission conditions of optimal Schwarz at the interfaces, and are therefore as
easy to use as classical Schwarz, but have a greatly enhanced performance.

In Section 2, we introduce the model problem on the sphere and the tools of
Fourier analysis, we also recall briefly some proprieties of the associated Legendre
functions, which we will need in our analysis. In Section 3, we present the Schwarz
algorithm for the model problem on the sphere with a possible overlap. We show that
asymptotic convergence is very poor in particular for low wave-number modes. In
Section 4, we present the optimal Schwarz algorithm for the same configuration. We
prove convergence in two iterations for the two subdomain decomposition with non-
local convolution transmission conditions. We then introduce a local approximation
which permits the use of the new method on a new overset grid system on the sphere
called the Yin-Yang grid which is pole-free. In Section 5 we illustrate our findings
with numerical experiments.

2 The problem setting on the sphere

Throughout this paper we consider a model problem governed by the following
equation

L(u) = (η −∆)(u) = f, in S ⊂ R
3, (1)

where S is the unit sphere centered at the origin. Using spherical coordinates, equa-
tion (1) can be rewritten in the form

L(u) =

„
η − 1

r2
∂

∂r
(r2

∂

∂r
)− 1

r2 sin2 φ

∂2

∂θ2
− 1

r2 sinφ

∂

∂φ
(sinφ

∂

∂φ
)

«
(u) = f, (2)

where φ stands for the colatitude, with 0 being the north pole and π being the
south pole, and θ is the longitude. For our case on the surface of the unit sphere, we
consider solutions independent of r, e.g., r = 1, which simplifies (2) to

L(u) =

„
η − 1

sin2 φ

∂2

∂θ2
− 1

sinφ

∂

∂φ
(sinφ

∂

∂φ
)

«
(u) = f. (3)

Our results are based on Fourier analysis. Because u is periodic in θ, it can be
expanded in a Fourier series,

u(φ, θ) =
∞X

m=−∞
û(φ,m)eimθ, û(φ,m) =

1

2π

Z 2π

0

e−imθu(φ, θ)dθ.

With the expanded u, equation (3) becomes a family of ordinary differential equa-
tions. For any positive or negative integer m, we have

−∂
2û(φ,m)

∂φ2
− cosφ

sin φ

∂û(φ,m)

∂φ
+ (η +

m2

sin2 φ
)û(φ,m) = f̂(φ,m). (4)

By linearity, it suffices to consider only the homogeneous problem, f̂(φ,m) = 0,
and analyze convergence to the zero solution. Thus, for m fixed, the homogeneous
problem in (4), can be written in the following form



Optimized Schwarz Methods in Spherical Coordinates 167

Z

Y

a

Ω
2

Ω
1

b

−0.5
0

0.5

−0.5

0

0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Yang grid

Yin grid

Fig. 1. Left: Two overlapping subdomains. Right: The Yin-Yang grid system.

∂2û(φ,m)

∂φ2
+

cosφ

sinφ

∂û(φ,m)

∂φ
+ (ν(ν + 1)− m2

sin2 φ
)û(φ,m) = 0, (5)

where ν = −1/2±1/2
p

1− 4η. Note that the solution of equation (5) is independent
of the sign of m, and thus, for simplicity, we assume in the sequel that m is a positive
integer. Equation (5) is the associated Legendre equation and admits two linearly
independent solutions with real values, namely Pmν (cosφ) and Pmν (− cosφ), see e.g.,
[3], where Pmν (cosφ) is called the conical function of the first kind.

Remark 1. The associated Legendre function can be expressed in terms of the hyper-
geometric function and one can show that the function Pmν (cosφ) has a singularity
at φ = π and is monotonically increasing in the interval [0, π]. Furthermore, the
derivative of the function Pmν (z) with respect to the variable z is given by

∂Pmν (z)

∂z
=

1

1− z2

“
−mzPmν (z)−

p
1− z2Pm+1

ν (z)
”
. (6)

3 The classical Schwarz algorithm on the sphere

We decompose the sphere into two overlapping domains as shown in Fig. 1 on the
left. The Schwarz method for two subdomains and model problem (1) is then given
by

Lun1 = f, in Ω1, un1 (b, θ) = un−1
2 (b, θ),

Lun2 = f, in Ω2, un2 (a, θ) = un−1
1 (a, θ),

(7)

and we require the iterates to be bounded at the poles of the sphere. By linearity it
suffices to consider only the case f = 0 and analyze convergence to the zero solution.
Taking a Fourier series expansion of the Schwarz algorithm (7), and using the condi-
tion on the iterates at the poles, we can express both solutions using the transmission
conditions as follows

ûn1 (φ,m)= ûn−1
2 (b,m)

Pmν (cosφ)

Pmν (cos b)
, ûn2 (φ,m)= ûn−1

1 (a,m)
Pmν (− cosφ)

Pmν (− cos a)
. (8)
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Evaluating the second equation at φ = b for iteration index n − 1 and inserting it
into the first equation, evaluating this latter at φ = a, we get over a double step the
relation

ûn1 (a,m)=
Pmν (− cos b)Pmν (cos a)

Pmν (− cos a)Pmν (cos b)
ûn−2

1 (a,m). (9)

Therefore, for each m, the convergence factor ρ(m,η, a, b) of the classical Schwarz
algorithm is given by

ρcla = ρcla(m,η, a, b) :=
Pmν (− cos b)Pmν (cos a)

Pmν (− cos a)Pmν (cos b)
. (10)

A similar result also holds for the second subdomain and we find by induction

û2n
1 (a,m) = ρnclaû

0
1(a,m), û2n

2 (b,m) = ρnclaû
0
2(b,m). (11)

Because of Remark 1, the fractions are less than one and this process is a contraction
and hence convergent. We have proved the following

Proposition 1. For each m, the Schwarz iteration on the sphere partitioned along
two colatitudes a < b converges linearly with the convergence factor

ρcla = ρcla(m, η, a, b) :=
Pmν (− cos b)Pmν (cos a)

Pmν (− cos a)Pmν (cos b)
< 1.

The convergence factor depends on the problem parameters η, the size of the overlap
L = b−a and on the frequency parameter m. Fig. 2 on the left, shows the dependence

of the convergence factor on the frequency m for an overlap L = b − a =
1

100
and

η = 2. This shows that for small values of m the rate of convergence is very poor,
but the Schwarz algorithm can damp high frequencies very effectively.
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4 The optimal Schwarz algorithm

Following the approach in [2], we now introduce a modified algorithm by imposing
new transmission conditions,

L(un1 ) = f, inΩ1, (S1 + ∂φ)(u
n
1 )(b, θ) = (S1 + ∂φ)(u

n−1
2 )(b, θ),

L(un2 ) = f, inΩ2, (S2 + ∂φ)(u
n
2 )(a, θ) = (S2 + ∂φ)(u

n−1
1 )(a, θ),

(12)

where Sj , j = 1, 2, are operators along the interface in the θ direction. As for
the classical Schwarz method, it suffices by linearity to consider the homogeneous
problem only, f = 0, and to analyze convergence to the zero solution. Taking a
Fourier series expansion of the new algorithm (12) in the θ direction, we obtain

(σ1(m) + ∂φ)(û
n
1 )(b,m) = (σ1(m) + ∂φ)(û

n−1
2 )(b,m),

(σ2(m) + ∂φ)(û
n
2 )(a,m) = (σ2(m) + ∂φ)(û

n−1
1 )(a,m),

(13)

where σj , j = 1, 2, denotes the symbol of the operators Sj , j = 1, 2, respectively. To
simplify the notation, we introduce the function

qν,m(x) =
Pm+1
ν (cosx)

Pmν (cos x)
.

As in the case of the classical Schwarz method, we have to choose Pmν (cosφ) as
solution in the first subdomain and Pmν (− cosφ) as solution in the second subdomain.
Using the transmission conditions and the definition of the derivative of the Legendre
function in (6), we find the subdomain solutions in Fourier space to be

ûn1 (φ,m) =
σ1(m) +m cot b− qν,m(π − b)

σ1(m) +m cot b+ qν,m(b)

Pmν (cosφ)

Pmν (cos b)
ûn−1

2 (b,m),

ûn2 (φ,m) =
σ2(m) +m cot a+ qν,m(a)

σ2(m) +m cot a− qν,m(π − a)

Pmν (− cosφ)

Pmν (− cos a)
ûn−1

1 (a,m).

(14)

Evaluating the second equation at φ = b for iteration index n − 1 and inserting it
into the first equation, we get after evaluation at φ = a,

ûn1 (a,m) = ρopt(m,a, b, η, σ1, σ2)û
n−2
1 (a,m), (15)

where the new convergence factor ρopt is given by

ρopt :=
σ1(m) +m cot b− qν,m(π − b)

σ1(m) +m cot b+ qν,m(b)

σ2(m) +m cot a+ qν,m(a)

σ2(m) +m cot a− qν,m(π − a)
ρcla. (16)

As in the classical case, we can prove the following

Proposition 2. The optimal Schwarz algorithm (12) on the sphere partitioned along
two colatitudes a < b converges in two iterations provided that σ1 and σ2 satisfy

σ1(m) = −m cot b+ qν,m(π − b) and σ2(m) = −m cot a− qν,m(a). (17)

This is an optimal result, since convergence in less than two iterations is impossible,
due to the need to exchange information between the subdomains. In practice, one
needs to inverse transform the transmission conditions involving σ1(m) and σ2(m)
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from Fourier space into physical space to obtain the transmission operators S1 and
S2, and hence we need

S1(u
n
1 ) = F−1

m (σ1(û
n
1 )), S2(u

n
2 ) = F−1

m (σ2(û
n
2 )).

Due to the fact that the σj contain associated Legendre functions, the operators Sj
are non-local. To have local operators, we need to approximate the symbols σj with
polynomials in im. Inspired by the results for elliptic problems in two-dimensional
Cartesian space, we introduce the following ansatz

qν,m(φ) ≈ sin(φ)
p
η +m2

1 + cos(φ)
. (18)

Based on this ansatz we can expand the symbols σj(m) in (17) in a Taylor series,

σ1(m) =
sin(b)

√
η

− cos(b) + 1
+

sin(b)m2

2(− cos(b) + 1)
√
η

+O(m4),

σ2(m) = − sin(a)
√
η

cos(a) + 1
− sin(a)m2

2(cos(a) + 1)
√
η

+O(m4).

A zeroth order Taylor approximation T0 is obtained by using only the first terms
in the Taylor expansion of σj , while a second order approximation T2 is obtained
by using both terms from the expansion. In Fig. 2 on the right, we compare the
convergence factor ρcla of the classical Schwarz method with the convergence factor
ρT0 of the zeroth order Taylor method and the convergence factor ρT2 of the second
order Taylor method. Numerically, we find the optimized Robin conditions, namely
σ1 ≈ −5.3189 and σ2 ≈ 5.3189, and we compare the corresponding convergence
factor ρO0 to the other methods.

5 Numerical experiments

We perform two sets of numerical experiments, both with η = 1. In the first set we
consider our model problem on the sphere using a longitudinal co-latitudinal grid,
where we adopt a decomposition with two overlapping subdomains as shown in Fig.
1 on the left. In this case, we combine a spectral method in the θ-direction with a
finite difference method in the φ-direction. We use a discretization with 6000 points
in φ, including the poles, and spectral modes from −10 to 10. The decomposition is
done in the middle and the overlap is chosen to be [0.49π, 0.51π], see Fig. 3 on the
left, where the curves with (circle) and without (square) overlap of optimal Schwarz
are on top of each other. In the second experiment, we solve the model problem on
the Yin-Yang grid. This is a composite grid, which covers the surface of the sphere
with two identical rectangles that partially overlap on their borders. Each grid is an
equatorial sector having a different polar axis but uniform discretization, see Fig.
1 on the right. The Ying-Yang grid system is free from the problem of singularity
at the poles, in contrast to the ordinary spherical coordinate system. In Fig. 3 on
the right we show some screenshots of the exact and numerical solutions for the
Yin-Yang grid using optimized Robin conditions with σ1 = −1.4 and σ2 = 1.4. In
Table 1 we compare the classical Schwarz method to the optimized methods in the
Yin-Yang grid system.
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Fig. 3. Left: Convergence behavior for the methods analyzed for the two subdomain
case. Right: Screenshots of solutions and the error for the Yin-Yang grid system.
In both plots η = 1.

Classical Schwarz Taylor 0 method Taylor 2 method Optimized 0 method

h L = 1/50 L = h L = 1/50 L = h L = 1/50 L = h L = 1/50 L = h

1/50 184 184 22 22 16 16 12 12
1/100 184 284 22 27 16 19 12 16
1/150 183 389 21 31 15 21 11 19
1/200 184 497 22 36 16 24 12 22

Table 1. Number of iterations of the classical Schwarz method compared to the
optimized Schwarz methods for the Yin-Yang grid system with η = 1.

Conclusion

In this work, we show that numerical algorithms already validated for a global lati-
tude/longitude grid can be implemented, with minor changes, for the Yin-Yang grid
system. In the future we will implement optimized second order interface conditions
in order to improve the convergence of the elliptic solver and we will also use Krylov
methods to accelerate the algorithms.
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Summary. In this work, we design new interface transmission conditions for a
domain decomposition Schwarz algorithm for the Euler equations in two dimensions.
These new interface conditions are designed to improve the convergence properties
of the Schwarz algorithm. These conditions depend on a few parameters and they
generalize the classical ones. Numerical results illustrate the effectiveness of the new
interface conditions.

1 Introduction

In a previous paper [4] we formulated and studied by means of Fourier analysis the
convergence of a Schwarz algorithm (interface iteration which relies on the successive
solving of the local decomposed problems and the transmission of the result at
the interface) involving transmission conditions that are derived naturally from a
weak formulation of the underlying boundary value problem. Various studies exist to
deal with Schwarz algorithms applied to the scalar problems but to our knowledge,
little is known about complex systems. For systems we can mention some classical
works by Quarteroni and al. [5] [6] Bjorhus [1] and Cai et al.[2]. The work most
related to ours belongs to Clerc [3] and it describes the principle of building very
simple interface conditions for a general hyperbolic system which we will apply and
extend to Euler system. In this work, we formulate and analyze the convergence of
the Schwarz algorithm with new interface conditions inspired by [3], which depend
on two parameters whose values are determined by minimizing the norm of the
convergence rate. The paper is organized as follows. In section 2, we first formulate
the Schwarz algorithm for a general linear hyperbolic system of PDEs with general
interface conditions designed to have a well-posed problem. In section 3, we estimate
the convergence rate at the discrete level. We will find the optimal parameters of
the interface conditions at the discrete level. In section 4, we use the new optimal
interface conditions in Euler computations which illustrate the improvement over
the classical interface conditions (first described in [6]).
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2 A Schwarz algorithm with general interface conditions

2.1 A well-posed boundary value problem

If we consider a general non-linear system of conservation laws under the hypothesis
that its solution is regular, we can also use a non-conservative (or quasi-linear)
equivalent form. Assume that we first proceed to an integration in time using a
backward Euler implicit scheme involving a linearization of the flux functions and
that we eventually symmetrize it. (We know that when the system admits an entropy
it can be symmetrized by multiplying it by the hessian matrix of this entropy). This
results in the linearized system:

L(W ) ≡ Id

∆t
W +

dX
i=1

Ai
∂W

∂xi
= f (1)

In the following, we will define the boundary conditions that have to be imposed

when solving the problem on a domain Ω ⊂ R
d. We denote by An =

dX
i=1

Aini,

the linear combination of the jacobian matrices by the components of the outward
normal vector of ∂Ω, the boundary of the domain. This matrix is real, symmetric
and can be diagonalized An = TΛnT

−1, Λn = diag(λi). It can also be split in
negative (A−

n ) and positive (A+
n ) parts using this diagonalization. This corresponds

to a decomposition with local characteristic variables. A more general splitting in
negative(positive) definite parts, Anegn and Aposn of An can be done such that these
matrices satisfy the following properties:

8<
:
An = Anegn + Aposn

rank(Aneg,posn ) = rank(A±
n )

Apos−n = −Anegn

(2)

In the scalar case the only possible choice is Anegn = A−
n . Using the previous formal-

ism, we can define the following boundary condition:

Anegn W = Anegn g, on ∂Ω (3)

Within this framework, we have a result of well-posedness of the boundary value
problem associated to the system (1) with the boundary conditions (3) that can be
found in [3]. As the boundary value problem is well-posed, the decomposition (2)
enables the design of a domain decomposition method.

2.2 Schwarz algorithm with general interface conditions

We consider a decomposition of the domain Ω into N overlapping or non-overlapping

subdomains Ω̄ =

N[
i=1

Ω̄i. We denote by nij the outward normal to the interface Γij

bewteen Ωi and a neighboring subdomain Ωj . Let W
(0)
i denote the initial appoxima-

tion of the solution in subdomain Ωi. A general formulation of a Schwarz algorithm
for computing (W p+1

i )1≤i≤N from (W p
i )1≤i≤N (where p defines the iteration of the

Schwarz algorithm) reads :
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8<
:
LW p+1

i = f inΩi
Anegnij

W p+1
i = Anegnij

W p
j on Γij = ∂Ωi ∩Ωj

Anegnij
W p+1
i = Anegnij

g on ∂Ω ∩ ∂Ωi
(4)

where Anegnij
and Aposnij

satisfy (2). We have a convergence result of this algorithm
in the non-overlapping case, due to ([3]). The convergence rate of the algorithm
defined by (4) depends of the choice of the decomposition of Anij into Anegnij

and
Aposnij

satisfying (2). In order to choose the right decomposition, we need to relate
this choice to the convergence rate of (4).

2.3 Convergence rate of the algorithm with general interface
conditions

We consider a two-subdomain non-overlapping or overlapping decomposition of the
domain Ω = R

d, Ω1 =]−∞, γ[×R
d−1 and Ω2 =]β,∞[×R

d−1 with β ≤ γ and study
the convergence of the Schwarz algorithm in the subsonic case. A Fourier analysis
applied to the linearized equations allows us to derive the convergence rate of the“ξ”-
th Fourier component of the error as described in detail in [4]. After having defined
in a general frame the well-posedness of the boundary value problem associated to
a general equation and the convergence of the Schwarz algorithm applied to this
class of problems, we will concentrate on the conservative Euler equations in two-
dimensions:

∂W

∂t
+∇.F(W ) = 0, W = (ρ, ρV, E)T . (5)

In the above expressions, ρ is the density, V = (u, v)T is the velocity vector, E is the
total energy per unit of volume and p is the pressure. In equation (5), W = W (x, t)
is the vector of conservative variables, x and t, respectively denote the space and
time variables and F(W ) = (F1(W ), F2(W ))T is the conservative flux vector whose
components are given by

F1(W ) =
`
ρu, ρu2 + p, ρuv, u(E + p)

´T
, F2(W ) =

`
ρv, ρuv, ρv2 + p, v(E + p)

´T
.

The pressure is determined by the other variables using the state equation for a

perfect gas p = (γs − 1)(E − 1

2
ρ ‖ V ‖2) where γs is the ratio of the specific heats

(γs = 1.4 for air).

2.4 A new type of interface conditions

We will now apply the method described previously to the computation of the con-
vergence rate of the Schwarz algorithm applied to the two-dimensional subsonic
Euler equations. In the supersonic case there is only one decomposition satisfying
(2), namely Apos = An and Aneg = 0 and the convergence follows in 2 steps. There-
fore the only case of interest is the subsonic one.
The starting point of our analysis is given by the linearized form of the Euler
equations (5) which are of the form (1) to which we applied a change of variable
W̃ = T−1W based on the eigenvector factorization of A1 = T Ã1T

−1. We denote by

Mn =
u

c
, Mt =

v

c
respectively the normal and the tangential Mach number. Before

estimating the convergence rate we will derive the general transmission conditions
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at the interface by splitting the matrix A1 into a positive and negative part.
We have the following general result concerning this decomposition:

Lemma 1. Let λ1 = Mn − 1, λ2 = Mn + 1, λ3 = λ4 = Mn. Suppose we deal
with a subsonic flow: 0 < u < c so that λ1 < 0, λ2,3,4 > 0. Any decomposition of
A1 = An, n = (1, 0) which satisfies (2) has to be of the form:

Aneg =
1

a1
u · ut, u = (a1, a2, a3, a4)

t

Apos = An −Aneg .

where (a1, a2, a3, a4) ∈ R
4 satisfies a1 ≤ λ1 < 0 and

a1

λ1
+

a2
2

a1λ2
+

a2
3

a1λ3
+

a2
4

a1λ4
= 1.

We will proceed now to estimating the convergence rate using some results from
[4]. Following the technique described here we estimate the convergence rate in the
Fourier space in the non-overlapping case. We use the non-dimensional wave-number
ξ̄ = c∆tξ, and get for the general interface conditions the following:

8>>>>>>><
>>>>>>>:

ρ2
2,novr(ξ) =

˛̨
˛̨1− 4Mn(1−Mn)(1 +Mn)R(ξ)a2

1(a+MnR(ξ))

D1D2

˛̨
˛̨

D1 = R(ξ)[a1(1 +Mn)− a2(1−Mn)] + a[a1(1 +Mn)

+a2(1−Mn)]− i
√

2a3ξ(1−M2
n)

D2 = Mna1[R(ξ)[a1(1 +Mn)− a2(1−Mn)] + a[a1(1 +Mn) + a2(1−Mn)]]

+a3(1−M2
n)[a3(R + a)− iMna1ξ

√
2]

(6)
In order to simplify our optimization problem, we will take a3 = 0. We can thus
reduce the number of parameters to two, a1 and a2, since we can see from the lemma
that a4 can be expressed as a function of a1, a2 and a3. At the same time, for pur-
pose of optimization only, we introduce the parameters: b1 = −a1/(1 −Mn) and
b2 = a2/(1 + Mn) which provide a simpler form of the convergence rate. Neverthe-
less, solving this problem is quite a tedious task even in the non-overlapping case,
where we can obtain analytical expression of the parameters only for some values
of the Mach number. At the same time, we have to analyze the convergence of the
overlapping algorithm. Indeed, standard discretizations of the interface conditions
correspond to overlapping decompositions with an overlap of size δ = h, h being
the mesh size, as seen in [4]. By applying the Fourier transform technique to the
overlapping case we have the following expression of the convergence rate:

8>>>>>>>>>>><
>>>>>>>>>>>:

ρ2
2,ovr =

˛̨
˛Ae−(λ2(k)−λ1(k))δ̄ + (B + C)e−(λ3(k)−λ1(k))δ̄

˛̨
˛

A =
a+MnR(ξ)

a−MnR(ξ)
·
„
b1(R(ξ)− a) + b2(R(ξ) + a)

b1(R(ξ) + a) + b2(R(ξ)− a)

«2

B = −2Mn(b1(1−Mn) + b2(1 +Mn))R(ξ)(R(ξ)− a)(R(ξ) + a)

(1−M2
n)(a−MnR(ξ))(b1(R(ξ) + a) + b2(R(ξ)− a))2

C =
4((1−Mn)(b21 − b1)− b22(Mn+ 1))(a+MnR(ξ))

(1−M2
n)(b1(R(ξ) + a) + b2(R(ξ)− a))2

(7)

where δ̄ =
δ

c∆t
denotes the non-dimensional overlap between the subdomains. Ana-

lytic optimization with respect to b1 and b2 seems out of reach. We will have to use
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numerical procedures of optimization. In order to get closer to the numerical simula-
tions we will estimate the convergence rate for the discretized equations with general
transmission conditions, both in the non-overlapping and the overlapping case and
then optimize numerically this quantity in order to get the best parameters for the
convergence.

3 Optimized interface conditions

In this section we study the convergence of the Schwarz algorithm with general
interface conditions applied to the discrete Euler equations as described in [4] for
the classical transmission conditions. This BVP is discretized using a finite volume
scheme where the flux at the interface of the finite volume cells is computed using
a Roe [7] type solver. Afterwards, we formulate a Schwarz algorithm whose conver-
gence rate is estimated in the Fourier space in a discrete context. Optimizing the
convergence rate with respect to the two parameters is already a very difficult task
on the continuous level in the non-overlapping case, we could not carry on such a
process and obtain analytical results at the discrete level in the overlapping case
(which is our case of interest). Therefore, we will get the theoretical optimized pa-
rameters at the discrete level by means of a numerical algorithm, by calculating the
following

ρ(b1, b2) = max
k∈Dh

ρ2
2(k,∆x,Mn,Mt, b1, b2)

min
(b1,b2)∈Ih

ρ(b1, b2)
(8)

Here Dh is a uniform partition of the interval [0, π/∆x] and Ih ⊂ I a discretization
by means of a uniform grid of a subset of the domain of the admissible values of
the parameters. This kind of calculations are done once and for all for a given pair
(Mn,Mt) before the beginning of the Schwarz iterations. An example of such a
result is given in figure 1 for Mach number Mn = 0.2. The computed parameters
from the relation (8) will be further referred to with a superscript th. The theoretical

Table 1. Overlapping Schwarz algorithm.

Mn b
th
1 bth2 bnum1 bnum2

0.1 1.6 -0.8 1.6 -0.9
0.2 1.3 -0.5 1.4 -0.6
0.3 1.25 -0.3 1.25 -0.45
0.4 1.08 -0.15 1.08 -0.28
0.5 1.03 -0.08 1.02 -0.23
0.6 1.0 0.0 1.0 0.0
0.7 1.02 0.06 1.01 0.04
0.8 1.03 0.08 1.02 0.06
0.9 1.06 0.08 1.04 0.06

estimates are compared afterwards with the numerical ones obtained by running the
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Schwarz algorithm with different pairs of parameters which lie in a an interval for
which the algorithm is convergent. We are thus able to estimate the optimal values
for b1 and b2 from these numerical computations. These values will be referred to
by a superscript num.

Fig. 1. Isovalues of the predicted (theoretical via formula (8)) and numerical(FV
code) reduction factor of the error after 20 iterations.

4 Implementation and numerical results

We present here a set of results of numerical experiments that are concerned with the
evaluation of the influence of the interface conditions on the convergence of the non-
overlapping Schwarz algorithm of the form. The computational domain is given by
the rectangle [0, 1]×[0, 1]. The numerical study is limited to the solution of the linear
system resulting from the first implicit time step using a Courant number CFL=100.
In all these calculations, we consider a model problem: a flow normal to the interface
(i.e.Mt = 0). In figures 1 we see an example of a theoretical and numerical estimation
of the reduction factor of the error. We show here the level curves which represent
the log of the precision after 20 iterations for different values of the parameters
(b1, b2), the minimum being attained in this case for bth1 = 1.3 and bth2 = −0.5,
bnum1 = 1.4 and bnum2 = −0.6. We see that we have good theoretical estimates of these
parameters and we can therefore use them in the interface conditions of the Schwarz
algorithm. Table 2 summarizes the number of Schwarz iterations required to reduce
the initial linear residual by a factor 10−6 for different values of the reference Mach
number with the optimal parameters bnum1 and bnum1 . Here we denoted by ITnum0

and ITnumop the observed (numerical) iteration number for classical and optimized
interface conditions in order to achieve convergence with a threshlod ε = 10−6. The
same results are presented in the second picture of figure 2. In the first picture of
figure 2 we compare the theoretically estimated iteration number in the classical and
optimized case. Comparing the two pictures of figure 2 we see that the theoretical
prediction are very close to the numerical tests. The conclusion of these numerical
tests is, on one hand, that the theoretical prediction is very close to the numerical
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Table 2. Overlapping Schwarz algorithm. Classical vs. optimized counts for different
values of Mn.

Mn IT
num
0 ITnumop Mn ITnum0 ITnumop

0.1 48 19 0.5 22 18
0.2 41 20 0.7 20 16
0.3 32 20 0.8 22 15
0.4 26 19 0.9 18 12
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Fig. 2. Theoretical and numerical iteration number: classical vs. optimized condi-
tions.

results i.e. by a numerical optimization (8) we can get a very good estimate of optimal
parameters (b1, b2)). In addition, the gain, in the number of iterations, provided by
the optimized interface conditions, is very promising for low Mach numbers, where
the classical algorithm does not give optimal results. For larger Mach numbers, for
instance, those close to 1, the classical algorithm already has a very good behavior
so the optimization is less useful. At the same time we have studied here the zero
order and therefore very simple transmission conditions. The use of higher order
conditions could be further studied to obtain even better convergence results.
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Summary. We study optimized Schwarz methods for the stationary advection-
diffusion equation in two dimensions. We look at simple Robin transmission con-
ditions, with one free parameter. In the nonoverlapping case, we solve exactly the
associated min-max problem to get a direct formula for the optimized parameter.
In the overlapping situation, we solve only an approximate min-max problem. The
asymptotic performance of the resulting methods, for small mesh sizes, is derived.
Numerical experiments illustrate the improved convergence compared to other Robin
conditions.

1 Introduction

The classical Schwarz method, first devised as a tool to prove existence and unique-
ness results, converges only when there is overlap between subdomains, and it con-
verges very slowly for small overlap sizes. It was first proposed by Lions [8] to change
the Dirichlet transmission conditions in the algorithm to other types of conditions,
in order to obtain a convergent nonoverlapping variant. More recently, optimized
Schwarz methods were introduced by Japhet [7]; using a Fourier analysis on a model
problem, the convergence factor is uniformly minimized over a class of transmission
conditions. The work of Japhet was originally carried out for the advection-diffusion
equation in the plane, without overlap, and using second order transmission condi-
tions. Optimized Schwarz methods are now well-studied for symmetric partial dif-
ferential equations, for example for the Laplace and modified Helmholtz equations
(see [4, 3] and references therein) and the Helmholtz equation (see [2, 5]).

The purpose of this work is to study optimized Robin transmission conditions for
the advection-diffusion equation, both in the case of nonoverlapping and overlapping
domain decompositions. We start, in Section 2, by introducing the model problem in
the plane. In Section 3, we present a general Schwarz iteration and its convergence
factor, from which optimal transmission conditions can be found. We also briefly
describe the Taylor polynomial approximations of the optimal symbols, a way to
obtain local transmission operators. In Section 4 and 5, we present optimized Robin
conditions, in the nonoverlapping and overlapping cases respectively. We illustrate
our results in Section 6 with numerical experiments.
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2 The Model Problem

The derivation and analysis of optimized Schwarz methods is done for a model prob-
lem. Here we consider the advection-diffusion equation on the plane with constant
coefficients 

Lu := −ν∆u+ a · ∇u + cu = f in R
2,

u is bounded at infinity,

where ν, c > 0 and a = (a, b). For the convergence analysis of the algorithms pre-
sented subsequently, it will be sufficient, by linearity, to look at the homogeneous
problem only, f ≡ 0. We decompose the plane into two subdomains Ω1 and Ω2 with
an overlap of width L

Ω1 :=

„
−∞,

L

2

«
× R, Ω2 :=

„
−L

2
,∞
«
× R,

and we denote by uni the approximate solution in subdomain Ωi, at iteration n.
Our analysis is based on the Fourier transform in the y variable

Fy[u(x, y)] = û(x, k) :=
1√
2π

Z ∞

−∞
u(x, y)e−iykdy.

In Fourier space, the homogeneous advection-diffusion equation becomes

−ν ∂
2û

∂x2
+ a

∂û

∂x
+ (νk2 − ibk + c)û = 0.

This is a linear second order ODE in x that can be solved analytically. The roots to
the corresponding characteristic equation are given by

λ±(k) =
a±
√
a2 + 4νc− 4iνbk + 4ν2k2

2ν
, (1)

where Re(λ+) > 0 and Re(λ−) < 0. The two fundamental solutions are then

eλ
+(k)x, eλ

−(k)x.

We introduce the convenient notation

z(k) :=
p
a2 + 4νc− 4iνbk + 4ν2k2, (2)

ξ(k) := Re(z(k)), η(k) := Im(z(k)).

3 Optimal Conditions and Taylor Approximations

We first consider a general Schwarz iteration of the form
8><
>:

Lun+1
1 = 0 in (−∞,

L

2
)× R,

∂un+1
1

∂x
− S1(u

n+1
1 ) =

∂un2
∂x
− S1(u

n
2 ) at x =

L

2
,

(3)
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8><
>:

Lun+1
2 = 0 in (−L

2
,∞)× R,

∂un+1
2

∂x
− S2(u

n+1
2 ) =

∂un1
∂x
− S2(u

n
1 ) at x = −L

2
.

(4)

where Si are linear operators acting on the y variable only, with Fourier symbols σi

Fy [Si(u)] = σi(k)û(x, k).

Using the Fourier transform in y, we can solve each subproblem analytically, and
find a convergence factor.

Proposition 1. The convergence factor of the Schwarz iteration (3)-(4) in Fourier
space is

ρ(k, L, σ1, σ2) :=

˛̨̨
˛̨ û
n+1
1 (L

2
, k)

ûn−1
1 (L

2
, k)

˛̨̨
˛̨ =

˛̨
˛̨ (λ− − σ1)(λ

+ − σ2)

(λ+ − σ1)(λ− − σ2)
e−L(λ+−λ−)

˛̨
˛̨ , (5)

where λ±(k) are defined by (1).

By choosing σ1(k) = λ−(k) and σ2(k) = λ+(k), we can make the convergence factor
vanish and hence obtain an optimal convergence in 2 iterations only. This gives
optimal operators Sopti when transforming back to real space, which turn out to
be Dirichlet-to-Neumann maps, see for example [9]. However these operators are
nonlocal in y (their Fourier symbols λ± are not polynomials in k) and thus not
convenient for practical implementation.

One way to find local conditions is to take, for σi, low order Taylor approxima-
tions of the optimal symbols λ±. For example, zeroth order approximations give

σ1 =
a−
√
a2 + 4νc

2ν
, σ2 =

a+
√
a2 + 4νc

2ν
, (6)

which lead to a particular choice of Robin conditions. These methods work well only
on small frequency components in y (the Taylor approximations are good only for
small k). An analysis of these methods can be found in [6, 1].

4 Optimized Robin Conditions Without Overlap

We consider now a class of Robin transmission conditions by choosing

S1(u) =
a− p

2ν
u, S2(u) =

a+ p

2ν
u,

where p is a real number. Using the general formula (5), the convergence factor for
this choice reduces to

ρR1(k, L, p) :=

˛̨
˛̨ (p− z(k))2
(p+ z(k))2

e−
Lz(k)

ν

˛̨
˛̨ , (7)

where z(k) is defined by (2). The idea of optimized Schwarz methods is, after fixing a
class of conditions (Robin in this case), to minimize the convergence factor uniformly
for all frequency components in a relevant range. This is formulated as a min-max
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problem. In our situation, a good value for the parameter p is the one solving the
optimization problem

min
p∈R

„
max

kmin≤k≤kmax

|ρR1(k, L, p)|
«
. (8)

In the following results, we use the short-hand notation ξmin := ξ(kmin),
ξmax := ξ(kmax) and similar notations for zmin and zmax.

Proposition 2 (Optimized Robin parameter, without overlap). If there is
no overlap (L = 0), the unique minimizer p∗ of problem (8) is given by

p∗ =

8<
:
|zmin| if pc < |zmin|,
pc if |zmin| ≤ pc ≤ |zmax|,
|zmax| if pc > |zmax|,

where pc :=

s
ξmin|zmax|2 − ξmax|zmin|2

ξmax − ξmin
.

For symmetric equations, the optimized Robin parameter is given by an equioscilla-
tion property, namely ρR1(kmin, 0, p

∗) = ρR1(kmax, 0, p
∗), see [3]. On the other hand,

for the advection-diffusion equation, this characterization does not always hold. In-
deed, Proposition 2 shows that this equioscillation happens only in the middle case,
when p∗ = pc.

Proposition 3 (Optimized Robin asymptotics, without overlap). For L = 0

and kmax =
π

h
, the asymptotic performance for small h of the Schwarz method with

optimized Robin transmission conditions is

max
kmin≤k≤ π

h

|ρR1(k, 0, p
∗)| = 1− 2

r
2ξmin
πν

h
1
2 +O(h).

Note that the optimized Robin method has better asymptotic performance than
the zeroth order Taylor approximation (6), which yields an expansion of the form
1−O(h) for small h. The proof of Proposition 2 and 3 can be found in [1].

Remark 1. We can also choose two different constants in the Robin conditions

S1(u) =
a− p

2ν
u, S2(u) =

a+ q

2ν
u,

and look for a good pair of parameters (p, q) by solving the min-max problem

min
p,q∈R

„
max

kmin≤k≤kmax

˛̨̨
˛ (p− z)(q − z)
(p+ z)(q + z)

e−
Lz
ν

˛̨̨
˛
«
.

This will be referred to as the optimized two-sided Robin conditions. In this
paper, when using these conditions, the parameters are computed by solving the min-
max problem numerically; there are no complete analytical results yet.

Fig. 1 shows, on the left, a comparison of the convergence factors for different
nonoverlapping Schwarz methods using Robin conditions.
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5 Optimized Robin Conditions With Overlap

We now consider the overlapping situation. The convergence factor (7) can be written
as

|ρR1(k, L, p)| =
(p− ξ(k))2 + η(k)2

(p+ ξ(k))2 + η(k)2
e−

Lξ(k)
ν .

Instead of finding the exact solution to the min-max problem, we derive in this
section an approximate parameter that works well asymptotically for small h. We
observe that η remains bounded: |η(k)| ≤ |b|, ∀k. Hence we have the upper bound

|ρR1(k, L, p)| ≤
(p− ξ)2 + b2

(p+ ξ)2 + b2
e−

Lξ
ν =: Q(ξ, p).

Instead of minimizing ρ, for simplicity we solve an approximate min-max problem
using the upper bound

min
p∈R

„
max

ξmin≤ξ≤ξmax

Q(ξ, p)

«
. (9)

We take kmax = ∞ in this case to avoid extra complications. We expect that the
parameter we obtain from this optimization will be close to the optimized parameter
from (8), when |b| and L are small.

Proposition 4 (Approximate Robin parameter, with overlap). Let L > 0
and kmax =∞. Define the critical value

ξ2(p) :=

s
2νp− Lb2 + Lp2 + 2

p
ν2p2 − 2νLpb2 − L2b2p2

L
,

and let pmin :=
q
ξ2min + b2. If ξ2(pmin) is complex, or if ξ2(pmin) < ξmin, or if

Q(ξmin, pmin) > Q(ξ2(pmin), pmin),

then the unique minimizer p∗ of problem (9) is p∗ = pmin. Otherwise, the unique
minimizer is given by the unique root p∗ (greater than pmin) of the equation

Q(ξmin, p
∗) = Q(ξ2(p

∗), p∗).

Proposition 5 (Approximate Robin asymptotics, with overlap). For L = h

and kmax =
π

h
, the asymptotic performance of the optimized Schwarz method, with

the Robin parameter p∗ obtained through Proposition 4, is given by

max
ξmin≤ξ≤ξmax

|ρR1(k, h, p
∗)| = 1− 4

„
ξmin
ν

« 1
3

h
1
3 +O(h

2
3 ). (10)

The proof of these results can also be found in [1]. In the special case when b = 0
(advection is normal to the interface), there is no approximation and our results
above give the optimized Robin parameter. The asymptotic performance of the exact
optimized Robin conditions (from solving (8)) is expected to be the same as (10) up

to order h1/3, with the same constant.
Fig. 1 shows, on the right, the convergence factors obtained for four different

Robin transmission conditions, when overlap is used.
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Fig. 1. Convergence factors for the values ν = 0.1, a = 1, b = 1, c = 1,
[kmin, kmax] = [10, 400]. The case without overlap is shown on the left, and with
overlap L = π/400 on the right.

6 Numerical Experiments

We consider here an example with a vary-
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−0.5

0

0.5

1

1.5

2

2.5

3

3.5

x

y

Fig. 2. The advection field.

ing advection a(x, y) obtained from a Navier-
Stokes computation, see Fig. 2. The domain is
the square Ω = (0, π)2, the viscosity is taken
to be ν = 0.1, and c = 1. The source term is
given by f(x, y) = sin (5x) sin (5y). The results
were obtained using a finite difference solver,
for rectangular domains. The original region is
divided into two symmetric subdomains, with
vertical interfaces. For the initial guess to start
the Schwarz iteration, we use vectors of ran-
dom values, to make sure the initial error con-
tains a wide range of frequency components.

The optimized Schwarz methods are constructed using model problems with
constant coefficients. When the coefficients are varying (continuously) in the domain,
we need to find optimized conditions at each mesh point on the interfaces separately.
In our setting the optimized Robin parameters will depend on y, i.e. p∗ = p∗(y).
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Note that the computation of the optimized conditions is done only once, before
starting the Schwarz iteration.

Fig. 3 shows the convergence of the different Schwarz methods, using both
nonoverlapping and overlapping decompositions. The effect of using overlap is sig-
nificant; even with a small overlap of only two grid spaces, the number of iterations
required to reach a tolerance is decreased by more than a factor 2.

We also looked at the effect of h on the convergence rate of the Schwarz iteration.
Fig. 4 shows logarithmic plots of the number of iterations needed to achieve an error
reduction of 10−6, for different values of the mesh size h. The numerical results
agree well with theory, both for what we have derived, and for what we expect for
two-sided Robin conditions.
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Fig. 3. Comparison of different transmission conditions for a varying advection,
ν = 0.1, c = 1, h = π/300. The case without overlap is shown on the left, and the
case with overlap (L = 2h) on the right.
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7 Conclusion

We have computed optimized Robin transmission conditions in the Schwarz iteration
for the advection-diffusion equation, by solving analytically the min-max problem.
When the subdomains are not overlapping, the optimized parameter is given by an
explicit formula. In the overlapping case, we have solved an approximate min-max
problem only: computing the optimized parameter reduces to solving a nonlinear
equation (in the worst case). The approximation we have made is good when the
advection is not too strongly tangential to the interfaces, and for small mesh sizes
h. The asymptotic performance of these optimized methods exhibits a weaker de-
pendence on the mesh size than previously known Robin conditions.
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mécanique des fluides, Tech. Rep. 373, CMAP (Ecole Polytechnique), 1997.

7. , Optimized Krylov-Ventcell method. Application to convection-diffusion
problems, in Proceedings of the 9th international conference on domain decom-
position methods, P. E. Bjørstad, M. S. Espedal, and D. E. Keyes, eds., ddm.org,
1998, pp. 382–389.

8. P.-L. Lions, On the Schwarz alternating method. III: a variant for nonoverlap-
ping subdomains, in Third International Symposium on Domain Decomposition
Methods for Partial Differential Equations , held in Houston, Texas, March 20-22,
1989, T. F. Chan, R. Glowinski, J. Périaux, and O. Widlund, eds., Philadelphia,
PA, 1990, SIAM.

9. F. Nataf and F. Rogier, Factorization of the convection-diffusion operator and
the Schwarz algorithm, Math. Models Methods Appl. Sci., 5 (1995), pp. 67–93.



Optimized Algebraic Interface Conditions in
Domain Decomposition Methods for Strongly

Heterogeneous Unsymmetric Problems

Luca Gerardo-Giorda1 and Frédéric Nataf2

1 Dipartimento di Matematica, Università di Trento, Italy.
gerardo@science.unitn.it. (This author’s work was supported by the
HPMI-GH-99-00012-05 Marie Curie Industry Fellowship at IFP - France.)
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1 Introduction

Let Ω = R×Q, where Q is a bounded domain of R2, and consider the elliptic PDE
of advection-diffusion-reaction type given by

−div (c∇u) + div (bu) + ηu = f in Ω
Bu = g on R× ∂Q,

(1)

with the additional requirement that the solutions be bounded at infinity. After a
finite element, finite differences or finite volume discretization, we obtain a large
sparse system of linear equations, given by

Aw = f . (2)

Under classical assumptions on the coefficients of the problem (e.g. η − 1

2
divb > 0

a.e. in Ω) the matrix A in (2) is definite positive.
We solve problem (2) by means of an Optimized Schwarz Method: such methods
have been introduced at the continuous level in [4], and at the discrete level in [5].
We design optimized interface conditions directly at the algebraic level, in order to
guarantee robustness with respect to heterogeneities in the coefficients.

2 LDU factorization and absorbing boundary conditions

In this section we illuminate the link between an LDU factorization of a matrix and
the construction of absorbing conditions on the boundary of a domain (see [1]). As it
is well known in domain decomposition literature, such conditions can provide exact
interface transmission operators. Let then eΩ ∈ R3 be a bounded polyedral domain.
We assume that the underlying grid is obtained as a deformation of a Cartesian grid
on the unit cube, so that for suitable integers Nx, Ny , and Nz, w ∈ RNx×Ny×Nz .
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If the unknowns are numbered lexicographically, the vector w is a collection of Nx
sub-vectors wi ∈ RNy×Nz , i.e.

w = (wT1 , . . . , w
T
Nx

)T . (3)

From (3), the discrete problem in eΩ reads

Bw = g, (4)

where g = (g1, .., gNx)T , each gi being a Ny × Nz vector, and where the matrix B
of the discrete problem has a block tri-diagonal structure

B =

0
BBBB@

D1 U1

L1 D2

. . .

. . .
. . . UNx−1

LNx−1 DNx

1
CCCCA , (5)

where each block is a matrix of order Ny ×Nz.
An exact block factorization of the matrix B defined in (5) is given by

B = (L + T)T−1(U + T), (6)

where

L =

0
BBBB@

0

L1

. . .

. . .
. . .

LNx−1 0

1
CCCCA U =

0
BBBB@

0 U1

. . .
. . .

. . . UNx−1

0

1
CCCCA ,

while T is a block-diagonal matrix whose nonzero entries are the blocks Ti defined
recursively as

Ti =

8<
:
D1 for i = 1

Di − Li−1T
−1
i−1Ui−1 for 1 < i ≤ Nx.

At this time, we can give here the algebraic counterpart of absorbing boundary
conditions. Assume g = (0, .., 0, gp+1, .., gNx), and let Np = Nx − p + 1. To reduce
the size of the problem, we look for a block matrix K ∈ (RNy×Nz )Np , each entry of
which is a Ny × Nz matrix, such that the solution of Kv = g̃ = (0, gp+1, .., gNx)T

satisfies vk = wk+p−1 for k = 1, ..Np. The rows 2 through Np in the matrix K
coincide with the last Np − 1 rows of the original matrix B. To identify the first
row, which corresponds to the absorbing boundary condition, take as a right hand
side in (4) the vector g = (0, .., 0, gp+1, .., gNx), and, owing to (6), consider the first
p rows of the factorized problem

0
BBB@
T1

L1 T2

. . .
. . .

Lp−1 Tp

1
CCCA

0
BBB@
T−1

1

T−1
2

. . .

T−1
p

1
CCCA

0
BBB@
T1 U1

T2 U2

. . .
. . .

Tp Up

1
CCCA

0
BBB@

w1

...
wp
wp+1

1
CCCA =

0
B@

0
...
0

1
CA .



Algebraic OSM for Strongly Heterogeneous Unsymmetric Problems 191

The first two are p× p square invertible block matrices, so we need to consider only
the third one, a rectangular p× (p+ 1) matrix: from the last row we get

Tpwp + Upwp+1 = 0, (7)

which, identifying v1 = wp and v2 = wp+1, provides the first row in matrix K.
Assume now that g = (g1, .., gq−1, 0, .., 0)

T . A similar procedure can be developed
to reduce the size of the problem, by starting the recurrence in the factorization (6)
from DNx , as

eTi =

8<
:
Di − UiT

−1
i+1Li for 1 ≤ i < Nx

DNx for i = Nx,

and we can easily obtain the equation for the last row in the reduced equation as

Lqwq−1 + eTqwq = 0. (8)

3 Optimal interface conditions for an infinite layered
domain

In this section we go back to problem (1), where the domain Ω is infinite in the x
direction. We consider a two domain decomposition Ω̄ = Ω̄1 ∪ Ω̄2, Ω1 ∩ Ω2 = ∅,
where

Ω1 = R− ×Q, Ω2 = R+ ×Q,

and we denote with Γ = ∂Ω1 ∩ ∂Ω2 the common interface of the two subdomains.
We assume that the viscosity coefficients are layered (i.e. they do not depend on
the x variable), and consider a discretization on a uniform grid via a finite volume
scheme with an upwind treatment of the advective flux.
The resulting linear system is given by

0
@A11 A1Γ 0

AΓ1 AΓΓ AΓ2

0 A2Γ A22

1
A
0
@ w1

wΓ

w2

1
A =

0
@ f1

fΓ
f2

1
A (9)

where wi is the vector of the internal unknowns in domain Ωi (i = 1, 2), and wΓ

is the vector of interface unknowns. In order to guarantee the conservativity of
the finite volume scheme, the vector of interface unknown consists of two sets of
variables, wΓ = (wΓ , wλ)

T , the first one expressing the continuity of the diffusive
flux, the second expressing the continuity of the advective one.
If the unknowns are numbered lexicographically, the matrix A is given by

A =

0
BBBBBBBBBBB@

. . .
. . .

. . .

L1 D1 U1

L1 D1Γ

...
0

U1Γ

0

· · · · · · 0 L1Γ DΓΓ U2Γ 0 · · · · · ·

0

L2Γ

0
...

D2Γ U2

L2 D2 U2

. . .
. . .

. . .

1
CCCCCCCCCCCA

, (10)
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where the block DΓΓ is square, whereas the blocks LiΓ , and UiΓ (i = 1, 2) are
rectangular.
By duplicating the interface variables wΓ into wΓ,1 and wΓ,2, we can define a
Schwarz algorithm directly at the algebraic level, as

„
A11 A1Γ

AΓ1 T1

«„
vk+1

1

vk+1
Γ,1

«
=

„
f1

fΓ + (T1 −DΓΓ )vkΓ,2 −AΓ2v
k
2

«

„
A22 A2Γ

AΓ2 T2

«„
vk+1

2

vk+1
Γ,2

«
=

„
f2

fΓ + (T2 −DΓΓ )vkΓ,1 −AΓ1v
k
1

«
.

(11)

As it is well known in literature, if we take

T1 = AΓΓ −AΓ2A
−1
22 A2Γ T2 = AΓΓ −AΓ1A

−1
11 A1Γ ,

the algorithm (11) converges in two iterations. We are in the position to give the
following result, the proof of which will be given in [3].

Lemma 1. Let A be the matrix defined in (9), and let T1,∞ and T2∞ be such that
T1,∞ = D1 − L1T

−1
1,∞U1 and T2,∞ = D2 − U2T

−1
2,∞L2. We have

AΓ1A
−1
11 A1Γ = L1Γ

`
D1Γ − L1 T

−1
1,∞ U1

´−1
U1Γ

AΓ2A
−1
22 A2Γ = U2Γ

`
D2Γ − U2 T

−1
2,∞ L2

´−1
L2Γ .

Noticing that AΓΓ = DΓΓ , the optimal interface operators are given by

Tex
1 = DΓΓ − L1Γ

ˆ
D1Γ − L1 T

−1
1,∞ U1

˜−1
U1Γ

Tex
2 = DΓΓ −U2Γ

ˆ
D2Γ − U2 T

−1
2,∞ L2

˜−1
L2Γ .

(12)

4 Optimized algebraic interface conditions for a
non-overlapping Schwarz method

The lack of sparsity of the matrices Tex
1 and Tex

2 in (12), make them unsuitable in
practice. Therefore we choose for T1 and T2 in (11) two suitable approximations of
Tex

1 and Tex
2 , respectively.

At the cost of enlarging the size of the interface problem, we choose Tapp
1 and Tapp

2

defined as follows:

Tapp
1 = DΓΓ − L1Γ

ˆ
D1Γ − L1 (T app

1,∞)−1 U1

˜−1
U1Γ

Tapp
2 = DΓΓ −U2Γ

ˆ
D2Γ − U2 (T app

2,∞)−1 L2

˜−1
L2Γ ,

(13)

where T app
1,∞ and T app

2,∞ are suitable sparse approximations of T1,∞ and T2,∞, respec-
tively. The most natural choice would be to take their diagonals, but, in order to
have a usable condition, we wish to avoid the computation of both T1,∞ and T2,∞,
which is too costly. Notice that if Dj , Lj , and Uj (j = 1, 2) were all diagonal matrices
the same would hold also for Tj,∞. Moreover, if all the matrices involved commute,
or if Lj = UTj , we would have
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T1,∞ =
D1

2
+

r
(−L1)1/2D1(−U1)−1/2(−L1)−1/2D1(−U1)1/2

4
− L1U1.

and a similar formula holds for T2,∞, with the roles of L2 and U2 exchanged.
These considerations have led us to consider the following approximations of T1,∞
and T2,∞.
Let dj , lj , and uj be the diagonals of Dj , Lj and Uj , respectively.
Robin: We choose in (13)

T app
1,∞ =

D1

2
+ αopt1 D1,

where D1 = diag

 p
d2
1 − 4l1u1

2

!
. The optimized parameter is given by

(αopt
1 )2 = max

q
r21 + I2

1 ,
q
r1R1 − I2

1

ff
, (14)

where we have set r1 := min Reλ, R1 := max Reλ, and I1 := max Imλ, λ ∈

σ

„
(−L1)

1/2D1(−U1)
−1/2(−L1)

−1/2D1(−U1)
1/2

4
− L1U1

«
diag

 p
d2
1 − 4l1u1

2

!−2

,

with a similar formula for T app
2,∞.

Order 2: This condition is obtained by blending together two first order approxi-
mations, and we have

T app
1,∞ = L1

“
[ eD1,L1] + (α1 + α2)L1

”−1 “ eD2
1 + (α1 + α2) eD1 + α1α2Id− L1U1

”

where [., .] is the Lie bracket, where eD1 =
D−1

1 D1

2
, L1 = D−1

1 L1, U1 = D−1
1 U1, and

where

(α1α2)
2 = r1 R1 (α1 + α2)

2 =

q
2 (r1 +R1)

√
r1 R1, (15)

r1 and R1 being defined as before.

The tuning of the optimized parameters for both conditions can be found in [2], and
a more exhaustive presentation of the construction of interface conditions and of
the numerical tests will be given in a forthcoming paper [3]. The proposed interface
conditions are built directly at the algebraic level, and are easy to implement. How-
ever, they rely heavily on the approximation of the Schur complement and, if on one
hand the extension to a decomposition into strips appears quite straightforward, on
the other hand further work needs to be done in order to analyse their scalability
for an arbitrary decomposition of the computational domain.
Finally, it is easy to prove the following result (see [3]).

Lemma 2. The Schwarz algorithm„
A11 A1Γ

AΓ1 Tapp
2

«„
vk+1

1

vk+1
Γ,1

«
=

„
f1

fΓ + (Tapp
2 −DΓΓ )vkΓ,2 −AΓ2v

k
2

«

„
A22 A2Γ

AΓ2 Tapp
1

«„
vk+1

2

vk+1
Γ,2

«
=

„
f2

fΓ + (Tapp
1 −DΓΓ )vkΓ,1 −AΓ1v

k
1

«
.

converges to the solution to problem (9).
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4.1 Substructuring

The iterative method can be substructured in order to use a Krylov type method
and speed up the convergence. We introduce the auxiliary variables

h1 = (Tapp
2 −DΓΓ ) vΓ,2 −AΓ2 v2, h2 = −AΓ1 v1 + (Tapp

1 −DΓΓ ) vΓ,1,

and we define the interface operator Th

Th :

0
@h1

h2

f

1
A �−→

0
@−AΓ1v1 + (Tapp

1 −DΓΓ )vΓ,1

(Tapp
2 −DΓΓ )vΓ,2 −AΓ2v2

1
A

where f = (f1, fΓ , f2)
T , whereas (v1,vΓ,1) and (v2,vΓ,2) are the solutions of

„
A11 A1Γ

AΓ1 Tapp
2

«„
v1

vΓ,1

«
=

„
f1

fΓ + h1

«

and „
A22 A2Γ

AΓ2 Tapp
1

«„
v2

vΓ,2

«
=

„
f2

fΓ + h2

«
.

So far, the substructuring operator is obtained simply by matching the conditions
on the interface, and reads in matrix form

“
Id −ΠTh

”
(h1,h2)

T = F, (16)

where Π is the swap operator on the interface, where F = ΠTh(0, 0, f), and where
the matrix Th is given in the following lemma (for a proof see [3]).

Lemma 3. The matrix Th in (16) is given by

0
@ (Tapp

1 −Tex
1 ) (Tex

1 + Tapp
2 −DΓΓ )−1 0

0 (Tapp
2 −Tex

2 ) (Tex
2 + Tapp

1 −DΓΓ )−1

1
A .

5 Numerical Results

We consider problem (1) in Ω = R × (0, 1), with Dirichlet boundary conditions at
the bottom and a Neumann boundary condition on the top. We use a finite volume
discretization with an upwind scheme for the advective term. We build the matrices
of the substructured problem for various interface conditions and we study their
spectra. We give in the tables the iteration counts corresponding to the solution of
the substructured problem by a GMRES algorithm with a random right hand side
G, and the ratio of the largest modulus of the eigenvalues over the smallest real part.
The stopping criterion for the GMRES algorithm is a reduction of the residual by a
factor 10−10. We consider both advection dominated and diffusion dominated flows,
and different kind of heterogeneities. We report here the results for three different
test cases.
Test 1: the flow is advection dominated, the viscosity coefficients are layered, and
the subdomains are symmetric with respect to the interface.
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Test 2: the flow is diffusion dominated, the viscosity coefficients are layered, but
are not symmetric with respect to the interface.
Test 3: the flow is diffusion dominated, the viscosity coefficients are layered, non
symmetric w.r.t. the interface, and anisotropic, with an anisotropy ratio up to order
104.
The velocity field is diagonal with respect to the interface and constant. The numer-
ical tests are performed with MATLAB

R© 6.1. A more detailed description of the
test cases as well as futher numerical results can be found in a forthcoming paper
[3].

p = q = 10 ny 10 20 40 80 160 320

Test 1 iter Robin 4 6 8 11 16 23
Order 2 4 5 6 8 9 10

cond Robin 1.05 1.25 1.68 3.27 6.57 13.51
Order 2 1.01 1.02 1.14 1.34 1.61 1.92

Test 2 iter Robin 7 10 13 16 19 21
Order 2 6 6 8 11 15 19

cond Robin 1.61 1.83 2.59 3.52 3.94 4.12
Order 2 1.21 1.26 1.30 1.83 2.76 3.68

Test 3 iter Robin 9 17 27 35 42 47
Order 2 7 10 14 16 19 21

cond Robin 5.42 18.27 24.75 31.04 38.32 47.29
Order 2 1.54 2.75 4.48 5.92 6.32 6.86

Table 1. Iteration counts and condition number for the substructured problem in
Tests 1-3

Both conditions perform fairly well, in both terms of iteration counts and condition-
ing of the substructured problem, especially for the second order conditions, that
show a good scalability with respect to the mesh size.

6 Conclusions

We have proposed two kinds of algebraic interface conditions for unsymmetric elliptic
problem, which appear to be very efficient and robust in term of iteration counts and
conditioning of the problem with respect to the mesh size and the heterogeneities in
the viscosity coefficients.

References

1. B. Engquist and A. Majda, Absorbing boundary conditions for the numerical
simulation of waves, Math. Comp., 31 (1977), pp. 629–651.



196 L. Gerardo-Giorda and F. Nataf

2. L. Gerardo Giorda and F. Nataf, Optimized Schwarz Methods for unsym-
metric layered problems with strongly discontinuous and anisotropic coefficients,
Tech. Rep. 561, CMAP (Ecole Polytechnique), December 2004.

3. , Optimized Algebraic Schwarz Methods for strongly heterogeneous and
anisotropic layered problems, Tech. Rep. 575, CMAP (Ecole Polytechnique), June
2005.

4. P.-L. Lions, On the Schwarz alternating method. III: a variant for nonoverlap-
ping subdomains, in Third International Symposium on Domain Decomposition
Methods for Partial Differential Equations , held in Houston, Texas, March 20-22,
1989, T. F. Chan, R. Glowinski, J. Périaux, and O. Widlund, eds., Philadelphia,
PA, 1990, SIAM.

5. F.-X. Roux, F. Magoulès, S. Salmon, and L. Series, Optimization of inter-
face operator based on algebraic approach, in Fourteenth International Conference
on Domain Decomposition Methods, I. Herrera, D. E. Keyes, O. B. Widlund, and
R. Yates, eds., ddm.org, 2003.



Optimal and Optimized Domain
Decomposition Methods on the Sphere
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1 Introduction

At the heart of numerical weather prediction algorithms lie a Laplace and positive
definite Helmholtz problems on the sphere [12]. Recently, there has been interest in
using finite elements [2] and domain decomposition methods [1, 10]. The Schwarz
iteration [7, 8, 9] and its variants [9, 5, 6, 4, 3, 11] are popular domain decomposition
methods.

In this paper, we introduce improved transmission operators for the Laplace
problem on the sphere. In section 2, we review the case of the Laplace operator on
the sphere and recall the Schwarz iteration and its convergence estimates, previously
published in [1]; we also give a new semidiscrete estimate which is substantially sim-
ilar to the continuous one. In section 3, we introduce the framework of the optimized
Schwarz iteration and give optimized operators. In section 4, we present numerical
results that agree with the theoretical predictions.

2 The Laplace operator on the sphere

We take the Laplace operator in R
3, given by

Lu = uxx + uyy + uzz,

rephrase it in spherical coordinates and set
∂u

∂r
= 0 to obtain

Lu =
1

sin2 ϕ

∂2u

∂θ2
+

1

sinϕ

∂

∂ϕ

„
sinϕ

∂u

∂ϕ

«
,

where ϕ ∈ [0, π] is the colatitude and θ ∈ [−π, π] the longitude.

2.1 The solution of the Laplace problem

We take a Fourier transform in θ but not in ϕ; this lets us analyze domain decom-
positions with latitudinal boundaries. The Laplacian becomes
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Lû(ϕ,m) =
−m2

sin2 ϕ
û(ϕ,m) +

1

sinϕ

∂

∂ϕ

„
sinϕ

∂û(ϕ,m)

∂ϕ

«
, ϕ ∈ [0, π], m ∈ Z.

For boundary conditions, the periodicity in θ is taken care of by the Fourier decom-
position. The poles impose that u(0, θ) and u(π, θ) do not vary in θ. For m �= 0 this
is equivalent to

û(0,m) = û(π,m) = 0, m ∈ Z, m �= 0.

For m = 0, the relation uϕ(0, θ) = −uϕ(0, θ + π) leads to

Z 2π

0

uϕ(0, θ) dθ =

−
Z 2π

0

uϕ(0, θ) dθ, i.e.,

ûϕ(0, 0) = ûϕ(π, 0) = 0.

If u is a solution of Lu = f then so is u + c (c ∈ C), hence the ODE for m = 0 is
determined up to an additive constant.

With m �= 0 fixed, the two independent solutions of Lu = 0 are

g±(ϕ,m) =

„
sin(ϕ)

cos(ϕ) + 1

«±|m|
, m ∈ Z \ {0}.

For m = 0 the two independent solutions are

û(ϕ, 0) = C1 + C2 log

„
1− cosϕ

sinϕ

«
.

The solutions are defined on the domain (0, π).
All the eigenvalues of L are of the form of −n(n+1) for n = 0, 1, ...; in particular,

they are non-positive (and L is negative semi-definite.)

2.2 The Schwarz iteration for L with two latitudinal subdomains

Let b < a. Begin with random “candidate solutions” u0 and v0. Define uk+1 and
vk+1 iteratively by:

8>><
>>:

Luk+1 = f in Ω1 = {(ϕ, θ)|0 ≤ ϕ < a},
uk+1(a, θ) = vk(a, θ) θ ∈ [0, 2π),
Lvk+1 = f in Ω2 = {(ϕ, θ)|b < ϕ ≤ π},

vk+1(b, θ) = uk(b, θ) θ ∈ [0, 2π);

(1)

(see figure 1.)
We are interested in studying the error terms uk − u and vk − u where Lu = f

since they solve equations (1) with f = 0. Hence for the remainder of this discussion,
we will take f = 0.

Using the Fourier transform in θ, we can write ûk+2(b,m) explicitly in terms of
ûk(b,m). This allows us to obtain a convergence rate estimate, which we recall from
[1].
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Fig. 1. Latitudinal domain decomposition. Left: two domains; right: multiple do-
mains.

C(m) =

„
sin(b)

cos(b) + 1

«2|m| „
sin(a)

cos(a) + 1

«−2|m|
< 1. (2)

This convergence rate depends on the frequency m of uk on the latitude b.
An analysis that is closer to the numerical algorithm would be to replace the

continuous Fourier transform in θ by a discrete one.

Theorem 2. (Semidiscrete analysis.) The Laplacian discretized in θ with n sample
points:

Lnu =
n2

4π2 sin2 ϕ

„
u

„
ϕ,

j + 1

2πn

«
− 2u(ϕ, j) + u

„
ϕ,

j − 1

2πn

««
+ cotϕuϕ + uϕϕ (3)

leads to a Schwarz iteration that converges with speed

„
sin(b)

cos(b) + 1

«2|m̃| „
sin(a)

cos(a) + 1

«−2|m̃|
< 1

every two iterations, where

m̃2 =
n2

4π2
(1− cos(2πk/n))

for the kth frequency.

The two contraction constants are very similar, and it is only possible to tell them
apart on a logarithmic chart for the high frequencies (which converge quickly regard-
less.) For small values of m (ignoring m = 0 because that mode need not converge at
all), the speed of convergence is very poor. The overall L2 convergence rate (along
the boundary) is given by sup

m≥1
C(m) = C(1), and so the convergence rate of the

Schwarz iteration deteriorates rapidly as a− b vanishes.

Theorem 1. The Schwarz iteration on the sphere partitioned along two latitudes b <
a converges (except for the constant term.) The rate of convergence |ûk+2(b,m)/
ûk(b,m)| is
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While it is possible to prove that the Schwarz iteration converges regardless of
subdomain shapes (so long as they are sufficiently “nice”) and even regardless of the
discretization (as long as it is sufficiently accurate) in the context of Sobolev spaces
[7], it is difficult in general to obtain contraction constants as we have done here.

3 An optimized Schwarz iteration for L with latitudinal
boundaries

We modify the transmission condition to obtain the following iteration:

8>>>>><
>>>>>:

Luk+1 = f in Ω1

ψ(θ) ∗ uk+1(a, θ) +
∂

∂ϕ
uk+1(a, θ) = ψ(θ) ∗ vk(a, θ) +

∂

∂ϕ
vk(a, θ) θ ∈ [0, 2π),

Lvk+1 = f in Ω2

ξ(θ) ∗ vk+1(b, θ) +
∂

∂ϕ
vk+1(b, θ) = ξ(θ) ∗ uk(b, θ) +

∂

∂ϕ
uk(b, θ) θ ∈ [0, 2π);

(4)

where ψ and ξ are distributions and Ω1, Ω2 are as previously defined. Choices
include:

1. (ψ ∗w)(θ) = cw(θ); that is, ψ is c times the point mass at θ = 0. This results in
a Robin transmission condition.

2. (ψ ∗w)(θ) = cw(θ)+dw′′(θ). This results in a second order tangential transmis-
sion condition.

3. A nonlocal choice of ψ leading to an iteration that converges in two steps.

We have analyzed each case and obtained the following results.

Theorem 3. (Nonlocal operator.) If, for each m, ψ̂(m) = |m|/ sin a and ξ̂(m) =
−|m|/ sin b, Lu0 = 0 in Ω1and Lv0 = 0 in Ω2, then u1 = 0 and v1 = 0.

Corollary 1. The iteration (4) is convergent (modulo the constant mode) if ψ̂(m) >
0 and ξ̂(m) < 0 for all m �= 0, regardless of overlap.

The corollary follows from the calculations in the proof of the preceding theorem.
We do not assume that a �= b.

Theorem 4. (Robin conditions.) Let ψ ∗ w = cw and 2N be the number of dis-
cretization points along the latitude ϕ = π/2. As long as c > 0, we have a convergent
algorithm. The contraction constant is

C0(N) = min
c

max
m∈[1,N]

κ1(m,c) = min
c

max
m∈[1,N]

(c− |m|)2
(c+ |m|)2 .

The minimum is obtained at c =
√
N , at which point the maximum contraction

constant is

C0(N) =
(
√
N − 1)2

(
√
N + 1)2

.

For the second order tangential operator, a continuous analysis leads to:
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Theorem 5. (Second order tangential transmission condition.) Let

ψ ∗ w = cw + d
∂2

∂ϕ2
w, (5)

with c ≥ 0 and d ≤ 0, cd �= 0. The best contraction constant is given by

C2(N) = min
c,d

max
m∈[1,N]

κ2(m, c, d) = min
c,d

max
m∈[1,N]

(c− dm2 −m)2

(c− dm2 +m)2
.

Choosing c, d to obtain the smallest contraction gives

C2(N) =

0
B@
√

2(N + 1)2
“

N
(N+1)2

” 3
4 − 2N

√
2(N + 1)2

“
N

(N+1)2

” 3
4

+ 2N

1
CA

2

for the parameters

c = −Nd = 2

„
N

4N2 + 8N + 4

« 3
4

(N + 1). (6)

We can use a semidiscrete analysis to obtain a similar result.

Theorem 6. (Second order tangential transmission operator, semidiscrete.) A semidis-
crete analysis leads to slightly different parameters c and d given by

α =
Nπ4 + 8N3π2 −N2(8π2 + π4) +Nπ4

4π4 − 64π2N2 + 256N4
,

c′ =
N(8n− π2)

2α
1
4 (8N2 − π2)

,

d′ =
2α

3
4 (8N2 − π2)

N(8N − π2)
.

In the presence of overlap, an extra trigonometric term appears that prevents exact
analytic solutions. If we neglect such trigonometric terms, the optimization problem
becomes to minimize the moduli of

ψ̂(m) sin a− |m|
ψ̂(m) sin a+ |m|

and
ξ̂(m) sin b+ |m|
ξ̂(m) sin b− |m|

.

If a = b, this is a nonoverlapping problem with asymmetric subdomains, except if
a = π/2. We adapt the preceding theorems.

Theorem 7. To minimize the modulus of

ψ̂(m) sin a− |m|
ψ̂(m) sin a+ |m|

,

we can use ψ =
√
N csc a (Robin case) and ψ = c csc(a) + d csc(a)

∂

∂ϕ
(with c, d

given by either of the second order tangential choices.)
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3.1 Multiple latitudinal subdomains

Let l > 1 and u
(k)
l+1, for 1 ≤ k ≤ n, be the solutions of

8>>>><
>>>>:

Lu
(k)
l+1(ϕ, θ) = f in Ωk

u
(k)
l+1(ak, θ) + ψk ∗

∂

∂ϕ
u
(k)
l+1(ak, θ) = u

(k−1)
l (ak, θ) + ψk ∗ u

(k−1)
l (ak, θ) θ ∈ [0, 2π) if k > 1,

u
(k)
l+1(bk, θ) + ξk ∗

∂

∂ϕ
u
(k)
l+1(bk, θ) = u

(k+1)
l (bk, θ) + ξk ∗ u

(k+1)
l (bk, θ) θ ∈ [0, 2π) if k < n;

where 0 = a1 < a2 < ... < an, b1 < b2 < ... < bn = π, Ωk = {(ϕ, θ)|ϕ ∈ (ak, bk)},
ak < bk, k = 1, ..., n and ∪k[ak, bk] = [0, π] (see figure 1.) Once more using a Fourier
transform in θ, one can show that the same optimal operators lead to convergence

in n steps. The iteration leads to a matrix whose entries look like
ψ̂(m) sin a− |m|
ψ̂(m) sin a+ |m|

and one may heuristically use the same operators as in the two-subdomain case.

4 Numerical results

We have written a semispectral solver for the various transmission operators we have
described and the numerical results are summarized in figure 2:

(a) We have computed 18 iterates of the Schwarz iteration and plotted the error
at each even iteration to match with the analysis in the text. The transmission
operators are Robin, second order tangential with coefficients (c, d) (dash-dot),
second order tangential with coefficients (c′, d′) (dashed) and a discretized op-
timal operator (solid.) The slopes are the contraction constants. The bump at
step 2 is because Lu0 �= 0.

(b) The decay of the contraction constant as the number of subdomains increases.
The x axis is the number of subdomains and the y axis is the contraction con-
stant. The x marks and diamonds are for the Robin and optimal operators,
respectively, and the circles and squares are for the choices (c, d) and (c′, d′) of
second order tangential operators. The truncation frequency is N = 50 in all
cases; there are 101 points along the equator.

(c) Depiction of the behavior of the contraction-every-two-steps constant as we in-
crease the discretization parameter N , two subdomains, no overlap. The number
of points along the equator is 2N + 1. The line with x marks is a Robin algo-
rithm, the line with circles is with the second order operator and the diamonds
is the optimal operator. The two circled lines are for the two choices (c, d) and
(c′, d′) (slightly better) of the second order transmission parameters. Dotted
lines are predictions from our analysis. The optimal operator does not lead to
convergence in two steps due to the discretization.

(d) Same as (c), but with a single grid length of overlap. Since we have overlap, we
include the Dirichlet operator as the * line. The optimal transmission operator
behaved vastly better in the overlap case (exhibiting apparently superlinear
convergence.)
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Fig. 2. (a): iterates of the various Schwarz algorithms (two subdomains, no over-
lap, semispectral code.) (b): contraction constants as a function of the number of
subdomains (no overlap.) (c), (d): contraction constants as a function of the trun-
cation frequency (two subdomains.) (c) is without overlap, (d) is one grid interval
of overlap.

5 Conclusions

We have given optimal and optimized transmission operators for the Laplace prob-
lem on the sphere and have shown that they perform much better than the classical
iteration with a Dirichlet condition. We have computed convergence rates for the
Robin condition and two choices of second-order tangential operators, and compared
them against the optimal nonlocal operator. A similar analysis for the positive def-
inite Helmholtz problem will be detailed in a later paper.
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1 Introduction

The exterior Helmholtz problem is a basic model for wave propagation in the fre-
quency domain on unbounded domains. As a rule of thumb, 10-20 grid points per
wavelength are required. Hence if the modeling structures are a multiple of wave-
lengths in size, a discretization with finite elements results in large sparse indefinite
and unsymmetric problems. There are no well established solvers, or preconditioners
for these linear systems as there are for positive definite elliptic problems.

As a first basic step towards a solver for the class of linear systems described
above we consider a non-overlapping Schwarz algorithm with only two subdomains,
where the coupling among subdomains is done using the perfectly matched layer
method.

We do not present a new idea here, and it is beyond the scope of the paper to
do justice to previous work in this field. However we comment on a few references,
that have been inspiring to us.

In [10] Toselli tried to use the Schwarz algorithm with perfectly matched layers
(PML) at the interfaces, as a preconditioner. However we believe that the coupling
of the incoming waves there, was done incorrectly; we comment on this in the con-
cluding remark in Section 4. One may view the Ansatz by Després, see [1] and the
references therein, and Shaidurov and Ogorodnikov [9], as a first order absorbing
boundary condition. The use of Robin boundary conditions there is also motivated
by the idea of equating energy fluxes over boundaries. Colino, Joly and Ghanemi [2]
analyzed the Ansatz of Després and could prove convergence. Gander, Nataf and
Magoulés [4] follow a slightly different Ansatz. They use local low order boundary
conditions, that optimize transmission, based on an analysis of Fourier coefficients.

The PML method is in special cases one of the best approximations to the
Dirichlet to Neumann (DtN) operator. With the DtN operator at hand the Schwarz
algorithm would converge in a finite number of iteration steps.

2 Problem description

We consider time-harmonic electro-magnetic scattering problems in two space di-
mensions. Assuming that the electric field is polarized in the x, y-plane and that the
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obstacle is homogeneous in the z direction, the time-harmonic vectorial Maxwell’s
equations in 3D are reduced to equations in 2D. For the z component of the magnetic
field we obtain the Helmholtz equation (1)

∇ · ε−1∇u + ω2µu = 0 in Ω̃; b(u, ∂νu) = 0 on Γ (1)

Here ω is the frequency and µ and ε are the x, y-dependent relative permeability
and conductivity respectively. Ω̃ is typically the complement of a bounded set in R

2,
with boundary Γ , where the boundary condition b is given. The boundary condition
b, if there is an interior boundary at all, is typically of the form b(u, ∂νu) = u,
b(u, ∂νu) = ∂νu or b(u, ∂νu) = ∂νu+cu. The Helmholtz equation has to be completed
by the Sommerfeld radiation boundary condition for the scattered field.

For simplicity we assume that ε = 1, and set k2 = ω2µ. The total field u can be
written as the sum of the known incoming and the scattered field u = uin+usc. The
scattered field is a solution of (1) and satisfies the Sommerfeld radiation boundary
conditions for |(x, y)| → ∞ given by:

lim
|(x,y)|→∞

∂νusc = ikusc , (2)

where the limit is understood uniformly for all directions.

3 Coupling of incoming waves - DtN operator

The computation will be restricted to a bounded computational domain Ω. It is
assumed that outside the computational domain ε and µ are constant along straight
lines. In this case we can evaluate the Dirichlet to Neumann (DtN) operator using
the perfectly matched layer method (PML) developed in [12].

Next we reformulate Problem (1) on the computational domain. This clearly
shows how to couple incoming fields to the computational domain.

Setting u = v ⊕ w according to the decomposition Ω̃ = Ω ∪ Ωext we obtain the
coupled system

∆v + k2v = 0 in Ω ; b(v, ∂νv) = 0 on Γ ∩Ω
∂νv = ∂νuin + ∂νwsc on Γint

(3)

∆wsc + k2wsc = 0 in Ωext ;

wsc = v − uin on Γint ; b(wsc + uin, ∂ν(wsc + uin)) = 0 on Γ ∩Ωext
lim

|x|→∞
∂νwsc − ikwsc = 0

(4)

where the coupling is via the Dirichlet and Neumann data on the interface boundary
Γint, connecting Ω and Ωext. From this we obtain the DtN operator, which is the
operator that solves the exterior problem with given Dirichlet data Γint and returns
the Neumann data. With the DtN-operator at hand one gets

∆v + k2v = 0 in Ω ; b(v, ∂νv) = 0 on Γ ∩Ω
∂νv − ∂νuin = DtN(v − uin) on Γint.

(5)

In general the DtN operator is difficult to compute, but can be approximated using
the PML, described briefly in Section 4. For more information on approximating the
DtN operator, see the textbook [5], and the more recent review articles [11, 6].
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4 Sketch of the perfectly matched layer method

We do not follow, the classical introduction of the perfectly matched layer method
(PML) that is motivated by adding a layer of artifical absorbing material.

Our derivation of the PML method, described in detail in [7] is based on an
analytic continuation, as in [8, 3]. Details of the implementation in 2D can by found
in [12]. The basic idea is an analytic continuation of the solution in the exterior
along a distance variable. We will only sketch the ideas here for the one-dimensional
case.

Consider the Helmholtz equation in 1D on a semi-infinite interval for the scat-
tered field.

∂xxu+ k2u = 0 x ∈ [−1,∞)

u(−1) = 1 ; ∂νu = iku for x→∞ (6)

Our computational domain is the interval [−1, 0]. The solution in the exterior is
analytic in x. Defining γ(x) := (1+iσ)x and ũPML(x) := u(γ(x)), we have ũPML(0) =
u(0) and ∂νu(0) = ∂ν ũPML(0)/(1 + iσ). uPML obeys

∂xxũPML + k2(1 + iσ)2ũPML = 0 x ∈ [0,∞)

ũPML(0) = u(0) ; ∂xũPML(x) = ikũPML(x)(1 + iσ)
(7)

Fundamental solutions are exp(ik(1 + iσ)x) and exp(−ik(1 + iσ)x). The first one is
called outgoing as it obeys the boundary condition, the second is called incoming as it
does not. The first one decays exponentially, whereas the second grows exponentially;
therefore it can be justified to replace ũPML by uPML given by Equation (9), and
replace the infinite coupled system by the coupled system

∂xxv + k2v = 0 x ∈ [−1, 0]

v(−1) = 1 ; ∂νv(0) = ∂νuPML(0)/(1 + iσ)
(8)

∂xxuPML + k2(1 + iσ)2uPML = 0 x ∈ [0, ρ]

uPML(0) = v(0) ; ∂xuPML(ρ) = 0
(9)

Here ρ is the thickness of the PML. The error introduced by truncating the PML
is analyzed in, e.g. [8, 7], where it is shown that the PML system is well-posed and
the error decays exponentially with ρ.

Remark: Toselli [10] coupled the incoming field at the external boundary of the
PML; this way the incoming field is damped in the PML and this might explain,
why he concluded that it is best to use a very thin layer.

5 Two-domain decomposition

We now turn back to the two dimensional case. The idea for the Schwarz algorithm is
to calculate the solution in every subdomain separately with transparent boundary
conditions at the subdomain interfaces and add the scattered field of one domain
to the incoming field for the neighboring domains, i.e. use a pseudo-DtN operator,
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Ω1 Ω2

Ω
Γ

Γ12

ν1
ν2

Fig. 1. Decomposition of Ω into two non-overlapping subdomains Ω1 and Ω2

where we assume that the exterior to each subdomain has a simple structure. If we
are able to evaluate the DtN operator the Schwarz algorithm would converge in a
finite number of steps.

For the simple two subdomain case the additive Schwarz algorithm is given
in (10). Here unj denotes the nth iterate on subdomain Ωj , and Γij the boundary
between Ωi and Ωj .

∆un+1
j + k2un+1

j = 0 in Ωj

∂νu
n+1
j = DtN(un+1

j − uin) + ∂νu
in on Ω̄j ∩ Γ

∂νu
n+1
j = DtN(un+1

j − uni ) + ∂νu
n
i on Γij

(10)

for (i, j) = (1, 2), (2, 1), n = 0, 1, . . . .
Denoting by νj the normal with respect to Ωj we have ∂νju

n
i = −∂νiu

n
i .

We make the following assumptions: The subdomains are strips with homogenous
Neumann, Dirichlet, or periodic boundary condition at non-interface boundaries,
with transparent boundary condition at interfaces and are ordered linearly. This
way we avoid crosspoints, which pose a problem. The incoming field is given on two
neighboring domains with a common boundary, hence the incoming field may have a
jump across this boundary and at the crosspoint, and is hence not a solution of the
Helmholtz equation. This is also a problem from the computational point of view, as
the Dirichlet data inserted in the DtN operator is assumed to be continuous. One idea
to circumvent this difficulty is to add artificial outgoing waves, that compensate for
the jump. Another one is to use a representation formula based on the Pole condition
for the scattered field and evaluate it on the interface boundaries, but this is outside
the scope of the present paper.

We assume that the boundary condition is a homogenous Neumann condition,
i.e. b(u, ∂νu) = ∂νu, and set

aΩ(u, ϕ) = −
Z
Ω

∇u∇ϕ + k2uϕdx (11)

With this in the variational setting the solution u is the function u ∈ H1(Ω) such
that

aΩ(u, ϕ) +

Z
Γint

∂νuϕdσ(x) = 0 ∀ϕ ∈ H1(Ω)
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Inserting the boundary condition, we obtain

aΩ(u, ϕ) +

Z
Γint

DtN(u− uin)ϕ+ ∂νu
inϕdσ(x) = 0 ∀ϕ ∈ H1(Ω)

The Schwarz algorithm in variational form is given in (12) below. To avoid the
evaluation of the Neumann data on the interface boundary we use a postprocessing
step (13), so that the Neumann data is only given in weak form.

aj(u
n+1
j , ϕ) +

Z
Γij

DtN(un+1
j − uni )ϕdσ(x) +

Z
Γij

∂νju
n
j ϕdσ(x)

| {z }R
Γij

∂ν1u
n+1
1 ϕdσ(x)

+

Z
Γ∩Ω̄j

DtN(un+1
j − uin)ϕ+ ∂ν1u

inϕdσ(x)

| {z }R
Γ∩Ω̄j

∂νj
un+1

j ϕdσ(x)

= 0 ∀ϕ ∈ H1(Ω1)

(12)

Z
Γij

∂νju
n+1
j ϕdσ(x) =− aj(u

n+1
j , ϕ)

−
Z
Γ∩Ω̄j

DtN(un+1
j − uin)ϕ+ ∂ν1u

inϕdσ(x)

(13)

6 Numerical experiments

We consider a very simple example. The computational domain is a [−1, 1]×[0.5, 0.5]
rectangle, with periodic and transparent boundary conditions. To be precise, in Fig. 1
we take periodic boundary conditions at the top and bottom of Ω and transparent
boundary conditions to the left and the right. The incoming field is a plane wave
traveling from left to right. The computational domain is split in two squares along
the y-axis. The function k depends on x and y and is a step function, k equals k0

everywhere, except in two smaller squares of size [0, 0.5] × [0, 0.5] located in the
center of the two subdomain, where it is k0/5.

The calculation was done using the package JCMfeetools developed at the ZIB,
with second order finite elements. The linear systems are solved using the sparse
solver UMFPACK.

The thickness of the PML ρ is set to three wavelengths, the damping factor
to σ = 1 and along the distance variable, we have chosen 12 grid-points on the
coarse grid. The coarse grid including the PML has about 1100 unknowns on each
subdomain. We plot the l2 error versus number of Schwarz iteration steps for different
ω for upto four uniform refinements of the initial grid. To this end the error is
calculated with respect to a reference solution calculated on the whole domain with
the same mesh on each subdomain. This is done for two settings. First for the
algorithm described above, with the representation of the Neumann data in weak
form and second evaluating the normal derivatives, via the gradient of the Ansatz
function in the neighboring domain.

When we use the weak representation of the Neumann data, we obtain a conver-
gent algorithm. The convergence rate depends strongly on the wavelength but only
weakly on the discretization as can be seen in Fig 2.
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Fig. 2. Error of the Schwarz algorithm, for different wavenumbers k and different
refinement levels using weak representation of the Neumann data. The left plot was
calculated using 1168 unknowns, the middle one with 4000 unknowns and the right
with 13120 unknowns.

In case we evaluate the Neumann data via the gradient of the Ansatz function
the error of the domain decomposition method saturates as shown in the left and
middle graph in Fig 3.
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Fig. 3. (Left and middle): Error of the Schwarz algorithm, for different wavenumbers
k and different refinement levels. The left plot was calculated using 4000 unknowns
the middle one with 13120 unknowns in each subdomain. (Right): Decay of the level
at which the error saturates, versus the number on unknowns.
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Surprisingly, the level at which the error saturates, plotted in the rightmost graph
of Fig 3 versus the number of unknowns, decays faster than might be expected, from
the error estimate for the Neumann data. Recall that we use second order finite
elements here.
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Summary. A small modification of the restricted additive Schwarz (RAS) precon-
ditioner at the algebraic level, motivated by continuous optimized Schwarz methods,
leads to a greatly improved convergence rate of the iterative solver. The modification
is only at the level of the subdomain matrices, and hence easy to do in an existing
RAS implementation. Numerical experiments using finite difference and spectral el-
ement discretizations of the modified Helmholtz problem u−∆u = f illustrate the
effectiveness of the new approach.

1 Schwarz Methods at the Algebraic Level

The discretization of an elliptic partial differential equation

Lu = f in Ω, Bu = g on ∂Ω, (1)

where L is an elliptic differential operator, B is a boundary operator and Ω is a
bounded domain, leads to a linear system of equations

Au = f . (2)

A stationary iterative method for (2) is given by

un+1 = un +M−1(f − Aun). (3)

An initial guess u0 is required to start the iteration. Algebraic domain decomposi-
tion methods group the unknowns into subsets, uj = Rju, j = 1, . . . , J , where Rj
are rectangular matrices. Classical coefficient matrices for subdomain problems are
defined by Aj = RjAR

T
j . The additive Schwarz (AS) preconditioner [2], and the

restricted additive Schwarz (RAS) preconditioner [1]) are defined by
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M−1
AS =

JX
j=1

RTj A
−1
j Rj , M−1

RAS =
JX
j=1

R̃Tj A
−1
j Rj , (4)

where the R̃j correspond to a non-overlapping decomposition, i.e. each entry ul of
the vector u occurs in R̃ju for exactly one j.

The algebraic formulation of Schwarz methods has an important feature: a sub-
domain matrix Aj is not necessarily the restriction of A to a subdomain j. For
example, if A represents a spectral element discretization of a differential operator,
then Aj can be obtained from a finite element discretization at the collocation points.
Furthermore, subdomain matrices Aj can be chosen to accelerate convergence and
this is the focus of the next section.

2 Optimized Restricted Additive Schwarz Methods

Historically, domain decomposition methods were formulated at the continuous level.
We consider a decomposition of the original domain Ω in (1) into two overlapping
sub-domains Ω1 and Ω2, and we denote the interfaces by Γij = ∂Ωi ∩ Ωj , i �= j,
and the outer boundaries by ∂Ωj = ∂Ω ∩ Ω̄j . In [5], a parallel Jacobi variant of the
classical alternating Schwarz method was introduced for (1),

Lun+1
1 = f in Ω1, Lun+1

2 = f in Ω2,

B(un+1
1 ) = g on ∂Ω1, B(un+1

2 ) = g on ∂Ω2,

un+1
1 = un2 on Γ12, un+1

2 = un1 on Γ21.

(5)

It was shown in [3] that the discrete form of (5), namely

A1u
n+1
1 = f1 +B1u

n
2 , A2u

n+1
2 = f2 +B2u

n
1 , (6)

is equivalent to RAS in (4). In optimized algorithms, the Dirichlet transmission
conditions in (5) are replaced by more effective transmission conditions, which cor-
responds to replacing the subdomain matrices Aj in (6) by Ãj and the transmission
matrices Bj by B̃j , corresponding to optimized transmission conditions, and leads
to

Ã1u
n+1
1 = f1 + B̃1u

n
2 , Ã2u

n+1
2 = f2 + B̃2u

n
1 , (7)

see Sections 3 and 4 for how to choose Ãj .
We now shown that, for sufficient overlap, the subdomain matrices Aj in the

RAS algorithm (4) can be replaced by the optimized subdomain matrices Ãj from
(7), to obtain an optimized RAS method (ORAS) equivalent to (7),

un+1 = un + (
2X
j=1

R̃Tj Ã
−1
j Rj)(f − Aun). (8)

The additional interface matrices B̃j in (7) are not needed in the optimized RAS
method (8), which greatly simplifies the transition from RAS to ORAS.

Definition 1 (Consistency). Let Rj , j = 1, 2 be restriction matrices covering the
entire discrete domain, and let f j := Rjf . We call the matrix splitting Rj , Ãj, B̃j ,
j = 1, 2 in (7) consistent, if for all f and associated solution u of (2), u1 = R1u
and u2 = R2u satisfy

Ã1u1 = f1 + B̃1u2, Ã2u2 = f2 + B̃2u1. (9)
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Lemma 1. Let A in (2) have full rank. For a consistent matrix splitting Rj, Ãj,
B̃j , j = 1, 2, we have the matrix identities

Ã1R1 − B̃1R2 = R1A, Ã2R2 − B̃2R1 = R2A. (10)

Proof. We only prove the first identity, the second follows analogously. For an arbi-
trary f , we apply R1 to equation (2), and obtain, using consistency (9),

R1Au = R1f = f1 = Ã1u1 − B̃1u2.

Now using u1 = R1u and u2 = R2u on the right-hand side yields

(Ã1R1 − B̃1R2 −R1A)u = 0.

Because f was arbitrary, the identity is true for all u and therefore the first identity
in (10) is established.

While the definition of consistency is simple, it has important consequences:
if the classical submatrices are used, i.e. Ãj = Aj = RjAR

T
j , j = 1, 2, then the

restriction matrices Rj can be overlapping or non-overlapping, and with the asso-
ciated Bj , we obtain a consistent splitting Rj , Aj , Bj , j = 1, 2. If however other
subdomain matrices Ãj are employed, then the restriction matrices Rj must be
such that the unknowns in u1 affected by the change in Ã1 are also available in
u2 to compensate via B̃1 in equation (9), and similarly for u2. Hence consistency
implies for all non-classical splittings a condition on the overlap in the Rj in RAS.
A strictly non-overlapping variant can be obtained when applying standard AS with
non-overlapping Rj to the augmented system obtained from (7) at convergence,

»
Ã1 −B̃1

−B̃2 Ã2

– »
u1

u2

–
=

»
f1

f2

–
, (11)

see the non-overlapping spectral element experiments in Section 4 and [9]. For opti-
mized RAS, a further restriction on the overlap is necessary:

Lemma 2. Let Rj , j = 1, 2, be restriction matrices covering the entire discrete do-
main, and let R̃j be the corresponding RAS versions of these matrices. If B̃1R2R̃

T
1 =

0, then B̃1R2R̃
T
2 = B̃1, and if B̃2R1R̃

T
2 = 0, then B̃2R1R̃

T
1 = B̃2.

Proof. We first note that by the non-overlapping definition of R̃j , j = 1, 2, the
identity matrix I can be written as

I = R̃T1 R̃1 + R̃T2 R̃2. (12)

Now multiplying B̃1R2R̃
T
1 = 0 on the right by R1 and substituting the term R̃T1 R1

using (12) leads to
(B̃1 − B̃1R2R̃

T
2 )R2 = 0,

which completes the proof, since the fat restriction matrix R2 has full rank. The
second result follows analogously.

Theorem 1. Let Rj , Ãj, B̃j , j = 1, 2 be a consistent matrix splitting, and let R̃j
be the corresponding RAS versions of Rj. If the initial iterates u0

j , j = 1, 2, of the
optimized Schwarz method (7) and the initial iterate u0 of the optimized RAS method
(8) satisfy
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u0 = R̃T1 u0
1 + R̃T2 u0

2, (13)

and if the overlap condition

B̃1R2R̃
T
1 = 0, B̃2R1R̃

T
2 = 0 (14)

is satisfied, then the two methods (7) and (8) generate an equivalent sequence of
iterates,

un = R̃T1 un1 + R̃T2 un2 . (15)

Proof. The proof is by induction. For n = 0, we have (15) by assumption (13) on
the initial iterates. We now assume that un = R̃T1 un1 + R̃T2 un2 , and show that the
identity (15) holds for n+ 1. Applying Lemma 1 to the first term of the sum in (8),
we obtain

R̃T1 Ã
−1
1 R1(f −Aun) = R̃T1 Ã

−1
1 (f1 −R1Aun)

= R̃T1 Ã
−1
1 (f1 − (Ã1R1 − B̃1R2)u

n)

= R̃T1 (Ã−1
1 f1 −R1u

n + Ã−1
1 B̃1R2u

n),

(16)

and similarly for the second term of the sum,

R̃T2 Ã
−1
2 R2(f − Aun) = R̃T2 (Ã−1

2 f2 −R2u
n + Ã−1

2 B̃2R1u
n). (17)

Substituting these two expressions into (8), and using (12) leads to

un+1 = R̃T1 (Ã−1
1 (f1 + B̃1R2u

n)) + R̃T2 (Ã−1
2 (f2 + B̃2R1u

n)).

Now replacing by induction hypothesis un by R̃T1 un1 + R̃T2 un2 on the right hand side
and applying Lemma 2, we find together with (14)

un+1 = R̃T1 (Ã−1
1 (f1 + B̃1R2(R̃

T
1 un1 + R̃T2 un2 )))

+R̃T2 (Ã−1
2 (f2 + B̃2R1(R̃

T
1 un1 + R̃T2 un2 )))

= R̃T1 (Ã−1
1 (f1 + B̃1u

n
2 )) + R̃T2 (Ã−1

2 (f2 + B̃2u
n
1 )),

which together with (7) implies un+1 = R̃T1 un+1
1 + R̃T2 un+1

2 .

3 The Schur Complement as Optimal Choice for Ãj

We show now algebraically what the best choice of Ãj is: we partition A from (2)
into two blocks with a common interface,

Au =

2
4A1i C1

B2 AΓ B1

C2 A2i

3
5
2
4u1i

uΓ
u2i

3
5 =

2
4 f1i

fΓ
f2i

3
5 ,

where u1i and u2i correspond to the interior unknowns and uΓ corresponds to the
interface unknowns. The classical Schwarz subdomain matrices are in this case

A1 =

»
A1i C1

B2 AΓ

–
, A2 =

»
AΓ B1

C2 A2i

–
,

and the subdomain solution vectors and the right hand side vectors are
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u1 =

»
u1i

uΓ

–
, u2 =

»
uΓ
u2i

–
, f1 =

»
f1i

fΓ

–
, f2 =

»
fΓ
f2i

–
.

The classical Schwarz iteration (6) would thus be

»
A1i C1

B2 AΓ

– »
un+1

1i

un+1
1Γ

–
=

»
f1i

fΓ −B1u
n
2i

–
,

»
AΓ B1

C2 A2i

– »
un+1

2Γ

un+1
2i

–
=

»
fΓ −B2u

n
1i

f2i

–
.

(18)

Using a Schur complement to eliminate the unknowns u2i on the first subdomain at
the fixed point, we obtain

»
A1i C1

B2 AΓ −B1A
−1
2i C2

– »
u1i

u1Γ

–
=

»
f1i

fΓ −B1A
−1
2i f2i

–
,

and f2i can be expressed again using the unknowns of subdomain 2,

f2i = C2u2Γ +A2iu2i.

Doing the same on the other subdomain, we obtain the new Schwarz method

»
A1i C1

B2 AΓ −B1A
−1
2i C2

– »
un+1

1i

un+1
1Γ

–
=

»
f1i

fΓ −B1u
n
2i −B1A

−1
2i C2u

n
2Γ

–
,

»
AΓ −B2A

−1
1i C1 B1

C2 A2i

– »
un+1

2Γ

un+1
2i

–
=

»
fΓ −B2u

n
1i −B2A

−1
1i C1u

n
1Γ

f2i

–
.

(19)

This method converges in two steps, since after one solve, the right hand side in both
subdomains is the right hand side of the Schur complement system, which is then
solved in the next step. The optimal choice for the new subdomain matrices Ãj , j =
1, 2, is therefore to subtract in A1 from the last diagonal block the Schur complement
B1A

−1
2i C2, and from the first diagonal block in A2 the Schur complement B2A

−1
1i C1.

Since these Schur complements are dense, using them significantly increases the cost
per iteration. Any approximation of these Schur complements with the same sparsity
structure as AΓ however leads to an optimized Schwarz method with identical cost
to the classical Schwarz method (18) per iteration. Approximation of the Schur
complement at the algebraic level was extensively studied in [7]. We show in the
next section an approximation based on the PDE which is discretized.

4 Numerical Results

As test problems, we use finite difference and spectral element discretizations of the
modified Helmholtz problem in two spatial dimensions with appropriate boundary
conditions,

Lu = (η −∆)u = f, in Ω. (20)

Discretization of (20) using a standard five point finite difference stencil on an
equidistant grid on the domain Ω = (0, 1) × (0, 1) with homogeneous Dirichlet
boundary conditions leads to the matrix problem
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AFDu = f , AFD =
1

h2

2
664
Tη −I

−I Tη
. . .

. . .
. . .

3
775 , Tη =

2
6664
ηh2 + 4 −1

−1 ηh2 + 4
. . .

. . .
. . .

3
7775 .

The subdomain matrices Aj , j = 1, 2 of a classical Schwarz method are of the
same form as AFD, just smaller. To obtain the optimized subdomain matrices Ãj ,
it suffices according to Section 3 to replace the last diagonal block Tη in A1 and
the first one in A2 by an approximation of the Schur complements. Based on the
discretized PDE, we use here the matrix [4]

T̃ =
1

2
Tη + phI +

q

h
(T0 − 2I), T0 := Tη|η=0, (21)

which corresponds to a general optimized transmission condition of order 2 with the
two parameters p and q. The optimal choice of the parameters p and q in the new
block T̃ depends on the problem parameter η, the overlap in the method, the mesh
parameter h and the lowest frequency along the interface, kmin. Using the results in
[4], one can derive the hierarchy of choices in Table 1 for h small.

p q

T0
√
η 0

T2
√
η

1

2
√
η

O0, no overlap
√
π(k2

min + η)1/4h−1/2 0

O0, overlap Ch 2−1/3(k2
min + η)1/3(Ch)−1/3 0

O2, no overlap 2−1/2π1/4(k2
min + η)3/8h−1/4 2−1/2π−3/4(k2

min + η)−1/8h3/4

O2, overlap Ch 2−3/5(k2
min + η)2/5(Ch)−1/5 2−1/5(k2

min + η)−1/5(Ch)3/5

Table 1. Choices for the parameters p and q in the new interface blocks T̃ in (21).
Tj stands for Taylor of order j, and Oj stands for optimized of order j.

Figure 1 illustrates the effect of replacing the interface blocks on the performance
of the RAS iteration for the model problem on the unit square with η = 1 and
h = 1/30. The asymptotic formulas from [4] were employed for the various choices
of the parameters in (21). Clearly, the convergence of RAS is greatly accelerated and
the number of operations per iteration is identical.

In a nodal spectral element discretization, the computational domain Ω is par-
titioned into K elements Ωk in which u is expanded in terms of the N–th degree
Lagrangian interpolants hi defined in Ronquist [6]. A weak variational problem is
obtained by integrating the equation with respect to test functions and directly
evaluating inner products using Gaussian quadrature.

The model problem (20) is discretized on the domain Ω = (0, 2) × (0, 4) with
periodic boundary conditions and 32 spectral elements. The right hand side is con-
structed to be C0 along element boundaries as displayed in Figure 2. Non-overlapping
Schwarz methods are well-suited to spectral element discretizations. Here, a zero-th
order optimized transmission condition is employed in AS applied to the augmented
system. The resulting optimized Schwarz iteration is accelerated by a generalized



Optimized Restricted Additive Schwarz Methods 219

0 2 4 6 8 10 12 14 16 18 20
10

−20

10
−15

10
−10

10
−5

10
0

10
5

RAS
RAS T0
RAS T2
RAS optimized 0
RAS optimized 2

iterations

er
ro

r
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minimal residual (GMRES) Krylov method [8]. Figure 2 also contains a plot of the
residual error versus the number of GMRES iterations for diagonal (the inverse mass
matrix) and optimized Schwarz preconditioning.
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Domain decomposition solvers are popular for engineering analysis of applications
such as car bodies, tires, oil reservoirs, or aerospace structures. These methods have
shown to be very efficient in exploiting high performance computing capabilities.
Nevertheless a significant gap remains between their optimality as predicted from
idealized mathematical analysis and the lack of robustness experienced in many
applications.

Defining efficient domain decomposition strategies remains very challenging due
for instance to:

• the nature of engineering problems (heterogeneous, quasi-incompressible, involv-
ing multiphysics)

• the complexity of the analysis (nonlinear, dynamics, optimization, multiscale)
• the model quality (aspect ratio and interface smoothness of subdomains, non-

matching meshes)

Although solvers can be tuned using specific preconditioners, scalings, and coarse
grids, expertise is often required to apply domain decomposition methods judiciously.
The minisymposium intends on one hand to pinpoint the difficulties encountered in
practice when applying domain decomposition methods as “black box” tools and, on
the other hand, to exhibit new advances that enhance their robustness. Providing a
forum for theory, computation and application related discussions, the minisympo-
sium will contribute to defining essential research directions for the future.
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Zdeněk Dostál1, David Horák1 and Dan Stefanica2
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Summary. We review our recent results concerning optimal algorithms for the
numerical solution of both coercive and semi-coercive variational inequalities by
combining dual-primal FETI algorithms with recent results for bound and equality
constrained quadratic programming problems. The convergence bounds that guar-
antee the scalability of the algorithms are presented. These results are confirmed by
numerical experiments.

1 Introduction

The Finite Element Tearing and Interconnecting (FETI) method was originally pro-
posed by Farhat and Roux [14] as a parallel solver for problems described by elliptic
partial differential equations. After introducing a so–called “natural coarse grid”,
Farhat, Mandel and Roux [13] modified the basic FETI method to obtain a numer-
ically scalable algorithm. A similar result was achieved by the Dual-Primal FETI
method (FETI–DP) introduced by Farhat et al. [12]; see also [15]. In this paper, we
use the FETI–DP method to develop scalable algorithms for the numerical solution
of elliptic variational inequalities. The FETI–DP methodology is first applied to the
variational inequality to obtain either a strictly convex quadratic programming prob-
lem with non-negativity constraints, or a convex quadratic programming problem
with bound and equality constraints. These problems are then solved efficiently by
recently proposed improvements [4, 11] of the active set based proportioning algo-
rithm [3], possibly combined with a semimonotonic augmented Lagrangian algorithm
[5, 6]. The rate of convergence of these algorithms can be bounded in terms of the
spectral condition number of the quadratic problem, and therefore the scalability of
the resulting algorithm can be established provided that suitable bounds on the con-
dition number of the Hessian of the quadratic cost function exist. We present such
estimates in terms of the decomposition parameter H and the discretization parame-
ter h. These bounds are independent of both the decomposition of the computational
domain and the discretization, provided that we keep the ratio H/h fixed. We report



224 Zdeněk Dostál, David Horák and Dan Stefanica

numerical results that are in agreement with the theory and confirm the numerical
scalability of our algorithm. Let us recall that an algorithm based on FETI–DP and
on active set strategies with additional planning steps, FETI–C, was introduced by
Farhat et al. [1]. The scalability of FETI–C was established experimentally.

2 Model problem

To simplify our exposition, we restrict our attention to a simple model problem.
The computational domain is Ω = Ω1 ∪ Ω2, where Ω1 = (0, 1) × (0, 1) and Ω2 =
(1, 2) × (0, 1), with boundaries Γ 1 and Γ 2, respectively. We denote by Γ iu, Γ

i
f , and

Γ ic the fixed, free, and potential contact parts of Γ i, i = 1, 2. We assume that Γ 1
u has

non-zero measure, i.e., Γ 1
u �= ∅. For a coercive model problem, Γ 2

u �= ∅, while for a
semicoercive model problem, Γ 2

u = ∅; see Figure 1a. Let Γc = Γ 1
c ∪Γ 2

c . The Sobolev
space of the first order on Ωi is denoted by H1(Ωi) and the space of Lebesgue square
integrable functions is denoted by L2(Ωi). Let V = V 1 × V 2, with

V i =
n
vi ∈ H1(Ωi) : vi = 0 on Γ iu

o
, i = 1, 2.

Let K ⊂ V be a closed convex subset of H = H1(Ω1)×H1(Ω2) defined by

K =
˘
(v1, v2) ∈ V : v2 − v1 ≥ 0 on Γc

¯
.

We define the symmetric bilinear form a(·, ·) : H×H → R by

a(u, v) =

2X
i=1

Z
Ωi

„
∂ui

∂x1

∂vi

∂x1
+
∂ui

∂x2

∂vi

∂x2

«
dx.

Let f ∈ L2(Ω) be a given function and f i ∈ L2(Ωi), i = 1, 2, be the restrictions of
f to Ωi, i = 1, 2. We define the linear form l(·) : H → R by

�(v) =
2X
i=1

Z
Ωi

f ividx

and consider the following problem:

Find min
1

2
a(u, u)− �(u) subject to u ∈ K. (1)

The solution of the model problem may be interpreted as the displacement of two
membranes under the traction f . The left membrane Ω1 is fixed at the left edge
as in Figure 1a and the left edge of Ω2 is not allowed to penetrate below the right
edge of Ω1. For the model problem to be well defined, we either require that the
right edge of the right membrane Ω2 is fixed, for the coercive problem, or, for the
semicoercive problem, that the traction function f satisfies

Z
Ω2

f dx < 0.
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Fig. 1a: Semi–coercive model problem. Fig. 1b: Decomposition: H = .5,H/h = 3.

3 A FETI–DP discretization of the problem

The first step in our domain decomposition method is to partition each domain Ωi,
i = 1, 2, using a rectangular grid into subdomains of diameter of order H . Let W
be the finite element space whose restrictions to Ω1 and Ω2 are Q1 finite element
spaces of comparable mesh sizes of order h, corresponding to the subdomain grids in
Ω1 and Ω2. We call a crosspoint either a corner that belongs to four subdomains, or
a corner that belongs to two subdomains and is located on ∂Ω1 \Γ 1

u or on ∂Ω2 \Γ 2
u .

The nodes corresponding to the end points of Γc are not regarded as crosspoints; see
Figure 1b. An important feature for developing FETI–DP type algorithms is that
a single global degree of freedom is used at each crosspoint, while two degrees of
freedom are introduced at all the other matching nodes across subdomain edges. Let
v ∈ W . The continuity of v in Ω1 and Ω2 is enforced at every interface node that is
not a crosspoint. For simplicity, we also denote by v the nodal values vector of v ∈W .
The discretized version of problem (1) with the auxiliary domain decomposition has
the form

min
1

2
vTKv − vT f subject to BIv ≤ 0 and BEv = 0, (2)

where the full rank matrices BI and BE describe the non-penetration (inequality)
conditions and the gluing (equality) conditions, respectively, and f represents the
discrete analog of the linear form �(·). In (2), K = diag(K1,K2) is the block diagonal
stiffness matrix corresponding to the model problem (1). The blockK1 corresponding
to Ω1 is nonsingular, due to the Dirichlet boundary conditions on Γ 1

u . The block K2

corresponding to Ω2 is nonsingular for a coercive problem, and is singular, with the
kernel made of a vector e with all entries equal to 1, for a semicoercive problem.
The kernel of K is spanned by the matrix R defined by

R =

»
0
e

–
.

Even though R is a column vector for our model problem, we will regard R as a
matrix whose columns span the kernel of K. We partition the nodal values of v ∈W
into crosspoint nodal values, denoted by vc, and remainder nodal values, denoted by
vr. The continuity of v at crosspoints is enforced by using a global vector of degrees
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of freedom vgc and a global-to-local map Lc with one nonzero entry equal to 1 in
each row, i.e., we require that vc = Lcv

g
c . Therefore,

v =

»
vr
vc

–
=

»
vr
Lcv

g
c

–
.

Let fc and fr be the parts of the right hand side f corresponding to the corner and
remainder nodes, respectively. Let BI,r andBI,c be the matrices made of the columns
of BI corresponding to vr and vc, respectively; define BE,r and BE,c similarly. Let

Br =

»
BI,r
BE,r

–
, Bc =

»
BI,c
BE,c

–
, B = [Br Bc].

Let Krr, Krc, and Kcc denote the blocks of K corresponding to the decomposition
of v into vr and vc. Consider the shortened vectors

v =

»
vr
vgc

–
∈W.

Let λI and λE be Lagrange multipliers enforcing the inequality and redundancy
conditions. The Lagrangian L(v, λ) = 1/2 vTKv − vT f + vTBTλ associated with
problem (2) can be expressed as follows:

L(v, λ) =
1

2
vTKv − vT f + vTB

T
λ, (3)

where

λ =

»
λI
λE

–
, K =

»
Krr KrcLc
LTc K

T
rc L

T
c KccLc

–
, B = [Br BcLc] , f =

»
fr

LTc fc

–
.

Using duality theory [2], we can eliminate the primal variables v from the mixed
formulation of (2). For a coercive problem, K is nonsingular and we obtain the
problem of finding

minΘ(λ) = min
1

2
λTFλ− λT ed s.t. λI ≥ 0, (4)

with F = B K
−1
B
T

and ed = B K
−1
f . For an efficient implementation of F it is

important to exploit the structure of K; see [9, 10] for more details.
For a semicoercive problem, we obtain the problem of finding

minΘ(λ) = min
1

2
λTFλ− λT ed s.t. λI ≥ 0 and eGλ = ee, (5)

where F = B K
†
B
T
, ed = B K

†
f , eG = RTB

T
, ee = RT f . Here, K

†
denotes a

suitable generalized inverse that satisfies K K
†
K = K. Even though problem (5) is

much more suitable for computations than (1) and was used for solving discretized
variational inequalities efficiently [7], further improvement may be achieved as fol-

lows. Let eT denote a nonsingular matrix that defines the orthonormalization of the
rows of eG such that the matrix G = eT eG has orthonormal rows. Let e = eTee. Then,
problem (5) reads

min
1

2
λTFλ− λT ed s.t λI ≥ 0 and Gλ = e. (6)
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Next, we transform the problem of minimization on the subset of the affine space to
a minimization problem on a subset of a vector space. Let eλ be an arbitrary feasible
vector such that Geλ = e. We look for the solution λ of (5) in the form λ = µ + eλ.
After returning to the old notation by replacing µ by λ, it is easy to see that (6) is
equivalent to

min
1

2
λTFλ− dTλ s.t Gλ = 0 and λI ≥ −fλI , (7)

with d = ed − Feλ. Our final step is based on the observation that the augmented
Lagrangian for problem (7) may be decomposed by the orthogonal projectors

Q = GTG and P = I −Q

on the image space of GT and on the kernel of G, respectively. Since Pλ = λ for any
feasible λ, problem (7) is equivalent to

min
1

2
λTPFPλ− λTPd s.t Gλ = 0 and λI ≥ −fλI . (8)

4 Optimality

To solve the discretized variational inequality, we use our recently proposed algo-
rithms [9, 10]. To solve the bound constrained quadratic programming problem
(4), we use active set based algorithms with proportioning and gradient projections
[4, 11]. The rate of convergence of the resulting algorithm can be estimated in terms
of bounds on the spectrum of the Hessian of Θ. To solve the bound and equality
constrained quadratic programming problem (8), we use semimonotonic augmented
Lagrangian algorithms [5, 6]. The equality constraints are enforced by Lagrange
multipliers generated in the outer loop, while the bound constrained problems are
solved in the inner loop by the above mentioned algorithms. The rate of convergence
of this algorithm may again be described in terms of bounds on the spectrum of the
Hessian of Θ. Summing up, the optimality of our algorithms is guaranteed, provided
that we establish optimal bounds on the spectrum of the Hessian of Θ. Such bounds
on the spectrum of the operator F , possibly restricted to ImP , are given in the
following theorem:

Theorem 1. If F denotes the Hessian matrix of Θ in (4), the following spectral
bounds hold:

λmax(F ) = ||F || ≤ C

„
H

h

«2

; λmin(F ) ≥ C.

If F denotes the Hessian matrix of Θ in (5), the following spectral bounds hold:

λmax(F |ImP ) ≤ ||F || ≤ C

„
H

h

«2

; λmin(F |ImP ) ≥ C.

Proof: See [9, 10].
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5 Numerical experiments

We report some results for the numerical solutions of a coercive contact problem
and of a semicoercive contact problem, in order to illustrate the performance and
numerical scalability of our FETI–DP algorithms. In our experiments, we used a
function f vanishing on (0, 1)× [0, 0.75)∪ (1, 2)× [0.25, 1). For the coercive problem,
f was equal to −1 on (0, 1) × [0.75, 1) and to −3 on (1, 2) × [0, 0.25), while for
the semicoercive problem, f was equal to −5 on (0, 1) × [0.75, 1) and to −1 on
(1, 2) × [0, 0.25). Each domain Ωi was partitioned into identical squares with sides
H = 1/2, 1/4, 1/8, 1/16. These squares were then discretized by a regular grid with
the stepsize h. For each partition, the number of nodes on each edge, H/h, was taken
to be 4, 8, and 16. The meshes matched across the interface for every neighboring
subdomains. All experiments were performed in MATLAB. The solution of both the
coercive and semicoercive model problems for H = 1/4 and h = 1/4 are presented
in Figure 2. Selected results of the computations for varying values of H and H/h
are given in Table 1, for the coercive problem, and in Table 2 for the semicoercive
problem. The primal dimension/dual dimension/number of corners are recorded
in the upper row in each field of the table, while the number of the conjugate
gradient iterations required for the convergence of the solution to the given precision
is recorded in the lower row. The key point is that the number of the conjugate
gradient iterations for a fixed ratio H/h varies very moderately with the increasing
number of subdomains.

Table 1. Convergence results for the FETI–DP algorithm - coercive problem.

H 1 1/2 1/4 1/8

H/h = 16 578/17/0 2312/153/10 9248/785/42 36992/3489/154
16 27 48 51

H/h = 8 162/9/0 648/73/10 2592/369/42 10365/1633/154
11 22 36 38

H/h = 4 50/5/0 200/33/10 800/161/42 3200/705/154
7 17 21 27

Table 2. Convergence results for the FETI–DP algorithm - semicoercive problem.

H 1/2 1/4 1/8

H/h = 16 2312/155/8 9248/791/36 36992/3503/140
61 51 53

H/h = 8 648/75/8 2592/375/36 10368/1647/140
38 36 46

H/h = 4 200/35/8 800/167/36 3200/719/140
29 28 35
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Fig. 2a: Solution of coercive problem. Fig. 2b: Solution of semi-coercive problem.

6 Comments and conclusions

We have applied the FETI–DP methodology to the numerical solution of a varia-
tional inequality. Theoretical arguments and results of numerical experiments show
that the scalability of the FETI–DP method which has been established earlier for
linear problems may be preserved even in the presence of nonlinear conditions on
the contact boundary. The results are supported by numerical experiments. Similar
results were obtained also for non-matching contact interfaces discretized by mortars
[8].
Acknowledgments. The work of the first two authors was supported by Grant
101/04/1145 of the GA CR, by Grant S3086102 of GA CAS, and by Projects
1ET400300415 and ME641 of the Ministry of Education of the Czech Republic.
The third author was supported by the Research Foundation of the City University
of New York Awards PSC-CUNY 665463-00 34 and 66529-00 35.

References

1. P. Avery, G. Rebel, M. Lesoinne, and C. Farhat, A numerically scal-
able dual–primal substructuring method for the solution of contact problems -
part I: the frictionless case, Comput. Methods Appl. Mech. Engrg., 193 (2004),
pp. 2403–2426.

2. D. P. Bertsekas, Nonlinear Programming, Athena Scientific, New Hampshire,
second ed., 1999.

3. Z. Dostál, Box constrained quadratic programming with proportioning and pro-
jections, SIAM J. Optim., 7 (1997), pp. 871–887.

4. , A proportioning based algorithm for bound constrained quadratic program-
ming with the rate of convergence, Numer. Algorithms, 34 (2003), pp. 293–302.

5. , Inexact semimonotonic augmented Lagrangians with optimal feasibility
convergence for convex bound and equality constrained quadratic programming,
SIAM J. Num. Anal., 43 (2006), pp. 96–115.
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1 Introduction

The automated multilevel sub-structuring (AMLS) method [2, 7, 3] is an extension
of a simple sub-structuring method called component mode synthesis (CMS) [6, 4]
originally developed in the 1960s. The recent work by Bennighof and Lehoucq [3]
provides a high level mathematical description of the AMLS method in a continuous
variational setting, as well as a framework for describing AMLS in matrix algebra
notations. The AMLS approach has been successfully used in vibration and acoustic
analysis of very large scale finite element models of automobile bodies [7]. In this
paper, we evaluate the performance of AMLS on other types of applications.

Similar to the domain decomposition techniques used in solving linear systems,
AMLS reduces a large-scale eigenvalue problem to a sequence of smaller problems
that are easier to solve. The method is amenable to an efficient parallel implementa-
tion. However, a few questions regarding the accuracy and computational efficiency
of the method remain to be carefully examined. Our earlier paper [12] addressed
some of these questions for a single-level algorithm. We developed a simple crite-
rion for choosing spectral components from each sub-structure, performed algebraic
analysis based on this mode selection criterion, and derived error bounds for the
approximate eigenpair associated with the smallest eigenvalue. This paper focuses
on the performance of the multilevel algorithm.

2 The algorithmic view of AMLS

We are concerned with solving the following algebraic eigenvalue problem

Kx = λMx, (1)

∗This work was supported by the Director, Office of Advanced Scientific Comput-
ing Research, Division of Mathematical, Information, and Computational Sciences
of the U.S. Department of Energy under contract number DE-AC03-76SF00098.
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where K is symmetric, M is symmetric positive definite, and both are sparse. Using
a graph partitioning software package such as Metis [8] we can permute the matrix
pencil (K,M) into a multilevel nested block structure shown below:

K =

0
BBBB@

K11

K22 sym.
K31K32K33

K44

K55

K64K65 K66

K71K72K73K74K75 K76 K77

1
CCCCA ,M =

0
BBBB@

M11

M22 sym.
M31M32M33

M44

M55

M64M65 M66

M71M72M73M74M75 M76 M77

1
CCCCA (2)

The blocks Kij and Mij are of size ni-by-nj. A byproduct of this partitioning
and reordering algorithm is a separator tree depicted in Figure 1. The separator
tree can be used to succinctly describe the matrix structure (2), the computa-
tional tasks and their dependencies in the AMLS algorithm. The internal tree nodes
(marked by �) represent the separators (also known as the interface blocks, e.g.
K33,K66 and K77), and the bottom leaf nodes (marked by ©) represent the sub-
structures (e.g. K11,K22, K44 and K55). The permutation of the pencil (K,M) is

Fig. 1. Separator tree (left) and the reordered matrix (right) for a three-level dis-
section.

followed by a block factorization of the K matrix, i.e., K = LDLT , where

D = L−1KL−T = diag(K11,K22, bK33,K44,K55, bK66, bK77)
def
= bK . (3)

and L is given by:

L =

0
BBBBB@

In1
In2 sym.

K31K
−1
11 K32K

−1
22 In3

In4
In5

K64K
−1
44 K65K

−1
55 In6

K71K
−1
11 K72K

−1
22 K73

bK−1
33 K74K

−1
44 K75K

−1
55 K76

bK−1
66 In7

1
CCCCCA

(4)

Applying the same congruence transformation defined by L−1 to M yields:

L−1ML−T def
= cM =

0
BBBBB@

M11

M22 sym.cM31
cM32

cM33

M44

M55cM64
cM65

cM66cM71
cM72

cM73
cM74

cM75
cM76

cM77

1
CCCCCA
. (5)
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Note that cM has the same block structure as M , and only the diagonal blocks
associated with the leaves of the separator tree are not altered; all the other blocks
are modified. Moreover, the altered blocks of cM typically contain more non-zero
elements than those inM . The eigenvalues of ( bK,cM) are identical to those of (K,M),
and the corresponding eigenvectors bx are related to those of the original problem
(1) through bx = LTx.

Instead of computing eigenvalues of (K,M) directly, AMLS solves a number

of subproblems defined by the diagonal blocks of bK and cM . Suppose Si contains
eigenvectors associated with ki desired eigenvectors of (Kii,Mii) (or ( bKii,cMii)),
then, AMLS constructs a subspace in the form of

S = diag(S1, S2, . . . , SN ) . (6)

The eigenvectors associated with (Kii,Mii) will be referred to as the sub-structure

modes, and those associated with ( bKii,cMii) will be referred to as the coupling modes.

The approximation to the desired eigenpairs of the pencil ( bK,cM) are obtained by

projecting the pencil ( bK,cM) onto the subspace spanned by S, i.e., we seek θ and

q ∈ R
k̄, where k̄ =

NX
i=1

ki, such that

(ST bKS)q = θ(STcMS)q. (7)

It follows from the Rayleigh-Ritz theory [11, page 213] that θ serves as an approx-
imation to an eigenvalue of (K,M), and the vector formed by z = L−TSq is the
approximation to the corresponding eigenvector. Algorithm 1 summarizes the major
steps of the AMLS algorithm.

Note that when the interface blocks are much smaller than the sub-structures,
we can include all the coupling modes by replacing Si with Ini in (6). As a result,
the projected problem (7) is simplified while its dimension is still kept small.

A straightforward implementation of Algorithm 1 is not very cost-effective. The
amount of memory required to store the block eliminator L and the matrix cM =
L−1ML−T is typically high due to fill-in. We used the following strategies to reduce
this cost: (1) Since computing the desired eigenvalues and the eigenvectors does

not require cM explicitly, we project M into the subspace spanned by the columns
of L−TS incrementally as L and S are being computed in an order defined by
a bottom-up traversal of the separator tree. In another word, we interleave Steps
(2) to (5) of Algorithm 1; (2) We use a semi-implicit scheme to store L. We only
explicitly compute and store the blocks in the columns associated with the separator
nodes. The blocks in the columns associated with the leaf nodes are not computed
explicitly. Whenever needed, KjiK

−1
ii is applied to a matrix block directly through

a sequence of sparse triangular solves and matrix-matrix multiplications.
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More implementation details can be found in our longer report [5].

Algorithm 1 Algebraic Multilevel Sub-structuring (AMLS)

Input: A matrix pencil (K,M), where K is symmetric and nonsingular and
M is symmetric positive definite

Output: θj ∈ R1 and zj ∈ Rn, (j = 1, 2, ..., k) such that Kzj ≈ θjMzj
(1) Partition and reorder K and M to be in the form of (2)

(2) Perform block factorization K = LDLT

(3) Apply the congruence transformation defined by L−1 to (K,M) to

obtain ( bK,cM) defined by (3) and (5)
(4) Compute a subset of the eigenpairs of interest for the subproblems

(Kii,Mii) (or ( bKii,cMii)). Then, form the matrix S in (6)

(5) Project the matrix pencil ( bK,cM) into the subspace span{S}
(6) Compute k desired eigenpairs (θj , qj) from (ST bKS)q = θ(STcMS)q,

and set zj = L−TSqj for j = 1, 2, ..., k

3 Performance evaluation

We evaluate the performance of AMLS on two applications. Our first problem arises
from a finite element model of a six-cell damped detuned accelerator structure [9].
The eigenvalues of this generalized eigenvalue problem correspond to the cavity res-
onance frequencies and the eigenvectors represent the electromagnetic accelerating
field. We will refer to this problem as DDS6. Our second problem arises from the
normal mode vibrational analysis of a 3000-atom polyethylene (PE) particle [13].
In this application, we are interested in the low frequency vibrations of the PE
molecule. We will refer to this problem as PE3K.

Our platform is a single Power3 processor with a clock speed of 375Mhz and
2 MB of level-2 cache. We use nev to denote the number of wanted eigenvalues.
The accuracy tolerance for each subproblem is denoted by τsub, and the accuracy
tolerance for the projected problem is denoted by τproj. We use nmodes to denote
the number of modes chosen from each sub-structure.

DDS6

The dimension of this problem is 65740, and the number of nonzero entries in K+M
is 1455772. Table 1 shows the AMLS timing and memory usage measurements. We
experimented with different partitioning levels. For a single level partitioning, we set
nmodes to 100. When we increase the number of levels by one, we reduce nmodes
by half to keep the total number of sub-structure modes roughly constant. Since
the separators in this problem are small, all the coupling modes are included in the
subspace (6). Column 3 shows that the total memory usage does not increase too
much with an increasing number of levels. By using the semi-implicit representation
for L, we save some memory but need extra time for recomputing some off-diagonal
blocks. This tradeoff between memory reduction and extra runtime is shown in
Columns 4 and 5, which indicate that we save up to 50% of the memory with
only 10-15% extra runtime. This is very attractive when memory is at a premium.
Column 6 shows the time spent in the first phase of AMLS, which consists of various
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transformations (Steps (2)-(5) of Algorithm 1). The time spent in the second phase
of the algorithm, Step (6), is reported in Column 7. The total time is reported in the
last column. As the number of levels increases, the transformation time decreases,
whereas the projected problem becomes larger and hence requires more time to
solve. The variation of the total CPU time is small with respect to the number of
levels.

Table 1. Problem DDS6, nev = 100, τsub = 10−10, τproj = 10−5.

levels nmodes mem mem-saved recompute phase 1 phase 2 total
(MB) (MB) (sec) (sec) (sec) (sec)

2 100 319 199 (38.4%) 9.2 ( 1.5%) 457.7 137.2 594.8

3 50 263 263 (50.0%) 51.5 (11.0%) 287.7 178.8 466.5

4 25 325 248 (43.3%) 60.7 (13.3%) 220.2 235.4 455.6

5 12 392 228 (36.8%) 64.0 (13.2%) 194.0 291.9 485.9

6 6 480 192 (28.6%) 55.3 (10.9%) 151.9 352.4 504.2

As a comparison, it took about 407 seconds and 308 Megabytes memory to
compute the smallest 100 eigenpairs by a shift-and-invert Lanczos (SIL) method
(using ARPACK and SuperLLT packages [10] with MeTiS reordering.) Thus when
nev = 100, AMLS and SIL are comparable in both speed and memory usage. How-
ever, Figure 2 shows that AMLS is more efficient than SIL when more eigenvalues
are needed. In AMLS, the time consumed by phase 1 (transformations) is roughly
the same for different nevs. The increase in the total CPU time for a larger nev is
mainly due to the increased cost associated with solving a larger projected problem
(labeled as “AMLS-Ritz” in Figure 2), but this increase is far below linear. Linear in-
crease in total CPU time is expected in SIL because multiple shifts may be required
to compute eigenvalues that are far part. In our experiment, we set the number of
eigenvalues to be computed by a single-shift SIL run to 100. Since the cost associated
with each single-shift SIL run is roughly the same for each shift, the total cost for a
multi-shift SIL run increases linearly with respect to nev.
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Fig. 2. Runtime of AMLS and SIL with increasing nev. Problem DDS6, levels = 4,
nmodes = 25.

Figure 3 shows the relative error of the smallest 100 eigenvalues returned from
the AMLS calculation. As shown in the left figure, the accuracy deteriorates with
increasing number of levels, which is true even for the first few eigenvalues. This
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is due to the limited number of modes selected in the sub-structures. In the right
figure, we show the results with fixed number of levels (5 here) but different nmodes.
Although the accuracy increases with more modes selected, as expected, this increase
is very gradual. For example, the bottom curve is only about 1 digit more accurate
than the top one, but the size of the projected problem (see (7)) for the bottom
curve is almost twice as large as that of the top curve.
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Fig. 3. Eigenvalue accuracy of DDS6. Left: increasing levels. Right: Fixed level,
increasing nmodes.

PE3K

The low frequency vibrational modes of the PE molecule can be solved by computing
the eigenvalues and eigenvectors associated with the Hessian of a potential function
that describes the interaction between different atoms. For a 3000-atom molecule,
the dimension of the Hessian matrix is 9000. Figure 4 shows the molecular structure
of the PE particle and the sparsity pattern of the Hessian matrix after it is permuted
by MeTiS. We observe that PE3K contains separators of large dimensions, resulting

Fig. 4. The molecular structure of PE3K and the sparsity pattern of the Hessian
after it is permuted by MeTiS.

in excessive fills. This makes the SIL calculation memory intensive [13]. Our semi-
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Fig. 5. Eigenvalue accuracy of PE3K, full or partial selection of interface modes.

implicit representation of L greatly reduced the memory required in the AMLS
calculation (saving 35% of memory). By choosing only a fraction of the coupling
modes from each separator, we also reduced the dimension of the projected problem
(7). In Figure 5, we compared the accuracy of a 3-level AMLS calculation in which
20% of coupling modes are computed and chosen from each separator with a 3-
level calculation in which all coupling modes are selected. Both calculations used
nmodes = 100 for each sub-structure. Figure 5 shows that the partial selection of the
coupling modes does not affect the accuracy of the AMLS calculation significantly
for this problem. It is important to note that choosing 20% of coupling modes enables
us to reduce the AMLS runtime from 1776 to 581 seconds.

4 Conclusions and related work

When a large number of eigenvalues with a few digits of accuracy are wanted, the
multilevel sub-structuring method is computationally more advantageous than the
conventional shift-and-invert Lanczos algorithm. This is due to the fact that AMLS
does not have the bottlenecks associated with the reorthognalization and triangular
solve. However, when the accuracy requirement is high, AMLS becomes less appeal-
ing. Some research is under way to address the accuracy issue. We are developing
better mode selection criteria so that the projected subspace retains better spectral
information from (K,M) while its size is still restricted. Bekas and Saad [1] suggests
to enhance the algorithm by using spectral Schur complements with higher order
approximations. Further evaluation is needed to determine the effectiveness of these
strategies.
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2 LAGA, Université Paris XIII, 99 Avenue J.-B. Clément, 93430 Villetaneuse,
France. {halpern,japhet}@math.univ-paris13.fr
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Summary. We study in this paper a model problem of advection diffusion type on
a region which contains a subregion where it is sufficient to approximate the prob-
lem by the pure advection equation. We define coupling conditions at the interface
between the two regions which lead to a coupled solution which approximates the
fully viscous solution more accurately than other conditions from the literature, and
we develop a fast algorithm to solve the coupled problem.

1 Introduction

There are two main reasons for coupling different models in different regions: the first
are problems where the physics is different in different regions, and hence different
models need to be used, for example in fluid-structure coupling. The second are
problems where one is in principle interested in the full physical model, but the full
model is too expensive computationally over the entire region, and hence one would
like to use a simpler model in most of the region, and the full one only where it
is essential to capture the physical phenomena. We are interested in the latter case
here. In our context of advection diffusion, coupling conditions for the stationary case
were developed in [4]; they are obtained by a limiting process where the viscosity
goes to zero in one subregion and is fixed in the other. Other coupling conditions
were studied in [1] to obtain a coupled solution which is closer to the fully viscous
one.

One is also interested in efficient algorithms to solve the coupled problems. These
algorithms are naturally iterative substructuring algorithms. While an algorithm
was proposed in [4], no algorithm was proposed in [1] for the coupling conditions
approximating the fully viscous solution.

We propose here coupling conditions for the case of the fully viscous solution
of the time dependent advection diffusion equation, and we develop an effective
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iterative substructuring algorithm for the coupled problem. After introducing our
model problem in Section 2 together with the subproblems, we present the two
coupling strategies from [4] and [1] in Section 3, and we introduce a new set of
coupling conditions. We then compare the approximation properties of the three
sets of coupling conditions to the fully viscous solution in Section 4. In Section
5, we present an iterative substructuring algorithm from [4], and introduce new
algorithmic transmission conditions which imply our new coupling conditions at
convergence and lead to an efficient iterative substructuring algorithm. We show
numerical experiments in one and two spatial dimensions in Section 6.

2 Model Problem

We consider the non-stationary advection diffusion equation

Ladu = f, in Ω × (0, T ),
u(·, 0) = u0 in Ω,
Bu = g on ∂Ω,

(1)

where Ω is a bounded open subset of R
2, Lad := ∂t+a ·∇− ν∆+ c is the advection

diffusion operator, ν > 0 is the viscosity, c > 0 is a constant, a = (a, b) is the
velocity field, and B is some boundary operator leading to a well posed problem. In
the following we call u the viscous solution. We now assume that the viscous effects
are not important for the physical phenomena in a subregion Ω2 ⊂ Ω, and hence we
would like to use the pure advection operator La := ∂t+a ·∇+ c in that subregion.
With Ω1 = Ω\Ω2, see Figure 1, this leads to the two subproblems

8<
:
Ladu1 = f in Ω1 × (0, T ),
u1(·, 0) = u0 in Ω1,
Bu1 = g on ∂Ω ∩ ∂Ω1,

8<
:
Lau2 = f in Ω2 × (0, T ),

u2(·, 0) = u0 in Ω2,
Bu2 = g on ∂Ω ∩ ∂Ω2,

(2)

which need to be completed by coupling conditions on Γ , the common boundary
between Ω1 and Ω2. Since the advection operator La is of order 1, it is necessary
to know on which part of the interface a · n is positive or negative (n is the unit
outward normal of Ω1). We thus introduce Γin = {x ∈ Γ, a · n > 0} and Γout =
{x ∈ Γ, a · n ≤ 0}, where Γ = Γin ∪ Γout, see Figure 1.

Ladu = f

Ω

Ladu = f

Lau2 = f

Ω2

Ω1

n

Γin

Γout

Fig. 1. Fully viscous problem on the left, and coupled subproblems on the right.
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3 Coupling Conditions

If we solve the advection diffusion equation in Ω by a domain decomposition method,
it is well known that the solution as well as its normal derivative must be continuous
across Γ , and the only issue is to define algorithms which converge rapidly to the
solution of the global problem, see [6] for a review of classical algorithms, and [2, 5]
for optimized ones.

But if the equations are different in each subdomain, there are two issues: first,
one has to define coupling conditions so that (2) define together with the coupling
conditions a global solution close to the fully viscous one, and second one needs to
find an efficient iterative substructuring algorithm to compute this solution. This
algorithm can use arbitrary transmission conditions which are good for its conver-
gence, as long as they imply at convergence the coupling conditions defining the
coupled solution.

A first approach to obtain coupling conditions was introduced in [4] through a
limiting process in the viscosity (singular perturbation method). With a variational
formulation for the global viscous problem, and letting the viscosity tend to 0 in a
subregion, it has been shown in [4] that the solution of this limiting process satisfies

−ν ∂u1

∂n
+ a · nu1 = a · nu2 on Γ = Γin ∪ Γout,

u1 = u2 on Γin,
(3)

which is equivalent to the coupling conditions

u1 = u2 on Γin,

−ν ∂u1

∂n
= 0 on Γin,

−ν ∂u1

∂n
+ a · nu1 = a · nu2 on Γout.

(4)

A second set of coupling conditions based on absorbing boundary condition theory
was proposed in [1],

u1 = u2 on Γin,
∂u1

∂n
=

∂u2

∂n
on Γin,

−ν ∂u1

∂n
+ a · nu1 = a · nu2 on Γout.

(5)

Both coupling conditions (4) and (5) imply that on Γout neither the solution nor
its derivative are continuous. Since this is in contradiction with the solution of the
fully viscous problem, in which we are interested, we propose a third set of coupling
conditions by modifying the conditions (5) to obtain at least continuity of u on the
interface,

u1 = u2 on Γin,
∂u1

∂n
=

∂u2

∂n
on Γin,

u1 = u2 on Γout.

(6)

In the next section, we show that if Γ ≡ Γin the coupling conditions (5) and (6)
give more accurate approximations to the fully viscous solution than the coupling
conditions (4).
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4 Error Estimates with Respect to the Viscous Solution

We consider the stationary case of (2) on the domain Ω = R
2, with subdomains

Ω1 = (−∞, 0) × R and Ω2 = (0,+∞) × R, and we estimate the error between the
viscous solution and the coupled solution for each of the coupling conditions (4), (5)
and (6) when the velocity field a is constant.

Using Fourier analysis and energy estimates, the details of which are beyond the
scope of this short paper, we obtain for ν small the asymptotic results in Table 1,
where ‖·‖Ωi denotes the L2 norm in Ωi. These results show that if a ·n > 0, then the

Case a · n > 0 (Γ ≡ Γin)

Conditions (4) Conditions (5) and (6)

‖u− u1‖Ω1 O(ν3/2) O(ν5/2)

‖u− u2‖Ω2 O(ν) O(ν)

Case a · n ≤ 0 (Γ ≡ Γout)

Conditions (4) and (5) Conditions (6)

‖u− u1‖Ω1 O(ν) O(ν)

‖u− u2‖Ω2 O(ν) O(ν)

Table 1. Asymptotic approximation quality of the coupled solution to the viscous
solution through different coupling conditions.

approximation of the viscous solution by the coupled solution through conditions (5)
and (6) is better in the viscous subregion Ω1 than with the conditions (4). In fact,
conditions (5) and (6) are not based on the limiting process in the viscosity, and
hence retain in some sense the viscous character of the entire problem. In Ω2 the
error is O(ν) independently of the coupling conditions, since we solve the advection
equation instead of the advection-diffusion equation. Note also that in this case
with the coupling conditions (5) and (6) we have continuity of the solution and of
its normal derivative, whereas with the coupling conditions (4), we have continuity
of the solution only.

If a · n ≤ 0, the solution in Ω2 does not depend on the transmission conditions,
and since we solve the advection equation in this domain, the error is O(ν). Then
the error is propagated into Ω1, so we cannot have an error better than O(ν) in Ω1

independently of the coupling conditions. Note however that now only conditions
(6) lead to continuity of the coupled solution.

5 Algorithmic Transmission Conditions

We now turn our attention to algorithms to compute the coupled subproblem so-
lution. In [4], the following algorithm based on the coupling conditions (4) was
proposed for the steady case (θ is a relaxation parameter):
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8>>><
>>>:

Laduk+1
1 = f in Ω1,

−ν ∂u
k+1
1

∂n
= 0 on Γin,

−ν ∂u
k+1
1

∂n
+ a · nuk+1

1 = a · nuk2 on Γout,
Lauk+1

2 = f in Ω2,

uk+1
2 = θuk1 + (1− θ)uk2 on Γin,

(7)

and it was shown that the algorithm is well posed and convergent.
In [3] an algorithm was proposed for the conditions (6) in the steady state case.

This algorithm does not use the coupling conditions, but better suited transmission
conditions which imply the coupling conditions at convergence. We generalize this
approach here to the unsteady case, which leads to an optimized Schwarz waveform
relaxation method. We first consider the case of a constant velocity field. If a ·n ≤ 0,
i.e. Γ ≡ Γout, the solution in Ω2 does not depend on the conditions on Γ , and
to obtain (6), Dirichlet conditions must be used for Ω1. Now if a · n > 0, i.e.
Γ ≡ Γin, then we use the theory of absorbing boundary conditions to obtain optimal
transmission conditions B1 and B2 for the algorithm:

8>><
>>:

Laduk+1
1 = f in Ω1 × (0, T ),

uk+1
1 (·, 0) = u0 in Ω1,

Buk+1
1 = g on ∂Ω ∩ ∂Ω1,

B1u
k+1
1 = B1u

k
2 on Γ × (0, T ),

8>><
>>:

Lauk+1
2 = f in Ω2 × (0, T ),

uk+1
2 (·, 0) = u0 in Ω2,

Buk+1
2 = g on ∂Ω ∩ ∂Ω2,

B2u
k+1
2 = B2u

k
1 on Γ × (0, T ).

Using the error equations, one can show that if B1 is the advection operator, then
we have convergence of the algorithm in two steps.

In the case of a non-constant velocity field, we propose precisely the same strat-
egy, which leads to the algorithm:

8>>>><
>>>>:

Laduk+1
1 = f in Ω1 × (0, T ),

uk+1
1 (·, 0) = u0 in Ω1,

Buk+1
1 = g on ∂Ω ∩ ∂Ω1,

Lauk+1
1 = Lauk2 on Γin × (0, T ),

uk+1
1 = uk2 on Γout × (0, T ).

8>><
>>:

Lauk+1
2 = f in Ω2 × (0, T ),

uk+1
2 (·, 0) = u0 in Ω2,

Buk+1
2 = g on ∂Ω ∩ ∂Ω2,

uk+1
2 = uk1 on Γin × (0, T ).

(8)

Note that if the sign of a ·n is constant, provided you use the relation Lauk2 = f on
Γin× (0, T ), then algorithm (8) converges in two steps like algorithm (7). If not, our
numerical results in the next section suggest that the algorithm has good convergence
properties also, but it remains to prove convergence of the new algorithm in that
case.

6 Numerical Results

We first consider the stationary case in 1d, with parameters ν = 0.1, c = 1 and
f(x) = sin(x) + cos(x). In Figure 2, we show on the left the viscous and coupled
solutions for a = 1, and on the right for a = −1. The interface Γ is at x = 0, and in
each case the boundary conditions are chosen such that there is no boundary layer.
One can clearly see that for a > 0, conditions (4) lead to a jump in the derivative at
the interface, whereas with conditions (5), (6) the coupled solution and its derivative
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Fig. 2. Viscous and coupled solutions for a > 0 on the left and for a < 0 on the
right.
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Fig. 3. Domain Ω.

are continuous. For a < 0, conditions (4) lead to a discontinuity at the interface,
whereas conditions (5), (6) lead to a continuous coupled solution. Note that the
jump is proportional to ν, see [4].

In Figure 4, we compare the viscous and the coupled solutions for several values
of ν in the L2 norm in Ω1 and Ω2 when a = 1 and a = −1. The numerical results
agree well with the theoretical results given in Section 4.

We next consider the time dependent case in two dimensions with a rotating ve-
locity, as shown in Figure 3. The viscosity is ν = 0.001, we work on the homogeneous
equation f ≡ 0, and the rotating velocity is given by a(x, y) = 0.5− y, b(x, y) = 0.5,
such that a ·n is positive on the first half of the interface and negative on the other
half.

Figure 5 shows cross sections of the solution at y = 0.3 and y = 0.5 where
a ·n > 0, and the information goes from Ω1 to Ω2 and stops diffusing after reaching
the interface, and then cross sections at y = 0.7 and y = 0.9, where a · n < 0, and
diffusion sets in again after crossing the interface.

7 Conclusions

We have proposed a new set of coupling conditions which permits the replacement
of the advection diffusion operator by the pure advection operator in regions where
the viscosity is not very important. These new conditions retain better asymptotic
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Fig. 4. 1 d case : L2-error for a = 1 in Ω1 on top left and in Ω2 on top right, and
for a = −1 in Ω1 at the bottom left and in Ω2 at the bottom right, versus ν.
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approximation properties with respect to the fully viscous solution than earlier cou-
pling conditions in the literature. We have also defined a rapidly converging iterative
substructuring algorithm that uses computational transmission conditions which at
convergence imply the new coupling conditions. While numerical experiments show
good convergence properties of this new algorithm, it remains to prove convergence
of the new algorithm.
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Construction of a New Domain Decomposition
Method for the Stokes Equations
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Summary. We propose a new domain decomposition method for the Stokes equa-
tions in two and three dimensions. The algorithm, we propose, is very similar to
an algorithm which is obtained by a Richardson iteration for the Schur complement
equation using a Neumann-Neumann preconditioner. A comparison of both methods
with the help of a Fourier analysis shows clearly the advantage of the new approach.
This has also been validated by numerical experiments.

1 Introduction

In this paper we study a Neumann-Neumann type algorithm for the Stokes equa-
tions. The last decade has shown, that these kind of domain decomposition methods
are very efficient. Most of the theoretical and numerical work has been carried out
for symmetric second order problems, see [6]. Then the method has been extended
to other problems, like the advection-diffusion equations ([1]) or recently the Stokes
equations, cf. [5, 7].

In the case of two domains consisting of the two half planes it is well known,
that the Neumann-Neumann preconditioner is an exact preconditioner for the Schur
complement equation for scalar equations like the Laplace problem (cf. [6]). As we
will show, this property could not be transfered to the vector valued Stokes problem
due to the incompressibility constraint.

We will construct a method, which preserves this property. The first preliminary
numerical results clearly indicate a better convergence behavior.

2 The preconditioned Schur Complement equation

In order to make the presentation as simple as possible we restrict ourselves to the
two dimensional case. But the extension to the three dimensional case is straight-
forward.
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Let Ω ⊂ R
2 be a bounded polygonal domain. The Stokes problem is a simple

model for incompressible flows and is defined as follows: Find a velocity u and a
pressure p, such that

−ν�u +∇p = f , ∇ · u = 0 in Ω (1)

u = 0 on ∂Ω.

f ∈ [L2(Ω)]d is a source term and ν is the viscosity. In what follows, we denote the
Stokes operator by AStokes(v, q) := (−ν�v +∇p,∇ · v).

2.1 Schur complement equation

Most of the domain decomposition methods for the Stokes equations use the classical
sub-structuring or static condensation procedure. This means, that they end up with
a Schur complement equation. Since the corresponding Steklov-Poincaré operator is
badly conditioned, the application of suitable preconditioners is mandatory. One of
the best-known preconditioner is the Neumann-Neumann preconditioner (cf. [7, 2,
5]).

Assume a bounded Lipschitz domain Ω ⊂ R
2 divided into two nonoverlapping

subdomains Ω1 and Ω2. The interface is denoted by Γ := ∂Ω1 ∩ ∂Ω2.
In the case of the Stokes equations an additional problem occurs. If we assume,

that ui ∈ [H1(Ωi)]
2 satisfies the incompressibility constraint, i.e. ∇ · ui = 0, then

the Green’s formula yields

Z
∂Ωi

ui · nids = 0 for the trace of ui where ni is the

outward normal of Ωi. Therefore we have to consider the subspace

H
1
2
∗ (Γ ) := {ϕ ∈ [H

1
2
00(Γ )]2 |

Z
Γ

ϕ · nids = 0}

of the trace space taking into account the homogeneous boundary conditions on
∂Ωi ∩ ∂Ω. We consider the operator

Σ : H
1
2
∗ (Γ ) × [L2(Ω)]2 → [H− 1

2 (Γ )]2

(uΓ , f) �→ 1

2

„
ν
∂u1

∂n1
− p1n1

«˛̨˛̨
Γ

+
1

2

„
ν
∂u2

∂n2
− p2n2

«˛̨˛̨
Γ

where (ui, pi) ∈ [H1(Ωi)]
2 × L2

0(Ωi) are the unique solutions of the local Stokes
problems

AStokes(ui, pi) = (f , 0) in Ωi

ui = 0 on ∂Ωi ∩ ∂Ω, ui = uΓ on Γ.

It is clear, that the problem

Find φ ∈ H
1
2
∗ (Γ ) such that 〈Σ(φ, 0), ψ〉 = 〈−Σ(0, f), ψ〉 , ∀ψ ∈ H

1
2
∗ (Γ ) (2)

is satisfied by the restriction of the continuous solution (1) to the interface Γ . 〈·, ·〉
denotes the dual product 〈·, ·〉

H
− 1

2 (Γ )×H
1
2
00(Γ )

.
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2.2 Neumann-Neumann preconditioner

The Neumann-Neumann preconditioner of the Steklov-Poincaré operator
S := Σ(·, 0) is defined by

T : (H− 1
2 (Γ ))2 → H

1
2
∗ (Γ ), φ �→

„
1

2
(v1,j + v2,j)|Γ

«2

j=1

.

where vi = (vi,1, vi,2) ∈ [H1(Ωi)]
2 satisfies

AStokes(vi, qi) = 0 in Ωi

vi = 0 on ∂Ωi ∩ ∂Ω, ∂vi
∂ni
− qini = φ on Γ.

In order to keep the presentation simple we consider the following Richardson iter-

ation for equation (2): Starting with an initial guess ϕ0 ∈ H
1
2∗ (Γ ) we obtain

ϕk+1 = ϕk − T (Sϕk +Σ(0, f)), k = 0, 1, 2, . . . . (3)

Please notice that all ϕk+1, k ∈ N, satisfy

Z
∂Ωi

ϕk+1 ·nids = 0. Thus after a proper

initialization all iterations ϕk are elements of H
1
2∗ (Γ ). Of course, in a practical

implementation the Richardson iteration (3) would be replaced by a suitable Krylov
method.

3 Smith Factorization

We first recall the definition of the Smith factorization of a matrix with polynomial
entries and apply it to the Stokes system.

Theorem 1. Let n be an integer and A an invertible n× n matrix with polynomial
entries with respect to the variable λ: A = (aij(λ))1≤i,j≤n.
Then, there exist matrices E, F and a diagonal matrix D with polynomial entries
satisfying A = EDF .

More details can be found in [8]. We first formally take the Fourier transform of
system (1) with respect to y (dual variable is k). We keep the partial derivatives in
x since in the sequel we shall consider a model problem where the interface between
the subdomains is orthogonal to the x direction. We note that

ÂStokes =

0
@−ν(∂xx − k2) 0 ∂x

0 −ν(∂xx − k2) ik
∂x ik 0

1
A . (4)

We perform the Smith factorization of ÂStokes by considering it as a matrix with
polynomials in ∂x. Applying the inverse Fourier transform yields

AStokes = EDF (5)

where D11 = D22 = 1 and D33 = −ν�2 and
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E := T−1
2

0
@−ν�∂y ν∂xxx −ν∂x0 T2 0

∂xy −∂xx 1

1
A , F :=

0
@ ν∂yy ν∂yx ∂x

0 −ν� ∂y
0 1 0

1
A

where T2 is a differential operator in the y-direction whose symbol is iνk3.
This suggests that the derivation of a DDM for the bi-Laplacian is a key ingre-

dient for a DDM for the Stokes system. One should note that a stream function
formulation gives the same differential equation for the stream function.

4 The new algorithm

Using the Smith factorization (5) the new algorithm can be derived from a standard
Neumann-Neumann algorithm for the Bi-Laplacian, which converges in two steps in
the case of the plane divided into the two half planes. For details we refer to [3, 4].

The new algorithm is very similar to the algorithm given by (3). Again, each iter-
ation step requires the solution of two local boundary value problems with Dirichlet
and Neumann boundary conditions. But this time we distinguish between tangential
parts and normal parts of the velocity and impose different boundary conditions for
each part.

In order to write the resulting algorithm in an intrinsic form, we introduce the

stress σ(u, p) = ν
∂u

∂n
−pn on the interface for a velocity u and a pressure p. For any

vector u its normal (resp. tangential) component on the interface is un (resp. uτ ).
We denote by σn and στ the normal and tangential parts of σ, respectively. We con-
sider a decomposition of the domain into non overlapping subdomains: Ω̄ = ∪Ni=1Ω̄i
and denote by Γij the interface between subdomains Ωi and Ωj , i �= j. The new
algorithm for the Stokes system reads:

Algorithm 1. Starting with an initial guess satisfying u0
i,τi

= u0
j,τj

and σ0
i,ni

=

−σ0
j,nj

on Γij , the correction step is defined as follows for 1 ≤ i ≤ N :

AStokes(ũ
n+1
i , p̃n+1

i )T = 0 in Ωi, ũn+1
i = 0 on ∂Ωi ∩ ∂Ω

ũn+1
i,ni

= −(uni,ni
− unj,nj

)/2 on Γij

στi(ũ
n+1
i , p̃n+1

i ) = −(στi(ũ
n
i , p̃

n
i ) + στj (ũ

n
j , p̃

n
j ))/2 on Γij

followed by an updating step:

AStokes(u
n+1
i , pn+1

i )T = f in Ωi un+1
i = 0 on ∂Ωi ∩ ∂Ω

un+1
i,τi

= uni,τi
+ (ũn+1

i,τi
+ ũn+1

j,τj
)/2 on Γij

σni(u
n+1
i , pn+1

i ) = σni(u
n
i , p

n
i )

+ (σni(ũ
n+1
i , p̃n+1

i )− σnj (ũ
n+1
j , p̃n+1

j ))/2 on Γij .

The boundary conditions in the correction step involve the normal velocity and
the tangential stress whereas in the updating step they involve the tangential velocity
and the normal stress. In 3D, the algorithm has the same definition. By construction,
it converges in two steps.

Theorem 2. For a domain Ω = R
2 divided into two non overlapping half planes,

the algorithm 1 converges in two iterations.
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5 Analysis of the Neumann-Neumann Algorithm

Here we focus on the Neumann-Neumann algorithm and we will use the Smith
factorization in order prove that the Neumann-Neumann algorithm (3) does not
converge in only two steps in the case of the plane Ω = R

2 divided into the two half
planes Ω1 := (−∞, 0)×R and Ω1 := (0,∞)×R. Therefore the Neumann-Neumann
preconditioner is not an exact preconditioner.

5.1 Reformulation of the algorithm

For the above decomposition the Smith factorization enables us to formulate the
Neumann-Neumann algorithm (3) of the Stokes equations solely in terms of the
second velocity components. The third row of equation of (5) gives −�2z = g with
z = (F (u, p))3 = u2 and g = (E−1(f , 0))3. Then the first velocity and the pressure
component can be eliminated in the interface conditions using the Stokes equations.
Let us define Lu := −ν�u.

We end up with the following algorithm: Starting with an initial guess

un1 = un2 ,
∂

∂n1
(L − ν∂yy)u

n
1 = − ∂

∂n2
(L − ν∂yy)u

n
2 on Γ

the correction step for n = 1, 2, . . . is given by

−ν�2vni = 0 in Ωi (6)

∂vni
∂ni

= −1

2

„
∂un−1

1

∂n1
+
∂un−1

2

∂n2

«
on Γ (7)

(L − ν∂yy)v
n
i = −1

2

`
Lun−1

i −Lun−1
3−i
´

on Γ (8)

for i = 1, 2. The updating step is defined by

−ν�2uni = g in Ωi, (9)

uni = un−1
i +

1

2
(vn1 + vn2 ) on Γ (10)

∂

∂ni
(L− ν∂yy)u

n
i =

∂

∂ni
(L − ν∂yy)un−1

i

+
1

2

∂

∂ni
(L − ν∂yy) (vn1 + vn2 ) on Γ (11)

with g = (E−1(f , 0))3 and i = 1, 2.

5.2 A Fourier Analysis

We start with the reformulated algorithm (6)-(8), (9)-(11). Again, using the linearity
of the scheme, we obtain for the error ẽni in the n-th iteration step in subdomain Ωi
the update formula ẽni = ẽn−1

i + z̃ni where z̃ni satisfies

−ν�2z̃ni = 0 in Ωi (12)

z̃ni =
1

2
(vn1 + vn2 ) on Γ (13)

∂x(−ν∂xx − 2ν∂yy)z̃
n
i =

1

2
∂x(−ν∂xx − 2ν∂yy)(v

n
1 + vn2 ) on Γ. (14)
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vn1 , v
n
2 are the solutions of the correction step (6)-(8) with right hand side

Hn
NN := −1

2
ν

„
∂�ẽn1
∂n1

+
∂�ẽn2
∂n2

«˛̨̨
˛
x=0

, Kn
NN := −1

2

„
∂ẽn1
∂n1

+
∂ẽn2
∂n2

«˛̨̨
˛
x=0

.

Let us start with the correction step. After a Fourier transform we obtain

ν(−∂xxxx + 2k2∂xx − k4)v̂ni (x, k) = 0.

For a fixed k these are ordinary differential equations in x with solutions

v̂n1 (x, k) = Cn11 exp(|k|x) +Cn12x exp(|k|x) (15)

v̂n2 (x, k) = Cn21 exp(−|k|x) + Cn22x exp(−|k|x). (16)

Using the interface conditions (7) we get

K̂n−1
NN = |k|Cn11 + Cn12, −K̂n−1

NN = −|k|Cn21 + Cn22.

The second interface condition (8) yields

Ĥn−1
NN = −ν|k|2Cn11 − 2ν|k|Cn12, −Ĥn−1

NN = ν|k|2Cn21 + 2ν|k|C22.

Thus, we have four linear equations for the four unknowns Cn11, C
n
12, C

n
21, and Cn22.

After simple computations we obtain

Cn11 =
2

3

1

|k| K̂
n−1
NN +

Ĥn−1
NN

3ν|k|2 , Cn12 =
1

3
K̂n−1
NN −

Ĥn−1
NN

3ν|k|

Cn21 =
2

3

1

|k| K̂
n−1
NN −

Ĥn−1
NN

3ν|k|2 , Cn22 = −1

3
K̂n−1
NN −

Ĥn−1
NN

3ν|k| .

Next, we use the solutions of the correction step in order to compute the right hand
side of the updating step

f̃n :=
1

2
(v̂n1 + v̂n2 )|x=0 =

1

2
(Cn11 +Cn21) =

2

3

K̂n−1
NN

|k|

g̃n :=

„
1

2
∂x(−ν∂xx − 2ν∂yy)(v̂

n
1 + v̂n2 )

«˛̨˛̨
x=0

=
2

3
|k|Ĥn−1

NN .

Again, after Fourier transform the solutions of (12) are given by

ẑn1 (x, k) = Dn
11 exp(|k|x) +Dn

12x exp(|k|x),

ẑn2 (x, k) = Dn
21 exp(−|k|x) +Dn

22x exp(−|k|x)

using that the solutions vanish at infinity. Inserting the boundary condition (13)

yields Dn
11 = Dn

21 = f̃n =
2

3

K̂n
NN

|k| . Now, we consider the second transmission

condition (14). Then we can derive

Dn
12 = −2

3

1

ν|k| Ĥ
n−1
NN +

2

3
K̂n−1
NN , Dn

22 = −2

3

Ĥn−1
NN

ν|k| −
2

3
K̂n−1
NN .

This result can be used to compute Ĥn
NN and K̂n

NN . They are given by
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K̂n
NN = K̂n−1

NN −
1

2

„
∂ẑn1
∂x
− ∂ẑn2

∂x

«˛̨˛̨
x=0

= −1

3
K̂n−1
NN

resp.

Ĥn
NN = Ĥn−1

NN −
1

2
(−ν∂xx(ẑn1 − ẑn2 ))|x=0 = −1

3
Ĥn−1
NN .

Let us summarize the result

Theorem 3. Consider the case Ω = R
2. If the domain Ω is divided into the two

half planes, the preconditioned Richardson iteration (3) of the Schur complement
equation converges. Moreover, the error is reduced by the factor 3 in each iteration
step.

6 Preliminary Numerical Results

The domain Ω = (−A,B) × (0, 1) is decomposed into two subdomains Ω1 =
(−A, 0) × (0, 1) and Ω2 = (0, B) × (0, 1). We compare the new algorithm to the
iterative version of the Neumann-Neumann algorithm. The stopping criteria is that
the jumps of the normal derivative of the tangential component of the velocity has
been reduced by the factor 10−4. In table 1 (left) A = B = 1, we see that both algo-
rithms are insensitive with respect to the mesh size. Of course, due to the discrete
approximation we cannot expect the optimal convergence in two steps. But we only
need one more step to achieve the error bound. We have also varied the width of the
subdomains (middle table). As expected the convergence of the Neumann-Neumann
method deteriorates. For large aspect ratios, the method diverges (– in the table),
since there exists an eigenvalue of the operator corresponding to the Richardson
iteration with a modulus larger than 1. But in this case, the convergence can still be
enforced by its use as a preconditioner in a Krylov method as it is usually the case.
Our new algorithm seems to be surprisingly robust with respect to the subdomain
widths. For moderate variations we always need 3 iterations steps. If we choose very
thin subdomains, for instance A = 1, B = 20, the stopping criterion is met in only
7 steps. In table 1 (right), we have added a reaction term c > 0 to the first two

h new algo N-N

0.02 3 10
0.025 3 12
0.05 3 11
0.5 3 11
0.1 3 11
0.2 3 10

B new algo N-N

1 3 11
2 3 12
3 3 11
5 3 15
10 3 –
20 7 –

c new algo N-N

0.001 3 11
0.01 3 16
0.1 3 19
1 3 19
10 3 16
100 3 10

Table 1. Number of iterations for different mesh sizes (left), aspect ratio (middle)
and different reaction terms (right).

equations of the Stokes system. For instance c might be the inverse of the time step
in a time-dependent computation. We see that the new algorithm is fairly stable.
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During the last couple of years, domain decomposition techniques have been devel-
oped, analyzed and implemented for the numerical solution of Maxwell’s equations in
both time and frequency domains. Moreover, these methods have been successfully
applied to various technologically relevant problems ranging from antenna design to
high power electronics. This minisymposium brings together scientists from math-
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A Domain Decomposition Approach for
Non-conformal Couplings between Finite and

Boundary Elements for Electromagnetic
Scattering Problems in R3 ∗

Marinos Vouvakis and Jin-Fa Lee

ElectroScience Laboratory, Electrical and Computer Engineering Department,
Ohio State University, 1320 Kinnear Rd., Columbus, OH 43212, USA.
vouvakis.1@osu.edu, lee.1863@osu.edu

1 Introduction

To solve electromagetic scattering problems in R3, the popular approach is to com-
bine and couple finite and boundary elements. Common engineering practises in
coupling finite and boundary elements usually result in non-symmetric and non-
variational formulations [5, 8]. The symmetric coupling between finite and bound-
ary elements was first proposed by Costabel [2] in 1987. Since then, quite a few
papers have been published on the topic of symmetric couplings. Among them, we
list references [3, 4, 12, 7]. In particular, references [4, 12, 7] deal with variational
formulations for solving electromagnetic wave radiation and scattering problems. Al-
though the formulations detailed in [4, 12, 7] result in symmetric couplings between
finite and boundary elements, they still suffer the notorious internal resonances. The
purpose of this chapter is to present a variational formulation, which couples finite
and boundary elements through non-conformal meshes. The formulation results in
matrix equations that are symmetric, coercive, and free of internal resonances.

Our plan for this chapter is as follows. Section 2 details the proposed variational
formulation for non-conformal couplings between finite and boundary elements. In
section 3, we show that, through a box-shaped computational domain, the proposed
formulation is free of internal resonances and it satisfies the C.B.S inequality [1].
Moreover, in section 3 we validate the accuracy of the proposed formulation by a
complex scattering problem. A brief conclusion is provided in section 4.

2 Formulation

2.1 Boundary Value Problems

This chapter considers the solution of an electromagnetic scattering problem in R3.
A finite computational domain, Ω ⊂ R3, encloses all the scatterers inside. The

∗This project is supported by AFOSR MURI Grant #FA9550-04-1-0359
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exterior region, Ωc = R3/Ω, is then homogeneous and assumed to be free space.
Let E denotes the scattered electric field in the exterior region Ωc and the total
electric field inside Ω. It is then the solution of the transmission problem [4]:

∇×∇× E− k2E = 0 in Ωc

∇× 1

µr
∇×E− k2εrE = 0 in Ω

[γtE]Γ = γtE
inc, [

1

µr
γNE]Γ = γNEinc on Γ (1)

lim
|x|→∞

∇×E× x− ik|x|E = 0

In Eq. (1), k is the wavenumber in free space, the two surface trace operators are
γtE = n×E×n for the tangential components of E on Γ and γNE = ∇×E×n for
the ”magnetic trace” on Γ . The surface unit normal n points from Ω towards the
exterior region Ωc. Finally, [γφ]Γ = γφ|Ω − γφ|Ωc denotes the jump of a function φ
across Γ .

The current formulation starts first by introducing two ”cement”variables [6], j−

and j+, on the boundary Γ . These two cement variables are related to the electric
currents on Γ in Ω and Ωc, respectively. Subsequently, the original transmission
problem Eq. (1) can be stated alternatively as:

in Ω

∇× 1

µr
∇×E− k2εrE = 0 (2)

1

µr
γNE = j−

in Ωc

∇×∇×E− k2E = 0

lim
|x|→∞

∇×E× x− ik|x|E = 0 (3)

−γNE = j+

Transmission Conditions on Γ

e− − e+ = γtE
inc

j− + j+ = γNEinc (4)

However, direct numerical implementation based on the transmission conditions (4)
is not desirable since they are closely related to the Dirichlet-to-Neumann mappings,
which usually subject the sub-domains to the ”internal resonances” during the solu-
tion process. Taking our cue from the domain decomposition literature, we simply
replace (4) by the Robin transmission conditions [6]. Namely,

Robin Transmission Conditions on Γ

−ike− + j− = −ike+ − j+ − finc (5)

−ike+ + j+ = −ike− − j− + ginc

where finc = ikγtE
inc + γNEinc and ginc = ikγtE

inc − γNEinc.
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2.2 Galerkin Variational Formulation

From the physical consideration that both the electric and magnetic energies of
the system need be finite, it is transparent to see that the vector field E in Eq.
(1) resides in the product space H0 (curl;Ω)×Hloc (curl;Ωc) [4]. To establish the
proper spaces of the tangential traces e−, e+ as well as the cement variables j− and
j+, we borrow heavily from [4] the following results:

Theorem 1. The trace mappings γ+
t : Hloc (curl;Ωc) �→ H

−1/2 `
curlΓ , Γ

+´, γ−
t :

H0 (curl;Ω) �→ H
−1/2

`
curlΓ , Γ

−´ are continuous and surjective. Moreover, the

traces γ±
N furnish continuous mappings: γ+

N : Hloc

`
curl

2;Ωc´ �→ H
−1/2 `divΓ , Γ+´

and γ−
N : H

`
curl

2;Ω
´
�→ H

−1/2 `divΓ , Γ−´.
Now we are ready to state the variational formulation which couples finite and
boundary elements on non-conformal meshes. By non-conformity, we refer to the
fact that the triangulation on Γ− needs not be the same as the triangulation on
Γ+. This non-conformity feature provides two major benefits: (a) different orders
of polynomial approximations can be employed separately for finite elements and
boundary elements. Subsequently, the triangulations on Γ− and Γ+ would require
drastically different spatial resolutions; and, (b) in the process of goal-oriented adap-
tive mesh refinements [11], the triangulation on Γ− often become un-necessary fine
in certain regions for the boundary elements. The non-conformal coupling approach
allows for a more uniform triangulation on Γ+ and hence can greatly reduce the
computational burden.

In Ω, the variational formulation for the finite elements can be stated as

Given a j− ∈ H−1/2
`
divΓ , Γ

−´, find E ∈ H0 (curl;Ω) such that

a (v,E)−
˙
γtv, j

−¸
Γ− = 0 (6)

∀v ∈ H0 (curl;Ω)

with a (v,E) =

Z
Ω

»
∇× v · 1

µr
∇×E− k2v · εrE

–
dV and 〈β, λ〉Γ± =

Z
Γ±

(β · λ) dS.

As for the exterior region Ωc, we start with the Stratton-Chu representation
formula [4]

E (x) = ΨM
`
e+
´
(x)− ΨA

`
j+
´
(x)− 1

k2
∇ΨV

`
∇Γ · j+

´
(x) x /∈ Γ (7)

Here ΨM (·) , ΨA (·), and ΨV (·) are potentials. ΨV is the scalar single layer potential
given by

ΨV (φ) (x) =

Z
Γ+

G (x,y)φ (y) dS (y) x /∈ Γ (8)

with the Helmholtz kernel G (x,y) =
exp (ik|x− y|)

4π|x − y| ,x �= y. ΨA is the vector version

of the single layer potential; and, ΨM is the vector double layer potential given by
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ΨM (v) (x) =

Z
Γ+

(∇yG (x,y)× v) dS (y) (9)

The variational formulation for the surface traces, e+ and j+, can be obtained
using the exterior Calderon projector [4]. We write:

Find e+ ∈ H−1/2
`
curlΓ , Γ

+
´

and j+ ∈ H−1/2
`
divΓ , Γ

+
´

such that

˙
λ+, e+

¸
Γ+ =

fi
λ+,

„
1

2
I + C

«`
e+
´fl

Γ+

−
˙
λ+,S

`
j+
´¸
Γ+

˙
β+, j+

¸
Γ+ =

˙
β+,N

`
e+´¸

Γ+ +

fi
β+,

„
1

2
I − B

«`
j+
´fl

Γ+

(10)

∀β+ ∈ H−1/2 `curlΓ , Γ
+´ and λ+ ∈ H−1/2 `divΓ , Γ+´.

where the operators are:

S := γtΨS : H−1/2 (divΓ , Γ ) �→ H−1/2 (curlΓ , Γ )

B :=
1

2

`
γ−
N + γ+

N

´
ΨA : H−1/2 (divΓ , Γ ) �→ H−1/2 (divΓ , Γ )

C :=
1

2

`
γ−
t + γ+

t

´
ΨM : H−1/2 (curlΓ , Γ ) �→ H−1/2 (curlΓ , Γ ) (11)

N := γNΨM : H−1/2 (curlΓ , Γ ) �→ H−1/2 (divΓ , Γ )

where ΨS (j) = ΨA (j) +
1

k2
∇ΨV (∇Γ · j).

Moreover, the corresponding variational statement for the transmission condi-
tions described in Eq. (5) is

Find
`
e−, e+

´
∈ H−1/2

`
curlΓ , Γ

−´×H−1/2
`
curlΓ , Γ

+
´

and`
j−, j+

´
∈ H−1/2

`
divΓ , Γ

−´×H−1/2
`
divΓ , Γ

+
´

such that

˙
λ−, e−¸

Γ− +
i

k

˙
λ−, j−

¸
Γ− =

˙
λ−, e+

¸
Γ− −

i

k

˙
λ−, j+

¸
Γ− −

i

k

D
λ−, finc

E
Γ−

−ik
˙
β−, e−¸

Γ− +
˙
β−, j−

¸
Γ− = −ik

˙
β−, e+

¸
Γ− −

˙
β−, j+

¸
Γ− −

D
β−, finc

E
Γ−

(12)˙
λ+, e+¸

Γ+ +
i

k

˙
λ+, j+

¸
Γ+ =

˙
λ+, e−¸

Γ+ −
i

k

˙
λ+, j−

¸
Γ+ +

i

k

D
λ+,ginc

E
Γ+

−ik
˙
β+, e+¸

Γ+ +
˙
β+, j+

¸
Γ+ = −ik

˙
β+, e−¸

Γ+ −
˙
β+, j−

¸
Γ+ +

D
β+,ginc

E
Γ+

(13)

∀
`
β−, β+

´
∈ H−1/2

`
curlΓ , Γ

−´×H−1/2
`
curlΓ , Γ

+
´

and`
λ−, λ+

´
∈ H−1/2

`
divΓ , Γ

−´×H−1/2
`
divΓ , Γ

+
´
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Substituting Eq. (10) into Eq. (13) results in

fi
λ+,

„
1

2
I + C

«`
e+´fl

Γ+

−
˙
λ+,S

`
j+
´¸
Γ+ +

i

k

˙
λ+, j+

¸
Γ+

=
˙
λ+, e−¸

Γ+ −
i

k

˙
λ+, j−

¸
Γ+ +

i

k

D
λ+,ginc

E
Γ+

−ik
˙
β+, e+

¸
Γ+ +

˙
β+,N

`
e+
´¸
Γ+ +

fi
β+,

„
1

2
I − B

«`
j+
´fl

Γ+

(14)

= −ik
˙
β+, e−¸

Γ+ −
˙
β+, j−

¸
Γ+ +

D
β+,ginc

E
Γ+

Finally, we state the overall variational formulation for the proposed non-conformal
coupling between finite and boundary elements:

Find E ∈ H0 (curl;Ω), j− ∈ H−1/2
`
divΓ , Γ

−´, e+ ∈ H−1/2
`
curlΓ , Γ

+
´

, and

j+ ∈ H−1/2 `divΓ , Γ+´ such that

a (v,E)− 1

2

˙
γtv, j

−¸
Γ− −

ik

2

˙
γtv, e

−¸
Γ− +

ik

2

˙
γtv, e

+
¸
Γ− +

1

2

˙
γtv, j

+
¸
Γ−

= −1

2

D
γtv, f

inc
E
Γ−

− 1

2

˙
λ−, e−¸

Γ− −
i

2k

˙
λ−, j−

¸
Γ− +

1

2

˙
λ+, e+

¸
Γ− −

i

2k

˙
λ−, j+

¸
Γ−

=
i

2k

D
λ−, finc

E
Γ−

− ik

2

˙
β+, e+¸

Γ+ +
1

2

˙
β+,N

`
e+´¸

Γ+ +
1

2

fi
β+,

„
1

2
I − B

«`
j+
´fl

Γ+

+
ik

2

˙
β+, e−¸

Γ+ +
1

2

˙
β+, j−

¸
Γ+ =

1

2

D
β+,ginc

E
Γ+

(15)

− 1

2

fi
λ+,

„
1

2
I + C

«`
e+´fl

Γ+

+
1

2

˙
λ+,S

`
j+
´¸
Γ+ −

i

2k

˙
λ+, j+

¸
Γ+

− i

2k

˙
λ+, j−

¸
Γ+ +

1

2

˙
λ+, e−¸

Γ+ = − i

2k

D
λ+,ginc

E
Γ+

∀v ∈ H0 (curl;Ω), λ− ∈ H−1/2 `divΓ , Γ−´, β+ ∈ H−1/2 `curlΓ , Γ
+´, and

λ+ ∈ H−1/2
`
divΓ , Γ

+
´
.

2.3 Matrix Equation for the Nonconformal Coupling Between
Finite and Boundary Elements

In the finite dimensional discretization, we have employed the following approxima-
tions in tetrahedra and on triangles for the variables:
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E : second order Nédélec elements of the 1st kind [9] in Ωh

e− : γtE on Γ−
h

j− : second order Raviart-Thomas elements [10] on Γ−
h

e+ : edge elements on Γ+
h

j+ : first order Raviart-Thomas elements [10] on Γ+
h

Subsequently, the final matrix equation corresponds to the variational formulation
(15) is of the form

2
666666666666666664

AII AIΓ 0 0 0

AΓI AΓΓ − ik

2
TΓ−Γ−

1

2
DΓ−Γ−

ik

2
TΓ−Γ−

1

2
DΓ−Γ+

0 −1

2
Dt
Γ−Γ−

i

2k
TΓ−Γ−

1

2
Dt
Γ−Γ+ − i

2k
TΓ−Γ+

0
ik

2
T tΓ−Γ+

1

2
Dt
Γ−Γ+

1

2
Qe − ik

2
TΓ+Γ+

1

2
P

0
1

2
Dt
Γ−Γ+ − i

2k
T tΓ−Γ+

1

2
U
`
≡ P t

´ 1

2
Qj − i

2k
TΓ+Γ+

3
777777777777777775

2
6666666666664

Eint

e−

j−

e+

j+

3
7777777777775

=
ˆ
0 fince fincj gince gincj

˜t
(16)

Note that in Eq. (16), we have partitioned the unknown coefficients of E into Eint
and e− for the interior and surface unknowns, respectively. The submatrices and
their corresponding bilinear forms are summarized below.

[
AII AIΓ
AΓI AΓΓ

] : a (v,E) TΓ−Γ− :
˙
γtv, e

−¸
Γ− TΓ+Γ+ :

˙
β+, e+

¸
Γ+

TΓ−Γ+ :
˙
γtv, e

+¸
Γ− DΓ−Γ− :

˙
γtv, j

−¸
Γ− DΓ−Γ+ :

˙
γtv, j

+¸
Γ−

Qe :
˙
β+,N

`
e+´¸

Γ+ Qj :
˙
λ+,S

`
j+
´¸
Γ+ P :

fi
β+,

„
1

2
I − B

«`
j+
´fl

Γ+

U :

fi
λ+,

„
1

2
I + C

«`
e+´fl

Γ+

3 Numerical Results

In Figure 1, we show the condition numbers of the final matrix equations resulting
from the symmetric couplings based on the Costabel approach [12, 4] and the new
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proposed non-conformal coupling for a box-shaped computational domain. Note that
Figure 1(a) and (b) clear indicate that the previous symmetric formulations suffer
the notorious internal resonances, whereas the new proposed approach does not.
Moreover, in Figure 1(c), we plot the eigenvalues distribution of the same matrix
(from the proposed method) of the off-diagonal blocks after applying the block
diagonal preconditioner [1]. All the eigenvalues are within the unit circle, and clearly
observe the C.B.S. inequality. In Figure 2, the bistatic radar cross section (RCS)
computed using the proposed method for a metallic generic battle ship are compared
with those obtained by a fast boundary element code, based on electric field integral
equation (EFIE). The agreement is excellent between the two results and hence
validate the accuracy of the proposed approach.

Fig. 1. Condition numbers and eigenvalue distributions of the coupled finite ele-
ments and boundary elements formulations for a box domain. (a) The symmetric
formulation based on Costabel approach [12, 4]; (b) The currently proposed ap-
proach; and, (c) Eigenvalues distribution of the off-diagonal blocks after precondi-
tioned. Note that all the eigenvalues are within the unit circle and thus satisfied the
C.B.S inequality [1].

4 Conclusions

This chapter describes a variational formulation for non-conformal couplings be-
tween finite and boundary elements for electromagnetic scattering problems in R3.
Numerical examples demonstrate that the proposed DD-FE-BE formulation does
not suffer the notorious internal resonances and results in matrix equations that
satisfy the C.B.S. inequality after applying the block diagonal preconditioner.
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Space-time parallel methods had a second youth with the introduction of the parareal
algorithm in 2001. While the convergence properties of this algorithm are not yet
fully understood, there are several other space-time parallel algorithms which are
actively researched, notably algorithms of Schwarz waveform relaxation type and
space-time multigrid methods.

This minisymposium includes a historical introduction to space-time parallel
methods, links them to the parareal algorithm, and presents new results for parareal
and optimized Schwarz waveform relaxation methods.
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Summary. We present and study an optimized Schwarz Waveform Relaxation algo-
rithm for convection-diffusion problems with discontinuous coefficients. Such analysis
is a first step towards the coupling of heterogeneous climatic models. The SWR al-
gorithms are global in time, and thus allow for the use of non conforming space-time
discretizations. They are therefore well adapted to coupling models with very differ-
ent spatial and time scales, as in ocean-atmosphere coupling. As the cost per iteration
can be very high, we introduce new transmission conditions in the algorithm which
optimize the convergence speed. In order to get higher order schemes in time, we
use in each subdomain a discontinuous Galerkin method for the time-discretization.
We present numerical results to illustrate this approach, and we analyse numerically
the time-discretization error.

1 Introduction

We present an optimized Schwarz Waveform Relaxation algorithm for convection-
diffusion problems with discontinuous coefficients. Such methods have proven to
provide an efficient approach in the case of the wave equation with discontinuous
wave speed [3], and convection-difusion problems in one [1] and two dimensions
[5] with constant coefficients. Our final objective is to propose efficient algorithms
for coupling heterogeneous models (e.g. ocean-atmosphere) in the context of climate
modelling. The SWR algorithms are global in time, and therefore are well adapted to
coupling model; they lead, at convergence, to a model with the physical transmission
conditions, they reduce the exchange of information between codes, and they permit
the use of non conforming discretizations in space-time. This last point is crucial in
climate modelling, where very different scales in time and space are present.

As a first step, we consider the domain decomposition problem for a convection-
diffusion equation with discontinuous coefficients. After introducing our model prob-
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lem in Section 2, we present in Section 3 a classical strategy for coupling ocean and
atmosphere models, which consists in realizing one additive Schwarz iteration with
physical transmission conditions, in each time window [6]. In order to get a more
efficient method which improves the converged solution, we introduce in Section 4
a Schwarz Waveform Relaxation method with optimized transmission conditions of
order 1. This method allows for the use of non conforming space-time discretizations.
As our objective is to get higher order schemes in time, we introduce a discontinuous
Galerkin method [4]. The formulation is given in Section 5. As the grids in time are
different in each subdomain, the projection between arbitrary grids is performed by
an efficient algorithm introduced in [3]. Numerical results illustrate the validity of
our approach in Section 6.

2 Model problem

We consider the one dimensional convection diffusion equation

Lu = f, in Ω × (0, T ),
u(x, 0) = u0(x), ∀x ∈ Ω,
u(x0, t) = u(x1, t) = 0, t ∈ (0, T ),

where Ω =]x0, x1[ is a bounded open subset of R (containing zero), L is the convec-
tion diffusion operator

Lu :=
∂u

∂t
+

∂

∂x
(a(x)u)− ∂

∂x
(ν(x)

∂u

∂x
),

and the velocity a and the viscosity ν are supposed to be constant in the two nonover-
lapping subregions Ω1 =]x0, 0[ and Ω2 =]0, x1[ of Ω, but can be discontinuous at
zero:

a(x) =


a1, x ∈ Ω1

a2, x ∈ Ω2
, ν(x) =


ν1, x ∈ Ω1

ν2, x ∈ Ω2
,

with νi > 0, i = 1, 2. Without loss of generality, we can assume that a is non-
negative. This problem is equivalent to the following subproblems:

8><
>:
L1u1 :=

∂u1

∂t
+ a1

∂u1

∂x
− ν1

∂2u1

∂x2
= f, in Ω1 × (0, T ),

u1(x, 0) = u0(x), ∀x ∈ Ω1,
u1(x0, t) = 0, t ∈ (0, T ),

8><
>:
L2u2 :=

∂u2

∂t
+ a2

∂u2

∂x
− ν2

∂2u2

∂x2
= f, in Ω2 × (0, T ),

u2(x, 0) = u0(x), ∀x ∈ Ω2,
u2(t, x1) = 0, t ∈ (0, T ),

with the physical transmission conditions at x = 0:
(

u1(0, t) = u2(0, t), t ∈ (0, T ),

(a1 − ν1
∂

∂x
)u1(0, t) = (a2 − ν2

∂

∂x
)u2(0, t), t ∈ (0, T ).

(1)

To solve this problem numerically, it is natural to use an algorithm where the trans-
mission conditions are the physical conditions (in our case, conditions (1)), and it is
especially the case when coupling heterogeneous climate component models.
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3 Algorithm for ocean-atmosphere coupling

A commonly used strategy for solving ocean-atmosphere coupling consists in de-
composing the time interval (0, T ) into windows, [0, T ] = ∪Nn=0[Tn, Tn+1], and to use
one additive Schwarz iteration with the physical transmission conditions, in each
time window [6]. Let ui,n be a discrete approximation of ui in Ωi in the window
[Tn−1, Tn]. Then, ui,n+1, i = 1, 2, is the solution of

8>><
>>:

L1u1,n+1 = f, in Ω1 × (Tn, Tn+1),
u1,n+1(x, Tn) = u1,n(x, Tn), ∀x ∈ Ω1,
u1,n+1(x0, t) = 0, t ∈ (Tn, Tn+1),
u1,n+1(0, t) = u2,n(0, Tn), t ∈ (Tn, Tn+1),

(2)

8>>><
>>>:

L2u2,n+1 = f, in Ω2 × (Tn, Tn+1),
u2,n+1(x, Tn) = u2,n(x, Tn), ∀x ∈ Ω2,
u2,n+1(t, x1) = 0, t ∈ (Tn, Tn+1),

(a2 − ν2
∂

∂x
)u2,n+1(0, t) = (a1 − ν1

∂

∂x
)u1,n(0, Tn), t ∈ (Tn, Tn+1),

(3)

Remark 1. It is important to notice that in the previous algorithm the transmission
conditions are constant in time, on each time window (Ti, Ti+1).

In ocean-atmosphere coupling, the use of very few iteration (one iteration here) in
each time window is motivated by the fact that the computation time per iteration
is very high. In order to improve the numerical solution, with very few iteration
per time window, we propose to use in each time window an Optimized Schwarz
Waveform Relaxation with transmission conditions based on a differential in time.

4 Optimized Schwarz Waveform Relaxation

The general Schwarz Waveform Relaxation, in one time window, for example in the
whole window (0, T ) is written as follows:

8>>><
>>>:

L1u
k+1
1 = f, in Ω1 × (0, T ),

uk+1
1 (x, 0) = u0(x), ∀x ∈ Ω1,

uk+1
1 (x0, t) = 0, t ∈ (0, T ),

(ν1
∂

∂x
− a1 + Λ1)u

k+1
1 (0, t) = (ν2

∂

∂x
− a2 + Λ1)u

k
2(0, t), t ∈ (0, T ),

8>>><
>>>:

L2u
k+1
2 = f, in Ω2 × (0, T ),

uk+1
2 (x, 0) = u0(x), ∀x ∈ Ω2,

uk+1
2 (t, x1) = 0, t ∈ (0, T ),

(ν2
∂

∂x
− a2 + Λ2)u

k+1
2 (0, t) = (ν1

∂

∂x
− a1 + Λ2)u

k
1(0, t), t ∈ (0, T ),

where Λ1 and Λ2 are linear operators, involving derivatives in time.
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4.1 Optimized transmission conditions

The optimal transmission conditions can be derived from a Fourier analysis in the
case Ω = R. Using the error equations and a Fourier transform with parameter ω,

ρ(ω) :=

„
λ2(ω)− r−1 (ω)

λ1(ω)− r−1 (ω)

«„
λ1(ω)− r+2 (ω)

λ2(ω)− r+2 (ω)

«

with r−1 (ω) =
a1 −

p
a2
1 + 4ν1iω

2
, r+2 (ω) =

a2 +
p
a2
2 + 4ν2iω

2
and λi, i = 1, 2 the

symbol of Λi. The optimal choice, which gives a convergence in 2 iterations, is
λ2 = r−1 (ω) and λ1 = r+2 (ω). The calculations are straightforward extensions to
those in [1]. As the optimal corresponding transfer operators Λ1, Λ2 are nonlocal
in time and thus more costly than local transfers, we propose to use the following
transfer operators

Λ1 :=
a2 + p2

2
+
q2
2

∂

∂t
, Λ2 :=

a1 − p1

2
− q1

2

∂

∂t

where the parameters p1, p2, q1, q2 minimize the convergence rate.The condition on
the parameters p1, p2, q1, q2 for the local subdomain problems to be well-posed are
qj ≥ 0 (due to energy estimates as in [1]). The question of convergence of the
algorithm remains open, even though there are numerical evidences for a positive
answer (see [2] for theoretical results using Robin transmission conditions).

4.2 Optimized Schwarz Waveform Relaxation with time windows

We now define the algorithm with many time windows: Let [0, T ] = ∪Nn=0[Tn, Tn+1],
and let p ≥ 1 be an integer, that we will take small (typically p ≤ 3) in order to
make very few iterations in each time window. Let uki,n be a discrete approximation

of ui in Ωi in the window (Tn−1, Tn) at step k of the SWR method. Then, the next
time window’s solution ui,n+1 in Ωi is obtained after p SWR iterations:
for k = 0, ..., p− 1:

8>>><
>>>:

L1u
k+1
1,n = f, in Ω1 × (Tn, Tn+1),

uk+1
1,n (x, Tn) = u1,n(x, Tn), ∀x ∈ Ω1,

uk+1
1,n (x0, t) = 0, t ∈ (Tn, Tn+1),

(ν1
∂

∂x
− a1 + Λ1)u

k+1
1,n (0, t) = (ν2

∂

∂x
− a2 + Λ1)u

k
2,n(0, t), t ∈ (Tn, Tn+1),

(4)8>>><
>>>:

L2u
k+1
2,n = f, in Ω2 × (Tn, Tn+1),

uk+1
2,n (x, Tn) = u2,n(x, Tn), ∀x ∈ Ω2,

uk+1
2,n (t, x1) = 0, t ∈ (Tn, Tn+1),

(ν2
∂

∂x
− a2 + Λ2)u

k+1
2,n (0, t) = (ν1

∂

∂x
− a1 + Λ2)u

k
1,n(0, t), t ∈ (Tn, Tn+1),

(5)
and u1,n+1 := up1,n, u2,n+1 := up2,n.
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5 Time discretization with a discontinuous Galerkin
Method

Let us introduce the discretization of the subproblems in a time window I =
(Tn, Tn+1). We consider, for example, the subproblem in Ω1 at step k of the SWR
procedure. It can be written in the form

8>>><
>>>:

L1u = f in Ω1 × I,
u(x0, ·) = 0 in I,

(ν1
∂u

∂x
+ βu+ γ

∂u

∂t
)(0, ·) = g in I,

u(·, 0) = u0, in Ω1,

with β = −a1 +
a2 + p2

2
, γ =

q2
2

, and g(t) = (ν2
∂

∂x
− a2 + Λ1)u

k
2,n(0, t).

This problem is equivalent to the weak formulation: Find u(t) ∈ V = H1(Ω1) such
that u(0) = u0 and

((u̇(t), v)) + ã(u(t), v) = �t(v), ∀v ∈ V

with (·, ·) the scalar product in L2(Ω1), and for u ∈ V :

8><
>:

((u, v)) := (u, v) + γu(0)v(0)

ã(u, v) := b(u, v) + βu(0)v(0), with b(u, v) = ν1(
∂u

∂x
,
∂v

∂x
) + a1(

∂u

∂x
, v)

�t(v) := (f(t), v) + g(t)v(0)

The discontinuous Galerkin Method [4] is based on the use of a discontinuous finite

element formulation in time. Let I =

KY
k=1

Ik with Ik = [tk−1, tk], and let vk+ =

lim
s→0+

v(tk + s) and vk− = lim
s→0−

v(tk + s). Let Vh be a finite-dimensional subspace of

V , and

Pq(Ik) = {v : Ik −→ Vh : v(t) =

qX
i=0

vit
i with vi ∈ Vh}

The discontinuous Galerkin Method can now be formulated as follows:8>>>>>><
>>>>>>:

U0
− = u0

For k = 1, · · · ,K, given Uk−1
− , find U ≡ U|Ik ∈ Pq(Ik) such thatZ

Ik

[((U̇ , v)) + ã(U, v)]dt+ ((Uk−1
+ , vk−1

+ )) =Z
Ik

�t(v)dt+ ((Uk−1
− , vk−1

+ )), ∀v ∈ Pq(Ik)

(6)

For q = 0, using the notation Uk ≡ Uk− ≡ Uk−1
+ and ∆tk = tk − tk−1, the method

reduces to

8>><
>>:

U0 = u0

For k = 1, · · · ,K, find Uk ∈ Vh such that

((
Uk − Uk−1

∆tk
, v)) + ã(Uk, v) =

1

∆tk

Z
Ik

�t(v), ∀v ∈ Vh
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This method is a simple modification of the backward Euler scheme in that case.
For q = 1, (6) is equivalent to the following system with, for t ∈ Ik, U(t) = U0 +
t− tk−1

∆tk
U1, Ui ∈ Vh,

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(U0, v) +∆tk b(U0, v) + (∆tk β + γ)U0(0)v(0) + (U1, v)+
1

2
∆tk b(U1, v)

+∆tk (
β

2
+ γ)U1(0)v(0) = (Uk−1

− , v) + γUk−1
− (0) v(0)

+

Z
Ik

(f(s), v)ds+ v(0)

Z
Ik

g(s)ds, ∀v ∈ Vh

1

2
∆tk b(U0, v) +

β

2
∆tk U0(0)v(0) +

1

2
(U1, v) +

1

3
∆tk b(U1, v)

+(
γ

2
+
β

3
∆tk)U1(0)v(0) =

1

∆tk

Z
Ik

(s− tk−1)(f(s), v)ds

+
1

ν1
v(0)

Z
Ik

(s− tk−1) g(s)ds, ∀v ∈ Vh

6 Numerical results

In this presentation, we take q = 0 in the discontinuous Galerkin method.

6.1 Relative L2 error versus the time step

In this part, we consider the case with one time window only, with different grids
in time in each subdomain, and we observe the relative L2 error between the SWR
converged solution and the continuous solution, versus the number of refinements
of the time grid. We choose a1 = a2 = 1, ν1 = ν2 = 1, and u(x, t) = sin(x)cos(t),
in [0, 2π] × [0, 2.5] as exact solution. The space domain [0, 2π] is decomposed in
two subdomains Ω̄1 = [0, 2] and Ω̄2 = [2, 2π]. The mesh size is h1 = 0.01 for Ω1

and h2 = (2π − 2)/200 for Ω2. In order to compare the L2 relative error on the
nonconforming time grids case to the error obtained on a uniform conforming time
grid, we consider four initial meshes in time (see figure 1):

• a uniform finner conforming mesh (mesh 1) with ∆t = 2.5/24,
• a nonconforming mesh (mesh 2) with ∆t = 2.5/24 in Ω1 and ∆t = 2.5/16 in Ω2,
• a nonconforming mesh (mesh 3) with ∆t = 2.5/16 in Ω1 and ∆t = 2.5/24 in Ω2,
• a uniform coarser conforming mesh (mesh 4) with ∆t = 2.5/16.

Figure 2 shows the relative L2 error versus the number of refinement for these four
meshes, and the time step ∆t versus the number of refinement, in logarithmic scale.
At each refinement, the time step is divided by two. The results of Figure 2 show
that the relative L2 error tends to zero at the same rate than the time step, and
this fits with the error estimates in [4]. On the other hand, we observe that the
two curves corresponding to the nonconforming meshes (mesh 2 and mesh 3) are
between the curves of the conforming meshes (mesh 1 and mesh 4).
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Fig. 1. Uniform conforming time grids (mesh 1 and mesh 4) and nonconforming
time grids (mesh 2 and mesh 3).
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Fig. 2. Relative L2 error versus the number of refinements for the initial meshes:
mesh 1 (diamond line), mesh 2 (solid line), mesh 3 (dashed line), and mesh 4 (star
line). The triangle line is the time step ∆t versus the number of refinements, in
logarithmic scale.

6.2 Comparison of the two algorithms

In this part, we consider the problem

(
Lu = 0 in ]0, 6[×[0, 3]

u(0, t) = u(6, t) = 0 , t ∈ [0, 3], u(x, 0) = e−3(1.2−x).2 , x ∈ [0, 6]

In order to compare algorithm (2)-(3) to the SWR algorithm (4)-(5), we decompose
the time interval into three windows: [0, 3] = [0, 1] ∪ [1, 2] ∪ [2, 3] and we compare
the computed solutions obtained from each method. We take a1 = 0.1, ν1 = 0.2,
a2 = ν2 = 1. The space domain [0, 6] is decomposed into two subdomains Ω̄1 = [0, 3]
and Ω̄2 = [3, 6]. The mesh size is h1 = 0.01 for Ω1 and h2 = 0.06 for Ω2. The
time step in each window is ∆t1 = 0.01 for Ω1 and ∆t2 = 0.02 for Ω2. In figure
3 on the right, we observe that the 3-windows computed solution with the SWR
algorithm (4)-(5) is close to the one-window solution. Moreover it more precise than
the 3-windows computed solution of figure 3 which is obtained with the algorithm
(2)-(3) (figure 3 on the left).
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Fig. 3. One time window solution (solid line) and 3-windows solutions (dashed line
for Ω1 and dashdot line for Ω2), with algorithm (2)-(3) on the left, at time t=T=3,
and with the SWR method on the right, at time t=T=3, and at SWR iteration 3.

7 Conclusions

We have introduced a Schwarz Waveform Relaxation Algorithm for the convection-
diffusion equation with discontinuous coefficients. The transmission conditions in-
volve normal derivatives and derivatives in time as well. These have been used in the
computations, together with a zero-order discontinuous Galerkin method and a pro-
jection between the time grids. We have shown numerically that the discretization
order is preserved. We now intend to extend the strategy to higher order Galerkin
methods, and to write projection steps that maintain, for the whole process, the
order of the scheme in each subdomain.
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Summary. The practical aspect of the parareal algorithm that consists of using
two solvers the coarse and fine over different time stepping to produce a rapid
convergent iterative method for multi processors computations. The coarse solver
solve the equation sequentially on the coarse time step while the fine solver use the
information from the coarse solution to solve, in parallel, over the fine time steps.
In this work we discuss the stability of the parareal-inverse problem algorithm for
solving the parabolic inverse problem given by

ut = uxx + p(t)u+ φ(x, t), 0 < x < 1, 0 < t ≤ T,
u(x, 0) = f(x), 0 ≤ x ≤ 1,
u(0, t) = g0(t), 0 < t ≤ T,
u(1, t) = g1(t), 0 < t ≤ T,

and subject to the over specification of a condition at a point x0 in the spatial domain
u(x0, t) = E(t). We derive a stability amplification factor for the parareal-inverse
algorithm and present a stability analysis in terms of the relation between the coarse
and fine time steps and the value of p(t). Some model problems are considered to
demonstrate necessary conditions for stability.

1 Introduction

The parallelization with respect to the time variable is not an entirely new approach;
the first research article in this area was an article by Nievergelt on the solution of
ordinary differential equations [10] and an article by Miranker and Liniger [9] on the
numerical integration of ordinary differential equations.

Recently after the development of the initial algorithms a new form of the algo-
rithms has been proposed which consists of discretizing the problem over an interval
of time using fine and coarse time steps to allow a combination of accuracy improve-
ment, through an iterative process, and parallelization over slices of coarse time
interval. The algorithm has been re derived and then named as Parareal Algorithm
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by Lion’s et al. [7], also further modified by Bal and Maday [3] to solve unsteady
state problem and evidently establishing a relation between the coarse and fine time
step in order to define the time gain in the parallelization procedure.

The stability and the convergence of the algorithm has been further studied
by Bal [2] mainly concluding that the algorithm replaces a coarse discretization
method of order m by a higher order dicsretization method. Staff and Ronquist [11]
also presented necessary conditions for the stability of the parareal algorithm. For
further detailed views of the method and further applications we refer to Baffico et
al. [1], Farhat and Chandersis [6], and Maday and Turinici [8].

In this article we will focus on the stability of the parareal algorithm for solving
the following inverse problem for determining a control function p(t) in a parabolic
equation. Find u = u(x, t) and p = p(t) which satisfy

ut = uxx + p(t)u+ φ(x, t), 0 < x < 1, 0 < t ≤ T,
u(x, 0) = f(x), 0 ≤ x ≤ 1,
u(0, t) = g0(t), 0 < t ≤ T,
u(1, t) = g1(t), 0 < t ≤ T,

(1)

subject to the over specification condition at the point x0 in the spatial domain
u(x0, t) = E(t). Here f , g0, g1, E and φ are known functions while the functions u
and p are unknown, with −1 < p(t) < 0 for t ∈ [0, T ]. The model problem given
by (1) is used to describe a heat transfer process with a source parameter present
and the over specification condition represents the temperature at a given point x0

in the spatial domain at time t. Thus the purpose of solving this inverse problem is
to identify the source control parameter that produces at any given time a desired
temperature at a given point x0 in the spatial domain.

2 The Parareal-Inverse Problem Algorithm

The main aspect of the parareal algorithms is to allow a parallelization in time over
slices of coarse time interval using coarse time solver in combination with accuracy
improvements through an iterative method (predictor-corrector form) using fine and
coarse time solvers over each coarse time interval ∆t (∆t = T/N).

In this article the coarse and fine time step solvers will be denoted byG∆t, and Fδt,

respectively, where δt =
∆t

s
, and s is the number of fine time steps over the coarse

interval [tn, tn+1] = [tn, tn + sδt], for n = 0, 1, . . . N − 1.
Through this work we will consider the parareal algorithm scheme in the form

presented by Bal [2] and also later considered by Staff and Ronquist [11], given by

un+1
k+1 = G∆t(u

n
k+1) + Fsδt(u

n
k )−G∆t(u

n
k ). (2)

The solution algorithm of the inverse problem (1) by an implicit type of methods,
the backward Euler’s method, possess an updating of the control function p(t) and
u(x, t), or in another words correction steps at each time level prior to proceeding
to the advanced time level (cf. e.g.[4], [5]). On the other hand the solution by the
forward Euler’s scheme does not require any correction for the control function p(t),
but in order to apply the parareal algorithm the updating of the value of p(t) for
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the fine propagator is required for the advanced fine solution step using the over
specification condition u(x0, t) = E(t).

Since the parareal algorithm posses a correction step over each coarse time inter-
val it was observed that, through the coarse solution propagator, for the correction
of the p(t) it is sufficient to perform one iteration only, internally, over the time step
[tn, tn+1] that is because of the further iterations and correction of the solution by
the parareal algorithm. The generic form of the parareal algorithm for the solution
of the inverse problem is given as follows.

Algorithm 2.1 Parareal Inverse Problem Algorithm

(a) Over the domain Ω × [tn, tn+1] and for k = 1, consider the coarse propagator
i.e.

un+1
1 − un1
∆t

= (uxx)
n+1
1 + p(tn)u

n+1 n = 1, . . . N − 1,

the solution un+1
1 denoted by G∆t(u

n
1 ).

p(tn+1) correction: Consider the correction of p(t) by the following relation

p(tn+1) =
E′(tn+1)− (uxx)1|(x0,tn+1) − φ(x0, tn+1)

E(tn+1)
.

(b) For k + 1 > 1 and over the domain Ω × [tn, tn+1].
a) Consider the coarse propagator i.e.

un+1
k+1 − unk+1

∆t
= (uxx)

n+1
k+1 + p(tn)u

n+1
k+1 n = 1, . . . N − 1,

p(tn+1) correction: Consider the correction of p(t) by the following relation

p(tn+1) =
E′(tn+1)− (uxx)k+1|(x0,tn+1) − f(x0, tn+1)

E(tn+1)
,

the solution un+1
k+1 is denoted by G∆t(u

n
k+1).

b) Consider the fine propagator solution over Ω× [tn, tn+l], l = 1, s−1. Solve
for

un+l
k − un+l−1

k

δt
= (uxx)

n+l−1
k + p(tn+l−1)u

n+l−1
k .

The solution un+s
k = un+1

k is denoted by Fsδt(u
n
k ), and

pn+l =
E′(tn+l)− uxx,k|(x0,tn+l) − φ(x0, tn+l)

E(tn+l)
, for l = 1, . . . s− 1,

where s =
∆t

δt
.

Then the solution un+1
k+1 is given by

un+1
k+1 = G∆t(u

n
k+1) + Fsδt(u

n
k )−G∆t(u

n
k ). (3)
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3 Stability of The Parareal-Inverse Algorithm

Let u(x, t) be the solution of the model problem

ut = uxx + p(t)u(t), (4)

subject to the following initial and boundary conditions

u(0, t) = 0, u(1, t) = 0 and u(x0, t) = u0, (5)

and with the specified condition u(x0, t) = E(t).
The spatial derivative operator is approximated by the second order central

difference approximation given by

(uxx)(xi,t) 	 h−2[u(xi+1, t)− 2u(xi, t) + u(xi−1, t)] +O(h2). (6)

For the stability analysis we will consider the Fourier transform of the discrete
problem, and in the Fourier domain the problem corresponding to (4) is given by

but = Q(ξ, t)bu(ξ, t), (7)

where Q(ξ, t) = q(ξ)+ bp(t), such that Q(u) = ̂Q(ξ)bu(ξ) and q(ξ) = −2h−2 sin2(ξ/2).
Then

Q(ξ) = q(ξ) + bp(t) = −2h−2 sin2(
ξ

2
) + bp(t). (8)

The forward and backward Euler’s schemes are considered to be the fine and coarse
solvers for the parareal-inverse algorithm, respectively. The amplification factor of
the backward Euler’s scheme in the Fourier domain is given by

ρ(ξ, tn)G∆t = (1−Q(ξ, tn)∆t)
−1 = (1 + (2h−2 sin2(

ξ

2
)− bp(tn))∆t)−1.

This scheme is unconditional stable for p(t) < 0 [12], and the corresponding ampli-
fication factor for the solution by the forward Euler’s scheme over the time interval
[tn, tn + sδt], is given by

ρ(ξ, tn)Fsδt =
sY
i=1

(1 +Q(ξ, tn+i−1)δt) =
sY
i=1

(1 + (−2h−2sin2(
ξ

2
) + bp(tn+i−1))δt),

and it is a conditional stable scheme according to stability condition for the forward
Euler’s scheme for any p(t) [12].

For the stability analysis we will consider the approach by Staff and Ronquist
[11] and we will present the stability studies for the following cases
case 1: ∆t = sδt (s > 1),
case 2: ∆t = δt (s = 1).

3.1 Case I ∆t = sδt (s > 1)

For this case of the stability analysis the coarse time step ∆t is divided into
s fine subintervals (s > 1) and the iterative solution of (7) by the parareal-inverse
algorithm 2.1 is given by
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bun+1
k+1 = (1−Q(ξ, tn)∆t)

−1bunk+1 +
sY
i=1

(1+Q(ξ, tn+i−1)δt)bunk − (1−Q(ξ, tn)∆t)−1bunk .
(9)

Following the stability analysis by [11] then the stability function, the amplification
factor for (9) is given by

ρ(ξ, tn) = 2(1−Q(ξ, tn)∆t)−1 −
sY
i=1

(1 +Q(ξ, tn)δt,

= (1−Q(ξ, tn)∆t)
−1

"
2− (1−Q(ξ, tn)∆t)

Y
i=1

(1 +Q(ξ, tn+i−1)δt)

#

= (1−Q(ξ, tn)∆t)
−1τ (ξ, tn)

(10)

For the second term,τ (ξ, tn), in (10) if we perform the multiplication we then con-
clude that

τ (ξ, tn) =

"
2− (1−Q(ξ, tn)∆t)

"
1 + δt

sX
i=1

Q(ξ, tn+i−1) +O(δt2)

##
.

Therefore

τ (ξ, tn) = 2− 1 +Q(ξ, tn)∆t− δt(1−Q(ξ, tn)∆t)

sX
i=1

Q(ξ, tn+i−1) +O(δt2),

τ (ξ, tn) 	 1 +Q(ξ, tn)∆t− δt

sX
i=1

(−2h−2 sin2(ξ/2) + p(tn+i−1))

≤ 1− 2rc sin2(ξ/2) +∆tp(tn) +

sX
i=1

`
2rf sin2(ξ/2) − δtp(tn+i−1)

´
,

where rc =
∆t

h2
, rf =

δt

h2
corresponds to the coarse and fine propagator respec-

tively, and
∆t

δt
= s. Hence for −1 < p(tn) < 0, we conclude that |ρ(ξ, tn)| <

|(1−Q(ξ, tn)∆t)
−1||τ (ξ, tn)| < 1. These conditions for the stability of the first case

are summarized in the following theorem.

Theorem 1. Consider the inverse model problem (1) solved by the parareal algo-
rithm 2.1,

un+1
k+1 = G∆t(u

n
k+1) + Fsδt(u

n
k )−G∆t(u

n
k ), (11)

where G∆t and Fsδt are the coarse and fine solvers respectively, and for s = ∆t/δt >
1. If rf = δt/h2 satisfy the fine solver stability condition and p(t) ∈ [−1, 0] then the
stability function ρ(ξ, tn), corresponding to (9) and defined by (10), satisfy

|ρ(ξ, tn)| < 1,

for all rc = ∆t/h2.

3.2 Case II, ∆t = δt (s = 1)

For the case when s = 1 the stability amplification factor is given by
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ρ(ξ, tn) = (1 +Q(ξ, tn)∆t)− 2(1−Q(ξ, tn)∆t)
−1.

Because of the page limit the main conclusion will be summarized by the following
theorem.

Theorem 2. Consider the inverse model problem (1) solved by the parareal algo-
rithm 2.1

un+1
k+1 = G∆t(u

n
k+1) + Fδt(u

n
k )−G∆t(u

n
k ), (12)

where G∆t and Fδt are the coarse and fine solvers, respectively. Then

|ρ(ξ, tn)| < 1,

for all
δt

h2
=

∆t

h2
<

1

4
and −1 < p(t) < 0, where ρ(ξ, tn) is the amplification factor

corresponding to (9) for s = 1 i.e. ∆t = δt.

4 Model problem

For the validation of the necessary stability conditions of the presented in previous
section we considered the model problems defined by

ut = uxx + p(t)u+ φ(x, t) over Ω = [0, 1]× (0, 1),

with exact solution u(x, t) = e−t
2

(cos πx+sinπx), and φ(x, t) defined in accordance
to different definitions of p(t). We considered p(t) = −1 − t2 < 0 and p(t) = 1 +
2t > 0 for t ∈ (0, 1) respectively. The initial and boundary conditions and E(t) =
u(x0, t) at x0 = 0.5 are defined by the exact solution.

The stability functions (i.e. the amplification factors) are plotted using polar
graphics for different values of rc and rf .

For the case when s > 1 the plots are presented in figure 1 for different values
of p(t), rc and rf values as well. Figure 1 show how the amplification factor given
by (10) exceeded the desired stability bound for rf > 0.5 and we also have the same
conclusion for −1 < p(t) < 0 and positive values of p(t).

For the case when s = 1 the plots of the amplification factor given by ρ(ξ, tn) in
(10) are presented in figure 2. We consider different values for r = ∆t/h2 and p(t),
the plots shows how the stability amplification factor comply with the necessary
conditions as stated in theorem 2.
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Summary. We present a non-overlapping Schwarz waveform relaxation method for
solving advection-reaction-diffusion problems in heterogeneous media. The domain
decomposition method is global in time, which permits the use of different time
steps in different subdomains. We determine optimal non-local, and optimized Robin
transmission conditions. We also present a space-time finite volume scheme especially
designed to handle such transmission conditions. We show the performance of the
method on an example inspired from nuclear waste disposal simulations.

1 Motivation and Problem Setting

What to do with nuclear waste is a question being addressed by several organiza-
tions worldwide. Long term storage within a deep geological formation is one of the
possible strategies, and Andra, the French Agency for Nuclear Waste Management,
is currently carrying out feasibility studies for building such a repository. Given the
time span involved (several hundreds of thousands, even millions, of years), physical
experiments are at best difficult, and one must resort to numerical simulations to
evaluate the safety of a proposed design.

Deep disposal of nuclear waste raises a number of challenges for numerical sim-
ulations: widely differing lengths and time-scales, highly variable coefficients and
stringent accuracy requirements. In the site under consideration by Andra, the repos-
itory would be located in a highly impermeable geological layer, whereas the layers
just above and below have very different physical properties. In the clay layer, the
radionuclides move essentially because of diffusion, whereas in the dogger layer that
is above the main phenomenon is advection (see [2] and the other publications in
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the same issue for a detailed discussion of numerical methods that can be applied
to a simplified, though relevant, situation).

It is then natural to use different time steps in the various layers, so as to match
the time step with the physics. To do this, we propose to adapt a global in time
domain decomposition method proposed by Gander and Halpern in [1] (see also [4],
and [6] for a different application) to the case of a model with discontinuous coeffi-
cients. The main advantage of the method is that it allows us to take different time
steps in the subdomains, while only synchronizing at the end of the time simulation.

Our model problem is the one dimensional advection–diffusion–reaction equation

Lu :=
∂u

∂t
− ∂

∂x

„
D
∂u

∂x
− au

«
+ bu = f, on R× [0, T ],

u(x, 0) = u0(x), x ∈ R,
(1)

where the reaction coefficient b is taken constant and the coefficients a and D are
assumed constant on each half line R+ and R−, but may be discontinuous at 0,

a =

(
a+ x ∈ R+,

a− x ∈ R−,
D =

(
D+ x ∈ R+,

D− x ∈ R−.
(2)

If u0 ∈ L2(R) and f ∈ L2(0, T ;L2(R)), then problem (1) has a unique weak solution

u ∈ L∞(0, T ;L2(R))
\

L2(]0, T [;H1(R)), see [5]. In the sequel, it will be convenient

to use the notation

L±v :=
∂v

∂t
− ∂

∂x

„
D± ∂v

∂x
− a±v

«
+ bv, x ∈ R±, t > 0,

B±v := ∓D± ∂v

∂x
± a±v, x = 0, t > 0.

(3)

One can show that (1), (2) is equivalent to the decomposed problem

L−u− = f, on R− × [0, T ], L+u+ = f, on R+ × [0, T ],

u−(x, 0) = u0(x), x ∈ R−, u+(x, 0) = u0(x), x ∈ R+,
(4)

together with the coupling conditions

u+(0, t) = u−(0, t), B+u+(0, t) = −B−u−(0, t), t ∈ [0, T ]. (5)

2 Domain Decomposition Algorithm

A simple algorithm based on relaxation of the coupling conditions (5) does not
converge in general, not even in the simpler cases, see for example [7]. Instead of
introducing a relaxation parameter, as in the classical Dirichlet-Neumann method,
we introduce transmission conditions which imply the coupling conditions in (5)
at convergence, and lead at the same time to an effective iterative method. We
introduce two operators Λ+ and Λ− acting on functions defined on [0, T ], such that

∀g ∈ L2(R), dΛ±g(ω) = λ±(ω)bg(ω), ∀ω ∈ R,

where bg is the Fourier transform of the function g, and λ± is the symbol of Λ±. For
k = 0, 1, 2, . . ., we consider the Schwarz waveform relaxation algorithm
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L+u+
k+1 = f, on R+ × [0, T ],

u+
k+1(x, 0) = u0(x), x ∈ R+,

(B+ + Λ+)u+
k+1(0, t) = (−B− + Λ+)u−

k (0, t), t ∈ [0, T ],

L−u−
k+1 = f, on R− × [0, T ],

u−
k+1(x, 0) = u0(x), x ∈ R−,

(B− + Λ−)u−
k+1(0, t) = (−B+ + Λ−)u+

k (0, t), t ∈ [0, T ].

(6)

If this algorithm converges, then, provided Λ+ −Λ− has a null kernel, the limit is a
solution of the coupled problem (4), (5), and hence of the original problem (1).

2.1 Optimal Transmission Conditions

In order to choose the transmission operators Λ+ and Λ−, we first determine the
convergence factor of the algorithm. Since the problem is linear, the error equations
coincide with the homogeneous equations, that is we may take f = 0 and u0 = 0 in
algorithm (6) above. In order to use Fourier transforms in time, we assume that all
functions are extended by 0 for t < 0. Denoting the errors in R± by e±k , we see that
the Fourier transforms of e+k and e−k are given by

be−k (x,ω) = βk(ω) er
+(a−,D−,ω)x, (x, ω) ∈ R− ×R,

be+k (x, ω) = αk(ω) er
−(a+,D+,ω)x, (x,ω) ∈ R+ ×R,

(7)

where αk and βk are determined by the transmission conditions, and r+(a,D, ω) and
r−(a,D, ω) are the roots with positive and negative real parts of the characteristic
equation

Dr2 − ar − (b+ iω) = 0. (8)

If we substitute (7) into the transmission conditions of algorithm (6), we obtain over
a double step of the algorithm

αk+1(ω) = ρ(ω)αk−1(ω), βk+1(ω) = ρ(ω)βk−1(ω) (9)

with the convergence factor ρ(ω) for each ω ∈ R given by

ρ(ω) = a−−D−r+(a−,D−,ω)+λ+(ω)

a+−D+r−(a+,D+,ω)+λ+(ω)
· a

+−D+r−(a+,D+,ω)−λ−(ω)

a−−D−r+(a−,D−,ω)−λ−(ω)
. (10)

Remark 1. The previous equation shows that there is a choice for λ± that leads to
convergence in two iterations. However, the corresponding operators are non-local in
time (because of the square-root in r±(a,D, ω). In the next Subsection, we therefore
approximate the optimal operators by local ones.

2.2 Local Transmission Conditions

We approximate the square roots in the roots of (8) by parameters p± which leads
to

λ+
app(ω) =

p− − a−

2
and λ−

app(ω) =
p+ + a+

2
, ∀ω ∈ R, (11)

and hence leads to Robin transmission conditions in algorithm (6).
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We call the left subdomain problem the system formed by the first two equations
of (4), together with the boundary condition

`
B− + λ−

app

´
u−(0, t) = g−, for t > 0,

and similarly for the right subdomain problem. As the coefficients are constants in
each subdomain, we can prove the following result exactly as in [1] (see Theorem 5.3,
and also [5] for the definition of the anisotropic Sobolev space H2,1(R− × (0, T ))).

Theorem 1 (Well Posedness of Subdomain Problems). Let u0 ∈ H1(R), f ∈
L2(0, T ;R), and g± ∈ H1/4(0, T ). Then, for any real numbers λ±

app, the subdomain
problems have unique solutions u± ∈ H2,1(R− × (0, T )).

Therefore the subdomain solutions are smooth enough to apply the transmission op-
erators and this proves by induction that algorithm (6) with the Robin transmission
conditions (11) is well defined (see also Theorem 5.4 in [1]).

Theorem 2 (Well Posedness of the Algorithm). Let f ∈ L2(0, T ;R), u0 ∈
H1(R), and the initial guesses u±

0 ∈ H2,1(R− × (0, T ))×H2,1(R+ × (0, T )). Then,
for any real numbers p±, algorithm (6) with Robin transmission conditions (11) is
well defined in H2,1(R− × (0, T ))×H2,1(R+ × (0, T )).

Convergence of the algorithm follows from energy estimates similar to the ones in [1],
where however the additional difficulty due to the discontinuities leads to additional
constraints on the parameters.

Theorem 3 (Convergence of the Algorithm). If the three following constraints

are satisfied: λ−
app + λ+

app > 0, λ−
app − λ+

app +
a+

2
≥ 0, λ−

app − λ+
app +

a−

2
≤ 0, then

algorithm (6), with Robin transmission conditions (11), is convergent.

Note that in the case of constant coefficients, and p+ = p− = p, the constraints
reduce to p > 0, which is consistent with results in [1].

How should the parameters p± be chosen? A simple approach is to use a low
frequency approximation, obtained by a Taylor expansion of the square roots in the
roots of (8), which leads to

p+ =
p

(a+)2 + 4D+b, p− =
p

(a−)2 + 4D−b. (12)

Such transmission conditions are however not very effective for high frequencies. A
better approach is to minimize the convergence factor, i.e. to solve the min-max
problem

min
p+,p−

„
max

0≤ω≤ωmax

|ρ(ω, p+, p−, a+, a−,D+,D−, b)|
«
, (13)

where ρ is given in (10). As we are working with a numerical scheme, the frequencies
cannot be arbitrarily high, but can be restricted to ωmax = π/∆t.

Theorem 4. If p+ = p− = p, then for a+, a− > 0 the solution of the min-max
problem (13) is for ∆t small given by

p ≈
„

23π(D+D−)(
√
D++

√
D−)2

“
a+−a−+

√
(a+)2+4D+b+

√
(a−)2+4D−b

”2
« 1

4

√
D++

√
D−

∆t−
1
4 , (14)
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which leads to the asymptotic bound on the convergence factor

|ρ| ≤ 1−
 

25(
√
D++

√
D−)2

“
a+−a−+

√
(a+)2+4D+b+

√
(a−)2+4D−b

”2

D+D−π

! 1
4

∆t
1
4 . (15)

Theorem 5. If D+ = D− = D, then for a+, a− > 0 the solution of the min-max
problem (13) is for ∆t small given by

p+ ≈ (29π3D3(a+ − a− +
p

(a+)2 + 4Db +
p

(a−)2 + 4Db)2)
1
8∆t−

3
8 ,

p− ≈ (2−5πD(a+ − a− +
p

(a+)2 + 4Db +
p

(a−)2 + 4Db)6)
1
8∆t−

1
8 ,

(16)

which leads to the asymptotic bound on the convergence factor

|ρ| ≤ 1−
„

213(a+−a−+
√

(a+)2+4Db+
√

(a−)2+4Db)2

Dπ

« 1
8

∆t
1
8 . (17)

The most general case where p+ �= p− and D± are arbitrary is asymptotically
the most interesting one, since the discontinuity in D changes the exponent in the
asymptotically optimal parameter and hence in the convergence factor. This case is
currently under investigation.

3 Finite Volume Discretization of the Algorithm

We discretize the subdomain problem by a space-time finite volume method, implicit
in time and upwind for the advective part. We denote the space and time steps
by ∆x, ∆t, the grid points by xj = j∆x, j = 0, . . . , Nx (with Nx∆x = L), and
tn = n∆t, n = 0, . . . , Nt, (with Nt∆t = T ). We also let uh = (unj )(j,n) be the
approximate solution, with unj ≈ u(xj , t

n). We consider uh as a constant function on

each rectangle Rnj = (xj−1/2, xj+1/2) × (tn−1/2, tn+1/2) (the fully shaded rectangle
in Figure 1). The discrete derivatives are defined by the difference quotient, and

x j−1 x j
x j+1

tn−1

tn

tn+1

Fig. 1. Finite volume grid. Function is constant on solid rectangle, x -derivative on
right-hashed rectangle, t-derivative on left-hashed rectangle.
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are constant on staggered grids, as indicated in Figure 1. Last, we let u
n+1/2
j =

unj + un+1
j

2
.

The discrete scheme for interior points in each subdomain is obtained by inte-
grating the partial differential equation in (6) over the rectangle Rnj and then using
standard finite volume approximations, which leads to

un+1
j −un

j

∆t
−D u

n+1/2
j+1 −2u

n+1/2
j +u

n+1/2
j−1

∆x2 + a
u

n+1/2
j −un+1/2

j−1

∆x
+ bu

n+1/2
j = f

n+1/2
j . (18)

The scheme can be shown to be unconditionally stable, and first order accurate [3].
The main interest of the finite volume method is that we can handle the trans-

mission conditions in (6) in a natural way. Now we just integrate over half the cell,
for example on the right subdomain, and use the transmission condition on the cell
boundary on the left, to obtain

∆x
2

un+1
0 −un

0

∆t
−D u

n+1/2
1 −un+1/2

0
∆x

+au
n+1/2
0 + ∆x

2
b un+1

0 +λapp u
n+1/2
0 = gn+1/2, (19)

and similarly over the left subdomain. In the same way, we obtain an expression for
the operator on the right hand side of the transmission condition. One can show that
if the entire domain is homogeneous, then the scheme with the discrete boundary
conditions coincides with the interior scheme applied at the interface node [3].

Since the space and time steps will usually be different on the two sides of the
interface, we introduce an L2 projection operator on the boundary (acting on step
functions defined in the time domain), as was done in [4].

4 Numerical Experiments

We present an example of the behavior of our algorithm, with discontinuous coeffi-
cients, and different time and space steps in the two subdomains. The parameters
for the two subdomains are shown in Table 1. Several snapshots of the solution, at
3 different times, and for two different iterations are shown in Figure 2.

D a p ∆x ∆t

Left subdomain R− 4 10−2 4 18.5 10−2 4 10−3

Right subdomain, R+ 12 10−2 2 6.4 2 10−2 2 10−3

Table 1. Physical and numerical parameters for an example.

Last, to illustrate Theorem 5, we show in Figure 3 the number of iterations
needed to reduce the residual by 106 when running the algorithm on the discretized
problem, for various values of the parameters p+ and p−. The parameters corre-
sponding to Theorem 5 and to the values found by minimizing the continuous con-
vergence factor (10) are both shown in the figure (we use the same values as in
Table 1 above, except that now D+ = D− = 410−2).
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Fig. 2. Evolution of the solution at two different iterations. Top row: iteration 2,
bottom row: iteration 4. Left column: t = 0.05, middle column t = 0.07, right column
t = 0.1.
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Fig. 3. Level curves for the number of iterations needed to reach convergence for
various values of the parameters p− and p+. The lower left star marks the param-
eters derived from Theorem 5, whereas the upper right cross shows the ”optimal”
parameters, as found by numerically minimizing the continuous convergence rate.
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Summary. The parareal algorithm is a method to solve time dependent problems
parallel in time: it approximates parts of the solution later in time simultaneously
to parts of the solution earlier in time. In this paper the relation of the parareal
algorithm to space-time multigrid and multiple shooting methods is first briefly
discussed. The focus of the paper is on some new convergence results that show
superlinear convergence of the algorithm when used on bounded time intervals, and
linear convergence for unbounded intervals.

1 Introduction

The parareal algorithm was first presented in [8] to solve evolution problems in
parallel. The name was chosen to indicate that the algorithm is well suited for parallel
real time computations of evolution problems whose solution cannot be obtained
in real time using one processor only. The method approximates successfully the
solution later in time before having fully accurate approximations from earlier times.
The algorithm has received a lot of attention over the past few years; for extensive
experiments and studies of convergence and stability issues we refer to [9, 3] and the
contributions in the 15th Domain Decomposition Conference Proceedings [7].

Parareal is not the first algorithm to propose the solution of evolution problems
in a time-parallel fashion. Already in 1964, Nievergelt suggested a parallel time
integration algorithm [11], which led to multiple shooting methods. The idea is to
decompose the time integration interval into subintervals, to solve an initial value
problem on each subinterval concurrently, and to force continuity of the solution
branches on successive intervals by means of a Newton procedure. Since then, many
variants of the method have been developed and used for the time-parallel integration
of evolution problems, see e.g. [1, 2]. In [4], we show that the parareal algorithm can
be interpreted as a particular multiple shooting method, where the Jacobian matrix
is approximated in a finite difference way on the coarse mesh in time.
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In 1967, Miranker and Liniger [10] proposed a family of predictor-corrector meth-
ods, in which the prediction and correction steps can be performed in parallel over
a number of time-steps. Their idea was to “widen the computational front”, i.e.,
to allow processors to compute solution values on several time-steps concurrently.
A similar motivation led to the block time integration methods by Shampine and
Watts [13]. More recently, [12] and [15] considered the time-parallel application of
iterative methods to the system of equations derived with implicit time-integration
schemes. Instead of iterating until convergence over each time step before moving
on to the next, they showed that it is possible to iterate over a number of time steps
at once. Thus a different processor can be assigned to each time step and they all
iterate simultaneously. The acceleration of such methods by means of a multigrid
technique led to the class of parabolic multigrid methods, as introduced in [5]. The
multigrid waveform relaxation and space-time multigrid methods also belong to that
class. In [14], a time-parallel variant was shown to achieve excellent speedups on a
computer with 512 processors; while run as sequential algorithm the method is com-
parable to the best classical time marching schemes. Experiments with time-parallel
methods on 214 processors are reported in [6]. In [4], it is shown that the parareal
algorithm can also be cast into the parabolic multigrid framework. In particular, the
parareal algorithm can be identified with a two level multigrid Full Approximation
Scheme, with a special Jacobi-type smoother, with strong semi-coarsening in time,
and selection and extension operators for restriction and interpolation.

2 A Review of the Parareal Algorithm

The parareal algorithm for the system of ordinary differential equations

u
′ = f (u), u(0) = u0, t ∈ [0, T ], (1)

is defined using two propagation operators. The operator G(t2, t1,u1) provides a
rough approximation to u(t2) of the solution of (1) with initial condition u(t1) =
u1, whereas the operator F (t2, t1,u1) provides a more accurate approximation of
u(t2). The algorithm starts with an initial approximation U 0

n, n = 0, 1, . . . , N at
time t0, t1, . . . , tN given for example by the sequential computation of U 0

n+1 =
G(tn+1, tn,U

0
n), with U 0

0 = u0, and then performs for k = 0, 1, 2, . . . the correc-
tion iteration

U
k+1
n+1 = G(tn+1, tn,U

k+1
n ) + F (tn+1, tn,U

k
n)−G(tn+1, tn,U

k
n). (2)

Note that, for k→∞, the method will upon convergence generate a series of values
Un that satisfy Un+1 = F (tn+1, tn,Un). That is, the approximation at time tn will
have achieved the accuracy of the F -propagator. Alternatively, one can restrict the
number of iterations of (2) to a finite value. In that case, (2) defines a new time-
integration scheme. The accuracy of the U k

n values is characterized by a theorem
from [8]. The theorem applies for a scalar linear problem of the form

u′ = −au, u(0) = u0, t ∈ [0, T ]. (3)

Theorem 1. Let ∆T = T/N , tn = n∆T for n = 0, 1, . . . , N . Let F (tn+1, tn, U
k
n)

be the exact solution at tn+1 of (3) with u(tn) = Ukn , and G(tn+1, tn, U
k
n) the corre-

sponding backward Euler approximation with time step ∆T . Then,
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max
1≤n≤N

|u(tn)− Ukn | ≤ Ck∆T
k+1, (4)

where the constant Ck is independent of ∆T .

Hence, for a fixed iteration step k, the algorithm behaves like an O(∆T k+1) method.
Note that the convergence of the algorithm for a fixed ∆T and increasing number
of iterations k is not covered by the above theorem, because the constant Ck grows
with k in the estimate of the proof in [8].

3 Convergence analysis for a scalar ODE

We show two new convergence result for fixed ∆T when k becomes large. The first
result is valid on bounded time intervals, T <∞, whereas the second one also holds
for unbounded time intervals. The results apply for an arbitrary explicit or implicit
one step method applied to (3) with a ∈ C, i.e., Un+1 = βUn, in the region of
absolute stability of the method, i.e., |β| ≤ 1.

In our analysis an important role will be played by a strictly upper triangular
Toeplitz matrix M of size N . Its elements are defined as follows,

Mij =


βj−i−1 if j > i,
0 otherwise.

(5)

A key property of M , whose proof we omit here, is that

|β| ≤ 1 =⇒ ||Mk||∞ ≤
„
N − 1
k

«
. (6)

Theorem 2 (Superlinear convergence on bounded intervals). Let T < ∞,
∆T = T/N , and tn = n∆T for n = 0, 1, . . . , N . Let F (tn+1, tn, U

k
n) be the exact

solution at tn+1 of (3) with u(tn) = Ukn , and let G(tn+1, tn, U
k
n) = βUkn be a one

step method in its region of absolute stability, i.e., |β| ≤ 1. Then,

max
1≤n≤N

|u(tn)− Ukn | ≤
|e−a∆T − β|k

k!

kY
j=1

(N − j) max
1≤n≤N

|u(tn)− U0
n|. (7)

If the local truncation error of G is bounded by C∆T p+1, then

max
1≤n≤N

|u(tn)− Ukn | ≤
(CT )k

k!
∆T pk max

1≤n≤N
|u(tn)− U0

n|. (8)

Proof. We denote by ekn the error at iteration step n of the parareal algorithm at
time tn, i.e., ekn := u(tn)−Ukn . With (2) and an induction argument on n, it is easy
to see that this error satisfies

ek+1
n = βek+1

n−1 + (e−a∆T − β)ekn−1 = (e−a∆T − β)
n−1X
j=1

βn−j−1ekj .

This relation can be written in matrix form by collecting ekn in the vector ek =
(ekN , e

k
N−1, . . . , e

k
1)T , which leads to
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e
k+1 = (e−a∆T − β)Mek, (9)

where the matrix M is given in (5). By induction on (9), we obtain

||ek||∞ ≤ |(e−a∆T − β)|k||Mk||∞||e0||∞, (10)

which together with (6) implies (7). The bound (8) follows from the bound on the
local truncation error together with a simple estimate of the product,

|e−a∆T − β|k
k!

kY
j=1

(N − j) ≤ Ck∆T (p+1)k

k!
Nk =

(CT )k

k!
∆T pk.

Remark 1. The product term in (7) shows that the parareal algorithm converges
for any ∆T on any bounded time interval in at most N − 1 steps. Furthermore
the algorithm converges superlinearly, as the division by k! in (7) shows. Finally, if
instead of an exact solution on the subintervals a fine grid approximation is used,
the proof remains valid with some minor modifications.

Theorem 3 (Linear convergence on long time intervals). Let ∆T be given,
and tn = n∆T for n = 0, 1, . . .. Let F (tn+1, tn, U

k
n) be the exact solution at tn+1

of (3) with u(tn) = Ukn , and let G(tn+1, tn, U
k
n) = βUkn be a one step method in its

region of absolute stability, with |β| < 1. Then,

sup
n>0
|u(tn)− Ukn | ≤

„
|e−a∆T − β|

1− |β|

«k
sup
n>0
|u(tn)− U0

n|. (11)

If the local truncation error of G is bounded by C∆T p+1, then

sup
n>0
|u(tn)− Ukn | ≤

„
C∆T p

�(a) +O(∆T )

«k
sup
n>0
|u(tn)− U0

n|. (12)

Proof. In the present case M , as defined in (5), is an infinite dimensional Toeplitz
operator. Its infinity norm is given by

||M ||∞ =

∞X
j=0

|β|j =
1

1− |β| .

Using (9), we obtain for the error vectors ek of infinite length the relation

||ek||∞ ≤ |(e−a∆T − β)|k||M ||k∞||e0||∞ =

„
|(e−a∆T − β)|

1− |β|

«k
||e0||∞, (13)

which proves the first result. For the second result, the bound on the local truncation
error, |e−a∆T − β| ≤ C∆T p+1, implies for p > 0 that β = 1− a∆T +O(∆T 2), and
hence 1− |β| = �(a)∆T +O(∆T 2), which implies (12).
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4 Convergence analysis for partial differential equations

We now use the results derived in Section 3 to investigate the performance of the
parareal algorithm for partial differential equations. We consider two model prob-
lems, a diffusion problem and an advection problem. For the diffusion case, we
consider the heat equation, without loss of generality in one dimension,

ut = uxx, in Ω = R, u(0, x) ∈ L2(Ω). (14)

Using a Fourier transform in space, this equation becomes a system of decoupled
ordinary differential equations for each Fourier mode ω,

ût = −ω2û, (15)

and hence the convergence results of Theorems 2 and 3 can be directly applied. If
we discretize the heat equation in time using the backward Euler method, then we
have the following convergence result for the parareal algorithm.

Theorem 4 (Heat Equation Convergence Result). Under the conditions of

Theorem 2, with a = ω2, and G(tn+1, tn, U
k
n) = βUkn with β =

1

1 + ω2∆T
, from

the backward Euler method, the parareal algorithm has a superlinear bound on the
convergence rate on bounded time intervals,

max
1≤n≤N

||u(tn)− Ukn ||2 ≤
γks
k!

kY
j=1

(N − j) max
1≤n≤N

||u(tn)− U0
n||2, (16)

where || · ||2 denotes the spectral norm in space and the constant γs is universal,
γs = 0.2036321888. On unbounded time intervals, we have

sup
n>0
||u(tn)− Ukn ||2 ≤ γkl sup

n>0
||u(tn)− U0

n||2, (17)

where the universal constant γl = 0.2984256075.

Proof. A simple calculation shows that the numerator in the superlinear bound (7)
is uniformly bounded for the backward Euler method by

|e−ω2∆T − 1

1 + ω2∆T
| ≤ γs,

where the maximum γs is attained at ω2∆T = x̄s := 2.512862417. This leads to
(16) by using the Parseval-Plancherel identity.

The convergence factor in the linear bound (12) is also bounded by

|e−ω2∆T − 1
1+ω2∆T

|
1− 1

1+ω2∆T

≤ γl,

where the maximum γl is attained at ω2∆T = x̄l := 1.793282133, which leads to
(17) using the Parseval-Plancherel identity.
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Next, we consider a pure advection problem

ut = ux, in Ω = R, u(0, x) ∈ L2(Ω). (18)

Using a Fourier transform in time, this equation becomes

ût = −iωû. (19)

The convergence results of Theorems 2 and 3 can be directly applied. If we discretize
the advection equation in time using the backward Euler method, then we have the
following convergence result for the parareal algorithm.

Theorem 5 (Advection Equation Convergence Result). Under the conditions

of Theorem 2, with a = −iω, and G(tn+1, tn, U
k
n) = βUkn with β =

1

1 + iω∆T
, from

the backward Euler method, the parareal algorithm has a superlinear bound on the
convergence rate on bounded time intervals,

max
1≤n≤N

||u(tn)− Ukn ||2 ≤
αks
k!

kY
j=1

(N − j) max
1≤n≤N

||u(tn)− U0
n||2, (20)

where the constant αs is universal, αs = 1.224353426.

Proof. A simple calculation shows that the numerator in the superlinear bound (7)
is uniformly bounded, for the backward Euler method, by

|e−iω∆T − 1

1 + iω∆T
| ≤ αs,

which leads to (20) using the Parseval-Plancherel identity.

Remark 2. There is no long term convergence result for (18). The convergence factor
in (11) is not bounded by a quantity less than one.

5 Numerical Experiments

In order to verify the theoretical results, we first show some numerical experiments
for the scalar model problem (3) with f = 0, a = 1, u0 = 1. The Backward Euler
method is chosen for both the coarse approximation and the fine approximation, with
time step ∆T and ∆T/m respectively. We show in Figure 1 the convergence results
obtained for T = 1, T = 10 and T = 50, using N = 10 and m = 20 in each case. One
can clearly see that the parareal algorithm has two different convergence regimes:
for T = 1, the algorithm converges superlinearly, and the superlinear bound from
Theorem 2 is quite sharp. For T = 10, the convergence rate is initially linear, and
then a transition occurs to the superlinear convergence regime. Finally, for T = 50,
the algorithm is in the linear convergence regime and the bound from Theorem 3
is quite sharp. Note also that the bound from Theorem 1 indicates stagnation for
T = 10, since ∆T = 1, and divergence for T = 50, since then ∆T > 1. The parareal
algorithm does however also converge for ∆T ≥ 1.

We now turn our attention to the PDE case and show some experiments for the
heat equation ut = uxx+f, in (0, L) × (0, T ] with homogeneous initial and boundary
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Fig. 1. Convergence of the parareal algorithm for (3) on a short, medium and long
time interval.
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Fig. 2. Error in the L∞ norm in time and L2 norm in space for the parareal
algorithm applied to the heat equation, on a short (left) and long (right) interval.

conditions and with f = x4(1−x)+ t2. The domain length L is chosen such that the

linear bound in (17) of Theorem 4 is attained, which implies that L = π
p
∆T/x̄s.

With ∆T = 1/2 and m = 10, we obtain the results shown in Figure 2. On the left,
results are shown for T = 4, where the algorithm with ∆T = 1/2 will converge in 8
steps. One can see that this is clearly the case. Before that, the algorithm is in the
superlinear convergence regime, as predicted by the superlinear bound. Note that
the latter bound indicates zero as the error at the eighth step, and thus cannot be
plotted on the logarithmic scale. On the right, the error is shown for T = 8, and the
algorithm is clearly in the linear convergence regime.
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Summary. When solving an evolution equation in an unbounded domain, various
strategies have to be applied, aiming at reducing the number of unknowns and the
computational cost, from infinite to a finite and not too large number. Among them
are truncation of the domain with a sponge boundary, and Schwarz Waveform Re-
laxation algorithm with overlap. These problems are closely related, as they both
use the Dirichlet-to-Neumann map as a starting point for transparent boundary
condition on the one hand, and optimal algorithms on the other hand. Differential
boundary conditions can then be obtained by minimization of the reflection coeffi-
cients or the convergence rate. In the case of unsteady convection-diffusion problems,
this leads to a non standard complex best approximation problem that we present
and solve.

1 Problems settings

1.1 Absorbing boundary conditions with a sponge

When computing the flow passed an airfoil, or the diffraction by an object, the
mathematical problem is set on an unbounded domain, while the domain of interest
(i.e. where the knowledge of the solution is relevant), ΩI , is bounded and sometimes
small . Then a computational domain is needed, called ΩC , on which the problem is
actually solved. The problem must be complemented with boundary conditions on
∂ΩC . It is desirable to introduce a sponge boundary ΩS which absorbs the spurious
reflexion, see Figure 1. The question we address here is the following: how to design
boundary conditions on ∂ΩC such that, for a given sponge layer of size L, the error
in ΩI be minimized. The issue is somewhat different from those used in the usual
absorbing boundary condition setting, where there is no layer (see [1, 4, 6]), or in
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the classical sponge layer [7] or PML setting [3], where the equation is modified in
the layer.

Domain of interest ΩI Domain of computation ΩC = ΩI ∪ΩS

ΩI
ΩI

ΩS

Fig. 1. sponge boundary

1.2 Domain decomposition with overlap

Suppose now that the domain of interest ΩI be too large to be treated by a single
computer (like for instance in combustion problems, climate modeling, etc.). Then
one can divide the domain into several parts, which overlap or not. In each domain
the original problem is solved, whereas one has to supplement with transmission
conditions between the subdomains. A model geometry is described in Figure 2.

Domain of interest ΩI Decomposed Domain

Fig. 2. Domain decomposition with overlap

In this case, given the size of the overlap, the transmission conditions are designed
so as to minimize the convergence rate of the Schwarz algorithm. As we shall see
in the next two sections, the two procedures previously described lead to the same
optimization problem. For the wave equation, an explicit answer was given in [5] for
low degrees. We present here the case of the unsteady reaction convection diffusion
equation in R

n+1

L(u) := ut − ν∆u+ a∂xu + b · ∇u+ cu = F in R
n+1 × (0, T ),

u(·, 0) = u0 in R
n+1,

(1)

where the coefficients satisfy ν > 0, a > 0, b ∈ R
n, c > 0. The operator ∇ operates

only in the y direction in R
n. The simpler problem of designing absorbing boundary
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conditions, without a sponge, has been addressed in [6], introducing an expansion
in continued fractions.
We first describe the methods in Sections 2 and 3, and we set the best approximation
problem. In Section 4 we study this best approximation problem, which is defined in
the complex plane, and involves a nonlinear functional. Therefore it is more involved
than the standard one. In Section 5 we show numerical evidences for the optimality
of the method.

2 Sponge boundaries for the convection-diffusion
equation: the half-space case

A model problem is the following: the original domain is R
n+1, the domain of interest

is ΩI = (−∞,X)×R
n and the domain of computation is ΩC = (−∞,X +L)×R

n.
A key point is that the data are compactly supported in ΩC .

2.1 The transparent boundary condition

As it is now classical, the transparent boundary condition on the boundary ∂ΩC
is obtained through a Fourier transform in time and in the transverse direction y.
Transforming the equation leads to

−ν∂xxû+ a∂xû + (i(ω + b · k) + ν|k|2 + c)û = 0

where û(x,k, ω) is the Fourier transform in the variables y and t. The characteristic
equation is

−νλ2 + aλ+ i(ω + b · k) + ν|k|2 + c = 0 (2)

It has two roots, such that Reλ+ ≥ a, Reλ− ≤ 0. The solution in the exterior of
ΩC can be written as

û(x) = û(X + L)eλ
−(x−(X+L))

and the transparent boundary condition is given by

∂xû(X + L, k, ω) = λ−û(X + L, k, ω)

We call Λ− the pseudo-differential operator in the variables y and t whose symbol
is λ−, and the original problem in R

n+1 is equivalent to

L(u) = F in ΩC × (0, T ),
u(·, 0) = u0 in ΩC ,

∂xu(X + L, y, t) = Λ−u(X + L,y, t)
(3)

2.2 Sponge boundaries: reflection coefficient

Let now v be a solution of problem with an approximate boundary condition

∂xv(X + L,y, t) = Λ−
a v(X + L,y, t),

where Λ−
a is an operator in the variables y and t, whose symbol λ−

a will have to be
a rational fraction in k and ω. We introduce the reflection coefficient
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R(ω,k, λ−
a , L) =

λ− − λ−
a

λ+ − λ−
a

e(λ
−− λ+)L

An easy calculation shows that the error between u and v is given by

‖u− v‖2L2(ΩI) =

Z |R(ω,k, λ−
a , L)|2

2Re λ+
|û(X,ω,k)|2dω dk

In [6], it was proposed in the case c = 0 to approximate λ− by continued fractions,
for L = 0, which produces a small error for small viscosity. For larger viscosities,
another approach can be used, namely to search for λ−

a in a class of rational fractions,
which minimize the reflection coefficient. This will be done at the end of Section 3.

3 Overlapping Optimized Schwarz Waveform Relaxation
methods for the convection-diffusion equation

The model problem is the same as in Section 2. All the results in the next three
sections can be found in [2]. The general Schwarz Waveform Relaxation algorithm
for two domains Ω1 = (−∞, L)× R

n , Ω2 = (0,∞)× R
n writes:

8<
:

L(uk+1
1 ) = f in Ω1 × (0, T )

uk+1
1 (·, 0) = u0 in Ω1

B1u
k+1
1 (L, ·) = B1u

k
2(L, ·) in (0, T )8<

:
L(uk+1

2 ) = f in Ω2 × (0, T )

uk+1
2 (·, 0) = u0 in Ω2

B2u
k+1
2 (0, ·) = B2u

k
1(0, ·) in (0, T )

A natural variant of the Schwarz algorithm would be to use B1 and B2 equal to
identity. It can be proved to be convergent with overlap, with a convergence rate
depending of the size of the overlap.

3.1 The optimal Schwarz algorithm

Theorem 1. The Schwarz method converges in two iterations with or without over-
lap when the operators Bi are given by:

B1 = ∂x − Λ−, B2 = ∂x − Λ+,

where Λ± are the operators whose symbols are the roots of (2).

3.2 Approximations by polynomials

As in the case of absorbing boundary conditions, we choose approximate operators:

Ba1 = ∂x − Λ−
a , Ba2 = ∂x − Λ+

a

Since Λ− and Λ+ are related by Λ− +Λ+ =
a

ν
, we choose the approximations to be

such that Λ−
a +Λ+

a =
a

ν
. We define the error in step k in domain Ωj to be ekj . With
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the same notations as in the previous section, and by analogous computations, we
find the recursive relation

dek+2
j (ω, 0, k) = ρ(ω, k, λ−

a , L) bekj (ω, 0,k)

where the convergence rate ρ(ω,k, λ−
a , L) is given by

ρ(ω,k, λ−
a , L) = R2(ω,k, λ−

a , L/2).

It measures the speed of convergence of the algorithm. The smaller it is, the faster
the algorithm is. We rewrite it slightly differently. Let

δ(ω,k) = a2 + 4ν(i(ω + b · k) + ν|k|2 + c). (4)

We can write

λ− =
a− δ1/2

2ν
,

and δ1/2(ω,k) = f(i(ω + b · k) + ν|k|2) is approximated by a polynomial P in the
variable i(ω + b · k) + ν|k|2, and

λ−
a =

a− P

2ν
.

Therefore the convergence rate takes the simple form

ρ(ω,k, λ−
a , L) =

„
P − δ1/2
P + δ1/2

«2

e−δ
1/2L/ν . (5)

In any case, in order to produce a convergent algorithm, we must have, |ρ| ≤ 1
a.e. and |ρ| < 1 on any compact set in R×R

n. We notice that for a general polynomial
P we can have

lim
(ω,|k|)→+∞

˛̨
˛̨P − δ1/2

P + δ1/2

˛̨
˛̨ = 1.

3.3 Approximate transmission conditions

We consider here approximations of order ≤ 1. If P = p+ qz ∈ P1, then

B1 ≡ ∂x − a− p

2ν
+ q(∂t + b · ∇ − ν∆S + cI),

B2 ≡ ∂x − a+ p

2ν
− q(∂t + b · ∇ − ν∆S + cI).

Theorem 2. For p > 0, q ≥ 0, p >
a2

4ν
q, the algorithm is well-posed and converges

with and without overlap.

The case q = 0 corresponds to a polynomial of degree zero. This theorem is actually a
composite of several results: first the algorithm is well-defined in relevant anisotropic
Sobolev spaces: the result relies on trace theorems and energy estimates. Second the
algorithms are convergent: in the nonoverlapping case, it relies again on energy
estimates in each domain, arranged in such clever way as to cancel out the terms
on the boundary when summing up the estimates. In the overlapping case, the
convergence rate is uniformly strictly bounded away from one. The one-dimensional
results can be found in [2], the two-dimensional case without second order derivatives
is treated in V. Martin’s thesis and published in [8]. Her result extends to the case
we present here without any particular effort.
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4 The best approximation problems

The convergence rate has two factors: the overlap intervenes in the term e−2δ1/2L.
Thus, in presence of an overlap, high frequency are taken care of by the overlap. In
any case, when numerical schemes are involved, only discrete frequencies are present,
and they are bounded from below and above. Let Yj be the maximum size of the
domain in the yj direction. If δt and {δy1, · · · , δyn} are the discrete steps in time and

space, the frequencies can be only such that ω ∈ IT , kj ∈ Ij , with IT = (
π

T
,
π

δt
), and

Ij = (
π

Yj
,
π

δyj
). The best approximation problem consists in, for a given n, finding

P in Pn minimizing sup
ω∈IT ,kj∈Ij

|ρ(ω, k, λ−
a , L)|.

Using the forms in (4) and (5), we can rewrite it, for a given n, as finding P in
Pn minimizing

sup
z∈K

˛̨̨
˛P (z)− f(z)

P (z) + f(z)
e−Lf(z)/ν

˛̨̨
˛ (6)

where K is a compact set in C+, K = {i(ω+ b · k) + ν|k|2, ω ∈ IT , kj ∈ Ij , 1 ≤ j ≤
n}.

4.1 A general result

Let K be a compact set in C, f a continuous function on K, such that f(K) ⊂ {z ∈
C : Re z > 0}. Define

δn(l) = inf
p∈Pn

sup
z∈K

˛̨
˛̨p(z)− f(z)

p(z) + f(z)
e−lf(z)

˛̨
˛̨ ,

Problem (6) generalizes as:

Find p∗n such that sup
z∈K

˛̨
˛̨p∗n(z)− f(z)

p∗n(z) + f(z)
e−lf(z)

˛̨
˛̨ = δn(l)

This is a non classical complex best approximation problem, for two reasons:

first the cost function
p(z)− f(z)

p(z) + f(z)
is non linear, second there is a weight e−lf(z)

which decreases rapidly, and allows for large values of
p(z)− f(z)

p(z) + f(z)
. We have a fairly

complete theory in the non overlapping case: existence, uniqueness, and an equioscil-
lation property. Furthermore any local minimum is global. In the overlapping case,
general results are more restrictive: for l sufficiently small, there is a solution, any
solution equioscillates, and if δn(l)el supz∈K �f(z) < 1, then the solution is unique.
In the symmetric case, i.e., if K is symmetric with respect to the real axis, and if
for any z in K, f(z̄) = f(z), then the polynomial of best approximation has real
coefficients. Furthermore for odd n the number of equioscillations is larger than or
equal to n+ 3.
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4.2 The 1-D case

In this case, the convergence rate actually equioscillates in 3 real points, and we
can have explicit formulae to determine the best polynomial p∗1. Furthermore the
constraints on the coefficients for well-posedness are fulfilled. In 2-D, it is still an open
question.When solving by a numerical scheme, the overlap is such that L ≈ C1∆x
and the space and time meshes are related by ∆t ≈ C2∆x

β, β ≥ 1 (in general β

can be 1 or 2). With overlap, for β = 1, sup|ρ| ≈ 1 − O(∆x1/8), while for β = 2,

sup|ρ| ≈ 1−O(∆x1/5). Without overlap, in both cases, sup|ρ| ≈ 1−O(∆t1/8). Thus,
if ∆t ≈ ∆x, the performances with or without overlap are comparable, if ∆t ≈ ∆x2,
the performance is better with overlap.

5 Numerical results for domain decomposition

In order to check the relevance of the theoretical best approximation, we run the case

ν = 0.2, a = 1, c = 0, Ω = (0, 6), T = 2.5. The initial data is u(x, 0) = e−3(1.2−x)2 .
The boudary conditions are u(0, t) = 0 and u(6, t) = 0. We choose Ω1 = (0, 3.04),
Ω2 = (2.96, 6), which means L = 0.08. The scheme is upwind in space, backward
Euler in time, with ∆x = 0.02, ∆t = 0.005. The initial guess is random. Figure 3
shows that the theoretical best value of p and q, coefficients of P (represented by
the star), is very close to the one observed numerically.
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Fig. 3. Error after 5 iterations as a function of p and q.

6 Conclusion

We have proposed a complete theory based on a best approximation problem arising
in sponge layers or SWR algorithms for parabolic equations. In one dimension it can



306 L. Halpern

be solved explicitely, thus providing the best answers to our questions. It remains
to extend it in three directions: to rational fractions, to higher order, and to higher
dimensions.
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Many recently proposed domain decomposition preconditioners do not easily fit
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will focus on some recent results on these preconditioners. Some of the topics to
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Summary. The Overlapping Balancing Domain Decomposition (OBDD) methods
can be considered as an extension of the Balancing Domain Decomposition (BDD)
methods to the case of overlapping subdomains. This new approach, has been pro-
posed and studied in [5, 3]. In this paper, we will discuss its practical parallel im-
plementation and present numerical experiments on large unstructured meshes.

1 Introduction

The Overlapping Balancing Domain Decomposition Methods (OBDD) is a two level
overlapping Schwarz method. Its coarse space as well as the projection and restriction
operators are based on partition of unity functions. This new algorithm has been
presented in [5, 3]. More recently, it has also been extended to the Helmholtz problem
(see [4, 3]).

The main goal of this paper is to present an efficient and scalable implemen-
tation on large unstructured meshes. The proposed algorithm does not require the
construction of a coarse mesh and avoids expensive communication between coarse
and fine levels. The implementation we present works on an arbitrary number of
processors and does not requires an a priori manual decomposition of the domain
into subdomains. It relies heavily on the construction of overlapping subdomains and
associated partition of unity functions. These functions are used both as a commu-
nication mechanism between coarse and fine levels, and as the generating functions
for the coarse space. More details on two level overlapping Schwarz methods with
partition of unity–based coarse space can be found in [7, 8, 9].
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1.1 Notations and presentation of the method

All along this paper, we focus on the implementation of the Poisson problem
with Dirichlet boundary condition on a polygonal domain Ω. Given a function
f ∈ H−1(Ω), and ∂ΩD ⊂ ∂Ω with a finite number of connected components, we
want to solve the problem

−∆u = f in Ω, u = u0 on ∂ΩD. (1)

Let T be a conforming mesh partitioning of Ω with Ne elements and Nv vertices,
partitioned into N parts Ti, 1 ≤ i ≤ N with N i

e elements and N i
v vertices. For any

positive integer k , the overlapping mesh T ki is a sub-mesh of T whose vertices are
either in Ti or linked to a vertex of Ti by at most k edges. We denote by Ωi and Ωk

i

the domains associated with these meshes. Lastly, let A be the matrix associated
to a discretization of (1). In our experiment, we have used a finite element method
with linear elements, but this is not a requirement of the method.

The construction of the Overlapping Balancing Domain Decomposition method
is similar to that of the well-known Balancing Domain Decomposition method. Its
main ingredient is the construction of a partition of unity θi, 1 ≤ i ≤ N , such that
θi > 0 on T ki , and θi = 0 on T \ T ki . Using the functions θi, we define N diagonal
weight matrices Di of size Nv ×Nv whose diagonal elements are the θi.

In this method, the dimension of the coarse space is equal to the number of Ωk
i ,

and the associated matrix Ac is given by

Ac(i, j) = θTi Aθj , 1 ≤ i, j ≤ N. (2)

On each subdomain, the local problems involve solving a local version of (1) with
homogeneous Neumann interface conditions. Of course, this is a singular problem,
however one can show that the partition of unity functions θi generate the null space
of the associated local matrix Ai, from which one can easily derive compatibility
conditions.

For more details on the theoretical aspects of the method, and a precise descrip-
tion, see [4] and [3].

2 Implementation of the OBDD method on
Unstructured Meshes

The Overlapping Balancing Domain Decomposition Method has been implemented
using an existing parallel finite element package previously written by the second
author. The implementation, we describe in the sequel, is general enough that it
should be fairly easy to reproduce in any other finite element code. However, some
of the technical choices detailed later are dependent on the software packages we
used. Namely the unstructured two and three dimensional meshed were generated
using Cubit, developed at Sandia National Laboratories [6], and the internal mesh
representation is based on the EXODUS II libraries, also from Sandia National
Laboratories. The automatic domain decomposition was obtained using METIS and
ParMETIS [2]. Lastly, we used PETSc [1] for all distributed linear algebra needs,
and most communication operations.

The OBDD itself has also been implemented as a shell preconditioner in PETSc
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2.1 Construction of the overlapping subdomains and the partition
of unity functions

The first step toward the implementation of the OBDD method is to construct the
overlapping subdomains and the partition of unity functions, using a non-overlapping
domain decomposition computed with METIS. The following algorithm does that
in a fully distributed and scalable way.

Let T be a part of the mesh of Ω. We say that a vertex (resp. an element) of Ω
is local to T if it belongs to T . We say that an element of Ω is a near element for
T if one of its vertices is local to T . Similarly, we say that a vertex v ∈ Ω is a near
vertex for T if it belongs to a near element for T , but is not local to T . Lastly, any
vertex or element that is neither local nor near is referred to as distant. With these
notations, we note that Ωk

i is simply the union of all local and near vertices and the
elements of Ωk−1

i . This is the essence of our iterative construction.
In the mesh representation system we used, we did not have access to the adja-

cency graph of the vertices, or a list of element neighbors. Our algorithm requires
only each processor to store the entire connectivity table of the mesh.

In order to construct the partition of unity functions and the overlapping subdo-
mains simultaneously, each processor uses a temporary counter di of size equal to the
total number of vertices. At the initial stage, one sets di(v) = 1 if v is local to Ω, and
0 otherwise. Then, one repeats the following process for 0 ≤ j ≤ k: for 1 ≤ l ≤ Ne,
the element l is near Ωj

i if di(v) > 0 at any of its vertices v. Using the connectivity
table, compute then the list of all near vertices to Ω. Lastly increment di(v) for all
v local or near to Ωj

i . After the k iteration, di(v) = k + 1 if v ∈ Ωi, di(v) = 0 if

v �∈ Ωk
i . At this point, all that remains to do is to set θi(v) = di(v)/

NX
j=1

di(v).

Fig. 1. Extension of the overlap in three steps.

Figure 1 illustrates the three step construction of Ωk+1
i out of Ωk

i . The leftmost
figure highlights the local vertices and elements for Ωk

i . In the middle figure, the
near elements for Ωk

i have been identified. From these near elements, it is now easy
to identify the near vertices, as illustrated on the right. All local and near elements
for Ωk

i are the local elements for Ωk+i
i , so that process can be iterated as many times

as necessary.
Note that this algorithm is very similar in spirit to a fast marching method (see

for instance [10]). Indeed, the functions dk are the distance to the non-overlapping
domains, in a metric where d(vi, vj) is proportional to the smallest number of edges
linking two vertex vi and vj .
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Note also that the complexity of this algorithm is independent on the number
of processor, and that it requires communication only at its very final stage. The
complexity of this algorithm is on the order of O(kNe) and grows linearly with the
size of the overlap. As demonstrated in the sequel, a typical overlap choice is 3 to
5, so the construction of the θi is very efficient. However, should one have access to
the list of edges of the meshes, or the list of neighboring element to a given one, this
complexity would be greatly reduced.

2.2 Coarse problem

The coarse matrix is given by Ac(i, j) = θTi Aθj . However, its construction does not
require the actual computation of these matrix-vector products. Also, it is easy to
see that Ac has a sparsity structure, as supp(θi)∩ supp(θj) �= ∅ only if Ωk

i ∩Ωk
j �= ∅.

In our implementation, we first find all subdomains with non-empty intersection,
which give the sparsity structure of Ac. Then, for each processor, Aθj is obtained
from computing Ajθj . Then we communicate this vector to all neighboring subdo-
mains so that each processor can assemble its own row in Ac. This algorithm is fully
scalable since it involves only communications between neighboring processors, and
no “all to all” message passing. As illustrated in the experiments in the next section,
the OBDD perform best with relatively small overlap. In this case, it is enough to
build the adjacency graph of the non-overlapping domains, which is slightly faster.
However, this is not true with very large overlap.

Lastly, since the dimension of the coarse problem is relatively small (recall that
it is equal to the number of processors), we store it in one of the processors, and
coarse solve can be performed using a direct solver.

2.3 Local problems

Our implementation uses PETSc which does not have data structures dedicated to
overlapping submatrices. Therefore, we chose to reassemble the local matrices Aj
instead of extracting them from the global matrix A. Note that this has to be done
only once, so it is not very expensive.

As we expect our algorithm to be very scalable, our goal is to use a large number
of processors, which means relatively small local problems. For that reason, we use
direct local solvers. The cost of the initial factorization is offset by the speed gain
in solving the local problems multiple times.

Since we consider local problems with homogeneous Neumann interface condi-
tions, the local matrices are singular. However, their null spaces are given by their
associated partition of unity function (see [5, 3] for more details). In the implemen-
tation, we still have to add a small damping factor to the diagonal of the matrix,
or the local factorization would sometimes fail. This damping factor is typically of
order 10−10.

3 Numerical Results

In the numerical experiment presented here, Ω is the square [−5, 5]×[−5, 5]. We con-
sider a homogeneous Dirichlet problem for two different right hand sides: f(x, y) ≡ 1
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(Problem 1), or f(x, y) = 1 if xy > 0 and f(x, y) = −1 otherwise (Problem 2). The
experiments are based on solving both problems for various overlap size k and vari-
ous mesh sizes. The larger mesh has approximately 1,000,000 vertices and 2,000,000
elements (i.e. h ∼ .01). The second one is made of 450,000 vertices and 890,000
elements (h ∼ .015), and the last one of 250,000 vertices and 500,000 elements
(h ∼ .02). We ran our test implementation on many other problems, and got very
similar behaviors.

Table 1 display the evolution of the number of iterations of OBDD of Problem
1 and Problem 2. Along the horizontal lines, the ratio between the geometric size
of the overlap and the size of the subdomains remains constant while the mesh size
varies. As expected, the number of iterations does not change significantly. Along
vertical lines, the number of processor is increased. As expected, the number of
iterations decreases as long as the number of nodes in the overlap region remains
small compared to that in the actual subdomain.

Table 1. Number of iterations for Problem 1 (Problem 2).

� of CPUs Mesh1 (ovlp=10) Mesh2 (ovlp=7) Mesh3 (ovlp=5)

32 55 (51) 51 (51) 52 (51)

64 50 (49) 47 (44) 46 (44)

80 45 (43) 47 (46) 50 (48)

Figure 2 represent the evolution of the computation time and of the number
of iterations as a function of the overlap. The simulation is carried out for the
smaller of the three meshes, and on 32 processors. The first curve corresponds to
the total time spent in the solver. In the second one, we subtracted the factorization
time for the local matrices. As expected, the total time increases slightly with very
large overlaps. However, most of this time increase is due to the local matrices
factorization. Indeed, as the overlap size increases, the number of iteration decreases
steadily. For all practical purposes, we found no reason to use large overlap. Overlap
sizes of 3-5 typically give the fastest convergence.

In Figure 3, we perform this experiment for various number of processors, on
our largest mesh. The same conclusion holds in each case. In our implementation,
we assume that the overlapping subdomains associated to disjoint subdomains were
also disjoint, which is not necessarily true with very large overlaps and very small
subdomains. For that reason, we are not able to use large overlap sizes with 64
processors.

In Figure 4, we demonstrate the scalability of the Overlapping Balancing Domain
Decomposition method, and of our implementation. We solved again Problem 2 with
various overlap sizes and up to 240 processors. As expected, both the total time and
the number of iterations decrease with the number of processors. Note also that the
gain from an increase of the overlap size is quite minimal.
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Fig. 2. Times and numbers of iteration versus the overlap size.
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Fig. 3. Time and numbers of iteration versus the overlap size.
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Fig. 4. Scalability of the algorithm and its implementation.

The last figure is perhaps the most important. Here, we compare our method
with a widely available solver. For our problem, we found that the best combina-
tion of solvers and preconditioners in PETSc is the Conjugated Gradient with a
block-Jacobi preconditioner, iterative local solvers, and incomplete LU local precon-
ditioners. In Figure 5, we compare the performances of the OBDD and block-Jacobi
preconditioners. Our algorithm performs significantly better than the best available
solver in PETSc in all cases.
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1 Introduction

Balancing Domain Decomposition (BDD) methods belong to the family of precon-
ditioners based on nonoverlapping decomposition of subregions and they have been
tested successfully on several challenging large scale applications. Here we extend the
BDD algorithms to the case of overlapping subregions and we name them Overlap-
ping Balancing Domain Decomposition (OBDD) algorithms. Like the BDD methods,
coarse space and weighting matrices play crucial roles in making both the proposed
algorithms scalable with respect to the number of subdomains as well as making
balanced the local Neumann subproblems on the overlapping subregions on each
iteration of the preconditioned system. The OBDD algorithms also differ from the
standard overlapping additive Schwarz method (ASM) of hybrid form since those
are based on Dirichlet local problems on the overlapping subregions. This difference
motivated us to generalize the OBDD algorithms to the Helmholtz equation where
we use the Sommerfeld boundary condition for the local problems and a combination
of partition of unity and plane waves for the coarse problem.

1.1 Balancing Domain Decomposition Methods

To have a clear picture of the OBDD algorithms, we first provide a short review of
two-level Balancing Domain Decomposition (BDD) methods introduced in [6, 10].
BDD methods are iterative substructuring algorithms, i.e. methods where the inte-
rior degrees of freedom of each of the nonoverlapping substructures are eliminated.
Hence the discrete problem

Ax = f (1)

obtained from a finite element discretization method applied to the domain Ω is
reduced and posed on the interface Γ = ∪Ni=1Γi. Here Γi = ∂Ωi\∂Ω are the local
interfaces. The linear system is then reduced to the form
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Su = g,

where

S =
NX
i=1

RTi SiRi,

where the matrices Si are the local Schur complements and Ri are the regular
restriction operators from nodal values on Γ to Γi. To simplify the exposition, we
assume that the matrix A comes from a finite element discretization of the Poisson
problem and therefore, the Schur complement matrices Si are symmetric positive
semi-definite (the kernel consists of constant functions) when ∂Ωi ∩ ∂ΩD = ∅, or
positive definite otherwise. Here, ∂ΩD is the Dirichlet part of ∂Ω. To build the BDD
preconditioner, weighting matrices Di on the interface are constructed so that

X
RTi RiDi = IΓ (2)

forms a partition of unity on the interface Γ . The weighting matrices Di, for the
Poisson problem with constant coefficient, can be chosen as the diagonal matrix
defined as zero at the nodes on Γ\Γi and the reciprocal of the number of subdomains
a node x ∈ Γi is associated with. The preconditioner is of the hybrid type given by

TBDD = P0 + (I − P0)(
NX
i=1

Ti)(I − P0), (3)

where the coarse problem P0 is simply the orthogonal projection (in the S-norm)
onto the coarse space V0. The coarse space V0 is defined as the span of the basis
functions DiR

T
i ni where each column vector ni, except for subdomains for which

∂Ω ∂Ωi ∩ ∂ΩD �= ∅, is a vector that generates the null space of Si, i.e. the column
vector [1, 1, 1, 1, . . . , 1]T on nodes of Γi. Hence,

P0 = RT0 (R0SR
T
0 )−1R0S, (4)

where the columns of the matrix RT0 are formed by all the columns of DiR
T
i ni.

The local operators Ti are defined as

Ti = DiR
T
i S

+
i RiDiS (5)

where S+
i is the pseudo inverse of the local Schur complement Si. We remark that

each local Neumann problem S+
i is solved up to a constant when the ∂Ωi∩∂ΩD = ∅.

The compatibility condition is guaranteed because a coarse problem is solved just
prior; if y belongs to the range of (I − P0), and using the definition of P0 (an
orthogonal projection in the S-norm), we have (DiR

T
i ni, Sy)Γ = 0 (inner product

on Γ ), and therefore (ni, RiDiSy)Γi = 0 (inner product on Γi). Hence, RiDiSy is
perpendicular to the null space of Si and the local problem Sixi = DiRiSy satisfies
the compatibility condition, and we say that the local problems are balanced.

1.2 Overlapping Balancing Domain Decomposition Methods

We generalize the nonoverlapping BDD method to the overlapping domain case. This
is done by maintaining the BDD structure described above. We replace the Schur
complement matrix S by the whole matrix A. We replace the restriction operator Ri
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to Γi by a restriction operator Rδi to all nodes of the extended subdomain Ω
δ
i \∂ΩD

(including also the boundary nodes on ∂Ωδ
i \∂ΩD). We replace the Neumann problem

S+
i by a Neumann problem (Aδi )

+ on Ωδ
i with a Neumann boundary condition on

∂Ωδ
i \∂ΩD and zero Dirichlet boundary condition on ∂Ωδ

i ∩ ∂ΩD. We replace the
partition of unity (2) by a partition of unity on Ω\∂ΩD

NX
i=1

(Rδi )
TRδiD

δ
i = IΩ\∂ΩD

, (6)

where the weighting matrix Dδ
i is a diagonal matrix with diagonal elements given by

the regular partition of unity we find on the theory of Schwarz methods. Similarly,
the coarse space V δ0 is also based on this partition of unity (with some modifica-
tion near ∂ΩD to satisfy Dirichlet boundary conditions). The coarse problem P δ0
is the orthogonal projection (in the A-norm) onto the space V δ0 and the OBDD
preconditioner is defined as

TOBDD = P δ0 + (I − P δ0 )(
NX
i=1

T δi )(I − P δ0 ), (7)

where the local problems are given by

T δi = Dδ
i (R

δ
i )
T (Aδi )

+RδiD
δ
iA. (8)

The same arguments about BDD compatibilities hold here: if y belongs to the range
of (I−P δ0 ) we have (Dδ

i (R
δ
i )
Tnδi , Ay)Ω\∂ΩD

= 0, and so (nδi , R
δ
iD

δ
iAy)Ωδ

i \∂ΩD
= 0).

Hence, RδiD
δ
iAy is perpendicular to the vector nδi (a column vector of ones on the

nodes of Ωδ
i when Ωδ

i ∩ ∂ΩD = ∅). The vector nδi spans a space that contains the
kernel of Aδi , and so the local Neumann problems Aδixi = Dδ

iR
δ
iAy satisfy the local

compatibility condition.

1.3 Advantages and Disadvantages of BDD versus OBDD

We note that differently from BDD methods, the OBDD methods work on the
whole finite element function space without eliminating any variables. Hence we
solve Ax = b instead of Su = g. As a first consequence, we avoid completely the
local Dirichlet solvers required for the BDD methods to compute residuals as well as
to build the coarse matrix. This is a considerable advantage for the OBDD methods
since these BDD local Dirichlet solvers require exact solvers in each iteration with
the preconditioned system, and more dramatically, specially in three dimensional
problems, a large number of preprocessing exact local Dirichlet solvers are required
to build the coarse matrix. We note also that the coarse matrix of the proposed
OBDD methods are of the same size as those of BDD methods, i.e. one degree of
freedom per subdomain. However, the OBDD coarse matrices are more sparse than
those of BDD since results in connectivity only among the neighboring subdomains.
Another advantage of using OBDD methods is that they are less sensitive to the
roughness of the boundary of the subdomains (in general boundaries of extended
subdomains are smoother than nonoverlapping subdomains).

The proposed OBDD algorithms also have disadvantages. The first one is the ex-
tra cost when working with extended subdomains. Hence for effective performance in
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terms of CPU time and memory allocation, small overlap is a common practice. The
second disadvantage is that the condition number obtained by the OBDD methods
are O(1 +H/(δh)) while the BDD methods are O(1 + log(H/h)2). Numerically we
show that for the minimum overlap case, the preconditioned systems associated to
OBDD results in small condition numbers, so the linear bound is comparable to the
two log factors for the BDD. For three dimensional problems, the ratio H/h would
be relatively small and therefore, the linear bound of the OBDD would get closer to
the two logs bound of the BDD. The third disadvantage is that the inner products
and the vector sums inside the PCG/BDD (GMRES/BDD) are done only for the
interfaces nodes while on the PCG/OBDD (GMRES/OBDD) they are done for all
the nodes. We note however that in the proposed algorithms, after the first iteration
of the OBDD, only on the extended boundary interfaces will have nonzero residuals
and will remain so during the PCG iterations when RASHO coarse problems [2, 9]
are considered (since the RASHO coarse basis functions are designed to have zero
residual at non interface nodes). Hence a large saving in perform A ∗ v to compute
residuals is possible. The BDD methods nowadays are well developed for several
applications such as discontinuous coefficients, two and three dimensional elasticity,
plates and shells, and are recently also extended to saddle point problems. For two
and three dimensional elasticity and for discontinuous coefficients problems, we can
apply some of the ideas in [8, 9] to design and analyze OBDD algorithms. The ex-
tension of OBDD algorithms to saddle point problems is not trivial and it is a very
interesting subject for future research.

2 The Finite Element Formulation

Consider the Helmholtz problem

−∆u∗ − (k(x))2u∗ = f in Ω (9)

u∗ = gD on ∂ΩD

∂u∗

∂n
= gN on ∂ΩN

∂u∗

∂n
+ iku∗ = gS on ∂ΩS

where Ω is a bounded polygonal region in �2 with a diameter of size O(1). The
∂ΩD, ∂ΩN , and ∂ΩS are disjoint parts of ∂Ω where the Dirichlet, Neumann, and
Sommerfeld boundary conditions are imposed. We note that the methods developed
here also works for polyhedral regions in �3. From a Green’s formula and conjugation
of the test functions, we can reduce (9) into the following variational form: find
u∗ − u∗

D ∈ H1
D(Ω) such that,

a(u∗, v) =

Z
Ω

(∇u∗ · ∇v̄ − k2u∗v̄) dx− ik

Z
∂ΩS

u∗v̄ ds (10)

=

Z
Ω

fv̄ dx+

Z
∂ΩN

gv̄ ds = F (v), ∀v ∈ H1
D(Ω),

where u∗
D is an extension of gD to H1(Ω), and H1

D(Ω) is the subspace of H1(Ω) of
functions which vanishes on ∂ΩD. To treat the Poisson’s problem, we let k = 0 and
∂ΩS = ∅.
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Let T h(Ω) be a shape regular quasi-uniform triangulation of Ω and let V ⊂
H1
D(Ω) be the finite element space consisting of continuous piecewise linear func-

tions, associated with the triangulation, which vanish on ∂ΩD. Eliminating uD we
obtain the following discrete problem: Find u ∈ V such that

a(u, v) = f(v), ∀ v ∈ V. (11)

Using the standard basis functions, (11) can be rewritten as a linear system of
equations of the form (1).

All the domains and subdomains are assumed to be open; i.e., boundaries are
not included in their definitions. The superscript T means the adjoint of an operator.

3 Notation

Given the domain Ω and triangulation T h(Ω), we assume that a domain partition
has been applied and resulted in N non-overlapping connected subdomains Ωi, i =
1, . . . N of size O(H), such that

Ω = ∪Ni=1Ωi and Ωi ∩ Ωj = ∅, for j �= i.

We define the overlapping subdomains Ωδ
i as follows. Let Ω1

i be the one-overlap
element extension of Ωi, where Ω1

i ⊃ Ωi is obtained by including all immediate
neighboring elements τh ∈ T h(Ω) of Ωi such that τh ∩ Ωi �= ∅. Using the idea
recursively, define a δ-extension overlapping subdomains Ωδ

i

Ωi = Ω0
i ⊂ Ω1

i ⊂ · · · ⊂ Ωδ
i .

Here the integer δ ≥ 1 indicates the level of element extension and δh is the approx-
imate width of the extension. We note that this extension can be coded easily using
the adjacency matrix associated to the mesh.

4 Local Problems: Definitions of Dδ
i
, Rδ

i
and T δ

i

Consider a partition of unity on Ω with the following usual properties:
NX
i=1

θδi (x) = 1,

0 ≤ θδi (x) ≤ 1, and |∇θδi (x)| ≤ C/(δh), when x ∈ Ω, and θδi (x) vanish on Ω\Ωδ
i ; for

details see [7, 10]. The diagonal weighting matrices Dδ
i are defined to have diagonal

elements values equal to θδi (x) at the nodes x ∈ Ω.
Let us denote by V δi , i = 1, · · · , N , the local space of functions in H1(Ωδ

i ) which
are continuous and piecewise linear on the elements of T h(Ωδ

i ) and which vanish on
∂ΩD ∩ ∂Ωδ

i . We remark that we do not assume that the functions in V δi vanish on
the whole of ∂Ωδ

i . We then define the corresponding restriction operator Rδi

Rδi : V → V δi , i = 1, · · · , N,

and obtain (6) and the following subspace decomposition
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Dδ
i (R

δ
i )
TV δi ⊂ V and V =

NX
i=1

Dδ
i (R

δ
i )
TV δi .

To define the local solvers, we introduce the local bilinear forms on V δi by

aΩδ
i
(ui, vi) =

Z
Ωδ

i

(∇ui · ∇v̄i − k2uiv̄i) dx− ik

Z
∂Ωδ

i \(∂ΩD∪∂ΩN )

uiv̄i ds. (12)

For the case k = 0, i.e. the Poisson problem, aΩδ
i

reduces to the regular H1-

seminorm inner product. For the case k �= 0, i.e. the Helmholtz case, the bilinear
form aΩδ

i
induces the Sommerfeld boundary condition on ∂Ωδ

i \∂ΩN∪D, Neumann

on ∂Ωi∩∂ΩN and Dirichlet on ∂Ωi∩∂ΩD ; see also [1]. The associated local problems
define T̃ δi : V → V δi by: for any u ∈ V

aΩδ
i
(T̃ δi u, v) = a(u,Dδ

i (R
δ
i )
T v), ∀v ∈ V δi , i = 1, · · · , N, (13)

and let T δi = Dδ
i (R

δ
i )
T T̃ δi to obtain (8). When k = 0 and Ωδ

i is a floating subdomain,
the matrix Aδi is singular. To obtain the compatibility condition (Poisson problem) or
to accelerate the algorithm (Helmholtz problem) we next introduce coarse problems.

5 Coarse Problems: Definitions of Rδ
0

and P δ
0

We note that some of the functions ϑδi = Ihθ
δ
i cannot be used as a coarse basis

functions since some of them do not satisfy the zero Dirichlet boundary condition
on ∂ΩD and therefore, do not belong to V . Hence we modify them just in a δh layer
near ∂ΩD. This is done by defining a smooth cut-off function φδ on a δh layer near
∂ΩD and by defining the coarse basis functions by ϑδi = Ih(φδθ

δ
i ). Here Ih is the

regular pointwise interpolation operator to V .
For the Poisson’s problem, we define the coarse space V δ0 as the span of the

coarse basis functions ϑδi , i = 1, · · · , N .
For the Helmholtz’s problem, we combine the ϑδi with Np planar waves. The

basis functions for the coarse space V δ0 are given by Ih(ϑ
δ
iQj), i = 1, . . . , N and

j = 1, · · · , Np, with Qj(x) = eikΘ
T
j x, and ΘTj = (cos(θj), sin(θj)), with θj = (j −

1)× π

Np
, j = 1, · · · , Np; see also [3] for the use of plane waves for FETI-H methods.

We define the restriction matrix Rδ0 : V → V δ0 consisting of the columns ϑδi
(Poisson) or Ih(ϑ

δ
iQj) (Helmholtz). We define P δ0 : V → V δ0 by: for any u ∈ V

a(P δ0 u, v) = a(u, v), ∀v ∈ V δ0 ,

and in matrix notation, P δ0 = (Rδ0)
T (Aδ0)

−1Rδ0, where Aδ0 = Rδ0A(Rδ0)
T .

For the Poisson case, we have [5]:

Theorem 1.

a(u, u) � a(TOBDDu, u) � (1 +
H

δh
)a(u, u).
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6 Numerical Experiments

Below we present numerical results for solving the Helmholtz’s problem on the unit
square with the following boundary condition: Dirichlet gD = 1 on west side, ho-
mogeneous Neumann on north and south sides, and homogeneous Sommerfeld on
east side; see [3]. For the Poisson’s equation including a discussion on the parallel
implementations see Kimn and Bourdin [4].

Table 1. Number of iterations (PGMREZ) to solve Helmholtz equation for a Guided
Wave Problem, Wave coarse space Np = 4, Tol=10−6, k = 20.

ovlp =1, n = 33 65 129 257

sub = 4x4 18 22 43 82

sub = 8x8 9 11 14 21

sub = 16x16 8 10 13

sub = 32x32 8 10

Table 2. Number of iterations (PGMREZ) to solve Helmholtz equation for a Guided
Wave Problem, Wave coarse space Ns = 8, Tol=10−6, k = 20,

ovlp =1, n = 33 65 129 257

sub = 4x4 14 18 25 48

sub = 8x8 7 7 8 9

sub = 16x16 4 4 4

sub = 32x32 2 2
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Summary. Recent progress has been made to more robustly handle the increased
complexity of high-order schemes by focusing on the local nature of the discretiza-
tion. This locality is particularly true for many Discontinuous Galerkin formula-
tions and is the focus of this paper. The contributions of this paper are twofold.
First, novel observations regarding various flux representations in the discontinuous
Galerkin formulation are highlighted in the context of overlapping Schwarz meth-
ods. Second, we conduct additional experiments using high-order elements for the
indefinite Helmholtz equation to expose the impact of overlap.

1 Introduction

We consider the Helmholtz equation

−∇ · ∇u(x)− ω2u(x) = f(x) in Ω, (1a)

u(x) = g(x) on Γ. (1b)

Although the form presented in (1) is evidently straightforward, it does still expose a
number of difficulties that we discuss in this paper. The problem turns cumbersome
quickly as the wave number increases since the resulting system of equations becomes
indefinite. Identifying the key components to efficiently solving this wave problem
will likely carry over into more complicated situations, such as Maxwell’s equations.

The approach taken in this paper is an overlapping Schwarz-type method. The
method presented is motivated by efforts of a number of authors who have out-
lined several situations where Schwarz methods have proved to be effective: in-
definite problems, discontinuous Galerkin discretizations, and high-order elements
[4, 2, 3, 8, 9, 10]. Based on this previously detailed success, we study the performance
of a additive Schwarz method that utilizes element overlap to maintain efficient per-
formance as the order of the discontinuous spectral element method increases and
as indefiniteness becomes more prominent.
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2 DG

The LDG formulation which we adopt yields several advantageous properties in
the resulting linear system of equations. The global mass matrix is block diagonal,
allowing cheap inversion, while symmetry is preserved in the global discretization
matrix.

We begin by considering an admissible, shape regular triangulation K of Ω ∈ R
2

and let hκ = 1/2 · diam(κ), for κ ∈ K. The numerical approximation uh on element
κ ∈ Kh is composed of Lagrange interpolating polynomials Lj(x) at selected degrees
of freedom xj within κ. In 1-D, we describe these locations as the Gauss-Lobatto-
Legendre (GLL) quadrature points. Similarly, for our 2-D reference triangle, κ̂, we

choose a distribution of nodes governed by electrostatics [6]. Nκ =
(n+ 1)(n+ 2)

2
points are needed to ensure an order n resolution in the local polynomial approxi-
mation on element κ. Figure 1 shows an example on the reference element. Finally,
we define Pn(κ), the local spectral element space where we seek an approximation.

The standard LDG formulation [1] is described first by introducing a slack vari-
able q = ∇u. The first-order system for (1) on an arbitrary element κ is

−∇ · q− ω2u = f in κ, (2a)

q−∇u = 0 in κ. (2b)

Multiplying each equation by scalar and vector test functions φ(x) and ψ(x), re-
spectively, and integrating by parts yields the weak formulation. The local traces of
u and q are replaced by approximations u∗ and q∗, also referred to as numerical
fluxes. With this substitution and integrating by parts again, the associated (and
slightly stronger) weak discrete problem is: find (uh,n,qh,n) such that

−
Z
κ

∇ · qh,nφn dx− ω2

Z
κ

uh,nφn dx =

Z
κ

fh,nφn dx +

Z
∂κ

nk · (q∗ − qh,n)φn dx,

(3a)Z
κ

qh,n ·ψn dx−
Z
κ

∇uh,n ·ψn dx =

Z
∂κ

(u∗ − uh,n)nk ·ψ dx, (3b)

for all κ ∈ Kh and (φn,ψn). The function spaces are the local spectral element
spaces defined using the Lagrange interpolation above.

Defining the numerical flux is what separates different discontinuous Galerkin
approaches [1] and is the most distinguishing feature of a formulation since the
interelement connectivity is solely defined by the representation of the numerical
flux on each edge. This choice directly impacts the approximation properties as well
as the stability of the method. Moreover, the resulting (global) linear system of
equations will perhaps exhibit symmetry and varying sparsity patterns depending
on how the trace is approximated along each edge of each element in the tessellation.
For a given element κ, define u− to be the value of u interior to the element and
define u+ to be the value of u in the adjacent, neighboring element. For a scalar
function u and vector function q, the jump and the average between neighboring

elements are respectively defined as �u� = u−n− + u+n+, {{u}} =
1

2
(u− + u+),

�q� = q− · nk− + q+ · nk+ , {{q}} =
1

2
(q− + q+). For κ ∈ K with ∂κ ∈ Γbdy, these

values are adjusted by extending the solution to a ghost element.
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By defining the numerical fluxes u∗ and q∗ independently of ∇u, we will be
able to formulate the weak problem (3) independently of the slack variable q(x). In
general, the numerical fluxes for the LDG method are defined as [1]

u∗ = {{un,h}}+ β · �un,h� q∗ = {{qn,h}} − β�qn,h�− ηk�un,h�. (4)

The sign on β is specifically opposite to ensure symmetry of the associated stiffness
matrix [1]. Adhering to this form of a numerical flux is beneficial since the method is
consistent and locally conservative. Further, if ηk > 0 the method is considered stable
[1]. Setting β = 0 yields a central flux for u∗ and a stabilized central flux for q∗,
while using β = 0.5n− results in an upwinding scheme. The impact computationally
is addressed in Section 4.

The numerical flux u∗ is independent of qh,n allowing us to write the discrete
system completely independent of the slack variable q (cf. lifting operators in [1]).
As we sum the weak problem over all elements κ ∈ K we will need the following
global matrices: Sx, Sy, and M , which are stiffness and mass matrices and F x,yu∗ and
F x,yq∗ , which couple nodes in adjacent elements. Introducing global data vectors q̃x,
q̃y, and ũ and summing the weak problem (3) over all elements κ ∈ K, we arrive at
the following

−Sxq̃x − Syq̃y − ω2M ũ = Mf + F xq∗ q̃
x + F yq∗ q̃

y − τF τq∗ ũ, (5)

M q̃x − Sxũ = F xu∗ ũ, (6)

M q̃y − Syũ = F yu∗ ũ. (7)

Solving for the slack variable q̃x,y in equations (6) and (7), and substituting into (5)
eliminates the dependence on q̃. The system, written in compact form is then

`
−S + F − ω2M

´
ũ = Mf , (8)

where S = SxM−1Sx+SyM−1Sy and F = F xq∗M
−1Sx+F xq∗M

−1F xu∗+F yq∗M
−1Sy+

F yq∗M
−1F yu∗−τF τu∗ The operator S is clearly negative semi-definite, while for τ > 0,

the composite operator S − F is strictly negative definite. A full eigenspectrum
analysis is missing and the impact on the preconditioner is unknown. However, it
suffices to say that for moderate ω, indefinite and near singular matrices should be
expected.

3 Additive Schwarz

Extensive work by Cai et al. [4, 2, 3] and Elman [5] conclude that standard Krylov
based iterative methods handle a moderate number of flipped eigenvalues quite well
for this indefinite problem. We will also use this class of methods and, in partic-
ular, choose the Generalized Minimum Residual method (GMRES). GMRES can
be applied to indefinite systems and, more importantly, the preconditioned imple-
mentation permits indefinite preconditioning matrices. This will be beneficial in the
case of the additive Schwarz (AS) method. It is noteworthy that BiCGStab yielded
slightly improved results in our tests, but the observed trends remained the same.

Our implementation is a culmination of approaches, which includes overlapping
subdomains and a coarse grid solution phase with the ability to handle non-nested
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coarse grids. It is important to note that a global coarse solve does not improve the
convergence process if the grid is not rich enough to fully resolve a wave. There are
a couple notable features about our approach. First, given a coarse grid tessellation,
ΩH , and a subdomain Ωh

s ⊂ Ωh, we define the restriction operator based on a
standard finite element interpolation as RT0ij

= φi(xj). Here, φi(x) is a coarse grid
basis function (bilinear in our case) and xj is a node in Ωs on the fine grid. R0ij = 0
if xj is not in the underlying footprint of φi and is thus still sparse, although not in
comparison to the injection operators used in the subdomain solves. To efficiently
implement this process, let V be the Vandermonde matrix built from our orthogonal
set of polynomials: Vi,j = pj(xi). With this we can transfer between modal and nodal
representations easily with f = V f̂ and f̂ = V −1f since V −1 can be built locally in
preprocessing. The advantage is clear when we look at more general interpolation
in this respect. Let Vcc be the coarse basis/coarse nodes Vandermonde matrix and
Vcf be the coarse basis/fine nodes Vandermonde matrix. Then P0 = VcfV

−1
cc ≡ RT0

defines the equivalent interpolation operator at the expense of only a few operations.
Second, in order to ensure proper interpolation of constant solutions, we incorporate
a row equilibration technique, by rescaling each row of R0 by the row sum:

R0ij ←
1P
j R0ij

R0ij . (9)

The composite preconditioning matrix is then defined to be M−1 = RT0 A
−1
0 R0 +

SX
s=1

RTs A
−1
s Rs.

Overlap is also introduced in our algorithm. This increases communication, but,
as we show in the next section, overlap is an essential component particularly for
high-order approximations and as the matrix increases in indefiniteness and size. We
define δ = 0 as the case with no geometric overlap, keeping in mind the nature of the
discontinuous discretization, where degrees of freedom in neighboring elements may
share a geometric location, resulting in some resemblance of overlap. By increasing
δ, we simply mean that each subdomain is padded by δ layers of elements. At first
glance, this may seem extreme, since Fischer and Lottes [9] extend only by strips
of nodes into the adjacent elements. However, the class of problems we address
is altogether different, requiring a large number of elements, and requiring only
moderate polynomial degrees, making overlap overhead costs small as the mesh is
further refined. Moreover, layers of nodes within an electrostatic distribution are
not readily available either in the element itself or in the reference element, whereas
they have a straightforward formation in the case of tensor-based element.

4 Numerics

Using the central flux in the DG method is more correctly termed the Brezzi method
[1]. Due to the ease of implementation, this formulation has grown in popularity,
also benefiting from slightly improved conditioning over a bona fide LDG method
where β = 0.5n−. Unfortunately, if β = 0, the data from elements κ+ is needed to
describe equations (3) in element κ− as well as data from the neighbors of κ+, which
we label κ++. Thus the influence on one element extends two layers beyond a given
element. The noncompact stencil is also prevalent for β �= 0, unless β = 0.5n−, which
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corresponds to an upwind flux. This is considered the LDG method since fortuitous
cancellation of the terms eliminates the extension to neighboring elements, resulting
in a stencil width of only one layer. Figure 1 articulates this effect. A more detailed
explanation of the effects on discretization error and the eigenspectrum can be found
in [7], although convergence of the iterative solution process is not addressed.

Also shown in Figure 1 is the so-called Interior Penalty method (IP). Here, a
local gradient is used in the definition of the flux, which also results in a compact
stencil. The IP method offers a straightforward implementation, however the poor
conditioning of this approach requires careful attention. Table 1 illustrates a typical
situation. The results are presented for the definite case (ω = 0) on a grid with
h ≈ 1/8. A single level additive Schwarz scheme is used to precondition the GMRES
acceleration. The first column reiterates the fact that the Brezzi approach (β = 0.0)
has slightly better conditioning than the LDG implementation (β = 0.5n−), while
the IP system suffers from a very poor spectrum. Column 2 also provides insight,
showing that while the LDG scheme is slightly more ill-conditioned, the local type
preconditioning scheme is more effective due to the compact stencil. The Brezzi
operator responds similarly under preconditioning, but due to the wide stencil, the
relative improvement is not as drastic. The preconditioning also has significant in-
fluence on the IP method, but due to the poor conditioning, it is difficult to fully
quantify the effect of AS. We will focus on the Brezzi method throughout the rest
of the paper since it is a widely used formulation of DG and since we expect the
preconditioning results to be on the pessimistic side. A more comprehensive study
of the various DG methods and preconditioning, similar to Table 1, is an ongoing
research effort.

Table 1. GMRES iterations for Brezzi, LDG, and IP formulations with and without
preconditioning.

Brezzi LDG IP
N w/o AS w/ AS w/o AS w/ AS w/o AS w/ AS

2 73 21 121 21 355 57
4 167 28 252 29 1291 151
6 316 30 456 32 > 2000 294
8 534 38 713 36 > 2000 568

Our test problem is basic, yet still exposes a principal difficulty: indefinite-
ness and high-order discretizations. We consider a smooth, solution u(x, y) =
sin(2πωx) sin(2πωy).

Comparing the iterations in Table 2 indicates that a coarse grid is beneficial for
high-order discretizations. The number of GMRES iterations are reduced for each
polynomial order when using a richer coarse grid. It is interesting to further note that
the relative improvement is consistent as the order is increased. Overlap, however,
has a much larger impact on the convergence of the preconditioned iterative method
as indicated in Table 2.

As the frequency ω increases, more degrees of freedom are needed to fully re-
solve the solution. When the problem is viewed on a coarser grid, the discretization
lacks resolution and the solution found on the coarse grid no longer resembles an
accurate approximation to the fine grid solution. Thus the two-level error correction
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Fig. 1. Stencil width relative to element κ−.

Table 2. GMRES iterations with hf ≈ 1/8, ω = 1.0: adding overlap.

δ = 0 δ = 1
order n

hc 1 2 3 4 5 6 7 8 9 10 11
0 26 38 49 60 71 82 93 105 116 128 140
1/4 22 32 39 50 58 67 72 81 88 100 108 → 22 22 23 24 24 25 25 26 26 27 28
1/8 14 25 30 36 43 47 55 60 66 73 79

becomes ineffective and possibly pollutes the fine grid solution. Figure 2 shows that
the iteration counts remain bounded as the polynomial order is increased for each
selected ω. The iterations increase as the frequency is increased, but this is to be
expected as more low eigenvalues are shifted to the positive half-plane. As expected,
coarse solves do not improve solution for large wave numbers, however there is sig-
nificant improvement as we introduce overlap, particularly for the case of the highly
indefinite problem, ω = 50.
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Fig. 2. GMRES iterations versus polynomial order: Comparing overlap impact for
ω = 1.0, 10.0, 50.0.

A more definitive test is to investigate problems where the discretization is nei-
ther under nor over resolved. Referring to dispersion analysis, using around several
degrees of freedom per wavelength (in 1-D) is generally considered well resolved.
Table 3 confirms the importance of overlap. Its relative improvement as n increases
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is attributed to the fact that larger subdomain solves are being used. The trend in
overlap continues only so far. Figure 3 illustrates that performance is improved as
the overlap is increased, however the relative impact becomes less.

Table 3. GMRES iterations: hf ≈ 1/4, no coarse grid.

No AS δ = 0 δ = 1
n ω avg. iterations

1 0 . . . 7 48 23 18
2 6 . . . 10 106 43 27
3 9 . . . 13 170 57 30
4 12 . . . 16 271 72 36
5 15 . . . 20 392 106 48
6 19 . . . 23 534 151 67
7 22 . . . 26 705 193 72

Fig. 3. GMRES iterations versus polynomial (n) order and overlap (δ).
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Summary. We present a parallel fully coupled implicit Newton-Krylov-Schwarz al-
gorithm for the numerical solution of the unsteady magnetic reconnection problem
described by a system of reduced magnetohydrodynamics equations in two dimen-
sions. In particular, we discuss the linear and nonlinear convergence, the parallel
performance of a third-order implicit algorithm and compare to solutions obtained
with an explicit method.

1 Introduction

In the magnetohydrodynamics (MHD) formalism plasma is treated as a conducting
fluid satisfying the Navier-Stokes equations coupled with Maxwell’s equations [5].
The behavior of an MHD system is complex since it admits phenomena such as
Alfvén waves and their instabilities. One of the intrinsic features of MHD is the
formation of a singular current density sheet, which is linked to the reconnection of
magnetic field lines [2, 8, 9, 11], which in turn leads to the release of energy stored in
the magnetic field. Numerical simulation of the reconnection plays an important role
in our understanding of physical systems ranging from the solar corona to laboratory
fusion devices. Capturing the change of the magnetic field topology requires a more
general model than ideal MHD. A resistive Hall MHD system is considered in this
paper. To simulate this multi-scale, multi-physics phenomenon, a robust solver has

∗The work was partially supported by DOE DE-FC02-01ER25479, DEFC02-
04ER25595, NSF ACI-0305666 and ACI-0352334.
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to be applied in order to deal with the high degree of nonlinearity and the nonsmooth
blowup behavior in the system. One of the successful approaches to the numerical
solution of the MHD system is based on the splitting of the system into two parts,
where equations for the current and the vorticity are advanced in time, and the
corresponding potentials are obtained by solving Poisson-like equations in a separate
step. In such an explicit approach, to satisfy the CFL condition, the time step may
become very small, especially in the case of fine meshes, and the Poisson solves must
therefore be performed frequently. On the other hand, implicit time stepping presents
an alternative approach that may allow the use of larger time steps. However, the
non-smooth nature of the solution often results in convergence difficulties. In this
work we take a fully coupled approach such that no operator splitting is applied to
the system of MHD equations. More precisely, we first apply a third-order implicit
time integration scheme, and then, to guarantee nonlinear consistency, we use a one-
level Newton-Krylov-Schwarz algorithm to solve the large sparse nonlinear system
of algebraic equations containing all physical variables at every time step. The focus
of this paper is on the convergence and parallel performance studies of the proposed
implicit algorithm.

2 Model MHD Problem

We consider a model MHD problem described as follows [1, 6]:

8>>>>>>><
>>>>>>>:

∇2φ = U

∇2ψ =
1

d2
e

(ψ − F )

∂U

∂t
+ [φ,U ] =

1

d2
e

[F, ψ] + ν∇2U

∂F

∂t
+ [φ, F ] = ρ2

s[U,ψ] + η∇2(ψ − ψ0),

(1)

where U is the vorticity, F is the canonical momentum, φ and ψ are the stream func-
tions for the vorticity and current density, respectively, ν is the plasma viscosity, η is
the normalized resistivity, de = c/ωpe is the inertial skin depth, and ρs =

p
Te/Tiρi

is the ion sound Larmor radius. The current density is obtained by J = (F −ψ)/d2
e.

The Poisson bracket is defined as: [A,B] ≡ (∂A/∂x)(∂B/∂y) − (∂A/∂y)(∂B/∂x).
Every variable in the system is assumed to be the sum of an equilibrium and a per-
turbation component; i.e. φ = φ0+φ1, ψ = ψ0+ψ1, U = U0 +U1, and F = F 0+F 1,
where φ0 = U0 = 0, ψ0 = cos(x), and F 0 = (1+ d2

e) cos(x) are the equilibrium com-
ponents. After substitutions, we arrive at the following system for the perturbed
variables:8>>>>>>>>><

>>>>>>>>>:

∇2φ1 = U1

∇2ψ1 =
1

d2
e

(ψ1 − F 1)

∂U1

∂t
+ [φ1, U1] =

1

d2
e

[F 1, ψ1] + ν∇2U1 +
1

d2
e

„
∂ψ1

∂y
Feqx +

∂F 1

∂y
Beqy

«

∂F 1

∂t
+ [φ1, F 1] = ρ2

s[U
1, ψ1] + η∇2ψ1 +

„
∂φ1

∂y
Feqx + ρ2

s
∂U1

∂y
Beqy

«
,

(2)
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where Feqx = −(1 + d2
e) sin(x) and Beqy = sin(x). The system is defined on a

rectangular domain Ω ≡ [lx, ly ] ≡ [2π, 4π], and doubly periodic boundary conditions
are assumed. For initial conditions, we use a nonzero initial perturbation in φ1 and
a zero initial perturbation in ψ1. The exact form of the perturbation follows after
some useful definitions. The aspect ratio is ε = lx/ly. The perturbation’s magnitude
is scaled by δ = 10−4. We define d̃e = max{de, ρs} and γ = εd̃e. For the initial value
of the φ perturbation we use

φ1(x, y, 0) =

8>>>>>>>><
>>>>>>>>:

δ
γ

ε
erf

„
x√
2d̃e

«
sin(εy) if 0 ≤ x <

π

2

−δ γ
ε

erf

„
x− π√

2d̃e

«
sin(εy) if

π

2
≤ x <

3π

2

δ
γ

ε
erf

„
x− 2π√

2d̃e

«
sin(εy) if

3π

2
≤ x ≤ 2π.

(3)

Other quantities are set as: U1(x, y, 0) = ∇2φ1(x, y, 0) and F 1(x, y, 0) = ψ1(x, y, 0)−
de∇2ψ1(x, y, 0). From now on, we drop the superscript and assume that the four
fields φ, ψ, U and F represent the perturbed components only. In order to connect the
stream functions to physical quantities the following definitions are used: v = ez×∇φ
and B = B0ez+∇ψ×ez. Here B stands for the total magnetic field, B0 is the guiding
field in the z direction, and v is the velocity in the plane perpendicular to the guiding
field.

We discretize the system of PDEs with finite differences on a uniform mesh of
sizes hx and hy in x and y directions, respectively. At time level tk, we denote the
grid values of the unknown functions φ(x, y, t), ψ(x, y, t), U(x, y, t), and F (x, y, t),
as φki,j , ψ

k
i,j , U

k
i,j , and F ki,j . The time independent components of the system (2) are

discretized with the standard second-order central difference method. For the time
discretization, we use some multistep formulas, known as backward differentiation
formulas (BDF) [7]. In this paper, we focus on a third-order temporal and second-
order spatial discretizations as shown in (4), where Rk+1

φ (i, j), Rk+1
ψ (i, j), Rk+1

U (i, j),

and Rk+1
F (i, j) are the second-order accurate spatial discretizations of the time-

independent components. We need to know solutions at time steps k− 2, k− 1 and
k in order to compute a solution at time step k+ 1 in (4). Lower order schemes are
employed at the beginning of the time integration for these start-up values.

8>>>>>>>><
>>>>>>>>:

Rk+1
φ (i, j) = 0

Rk+1
ψ (i, j) = 0

hxhy
6∆t

“
11Uk+1

i,j − 18Uki,j + 9Uk−1
i,j − 2Uk−2

i,j

”
−Rk+1

U (i, j) = 0

hxhy
6∆t

“
11F k+1

i,j − 18F ki,j + 9F k−1
i,j − 2F k−2

i,j

”
−Rk+1

F (i, j) = 0

(4)

3 One-level Newton-Krylov-Schwarz Method

At each time step, the discretized fully coupled system of equations (4) can be repre-
sented by G(E) = 0, where E = {φ, ψ, U, F}. The unknowns are ordered mesh point
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by mesh point, and at each mesh point they are in the order φ, ψ, U , and F . The mesh
points are ordered subdomain by subdomain for the purpose of parallel processing.
The system is solved with a one-level Newton-Krylov-Schwarz (NKS), which is a gen-
eral purpose parallel algorithm for solving systems of nonlinear algebraic equations.
The Newton iteration is given as: Ek+1 = Ek−λkJ(Ek)

−1G(Ek), k = 0, 1, ..., where
E0 is a solution obtained at the previous time step, J(Ek) = G′(Ek) is the Jacobian
at Ek, and λk is the steplength determined by a linesearch procedure [3]. Due to
doubly periodic boundary conditions, the Jacobian has a one-dimensional null-space
that is removed by projecting out a constant. The accuracy of the Jacobian solve is
determined by some ηk ∈ [0, 1) and the condition ‖G(Ek)+J(Ek)sk‖ ≤ ηk‖G(Ek)‖.
The overall algorithm can be described as follows:

(a) Inexactly solve the linear system J(Ek)sk = −G(Ek) for sk using a precondi-
tioned GMRES(30) [10].

(b) Perform a full Newton step with λ0 = 1 in the direction sk.
(c) If the full Newton step is unacceptable, backtrack λ0 using a backtracking pro-

cedure until a new λ is obtained that makes E+ = Ek + λsk an acceptable
step.

(d) Set Ek+1 = E+, go to step 1 unless a stopping condition has been met.

In step 1 above we use a right-preconditioned GMRES to solve the linear sys-
tem; i.e., the vector sk is obtained by approximately solving the linear system
J(Ek)M

−1
k (Mksk) = −G(Ek), where M−1

k is a one-level additive Schwarz precon-
ditioner. To formally define M−1

k , we need to introduce a partition of Ω. We first
partition the domain into non-overlapping substructures Ωl, l = 1, · · · , N . In order
to obtain an overlapping decomposition of the domain, we extend each subregion
Ωl to a larger region Ω′

l, i.e., Ωl ⊂ Ω′
l. Only simple box decomposition is considered

in this paper – all subdomains Ωl and Ω′
l are rectangular and made up of integral

numbers of fine mesh cells. The size of Ωl is Hx×Hy and the size of Ω′
l is H ′

x×H ′
y,

where the H ′s are chosen so that the overlap, ovlp, is uniform in the number of fine
grid cells all around the perimeter, i.e., ovlp = (H ′

x−Hx)/2 = (H ′
y−Hy)/2 for every

subdomain. The boundary subdomains are also extended all around their perime-
ters because of the doubly periodic physical boundary. On each extended subdomain
Ω′
l, we construct a subdomain preconditioner Bl, whose elements are Bi,jl = {Jij},

where the node indexed by (i, j) belongs to Ω′
l. The entry Jij is calculated with finite

differences Jij = 1/(2δ)(Gi(Ej + δ) − Gi(Ej − δ)), where 0 < δ ! 1 is a constant.
Homogeneous Dirichlet boundary conditions are used on the subdomain boundary
∂Ω′

l. The additive Schwarz preconditioner can be written as

M−1
k = (R1)

TB−1
1 R1 + · · ·+ (RN )TB−1

N RN . (5)

Let n be the total number of mesh points and n′
l the total number of mesh points

in Ω′
l. Then, Rl is an n′

l × n block matrix that is defined as: its 4× 4 block element
(Rl)i,j is an identity block if the integer indices 1 ≤ i ≤ n′

l and 1 ≤ j ≤ n belong
to a mesh point in Ω′

l , or a block of zeros otherwise. The Rl serves as a restriction
matrix because its multiplication by a block n× 1 vector results in a smaller n′

l × 1
block vector by dropping the components corresponding to mesh points outside Ω′

l.
Various inexact additive Schwarz preconditioners can be constructed by replacing
the matrices Bl in (5) with convenient and inexpensive to compute matrices, such
as those obtained with incomplete and complete factorizations. In this paper we
employ the LU factorization.



Fully Coupled Implicit Methods for MHD 337

4 Numerical Results

To illustrate model behavior, we choose nominal values of the inertial skin depth
de = 0.08 and the ion sound Larmor radius ρs = 0.24. The normalized resistivity
and viscosity are chosen in the range η, ν ∈ [10−4, 10−2]. Time in the system is
normalized to the Alfvén time τA =

√
4πnmilx/By0, where By0 is the characteristic

magnitude of the equilibrium magnetic field and lx is the macroscopic scale length
[6]. Ω is uniformly partitioned into rectangular meshes up to 600 × 600 in size.
The stopping conditions for the iterative processes are given as follows: relative
reduction in nonlinear function norm ‖G(Ek)‖ ≤ 10−7‖G(E0)‖, absolute tolerance
in nonlinear function norm ‖G(Ek)‖ ≤ 10−7, relative reduction in linear residual
norm ‖rk‖ ≤ 10−10‖r0‖, and absolute tolerance in linear residual norm ‖rk‖ ≤ 10−7.

A typical solution is shown in Fig. 1. The initial perturbation in φ produces
a feature-rich behavior in ψ, U , and F . The four variables in the system evolve
at different rates: φ and ψ evolve at a slower rate than F and U . For η = 10−3

and ν = 10−3 we observe an initial slow evolution of current density profiles up
to time 100τA and the solution blows up at time near 290τA. In the middle of the
domain the notorious “X” structure is developed, as can be seen in the F contours,
where the magnetic flux is reconnected. Similar reconnection areas are developed on
the boundaries of the domain due to the periodicity of boundary conditions and the
shape of the initial φ perturbation. In the reconnection regions sharp current density
peaks (Fig. 2 (a)) are formed. We compare solutions obtained by our implicit method
with these obtained with an explicit method [4]. Fig. 2 (b) shows that the third-order
implicit method allows for much larger time steps and produces a solution that is
very close to the solution obtained with the explicit algorithm, where the size of the
time step is determined by the CFL constraint.

Next, we look at some of the machine dependent properties of the algorithm.
Our main focus is on the scalability, which is an important quality in evaluating
parallel algorithms. First, we look at the total computing time as a function of the
number of subdomains and calculate t(16)/t(np) which gives a ratio of time needed
to solve the problem with sixteen processors to the time needed to solve the problem
with np processors. Fig. 3 shows the results for a 600×600 mesh, and an overlap of 6
is used in all cases. We can see that the one-level algorithm scales reasonably well in
terms of the compute time. Table 1 illustrates results obtained on a 600×600 mesh.
The compute time scalability is attained despite the fact that the total number of
linear iterations increases with the number of subdomains.

5 Conclusions and Future Work

The proposed fully coupled implicit scheme with a third-order temporal discretiza-
tion allows much larger time steps than the explicit method, while still preserving
the solution accuracy. One-level NKS converges well with the problem parameters
in the specified range, given the right stopping conditions. Without a coarse space,
the algorithm scales reasonably well for a large number of processors with a medium
subdomain overlap. Future continuation of this work may include solutions of the
MHD problem on finer meshes with a larger number of processors. Longer time inte-
gration with various η and ν values, as well as higher ρs to de ratios, may be helpful
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Fig. 1. Contour plots of φ (top left), ψ (top right), U (bottom left), and F (bottom
right). The results are obtained on 300×300 mesh, ∆t = 1.0τA, t = 100τA, η = 10−3,
ν = 10−3, implicit time stepping.
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Fig. 2. a) Formation of current density peaks in the reconnection region, J , 100×100
mesh, η = 10−2, ν = 10−2, ∆t = 1.0τA. b) Comparison plots of J obtained with the
explicit method (∆t = 0.001τA) and the implicit with ∆t = 1.0τA at t = 200τA on
300× 300 mesh with η = 10−3 and ν = 10−3.
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Table 1. Scalability with respect to the number of processors, 600× 600 mesh. LU
factorization for all subproblems, ovlp = 6. Time step ∆t = 1.0τA, 10 time steps,
t = 280τA. The problem is solved with 16 – 400 processors.

np t[sec] Total Nonlinear Total Linear Linear/Nonlinear

16 2894.8 30 1802 60.1
36 1038.1 30 2154 71.8
64 542.8 30 2348 78.3
100 340.5 30 2637 87.9
144 239.5 30 2941 98.0
225 167.8 30 3622 120.7
400 120.4 30 4792 159.7
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t(
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)
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Fig. 3. Computing time scalability t(16)/t(np), 600×600 mesh, η = 10−3, ν = 10−3,
∆t = 1.0τA with 16 – 400 processors, t = 280τA. The data are collected over 10 time
steps. The ”∗” shows experimental speedup values and ”+”depicts the ideal speedup.

in the further understanding of the algorithm for the numerical solutions of MHD
problems.
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1 Introduction

Additive Schwarz is a powerful preconditioner used in conjuction with Krylov sub-
space methods (e.g., GMRES [7]) for the solution of linear systems of equations of
the form Au = f , especially those arising from discretizations of differential equa-
tions on a domain divided into p (overlapping) subdomains [5], [9], [10]. In this paper
we consider right preconditioning, i.e., the equivalent linear system is AM−1w = f ,
with Mu = w. The additive Schwarz preconditioner is

M−1 =

pX
i=1

RTi A
−1
i Ri, (1)

where Ri is a restriction operator and Ai = RiAR
T
i is a restriction of A to a

subdomain. The strength of this preconditioner stems in part from having overlap
between the subdomains, and in part from the efficiency of local solvers, i.e., solutions
of the “local” problems

Aix = Riv. (2)

We also consider a weighted additive Schwarz preconditioner with harmonic exten-
sion (WASH), a preconditioner in the family of restricted additive Schwarz (RAS)
preconditioners [3] of the form

M−1 =

pX
i=1

RTi A
−1
i Rωi , (3)

in which the restriction operator Rωi is such that all variables corresponding to a

point in the overlap are weighted with weights that add up to one, i.e.,

pX
i=1

RTi R
ω
i = I

[4].
In this paper we consider the case when the local problems are either too large

or too expensive to be solved exactly. Therefore, the systems (2) are solved using
an iterative method. Usually, one takes a fixed number of (inner) iterations. We
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are interested instead in prescribing a certain (inner) tolerance so that the iterative
method for the solution of (2) stops when the local residual

si,k = Aixj −Rivk

has norm below the inner tolerance (j = j(i, k) being the index of the inner iteration,
and we write xj = Ã−1

i,kRivk, where the subscript in Ãi,k indicates that the inexact
local solvers changes also with k). Inexact local solvers have been used extensively
(see, e.g., [9]); what is new here is that the inexactness changes as the (outer)
iterations proceed. In this case, the (global) preconditioner changes from step to
step, i.e.,

M−1
k =

pX
i=1

RTi Ã
−1
i,kRi, (4)

and one needs to use a flexible Krylov subspace method, such as FGMRES [6].
Recent results have shown that it is possible to vary how inexact a precondi-

tioner is without degradation of the overall performance of a Krylov method; see
[1], [8] and references therein, and in particular we mention [2] where Schur com-
plement methods were studied. More precisely, the preconditioned system has to
be solved more exactly at first, while the exactness can be relaxed as the (outer)
iterative method progresses. In this paper we propose to apply these new ideas to
additive Schwarz preconditioning and its restricted variants, thus providing a way
of dynamically choosing the inner tolerance for the local solvers in each step k of
the (outer) iterative method. Our proposed strategy is illustrated with numerical
experiments, which show that there is a great potential in savings while maintaining
the performance of the overall process.

2 A Dynamic Stopping Criterion for the Local Solvers

The algorithmic setup is as follows, in each step k of the (outer) Krylov subspace
method for the solution of Au = f (we use FGMRES here), we apply a preconditioner
of the form (4), where the symbol Ãi,k indicates that the solution of local problem
(2) is approximated by a Krylov subspace method (we use GMRES) iterated until
‖si,k‖ ≤ εi,k.

In this setup, at the kth iteration instead of the usual matrix-vector product
AM−1vk we have

AM−1
k vk = A

pX
i=1

RTi Ã
−1
i,kRivk

= A

pX
i=1

RTi A
−1
i Rivk + A

pX
i=1

RTi (Ã−1
i,k − A−1

i )Rivk

= AM−1vk + A

pX
i=1

RTi A
−1
i si,k.

Thus, we can write AM−1
k vk = (AM−1 +Ek)vk, where Ek is the inexactness of the

preconditioned matrix at the kth step, and fk = Ekvk = A

pX
i=1

RTi A
−1
i si,k, so that
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‖fk‖ = ‖Ekvk‖ ≤
pX
i=1

‖ARTi A−1
i ‖‖si,k‖. (5)

In the situation we are describing, namely of inexact preconditioner, the inexact
Arnoldi relation that holds is

AVm + [f1, f2, . . . , fm] = Vm+1Hm+1,m,

where the Vm = [v1, v2, . . . , vm] has orthonormal columns, and Hm+1,m is upper
Hessenberg. Let Wm = Vm+1Hm+1,m, and rk be the GMRES (outer) residual at the
kth step. It follows from [8, sections 4 and 5] that

‖W T
mrm‖ ≤ κ(Hm+1,m)

mX
k=1

‖fk‖‖rk−1‖, (6)

‖rm − r̃m‖ ≤ 1

σmin(Hm+1,m)

mX
k=1

‖fk‖‖rk−1‖, (7)

where κ(Hm+1,m) = σmax(Hm+1,m)/σmin(Hm+1,m) is the condition number of
Hm+1,m, and r̃m = r0 − Vm+1Hm+1,mym is the computed residual. In the exact
case, i.e., when εi,k = 0, i = 1, . . . , p, k = 1, 2, . . ., then W T

mrm = 0. Equation (6)
indicates how far from that optimal situation we may be. The residual gap (7) is
the norm of the difference between the “true” residual rm = f − AVmym and the
computed one. As r̃m → 0, we have that if the right hand side of (7) is of order ε,
then ‖rm‖ → O(ε); cf. [8, Figure 9.1].

Using (5) we obtain the following result.

Proposition 1. If the local residuals satisfy ‖si,k‖ ≤ εk, i = 1, . . . , p, then the kth
GMRES (outer) residual satisfies the following two relations:

‖W T
mrm‖ ≤ κ(Hm+1,m)

pX
i=1

‖ARTi A−1
i ‖

mX
k=1

εk‖rk−1‖, (8)

‖rm − r̃m‖ ≤ 1

σmin(Hm+1,m)

pX
i=1

‖ARTi A−1
i ‖

mX
k=1

εk‖rk−1‖. (9)

We can then conclude that an a posteriori result holds.

Proposition 2. If εk, the bound of the local residual norms, satisfy

εk ≤ Km
1

‖rk−1‖
ε, (10)

with

Km = 1/mκ(Hm+1,m)

pX
i=1

‖ARTi A−1
i ‖, (11)

then ‖W T
mrm‖ ≤ ε, and if (10) holds with

Km = σmin(Hm+1,m)/m

pX
i=1

‖ARTi A−1
i ‖, (12)

then ‖rm − r̃m‖ ≤ ε.

We mention that these results apply to the case of inexact WASH preconditioning
as well, where the restriction Ri on the right of each term in (4) is replaced with
Rωi .
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3 Implementation Considerations

The power of Proposition 2 is to point out that one can relax the local residual norms
in a way inversely proportional to the norm of the (outer or global) residual from the
previous step; cf. [1], [8]. The constants Km as stated in (11) and (12), which do not
depend on k, depend in part on A, i.e., on the problem to be solved, the precondi-
tioner, through the local problems represented by Ai, as well as on how the inexact
strategy is implemented, through Hm+1,m. Observe that since mκ(Hm+1,m)" 1 it
is natural from (11) to expect Km ≤ 1.

Depending on the problem, we could obtain an a priori bound for Km which
would not depend on the specifics of the inexact strategy, for example by setting
κ(Hm+1,m) ≈ γκ(AM−1), for some fixed number γ, or similarly σmin(Hm+1,m) ≈
γσmin(AM−1). While this may appear as an oversimplification, we are justified in
part because the bounds (8) and (9) are very far from being tight.

In many problems though, the value of Km may not be known in advance, or it
may be hard to estimate, and we can just try some number, say 1, and decrease it
until a good convergence behavior is achieved. One could also use the information
from a first run, to estimate a value of Km. In our preliminary experiments, reported
in the next section, we have used the value of Km = 1.

4 Numerical Experiments

We present numerical experiments on finite difference discretizations of two partial
differential equations with Dirichlet boundary conditions on the two-dimensional
unit square: the Laplacian −∆u = f , and a convection diffusion equation −∆u +
b.∇u = f , with bT = [10, 20], where upwind differences are used, and the compo-
nents of f are random, uniformly distributed between 0 and 1. We use an uniform
discretization in each direction of 128 points, so the matrices are of order 16129, i.e.,
16129 nodes in the grid. We partition the grid into 8× 8 subdomains. In Table 1 we
report experiments with varying degree of overlap: no overlap (0), one or two lines
of overlap (1,2). Our (global) tolerance is ε = 10−6. We compare the performance
of using a fixed inner tolerance in each local solve, εk = 10−4 for k = 1, . . ., with the
dynamic choice (10) using K = Km = 1. We remark that both of these strategies
correspond to varying the degree of inexactness and are expressed by the precon-
ditioner (4). We run our experiments with the Additive Schwarz preconditioner (4)
(ASM) and with weighted additive Schwarz preconditioner with harmonic extension
(WASH). We have used a minimum of five (inner) iterations in each of the local
solvers. We report the average number of inner iterations, which in this case well
reflects the total work in each case, and in parenthesis the number of outer FGMRES
iterations needed for convergence.

It can be appreciated from Table 1 that the proposed dynamic strategy for the
inexact local solvers can reach the same (outer) tolerance using up to 20% less work.
We point out that we have used the same value of K = 1 for all overlaps, although
the preconditioners certainly change. A better estimate of K as a function of the
overlap is expected to produce better results. We also mention that both the fixed
inner tolerance and the dynamically chosen one usually require less storage than the
exact local solvers (1) and (3).
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Table 1. Average number of inner iterations (and number of outer iterations). Fixed
or dynamic inner tolerance (K = 1).

problem Laplacian Conv. Diff.

overlap 0 1 2 0 1 2

ASM Fixed 10−4 1923(64) 1536(46) 1388(38) 1825(60) 1458(43) 1295(35)
Dynamic 1557(73) 1316(60) 1201(53) 1762(66) 1434(51) 1288(44)

WASH Fixed 10−4 1692(56) 1317(40) 1100(31) 1601(53) 1220(37) 1020(29)
Dynamic 1387(61) 1089(45) 948(38) 1570(56) 1216(40) 1060(35)
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FETI and Neumann-Neumann iterative substructuring algorithms are among the
best known and most severely tested domain decomposition methods. Most of the
recent developments are on methods with primal constraints, namely dual-primal
FETI and balancing domain decomposition with constraints (BDDC) algorithms. In
this minisymposium, we bring together active researchers in the field of dual-primal
FETI and BDDC algorithms coming from the fields of numerical analysis, scien-
tific computing and computational mechanics. The talks will be on new algorithmic
developments and new theoretical results as well as on large-scale computational
applications.
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Summary. We consider elliptic problems with discontinuous coefficients discretized
by finite elements on non-matching triangulations across the interface using the mor-
tar technique. The resulting discrete problem is solved by a FETI–DP method using
a preconditioner with a special scaling described in a forthcoming paper by Dokeva,
Dryja and Proskurowski. Experiments performed on up to a thousand processors
show that this FETI–DP mortar method exhibits good parallel scalability.

1 Introduction

Parallelization of finite element algorithms enables one to solve problems with a
large number of degrees of freedom in a reasonable time, which becomes possible if
the method is scalable.

We adopt here the definition of scalability of [3] and [4]: solving n-times larger
problem using an n-times larger number of processors in nearly constant cpu time.
Domain decomposition algorithms using FETI-DP solvers ([7], [8], [9], [10]) have
been demonstrated to provide scalable performance on massively parallel processors,
see [4] and the references therein.

The aim of this paper is to experimentally demonstrate that a scalable perfor-
mance on hundreds of processors can be achieved for a mortar discretization using
FETI-DP solvers described in [5] and [6].

In view of the page limitation, Section 2 describing the FETI-DP method and
preconditioner is abbreviated to a minimum. For a complete presentation refer to
[5]. Section 3 contains the main results.
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2 FETI-DP equation and preconditioner

We consider the following differential problem.

Find u∗ ∈ H1
0 (Ω) such that

a(u∗, v) = f(v), v ∈ H1
0 (Ω), (1)

where
a(u, v) = (ρ(x)∇u,∇u)L2(Ω), f(v) = (f, v)L2(Ω).

We assume that Ω is a polygonal region and Ω =

N[
i=1

Ωi, Ωi are disjoint polygonal

subregions, ρ(x) = ρi is a positive constant on Ωi and f ∈ L2(Ω). We solve (1) by
the finite element method on geometrically conforming non–matching triangulation
across ∂Ωi. To describe a discrete problem the mortar technique is used.

We impose on Ωi a triangulation with triangular elements and a parameter hi.
The resulting triangulation of Ω is non-matching across ∂Ωi. Let Xi(Ωi) be a finite
element space of piecewise linear continuous functions defined on the triangulation
introduced. We assume that the functions of Xi(Ωi) vanish on ∂Ωi ∩ ∂Ω.

Let Xh(Ω) = X1(Ω1) × . . .×XN (ΩN ) and let V h(Ω) be a subspace of Xh(Ω)
of functions which satisfy the mortar condition

Z
δm

(ui − uj)ψds = 0, ψ ∈M(δm). (2)

Here, ui ∈ Xi(Ωi) and uj ∈ Xj(Ωj) on Γij , an edge common to Ωi and Ωj and
M(δm) is a space of test (mortar) functions.

Let Γij = ∂Ωi ∩∂Ωj be a common edge of two substructures Ωi and Ωj . Let Γij
as an edge of Ωi be denoted by γm(i) and called mortar (master), and let Γij as an
edge of Ωj be denoted by δm(j) and called non-mortar (slave). Denote by Wj

`
δm(j)

´
the restriction of Xj(Ωj) to δm(j).

Using the nodal basis functions ϕ
(l)
δm(i)

∈ Wi

`
δm(i)

´
, ϕ(k)

γm(j)
∈ Wj

`
γm(j)

´
and

ψ
(p)
δm(i)

∈M
`
δm(i)

´
, the matrix formulation of (2) is

Bδm(i)
uiδm(i)

−Bγm(j)
ujγm(j)

= 0, (3)

where uiδm(i)
and ujγm(j)

are vectors which represent ui
˛̨
δm(i)

∈ Wi

`
δm(i)

´
and

uj
˛̨
γm(j)

∈Wj

`
γm(j)

´
, and

Bδm(i)
=
n
(ψ

(p)
δm(i)

, ϕ
(k)
δm(i)

)L2(δm(i))

o
, p = 1, . . . , nδ(i), k = 0, . . . , nδ(i) + 1,

Bγm(j)
=
n
(ψ

(p)
δm(i)

, ϕ(l)
γm(j)

)L2(γm(j))

o
, p = 1, . . . , nδ(i), l = 0, . . . , nγ(j) + 1.

We rewrite the discrete problem for (1) in V h as a saddle-point problem using

Lagrange multipliers, λ. Its solution is (u∗
h, λ

∗
h) ∈ eXh(Ω) × M(Γ ), where eXh(Ω)

denotes a subspace of Xh(Ω) of functions which are continuous at vertices common

to the substructures. We partition u∗
h =

“
u(i), u(c), u(r)

”
into vectors containing the



Scalability of a FETI-DP Mortar Method 351

interior nodal points of Ωl, the vertices of Ωl, and the remaining nodal points of
∂Ωl\∂Ω, respectively.

Let K(l) be the stiffness matrix of al( · , · ). It is represented as

K(l) =

0
B@
K

(l)
ii K

(l)
ic K

(l)
ir

K
(l)
ci K(l)

cc K(l)
cr

K
(l)
ri K(l)

rc K(l)
rr

1
CA , (4)

where the rows correspond to the interior unknowns, its vertices and its edges.
Using this notation and the assumption of continuity of u∗

h at the vertices of
∂Ωl, the saddle point problem can be written as

0
BB@
Kii Kic Kir 0

Kci
eKcc Kcr B

T
c

Kri Krc Krr B
T
r

0 Bc Br 0

1
CCA

0
BBB@
u(i)

u(c)

u(r)

eλ∗

1
CCCA =

0
BB@
f (i)

f (c)

f (r)

0

1
CCA . (5)

Here, the matrices Kii and Krr are diagonal block-matrices of K
(l)
ii and K(l)

rr ,

while eKcc is a diagonal block built by matrices K(l)
cc using the fact that u(c) are

the same at the common vertices of the substructures. The mortar condition is
represented by the global matrix B = (Bc, Br).

In the system (5) we eliminate the unknowns u(i) and u(c) to obtain
 eS eBTeB eScc

! 
u(r)

eλ∗

!
=

 efrefc
!
, (6)

where (since Kic = 0 = Kci in the case of triangular elements and a piecewise linear
continuous finite element space used in the implementation):

eS = Krr −KriK
−1
ii Kir −Krc

eK−1
cc Kcr, efr = f (r) −KriK

−1
ii f

(i) −Krc
eK−1
cc f

(c)

eB = Br −Bc eK−1
cc Kcr, eScc = −Bc eK−1

cc B
T
c , and efc = −Bc eK−1

cc fc.

We next eliminate the unknown u(r) to get for eλ∗ ∈M(Γ )

Feλ∗ = d, (7)

where
F = eB eS−1 eBT − eScc, and d = eB eS−1 efr − efc. (8)

This is the FETI-DP equation for the Lagrange multipliers. Since F is positive
definite, the problem has a unique solution. This problem can be solved by conjugate
gradient iterations with a preconditioner discussed below.

Let S(l) denote the Schur complement of K(l), see (4), with respect to unknowns
at the nodal points of ∂Ωl. This matrix is represented as

S(l) =

 
S(l)
rr S(l)

rc

S(l)
cr S(l)

cc

!
, (9)

where the second row corresponds to unknowns at the vertices of ∂Ωl while the
first one corresponds to the remaining unknowns of ∂Ωl. Note that Br is a matrix
obtained from B defined on functions with zero values at the vertices of Ωl and let
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Srr = diag
n
S(l)
rr

oN
l=1

, Scc = diag
n
S(l)
cc

oN
l=1

, Scr =
“
S(1)
cr , . . . , S

(N)
cr

”
. (10)

We employ a special scaling appropriate for problems with discontinuous coeffi-
cients. The preconditioner M for (7) is defined as, see [5]

M−1 = bBr bSrr bBTr , (11)

where bSrr = diag
nbS(i)

rr

oN
i=1

, bS(i)
rr = S(i)

rr for ρi = 1 and we define

bB ˛̨
δm(i)

=

 
ρ
1/2
i Iδm(i)

,−
hδm(i)

hγm(j)

ρi
ρj
ρ
1/2
i B−1

δm(i)
Bγm(j)

!
, for δm(i) ⊂ ∂Ωi, i = 1, . . . , N ;

hδm(i)
and hγm(j)

are the mesh parameters on δm(i) and γm(j), respectively.
We have, following [5]

Theorem 1. Let the mortar side be chosen where the coefficient ρi is larger. Then
for λ ∈M(Γ ) the following holds

c0

„
1 + log

H

h

«−2

〈Mλ,λ〉 ≤ 〈Fλ,λ〉 ≤ c1

„
1 + log

H

h

«2

〈Mλ,λ〉, (12)

where c0 and c1 are positive constants independent of hi,Hi, and the jumps of ρi;
h = min

i
hi,H = max

i
Hi.

This estimate allows us to achieve numerical scalability, an essential ingredient
in a successful parallel implementation.

3 Parallel implementation and results

Our parallel implementation problem is divided into three types of tasks: solvers
on the subdomains (with different meshes of discretization) which run individually
and in parallel, a problem on the interfaces between the subdomains which can
be solved in parallel with only a modest amount of global communication, and a
”coarse” problem on the vertices between the subdomains which is a global task. A
proper implementation of the coarse problem is crucial when the number of proces-
sors/subdomains is large.

We discuss some details of the implementation and present experimental re-
sults demonstrating that this method is well scalable. The numerical experiments
were performed on up to 1024 processors provided by the University of Southern
California Center for High Performance Computing and Communications (http:
//www.usc.edu/hpcc). All jobs were run on identically configured nodes equipped
with dual Intel Pentium 4 Xeon 3.06 GHz processors, 2 GB of RAM and low latency
Myrinet networking. Our code was written in C and MPI, using the PETSc toolkit
(see [2]) which interfaces many different solvers.

The test example for our experiments is the weak formulation of

−div(ρ(x)∇u) = f(x) in Ω, (13)

with Dirichlet boundary conditions on ∂Ω, where Ω = (0, 1) × (0, 1) is a union of
N = n2 disjoint square subregions Ωi, i = 1, . . . , N and ρ(x) = ρi is a positive
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constant in each Ωi. The coefficients ρ(x) are chosen larger on the mortar sides of
the interfaces, see Theorem 1.

The distribution of the coefficients ρi and grids hi in Ωi, i = 1, . . . , 4 with a
maximum mesh ratio 8 : 1 used in our tests (for larger number of subregions, this

pattern of coefficients is repeated) is here with h =
1

32n
:

„
1e6 1e4
1e2 1

«
,

„
h/8 h/4
h/2 h

«
. (14)

Each of the N processors works on a given subdomain and communicates mostly
with the processors working on the neighboring subdomains.

For the subdomain solvers, we employ a symmetric block sparse Cholesky solver
provided by the SPOOLES library (see [1]). The matrices are factored during the
first solve and afterwards only a forward and backward substitutions are needed.

In each preconditioned conjugate gradient (PCG) iteration to solve the FETI-DP
equation (7) for the Lagrange multipliers, there are two main operations:

1. multiplication by the preconditioner M−1 = bBr bSrr bBTr which involves solving
N Dirichlet problems that are uncoupled, and some operations on the interfaces
between the neighboring subdomains.

2. multiplication by F = eB eS−1 eBT − eScc which involves solving N coupled Neu-
mann problems connected through the vertices.

The latter task involves solving a system with the global stiffness matrix K,
see (5), of the form:

0
@Kii 0 Kir

0 eKcc Kcr

Kri Krc Krr

1
A
0
@ vi
vc
vr

1
A =

0
@ 0

0
p

1
A . (15)

Its Schur complement matrix C with respect to the vertices is

C = eKcc − (0, Kcr)

„
Kii Kir

Kri Krr

«−1 „
0
Krc

«
. (16)

C is a sparse, block tridiagonal (n − 1)2 × (n − 1)2 matrix which has 9 nonzero
diagonals. Solving a ”coarse” problem with C is a global task while the subdomain
solvers are local and run in parallel.

Proper implementation of the coarse system solving is important for the scal-
ability especially when the number of processors/subdomains, N is large. Without
assembling C, the coarse system could be solved iteratively (for example, with PCG
using symmetric Gauss-Seidel preconditioner). Since the cpu cost then depends on
N , it is preferable to assemble C.

We implemented two approaches discussed in [4]. In the case of relatively small
C studied here one can invert C in parallel by duplicating it across a group of
processors so that each computes a column of C−1 by a direct solver, for which we
employed SPOOLES.

When C is larger the above approach may not be efficient or even possible; in
that case one can use distributed storage for C and then a parallel direct solver. In
a second implementation, we employed the block sparse Cholesky solver from the
MUMPS package (see [11] and [12]) interfaced through PETSc. For simplicity, the
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matrix C was stored on n− 1 or (n − 1)2 processors, with the first choice yielding
better performance.

In the tests run on up to (the maximum available to us) N = 1024 processors
the two implementations performed almost identically. In Table 1 and Fig. 1 and 2
we present results from our first implementation when the coarse problem is solved
by computing columns of C−1.
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Fig. 1. Iterations and execution time vs number of processors.

Fig. 1 shows that the number of PCG iterations remains constant after N = 36
when the number of subdomains/processors is increased. The graph of the execution
time (on the right) has a similar pattern. Although the number of degrees of freedom
is increasing, the cpu time remains almost constant, see Table 1.

N # it d.o.f. cpu time

4 6 87 037 11.4
16 13 350 057 13.3
36 16 789 061 14.0
64 16 1 404 049 14.1

100 16 2 195 021 14.2
144 16 3 161 977 14.3
196 16 4 304 917 14.4
256 16 5 623 841 14.4
324 16 7 118 749 14.5
400 16 8 789 641 14.5
484 16 10 636 517 14.6
576 16 12 659 377 14.6
676 16 14 858 221 14.7
784 16 17 233 049 14.8
900 16 19 783 861 14.9

1024 16 22 510 657 15.0

Table 1. Number of iterations, number of
degrees of freedom and execution time in
seconds.
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Fig. 2. Speed-up.

Fig. 2 shows the speed-up of the algorithm, where the dashed line represents
the ideal (linear) and the solid line the actual speed-up, respectively.

We adopt the definition of the speed-up of [3]. Here, it is adjusted to N0 = 36 as
a reference point, after which the number of iterations remains constant, see Table
1:
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Sp =
36× T36

TNp

×
NdofNs

Ndof36
,

where T36 and TNp denote the CPU time corresponding to 36 and Np processors, re-
spectively, and Ndof36 and NdofNs

denote the number of d.o.f. of the global problems
corresponding to 36 and Ns subdomains, respectively.

This definition accounts both for the numerical and parallel scalability.

4 Conclusions

In this paper we study the parallel performance of the FETI–DP mortar precon-
ditioner developed in [5] for elliptic 2D problems with discontinuous coefficients.
The computational evidence presented illustrates good scalability of the method (an
almost linear speed-up).

We would like to thank Max Dryja for his collaboration throughout. The first
author would like to thank Panayot Vassilevski for the guidance during her summer
internship at the Lawrence Livermore National Laboratory. The USC Center for
High Performance Computing and Communications (HPCC) is acknowledged for
generously providing us with the use of its Linux cluster.
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1 Introduction

We design and analyze Neumann-Neumann (N-N) algorithms for elliptic problems
imposed in the 2-D polygonal region Ω with discontinuous coefficients on fine tri-
angulation. We first discuss the two-level N-N algorithm and then we extend it to
three levels. The coefficients !i given on the coarse Ωi triangulation are discontinu-
ous functions with respect to a fine triangulation in Ωi. We assume, for simplicity
of representation, that !i = !ki is constant on τki triangles of the fine triangulation
in Ωi. The resulting fine triangulation on Ω̄ = ∪iΩ̄i is matching. We assume that

!̄i ∼ !ki for each τki ⊂ Ωi where !̄i =
1

|Ωi|
X

τk
i ⊂Ωi

|τki |!ki . It means that !ki are

moderated in Ωi, i.e. min
k

!ki and max
k

!ki are the same order. Under this assumption

we prove that the two-level N-N algorithm is almost optimal and its rate of con-
vergence is independent of the parameters of coarse and fine triangulation and the
jumps of !i across ∂Ωi.

This result is extended to the three-level N-N algorithm defined by three trian-
gulation of Ω: super-coarse {Ωi}, coarse {Ωj

i } with Ωj
i ⊂ Ωi and fine with τkij ⊂ Ωj

i

on which the problem is discritized. The discontinuities of !i are given on the coarse
triangulation. The three-level N-N algorithm in each iteration reduces to solving a
global problem on {Ωi}, coarse local problems on {Ωj

i } in each Ωi and local prob-
lems on the fine triangulation in each Ωj

i . The global and coarse local problems
are defined on the coarse triangulation. The rate of convergence of the three-level

∗This work was partially supported by Polish Scientific Grant 2/P03A/005/24.
The work was supported in part by U.S. Department of Energy under contract
DE-FG02-92ER25127
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N-N algorithm is proved under the assumption as above in Ωi and Ωj
i but it is

independent of the jumps of !i across ∂Ωi.
The methods discussed in this paper can be generalized to elliptic problems with

discontinuous coefficients in three dimensions.
The N-N algorithms (two-level) are well understood for conforming finite element

discretization of elliptic problems with coefficients ! which are constants on each Ωi,
the coarse triangulation of Ω, see [2], [1] and the books [4] and [3], and literature
theirin. The first goal of this paper is to generalize the method to solving the problem
with coefficients !i which are also discontinuous in each Ωi. The second goal is to
design and analyze the three-level method for solving the problem. To our knowledge
the N-N algorithms designed and analyzed in this paper for solving FE discretization
of elliptic problems with discontinuous coefficients also in Ωi have not previously
been discussed in the literature.

The paper is organized as follows. In Section 2, the differential problem and its
FE discretization are described. Section 3 is devoted to designing and analyzing the
two-level N-N algorithm. In Section 4, the three-level N-N algorithm is designed and
analyzed.

2 Differential and discrete problems

Find u∗ ∈ H1
0 (Ω) such that

a�(u
∗, v) = f(v), v ∈ H1

0 (Ω) (1)

where

a�(u, υ) =
NX
i=1

Z
Ωi

!i∇u∇υdx, f(υ) =

Z
Ω

fυdx (2)

and Ω is a polygonal region in R2, Ωi are polygons, Ω̄ =
[

Ω̄i; !i(x) ≥ !0
i > 0, f ∈

L2(Ω).
We assume that {Ωi} forms a coarse triangulation with a parameter H. We

introduce a fine triangulation in Ωi with triangles τki . The resulting triangulation
on Ω with parameter h have to be matching. The coarse and fine triangulation by
the assumption are shape regular in the common sense of FE theory. We assume,
for simplicity of presentation, that !i(x) = !ki > 0 on τki ⊂ Ω̄i where !ki are
constants.

Let Vh(Ω) be a finite element space of piecewise linear continuous functions on
the fine triangulation with zero values on ∂Ω. The discrete problem is of the form:

Find u∗
h ∈ Vh(Ω) such that

a�(u
∗
h, υh) = f(υh), υh ∈ Vh(Ω). (3)

3 Two level Neumann-Neumann algorithm

The problem (3) is reduced to the Schur complement problem of the form:

S�uB = bB (4)
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where

(S�uB , υB) =
NX
i=1

(S�i u
(i)
B , υ

(i)
B ).

Here u ∈ Vh(Ω) on Ω̄i is denoted by u(i) and decomposed into u
(i)
I and u

(i)
B which

correspond to interior and boundary values of u(i), respectively;

(S�i u
(i)
B , u

(i)
B ) = a�i (Hiu

(i)
B ,Hiu(i)

B )

where the discrete harmonic extension Hi is understood in the sense of

a�i (u, υ) =
X

τk
i ⊂Ωi

!ki (∇u,∇υ)L2(τk
i ),

the original form restricted to Ωi.
We will use also the discrete harmonic functions Ĥiu in the sense of

âi(u, υ) ≡
Z
Ωi

∇u∇υdx+
1

H2
i

Z
Ωi

uυdx

where Hi is a diameter of Ωi.
Let

Vh(Ω) = V H
h (Ω)⊕ V Ph (Ω)

where H = {Hi}, P = {Pi} and Pi is the projection in the sense of a�i (., .), i.e.

u|Ωi
= Hiu+ Piu.

The problem (4) is considered in the space V H
h (Ω) which below is denoted by Vh(Γ )

where Γ = (
[
i

∂Ωi)\∂Ω.

For (4) we design a Neumann-Neumann (N-N) algorithm (two-levels) as ASM.
For that the general theory of ASMs is used, see [1] or the books [4] and [3].

3.1 Decomposition of Vh(Γ)

This is of the form:

Vh(Γ ) = V0(Γ ) + V1(Γ ) + · · ·+ VN(Γ ).

The spaces Vi, i = 1, · · · , N, are defined as

Vi(Γ ) = {u ∈ Vh(Γ ) : u(x) = 0, x ∈ Γh\∂Ωih}

where Γh and ∂Ωih are the sets of nodal points of Γ and ∂Ωi, respectively. We point
out that here the discrete harmonic functions are in the sense of a�i (., .). The space
V0 is defined as

V0(Γ ) = span{Ih(!̄1/2
i µ̄†

i )}i∈NI , !̄i =
1

|Ωi|
X

τk
i ⊂Ω̄i

|τki |!ki ,

where
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µ̄i(x) =
X
j

!̄
1/2
j , x ∈ ∂Ωh,i; µ̄i = 0, Γh\∂Ωih.

Here Ih is the linear interpolant on the fine triangulation and the sum of j is taken
over the values of j for which x ∈ ∂Ωj , and NI is the set of Ωi which do not touch

∂Ω. Note that the harmonic extension of Ih(!̄
1/2
i µ̄†

i ) is in the sense of a
(�)
i (., .). For

simplicity of presentation, we assume that any Ωi for i ∈ NB touches ∂Ω by an edge
where NB is the set of Ωi which touch ∂Ω. This guarantees that V0(Γ ) ⊂ Vh(Γ ).

Remark 1. The space V0 can be extended by adding basis functions corresponding to
Ωi for i ∈ NB with modified µ†

i . It can be done in the same way as for the standard
case, see [1] for details.

3.2 Inexact solver

Let for i = 1, · · · , N and u, υ ∈ Vi(Γ )

bi(u, υ) ≡ âi(ĤiIh(µ̄iu), ĤiIh(µ̄iυ)).

For i = 0 and u, υ ∈ V0(Γ )

b0(u, υ) ≡ (1 + log
H

h
)−1a�(u, υ).

3.3 The equation

Let Ti : Vh(Γ )→ Vi(Γ ), i = 0, · · · , N , be defined as

bi(Tiu, υ) = a�(u, υ), υ ∈ Vi(Γ )

and
T ≡ T0 + T1 + · · ·+ TN .

The problem (4) is replaced by
Tu∗

h = gh

where gh =
NX
i=0

gi, gi = Tiu
∗
h. Note that to find gi we do not need to know u∗

h, the

solution of (4).

Theorem 1. Let for i = 1, · · · , N,

!̄i ∼ !ki for τki ⊂ Ωi.

Then for u ∈ Vh(Γ )

C0S
�(u, u) ≤ S�(Tu, u) ≤ C1(1 + log

H

h
)2S�(u, u)

where C0 and C1 are positive constants independent of h and H, and the jumps of
coefficients across ∂Ωi.
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4 Three level Neumann-Neumann algorithm

In this section we design the three-level N-N algorithm for solving the problem
(3) defined by three-level triangulation of Ω: supercoarse {Ωi} with hsc parameter,
coarse {Ωj

i } with Ωj
i ⊂ Ωi and parameter hc and fine {τkij} with τkij ⊂ Ωj

i and h

parameter. Thus Ω̄ =

N[
i=1

Ω̄i, Ω̄i =

Ni[
j=1

Ω̄j
i , Ω̄

j
i =

[
k

τ̄kij where Ωi are polygons while

Ωj
i and τkij are triangles. We assume that these three triangulation are shape regular

in the common sense of FE theory.
The problem (3) is discretized on the fine triangulation with elements τkij and

the coefficients !kij on these elements. We assume, that !kij = !ji for all τkij ⊂ Ωj
i and

they are positive constants. If !kij are piecewise constants on the fine triangulation in

Ωj
i then !ji is defined as the integral average of !kij over Ωj

i . The Schur complement

problem (4) is now defined on the {∂Ωj
i } triangulation and Vh(Γ ) is a space of

discrete harmonic functions in each Ωj
i , in the sense of a�ij(.,.), the restriction a�(.,.)

to Ωj
i , with data on ∂Ωj

i ; Γ = (
[
i

[
j

∂Ωj
i )\∂Ω, Γ0 = (

[
i

∂Ωi)\∂Ω.

The three-level N-N algorithm for solving (4) is designed and analyzed using the
general theory of ASMs, see [1] or the books [4] and [3].

4.1 Decomposition of Vh(Γ)

Let

Vh(Γ ) = V00(Γ0) +
NX
i=1

(V H
0i (Γ0) + V P0i (Γ0)) +

NX
i=1

NiX
j=1

Vij(Γ ). (5)

The spaces Vij , i = 1, · · · , N, j = 1, · · · , Ni, are of the form:

Vij(Γ ) := {v ∈ Vh(Γ ) : v(x) = 0 at x ∈ Γh\∂Ωj
ih}

where Γh and ∂Ωj
ih are the sets of nodal points of Γ and ∂Ωj

i , respectively.
To define V00, V

H
0i and V P0i we introduce first two auxiliary spaces V0(Γ ) and

V
(c)
0 (Γ0). Let

µji (x) =
X
l,k

(!kl )
1/2, x ∈ ∂Ωj

i,h; µji = 0, x ∈ Γh\∂Ωj
ih

where the sum is taken over substructures Ωk
l , for which x ∈ ∂Ωk

l,h. Let us introduce

V0(Γ ) = span{Ih((!ji )1/2(µji )†)}, i ∈ N (c)
I , j ∈ N (c)

I,i .

Here N (c)
I are the set of Ωi which to not touch ∂Ω while N (c)

I,i is the set of Ωj
i in Ωi.

We assume here and below, for simplicity of presentation, that if Ωj
i touches ∂Ω

it touches its by an edge. We should point out that the function Ih((!
j
i )

1/2(µji )
†)

given on {∂Ωk
l } is extended to {Ωk

l } as discrete harmonic in the sense of a�kl(.,.), the

restriction a�(., .) to Ωk
i . Note that V0(Γ ) ⊂ Vh(Γ ) is the coarse space in the case of

the two-level N-N algorithm based on {τkij} and {Ωj
i } triangulation.



362 M. Dryja and O. Widlund

Let Ic be the linear interpolant on the coarse triangulation with the parameter hc.
Let V

(c)
0 (Γ ) = IcV0(Γ ). Functions V

(c)
0 (Γ ) are piecewise linear continuous on {Ωj

i }
and defined by values given at vertices of Ωj

i . Thus the two-level decomposition of
Vh(Γ ) is of the form

Vh(Γ ) = V
(c)
0 (Γ ) +

NX
i=1

NiX
j=1

Vij(Γ ). (6)

We now further decompose V
(c)
0 (Γ ) to get the three-level decomposition of

Vh(Γ ). Let u0 ∈ V (c)
0 (Γ ) on Ωi be

u0|Ωi = H(c)
i u0 + P

(c)
i u0, i = 1, · · · , N (7)

where H(c)
i u0 is discrete harmonic in Ωi on the coarse triangulation {Ωj

i } in the
sense of a�i (.,.), the restriction a�(.,.) to Ωi, with data u0 on ∂Ωi. Let V H

0i (Γ0)

and V P0i (Γ0) denote subspaces of V
(c)
0 (Γ ) defined as follows: V H

0i (Γ0) is a space of

discrete harmonic functions in {Ωj} in the sense of H(c)
i with data u0 on ∂Ωi and

zero on Γ0h\∂Ωih. V P0i (Γ0) is PcV0(Γ ) with zero outside Ωi where Pc = {P (c)
i }. The

decomposition of V
(c)
0 is of the form

V
(c)
0 (Γ ) = V00(Γ0) +

NX
i=1

(V H
0i (Γ0) + V P0i (Γ0)). (8)

The space V00(Γ0) is defined as (Hc = {H(c)
i })

V00(Γ0) = span{HcIc(!̄1/2
i (µ̄†

i ))}, i ∈ NI , !̄i =
1

|Ωi|
X

Ω
j
i ⊂Ωi

!ji |Ωj
i |

and
µ̄i =

X
j

!̄
1/2
j , x ∈ ∂Ωi; µ̄i = 0, x ∈ Γ0h\∂Ωih.

We point out that Ic(!̄
1/2
i (µ̄i)

†) given on {∂Ωj} is extended to Ωj on the coarse tri-
angulation {Ωk

j } as discrete harmonic function in the sense of a�j (.,.), the restriction

a�(.,.) to Ωj .We note that V00(Γ0) ⊂ V
(c)
0 (Γ ) ⊂ Vh(Γ ) since the discrete harmonic

function in the sense of a�i (.,.), with data on ∪i∂Ωi, is also the discrete harmonic
function on {Ωj

i } in the sense of a�ij(u, v). Using (8) in (6) we get the three-level
decomposition (5) of Vh(Γ ).

4.2 Inexact solver

Let for i = 1, · · · , N, bji (., .) be defined as in Section 3 with respect to the coarse
triangulation {Ωj

i }, i.e. for u, v ∈ Vij

bji (u, v) = âij(Ĥji Ih(µjiu), Ĥji Ih(µjiv))(1 + log
hc
h

)−1,

i = 1, · · · , N, j = 1, · · · , Ni where âij(·, ·) is defined as in Section 3 with Ωj
i and

H2
ij instead of Ωi and H2

i , where Hij is a diameter of Ωj
i .
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In the space V00(Γ0) we set

b00(u, v) = a�(u, v)(1 + log
hsc
hc

)−1(1 + log
hc
h

)−1, u, v ∈ V00(Γ0),

where hsc = max
i

Hi, hc = max
ij

Hij and Hi and Hij are diameters of Ωi and Ωj
i ,

respectively.
In the space V H

0i (Γ0) and V P0i (Γ0), i = 1, · · · , N , we set

bH0i(u, v) = âi(Ĥ(c)
i Ic(µ̄iu), Ĥ(c)

i Ic(µ̄iu))(1 + log
hc
h

)−1, u, v ∈ V H
0i (Γ0),

and

bP0i(u, v) = a�i (u, v)(1 + log
hc
h

)−1, u, v ∈ V P0i (Γ0).

Here Ĥ(c)
i is defined as in (7) on the coarse triangulation in Ωi with Hi, a diameter

of Ωi.

4.3 The equation

Let T ji : Vh(Γ )→ Vij(Γ ) for i = 1, · · · , N, j = 1, · · · , Ni, be defined by

bji (T
j
i u, v) = a�(u, v), v ∈ V ji (Γ ).

Let TH
0i : Vh(Γ )→ V H

0i (Γ0) and TP0i ; Vh(Γ )→ V Pi0 (Γ0), i = 1, · · · , N , be defined by

bH0i(T
H
0i u, v) = a�(u, v), v ∈ V0i(Γ )

and
bP0i(T

P
0iu, v) = a�(u, v), v ∈ V P0i (V0).

Let finally T00 : Vh(Γ )→ V00(Γ0) be defined by

b00(T00u, v) = a�(u, v), v ∈ V00(Γ0).

Let

T = T00 +
NX
i=1

(TH
0i + TP0i) +

NX
i=1

NiX
j=1

T ji .

The problem (4), defined on {∂Ωj
i } with the coefficients !ji on Ωj

i , is replaced by

Tu∗
h = gh

where gh = g00 +
NX
i=1

(gH0i + gP0i) +
NX
i=1

NiX
j=1

gij , g00 = T00u
∗
h, gH0i = TH

0i u
∗
h, gP0i =

TP0i , gij = T ji u
∗
h.

Theorem 2. Let for i = 1, · · · , N
!̄i ∼ !ji for Ωj

i ⊂ Ωi.

Then for u ∈ Vh(Γ )

C0S
�(u, u) ≤ S�(Tu, u) ≤ αC1S

�(u, u)

where

α = max{(1 + log
hsc
hc

)2(1 + log
hc
h

), (1 + log
hc
h

)3}
and C0 and C1, are positive constants independent of h, hc and hsc, and the jumps
of coefficients across ∂Ωi.
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Summary. In the past few years, Domain Decomposition Methods (DDM) have
emerged as advanced solvers in several areas of computational mechanics. In par-
ticular, during the last decade, in the area of solid and structural mechanics, they
reached a considerable level of advancement and have been shown to be more efficient
than popular solvers, like advanced sparse direct solvers. The present contribution
follows the lines of a series of recent publications by the authors on DDM. In these
papers, the authors developed a unified theory of primal and dual methods and pre-
sented a family of DDM that were shown to be more efficient than previous methods.
The present paper extends this work, presenting a new family of related DDM, thus
enriching the theory of the relations between primal and dual methods.

1 Introduction

In the last decade Domain Decomposition Methods (DDM) have progressed sig-
nificantly leading to a large number of methods and techniques, capable of giving
solution to various problems of computational mechanics. In the field of solid and
structural mechanics, in particular, this fruitful period has led to the extensive par-
allel development of two large families of methods: (a) the Finite Element Tearing
and Interconnecting (FETI) methods and (b) the Balancing Domain Decomposition
(BDD) methods. Both categories of methods were introduced at the beginning of the
90s [1, 6] and today include a large number of variants. However, their distinct the-
ories have led to a lack of extensive studies to interconnect them in the past. Thus,
in the present decade two studies [5, 2] have attempted to determine the relations
between the two methods.

In particular, studies [2, 3] set the basis of a unified theory of primal and dual
DDM. This effort also led to the introduction of a new family of methods, under
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the name “Primal class of FETI methods”, or in abbreviation “P-FETI methods”.
These methods are derived from the Dirichlet preconditioned FETI methods. They,
thus, inherit the high computational efficiency properties of these methods, while
their primal flavour gives them increased efficiency and robustness in ill-conditioned
problems. However, so far a primal alternative for the lumped preconditioned FETI
methods has not been presented. Filling this hole is the object of the present study
and even though the new formulations do not appear to share the same advantages
as the P-FETI formulations, they serve the purpose of diversifying our knowledge
of the relations of primal and dual methods.

Thus, this paper presents the primal alternatives of the lumped preconditioned
FETI methods and is organised as follows: Section 2 presents the base formulation of
the introduced methods and section 3 transforms the algorithms into a more econom-
ical form. Section 4 presents numerical results for comparing the new formulation
with previous ones and section 5 gives some concluding statements.

2 Basic formulation of the primal alternatives of the
FETI methods equipped with the lumped preconditioner

The P-FETI methods were built on the concept of preconditioning the Schur com-
plement method with the first estimate of displacements obtained during the FETI
methods. Accordingly, the primal counterparts of the lumped preconditioned meth-
ods will be obtained by similarly preconditioning the intact global problem. Thus,
the following equation

Ku = f ⇔ LTKsLu = LT fs (1)

will be preconditioned with the first displacement estimate of a FETI method. In
eq. (1), K, u, and f represent the global stiffness matrix, displacement and force
vectors, respectively, while

Ks =

2
664
K(1)

. . .

K(ns)

3
775 , us =

2
664
u(1)

...

u(ns)

3
775 , fs =

2
664
f (1)

...

f (ns)

3
775 (2)

are the matrix block-diagonal assemblage of the correponding quantities of the sub-
domains s = 1, ..., ns and L is a Boolean restriction matrix, such that us = Lu. Using
the original FETI formulation, usually refered to as “one-level FETI” or “FETI-1”,
the following preconditioner for (1) is derived (this equation is obtained following
an analysis almost identical to [2], section 6):

Ã−1 = LTp Ã
s−1

Lp (3)

where:

Ãs
−1

= HTKs+H , H = I −BTQG(GTQG)−1Rs
T

, G = BRs (4)

Here, Rs and Ks+ are the block-diagonal assemblage of subdomain zero energy
modes and generalized inverses of subdomain stiffness matrices, respectively. B is a
mapping matrix such that null(B) = range(L), Q is a symmetric positive definite
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matrix used in the FETI-1 coarse projector (see for instance [1]), while Lp and Bp are
scaled variants of L and B (see the expressions gathered from various DDM papers
in [2]). Similar ideas lead to the corresponding preconditioners that are derived from
other FETI variants. Comparing the lumped preconditioned FETI-1 method with
the method of this section, it is noted that the present method has a significantly
higher computational cost, because it operates on the full displacement vector u of
the structure and also needs multiplications with the full stiffness matrices of the
subdomains. In order to diminish its cost, this algorithm will be transformed into a
more economical version, by respresenting its primal variables with dual variables.

3 Change of variables

The primal variables of the algorithm of the previous section will be represented
with dual variables, based on the theorem: If the initial solution vector of the PCG
algorithm applied for the solution of eq. (1) with the preconditioner of eq. (3), is set
equal to:

u0 = Ã−1f (5)

then there exist suitable vectors (denoted below with the subscript “1”), such that
the following variables of the PCG can be written in the forms (k = 0, 1, ...):

zk = −LTp Ãs
−1

BT zk1 , pk = −LTp Ãs
−1

BT pk1 (6)

rk = LTKsBTp r
k
1 , qk = LTKsBTp q

k
1 (7)

In eqs. (5) - (7) and what follows, we use the notation and steps of Algorithm 1.
Eqs. (6) - (7) allow for expressing the PCG vectors, which have the size of the total
number of degrees of freedom (d.o.f.), with respect to vectors whose size is equal to
the row size of matrix B (which in turn is equal to the number of Lagrange multipliers
used in dual DDM). They thus allow a reduction of the cost of the algorithm. The
relatively small length of the present paper does not allow a full proof for the above
theorem. This proof is obtained by following the steps of the PCG and thus proving
recursively the eqs. (6) - (7) (The full proof can be found in a larger version of this
paper [4]). Using eqs. (6) - (7) and the definitions:

• Initialize

r0 = f −Ku0 , z0 = Ã−1r0 , p0 = z0 , q0 = Kp0 , η0 =
p0T

r0

p0T q0

• Iterate k = 1, 2, ... until convergence

uk = uk−1 + ηk−1pk−1 , rk = rk−1 − ηk−1qk−1 , zk = Ã−1rk

pk = zk −
k−1X
i=0

zk
T

qi

piT qi
pi , qk = Kpk , ηk =

pk
T

rk

pkT qk

Algorithm 1. The PCG algorithm for solving system Ku = f preconditioned with
Ã−1 (full reorthogonalization)
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zk2 = BÃs
−1

BT zk1 , zk3 = BpK
sBTp z

k
2 (8)

pk2 = BÃs
−1

BT pk1 , pk3 = BpK
sBTp p

k
2 (9)

rk2 = BpK
sBTp r

k
1 , rk3 = BÃs

−1

BT rk2 (10)

qk2 = BpK
sBTp q

k
1 , qk3 = BÃs

−1

BT qk2 (11)

it is thus shown following the proof of the above theorem that the PCG algorithm for
solving eq. (1) with preconditioner of eq. (3) is transformed into Algorithm 2 (in the
case of full reorthogonalization). In Algorithm 2, it is worth noting that even though
the formulation is primal, the final algrorithm is very similar to the algorithm of the
FETI-1 method with the lumped preconditioner. In particular:

• The matrices BÃs
−1

BT and BTpb
Ks
bbB

T
pb

that are used during the iterations are
equal to the FETI-1 matrix operator and lumped preconditioner, respectively.

• The algorithm iterates on vectors of the size of the Lagrange multipliers.
• From the equations that compute vectors rk and qk (k = 0, 1, ...) in Algorithm

2, it follows that the residuals rk vanish in internal d.o.f. of the subdomains,
when these d.o.f. are not adjacent to the interface, again as in FETI-1 with the
lumped preconditioner.

On the other hand, each iteration of the present algorithm requires more linear com-
binations of vectors than a dual algorithm. These operations become important in

the case of reorthogonalization. In this case, the required dot products zk
T

1 (qi3− qi1),
i = 0, ..., k − 1 imply the same computational cost as in FETI-1, because at each
iteration qk3 − qk1 is computed and stored. However, compared to FETI-1, this algo-
rithm requires twice as many linear combinations for computing the vectors pk1 and
pk2 , that represent the direction vectors pk. In total, in this algorithm reorthogonal-
ization requires 50% more floating point operations than in FETI-1. In addition,
while FETI-1 reorthogonalization requires storing two vectors per iteration, here it
is required to store the three vectors pk1 , pk2 and qk3 − qk1 , which implies 50% higher
memory requirements for reorthogonalization in Algorithm 2.

• Initialize

u0 = LTp Ã
s−1

Lpf , ũ0 = 0 , r01 = BÃs
−1

Lpf

r0 =

»
LTb K

s
bb

Ks
ib

–
BTpb

r01 , p0
1 = z0

1 = BTpb
Ks
bbB

T
pb
r01

q01 = p0
2 = r03 = z0

2 = BÃs
−1

BT z0
1 , q0 =

»
LTb K

s
bb

Ks
ib

–
BTpb

q01

p0
3 = q02 = BTpb

Ks
bbB

T
pb
q01 , η0 =

(p0T

3 − p0T

1 )r01

(p0T

3 − p0T

1 )q01

• Iterate k = 1, 2, ... until convergence (
‚‚‚rk‚‚‚ < ε)

ũk1 = ũk1 + ηk−1pk−1
1 , rk = rk−1 − ηk−1qk−1 , rk1 = rk−1

1 − ηk−1qk−1
1

zk1 = rk2 = rk−1
2 − ηk−1qk−1

2 , rk3 = zk2 = BÃs
−1

BT zk1

qk−1
3 =

“
1
.
ηk−1

”“
rk−1
3 − rk3

”
, pk1 = zk1 −

k−1X
i=0

zk
T

1 (qi3 − qi1)

pi
T

1 (qi3 − qi1)
pi1
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qk1 = pk2 = zk2 −
k−1X
i=0

zk
T

1 (qi3 − qi1)

pi
T

1 (qi3 − qi1)
pi2 , qk =

»
LTb K

s
bb

Ks
ib

–
BTpb

pk2

pk3 = qk2 = BTpb
Ks
bbB

T
pb
pk2 , ηk =

(pk
T

3 − pk
T

1 )rk1

(pk
T

3 − pk
T

1 )qk1

• After convergence

uk = u0 − LTp Ãs
−1

BT ũk1

Algorithm 2: The primal alternative of the FETI-1 method with the lumped
preconditioner (full reorthogonalization)

4 Numerical results

We have implemented the FETI-1 and FETI-DP methods with the lumped precon-
ditioner and their primal alternatives in our Matlab code and we consider the 3-D
elasticity problem of Fig. 1. This cubic structure is composed of five layers of two
different materials and is discretized with 28× 28× 28 8-node brick elements. Addi-
tionally, it is pinned at the four corners of its left surface. Various ratios EA/EB of
the Young modulus and ρA/ρB of the density of the two materials are considered,
while their Poisson ratio is set equal to νA = νB = 0.30. Two decompositions P1 and
P2 of this heterogeneous model of 73, 155 d.o.f. in 100 subdomains, are considered
(see [2] for details).

Table 1 presents the iterations required by primal and dual formulations of the
lumped preconditioned FETI-1 method. The results show that like in the case of
comparing dual and primal formulations of the Dirichlet preconditioned FETI meth-
ods, the iterations of the two formulations of the lumped preconditioned FETI-1
methods are comparable. More precisely, it is noted that in the more ill-conditioned
cases the primal method requires slightly fewer iterations (up to 11%) than the
dual one. In fact, judging also from many other tests that we have performed com-
paring the two formulations of FETI-1 and FETI-DP with the lumped precondi-
tioner, it appears that the difference between the number of iterations of primal and
dual formulations in ill-conditioned problems is more pronounced in the case of the
lumped preconditioner than in the case of the Dirichlet preconditioner. A probable
explanation is that the lumped preconditioned methods lead by themselves to more
ill-conditioned systems than the Dirichlet ones.

On the other hand, bearing in mind that the primal formulation implies a 50%
higher reorthogonalization cost, we conclude that statistically the primal formula-
tion will be probably slower than the dual one for well-conditioned problems and
probably faster for ill-conditioned problems with relatively low reorthogonalization
cost. In addition, in the case of the lumped preconditioner, our results do not show
the increased robustness (measured in terms of the maximum achievable solution
accuracy in ill-conditioned problems) of the primal formulation that has been seen
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in the case of the P-FETI formulations. A probable explanation of this observation
is given by the increased operations required in each iteration of the primal algo-
rithm as oposed to the dual one and also by the fact that due to setting the initial
solution vector equal to eq. (20), the initial residual of the primal methods is equal
to the initial residual of the dual methods (see the expression of the residual r0 in
Algorithm 2, which is equal to the initial residual of the FETI-1 method). Thus,
contrary to the P-FETI formulations, the residuals of the primal formulations of the
lumped preconditioned FETI methods begin from relatively high values, as in the
dual formulations.

5 Conclusions

The roots of the work presented in this paper can be traced back to the paper
[2]. That paper introduced the P-FETI methods, as the primal alternatives of the
Dirichlet preconditioned FETI methods. Compared to the original FETI formula-
tions, the P-FETI methods present the advantage of being more robust and faster in
the solution of ill-conditioned problems. [2] also introduced an open question of the
existence of a primal alternative for the lumped preconditioned FETI methods. In
the last few years it has become clear that the lumped preconditioner leads to faster
solutions, in the cases where a problem needs to be decomposed in a relatively small
number of subdomains. These cases and also the cases where the lumped precond-
tioner leads to implementations that require less memory (in large problems where
this can be the main issue), appear to be the cases where the lumped preconditioner
is used in modern DDM practice.

Fig. 1. A cubic structure composed of two materials.

The present work introduces primal alternatives of the lumped preconditioned
FETI methods. These new formulations do not appear to present the advantages
of the P-FETI formulations, since they are slightly slower or faster than their dual
counterparts depending on the problem and do not exhibit higher robustness than
the dual methods. Their principal value lies in the fact that they add a new level of
completion to the theory of the relations of primal and dual methods. The fact that
a primal algorithm can be turned to an algorithm which uses dual operators and
vectors appears to be new. It is also worth noting that the same transformations
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Table 1. Number of iterations (Tolerance:10−3) of the lumped preconditioned FETI-
1 method and its primal alternative for the solution of the example of Fig. 1.

Ratio of Young
moduli

Type of decom-
position

Dual formulation Primal formula-
tion

100 P1 25 24

103 P1 44 41

103 P2 25 24

106 P1 30 26

106 P2 53 47

used in this paper can be used for the P-FETI and the BDD methods in order to
transform them into algorithms that operate on dual quantities. This and many
other recent studies [5, 7] show more and more that primal and dual formulations
are closely connected.
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1 Introduction and Problem Setting

We consider Stokes equations in the fluid region Ωf and Darcy equations for the fil-
tration velocity in the porous medium Ωp, and coupled at the interface Γ with
adequate transmission conditions. Such problem appears in several applications
like well-reservoir coupling in petroleum engineering, transport of substances across
groundwater and surface water, and (bio)fluid-organ interactions. There are some
works that address numerical analysis issues such as inf-sup and approximation re-
sults associated to the continuous and discrete formulations Stokes-Darcy systems
[8, 7, 6] and Stokes-Laplacian systems [2, 3], mortar discretizations analysis [12, 6],
preconditioning analysis for Stokes-Laplacian systems [4, 1]. Here we are interested
on preconditionings for Stokes-Mortar-Darcy with flux boundary conditions, there-
fore the global system as well as the local systems require flux compatibilities. Here
we propose two preconditioners based on balancing domain decomposition methods
[9, 11, 5]; in the first one the energy of the preconditioner is controlled by the Stokes
system while in the second one it is controlled by the Darcy system. The second is
more interesting because it is scalable for the parameters faced in practice.

Let Ωf , Ωp ⊂ �n be polyhedral subdomains, Ω = int(Ωf ∪ Ωp) and Γ =
int(∂Ωf ∪ ∂Ωp), with outward unit normal vectors on ∂Ωj denoted by ηj , j = f, p.
The tangent vectors of Γ are denoted by τ 1 (n = 2), or τ l, l = 1, 2 (n = 3). Define
Γj := ∂Ωj \ Γ , j = f, p. Fluid velocities are denoted by uj : Ωj → �n, j = f, p.
Pressures are pj : Ωj → �, j = f, p. We have:

Stokes equations Darcy equations8<
:
−∇·T (uf , pf ) = f f in Ωf

∇·uf = gf in Ωf
uf = hf on Γf

8><
>:

up = −κ
µ
∇pp in Ωp

∇·up = gp in Ωp
up·ηp = hp on Γp

(1)

Here T (v, p) := −pI + 2µDv where µ is the viscosity and Dv :=
1

2
(∇v + ∇vT )

is the linearized strain tensor. κ represents the rock permeability and µ the fluid
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viscosity. For simplicity in the analysis we assume that κ is a real positive constant.
We also impose the compatibility condition (see [6])

〈gf , 1〉Ωf + 〈gp, 1〉Ωp − 〈hf ·ηf , 1〉Γf − 〈hp, 1〉Γp = 0,

and the following interface matching conditions across Γ (see [8, 3, 2, 4] and refer-
ences therein):

1. Conservation of mass across Γ: uf·ηf + up·ηp = 0 on Γ.

2. Balance of normal forces across Γ: pf − 2µηTfD(uf )ηf = pp on Γ .

3. Beavers-Joseph-Saffman condition: This condition is an empirical law
that gives an expression for the component of Σ in the tangential direction of τ . It
is expressed by:

uf ·τ j = −
√
κ

αf
2ηTfD(uf )τ j j = 1, d− 1; on Γ. (2)

2 Weak Formulations and Discretization.

Without loss of generality we consider the case where hf = 0, hp = 0, and αf =∞.
Here we use the energy of αf -harmonic Stokes and harmonic Laplacian extensions
are equivalents independent of αf ; see [6].

The problem is formulated as: Find (u, p, λ) ∈ X ×M × Λ satisfying, for all
(v, q, µ) ∈ X ×M × Λ:

8<
:
a(u,v) + b(v, p) + bΓ (v, λ) = �(v)
b(u, q) = g(q)
bΓ (u, µ) = 0,

(3)

where X = Xf ×Xf := H1
0 (Ωf , Γf )

2 ×H0(div, Ωp, Γp); M := L2
0(Ω) ⊂ L2(Ωf )×

L2(Ωp). Here H1
0 (Ωf , Γf ) denotes the subspace of H1(Ωf ) of functions that vanish

on Γf . Analogously,H0(div, Ωp, Γp) denotes the subspace ofH(div, Ωp) of functions
with its normal trace restricted to Γp zero. The Lagrange multiplier space is Λ :=
H1/2(Γ ). Also

a(u, v) := af (uf , vf ) + ap(up,vp), b(v, p) := bf (vf , pf ) + bp(vp, pp),

and bΓ (v, µ) := 〈vf · ηf , µ〉Γ + 〈vp· ηp, µ〉Γ , v = (vf ,vp) ∈ X , µ ∈ Λ, where
〈vp·ηp, µ〉Γ := 〈vp·ηp, Eηp

(µ)〉∂Ωp . Here Eηp
is any continuous lifting. The bi-

linear forms aj , bj are associated to Stokes equations, j = f , and Darcy law, j = p.
The bilinear for af incorporates conditions 2 and 3 above. The bilinear form bΓ is
the weak version of condition 1 above. For the analysis of this weak formulation and
the well-posedness of the problem see [6].

From now on we assume that Ωi, i = f, p, are two dimensional polygonal sub-
domains. Let T hi

i be a triangulation of Ωi, i = f, p. We do not assume that they

match at the interface Γ . For the fluid region, let X
hf

f and M
hf

f be the P2/P1
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triangular Taylor-Hood finite elements and denote M̊
hf

f = M
hf

f ∩ L
2
0(Ωf ). For the

porous region, let X
hp
p and M

hp
p be the lowest order Raviart-Thomas finite elements

based on triangles and denote M̊
hp
p = M

hp
p ∩L2

0(Ωp). We assume in the definition of

the discrete velocities that the boundary conditions are included, i.e., for v
hf

f ∈ X
hf

f

we have v
hf

f = 0 on Γf and for v
hp
p ∈ Xhp

p , vhp·ηp = 0 holds on Γp.
We choose piecewise constant Lagrange multiplier space:

Λhp :=
n
λ : λ|ep

j
= λep

j
is constant in each edge epj of T hp

p (Γ )
o
,

i.e., the mortar is on the fluid region side and the slave on the porous region side, and
leads to a nonconforming approximation on Λhp since piecewise constant functions

do not belong to H1/2(Γ ). Define Xh := X
hf

f ×X
hp
p , and

Z
h
Γ :=

n
v
h ∈ Xh : (v

hf

f ·ηf + v
hp
p ·ηp, µ)Γ = 0 ∀µ ∈ Λhp

o
. (4)

3 Matrix and Vector Representations

To simplify notation, we drop the subscript h associated to the discrete variables.
We consider the following partition of the degrees of freedom:

2
664
u
i
I

piI
uiΓ
p̄i

3
775

Interior displacements + tangential velocities at Γ ,
Interior pressures with zero average in Ωi,
Interface normal displacements on Γ,
Constant pressure in Ωi,

i = f, p.

Then, we have the following matrix representation of the coupled problem:

2
666666666666666664

AfII BfTII AfTΓI 0 0 0 0 0 0

BfII 0 BfIΓ 0 0 0 0 0 0

AfΓ I B
fT
IΓ AfΓΓ B̄fT 0 0 0 0 BTf

0 0 B̄f 0 0 0 0 0 0

0 0 0 0 ApII BpTII ApTΓI 0 0

0 0 0 0 BpII 0 BpIΓ 0 0

0 0 0 0 ApΓI B
pT
IΓ ApΓ Γ B̄pT BTp

0 0 0 0 0 0 B̄p 0 0

0 0 Bf 0 0 0 −Bp 0 0

3
777777777777777775

2
666666666666666664

u
f
I

pfi

ufΓ

p̄f

u
p
I

ppi

upΓ

p̄p

λ

3
777777777777777775

and in each subdomain (see [11, 5]) given by:

2
666664

AiII BiTII AiTΓI 0

BiII 0 BiIΓ 0

AiΓI B
iT
IΓ AiΓΓ B̄iT

0 0 B̄i 0

3
777775

=

»
Ki

II KiT
Γ I

Ki
ΓI K

i
Γ Γ

–
. (5)
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The mortar condition 4 on Γ (Darcy side as the slave side) is imposed as upΓ =
−B−1

p Bfu
f
Γ = ΠufΓ , where −Π is the L2(Γ ) projection onto the space of piecewise

constant functions on each epi . We note that that Bp is a diagonal matrix for the
lowest order Raviart-Thomas elements.

We now eliminate uiI , p
i
I , i = f, p., and λ, to obtain the following (saddle point)

Schur complement equations

S

2
4u

f
Γ

p̄f

p̄p

3
5 =

2
4 b

b̄f

b̄p

3
5 ,

which is solvable when b̄f + b̄p = 0. Here S is given by

S := Sf + Π̃TSpΠ̃ =

2
664
SfΓ +ΠTSpΓΠ B̄fT ΠT B̄pT

B̄f 0 0

B̄pΠ 0 0

3
775 =

»
SΓ B̄T

B̄ 0

–
,

where Π̃ :=

»
Π 0
0 I2×2

–
and Si := Ki

Γ Γ −Ki
Γ I

“
Ki

Γ Γ

”−1

KiT
Γ I =

»
SiΓ B̄iT

B̄i 0

–
.

Define V Γ :=
n
v ∈ Zh : vf = SH(vf·ηf |Γ ) and vp = DH(vp·ηp|Γ )|Γ )

o
and

M 0 :=

(
q ∈Mh : qi = const. in Ωi, i = f, p; and

Z
Ωf

qf +

Z
Ωp

qp = 0

)
.

Here SH (DH) is the velocity component of the discrete Stokes (Darcy) harmonic

extension operator that maps discrete interface normal velocity ûfΓ ∈ H
1/2
00 (Γ ) (ûpΓ ∈

(H1/2(Γ ))′) to the solution of the problem: find ui ∈ Xhi
f and pi ∈ M̊hi

i such that

in Ωi and ∀vi ∈ Xhi
i and ∀qi ∈ M̊hi

i we have:

8>>>><
>>>>:

af (uf , vf ) + bf (vf , pf ) = 0
bf (uf , qf ) = 0

uf·η = ûfΓ on Γ
uf·η = 0 on Γf
uf·τ = 0 on ∂Ωf

8>><
>>:

ap(up,vp) + bp(vp, pp) = 0
bp(up, qp) = 0
up·η = ûpΓ on Γ
up·η = 0 on Γf .

(6)

Associated with the coupled problem we introduce the balanced subspace:

V Γ,B̄ := KerB̄ =


v ∈ V Γ :

Z
Γ

v
i·ηi = 0, i = f, p and upΓ = ΠvfΓ

ff
. (7)

4 Balancing Domain Decomposition Preconditioner I

For the sake of simplicity in the analysis we assume that Γ = {0} × [0, 1], Ωf =
(−1, 0) × (0, 1) and Ωp = (0, 1) × (0, 1). We introduce the velocity coarse space on
Γ as the span of the φ0

f = y(y − 1) and let v0 be its vector representation. Define:
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R0 =

»
vT0 0
0 I2×2

–
, S0 = R0SR

T
0 and Q0 = RT0 S

†
0R0.

Because v0 is not balanced, S0 is invertible when pressures restricted to M0. The
low dimensionality of the coarse space and the shape of φ0

f are kept fixed with
respect to mesh parameters, imply stable discrete inf-sup condition for the coarse
problem. Denote S̃0 := vT0 SΓ v0 and S̃ := B̄v0S̃

−1
0 vT0 B̄

T . A simple calculation gives

I −Q0S =

»
I −P 0
G 0

–
, where

P :=
“
v0S̃

−1
0 vT0 SΓ − v0S̃

−1
0 vT0 B̄

T S̃−1B̄v0S̃
−1
0 vT0 SΓ

”
+ v0S̃

−1
0 vT0 B̄

T S̃−1B̄

G := S̃−1B̄ − S̃−1B̄v0S̃
−1
0 vT0 SΓ .

Note that P is a projection and that B̄(I − P) = 0, i.e. the image of I − P is
contained in the balanced subspace defined in (7); see also [11]. Given a residual
r, the coarse problem Q0r is the solution of a coupled problem with one velocity
degree of freedom (v0) and a constant pressure per subdomain Ωi, i = f, p with mean
zero on Ω. Hence, when vΓ and uΓ are balanced functions, the SΓ -inner product is
defined by (see (3)):

〈uΓ , vΓ 〉SΓ := 〈SΓuΓ , vΓ 〉 = uTΓSΓ vΓ

coincides with the S-inner product defined by

fi»
vΓ
q̄

–
,

»
uΓ
p̄

–fl
S

:=

»
vΓ
q̄

–T
S

»
uΓ
p̄

–
.

Consider the following BDD preconditioner operator (See [5]):

S−1
N = Q0 + (I −Q0S)

“
Sf
”−1

(I − SQ0) . (8)

Also observe that S−1
N S = Q0S + (I −Q0S)

“
Sf
”−1

S (I −Q0S), and when uΓ , vΓ

are balanced functions we have:

〈S−1
N S

»
uΓ
p̄

–
,

»
vΓ
q̄

–
〉S = 〈

“
SfΓ

”−1

SΓuΓ , vΓ 〉SΓ ,

and

c〈ufΓ , ufΓ 〉SΓ ≤ 〈
“
Sf
”−1

SΓu
f
Γ , u

f
Γ 〉SΓ ≤ C〈ufΓ , ufΓ 〉SΓ

is equivalent to
c〈SfufΓ , ufΓ 〉 ≤ 〈SΓufΓ , ufΓ 〉 ≤ C〈SfufΓ , ufΓ 〉. (9)

Proposition 1 If ufΓ is a balanced function then

〈SfΓufΓ , ufΓ 〉 ≤ 〈SΓufΓ , ufΓ 〉 � (1 +
1

κ
)〈SfufΓ , ufΓ 〉.
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Proof. The lower bound follows trivially from SfΓ and SpΓ being positive on the
subspace of balanced functions. We next concentrate on the upper bound.

Let vfΓ a balanced function and vpΓ = ΠvfΓ . Define vp = DHvpΓ . Using properties
([10]) of the discrete operator DH we obtain

〈SpΓ vpΓ , vpΓ 〉 = ap(vp, vp) $ µ

κ
‖vpΓ ‖2(H1/2)′(Γ ).

Using the L2-stability property of mortar projection Π we have

‖vpΓ ‖2(H1/2)′(Γ ) � ‖v
p
Γ ‖2L2(Γ ) = ‖vfΓ ‖2L2(Γ ) � ‖vfΓ ‖2H1/2

00 (Γ )
.

Defining vf = SHvfΓ and using properties of SH ([11],GS05) we have

µ‖vfΓ ‖2H1/2
00 (Γ )

$ af (vf ,vf ).

5 Balancing Domain Decomposition Preconditioner II

We note that the previous preconditioner is scalable with respect to mesh parame-
ters, however it deteriorates when the permeability κ gets small. In real life appli-
cations, permeabilities are in general very small, hence the previous preconditioner
becomes irrelevant in practice. In addition, to capture the boundary layer behavior
of Navier-Stokes flows near the interface Γ , the size of the fluid mesh hf needs to be
small while the Darcy mesh does not. With those two issues in mind, we were moti-
vated to propose the second preconditioner. In contrast to the former preconditioner,
we now control the Stokes energy by the Darcy energy.

We assume that the fluid side discretization on Γ is a refinement of the cor-
responding porous side discretization. For j = 1, . . . ,Mp, and on Γ , we introduce
normal velocity Stokes functions φjf (a bubble P2 function) with support in the inter-

val ejp = 0× [(j−1)hp], jhp]. Under the assumption of nested refinement and P2/P1

Tatlor-Hood discretization, φjf ∈ Xf |Γ . Denote by Xb
f as the subspace spanned by

all φjf and by Xf
n as the subspace spanned by the functions of vfΓ which has zero

average on all edges ejp. Note that Xb
f and Xf

n form a direct sum for Xf |Γ and the

image ΠXf
n is the zero vector. Using this space decomposition we can write

SfΓ =

»
Sfbb S

fT
nb

Sfnb S
f
nn

–

and by eliminating the variables associated with the spaces Xf
n we obtain

ŜfΓ = Sfbb − SfTnb (Sfnn)
−1Sfnb,

and end up again with a Schur complement of the form

Ŝ := Ŝf +

»
−B−1

p B̂f 0
0 I2×2

–T
Sp
»
−B−1

p B̂f 0
0 I2×2

–
= Ŝf + Ŝp,

where the matrix Ŝ is applied to vectors of the form
ˆ
ubΓ pf0 pp0

˜T
. Note that B̂f

and Bp are diagonal matrices of the same dimension and are spectrally equivalent.
We introduce the following preconditioner operator
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Ŝ−1
N = Q̂0 + (I − Q̂0Ŝ)(Ŝp)−1(I − ŜQ̂0). (10)

Using the same arguments as before we prove:

Proposition 2 If ubΓ is a balanced function then

〈ŜpΓu
b
Γ , u

b
Γ 〉 ≤ 〈ŜΓubΓ , ubΓ 〉 � (1 +

κ

h2
p

)〈ŜpΓu
b
Γ , u

b
Γ 〉.

Proof. Let vbΓ =

MpX
j=1

βjφ
j
f . And notice that the support of the basis functions φjf do

not overlap each other on Γ . We have:

‖vbΓ ‖2L2(Γ ) =

MpX
j=1

β2
j ‖φjf‖2L2(Γ ) $ hp

MpX
j=1

β2
j ,

and using H
1/2
00 arguments on the intervals ejp we have

‖vbΓ ‖2H1/2
00 (Γ )

�
MpX
j=1

β2
j ‖φjf‖

2

H
1/2
00 (e

j
p)
$

MpX
j=1

β2
j .

Note that, by considering vfΓ = vbΓ , we have

〈Ŝfvb, vb〉 ≤ af (SHvfΓ ,SHv
f
Γ ) $ µ‖vfrΓ ‖2

H
1/2
00 (Γ )

,

since the space for discrete Stokes harmonic extension now is richer (includes also
X
f
n) than in SH, and we also use the equivalence results between discrete Stokes

and Laplacian harmonic extensions. We obtain

〈ŜfΓ vb, vb〉 �
µ

hp
‖vbΓ ‖2L2(Γ ) �

µ

h2
p

µ‖ΠvbΓ ‖2(H1/2)′(Γ ) $
κ

h2
p

〈ŜpΓ vb, vb〉,

where we have used an inverse inequality for piecewise constant functions.
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A FETI-DP Formulation for Compressible
Elasticity with Mortar Constraints

Hyea Hyun Kim

Courant Institute of Mathematical Sciences, New York University, 251 Mercer
Street, New York, NY10012, USA. hhk2@cims.nyu.edu

Summary. A FETI-DP formulation for three-dimensional elasticity problems on
non-matching grids is considered. To resolve the nonconformity of the finite ele-
ments, a mortar matching condition is imposed on subdomain interfaces. The mor-
tar matching condition are considered as weak continuity constraints in the FETI-
DP formulation. A relatively large set of primal constraints, which include average
and moment constraints over interfaces (faces) as well as vertex constraints, is fur-
ther introduced to achieve a scalable FETI-DP method. A condition number bound,
C(1+log(H/h))2, for the FETI-DP formulation with a Neumann-Dirichlet precondi-
tioner is then proved for elasticity problems with discontinuous material parameters
when the primal constraints are enforced on only some of the faces instead of all of
them. These faces are called primal faces. An algorithm for selecting a quite small
number of primal faces is described in [6].

1 A model problem

Let Ω be a polyhedral domain in R3. The space H1(Ω) is the set of functions in
L2(Ω) that are square integrable up to first weak derivatives and equipped with the

standard Sobolev norm: ‖v‖21,Ω := |v|21,Ω +‖v‖20,Ω , where |v|21,Ω =

Z
Ω

∇v ·∇v dx and

‖v‖0,Ω =

Z
Ω

v2 dx. We assume that ∂Ω is divided into two parts ∂ΩD and ∂ΩN on

which a Dirichlet boundary condition and a natural boundary condition are specified,
respectively. The subspace H1

D(Ω) ⊂ H1(Ω) is a set of functions having zero trace
on ∂ΩD. For the elasticity problem, we introduce the vector-valued Sobolev spaces

‡This work was supported in part by the Applied Mathematical Sciences Pro-
gram of the U.S. Department of Energy under contract DE-FG02-00ER25053 and
in part by the Post-doctoral Fellowship Program of Korea Science and Engineering
Foundation (KOSEF)
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H1
D(Ω) =

3Y
i=1

H1
D(Ω), H1(Ω) =

3Y
i=1

H1(Ω)

equipped with the product norm.
We consider the following variational form of the compressible elasticity problem:

find u ∈ H1
D(Ω) such that

Z
Ω

G(x)ε(u) : ε(v) dx +

Z
Ω

G(x)β(x)∇ · u∇ · v dx = 〈F,v〉 ∀v ∈ H1
D(Ω), (1)

where G = E/(1+ ν) and β = ν/(1− 2ν) are material parameters depending on the
Young’s modulus E > 0 and the Poisson ratio ν ∈ (0, 1/2] bounded away from 1/2.
The linearized strain tensor is defined by

ε(u)ij :=
1

2

„
∂ui
∂xj

+
∂uj
∂xi

«
i, j = 1, 2, 3,

and the tensor product and the force term are given by

ε(u) : ε(v) =

3X
i,j=1

εij(u)εij(v), 〈F,v〉 =

Z
Ω

f · v dx +

Z
∂ΩN

g · vdσ.

Here f is the body force and g is the surface force on the natural boundary part
∂ΩN .

The space ker(ε) has the following six rigid body motions as its basis, which are
three translations

r1 =

0
@1

0
0

1
A , r2 =

0
@0

1
0

1
A , r3 =

0
@0

0
1

1
A , (2)

and three rotations

r4 =
1

H

0
@ x2 − bx2

−x1 + bx1

0

1
A , r5 =

1

H

0
@−x3 + bx3

0
x1 − bx1

1
A , r6 =

1

H

0
@ 0
x3 − bx3

−x2 + bx2

1
A . (3)

Here bx = (bx1, bx2, bx3) ∈ Ω and H is the diameter of Ω. This shift and the scaling
make the L2-norm of the six vectors scale in the same way with H .

2 FETI-DP formulation

2.1 Finite elements and mortar matching condition

We divide the domain Ω into a geometrically conforming partition {Ωi}Ni=1 and we
assume that the coefficients G(x) and β(x) are positive constants in each subdomain

G(x)|Ωi = Gi, β(x)|Ωi = βi.

Since we confine our study to the compressible elasticity problem, we can associate
the conforming P1-finite element space Xi to a quasi-uniform triangulation τi of each
subdomain Ωi. In addition, functions in the space Xi satisfy the Dirichlet boundary
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condition on ∂Ωi∩∂ΩD . The triangulations {τi}Ni=1 may not match across subdomain
interfaces. We associate the finite element space Wi to the boundary of subdomain
Ωi; it is the trace space of Xi on ∂Ωi. Throughout this paper, we will use Hi and
hi to denote the diameter of Ωi and the typical mesh size of τi, respectively.

For each interface (face) F ij = ∂Ωi ∩ ∂Ωj , we will choose the one with larger
G(x) as the mortar side and the other as the nonmortar side. We then introduce the
finite element space on the interface F ij

Wij =
n
w ∈ H1

0(F
ij) : w = v|F ij for v ∈ Xn(ij)

o
,

where n(ij) denotes the nonmortar side. A Lagrange multiplier space Mij , which
depends on the space Wij is given. We refer to [4] for the detailed construction of
the dual Lagrange multiplier space and to [1] for the standard Lagrange multiplier
space. The mortar matching condition is written as

Z
Fij

(vi − vj) · λ ds = 0 ∀λ ∈Mij , ∀Fij . (4)

For each subdomain Ωi, we define the set mi containing the subdomain indices j
that are mortar sides of interfaces F ⊂ ∂Ωi:

mi := {j : Ωi is the nonmortar side of F (:= ∂Ωi ∩ ∂Ωj) ∀F ⊂ ∂Ωi} .

We then introduce the finite element spaces on the interfaces

W =
NY
i=1

Wi, Wn =
NY
i=1

Y
j∈mi

Wij , M =
NY
i=1

Y
j∈mi

Mij .

2.2 Primal constraints

Selection of primal constraints is important in achieving scalability of FETI-DP al-
gorithms as well as making each subdomain problem invertible. FETI-DP algorithms
have been developed for elasticity problems with conforming discretization [2] and
numerical results in [3] further show that primal constraints with faces average and
vertex constraints provide a scalable algorithm for three dimensional problems. Kla-
wonn and Widlund [8] considered various types of primal constraints for elasticity
problems with discontinuous coefficients. Their primal constraints are edge average
and edge moment constraints, and vertex constraints. Furthermore, they introduced
the concepts of an acceptable face path and an acceptable vertex path in an attempt
to reduce the number of primal constraints. For the case of mortar constraints, we
are able to construct primal constraints based on faces. Thus, in [5], we introduce
face average constraints for three-dimensional elliptic problems with mortar dis-
cretizations and show that the condition number is bounded by a polylogarithmic
function of the subdomain problem size independently of the mesh parameters and
the coefficients.

We will now select primal constraints on each face for the elasticity problems
with mortar discretization. For an interface F ij , we consider the rigid body motions
{ri}6i=1 as in (2) and (3), where H is the diameter of the interface F ij and bx is a

point in F ij . We define a projection Q : H1/2(F ij)→Mij by
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Z
F ij

(Q(w)−w) · φ ds = 0 ∀φ ∈Wij .

We then construct the projected rigid body motions {Q(ri)}6i=1. Since the space
Mij contains the translational rigid body motions, Q(ri) = ri for i = 1, 2, 3. We
now consider the following constraints on the face F ijZ

F ij

(vi − vj) ·Q(rl) ds = 0 ∀l = 1, · · · , 6.

For {Q(rl)}3l=1, these constraints are nothing but the average matching conditions
across the interface (face). The remaining constraints with {Q(rl)}6l=4 are similar to
the moment matching constraints which were introduced for fully primal edges in
[7] except that our constraints use the projected rotations and are imposed on faces.
We call {Q(rl)}6l=4 the moment constraints.

To reduce the size of the coarse problem, we select only some faces as primal
among all the faces and we impose the primal constraints over only them. For the
remaining (non-primal faces), we assume that they satisfy an acceptable face path
condition. This assumption makes it possible for the FETI-DP method to have a
condition number bound comparable to when all faces are chosen to be primal.

TOL ∗ (1 + log(Hi/hi))
−1 (1 + log(Hkl

/hkl
))2 ∗Gkl

≥ Gi (5)

and the path from one subdomain to another is always through a primal face.

Furthermore, we choose some of the vertices as primal vertices at which we
impose a pointwise matching condition. We assume that enough primal vertices are
taken so as to make each local problem invertible. Based on these primal constraints,
we introduce the following subspaces

fW : = {w ∈W : w satisfies vertex constraints at the primal vertices

and the face constraints across the primal faces} ,
fWn : = {wn ∈Wn : wn satisfies zero average and zero moment

constraints for each primal faces} .

For wn ∈ fWn, let E(wn) ∈ W be the zero extension of wn to the whole interface,

i.e., mortar and nonmortar interfaces. We can easily see that E(wn) belongs to fW.

2.3 The FETI-DP equation

Let A(i) denote the stiffness matrix of the bilinear form

ai(ui,vi) := Gi

Z
Ωi

ε(ui) : ε(vi) dx+Giβi

Z
Ωi

∇ · ui∇ · vi dx,

and let S(i) be the Schur complement of the matrix A(i). The matrix B(i) denotes
the mortar matching matrix for the unknowns of ∂Ωi and the mortar matching
condition for w = (w1, · · · ,wN ) ∈W can then be written as
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satisfy the conditions
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NX
i=1

B(i)wi = 0.

Let Vc be the set of unknowns at the primal vertices, let V (i)
c be the restriction of

Vc on the subdomain Ωi, and let the mapping R(i)
c : Vc → V (i)

c denote a restriction.
The matrix B(i) and the vector wi ∈Wi are ordered as

B(i) =
“
B(i)
r B(i)

c

”
, wi =

 
w(i)
r

w(i)
c

!
,

where c stands for the unknowns at the primal vertices in V (i)
c and r stands for the

remaining unknowns. We then assemble vectors and matrices of each subdomains

wr =

0
BB@

w(1)
r

...

w(N)
r

1
CCA , Br =

“
B(1)
r . . . B(N)

r

”
, Bc =

NX
i=1

B(i)
c R

(i)
c .

Since the primal face constraints are the mortar constraints, we express them by
using an appropriate matrix R

Rt(Brwr +Bcwc) = 0,

where wc represents the unknowns at the global primal vertices.
By introducing Lagrange multipliers µ and λ for the primal face constraints

and for the mortar matching constraints, respectively, we get the following mixed
formulation of (1) 0

BB@
Srr Src BtrR B

t
r

Scr Scc BtcR B
t
c

RtBr R
tBc 0 0

Br Bc 0 0

1
CCA

0
BB@

wr

wc

µ

λ

1
CCA =

0
BB@

gr
gc
0
0

1
CCA .

We now eliminate all the unknowns except λ and obtain

FDPλ = d.

This matrix FDP satisfies the well-known relation

〈FDPλ,λ〉 = max
w∈fW

〈Bw,λ〉2
〈Sw,w〉 ,

where
S = diag(S(i)), B =

“
B(1) . . . B(N)

”
.

We now introduce the Neumann-Dirichlet preconditioner M−1 given by

〈Mλ,λ〉 = max
wn∈fWn

〈BE(wn),λ〉2
〈SE(wn), E(wn)〉

,

where E(wn) is the zero extension of wn into the space W. From the fact that

E(wn) belongs to fW for wn ∈ fWn, we obtain

〈Mλ,λ〉 = max
wn∈fWn

〈BE(wn),λ〉2
〈SE(wn), E(wn)〉

≤ max
w∈fW

〈Bw,λ〉2
〈Sw,w〉 = 〈FDPλ,λ〉. (6)

Therefore the lower bound of the FETI-DP operator is bounded from below by 1.
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3 Condition number analysis

In the following, we will provide several lemmas that will be used to obtain the upper
bound of the FETI-DP operator. For a face F ⊂ ∂Ωi, the space H

1/2
00 (F ) consists

of the functions whose zero extension onto the whole boundary ∂Ωi belongs to the
space H1/2(∂Ωi) and it is equipped with the norm

‖v‖
H

1/2
00 (F )

:=

„
|v|2H1/2(F ) +

Z
F

v(x)2

dist(x, ∂F )
ds

«1/2

.

We note that we can extend this norm to the product space H
1/2
00 (F ) := [H

1/2
00 (F )]3

by using the usual product norm. We now provide several inequalities for the mortar
projection of functions.

Definition 2. (Mortar projection) The mortar projection πij : L2(F ij) → Wij

is given by Z
F ij

(πij(v)− v) · ψ ds = 0 ∀ψ ∈Mij .

Lemma 1. For F ij(= ∂Ωi ∩ ∂Ωj), a primal face with Gi ≤ Gj , and for w ∈ fW,
we have

Gi‖πij(wi −wj)‖2
H

1/2
00 (F ij)

≤ C
(„

1 + log
Hi
hi

«2

|wi|2Si

+
Gi
Gj

„
1 + log

Hj
hj

«„
1 + log

Hj
hj

+
hj
hi

«
|wj |2Sj

ff
,

where |wl|2Sl
= 〈Slwl,wl〉 for l = i, j.

Lemma 2. For a non-primal face F = ∂Ωi ∩ ∂Ωj with Gi ≤ Gj, assume that there

is an acceptable face path {Ωi, Ωk1 , · · · , Ωkn , Ωj}. Then, for w ∈ fW, we have

Gi‖πij(wi −wj)‖2
H

1/2
00 (F )

≤ C
(„

1 + log
Hi
hi

«2

|wi|2Si

+ L ∗
nX
l=1

„
1 + log

Hi
hi

«
Gi
Gkl

|wkl
|2Skl

+
Gi
Gj

„
1 + log

Hj
hj

«„
1 + log

Hj
hj

+
hj
hi

«
|wj |2Sj

ff
,

where wi = w|∂Ωi , wj = w|∂Ωj , and the constant L is the number of subdomains
on the acceptable face path.

To bound the term (Gi/Gj)(hj/hi) by a constant independent of mesh parameters,
we need to impose an assumption on mesh sizes.

Assumption on mesh sizes. For subdomains Ωi and Ωj that have a common
face F with Gi ≤ Gj , the mesh sizes hi and hj satisfy

hj
hi
≤ C

„
Gj
Gi

«γ
for some 0 ≤ γ ≤ 1. (7)
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By combining Lemmas 1 and 2 with the assumption on the mesh sizes and
the acceptable face path condition (5), we have the following upper bound for the
FETI-DP operator.

Lemma 3. Assume that the mesh sizes satisfy the assumption (7) and that every
non-primal face satisfies the acceptable face path condition with given TOL and L.
We then have

〈FDPλ,λ〉2 = max
w∈fW

〈Bw,λ〉2
〈Sw,w〉 ≤ C(TOL,L) max

i=1,··· ,N

(„
1 + log

Hi
hi

«2
)
〈Mλ,λ〉,

where the constant C depends on the TOL and L but not on the mesh parameters
and the coefficients Gi.

The lower bound in (6) and the upper bound from Lemma 3 lead to the following
condition number bound.

Theorem 1. Under the assumptions in Lemma 3, we obtain the condition number
bound

κ(M−1FDP ) ≤ C(TOL, L) max
i=1,··· ,N

(„
1 + log

Hi
hi

«2
)
.

Here the constant C is independent of the mesh parameters and the coefficients Gi,
but depends on TOL and L, the maximum face path length.
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1 Introduction

Robust FETI-DP methods for heterogeneous, linear elasticity problems in three
dimensions were developed and analyzed in [7]. For homogeneous problems or ma-
terials with only small jumps in the Young moduli, the primal constraints can be
chosen as edge averages of the displacement components over well selected edges;
see [7] and for numerical experimental work, [5]. In the case of large jumps in the
material coefficients, first order moments were introduced as additional primal con-
straints in [7], in order to obtain a robust condition number bound. In the present
article, we provide some first numerical results which confirm the theoretical findings
in [7] and show that in some cases, first order moments are necessary to obtain a
good convergence rate.

2 Linear elasticity and finite elements

The equations of linear elasticity model the displacement of a linear elastic material
under the action of external and internal forces. The elastic body occupies a domain
Ω ⊂ IR3, which is assumed to be polyhedral and of diameter one. We denote its
boundary by ∂Ω and assume that one part of it, ∂ΩD, is clamped, i.e., with ho-
mogeneous Dirichlet boundary conditions, and that the rest, ∂ΩN := ∂Ω \ ∂ΩD, is
subject to a surface force g, i.e., a natural boundary condition. We can also intro-
duce a body force f , e.g., gravity. With H1(Ω) := (H1(Ω))3, the appropriate space
for a variational formulation is the Sobolev space H1

0(Ω, ∂ΩD) := {v ∈ H1(Ω) :
v = 0 on ∂ΩD}. The linear elasticity problem consists in finding the displacement
u ∈ H1

0(Ω, ∂ΩD) of the elastic body Ω, such that

Z
Ω

G(x)ε(u) : ε(v)dx+

Z
Ω

G(x) β(x) divu divv dx = 〈F,v〉 ∀v ∈ H1
0(Ω,∂ΩD). (1)

Here G and β are material parameters which depend on the Young modulus E > 0
and the Poisson ratio ν ∈ (0, 1/2]; we have G = E/(1+ν) and β = ν/(1−2ν). In this
article, we only consider the case of compressible elasticity, which means that the
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Poisson ratio ν is bounded away from 1/2. Furthermore, εij(u) :=
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) is

the linearized strain tensor, and

ε(u) : ε(v) =

3X
i,j=1

εij(u)εij(v), 〈F,v〉 :=

Z
Ω

fTv dx +

Z
∂ΩN

gTv dσ.

For convenience, we also introduce the notation

(ε(u), ε(v))L2(Ω) :=

Z
Ω

ε(u) : ε(v)dx.

The bilinear form associated with linear elasticity is then

a(u,v) = (Gε(u), ε(v))L2(Ω) + (Gβ divu,divv)L2(Ω).

The wellposedness of the linear system (1) follows immediately from the continuity
and ellipticity of the bilinear form a(·, ·), where the first follows from elementary
inequalities and the latter from Korn’s first inequality; see, e.g., [2]. The null space
ker(ε) of ε is the space of the six rigid body motions. which is spanned by the three
translations ri := ei, i = 1, 2, 3, where the ei are the three standard unit vectors,
and the three rotations

r4 :=

2
4 x2 − x̂2

−x1 + x̂1

0

3
5 , r5 :=

2
4−x3 + x̂3

0
x1 − x̂1

3
5 , r6 :=

2
4 0
x3 − x̂3

−x2 + x̂2

3
5 . (2)

Here x̂ ∈ Ω to shift the origin to a point in Ω.
We will only consider compressible elastic materials. It is therefore sufficient to

discretize our elliptic problem of linear elasticity (1) by low order, conforming finite
elements, e.g., linear or trilinear elements.

Let us assume that a triangulation τh of Ω is given which is shape regular and has
a typical diameter of h. We denote by Wh := Wh(Ω) the corresponding conforming
finite element space of finite element functions. The associated discrete problem is
then

a(uh,vh) = 〈F,vh〉 ∀vh ∈Wh. (3)

When there is no risk of confusion, we will drop the subscript h.
Let the domain Ω ⊂ IR3 be decomposed into nonoverlapping subdomains Ωi, i =

1, . . . , N , each of which is the union of finite elements with matching finite element
nodes on the boundaries of neighboring subdomains across the interface Γ. The
interface Γ is the union of three different types of open sets, namely, subdomain
faces, edges, and vertices; see [7] or [5] for a detailed definition. In the case of a
decomposition into regular substructures, e.g., cubes or tetrahedra, our definition
of faces, edges, and vertices is conform with our basic geometric intuition. In the
definition of dual-primal FETI methods, we need the notion of edge averages, and
in the case of heterogeneous materials, also of edge first order moments. We note
that the rigid body modes r1, . . . , r6, restricted to a straight edge provide only
five linearly independent vectors, since one rotation is always linearly dependent
on other rigid body modes. For the following definition, we assume that we have
used an appropriate change of coordinates such that the edge under consideration
coincides with the x1-axis and the special rotation is then r6. The edge averages and
first order moments over this specific edge E are of the form
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R
E rTk udxR
E rT rdx

, k ∈ {1, . . . , 5},u = (uT1 , u
T
2 , u

T
3 )T ∈Wh. (4)

3 The FETI-DP algorithm

For each subdomain Ωi, i = 1, . . . , N , we assemble local stiffness matrices K(i) and
local load vectors f (i). By u(i) we denote the local solution vectors of nodal values.

In the dual-primal FETI methods, we distinguish between dual and primal dis-
placement variables by the way the continuity of the solution in those variables is
established. Dual displacement variables are those, for which the continuity is en-
forced by a continuity constraint and Lagrange multipliers λ and thus, continuity is
not established until convergence of the iterative method is reached, as in the classi-
cal one-level FETI methods; see, e.g., [8]. On the other hand, continuity of the primal
displacement variables is enforced explicitly in each iteration step by subassembly
of the local stiffness matrices K(i) at the primal displacement variables. This sub-
assembly yields a symmetric, positive definite stiffness matrix eK which is coupled at
the primal displacement variables but block diagonal otherwise. Let us note that this
coupling yields a global problem which is necessary to obtain a numerically scalable
algorithm.

We will use subscripts I , ∆, and Π , to denote the interior, dual, and primal
displacement variables, respectively, and obtain for the local stiffness matrices, load
vectors, and solution vectors of nodal values

K(i) =

2
664
K

(i)
II K

(i)T
∆I K

(i)T
ΠI

K
(i)
∆I K

(i)
∆∆ K

(i)T
Π∆

K
(i)
ΠI K

(i)
Π∆ K

(i)
ΠΠ

3
775 ,u(i) =

2
64

u
(i)
I

u
(i)
∆

u
(i)
Π

3
75 , f (i) =

2
64

f
(i)
I

f
(i)
∆

f
(i)
Π

3
75 .

We also introduce the notation

uB = [uI u∆]T , fB = [fI f∆]T ,u
(i)
B = [u

(i)
I u

(i)
∆ ]T , and f

(i)
B = [f

(i)
I f

(i)
∆ ]T .

Accordingly, we define

KBB = diagNi=1(K
(i)
BB), K

(i)
BB =

"
K

(i)
II K

(i)T
∆I

K
(i)
∆I K

(i)
∆∆

#
, KΠB = [K

(1)
ΠB . . .K

(N)
ΠB ].

We note that KBB is a block diagonal matrix. By subassembly in the primal dis-
placement variables, we obtain

eK =

"
KBB eKT

ΠBeKΠB eKΠΠ
#
,

where a tilde indicates the subassembled matrices and where

eKΠB = [ eK(1)
ΠB · · · eK(N)

ΠB ].

Introducing local assembly operators R
(i)
Π which map from the local primal displace-

ment variables u
(i)
Π to the global, assembled euΠ , we have
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eK(i)
ΠB = R

(i)
Π K

(i)
ΠB, u

(i)
Π = R

(i)T
Π euΠ , i = 1, . . . , N,

eKΠΠ =
NX
i=1

R
(i)
Π K

(i)
ΠΠR

(i)T
Π .

Due to the subassembly of the primal displacement variables, Lagrange multipliers
have to be used only for the dual displacement variables u∆ to enforce continuity.
We introduce a discrete jump operator B = [OB∆] such that the solution u∆,
associated with more than one subdomain, coincides when BuB = B∆u∆ = 0 with
uB = [uTI ,u

T
∆]T . Since we assume pointwise matching grids across the interface

Γ , the entries of the matrix B are 0, 1, and −1. However, we will otherwise use all
possible constraints and thus work with a fully redundant set of Lagrange multipliers
as in [8, Section 5]; cf. also [9]. Thus, for an edge node common to four subdomains,
we will use six constraints rather than choosing as few as three.

We can now reformulate the finite element discretization of (3) as

2
64
KBB eKT

ΠB B
T

eKΠB eKΠΠ O

B O O

3
75
2
4

uB
euΠ
λ

3
5 =

2
64

fBefΠ
0

3
75 . (5)

Elimination of the primal variables euΠ and of the interior and dual displacement
variables uB leads to a a reduced linear system of the form

Fλ = d,

where the matrix F and the right hand side d are formally obtained by block Gauss
elimination. Let us note that the matrix F is never built explicitly but that in every
iteration appropriate linear systems are solved; see [4], [7] or [5] for further details.

To define the FETI-DP Dirichlet preconditioner M−1, we introduce a scaled
jump operator BD; this is done by scaling the contributions of B associated with
the dual displacement variables from individual subdomains. We define

BD = [B
(1)
D , . . . , B

(N)
D ],

where the B
(i)
D are defined as follows: each row of B(i) with a nonzero entry corre-

sponds to a Lagrange multiplier connecting the subdomain Ωi with a neighboring
subdomain Ωj at a point x ∈ ∂Ωi,h ∩ ∂Ωj,h. We obtain B

(i)
D by multiplying each

such row of B(i) with 1/|Nx|, where |Nx| denotes the multiplicity of the interface
point x ∈ Γ . This scaling is called multiplicity scaling and is suitable for homoge-
neous problems; see [7] or [5] for a scaling suitable for heterogeneous materials. Our
preconditioner is then given in matrix form by

M−1 = BDR
T
ΓSRΓB

T
D =

NX
i=1

B
(i)
D R

(i)T
Γ S(i)R

(i)
Γ B

(i)T
D . (6)

Here, R
(i)
Γ are restriction matrices that restrict the degrees of freedom of a subdomain

to its interface and RΓ = diagi(R
(i)
Γ ).

We have to decide how to choose the primal displacement variables. The simplest
choice is to select them as certain primal vertices of the subdomains; see [3], where
this approach was first considered; this version has been denoted by Algorithm
A. Unfortunately, this choice does not always lead to good convergence results in
three dimensions. To obtain better convergence for three dimensional problems, a
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different coarse problem was suggested by introducing additional constraints. These
constraints are averages or first order moments over selected edges or faces, which
are enforced to have the same values across the interface. For further details, see
[4], [7], or [5]. To obtain robust condition number bounds for highly heterogeneous
materials, additional first order moments over selected edges have to be used; cf.
[7]. There are different ways of implementing these additional primal constraints.
One is to use additional, optional Lagrange multipliers, see [4] or [7], another one
is to apply a transformation of basis, see [7] and [5]. In this article, we will use the
approach with a transformation of basis. Let us note that this approach leads again
to a mixed linear system of the form (5) and that the same algorithmic form as for
Algorithm A can be used; see [7], [5], and [6] for further details. For our FETI-DP
algorithm, using a well selected set of primal constraints of edge averages or first
order moments and in some very difficult cases also of primal vertices, we have the
estimate, cf. [7],

Theorem 1. The condition number satisfies

κ(M−1F ) ≤ C (1 + log(H/h))2.

Here, C > 0 is independent of h,H, and the values of the coefficients Gi.

A more general result can be shown if the concept of acceptable paths is introduced;
cf. [7] for more details.

4 Numerical results

We first consider a model problem, where two subdomains are surrounded by sub-
domains with much smaller stiffnesses, i.e., Young moduli. Furthermore, we assume
that these two special subdomains share only an edge; cf. Figure 1. In [7] it was
shown that a well selected set of primal constraints, which has five linearly inde-
pendent primal constraints related to that special edge shared by the two stiffer
subdomains and otherwise six linearly independent edge constraints for each face,
is sufficient to prove a condition number bound as in Theorem 1. In that article,
the five linearly independent constraints are chosen as three edge averages and two
properly chosen first order moments; cf. also (4). Here, the six linearly independent
constraints for each face can be chosen as edge averages (and moments) over ap-
propriately chosen edges of the considered face. In a set of experiments, we have
tested different combinations of edge constraints on the specific edge shared by the
two stiffer subdomains; cf. Table 1. In the case of three constraints only edge aver-
ages are used, in the case of five, additionally two first order moments are applied.
On all other edges, an edge average over each displacement component is used to
define the primal constraints. We see that using no constraints or only edge average
constraints on the specific edge leads to a large condition number. Applying all five
constraints leads to a good condition number which is bounded independently of
the jump in the Young moduli. Since we only have one difficult edge in this exam-
ple, the iteration count is not increased accordingly; the eigenvalues are still well
clustered except for two outliers in the case of three edge averages, see [6]. Next,
we analyze a more involved example, where we will see that additional first order
moments not only improve the condition number but are absolutely necessary to
obtain convergence. We consider a linear elasticity model problem with a material
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Fig. 1. Left: Two stiff cubic subdomains sharing an edge surrounded by softer
material. Cubic domain Ω cut open in front and on top.
Right: Alternating layers of a heterogeneous material distributed in a checkerboard
pattern and a homogeneous material.

Table 1. Comparison of different number of edge constraints on the edge shared by
the two stiffer subdomains; 3 × 4 × 4 = 48 brick-shaped subdomains of 1 536 d.o.f.
each, 55 506 total d.o.f. Stopping criterion: Relative residual reduction of 10−10.

# edge constraints 0 3 5

E1/E2 Iter. Cond. Iter. Cond. Iter. Cond.

100 29 9.21 28 9.10 28 9.09

103 47 4.36 × 102 37 7.51× 101 30 9.03

106 70 4.24 × 105 47 7.16× 104 30 9.03

consisting of different layers as shown on the right side in Figure 1. The ratio of
the different Young moduli is E2/E1 = 106 with E2 = 210 and a Poisson ratio of
ν = 0.29 for both materials. Here, in addition to three edge averages on each edge,
we have also used two first order moments as primal constraints; see [7] and [6] for
more details. The results clearly show that the additional first order moments help
to improve the convergence significantly; see [7] for theoretical results. In Table 3
the parallel scalability is shown for a cube of eight layers; cf. Figure 1 (right). All
computations were carried out using PETSc; see [1]. The numerical results given
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in Tables 2 and 3 were obtained on a 16 processor (2.2 Ghz Opteron 248; Gigabit
Ethernet) computing cluster in Essen. A more detailed numerical study is current
work in progress; cf. [6].

Table 2. Heterogeneous linear elasticity: Comparison of FETI-DP algorithm using
edge averages vs. edge averages and first order moments; 1 728 cubic subdomains of
5 184 d.o.f. each, 7 057 911 total d.o.f. Stopping criterion: Relative residual reduction
of 10−10.

edge averages edge averages + first order moments

Cond. Iter. Time Cond. Iter. Time

2.14 × 105 >1 000 > 6 686s 5.19 24 629s

Table 3. FETI-DP: Parallel scalability using edge averages and first order moments.
Stopping criterion: Relative residual reduction of 10−7.

Proc.
Subdom.

Proc.

d.o.f.

Subdom.
Total d.o.f. Iter. Cond. Time

1 512 5 184 2 114 907 17 5.18 1 828s
2 256 5 184 2 114 907 17 5.18 842s
4 128 5 184 2 114 907 17 5.18 428s
8 64 5 184 2 114 907 17 5.18 215s
16 32 5 184 2 114 907 17 5.18 122s
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1 Introduction

There exist a large number of publications devoted to the construction and anal-
ysis of finite element approximations for problems in solid mechanics, in which it
is necessary to circumvent volumetric locking. Of special interest are nearly incom-
pressible materials where standard low order finite element discretizations do not
ensure uniform convergence in the incompressible limit. Methods associated with
the enrichment or enhancement of the strain or stress field by the addition of care-
fully chosen basis functions have proved to be highly effective and popular. The key
work dealing with enhanced assumed strain formulations is that of [14]. Of exclu-
sive interest in our paper are situations corresponding to a pure displacement based
formulation which is obtained by a local static condensation of a mixed problem
satisfying a uniform inf-sup condition. We work with conforming bilinear approxi-
mations for the displacement and a pressure space of piecewise constants. Unfortu-
nately, the standard Q1 − P0 pairing does not satisfy a uniform inf-sup condition.
To obtain a stable scheme, we have to extract from the pressure space the so-called
checkerboard modes. For some earlier references on the construction of uniformly
bounded domain decomposition and multigrid methods in the incompressible limit,
see [5] for Neumann-Neumann methods and [15] and [13] for multigrid solvers. Let
us note that there are also recent results on FETI-DP and BDDC domain decom-
position methods for mixed finite element discretizations of Stokes’ equations, see
[12] and [11], and almost incompressible elasticity, see [1]. In this work, we propose
a dual-primal iterative substructuring method for almost incompressible elasticity.
Numerical results illustrate the performance and the scalability of our method in
the incompressible limit.

2 Almost incompressible elasticity and finite elements

The equations of linear elasticity model the displacement of a homogeneous linear
elastic material under the action of external and internal forces. The elastic body
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occupies a domain Ω ⊂ IR2, which is assumed to be polyhedral and of diameter one.
We denote its boundary by ∂Ω and assume that one part of it, ∂ΩD, is clamped,
i.e., with homogeneous Dirichlet boundary conditions, and that the rest, ∂ΩN :=
∂Ω \ ∂ΩD, is subject to a surface force g, i.e., a natural boundary condition. We
can also introduce a body force f , e.g., gravity. With H1(Ω) := (H1(Ω))2, the
appropriate space for a variational formulation is the Sobolev space H1

0(Ω, ∂ΩD) :=
{v ∈ H1(Ω) : v = 0 on ∂ΩD}. The linear elasticity problem consists of finding the
displacement u ∈ H1

0(Ω, ∂ΩD) of the elastic body Ω, such that

Z
Ω

2µε(u) : ε(v)dx +

Z
Ω

λ divu divv dx = 〈F,v〉 ∀v ∈ H1
0(Ω, ∂ΩD). (1)

Here µ and λ are the Lamé parameters, which are constant in view of the assumption
of a homogeneous body, and which are assumed positive. Of particular interest is
the incompressible limit, which corresponds to λ → ∞. The Lamé parameters are
related to the pair (E, ν), where E is Young’s modulus and ν is Poisson’s ratio by

E =
µ(2µ+ 3λ)

µ+ λ
, ν =

λ

2(µ+ λ)
.

Furthermore, εij(u) :=
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) is the linearized strain tensor, and

ε(u) : ε(v) =

2X
i,j=1

εij(u)εij(v), 〈F,v〉 :=

Z
Ω

fTv dx +

Z
∂ΩN

gTv dσ.

Our finite element discretization is based on the conforming space Vh of continu-
ous piecewise bilinear approximations on quadrilaterals. The quasi-uniform mesh is
denoted by Th, and we assume that it has a macro-element structure, i.e., Th is ob-
tained from a coarser mesh T mh by decomposing each element into four subelements.
We first consider the abstract pair (Vh,Mh)

2µ(ε(uh), ε(vh))0 + (divvh, ph)0 = 〈F,vh〉 ∀vh ∈ Vh ,

(divuh, qh)0 − 1

λ
(ph, qh)0 = 0 ∀qh ∈Mh .

In terms of static condensation, we can eliminate the pressure and obtain a
displacement-based formulation

Z
Ω

2µε(u) : ε(v)dx +

Z
Ω

λΠMhdivu ΠMhdivv dx = 〈F,v〉 ∀v ∈ Vh, (2)

where ΠMh denotes the L2-projection onto Mh. It is well known that the choice
Mh =Mu

h

Mu
h = {q ∈ L2

0(Ω) | q|K ∈ P0(K), K ∈ Th},
does not yield a uniform inf-sup condition and checkerboard modes in the pressure
might be observed, see, e.g., [4]. Thus it is necessary to make Mh a proper subset of
Mu
h . There exist different possibilities to overcome this difficulty. One option is to

work with macro-elements and to extract from Mu
h the checkerboard mode on each

macro-element, as in [4]. The restrictions of functions in Mu
h to a macro-element are

spanned by the four functions depicted in Figure 1.
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(d)(c)(b)(a)

1 1

1 1

1 1

−1 −1
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−1

−1

1

1

Fig. 1. Basis functions for the pressure space related to a single macro element.

The function indicated in Figure 1 (d) is the local checkerboard modes pc. To
obtain a stable pairing, we have to work with Mh =Ms

h

Ms
h = {q ∈Mu

h | (q, pc)0;K = 0, K ∈ T mh }.

From now on, we call the choice Mh = Mu
h the unstable or the not stabilized

Q1− P0 formulation and the choice Mh = Ms
h the stabilized Q1− P0 formulation.

The analysis and the implementation will be based on the reduced problem (2). We
note that in both cases the L2-projection ΠMh can be carried out locally.

3 The FETI-DP algorithm

Let the domain Ω be decomposed into nonoverlapping subdomains Ωi, i = 1, . . . , N ,
each of which is the union of finite elements with matching finite element nodes
across the interface Γ . The interface Γ is the union of the interior subdomain edges
and vertices. For each subdomain Ωi, we assemble local stiffness matrices K(i) and
local load vectors f (i). By u(i) we denote the local solution vectors of nodal values.

In the dual-primal FETI methods, we distinguish between dual and primal dis-
placement variables by the way the continuity of the solution in those variables is
established. Dual displacement variables are those, for which the continuity is en-
forced by a continuity constraint and Lagrange multipliers λ and thus, continuity
is not established until convergence of the iterative method is reached, as in the
classical one-level FETI methods; see, e.g., [8]. On the other hand, continuity of the
primal displacement variables is enforced explicitly in each iteration step by sub-
assembly of the local stiffness matrices K(i) at the primal displacement variables.
This subassembly yields a symmetric, positive definite stiffness matrix eK which is
not block diagonal anymore but is coupled at the primal displacement variables. Let
us note that this coupling yields a global problem which is necessary to obtain a
numerically scalable algorithm.

We will use subscripts I , ∆, and Π , to denote the interior, dual, and primal
displacement variables, respectively, and obtain for the local stiffness matrices, load
vectors, and solution vectors of nodal values

K(i) =

2
664
K

(i)
II K

(i)T
∆I K

(i)T
ΠI

K
(i)
∆I K

(i)
∆∆ K

(i)T
Π∆

K
(i)
ΠI K

(i)
Π∆ K

(i)
ΠΠ

3
775 ,u(i) =

2
64

u
(i)
I

u
(i)
∆

u
(i)
Π

3
75 , f (i) =

2
64

f
(i)
I

f
(i)
∆

f
(i)
Π

3
75 .

We also introduce the notation

uB = [uI u∆]T , fB = [fI f∆]T ,u
(i)
B = [u

(i)
I u

(i)
∆ ]T , and f

(i)
B = [f

(i)
I f

(i)
∆ ]T .
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Accordingly, we define

KBB = diagNi=1(K
(i)
BB), K

(i)
BB =

"
K

(i)
II K

(i)T
∆I

K
(i)
∆I K

(i)
∆∆

#
, KΠB = [K

(1)
ΠB . . .K

(N)
ΠB ].

We note that KBB is a block diagonal matrix. By subassembly in the primal dis-
placement variables, we obtain

eK =

"
KBB eKT

ΠBeKΠB eKΠΠ
#
,

where a tilde indicates the subassembled matrices and where

eKΠB = [ eK(1)
ΠB · · · eK(N)

ΠB ].

Introducing local assembly operators R
(i)
Π which map from the local primal displace-

ment variables u
(i)
Π to the global, assembled euΠ , we have

eK(i)
ΠB = R

(i)
Π K

(i)
ΠB , euΠ =

NX
i=1

R
(i)
Π u

(i)
Π ,

eKΠΠ =
NX
i=1

R
(i)
Π K

(i)
ΠΠR

(i)T
Π ,

for i = 1, . . . , N . Due to the subassembly of the primal displacement variables,
Lagrange multipliers have to be used only for the dual displacement variables u∆ to
enforce continuity. We introduce a discrete jump operator B such that the solution
u∆, associated with more than one subdomain, coincides when BuB = 0; the interior
variables uI remain unchanged and thus the corresponding entries in B remain zero.
Since we assume pointwise matching grids across the interface Γ , the entries of the
matrix B are 0, 1, and −1.

We can now reformulate the finite element discretization of (2) as

2
64
KBB eKT

ΠB B
T

eKΠB eKΠΠ O

B O O

3
75
2
4

uB
euΠ
λ

3
5 =

2
64

fBefΠ
0

3
75 . (3)

Elimination of the primal variables euΠ and the interior and dual displacement vari-
ables uB leads to a a reduced linear system of the form

Fλ = d,

where the matrix F and the right hand side d are formally obtained by block Gauss
elimination. Let us note that the matrix F is never built explicitly but that in every
iteration appropriate linear systems are solved; see [3], [7] or [6] for further details.

To define the FETI-DP Dirichlet preconditioner M−1, we introduce a scaled
jump operator BD; this is done by scaling the contributions of B associated with
the dual displacement variables from individual subdomains. We define BD =
[B

(1)
D , . . . , B

(N)
D ], where the B

(i)
D are defined as follows: each row of B(i) with a

nonzero entry corresponds to a Lagrange multiplier connecting the subdomain Ωi
with a neighboring subdomain Ωj at a point x ∈ ∂Ωi,h ∩ ∂Ωj,h. We obtain B

(i)
D by

multiplying each such row of B(i) with 1/|Nx|, where |Nx| denotes the multiplic-
ity of the interface point x ∈ Γ . This scaling is called the multiplicity scaling and
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is suitable for homogeneous problems; see [7]. Our preconditioner is then given in
matrix form by

M−1 = BDR
T
ΓSRΓB

T
D =

NX
i=1

B
(i)
D R

(i)T
Γ S(i)R

(i)
Γ B

(i)T
D . (4)

Here, R
(i)
Γ are restriction matrices that restrict the degrees of freedom of a subdomain

to its interface and RΓ = diagi(R
(i)
Γ ).

We have to decide how to choose the primal displacement variables. The simplest
choice is to choose them as certain selected vertices of the subdomains, see [2], where
this approach was first considered. Following the notation introduced in [9], we will
denote the FETI-DP algorithm which uses exclusively selected vertices as primal
displacement constraints as Algorithm A. Unfortunately, Algorithm A does not yield
uniform bounds in the incompressible limit. To obtain better convergence properties,
we have to introduce additional constraints. These constraints are averages over the
edges, which are enforced to have the same values across the interface. This variant
has been introduced in [9] for scalar problems and is denoted by Algorithm B.

For our FETI-DP algorithm B, we have the following condition number estimate,
cf. [10],

Theorem 1. The condition number for the choice Mh =Ms
h satisfies

κ(M−1F ) ≤ C (1 + log(H/h))2.

Here, C > 0 is independent of h,H, and the values of the Poisson ratio ν.

4 Numerical results

We apply Algorithms A and B to (2), where Ω = (0, 1)2 and the Young modulus is
defined as E = 1. We will present results for different Poisson ratios ν. Algorithm
A uses all subdomain vertices as primal constraints and Algorithm B, additionally,
uses all edge averages as primal constraints. For the experiments in Table 1, we use
a structured grid with 240 × 240 macro elements (= 480 × 480 elements). In small
portions of the boundary in all four corners of the unit square homogeneous Dirichlet
boundary conditions were applied (see Figure 2) and the domain was subjected to a
volume force directed towards (1, 1)T . The domain was decomposed into 64 square
subdomains with 7 442 d.o.f. each; this results in an overall problem of 462 722 d.o.f.
The stopping criterion is a relative residual reduction of 10−10. The experiments
were carried out on two Opteron 248 (2.2 Ghz) 64-bit processors. The differences
in computing time between the unstable and the stabilized Q1− P0 element, e.g.,
for ν = 0.4, are due to the different sparsity patterns of the stiffness matrices. The
stabilized Q1−P0 element leads up to 50% more nonzero entries in the corresponding
stiffness matrix.

For the experiments in Table 2, the unit square is decomposed into 4 to 1 024
subdomains with 1 250 d.o.f. each. Homogeneous Dirichlet boundary conditions are
applied on the bottom and the left side. Again, a volume force directed towards
(1, 1)T is applied. The calculations were carried out on a single Opteron 144 (1.8
Ghz) 64-bit processor. We used as a stopping criterion the relative residual reduction
of 10−14.
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Fig. 2. Deformed configuration for the experiments in Table 1 (left) and for the
experiments in Table 2 (right). In both cases a coarser grid than used in the calcu-
lations is depicted.

ν It. λmax λmin Time It. λmax λmin Time

Alg. B (stabilized) (not stabilized)

0.4 23 6.98 1.0075 55s 23 6.98 1.0075 47s
0.49 23 6.81 1.0079 55s 23 6.86 1.0086 47s
0.499 24 6.79 1.0078 56s 23 6.79 1.0090 47s
0.4999 24 6.79 1.0078 56s 29 6.48 1.0087 53s
0.49999 24 6.79 1.0080 56s 55 39.98 1.0088 80s
0.499999 25 6.79 1.0076 57s 97 366 1.0086 124s
0.4999999 25 6.79 1.0078 57s 131 3632 1.0096 159s

Alg. A (stabilized) (not stabilized)

0.4 53 42.52 1.012 82s 53 42.52 1.012 81s
0.49 103 316 1.017 139s 67 85.93 1.015 78s
0.499 192 3037 1.018 241s 137 723 1.017 143s

0.4999 270 3.02× 104 1.020 332s 220 7069 1.020 221s

0.49999 368 3.02× 105 1.020 445s 315 7.05× 104 1.021 310s

0.499999 465 3.02× 106 1.022 558s > 500 7.05× 105 1.037 > 486s

0.4999999 > 500 3.02× 107 1.032 > 599s > 500 7.05× 106 1.159 > 484s

Table 1. Algorithms B and A, 462 722 d.o.f. and 64 subdomains.

Acknowledgement. The first and third author gratefully acknowledge the support
of the “Research in Pairs” (RiP) program while being at the Mathematisches
Forschungsinstitut Oberwolfach.
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Algorithm B ν = 0.4999999 ν = 0.4

N Mesh d.o.f. It. λmax λmin It. λmax λmin

4 48× 48 4 802 17 2.51 1.0011 13 2.19 1.0015
9 72× 72 10 658 21 3.38 1.0020 19 3.47 1.0024

16 96× 96 18 818 24 4.03 1.0023 22 4.13 1.0025
36 144× 144 42 050 26 4.53 1.0024 24 4.64 1.0025
64 192× 192 74 498 27 4.69 1.0024 25 4.80 1.0026

100 240× 240 116 162 29 4.75 1.0022 26 4.86 1.0025
144 288× 288 167 042 29 4.78 1.0023 27 4.88 1.0026
256 384× 384 296 450 30 4.79 1.0022 30 4.91 1.0024
576 576× 576 665 858 32 4.80 1.0021 32 4.77 1.0024

1 024 768× 768 1 182 722 32 4.80 1.0021 33 4.81 1.0024

Table 2. Numerical scalability of Algorithm B, Q1 − P0 (stabilized).
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Summary. The Boundary Element Tearing and Interconnecting (BETI) meth-
ods have recently been introduced as boundary element counterparts of the well–
established Finite Element Tearing and Interconnecting (FETI) methods. In this
paper we present inexact data–sparse versions of the BETI methods which avoid
the elimination of the primal unknowns and dense matrices. The data–sparse ap-
proximation of the matrices and the preconditioners involved is fully based on Fast
Multipole Methods (FMM). This leads to robust solvers which are almost optimal
with respect to the asymptotic complexity estimates.

1 Introduction

Langer and Steinbach [8] have recently introduced the BETI methods as boundary
element counterparts of the well–established FETI methods which were proposed
by Farhat and Roux [3]. We refer the reader to the monograph by Toselli and Wid-
lund [12] for more information and references to FETI and FETI–DP methods. In
particular, we mention the paper by Klawonn and Widlund [5] who introduced and
investigated the inexact FETI technique that avoids the elimination of the primal
unknowns (displacements).

In this paper we introduce inexact BETI methods for solving the inhomogeneous
Dirichlet boundary value problem (BVP) for the homogeneous potential equation
in 3D bounded domains, where all matrices and preconditioners involved in the
BETI solver are data-sparse via FMM representations. However, instead of sym-
metric and positive definite systems, we finally have to solve two–fold saddle point
problems. The proposed iterative solver and preconditioner result in an almost op-
timal solver the complexity of which is proportional to the numbers of unknowns on
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the skeleton up to some polylogarithmical factor. More precisely, the solver requires
O((H/h)(d−1)(1 + log(H/h))4 log ε−1) arithmetical operations in a parallel regime

and O((H/h)(d−1)(1 + log(H/h))2) storage units per processor, where d = 3 in the
3D case considered here, and ε ∈ (0, 1) is the relative accuracy of the iteration er-
ror in a suitable norm. H and h denote the usual scalings of the subdomains and
the boundary elements, respectively. Moreover, the solvers are robust with respect
to large coefficient jumps. For the sake of simplicity, we present here only the case
where all subdomains are non-floating. All results remain valid for the general case
that is discussed together with some other issues including other preconditioners in
the forthcoming paper by Langer, Of, Steinbach and Zulehner [6] where the reader
can also find the proofs in detail.

The rest of the paper is organized as follows. In Section 2, we introduce the
fast multipole boundary element domain decomposition (DD) method. Section 3 is
devoted to the inexact BETI method. In Section 4, we describe the ingredients from
which the preconditioner and the solver for the two–fold saddle point problem that
we finally have to solve is built. In Section 5, we present and discuss the results of
our numerical experiments. Finally, we draw some conclusions.

2 Fast Multipole Boundary Element DD Methods

Let us consider the Dirichlet BVP for the potential equation

−div[a(x)∇û(x)] = 0 for x ∈ Ω ⊂ R3, û(x) = g(x) for x ∈ Γ = ∂Ω, (1)

with given Dirichlet data g ∈ H1/2(Γ ) as a typical model problem, where Ω is a
bounded Lipschitz domain that is assumed to be decomposed into p non–overlapping
subdomains Ωi with Lipschitz boundaries Γi = ∂Ωi. We further assume that the
coefficient function a(·) in the potential equation (1) is piecewise constant such that
a(x) = ai > 0 for x ∈ Ωi, i = 1, . . . , p.

The solution û of (1) is obviously harmonic in all subdomains Ωi. Using the
representation formula and its normal derivative on Γi, we can reformulate the BVP
(1) as a DD boundary integral variational problem living on the skeleton ΓS =
∪pi=1Γi of the DD, see [2] and [4]. After homogenization of the Dirichlet boundary
condition via the ansatz û = ĝ + u with ĝ|Γ = g and u|Γ = 0, this DD boundary
integral variational problem can be written as a mixed variational problem of the
form: find t = (t1, t2, . . . , tp) ∈ T = T1 × T2 × . . .× Tp = H−1/2(Γ1)×H−1/2(Γ2)×
. . .×H−1/2(Γp) and u ∈ U = {v|ΓS

: v ∈ H1
0 (Ω)} such that

ai

»
〈τi, Viti〉Γi − 〈τi, (

1

2
I +Ki)u|Γi

〉Γi

–
= ai〈τi, (1

2
I +Ki)ĝ|Γi

〉Γi (2)

for all τi ∈ Ti, i = 1, 2, . . . , p, and

pX
i=1

ai

»
−〈(1

2
I +K′

i)ti, v|Γi
〉Γi − 〈Diu|Γi

, v|Γi
〉Γi

–
=

pX
i=1

ai〈Diĝ|Γi
, v|Γi

〉Γi (3)

for all v ∈ U , where Vi, Ki, K
′
i, and Di denote the local single layer potential opera-

tor, the local double layer potential operator, its adjoint, and the local hypersingular
boundary integral operator, respectively.
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Let us now introduce the boundary element trial spaces Uh = S1
h(ΓS) =

span{ϕm}Mm=1 ⊂ U and Ti,h = S0
h(Γi) = span{ψik}Ni

k=1 ⊂ Ti spanned by contin-
uous piecewise linear basis functions ϕm and by piecewise constant basis functions
ψik with respect to a regular globally quasi–uniform boundary element mesh with the
average mesh size h on ΓS and Γi, respectively. The Galerkin discretization finally
leads to a large–scale symmetric and indefinite system of form

0
BBBB@

a1
eV1,h −a1

eK1,hR1,h

. . .
...

ap eVp,h −ap eKp,hRp,h
−a1R

�
1,h
eK�

1,h . . . −apR�
p,h
eK�
p,h − eDh

1
CCCCA

0
BBB@

et1
...etpeu

1
CCCA =

0
BBBB@

a1eg
1

...
apeg

pef

1
CCCCA (4)

for defining the coefficient vectors eti ∈ RNi and eu ∈ RM. The matrices eVi,h, eKi,h
and eDh are data–sparse FMM approximations to the originally dense Galerkin ma-

trices Vi,h, Ki,h and Dh =

pX
i=1

aiR
�
i,hDi,hRi,h, respectively. The use of the FMM

is indicated by the “tilde” on the matrices and vectors. The FMM approximation
of these matrices reduces the quadratic complexity with respect to the number of
unknowns to an almost linear one, but without disturbing the accuracy. The re-
striction operator Ri,h maps some global coefficient vector v ∈ RM to the local
vector vi ∈ RMi containing those components of v which correspond to Γi only,
i = 1, 2, . . . , p. The matrices Ri,h are Boolean matrices which are sometimes also
called subdomain connectivity matrices.

3 Inexact BETI Methods

Introducing the local unknowns eui = Ri,heu as individual variables and enforcing
again the global continuity of the potentials by the constraints

pX
i=1

Bieui = 0, (5)

we immediately arrive at the two–fold saddle point problem

0
@ V K 0

K� −D B�

0 B 0

1
A
0
@ tu
λ

1
A =

0
@ gf

0

1
A (6)

that is obviously equivalent to (4), where t = (et1, . . . ,etp)�, u = (eu1, . . . , eup)�, and

λ ∈ RL is the vector of the Lagrange multipliers. The matrices V = diag(ai eVi,h),
K = diag(−ai eKi,h) and D = diag(ai eDi,h) are block–diagonal whereas B =
(B1, . . . , Bp). As in the FETI method each row of the matrix B is connected with
a pair of matching nodes across the subdomain boundaries. The entries of such a
row are 1 and −1 for the indices corresponding to the matching nodes on the inter-
face (coupling boundaries) ΓC = ΓS \ Γ and 0 otherwise. We assume here that the
number of constraints at some matching node is equal to the number of matching
subdomains minus one. This method of a minimal number of constraints respectively
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multipliers is called non–redundant (see, e.g., [12]). The matrices eVi,h are symmetric
and positive definite (SPD). For non–floating subdomains assumed in this paper

the matrices eDi,h are SPD as well. In the more complicated case of floating subdo-

mains, the matrices eDi,h must be modified due to the non-trivial kernel ker( eDi,h)
= span{1i}, where {1i} = (1, . . . , 1)�, see [8] or [6].

4 Solvers and Preconditioners

Following [13], who extended the special conjugate gradient (CG) method proposed
by [1] for solving one–fold saddle point problems, to n–fold saddle point problems,
we are able to construct a very efficient saddle point conjugate gradient (SPCG)
solver for our two–fold saddle point problem (6) provided that appropriate precon-

ditioners for the single layer potential matrices eVi,h, the local boundary element

Schur complements eSi,h = eDi,h + eK�
i,h
eV −1
i,h
eKi,h and the BETI Schur complement

eF =

pX
i=q+1

a−1
i Bi eS−1

i,hB
�
i are available. We propose the following data–sparse pre-

conditioners which are also used in our numerical experiments:

(a) Data–sparse algebraic or geometric multigrid preconditoners eVi,h for the matri-

ces eVi,h: For the geometric multigrid method, [7] proved the spectral equivalence
inequalities

cV
eVi,h ≤ eVi,h ≤ cV eVi,h (7)

where the spectral equivalence constants cV and cV are positive and independent
of h and H .

(b) Data–sparse opposite order preconditioners eSi,h for the local boundary element

Schur complements eSi,h: In order to construct efficient preconditioners eSi,h, we
apply the concept of boundary integral operators of the opposite order proposed
by [11]. Based on the local trial space Ui,h = S1

h(Γi) of piecewise linear basis
functions ϕim, as used for the Galerkin discretization of the local hypersingular
boundary integral operators Di, we define the Galerkin matrices V̄i,h and M̄i,h

by
V̄i,h[n,m] = 〈ϕin, V ϕim〉Γi , M̄i,h[n,m] = 〈ϕin, ϕim〉Γi

for m,n = 1, . . . ,Mi. The inverse preconditioners are now defined by

eS−1
i,h = M̄−1

i,h
ēV i,hM̄−1

i,h for i = 1, . . . , p, (8)

where the tilde on the top of ēV i,h again indicates that the application of the
discrete single layer potential V̄i,h is realized by using the FMM. In [6] we prove
the spectral equivalence inequalities

cS(1 + log(H/h))−2 eSi,h ≤ eSi,h ≤ cS eSi,h, (9)

where the spectral equivalence constants cS and cS are positive and independent
of h and H . The log–term disappears in the case of floating subdomains.

(c) Data–sparse BETI preconditioner eF for the BETI Schur complements eF : Fol-
lowing [8], we define the inverse BETI preconditioner
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eF−1
i,h = (BC−1

a BT )−1
pX
i=1

BiC
−1
α
eDi,hC−1

a,iB
�
i (BC−1

a B�)−1, (10)

with the help of the local data–sparse discrete hypersingular operators eDi,h and
the scaling matrix Ca = diag(Ca,i). The definition of the diagonal matrices Ca,i
can be found in [12]. In [6], the spectral equivalence inequalities

cF
eF ≤ eF ≤ cF (1 + log(H/h))2 eF (11)

were proved, where the spectral equivalence constants cS and cS are positive
and independent of h, H and the ai’s (coefficients jumps). In the general case
where non–floating as well as floating subdomains are present in the DD, the
spectral equivalence inequalities (11) remain valid on an appropriate subspace.

Combining these spectral equivalence estimates with the results obtained by [13]
and taking into account the complexity estimate for the FMM, we can easily prove
the following theorem.

Theorem 1. If the two–fold saddle point problem (6) is solved by the SPCG method

where the preconditioner is build from the block preconditioners eVi,h, eSi,h, and eF,
then not more than I(ε) = O((1 + log(H/h))2 log ε−1) iterations and ops(ε) =
O((H/h)2(1 + log(H/h))4 log ε−1) arithmetical operations are required in order to
reduce the initial error by the factor ε ∈ (0, 1) in a parallel regime. The number of
iterations I(ε) is robust with respect to the jumps in the coefficients. Moreover, not
more than O((H/h)2(1 + log(H/h))2) storage units are needed per processor.

The results of the theorem remain valid also in the general case where also float-
ing subdomains are present in the domain decomposition (see [6]). The proposed
SPCG solver is asymptotically almost optimal with respect to the complexity in
arithmetic and storage as well as very efficient on a parallel computer with dis-
tributed memory.

Remark 1. If we used optimal preconditioners eSi,h for the local boundary element

Schur complements eSi,h, then the number of iteration I(ε) of our SPCG solver would
behave likeO((1+log(H/h)) log ε−1), whereas the arithmetical complexity would de-
crease from O((H/h)2(1+log(H/h))4 log ε−1) to O((H/h)2(1+log(H/h))3 log ε−1).
Such preconditioners are available. If we convert the non–floating subdomains hav-
ing a Dirichlet boundary part to floating subdomains by including the Dirichlet
boundary condition into the constraints, then the data–sparse opposite order pre-
conditioners eSi,h given above is optimal.

5 Numerical Results

Let us consider the unit cube which is subdivided into eight similar subdomains. In
order to check the behavior of the discretization error, we take the Dirichlet data
g = û|Γ as the trace of a regular solution û of the boundary value problem (1)
on the boundary Γ . We perform numerical experiments for the Laplace equation
(ai = 1 for all i = 1, . . . , 8) and for the potential equation with large jumps in the
coefficients (ai ∈ {1, 105}).
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Starting from the coarsest grid level L = 0 with 192 triangles on ∪∂Ωi, we
successively refine the mesh by subdividing each triangle into four smaller similar
triangles. N and M denote the total numbers of triangles and nodes, respectively.
Mc is the total number of coupling nodes. The numbers of local triangles and nodes
on ∂Ωi are given by Ni andMi, respectively. If the boundary mesh of one subdomain
Ωi on level L = 6 with 98304 triangles was uniformly extended to the interior of the
subdomain, then the corresponding finite element mesh would consist of 6291456
tetrahedrals resulting in more than 50 millions tetrahedrals for the whole computa-
tional domain. In Table 1, together with the mesh features L,N,M,Mc, Ni and Mi,
the time t1 [sec] for generating the system (6) and for setting up the preconditioner,
the time t2 [sec] spent by the SPCG solver, the number of iterations I(ε) and the
absolute L2(Γi) discretization error ‖û− ûh‖L2(Γi) are displayed. The relative accu-

racy ε of the iteration error is chosen to be 10−8. The first line in each row for the
columns t1, t2, I(ε) and L2(Γi)–error corresponds to the Laplace case whereas the
second line corresponds to the case of jumping coefficients. Table 1 shows that the

L N M Mc Ni Mi t1 t2 I(ε) L2-error

0 192 63 13 24 14 0 0 6 2,8527E–03
1 0 6 2,8527E–08

1 768 261 67 96 50 1 1 33 7,1318E–04
1 1 29 7,1318E–09

2 3072 1089 319 384 194 5 6 36 1,7830E–04
5 6 34 1,7830E–09

3 12288 4473 1399 1536 770 16 34 38 4,4574E–05
15 30 36 4,4577E–10

4 49152 18153 5863 6144 3074 81 186 41 1,1143E–05
79 172 38 1,1144E–10

5 196608 73161 24007 24576 12290 316 1469 46 2,7859E–06
310 1346 44 2,7859E–11

6 786432 293769 97159 98304 49154 1314 7250 55 6,9647E–07
1319 7034 49 6,9651E–12

Table 1. Numerical features for the SPCG solver.

growth in the number of iterations and in the CPU times is in good agreement with
the complexity estimates given in Theorem 1. The efficiency of our SPCG solver is
not affected by large jumps in the coefficients of the potential equations (1). More-
over, the number of iterations are less than in the Laplace case. In addition, the
CPU time for the finest level L = 6 is half of the time needed for a primal precon-
ditioned Schur complement solver in the case of jumping coefficients. All numerical
experiments were performed on standard PCs with 3.06 Ghz Intel processors and 1
GB of RAM.
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6 Conclusions

Inexact data–sparse BETI methods introduced in this paper show an almost optimal
behavior with respect to the number of iterations, the arithmetical costs and the
memory consumption. Moreover, the methods are robust with respect to large jumps
in the coefficients of the potential equation (1). These results have been rigorosly
proved and have also been confirmed by our numerical experiments. The treatment of
the outer Dirichlet problem as well as other boundary conditions is straightforward.
Inexact data–sparse BETI methods can naturally be generalized to linear elasticity
BVP including elasticity problems for almost incompressible materials (cf. [10]).
Combining the results of this paper with the results on inexact FETI methods
obtained by Klawonn and Widlund [5], we can develop inexact data-sparse BETI–
FETI solvers for coupled boundary and finite element equations (cf. [9] for the exact
version).
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Summary. The purpose of this paper is to extend the BDDC (balancing domain
decomposition by constraints) algorithm to saddle point problems that arise when
mixed finite element methods are used to approximate the system of incompressible
Stokes equations. The BDDC algorithms are defined in terms of a set of primal
continuity constraints, which are enforced across the interface between the subdo-
mains, and which provide a coarse space component of the preconditioner. Sets of
such constraints are identified for which bounds on the rate of convergence can be
established that are just as strong as previously known bounds for the elliptic case.
The preconditioned operator is positive definite and a conjugate gradient method
can be used. A close connection is also established between the BDDC and FETI-DP
algorithms for the Stokes case.

1 Introduction

The BDDC algorithms are domain decomposition methods based on nonoverlapping
subdomains into which the domain of a given partial differential equation is divided.
Introduced by Dohrmann [1] and analyzed in the elliptic case by him, Mandel,
and Tezaur [9], these methods represent an important advance over the balancing
Neumann-Neumann methods that have been used extensively in the past to solve
large finite element problems; cf. [10, Section 6.2] where references to earlier work
can also be found. It has also been established that the preconditioned operators of
a pair of BDDC and FETI-DP algorithms, with the same primal constraints, have
the same nonzero eigenvalues for positive definite elliptic problems; see [9, 3, 7].

In this paper, a BDDC preconditioner is developed for mixed finite element ap-
proximations of the incompressible Stokes equations in a very similar way; see also
[8] for many more details. If the set of primal constraints on the velocity across the
interface satisfies a certain assumption, we are then able to show that the precon-
ditioned operator is positive definite and has the same nonzero eigenvalues as the
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FETI-DP operator developed in [6]. With an additional assumption, a bound on the
convergence rate as strong as for the standard elliptic case can be proved.

2 Discretization of a Saddle Point Problem

Let us consider the incompressible Stokes problem on a bounded, polyhedral domain
Ω, in two or three dimensions. We denote the boundary of the domain by ∂Ω;
for simplicity a homogeneous Dirichlet boundary condition is enforced. The weak

solution has the following saddle point formulation: find u ∈
`
H1

0 (Ω)
´d

= {v ∈
(H1(Ω))d | v = 0 on ∂Ω}, d = 2 or 3, and p ∈ L2

0(Ω) = {q ∈ L2(Ω) |
Z
Ω

q = 0},
such that, (

a(u,v) + b(v, p) = (f ,v), ∀v ∈
`
H1

0 (Ω)
´d
,

b(u, q) = 0, ∀q ∈ L2
0(Ω) ,

(1)

where a(u,v) =

Z
Ω

∇u : ∇v, or a(u,v) = 2

Z
Ω

ε(u) : ε(v) and b(u, q) = −
Z
Ω

(∇ ·

u)q. Here the strain tensor ε(u) is defined by εij(u) = (
∂ui
∂xj

+
∂uj
∂xi

)/2. The operator

form of the Stokes problem with Dirichlet boundary conditions is the same for either
choice of the bilinear form a(·, ·), but we adopt the second which gives rise to a
natural boundary condition which is consistent with physics.

In our mixed finite element methods for solving the saddle point problem (1),

the velocity solution space will be denoted by cW. It consists of vector-valued, low
order piecewise polynomial functions which are continuous across element bound-
aries. The pressure space Q ⊂ L2

0(Ω) consists of scalar, discontinuous functions. A
characteristic diameter of the elements of the underlying triangulation is denoted
by h. The finite element approximation (u, p) of the variational problem (1) can be
written as »

A BT

B 0

– »
u
p

–
=

»
f
0

–
. (2)

We will always assume that the chosen mixed finite element space cW × Q is
inf-sup stable, i.e., that there exists a positive constant β, independent of h, such
that

sup
w∈cW

b(w, q)

‖w‖H1

≥ β‖q‖L2 , ∀q ∈ Q. (3)

The domain Ω is decomposed into N nonoverlapping polyhedral subdomains
Ωi, i = 1, 2, ..., N , of characteristic diameter H . The subdomain interface is de-
fined by Γ = (∪∂Ωi)\∂Ω, and the interface of an individual subdomain Ωi is

Γi = ∂Ωi ∩ Γ . We decompose the discrete velocity and pressure spaces cW and

Q into cW = WI

McWΓ and Q = QI
M

Q0, where WI and QI are direct sums

of subdomain interior velocity spaces W
(i)
I , and subdomain interior pressure spaces

Q
(i)
I , respectively. The elements of W

(i)
I are supported in the subdomain Ωi and

vanish on its interface Γi, while the elements of Q
(i)
I are restrictions of elements in Q

to Ωi which satisfy

Z
Ωi

q
(i)
I = 0. cWΓ is the space of traces on Γ of functions in cW
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and Q0 is the subspace of Q with constant values q
(i)
0 in the subdomain Ωi that sat-

isfy

Z
Ω

q0dx =
NX
i=1

q
(i)
0 m(Ωi) = 0, where m(Ωi) is the measure of the subdomain

Ωi.
We denote the space of interface velocity variables on the subdomain Ωi by W

(i)
Γ ,

and the associated product space by WΓ =

NY
i=1

W
(i)
Γ ; generally functions in WΓ are

discontinuous across the interface. Eliminating the independent subdomain interior
variables (uI , pI) from the global problem (2), we have the global interface problem

" bSΓ bBT0Γ
bB0Γ 0

# »
uΓ

p0

–
=

»
gΓ

0

–
. (4)

Here, gΓ is a reduced load vector obtained when the interior variables are eliminated.bSΓ is assembled from subdomain Stokes Schur complements

S
(i)
Γ = A

(i)
ΓΓ −

h
A

(i)
ΓI B

(i)T

IΓ

i "A(i)
II B

(i)T

II

B
(i)
II 0

#−1
2
4A(i)T

ΓI

B
(i)
IΓ

3
5 ,

i.e., bSΓ =
NX
i=1

R
(i)T

Γ S
(i)
Γ R

(i)
Γ , where R

(i)
Γ is the operator which maps functions in the

continuous interface velocity space cWΓ to their subdomain components in the space
W

(i)
Γ . Denote by SΓ and RΓ the direct sums of S

(i)
Γ and R

(i)
Γ , respectively. bSΓ can

then be written as bSΓ = RTΓSΓRΓ .
We denote the operator of the interface problem (4) by bS. Since bS is symmetric

and indefinite, we could use the minimal residual method, possibly with a positive
definite block preconditioner, as in [10, Section 9.2], to solve problem (4). We will
instead propose a different type of preconditioner and show that the preconditioned
operator is positive definite, provided that a suitable set of primal constraints are
chosen; cf. Assumption 1.

3 A BDDC Preconditioner for Stokes Equations

We introduce a partially assembled interface velocity space fWΓ by

fWΓ = cWΠ

M
W∆ = cWΠ

M 
NY
i=1

W
(i)
∆

!
.

Here, cWΠ is the continuous coarse level, primal interface velocity space that is
typically spanned by subdomain vertex nodal basis functions, and/or by interface
edge and/or face basis functions with constant values, or with values of weight
functions, on these edges or faces. These basis functions correspond to the primal
interface velocity continuity constraints. We will always assume that the basis has
been changed so that each primal basis function corresponds to an explicit degree of
freedom which is shared by the neighboring subdomains; see [7], [5, Section 6], and
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[4] for more details of the change of basis. The complimentary space W∆ is the direct

sum of the subdomain dual interface velocity spaces W
(i)
∆ , which correspond to the

remaining interface velocity degrees of freedom and are spanned by basis functions
which vanish at the primal degrees of freedom. Thus, an element in the space fWΓ has
a continuous primal velocity and typically a discontinuous dual velocity component.

We define R
(i)
∆ as the operator which maps a function in the space cWΓ to its dual

component in the space W
(i)
∆ . RΓΠ is the restriction operator from the space cWΓ to

its subspace cWΠ and R
(i)
Π is the operator which maps cWΠ into its Γi−component.

eRΓ is the direct sum of RΓΠ and the R
(i)
∆ , and it is a map from cWΓ into fWΓ .

The interface velocity Schur complement eSΓ is defined on the partially assem-

bled interface velocity space fWΓ by eSΓ = R
T
ΓSΓRΓ , where RΓ maps fWΓ into

the product space WΓ associated with the set of subdomains. We recall that the
global interface Schur operator bSΓ is obtained by fully assembling the S

(i)
Γ across

the subdomain interface. bSΓ can therefore also be obtained from eSΓ by further as-
sembling the dual interface velocity part, i.e., bSΓ = eRTΓ eSΓ eRΓ . Correspondingly, we
define eB0Γ , which is obtained from the subdomain operators B

(i)
0Γ by assembling the

primal interface velocity part only. The operator bB0Γ can then be obtained fromeB0Γ by assembling the dual interface velocity part on the subdomain interfaces,
i.e., bB0Γ = eB0Γ

eRΓ . We can therefore write bS, the operator of the global interface
problem (4), as bS = eRT eS eR, where

eR =

" eRΓ
I

#
, eS =

" eSΓ eBT0Γ
eB0Γ 0

#
. (5)

To define the BDDC preconditioner, we need certain scaling functions. For each
interface node x ∈ Γi, we set δ†i (x) = 1/Nx, x ∈ Γi, where Nx is the number of
subdomain to which x belongs. Given the scaling factors at the subdomain interface
nodes, we can define scaled restriction operators R

(i)
D,∆. Each row of R

(i)
∆ has only

one nonzero entry which corresponds to a node x ∈ Γi, and multiplying each such
element with the scaling factor δ†i (x) gives us R

(i)
D,∆. The scaled operator eRD,Γ is

the direct sum of RΓΠ and the R
(i)
D,∆. For elasticity problems, these scaling factors

should depend on the first Lamé constant µ, which can be allowed to change across
the interface between neighboring subdomains; see [10, Section 8.5.1] and [5].

The BDDC preconditioner for solving the interface saddle point problem (4) is

M−1 = eRTD eS−1 eRD, where eRD is of the same form as eR in (5), except that eRΓ is

replaced by eRD,Γ . To compute the product of eS−1 and a vector, a coarse level saddle
point problem, for the primal variables, and subdomain Neumann problems, each
with a few primal constraints, need to be solved; cf. [7, 8].

4 Condition Number Bounds

We define an average operator

ED = eR eRTD =

» eRΓ
I

– » eRTD,Γ
I

–
=

»
ED,Γ

I

–
, (6)

416



A BDDC Preconditioner for Saddle Point Problems

which maps fWΓ ×Q0, with generally discontinuous interface velocities, to elements
with continuous interface velocities in the same space. ED,Γ = eRΓ eRTD,Γ , provides
the average of the interface velocities across the interface Γ . Denoting the primal
and dual parts of wΓ by wΠ and w∆, we can write ED,ΓwΓ as the direct sum of
wΠ and ED,∆w∆, where ED,∆w∆ is the dual part of the averaged vector.

The following two assumptions will be needed in the condition number bound
of the preconditioned operator.

Assumption 1 For any w∆ ∈W∆,

Z
∂Ωi

w
(i)
∆ ·n = 0 and

Z
∂Ωi

(ED,∆w∆)(i) ·n = 0,

where n is the unit outward normal of ∂Ωi.

Assumption 2 There exists a positive constant C, which is independent of H, h,
and the number of subdomains, such that

|RΓ (ED,ΓwΓ ) |E(Γ ) ≤ C
„

1 + log
H

h

«
|RΓwΓ |E(Γ ), ∀wΓ ∈ fWΓ ,

where | · |E(Γ ) is defined on the space WΓ by |wΓ |2E(Γ ) =
NX
i=1

|w(i)
Γ |

2
E(Γi)

with

|w(i)
Γ |E(Γi) = inf

v
(i)∈(H1(Ωi))

d

v(i)|Γi
=w

(i)
Γ

‖ε(v(i))‖L2(Ωi)
.

These two assumptions can be satisfied with an appropriate choice of the pri-
mal continuity constraints on the interface velocity variables; for two-dimensional
problems, Assumptions 1 and 2 are satisfied if all subdomain vertices are pri-
mal, i.e, both components of the velocity are continuous at those nodes, andZ
Γ ij

w
(i)
Γ · nij =

Z
Γ ij

w
(j)
Γ · nij , is enforced on all the subdomain interface edges.

Here nij is a normal of Γij . For the more complicated three-dimensional case, see
[2, 8, 5].

The interface velocity subspaces cWΓ,B and fWΓ,B are defined by cWΓ,B = {wΓ ∈cWΓ | bB0ΓwΓ = 0}, and fWΓ,B = {wΓ ∈ fWΓ | eB0ΓwΓ = 0}. We will callcWΓ,B × Q0 and fWΓ,B × Q0 the benign subspaces of cWΓ × Q0 and fWΓ × Q0,
respectively.

The preconditioned operator eRTD eS−1 eRD bS is indefinite on the space cWΓ × Q0,
since both bS and eS are indefinite. However, both bS and eS are positive semi-definite,
when restricted to the benign subspaces cWΓ,B ×Q0 and fWΓ,B × Q0, respectively.

We will also know, from Lemma 1, that M−1 bS maps cWΓ,B×Q0 into itself and that
M−1 bS is symmetric with respect to the bilinear form 〈·, ·〉bS . Theorem 1 will show

that M−1 bS is positive definite, when restricted to the benign subspace cWΓ,B ×Q0.
Therefore a preconditioned conjugate gradient method can be used. The following
lemmas will be used in the proof of Theorem 1.

Lemma 1 Let Assumption 1 hold. Then, eRTDw ∈ cWΓ,B×Q0, for any w ∈ fWΓ,B×
Q0.
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Lemma 2 Let Assumptions 1 and 2 hold. There then exists a positive constant C,
which is independent of H, h, and the number of subdomains, such that,

< EDw, EDw >eS≤ C
1

β2

„
1 + log

H

h

«2

< w,w >eS, ∀w ∈ fWΓ,B ×Q0.

Here, β is the inf-sup stability constant of Equation (3).

Theorem 1 Let Assumptions 1 and 2 hold. The preconditioned operator M−1 bS
is then symmetric, positive definite with respect to the bilinear form 〈·, ·〉bS on the

benign space cWΓ,B ×Q0. Its minimum eigenvalue is 1 and its maximum eigenvalue
is bounded by

C
1

β2

„
1 + log

H

h

«2

.

Here, C is a constant which is independent of H, h, and the number of subdomains
and β is the inf-sup stability constant defined in Equation (3).

Just as in the positive definite elliptic case, we can also establish that the pre-
conditioned BDDC operator and the preconditioned FETI-DP operator in [6] have
the same nonzero eigenvalues; cf. [7, 8]. We have,

Theorem 2 Let Assumption 1 hold. The preconditioned FETI–DP and BDDC op-
erators have the same nonzero eigenvalues, when the same set of primal constraints
are applied.

5 Numerical Experiments

We solve an incompressible Stokes problem on the domain Ω = [0, 1] × [0, 1] with
Dirichlet boundary condition, where the velocity is (1, 0) on the upper side, and
vanishes on the other three sides. We use a uniform mesh, as in Figure 1. The mixed
finite element method is also indicated in Figure 1; the velocity is continuous and
linear in each element and the pressure is constant on macro elements which are
unions of four triangles.

Fig. 1. The mesh and the mixed finite elements.

Both the BDDC and FETI–DP algorithms have been tested. The preconditioned
conjugate gradient method is used and the iteration is halted when the L2-norm
of the residual has been reduced by a factor 10−6. The primal velocity space is
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spanned by the subdomain vertex nodal basis functions for both components and
by a constant vector in the direction normal to the edge for each interface edge.
Both Assumptions 1 and 2 are then satisfied. From Tables 1 and 2, we see that the
preconditioned BDDC and FETI–DP operators are both positive definite and quite
well-conditioned as established in Theorems 1 and 2. We observe that the extreme
eigenvalues and the iteration counts of the BDDC and FETI–DP algorithms match
very well, and that the condition numbers of both algorithms are independent of
the number of subdomains, and increases only slowly with the number of elements
across each subdomain, all as predicted by the theory.

Table 1. Spectral bounds and iteration counts for a pair of BDDC and FETI–DP
algorithms, with different number of subdomains, for H/h = 8 and a primal space
spanned by both corner and normal edge basis functions.

Num. of subs BDDC FETI–DP
nx × ny λmin λmax iter. λmin λmax iter.

4× 4 1.00 3.14 11 1.00 3.14 11
8× 8 1.00 3.88 12 1.00 3.88 12

12× 12 1.00 4.02 12 1.00 4.02 13
16× 16 1.00 4.06 12 1.00 4.07 13
20× 20 1.00 4.08 12 1.00 4.08 13

Table 2. Spectral bounds and iteration counts for a pair of BDDC and FETI–DP
algorithms, with different H/h, for 4 × 4 subdomains and a primal space spanned
by both corner and normal edge basis functions.

BDDC FETI–DP
H/h λmin λmax iter. λmin λmax iter.

4 1.00 2.17 8 1.00 2.17 9
8 1.00 3.14 11 1.00 3.14 11
16 1.00 4.22 13 1.00 4.22 12
32 1.00 5.42 14 1.00 5.42 14

When Assumption 1 is not satisfied, e.g., when only vertex velocity variables are
primal, the preconditioned BDDC operator is no longer positive definite, and the
iteration counts will depend on both the number of subdomains as well as on the
number of elements across each subdomain; cf. [8].
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Summary. We propose an adaptive selection of the coarse space of the BDDC
and FETI-DP iterative substructuring methods by adding coarse degrees of freedom
(dofs) on faces between substructures constructed using eigenvectors associated with
the faces. Provably the minimal number of coarse dofs on the faces is added to de-
crease a heuristic indicator of the condition number under a target value specified
a priori. It is assumed that the corner dofs are already sufficient to prevent relative
rigid body motions of any two substructures with a common face. It is shown nu-
merically on a 2D elasticity problem that the indicator is reasonably close to the
actual condition number and that the method can find automatically the hard part
of the problem and concentrate the computational work there to achieve the target
value for the condition number and good convergence of the iterations, at a modest
cost.

1 Introduction

The BDDC and FETI-DP methods are iterative substructuring methods that use
coarse degrees of freedom associated with corners and edges (in 2D) or faces (in
3D, further on just faces) between substructures, and they are currently the most
advanced versions of the BDD and FETI families of methods. The BDDC method [2]
is a Neumann-Neumann method of Schwarz type [3]. The BDDC method iterates on
the system of primal variables reduced to the interfaces between the substructures

∗Supported by NSF grant 0325314 and by Sandia National Laboratories.
†Partially supported by the grant agency of the Czech Republic under grant

106/05/2731 and Program of the Information Society 1ET400300415.
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and it can be understood as a further development of the BDD method [10]. The
FETI-DP method [5, 4] is a dual method that iterates on a system for Lagrange
multipliers that enforce continuity on the interfaces. Algebraic relations between
FETI and BDD methods were pointed out in [6, 7, 12]. A common bound on the
condition number of both the FETI and the BDD method in terms of a single
inequality was given in [7]. In the case of corner constraints only, methods identical
to BDDC were derived as primal versions of FETI-DP in [1, 6]. In [11], it was
proved that the eigenvalues of BDDC and FETI-DP are identical and a bound on
the condition number was obtained in terms of matrix data only.

In this contribution, we show how to use the algebraic estimate of the condition
number from [11] to develop an adaptive fast method. First we estimate the condition
number as the solution of an eigenvalue problem, then obtain a reliable heuristic
indicator from the eigenvalues for two substructures with a common face faces.
Finally, we show how to use the eigenvectors to obtain coarse degrees of freedom
that result in an optimal decrease of the indicator. We demonstrate on numerical
examples that the indicator is quite close that such an adaptive approach results in
the concentration of computational work in a small part of the problem, leading to
good convergence behavior at a small added cost.

Related work on adaptive coarse space selection has focused on the global prob-
lem of selecting the smallest number of corners to prevent coarse mechanisms [9] and
the smallest number of coarse degrees of freedom to assure asymptotically optimal
convergence estimates [8]. In contrast, our indicator of condition number is local
in nature and we assume that corner degrees of freedom are already sufficient to
prevent relative rigid body motions of any two substructures with a common face.

2 Formulation of BDDC and FETI-DP

We need to briefly recall the formulation of the methods and the condition number
bound. Let Ks be the stiffness matrix and vs the vector of degrees of freedom (dofs)
for substructure s. We want to solve the problem in decomposed form

1

2
vTKv − vT f → min, v =

2
64
v1
...
vN

3
75 K =

2
64
K1

. . .

KN

3
75

subject to continuity dofs between substructures. Partitioning the dofs in each sub-
domain s into internal and interface (boundary)

Ks =

"
Kii
s Kib

s

Kib
s

T
Kbb
s

#
, vs =

»
vis
vbs

–
, fs =

»
f is
fbs

–
,

and eliminating the interior dofs we obtain the problem reduced to interfaces

1

2
wTSw − wT g → min, S = diag(Ss), Ss = Kbb

s −Kib
s

T
Kii
s

−1
Kib
s ,

again subject to continuity of dofs between substructures.
In BDD type methods, the continuity of dofs between substructures is enforced

by imposing common values on substructures interfaces: w = Ru for some u, where
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R =

2
64
R1

...
RN

3
75

and Rs is the operator of restriction of global dofs on the interfaces to substructure
s. In FETI type methods, continuity of dofs between substructures is enforced by
the constraint Bw = 0, where the entries of B are typically 0,±1. By construction,
we have RsR

T
s = I and rangeR = nullB.

Node is the set of all dofs associated with the same location in space. Nodes such
that no other node is adjacent to the same set of substructures are called corners.
Face is the set of all dofs shared by two substructures that contains more than one
node.

A BDDC or FETI-DP method is specified by the choice of coarse dofs and the
choice of weights for intersubdomain averaging. To define the coarse problem for
BDDC, choose a matrix QTP that selects coarse dofs uc from global interface dofs u,
e.g. as values at corners or averages on faces:

uc = QTPu.

The space fW will consist of all vectors of substructure interface dofs such that the
coarse dofs are continuous between substructures,

fW = {w ∈ W : ∃uc∀s : Csws = Rcsuc}
where Cs = RcsQ

T
PR

T
s maps a collection of substructure dofs to a collection of coarse

dofs on substructure s, and Rcs restricts a vector of all coarse dof values into a vector
of coarse dof values that can be nonzero on substructure s. The dual approach in
FETI-DP is to construct QD such that fW = nullQTDB.

In BDDC, the intersubdomain averaging is defined by the matrices DP =
diag (DPs) that form a decomposition of unity, RTDPR = I. The corresponding
dual matrices in FETI-DP are BD = [DD1B1, . . .DDNBN ], where the dual weights
DDs are defined so that BTDB +RRTDP = I .

The BDDC method is then the method of conjugate gradients for the assembled
system Au = RT g with the system matrix A = RTSR and the preconditioner P
defined by Pr = RTDP (Ψuc + z), where uc is the solution of the coarse problem
ΨTSΨuc = ΨTDTPRr and z is the solution of

Sz + CTµ = DTPRr
Cz = 0

,

which is a collection of independent substructure problems. The coarse basis func-
tions Ψ are defined by energy minimization,

»
S CT

C 0

– »
Ψ
Λ

–
=

»
0
Rc

–
.

The FETI-DP method solves the saddle point problem

min
w∈fW max

λ
L(w, λ) = max

λ
min
w∈fW L(w, λ),

where L(w,λ) =
1

2
wTSw−wT f+wTBTλ by iterating on the dual problem

∂F(λ)

∂λ
=

Fλ− h = 0, where

423



J. Mandel and B. Soused́ık

F(λ) = min
w∈fW L(w, λ),

by conjugate gradients with the preconditioner M = BDSB
T
D. See [11] for more

details.

3 Indicator of the Condition Number

Theorem 1 ([11]). The eigenvalues of the preconditioned operators PA of BDDC
and MF of FETI-DP are same except for eigenvalues of zero and one, and the
condition numbers satisfy

κBDDC = κFETI−DP ≤ ω = sup
w∈fW

J (ω) , J (ω) =

‚‚BTDBw‚‚2

S

‖w‖2S
.

Here, the condition number is the ratio of the largest and the smallest nonzero
eigenvalue. Zero eigenvalues in FETI-DP are caused by redundant constraints, com-
mon in practice.

As an indicator of the condition number, we propose the maximum of the bounds
from Theorem 1 computed by considering only one pair of adjacent substructures
s, t with a common face at a time:

ω ≈ eω = max
st
ωst, ωst = sup

wst∈fWst

Jst (wst) . (1)

All quantities with the subscript st are the same as without the subscript but defined
using the domain consisting of the substructures s and t only.

Theorem 2. Let a > 0, Πst be the orthogonal projection onto fWst, and I −Πst be
the orthogonal projection onto

null (ΠstSstΠst + a (I −Πst)) .

Then the stationary values ωst,1 ≥ ωst,2 ≥ . . . and the corresponding stationary

vectors wst,k of the Rayleigh quotient Jst on fWst satisfy

Xstwst,k = ωst,kYstwst,k (2)

with Yst positive definite, where

Xst = ΠstB
T
stBDstSstB

T
DstBstΠst,

Yst =
`
Πst (ΠstSstΠst + a (I −Πst))Πst + a

`
I −Πst

´´

The eigenvalue problem (2) is obtained by projecting the gradient of the Rayleigh

quotient Jst (wst) onto the complement infWst of the subspace where its denominator
‖wst‖2Sst

= 0, in two steps. Both projections Πst and Πst are computed by matrix
algebra, which is straightforward to implement numerically. The computation of Πst
involves minimization with Lagrange multipliers for the condition that the values of
the coarse dofs on the the substructures s and t coincide. The projection I −Πst is
onto a subspace of null Sst, and it is easily constructed computationally if a matrix
Zst is given such that null Sst ⊂ rangeZst. The matrix Zst with columns consisting of
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the coarse basis functions can be used because the span of the coarse basis functions
contains the rigid body modes. However, often these modes are available directly,
which leads to a smaller matrix Zst and thus cheaper computation. Since Yst is
positive definite, its Choleski decomposition exists, and we reduce (2) a symmetric
eigenvalue problem, which is easier and more efficient to solve numerically.

4 Optimal Coarse Degrees of Freedom on Faces

Writing fWst in the dual form fWst= nullQTDstBst suggests how to add coarse dofs
in an optimal way to decrease the value of indicator eω. The following theorem
follows immediately from the standard characterization of eigenvalues as minima
and maxima of the Rayleigh quotient on subspaces spanned by eigvectors, applied
to (2).

Theorem 3. Suppose �st ≥ 0 and the dual coarse dof selection matrix QTDst is aug-

mented to become
h
QTDst, q

T

Dst,1, . . . , q
T
Dst,	st

i
with qTDst,k = wTst,kB

T
stBDstSstB

T
Dst,

where wTst,k are the eigenvectors from (2). Then ωst = ωst,	st+1, and ωst ≥ ωst,	st+1

for any other augmentation of QTDst by at most �st columns.
In particular, if ωst,	st+1 ≤ τ for all pairs of substructures s, t with a common

face, then eω ≤ τ .
Theorem 3 allows us to guarantee that the condition number indicator eω ≤ τ for

a given target value τ , by adding the smallest possible number of face coarse dofs.
The primal coarse space selection mechanism that corresponds to this augmen-

tation can be seen easily in the case when the entries of Bst are +1 for substructure
s and −1 for substructrure t. Then wst ∈ fWst can be written as

QTDst(Istws − Itswt) = 0

where Ist is the 0 − 1 matrix that selects from ws the degrees of freedom on the
intersection of the substructures s and t. Each column of qD of QDst defines a
coarse degree of freedom associated with the interface of substructures s and t. The
corresponding column qP of QP is such that

qTPR
T
s = qTDIst (3)

Because Rs is also a 0 − 1 matrix, this means that the vector qP is formed by a
scattering of the entries of the vector qD.

5 Numerical Results

Consider plane elasticity discretized by bilinear elements on a rectangular mesh de-
composed into 16 substructure, with one single edge between substructures being
jagged (Fig. 1). We have computed the eigenvalues and eigenvectors of (2) by setting
up the matrices and using standard methods for the symmetric eigenvalue problem
in Matlab. The eigenvalues ωst,k associated with edges between substructures (Ta-
ble 1) clearly distinguish between the single problematic edge and the others. Adding
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Fig. 1. Mesh with H/h = 16, 4 × 4 substructures, and one jagged edge between
substructures 2 and 6. Zero displacement is imposed on the left edge. For compress-
ible elasticity (Tables 1 and 2(a)) and tolerance τ = 10, 7 coarse dofs at the jagged
edge and 1 coarse dof at an adjacent edge are added automatically.

s t ωst,1 ωst,2 ωst,3 ωst,4 ωst,5 ωst,6 ωst,7 ωst,8
1 2 3.7 2.3 1.4 1.3 1.1 1.1 1.1 1.1
1 5 5.8 3.2 2.3 1.4 1.2 1.1 1.1 1.1
2 3 6.0 2.5 1.7 1.3 1.2 1.1 1. 1.1
2 6 21.7 19.5 17.8 14.9 14.5 11.7 11.2 9.7
3 4 3.3 2.3 1.4 1.3 1.1 1.1 1.1 1.1
3 7 7.1 5.1 3.2 1.8 1.4 1.3 1.2 1.1
4 8 5.9 3.4 2.6 1.4 1.2 1.1 1.1 1.1
5 6 12.0 4.9 4.4 1.8 1.6 1.3 1.3 1.2
5 9 5.9 3.4 2.6 1.4 1.3 1.3 1.1 1.1
6 7 8.7 4.9 3.9 1.8 1.5 1.3 1.2 1.1
6 10 7.3 4.8 3.4 1.8 1.4 1.3 1.2 1.1

Table 1. Several largest eigenvalues ωst,k for several edges for the elasticity problem
from Fig. 1 with H/h = 16. (s, t) = (2, 6) is the jagged edge.
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H/h Ndof τ Nc eω κ it

4 578 42 10.3 5.6 19
10 43 5.2 4.0 18
3 44 3.0 4.0 18
2 58 2.0 2.8 15

16 8450 42 22 20 37
10 50 8.7 9.9 29
3 77 3.0 4.6 22
2 112 2.0 2.6 15

64 132098 42 87 40 55
10 89 9.8 9.9 36
3 151 3.0 4.7 22
2 174 2.0 2.9 17

H/h Ndof τ Nc eω κ it

4 578 42 285 208 64
10 68 8.0 8.6 28
3 89 2.9 4.6 22
2 114 2.0 2.6 16

16 8450 42 1012 1010 161
10 87 9.8 9.9 29
3 77 3.0 4.6 22
2 126 2.0 2.9 19

64 132098 42 6910 NA ∞
10 183 9.8 9.7 37
3 213 3.0 4.9 26
2 274 2.0 3.0 20

(a) compressible elasticity (b) almost incompressible

Table 2. BDDC for plane elasticity on a square with one jagged edge. The Lamé
coefficients are λ = 1 and µ = 2 for (a), and λ = 1000 and µ = 2 for (b). H/h
is the number of elements per substructure in one direction, Ndof the number of
dofs in the problem, τ the condition number tolerance as in Theorem 3, Nc the
number of coarse dofs, eω the value of the condition number indicator from (1), κ the
approximate condition number from the Lanczos sequence in conjugate gradients,
and it the number of BDDC iterations for relative residual tolerance 10−8.

the coarse dofs created from the associated eigenvectors according to Theorem 3 de-
creases the value of the condition number indicator eω and improves convergence at
the cost of increasing the number of coarse dofs. This effect is even more pronounced
for almost incompressible elasticity where the iterations converge poorly or not at
all without the additional coarse dofs. This incompressible elasticity problem is par-
ticularly hard for an iterative method because standard bilinear elements were used
instead of stable elements or reduced integration. In all cases, values of the condi-
tion number indicator eω are quite close to the actually observed condition numbers
κ (Table 2).
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Summary. Large scale computing is a well-known research area since it is heav-
ily desired by many science and engineering disciplines to simulate complex and
sophisticated problems. However, due to the unprecedented amount of data and
computations involved, it also poses challenges for current available numerical algo-
rithms and computer hardware. In this paper, the Dual-Primal Finite Element Tear-
ing and Interconnecting method (FETI-DP) is carefully investigated, and a reduced
back-substitution (RBS) algorithm is proposed to accelerate the time consuming
preconditioned conjugate gradient (PCG) iterations involved in the interface prob-
lems. Linear and nonlinear identification analysis (LNA) is also proposed for large
scale problems with localized nonlinearities. This combined approach is named the
FETI-DP-RBS-LNA algorithm. Serial CPU time of this approach is measured and
compared with a direct sparse solver and the standard FETI-DP method on a weld-
ing problem. Parallelism of the FETI-DP-RBS-LNA algorithm is also implemented
by using MPI and the performance is reported. The empirical results demonstrate
the effectiveness of the proposed computational approach for welding applications,
which is representative of a large class of three dimensional linear-nonlinear large
scale problems with localized nonlinearities.
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1 Introduction

Large scale finite element analysis is an important research area due to its wide
applicability in modeling and simulating complicated scientific and engineering ap-
plications, such as structural mechanics, heat transfer, and biomechanics. For re-
alistic and sophisticated models, high density meshes are required to capture the
underlying physics in areas that are of particular interest or with complex geome-
try or loading. Accordingly, the total degrees of freedom in systems discritized by
finite element method may easily exceed millions, and it poses many computational
challenges for current available numerical algorithms as well as computer hardware.

Extensive research has been conducted to develop efficient and reliable numer-
ical methods which have the capabilities to solve large scale systems arising from
various disciplines. Two well-known approaches in this field are direct and itera-
tive methods. Direct sparse solvers are recognized as robust and efficient choices for
most of the applications, and they are widely employed in many commercial finite
element softwares. However, the high memory demands and the not-so-well parallel
scalability of direct sparse solvers restrict its applications to large scale problems [4].
Traditional iterative solvers are excellent from the memory point of view. However,
they are problem dependent and the convergence is not guaranteed. For complex ill-
conditioned engineering problems, they are not as reliable as direct sparse solvers.

Several novel approaches, such as Domain Decomposition (DD) methods and
adaptive meshing methods [5, 6], have also been studied extensively for their possible
applications to solve large scale systems. DD methods are based on the native divide
and conquer concept, they partition the physical domain into subdomains with either
overlapping or non-overlapping interfaces. Coarse-grain parallel processing can then
be applied to the computations of these subdomains to reduce overall analysis time.
Adaptive meshing refines or coarsens the meshes in different regions of the model
during the analysis based on their corresponding resolution requirements. Therefore,
this approach is capable of reducing the computational costs while still maintain the
quality of the solution.

The objective of this paper is to present the FETI-DP-RBS-LNA algorithm [7]
and to investigate its serial and parallel performance for large scale problems with
localized nonlinearity. The FETI-DP-RBS-LNA algorithm is based on one type of
DD methods, the Dual-Primal Finite Element Tearing and Interconnecting method
(FETI-DP) [2, 1]. Reduced Back-Substitution (RBS) algorithm is proposed to accel-
erate costly local back-substitutions, and Linear and Nonlinear Analysis (LNA) is
introduced to reduce unnecessary re-factorizations of linear subdomains in the anal-
ysis. The distributed version of this algorithm is implemented with Message Passing
Interface (MPI) and the performance is measured on a distributed PC cluster for a
welding mechanical analysis problem with one million degrees of freedom.

2 Review of The FETI-DP-RBS-LNA Algorithm

2.1 The FETI-DP Algorithm

FETI-DP can be viewed as a combination of direct and iterative methods. Based
on the underlining divide and conquer concept, the physical domain is divided into
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subdomains with non-overlapping interfaces. The related nodes after finite element
discretization can be classified into three groups based on their locations, and they
are marked as corner nodes, non-corner interface nodes and internal nodes in Figure
1, respectively. More details of FETI-DP can be found in Ref [7, 2, 1].

�Corner Nodes Non-Corner Interface Nodes Internal Nodes

Fig. 1. Subdomains with non-overlapping interfaces, their meshes and nodes clas-
sification.

Through the similar concepts of super elements and substructures, the high level
interface problem can first be formulated and solved by an iterative Preconditioned
Conjugate Gradient (PCG) method. Once the interface solution is available, corner
information can be further solved. After that, all the low level subdomains are in-
dependent and can be solved by direct sparse solvers in a parallel fashion. These
procedures are illustrated in Figure 2.

Fig. 2. Solution scheme of FETI-DP.
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2.2 Reduced Back-Substitution Algorithm

Based on the CPU statistics in Ref [3] and the welding simulation problem in this
paper, the PCG iterations for large interface problems are found to be the time con-
suming part in the FETI family algorithms. Within the PCG costs, a high percentage
(around 64.3% for the mechanical analysis of the welding problem in this paper) of
the CPU time is actually consumed by the local back-substitutions inside the PCG
iterations. Therefore, a reduction of the computations in the local back-substitutions
will greatly improve the overall performance of the FETI-DP algorithm.

During each PCG iteration, the most time consuming steps are calculating the
following two matrix-vector multiplications listed in Equation (1). Each multiplica-
tion has several back-substitutions involved.

(FIrr + FIrcK
∗
cc

−1
FIrc

T ) · λ and FDIrr

−1 · λ (1)

Taking one sub-step from the first multiplication FIrr · λ as an example, after
substituting the detailed expression of FIrr [2, 1], it yields the following equation:

FIrr · λ =

nsX
s=1

BsrK
s
rr

−1Bsr
Tλ (2)

In the FETI-DP algorithm, Bsr
T is first applied to λ through scatter operations

to get Bsr
Tλ, then Ks

rr
−1(Bsr

Tλ) is solved as a whole through the back-substitution
on the subdomain level, where Ks

rr
−1 is the inverse of subdomain matrix which has

already been factorized with its factors stored. Finally, Bsr is applied to the solu-
tion vector Ks

rr
−1(Bsr

Tλ) through gather operations to form Bsr(K
s
rr

−1(Bsr
Tλ)) and

summed over all the subdomains. The reason this process requires much computa-
tional time lies in the relatively large number of equations in each subdomain, as the
back-substitution is actually performed for each subdomain internal and non-corner
interface degrees of freedom (equations). The left part graph of Figure 3 shows the
nodes involved in this standard back-substitution.

Bsr
T and Bsr connect subdomain level information to global domain information

through scatter and gather operations. If written in matrix format, their representa-
tions are sparse matrices. Based on the analysis in Ref [7], assuming the number of
equations corresponding to non-corner interface degrees of freedom is m, and these
equations are numbered last. Only the last m components from λ are required as the
input for the back-substitutions in Equation (2) since Bsr zeros the remaining compo-
nents, and only the lastm components from the back-substitution resultKs

rr
−1Bsr

Tλ
are required as the output for the same reason. Thus the back-substitution is actu-
ally performed on the last m equations. m is a much smaller number compared to
the sum of subdomain internal degrees of freedom and non-corner interface degrees
of freedom. Therefore, much time can be saved with the reduced back-substitution
(RBS). The nodes involved in this RBS algorithm are shown in the right part of
Figure 3. Compared to standard back-substitution, many internal nodes need not
be included anymore.

It must be mentioned that the proposed reduced back-substitutions will affect
the ordering scheme since it imposes a restriction on the ordering of the related equa-
tions. This re-numbering adds to the cost of the numerical factorizations compared
to a good ordering, such as the nested dissection scheme. More detailed discussion
on this issue is in Ref [7].
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Standard Back-Substitution Involves Non-

Corner Interface Nodes and Internal Nodes

Reduced Back-Substitution Involves Only

Non-Corner Interface Nodes

�Corner Nodes Non-Corner Interface Nodes Internal Nodes

Fig. 3. Standard back-substitution and reduced back-substitution for subdomain
Ω2 in Figure 1.

2.3 Linear-Nonlinear Analysis

Linear-nonlinear analysis (LNA) is a well-known and efficient strategy to solve prob-
lems with localized nonlinearity. It exploits information about which subdomain re-
mains linear during a nonlinear analysis. Therefore, repeated factorizations of linear
subdomains can be avoided and computation costs can be saved. More implementa-
tion details on LNA can also be found in Ref [7].

3 Serial and Distributed Performance Results

3.1 Software and Hardware

The software and hardware implementation for the serial performance measurement
is described in Ref [7]. The standard MPICH libarary has been implemented in the
in-house code for distributed computing. The distributed computing simulations are
performed on the Penn State LION-XM cluster, which consists 168 computing nodes
where each node has 2 Intel Xeon (3.2 GHz) Processors and 4 GB memory.

3.2 16-Subdomain Hollow Beam Model and Simulation
Information

A 16-Subdomain hollow beam model is chosen to be the large scale welding problem
for performance measurements in this paper. The model and welding information
can be found in [7]. The total number of Hex20 element in this model is 65664, and
the total number of equations is 1007634. The number of interface equations is 8460
and the number of corner equations is 174.
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3.3 Serial Performance Results

CPU Time (s) Serial Direct FETI-DP FETI-DP FETI-DP FETI-DP

Sparse Solver RBS LNA RBS & LNA

IO & SF 42.11 81.45 103.58 80.99 103.58

NF 47262.12 26525.69 40601.13 1849.01 2582.91

BS 1273.22 — — — —

PCG (LBS) — 58759.03 8879.37 58335.77 8900.07

— (54880.92) (5083.20) (54497.29) (5110.52)

TOTAL 48577.45 85366.17 49584.08 60265.77 11586.56

Table 1. Mechanical analysis serial performance, first 50 time increments.

The serial CPU costs of the IBM Watson direct sparse solver, FETI-DP, FETI-
DP-RBS, FETI-DP-LNA and FETI-DP-RBS-LNA in the mechanical analysis are
measured and compared in Table 1, where IO stands for solver initialization and
ordering, SF is symbolic factorization, NF is numeric factorization, BS is back-
substitution, PCG is Preconditioned Conjugate Gradient iterations, LBS is local
back-substitution in PCG, LNA is Linear-Nonlinear Analysis, and RBS is Reduced
Back-Substitution. Detailed analysis of serial CPU time is given in Ref [7].

3.4 Distributed Performance Results

Wallclock Time (s) UNISYS, 1 Processor LION-XM, 16 Nodes SpeedUp

(16 Subdomains) (1 Subdomain Per Node)

NF 288.53 20.07-30.72 9.4

PCG 54.64 6.51 8.4

Table 2. Mechanical analysis distributed performance and speedUp, first iteration.

Distributed computing performance results are measured for the numeric fac-
torization and PCG iterations during the first iteration, as shown in Table 2. 16
computing nodes of the LION-XM cluster are used in the simulation and each com-
puting node contains one subdomain.

The subdomain level computations, such as, forming the subdomain stiffness
matrices, local numeric factorizations, local back-substitutions and residual compu-
tations are all performed on each individual computing node in a parallel fashion.
MPI is mainly implemented to gather and broadcast the intermediate results during
the procedure of solving the interface problem by the PCG method.

The speedup gained during numeric factorization is 9.4. Perfect scalability is
not achieved due to the fact that the numbers of interface DOFs of the subdomain
differ. Therefore, the computational cost of each subdomain is also not the same.
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Some subdomains have large interfaces and require more time to be factorized. The
MPI wallclock time is measured based on the longest factorization time.

The speedup gained during PCG iterations is 8.4. In the total 6.51s wallclock
time, around 2.6s is spent on inter-processor communications to gather and broad-
cast the intermediate solution results during the interface solves. Therefore, from
the computational point of view, the numerical scalability is very good and higher
speedup can be expected when high-speed network interconnect is implemented.

4 Conclusion and Future Work

In this paper, a fast implementation of the FETI-DP algorithm: the FETI-DP-RBS-
LNA algorithm is proposed for solving large scale problems with localized nonlin-
earity. Serial performance of the FETI-DP-RBS-LNA algorithm is tested to give a
correct estimation of floating point performance. Distributed performance is also
evaluated for the first iteration to measure the speedup gained from distributed
computing. Future work will continue the study of the distributed performance of
the FETI-DP-RBS-LNA algorithm when linear nonlinear analysis is applied.
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Summary. BDDC (Balancing Domain Decomposition by Constraints) methods, so
far developed for two levels [3, 7, 8], are similar to the balancing Neumann-Neumann
algorithms. However, the BDDC coarse problem is given in terms of a set of primal
constraints and the matrix of the coarse problem is generated and factored by direct
solvers at the beginning of the computation. The coarse component of the precon-
ditioner can ultimately become a bottleneck if the number of subdomains is very
large. In this paper, two three-level BDDC methods are introduced for solving the
coarse problem approximately in two and three dimensions, while still maintaining
a good convergence rate. Estimates of the condition numbers are provided for the
two three-level BDDC methods and numerical experiments are also discussed.

1 The two-level BDDC method

We consider a second order scalar elliptic problem in a two or three dimensional
region Ω: find u ∈ H1

0 (Ω), such that

Z
Ω

ρ∇u · ∇v =

Z
Ω

fv ∀v ∈ H1
0 (Ω), (1)

where ρ(x) > 0 for all x ∈ Ω. We introduce a mesh, subdomains Ωi, and an interface
Γ on the domain Ω with notation as in [10, Section 4.2].

Let W(i) be the standard conforming first-order finite elements onΩi. We assume
that these functions vanish on ∂Ω. Each W(i) can be decomposed into a subdomain
interior part W

(i)
I and a subdomain interface part W

(i)
Γ . The subdomain interface

part W
(i)
Γ can be further decomposed into a primal subspace W

(i)
Π and a dual

subspace W
(i)
∆ , i.e., W(i) = W

(i)
I

M
W

(i)
Γ = W

(i)
I

M
W

(i)
Π

M
W

(i)
∆ .
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We denote the associated product spaces by W :=
NY
i=1

W(i), WΓ :=
NY
i=1

W
(i)
Γ ,

W∆ :=

NY
i=1

W
(i)
∆ , WΠ :=

NY
i=1

W
(i)
Π , and WI :=

NY
i=1

W
(i)
I . Correspondingly, we have

W = WI

M
WΓ and WΓ = WΠ

M
W∆.

We will consider elements of the product space W which are discontinuous across
the interface. However, the finite element approximation of the elliptic problem is
continuous across Γ and we denote the corresponding subspace of W by cW.

We further introduce an interface subspace fWΓ ⊂WΓ , for which certain primal
constraints are enforced. Here, the continuous primal subspace, denoted by cWΠ , is
spanned by only the continuous finite element basis functions of the vertex nodes in
two dimensions and by the continuous edge average variables over each subdomain
edge in three dimensions. For three dimensions, we change the variables to make
the edge average degrees of freedom explicit, see [5, Sec 6.2] and [6, Sec 2.3]. From
now on, we assume that all the matrices are written in terms of the new variables

in three dimensions. The space fWΓ can be decomposed into fWΓ = cWΠ

M
W∆.

We define an operator eSΓ by: given uΓ = uΠ ⊕ u∆ ∈ cWΠ

M
W∆ = fWΓ , we

find eSΓuΓ by eliminating the interior variables of the partially assembled system
with continuous primal components.

The operator RΓ∆ : fWΓ →W∆, restricts the functions in the space fWΓ to W∆,
and is a block diagonal matrix diag(R

(1)
Γ∆, · · · , R

(N)
Γ∆ ), where each R

(i)
Γ∆ represents the

restriction from W
(i)
Γ to W

(i)
∆ . Furthermore, R

(i)
∆ : W∆ → W

(i)
∆ , is the restriction

matrix which extracts the subdomain part, in the space W
(i)
∆ , of the functions in

the space W∆, and RΓΠ restricts the functions in the space fWΓ to cWΠ . R
(i)
Π is

the restriction operator from the space cWΠ to W
(i)
Π .

RΓ = (R
(1)
Γ , · · · , R

(N)
Γ )T and RD,Γ = (R

(1)
D,Γ , · · · , R

(N)
D,Γ )T are the restriction and

scaled restriction operators from the space cWΓ onto fWΓ , respectively. Here R
(i)
Γ

maps a vector in cWΓ to a vector in W
(i)
Γ . Each column of R

(i)
Γ with a nonzero

entry corresponds to an interface node, x ∈ ∂Ωi,h∩Γh, shared by the subdomain Ωi

and its neighboring subdomains. Multiplying each such column of R
(i)
Γ with δ†i (x)

gives us R
(i)
D,Γ , where δ†i (x) is related to the number of subdomains to which a node

belongs, defined in [10, Formula (6.2)].

The reduced interface problem can be written as: find uΓ ∈ cWΓ such that
RTΓ eSΓRΓuΓ = gΓ , where gΓ is the load vector reduced to Γ .

The two-level BDDC preconditioned equation is of the form

M−1RTΓ eSΓRΓuΓ =M−1gΓ ,

where the preconditioner M−1 = RTD,Γ eS−1
Γ RD,Γ has the following form (see [6,

Formula (33)]) with the columns of Φ, being minimal energy extensions of the primal
variables:

RTΓDΓ

(
NX
i=1

R
(i)T

Γ∆

“
0 R

(i)T

∆

” A(i)
II A

(i)
∆I

A
(i)
∆I A

(i)
∆∆

!−1„
0

R
(i)
∆

«
R

(i)
Γ∆ + ΦS−1

Π ΦT
)
DΓRΓ .

Denote by ED and PD, the average and jump operators (see [10, Formula (6.4)

and (6.38)]), on the space fWΓ , respectively. Central to obtaining the condition
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number estimate for the preconditioned two-level BDDC operator is a bound for the
ED operator (see [8, Theorem 25]). Since ED + PD = I (see [10, Lemma 6.10]), we
only need to find a bound for the PD operator.

A bound for the PD operator in two dimensions is given in [9], provided that the
coefficient ρ(x) of (1) varies moderately in each subdomain. In our theory, we also
assume that each subdomain is a union of shape-regular coarse triangles and that
the number of such triangles forming an individual subdomain is uniformly bounded.
Moreover, we assume that the triangulation of each subdomain is quasi uniform. For
the three dimensional case, we need one more requirement for ρ(x) since we only
use the edge average constraints, namely that for all pairs of subdomain Ωi and Ωj ,
which have a vertex but not an edge in common, there exists an acceptable edge
path (see [10, Definition 6.26]) between the two subdomains. With this assumption,
we have a good estimate for the PD operator (see [10, Lemma 6.36]): under our
assumptions, we have in two and three dimensions:

uTΓMuΓ ≤ uTΓR
T
Γ
eSΓRΓuΓ ≤ C (1 + log(H/h))2 uTΓMuΓ , ∀uΓ ∈ cWΓ .

2 A three-level BDDC method

In the three-level case, we will not factor the coarse problem matrix SΠ by a direct
solver. Instead, we will solve the coarse problem approximately by using an idea
similar to the two-level preconditioner.

We decompose Ω into N subregions Ωj with diameters Ĥj , j = 1, · · · , N . Each
subregion Ωj has Nj subdomains Ωji with diameter Hj

i . Let Ĥ = max
j
Ĥj and

H = max
i,j
Hj
i , for j = 1, · · · , N , and i = 1, · · · , Nj . We introduce the subregional

Schur complements:

S
(j)
Π =

NjX
i=1

R
(i)T

Π

(
A

(i)
ΠΠ −

“
A

(i)
ΠI A

(i)
Π∆

” A(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆

!−1 
A

(i)T

ΠI

A
(i)T

Π∆

!)
R

(i)
Π ,

and note that the coarse problem matrix SΠ can be assembled from the S
(j)
Π .

Let bΓ be the interface between the subregions; bΓ ⊂ Γ . We denote the set of
interior primal variables in each subregion by bIH , and the set of interface primal
variables on the boundary of the subregions by bΓH .

We denote the vector space corresponding to the primal variables of the subregion
Ωi by W(i)

c . We define the subregion spaces cWc, bΓ , fWc, bΓ , bR(i)bΓ , bR(i)bD, bΓ , bR bΓ , and bR bD, bΓ ,

as for the subdomains but on the subregion level.
We introduce an operator eT :

bRT

bΓ eT bR bΓ =

NX
i=1

bR(i)T

bΓ (S
(i)
Π bΓ bΓ − S

(i)
Π bΓ bIS

(i)−1

ΠbI bI S
(i)T

Π bΓ bI ) bR(i)bΓ . (2)

and define our three-level preconditioner fM−1 by

RTΓDΓ

(
NX
i=1

R
(i)T

Γ∆

“
0 R

(i)T

∆

” A(i)
II A

(i)
∆I

A
(i)
∆I A

(i)
∆∆

!−1„
0

R
(i)
∆

«
R

(i)
Γ∆ + ΦeS−1

Π ΦT
)
DΓRΓ .
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Here eS−1
Π is an approximation of S−1

Π and is defined as follows: given any right hand
side Ψ, let y = S−1

Π Ψ and ey = eS−1
Π Ψ. We first reduce the original coarse problem

SΠ to the subregion interface problem. We do not solve the interface problem exactly
but replace y bΓ , the interface part of y, by

ey bΓ = bRTbD, bΓ eT−1 bR bD, bΓh bΓ ,

where h bΓ is the load vector reduced to bΓ .

3 Condition number estimate for the new preconditioner

We first collect a number of results which are needed in our theory. We discuss, in
detail, only the two-dimensional case.

Lemma 1. (Two dimensions) Let V Hi be the standard continuous piecewise linear
finite element function space for a subregion Ωi with a quasi-uniform coarse mesh
with mesh size H. And let V hi,j, j = 1, · · · , Ni be the space for a subdomain Ωij with
a quasi-uniform fine mesh with mesh size h. Moreover, each subdomain is a union of
coarse triangles with vertices on the boundary of the subdomain. Given u ∈ V Hi , let
û ∈ V Hi interpolate u at each coarse node and be the discrete V hi,j-harmonic extension

in each subdomain Ωij constrained only at the vertices of Ωij , j = 1, · · · , Ni. Then,

there exist two positive constants C1 and C2, which are independent of Ĥ, H, and
h, such that

C1(1 + log
H

h
)

 
NiX
j=1

|û|2H1(Ωi
j)

!
≤ |u|2H1(Ωi) ≤ C2(1 + log

H

h
)

 
NiX
j=1

|û|2H1(Ωi
j )

!
.

We use [2, Lemma 4.2] to prove Lemma 1. Since we assume that the fine trian-
gulation of each subdomain is quasi uniform, we can then obtain uniform constants
C1 and C2 in Lemma 1 which work for all the subregions. In addition, a similar
result for three dimensions can be obtained with [1, Lemma 4.2].

We define the subregion interface averages operator bE bD : fWc, bΓ → cWc, bΓ , by

bE bD = bR bΓ bRTbD, bΓ , which computes averages across the subregion interface bΓ and then
distributes the averages to the boundary points of the subregions.

The interface average operator bE bD has the following properties:

Lemma 2.

bE bDw bΓ = bRTbΓ bR bD, bΓw bΓ = w bΓ , for any w bΓ ∈ cWc, bΓ .

Lemma 3.

| bE bDw bΓ |2eT ≤ C
 

1 + log
Ĥ

H

!2

|w bΓ |2eT ,

for any w bΓ ∈ fWc, bΓ , where C is a positive constant independent of Ĥ, H, and h.

Here eT is defined in (2).
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See [11] for a proof in two dimensions and [12] for a proof in three dimensions.
As we mentioned before, we use constraints on the averages over edges in three di-
mensions. These constraints lead to a considerably more complicated coarse problem
which needs new technical tools in the proof of Lemma 3. This is the main difference
in the analysis between two and three dimensions.

Lemma 4. Given any uΓ ∈ cWΓ , let Ψ = ΦTDΓRΓuΓ . We have,

ΨTS−1
Π Ψ ≤ ΨT eS−1

Π ΨT ≤ C
 

1 + log
Ĥ

H

!2

ΨTS−1
Π Ψ.

Lemma 5. Given any uΓ ∈ cWΓ ,

uTΓM
−1uΓ ≤ uTΓfM−1uΓ ≤ C

 
1 + log

Ĥ

H

!2

uTΓM
−1uΓ .

We finally have

Theorem 1. The condition number for the system with the three-level precondi-

tioner fM−1is bounded by C(1 + log
Ĥ

H
)2(1 + log

H

h
)2.

4 Using Chebyshev iterations

Another approach to the three-level BDDC methods is to use a preconditioned
Chebyshev method with a fixed number of iterations to solve the reduced coarse
level subregion interface problem. The preconditioner is bRTbD, bΓ eT−1 bR bD, bΓ . Denoting

the corresponding new coarse problem matrix by bSΠ , the new preconditioner cM−1

is defined by:

RTΓDΓ

(
NX
i=1

RTΓ∆

“
0 R

(i)T

∆

” A(i)
II A

(i)
∆I

A
(i)
∆I A

(i)
∆∆

!−1„
0

R
(i)
∆

«
RΓ∆ + ΦbS−1

Π ΦT
)
DΓRΓ .

Denoting by λj the eigenvalues of N01K, we need two input parameters l and
u for the Chebyshev iterations, where l and u are estimates for the minimum and
maximum values of λj , respectively, see [4]. From our analysis above, we know that

min
j
λj = 1 and max

j
λj ≤ C(1 + log

Ĥ

H
)2(1 + log

H

h
)2. We can use the conjugate

gradient method to obtain an estimate for the largest eigenvalue at the beginning
of the computation to choose a proper u.

Let α =
2

l + u
, µ =

u+ l

u− l and Q = I −αN01K. Denote by σj the eigenvalues of

Q.

If we choose u such that λj < l+ u, we find that 1− cosh
`
k cosh−1(µσj)

´
cosh

`
k cosh−1(µ)

´ > 0,

and we then have the following lemmas.
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Lemma 6. Given any uΓ ∈ cWΓ , let Ψ = ΦTDΓRΓuΓ and select u such that
λj < u+ l. There then exist two functions C1(k) and C2(k) that

C1(k)Ψ
TS−1

Π Ψ ≤ ΨT bS−1
Π ΨT ≤ C2(k)Ψ

TS−1
Π Ψ,

where C1(k) and C2(k) are the minimum and maximum values, over all j, of„
1− cosh(k cosh−1(µσj))

cosh(k cosh−1(µ))

«
.

Lemma 7. Given any uΓ ∈ cWΓ ,

C1(k)u
T
ΓM

−1uΓ ≤ uTΓcM−1uΓ ≤ C2(k)u
T
ΓM

−1uΓ ,

where C1(k) and C2(k) are defined in Lemma 6.

We finally have

Theorem 2. The condition number of the preconditioned operator using the three-

level preconditioner cM−1is bounded by C
C2(k)

C1(k)
(1+log

H

h
)2, where C1(k) and C2(k)

are defined in Lemma 6 and
C2(k)

C1(k)
→ 1 as k →∞.

5 Numerical experiments

Table 1. Eigenvalue bounds and iteration counts with the preconditioner fM−1.

bH
H

= 4,
H

h
= 4

H

h
= 4, 4× 4 subregions

bH
H

= 4, 4× 4 subregions

Subreg. Iter. Cond. #
bH
H

Iter. Cond. #
H

h
Iter. Cond. #

4× 4 11 1.8096 4 11 1.8096 4 11 1.8096
8× 8 11 1.8145 8 12 1.8536 8 14 2.4934
12× 12 12 1.8159 12 12 1.8742 12 16 2.9758
16× 16 12 1.8162 16 12 1.8912 16 17 3.3473
20× 20 12 1.8164 20 12 1.9062 20 18 3.6546

We have applied our two three-level BDDC algorithms to the model problem
(1). Here we only give results for two dimensions. We decompose the unit square

into bN × bN subregions and each subregion into N × N subdomains with the side-
length bH = 1/ bN and H = bH/N , respectively. Equation (1) is discretized, in each
subdomain, by conforming piecewise linear elements with a finite element diameter
h. The preconditioned conjugate gradient iteration is stopped when the norm of the
residual has been reduced by a factor of 10−8.

We have carried out two different sets of experiments. All the experimental
results are fully consistent with our theory. In the first set of experiments, we use
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Table 2. Eigenvalue bounds and iteration counts with the preconditioner cM−1,

4× 4 subregions,
bH
H

= 16 and
H

h
= 4.

u = 3.2 u = 6
k Iter. C1(k) λmin λmax Cond. # k Iter. C1(k) λmin λmax Cond. #

1 20 0.4762 0.4829 2.7110 5.6141 1 24 0.2857 0.2899 1.8287 6.3086
2 13 0.8410 0.8540 1.8820 2.2038 2 16 0.6575 0.6670 2.3435 3.5134
3 11 0.9548 0.9981 1.9061 1.9098 3 12 0.8524 0.9286 1.9628 3.1136
4 11 0.9872 1.0019 1.8663 1.8629 4 12 0.9377 0.9795 1.9850 2.0266
5 11 0.9964 1.0006 1.8551 1.8541 5 12 0.9738 0.9983 1.9403 1.9437

the first preconditioner fM−1 and take the coefficient ρ = 1 in half of the subregions
and ρ = 101 in the neighboring subregions in a checkerboard pattern. Table 1 gives
the iteration counts and condition number estimates with a change of the number
of subregions, the number of subdomains, and the size of the subdomain problems.

In the second set of experiments, we use the second preconditioner cM−1 and
take the coefficient ρ ≡ 1. We use the PCG to estimate the largest eigenvalue

of N01K which is approximately 3.2867. For 64 × 64 subdomains and
H

h
= 4 ,

we have a condition number estimate of 1.8380 for the two-level BDDC. We then
select different values of u, the upper bound estimate of the eigenvalues for the
preconditioned system, and k to see how the condition number changes. We also
evaluate C1(k) for k = 1, 2, 3, 4, 5. From Table 2, we find that the smallest eigenvalue
is bounded from below by C1(k) and that the condition number estimate approaches
1.8380, the value in the two-level case, as k increases. From these results, we see that
if we can obtain precise estimate for the largest eigenvalue of N01K, we need fewer
Chebyshev iterations to obtain a condition number, similar to that of the two-level
case. However, the iteration count is not very sensitive to the choice of u.
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Summary. The present work introduces simple Dirichlet-Neumann preconditioners
for the solution of elasticity problems in presence of numerous small disjoint geo-
metric refinements on the boundary of the domain, situation which typically occurs
in the tire industry. Moreover, the condition number of the preconditioned system
is proved to be independent of the number and the size of the small details on the
boundary. Finally, as an enhancement, a second proposed preconditioner makes use
of a coarse space counterbalancing the effect of essential boundary conditions on
the small details, and a simple numerical academic test illustrates the increased ef-
ficiency. Further details on the motivation as well as complete proofs can be found
in [4, 5].

1 Introduction

Let Ω ⊂ R
d be the reference configuration of a body, partitioned into a coarse

region Ω0 where the properties of the material are rather smooth and where a
coarse approximation should be sufficient, and into small disjoint boundary regions
denoted by (Ωk)1≤k≤K where a fine discretization is required (e.g. with geometric
refinements, fine behavior of the material). Such a situation typically occurs for
tires, with the internal structure and the surface sculptures respectively playing the
role of the coarse and fine zones. Let us denote by ΓD a part of the boundary of
Ω where displacements are prescribed and by ΓN = ∂Ω \ ΓD its complementary
part. Denoting by H1

∗(Ω) := {v ∈ H1(Ω)d, v|ΓD∩∂Ω = 0} the space of admissible
displacements, our model elastostatic problem consists in finding u ∈ H1

∗(Ω) such
that:

a(u, v) :=

Z
Ω

Eijklε(u)klε(v)ij =

Z
Ω

f · v +

Z
ΓN

g · v =: l(v), ∀v ∈ H1
∗(Ω).

Here E denotes the fourth order elasticity tensor, f ∈ L2(Ω)d and g ∈ L2(ΓN)d the

loading forces, and ε(v) =
1

2
(∇v+(∇v)t) is the linearized strain tensor. Considering

that the solution must be computed with a multi-scale approach in order to respect
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the characteristics of the problem, the strategy proposed in this paper consists in
using:

(a) mortar formulations [2, 13] on the interfaces Γ0k = ∂Ω0 ∩ ∂Ωk enabling the use
of independent approximations in the coarse and fine regions respectively,

(b) efficient Dirichlet-Neumann preconditioners [9], which we adapt so that the
computational cost of the full algebraic problem remains independent (or is
at most weakly dependent) of the number and the size of the fine subdomains
(Ωk)1≤k≤K .

The sequel is organized as follows. After the introduction of a mortar formulation
(section 2), we propose two possible Dirichlet-Neumann preconditioners and state
their two-scale properties (section 3). In particular, the second enhanced precondi-
tioner makes use of a coarse space counterbalancing the effect of essential boundary
conditions imposed on the boundary sculptures. A simple numerical test shows its
increased efficiency for a simple academic problem. A broader perspective on the
subject as well as complete proofs are given in [4, 5].

2 Non-conforming formulation

For every 0 ≤ k ≤ K, let (Tk;hk
)hk>0 be a sequence of meshes of the substructureΩk,

hk denoting the maximal diameter of its elements. The corresponding finite-element
spaces of order q are denoted by (Vk;hk

)hk>0 ⊂ H1
∗ (Ωk). As in [3, 7], interface

bubbles can be added on the fine subdomains for stability purposes, when using a
discontinuous mortar formulation. As a consequence, we introduce the potentially
enriched spaces of displacements Xk;hk

= Vk;hk
⊕ Bk;hk

for every 1 ≤ k ≤ K and
X0;h0 = V0;h0 . For each interface Γ0k, Wk;hk

will stand for the trace of the local
space Xk;hk

on this interface. In order to impose a weak displacement continuity
between Ω0 and Ωk, a space of Lagrange multipliers Mk;hk

is introduced on the
mesh Tk;hk

over Γ0k. Actually, various choices of continuous or of discontinuous
polynomial functions of degree r can be used [2, 10, 12, 8, 6, 7] but in any case, they
must satisfy the following fundamental assumptions:

Assumption 1 [Coercivity]. Let u0 ∈ H1(Ω0)
d and uk ∈ H1(Ωk)

d be rigid
motions, i.e. ε(u0) = 0 in L2(Ω0)

d×d and ε(uk) = 0 in L2(Ωk)
d×d, satisfying the

weak continuity requirement

Z
Γ0k

(u0−uk)·µ = 0 for every µ ∈Mk;hk
. Then u0 = uk

almost everywhere on Γ0k.

Assumption 2 [Inf-sup condition]. There exists a mapping πk : L2(Γ0k) →
Wk;hk

such that for all v ∈ L2(Γ0k),Z
Γ0k

(πkv) · µ =

Z
Γ0k

v · µ, ∀µ ∈Mk;hk
,

satisfying ‖πkv‖k, 1
2
≤ C ‖v‖k, 1

2
. The mesh dependent norm ‖·‖k, 1

2
introduced above

is defined as in [1, 11] by

‖v‖2k, 1
2

=
X

K∈Tk;hk

diam(K ∩ Γ0k)
−1

Z
K∩Γ0k

v2.
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Assumption 3 [Accuracy]. The total degree r of Lagrange multipliers is bounded
from below by r ≥ q−1, q being the total degree of the displacement shape functions.

Then, the mortar formulation of the problem of interest can be written as finding

u = (u0, u1, ..., uK) ∈
KY
k=0

Xk;hk
and λ = (λ1, ..., λK) ∈

KY
k=1

Mk;hk
satisfying for every

v ∈
KY
k=0

Xk;hk
and µ ∈

KY
k=1

Mk;hk
,

a0(u0, v0) +
KX
k=1

b0k(v0, λk) = l0(v0)

ak(uk, vk) − bk(vk, λk) = lk(vk), 1 ≤ k ≤ K
b0k(u0, µk) − bk(uk, µk) = 0, 1 ≤ k ≤ K.

(1)

The above problem uses the standard notation for the (bi)linear forms ak(uk, vk) =Z
Ωk

Eijmnε(uk)mnε(vk)ij , lk(vk) =

Z
Ωk

f ·vk+

Z
ΓN∩∂Ωk

g ·vk, b0k(v0, µk) =

Z
Γ0k

v0 ·

µk and bk(vk, µk) =

Z
Γ0k

vk · µk.

3 Two-scale preconditioners

We respectively denote by A0, B0k and Bk the matrix representation of the bilinear
forms a0, b0k and bk. Similarly, L0 and Lk are the vectors representing the linear
forms l0 and lk. After elimination of the Lagrange multipliers λk in the first equation
of (1), the system (1) becomes

8><
>:

S0U0 = L0,

Kk

 
Uk

Λk

!
=

 
Lk

−B0kU0

!
, 1 ≤ k ≤ K, (2)

where S0 = A0 −
KX
k=1

Bt
0kRkK

−1
k R

t
kB0k is the Schur complement matrix, and L0 =

L0 −
KX
k=1

Bt
0kRkK

−1
k

„
Lk
0

«
the corresponding right hand side. In these definitions,

the local stiffness matrix Kk and restriction operator Rk are given by

Kk =

„
Ak −Bt

k

−Bk 0

«
, Rk

„
Uk
Λk

«
= Λk.

An iterative solver can be efficiently used to solve (2) if one is able to define a
preconditioner S̃0 of the exact Schur complement S0 which is spectrally equivalent to
S0, with constants independent of the number and the size of the small subdomains.
When L0, .., LK are given, the application of such a preconditioner consists in the
following operations:
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(a) Compute L0 by solving Dirichlet problems on the small subdomains prescribing
zero displacements on the interfaces (Γ0k)1≤k≤K ,

(b) Solve the extended Neumann problem S̃0Ũ0 = L0,
(c) Compute (Ũk, Λ̃k) over each Ωk by solving the Dirichlet problem:

Kk

„
Ũk
Λ̃k

«
=

„
Lk

−B0kŨ0

«
.

The most natural and rather efficient preconditioner consists in simply using
S̃0 = A0. This is a standard Dirichlet-Neumann preconditioner for which we prove
[5]:

Proposition 1. Assuming that A0 is invertible, i.e. ΓD ∩ ∂Ω0 has a positive mea-
sure, the following spectral equivalence holds for all U0:

W1,h 〈S0U0, U0〉 ≤ 〈A0U0, U0〉 ≤ 〈S0U0, U0〉 ,

with:
1

W1,h
= 1 + C

„
max
k∈I1

Ck
c0

+ max
k∈I2

Ck �0
α0 �k

«
,

where I1 (resp. I2) is the set of indices k ≥ 1 such that Ωk is not fixed on its
boundary (resp. is fixed on a part of its boundary), the positive constants ck and Ck
are such that ck |ξ|2 ≤ Eijmnξmnξij ≤ Ck |ξ|2 over Ωk for every symmetric matrix
ξ ∈ R

d×d, α0 is the coercivity constant of the bilinear form a0 and �k = diam(Ωk).
The constant C > 0 is independent of the number K and the size of the subdomains.

This simple choice will lack efficiency in two simple situations:

(a) a fine subdomain Ωk (k ≥ 1) has a small size �k � �0 and is fixed on a part of
its boundary (k ∈ I2); in this situation, because of its size, the substructure will
have a rather large stiffness to interface rigid body displacements,

(b) a fine subdomain Ωk (k ≥ 1) has several stiff modes involving interface motions
(rigid links, incompressibility).

Assuming that these directions of localized interface stiffness are few (this is
indeed the case for interface rigid body motions), we denote by Nk their number.
We then propose a modification of the previous preconditioner enabling us to correct
the lack of efficiency.
For all k ≥ 1 such that Ωk is fixed on a part of its boundary, we denote by (eik)1≤i≤Nk

(with Nk = 6 in general) the interface rigid motions of Γ0k or rigid links and intro-
duce

W̊k = span{eik, i = 1, .., Nk}.
To each interface rigid body motion eik, we associate its local ak-harmonic extension
(uik, λ

i
k) ∈ Xk;hk

×Mk;δk
, the solution of

8>><
>>:
ak(v, u

i
k)−

Z
Γ0k

v · λik = 0, ∀v ∈ Xk;hk
,

−
Z
Γ0k

uik · µ = −
Z
Γ0k

eik · µ, ∀µ ∈Mk;δk
.

(3)

These solutions span two small local spaces
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X̊k = span{uik, i = 1, .., Nk} ⊂ Xk;hk
,

M̊k = span{λik, i = 1, .., Nk} ⊂Mk;δk
.

If k ≥ 1 is such that Ωk is not fixed on its boundary, we adopt

W̊k = M̊k = {0}.

Then, instead of finding U0 such that S0U0 = L0, we propose to compute u0 ∈ X0;h0 ,
(uk) ∈ (X̊k)1≤k≤K , (λk) ∈ (M̊k)1≤k≤K , the solution of the coupled problem

8>>>>>>><
>>>>>>>:

a0(u0, v0) +

KX
k=1

Z
Γ0k

v0 · λk = l0(v0), ∀v0 ∈ X0;h0 ,

ak(uk, vk)−
Z
Γ0k

vk · λk = 0, ∀vk ∈ X̊k, 1 ≤ k ≤ K,

−
Z
Γ0k

uk · µk = −
Z
Γ0k

u0 · µk, ∀µk ∈ M̊k, 1 ≤ k ≤ K.

(4)

This amounts to reducing the local substructure response to the harmonic extension
of its stiff interface modes, which belongs to X̊k. We introduce the matrix I0k =

ΛT
kB0k where ΛT

k =
h
Λ1
k, .., Λ

Nk
k

iT
is the matrix built with the multipliers computed

in (3), and the restriction Åk of the displacement stiffness matrix Ak to the local
space X̊k “

Åk

”
ij

= (U ik)
TAkU

j
k = ak(u

j
k, u

i
k) =

Z
Γ0k

ujk · λ
i
k, (5)

where (3) has been used. Exploiting (5) to reformulate (4)-2,(4)-3, the system (4)
can be rewritten after some algebraic elimination as

S̃0U0 = L0, (6)

with a new approximate Schur complement given by

S̃0 = A0 +
KX
k=1

IT0kÅ
−t
k I0k (7)

= A0 +
KX
k=1

BT
0kΛkÅ

−t
k ΛT

kB0k.

The complexity of its inversion is much smaller than solving S0U0 = L0 because
each local problem (3) used in the construction of S̃0 only involves a subspace of
displacements of dimension Nk. Moreover, we prove in [5] that:

Proposition 2. For all U0, the following spectral equivalence holds

W1,h 〈S0U0, U0〉 ≤
D
S̃0U0, U0

E
≤ 〈S0U0, U0〉 ,

with
1

W1,h
= C

„
1 + max

1≤k≤K

Ck
c0

«
.

The constant C > 0 is independent of the number K and the size of the subdomains.
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4 Numerical illustration

Let us consider here a two-scale beam (as represented in figure 1) whose both tips are
clamped. The material is elastic, isotropic, homogeneous in each substructure, and
the displacements under loading are computed by a preconditioned conjugate gradi-
ent method. Figure 2 illustrates the advantage of the enhanced Dirichlet-Neumann
preconditioner when two small substructures are clamped. In conformity with the
announced results, the gain in efficiency is independent of the ratio of Young moduli
between the fine and coarse zones. Moreover, a factor 3 improvement is achieved in
the number of iterations, and roughly speaking in the time of computation. Finally,
it is shown in [5] that such a preconditioner can be used as an efficient quasi-tangent
operator in the nonlinear framework as soon as the boundary geometrical details are
sufficiently soft.

Fig. 1. Maximal stress distribution on a deformed configuration of our two-scale
model problem where two of the details are clamped on their lower face.

5 Conclusion

Acknowledgement. The authors gratefully acknowledge the financial support of
Michelin Tire Company during the completion of this work at the Center of Ap-
plied Mathematics (CMAP), Ecole Polytechnique, and Professor François Jouve for
providing his finite element code in which the presented ideas have been imple-
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endent performances. They should be extended to cases where the detailsoverlap the
coarse region as in a fictitious domain approach, and also to cases where the details

The domain-decomposition based preconditioners proposed here achieve scale-indep-

are not disjoint but constitute a continuous belt along the boundary.
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Fig. 2. Convergence of the simple and enhanced Dirichlet-Neumann algorithms
for different values of the ratio r of Young moduli between the fine and coarse
subdomains.
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Summary. Chimera [7] happens to be a version of Schwarz’s method and of Lions’
space decomposition method (SDM). It was analyzed by Brezzi et al [1] but an
estimate was missing for numerical quadrature. We give it here with new numerical
tests.

1 Introduction

Consider a Hilbert space V , a continuous bilinear form a(u, û) symmetric with a
coercivity constant α > 0, and f regular enough for well posedness of

a(u, û) = (f, û) ∀û ∈ V. (1)

We assume that V = V1+V2 and that V1∩V2 is of nonzero measure (i.e., overlapping)
where each Vi is a closed subspace of V . We will need also two continuous symmetric
bilinear forms bi(u, û), i = 1, 2 coercive enough so that

2X
1

bi(ûi, ûi) + a(ûi, ûi) ≥ a(
2X
1

ûi,
2X
1

ûi) ∀ûi ∈ Vi. (2)

A typical example is the Dirichlet problem for −∆u = f in Ω = Ω1 ∪ Ω2 and such
that Ω1 ∩Ω2 �= ∅; denote by Si = ∂Ωi ∩Ωj , j �= i. Then set

Vi = {v ∈ L2(Ω) : v|Ωi ∈ V (Ωi), v|Ω−Ωi = 0}. (3)

Algorithm 1 (Schwarz)
Begin loop with a chosen v0i ∈ Vi, and n = 0.

Find vn+1
i such that vn+1

i − vnj ∈ Vi, i, j = 1, 2, j �= i by solving

a(vn+1
i , v̂i) = (f, v̂i) ∀v̂i ∈ Vi. (4)



J.-B. Apoung Kamga and Olivier Pironneau

End loop.
The convergence has been analyzed by P.L. Lions [4, 5, 6] in a general setting.

To be more precise, we present the following alternative; it uses bi(u, v) = b(u, v) =
(βu, v), i = 1, 2 for some positive scalar β and two arbitrary functions u0

i ∈ Vi.
Algorithm 2 (SDM)
Begin loop with n = 0:

Find un+1
i ∈ Vi by solving

b(un+1
1 − un1 , û1) + a(un+1

1 + un2 , û1) = (f, û1) ∀û1 ∈ V1,
b(un+1

2 − un2 , û2) + a(un1 + un+1
2 , û2) = (f, û2) ∀û2 ∈ V2. (5)

End loop.
When β = 0 Algorithm 2 is identical to Algorithm 1 with un+1

i = vn+1
i − vnj , i, j =

1, 2, j �= i. If the decomposition is done with m subregions with m ≥ 2 then un+1

is found by solving

b(un+1
i − uni , ûi) + a(un+1

i − uni +

mX
j=1

unj , ûi) = (f, ûi) ∀ûi ∈ Vi. (6)

Theorem 1. (Hecht et al. [3]) We assume (1-2). Then Algorithm (6) is convergent
in the following sense: as n→∞, uni → u∗i with u∗1 +u∗2 = u the solution of (1) and
the decomposition is uniquely defined by

(β + A)u1 =
1

2
(β + A)(u+ u0

1 − u0
2) in Ω1 ∩ Ω2, u1|S1 = 0, u1|S2 = u,

(β + A)u2 =
1

2
(β + A)(u+ u0

2 − u0
1) in Ω1 ∩ Ω2, u2|S2 = 0, u2|S1 = u,

Aui = f in Ωi\Ω1 ∩Ω2, ui|∂Ωi = 0. (7)

2 Discretization

Let T1h (resp T2h) be a triangulation of Ω1 (resp Ω2), quasi-uniform [2], in the sense
that, if hM and hm are the maximum and minimum edges in T1h, and HM and Hm
are the maximum and minimum edges in T2h, then there exists two constants C1T

and C2T such that hM ≤ C1Thm and HM ≤ C2THm. Without loss of generality we
can also assume, that hM ≤ HM . For clarity we assume that the Ωi are polygonal
and that a(·, ·) represents the Laplace operator with Dirichlet conditions. Let V1h

and V2h be two Lagrange conforming continuous finite element approximation spaces
of order p of the spaces V1 = H1

0 (Ω1) and V2 = H1
0 (Ω2). Then the discrete version

of Algorithm 2 is to find for i=1,2, un+1
ih ∈ Vih such that ∀vih ∈ VihZ

Ωi

(β(un+1
ih − unih)vih +∇(un+1

1h + un2h)∇vih) =

Z
Ωi

fvih.

Theorem 2. (Hecht et al. [3]) Assume that the solution of (1) is in Hp+1(Ω) for
some p ≥ 1. Assume that in (7) ui|Ωi ∈ Hp+1(Ωi). If uh = lim(un1h + un2h) is
computed with Lagrange conforming finite elements of order p, then ‖u−uh‖1,Ω ≤
Chp(|u1|p+1,Ω1 + |u2|p+1,Ω2).
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3 Numerical Quadrature

As such, the scheme is too costly to implement because it requires the intersection
of triangulations. Recall that the quadrature formula with integration points at the
vertices is exact for polynomials of degree less than or equal to one. In particular,
for a given triangle T̂ one has

Z
T̂

g dxdy =
|T̂ |
3

X
i=1,2,3

g(qi) ∀g ∈ P1(T̂ ). (8)

Hence we introduce the following quadrature rule. (∇u,∇v)h :=

X
T∈T1h

|T |
3

X
i=1,2,3

∇(u|T ) · ∇v
IΩ1 + IΩ2

|qi(T ) +
X

K∈T2h

|K|
3

X
j=1,2,3

∇(v|K) · ∇u
IΩ1 + IΩ2

|qj(K), (9)

where IΩj (x) = 1 if x ∈ Ωj and zero otherwise (j = 1, 2). The notation ∇(u|T ) is
used to indicate that we first restrict the function u to T , and then we compute its
gradient (which is actually constant in T ). A similar interpretation holds for ∇(v|K).
With such definitions we propose to solve the discrete problems:
- Find un+1

ih ∈ Vih such that ∀vih ∈ Vih

b(un+1
1h − un1h, û1h) + ah(u

n+1
1h + un2h, û1h) = (f, û1h) ∀û1h ∈ V1h,

b(un+1
2h − un2h, û2h) + ah(u

n
1h + un+1

2h , û2h) = (f, û2h) ∀û2h ∈ V2h. (10)

Clearly these define un+1
ih uniquely. At convergence the problem solved is

- Find uih ∈ Vih such that ∀ûih ∈ Vih

ah(u1h + u2h, û1h + û2h) = (f, û1h + û2h). (11)

Under a mild assumption on the triangulations this discrete problem has a unique
solution at least when linear elements are used (p = 1):

each vertex of T1h is internal to a triangle K of T2h, and conversely.
(12)

This is because of the coercivity of the bilinear form and of the uniqueness of the
decomposition uh = u1h + u2h:

Theorem 3. (Brezzi et al. [1]) Assume (12) holds. If two functions uih ∈ Vih, i =
1, 2 coincide on a connected subset X of Ω1 ∩ Ω2, then both uih are linear (not
just piecewise linear) in X . Furthermore ah(u1h + u2h, u1h + u2h) ≥ c‖u1h +
u2h‖2 for all uih ∈ Vih.

One more property is needed, the continuity of ah, and then we can apply Strang’s
lemma and obtain the following estimate:

Proposition 1. (Hecht et al. [3]) Assume that the triangulations of Ω1 and Ω2 are
compatible in the sense that they give a coercive bilinear form. Assume that ah is
uniformly continuous for all h. Then the error between the approximate problem (11)
and the continuous one is ‖u− uh‖ < Ch(|u1|2,Ω1 + |u2|2,Ω2).
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4 Continuity of the Approximate Bilinear Form

4.1 The One-dimensional Case

We begin with the one-dimensional case because the proof is easier to follow. The
same argument will be extended to two dimensions.

Proposition 2. In one dimension the constant of continuity C in

|∇uH +∇uh|h ≤ C|∇uH +∇uh|
satisfies C2 ≤ 1

2
max{max

i∈K

|xi+1 − xi|
|xi −Xj(i)|

,max
i∈L

|Xi+1 −Xi|
|Xi − xj(i)|

}, (13)

where K (resp. L) is the set of i such that j(i) exists with Xj(i) ∈ [xi, xi+1] (resp
xj(i) ∈ [Xi,Xi+1]). Consequently C is bounded by the square root of half the largest
interval length divided by the smallest distance between two vertices.

Proof. For any real valued function f , max
uh,uH

f(∇uH + ∇uh) ≤ max
Uh,UH

f(UH + Uh)

where uh, uH are real valued continuous-piecewise linear functions on their meshes
and UH , Uh are piecewise constant vector valued on their meshes, because every ∇u
is a U and the opposite is not true when boundary conditions exist at both ends.
Denote V = UH + Uh. As V is piecewise constant, by definition

4|V |2h =
X

i

|xi+1 − xi|(|V |(x+
i )2 + |V |(x−

i+1)
2) +

X
j

|Xj+1 −Xj |(|V |(X+
j )2 + |V |(X−

j+1)2),

2|V |20 =
X

i,j∈K

|Xj − xi|(|V |(X−
j )2 + |V |(x+

i )2) +
X

i,j∈L

|xi −Xj |(|V |(X+
j )2 + |V |(x−

i )2)

(14)

+
X
i∈I

|xi+1 − xi|(|V |(x+
i )2 + |V |(x−

i+1)
2) +

X
j∈J

|Xj+1 −Xj |(|V |(X+
j )2 + |V |(X−

j+1)2), where

I, J are the set of intervals completely inside an interval of the other mesh, i.e.

I = {i : ∃j s.t. [xi, xi+1] ⊂ [Xj ,Xj+1}, J = {j : ∃i s.t. [Xj , Xj+1] ⊂ [xi, xi+1]}

Denote byN the set of values of Vk of V right or left of xi orXj . As f(V ) = |V |2h/|V |20
we see that it is of the type f(V ) =

X
k∈N

αk|V |2k /
X
k∈N

βk|V |2k with αi equal to a

fourth of xi+1 − xi or Xi+1 − Xi, and βi equal half of xi+1 − xi or Xi+1 − Xi or
xi − Xj(i) or Xi − xj(i) a sum of two of those. Of course it is important to notice
that all values appear both in the nominator and denominator. With a change of
variable this is also

f(W ) =

P αk
βk
W 2
kP

W 2
k

. Then max f(W ) = max
k

αk
βk
.

�

Now that this is established we can address much more simply the problem of finding
maxαk/βk: it is the largest ratio of coefficients multiplying V (x±i ) or V (X±

j ) in the

expressions for |V |h and |V |20, i.e. in (14).
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4.2 The Two-dimensional Case

A similar argument applies in two dimensions. Assume we have two triangulations
with triangles {Tk}N1 and {tk}n1 respectively and vertices Qi and qi. Recall that

|V |2h =
1

6

NX
k=1

X
j=1,2,3

|VTk (Qij )|2|Tk|+
1

6

nX
k=1

X
j=1,2,3

|Vtk (qij )|2|tk|, (15)

where ij , j = 1, 2, 3 are the numbers of the 3 vertices for each triangle. On the other
hand the exact value |V |20 is

|V |20 =
X
k,l

X
j=1,2,3

|VRkl(ξkl)|2|Rkl|, (16)

where Rkl = Tk ∩ tl and ξkl is any point in Rkl.
For each Qij (resp qij ) in (15) there is a Rkl which contains it. For these R let us

choose in (16) ξkl = Qij and qij . Then for every term in |V |2h there is a corresponding

term in |V |20:
1

6
|VTk (Qij |2|Tk| corresponds to |VTk (Qij |2|Tk ∩ tl|, (17)

where l is such that Qij ∈ tl; and similarly with qij .
However in this construction we will assign as many ξ to R as the number of vertices
it contains. So the safest is to divide the second term in (17) by 3.
Notice that some R do not contain any vertex; if we leave these aside we obtain

|V |2h
|V |20

≤ 1

2
max
k,l
{max{|Tk|, |tl|}

|Tk ∩ tl|
: Tk ∩ tl contains at least one vertex }. (18)

So we have proved the following

Proposition 3. In two dimensions, the constant of continuity between the approx-
imate norm |∇uH + ∇uh|h and the exact one is proportional to the square root of
the biggest ratio of area between a triangle T and one of its polygons T ∩ t where t
is a triangle of the other triangulation containing a vertex of T .

The proof is similar, except that in the exact norm there are terms which do not
exist in the approximate norm; but these are positive and appear in the denominator
of the expression which bounds C.

Remark 1. Consider the case where each triangle of the mesh h has no more than
one vertex of the mesh H inside. Assume that this vertex is near the center of the
triangle (or segment in one-D). Assume that all angles between two intersecting
edges are bounded away from 0 and π when h,H → 0 and that H/h and h/H
do not tend to 0. Then C is strictly posivite in the limit. However it is difficult in
practice to insure that no angle tend to zero when the mesh is refined.

5 Numerical Test

In all the numerical tests that follow, errors are evaluated on the intersected mesh,
using exact quadrature formula. The problem to solve is −∆u = f in Ω, u =
g on ∂Ω. Data are chosen so that u(x, y) = sin(x)× sin(y).
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Fig. 1. Left: Two meshes in 1D and the intersected mesh. Two intervals have been
singled out as they are strictly inside an interval of the other mesh; the continuity
constant is proportional to the ratio of the smallest interval in the intersected mesh to
the biggest interval in both mesh neighbors to the smallest one. Right: The continuity
constant is proportional to the smallest polygon containing a vertex (shown with a
texture) divided by the area of the biggest neighbor triangle in both meshes. Notice
that some edges pass right through a vertex in this example, so if one mesh is shifted
slightly the continuity constant estimate suddenly deteriorates.

5.1 Exact quadrature

This formula is introduced so as to give an exact computation for integral likeZ
Th∩TH

ΦΨ. Where Φ and Ψ see Fig 2 below are P1-lagrange functions on the

triangle Th and TH respectively. It is based on the intersection of the two meshes.
Ω1 is a circle of radius 1 centered at (0, 0) and Ω2 is the square (−0.5, 0.5)2. Ω2 is

ψ

φ

Fig. 2. Quadrature for exact evaluation of

Z
Th∩TH

ΦΨ .

going to be meshed with uniform triangles so that by dyadic refinement, order of
convergence can be easily evaluated see Table 1.

5.2 First quadrature formula

Table 1 displays the results when (9) is used. Notice that by taking u ∈ Vh, v ∈ Vh,
we do not recover the ordinary approximated bilinear form for the Laplace equation
on the domain Ω1. So for a parallel implementation of (10), instead, we must find
un+1 ∈ V0h such that (here b ≡ 0), ∀v̂ ∈ V0h(Ω1)

(∇un+1
1 ,∇v̂)h = (f, v̂)− (∇un2 ,∇v̂)hH −

1

2
(∇un1 ,∇v̂)h +

1

2
(∇un1 ,∇v̂)H .
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Here (·, ·)h, (·, ·)H do not need quadrature. For the numerical experiments, we have

taken Ω2 = (−2, 3)× (−3, 2) and Ω1 = (−4

3
,
5

3
)× (−5

3
,
4

3
).

5.3 Second quadrature formula

In our works, we have also tried, for u1, v1 ∈ Vh, u2, v2 ∈ VH

(∇u1,∇v2)hH,Ω1∩Ω2 :=
X

K∈KH

|K|
3

X
j=1,2,3

(∇(u1) · ∇(v2|K)) (qj(K)),

(∇u2,∇v1)Hh,Ω1∩Ω2 :=
X
T∈τh

|T |
3

X
j=1,2,3

(∇(u2) · ∇(v1|T )) (qj(T )).
(19)

5.4 Schwarz algorithm with quadrature

Finally, to compare with Schwarz’ algorithm, let πhH : Vh �→ VH and πHh : VH �→ Vh
be the P 1 interpolation operators. Then the Schwarz method is implemented as


(∇(un+1 + πHhv

n),∇û)h = (f, û)h ∀û ∈ V0h,

(∇(vn+1 + πhHu
n),∇v̂)H = (f, v̂)H ∀v̂ ∈ V0H .

(20)

u− (u1 + u2)

N1 N2 L2 error rate ∇L2 error rate

Exact Quadrature

10 5 1.54E − 02 − 2.25E − 01 −
20 10 3.78E − 03 2.02 1.11E − 01 1.02

40 20 8.24E − 04 2.2 5.03E − 02 1.15

First Quadrature

3 5 4.64E − 01 − 1.00E − 00 −
6 10 8.18E − 02 2.50 5.44E − 01 0.89

u− (u1 + u2)

N1 N2 L2 error rate ∇L2 error rate

Second Quadrature

10 5 1.85E − 02 − 2.32E − 01 −
20 10 5.66E − 03 1.71 1.16E − 01 1.00

40 20 1.03E − 03 2.45 5.34E − 02 1.12

Schwarz overlapping

10 5 1.68E − 02 − 2.29E − 01 −
20 10 3.49E − 03 2.26 1.09E − 01 1.06

40 20 9.15E − 04 1.93 5.13E − 02 1.09

Table 1. Numerical L2 errors, and convergence rate, for P1 polynomials with dif-
ferent quadrature formula. Ni, i = 1, 2 is the number of vertices on the boundary of
the domain Ωi.

Conclusion

The results show that the first quadrature formula has optimal errors numerically
but the results are very sensitive to the position of the grid points. Good results are
obtained with the second quadrature formula, which is also easy to implement in
3D but no error analysis is yet available.
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Summary. We propose a new variant of the mortar method for the lowest or-
der Crouzeix-Raviart finite element for the approximation of second order elliptic
boundary value problems on nonmatching meshes.

1 Introduction

The mortar technique (cf. [3, 1]) is the class of domain decomposition method that
allows for nonmatching meshes for solving partial differential equations. To ensure
that the overall discretization involving the nonmatching meshes makes sense, an
optimal coupling between the meshes is required. In a standard mortar technique,
this condition is realized by applying the condition of weak continuity on the so-
lution, called the mortar condition, saying that the jump of the solution along the
interface between two meshes is orthogonal to some suitable test space. Since its first
introduction, the mortar technique has been studied extensively, see [2, 6, 8, 10, 5],
and the references therein.

In order to apply the mortar condition, it is necessary to know the function
on the interface. For the conforming P1 finite element, it is enough to know the
nodal values along the interface. However, for the nonconforming P1 finite element
(the lowest order Crouzeix-Raviart finite element), where the degrees of freedom are
associated with the edge midpoints, see Fig. 1, the function on the interface depends
on the nodal values corresponding to interface nodes and some subdomain interior
nodes lying closest to the interface, cf. [6]. The purpose of this paper is to modify
the mortar condition, so that the new method will use only the nodal values on the
interface. This is a clear advantage compared to the standard method, especially
in 3D. The approach can also be seen as the mortar method with an approximate
constraint, see [4] for instance.

We propose our new mortar variant in Section 2, and present its matrix formu-
lation in Section 3. An additive Schwarz preconditioner similar to the one in [7] for
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Fig. 1. The lowest order Crouzeix-Raviart (CR) finite element (left) and two non-
matching grids (right). CR basis functions associated with the nodes on the mortar
side, denoted by dots (in the interior) and semi-dots (on the mortar), have nonzero
support on the nonmortar side, denoted by the shaded triangles.

the new mortar variant is formulated in Section 4, and finally some numerical results
are presented in Section 5.

2 The new mortar variant

Let Ω ⊂ R2 be a simply connected bounded domain, partitioned (conformingly)
into a collection of nonoverlapping polygonal subdomains, Ωi, i = 1, . . . , N , such

that Ω =
[
i

Ωi. We consider the problem: Find u∗ ∈ H1
0 (Ω) such that

a(u∗, v) = f(v), v ∈ H1
0 (Ω), (1)

where a(u, v) =

NX
i=1

Z
Ωi

∇u · ∇v dx and f(v) =

NX
i=1

Z
Ωi

fv dx. With each sub-

domain Ωi, we associate a quasi-uniform triangulation Th(Ωi) of mesh size hi. The
resulting triangulation can be nonmatching across subdomain interfaces.

Let Xh(Ωi) be the nonconforming P1 (Crouzeix-Raviart) finite element space
defined on the triangulation Th(Ωi) of Ωi, consisting of functions which are piecewise
linear in each triangle τ ⊂ Ωi, continuous at the interior edge midpoints of ΩCRih , and
vanishing at the edge midpoints of ∂ΩCRih ∩ ∂Ω lying on the boundary ∂Ω. Here,
ΩCRih and ∂ΩCRih represent the sets of edge midpoints, i.e., the Crouzeix-Raviart
nodal points, of Ωi and ∂Ωi, respectively. In the same way, we use Ωih and ∂Ωih
(without the superscript CR) to denote the corresponding sets of triangle vertices.

Since the triangulations on Ωi and Ωj do not match on their common inter-

face Γij , the functions in Xh(Ω) =
Y
i

Xh(Ωi) are discontinuous at the edge mid-

points along the interface. In the standard mortar technique, see [6], the condition
of weak continuity, called the mortar condition, is therefore imposed. In this pa-
per, we introduce a new variant of the mortar condition. Let γm(i) ⊂ ∂Ωi and
δm(j) ⊂ ∂Ωj be the mortar and the nonmortar side of the interface Γij , respectively.

Let uh ∈ Xh, where uh = {ui}Ni=1. A function uh ∈ Xh satisfies the mortar condition
on δm(j) = Γij = γm(i), if
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QmImui = Qmuj , (2)

where Im is an interpolation operator, to be defined in the next paragraph,
and Qm is the L2-projection operator Qm : L2(Γij) → Mhj (δm(j)) defined as

(Qmu, ψ)L2(δm(j))
= (u, ψ)L2(δm(j))

, ∀ψ ∈ Mhj (δm(j)), where Mhj (δm(j)) ⊂
L2(Γij) is the test space of functions which are piecewise constant on the triangu-
lation of δm(j), and (·, ·)L2(δm(j))

denotes the L2 inner product on L2(δm(j)). For

the function uj on the nonmortar, the interior degrees of freedom do not affect the
mortar matching condition for Mhj (δm(j)) containing piecewise constant functions.
We note that, for the standard mortar method, Im is simply the identity.

xe x′e

he h′e

xex′e

heh′e

xl

hl

xr

hr

x x x

Fig. 2. Showing u|γm by dotted lines, and Imu|γm by the solid line.

Let Th
2
(γm) be the triangulation associated with the mortar γm, which is ob-

tained as a result of dividing the edges of Th(γm) in two. Let W h
2
(γm) be the con-

forming space of piecewise linear continuous functions on the triangulation Th
2
(γm).

The functions of this space are defined by their values at the set γm h
2

of all edge

endpoints of Th
2
(γm). It is easy to see that γmh

2
= γCRmh ∪ γmh, where γCRmh and γmh

are respectively the sets of edge midpoints and edge endpoints of Th(γm). We now
define the operator Im : Xh(γm)→W h

2
(γm) below.

Definition 1. For u ∈ Xh(γm), Imu ∈W h
2
(γm) is defined by the nodal values as

Imu(x) =

8>>><
>>>:

u(x), x ∈ γCRmh ,
hr

hl + hr
u(xl) +

hl
hl + hr

u(xr), x ∈ γmh,

u(xe) +
he

he + h′e
(u(xe)− u(x′e)) x ∈ ∂γmh.

(3)

Here, xl and xr are the left and the right neighboring edge midpoints of x, respec-
tively. Correspondingly, hl and hr are the left- and the right edge lengths. xe and
he are the midpoint and the length of the edge of Th(γm), touching ∂γm. The edge
midpoint x′e and the edge length h′e correspond to the neighboring edge.

The interpolation is done basically by first joining the edge midpoints with piecewise
straight lines, and then stretching the two end straight lines to the end of the mortar
γm, cf. Fig. 2. It is not difficult to see that the operator Im preserves all linear
functions on the mortar.
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Vh ⊂ Xh is a subspace of functions which satisfy the mortar condition for all
δm ⊂ S . Since functions of Vh are not continuous, we use the broken bilinear form

ah(·, ·) defined according to ah(u, v) =
NX
i=1

ai(u, v) =
NX
i=1

X
τ∈Th(Ωi)

(∇u,∇v)L2(τ). The

discrete problem takes the following form: Find u∗h = {ui}Ni=1 ∈ Vh such that

ah(u
∗
h, vh) = f(vh), ∀vh ∈ Vh. (4)

If the hi’s are of the same order h, then the following error estimate can be shown.

Theorem 1. For all u ∈ Vh,

‖ u∗ − u∗h ‖L2(Ω) +h|u∗ − u∗h|H1
h
(Ω) ≤ ch2 ‖ u∗ ‖H2(Ω) (5)

3 Matrix Formulation

Like in the standard mortar case, each basis function of V h is associated with an
edge midpoint either in the interior of a subdomain or on a mortar, and not on any
nonmortar. Let ϕ

(i)
k denote a standard nodal basis function of Xh(Ωi), associated

with an edge midpoint xk ∈ ΩCRih . The basis functions of V h can be defined as
follows. If xk ∈ ΩCRih , a subdomain interior node, then φk is identical with ϕ

(i)
k . If

xk ∈ γCRm(i)h, a mortar node, then φk(x) = ϕ
(i)
k (x) on Ωi, while on δm(j), where

γm(i) = δm(j), φk(x) = Qm(Imϕ
(i)
k )(x) at x ∈ δCRm(j)h. φk is zero at the remaining

edge midpoints of Ωj , and zero everywhere on the remaining subdomains. Using the
basis functions of Vh, the problem (4) can be rewritten in the matrix form as

Au∗ = f , (6)

where u∗ is a vector of nodal values of u∗h, and A is a matrix generated by the
bilinear form ah(., .) on Vh × Vh. We shall now see how this matrix can be obtained
from the local matrices Êi generated by ai(., .) on Xh(Ωi)×Xh(Ωi).

Observing that ah(., .) =

NX
i=1

ai(., .), where ai(., .) = ah(., .)|Ωi , we can calculate

the elements of A from their local contributions restricted to individual subdo-
mains Ωi. In order to calculate the local contribution ai(., .), we use only those basis
functions that have nonzero supports on Ωi. These basis functions are exactly the
ones associated with the nodes of ΩCRih , γCRm(i)h (γm(i) ⊂ ∂Ωi), and the set γCRm(j)h

(γm(j) = δm(i) ⊂ ∂Ωi) of neighboring mortar edge midpoints except those on ∂Ω.
Let Λi be the set of all these nodes, see Fig. 3 for an illustration.

Let Pi be the restriction matrix which is a permutation of a rectangular identity
matrix, such that Piu returns the vector of all coefficients of u, associated with the
nodes of Λi. PT

i is the corresponding extension matrix. Let Ei, associated with the
subdomain Ωi, be the matrix generated by ai(., .) on span{φk : xk ∈ Λi}×span{φl :
xl ∈ Λi}. Using these three types of matrices, we can assemble the global matrix as

A =

NX
i=1

PT
i EiPi.
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We note that Ei =
˘
ai(φk, φl)

¯
, for xk, xl ∈ Λi, and Êi =

˘
ai(ϕ

(i)
k , ϕ

(i)
l )
¯
,

for xk, xl ∈ Ω
CR
ih . If xk, xl ∈ ΩCRih ∪ γCRm(i)h, then ai(φk, φl) = ai(ϕ

(i)
k , ϕ

(i)
l ). If

xk ∈ γCRm(j)h, then the calculation of an element of Ei involving φk, requires the

values of Qm(Imϕ
(j)
k )(xo) at the nodes xo ∈ δCRm(i)h, since by definition φk =X

xo∈δCR
m(i)h

Qm(Imϕ
(j)
k )(xo)ϕ

(i)
o in Ωi. In the following, we derive these coefficients

{Qm(Imϕ
(j)
k )(xo)} from the mortar condition.

For a mortar γm, let Im be the matrix representation of the interpolation oper-
ator Im : Xh(γm) → W h

2
(γm), whose columns correspond to the nodes γCRmh (edge

midpoints of Th(γm)), and the rows correspond to the nodes γm h
2

(edge endpoints

of Th
2
(γm)), along the mortar γm.

Fig. 3. Showing Ωi with one nonmortar side, and the corresponding set Λi of edge
midpoints shown as dots (in the interior) and semi-dots (on the mortars).

We assume that the subdomain Ωi has only one nonmortar side δm(i), cf. Fig.
3; the extension to more than one nonmortar edge is straightforward. Let the mas-
ter matrix be Mγm(j)

=
˘
(Imϕ

(j)
k , ψo)L2(δm(i))

¯
, and the slave matrix be Sδm(i)

=˘
(ϕ

(i)
l , ψo)L2(δm(i))

¯
, where xk ∈ γCRm(j)h and xl, xo ∈ δCRm(i)h. Let ξn be the basis

function of W h
2
(γm(j)), associated with the edge endpoints xn ∈ γm(j) h

2
. Then

Om(i) = S−1
δm(i)

Mγm(j)
= S−1

δm(i)
Nγm(j)

Im

is the matrix representation of the mortar projection QmIm : Xh(γm(j)) →
Mhi(δm(i)), where Nγm(j)

=
˘
(ξn, ψo)L2(δm(i))

¯
with xn ∈ γm(j) h

2
and xo ∈ δCRm(i)h.

The columns of this matrix Om(i) correspond to the nodes xk ∈ γCRm(j)h, containing

exactly the coefficients {Qm(Imϕ
(j)
k )(xo)}. We note that Sδm(i)

is a diagonal matrix
containing the lengths of the edges along δm(i) as entries.

Now define the matrix Oi = diag(I,Om(i)), where I is the identity matrix corre-

sponding to the nodes of ΩCRih and γCRm(i)h, and Om(i) is the mortar projection matrix

corresponding to the nodes of γCRm(j)h. Then it is easy to see that Ei = OT
i ÊiOi.

Finally, we have A =
NX
i=1

PT
i OT

i ÊiOiPi. In the same way, we get f =
NX
i=1

PT
i OT

i f̂ i.
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4 An additive Schwarz method

In this section, we design an additive Schwarz method for the problem (4), which is
an extension of the algorithm in [7] for the standard mortar case, to the new mortar
variant. The method is defined using the general framework for additive Schwarz

methods (cf. [9]). We decompose Vh as Vh = V S + V 0 +
NX
i=1

V i. For i = 1, . . . , N ,

V i is the restriction of Vh to Ωi, with functions vanishing at subdomain boundary
edge midpoints ∂ΩCRih as well as on the remaining subdomains.

V S is a space of functions given by their values on the skeleton edge midpoints

SCRh =
[
γm

γCRmh , i.e. V S = {v ∈ Vh : v(x) = 0, x ∈ ΩCRh \SCRh }. Due to its construc-

tion, any two basis functions of this space, those associated with the edge midpoints
on the same mortar side or two neighboring mortar sides may have a common sup-
port. In case of the two neighboring mortar sides, however, this common support
becomes nonexistent if we make sure that the triangulation in each subdomain does
not contain any corner triangle. A corner triangle is a triangle having more than one
edge on the subdomain boundary. As a result, the corresponding stiffness matrix
takes the form of a block diagonal matrix with each block belonging to one mortar
side only.

The coarse space V 0, a special space having a dimension equal to the number
of subdomains, is defined using the function χi ∈ Xh(Ωi) associated with the sub-

domain Ωi. χi is defined by its nodal values as: χi(x) = 1/
X
j

ρj(x) at x ∈ ΩCRih ,

where the sum is taken over the subdomains Ωj to which x belongs, and ρj = 1,
∀j. Note that the ρj ’s may represent physical parameters with jumps across inter-
faces, see [7]. V 0 is given as the span of its basis functions, Φi, i = 1, . . . , N , i.e.,
V 0 = span{Φi : i = 1, . . . , N}, where Φi associated with Ωi, is defined as follows.

Φi(x) =

8>>>>>>><
>>>>>>>:

1, x ∈ ΩCRih ,
ρiχi(x), x ∈ γCRm(i)h,

ρiQm(Imχj)(x), x ∈ δCRm(i)h, δm(i) = γm(j),

ρiQm(Imχi)(x), x ∈ δCRm(j)h, δm(j) = γm(i),

ρiχj(x), x ∈ γCRm(j)h, γm(j) = δm(i),

0, x ∈ ∂ΩCRih ∩ ∂Ω,

(7)

and Φi(x) = 0 at all other x in Ω
CR
h . We use exact bilinear forms for all our sub-

problems. The projection like operators T i : Vh → V i are defined in the stan-
dard way, i.e., for i ∈ {S , 0, . . . , N} and u ∈ Vh, T

iu ∈ V i is the solution of
ah(T

iu, v) = ah(u, v), v ∈ V i. Let T = TS + T 0 + T 1 + . . .+ TN . The problem (4)
is now replaced by the preconditioned system

Tu∗h = g, (8)

where g = TSu∗h +

NX
i=0

T iu∗h. Let c and C represent constants independent of the

mesh sizes h = inf
i
hi and H = max

i
Hi, then the following theorem holds.
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Theorem 2. For all u ∈ Vh,

c
h

H
ah(u, u) ≤ ah(Tu, u) ≤ Cah(u, u). (9)

The theorem can be shown in the same way as the proof in [7], which uses the general
theory for Schwarz methods, cf. [9]. It follows from the theorem that the condition

number of the operator T grows as
H

h
.

5 Numerical results

For the experiment, we consider our model problem to be defined on a unit square
domain, Ω, with the forcing function f chosen so that the exact solution u is equal
to sin(πx) sin(πy). The domain Ω is initially divided into 32 = 9 square subdomains
(subregions). Each subdomain is then discretized uniformly using, in a checkerboard
fashion, either 2m2 or 2n2 right angle triangles of equal size, where m and n are
fixed and m �= n resulting in nonmatching grids across all interfaces.

Table 1. Condition number estimates (κ2), PCG-iteration counts (#iter), and L2-
norm (errorL2) and H1-seminorm (errorH1) of the error in each case.

{m,n} Standard CR Mortar Proposed CR Mortar

κ2 #iter errorL2 errorH1 κ2 #iter errorL2 errorH1

{06, 05} 28.85 25 0.002020 0.065293 30.11 23 0.002484 0.078409

{12, 10} 63.44 35 0.000497 0.032843 60.90 31 0.000667 0.038768

{24, 20} 134.18 49 0.000123 0.016479 122.55 45 0.000175 0.019321

A comparison between the standard and the proposed mortar technique for the
Crouzeix-Raviart finite element is shown in Table 1. The Preconditioned Conjugate
Gradients (PCG) method has been used to solve the resulting algebraic systems
with their respective additive Schwarz preconditioners. As seen from the table, the
numerical results agree with the theory. The proposed method exhibits a similar
behavior as that of the standard method.

Acknowledgement. We are extremely thankful to the referees of this paper for their
valuable comments. We are thankful also to Prof. Petter Bjørstad for presenting this
work at the DD16 conference in New York for us.
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Summary. A hybrid numerical scheme based on a probabilistic method along with
a classical domain decomposition is proposed for solving numerically linear elliptic
boundary-value problems. Full decoupling can be accomplished by computing a few
values of the solution inside the domain by Monte Carlo or quasi-Monte Carlo tech-
niques, and interpolating at the nodal points where the solution has been obtained
previously. Thus, this method appears to be fault-tolerant as well as suited for time
decomposition. Some examples are shown to illustrate performance and scalability.

1 Introduction

Domain decomposition methods are nowadays considered among the most natural
ways to exploit parallel architectures in solving boundary-value problems for partial
differential equations (PDEs). The main idea consists of decoupling the original
problem into several sub-problems, and was proposed originally in the seminal work
of H. A. Schwarz in 1870. More precisely, the given domain is divided into a number
of subdomains, and the task of the numerical solution on such separate subdomains
are then assigned to different processors. However, the computation cannot run
independently for each subdomain, because they are coupled together through an
internal interface, where the solution is unknown. Therefore, for every computational
time step, processors have to exchange data along these interfaces, slowing down the
overall performance.

In fact, due to the global character of the PDE, the solution cannot be obtained
at a single point inside the domain prior to solving the full problem. Consequently,
certain iterations are required across the chosen (or prescribed) interfaces, in order
to determine approximate values of the solution sought inside the original domain.
There exists two approaches for a domain decomposition depending on whether the
domains are overlapping or not overlapping, see [5, 15, 16], e.g. Given the domain,
problems are coupled, some additional numerical work is needed, and therefore, it is
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doubtful whether full scalability can be attained as the number of the subdomains
(hence, of the processsors) increases unboundedly.

In order to overcome such a drawback, a new method has recently been proposed
[1, 2]. The core of the method is based on combining a certain probabilistic method
suited for solving elliptic and parabolic partial differential equations with a classical
domain decomposition method, namely a probabilistic domain decomposition method
(PDD). This approach allows us to obtain the solution in some points, internal to the
domain, without first solving the entire problem. In fact, this can be done by means
of the probabilistic representation of the solution. The basic idea is to compute only
a few values of the solution on certain chosen interfaces, and then interpolate to get
continuous approximations. These can be used as boundary values to decouple the
problem into sub-problems, see Fig. 1. Each such sub-problem can then be solved
independently on a separate processor. Clearly, neither communication among the
processors, nor iteration across the interfaces is needed.

Ω
Ω Ω

Ω Ω

1 2

3 4

Ω Ω

Ω Ω

1 2

3 4

Fig. 1. Sketchy diagram illustrating the numerical method, splitting the initial
domain Ω into four subdomains, Ω1, Ω2, Ω3, Ω4.

Solving boundary-value problems for linear elliptic and parabolic partial differ-
ential equations numerically by the probabilistic representation of their solutions,
essentially by a Monte Carlo method, is known for a long time, see [4, 11]. It is based
on the well-known Feymann-Kac formula, which is an extremely powerful represen-
tation, and inherently parallel since it allows for obtaining the solution at single
points inside the domain. However, it can hardly be used because requires evaluat-
ing accurately the first exit point along with the first exit time from the domain,
as well as solving numerically a boundary value problem for a stochastic differential
equation. Both issues, however, can be managed reasonably well resorting to several
powerful numerical and asymptotic techniques, extracted from probability theory,
number theory and statistical physics, see [3, 9, 10].
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2 Generalities

For the purpose of illustration, let us confine ourselves to the case of the Dirichlet
problem for a linear elliptic equation,

Lu− c(x)u = f(x), x ∈ Ω ⊂ R2, u|∂Ω = g, (1)

where L :=
2X

i,j=1

aij(x)∂i∂j +
2X
i=1

bi(x)∂i is a linear elliptic operator with smooth

coefficients, c(x) ≥ 0, with the boundary ∂Ω of the domain Ω also smooth, as well
as the boundary data, g, and the source term, f . The probabilistic representation is
given by,

u(x) = ELx

»
g(β(τ∂Ω))e−

R τ∂Ω
0 c(β(s))ds −

Z τ∂Ω

0

f(β(t)) e−
R t
0 c(β(s))ds dt

–
, (2)

see e.g.[7, 12]. Here β(t) is the (vector-valued) stochastic process associated to the
elliptic operator L, which solves the system of (Ito type) stochastic differential equa-
tions (SDEs)

dβ = b(x)dt+ σ(x)dW (t). (3)

Here W (t) represents the 2-dimensional standard brownian motion (also called
Wiener process), and τ∂Ω is the first passage (or hitting) time of the path β(t)
started at the point x to ∂Ω. As usual, the dependence of β on the chance variable,
running on the underlying probability space, is not displayed. When the operator
L is the Laplace operator, ∆, the stochastic process β(t) reduces to the standard
2-dimensional brownian motion. The drift vector, b in (3) is the same one appearing
in the operator L, that is b(x) = (b1, b2)

T , while the diffusion matrix, σ, is related
to the coefficients aij by the relation σσT = a ≡ (ai,j)i,j=1,2.

The representation formula in (2) is used to obtain a few values of the solution
at some points inside the domain Ω. The expected value is approximated by an
arithmetic mean (which is known to provide the best estimator) over N realizations

of the process β, at the price of a (statistical) error on the order of N−1/2. The
main problem with using a Monte Carlo method rests on this fact, which entails a
rather poor accuracy, unless N is taken extremely large. An alternative, however,
does exist, and consists of resorting to sequences of quasi-random numbers [14],
which have been used succesfully in mathematical finance, and recently applied in
solving stochastic differential equations with high efficiency [3]. Using quasi-random
numbers allows for speeding up the calculations in comparison with the classical
Monte Carlo method based on pseudorandom numbers, since now the statistical
error becomes of order N−1. Such a method is called quasi- Monte Carlo.

Since evaluating the solution via a probabilistic method may require a large
number of realizations (large sample size) in order to reduce the associated statistical
error, we compute the solution in only a few points along the interfaces between
subdomains. Such points will be used as nodal points to interpolate the solution at
the interfaces.

Apart from the statistical error, there are however other sources of numerical
error which affect the evaluation of u(x) by means of (2), besides that due to the
finite sample size mentioned above. These are due to: (i) the truncation error made
in the numerical solution of the SDEs in (3); (ii) the uncertainty of estimating first
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exit times; (iii) the numerical quadrature errors in (2). Estimating precisely the first
exit times and the first exit points (which are also needed for problems with c(x)
and f(x) not identically zero) has often been overlooked in the existing literature.
An efficient way to locate accurately the first exit time is based on the use of an
exponential timestepping, see [9, 10]. All these sources of error have been analyzed
in [1, 2].

At the present time, machines working in the petaflops regime, and endowed with
hundred of thousands or even millions of processors are planned for the near future,
and taking full advantage of massive parallel computing would be highly desirable.
With such machines, the issue of scalability remains open, at least in some cases. As
was pointed out in [13], Schwarz-type DD methods are not truly scalable, at least
in the theoretical sense, since their parallel efficiency in solving elliptic problems is
subject to degradation as the number of processors, p, goes to infinity, indeed when p
is in the thousands. It seems however that things go better, in practice, for a number
of reasons, described in [13].

In addition, failure of even few processors is very likely to occur frequently [8].
Therefore, algorithms which are scalable and fault-tolerant at the same time would
be extremely important if not mandatory.

The method proposed here seems to be free of the aforementioned drawbacks.
In fact, decoupling is complete, and it was shown in [1, 2] that scalability is attained
with respect to an arbitrary number of subdomains and processors, and that the
algorithm is naturally fault-tolerant. The latter property rests on two ingredients,
one due to the intrinsic parallelizability of the Monte Carlo methods, and to the full
decoupling that can be realized.

3 Numerical examples

Below we show some examples to illustrate the numerical method proposed. It is
worth to stress that, even though the “pivotal” values generated by Monte Carlo or
by quasi-Monte Carlo are quite inaccurate (unless an extremely large sample, N , of
realizations is used), and the Chebyshev interpolation adds some additional error,
the numerical error inside each subdomain is dominated by the boundary errors,
due to the maximum principle, and that it decays rapidly inside.

Note that a comparison with a true deterministic DD method has not yet been
done; we show only a comparison with “parallel finite differences”. However, we
do not expect our algorithm can necessarily outperform any given deterministic
DD method, but, rather, that our approach might win over others regarding full
scalability and fault-tolerance.

All codes have been implemented using OpenMP, which is a standard paralleliza-
tion library, designed for shared memory computer architectures. We have simply
used a 16 processor IBM Power 3 machine, with 375 MHz clock, and with a peak
performance of 24 GFLOPS.
Example 1. We consider the Dirichlet problem [2]
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y2 + 1

2
uxx +

x2 + 1

2
uyy + xux + y2 uy − (x3 + y2)u =

P cos(2x+ y) +Q sin(2x+ y) in Ω = (0, 1)× (0, 1), (4)

P = 1 + x(4 + x+ 2x2) + 2x y + x(4 + x)y2 + y3,

Q = −1

2
[−2 + x4 + 2x5 + 2x3 y + y(5− 4y + 6y2) + x2(1 + y + 6y2)] (5)

with the boundary data

u(x, y)|∂Ω =
ˆ
(x2 + y) sin(2x+ y)

˜
∂Ω
, (6)

the solution being u(x, y) = (x2 + y) sin(2x+ y).

Fig. 2. Example 2. Pointwise numerical error in: (a) the PDD algorithm, and (b) the
quasi-PDD algorithm. Parameters are N = 104, ∆x = ∆y = 2× 10−3, ∆t = 10−3.

Table 1. CPU time in seconds for example 1

Processors PFD PDDTotal PDDMonteCarlo PDDFD

4 9200.107 2087.947 3.492 2084.015
9 4098.381 489.684 3.872 485.484
16 2638.937 175.168 3.365 171.508

In Fig. 2a and 2b, the pointwise numerical error is shown, for the PDD with
pseudorandom sequence of numbers, and quasi-random, respectively. Here only two
nodes on each interface have been used. It should be remarked that the quasi-PDD
algorithm outperforms the PDD algorithm. The second column (PFD) in Table 1
shows the total computational time (in seconds) spent by the parallel finite difference
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algorithm using p = 4, 9, and 16 processors, which corresponds to 4, 9, and 16 sub-
domains. The corresponding time spent by the PDD algorithm is shown in the third
column. In the last two columns, that quantity is split into two parts, i.e, that re-
quired by the Monte Carlo simulation, and that needed by the local solvers. The two
methods are compared for approximately the same maximum error, 10−3. In both
algorithms the CPU time decreases as p increases, and this trend is more dramatic
in the PDD algorithm. Moreover, the CPU time decreases for each given number of
processors, passing from PFD to PDD, and this behavior is more pronounced, when
the number of processors is longer.
Example 2. Consider the so-called Stommel model, which is a two dimensional
model for ocean circulation, and is given by

uxx + uyy + β ux = −α sin(πy/2) in Ω = (0, 1)× (0, 1), (7)

with the boundary data u(x, y)|∂Ω = 0, and α = 10, β = 1. In this example an
analytical solution is unknown, and to quantify the numerical error, an accurate
numerical solution obtained solving the elliptic equation by a multigrid method has
been used instead. As for the previous example, contour plots are shown in Fig. 3
of the numerical error.

Fig. 3. Example 2. Pointwise numerical error in: (a) the PDD algorithm, and (b)
the quasi-PDD algorithm. Parameters are as in Fig. 2

4 Conclusions

A hybrid method based on a probabilistic approach along with a classical domain
decomposition for the numerical solution of elliptic partial differential equation, has
been described. The associated stochastic differential equation is solved by Monte
Carlo simulation only at very few points of a given interface internal to the domain.
Then, the solution at the interface is constructed interpolating by using the values at
these points. Consequently, a full splitting into several subdomains, to be handled

478



A New Probabilistic Approach to the Domain Decomposition Method

by separate processors acting simultaneously, can be accomplished. Since it has
been shown in the literature that the ensuing error may dominate, an essential
ingredient of the algorithm consists of a suitable boundary treatment. Moreover, it
has been shown that efficiency can be increased by adopting sequences of “quasi-
random numbers” (instead of the more customary pseudorandom numbers).

It is worth noticing that a comparison with true deterministic domain decom-
position algorithms has not been made yet. A parallel finite differences algorithm
allows for an automatic distribution of the computational load among the prescribed
subdomains. We do not expect that our code necessarily to be competitive with the
existing deterministic codes, but, rather, that it might compete as because of its
scalability and fault-tolerance properties. In fact, our approach allows for a com-
plete decoupling among processors, without degrading the overall performance due
to strong interprocessors communication. Therefore, it appears to be well suited for
grid computing and today’s supercomputers with hundreds of thousands of proces-
sors or more.

The availability of such a large number of processors in supercomputers, and the
desire to put every available processor to work, suggests that we should think about
developing new strategies of parallelization, which exploit now the time variable
[6]. The method proposed here can be generalized to treat for parabolic partial
differential equations, where the time evolution of the solution should now be taken
into account. In fact, the probabilistic method can now be used as well to evaluate
the solution of a parabolic partial differential equation in any given point and time
inside the spatio-temporal domain.
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This work is devoted to a scalable domain decomposition method to solve nonlinear
elastodynamic problems. Large nonlinear elastodynamic problems represent an ap-
propriate application field for substructuring methods which are efficient on parallel
computer with the proviso of using specific preconditioner techniques well adapted
to the mechanical modeling. Accordingly, we develop an adapted balancing domain
decomposition method [4, 6] appropriate for solving this kind of systems. By us-
ing the theoretical framework of Schwarz additive decomposition method [6, 7] and
by using arguments developed in [1], we propose a two level Neumann-Neumann
preconditioner based on the construction of a coarse space of lower energy modes
adapted to finite deformation problems of a dynamic process.

In section 1, nonlinear elastodynamic problems and the domain decomposition
frameworks are recalled. The section 2 is devoted to the definition of an adapted
coarse space by using Schwarz additive formulation. The construction of the two
level Neumann-Neumann preconditioner is detailed in section 3. In section 4, we
test the efficiency of this improved balancing domain decomposition method for the
numerical solutions of an academic nonlinear dynamic problem.

1 Nonlinear elastodynamic problems and domain
decomposition frameworks

Dynamic deformable body systems in large deformations are governed by nonlinear
time dependent equations. A typical nonlinear elastodynamic problem defined in a
reference configuration can take the following variational form,

8<
:

Find u ∈ L2(]0; T [;U0) such that for each t ∈]0; T [,Z
Ω

ρü(t).v +

Z
Ω

Π(t) : ∇v −
Z
Ω

f(t).v −
Z
∂gΩ

g(t).v = 0, ∀v ∈ U0
(1)

where ρ denotes the mass density; Π is the first Piola-Kirchoff tensor and f and
g are the external force densities. A dot superscript indicates the time derivative.
The set U0 = {v ∈ H1(Ω)dim;v = 0 on ∂0Ω} represents the space of kinematically
admissible displacement fields.
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The problem (1) can be solved by an energy conservative time integration scheme
[3] which is appropriate due to the long term time integration accuracy and stability.
In the following, we consider a collection of discrete times (tp)p=1...P which define a

partition of the time interval [0;T ] =

P[
p=1

[tp; tp+1] with tp+1 = tp +∆t and ∆t =
T

P
.

By using a second order time integration scheme (adapted midpoint scheme) [3], the
weak form (1) integrated between the times tp and tp+1 gives the following system,

8<
:

Find up+1 ∈ U0 such that
1

∆t

Z
Ω

ρ(u̇p+1 − u̇p).v +

Z
Ω

Πalgo : ∇v −
Z
Ω

fp+ 1
2
.v −

Z
∂gΩ

gp+ 1
2
.v = 0,

(2)

where �p+ 1
2

=
1

2
(�p + �p+1) and �p denotes the approximation of �(tp). The

energy conservative scheme (2) used in this work, is characterized by the tensor
Πalgo proposed by Gonzalez [3]. After a fully discretization step (time and space),
we obtain the nonlinear system defined by

1

∆t
M(u̇p+1 − u̇p) + Galgo(up+1,up)− qp+ 1

2
= 0 (3)

where M comes from the discretization of
1

∆t

Z
Ω

ρ(u̇p+1 − u̇p).v and Galgo is due

to the discretization of the hyperelastic part

Z
Ω

Πalgo : ∇v and qp+ 1
2

comes from

the discretization of the external forces

Z
Ω

f .v+

Z
∂gΩ

g.v. The nonlinear system (3)

can be solved by an iterative linearization scheme indexed by i which leads to the
solution of linear systems:

Kai,p+1∆ui,p+1 = − 1

∆t
M(u̇i,p+1 − u̇p)− Galgo(ui,p+1,up) + qp+ 1

2
(4)

with Kai,p+1 =
2

∆t2
Ma + Ki,p+1 and ∆ui,p+1 = ui+1,p+1 − ui,p+1

where Ma = ∂u̇p+1M represents the mass matrix and Kai,p+1 = ∂up+1Galgo the
hyperelastic tangent matrix. We highlight the fact that the matrix Kai,p+1 of system
(4) is nonsymmetric; the nonsymmetry comes from the form of tensor Πalgo (see
[3]).

The linear systems (4) can be solved by a domain decomposition method [6]
which has to be adapted to the nonsymmetry but also to the presence of inertia
terms. Before giving the adaptations to nonlinear dynamic problems (sections 2 and
3), we present briefly now the principal features of the balancing domain decomposi-
tion method [4, 6]. We choose to adopt a primal Schur complement method written
in terms of displacement variables. The basic idea in nonoverlapping domain decom-
position methods is to split the domain Ω of study into N small nonoverlapping
subdomains Ωn and interfaces Γn (n = 1 . . . N). The Schur complement method
consist then in reducing the global system to an interface problem by a block Gaus-
sian elimination of the internal degrees of freedom. The interface problem takes the
following variational form:

∃ū ∈ V̄ such that < Si,p+1ū, v̄ >=< f̄i,p+1, v̄ > ∀v̄ ∈ V̄ = tr(V )|Γ , (5)
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where V is the discrete set defined from the space U0 and Γ =
N[
n=1

Γn. The matrices

Si,p+1 =

NX
n=1

RnSni,p+1(R
n)t denote the global Schur complement matrices defined

on Γ ; (Rn)t is the restriction operator which goes from Γ to Γn. The local Schur
complement matrices Sni,p+1 are defined on Γn by

Sni,p+1 = K̄a
n
i,p+1 − (Bn

i,p+1)
t(K̊a

n

i,p+1)
−1Bn

i,p+1. (6)

To do that, we have considered the subdomain stiffness matrix formulated by

Kani,p+1 =

„
K̊a

n

i,p+1 Bn
i,p+1

(Bn
i,p+1)

t K̄a
n
i,p+1

«
. The blocks K̊a

n

i,p+1 and K̄a
n
i,p+1 correspond re-

spectively to the internal and interface degrees of freedom. The matrix Bn
i,p+1 repre-

sents the contribution connecting Γn to Ωn. The interface problem (5) can be solved
by a GMRES method (nonsymmetric cases) with the multilevel Neumann-Neumann
preconditioner [6, 1]. This iterative technique requires the formation of the matrix
vector products Sp̄ and M−1r̄ by solving independent auxiliary Dirichlet and Neu-
mann problems on the local subdomains and a global coarse problem defined on
a space of singular (rigid body) motions. The adaptation of the balancing method
to solving linear systems from nonlinear elastodynamic problems [2] can be real-
ized by using the theoretical framework of Schwarz additive decomposition method
introducing an adapted coarse space.

2 Schwarz additive formulation: towards a definition of
an adapted coarse space

The two-level Neumann-Neumann preconditioner may be interpreted as an additive
Schwarz algorithm [6]. This method consists in decomposing the interface space V̄

into a coarse and a fine component: V̄G and V̄f . The coarse space V̄G =
NX
n=1

DnZn

(Dn is a given partition of unity defined on the interface with
NX
n=1

DnRn = Id|V̄ ) can

be defined by adding local low energy components and the fine space V̄f is defined
by duality as follows:

V̄f =

NX
n=1

DnV̄ nf where V̄ nf = {v̄nf ∈ V̄ n, < SRnv̄n,Rnzn >= 0, ∀zn ∈ Zn}. (7)

The key point is the construction of the local spaces Zn of rigid motions. This
construction must, if that is necessary, regularize the local Neumann problems but
more specifically eliminate the low energy modes (like rigid body motions) in the
solution of local Neumann problems. For more details on the presentation of the
Schwarz additive method, we can refer to [6, 7] for symmetric cases and [1] for
nonsymmetric cases.

With finite deformations and dynamic problems, some low energy modes cannot
be detected in the factorization step of the local tangent matrices of Neumann
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problems [2]. These complications come from the finite deformations modeling but
also from the regularizing contribution of the mass matrix. Moreover, we also need
to improve the continuity between subdomains by taking into account specific modes
(like corners modes). So we have to introduce a specific construction of these lower
energy modes.

In the following, we present in detail the construction of the coarse space V̄G for
nonlinear dynamic problems. The orthogonality relation used in (7) characterizing
the space V̄ nf permits us to obtain information in order to define the local coarse
space Zn. Indeed the expansion of this orthogonality relation by using Si,p+1 =
NX
n=1

RnSni,p+1(R
n)t involves terms only from subdomains that are neighbors of the

nth and one term from the nth itself,

neigh(n)X
l=1

< v̄n , (Rn)tRl(Sli,p+1)
t(Rl)tRnzn >

| {z }
(8i)

+ < v̄n , (Sni,p+1)
tzn >| {z }

(8ii)

= 0 (8)

The relation (8) can be verified by setting the terms (8i) and (8ii) to zero. Let us
now see what the use of these relations imply:

- use of the term (8ii): this term may be eliminated by including the kernel of
(Sni,p+1)

t in the local space Zn, (Ker(Sni,p+1)
t ⊂ Zn). Such a choice leads to the same

simplification as obtained with the kernel of Sn for the more common symmetric
case [6]. For nonsymmetric cases, this choice leads to the introduction of Dual Rigid
Modes (DRM) defined through the kernel of (Sni,p+1)

t (see [1] for details). >From a
pratical point of view and according to the form Sni,p+1 given in (6), the dual rigid
modes (noted by vnGα) defined on Ωn can be calculated by using the local matrices
(Kani,p+1)

t and by using the solution of the following Neumann systems:

vnGα ∈ V n such that (Kani,p+1)
tvnGα = 0, α = 1, nbDRMn. (9)

where nbDRMn represents the total number of dual rigid modes of subdomains Ωn.
One can easily prove that the modes vnGα ∈ Ker(Kani,p+1)

t are connected to the
elements zn ∈ Ker(Sni,p+1)

t by the relation zn = v̄nGα (where v̄nGα represents the
contribution of vnGα on Γn).

- contribution of the term (8i): a simple manner to cancel the term (8i) is to fix
all the terms of the sum to zero; the elements zn of Zn could then be characterized as
the solution of (Rn)tRl(Sli,p+1)

t(Rl)tRnzn = 0. That makes it possible to ensure the
continuity of the coarse space elements through the interface Γn of Ωn by considering
the contributions relating to corners, edges and faces of the neighbouring subdomains
Ωl. Indeed, the elements zn can be found respectively by these following relations :

zl ∈ Zl such that (Sli,p+1)
tzl = 0 ∀ l = 1, neigh(n) (10)

zn ∈ Zn such that (Rl)tRnzn = zl ∀ l = 1, neigh(n) (11)

The use of the (8ii) and (10) makes it possible to calculte the dual rigid modes of the
subdomains Ωn and its neighbors Ωl; furthermore the relation (11) represents the
continuity constraint of dual modes through the interface (corners, edges and faces)
between Ωn and Ωl. This last point makes it possible to connect this approach with
the balancing domain decomposition method by constraints [5]; the enforcement of
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these kind of constraint leads to expensive computational cost. An inexpensive way,
inspired by [7] and [5] would be to impose only the continuity at the corners of the
subdomains Ωn. That can be done by the computation of the nbDCMn Dual Corner
Modes (DCM) of subdomainsΩn by enforcing the same arbitrary Dirichlet boundary
value for the corner interface degrees of freedom for all concerned subdomains Ωn

and Ωl (where nbDCMn is the total number of DCM).
In conclusion, the coarse space Zn can be generated by considering the nbDRMn

dual rigid modes defined by solutions of the systems (12) and particulary by the
nbDCMn dual corner modes given by the systems (13) (see the next section 3 for
more details on the computation of these modes).

3 Adaptation of the 2-level Neumann-Neumann
preconditionner

According to the definition of the coarse space introduced in section 2, we propose
an adaptive construction of the two level Neumann-Neumann preconditioner based
on the following steps:

(a) Preliminary step : We identify the local internal degrees of freedom {Prnα; α =
1, nbDRMn} which cancel all nbDRMn rigid motions of subdomain Ωn. This
can be realized during the factorization of the stiffness matrix (Kn

e ) coming
from the linear elastostatic system associated to the nonlinear elastodynamic
problem (3).

(b) For each Newton iteration i and for each time step p

a) We construct the local regularized matrices gKa
n

i,p+1 by using the degrees of
freedom {Prnα} detected in step (1). These matrices can be written by using
the contributions from the internal and interface degrees of freedom; then
only the internal contribution K̊a

n

i,p+1 of the matrix Kani,p+1 is regularized

by using the matrix Q̊n
α:

g̊
Ka

n

i,p+1 = K̊a
n

i,p+1 + Q̊n
α where (Q̊

n

α)jk =

(
BV if j = k = Prnα

0 otherwise

where BV is an arbitrary big value (like 1030 for example). This regular-
ization is not necessary for dynamic problems due to the contribution of

the inertia terms
2

∆t2
Ma which ensures that the matrices Kani,p+1 are non-

singular. On the other hand, we need to construct the regularized matricesḡKa
n

i,p+1 in order to impose the boundary conditions on the corners degrees
of freedom noted by {Pcnγ ; γ = 1, nbDCMn}:

ḡKa
n

i,p+1 = K̄a
n
i,p+1 + Q̄n

γ where (Q̄n
γ )jk =

(
BV if j = k = Pcnγ

0 otherwise

b) We compute the dual rigid modes {vnGα; α = 1, nbDRMn} by solving the
(regularized) local Neumann problems set in the space V n of subdomain
displacements functions,
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 g̊
Ka

n

i,p+1 Bn
i,p+1

(Bn
i,p+1)

t K̄a
n
i,p+1

!t„
v̊nGα
v̄nGα

«
=

„
e̊nα
0

«
; α = 1, nbDRMn (12)

where the jth component (̊enα)j of the vector e̊nα is equal to the arbitrary
big value BV if j = Prnα and to the value zero if not.

c) We compute the dual corner modes {vnGγ ; γ = 1, nbDCMn} by solving lo-
cal Neumann problems in which the continuity of modes on corners can be
realized by enforcing the same arbitrary Dirichlet boundary value (1 for ex-
ample) on the corners interface degrees of freedom {Pcnγ ; γ = 1, nbDCMn}
for all concerned subdomains Ωn :

 
K̊a

n

i,p+1 Bn
i,p+1

(Bn
i,p+1)

t ḡKa
n

i,p+1

!t„
v̊nGγ
v̄nGγ

«
=

„
0
ēnγ

«
; γ = 1, nbDCMn (13)

where the jth component (ēnγ )j of the vector ēnγ is equal to the arbitrary
big value BV if j = Pcnγ and to the value zero if not.

(c) We define the local coarse space by:

Zn = vect
`
{v̄nGα; α = 1, nbDRMn}, {v̄nGγ ; γ = 1, nbDCMn}

´
.

With this construction of low energy modes, the two-level Neumann-Neumann pre-
conditioner is classically defined for each time step p and each Newton iteration i
by

M−1
i,p+1 = PG +

NX
n=1

(I−PG)Dn
i,p+1(eSni,p+1)

−1(Dn
i,p+1)

t(I−PG)t, (14)

where (eSni,p+1)
−1 is the regularized Schur inverse matrix and PG denotes the or-

thogonal S-projection of V̄ on V̄G.

4 A nonlinear dynamic problem: the cantilever beam

In this section, we illustrate numerically the previous adaptations in the case of a
two-dimensional nonlinear elastodynamic problem. The application relates to the
dynamic evolution of a cantilever beam in plane displacements. To do that, we con-
sider an elastic beam clamped at one of its tips and an external time independent
loading g on the opposite tip. The compressible material response considered is
governed by an Ogden constitutive law. The mesh and its deformed configurations
during the time are presented in figure 1. >From this numerical experiment, we
analyse the scalability of the interface solver (GMRES) with some versions of the
two-level Neumann-Neumann preconditioners. The considered preconditioners are :
- the nonsymmetric Neumann-Neumann preconditioner given in [1] (curve �) with-
out nonlinear dynamic adaptations,
- the nonsymmetric Neumann-Neumann preconditioner given in [2] (curve �) pre-
sented in section 3 but without dual corner modes (step (c)),
- the improved nonsymmetric Neumann-Neumann preconditioner introduced in sec-
tion 3 (curve •) with all the features (steps (a), (b) and (c)).

The figure 2 gives the average number of GMRES iterations (per Newton iter-
ations) for a beam decomposed into 2, 5, 10, 20, 40, 80 and 160 subdomains (see
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Fig. 1. Deformed sequence of a cantilever beam and substructuration of the beam
in 40 subdomains.

Fig. 2. Numerical scalability with Neumann-Neumann (N.-N.) preconditioners.

figure 1 for a decomposition into 40 subdomains). We observe that the number
of iterations obtained with the 2-level Neumann-Neumann preconditioner without
adaptations (curve �) grows with the number of subdomains. So the interface solver
with this preconditioner loses its classical scalability. We remark that the precon-
ditioner (curve �) given in [2] (without corners modes) permits a large decrease
in the iteration but that the dependance on the number of subdomains is already
present. On the other hand, the improved Neumann-Neumann preconditioner (curve
•) leads to a recovery of the numerical scalability properties i.e. the independence
of the number of iterations with respect to the number of subdomains. Furthermore,
the performance of this preconditioner is practically the same as the ones obtained
for linear elastostatic problems. Indeed, the average number of iterations is equal to
7 for a decomposition into 160 subdomains (see table in figure 2) and if we consider
the associated linear elastostatic problem the number of iterations is equal to 6. In
order to validate these performances, we must test this preconditioner on other less
academic simulations.
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Summary. We consider a quasilinear elliptic transmission problem where the non-
linearity changes discontinuously across two subdomains. By a reformulation of the
problem via a Kirchhoff transformation, we first obtain linear problems on the subdo-
mains together with nonlinear transmission conditions and then a nonlinear Steklov–
Poincaré interface equation. We introduce a Dirichlet–Neumann iteration for this
problem and prove convergence to a unique solution in one space dimension. Finally
we present numerical results in two space dimensions suggesting that the algorithm
can be applied successfully in more general cases.

1 Introduction

Let Ω ⊂ R
n be a bounded Lipschitz domain divided into two non-overlapping sub-

domains Ω1, Ω2 with the interface Γ = Ω1 ∩Ω2.

n

Ω1

Ω2

Γ

Fig. 1. Non-overlapping partition of the domain Ω.

Given f ∈ L2(Ω), k1, k2 ∈ L∞(R) with ki ≥ α > 0 for i = 1, 2 we consider the
following quasilinear elliptic transmission problem:

find a function p in Ω, p|Ωi
= pi ∈ H1(Ωi), i = 1, 2, p|∂Ω = 0, such that
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− div(ki(pi)∇pi) = f on Ωi, i = 1, 2 (1)

p1 = p2 on Γ (2)

k1(p1)∇p1 · n = k2(p2)∇p2 · n on Γ . (3)

Observe that the nonlinearities ki need not be differentiable. Hence, Newton-type
linearization suffers from a lack of smoothness. However, by a standard Kirchhoff
transformation [1], we can reformulate the two nonlinear pdes (1) as linear Poisson
equations in both subdomains. Based on this observation, we introduce a nonlinear
Dirichlet–Neumann algorithm for (1)–(3) which requires the solution of two linear
problems in each iteration step but does not involve any further linearization. We
present a convergence analysis including sufficient conditions for convergence in one
space dimension. As a by-product, we obtain an existence and uniqueness result
for (1)–(3). Numerical computations suggest that the algorithm can also be applied
successfully to higher-dimensional problems. Related Robin methods will be treated
in a forthcoming paper (see also [2]).

This paper is organized as follows. In Section 2, we apply the Kirchhoff transfor-
mation to (1)–(3) in order to derive an interface problem with linear problems on the
subdomains and nonlinear transmission conditions. The transformed problem can
be rewritten as a nonlinear Steklov–Poincaré interface equation. In analogy to the
linear case, the nonlinear Dirichlet–Neumann algorithm can be regarded as a precon-
ditioned Richardson iteration applied to the nonlinear Steklov–Poincaré equation.
In Section 3, we present a convergence theorem in 1D generalizing related results in
the linear case [4]. Finally, in Section 4, we illustrate the numerical properties of the
nonlinear Dirichlet–Neumann method in a nontrivial two-dimensional setting.

2 An elliptic problem with jumping nonlinearities

We introduce (for i = 1, 2) the spaces

Vi := {vi ∈ H1(Ωi)| vi|∂Ω∩∂Ωi
= 0}, V 0

i := H1
0 (Ωi), Λ := H

1/2
00 (Γ )

and for wi, vi ∈ Vi the forms

ai(wi, vi) := (∇wi,∇vi)Ωi , bi(wi, vi) := (k(wi)∇wi,∇vi)Ωi ,

where (·, ·)Ωi stands for the L2 inner product on Ωi. The norm in H1(Ωi) will be
denoted by ‖ · ‖1,Ωi , the norm in Λ with ‖ · ‖Λ. We point out that much of what we
present in the first two sections are generalizations of the linear theory given in [4].
The notation here is used accordingly.

Let Ri, i = 1, 2, be any continuous extension operator from Λ to Vi. Then the
variational formulation of problem (1)–(3) reads as follows:

find pi ∈ Vi, i = 1, 2, such that

bi(pi, vi) = (f, vi)Ωi ∀vi ∈ V 0
i , i = 1, 2 (4)

p1|Γ = p2|Γ in Λ (5)

b1(p1, R1µ)− (f,R1µ)Ω1 = −b2(p2, R2µ) + (f,R2µ)Ω2 ∀µ ∈ Λ . (6)

We now introduce new variables ui, i = 1, 2, by Kirchhoff transformations κi
(cf. [1]):

490



Domain Decomposition for Jumping Nonlinearities

ui(x) := κi(pi(x)) =

Z pi(x)

0

ki(q) dq a.e. in Ωi ,

which yields ki(pi)∇pi = ∇ui. Further properties of κi are listed in the following

Proposition 1. κi : R → R is a.e. differentiable with κ′i = ki, strictly monotonically
increasing and Lipschitz continuous with Lipschitz constant ‖ki‖∞. κ−1

i is Lipschitz
continuous with Lipschitz constant ‖k−1

i ‖−1
∞ .

Furthermore there exist positive constants c, C with

c ‖pi‖1,Ωi ≤ ‖κi(pi)‖1,Ωi ≤ C ‖pi‖1,Ωi and

c ‖pi|Γ ‖Λ ≤ ‖κi(pi)|Γ‖Λ ≤ C ‖pi|Γ ‖Λ .

Thus with this transformation, problem (4)–(6) becomes:
find ui ∈ Vi, i = 1, 2, such that

ai(ui, vi) = (f, vi)Ωi ∀vi ∈ V 0
i , i = 1, 2 (7)

κ−1
1 (u1|Γ ) = κ−1

2 (u2|Γ ) in Λ (8)

a1(u1, R1µ)− (f,R1µ)Ω1 = −a2(u2, R2µ) + (f,R2µ)Ω2 ∀µ ∈ Λ . (9)

For a given λ ∈ Λ, we now consider for i = 1, 2 the harmonic extensions u0
i =

Hi(κi(λ)) ∈ Vi of the Dirichlet boundary value κi(λ) on Γ . (From now on, the
brackets are mostly left out to simplify the notation.) Furthermore let u∗i = Gif be
the solutions of the subproblems (7) with homogeneous Dirichlet data u0

i|∂Ω = 0.
Due to the linearity of the local problems (7), the functions ui = Hiκiλ+Gif satisfy
(7)–(9) if and only if

a1(H1κ1λ,R1µ) + a2(H2κ2λ,R2µ) =

(f, R1µ)Ω1 − a1(G1f, R1µ) + (f,R2µ)Ω2 − a2(G2f,R2µ) ∀µ ∈ Λ . (10)

Since the extension operators Ri, i = 1, 2, can be chosen arbitrarily, we set
Ri = Hi. Denoting by 〈·, ·〉 the duality pairing between Λ′ and Λ, we recall the
definition of the Steklov–Poincaré operators Si : Λ→ Λ′:

〈Siη, µ〉 = ai(Hiη,Hiµ) ∀η, µ ∈ Λ, i = 1, 2

and furthermore the functional χ = χ1 + χ2 ∈ Λ′:

〈χi, µ〉 = (f,Hiµ)Ωi − ai(Gif,Hiµ) ∀µ ∈ Λ, i = 1, 2 .

Now (10) can be written as the nonlinear Steklov–Poincaré interface equation

find λ ∈ Λ : (S1κ1 + S2κ2)λ = χ (11)

or equivalently:
find λ2 ∈ Λ : (S1κ1κ

−1
2 + S2)λ2 = χ (12)

if we set λ2 = κ2λ. Note that if κ−1
2 : Λ→ Λ is Lipschitz continuous the convergence

of a sequence of iterates λk2 to λ2 implies the convergence of λk = κ−1
2 λk2 to λ. We

state the main result of this section:

Proposition 2. Solving problem (4)–(6) is equivalent to solving the nonlinear Steklov–
Poincaré equations (11) or (12).

491



H. Berninger, R. Kornhuber and O. Sander

We point out at this stage that the reformulation of the problem (4)–(6) by
Kirchhoff transformation is not only a powerful tool for the analysis of the problem
that will be subject of the following two sections but also for its numerical treatment
due to the linearity of transformed subproblems. In more complicated cases like the
time-discretized Richards equation, a Kirchhoff transformation allows a reformula-
tion of the quasilinear subproblems as convex minimization problems which can be
solved efficiently and robustly using monotone multigrid methods [3].

3 Nonlinear Dirichlet–Neumann iteration

Now we consider the Dirichlet–Neumann algorithm applied to our problem (4)–(6).
However, since it turns out that for a rigorous analysis the damping has to be carried
out in the transformed variables, we state it for the transformed version (7)–(9):

Given λ0
2 ∈ Λ, successively find uk+1

1 ∈ V1 and uk+1
2 ∈ V2 for each k ≥ 0 such

that

a1(u
k+1
1 , v1) = (f, v1)Ω1 ∀v1 ∈ V 0

1 (13)

uk+1
1|Γ = κ1κ

−1
2 (λk2) in Λ (14)

a2(u
k+1
2 , v2) = (f, v2)Ω2 ∀v2 ∈ V 0

2 (15)

a2(u
k+1
2 ,H2µ)− (f,H2µ)Ω2 = −a1(u

k+1
1 ,H1µ) + (f,H1µ)Ω1 ∀µ ∈ Λ . (16)

Then, with some damping parameter θ ∈ (0, 1), the new iterate is

λk+1
2 := θ uk+1

2|Γ + (1− θ)λk2 . (17)

Considering the harmonic extensions Hiu
k+1
i|Γ and the solutions Gif of the prob-

lems (7) with homogeneous boundary data for i = 1, 2, the intermediate iterates are
obtained by

uk+1
1 = H1κ1κ

−1
2 λk2 + G1f and uk+1

2 = H2u
k+1
2|Γ + G2f .

Thus equation (16) provides

a1(H1κ1κ
−1
2 λk2 ,H1µ) + a2(H2u

k+1
2|Γ ,H2µ)

=
2X
i=1

(f,Hiµ)Ωi − ai(Gif,Hiµ) ∀µ ∈ Λ ,

which is the same as

〈S2u
k+1
2|Γ , µ〉 = 〈−S1κ1κ

−1
2 λk2 + χ, µ〉 ∀µ ∈ Λ

and regarding (17) altogether yields

S2(λ
k+1
2 − λk2) = θ(χ− (S1κ1κ

−1
2 + S2)λ

k
2) in Λ . (18)

Consequently the damped Dirichlet–Neumann algorithm applied to (7)–(9) is a pre-
conditioned Richardson procedure for the nonlinear Steklov–Poincaré formulation
(12) with S2 as a preconditioner.
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Note that an analogous formulation for the interface equation (11) cannot be
obtained due to the nonlinearity of S2κ2. However, (18) can be treated just as in the
linear case if we apply the following generalization of an abstract convergence result
in [4, pp. 118/9]. Let X be a Hilbert space, let Q1 : X → X ′ be a not necessarily
linear operator and let Q2 : X → X ′ be linear and invertible. With the definition
Q := Q1 +Q2 and for given G ∈ X ′, we consider the problem

find λ ∈ X : Qλ = G (19)

together with the corresponding Richardson iteration

λk+1 = λk + θ(G−Qλk) . (20)

Theorem 1. Let Q2 be continuous and coercive, i.e. there are positive constants β2

and α2 such that

〈Q2η, µ〉 ≤ β2‖η‖X‖µ‖X ∀η, µ ∈ X, 〈Q2η, η〉 ≥ α2‖η‖2X ∀η ∈ X .

Let Q1 be Lipschitz continuous, i.e. there is a constant β1 > 0 such that

〈Q1η −Q1µ, λ〉 ≤ β1‖η − µ‖X‖λ‖X ∀η, µ, λ ∈ X . (21)

Suppose there exists a constant κ∗ > 0 such that

〈Q2(η − µ), Q−1
2 (Qη −Qµ)〉+ 〈Qη −Qµ, η − µ〉 ≥ κ∗‖η − µ‖2X ∀η, µ ∈ X . (22)

Then (19) has a unique solution λ ∈ X. Furthermore for any given λ0 ∈ X and any
θ ∈ (0, θmax) with

θmax :=
κ∗α2

2

β2(β1 + β2)2
,

the sequence given by (20) converges in X to λ.

The proof is an application of Banach’s fixed point theorem and can be carried
out along the lines of the one given in [4, pp. 118/9], see also [2].

Remark 1. Note that condition (22) reduces to a much simpler expression if Q2 is
symmetric. In the linear case (22) is just the coerciveness of Q1. In our nonlinear
case, (22) states a uniform monotonicity of Q1 of the form

〈Q1η −Q1µ, η − µ〉 ≥
κ∗

2
‖η − µ‖2X ∀η, µ ∈ X . (23)

Now, it is well known that in the particular situation of (12) and (18) both
Steklov–Poincaré operators S1 and S2 are symmetric, continuous and coercive. Thus
in order to apply Theorem 1 to the case X = Λ, G = χ, Q2 = S2 and Q1 =
S1κ1κ

−1
2 , we have to make sure that the conditions (21) and (23) are satisfied for

Q1 = S1κ1κ
−1
2 . So we arrive at the following

Theorem 2. The nonlinear Steklov–Poincaré equation (12) has a unique solution
λ2 in Λ to which the nonlinear Dirichlet–Neumann scheme (13)–(17) converges for
sufficiently small θ and any λ0

2 ∈ Λ if the following two conditions are satisfied:
κ1κ

−1
2 : Λ→ Λ is Lipschitz continuous, i.e., there is a constant L(κ1κ

−1
2 ) > 0 such

that
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‖κ1κ
−1
2 η − κ1κ

−1
2 µ‖Λ ≤ L(κ1κ

−1
2 )‖η − µ‖Λ ∀η, µ ∈ Λ , (24)

and S1κ1κ
−1
2 : Λ → Λ′ is a uniformly monotone operator, i.e. there is a constant

α1 > 0 such that

〈S1(κ1κ
−1
2 η − κ1κ

−1
2 µ), η − µ〉 ≥ α1‖η − µ‖2Λ ∀η, µ ∈ Λ . (25)

Proposition 3. The conditions (24) and (25) are satisfied in one space dimension.

Proof. Let Ω1 = [a, b], Ω2 = [b, c], with Γ = {b} and a < b < c. Then we have

Λ = H
1/2
00 (Γ ) = H1/2(Γ ) ∼= (R, | · |) and condition (24) follows from Proposition 1.

Let L(κ−1
1 ) and L(κ2) be the Lipschitz constants of the real functions κ−1

1 and
κ2 according to Proposition 1. In order to prove (25), let η, µ, λ ∈ R. The harmonic

extension H1(λ) is the affine function x �→ λ

b− a x −
λ

b− a a. As κ−1
1 and κ2 are

monotonically increasing, we then have

〈S1(κ1κ
−1
2 η − κ1κ

−1
2 µ), η − µ〉

=

Z b

a

∇H1(κ1κ
−1
2 η − κ1κ

−1
2 µ)∇H1(η − µ) dx

=

Z b

a

κ1κ
−1
2 η − κ1κ

−1
2 µ

b− a · η − µ
b− a dx

=
(κ1κ

−1
2 η − κ1κ

−1
2 µ)(η − µ)

b− a
≥ 1

(b− a)L(κ−1
1 )L(κ2)

|η − µ|2 .

�

Remark 2. Unfortunately, in higher dimensions condition (25) is violated since
〈S1(κ1κ

−1
2 η − κ1κ

−1
2 µ), η − µ〉 can be negative. A counterexample in 2D is easily

obtained by considering a harmonic function u with
∂u

∂n
· u ≤ c < 0 on a subset of

Γ with positive Hausdorff measure (see [2]).

4 Numerical example

In this section, we apply our nonlinear Dirichlet–Neumann method to a problem
in two space dimensions. We consider the transmission problem (1)–(3) on the Yin
Yang domain Ω shown in Figure 2. We denote the white subdomain together with
the grey circle B1 by Ω1 and the grey subdomain with the white circle B2 by Ω2.

We select the data

f(x) = (−1)i on Bi, i = 1, 2, f(x) = 0 elsewhere

and the nonlinearities

ki(pi) =


Kh max{p3λi+2

i , c} for pi ≤ −1
1 for pi ≥ −1 .
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Fig. 2. Yin Yang domain Ω.
Fig. 3. Solution p on Ω with
free boundary (black line).

This choice is motivated by the well-known state equations of Brooks–Corey and
Burdine (cf. [5]) for the hydraulic conductivity of a saturated/unsaturated porous
media with different soils. In this way, our model problem can be regarded as a
stationary Richards equation. Note that pi < −1 characterizes the unsaturated
region which is separated by a free boundary from the linear, saturated regime
occuring for pi ≥ −1. The parameters λ1 and λ2 in Ω1 resp. Ω2 are called the pore
size distribution factors. We choose them in an extreme manner as λ1 = 1.0 (very
coarse sand) and λ2 = 0.1 (fine clay). The factor Kh = 0.002 is a realistic hydraulic
conductivity in the case of full saturation. The parameter c = 0.1 > 0 is introduced
to enforce ellipticity.

The choice of the data f which results in a strong sink in B1 and a strong source
in B2 and our special choice of Ω1 and Ω2 ensure that the free boundary has a
nontrivial intersection with the interface Γ = Ω1 ∩ Ω2 (see the numerical solution
as shown in Figure 3). Since we apply the Dirichlet–Neumann scheme (13)–(17), we
hereby make sure that step (14) is nonlinear.

We discretize the problem on the two subdomains using piecewise linear finite
element spaces. The linear problems on the subdomains are solved by a linear multi-
grid method. Figure 4 shows the convergence rate ρ measured in the energy norm
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Fig. 4. ρ vs. damping parameter θ.
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Fig. 5. ρ vs. refinement level.

(for the transformed variables uki ) with respect to the damping parameter θ. We
use a grid hierarchy of six levels resulting from a uniform mesh refinement of the
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coarse grid depicted in Figure 2. In this way, we obtain about 235,000 nodes on the
finest mesh. Figure 5 shows the convergence rate over the refinement levels. The
damping parameter θopt = 0.175 is obtained from Figure 4. For this optimal choice,
we observe mesh-independence of the convergence speed.
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Summary. A class of preconditioners for the Mortar Method based on substruc-
turing is studied. We generalize the results of Achdou, Maday and Widlund [1],
obtained for the case of order one finite elements, to a wide class of discretization
spaces including finite elements of any orders. More precisely, we show that the con-
dition number of the preconditioned matrix grows at most polylogarithmically with
the number of degrees of freedom per subdomain.

1 Introduction

We consider the mortar method, a nonconforming version of domain decomposition
methods, that allows for different discretizations and/or methods in different sub-
domains. Consequently, in an adaptive strategy, refinement can be carried out in
each subdomain independently and it is possible to use in each subdomain the best
suited method.

Here we face the problem of the efficient solution of the linear system arising from
such discretization in order to make these techniques more competitive for real life
applications. After elimination of the degrees of freedom internal to the subdomains,
we need to find the traces of the solution on the subdomain boundaries, i.e. to solve
the Schur complement system. The approach that we follow is the substructuring
one, proposed by Bramble, Pasciak and Schatz [5] in the framework of conforming
domain decomposition. Such an approach was already applied to the Mortar method
by Achdou, Maday and Widlund in [1] for the case of order one finite elements. This
consists in considering a suitable splitting of the nonconforming discretization space
in terms of “edge” and “vertex” degrees of freedom and then using the related block-
Jacobi type preconditioners. In this work we generalize the results of [1] to a wide
class of discretization spaces (including finite elements of any order) showing that the
condition number of the preconditioned matrix grows at most polylogarithmically
with the number of degrees of freedom per subdomain, analogously to what happens
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for the order one case. Finally, we present numerical tests showing the scalability of
the method for Q1 and Q2 finite elements.

2 The Mortar Method

We first briefly introduce the Mortar method with its main properties (see [2, 6]) and
we focus, for simplicity, on the following simple model problem, even if the results
of this paper can easily be extended to a more general situation. Let Ω ⊂ R2 be a
polygonal domain and f ∈ L2(Ω), then we look for u satisfying

−
2X

i,j=1

∂

∂xj

„
aij(x)

∂u

∂xi

«
= f in Ω, u = 0 on ∂Ω. (1)

The matrix a(x) = (aij(x))i,j=1,2 is assumed to be, for almost all x ∈ Ω, symmetric
positive definite with eigenvalues uniformly bounded from above and from below.

In order to solve (1) we decompose the computational domain Ω as the union

of L subdomains Ω	, Ω =
[

	=1,...,L

Ω	, which, for the sake of simplicity we assume

to be quadrilateral (in general the constants in the inequalities will depend on the
number of edges of the subdomains as well as on their aspect ratio). We follow the
notation of [4]: we set

Γ	n = ∂Ωn ∩ ∂Ω	, S = ∪Γ	n (2)

and we denote by γ
(i)
	 (i = 1, . . . , 4) the i-th side of the �-th domain so that ∂Ω	 =

4[
i=1

γ
(i)
	 .

Definition 1. We say that a decomposition is geometrically conforming if each edge
γ

(i)
	 coincides with Γ	n for some n. If the decomposition is not geometrically con-

forming, then each interior edge γ
(i)
	 will be in general split as the union of several

segments Γ	n:

γ
(i)
	 =

[
n∈I(i)

�

Γ	n, (3)

where I
(i)
	 = {n : |∂Ωn ∩ γ(i)

	 | �= 0}.

We now consider a non conforming domain decomposition method, based on this
splitting of the domain Ω, for the solution of problem (1). First we introduce the
corresponding functional setting, hence let

X =
Y
	

{u	 ∈ H1(Ω	)| u	 = 0 on ∂Ω ∩ ∂Ω	}, T =
Y
	

H1/2
∗ (∂Ω	),

withH1/2
∗ (Ω	) = H1/2(∂Ω	) if ∂Ω	∩∂Ω = ∅ andH1/2

∗ (∂Ω	) = {η ∈ H1/2(∂Ω	), η|∂Ω�∩∂Ω ≡
0} ∼ H1/2

00 (∂Ω	 \ ∂Ω) otherwise. We denote by ‖ · ‖1/2,∂Ω�
the related norm, and by

‖ · ‖−1/2,	 the norm of the corresponding dual space.
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On X and T we introduce the following broken norm and semi-norm: ‖u‖X = X
	

‖u‖21,Ω�

!1/2

, |u|X =

 X
	

|u|21,Ω�

!1/2

, ‖η‖T =

 X
	

‖η	‖21/2,∂Ω�

!1/2

.

For each �, let V	h be a family of finite dimensional subspaces of H1(Ω	)∩C0(Ω̄	),
depending on a parameter h = h	 > 0 and satisfying an homogeneous boundary
condition on ∂Ω ∩ ∂Ω	.

Let T 	h = V	h|∂Ω�
, and, for each edge γ

(i)
	 of the subdomain Ω	,

T	,i = {η : η is the trace on γ
(i)
	 of some u	 ∈ V	h}

T 0
	,i = {η ∈ T	,i : η = 0 at the vertices of γ

(i)
	 }.

We set

Xh =
LY
	=1

V	h ⊂ X, Th =
LY
	=1

T 	h ⊂ T (4)

and we define a composite bilinear form aX : X×X−→R as follows:

aX(u, v) =
X
	

Z
Ω�

X
i,j

aij(x)
∂u	
∂xi

∂v	
∂xj

dx. (5)

The bilinear form aX is clearly not coercive on X. In order to obtain a well
posed problem, we will then consider proper subspaces of X consisting of func-
tions that satisfy a suitable weak continuity constraint defined, according to the
Mortar method, by choosing a splitting of the skeleton S as the disjoint union of
a certain number of subdomain sides γ

(i)
	 called “multiplier sides”. We denote by

I ⊂ {1, . . . , L}×{1, . . . , 4} the set of indices (l, i) such that γ
(i)
l is a multiplier side,

while I∗ ⊂ {1, · · · , L}×{1, · · · , 4} will denote the index-set corresponding to “trace
sides” (“mortars” or “master sides” in the usual terminology).

For each m = (�, i) ∈ I let a finite dimensional multiplier space Mm
h (also

depending on the parameter h) on γm,

Mm
h ⊂ L2(γm), dim(Mm

h ) = dim(Tm,0h ),

be given. We set:

Mh = {η ∈ H−1/2(S), ∀m ∈ I η|γm ∈Mm
h } ∼

Y
m∈i

Mm.

The constrained approximation and trace spaces Xh and Th are then defined as
follows:

Xh = {vh ∈ Xh,
Z
S

[vh]λ ds = 0, ∀λ ∈Mh}

Th = {η ∈ Th,
Z
S

[η]λ ds = 0, ∀λ ∈Mh}.
(6)

The elements of Xh can be obtained by applying to any element of Xh a cor-
rection operator Ph : Xh → Xh, whose action consists in suitably modifying its
argument to impose the constraint; we remark that Ph is a projector.

Thus we can introduce the following discrete problem:
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Problem 1. Find uh ∈ Xh such that for all vh ∈ Xh

aX(uh, vh) =

Z
Ω

fvh.

It is not difficult to choose the class Mh of multipliers in such a way to guarantee
ellipticity uniformly with respect to the mesh-size parameter h and to the number
L of subdomains.

Then it can be proved that for all h > 0, Problem (1) admits a unique solution
uh which satisfies the following error estimate [4]:

‖u− uh‖X �

 
inf

vh∈Xh

‖u− vh‖X + inf
λ∈Mh

‚‚‚‚∂u∂ν − λ
‚‚‚‚
−1/2,S

!
(7)

with ‖ · ‖−1/2,S denoting the norm of T ′, dual of T .

3 Substructuring Preconditioners for the Mortar
Element Method

In this section we focus on a class of preconditioners for the linear system arising
from the discretization by the Mortar method. We will follow the “substructuring”
approach first introduced in [5] and already studied in the case of the Mortar Finite
Element method in [1]. The main idea of these preconditioners consists in distinguish-
ing three types of degrees of freedom: interior degrees of freedom (corresponding to
basis functions vanishing on the skeleton and supported on one sub-domain), edge
degrees of freedom, and vertex degrees of freedom. Consequently we can split the
functions u ∈ Xh as the sum of three suitably defined components: u = u0+uE+uV .
Moreover, when expressed in a basis related to such a splitting, substructuring pre-
conditioners can be written in a block diagonal form.

Let us now examine in details how the splitting is constructed. Given any discrete
function w = (w	)	=1,··· ,L ∈ Xh we can split it in a unique way as the sum of an
interior function w0 ∈ X 0

h and a discrete lifting, performed subdomainwise of its
trace η(w) = (w	|Ω�)	=1,··· ,L which by abuse of notation we will denote by Rh(w)
(rather than using the heavier notation Rh(η(w))):

w = w0 +Rh(w), w0 ∈ X 0
h , (8)

with Rh(w) = (R	h(w	))	=1,...,K , R	h(w	) being the unique element in V	h satisfying

R	h(w	) = w	 on Γ	,Z
Ω�

X
i,j

a(x)
∂

∂xi

∂

∂xj
R	h(w	)v

	
h dx = 0, ∀vh ∈ V	h ∩H1

0 (Ω	).

Thus the spaces Xh of unconstrained functions and Xh of constrained functions
can be split as direct sums of an interior and of a (respectively unconstrained or
constrained) trace component:

Xh = X0
h ⊕Rh(Th), Xh = X 0

h ⊕Rh(Th). (9)
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We can easily verify that aX : Xh ×Xh → R satisfies

aX(w, v) = aX(w0, v0) + aX(Rh(w), Rh(v)) := aX(w0, v0) + s(η(w), η(v)),

where the discrete Steklov-Poincaré operator s : Th × Th → R is defined by

s(ξ, η) :=
X
	

Z
Ω�

(a(x)∇R	h(ξ)) · ∇R	h(η).

We note that the problem of preconditioning the matrix A associated with the
discretization of aX , reduces to finding good preconditioners for the matrices A0 and
S corresponding respectively to the bilinear forms aX : X 0

h × X 0
h−→R and s : Th ×

Th−→R. The matrix A0 is block diagonal since the coupling between subdomains is
taken into account only by the Steklov-Poincaré operator. The blocks of A0 (which
are in fact stiffness matrices corresponding to standard Dirichlet solvers) are widely
studied in the literature; here we concentrate only on the preconditioning of the
discrete Steklov-Poincaré operator S.

3.1 The splitting of the trace space

The space of constrained skeleton functions Th defined in (6) can be further split
as the sum of vertex and edge functions. More specifically, if we denote by L ⊂
LY
	=1

H1/2
∗ (∂Ω	) the space

L = {(η	)	=1,··· ,L, η	 is linear on each edge of Ω	}, (10)

then we can define the space of constrained vertex functions as

T Vh = PhL (11)

with Ph the correction operator imposing the constraint. In the following we will
make the (not restrictive) assumption L ⊂ Th, which yields T Vh ⊂ Th.

We then introduce the space of constrained edge functions T Eh ⊂ Th defined by

T Eh = {η = (η	)	=1,··· ,L ∈ Th, η	(A) = 0, ∀ vertex A of Ω	} (12)

and it is quite simple to check that a function in T Eh is uniquely defined by its value
on trace edges, the value on multiplier edges being forced by the constraint.

Thus, it can be easily verified that

Th = T Vh ⊕ T Eh (13)

and that each η ∈ Th can be decomposed in a unique way as

η = ηV + ηE , with ηV ∈ T Vh and ηE ∈ T Eh .
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The preconditioner

The preconditioner that we consider for S is of block-Jacobi type with blocks related
to edges and vertexes. More specifically we can assemble the preconditioner ŝ as

ŝ : Th×Th−→R

ŝ(η, ξ) = bV (ηV , ξV ) + bE(ηE, ξE)

(14)

with

bV : T Vh ×T Vh −→R such that bV (ηV , ηV ) � s(ηV , ηV )

and

bE : T Eh ×T Eh −→R bE(η, ξ) =
X

(	,i)∈I∗
b	,i(η	, ξ	)

where for any trace side γ
(i)
	 , (�, i) ∈ I∗, b	,i : T 0

	,i×T 0
	,i−→R is a symmetric bilinear

form satisfying for all η ∈ T 0
	,i

b	,i(η, η) � ‖η‖H1/2
00 (γ

(i)
�

)
.

Denoting byHl the diameter ofΩl and writing conventionallyH/h = max
l
{Hl/hl}

then, under suitable regularity assumptions on the subdomains and on the spaces
considered (see [3]), we can prove the following theorem providing bounds for the
condition number of the preconditioned matrix.

Theorem 1. Let S and Ŝ be the matrices obtained by discretizing respectively s and
ŝ. Then it holds

Cond(Ŝ−1S) �

„
1 + log

„
H

h

««4

. (15)

Moreover, if the decomposition is geometrically conforming then

Cond(Ŝ−1S) �

„
1 + log

„
H

h

««2

. (16)

The proof of Theorem 1 follows essentially the pattern of the proofs of the
analogous results in [5, 1]; due to space constraint, we do not present it but we refer
to [3].

4 Numerical tests

Finally, we have performed numerical experiments to test the scalability of the
method for Q1 and Q2 finite elements. The model problem is the Poisson equation
on the unit square Ω with homogeneous Dirichlet boundary conditions. A uniform,
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geometrically conforming, decomposition of Ω in K = N ×N equal square subdo-
mains of size H×H with H = 1/N is considered. In each subdomains Ωk, a uniform
mesh T k is built and Q1, Q2 finite elements are used in each square.

In order to study the dependence on H (size of the subdomains) and on h (finest
meshsize of the finite element spaces), we set nk = n for all k; hence hk = h =
H/n and H/h = n. This corresponds to a non–conforming implementation of the
standard domain decomposition method. Then, we tested the preconditioners for
several combinations of N and n with n in the range [5, 40] and N in the range
[4, 32].

The preconditioned conjugate gradient iteration was stopped when the residual
norm had decreased by a factor of 10−5 and the experiment were carried out in
matlab.

Table 1 shows the number of conjugate gradient iterations for reducing the resid-
ual of a factor 10−5 for Q1 (left) and Q2 (right) finite elements respectively. For the
edge block of the preconditioner we considered the square root of the stiffness matrix
associated to the discretization of the operator −d2/dx2 by P1 and P2 finite elements
on each edge with homogeneous Dirichlet boundary conditions at the extrema.

The results are in close agreement with the theory: the condition number of the
preconditioned matrix grows at most polylogarithmically with the number of degrees
of freedom per subdomain, as indicated by theorem (1).

K= N2 n=5 n=10 n=20 n=40
# iter. # iter. # iter. # iter.

16 23 25 26 27
64 24 26 27 28
144 24 26 27 29
256 24 26 27 29
400 24 26 27 28
576 24 26 27 28
784 24 26 27 28
1024 23 26 27 28

K= N2 n=5 n=10 n=20 n=40
# iter. # iter. # iter. # iter.

16 25 25 27 29
64 27 28 30 31
144 27 28 30 31
256 27 28 30 32
400 27 28 30 31
576 27 28 30 31
784 27 28 30 31
1024 27 28 30 31

Table 1. Number of conjugate gradient iterations needed for reducing the residual
of a factor 10−5, for different combinations of the number K = N2 of subdomains
and n elements per edge (n2 elements per subdomains) and for Q1 finite elements
(left) and Q2 finite elements (right).

A complete set of numerical tests showing the scalability of the method for Q1

and Q2 finite elements can be found in [3].
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Summary. The linear systems arising in lattice quantum chromodynamics (QCD)
pose significant challenges for traditional iterative solvers. The Dirac operator as-
sociated with these systems is nearly singular, indicating the need for efficient pre-
conditioners. Multilevel preconditioners cannot, however, be easily constructed for
these systems becasue the Dirac operator has multiple locally distinct near-kernel
components (the so-called slow-to-converge error components of relaxation) that are
generally both oscillatory and not known a priori. This paper presents heuristic ar-
guments and numerical results demonstrating that the recently developed adaptive
smoothed aggregation (αSA) [2] methodology can be used to overcome the challenges
posed by these systems.

1 Introduction

In the field of particle physics, the “Standard” model accounts for the interactions
between the elementary particles that make up matter. The Standard model is com-
pletely described by two theories: the Electroweak theory for weak interactions,
and the widely accepted QCD theory for strong interactions. The interactions be-
tween these constituents of matter are well understood for Electroweak theory, where
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they can be analyzed analytically using perturbation theory. For strong interactions
between fermions (quarks), the coupling forces are so strong that a perturbation
theory analysis becomes increasingly complex and ultimately breaks down. In the
early 1970’s, Wilson proposed simulating these strong interactions numerically us-
ing Lattice Gauge Theory (LGT), effectively discretizing QCD [4]. LGT is now the
primary means for modeling such strong interactions. However, a major obstacle
remains: current LGT simulations require enormous computations that become pro-
hibitively expensive for physically interesting choices of parameters (e.g., quark mass
and temperature of the physical system), even on today’s supercomputers. Hence,
the understanding of strong interactions is still very limited.

The majority of the computations in these numerical simulations is dedicated
to solving the linear Dirac systems arising from discretization of a coupled system
of PDEs on a four-dimensional space-time lattice. This is due to the fact that, in
current state-of-the-art simulations, the solvers used for these systems are limited to
Krylov methods with preconditioners that are suboptimal for interesting choices of
the physical parameters [1, 3]. Developing an appropriate preconditioner for these
systems has been a topic of intense research for many years. In the 1990’s, vari-
ous multigrid approaches were explored [1, 3]. More recently, in [6], the use of an
alternating Schwarz preconditioner was studied.

This paper considers a simplified 2D Schwinger model exhibiting similar chal-
lenges to those of the four-dimensional problem of interest. We explore the use of an
adaptive smoothed aggregation [2] iterative solver for these systems. The remaining
sections are organized as follows. In §2, we present the 2D Hermitian Dirac-Wilson
operator. In §3, we discuss the properties of the 2D operator. Numerical results
demonstrating the effectiveness of our approach are given in §4. In §5, we give some
concluding remarks.

2 2D Hermitian Dirac-Wilson formulation

Following [7], we describe here the 2D Dirac-Wilson operator, H , and the attendant
system of linear equations, H(u)f = b. The values of the gauge variables, u, are
given as eiθ and, thus, are unitary, complex, and scalar valued. The distribution of
the phase angles, θ, depends on the“temperature” of the physical system, prescribed
by parameter β. For β → ∞, corresponding to a cold temperature of the physical
system, the distribution is smooth ( lim

β→∞
u ≡ 1). For realistic values of β, between

2 and 6, the system temperature is said to be hot, and the phases are randomly
distributed.

The domain of interest is a 2D periodic N ×N uniform lattice (grid), where the
lattice sites (gridpoints) are distance h = 1 apart. Larger systems are thus obtained
by enlarging N , and not by moving lattice points closer together. The fermionic
degrees of freedom are defined at the gridpoints on the lattice, while the gauge
variables are defined on the lattice edges, as shown in Figure 1. At every gridpoint,
x, the unknown function is a vector of length 2:

f(x) =

„
f(x, s = 1)
f(x, s = 2)

«
=

„
v(x)
w(x)

«
,

where s = 1, 2 are spin indices, with spin corresponding to angular momentum.
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Let m̂ be the unit vector in coordinate directions m = 1, 2 and u(x,m) be the
gauge variable located at the link associated with gridpoints x and x+ m̂. Then the
action of H is defined in terms of the covariant difference operators,

(∇+
mf)(x, s) = u(x,m)f(x+ m̂, s)− f(x, s) (1)

(∇−
mf)(x, s) = f(x, s)− u(x− m̂,m)∗f(x− m̂, s), (2)

and the Pauli matrices,

σ1 =

„
0 1
1 0

«
, σ2 =

„
0 −i
i 0

«
, σ3 = −iσ1σ2 =

„
1 0
0 −1

«
.

The action of the Pauli matrices are denoted by σmf . Explicitly,

(σmf)(x, s) =
X
s′

(σm)s,s′ f(x, s
′).

With these definitions, H is defined implicitly by its action on f(x, s) at lattice site
x:

(Hf)(x, s) = σ3

» 2X
m=1

1

2h
σm(∇+

m +∇−
m)f(x, s) (3)

+
1

2h

2X
m=1

(−∇+
m +∇−

m)f(x, s) + ρf(x, s)

–
,

where ρ is the relative quark mass and h = 1; h is included here to emphasize the
comparison to familiar matrices from PDEs, and is used later in §3 to scale the
matrix. Note that, due to the σ3 term in (3), H is Hermitian and indefinite.

The corresponding system of linear equations can be written in the following
two-by-two block form:

„
−ρI − A B
B∗ ρI + A

«„
v
w

«
=

„
b1

b2

«
.

Operators A,B ∈ C
n×n, n = N×N , are defined by their actions on the components

of f , corresponding to spin indices s = 1, 2. For example, using the local numbering
in Figure 1, the actions of A and B on v are given as follows:

(Av)0 =
1

2h
(u−v− + u+v+ + u−v− + u+v+)− 2

h
v0, (4)

(Bv)0 =
1

2h
(u+v+ − u−v− − iu+v+ + iu−v−). (5)

The right side, b, is called the fermionic source vector and is equal to one at a given
gridpoint x and is zero elsewhere.

3 Spectral properties of the Dirac system

In this section, we analyze the properties of the 2D Hermitian Dirac-Wilson operator,
H , for different values of the relative quark mass, ρ, and temperature parameter, β.
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uuu
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Fig. 1. Local numbering of the unknowns, f , and gauge field coefficients, u, used in
the definition of the operators A and B.

In particular, we consider the dependence of the conditioning of H on ρ, recalling
that, as ρ approaches its physical value, H becomes nearly singular.

We begin with an analysis of H in the absence of an external field (i.e., u ≡ 1),
referred to as the “free” case. For u ≡ 1, the covariant difference operators defined
in (1) and (2) reduce to the standard first-order forward and backward difference
operators. It is easy to see that, for u ≡ 1, A and B in (4) and (5) have zero-row-
sum. Hence, H is singular for ρ = 0, and H becomes nearly singular for 0 < ρ� 1,
the physical value of ρ for u ≡ 1.

Recall that H is indefinite. Considering a (preconditioned) conjugate gradient
algorithm, the equivalent system of normal equations,

H∗Hf = H∗b, (6)

can be solved instead. Given an eigenpair, (λ,x), of H , we have H∗Hx = λ2x, so the
normal form also becomes increasingly ill-conditioned as ρ→ 0, since the maximum
eigenvalue remains O(1) for all ρ. Clearly, CG is inefficient as a stand-alone solver for
this system. However, classical multigrid provides a suitable preconditioner in this
“free” case, as can be easily seen by relating H2 to a decoupled two-by-two system
of partial differential equations (PDEs) as follows.

Consider the equivalent system, where the problem is rescaled such that h =
1

N − 1
→ 0 on a fixed domain. For u ≡ 1, A =

h

2
∆h and B∗B = BB∗ = −∆h, where

∆h denotes the five-point discrete Laplacian obtained using second-order centered
differences. Thus, H∗H has the following two-by-two block diagonal form:
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H∗H =

„
−ρI − A B
B∗ ρI +A

«2

=

0
B@ (ρI +

h

2
∆h)

2 −∆h 0

0 (ρI +
h

2
∆h)

2 −∆h

1
CA .

Denoting the diagonal blocks by C, for ρ = 0 we have C = −∆h(I −
h2

4
�h). Since

σ(−∆h) ⊆ [0,
8

h2
], we have that σ(I − h2

4
∆h) ⊆ [1, 3], implying C is spectrally

equivalent to −∆h. The theory of equivalent preconditioning [5] then suggests that
preconditioning C with a standard multigrid method for the Laplacian would be
efficient. We note that, in practice, if we apply an AMG-preconditioned CG, we
observe good solver performance for physical values of the quark mass (i.e., 0 < ρ�
1) as well.
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Fig. 2. Real (left) and complex (right) algebraically smooth error of H2 for mq =
.05, β = 3 and N = 16. This error was computed using 200 Gauss-Seidel iterations
on H2f = 0 with a random initial guess for f .

We now focus on the more challenging case with the presence of the gauge field,
when H2 is no longer a block diagonal system. Unfortunately, in the presence of an
external field, where u is random (e.g., β ∈ [2, 6]), H2 does not appear to be related
to any standard system of PDEs. However, similar to the free case, H is indefinite
and H2 becomes ill conditioned as ρ approaches its critical value. More precisely,
take ρ = 0 for H defined in (3) and let Ĥ = σ3H . Ĥ is then non-Hermitian and
has eigenvalues with positive real part. The critical value of the quark mass, ρcr,
is then defined by ρcr = min

i
|R(λi(Ĥ))|. For physical values of ρ, the mass gap,

mq := ρ − ρcr, tends to zero, and H2 becomes near-singular. This is the primary
reason that all existing local algorithms grow in computational complexity for the
Dirac system as the relative quark mass approaches its physical value, a phenomenon
referred to as critical slowing down.

An additional difficulty, not encountered in the free case, is that the near-kernel
components of H and, hence, H∗H , are locally oscillatory. This is demonstrated in
Figure 2, where plots of the real and imaginary parts of a near-kernel component,
computed using 200 iterations of Gauss-Seidel on the homogeneous problem, are
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given. Our experiments indicate that this oscillatory local character of the near-
kernel components is dependent on the distribution of the gauge field, which is itself
randomly specified.

To successfully solve the Dirac system for the random case, it is imperative that
our iterative solver be able to efficiently attenuate such error components. Standard
geometric and algebraic multigrid methods typically construct coarse-level correc-
tions based on the assumption that the error not effectively reduced by the multigrid
relaxation procedure is locally constant or, in general, smooth in the geometric sense,
and would thus not be immediately suitable as a solver for this random case.

Smoothed aggregation multigrid (SA) [8] was designed to allow efficient attenu-
ation of error in a subspace characterized locally by a given set of error components,
regardless of whether these are smooth or oscillatory in nature. The Dirac system
poses an additional difficulty for the iterative solver, in that an a priori knowledge
of these near-kernel components is not available. For this reason, we use the recently
developed adaptive version of the smoothed aggregation multigrid method (αSA,
[2]), which allows its setup procedure to identify the requisite error components and
modify the method to ensure they can be efficiently eliminated. The αSA setup pro-
cedure is a multilevel scheme based on the power method for the error propagation
operator of the method itself. In the interest of brevity, we refer for details of the
method to [2].

4 Numerical results

This present section reports on numerical results obtained by applying various
solvers to the 2D Dirac system defined in §2. We solve the equivalent normal system
of equations, (6), reformulated as a two-by-two block real system,

»
X −Y
Y X

– »
x
y

–
=

»
c1

c2

–
, (7)

where X,Y are real-valued matrices that satisfy H∗H = X + iY , f = x + iy, and
H∗b = c1 + ic2.

Results of our numerical experiments are given in Table 1. The experiments were
carried out on the problem with b = 0 and random initial guesses for [x,y]T . For
the αSA preconditioner, we used 3 level V (2, 2)-cycles with an SOR-type relaxation.
We note that, due to the more aggressive coarsening used in smoothed aggregation
multigrid, V (2,2) cycles are commonly used even when solving the Poisson equation.
For the reported results, eight near-kernel components were computed in the adap-
tive setup and used to define the transfer operators of the αSA preconditioner. In the
αSA preconditioned conjugate gradient (CG) results, one iteration of the resulting
SA cycle was used as a preconditioner in the CG iteration. The Krylov solver used
for comparison in Table 1 was a standard diagonally preconditioned CG iteration.

In current state-of-the-art QCD simulations, typical problem sizes are N = 32
and 64. As already mentioned, the asymptotic convergence factors of existing solvers
applied to the Dirac system quickly tend towards one for critical choices of mass and
temperature. This is demonstrated in Table 1 for diagonally preconditioned CG.
Further, the numerical results in Table 1 suggest that when using eight computed
near-kernel components in defining the SA interpolation operators, the asymptotic
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.01 .05 .1 .3

2 .25 / .98 .27 /.96 .24 /.91 .22 /.83

3 .29 /.98 .27 /.94 .26 /.92 .27 /.84

5 .28 /.96 .29 /.95 .26 /.92 .25 /.81

.01 .05 .1 .3

2 .33 /.99 .31 /.96 .31 /.94 .31 /.85

3 .42 /.98 .42 /.97 .40 /.93 .31 /.86

5 .31 /.99 .31 /.96 .29 /.92 .28 /.83

Table 1. Average convergence factors for αSA preconditioned CG and diagonally
preconditioned CG applied to (7) with N = 32 (left) and N = 64 (right), for various
choices of the mass gap, mq, and several values of the temperature parameter, β.

convergence factor of αSA preconditioned CG remains uniformly bounded away from
one for β ∈ [2.0, 6.0] and ρ→ ρcr. This is the main result of this paper, and the first
such result to date.

To obtain a more complete picture of the overall effectiveness of our multigrid
iteration, we examine also operator complexity, defined as the number of nonzero
entries stored in the operators on all levels divided by the number of nonzero entries
in the finest-level matrix. The operator complexity can be viewed as indicating
how expensive the entire V -cycle is compared to performing only the finest-level
relaxations of the V -cycle. Even though we use eight near-kernel components to
define prolongation, the operator complexity in our experiments stayed bounded
by 3.0. These low values result from the fact that the problem size is aggressively
reduced in forming the smoothed aggregation coarse problems.

One drawback of using the adaptive version of SA is the nontrivial cost associated
with identifying the error components on which we base the transfer operators in
SA. Of course, the hope is that this cost is optimal in that it is proportional to the
number of degrees of freedom in the problem. Our experiments suggest that this is
so. Further, a QCD simulation requires solving the system of equations for many
right sides, whereas the adaptive SA setup is performed only once, with the resulting
method used to solve the system with many right sides. For the results reported here,
even with the cost of the adaptive setup, the resulting SA method is more efficient
than a diagonally preconditioned CG algorithm when solving with a small number
(O(1)) of right sides. Indeed, for the experiments considered in Table 1, only four
right sides need be solved to justify the cost of the adaptive setup for the smallest
value of mass gap (mq = .01), i.e., the most ill conditioned system. For example,
with β = 3 and mq = .01, the CPU time required for the adaptive setup was 13.7
seconds and the CPU time needed to reduce the relative residual by a factor of 105

for a single right side, using αSA preconditioned CG, was 0.8 seconds. Solving the
same system using diagonally preconditioned CG required 4.7 sec CPU time.

5 Conclusions

Our experiments demonstrate that αSA provides an efficient preconditioner for the
2D lattice QCD problems considered. We note that the cost of each iteration criti-
cally depends on the ratio of the number of degrees of freedom on the fine level to
that on the coarser level. The coarsening for our 2D problem was very aggressive,
leading to acceptable operator complexities even with eight adaptively computed
near-kernel components. It remains to be verified whether these favorable 2D results
carry over to the full 4D case.
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1 Introduction

In recent years, several extensions of the classical AMG method (see [2] and [10])
to handle more general finite element matrices have been proposed (see, e.g., [3],
[9], and [7]). Other extensions are related to the so–called smoothed aggregation
method; see e.g., [11] and the papers cited therein. For the most recent versions of
both the AMG and smoothed aggregation approaches, we refer to [5] and [4]. In this
note, under the assumption that one has access to the fine–grid element matrices,
we combine the effectiveness of element interpolation given in [3] with a “spectral”
approach to selecting coarse degrees of freedom, as proposed in [7]. The method
presented here selects the coarse degrees of freedom from the eigenvectors in the
lower parts of the spectra of certain small matrices– special Schur complements of
assembled neighborhood matrices. These Schur complements are associated with
so–called minimal intersection sets, which in turn are derived from the partitioning
provided by an algorithm (e.g., from [9]) that creates agglomerated elements. The
idea of selecting coarse degrees of freedom from the eigenvectors of small matrices
has been used previously in connection with certain aggregation methods; see, e.g.,
[8] and the report [6].

2 The spectral way of selecting coarse degrees of freedom

Assume we are given the fine-grid symmetric positive (semi-) definite matrix A and
have access, for a given set of finite-elements {τ}, to the symmetric semi-definite

∗This work was performed in part under the auspices of the U. S. Department of
Energy by University of California Lawrence Livermore National Laboratory under
contract W-7405-Eng-48.
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fine-grid element matrices Aτ . Here, we consider each element τ to be a subset
(list) of fine–grid degrees of freedom, or dofs. We let D denote the set of fine dofs,
and identify D with the index set {1, 2, . . . , n}. For any vector w, we use the
notation wτ to denote the restriction of w to the subset τ of D. Armed with these
notational conventions, we note that the original matrix A is assembled from the
element matrices in the usual way, that is, for any vector v, one has

vTAv =
X
τ

vTτ Aτvτ .

Let V = V (D) denote the vector space (or the space of discrete functions) of
vectors with indices from D; that is, one can identify V with the vector space Rn.
Based on an agglomeration algorithm (e.g., as originally proposed in [9]; see also [12])
one generates a set of agglomerated elements {T} from the fine–grid elements {τ}.
Every agglomerated element T consists of a number of connected fine–grid elements
and every fine–grid element τ belongs to exactly one agglomerated element T .

Note that every agglomerated element T can also be considered as a set of fine
degrees of freedom, namely, as the union of the fine degrees of freedom that belong
to the fine–grid elements τ that form T .

One can partition the fine degrees of freedom (dofs) into non–overlapping sets
{I}, based on the relationships between agglomerated elements and dofs. This rela-
tionship is described by the incidence matrix E , defined as

Eij =


1, if dof j is in the agglomerated element i,
0, otherwise.

Note that E ∈ RnE×n, where nE is the number of agglomerated elements and n
is the number of fine dofs. Consider next Z = ETE ∈ Rn×n, and observe that
Zij = |{T : i ∈ T and j ∈ T}|, where | · | indicates cardinality. That is, Zij equals
the number of agglomerated elements containing both dofs i and j. We then split the
set of dofs {1, . . . , n} into non-overlapping sets {Ik}	k=1 (called minimal intersection
sets) with the property that i and j are in one and the same set Ik if and only if
Zij = Zii = Zjj .

With the minimal intersection sets I, one is able to define a change of basis
from “nodal” to “spectral” dofs through the following process. For every minimal
intersection set I, define the neighborhood N (I) = ∪τI , where the union consists
of all fine elements τI that share a dof from I. Let the assembled local matrix be
denotedAN (I) and compute its Schur complement SI by eliminating the dofs outside
I. (Note that, in the case where I is a single dof and AN (I) is a semidefinite matrix,
this Schur complement may be the zero matrix). Next, we compute all the eigenvalues
of SI and the associated eigenvectors {qI; k}, k = 1, . . . , |I|. Whenever necessary,
we extend the eigenvectors by zero outside I. If SI = [0] we use the standard unit
vectors qI; k := ei for i ∈ I. We may observe that the set {qI; k}, k = 1, . . . , |I|, for
I running over all the minimal intersection sets, provides an orthogonal basis of Rn.
For a given minimal intersection set I, the group of vectors {qI;k} are orthogonal (as
eigenvectors of symmetric matrices) and if two vectors belong to groups for different
sets I, they have non-intersecting supports; therefore, they are also orthogonal.

For every set I, we split the eigenvectors into two groups, VIc and VIf , in the
following way. Let the eigenvectors {qI; k} be ordered according to the eigenvalues
0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λ|I|. For any given integer 1 ≤ pI ≤ |I|, the first pI
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eigenvectors define the orthogonal basis of the space VIc . This space, representing
the set of “c”–dofs (or coarse dofs), corresponds to a lower portion of the spectrum
of the Schur complement SI . The remaining eigenvectors span VIf . Together, they
form an orthogonal decomposition of the space spanned by the eigenvectors for SI
and, taking all such spaces for all I, we observe that

Rn = V = VIc

M
I

VIf .

We denote the direct sums, over all I, of the coarse and fine spaces, respectively, as
Vc and Vf . The motivation for this splitting is given next.

Lemma 1. The block Aff , representing the restriction of A to the subspace Vf , is
well–conditioned if pI for all I are sufficiently large, in particular, if λpI+1[SI ] > 0
and λpI+1[SI ] � ‖AT ‖ for all neighboring T that contain I.

Proof. Define the vector norm ‖.‖ as ‖w‖ =
√

wTw. Let vf ∈ Vf , that is, v = vf
is a vector with vanishing coarse–grid component. We can split the inner product
vTAv over the agglomerates T , using the local matrices AT , and then rewrite the

sum
X
T

vTTATvT =
X
I

X
T : I⊂T

CIv
T
TATvT for some constants CI (depending on the

number of agglomerates T that share I). Using well known minimization properties
of Schur complements of symmetric positive (semi–)definite matrices, one readily
obtains the inequalities

min
I
CIλpI+1[SI ] ‖vf‖2 ≤ vTf Affvf ≤ max

T
‖AT ‖‖vf‖2. QED (1)

�

Remark 1. The CI are topological constants (i.e., independent of the matrix). How-
ever, we have the option to choose the integers pI sufficiently large to lead to an
improved minimal eigenvalue of Aff . Hence, by selecting the pI appropriately, we
can insure that Aff is well–conditioned. We may also observe that, for the model
case where A is the discretization of the 2D finite element Laplacian, both bounds
in (1) are mesh independent. The property that Aff is well conditioned gives rise
to a special form of the so–called compatible relaxation principle introduced in [1].

In the new (orthogonal) basis, the matrix A has a block, Aff , that is well–
conditioned. With the coarse dofs identified, the interpolation matrix P can be
computed locally by building, for every agglomerated element T , a prolongator PT
such that fine dofs that are shared by two or more agglomerated elements are in-
terpolated by the coarse dofs from that common set. More specifically, for every dof
i, consider its neighborhood N(i) = ∩{T : i ∈ T}. Then i is interpolated from all
coarse dofs that belong to N(i). Further details about this construction are found
in [9].

It can be proven, in the manner given in [9], that the locally constructed P
satisfies a weak approximation property. That is, for some constant η ≥ 1,

‖A‖‖v − Pvc‖2 ≤ η vTAv for any v = vf + vc,

where vf ∈ Vf , vc ∈ Vc. This implies (see e.g., [3]) an optimal convergence result
for a two–grid method based on P and simple Richardson smoothing.
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3 Numerical Experiments

We describe here results of numerical experiments designed to illustrate the use of
the spectral agglomerate AMGe algorithm. We first stress that, in 2D, the minimal
intersection sets are the vertices of the agglomerated elements (all of which natu-
rally become coarse dofs), the interior of the faces of the agglomerated elements (or
AEfaces), as well as the interior of the agglomerated elements (or AEs). For either of
these two minimal intersection sets, we can form the appropriate Schur complement,
SAEf or SAE, and compute the associated eigenvalues and eigenvectors.

Fig. 1.
Unstructured triangular mesh: 1600 elements (left) Tri-linear hexahedral mesh for
3D elasticity problem (right).

For the sets of eigenvectors of SAEf or SAE, we select an eigenvector with index
k to define a coarse dof if, given a tolerance τ ∈ [0, 1), the corresponding eigenvalue
λk satisfies

λk < τλmax.

We have the option to use different values of τ for the sets of eigenvectors; one,
denoted τAEf , is used on the eigenvectors of SAEf , while another one (denoted by
τAE) is applied to select coarse dofs from the eigenvectors of SAE .

To save some computation in the setup phase, one may choose to set τAE = 0.
(Note that when τ = 0 for both sets, the resulting spectral agglomerate AMGe
reduces to the agglomeration based AMGe method from [9]; that is, the coarse
dofs are the vertices of the agglomerates only.) In general, we recommend choosing
τAE < τAEf .

In 3D, there are additional minimal intersection sets: subsets of the boundary
of the faces of the agglomerated elements. We also select these sets as coarse dofs.
For thin body elasticity (the particular 3D application we consider in this section),
choosing these additional sets as coarse dofs is acceptable in terms of computational
complexity.

The problems utilized for this study are:
(1) a 2D anisotropic diffusion problem, given by

−div((εI + bbT )∇u) = f,

posed in a unit square. Three different selections of the parameter ε are considered,
ε = 1, 0.01, 0.001, which control the strengths of the anisotropy in each experiment.
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Table 1. Convergence results for AMGe and the spectral agglomerate AMGe with

τAE =
1

4
τAEf =

1

4
τ ; 2D anisotropic diffusion.

6400 elements AMGe Spectral agglomerate AMGe
10 levels (τ = 0) τ = 0.03125 τ = 0.125 τ = 0.25 τ = 0.5

ε = 1 iterations 12 10 9 8 6
ρ 0.405 0.432 0.396 0.313 0.176

grid complexity 1.64 2.77 2.79 2.86 3.13
operator complexity 1.86 4.73 4.81 5.13 6.83

ε = 0.01 iterations 25 16 11 9 7
ρ 0.614 0.511 0.378 0.306 0.185

grid complexity 1.64 2.86 3.11 3.34 3.76
operator complexity 1.86 5.09 6.31 7.99 14.01

ε = 0.001 iterations 36 17 15 13 13
ρ 0.721 0.517 0.428 0.388 0.365

grid complexity 1.64 3.09 3.31 3.50 3.87
operator complexity 1.86 6.11 7.46 9.32 16.18

The anisotropy is not grid aligned, and its direction is controlled by b =

»
cos θ
sin θ

–
,

θ =
π

4
. For this 2D problem, results computed on unstructured triangular meshes

with 6400 and 25600 elements are presented. A mesh typical of the problem, with
1600 elements, is shown in Fig. 1 (left).

(2) a 3D thin body elasticity problem posed on a domain Ω = (0, 1) ×
(0, 1) × (0, d) and discretized on a number of uniform trilinear hexahedral meshes.
The problem is formulated as follows: for a given vector function f = (fi)

3
i=1, find

the displacements u = (ui)
3
i=1 such that, for all x = (xi)

3
i=1 ∈ Ω

3X
j=1

∂

∂xj

0
@ 3X
k,l=1

Ei,j,k,l
∂uk(x)

∂xl

1
A = fi(x),

for i = 1, 2, 3. Homogeneous boundary conditions are imposed: A Dirichlet condition
of ui = 0, i = 1, 2, 3 is imposed on the side of the body ΓD = {(x, y, z = 0)}, and,
on the remainder of the boundary ∂Ω \ ΓD, we apply a Neumann condition

3X
j=1

nj

0
@ 3X
k,l=1

Ei,j,k,l
∂uk(x)

∂xl

1
A = 0
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Table 2. Convergence results for AMGe and the spectral agglomerate AMGe with

τAE =
1

4
τAEf =

1

4
τ ; 2D anisotropic diffusion.

25600 elements AMGe Spectral agglomerate AMGe
12 levels (τ = 0) τ = 0.03125 τ = 0.0625 τ = 0.25 τ = 0.5

ε = 1 iterations 15 22 21 10 6
ρ 0.517 0.673 0.649 0.429 0.154

grid complexity 1.62 2.81 2.82 2.92 3.21
operator complexity 1.86 5.01 5.04 5.62 8.41

ε = 0.01 iterations 32 30 23 12 8
ρ 0.715 0.747 0.673 0.431 0.202

grid complexity 1.62 2.90 3.01 3.42 3.89
operator complexity 1.86 5.43 5.96 9.60 21.92

ε = 0.001 iterations 57 36 28 22 20
ρ 0.834 0.761 0.698 0.604 0.549

grid complexity 1.62 3.13 3.25 3.62 4.04
operator complexity 1.86 6.58 7.36 12.25 28.38

Table 3. Convergence results for spectral agglomerate AMGe with τAE =
1

4
τAEf ;

3D thin body elasticity.

400 elements Spectral agglomerate AMGe
d = 25h τ = 0.03125 τ = 0.0625 τ = 0.125 τ = 0.25 τ = 0.5

iterations 29 28 28 15 7
ρ 0.748 0.738 0.727 0.553 0.295

grid complexity 2.20 2.22 2.28 2.50 3.28
operator complexity 2.84 2.90 3.04 3.63 6.94

coarsening levels 7 7 7 7 7
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for i = 1, 2, 3. Here, n = (ni)
3
i=1 is the outward unit normal to ∂Ω. The coefficients

Ei,j,k,l are expressed in terms of the Lame coefficients λ = 113 and µ = 81 as follows:

E1,1,1,1 = E2,2,2,2 = E3,3,3,3 = 2µ+ λ,
Ei,i,j,j = λ, i �= j, i, j = 1, 2, 3,

Ei,j,i,j = Ej,i,i,j = Ei,j,j,i = Ej,i,j,i = µ, i �= j, i, j = 1, 2, 3,
Ei,j,k,l = 0, all remaining indices.

We describe results for this problem using several different geometries for the
body. Using the basic mesh size h = 0.25, we observe results for four different choices
of d, namely d = 25h = 6.25, d = 50h = 12.5, d = 100h = 25 and d = 200h = 50.
The geometry for this problem is shown in Fig. 1 (right).

For all experiments, we apply one iteration of symmetric block Gauss–Seidel
as the smoother in a V(1,1)–cycle. The blocks in the smoother correspond to the
elements of the grid at the given level and hence are overlapping.

Illustrative results of the experiments are given in four tables in this section. For
each experiment, we report several quantities: the number of iterations needed to
reduce the �2–norm of the initial residual by 10−9; the asymptotic reduction factor
ρ; the grid and operator complexities; and, for the 3D case, the number of coarsening
levels used in the problem. The grid and operator complexities, commonly used in
AMG, are defined respectively as the total number of dofs on all levels divided by
the number of dofs on the finest level and the total number of nonzero entries in the
operator matrices for all levels divided by the number of nonzero entries in the fine
level matrix A. The tables also indicate the mesh sizes and values for parameters of
the algorithm (such as τ ).

Table 4. Convergence results for spectral agglomerate AMGe with τAE =
1

4
τAEf ;

3D thin body elasticity.

1600 elements Spectral agglomerate AMGe
d = 100h τ = 0.03125 τ = 0.0625 τ = 0.125 τ = 0.25 τ = 0.5

iterations 39 32 28 15 7
ρ 0.860 0.788 0.739 0.555 0.264

grid complexity 2.09 2.12 2.18 2.41 3.25
operator complexity 2.53 2.60 2.73 3.36 6.81

coarsening levels 9 9 9 9 9

The numerical results generally agree with the observations in Remark 1; it is
clear that richer coarse spaces produce better convergence factors. Naturally, this
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gain is obtained at the expense of higher complexities of the method. The spectral
agglomerate AMGe method can become a fairly expensive method; it requires a
number of local computations: assembling of local neighborhood matrices, computing
their respective Schur complements SAE and SAEf , and solving local eigenproblems
associated with them. In addition, all the normal costs of the traditional AMG–
type methods applies; namely, computing the respective interpolation matrices and
the associated coarse–level stiffness matrices. The local dense matrices grow in size
with the tolerance τ . This cost is especially noticeable in 3D problems, where the
increased complexity leads to significant increases in the time required to solve the
problem. steps (e.g., between 5 and 20) The operator complexities can be reduced
by using more aggressive agglomeration at the initial level(s).

4 Conclusions

This note describes an algorithm resulting from uniting two ideas introduced and
applied elsewhere. For many problems, AMG has always been hampered by com-
plexities whose natures are difficult to discern from the entries of matrix A alone.
Element–based interpolation has been effective for some of these problems, but re-
quires access to element matrices on all levels. One way to obtain these has been
to perform element agglomeration to form coarse elements, but defining the coarse
dofs is often not easy. The spectral approach to coarse dof selection is very attractive
due to its elegance and simplicity. The algorithm presented here combines the ro-
bustness of element interpolation, ease of coarsening by element agglomeration, and
simplicity of defining coarse dofs through the spectral approach. As demonstrated
in the numerical results, the method yields a reasonable solver for the problems
described. It can, however, be an expensive method due to the number and cost
of the local, small dense linear algebra problems; making it a generally competitive
method remains an area for further research.
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Summary. This paper addresses scalable, parallel hp-finite/infinite element-based
solution of time-harmonic acoustics problems in three-dimensions. We discuss the
application of FETI-DP, an iterative domain-decomposition scheme, to both interior
and exterior acoustics problems. We evaluate parallel scalability in terms of number
of iterations, wall-clock time, mesh size h, polynomial degree p, number of partitions,
and normalized wavenumber. We also discuss the impact of proper selection of the
coarse problem on the accuracy of the computed solutions.

1 Introduction

Time-harmonic problems in structural acoustics solve Helmholtz equation in bounded
(interior) and unbounded (exterior) domains. Examples include propagation in
bounded waveguides, scattering and radiation from structures in an infinite fluid
domain. Numerical solution of such problems in medium-frequency regimes with
p-version of finite/infinite elements have been shown to be very effective [1]. p-
refinement provides better control of the dispersion (pollution) error enabling in-
creased rate of error convergence compared to h-refinement. hp-approximations for
three-dimensional problems in structural acoustics, at mid-to-high frequencies, re-
sults in large algebraic systems, Ax = b, having millions of unknowns. The efficient
solution of such problems calls for the application of scalable parallel algorithms.

Due to the indefinite nature of the algebraic systems coupled with poor con-
ditioning from p-approximations and frequency-dependence, direct solution tech-
niques have been favoured for such problems. Unfortunately, the parallelization of
facorization-based direct solution strategies offer limited scalability due to the high
irregularity of matrix factoring. For large-scale problems of our interest, parallel
multi-frontal schemes do not scale well beyond 8 processors. A class of domain-

∗Research supported by HPCMP.
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decomposition algorithms [5] called FETI-DP (see [3] and references therein) have
been shown to sustain scalability for increasing number of processors.

Most existing research on applying FETI-type algorithms to exterior acoutsics
problems have used the so-called artificial boundary conditions and low-degree h-
approximations [2]. We evaluate FETI-DP applied to 3D acoustics problems dis-
cretized by p-hierarchic finite and infinite elements [1] and highlight the impact of
proper selection of the so-called coarse problem on solution accuracy.

2 Model Problem

Figure 1 shows the computational domain for a typical acoustics problem where Ω±
denotes the exterior/interior fluid domain, Γ denotes the boundary of the obstacle
with outward unit normal ν, and ΓR = Ω+ ∩ Ω− is a separable boundary of radius
R. The pressure field φ satisfies

Ω

Γ

ν

Ω+

Ω−

ΓR

Fig. 1. Computational domain.

∆φ+ k2φ = 0 in Ω±, (1)

where k = ω/c is the acoustic wavenumber, ω is the circular frequency of excitation,
and c is the speed of sound in the fluid. For exterior domains, we consider the
Neumann problem with the boundary conditions

∂φ

∂ν
= g on Γ , lim

r→∞
r

»
∂φ

∂r
(rê)− ikφ(rê)

–
= 0 uniformly ∀ |ê| = 1, (2)

where g is the specified Neumann data and the second equation is the Sommerfeld
radiation condition prescribing the out-going asymptotic behavior of φ. For problems
in which an incident wave φ0 scatters from the rigid body enclosed by Γ , we have
g = −∂φ0/∂ν. For interior acoustic problems, we apply a Robin boundary condition
∂φ/∂ν−ikφ = h on Γ . Both the interior and exterior problems are uniquely solvable
for all wavenumbers.

Following standard Galerkin technique results in a weak (variational) form of
the interior acoustics problem: Find φ ∈ H1(Ω−) such that

B−(φ, ψ) + C(φ,ψ) = Lh(ψ)

for all ψ ∈ H1(Ω−), where B−(φ, ψ) =

Z
Ω−

`
∇φ · ∇ψ − k2φψ

´
dΩ−, C(φ,ψ) =

Z
Γ

ψMφdΓ , and Lh(ψ) =

Z
Γ

hψ dΓ .
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Similarly, for exterior problems, we seek test and trial functions φ, ψ ∈ H1(Ω−),
such that φ = φR and ψ = ψR on ΓR. The functions φR and ψR with support in
Ω+
R satisfy the Sommerfeld radiation condition. Weak form of the exterior problem

satisfies
B−(φ, ψ) + BR(φR, ψR) = Lg(ψ),

where Lg(ψ) =

Z
Γ

gψ dΓ . The bilinear form BR is given by

BR(φR, ψR) = lim
S→∞

"Z
Ω+

RS

`
∇φR · ∇ψR − k2φRψR

´
dΩ+

RS − ik
Z
Γ
S

φRψR dΓS

#
,

where ΓS denotes a separable surface of radius S > R and Ω+
RS is the annular domain

bounded by ΓR and ΓS .
Let ∆fh be the spatial discretization of the fluid domain Ω−, with h representing

a measure of the spatial mesh size. Let pf ≥ 1 and qf ≥ 0 be polynomial degrees of
finite and radial degree of infinite fluid elements, respectively. Our discrete interior
and exterior problems consist of solving

B−(φ(h,pf ), ψ) + C(φ(h,pf ), ψ) = Lh(ψ) (3)

B−(φ(h,pf ), ψ) + BR(φ
(h,pf ,qf )

R , ψR) = Lg(ψR), (4)

respectively, where φ(h,pf ), φ
(h,pf ,qf )

R belong to a finite-dimensional subset of the
admissible space of functions for a given h, pf and qf (see [1]).

3 Review of FETI-DP

Let the domain Ω− be subdivided into N subdomains Ωis, i = 1, · · · , N . Each sub-
domain is discretized using finite elements and we get the system of equations
Ksus = fs, where Ks, us, and fs are the finite element left-hand side matrix,
the solution and the right-hand side load vector, respectively, for Ωs. This can be
rewritten as »

Ks
rr K

s
rc

Ks
rc
T Ks

cc

– »
usr
usc

–
=

»
fsr
fsc

–
(5)

where the degrees of freedom of a subdomain are divided into two groups r and
c referred to as the “interior” and “corner” degrees of freedom, respectively. The c

degrees of freedom are created at a global level such that we have B1
c
T
u1
c = B2

c
T
u2
c =

· · · = BNc
T
uNc = uc, where Bsc maps the corner degrees of freedom of Ωs to the set

of global corner degrees of freedom. The subdomain equations can now be written
as

Ks
rru

s
r +Ks

rcB
s
cuc = fsr

s=NX
s=1

Bsc
TKs

rc
Tusr +

s=NX
s=1

Bsc
TKs

ccB
s
cuc =

s=NX
s=1

Bsc
T fsc = fc

(6)

At the interfaces of the subdomains, the continuity of subdomain solutions is imposed
by the following condition
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umb − unb = 0 on Γmn (7)

with Γmn = ∂Ωms ∩ ∂Ωns for m,n = 1, ..., N , and m �= n. Note that index b (b ⊂ r)
denotes those degrees of freedom which lie on the interface boundary except the

corner degrees of freedom c. Recasting the above equation as
s=NX
s=1

Bsru
s
r = 0 where

Bsr is a signed boolean matrix such that Bsru
s
r = ±usb, and letting λ denote the

lagrange multipliers for enforcing the interface condition (7), leads to the system of
equations

Ks
rru

s
r +Ks

rcB
s
cuc +Bsr

Tλ = fsr , (8)

s=NX
s=1

Bsc
TKs

rc
Tusr +

s=NX
s=1

Bsc
TKs

ccB
s
cuc =

s=NX
s=1

Bsc
T fsc = fc, (9)

s=NX
s=1

Bsru
s
r = 0. (10)

Elimination of usr and uc from the above equations gives the interface problem in
terms of the dual (lagrange multiplier) solution

`
Frr + FrcK

∗
cc

−1
Frc

T ´λ = dr − FrcK∗
cc

−1
f∗c . (11)

Here Frr =

s=NX
s=1

BsrK
s
rr

−1Bsr
T , Frc =

s=NX
s=1

BsrK
s
rr

−1Ks
rcB

s
c , K

∗
cc =

s=NX
s=1

Bsc
TKs

ccB
s
c −

(Ks
rcB

s
c )
TKs

rr
−1Ks

rcB
s
c , dr =

s=NX
s=1

BsrK
s
rr

−1fsr , and f∗c = fc−
s=NX
s=1

Bsc
TKs

rc
TKs

rr
−1fsr .

In equation (11) Frr forms a fine-level operator and FrcK
∗
cc

−1
Frc

T forms a coarse-
level operator.

3.1 Coarse space for p-approximation and infinite element

Three-dimensional p-approximations offer multiple options for selecting the “coarse”

degrees of freedom. For a partitioned domain, let Σ =
N[

m,n=1

Γmn, m �= n, denote

the closure of the partition boundary as depicted in Figure 2a. We consider as
“coarse” candidates only those subdomain basis functions which have support on
mesh entities that belong to the boundary of at least three partitions. This implies
that only mesh edges and vertices contribute to the coarse space. If Md

i denotes
the i-th mesh entity of dimension d then Figure 2b depicts the closure of all the
candidate mesh entities denoted by Σe. Knowing that there are pf − 1 edge modes
in addition to the linear (vertex) modes, suggests two schemes to pick coarse dofs:

C1 Consider only vertex modes. No edge modes.
C2 Consider vertex and edge p-modes.

Additional care is needed when considering a coarse problem space for an exterior
discretization consisting of both finite and infinite elements as shown in Figure 2c.
Let M3

j be a mesh region in Ω− and let M2
i be a corresponding mesh face on the
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infinite boundary implying M2
i = ∂M3

j ∩ ΓR. The finite element approximation
spaces consist of SpΩ−

- the space of degree p polynomials assiociated with closure

of mesh region M3
j . The infinite element approximation [1] consists of the tensor-

product space Ŝ
p

Ω−
⊗ SqΩ+

where Ŝ
p

Ω−
is the subset of SpΩ−

with nonzero support

on M2
j and SqΩ+

is a space of degree qf + 1 polynomials in 1/ρ which satisfy the
Sommerfeld condition. When selecting the dofs for the a mesh vertex that lies on
the intersection of ΓR and Σe, as depicted in Figure 2d, the additional qf + 1 radial
dofs must also be included.

(a) (b)
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0
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0
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(c)

M
2

i

M
j

3

Ω+

Ω−
ΓR

(d)

Ω+

Ω−

ρ

Σ
e

Fig. 2. (a) Partition boundary. (b) Closure of mesh entities for coarse problem. (c)
Discretization using finite and infinite elements (d) Mesh vertex belonging to infinite
element as well as Σe.

4 Numerical Examples

This section gives several numerical examples to evaluate the performance of FETI-
DP for helmholtz problem in 3D for various ka, p, and meshes. In the implementation
of FETI-DP within STARS3D, the sub-domain matrices Ks

rr and the coarse problem
matrix K∗

cc are assembled in a sparse representation and factored using a sparse
multi-frontal solver. For the interface problem (11), a GMRES based iterative solver
[4] is used with a lumped preconditioner [3]. The parallel implementation within
STARS3D is based on MPI.
Interior Helmholtz problem : Consider the solution of the interior problem in
Ω ≡ [−1,−4,−1] × [1, 4, 1] with Robin data data h = ∂φex/∂ν − ikφex, where
φex = exp(ik |r− r0|)/|r− r0| is a point source located at r0 = (0,−5, 0) outside of
Ω−. Three hexahedral meshes, Mesh A, Mesh B and Mesh C, with 8192, 65,536,
and 262,144 hexahedrons, respectively, with p = 1, 2, 3, 4 are used. Table 1 gives
the iteration counts M. Table 2 lists the wall-clock time tN and parallel efficiency

EN =
Nt2
2tN

× 100. These computations were done on a SGI-Altix. As expected,

scalability improves as the problem size grows. Note that Mesh C, with p = 3,
has 1.98 million complex degrees of freedom. More than 100% parallel efficiency is
observed because of significant drop in total time to factor Ks

rr as the domain is
divided into subdomains.
Exterior Helmholtz problem : This example considers scattering of plane wave
by a rigid obstacle. The incident-wave φ0 is along (0, 0,−1). Two different shapes
for the obstacle are considered: (1) a sphere of radius a, and (2) a submarine-
like structure. The sphere mesh is partitioned based on the coordinate planes,
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Table 1. Iteration counts for interior helmholtz problem for Mesh A.

p = 1 p = 2 p = 3 p = 4

ka
/
N 2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64

10 5 6 4 6 10 9 6 6 5 7 11 12 6 6 5 7 12 13 6 6 5 7 13 16
14 7 7 5 8 12 12 7 8 6 9 15 19 7 8 6 9 17 22 7 8 6 9 20 29
18 7 8 6 10 22 23 9 9 8 11 35 55 9 9 8 11 38 58 9 9 8 11 40 62

Table 2. Parallel scalability for interior helmholtz problem with ka = 10.

Mesh B, p = 3 Mesh B, p = 4 Mesh C, p = 2 Mesh C, p = 3

N M Time(Eff.) M Time(Eff.) M STime(Eff.) M Time(Eff.)

2 6 656.8 6 3346.0 7 3697.0 - -
4 9 148.2 (221%) 9 631.7 (265%) 9 1061.8 (174%) 9 3849.5
8 8 48.8 (336%) 8 175.4 (477%) 8 298.9 (309%) 9 1375.3 (140%)
32 24 30.2 (136%) 25 75.6 (276%) 25 141.1 (163%) 25 319.9 (154%)

while the mock-submarine (shown in Figure 3) is partitioned using METIS (www-
users.cs.umn.edu/ karypis/metis/).

(a) (b)

Fig. 3. Partitions for mock-submarine. (a) N = 4, (b) N = 32.

Table 3 gives the iteration counts for the sphere problem for a mesh with 7896
mesh regions. Here, unconjugated infinite elements with radial degree qf = 2 were
used. Similar results for the mock-submarine are given in Table 4.
Impact of coarse problem selection To evaluate the impact of the choice of
method to select the degrees of freedom for the coarse problem outlined in Section
3.1, we consider the sphere problem. Consider a finite element approximation with
pf = 3 and infinite element radial degree qf = 2. We compare the number of
iterations needed to converge to a given tolerance. The impact on the accuracy is
evaluated by computing the pointwise maximum (L∞) relative error in the real and
the imaginary parts of the computed scattered field as:
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Table 3. Iteration counts for the sphere problem.

p = 1 p = 2 p = 3 p = 4

ka
/
N 2 4 8 2 4 8 2 4 8 2 4 8

5 13 5 3 15 6 7 16 7 7 12 8 10
10 16 5 3 21 7 7 20 8 7 12 9 11

Table 4. Iteration counts for exterior scattering from a rigid mock submarine.
Mesh H1 (Mesh H2) has 19024 (60819) regions.

Mesh H1, p = 1 Mesh H2, p = 1 Mesh H1, p = 2 Mesh H2, p = 2

N
/
ka 1 5 10 1 5 10 1 5 10 1 5 10

4 19 64 415 20 40 162 24 121 236 23 93 386
8 21 93 771 21 67 272 26 190 383 24 140 863
16 21 132 2457 22 92 347 27 243 970 28 169 1403
32 22 153 1906 22 68 716 31 293 2480 30 126 2955

|�(e)|∞ =
maxi |�(ui)−�(u0

i )|
maxi |�(u0

i )|
, |�(e)|∞ =

maxi |�(ui)−�(u0
i )|

maxi |�(u0
i )|

(12)

where, u0 is a globally C0 solution obtained by a direct multi-frontal scheme.
From Table 5 we note that use of all the edge modes from Σe (C2) makes the

approximate FETI-DP solution to converge to the globally C0 solution within the
tolerance used in the iterative solution of the interface problem 11. In contrast, use
of only vertex (linear) modes (C1) make the FETI-DP solution to have errors that
significantly exceed the convergence tolerance used in the iterative solver.

5 Discussion and Conclusion

We have successfully applied the FETI-DP algorithm to hp-finite/infinite element
discretization of both interior and exterior acoustics problems. We show super-linear
scalability for a set of interior acoustics problems. For exterior problems, we demon-
strate excellent scalability of FETI-DP except at very high ka values. The lack of
better scalability at higher wavenumber is tied to numerically dispersive nature of
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Table 5. Impact of coarse space selection on iteration counts and accuracy for
scattering from rigid sphere at ka = 1, 10. Lumped preconditioner and a tolerance
1.0e − 09 is used for iterative solve. nc denotes the number of coarse dofs.

N = 4 N = 8

M (nc) |�(e)|∞ |�(e)|∞ M (nc) |�(e)|∞ |�(e)|∞
ka = 1, C1 40 (16) 8.34e-3 3.71e-3 40 (48) 8.33e-3 6.21e-3

ka = 1, C2 40 (36) 2.83e-8 1.54e-8 37 (108) 9.13e-9 9.75e-9

ka = 10, C1 100 (16) 1.26e-2 1.59e-2 110 (48) 2.64e-2 2.38e-2

ka = 10, C2 100 (36) 9.08e-9 1.11e-8 102 (108) 8.73e-9 8.31e-9

these approximations and will be addressed with effective augmentation strategies
that accelarate convergence further. We have also discussed strategies for select-
ing the coarse problem space and show that for p-approximations it is impertative
to include all the high-order mesh edge modes to ensure expected accuracy of the
subdomain solutions.
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Summary. Quantization has diverse applications in many areas of science and en-
gineering. In this paper, we present a new nonlinear multilevel algorithm that accel-
erates existing numerical methods for finding optimal quantizers. Both a theoretical
framework for the convergence analysis and results of some computational experi-
ments are provided.

1 Introduction

A vector quantizer maps N -dimensional vectors in the domain Ω ⊂ R
N into a finite

set of vectors {zi}ki=1 . Each vector zi is called a code vector or a codeword, and the
set of all the codewords is called a codebook. A special, yet popular, quantization
scheme is given by the Voronoi tessellation associated with some codewords {zi} ,
also called generators.

A Voronoi tessellation for the given generating points {zi}ki=1 ⊂ Ω refers to the
tessellation of a given domain Ω by the Voronoi regions {Vi}ki=1 where, for each
i , the Voronoi region Vi consists of all points in Ω that are closer to zi than to
the other generating points. For a density function ρ defined on Ω , we define the
centroids, or mass centers, of the regions {Vi}ki=1 by

z∗
i =

“Z
Vi

yρ(y) dy
”“Z

Vi

ρ(y) dy
”−1

. (1)

Then, an optimal quantization may be constructed through a centroidal Voronoi
tessellation (CVT) for which the generators of the Voronoi tessellation themselves
are the centroids of their respective Voronoi regions, in other words, zi = z∗

i for
all i . Besides providing an optimal least square vector quantizer design in electrical
engineering applications [10],[11],[20], the concept of CVT has other diverse appli-
cations in many areas of science and engineering, such as image and data analysis,
resource optimization, sensor networks, and numerical partial differential equations



M. Emelianenko and Q. Du

[5],[6],[8],[12],[13],[16],[18]. We refer to [5] for a more comprehensive review of the
mathematical theory and diverse applications of CVTs.

In the seminal work of Lloyd on the least square quantization [17], one of the
algorithms proposed for computing optimal quantizers is an iterative algorithm con-
sisting of the following simple steps: starting from an initial quantization (a Voronoi
tessellation corresponding to an old set of generators), a new set of generators is
defined by the mass centers of the Voronoi regions. This process is continued until
a certain stopping criterion is met.

Given a set of points {zi}ki=1 and a tessellation {Vi}ki=1 of the domain, we may
define the energy functional or the distortion value for the pair ({zi}ki=1, {Vi}ki=1)
by:

H
“
{zi}ki=1, {Vi}ki=1

”
=

kX
i=1

Z
Vi

ρ(y)|y− zi|2 dy .

The minimizer of H , that is, the optimal quantizer, necessarily forms a CVT which
illustrates the optimization property of the CVT [5]. The terms optimal quantizer
and CVT are thus to be used interchangeably in the sequel. It is also easy to see
that Lloyd’s algorithm is an energy descent iteration, which gives strong indications
to its practical convergence.

Lloyd’s algorithm has [11],[12],[13], in recent years, sparked an enormous research
effort and its variants have been proposed and studied in many contexts for different
applications. Efficient algorithms for computing the CVTs play crucial roles for
modern application of CVT in large scale scientific and engineering problems such
as data communication and mesh generation. In this short paper, we first discuss
some convergence theory recently derived in [3] for Lloyd’s algorithm to motivate our
ongoing work. Then we outline a new multilevel approach to the optimal quantization
problem introduced recently in [1],[4] which can be used to accelerate the convergence
of Lloyd’s algorithm. We discuss the idea of a dynamic nonlinear preconditioner and
also give a convergence theorem as well as some numerical results.

2 Convergence properties of Lloyd’s iteration

Even with their great success in practice, only limited rigorous results on the con-
vergence properties of Lloyd’s iteration have been obtained and many important
computational issues remain to be explored [5]. Some important characterizations
of convergence for Lloyd’s scheme have been obtained recently in [3]. The results
stated below demonstrate the global convergence properties of the Lloyd iteration
and its relationship to the critical points of the energy functional.

Theorem 2.1 Any limit point of the Lloyd algorithm is a fixed point of the Lloyd
map, and this determines a stationary point of H . The set of limit points share the
same distortion value H for a given iteration.

Theorem 2.2 If the iterations in the Lloyd algorithm stay in a compact set where
the Lloyd map T is continuous, then the algorithm is globally convergent to a critical
point of H .
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We refer to [3] for the proofs and further discussions of related results.
Beyond the study on the global convergence, the characterization of the con-

vergence rate is often also important in practice. For instance, one may inquire if
a geometric convergence rate can be established. This is indeed verified in [5] for
the constant density function and later in [3] under a strong type of log-concavity
conditions, where the established geometric convergence rate r is shown to be of the
order of 1− ck−2 , therefore the Lloyd method slows down for large values of k , the
total number of generators. Even in the one-dimensional case, both our theoretical
estimates and the experiments indicate that the convergence of the Lloyd iterations
is at most linear.

3 The new energy-based nonlinear multilevel algorithm

The evidence of slow convergence of the Lloyd iteration and its descent proper-
ties motivated our search for a Lloyd iteration based numerical scheme with supe-
rior convergence properties. A possible approach to speeding up the convergence of
Lloyd’s method is to use a domain or space decomposition (or multigrid) strategies
([1],[2],[4],[15],[14]). There are many ways of implementing such an algorithm in the
context of CVTs. However, the problem of constructing a CVT is nonlinear in na-
ture and hence cannot be analyzed using standard linear multigrid theory. Without
using any type of linearization techniques, we hope to overcome the difficulties of
the nonlinearity by essentially relying on the energy minimization.

3.1 Description of the algorithm

Our motivation in using the energy minimization approach was the optimality prop-
erty of the CVTs mentioned above. The optimality property implies that at the
optimal quantizer ∇H = 0 .

Since the energy functional is in general non-convex, we use a dynamic nonlinear
preconditioner to relate our problem to a convex optimization problem. More pre-

cisely, let R = diag{R−1
i }, i = 1, . . . , k + 1 where Ri =

Z
Vi

ρ(y) dy are the masses

of the corresponding Voronoi cells. We arrive at an equivalent formulation of the
minimization problem: R∇H = 0 , or min ||R∇H||2 . This preconditioning makes
the energy functional convex in a large neighborhood of the minimizer and therefore
the new formulation has advantages over the original problem. Hence, defining the
set of iteration points W by

W = {(wi)|k+1
i=0 | 0 = w0 ≤ wi ≤ wi+1 ≤ wk+1 = 1, ∀0 ≤ i ≤ k} ,

our new multilevel algorithm is then based on the following nonlinear optimization
problem

min
Z∈W

H̃(Z), where H̃(Z = {zi}k+1
i=0 ) = ||R∇H({zi}ki=1, {Vi}ki=1)||2 (2)

where {Vi}ki=1 is the Voronoi tessellation corresponding to the generators {zi}ki=1 .
For simplicity, consider the CVT on the one-dimensional unit interval [0, 1] . Let
Sk be the space of continuous piecewise linear functions on a uniform mesh with k
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sub-intervals and a hierarchical basis {{ψij}ni
j=1}Hi=1 with H the number of levels.

Let ψ̄ij = {ψij(
m

k + 1
)}k+1
m=0 ∈ R

k+2 and set Wi = span{ψ̄ij}ni
j=1 . We now present

our multilevel successive subspace correction algorithm as follows:

Algorithm 3.1 (Successive correction V (ν1, ν2) scheme)

Input:
Ω, the domain of interest; ρ, a probability distribution on Ω;
k, number of generators;

Z = {zi}k+1
i=0 ∈W, the ends plus the initial generators.

Output:

Z = {zi}k+1
i=0 , the ends plus generators for CVT {Vi}ki=1.

Method:
1. For i=H:-1:2, repeat ν1 times:

given Z, find Z = Z + α0
j ψ̄

i
j ∈W sequentially for 1 ≤ j ≤ ni

such that H̃(Z + α0
j ψ̄

i
j) = min

αj

H̃(Z + αjψ̄
i
j).

Endfor
2. Z←CoarseGridSolve(Z)
3. For i=2:1:H, repeat ν2 times:

given Z, find Z = Z + α0
j ψ̄

i
j ∈W sequentially for 1 ≤ j ≤ ni

such that H̃(Z + α0
j ψ̄

i
j) = min

αj

H̃(Z + αjψ̄
i
j).

Endfor
4. Repeat steps 1 to 3 until some stopping criterion is met.

Each step of the above algorithm involves solving a system of nonlinear equations
which plays the role of a relaxation. The solution at the current iterate is updated
after each nonlinear solve by the Gauss-Seidel type procedure, hence the resulting
scheme is sequential in nature. Here ν1, ν2 denote the number of Gauss-Seidel itera-
tions used at each level. Although ν1,2 = 1 is sufficient in theory, larger values need
to be used in practice due to the numerical error in solving the nonlinear system.
The values ν1,2 ≤ 3 usually suffice for the optimization to reach saturation. More
general algorithms and convergence results will be given in future work. It is worth
noting that in the one-dimensional case the set of basis functions

Qi = [ψ̄i1, . . . , ψ̄
i
ni

]T ∈ Rni×k

used at each iteration can be pre-generated using the recursive procedure: Q1 = Ik×k
and Qs = (Πs

i=1Pi)Q1 where Pi is the basis transformation from the space Wi+1

to Wi which plays a role of a restriction operator.
Let us now state the following convergence theorem [1]:

Theorem 3.1 Algorithm 3.1 converges uniformly in W for any density of the
type ρ(x) = 1 + εg(x) , where g(x) is smooth and ε is small. Moreover, dn =
H̃(un)− H̃(u) satisfies

dn ≤ rdn−1,

for some constant r =
C

1 + C
, where C is a constant independent of the number

of generators or the number of levels.
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A proof of this result can be derived based on the framework of [19]. Supply

W with the norm ||y||21,W =
1

k

k+1X
i=1

(yi − yi−1)
2 , the key steps of the proof include

demonstrating the continuity and local convexity of the functional H̃ with respect
to the norm || · ||1,W , and establishing a strengthened Cauchy-Schwartz inequality

with respect to the space decomposition W =
HM
i=1

W̄i where W̄i = Wi/Wi−1 for

i > 1 and W̄1 = W1 . The complete proof is given in [1] and is omitted here. It
follows that for a suitable choice of decomposition in 1D the asymptotic convergence
factor of our multilevel algorithm is independent of the size of the problem and the
number of grid levels, which gives a significant speedup in comparison to other
methods, like the traditional Lloyd iteration. Moreover, we have

Corollary 3.2 For the hat basis and the constant density function, we may take
C = 4 and thus r = 0.8 .

We note that the estimated convergence rate of r = 0.8 is merely an upper
bound, and the actually convergence rate is much smaller in practice. We justify the
above theoretical results in the numerical examples that follow.

3.2 Numerical results

For the V(1,1) multigrid implementation of the new algorithm, we compared our
algorithm with the regular Gauss-Seidel performance. We plotted the convergence

factor ρ ≈ zn+1 − zn
zn − zn−1

for each V(1,1) cycle with respect to k , the total number of

generators (grid points) taken for ρ(x) = 1 .
Figure 1 justifies the fact that the speed of convergence for the proposed scheme

does not grow with the number of generators, while Table 1 shows the stabilization
of the number of multigrid cycles V (ν1, ν2) needed to reduce the error to ε = 10−12

in the ρ(x) = 1 case. The difference in the number of iterations required for V (1, 1)
and V (2, 2) comes from the approximation error in solving the optimization problem
at each level, which decreases quickly as the number of relaxations grows.

The geometric rate of energy and error reduction asserted by the Theorem 3.1 is
confirmed by the experiments. Indeed, Figure 2 shows the convergence history of the
error (left) of a V (1, 1) -cycle and the energy (right) vs. total number of relaxations
for the k = 64 , ρ(x) = 1 case (in log-normal scale).

The results for other nonlinear densities, though not shown here, are also con-
sistent with the theoretical conclusions reached above (see [1]). Multidimensional
extensions are discussed in [4].

4 Applications

CVTs have a rich field of applications in various areas of mathematics as well as
engineering. Here we provide a couple of geometric examples to give a flavor of
the kind of problems that benefit from the study of this concept. Figure 3 shows

535



M. Emelianenko and Q. Du

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Number of generators

C
o

n
ve

rg
en

ce
 f

ac
to

r

Lloyd iteration

Multilevel iteration

Fig. 1. Convergence factor ρ vs. k for the multigrid and Gauss-Seidel methods.

k/V (ν1, ν2) V(1,0) V(0,1) V(1,1) V(2,0) V(0,2) V(2,2)

3 7 8 6 6 7 4

5 11 11 8 8 8 6

9 13 14 9 9 9 7

17 18 18 12 12 12 8

33 21 20 13 12 13 8

65 21 22 12 12 12 8

129 21 21 12 12 12 8

257 20 23 12 12 13 7

513 20 22 12 11 13 7

1025 19 22 11 11 13 7

Table 1. Number of V (ν1, ν2) cycles vs. the number of generators.
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Fig. 2. Error and energy reduction of the V (1, 1) -cycle.

tessellations of the sphere for different density functions [7] and an example of meshes
generated by means of CVT [9].
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Fig. 3. Examples of CVTs for a sphere and a CVT-based mesh for a cube.

The point distributions generated via CVT can be used for vector quantiza-
tion, optimal resource allocation, image compression, mesh generation and in many
other applications [5] . In many of these applications, the efficiency of the numerical
scheme plays a crucial role, so possible new approaches in accelerating existing nu-
merical methods such as the multilevel approach discussed here are very important.

5 Conclusion

A new energy-based multilevel method is introduced for the optimal quantization
which adopts dynamic nonlinear preconditioning to take advantage of a nonlinear
convex optimization setting. The uniform convergence of the method with respect
to the grid size and the number of grid levels and significant speedup compared to
Lloyd’s method are demonstrated. More work is under way for the multilevel scheme
in higher dimensions.

Research support by the NSF through the grants DMR-0205232 and DMS-
0409297 is gratefully acknowledged.
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Summary. In this paper we present a domain decomposition method for the so-
lution of a linear elliptic equation as a direct two-step procedure (in contrast to
iterative-based Schwarz and Aitken-Schwarz procedures). First, local solutions to the
nonhomogeneous equation are calculated on overlapping subdomains, and second,
connection functions, which correct for mismatches on the subdomain intersections
and solve the homogeneous equation in each subdomain, are obtained by solving a
Cousin-like problem. The procedure is applied to Poisson’s equation as a model linear
equation. The calculation of the connection functions is achieved through a classical
orthogonal decomposition of the solution to Laplace’s equation and can be achieved
through progressive solutions in each direction for separable boundary conditions.
The procedure is also applicable to more complicated domains with non-separable
boundary conditions. A few examples will be given. The connection functions can
be calculated to high precision and require minimal overlap of the subdomains.

1 Introduction

In the classical Schwarz procedure applied to a domain decomposition with over-
lapping subdomains the final solution is achieved through an iterative procedure
updating the boundary conditions that are internal to the subdomains [10] (see also
optimized variants [4]). The classical Schwarz technique is limited since the num-
ber of iterations scales geometrically with the number of subdomains and the rate
of convergence depends strongly on the overlap. Recent work has shown that each
successive iteration can be represented as a linear operator on the solution and that
the final solution can be determined from an extrapolation of the linear convergence
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rate. This Aitken-Schwarz procedure has been extended to non-linear problems as a
Steffensen-Schwarz procedure [2, 5, 6]. In this paper we consider Poisson’s equation
in overlapped regular and irregular geometries as a model system for future applica-
tions to the Navier-Stokes equations. The matching requirement is based on equating
the two local solutions functionally in the overlap region, a stricter requirement than
in the Schwarz procedure. This formulation leads to a Cousin-like problem [7] and,
for this linear problem, results in a constrained system for coupled solutions of the
homogeneous form of the given equation.

First, we require a local Poisson solve on each subdomain. The mismatch be-
tween any two local solutions satisfies the homogeneous form of the equation on the
subdomain intersections and poses a Cousin-like problem. Second, the Cousin prob-
lem is solved to obtain connection functions that solve the homogeneous form of the
equation and smoothly patch together the local solutions. The connection functions
are determined based on boundary information. This technique is similar to the su-
perposition, filtering, and patching technique of Israeli et al. [8] but uses an exact
representation of the connection functions and results in a fully coupled system. In
two dimensions, for rectangular computational domains, each connection function
can be decomposed into four components corresponding to the boundary values on
the four edges of the rectangle. In each direction the solutions are coupled at the
local boundaries and lead to a set of simultaneous equations that can be solved for
the coefficients in a sine series expansion. Solutions in multiple dimensions can be
achieved by recursively treating the connection functions in each dimension. Hence
a three-dimensional solution requires three applications of the procedure.

2 Definitions, Cousin’s Problem, and Local Solutions

Let Ω be the domain of interest, and let {Ωi} be an open covering of Ω such
that the subdomain boundaries ∂Ωi are regular. We consider the linear Poisson
equation ∆p = f in Ω with Dirichlet boundary values p = b on ∂Ω as model
problem. We assume f ∈ C(Ω) and b ∈ C(∂Ω) for real dimension n ≥ 2 .

First, the local Poisson problems are solved

∆qi = f in Ωi with qi = b̃i on ∂Ωi (1)

where b̃i is a non-unique continuous extension of b on ∂Ωi , and second, a set of
connection functions

∆hi = 0 in Ωi with hi = c̃i on ∂Ωi (2)

are calculated which solve a Cousin-like problem generated by the mismatch in the
local solutions. The calculation of the c̃ ’s will be discussed in section 3. We first
give a statement of Cousin’s Problem tailored to our discussion.

Cousin’s Problem. Suppose for every nonempty intersection Ωi ∩Ωj �= ∅ we
are given a function hi j ∈ C(Ωi∩Ωj) such that ∆hi j = 0 in Ωi∩Ωj and hi j = 0
on ∂Ωi ∩ ∂Ωj ∩ ∂Ω , and such that the following cocycle property is satisfied:

hi i = 0 hi j = −hj i hi j + hj k = hi k (3)

The Cousin Problem with data {hi j} is the problem of finding a set of functions
{hi} such that ∆hi = 0 in Ωi , hi = 0 on ∂Ωi ∩ ∂Ω , and hi j = hj − hi in
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Ωi ∩ Ωj . Under conditions of sufficient regularity, this problem can be shown to
have a unique solution. For a statement of the classical Cousin problem see Gunning
and Rossi [7].

If {qi} is a complete set of exact solutions to the subdomain problems (1), then
their differences hi j = qi − qj satisfy the hypothesis of Cousin’s problem. Once
Cousin’s problem is solved and the functions hi are found, the global solution p is
defined by p = qi + hi on each subdomain Ωi . Since

qi − qj = hi j = hj − hi, (4)

p is consistently defined and solves the global problem. The key to the procedure
is the efficiency of the connection function computations.

Generation of accurate local solutions is critical to overall accuracy of the tech-
nique and may limit the final order of accuracy. We use two methods for calculating
the local solutions: first, a direct solution via a Schur decomposition [3], and second
a pseudo-spectral Fourier method in combination with a boundary regularization
procedure to subtract aperiodicity in the boundary conditions [12]. The local solu-
tions can be difficult to compute in that they arise from local problems that are
nonperiodic and are subject to the interpolated boundary conditions. A range of
spectral methods has been developed to approach this problem [1, 11].

In the first method the solution is determined by the finite difference expansion
and, in this case, results in a second order truncation error and a second order accu-
rate solution. The second method is outlined in Zarantonello, Fabris, and Chiappari
[12]. In this approach the right hand side is preconditioned by subtracting the ape-
riodic behavior of f , the right-hand side in Poisson’s equation, and then applying
a conventional spectral solver. This technique was introduced by Sköllermo [11] and
has also been considered by Averbuch et al. [1].

3 Examples and Results

Let Ω = (a, b) × (c, d) =
˘
(x, y) ∈ R2 | a < x < b , c < y < d

¯
, be a rectangu-

lar domain, and {Ωn} be a finite open coverings of Ω , consisting of rectangles
Ωn = (an, bn) × (c, d) where an < bn−1 < an+1 < bn . We refer to {Ωn} as a
rectangular domain decomposition of Ω and note that the subdomains overlap and
are horizontally aligned, Figure 1. Higher dimensional arrays of overlapping domains
can be obtained in a similar manner.

In the case of two subdomains Ω1 and Ω2 , let ΓL2 and ΓR1 be their respective
interior boundaries as shown in Figure 1. The Cousin data consist of the single
function h1 2 = q1 − q2 defined on Ω1 ∩ Ω2 . Since the local solutions {qi} have
boundary values that agree on ∂Ω1 ∩ ∂Ω2 , the nonzero boundary values of h1 2

are the mismatch of the local solutions on ΓL2 ∪ ΓR1 . The connection functions, h1

and h2 , are solutions to ∆h = 0 and can be directly generated from the non-zero
boundary values, and therefore, can be expressed in an orthogonal basis appropriate
to the specific domain, in this case an expansion in sines and hyperbolic sines. For
the purpose of illustration let

h1(x, y) =

∞X
k=1

Rk
sinh kπ(x− a1)

sinh kπ(b1 − a1)
sin kπy (5)
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Fig. 1. Two subdomains and a row of subdomains.

and

h2(x, y) =

∞X
k=1

Lk
sinh kπ(b2 − x)
sinh kπ(b2 − a2)

sin kπy (6)

in the rectangular subdomains. Here {Lk} and {Rk} are the coefficients derived
from the sine expansions of the boundary data on the left and right edges of each
rectangular domain. Now, equation (4) is used to identify the boundary data

q1 |ΓL
2
− q2 |ΓL

2
= h12 |ΓL

2
= h2 |ΓL

2
− h1 |ΓL

2
(7)

and
q2 |ΓR

1
− q1 |ΓR

1
= h12 |ΓR

1
= h1 |ΓR

1
− h2 |ΓR

1
. (8)

Using the data from q1 and q2 , we expand h12 in the same sine basis as (5) and
(6)

h12(x, y) =
∞X
k=1

»
Tk

sinh kπ(x− a2)

sinh kπ(b1 − a2)
− Sk

sinh kπ(b1 − x)
sinh kπ(b1 − a2)

–
sin kπy. (9)

Using the eigenexpansions in (5), (6), and (9), equations (7) and (8) decouple in
each wave number and can be solved simultaneously for each pair of expansion
coefficients, Lk and Rk , independently.

In the more general case of multiple domains, Ωn , connected in a row with only
overlap of two adjacent domains, the simultaneous system reduces to

2
666666664

D1,k 1 0 0 0 . . 0
1 A2,k B2,k 0 0 . . 0
0 C2,k D2,k 1 0 . . 0
0 0 1 A3,k B3,k . . 0
0 0 0 C3,k D3,k . . 0
. . . . . . . .
0 0 0 . . . 1 An,k

3
777777775

2
666666664

R1,k

L2,k

R2,k

L3,k

R3,k

...
Ln,k

3
777777775

=

2
666666664

S1,k

T2,k

S2,k

T3,k

S3,k

...
Tn,k,

3
777777775

(10)

where

An,k = − sinh kπ(bn − bn−1)

sinh kπ(bn − an)
, Dn,k = − sinh kπ(an+1 − an)

sinh kπ(bn − an)
, (11)

Bn,k = − sinh kπ(bn−1 − an)
sinh kπ(bn − an)

, Cn,k = − sinh kπ(bn − an+1)

sinh kπ(bn − an)
.
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In this system each row is normalized by the hyperbolic sine factors in equation (9).
In the internal subdomains, the subdomains that overlap with two other subdomains,
the connection function contains both left and right coefficients.

Since the subdomains overlap, the determinant of the matrix in (10) is strictly
positive and uniformly bounded away from zero. The solution {hn} depends con-
tinuously on the data {hn,n−1} , and the procedure for solving the Cousin Problem
is stable. The elements, equation (11), of the matrix in equation (10) are determined
purely by the nature of the overlap, and the connection function in any one subdo-
main depends only on the local solutions in all of the other subdomains, but not on
the other connection functions, Rj,k = fj({Sk}, {Tk}) and Lj,k = gj({Sk}, {Tk}) .
In essence, this reduces the iterative problem to a two-step direct solution.

In a computational framework using a finite expansion each function hn,n−1 =
qn − qn−1 is defined on a collocation grid of dimensions Mx;n,n−1 ×My , the sine
series (5), (6), and (9) become sine polynomials of order My , the sine coefficients are
calculated via a Fast Sine Transform, the equation coefficients (11) are precalculated,
and (10) reduces to My systems of tridiagonal equations in 2N − 2 unknowns.

We consider two test cases to demonstrate the method. In [5] Garbey and
Tromeur-Dervout proposed the problem f(x, y) = 2y(y − 1) + 2x2 − 0.5 , with
the exact solution p(x, y) = (x2 − 0.25)y(y − 1) defined on the unit square. This
particular case allows an exact solution to be computed with a second order dis-
cretization. Results are given in Table 1. Our L∞ errors are comparable to those
of Garbey and Tromeur-Dervout and are on the order of machine precision. In this
case the truncation error is exactly zero for the 2nd order technique.

Table 1. First case considered, L2 and L∞ relative to the same norms for the
solution.

total nodes spectral 2nd order 2nd order errL∞ , Garbey &
(subdomains) errL2 errL2 errL∞ Tromeur-Dervout

66×66 (2 × 2) 7.8501e-10 4.7668e-14 4.3161e-14 3.8589e-13
66×66 (4 × 4) 4.2206e-9 4.7668e-14 4.9009e-14 4.2577e-14
66×66 (8 × 8) 1.8064e-8 9.5740e-14 6.0633e-14 2.2204e-15
66×66 (16 × 16) 7.2144e-8 2.2889e-13 1.1517e-13 1.1380e-15
258×258 (2 × 2) 3.0977e-12 7.5506e-13 5.6097e-13 1.3513e-11
258×258 (4 × 4 1.6964e-11 1.1543e-12 9.0958e-13 2.8467e-12
258×258 (8 × 8) 7.3314e-11 1.4259e-12 1.1116e-12 1.3563e-12
258×258 (16 × 16) 2.9883e-10 9.0078e-13 6.5830e-13 8.4238e-14

Second, we consider f(x, y) = 6 ex+y x y (−3 + y + x + x y) , with the exact
solution p(x, y) = 3 ex+y x y (1 − x)(1 − y) . This is Problem 4.1 of Rice et al. [9].
Results are shown in Table 2. It is a commonly used example of an analytic problem
with homogeneous Dirichlet boundary values. Rice [9] et al. consider only a single
subdomain setting. The spectral solution is more accurate due to a higher order
approximation. Figure 2 shows the solution and error for the third case in Table 2.

The results are given for two local solvers, the spectral and Schur decomposi-
tion. We note that the Schur decomposition provides the exact solution for the first
problem since the truncation error is exactly zero. The results approach machine
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Table 2. Second case considered. The spectral method uses a local solution that is
fourth order accurate.

total nodes spectral spectral 2nd order
(subdomains) errL2 errL∞ errL2

18×18 (2 × 2) 2.8047e-7 1.3978e-6 3.6947e-4
34×34 (2 × 2) 1.0409e-8 9.6288e-8 8.2776e-5
66×66 (2 × 2) 3.6829e-10 6.3610e-9 1.9237e-5
130×130 (2 × 2) 1.2921e-11 4.0955e-10 4.6102e-6
258×258 (2 × 2) 4.7057e-13 2.5989e-11 1.1266e-6
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Fig. 2. Solution and error, Rice et al. problem.

accuracy and are comparable with or better than the best published results for this
particular problem. Figure 3 shows the application of the procedure to an L-shaped
domain.
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Fig. 3. Two rectangular domains overlapping into an L-shape: solution and error.
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4 Conclusions

A direct method for solution of linear elliptic problems through domain decomposi-
tion has been presented as applied to the Poisson equation. The procedure calculates
local solutions on each domain and computes connection functions as solutions to
a Cousin problem that correct for the mismatch on the internal boundaries and
overlap domains.

In regular rectangular decompositions, eigenfunction expansions for the connec-
tion boundary value problem can be calculated directly with each component sepa-
rately. In two dimensions (or more) each direction needs to be calculated successively
with subsequent Cousin problems generated after calculation of the initial connec-
tion functions. In L-shaped and more complicated domains the connection functions
can still be calculated but require full coupling of all the local eigenfunctions.

The final procedure is as accurate as the accelerated Schwarz procedure with
the order of accuracy determined by the local solution procedure. The benefit of
the procedure is the improvement in the calculation of the connection functions, di-
rectly through eigenexpansions, that is half as expensive as a second iteration of the
Schwarz procedure. Matching the solution in the overlap provides a stronger condi-
tion than transmission of boundary data. Furthermore, the procedure allows for the
computation of connection solutions in more complicated domains and successively
in two or more dimensions.
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1 Introduction

The construction of fast and reliable solvers for contact problems with friction is
even nowadays a challenging task. It is well known that contact problems with
Coulomb friction have the weak form of a quasi-variational inequality [8, 6, 15]. For
small coefficients of friction, a solution can be obtained by means of a fixed point
iteration in the boundary stresses [15]. This fixed point approach is often used for the
construction of numerical methods, since in each iteration step only a constrained
convex minimization problem has to be solved [2, 14]. Unfortunately, the convergence
speed of the discrete fixed point iteration deteriorates for smaller meshsizes. Here, we
present a new multigrid method which removes the outer fixed point iteration and
gives rise to a highly efficient solution method for frictional contact problems with
Coulomb friction and other local friction laws in two and three space dimensions.
The numerical cost is comparable to those of frictionless contact problems. Our
method is based on monotone multigrid methods, see [11], and does not require any
regularization of the non-penetration condition or of the friction law. Therefore, the
results are highly accurate. Using the basis transformation given in [16], our method
can also be applied to two body contact problems.

2 Elastic Contact with Coulomb Friction

In this section, we give the strong and the weak formulation of the contact problem
with Coulomb friction between a deformable body and a rigid foundation. We iden-
tify the body in its reference configuration with the domain Ω ⊂ R

d, d = 2, 3 . The
boundary ∂Ω is decomposed into three disjoint parts, ΓD, ΓN , and ΓC . The ac-
tual zone of contact is assumed to be contained in ΓC but is not known in advance.
We assume measd−1(ΓD) > 0 and denote tensor and vector quantities by bold
symbols, e.g., v , and the components by vi , 1 ≤ i, j ≤ d and (·),j = ∂/∂xj(·) .
The summation convention is enforced on indices 1 ≤ i, j ≤ d . We define the usual
Sobolev space of displacements with weak derivative in L

2 by H
1(Ω) := (H1(Ω))d

and set HD := {v | v ∈H1(Ω), v|ΓD
= 0} . We consider linear elastic material, i.e.,

the stresses σ = (σij)
d
i,j=1 are given by Hooke’s law σij(u) := Eijml ul,m . Here,
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Hooke’s tensor E = (Eijml)
d
i,j,l,m=1 , Eijlm ∈ L∞(Ω) , 1 ≤ i, j, l,m ≤ d is suffi-

ciently smooth, symmetric and positive definite. On ∂Ω the normal and tangential
displacements are defined by un = u·n and uT = u−un·n , where n is the outer
normal vector. Similarly, σn = niσijnj and (σT )i = σijnj − σn · n are the nor-
mal and tangential stresses, respectively. Let g : R

d ⊃ ΓC → R be a a continuous
function giving the distance to the foundation, taken in the normal direction with
respect to the reference configuration. Then, for small deformations, we can say that
the body Ω does not penetrate the rigid foundation if we have un(x) ≤ g(x) for
all x ∈ ΓC , see e.g., [8].

At the points, where the body comes into contact with the foundation, friction
may occur. Here we use the Coulomb law of friction. It states that the force, which is
needed to move a body lengthwise over a rigid foundation, is proportional to the force
pushing the body perpendicular onto the foundation. The boundary value problem
constituting the elastic contact problem with friction consists of the equilibrium
condition (1) in Ω , the boundary conditions (2) and (3) on ΓD and ΓN , the
contact conditions (5), (6) on ΓC and the Coulomb law of friction (7), (8) on
ΓC . In equations (7), (8), | · | is the Euclidean norm on R

d−1 . Here, we assume
sufficiently smooth data and for the coefficient of friction holds F ∈ L∞(ΓC) and
F ≥ F0 > 0 on ΓC .

−σij(u),j = fi in Ω (1)

u = 0 on ΓD (2)

σij(u) · nj = pi on ΓN (3)

σn ≤ 0 (4)

u · n ≤ g (5)

(u · n − g)σn = 0 (6)

uT = 0⇒ |σT | < F |σn| (7)

uT �= 0⇒ σT = −F|σn|
uT

|uT |
(8)

By (7) and (8), Coulomb’s law of friction is a local friction law, since the frictional
response at x ∈ ΓC depends only on the stress developed at x . We can divide
all points in the actual zone of contact into sticking and sliding points. A point
x is called sticky, if no tangential displacement occurs, i.e., if uT (x) = 0 . It is
called sliding, if uT (x) �= 0 . We remark, that in (8) for d = 2 and uT �= 0 , we
have uT /|uT | ∈ {−1, 1} . This is in contrast to the case d = 3 , where uT /|uT | ∈
S2 = {v |v ∈ R

2, |v| = 1} . In order to give the variational formulation of problem

(1)–(8), let us define the bilinear form a(u,v) =

Z
Ω

σij(u)vi,j dx , the linear form

f(v) =

Z
Ω

fivi dx+

Z
ΓN

pivi ds and finally the closed convex set K of admissible

displacements by
K := {v ∈HD | vn ≤ g a.e. on ΓC} . (9)

At the contact boundary the virtual work of the frictional forces is characterized by
the nonlinear and non-differentiable functional j : HD ×HD → R

j(u, v) =

Z
ΓC

F |σn(u)| |vT | ds . (10)

Using these definitions, the weak formulation of the boundary value problem (1)-(8)
is given by the quasi-variational inequality: find u ∈ K , such that

a(u,v − u) + j(u, v)− j(u,u) ≥ f(v − u) , v ∈ K , (11)
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see [3, 8, 6]. The functional j is non-convex, non-quadratic and non-differentiable.
Thus, standard methods from convex analysis cannot be applied to gain a solution
of the quasi-variational inequality (11).

3 A Multigrid Method for a quasi-variational Inequality

In [15, 6], the following fixed point iteration is considered: let u0 ∈ K be given. Then,
for k = 1, 2, . . . , compute uk as the unique solution of the variational inequality

a(uk,v − uk) + j(uk−1,v)− j(uk−1,uk) ≥ f(v − uk) v ∈ K . (12)

Setting τ = −σn(uk−1) and introducing

H
−1/2
+ := {v ∈ H−1/2(ΓC) | 〈v, w〉H−1/2×H1/2 ≥ 0 , w ∈ H1/2(ΓC), w ≥ 0} ,

(12) defines a mapping Ψ : H
−1/2
+ → H

−1/2
+ by Ψ(τ ) = −σn(uk) . This mapping

can be used to establish the existence of a solution to problem (11) by a fixed point
argument for sufficiently small F , see [15, 6]. This fixed point iteration can be used
for the numerical solution of (11), see [14, 12, 2, 5] and is also the starting point for
our method.

In this section, we present a monotone multigrid method by means of which the
variational inequality (12) can be solved efficiently. Moreover, we extend our method
in a way that the fixed point iteration is removed. The resulting multigrid method
can then be applied to the quasi-variational inequality (11) directly. In our numerical
experiments, see Section 4, this method has been shown to be an iterative solution
method for (11) with multigrid complexity.

Let (T	)L	=1 denote a family of nested and shape regular meshes with meshsize
parameter h	 . We use Lagrangian conforming finite elements S	 ⊂ HD of first
order. The set of nodes of T	 is denoted by N (	) and the nodal basis functions of S	
are {λ(	)

p }p∈N (�) . The nodes on the possible contact boundary are C(	) = ΓC∩N (	) .
As discretization of the convex set K we take

KL := {u ∈ SL | u(p)·n(p) ≤ g(p) , p ∈ C(L)} .

Note, that in general KL �⊂ K . We define the discrete normal stresses sn for u ∈ SL
on the basis of Greens theorem as the linear residual by

(sn(u))p := r(λ(L)
p · n) := a(u, λ(L)

p · n)− f (λ(L)
p · n) , (13)

cf. [6]. As discretization for the functional j we choose for u, v ∈ SL

jL(u,v) :=
X

p∈C(L)
F |(sn(u))p| |vT (p)| . (14)

Inserting the functional jL , (12) gives rise to the discrete fixed point iteration: let
u

0 ∈ SL be given. For k = 1, 2, . . . solve

a(uk,v − uk) + jL(uk−1, v)− jL(uk−1,uk) ≥ f(v − uk) , v ∈ KL , (15)

in each step of which a variational inequality has to be solved. We remark that
for the contractivity constant C of the discrete fixed point iteration (15) holds
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C = C(h) = O(h−1/2) , see [5]. Thus, the iteration process slows down for decreasing
meshsize h .

As starting point for our new multigrid method let us note that the solution
u
k of (12) can equivalently be characterized as the unique minimizer of the convex

functional

Ĵuk−1(·) = J + j(uk−1, ·) + ϕK = (
1

2
a(·, ·)− f(·)) + j(uk−1, ·) + ϕK

over HD . Here, ϕK is defined by ϕK(u) = +∞ for u �∈ K and zero for u ∈ K .
As discretization of Ĵuk−1 we choose on the basis of (14) the functional Ĵ L

uk−1 :=
J + jL(uk−1, ·) + ϕKL . Following [9, 11], we seek the minimizer of Ĵ Luk−1 over
SL by successive minimization in direction of a suitable multilevel basis. To this
end, we associate with each node p ∈ N (	) , 1 ≤ � ≤ L , the local subspace Vp =
span{λ(	)

p · e1(p), . . . , λ
(	)
p · ed(p)} . For the nodes p ∈ C(L) we choose e1(p) =

n(p) and extend e1(p) to an orthonormal basis of R
d . For all remaining nodes

we choose {ei(p)}1≤i≤d to be the canonical basis vectors of R
d and set Vp =

span{µ(	)
p,1 · e1(p), . . . , µ

(	)
p,d · ed(p)} with functions µ

(	)
p,i to be discussed later. We

moreover assume an ordering k = k(p, �) of all nodes on all levels to be given such

that k(p, r) ≤ k(q, s) implies r ≥ s for p, q ∈ N (	) , 1 ≤ � ≤ L . Now, we can
introduce the multilevel splitting

S(L) = Vp1 + · · ·+ VpnL
+ VpnL+1 + · · ·+ VpM , (16)

where we have set nL = #N (L) and the indices nL+1, . . . ,M stand for the coarse
grid corrections.

We first consider the successive minimization of Ĵ L
uk−1 with respect to the

leading subspaces Vp1 + · · ·+VpnL
. Let w0 ∈ SL be given and set w0 = w

0 . For
1 ≤ m ≤ nL , the local minimization problem: find vm ∈ Vpm , such that

Ĵ L
uk−1(vm +wm−1) ≤ Ĵ L

uk−1(v +wm−1) , v ∈ Vpm , (17)

is solved and update wm = wm−1 + vm . Setting w
1 := wnL , by this nonlinear

Gauß-Seidel method a sequence wν , ν = 0, 1, . . . , of iterates is defined which con-
verges to the unique minimizer of Ĵ L

uk−1 , see [4, 11] and [7] for a related method
using regularization. We refer to [13] for a detailed description how the local prob-
lems (17) can be solved efficiently.

The convergent but slow iteration (17) is now accelerated by additional minimiza-
tion steps in the direction of coarse grid functions with larger support. In contrast
to multigrid methods for linear problems, we cannot represent the functional Ĵ L

uk−1

to be minimized on the coarser grids and therefore have to use nonlinear coarse grid
corrections.

To this end, we introduce the smoothed fine grid iterate ūL := w
ν , which is

obtained after ν > 0 presmoothing steps of the nonlinear Gauß-Seidel method (17).
Since the functional ϕKL + jL(uk−1, ·) is non-differentiable and non-quadratic, we
restrict the coarse grid corrections to a neighborhood of the fine grid iterate ūL
where the functional Ĵ L

uk−1 is smooth, c.f. [10]. We set KūL = {ūL + v | vi ∈
[ψ
p,i
, ψp,i] , i = 1, . . . , d} . The local obstacles ψ

p,i
, ψp,i , can then be used to derive

local obstacles for the coarse grid corrections by monotone restrictions, see[11]. For
sliding nodes we set ψ

p,1
= ψp,1 = 0 and, for 2 ≤ i ≤ d , ψ

p,i
= −(ūL(p))i, ψp,i =
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+∞ , if (ūL(p))i > 0 and ψ
p,i

= −∞, ψp,i = −(ūL(p))i , if (ūL(p))i < 0 . For

sticky nodes we set ψ
p,i

= ψp,i = 0 for 1 ≤ i ≤ d . We now define on KūL the

functional
jūL(w) =

X
p∈C(L)

F |(sn(uk−1))p| |wT (p)| ,

and the quadratic energy functional J̄ L
ūL

by

J̄ LūL
=

1

2
(a(·, ·) + j′′ūL

(ūL)(·, ·))− (f(·) − j′ūL
(ūL)(·) + j′′ūL

(ūL)(ūL, ·)) .

The resulting constrained quadratic problem: find w = ūL + c ∈ KūL with

J̄ L
ūL

(w) ≤ J̄ L
ūL

(v) , v ∈ KūL , (18)

requires an minimization problem with constraints in both, normal and tangential
direction, to be solved. These constraints stem from the non-penetration condition
and the friction law, respectively. The additional minimization steps for m > nL of
our splitting (16) are now done with respect to the energy (18). In order to improve

the convergence speed of our method, we use truncated basis functions µ(	)
p , � < L ,

which depend on ūL and allow for representing the actual guessed contact boundary
on coarser grids, see [11]. The resulting multigrid method can be implemented as
a V -cycle, see [11, 12]. It does not require any regularization, neither of the non-
penetration condition nor of the functional j . Moreover, no algorithmic parameters
such as damping or regularization parameters have to be chosen. We now present
the two algorithms to be compared in the next section.

Algorithm 1 (Fixed point iteration with multigrid method)
Initialize: u

0 = 0 . for k = 1, . . . , kmax do
Find u

k ∈ KL by applying sufficiently many multigrid steps to:

a(uk,v − uk) + jL(uk−1, v)− jL(uk−1,uk) ≥ f(v − uk) , v ∈ KL.
if |sn(uk−1)− sn(uk)|/|sn(uk)| ≤ TOL break
Compute the normal stress sn(uk) as linear residual.

end

Algorithm 2 (Multigrid method for frictional contact)
Initialize: w

0 = u
0 = 0 .

Find uL ∈ KL by doing sufficiently many of the following multigrid steps:

for m = 1, . . . , nL do
Find vm ∈ Vpm , such that

Ĵ L
wm−1

(vm +wm−1) ≤ Ĵ L
wm−1

(v +wm−1) , v ∈ Vpm .

Update wm = wm−1 + vm .

end
Set ūL = wnL and compute coarse grid correction c with respect to J̄ūL

Set uL = ūL + c

Algorithm 2 constitutes our new multigrid method for the quasi-variational inequal-
ity (11). It has converged in our numerical experiments, even when the exact fixed
point iteration method failed, see Section 4.
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4 Numerical Results

In this section we present numerical results for a Hertzian contact problem in two
space dimensions. We consider a half circle in contact with a rigid foundation. The
half circle is centered at (0, 0.4) with radius 0.4 and we have chosen E = 2000
and ν = 0.28 as material parameters. We prescribe vertical displacement u(x, y) =
−0.005 at the upper boundary ΓD = {(x, y) ∈ Γ

˛̨
y = 0.4} and set ΓC = ∂Ω\ΓD

and n(p) = (0,−1)T for p ∈ C(	) . We discretize with linear and bilinear finite
elements on triangles and quadrilaterals, respectively and chose T1 as depicted
in the left of Figure 2. A multilevel hierarchy is created up to Level L = 11 by
successive adaptive refinement. We now investigate the convergence properties of
Algorithm 1 and of our Algorithm 2. In Table 1 and the right of Figure 1, the number
of outer iteration steps of Algorithm 1 is given. Here, we have set TOL = 10−9 in
Algorithm 1. As expected from the theory, for large coefficients of friction and small
meshsize parameters we have no convergence of Algorithm 1. Note, that for F = 5.0

F\#dof 94 830 4.67 44.20 334.82 F\#dof 94 830 4.67 4.420 334.82

0.08 1 5 6 6 6 1.1 1 6 10 16 18

0.4 1 5 10 10 10 2.0 1 6 8 19 33

0.7 1 5 8 12 13 5.0 1 2 2 NC NC

0.9 1 6 9 15 15 8.0 1 2 2 NC NC

1.0 1 6 10 10 16 40.0 1 2 2 NC NC

Table 1. Number of exact fixed point iterations on Level � = 3, 5, 7, 9, 11.

our multigrid method 2 converges even for small meshsizes. In order to compare the
total amount of work needed using Algorithm 1 and Algorithm 2, respectively, we
compare the total number of V - cycles needed to obtain a solution of (12) on
each level. For the fixed point iteration we add the number of V -Cycles in each
iteration step per level. For our multigrid method we simply take the total number
of iterations. In both cases the iteration is stopped, if for two consecutive iterates
u
ν ,uν+1 holds ‖uν − ũν+1‖a ≤ 10−11 with ‖u‖2a = a(u,u) . As starting value we

always use u0 = 0 . As can be seen from the left picture in Figure 1, our method 2
shows multigrid efficiency (solid line) and is of much higher efficiency than the fixed
point iteration (dashed line). The number of needed V -cycles for our method 2 is
independent of h . Finally, the middle picture of Figure 2 shows the tangential and
normal stresses (larger values) for F = 0.4 . As can be seen, sliding and sticky nodes
are clearly identified by our method. The implementation of our method is in the
framework of the FEM-toolbox UG, see [1] and is also applicable to complicated
geometries and unstructured grids, as can be seen in Figure 2. As 3d example,
here the displacements of a deformed cork in frictional contact with a surrounding
bottle, are shown. The reference configuration is the transparent surface. For a more
detailed discussion and elastic contact we refer to [13].
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Fig. 1. Left: comparison of exact fixed point iteration Algorithm 1 and multigrid
method Algorithm 2. Right: behavior of the fixed point iteration
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Summary. The paper analyzes the approximation of the weak continuity constraint
in the mortar method, and provides error estimates in the L2 -norm and H1 broken
norm for generic discretization spaces, treating the presence of cross-points in the
geometrical decomposition.

1 Introduction

The mortar element method is a nonoverlapping nonconforming domain decom-
position technique for solving PDEs that weakens the continuity constraint of the
solution by allowing jumps across the interfaces of the subdomains. Recently it has
become of great interest especially for its flexibility in allowing the coupling of dif-
ferent physical models, the use of different discretization schemes and nonmatching
grids at the interfaces of the decomposition. An important aspect of such a technique
is related to the implementation of the weak constraint across the interfaces. It is in
fact well known that the exact computation of the integrals appearing in the jump
condition can give rise to nontrivial problems when discrete functions defined on
nonmatching grids are involved or when totally heterogeneous discretization spaces
are used (as in the case of the wavelet/finite element coupling [2]).
A possible remedy is the use of quadrature formulas to evaluate such integrals. How-
ever it has been shown in [4] that if quadrature formulas based on the master or on
the slave side of the interface are used, the results are not optimal in terms of the
best approximation error and the consistency error respectively. In [6] the authors
propose to overcome the above problem by adopting a Petrov-Galerkin approach,
namely by choosing a test space in which the quadrature formula is different from
the one considered in trial space, and show numerical optimal results. On the other
hand, the idea introduced in [2] consists in replacing the classical jump constraint
by an approximated one where the trace on the master edge is replaced by its pro-
jection on a suitably defined auxiliary space. Even if this last approach can be more
expensive (the computation of the auxiliary projection requires the solution of a
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linear system), it allows us to derive a rigorous analysis of the error and turns out
to be applicable in a more general framework than the finite element method. More-
over, in [1] the authors show that the new technique provides an approach to the
programming of nonconforming domain decompositions which allows us to create a
flexible, easily extendible and usable code. In particular, it is important to point out
that, by following the new approach, the introduction of a new type of discretization
in an existing program does not require any modification to the pieces of the code
already implemented: the programmer should only implement methods of integrat-
ing trace functions with functions belonging to the auxiliary space. This is unlike
the classical mortar approach, where the realization of the jump condition requires
the integration of trace functions with functions belonging to all of the types of
the discretizations already in the code. In fact, whatever the exact computation of
the integrals or the use of quadrature formulas one decides to use, the programmer
should be somewhat familiar with all the libraries implementing the discretizations
already in the code, entering and modifying the existing methods with the risk of
breaking portions of the code.

We present here an analysis of the mortar method with the introduction of the
approximate constraint in a general context, when generic approximation spaces are
involved in each subdomain of the decomposition of Ω ⊂ R2 , providing L2 -norm
and H1 broken norm error estimates and we show some numerical results comparing
the new technique with the classical mortar approach. The extension of such results
to the three dimensional case is a work in progress.

2 The Mortar method with approximate constraints

We introduce the mortar method through a very simple model problem, namely the
Poisson equation, referring to [5] for more details and for proofs of the main results
that we will recall throughout the section.

Let Ω ⊂ R2 be a polygonal domain, and consider the following elliptic problem:
given f ∈ L2(Ω) , find u : Ω−→R such that

−∆u = f, in Ω u = 0, on ∂Ω. (1)

Let Ω =

L[
	=1

Ω	 , be a fixed decomposition of Ω as the disjoint union of L polygonal

subdomains Ω	 and set Γ	,	′ = ∂Ω	 ∩ ∂Ω	′ , and S = ∪Γ	,	′ . We denote by γ
(i)
	

the i -th side of the � -th domain, so that we can write ∂Ω	 =
[
i

γ
(i)
	 . We do not fix

a priori any restriction on the number of the sides of each polygon, and we assume
that the decomposition is geometrically conforming, that is each edge γ

(i)
	 coincides

with Γ	,n(= ∂Ω	 ∩ ∂Ωn) for some n , 1 ≤ n ≤ L .
For each � , let V	h be a family of finite dimensional subspaces of H1(Ω	)∩C0(Ω̄	) ,
depending on a parameter h = h	 > 0 and satisfying homogeneous boundary

conditions on ∂Ω ∩ ∂Ω	 , and denote by Xh =
LY
	=1

V	h .
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According to the mortar approach, in order to impose weak continuity to the solution
across the interfaces of the decomposition, we start by choosing the nonmortars (or

slave) sides γ(k)
n . More precisely, since each edge of the conforming decomposition

coincides with the intersection of two adjacent subdomains, it is possible to write
that γ(k)

n ≡ γ(i)
	 ≡ Γ	n for some indices � and i . Then we choose one side (say

γ
(i)
	 ) as the master side and the other as the slave side of the common edge Γ	n ,

the intersection of the two adjacent master subdomain Ω	 and slave subdomain
Ωn respectively. Moreover, in order to simplify the notations, we use the compact
index m = (n, k) to signify that the integer m is related to the slave side of the
interface. Therefore we can rewrite the decomposition of the skeleton as follows:

S =
[
m

γm with γm ∩ γm′ = ∅.

For v ∈
Y
	

H1(Ω	) , let us denote by v+ and v− the two L2(S) functions

whose restriction to each edge of the skeleton coincides with the trace on that
edge corresponding to the master and to the slave subdomain respectively: v+|γm

=

v	|γm
and v−|γm

= vn|γm
. On each slave side γm we define a multiplier space

Mm
h ⊂ L2(γm) and we introduce the following weak continuity constraint which

appears in the classical mortar approach:Z
S

(v+ − v−)λds = 0, ∀λ ∈Mh ∼
Y
m∈I

Mm
h . (2)

As already pointed out in the introduction, an important aspect of the mortar tech-
nique is related to the implementation of the weak constraint (2) across the inter-
faces. The problem arises when, within the jump condition, one has to compute the

integrals

Z
γm

v+|γm
λm for each interface when v+|γm

and λm belong to different

types of discretization. It is in fact well known that the exact computation becomes
extremely technical when the intersections of the supports of unrelated triangular
meshes have to be computed and when totally heterogeneous functions are involved.
It can happen that the integral of the product of unrelated functions cannot be com-
puted exactly, as in the coupling of wavelets and finite elements. The idea proposed
in [2] consists in replacing the classical jump constraint by an approximate one where
the trace on the master edge v+ is substituted by its projection on a suitable chosen
auxiliary space. More precisely, on each slave side γm let us introduce an auxiliary
space Uδ,m ⊂ L2(γm) depending on a parameter δ = δm . For all ζ ∈ L2(γm) , let
Pm(ζ) ∈ Uδ,m be the unique element of Uδ,m such thatZ

γm

Pm(ζ)η ds =

Z
γm

ζη ds, ∀η ∈ Uδ,m, (3)

and let us define the projection operator P : L2(S) −→ Uδ =
Y
m∈I

Uδ,m as follows:

for ζ ∈ 2(S) , P (ζ) =
“
Pm(ζm)

”
m

, with ζm = ζ|γm
.

We remark that the auxiliary space will have to be chosen in such a way that the

integrals of the form

Z
γm

ζη ds are (easily) computable provided that ζ is any trace

function on the master side and η ∈ Uδ,m .
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Therefore, we introduce the following approximate integration

Z
S

(P (v+)− v−)λ ds = 0, ∀λ ∈Mh, (4)

where the trace on the master side v+ is replaced by its projection P (v+) . We

point out that now the problem of the computation of the integral

Z
S

P (v+)λ can

be overcome by suitably choosing the auxiliary space Uδ,m in such a way that also

the integrals of the form

Z
γm

ηλ ds are (easily) computable provided that η ∈ Uδ,m
and λ is a trace function associated to the slave side of the interface; recall that the
multiplier space Mm

h is related to the slave side. It is beyond the goal of this paper
to deal in details with the proper choice of Uδ,m . We refer to [2] for the case of the
coupling of wavelets with finite elements and to [5] for more general situations.
Let now X ∗

h = {vh ∈ Xh, s.t. (4) holds} be the discrete constrained space. We
consider the following problem:

Problem 1. Find uh ∈ X ∗
h , such that for all vh ∈ X ∗

h ,

LX
	=1

Z
Ω�

∇uδ∇vδ =

Z
Ω

fvh.

We remark again that Problem 1 is derived from the classical method by simply
replacing the jump condition (2) with (4). Moreover, even if this last approach re-
quires the solution of a linear system for the computation of the auxiliary projection,
thus resulting in more expense compared with other possible solutions, it allows us
to derive a rigorous analysis of the error and it turns out to be applicable in a more
general framework than the finite element method. In particular, in [5] we show error
estimates for Problem 1 for generic choices of discretization spaces. We recall here for
completeness the main result, referring to that paper for more details. Introducing
the notation

• ‖ · ‖s,∗ =
“X

	

‖ · ‖2Hs(Ω�)

”1/2

is the broken Hs− norm for s ≥ 1 ,

• is the discretization parameter acting as “mesh sizes” on γm ,
• ĥ = max

m
{}, ȟ = min

m
{}, δ̂ = max

m
{δm}, δ̌ = min

m
{δm},

and denoting by H = max{ĥ, δ̂} and h = min{ȟ, δ̌} , let uh be the approximate
solution of (1), and u is the exact solution of (1) assuming u ∈ Hs(Ω) for some
s > 1 . Under suitable and fairly standard assumptions on the multiplier space and
on the approximation and auxiliary spaces, the following error estimates holds:

‖u− uh‖1,∗ � (1 + |log2h|)Hs−1‖u‖s, ‖u− uh‖0,Ω � (1 + |log2h|)Hs‖u‖s.

We remark that in the analysis we use the trace norm H1/2 on the interfaces. This
gives rise to the logarithmic factor in the estimates (when cross-points/wire basket
are present in the decomposition), but allows us to apply the analysis in a general
framework (even when non mesh-dependent spaces as in [3] are involved). Moreover,
in the geometrically conforming case, we still get an optimal error estimate (see [2]).
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2.1 Numerical results

We conclude the presentation of the method by showing some numerical applications.

Wavelet/finite element coupling

We recall that our approach allows us to overcome one of the drawbacks of wavelet
type methods, which perform in a very promising way on academic examples, but
whose application to real life problems is seriously limited by the issue of geometry
(tensor product-like domains). Moreover, in the wavelet/FEM coupling it is not
possible to compute exactly the integral of a wavelet type function times a piecewise
polynomial defined on an unstructured grid since wavelets are (in general) not known
in closed form. Therefore we apply the technique proposed in this paper and we show
some examples of the numerical solution of the Poisson problem (1) when the domain
Ω is the reference square [0, 1]2 containing holes in different numbers, shapes and
positions. Triangular meshes are used to describe the profiles of the holes, so that
finite element type discretizations are used in the corresponding subdomains, while
wavelet analysis is performed in the presence of tensorial-type meshes (subdomains
without holes) (see Figures 1 and 2).

Coupling finite elements with nonmatching grids

In this section, we test the influence of the parameter δ ( δ being the step of a
uniform mesh defined on the auxiliary space Uδ,m ) on the behavior of the numerical
solution when nonmatching finite element meshes are considered at the interface of
the decomposition. In doing this, we compare the classical mortar method and the
new technique with the approximate constraint. We recall that the two approaches

differ in the computation of the integrals

Z
γm

v+|γm
λm that appear in the constraint:

such quantities are computed exactly in the first approach while they are replaced

by

Z
γm

Pm(v+|γm
)λm in the second one. To fix the ideas we consider a decomposition

of Ω = [0, 1]2 into two rectangles Ω1 = [0, .5] × [0, 1] and Ω2 = [.5, 1]× [0, 1] and
finite element approximations in both. We always refer to the model problem (1),
where the right hand side f is chosen in such a way that the exact solution (plotted
in Figure 3) is given by

u(x, y) = x(1− x)y(1− y)cos(50(x− .5)y).

Table 1 shows the L2− norm and the H1− seminorm of the error between the
approximate and the exact solution when exact integrals are used in the cases of
256 × 256 and 1024 × 1024 number of nodes. Table 2 shows the behavior of the
errors for both cases with respect to different values of the parameter δ . In Table
3 we now compare the error behavior of the two methods (the classical approach
and the approximate constraint) for different choices of the meshes and for values
of the mesh size of the auxiliary space, δ = hτ , where h is the maximum mesh
size on the master and slave side of the interface. Normally τ < 1 is suitable which
allows us to balance the approximation error associated to each subdomain and the
contribution that corresponds to the introduction of the auxiliary projection.
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Fig. 1. A 2× 2 D.D.: the unit square contains two circular holes in the second and
fourth subdomains. Wavelets of level j = 4 in the first subdomain and j = 5 in the
third one while finite elements defined on unstructured meshes are used in the other
subdomains.

Table 1. Global error in the L2− norm and H1− seminorm with respect to the
number of nodes with exact computation of integrals.

Nodes L2−norm H1−seminorm

256× 256 0.00201031 0.00204565

1024× 1024 0.000503404 0.000511633
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Fig. 2. (a): A 3 × 1 D.D. The domain contains two holes, the first having a wing
profile shape and the second a circular shape. Wavelet discretization space is used
in the third subdomain.

Table 2. Behavior of L2− norm and H1− seminorm of the error with respect to
the parameter δ for the approximate integration.

Nodes: 256× 256 Nodes: 1024× 1024

L2−norm H1−seminorm L2−norm H1−seminorm

δ Approx. integr. Approx. integr. δ Approx. integr. Approx. integr.

1/8 0.00245223 0.0170961 1/24 0.000503542 0.000550747

1/10 0.00203049 0.00363632 1/26 0.000503434 0.00051738

1/12 0.00201145 0.00212979 1/28 0.000503409 0.000512209

1/14 0.00201035 0.00204711 1/30 0.000503404 0.000511652

1/16 0.00201031 0.00204565 1/32 0.000503404 0.000511633

1/18 0.00201032 0.00204616 1/34 0.000503404 0.000511644

1/20 0.00201043 0.00205476 1/36 0.000503406 0.000511837

1/30 0.00201031 0.00204575 1/40 0.000503419 0.000516155
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Fig. 3. Analytical solution

Table 3. Comparison between exact and approximate integration

L2−norm L2−norm H1−seminorm H1−seminorm

Nodes Exact integr. Approx. integr. Exact integr. Approx. integr.

100 × 64 0.00151034 0.00151044 0.123656 0.123657

100 × 225 0.001484 0.00148373 0.121936 0.121938

256 × 289 0.000989383 0.000989398 0.0509703 0.0509703

256 × 361 0.000986929 0.000986939 0.0508623 0.0508626

529 × 441 0.000580285 0.000580295 0.0254181 0.0254184

729 × 625 0.000441467 0.000441472 0.0185628 0.018563

729 × 841 0.000439254 0.000439258 0.0184722 0.0184726
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2.2 Conclusions

We conclude with some remarks on coupling of finite elements with nonmatching
grids in the three dimensional case. By replacing the exact computation of the
integral appearing in the jump constraint by an approximate one avoids the difficult
task of coding the intersections of the supports of discrete functions living on different
meshes of the (bi-dimensional) interfaces. A possible remedy can be to choose Q1

elements on quadrilateral meshes for the auxiliary space Uδ and the numerical
tests performed for the 2D case suggest that the mesh size δ can be chosen coarser
than the coarsest of the mesh sizes of the approximation spaces involved in the
subdomains. Moreover, the new technique allows us to handle the approximation
spaces quite independently from the implementation point of view. The introduction
of a new discretization in an existing code turns out to be particularly easy and
does not require any modification to the methods already implemented, which is an
essential feature of a well designed library.
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1 Introduction

The objective of this paper is to present some numerical schemes for the time inte-
gration of parabolic problems that can recover from a failure of the computer system.
We construct an algorithmic solution of the problem in the context of domain de-
composition and distributed computing.

Our model problem is the heat equation:

∂u

∂t
= ∆u + F (x, t), (x, t) ∈ Ω × (0, T ), u|∂Ω = g(x), u(x, 0) = uo(x). (1)

We suppose that the time integration is done by a first order implicit Euler scheme,

Un+1 − Un
dt

= ∆Un+1 + F (x, tn+1), (2)

and that Ω is partitioned into N subdomains Ωj , j = 1..N . These subdomain
problems are distributed among N Processing Units (PUs) or computers. We an-
ticipate that one or several PUs may stall or get disconnected. We complement
the distributed architecture of these N PUs, with S additional PUs called spare
processing units.

The problem in designing a Fault Tolerant (FT) code that can survive several
failures of PUs decomposes as follows:

• (Pb 1) to guarantee that if one or several PUs get disconnected the code can
still be executed.

• (Pb 2) to provide an algorithm that can restart the time integration from the
data that are available in the distributed memory or file system.

While FT is not so critical for a standard application running for few hours on
a medium scale parallel system, it becomes a real issue for long time runs on a large
system or a grid computing architecture. In both cases the probability of failures
of computing units becomes almost certain, and parallel input/output are not as
efficient as ordinary check point procedures may require.

Pb1 is solved by middlewares, like FT-MPI [3, 4] for example, which ensure that
the application continues while some processors have failed. On the other hand, the
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application should be FT as well because these middlewares do not guarantee to get
the correct numerical solution after a failure.

In this paper we focus on the design of numerical algorithms that solve (Pb2)
without using global check pointing.

Global checkpointing does not scale on large parallel system and is impracti-
cal on a grid of computers. Indeed, as the number of nodes and the problem size
increases, the cost of checkpointing and recovery increases, while the mean time
between failures decreases.

The approach we have taken is as follows: spare processors are used to efficiently
store the subdomain data of the application during execution in local asynchronous
mode in their local memory. In case of failure, a spare processor takes over for the
failed processor without the entire system having to roll back to a globally consistent
checkpoint.

The numerical problem that we address can be defined as follows:

• We assume that spare processors have stored copies of all subdomain data
U
n(j)
j , j = 1..N, in their local memory. A priori the time step n(j) �= n(k)

for j �= k.
• We look for a (parallel) reconstruction process of UM at a common time step

M ∈ (minj{n(j)}, maxj{n(j)}) , from subdomains data U
n(j)
j , j = 1..N, at

different but nearby time steps.

The code can then restart from UM . Because the time interval between two asyn-
chronous back ups is small, we are looking for a numerical procedure that is com-
pletely explicit and does not require the complexity of a standard parameter identi-
fication method.

In the next section, we will discuss several algorithmic ideas to solve this problem.

2 Fault Tolerant Algorithms

For the simplicity of the presentation, we will restrict ourselves to the one dimen-
sional heat equation problem Ω = (0, 1), discretized on a regular Cartesian grid:

Un+1
j − Unj
dt

=
Un+1
j+1 − 2Un+1

j + Un+1
j−1

h2
+ Fn+1

j , (3)

and we assume that dt ∼ h.
However, most of the ideas presented here could be generalized easily to higher

space dimension. We will review, one by one, a few numerical methods to reconstruct
a uniform approximation of UM , from disparate data Un(j) in each subdomain Ωj .

2.1 Interpolation method

Let M =
1

N
Σj=1..N n(j). We look for an approximation of UMj in Ω . We assume

that we have at our disposal Un(j) and Um(j) at two time steps n(j) < m(j), in
each subdomain Ωj .

Then, if ||Un(j) − Um(j)||Ωj is below some tolerance number, we may use a

second order interpolation/extrapolation in time to get an approximation of UM .
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The numerical error should be of order ((m(j)− n(j))dt)2. This simple procedure
reduces the accuracy of the scheme and introduces small jumps at the interfaces
between subdomains. This method is perfectly acceptable when one is not inter-
ested in accurately computing transient phenomena. However, this method is not
numerically efficient in the general situation.

2.2 Forward Time Integration

Let us assume that for each subdomain, we have access to Un(j) . For simplicity
we suppose that n(j) is a monotonically increasing sequence. We further suppose
that we have stored in the memory of the spare processors the time history of
the artificial boundary conditions Imj = Ωj ∩ Ωj+1 for all previous time steps
n(j) ≤ m ≤ n(j+ 1). We can then reconstruct with the forward time integration of

the original code, the solution Un(N), as follows:

• Processor one advances in time un1 from time step n(1) to time step n(2) using
boundary conditions Im1 , n(1) ≤ m ≤ n(2).

• Then, Processors one and two advance in parallel un1 and un2 from time step
n(2) to n(3) using the interface conditions of neighbors, or the original interface
solver of the numerical scheme.

• This process is repeated until the global solution un(N) is obtained.

This procedure can easily be generalized in the situation of Figure 1 where we
do not assume any monotonicity on the sequence n(j). The thick line represents
the data that needs to be stored in spare processors, and the interval with circles
are the unknowns of the reconstruction process.

The advantage of this method is that we can easily reuse the same algorithm as in
the standard domain decomposition method, but restricted to some specific subsets
of the domain decomposition. We reproduce then the exact same information UM

as if the process had no failures. The main drawback of the method is that saving the
artificial boundary conditions at each time step may slow down the code execution
significantly. To illustrate this difficulty, we have implemented a 3D benchmark code
with a very simple explicit/Implicit domain decomposition procedure for (1). We
refer to [1] for a more sophisticated method along these lines. We use a Krylov
method to make the time stepping implicit for each domain and impose explicitly
the boundary values on the artificial boundaries. The domain of computation Ω =
(0, 1)3 is distributed on a two dimensional grid of px × py processors. This two
dimensional grid is extended with an additional row of px spare processors.

We have implemented a totally asynchronous back up of the subdomains every
K time steps. We have also the option to back up in addition all two dimensional
artificial interfaces generated in the sequence of K − 1 consecutive time steps in
between two back ups of all subdomains. The communication between active pro-
cessors and spare processors is done by non-blocking communication, and the back
up data are small enough to fit in the main memory of the spare processors.

Figures 2 and 3 report on a numerical experiment with 36 PUs and 6 spare
processors on two different architectures. Each processor has a block of 18 × 18 ×
98 grid points. The first system used in figure 2 is a Beowulf cluster with dual
AMD 32 bit processors and a gigabit ethernet network, while the second system
used in figure 3 is a dual Itanium cluster that has a Myrinet network. While the
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Fig. 1. Illustration of the reconstruction procedure with the forward method.
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penalty to back up the subdomain on spare processors is particularly high with
the system that uses a Gigabit ethernet, it can be seen that saving the artificial
boundary conditions in every time step significantly slows down the application on
both computer architecture systems.

We will now discuss a reconstruction method that produces an approximate
solution without using the time series of artificial boundary conditions.
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2.3 Backward Integration and Space Marching

Let us suppose now that we asynchronously store only the subdomain data, and not
the chronology of the artificial interface condition. To be more specific, we suppose
that we have access for each subdomain to the solution at two different time steps
n(i), m(i) with m(i)− n(i) = K >> 1.

The Forward Implicit scheme provides an explicit formula when we go backwards
in time:

Unj = Un+1
j − dt

Un+1
j+1 − 2Un+1

j + Un+1
j−1

h2
− Fn+1

j , (4)

The existence of the solution is granted by the forward integration in time. A first
difficulty is the instability of the numerical procedure and a second is the fact that
one is restricted to the cone of dependence as shown in Figure 4.

Fig. 4. Illustration in one space dimension of the problem with the third solution.

We have in Fourier modes

Ûnk = δk Û
n+1
k ,

with

δk ∼ −
2

h
(cos(k 2 π h)− 1), |k| ≤ N

2
.

The expected error is at most on the order
ν

hK
where ν is the machine precision

and K the time step. Therefore, the backward time integration is still accurate up
to time step K with

ν

hK
∼ h2.

To stabilize the scheme, one can use the telegraph equation that is a perturbation
of the heat equation:
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ε
∂2u

∂t2
− ∂

2u

∂x2
+
∂u

∂t
= F (x, t), x ∈ (0, 1), t ∈ (0, T ) (5)

The asymptotic convergence can be derived from [2] after time rescaling. The general
idea is then to use the previous scheme (4) for few time steps and pursue the time
integration with the following one

ε
Un+1
j − 2 Unj + Un−1

j

d̃t
2

− U
n
j+1 − 2 Unj + unj−1

h2
+
Un+1
j − Unj
d̃t

= Fnj . (6)

Let us notice that the time step d̃t should satisfy the stability condition d̃t < ε1/2h.
We take in practice d̃t = dt/p where p is an integer. The smaller ε , the more
unstable the scheme (6) and the flatter the cone of dependence. The smaller ε ,
the better the asymptotic approximation. We have done a Fourier analysis of the
scheme and Figure 5 shows that there is a best compromise for ε to balance the
error that comes from the instability of the scheme and the error that comes from
the perturbation term in the telegraph equation. We have obtained a similar result

Fig. 5. Stability and error analysis with Fourier

in our numerical experiments.
To construct the solution outside the cone of dependencies we have used a stan-

dard procedure in the inverse heat problem, the so called space marching method [5].
This method may require a regularization of the solution inside the cone using a con-
volution

ρδ ∗ u(x , t),
where
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ρδ =
1

δ
√
π

exp(− t
2

δ2
).

The following space marching scheme:

Unj+1 − 2 Unj + Unj−1

h2
=
Un+1
j − Un−1

j

2 dt
+ Fnj , (7)

is unconditionally stable, provided δ ≥
r

2 dt

π
.

The last time step Un(i)+1 to be reconstructed uses the average

Un(i)+1 =
Un(i) + Un(i)+2

2
.

We have observed that filtering as suggested in [5] is not necessary in our reconstruc-
tion process. Figure 6 illustrates the numerical accuracy of the overall reconstruction
scheme that combines (4) and (7) for Ω = (−π, π), dt = h = 0.0314, K = 7 and

F is such that the exact analytical solution is cos(q1 x)(sin(q2 t)+
1

2
cos(q2 t)), q1 =

2.35, q2 = 1.37. In this specific example our method gives better results than the in-
terpolation scheme provided that K ≤ 7. For larger K we can use the scheme (6)
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Fig. 6. Numerical accuracy of the overall reconstruction scheme

for time steps below m(i) − 7. However the precision may deteriorate rapidly in
time.
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3 Conclusion

We have presented the problem of FT algorithm for a parabolic operator. We have
reviewed several procedures to reconstruct the solution in each subdomain from
a set of subdomain solutions given at disparate time steps. This problem is quite
challenging because it is very ill posed. We have found a satisfactory solution by
combining explicit reconstruction techniques that amounts to a backward integration
with some stabilization terms and space marching. We are currently applying these
ideas to multi-dimensional parabolic problems.

Acknowledgment. Research reported here was supported by Award 0305405 from
the National Science Foundation.
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Summary. Elliptic problems with multiscale coefficients have been studied to a
great extent recently. Preconditioners based on standard domain decomposition
methods often perform poorly when the variation of the coefficients inside the sub-
domains is large. In this paper we study the behaviour of domain decomposition
methods based on linear coarsening for such problems and we also propose improved
methods which use the notion of multiscale finite elements to define coarsening op-
erators.

1 Problem Description

Typical examples of elliptic multiscale problems occur among others in fluid flow
in strongly heterogeneous media or heat conduction in composite media. Let us
therefore consider the second order partial differential equation of Poisson type

−∇.α( x )∇u( x ) = f( x ) for x ∈ Ω, (1)

with Ω ⊂ R
d , where α( x ) is the conductivity, which for simplicity is assumed to

be scalar valued, symmetric and positive, but which is allowed to vary very strongly,
typically as much as max

x , y ∈Ω
(α( x )/α( y )) ∼= 109 . Furthermore we assume Ω to

be an interval for d=1, a polygon for d=2 and a polyhedron for d=3. We consider
the Dirichlet problem with u( x ) = 0 for all x ∈ ∂Ω , the boundary of Ω .
Closely related problems occur in the modeling of groundwater flow. Due to the
difficulties in capturing the heterogeneity of rock formations and significant uncer-
tainties away from the limited number of possible observation points, the perme-
ability field, which is the (often strongly varying) multiscale field in this applica-
tion, is then modeled stochastically, and in this case we consider a lognormal model
α ( x ) := exp (Z ( x )) , where Z ( x ) is a Gaussian random field. Using Monte Carlo
Methods on a large sample of reasonable realisations of these fields usually leads to
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good numerical results for u .
For physical and practical reasons (see [3]) fields Z( x ) of Ornstein-Uhlenbeck type,
i.e. statistically homogeneous isotropic Gaussian random fields with constant mean,
variance σ2 , correlation length λ and covariance function

Σ ( x , y ) := σ2 exp {| x − y | /λ} , (2)

are considered.
We now discretise (1) using linear finite elements on a uniform triangulation of
Ω with element diameter of order h , where the step size is in practice chosen so
that λ = Ch , for C moderate, e.g. C ≈ 10 (see Figure 1), to achieve an accuarate
resolution of the problem without upscaling. Dark regions in these pictures represent
areas with high permeability, etc.. The exact values depend on the variance σ2 . For
large λ the local variation of the field is reduced in general.

Fig. 1. Dependence on the correlation length λ on domain [0, 128h]2 .
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Now let α be a fixed realisation of this random field and let A(α) be the corre-

sponding stiffness matrix with entries Aij(α) :=

Z

Ω

α∇φi.∇φj , where {φi} are the

piecewise linear nodal basis and let A(1) be the stiffness matrix corresponding to
a field with α( x ) = 1 for all x ∈ Ω . Then it can easily be shown that

κ (A(α)) ≤ max
x , y ⊂Ω

(α( x )/α( y )) · κ (A(1)) , (3)

where κ denotes the condition number.
Therefore the convergence of iterative methods, like the conjugate gradient method,
depends on the global ratio of the coefficient α and can be very slow for strongly
varying α .

2 Linear Interpolation Domain Decomposition

The previous observations make it important to find a good preconditioner for the
stiffness matrix A(α) and we first of all study an additive Schwarz domain decom-
position method with linear coarse space. We therefore introduce a coarse grid of size
H , which defines triangular subdomains, Ki , that we extend to p overlapping re-
gions, K̂i , i = 1, ..., p , with overlap δ , such that the subdomains consist of unions
of fine grid elements. Now let Ri be the local restriction of a vector defined for the
degrees of freedoms (dof) on the fine mesh to the dof in the interior of K̂i and let

Ai := RiAR
T
i . Also let

n
x H
j : j = 1, ..., nc

o
be the set of coarse grid freedoms.

Furthermore let
n
φHi

o
be the set of linear interpolation functions with respect to

the coarse grid, such that φHi ( x H
j ) = δij , where δij denotes the Kronecker delta.

Using these functions we introduce an interpolation map RTL :=
h
φ
H
1 , ...,φ

H
nc

i
,

where for i = 1, ..., nc , φHi is the vector of evaluations of φHi at the fine grid
freedoms. Finally set AL := RLAR

T
L .

We can then show (using ideas discussed for example in [4], [2] and [8]), that
for the two level linear interpolation additive Schwarz preconditioner M−1

L :=
pX
i=0

RTi A
−1
i Ri +RTLA

−1
L RL , there exists a constant C , such that

κ
`
M−1
L A

´
≤ C ·B(d) ·max

i
max

x , y ⊂Ki

(α( x )/α( y ))
`
1 + δ−1H

´
, (4)

where B(1) = 1 , B(2) = (1 + log(H/h)) and B(3) = H/h .
When α is moderately varying, better estimates which avoid the dependence on
H/h can be derived (see [8]). In general, for a medium or large correlation length
λ , the dependence on α in (4) may be much better than in (3), since the subdo-
main ratios max

i
max

x , y ⊂Ki

(α( x )/α( y )) can be much smaller than the global ratio

max
x , y ⊂Ω

(α( x )/α( y )) (cf. Fig. 1). Further details can be found in [7].
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3 Multiscale Interpolation Domain Decomposition

Estimate (4) still grows linearly with the global maximum ratio of permeability val-
ues over all subdomains. This can be improved by replacing the linear interpolation
by a more suitable operator. For this we use ideas from multiscale finite elements
(MsFE) (see [5] and [6]). However we apply them as a way of improving solvers
rather than improving accuracy. A similar motivation is discussed in [1]. The basic
idea behind this is to use the fine scale structure of the problem in the construction
of the coarse grid basis functions, which will then improve the coarse grid solves.
For a typical triangular coarse grid element K with nodes x K

j , j = 1, 2, 3 , we

compute multiscale basis functions ψKj on the subdomain K by solving the partial
differential equations

−∇.α( x )∇ψKj ( x ) = 0 for x ∈ K, (5)

where we force a Dirichlet boundary condition on ψKj with ψKj ( x H
i ) = δij and

fix the behaviour of ψKj on the other parts of the boundary as discussed below.

In practice ψKj is approximated by the finite element method on the fine mesh
contained inside K .

Fig. 2. Values of H
˛̨
˛∇ψK3 ( x )

˛̨
˛ evaluated on the fine grid elements of subdomain

K for one multiscale basis function with α = 106 on the marked element in the
centre and α = 1 everywhere else.

In fine grid elements where the permeability is high the corresponding multiscale
basis function will have a smaller gradient. This behaviour is illustrated in Fig. 2,
where j = 3 and the permeability is taken as α = 106 on one element and 1
on all the others. The ψKj are then combined to define nodal basis functions ψi ,

i = 1, ..., nc , which are defined on all of Ω with ψi
“

x H
j

”
= δij , j = 1, ..., nc , and

ψi|K is a linear combination of the ψKl , l = 1, 2, 3 .
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We then replace the linear interpolation map RTL by a multiscale interpolation map
RTMs := [ψ1, ...,ψnc ] , where each ψi is a vector of evaluations of ψi at the fine
grid nodes. The choice of the boundary condition in (5) can be very important. The
simplest choice is to interpolate linearly between the the values ψj( x H

i ) = δij on
the edges of K . Numerical results show, that these linear boundary conditions per-
form very well for small variance σ2 . However for large variance the performance
can be improved by using so called oscillatory conditions as introduced in ([5], pages
172-173). Solving problems on extended subdomains, so called oversampling (useful
for improving accuracy, see [5]), has not been found experimentally to improve the
convergence rate significantly.
The new two level multiscale interpolation additive Schwarz preconditioner is now

given by M−1
Ms :=

pX
i=0

RTi A
−1
i Ri +RTMsA

−1
MsRMs .

We compare the performance of this preconditioner with that of a standard lin-
ear two-level additive Schwarz preconditioner. Consider therefore a simple two-
dimensional problem on [0, 1]2 on which we define a uniform triangular fine mesh of
size h and a coarse triangular mesh of size H and fix a constant (minimal) overlap
δ = 2h . The following tables then compare the iteration numbers and computation
times (in brackets; including setup time and iteration time) of the two precondi-
tioners for h = 1/128 and H = 8h , resp. H = 16h and for different variances
σ2 , where in the case of multiscale interpolation, oscillatory boundary conditions
were used for the construction of the interpolation functions. Here Table 1 is for
fields of Ornstein-Uhlenbeck type with correlation length λ = 10h and Table 2 for
completely random isotropic fields. Both tables show, that in two dimensions, espe-
cially for strongly varying fields, the multiscale interpolation brings a considerable
improvement in both iteration numbers and computation times.

Variance H = 8h H = 16h

σ2 Linear Int. Multisc. Int. Linear Int. Multisc. Int.

1 29 (90) 27 (89) 43 (175) 42 (178)
2 33 (100) 29 (93) 45 (180) 43 (180)
4 41 (118) 34 (101) 53 (199) 49 (192)
8 59 (160) 45 (127) 73 (239) 62 (214)
16 109 (277) 70 (184) 144 (388) 90 (269)
24 187 (455) 96 (245) 251 (611) 122 (342)

Table 1. Iteration numbers and computation times (in sec.) for fields of Ornstein-
Uhlenbeck type with λ = 10h .
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Variance H = 8h H = 16h

σ2 Linear Int. Multisc. Int. Linear Int. Multisc. Int.

1 29 (90) 27 (89) 32 (152) 31 (154)
2 33 (100) 29 (93) 35 (159) 34 (161)
4 49 (137) 34 (103) 44 (178) 40 (175)
8 83 (216) 54 (147) 77 (247) 53 (195)
16 181 (440) 94 (239) 163 (426) 87 (265)
24 279 (664) 118 (320) 301 (714) 129 (356)

Table 2. Iteration numbers and computation times (in sec.) for completely random
isotropic fields.

For one dimensional problems, one can show, that M−1
Ms is in fact the exact inverse of

A , when the subdomains have zero overlap. The same is true in higher dimensions,
if we replace the node based version of the multiscale preconditioner by a skeleton
based version, which means we compute a multiscale basis function ψi for every
single freedom of the skeleton (i.e. each fine grid freedom on the boundary of the
subdomains), instead of only using the basis functions corresponding to the coarse
grid freedoms. Multiscale preconditioners with complexity between the node based
and skeleton based methods and their performance are part of our current research
and will be discussed in [7].
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Summary. We present simulations of diffusion-limited transport in an initially cold
medium of two different materials subjected to an impulsive radiative load, using
a Newton-Krylov-Schwarz solver. The spatial discretization employs Galerkin finite
elements with linear piecewise continuous basis functions over simplices in 2D and
3D. Temporal integration is via a solution-adaptive implicit Euler method. The
code shows excellent domain-decomposed scalability on the Teragrid, BlueGene,
and System X platforms. Comparing implementations for this application with flop-
intensive residual evaluation, we observe that an analytical Jacobian gives better
performance (in terms of the overall execution time to solution) than a Jacobian-
free approach.

1 Diffusion-limited radiation transport

Under the assumptions of isotropic radiation with no frequency dependence, trans-
port through a material characterized by spatially varying atomic number Z and
thermal conductivity of κ can be modeled by the following coupled nonlinear equa-
tions, known as flux-limited radiation diffusion [9]:

∂E

∂t
−∇ · (DE∇E) = σa(T

4 −E),
∂T

∂t
−∇ · (DT∇T ) = −σa(T 4 − E) (1)

with

σa =
Z3

T 3
, DE(E, T ) =

1

3σa + |∇E|
|E|

, and DT (T ) = κT
5
2 . (2)

Here, E represents the photon energy density and T is the material tempera-
ture. Since the diffusion approximation can allow speeds of propagation faster than
speed of light, the above formula for diffusivity DE includes Wilson’s flux limiter
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|∇E|/|E| [9], a strongly nonlinear effect. Though simple in appearance, this is a
challenging problem when atomic number varies sharply, due to the cubic depen-
dence of the source term coefficient on Z .

2 Discretization and algorithmic setting

We employ the Galerkin finite element method using conforming linear P1 elements,
triangular for 2D and tetrahedral for 3D [5]. The diffusion coefficients, DE and DT ,
are also expanded in the element basis functions.

In this paper, due to space constraints, we present results from backward Euler
time integration only. Comparisons with various higher order time integration meth-
ods, including BDF (discussed for radiation diffusion problems in [3]) and implicit
Runge-Kutta schemes will be published elsewhere. We evolve the timestep size by
limiting the changes in the solution (point by point) according to [10]:

max

„
|Un+1 − Un|
|Un+1|

«
≤ εt. (3)

We have used εt = 0.75 in all of the computational results in this paper. We start
with a small value of δt (= 10−5) and allow it to evolve with Eqn. (3), except that
the timestep grows by no more than 20% per timestep, and an occasional “short”
step is imposed to archive the solution for visualization at regularly spaced intervals.
The timestep size evolves to about four orders of magnitude larger than the initial
timestep size towards the end of the computation, after the radiation pulse has
passed beyond the high atomic number zone.

We use the Newton-Krylov-Schwarz (NKS) algorithm [4, 7] to solve the nonlin-
ear problem arising on every timestep of the discretized form of Eqn. (1). Several
parameters of NKS must be tuned for optimal performance [4]. Our code is built on
PETSc [1]. We use a left-preconditioned inexact Newton method to solve the non-
linear problem on each timestep. The relative tolerance for the nonlinear residual
norm reduction in each timestep is 10−8 , which is far below discretization error but
within easy reach of Newton’s method. The linear problems within each Newton step
are solved using GMRES with a maximum of 80 iterations and a maximum subspace
size of 30 between restarts, or a relative reduction of the left-preconditioned residual
by three orders of magnitude. We use a block Jacobi (zero overlap) preconditioner
and map each subdomain to a single processor. Though not algorithmically scalable
for general elliptic problems, this inexpensive limit of Schwarz preconditioning is
adequate for transient problems. We use incomplete factorization (ILU) within each
subdomain and allow a single level of fill. This tuning of the NKS method follows
[4], where it was effective in overall runtime for a CFD code on a variety of message
passing architectures.

3 Results and Discussion

We present 2D and 3D test cases. The computational domain in 2D is the unit
square, with a radiation flux incident on the left boundary. The atomic number is
location dependent:
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Z(x, y) =

(
10 for

1

3
≤ x ≤ 2

3
and

1

3
≤ y ≤ 2

3
,

1 elsewhere.
(4)

The boundary conditions for the Eqns. (1) are set by imposing a constant radi-
ation field at x = 0 :

n ·DE∇E +
E

2
= 2 at x = 0 and n ·DE∇E +

E

2
= 0 at x = 1,

and n · ∇E = 0 at y = 0 and y = 1,

where n is the outward unit normal to the boundary, as in [8].
Figure 1 plots the material temperature along y = 0.5 and x = 0.5 cuts for

a large range of uniform mesh resolutions, showing asymptotic grid independence.
A sufficiently fine mesh is needed to resolve the sharp features inside and around
the interior domain of high atomic number. Time evolution of material temperature
along the same cuts is presented in Figure 2. The high- Z region at the center of
the interior domain takes longest to heat up.

Fig. 1. Material temperature at y = 0.5 (left) and at x = 0.5 (right) showing
mesh independence for the 2D test example at t = 3 .

The temperature contours showing the propagation of the thermal front from
t = 1 to t = 4 are shown in Figure 3 for the 3D case with a tetrahedral mesh
of 237,160 vertices and 1,264,086 elements. This reduces to the 2D case on z =
constant planes, as atomic number depends only on the x and y coordinates. This
permits comparison to the 2D solution, while providing a fully 3D configuration for
demonstrating scaling.

We discuss performance issues of the time-accurate NKS algorithm on the Ter-
agrid cluster (SDSC), BlueGene (Argonne), and System X (Virginia Tech). The
Teragrid cluster is made of 1.5 GHz dual Intel Madison processors, each with 4 MB
of L2 cache, and 4 GB of memory per node. The IBM BlueGene node contains dual
700 MHz processors with 4 MB shared L3 cache and 512 MB of main memory. We
do all the computations on BlueGene in the “co-processor” mode, in which one pro-
cessor of a node does communication only, since memory and memory bandwidth
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Fig. 2. Material temperature evolution at y = 0.5 (left) and at x = 0.5 (right) for
the 2D test case with 167,281 vertices and 332,928 elements.

Fig. 3. Evolution of material temperature in time for the 3D test example with
a tetrahedral mesh of 237,160 vertices and 1,264,086 elements. The top left figure
shows the temperature contours at t = 1 , the top right at t = 2 , the bottom left
at t = 3 , and the bottom right at t = 4 .
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are too limited to make effective use of both processors as floating point engines.
System X is a cluster of dual 2.3 GHz PowerPC 970FX (Apple Xserve G5) proces-
sors with 0.5 MB L2 cache. We do not discuss here the per-processor floating point
performance, though it is an important part of performance overall [4]. Though our
code scales well, it will require, as in [4], attention to ordering and blocking issues
to achieve a high percentage of machine peak on cache-based microprocessors.

3.1 Algorithmic Performance

Figure 4 shows the history of timestep size evolution according to Eqn. 3 and the
average number of linear iterations per timestep. Overall execution time is highly
sensitive to timestepping strategy for this problem. We are evaluating higher order
(BDF [2] and Implicit Runge Kutta [6]) methods from standpoints of computational
efficiency and robustness. However, scalability is not highly sensitive to choice of
timestepping scheme, so the results of this study on domain-decomposed precondi-
tioning, which cover a wide range of degree of diagonal dominance in the implicit
operator, are representative. In the right side plot of Figure 4, the number of linear
iteration count rises as the number of subdomains increases since the block Jacobi
preconditioner gets weaker as diagonal dominance diminishes for larger timesteps.

Fig. 4. Time step size history (left) and the average number of linear iterations per
timestep (right) for the 3D test case of Figure 3. (The occasional sudden drops in the
timestep size are the result of requiring visualization dumps at predefined instants
of physical time.)

3.2 Parallel Scalability

We present the execution time and parallel efficiency on up to 256 processors of
Teragrid, BlueGene, and System X in Figure 5. The base case for computing the
parallel efficiency is chosen such that the problem fits comfortably in the available
distributed memory. The code shows excellent scaling on the three machines. The
superlinear speedup on the Teragrid cluster is primarily due to the superior cache
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performance offsetting the increased communication time as the problem size per-
processor gets smaller. However, this also shows that we have room for doing more
per-processor (memory hierarchy) performance optimizations that will benefit the
base case the most. We are currently investigating these performance issues.

Fig. 5. Execution time (left) and parallel efficiency (right) on 256 processors of
Teragrid (1.5 GHz Intel Madison dual processors nodes), BlueGene (700 MHz dual
processor nodes), and System X (dual 2.3 GHz PowerPC 970FX processor nodes).

3.3 Analytical vs. Jacobian-free NKS

The diffusion-limited radiation transport equation presents challenging nonlinear
behavior. At the same time, it is easy to code the analytical Jacobian (which is
used for the preconditioning matrix, as well). The analytical Jacobian has the ad-
vantage of possibly better performance (see Table 1) but requires memory to store
the matrix explicitly. Another convenient approach is to perform the matrix-vector
products (as needed for the Krylov solver) without explicitly forming the Jacobian
matrix [7]. This has the obvious advantage of savings in the memory requirements
(though the preconditioner matrix may still need to be stored) but requires extra
function evaluations. This will compete well with the analytical Jacobian case only
when the execution time for function evaluation is significantly (perhaps an order
of magnitude) less than the time to compute the analytical Jacobian

In Table 1, we compare the performance of three choices for the time-accurate
NKS algorithm:

• analytical Jacobian computed to the same order of accuracy as the function
in every nonlinear iteration. The preconditioner matrix is chosen to be the same
as the Jacobian matrix. The computational cost of this part dominates the exe-
cution time: 62% on 256 processors of Teragrid.

• Jacobian-free matrix-vector products performed without explicitly forming the
Jacobian matrix. However, this matrix (or a cheap approximation to it) is often
needed for preconditioning purpose in every nonlinear iteration. The dominating
cost here is the function evaluation (about 48% in Table 1)
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• lagged Jacobian-free matrix-vector products performed the same way as in
the previous item but preconditioner matrix is built only once per timestep and
reused for all the linear solves with in a timestep. This saves time spent on the
preconditioner evaluation but often requires more linear and nonlinear iterations
(and thus function evaluations) than the previous choice. One can even freeze
the preconditioner evaluation for many timesteps but it should be done only
when the step size is small or when there is little change from one step to the
next.

We observe that the analytical Jacobian does the best among the three choices in
terms of the total wallclock time. The ratio of the cost of one Jacobian evaluation to
that of one function evaluation on 256 processors of Teragrid is about thirteen while
there is sixteenfold increase in the number of function evaluations for Jacobian-free
case (as compared to the analytical Jacobian case). Therefore, the Jacobian-free
approach is not competitive in the present scenario even if we assume that the time
spent on the preconditioner evaluation is negligible (which may not be the case).
However, a short code development cycle and savings in memory must often be
considered while choosing Jacobian-free versus analytical approaches.

Table 1. Performance comparison of analytical Jacobian, Jacobian-free, and lagged
Jacobian-free NKS methods. In the lagged case, Jacobian is evaluated only once per
timestep. For the 3D test of Figure 3 on 256 processors of Teragrid.

Number of Analytical Jacobian Free Lagged Jacobian-free

Time Steps 986 986 986
Nonlinear Iter 4,812 4,812 5,778
Linear Iter 92,843 92,842 92,016
Function Eval 6,140 98,982 99,146

Execution Time of Analytical Jacobian Free Lagged Jacobian-free

Function Eval 25 395 396
Jacobian Eval 254 0 0
PC Eval 0 254 52
Total 412 823 601

4 Conclusions and future work

The time-accurate NKS algorithm scales well on Teragrid, BlueGene, and System
X platforms. However, the per-processor performance needs memory hierarchy opti-
mizations. This might make the function evaluation phase relatively cheaper, which
in turn, can make the Jacobian-free approach competitive. Higher order time inte-
gration poses more difficult nonlinear systems by allowing larger timesteps, but they
can be more computationally efficient overall by completing the time marching in
fewer steps. Future work will also address more complex computational geometries
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with irregularly shaped zones of different atomic number, as often encountered in
practice.
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Summary. The parareal scheme (resp. PITA algorithm) proposed in [3] (resp. [2])
considers two levels of grids in time in order to split the domain in time-subdomains.
A prediction of the solution is computed on the fine grid in parallel. Then at each
interface between the time subdomains, the solution makes a jump between the
previous initial boundary value (IBV) of the next time-subdomain . A correction of
the IBV for the next fine grid iteration is then computed on the coarse grid in time.
In this paper, we study adaptivity in the time slice decomposition based on an a
posteriori numerical estimation obtained from the time step behavior on coarse grids.
The outline of this paper is as follows: in section 1, the original parareal method is
recalled and it is shown that it is a particular case of the multiple shooting method of
Deuflhard [1]. Then in section 2, the definition of the size of the fineness of the grids
is slightly modified in order to introduce adaptivity within the parareal algorithm
for the time stepping, the number of subdomains, and the time decomposition.
This adaptivity leads to an improvement of the method and enables us to solve
moderately stiff nonlinear ODEs problems. Nevertheless for very stiff problems as
the Oregonator model, it fails even with the introduced adaptivity. This leads to
develop in section 3 an adaptive parallel extrapolation method, based on a posteriori
numerical assessment, which obtains results for this stiff problem.

1 Parareal and the BVPSOL multiple shooting method

The principle of the parareal algorithm to solve

dy

dt
= f(y, t), ∀t ∈ Ωt =]T 0, T f ], with y(t0) = y0 (1)

1This work was funded by the thema “mathématiques” of the Région Rhône-
Alpes through 2003-2006 the project: “Développement de méthodologies mathéma-
tiques pour le calcul scientifique sur grille”. The second author is partially supported
by the GDR-CNRS MOMAS through the project: “Simulation et solveurs multido-
maines”
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consists in splitting the time domain in m time-slices
n
Si = [ti, ti+1]

o
of different

sizes with t0 = T 0 and tm = T f . Let Y i denote the values of the exact solution
of problem (1) at the beginning of the time-slice Si . The principle of the parareal
algorithm consists in defining an approximation Y i

k of these Y i on a coarse grid.
With Y i

k known, the solution yik(t) on the m time-slices Si can be computed as:

dyik
dt

= f(yik, t), ∀t ∈ Si, with yik(t
i) = Y i

k . (2)

These solutions exhibit jumps ∆i
k = yi−1

k (ti) − Y i
k , 1 ≤ i ≤ m − 1 at the time-

instances ti . A correction function ck piecewise C1 in Ωt is introduced to update
the Y i

k values with a Newton-type linearized method around yk ,

dck
dt

= Fy(yk, t)ck, with ck(t
0) = 0, and (3)

ck(t
i+) = ck(t

i−) + ∆i
k, 1 ≤ i ≤ m− 1. (4)

It exists a link between the parareal method and the multiple shooting method
(BVPSOL , [1]). As in the parareal method, the multiple shooting method uses
a Newton process to supress the jumps of the solution at the end of time slices.

If
n
T 0 = t1 < t2 < ... < tm = T f

o
where m > 2 , represents a decomposition of

the time interval and xj estimates the unknown values at the nodes tj , then the
solution with the initial value xj on the time slice Sj = [tj , tj+1] can be written as

yj(t) = Φt,t
j

xj , t ∈ Sj , j = 1, ..., m − 1 where Φt,t
j

represents the flow trajectory
starting from tj .

For the solution of the problem the sub-trajectories have to be joined continu-
ously and hence at the intermediate nodes the n continuity conditions Fj(xj , xj+1) =

Φt,t
j

xj − xj+1 = 0, j = 1, ..., m− 1 , have to hold. In addition the n boundary con-
ditions Fm(x1, xm) = r(x1, xm) = 0 must be verified.

x = (x1, . . . , xm)T ∈ Rn.m, F (x) = (F1(x1, x2), . . . , Fm(x1, xm))T (5)

The BVPSOL finds the zeros of F by means of an ordinary Newton correction

F ′(xk)δxk = −F (xk), xk+1 = xk + ∆xk, k = 0, 1, ... (6)

The corresponding Jacobian matrix has the block cyclic structure:

J = F ′(x) =

2
6664
G1 −I

. . .
. . .

Gm−1 −I
A B

3
7775 (7)

where A et B are the derivatives of the boundary conditions r with respect to
the boundary values (x1, xm) and Gj = ∂Φt,tjxj/∂xj , j = 1, ..., m− 1 .

Proposition 1. If B = 0 then one iteration of the multiple shooting method is one
iterate of the parareal algorithm in which the correction step is a purely sequential
process.
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Proof. the solution of eq (6) with the Jacobian matrix system given by eq (7) is
reduced to solving [[1],p.319]:

(a) evaluate by recursion over j = 1, . . . ,m− 1 E := A + BGm−1 . . . G1 ,
u := r + B[Fm−1 + Gm−1Fm−2 + . . . + Gm−1 . . . G2F1]

(b) solve the linear (n,n)-system E∆x1 = −u
(c) Execute explicit recursion

∆xj+1 = Gj∆xj + Fj , j = 1, . . . , m− 1 (8)

If B = 0 then E = A and u = r thus eq (8) is reduced to the parareal eq (4).

�

A simple way of transforming an IBV problem to a BVP is to consider the following
statement. Instead of considering the problem on the [0, T ] time span, one can con-
sider a time forward integration from 0 to T and then a time backward integration
from T to 0 . Then eq (7) becomes:

J = F ′(x) =

2
666666666664

G1 −I

. . .
. . .

Gm−1 −I
Ḡm−1 −I

. . .
. . .

Ḡ1 −I
A A

3
777777777775

(9)

where Ḡj is related to the integration with time step −h .

Proposition 2. Consider the IBV problem (1) with f(t, y) = −αy , α > 0 , then
the error when solving the BVP (9) with the first order Euler explicit scheme is
of the same order as the consistency error of the scheme. More precisely the error
produced at the end boundary value is of order O(h) .

Proof. The Euler forward time integration scheme on ]0, T ] with h = T/n and
IBV y0 gives y(T ) � yn = (1 − hα)ny0 then the Euler backward time integration
on ]T,0] with IBV yn gives y2n+1 = (1 + hα)nyn = (1 − (hα)2)ny0 instead of y0 .
Thus the error with the IBV y2n+1 is O(nα2T 2/n2) = O(h) when n is sufficiently
large.

�

2 Parareal revisited

Test problems with increasing stiffness

Consider three classical IBV problems with increasing stiffness to validate and to
give the limitation of the given methodologies. The first model (eq (10)) is a linear
problem with oscillations. Thus the linearization of the correction step is exact as the
jacobian matrix is constant. The second (eq (11)) is the prey-predator model with

589



David Guibert and Damien Tromeur-Dervout

the lotka-Volterra 2 × 2 system of nonlinear ODEs. One can increase the solution
oscillations by playing with the multivalued parameter µ . The third ((eq (12)), is
the Oregonator model with a 3 × 3 system of nonlinear ODEs associated with the
Belousov-Zhabotinskii (BZ) reaction. This problem can be very stiff for some ranges
of the parameter µ . 

dx/dt = −µ1x + µ2y
dy/dt = µ3x + −µ4y

(10)
dx/dt = µ1x− µ2xy
dy/dt = µ3y − µ4xy

(11)8<
:

µ2dx/dt = µ1y − xy + x(1 − x),
µ3dy/dt = −µ1y − xy + µ4z,
dz/dt = x− z.

(12)

Introducing adaptivity

A new definition for the grids fineness is introduced below. The fine and coarse grids
are not defined by the size of the time steps but by the relative tolerance of the time
integrator. The advantage is that adaptivity in the time step can occur in order to
overcome strong nonlinearities. For two approximations of order p and p̂ of the
solution y1 and ŷ1 the error estimate for the less precise is y1 − ŷ1 . The time step
h is chosen to give |y1i − ŷ1i| ≤ max(y0i, y1i)Rtol = sc . The new time step hnew
is obtained as follows hnew = h.min(facmax,max(facmin, fac.(1/err)1/(q+1)))
where q = min(p, p̂) and fac, facmin, facmax are constant factors to avoid too

fast decrease/increase of the time step, and err =

vuut 1

n

nX
i=1

(
y1i − ŷ1i

sc
)2 . The com-

putational complexity of the modified Rosenbrok(2,3) method (implemented in the
ode23s matlab procedure for the test IBV problems eqs (11) and (12)) has a num-
ber of function evaluations that increases nearly by 2.3 when rtol is divided by
10. Let α be the reduction cost coefficient of the elapsed time of the time inte-
grator between run on the grid defined by rtol and those on the grid defined by
rtol/10. This coefficient α can be considered as a constant. This assumption seems
reasonable considering the previous result, excepted for the rejected step which in-
creases nonlinearly when rtol decreases. Let TIcost(rtol) be the elapsed time of
the time integrator which solves the problem with a relative tolerance rtol. Let
PararealCost(rtol, rtol/10l) be the computational cost to solve with the modified
with the parareal method. This method is applied on P processors using two grids
defined by rtol and rtol/10l . Then to perform it iterations, the cost can be roughly
approximated by it× (1/P + αl) × TIcost(rtol) .

Techniques to evaluate the error and linear problem results

The numerical process to give a measure on the error quality is as follows: first, a fine
grid solution is computed with the time integrator using an accuracy rtol = 10−d ,
d = 8 . Then the solution of the modified parareal method is computed with a fine
grid defined by rtol = 10−l, l < d . As the time integrator can use different step
sizes, the two solutions do not match at the same time interpolation points. The
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solution of reference is then interpolated to the time mesh generated by the parareal
algorithm.

Table 1 (top) shows the effect of the interpolation techniques (linear, cubic,
spline) on the measure of error in the maximum norm for the linear problem with
10 subdomains and rtol = 10−7 for initializing and for correction. Convergence is
guaranteed in at most 10 iterations as the exact IBV is propagated. Good results
are obtained with cubic interpolation which will be used to give all results that
follow. Table 1 (bottom) shows the convergence of the modified parareal method for
linear problem with rtol =

˘
10−4, 10−5, 10−6¯ accuracy for the initial guess and

the correction, and rtol = 10−7 for fine grid solution.

linear cubic spline

error (parareal iterates) -4 (2) -6 (2) -6 (2)

coarse grid 10d d=-4 d=-5 d=-6

error (parareal iterates) -6(6) -6(4) -6(3)

Table 1. Effect of the interpolation technique on the error measurement (top)
and convergence of the modified parareal algorithm for eq (10) with µ = (−1e −
3, 1, 10,−1e− 3) on 10 subdomains.

Numerical results for nonlinear test problems

1 2 3 4 5 6 7 8 9 10
−6

−5

−4

−3

−2

−1

0

1

Parareal iterates

lo
g1

0(
er

ro
r 

w
ith

 s
eq

ue
nt

ia
l r

to
l=

−
7)

Convergence with respect to  rtol coarse grid, P=200

rtol=−3
rtol=−4
rtol=−5
rtol=−6
rtol=−7

2 4 6 8 10 12 14 16 18 20

−14

−12

−10

−8

−6

−4

−2

Parareal iterates

lo
g1

0(
||C

or
re

ct
io

n|
| ∞

)

Convergence with respect to the number of subdomains

10 subdomains NA
40 subdomains NA
200 subdomains NA
1168 subdomains NA
1168 subdomains A
2000 subdomains NA

Fig. 1. Modified parareal convergence for Lotka-Volterra Problem on µ =
(1.5, 1, 3, 1) with 200 subdomains with respect to different rtol for the initializa-
tion and the correction (left). The convergence of the correction in the parareal
method with respect to the number of subdomains with and without adaptivity and
rtol = 10−5 for the correction (right).

Figure 1 shows the convergence of the method for the Lotka-Volterra problem.
For 10 time subdomains, the method blows up for rtol = 10−3, 10−4 and finally
converges at the 10th iterate. Even with rtol = 10−7 convergence takes 7 iterates.
For this number of subdomains the method has no interest. Nevertheless, if the
number of equal size subdomains is increased to 200, the convergence is reached
between 5 and 7 iterates for rtol = 10−6 and 10−3 , providing a speed up. For 1168
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subdomains convergence is obtained in between 2 and 7 iterates for rtol = 10−6 to
10−3 . Let us notice that the correction can converge to 10−14 but the convergence
to the solution is limited by the fine grid solver (here rtol = 10−7 . It is not necessary
to reach the machine accuracy for correction to have the effective convergence on
the fine grid.

The behavior of the step size is the same for the rtol grids. Moreover, the reduc-
tion of the step size indicates directly the stiffness of the solution. The behavior of
the time integrator adaptivity on the coarse grid can be useful to introduce adaptiv-
ity in the time decomposition. This decomposition is based on the time steps of the
time integrator during the coarse grid initialization. Then the size of the subdomain
is adapted with respect to strong variations of the step size. Figure 1 shows that the
number of subdomains is 1168 defined by the adaptivity (A) gives better results.
Nevertheless, this is not the optimal number of subdomains, since 2000 regular
subdomains (NA) lead to a faster convergence, and 1168 regular subdomains give
quite the same convergence. For the Oregonator problem, the convergence fails even
with 1000 subdomains for rtol = 10−6 to 10−3 and even with time decomposition
adaptivity. Theses experiments show that new solutions are needed for stiff and very
stiff problems in keeping with the two major features of parareal algorithm: split the
time domain in slices then provide a first good initial boundary value at each slice.
The correction of the solution based on linearizing and solving a problem with the
jacobian of f seems to be sensitive to the behavior of the solution notably when
strong nonlinearity effects occur.

3 Adaptive Parallel Extrapolation

The same behavior for the time step adaptation provided by the solver on coarse
grids suggests that we can use some combination of solutions like “Richardson ex-
trapolation” based on the solver. Moreover, as the first subdomain has the exact
solution, we can compute from the different grid levels exact extrapolation coeffi-
cients based on some control points values. Then the extrapolation coefficients can
broadcast to the others subdomains where extrapolations are performed. Let us
describe the algorithm.

Adaptive Parallel Extrapolation Algorithm:

A) Define some decomposition of the time domain and in each subdomain add some
control points (ti,k)0≤k≤l which are points in the time slice [ti,0, ti,l] = [Ti, Ti+1]

B) Evaluate the solution on coarse grids rtol1 > ... > rtoll .
C) Initialize IBV of time slices for the finest grid with rtolf with a Richardson

extrapolation based on the coarse grids and the first time slice of the fine grid rtolf
as it gives the exact solution. Use the value of the solution at the control points
(without the first control point which is a given data and consequently is not a
result provided by the time integrator approximation scheme) on this first time
slice to define the operators of extrapolation. Let yk(t1, j), 1 ≤ j ≤ lP, 1 ≤ k ≤ l
be the computed solution values on the rtolk grid at the control point t1,j . The
extrapolation operator can be computed with the formula as follows:
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BBBB@

y1(t1,1) y
2(t1,1) · · · yl(t1,1)

y1(t2,1) y
2(t2,1) · · · yl(t2,1)

...
...

. . .
...

y1(tl,1) y2(tl,1) · · · yl(tl,1)

1
CCCCA

0
BBB@

β1

β2

...
βl

1
CCCA =

0
BBBB@

yl+1(t1,1)

yl+1(t2,1)
...

yl+1(tl,1)

1
CCCCA (13)

D) Propagate the operator of extrapolation to the other time slices and compute
the extrapolated solution as follows:

yl+1(t0,j) =
lX

k=1

βky
k(tl,j−1), 2 ≤ j ≤ P (14)

E) In order to get the time step behavior lost in the extrapolation compute in
parallel the solution on each time-slice for the finest grid. The first time-slice has
the exact solution for the finest grid (exact IBV).

F) Apply recursively with a new rtolf grid.

Results on Adaptive Parallel Extrapolation
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Fig. 2. Comparison of the time step behavior (left) and Error with the solution
on a reference grid ( rtol = 10−10 ) (right) between the sequential algorithm and
the Adaptive Parallel Extrapolation with 2 level of extrapolation for the Oregonator
problem defined by (µ = (1e− 2, 1e− 3, 1e− 2, 1) .

Figure 2 gives the error at the control point between the sequential solution at
rtol = 10−10 and the Adaptive Parallel Extrapolation with 10 time subdomains
and with a fine grid rtol = 10−8 for the Oregonator problem. It shows that good
approximations of the initial guess for each time slice are obtained even when using
two grids with rtol = 10−6 and 10−5 . The computational cost to define a very
good approximation of the time slice initial guess is reduce by a factor nearby 2.32

for the considered time integrator. Notice that the behaviors of the time step are the
same between the sequential solution and the first level solution of adaptive parallel
extrapolation. The recursive application of the solution obtained with the Adaptive
Parallel Extrapolation gives globally better results excepted for some localized re-
gion. Improvements should be obtained with a local refinement of the grids used for
the extrapolation.
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Conclusions

The equivalence between the parareal method and the multiple shooting method
has been established. Then adaptivity in the parareal parallel ODEs solvers has
been introduced in order to apply its concepts to stiff ODEs. Some improvements
in the method has been shown by defining the fineness of the grids on the relative
tolerance of the time slice integrator and by adapting on the number of subdomains.
Nevertheless, for very stiff problems, the linearization of the jacobian in the correc-
tion steps makes the method very sensitive to blow up. Another parallel solver has
been proposed for stiff ODEs based on Richardson Extrapolation. The extrapolation
coefficients are based on the time integrator behavior like in the classical Richard-
son extrapolation but with an a posteriori estimation based on the correct solution
values in the first subdomain at certain control points.
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temps “pararéel”, C. R. Acad. Sci. Paris, Série I, 332 (2001), pp. 661–668.

594



A Fast Helmholtz Solver for Scattering by a
Sound-soft Target in Sediment

Quyen Huynh 2 , Kazufumi Ito 1 , and Jari Toivanen 1

1 Center for Research in Scientific Computation, Box 8205, North Carolina State
University, Raleigh, NC 27695–8205, USA. kito@ncsu.edu,
jatoivan@ncsu.edu

2 Code R21, Littoral Acoustics, Naval Surface Warfare Center, 110 Vernon Ave.,
Panama City, FL 32407–7001, USA. quyen.huynh@navy.mil

1 Introduction

We consider an efficient numerical method for computing time-harmonic acoustic
scattering in a vertically layered media. One application for such problems is the
detection of targets buried in a sediment. For this purpose it is useful to have a nu-
merical approximation which can predict reasonably accurately the backscatter by
such targets. In this paper, we study scattering by sound-soft targets when the inter-
face between the water and sediment is wavy. Such problems are typically modeled
using a Helmholtz equation with varying coefficients.

With higher frequencies a finite element discretization leads to very large systems
of linear equations. Often two-dimensional problems have millions of unknowns. It
might be possible to solve these problems using a LU factorization with a nested
dissection reordering of unknowns, but this approach cannot be used for three-
dimensional problems which can have billions of unknows. For this reason, we con-
sider the iterative solution of these problems. We employ an algebraic fictitious
domain method [4, 6, 7, 8] which uses a right preconditioned GMRES method.

In a related work [12], it was noted that an iterative method with a separable
preconditioner converges fast as long as the media is mainly layered in one direction
or frequencies are reasonably low. We will use a separable preconditioner based
on the perfectly layered media in our solution procedure. We embed the sound-
soft target in a rectangular computation domain with a second order-absorbing
boundary condition. Since the media is vertically layered with a wavy interface, our
preconditioner coincides with the system matrix except for the rows corresponding
to unknowns near-by the interface and the target. Thus, we can reduce the iterations
to a small sparse subspace as has been shown in [7, 8]. This reduction makes our
preconditioner extremely efficient as our numerical example demonstrates.

2 Model Problem

We are interested in computing the scattering of a time-harmonic acoustic pres-
sure wave by a target which is buried in sediment. We model this situation with a
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Helmholtz equation with varying coefficients. Generally, it might be necessary to use
elastic equations to model the wave inside the target, but in this investigation, we
assume the target to be sound-soft. This means that a Dirichlet boundary condition
can be posed on the surface of the target. The sediment is assumed be homogeneous
and the surface between the water and the sediment is defined by x2 = f(x1) ,
where f is a given function.

We have a radiational wave from a point source in the water which is impinging
the sediment and the target Ω . Furthermore, we could have a sensor in the water
measuring the scattered wave. For the computations, we truncate the infinite domain
to the rectangular domain Π enclosing the target and the source/sensor. Figure 1
shows the set up of our model problem.

� source/sensor

water

sediment

Fig. 1. The geometry of the model problem with a circular target Ω and a rect-
angular truncated domain Π given by the dashed line.

A time-harmonic acoustic pressure wave p satisfies the Helmholtz equation with
varying coefficients

∇ · 1

ρ1
∇p +

k2
1

ρ1
p = g in x2 > f(x1),

1

ρ1

∂p

∂n

˛̨̨
˛
+

=
1

ρ2

∂p

∂n

˛̨̨
˛
−

on x2 = f(x1),

∇ · 1

ρ2
∇p +

k2
2

ρ2
p = 0 in x2 < f(x1) and x /∈ Ω,

(1)

where k1 =
ω

c1
and k2 =

ω

c2
are the wave numbers for the water and the sediment,

respectively. The normal of the surface x2 = f(x1) is denoted by n . The notation˛̨̨
˛
+

refers to the value of a function or derivative when approaching x2 = f(x1) from

the side x2 > f(x1) . Similarly

˛̨̨
˛
−

refers to the value of a function or derivative

when approaching x2 = f(x1) from the side x2 < f(x1) . The angular frequency
is denoted by ω . The sound speed in the water is c1 and in the sediment it is
c2 . The wave attenuation in the sediment is modeled by the imaginary part of the
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complex-valued speed c2 . The densities for the water and the sediment are ρ1 and
ρ2 , respectively. The right-hand side g is non zero due to the point source.

On the boundary of the sound-soft target Ω we pose a Dirichlet boundary
condition

p = 0 on ∂Ω. (2)

On the artificial boundary ∂Π of the truncated rectangular domain Π , we pose a
second-order absorbing boundary condition

1

ρ

∂p

∂n
− i

k

ρ
p− i

1

2k

∂

∂s

1

ρ

∂p

∂s
= 0 (3)

on the faces of ∂Π together with the condition ∂p/∂n = ik
3

2
p at the corners of

∂Π . Here, n denotes the unit outward normal vector of ∂Π and s denotes the
unit tangent vector of ∂Π . Furthermore, the wave number function k and the
density function ρ are defined by

k =


k1, x2 ≥ f(x1)
k2, x2 < f(x1)

and ρ =


ρ1, x2 ≥ f(x1)
ρ2, x2 < f(x1).

A similar absorbing boundary condition for homogeneous media has been considered
in [1].

3 Finite Element Discretization

We discretize the equations (1) together with the Dirichlet boundary condition (2)
and the absorbing boundary condition (3) with linear finite elements. We use meshes
which are orthogonal and uniform except near the target Ω and the interface. There
it is locally perturbed so that the boundary ∂Ω is approximated well. An algorithm
generating such meshes is presented in [3]. An example of a locally perturbed mesh
is shown in Figure 2. The meshes have to be sufficiently fine, say, with at least 10
nodes per one wavelength, so that they can approximate properly the oscillatory
solution. The discretization leads to a system of linear equations

Ap = g, (4)

where the matrix A is symmetric and complex-valued, but not Hermitean.

4 Separable Preconditioner

We describe first the construction of our separable preconditioner and after that
we consider in Section 5 the algebraic extension of the original system of linear
equations (4) to have the same dimension as the preconditioner.

Domain embedding and fictitious domain methods are based on very efficient
preconditioners on simple shaped domains. In our particular case the simple shaped
domain is the whole rectangle Π , i.e., we neglect the target Ω when constructing
the preconditioner. Our separable preconditioner is based on the observation that
the density ρ and the wave number k depend only on the x2 coordinate for the
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Fig. 2. A part of a locally perturbed mesh for a circular target and a sinusoidal
surface of sediment.

perfectly layered media. Due to this we can express our preconditioner in a tensor
product form

B = A1 ⊗M2 + M1 ⊗ (A2 − fM2).

This preconditioner coincides with the matrix obtained by discretizing the problem
(1) without the target Ω together with the boundary condition (3) except on a part
of the left and right boundary of Π . The dimension of the matrices A1 and M1

is the same as the number of nodes in the x1 direction and they are given by

A1 =
1

h

0
BBBBBBB@

1 − ihk/2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 1 − ihk/2

1
CCCCCCCA

and

M1 = h

0
BBBBBBB@

1/2 + i/(2hk)
1

1

. . .

1
1/2 + i/(2hk)

1
CCCCCCCA

.

The matrices A2 , M2 , and fM2 correspond to one-dimensional problems in the
x2 direction and their dimension is the number of nodes in the x2 direction. They
can be assembled from the element matrices

Ae2 =
1

hρe

„
1 −1
−1 1

«
, Me

2 =
h

2ρe

„
1 0
0 1

«
, and fMe

2 =
k2
eh

2ρe

„
1 0
0 1

«
,

where ρe and ke are the density and the wave number on the element e . Due
to the absorbing boundary condition the following terms have to be added to these
matrices: add −ik/(2ρ) to the first and last diagonal entry of A2 , add i/(2kρ)
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to the first and last diagonal entry of M2 , and add ik/(2ρ) to the first and last

diagonal entry of fM2 . Systems of linear equations with the matrix B can be solved
efficiently using, for example, the fast direct solver considered in [5].

5 Extended Linear System

We now extend the original system of linear equations (4) to have the same size
as the preconditioner B . We will accomplish this by using the so-called absorbing
extension [9]. The idea is to pose another problem in Ω which is a Helmholtz
problem in Ω with an absorbing boundary condition on ∂Ω . Furthermore, we
introduce one sided coupling between the problems in Π \Ω and Ω .

After a suitable permutation of rows and columns the preconditioner has the
block form

B =

„
B11 B12

B21 B22

«
,

where the first block row corresponds to the unknowns outside Ω . Thus, B11 has
the same size as A in (4). We denote the extended system matrix by C . It has the
block form

C =

„
A B12

0 B22 + D

«
,

where D is a diagonal matrix such that B22 + D corresponds to a Helmholtz
problem in Ω with a first-order absorbing boundary condition on ∂Ω . In particular,
the discretization is based on the orthogonal mesh without local adaptation to the
boundary ∂Ω . The extended system of linear equations reads

Cu = C

„
p
q

«
=

„
g
0

«
= f.

The vector q has to be zero, since the matrix block B22 + D is non singular, and,
thus, p satisfies also the original problem (4). For more details on the extension
procedure we refer to [4, 6, 9].

6 Reduction to a Sparse Subspace

We solve the right preconditioned system of linear equations

CB−1v = f, u = B−1v. (5)

Our sparse subspace X is defined by X = range(C −B) . The jth component xj
of an arbitrary vector x in X can be nonzero only if the jth row of B and C do
not coincide. Hence, the subspace X is called sparse. For the problems considered
in this paper the dimension of X is very small compared to the size of the linear
system (5).

Next we consider the reduction to the sparse subspace in the case of general
right-hand vector f . We set v̂ = v − f and we then have

CB−1v̂ = f − CB−1f = −(C −B)B−1f = f̂ ∈ X,

599



Q. Huynh, K. Ito and J. Toivanen

where we have used the identity CB−1 = I+(C−B)B−1 . Furthermore, v̂ satisfiesˆ
I + (C −B)B−1

˜
v̂ = f̂ (6)

and v̂ ∈ X . The reduced equation (6) is well suited for iterating on the subspace
X .

If r ∈ X then the Krylov subspace

span{r, CB−1r, · · · , (CB−1)k−1}
is a subspace of X . Thus, any iterative method based on the Krylov subspace for
the solution of CB−1v = f generates a sequence of approximate solutions vk in
the subspace X provided that the initial iterate is v0 = f . Moreover, the basic
operation

(C −B)B−1r, r ∈ X,

which is repeated during the iterations requires solutions B−1r with r in the
range of (C − B)T . The dimension of this range is usually of the same order as
the dimension of X . Hence we apply the partial solution technique [2, 10] for this
evaluation. This can reduce the computational cost of these solutions to be order of
N floating point operations, where N is the size of the linear system (5).

7 Numerical Example

The geometry of our example problem is a cross cut of the experiment set up in [11].
The interface between water and sediment is given by x2 = cos(360◦x1/(0.75 m))
(0.0368 m) . The target is circular and its diameter is one feet (0.3048 m) and its
center is at (0m, −0.2524 m) . Thus, the target is 0.1 m below the median level of
the interface. The speed of sound in the water is c1 = 1495 m/s and the speed of
the sound in the sediment is c2 = (1668 − 16.8i) m/s . Here, the imaginary part of
the speed accounts for wave attenuation. The density for the water and sediment are
ρ1 = 1000 kg/m3 and ρ2 = 2000 kg/m3 , respectively. The point source is located
at (−10.7m, 3.8 m) . We have chosen the frequency to be 20 kHz which corresponds
about the wavelength 0.075 m in water.

Our computational domain is [−12 m, 1m]×[−1 m, 4.5 m] and the mesh is based
on 2601 × 1101 grid. Thus, the mesh step size in the direction of the coordinate
axes is 0.005 m and we have about 15 nodes per wavelength. We have plotted the
scattered field intensity level in Figure 3. The computations were performed on a
PowerBook G4 with a 1.3 GHz processor and 0.5 Gbytes of memory. The solution
required about 5 minutes. The preconditioned GMRES method needed 36 iterations
to reduce the norm of the residual by the factor 10−6 . The extended linear system
(5) has about 2.86 million unknowns while the dimension of the sparse subspace
X is 18418. Thus, memory and computational savings due to the use of subspace
iterations are indeed extensive.

8 Conclusions and Future Research

We proposed a fast iterative method for computing the scattering in nearly vertically
layered media. The main ingredients of our approach leading to computational effi-
ciency are a fast direct solver for a separable preconditioner and a GMRES method
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Fig. 3. The scattered field intensity level log10 |ps|2 ; the difference between white
and black is 60 dB.

iterating on a small sparse subspace. The numerical example demonstrates that
problems with millions of unknows can be solved on a contemporary PC in a few
minutes.

For considering more practical problems several generalizations have to be made.
The proposed method can be extended in a straight forward manner to three-
dimensional problems. Typical targets are elastic instead of sound-soft. In such a
case one possible approach is to perform a domain decomposition to a small near-
field domain and a large far-field domain. For far-field problems similar techniques to
the one presented in this paper can used. Due to the small size of near-field problems
they can be solved sufficiently fast using more traditional approaches.
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Summary. A new domain decomposition technique on non-matching grids for free
boundary problems is considered. An iterative DD scheme is used to reduce the
original free boundary problem to a sequence of problems on two subdomains, one
of which includes the free boundary and is described by a variational inequality and
the other includes the remainder of the problem and is described by a second order
partial differential equation. In the subdomain which contains the free boundary, a
fine grid is utilized in order to capture the free boundary more precisely; while in
the other subdomain, a coarse grid is used in order to speed up the computation. At
each step of the iteration, two sub-problems are solved by using a Robin boundary
condition on the interface.

1 Introduction

Both overlapping and non-overlapping domain decomposition (DD) methods have
been intensively studied for partial differential equations, see e.g. [9, 5, 10, 6, 2]. In
the last few decades, mathematicians began to apply the overlapping domain decom-
position methods to solve variational inequality problems. The basic idea is to split
the original domain into several overlapping subdomains and solve the variational
inequality on each subdomain via data transfer from the common area between those
subdomains. [1, 8, 3] and their references provide many variants of this approach
whereas convergence analyses of the algorithms and their application to many prob-
lems in different fields are provided.

However, for many practical problems in the engineering and industrial fields, it
is much easier and more convenient to split the original domain into two or three
non-overlapping subdomains and then take care of the problems in each subdomain
where the original problem may show different behavior. Recently, a non-overlapping
DD method which utilizes a Robin boundary condition on the common boundary
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between these subdomains was proposed in [4] for the variational inequality problem
and a convergence analysis of the DD method was provided.

In this paper, we consider free seepage flow through a dam with a toe drain that
can be considered as a variational inequality. We will apply the non-overlapping DD
method to decompose the original problem into two sub-problems where the partial
differential equation is treated in one subdomain while the variational inequality
is treated in the second subdomain where the free boundary is located. Since our
concern is to find the exact location of the free boundary in the second domain, non-
matching grids are applied in those subdomains. In the first subdomain, a coarse
grid is used in order to speed up the computation; while in the second subdomain
which contains the free boundary, a fine grid is utilized in order to capture the free
boundary more precisely. At each step of the iteration, two sub-problems are solved
simultaneously by using a Robin boundary condition on the common boundary.

This paper is organized as follows. In Section 2, we formulate the seepage problem
and apply the non-overlapping DD method to split the original problem into 2 sub-
problems. In Section 3, we utilize the non-matching grid technique in those two
subdomains for the discretization of the problem and then apply a finite difference
method with projection on the non-matching grids. Numerical results are reported
to show the advantage of our new algorithm. In Section 4, a summary of the paper
and some future considerations are outlined.

2 Formulation of the problem

Many problems involving free boundaries can be reduced to the study of variational
inequalities. In [1], the author proposed several domain decomposition methods to
split the domain into two or more subdomains. Then by iterating between these
subdomains he solved the whole problem and found the free boundary. However,
these schemes require the solution of one problem at a time. Herein, a DD scheme
will be used simultaneously.

In this paper, we consider a free boundary seepage problem of flow through a
porous dam with a toe drain. For simplicity, the soil in the flow field is assumed to
be homogeneous and isotropic, capillary and evaporation effects are neglected. In
addition, the flow follows Darcy’s law:

−→q = −k∇[(
p

ρg
) + y], (2.1)

where −→q is the velocity vector, p is the pressure, k is the permeability of the
soil, ρ is the density of the fluid, g is the gravitational acceleration, and y is the
vertical coordinate(positive upward). The seepage velocity has a potential φ(x, y) =

k[(
p

ρg
)+y] . Meanwhile, let ψ(x, y) be the stream function of the flow. In this study,

the location of the free surface Γ0 = {x, f(x)} and the seepage domain Ω need to
be found, see Figure 1. The seepage domain is defined as:

Ω = {(x, y) : 0 < x ≤ xF , 0 < y < α(x);xF < x < xC , 0 < y < f(x)},

where xF and xC are the distances in the x -direction to points F and C ,
respectively, and α(x) is the shape function of the dam profile.
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Fig. 1. The seepage problem.

The functions φ(x, y) and ψ(x, y) are defined on Ω and satisfy the following
formulation:

Ω = {(x, y) : 0 < x ≤ xF , 0 < y < α(x);xF < x < xC , 0 < y < f(x)}
φx − ψy = 0 in Ω
φy + ψx = 0 in Ω

φ = yF on dAF
φ = 0 on [BC]
ψ = q on [AB]
ψ = 0 on Γ0

φ = y on Γ0,

(2.2)

where yF is the height at F , and q is the flow rate through the flowfield.
Define D = {(x, y) : 0 < x ≤ xF , 0 < y < α(x);xF < x < xC′ , 0 < y < yF} and

extend φ and ψ continuously to D by setting φ(x, y) = φ(x, y) in Ω; = y in D−Ω
and ψ(x, y) = ψ(x, y) in Ω; = 0 in D −Ω .

Next, we can define a new dependent variable w using the Baiocchi transfor-
mation on D :

w(P ) =

Z
FP

−ψdx + (y − φ)dy, (2.3)

where FP is a smooth path in D joining F to P in D . The integration is indeed

independent of the path. Then w ∈ H2(D)
\

C1(D) satisfies:

∆w = χΩ in D

wy = y − yF on dAF
w = (

q2

6
) + q(xB − x) on [AB]

wy = 0 on [BC]

w = 0 in D −Ω( also on Γ0)
w > 0 in Ω (w ≥ 0 in D),

(2.4)

where χΩ = 1 in Ω and χΩ = 0 in D −Ω . Hence,

w(x, y) ≥ 0, 1 −∆w(x, y) ≥ 0, w(1 −∆w) = 0 in D. (2.5)
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If w is found satisfying (2.4), then we can determine Ω = {(x, y) ∈ D : w(x, y) >
0} .

It will be seen shortly that if we can properly split D into two non-overlapping
subdomains, the free boundary is only located in one subdomain, which makes the
original problem simpler. Therefore, the DD method looks promising for this free
boundary problem. [1] applied the non-overlapping D-N algorithm proposed in [6] to
the above problem and the numerical results show that this D-N algorithm is better
than the traditional one-domain finite difference scheme. However, no convergence
property of the D-N algorithm has been proven.

Recently, a convergence analysis was provided for a non-overlapping DD method
on uniform meshes with a Robin boundary condition applied to the general free
boundary problem represented as a variational inequality [4]. In the following we
use that DD scheme from [4] to solve the above seepage problem. First, decompose
D into subsets D1 = {(x, y) : 0 < x < xF , 0 < y < α(x)} and D2 = {(x, y) :
xF < x < xC′ , 0 < y < yF} with the interface between D1 and D2 denoted by
Γ = {(x, y) : x = xF , 0 < y < yF } in Figure 2. If w1 , w2 denote the restriction of
w in D1 and D2 , respectively, we can write down the following iterative procedure:
Step 1. Initially set g1

1 = g1
2 = 0 on Γ .

Step 2. Solve the following two sub-problems for wn1 and {wn2 , Ωn
2 } , n = 1, 2, · · · ,

respectively:
Problem 1:

∆wn1 = 1 in D1

wn1 = (
q2

6
) + q(xB − x) on [AF ′

1]

(wn1 )y = y − yF on dAF
wn1 +

∂wn1
∂n

= gn1 on Γ.

(2.6)

Problem 2:
wn2 (∆wn2 − 1) = 0 in D2

wn2 = (
q2

6
) + q(xB − x) on [F ′

1B]

wn2 y = 0 on [BC′]

wn2 ≥ 0 in D2

wn2 +
∂wn2
∂n

= gn2 on Γ

Ωn
2 = {(x, y) : wn2 (x, y) > 0}.

(2.7)

Step 3. Set
gn+1
2 = 2wn1 − gn1 on Γ

gn+1
1 = 2wn2 − gn2 on Γ.

(2.8)

Then repeat Step 2 with n replaced by n + 1 . These iterations are stopped when
max
Γ

|wn+1
1 − wn1 | < ε and max

Γ
|wn+1

2 − wn2 | < ε , where ε is some fixed error

tolerance. Problem 1 and 2 in Step 2 are solved using the Robin boundary condition
values gn1 and gn2 which are updated iteratively from their previous value and
the w value on the common boundary. This avoids the computation of the partial
derivatives of w which may reduce the precision.
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Fig. 2. The domain decomposition.

3 Non-Matching Grid Discretization and Results

In this Section, we will utilize a non-matching grid technique to obtain the numerical
scheme for the above seepage problem on non-matching grids. At first, we apply the
2nd-order finite difference scheme to ∆w and obtain the discrete formula for the
first equation of (2.6) in D1 as follows:

(wn1 )i+1,j + (wn1 )i−1,j + (wn1 )i,j+1 + (wn1 )i,j−1 − 4(wn1 )i,j
h2

1

= 1 (3.1)

where D1 is divided into a rectangular mesh with mesh size ∆x = ∆y = h1 , and
where i , j are the row and column mesh point numbers, respectively. The boundary
conditions in (2.6) can be discretized by a forward finite difference scheme.

Meanwhile, we can discretize (2.7) in D2 in a similar way and obtain

(wn2 )i,j(
(wn2 )i+1,j + (wn2 )i−1,j + (wn2 )i,j+1 + (wn2 )i,j−1 − 4(wn2 )i,j

h2
2

− 1) = 0 (3.2)

where D2 is divided into a rectangular mesh with mesh size ∆x = ∆y = h2 .
Since our focus is to determine the location of the free boundary in D2 more

precisely, we construct a fine grid in D2 and at the same time a coarse grid in D1

to reduce the computation load there. Therefore, we assume h2 =
1

2
h1 throughout

our computation, i.e., the grid size of D2 is only half of that of D1 . Because of
the different grid sizes in D1 and D2 , the data transfer equations (2.8) between
gn1 and gn2 cannot be discretized naturally. In order to discretize (2.8), we have to
approximate gn1 with its neighbouring gn2 values on Γ , and vice versa, as shown in
Figure 3. From Figure 3, we notice that w1,j depends on w2,2j . Meanwhile, w2,2j

is affected by w1,j and w2,2j+1 is affected by both w1,j and w1,j+1 . Therefore,
the reasonable data transfer on Γ will be w1,j = w2,2j from D2 to D1 and

w2,2j = w1,j and w2,2j+1 =
1

2
(w1,j +w1,j+1) from D1 to D2 . g1 and g2 can be

taken care of similarly. Then, (2.8) can be discretized as follows:

(gn+1
1 )j = 2(wn2 )2j − (gn2 )2j

(gn+1
2 )2j = 2(wn1 )j − (gn1 )j

(gn+1
2 )2j+1 =

1

2
{[2(wn1 )j − (gn1 )j ] + [2(wn1 )j+1 − (gn1 )j+1]}

(3.3)
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Fig. 3. The nonmatching grids.

The computation is run as follows: we compute wn1 and wn2 using (3.1) and (3.2).
We then update gn1 and gn2 on Γ using (3.3) and repeat the scan through D1

and D2 to solve wn1 and wn2 . The iteration will stop if the convergence criterion
is met.

During the computation, finite difference SOR (Successive over-relaxation) is
utilized in D1 , while in D2 which contains the free boundary, finite difference SOR
(Successive over-relaxation) with a projection is used to make sure the values of w2

at each point are always non-negative.
Therefore, when applying the SOR in D1 , (3.1) becomes:

(w
(n+ 1

2
)

1 )i,j = (
1

4
((wn1 )i+1,j + (wn1 )i−1,j + (wn1 )i,j+1 + (wn1 )i,j−1 − h2

1)

(w
(n+1)
1 )i,j = (wn1 )i,j + β((w

(n+ 1
2
)

1 )i,j − (wn1 )i,j)
(3.4)

where β is the relaxation parameter.
Similarly, when applying the SOR with projection in D2 , (3.2) becomes

(w
(n+ 1

2
)

2 )i,j =
1

4
((wn2 )i+1,j + (wn2 )i−1,j + (wn2 )i,j+1 + (wn2 )i,j−1 − h2

2)

(w
(n+1)
2 )i,j = max(0, (wn2 )i,j + β((w

(n+ 1
2
)

2 )i,j − (wn2 )i,j))
(3.5)

The flow rate q through the flow field is also unknown a priori. Therefore, in
addition to the inner iteration to solve for w with a given q , there is also an outer
iteration on q to determine the flow rate. The compatibility condition for the outer

iteration (see [7]) is f(q) = (w2(xF , yF −∆y)) − ∆y2

2
= 0 . In fact, we can set q0

and q1 to arbitrary values. Then we use the secant method to determine q2 based
on q0 and q1 from (3.6) for the third outer loop, and so on until we reach some qn
whose |f(qn)| < ε .

q2 = q1 − q2 − q1
f(q2) − f(q1)

f(q1). (3.6)

The example uses the following data: α(x) = x where 0 < x < xF , yF = 30ft ,
xF = 30ft , xB = 60ft , h1 = 0.5ft , h2 = 0.25ft , β = 1.25 , and ε = 0.005 .

Figure 4 shows the free boundary obtained by the new DD algorithm. It exactly
matches the numerical results from [1]. However, the combination of the new non-
overlapping domain decomposition method and the non-matching grid technique
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generates a better performance than that of [1]. Table 1 shows the required number
of iterations for our current algorithm and the algorithm from [1]. We can see that
the performance has been improved considerably over [1].
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Fig. 4. Free boundary in D2 .

Outer iteration Current Algorithm Algorithm of [1]

1 1867 2374

2 1024 1604

3 1651 2088

4 618 996

5 109 376

6 31 156

7 2 18

Table 1. Comparison of required number of inner iterations between the two algo-
rithms.

4 Conclusion and future directions

In this paper, we studied a free boundary seepage problem of flow through a porous
dam with a toe drain. The characteristic of this problem is that the free boundary is
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unknown in advance. However, we can determine that the free boundary is located
in one of the subdomains if we can properly split the domain into two or more
subdomains. Then, we can apply the traditional non-overlapping DD method to
this problem. Meanwhile, the non-matching grid discretization is utilized on these
subdomains in order to obtain higher resolution of the free boundary in the fine-grid
subdomain while maintaining computational efficiency in the coarse-grid subdomain.

The promising numerical results motivate us to establish the convergence anal-
ysis and error estimates between the numerical solution based on a combination
of non-overlapping DD method and non-matching grid discretization and the true
solution of the original problem for the general free boundary problem. We will
investigate this theoretical issue in the future.
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Requirements to compute stationary flow patterns are often encountered. With
progress of computer environments and increasing demand of precise analyses, the
number of degrees of freedom (DOF) of such a computation has become larger.
However, as far as we know, computational codes are rare, which are efficient for
large scale, stationary, and nonlinear flow problems. Therefore, we have developed
ADVENTURE sFlow [3], which is one of modules included in the ADVENTURE
project [1].

ADVENTURE sFlow uses the Newton method as the nonlinear iteration, and to
compute the problem at each step of the nonlinear iteration a stabilized finite element
method is introduced. Moreover, to reduce the computational costs, an iterative
domain decomposition method is applied to stabilized finite element approximations
of stationary Navier–Stokes equations, for which Generalized Product-type methods
based on Bi-CG (GPBiCG) [6] is used as the iterative solver of the reduced linear
system in each step of the nonlinear iteration. A parallel computing method using
the Hierarchical Domain Decomposition Method (HDDM) is also introduced.

Numerical results show that ADVENTURE sFLow can analyze a stationary flow
problem with 10 million DOF.

1 Formulation

Let Ω be a three-dimensional bounded domain with the Lipschitz continuous bound-
ary Γ . We consider the stationary incompressible Navier–Stokes equations:8>><

>>:
−1

ρ
∇· σ(u, p) + (u·∇) u =

1

ρ
f in Ω, (1a)

∇· u = 0 in Ω, (1b)

u = g on Γ, (1c)

where u = (u1, u2, u3)
T is the velocity [m/s] , p is the pressure [N/m2] , ρ is the

density [kg/m3] , f = (f1, f2, f3)
T is the body force [N/m3] , g = (g1, g2, g3)

T is
the boundary velocity [m/s] , and σ(u, p) is the stress tensor [N/m2] defined by
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σij(u, p) ≡ −pδij + 2µDij(u), Dij(u) ≡ 1

2

“∂ui
∂xj

+
∂uj
∂xi

”
, i, j = 1, 2, 3,

with the Kronecker delta δij and the viscosity µ [kg/(ms)] .
By application of the Newton method to (1) as the nonlinear iteration method,

the k th step linearized equations become the following: find (uk, pk) such that

8>>>>>><
>>>>>>:

−1

ρ
∇· σ(uk, pk) +

“
uk−1 ·∇

”
uk +

“
uk ·∇

”
uk−1

=
1

ρ
f +

“
uk−1 ·∇

”
uk−1 in Ω, (2a)

∇· uk = 0 in Ω, (2b)

uk = g on Γ. (2c)

To avoid some intricate notations, we rewrite the linearized Navier–Stokes equa-
tions as follows: find (u, p) such that8>><

>>:
−1

ρ
∇· σ(u, p) + (w·∇) u + (u·∇)w = ef in Ω, (3a)

∇· u = 0 in Ω, (3b)

u = g on Γ, (3c)

where w is a given velocity [m/s] . Obviously, the equations (3) yield (2) by sub-
stituting

uk−1, uk, pk, and
1

ρ
f +

`
uk−1 ·∇

´
uk−1

for w , u , p , and ef , respectively.
Let Th be a decomposition of Ω consisting of a union of tetrahedra, and let

K be a tetrahedron in Th . Let uh and ph be the velocity and the pressure
approximated by P1/P1 elements. As in [3], a stabilized finite element method is
introduced to (3) as follows: find ( uh , ph ) satisfying (1c) such that

a0(uh, vh) + a1(wh, uh, vh) + a1(uh, wh, vh) + b(vh, ph) + b(uh, qh)

+
X
K∈Th

n
τK
“`

wh ·∇
´
uh +

`
uh ·∇

´
wh +

1

ρ
∇ph,

`
wh ·∇

´
vh +

`
vh ·∇

´
wh − 1

ρ
∇qh

”
K

+ δK(∇·uh,∇·vh)K
o

= ( ef, vh) +
X
K∈Th

τK
“ ef, `wh ·∇´vh +

`
vh ·∇

´
wh − 1

ρ
∇qh

”
K
, (4)

where

a0(u, v) ≡ 2µ

ρ

Z
Ω

D(u) :D(v) dx, a1(w, u, v) ≡
Z

Ω

ˆ
(w·∇)u

˜
v dx,

b(v, q) ≡ − 1

ρ

Z
Ω

q∇· v dx, (f, v) ≡
Z

Ω

fv dx, (f, v)K ≡
Z
K

fv dx,
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vh and qh are test functions satisfying vh = 0 on Γ , wh is the convection velocity
approximated by P1 elements, and the notation “ : ” denotes the tensor product.
The stabilized parameters τK and δK are defined by

τK ≡ min


hK

2 ‖w‖∞
,
ρ h2

K

24µ

ff
, δK ≡ min


λρh2

K‖w‖2
∞

12µ
, λhK‖w‖∞

ff
,

where λ denotes a positive constant, ‖w‖∞ denotes the maximum norm of w in
K , hK denotes the diameter of K .

Let K x = f be the finite element system derived from (4), where K

denotes the regular, asymmetric coefficient matrix corresponding to (4), x the
vector corresponding to the velocity and the pressure, f the vector corresponding
to the body force and the boundary velocity. Let Ω be divided into subdomains.
Let xi , xb , and xt be vectors corresponding to DOF in the interior of Ω , on
the interface between subdomains, and on Γ , where xt is a given vector. Then,
the system K x = f can be rewritten as follows:2

4Kii Kib Kit

Kbi Kbb Kbt

0 0 E

3
5
8<
:
xi

xb

xt

9=
; =

8<
:
fi

fb

ft

9=
; , (5)

where E is an identity matrix. Eliminating xi from (5), we get the linear system
on the interface:

Sxb = χ, (6)

where

S ≡Kbb −KbiKii
−1
Kib ,

χ ≡ fb −KbiKii
−1
fi − (Kbt −KbiKii

−1
Kit)xt.

GPBiCG is apllied to (6), and xb is obtained. In the implementation, the matrix
S is not constructed explicitly. The products of matrices and vectors appearing in
GPBiCG can be replaced by solving the Navier–Stokes equations in each subdomain,
which implies that the method is fit for parallel computing; see, for example, [2]. The
application of the skyline method to a problem in each subdomain yields xi from
xb . The solution in the whole domain at the n th step of the nonlinear iteration
is then obtained.

In the actual parallel computing, we adopt HDDM [5] for data and processor
management to have the workload balanced among processors. It has already been
shown that HDDM is effective for a structural problem where the number of DOF
is 100 million [4].

2 Numerical examples

A model of a station is considered as a numerical example; see Fig. 1. The station
has one platform on the lower floor, one ticket gate on the upper floor, and three
exits from the upper floor to the ground. Two trains are approaching along the
red arrows in Fig. 1 with speeds of 1 [m/s] ; fixed boundary conditions are imposed
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on the wall boundaries, and the air flows out from the other sides of the platform
and the exits with the stress-free conditions. The body force is set to be 0 . The
kinematic viscosity µ/ρ is set to be 1.0 × 10−1 [m2/s] .

As in Section 1, Ω is divided into a union of tetrahedra, and the flow field is ap-
proximated by P1/P1 elements: the number of elements and DOF are 18, 873, 133
and 12, 943, 664 , respectively. The number of subdomains is set to 300, 000 .
Throughout this section, λ is set to be 1.0.

As in Section 1, the Newton method is used for the nonlinear iteration. The initial
value of the nonlinear iteration is the finite element solution of the corresponding
Stokes problem. The nonlinear iteration is stopped when the relative rate of changes
‖ x n+1− x

n‖∞
‹
‖ x n+1‖∞ becomes smaller than 1.0× 10−4 , where x

n denotes
the solution vector at the n th step, and ‖ . ‖∞ is the maximum norm.

In the Stokes equation to obtain the initial condition of the nonlinear iteration,
and in each step of the nonlinear iteration, the resulting linear systems on the inter-
face are solved by GPBiCG with a simplified diagonal scaling preconditioner. The
initial vector of the GPBiCG iteration is taken to be zero vector in case of the Stokes
equation to obtain the initial condition of the nonlinear iteration, and is taken from
the solution vector at the previous step at each step of the nonlinear iteration. The
GPBiCG iteration is stopped when the relative residual norm ‖ χ − S xb ‖2

‹
‖ χ ‖2

becomes smaller than 1.0 × 10−5 , where ‖ . ‖2 denotes the Euclidean norm. Com-
putation of the model was performed on the Alpha21264 system with 30 CPU at
the Computing and Communications Center, Kyushu University. It took about 100
hours to compute.

Fig. 2 shows the residual norm versus the number of GPBiCG iterations at
each step of the nonlinear iteration. As the iteration progresses, the convergence of
GPBiCG becomes faster. Fig. 3 shows the relative rate of change versus the number
of nonlinear iterations. The nonlinear iteration by the Newton method works well.
Fig. 4 shows the streamlines in the station. In both cases, the flow comes into the
station along the approaches of the trains, and goes out from the other sides of the
platform and from the exits.

At the end of this section, we consider the difficulty of computations in cases of
high Reynolds numbers and large scale problems. Table 1 shows the computational
data on the mesh size and the numbers of DOF. Table 2 shows CPU time [min] for
some Reynolds numbers and meshes. In Cases I and II, the problem can be solved
for six Reynolds numbers. However, as the scale increases, the problem cannot be
solved for higher Reynolds numbers. Finally, in Case VI, the problem can be solved
for only Re = 50 .

3 Conclusion

To analyze the stationary Navier–Stokes equations, ADVENTURE sFlow has been
developed, which is one of the modules produced in the ADVENTURE project [1].
The Newton method has been introduced as the nonlinear iteration, and the stabi-
lized finite element method as the approximation of the linearized equations in every
step of the nonlinear iteration. Moreover, for parallel computations, an iterative do-
main decomposition method and HDDM have been introduced, which are based on
GPBiCG.
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A station model with about 10 million DOF has been analyzed.
We are going to analyze problems in cases of yet higher Reynolds numbers or

coupled problems in the future.

Fig. 1. A station model.
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Table 1. The maximum diameter of mesh and the numbers of DOF.

Case I II III IV V VI
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Fig. 4. The streamlines of the station model.
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Summary. We apply the finite element method to two-dimensional, incompress-
ible MHD, using a streamfunction approach to enforce the divergence-free conditions
on the magnetic and velocity fields. This problem was considered by Strauss and
Longcope [1]. In this paper, we solve the problems with magnetic and velocity fields
instead of the velocity stream function, magnetic flux, and their derivatives. Con-
sidering the multiscale nature of the tilt instability, we study the effect of domain
resolution in the tilt instability problem. We use a finite element discretization on
unstructured meshes and an implicit scheme. We use the PETSc library with index
sets for parallelization. To solve the nonlinear MHD problem, we compare two non-
linear Gauss-Seidel type methods and Newton’s method with several time step sizes.
We use GMRES in PETSc with multigrid preconditioning to solve the linear sub-
problems within the nonlinear solvers. We also study the scalability of this program
on a cluster.

1 MHD and streamfunction formulation

Magnetohydrodynamics (MHD) is the fluid dynamics of conducting fluid or plasma,
coupled with Maxwell’s equations. The fluid motion induces currents, which produce
Lorentz body forces on the fluid. Ampere’s law relates the currents to the magnetic
field. The MHD approximation is that the electric field vanishes in the moving fluid
frame, except for possible resistive effects. In this study, we consider finite element
methods on an unstructured mesh for two-dimensional, incompressible MHD, using
a streamfunction approach to enforce the divergence-free condition on magnetic and
velocity fields and an implicit time difference scheme to allow much lager time steps.
Strauss and Longcope [1] applied an adaptive finite element method with explicit
time difference scheme to this problem.

The incompressible MHD equations are:
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∂

∂t
B = ∇× (v × B),

∂

∂t
v = −v · ∇v + (∇ × B) × B + µ∇2v,

∇ · v = 0, ∇ · B = 0,
(1)

where B is the magnetic field, v is the velocity, and µ is the viscosity.
To enforce incompressibility, it is common to introduce stream functions: v =„
∂φ

∂y
,−∂φ

∂x

«
, B =

„
∂ψ

∂y
,−∂ψ

∂x

«
. Formulating for symmetric treatment of the

fields, in the sense that the source functions Ω and C are time advanced, and the
potentials φ and ψ are obtained at each time step by solving Poisson equations,
we obtain

∂

∂t
Ω + [Ω,φ] = [C,ψ] + µ∇2Ω,

∂

∂t
C + [C, φ] = [Ω,ψ] + 2

»
∂φ

∂x
,
∂ψ

∂x

–
+ 2

»
∂φ

∂y
,
∂ψ

∂y

–
∇2φ = Ω, ∇2ψ = C,

(2)

where commutator [a, b] =
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
.

To solve (2), we have to compute the partial derivatives of potentials. These
partial derivatives can be obtained by solutions of linear problems. To do this, we
have to introduce four auxiliary variables. Altogether, this requires the solution of
eight equations at each step.

We use the velocity v and the magnetic field B to reduce the number of

equations to solve (2). To this aim, we put v = (v1, v2) =

„
∂φ

∂y
,−∂φ

∂x

«
, B =

(B1, B2) =

„
∂ψ

∂y
,−∂ψ

∂x

«
in equation (2) and get the following system:

∂Ω

∂t
+ (v1, v2) · ∇Ω = (B1, B2) · ∇C + µ∇2Ω,

∂C

∂t
+ (v1, v2) · ∇C = (B1, B2) · ∇Ω + 2([v1, B1] + [v2, B2]),

−∇2v1 = −∂Ω

∂y
, −∇2v2 =

∂Ω

∂x
, −∇2B1 = −∂C

∂y
, −∇2B2 =

∂C

∂x
,

∇2φ = Ω, ∇2ψ = C.

(3)

In the eight equations in (3), the last two equations for potentials need not be
solved to advance the solutions in each time step. If the potentials are needed at a
specific time, they are obtained by solving the last two equations in (3). To solve the
Poisson’s equations for v and B in (3), we have to impose boundary conditions
which are compatible with boundary conditions of φ , ψ , Ω , and C .

2 Finite discretization

To solve (3), we use the first-order backward difference (Euler) derivative scheme
leading to an implicit scheme which removes the numerically imposed time-step
constraint, allowing much larger time steps. This approach is first order accurate in
time and is chosen merely for convenience. Higher order BDF approaches vary only
in the weighting of the implicitly discretized and history terms.
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Let H1 denote H1(K) , H1,A denote the subset of H1(K) whose elements

satisfy the boundary condition of A , and H1,A′

denote he subspace of H1(K)
whose elements have zero values on the Dirichlet boundary of A = Ω, v1, v2, B1, B2 .
Multiplying by test functions and integrating by parts in each equation and using
the appropriate boundary conditions, we derive the variational form of (3) as follows:
Find X = (Ω,C, v1, v2, B1, B2) ∈ H1,Ω×H1×H1,v1 ×H1,v2 ×H1,B1 ×H1,B2 such
that

F n( X , Y ) = 0 (4)

for all Y = (u, w, p1, p2, q1, q2) ∈ H1,Ω′

× H1 × H1,v′1 × H1,v′2 × H1,B′
1 × H1,B′

2 ,
where F n = (Fn1 , F

n
2 , F3, F4, F5, F6)

T ,

Fn1 (X,Y) = Mn
t (Ω, u) + (v · ∇Ω, u) + µa(Ω, u) − (B · ∇C, u),

Fn2 (X,Y) = Mn
t (C,w) + (v · ∇C,w) − (B · ∇Ωn, w) − 2P (v,B, w),

F3(X,Y) = a(v1, p1) +

„
∂Ω

∂y
, p1

«
, F4(X,Y) = a(v2, p2) −

„
∂Ω

∂x
, p2

«
,

F5(X,Y) = a(B1, q1) +

„
∂C

∂y
, q1

«
, F6(X,Y) = a(B2, q2) −

„
∂C

∂x
, q2

«
,

(u, w) =

Z
K

uwdx, Mn
t (u, w) =

1

∆t
(u− un, w), a(u,w) =

Z
K

∇u · ∇wdx,

P ((u1, u2), (v1, v2), w) =

Z
K

[u1, v1]wdx +

Z
K

[u2, v2]wdx.

Let Kh be a given triangulation of domain K with the maximum diameter h
of the element triangles. Let Vh be the continuous piecewise linear finite element
space. Let V A

h , A = Ω, v1, v2, B1, B2 , be the subsets of Vh which satisfy the

boundary conditions of A on every boundary point of Kh and V A′

h be subspaces

of Vh and H1,A′

. Then we can write the discretized MHD problems as follows: For
each discrete time step n , find the solution X n

h = (Ωn
h , C

n
h , v

n
1,h, v

n
2,h, B

n
1,h, B

n
2,h) ∈

V Ω
h × Vh × V v1

h × V v2
h × V B1

h × V B2
h that satisfies

Fn( X n
h, Y h) = 0 (5)

for all Y h ∈ V Ω′

h × Vh × V
v′1
h × V

v′2
h × V

B′
1

h × V
B′

2
h .

3 Nonlinear and linear solvers

System (5) is a nonlinear problem in the six variables consisting of two time depen-
dent equations and four Poisson equations. However, if we consider the equations
separately, each equation is linear with respect to one variable. Specifically, the last
four equations are linear equations and Poisson problems. From the above observa-
tions, we naturally consider a nonlinear Gauss-Seidel iterative solvers (GS1) which
solve linear each equation on one variable in (5) in consecutive order with recent
approximate solutions.

Poisson solvers are well developed and the first two equations are time depen-
dent problems. From this observation, we consider another nonlinear Gauss-Seidel
iterative solvers (GS2) that solve first two equations of (5) as one equation and then
solve four Poisson equations.
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Nonlinear Gauss-Seidel iterative method doesn’t guarantee convergence, but con-
verges well in many cases, especially for small time step sizes in time dependent
problems.

Next, we consider the Newton linearization method. Newton’s method has,
asymptotically, second-order convergence for nonlinear problems and greater scala-
bility with respect to mesh refinement than the nonlinear Gauss-Seidel method, but
requires computation of the Jacobian of nonlinear problem which can be compli-
cated.

In all three nonlinear solvers, we need to solve linear problems. Krylov iterative
techniques are well suited because they can be preconditioned for efficiency. Among
the various Krylov methods, GMRES (Generalized Minimal RESiduals) is selected
because it guarantees convergence with nonsymmetric, indefinite systems. However,
GMRES can be memory intensive (storage increases linearly with the number of
GMRES iterations per Jacobian solve) and expensive (computational complexity of
GMRES increases with the square of the number of GMRES iterations per Jacobian
solve). Restarted GMRES can in principle deal with these limitations; however, it
lacks a theory of convergence, and stalling is frequently observed in real applications.

Preconditioning consists of operating on the system matrix Jk where

Jkδxk = −F (xk) (6)

with an operator P−1
k (preconditioner) such that JkP

−1
k (right preconditioning)

or P−1
k Jk (left preconditioning) is well-conditioned. In this study, we use left pre-

conditioning. Consider the equivalent linear system:

P−1
k Jkδxk = −P−1

k F (xk). (7)

The system in equation (7) is equivalent to the original system (6) for any nonsingu-
lar operator P−1

k . Thus, the choice of P−1
k does not affect the accuracy of the final

solution, but crucially determines the rate of convergence of GMRES, and hence the
efficiency of the algorithm.

In this study, we use multigrid which is well known as a successful preconditioner,
as well as a scalable solver in unaccelerated form, for many problems. We consider
the symmetrized diagonal term of Jacobian, i.e.,

JS,k =
1

2

“
JR,k + JTR,k

”
, (8)

where JR,k is a block diagonal matrix. The system JS,k may be less efficient than
JR,k as a preconitioner but more numerically stable because it is symmetric. To
implement the finite element solver for two-dimensional, incompressible MHD on
parallel machines, we use the PETSc library, which is well developed for nonlin-
ear PDE problems and easily implements a multigrid preconditioner with GMRES.
We use PETSc’s index sets for parallelization of our unstructured finite element
discretization.
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4 Numerical experiments: Tilt Instability

We consider the initial equilibrium state as ψ =

8<
:

[2/kJ0(k)]J1(kr)
y

r
, r < 1,

(1/r − r)
y

r
, r > 1,

where Jn is the Bessel function of order n , k is any constant that satisfies J1(k) =

0 , and r =
p
x2 + y2 .
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Fig. 1. Contours of Ω , C , φ , and ψ at time t = 0.0, 4.0, 6.0, 7.0 .

In our numerical experiments, we solve on the finite square domain K =
[−R,R] × [−R,R] with the initial condition of the tilt instability problem from
the above initial equilibrium and perturbation of φ (originating from perturbations
of velocity) such that
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Ω(0) = 0.0, C(0) =


19.0272743J1(kr)y/r if r < 1
0.0 if r > 1

,

φ(0) = 10−3e−(x2+y2), ψ(0) =

(−1.295961618J1(kr)y/r if r < 1

−(
1

r
− r)y/r if r > 1,

where k = 3.831705970 and with Dirichlet boundary conditions Ω(x, y, t) = 0.0 ,

φ(x, y, t) = 0.0 , and ψ(x, y, t) = y− y

x2 + y2
and Neumann boundary condition for

C , i.e.,
∂C

∂n
(x, y, t) = 0.0 . The initial and boundary condition for velocity v and

magnetic field B are derived from the initial and boundary condition of Ω , C ,
φ , and ψ . Numerical simulation results are illustrated in Fig. 1.

The tilt instability problem is defined on unbounded domain. To investigate
the effect of size of domains, we simulate two methods, one uses φ , ψ and their
derivatives (denoted Strauss-Longcope, or “SL”) and the other uses v and B
(denoted “K”) on the square domains with R = 2 and R = 3 . Numerical results
are shown in Fig. 2, the contours of ψ at t = 6.0 . The average growth rate γ of
kinetic energy is shown in Table 1. These numerical simulation results show that
the solutions of two formulations are closer when the domain is enlarged, with the
previous approach converging from above and new approach converging from below.
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Fig. 2. Contours of ψ at T = 7.0 .

Table 1. Average growth rate γ of kinetic energy from t = 0.0 to t = 6.0 .

previous, R = 2 previous, R = 3 new, R = 2 new, R = 3

2.167 2.152 1.744 2.102

From here, we consider the convergence behaviors of several nonlinear and linear
solvers as a function of time step sizes. In Table 2, we report the number of nonlinear
iterations of nonlinear solvers according to time step sizes for the fixed starting time
and fixed mesh level 5. We choose t = 0.0 and t = 6.0 as the base times because
many simulations have trouble at start up and the magnitudes of the velocity (v1, v2)
and magnetic field (B1, B2) increase with time. These numerical results show that
GS2 and Newton method are more nonlinearly robust than GS1.

To investigate another convergence behavior, we report the average number of
linear iterations in one time step according to preconditioners in Table 3. Numerical
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Table 2. The average number of nonlinear iterations of one time step according to
time step sizes dt .

dt GS1 GS2 NM

t = 0 t = 6 t = 0 t = 6 t = 0 t = 6

0.0005 3 4 3 4 2 4

0.001 4 4 3 4 3 4

0.002 5 5 3 3 5 4(5)

0.005 12 8 4 6 3 5

0.01 * * 4 8 4 7

0.02 * * 6 13 5 11

results show that the multigrid preconditioner applying on symmetrized reduced
system ( S ; see (8)) is robust at t = 0.0 and t = 6.0 , but multigrid applied to
the reduced system ( R ) is robust only at t = 0.0 , very similar to the symmetrized
case, because the values of velocity are small at t = 0.0 . These results show that
we have to use multigrid preconditioner applied to the symmetrized reduced system
to get robust convergence.

Table 3. The average number of linear iterations in one time step according to time
step sizes.

dt GS2(R) GS2(S) NM(R) NM(S)

t = 0 t = 6 t = 0 t = 6 t = 0 t = 6 t = 0 t = 6

0.0005 4.3 4 4.3 4 5 5 5 5
0.001 5.3 4.5 5.3 5 6 5 6 5
0.002 6.6 5 6.6 5.2 7 6.8 7 6.25
0.005 11 7.8 11 8.8 12 * 12 10
0.01 18 * 18 15.2 18.5 * 18.5 17
0.02 28.8 * 28.8 27.3 31.6 * 31.6 33.3

In Table 4, we report the average number of nonlinear and linear iterations from
t = 0.0 to t = 0.05 with dt = 0.005 according to the levels. These results show that
two numerical method GS2(S) and Newton method (S) have very similar behaviors.

Table 4. Average number of iterations according to the number of level.

Solvers GS2(S) NM(S)

á level nonlinear linear nonlinear linear

4 4 7.9 3 8
5 3.1 11.2 3 11.7
6 3 16.1 3 16.4
7 3.4 19.1 3.4 20.1
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In Table 5, we report the solution times of one time step according to level
and number of processors on the cluster machine BGC (the Brookhaven Galaxy
Cluster) at BNL. We run the program on the same speed (696 MHz) CPU’s. This
table shows that Newton’s method has a better scalabilty than GS2 though neither
scales strongly beyond a certain interval.

Table 5. Average solution time of one time step (linear system) according to level
and number of processors at t = 0.0 and dt = 0.005 .

level # CPU GS2(S) NM(S)

4 1 13.7 (2.39) 12.3 (2.02)
2 13.3 (2.74) 7.76 (1.40)

5 2 42.5 (11.3) 33.5 (6.62)
4 29.4 (7.79) 21.0 (4.23)
8 38.6 (11.12) 19.9 (4.89)

6 8 120.5 (35.9) 59.9 (14.4)
16 64.5 (19.3) 39.0 (9.65)
32 118.1 (36.95) 61.6 (17.8)

7 32 226.3(61.8) 142.9 (36.2)

5 Conclusions

We study a new streamfunction approach method for two-dimensional, incompress-
ible magnetohydrodynamics with finite element discretization on the tilt instability
example. We show that nonlinear Gauss-Seidel (GS2) and Newton’s method have
similar numerical behaviors and multigrid preconditioning on the symmetrized re-
duced system provides good linear convergence.
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Summary. In this work we present a finite volume discretization of an elliptic
boundary value problem on adaptively refined meshes. This problem is important in
many practical applications, e.g. porous media flow. We propose an error indicator
functional which is used to select elements that should be refined. Two numerical
examples are provided to demonstrate the potential of the proposed refinement
strategy.

1 Introduction

Finite volume [1] and finite element [2, 3, 9] are widely used methods for discretiz-
ing partial differential equations. Behaviour of finite element methods on adaptive
meshes is well understood and studied, e.g., [2, 3, 9], whereas finite volume method
seems to be less studied. In this paper, we will consider a cell centered finite volume
method also known as control volume finite difference method (CVFD) [1, 5]. Finite
volume methods are popular for example in the porous media community since they
are based on conservation principles and honour the continuity of fluxes. There are
different ways of expressing the fluxes through the boundaries of a cell which give
rise to different formulations like the two point flux approximation methods (TPFA)
and the multi point flux approximation methods (MPFA), [7, 1]. In this work, we
will use a TPFA method. Consider the numerical solution of the following elliptic
boundary value problem using adaptive meshes:

−∇ · (K ∇p) = f(x, y) in Ω, (1)

p(x, y) = pD on ∂Ω. (2)

Here, Ω is a polyhedral domain in IR2 , the source function f is assumed to
be in L2(Ω) , and K is symmetric and uniformly positive definite tensor which
may depend on the spatial coordinate. In porous media flow, the unknown function
p = p(x, y) represents the pressure of a single fluid, and K is the permeability of
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the porous medium Ω . The rest of the paper is organised as follows: In Section
2, a simple criterion for adaptive refinement is proposed, and an algorithm for an
adaptive meshing strategy is given. In Section 3, we give two numerical examples.
In the first example, the permeability K is constant while the source exhibits a
huge variability. In the second example, the medium properties represented by the
permeability K are discontinuous. In both cases an analytic solution is known and
the error for the discrete solutions on adaptively and uniformly refined meshes can be
computed. These errors are then compared for meshes that possess the same degree
of freedom (DOF). Finally in Section 4, we provide some concluding remarks.

2 Adaptive Criteria and Adaptive Algorithm

Adaptive refinement are feed-back based discretizations (Solve → Estimate →
Refine/Coarse). Thus we need criterion for selecting finite volumes/cells in the
mesh for further refinement. Ultimately these methods construct a sequence of
meshes that may converge to an optimal mesh (the most accurate solution at a
fixed cost or lowest computational effort for a given accuracy). Generally most of
the error occurs in areas where the solution exhibits large gradients, varying cur-
vature or high source variability [2, 3, 9]. Based on these heuristics we propose the
following error indicator for a cell i in the mesh:

ηi = α ‖ph‖L2(Ωi) + αG ηG + αF ηF + αS ηS . (3)

Here, α , αG , αF and αS are weights belonging to the interval [0, 1] , and ηG ,
ηF and ηS are given as follows:

ηG := ‖∇ph‖L2(Ωi), (4)

ηF := ‖(K ∇ph) · n̂‖L2(∂Ωi), (5)

ηS := ‖f‖L2(Ωi). (6)

In these formulas, we will use least square fitting to approximate the gradient, ∇ph ,
of the discrete pressure ph . An error error indicator need not to represent the error
very accurately [3], they just need to select the elements for further refinement. An

element i in the mesh will be refined if
ηi

maxj ηj
≥ δ (0 ≤ δ ≤ 1) . Thus, δ = 0

means a uniform refinement and δ = 1 means that the algorithm will refine a single
element per iteration. None of these end point values may be optimal. A trade off
between uniform refinement and refining a single element at a time is obtained by
choosing δ = 0.5 . This value has also been suggested in the literature, e.g., [9]. In
general the choice of an optimal set of parameters δ , α , αG , αF and αS is a
difficult task. In this work, we have chosen these parameters based on experience with
the specific problems. Optimal choice of these numbers will be investigated in future
research. It should be noted that if αS and αF are equal to zero then the indicator
(3) is similar to the indicator proposed in [9] for an Adaptive Discontinuous Galerikin
Method, whereas if α and αG is equal to zero then the indicator is similar to the
one given in [2, 3] for an adaptive finite element method. The overall algorithm
we are using is presented in Algorithm 1. This adaptive algorithm works on the
principle of equally distributing the adaptivity index over all cells in the mesh. For
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a cell centered finite volume method the degrees of freedom (DOF) are equal to the
number of cells in the mesh. In Algorithm 1, the refinement is stopped at a fixed
maximum DOFs. In general an a posteriori error estimator should be added as a
stopping criterion, (cf. [9, 8, 4]).

Algorithm 1: Adaptive Algorithm.

Mesh the domain;
while DOF < DOF max do

Discretize the PDE over the mesh by the CVFD;
Solve the discrete system;
forall elements j in the mesh do

if ηj/max
i

ηi ≥ δ then

Refine the element j in the mesh;
end

end
Form a new mesh;

end

3 Numerical Examples

Let pk denotes the exact solution for the pressure at the center of cell k , and
pkh denotes the discrete pressure obtained by the finite volume approximation for
the same location. Then the discrete error e in the L2 norm for a mesh can be
expressed as:

‖e‖L2
:=

 X
cells

h
pk(x) − pkh(x)

i2
Ωk

!1/2

. (7)

Here, the summation is to be taken over all the cells/finite volumes in the mesh. The
CVFD approximation of the equation (1) subject to the boundary condition (2) using
a two point flux approximation (TPFA) leads to symmetric positive definite linear
systems. To solve these systems, we are using the ILU preconditioned conjugate
gradient (CG) solver with a tolerance of 1 × 10−10 .

3.1 Example 1

Let the domain be Ω = (0, 1) × (0, 1) , and the permeability be the identity tensor
K = I . We enforce the source term f = f(x, y) such that the analytical solution
to Equation (1) is given by

u(x, y) = 0.0005 [x (x− 1) y (y − 1) ]2 e10 (x2+y2). (8)

Note that this solution is consistent with the zero Dirichlet boundary condition (2).
Furtheremore, taking the Laplacian of (8) shows that the source term exhibits a
huge variability inside the domain and even within the cells. For this problem we
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found that δ = 0.5 , α = 0.0 , αG = 0.10 , αF = 0.90 and αS = 1.0 was a
good choice of parameters for the indicator functional (3). However, other choices
may work even better. Figures 3 reports the outcome of a numerical experiment
comparing the discrete solutions on an adaptively refined mesh and a uniform mesh.
The degrees of freedom (DOF) associated with the meshes depicted in these figures
are approximately the same. However, the L2 errors in the solutions on adaptive
and uniform meshes are 8.91 × 10−4 and 3.7 × 10−3 , respectively. Thus, the error
of the solution on the adaptively refined mesh is much smaller compared to the
solution on the uniform grid. In Figure 3.1, we have plotted the error versus DOF
for solutions on adaptively refined meshes and for uniform meshes. From this plot
we get that ‖e‖ ∼ DOF−p/2 with p ≈ 2 on the adaptive meshes, which is quasi
optimal in the sense of [8, 4]. Since the solution is smooth, we expect the advantage
of adaptive refinement to be largest for coarser grids, while this advantage should
be reduced compared to a uniform refinement for finer grids. This is indeed what
can be observed in Figure 3.1.
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Fig. 1. (Example 3.1) Exact solution.
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Fig. 2. (Example 3.1) L2 error vs degrees
of freedom for adaptively generated meshes
and uniform meshes.

3.2 Example 2

In porous media flow, material properties as given by the permeability is often
piecewise constant. The numerical challenges introduced by the discontinuities in
the permeability are difficult to handle by standard formulations, see [9, 6, 7, 1, 5].
In this example, we will investigate the behaviour of our refinement strategy for a
problem with discontinuous permeability. Let Ω = (−1, 1)×(−1, 1) . We subdivided
Ω into four non overlapping subregions Ωi i = 1 . . . , 4 such that Ω = ∪iΩi as
shown in Figure 4. For each subregion Ωi we associate a constant permeability K ,
and will assume that

K2 = K4 = I and K1 = K3 = R I , (9)

where R is a parameter to be determined. An analytic solution can be constructed
using the polar representation
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Fig. 3. (Example 3.1) Discrete solution on adaptive and uniform meshes. DOF for
the adaptive mesh is 601, and DOF for uniform refinement is 625. L2 error on
adaptive mesh is 8.91 × 10−4 while on uniform mesh it is 3.7 × 10−3 .

p(r, θ) = rγη(θ), (10)

see [8, 4]. Let η(θ) be given by

η(θ) =

8>>>>>><
>>>>>>:

cos [(π/2 − σ)γ] cos [(θ − π/2 + ρ)γ] , θ ∈ [0,
π

2
],

cos(ργ) cos [(θ − π + σ)γ] , θ ∈ [
π

2
, π],

cos(σγ) cos [(θ − π − ρ)γ] , θ ∈ [π,
3π

2
],

cos [(π/2 − ρ)γ] cos [(θ − 3π/2 − σ)γ] , θ ∈ [
3π

2
, 2π],

(11)

and let the numbers R , γ , ρ and σ satisfy the nonlinear relations:

R = − tan [(π − σ)γ] cot(ργ),
1/R = − tan(ργ) cot(σγ),
R = − tan(σγ) cot [(π/2 − ρ)γ] ,
0 < γ < 2,
max{0, πγ − π} < 2γρ < min{πγ, π},
max{0, π − πγ} < −2γρ < min{π, 2π − πγ}.

(12)

Then it can be shown that (10) satisfies Equation (1) with K given by (9) and
f(x, y) = 0 . Boundary conditions need to be chosen consistently with the form
(10). Furthermore, it can be shown that the solution p belongs to the fractional
Sobolev space H1+ξ(Ω) where ξ < γ (cf. [10]). By choosing γ = 0.3 , we can
solve the constrained nonlinear relations (12) using Newton’s iteration to get R =
17.3476 , σ = −4.4506 and ρ = 0.7853 . We specify the parameters for the indicator
functional to be δ = 0.6 , α = 0.0 , αG = 0.0 , αF = 1.0 , αS = 0.0 . In Figure
5, we have plotted the error in the discrete solution against the degrees of freedom
for both adaptive and uniform meshes. Again we observe that the convergence on
adaptive meshes are much better than for uniform refinement. We also get that
‖e‖L2 ∼ DOF−p/2 with p ≈ 2.0 for the solution on adaptive meshes. Because of the
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regularity of the solution, this convergence is also quasi optimal in the sense of [8, 4].
Finally in Figure 6 we plot the number of CG iterations (without preconditioning)
vs. the DOFs for the adaptive and uniformly refined meshes. The plot shows that
the uniformly refined meshes require approximately twice as many CG iterations
as the adaptive refinement. This suggests that the condition number for the matrix
obtained for uniform refinement is four times the condition number for the matrix
obtained for adaptive refinement.

Ω1 Ω2

Ω3Ω4

Fig. 4. (Example 3.2) Domain with discontinuous medium properties. The perme-
ability is constant over each sub-domains i.e., K = Ki in Ωi .
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4 Conclusions

In this work we have given a strategy for adaptive refinement in the setting of
CVFD discretizations of boundary value problems. The mesh refinement is based
on the use of an error indicator functional. We have tested the methods on two
test examples. In both cases the solution has a strong local behaviour which is
clearly captured by our refinement strategy. We have computed the error in the
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discrete solution to obtain convergence rates. The numerical experiments suggest
that convergence is quasi optimal as the mesh is adaptively refined for both the
test examples. Furthermore we have compared CVFD on adaptive and uniform
meshes. As expected the solutions obtained for adaptive meshes are significantly
more accurate, and the system matrices are better conditioned when we employ
adaptive meshes. Even though our preliminary investigations show that the proposed
CVFD discretization on adaptive meshes has a great potential, many challenges
remain open for further research. Most importantly we need to find better ways of
selecting parameters for the indicator functional.
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Summary. We present preliminary results of an ongoing project to develop codes of
the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) method
for symmetric eigenvalue problems for hypre and PETSc software packages. hypre
and PETSc provide high quality domain decomposition and multigrid precondi-
tioning for parallel computers. Our LOBPCG implementation for hypre is publicly
available in hypre 1.8.2b and later releases and in PETSc. We describe the current
state of the LOBPCG software for hypre and PETSc and demonstrate scalability
results on distributed memory parallel clusters using domain decomposition and
multigrid preconditioning.

This work is partially supported by the Center for Applied Scientific Computing,
Lawrence Livermore National Laboratory and the National Science Foundation DMS
0208773.

1 Introduction

We implement a parallel algorithm, the Locally Optimal Block Preconditioned Con-
jugate Gradient Method (LOBPCG) [5, 6], for the solution of eigenvalue problems
Ax = λBx for large sparse symmetric matrices A and B > 0 on massively parallel
computers for the High Performance Preconditioners (hypre) [3] and Portable, Exten-
sible Toolkit for Scientific Computation (PETSc) [2] software libraries. Our software
package, the Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX)
is available at http://math.cudenver.edu/˜ aknyazev/software/BLOPEX/
which contains, in particular, our MATLAB, hypre and PETSc codes of LOBPCG.
Our native hypre LOBPCG version efficiently takes advantage of powerful hypre
algebraic and geometric multigrid preconditioners. Our native PETSc LOBPCG
version gives the PETSc users community an easy access to a customizable code of
a high quality modern preconditioned eigensolver.
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The LOBPCG method has recently attracted attention as a potential competi-
tor to the Lanczos and Davidson methods due to its simplicity, robustness and fast
convergence. Implementations in C++ (by R. Lehoucq, U. Hetmaniuk et al. [1, 4],
Anasazi Trilinos), in FORTRAN 77 (by Randolph Bank, a part of PLTMG 9.0 and
above) and in FORTRAN 90 (by G. Zèrah, a part of ABINIT v4.5 and above, com-
plex Hermitian matrices) of the LOBPCG are being developed by different groups
for such application areas as structural mechanics, mesh partitioning and electronic
structure calculations.

2 Abstract LOBPCG implementation for hypre/PETSc

For computing only the smallest eigenpair, we take the block size m = 1 and then
the LOBPCG gets reduced to a local optimization of a 3-term recurrence:

x(i+1) = w(i) + τ (i)x(i)+γ(i)x(i−1),

w(i) = T (Ax(i) − λ(i)Bx(i)), λ(i) = λ(x(i)) = (x(i), Ax(i))/(Bx(i), x(i))

with properly chosen scalar iteration parameters τ (i) and γ(i) . The easiest and most
efficient choice of parameters is based on an idea of local optimality [5, 6], namely,

select τ (i) and γ(i) that minimize the Rayleigh quotient λ(x(i+1)) by using the
Rayleigh–Ritz method. For finding the m smallest eigenpairs the Rayleigh–Ritz
method on a 3m –dimensional trial subspace is used during each iteration for the
local optimization.

LOBPCG description in [6] skips important details. The complete description of
the LOBPCG algorithm as it has been implemented in our MATLAB code rev. 4.10
and the hypre code 1.9.0b follows:

Input: m starting linearly independent multivectors in X ∈ R
n×m ,

l linearly independent constraint multivectors in Y ∈ R
n×l , devices to

compute A ∗X , B ∗X and T ∗X .
1. Allocate memory for ten multivectors

W,P,Q,AX,AW,AP,BX,BW,BP,BY ∈ R
n×m .

2. Apply constraints to X :

BY = B ∗ Y ; X = X − Y ∗
“
Y T ∗BY

”−1

∗XT ∗BY .

3. B -orthonormalize X : BX = B ∗X;R = chol(XT ∗BX);X = X ∗ R−1;

BX = BX ∗ R−1 ; AX = A ∗X . (”chol ” is the Cholesky decomposition)
4. Compute the initial Ritz vectors: solve the eigenproblem

(XT ∗ AX) ∗ TMP = TMP ∗ Λ;
and compute X = X ∗ TMP ;AX = AX ∗ TMP ; BX = BX ∗ TMP .

5. Define index set I to be {1, . . . ,m}
6. for k = 0, . . . ,MaxIterations
7. Compute residuals: WI = AXI −BXI ∗ ΛI .
8. Exclude from index set I those indices which correspond to residual

vectors for which the norm has become smaller than the tolerance.
If I then becomes empty, exit loop.

9. Apply preconditioner T to the residuals: WI = T ∗WI .

636



Preconditioned Eigensolver LOBPCG in hypre and PETSc

10 Apply constraints to the preconditioned residuals WI :

WI = WI − Y ∗
“
Y T ∗BY

”−1

∗W T
I ∗BY .

11. B -orthonormalize WI : BWI = B ∗WI ; R = chol(W T
I ∗BWI) ;

WI = WI ∗R−1 ; BWI = BWI ∗ R−1 .
12. Compute AWI : AWI = A ∗WI .
13. if k > 0

14. B -orthonormalize PI : R = chol(P TI ∗ BPI);PI = PI ∗R−1 ;

15. Update API = API ∗R−1 ; BPI = BPI ∗ R−1 .
16. end if

Perform the Rayleigh Ritz Procedure:
Compute symmetric Gram matrices:

17. if k > 0

18. gramA =

2
4Λ XT ∗AWI XT ∗ API

· W T
I ∗AWI W T

I ∗ API
· · P TI ∗API

3
5 .

19. gramB =

2
4 I XT ∗ BWI XT ∗ BPI

· I W T
I ∗ BPI

· · I

3
5 .

20. else

21. gramA =

»
Λ XT ∗ AWI

· W T
I ∗ AWI

–
.

22. gramB =

»
I XT ∗BWI

· I

–
.

23. end if
24. Solve the generalized eigenvalue problem:

gramA ∗ Y = gramB ∗ Y ∗ Λ , where the first m eigenvalues in
increasing order are in the diagonal matrix Λ and the
gramB -orthonormalized eigenvectors are the columns of Y .
Compute Ritz vectors:

25. if k > 0

26. Partition Y =

2
4 YX
YW
YP

3
5 according to the number of columns in

X, WI , and PI , respectively.
27. Compute P = WI ∗ YW + PI ∗ YP ;

AP = AWI ∗ YW + API ∗ YP ; BP = BWI ∗ YW + BPI ∗ YP .
28. X = X ∗ YX + P ;AX = AX ∗ YX + AP ;BX = BX ∗ YX + BP .
29. else

30. Partition Y =

»
YX
YW

–
according to the number of columns in

X and WI respectively.
31. P = WI ∗ YW ;AP = AWI ∗ YW ;BP = BWI ∗ YW .
32. X = X ∗ YX + P ;AX = AX ∗ YX + AP ;BX = BX ∗ YX + BP .
33. end if
37. end for

Output: Eigenvectors X and eigenvalues Λ .
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The LOBPCG eigensolver code is written in C-language and calls a few LA-
PACK subroutines. The matrix–vector multiply and the preconditioner call are done
through user supplied functions. The main LOBPCG code is abstract in the sense
that it works only through an interface that determines the particular software en-
vironment: hypre or PETSc, in order to call parallel (multi)vector manipulation
routines.

A block diagram of the high-level software modules is given in Figure 1.

PETSc driver for LOBPCG hypre driver for LOBPCG

Interface PETSc-LOBPCG Interface hypre-LOBPCG

PETSc libraries Abstract LOBPCG in C hypre libraries

�� ��

�� �� �� ��

Fig. 1. LOBPCG hypre/PETSc software modules.

hypre supports four conceptual interfaces: Struct, SStruct, FEM and IJ. At
present, LOBPCG has been tested with all but the FEM interface. hypre test drivers
for LOBPCG are simple extensions of the hypre test drivers for linear system. We
anticipate that both types of drives will be merged in the post 1.9.0b hypre release.

We do not use shift-and-invert strategy. Preconditioning is implemented directly
as well as through calls to the hypre/PETSc preconditioned conjugate gradient
method (PCG). Specifically, in the latter case the action x = Tb of the precon-
ditioner T on a given vector b is performed by calling a few steps of PCG to solve
Ax = b .

LOBPCG-hypre has been tested with all available hypre PCG-capable precon-
ditioners in Struct, SStruct and IJ interfaces, most notably, with IJ AMG–PCG
algebraic multigrid, IJ DS–PCG diagonal scaling, IJ additive Schwarz–PCG, and
Struct PFMG-PCG geometric multigrid. LOBPCG-PETSc has been tested with
PETSc native Additive Schwarz and PETSc linked IJ AMG from hypre.

3 hypre/PETSc LOBPCG Numerical Results

3.1 Basic Accuracy of Algorithm

In these tests LOBPCG computes the smallest 50 eigenvalues of 3D 7–Point 200×
200×200 and 200×201×202 Laplacians. In the first case we have eigenvalues with
multiplicity and in the second case the eigenvalues are distinct, but clustered. The
initial eigenvectors are chosen randomly. We set the stopping tolerance (the norm of
the maximum residual) equal to 10−6 . The numerical output and exact eigenvalues
are compared. In both cases for all eigenvalues the maximum relative error is less
than 10−8 and the Frobenius norm ‖V TV − Im×m‖ < 10−12, where V ∈ R

n×m
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contains the approximate eigenvectors. These tests suggest that LOBPCG is cluster
robust, i.e. it does not miss (nearly) multiple eigenvalues.

The LOBPCG code may become unstable because of ill-conditioned Gram matri-
ces in some tests, which is typically a result of bad initial guesses, e.g., generated by a
poor quality random number generator. When the ill-conditioning appears restarts
are helpful. The simplest restart is to drop the matrix P from the basis of the
trial subspace. Such restarts improve the stability of the LOBPCG code as observed
in MATLAB tests, and are planned to be implemented in a future hypre/PETSc
LOBPCG revision.

3.2 Performance Versus the Number of Inner Iterations

Let us remind the reader that we can execute a preconditioner x = Tb directly or
by calling PCG to solve Ax = b . We do not attempt to use shift-and-invert strategy,
but instead simply take T to be a preconditioner for A . Therefore, we can expect
that increasing the number of “inner” iterations of the PCG might accelerate the
overall convergence, but only if we do not make too many iterations. In other words,
for a given matrix A and a particular choice of a preconditioner, there should be
an optimal finite number of inner iterations.
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Fig. 2. Performance versus the number of inner iterations. 7–Point 3-D Laplacian,
1,000,000 unknowns. Dual 2.4-GHz Xeon 4GB.

In numerical example illustrated on Figure 2, we try to find this optimal number
for the Schwarz–PCG and AMG-PCG preconditioners in hypre and PETSc. We
measure the execution time as we vary the quality of the preconditioner by changing
the maximum number of inner iterations in the corresponding PCG solver. We find
that for this problem the optimal number of inner iterations is approximately 10 −
15 for Schwarz-PCG, but AMG-PCG works best if AMG is applied directly as a
preconditioner, without even initializing the AMG-PCG function.

Our explanation of this behavior is based on two facts. First, the Schwarz method
is somewhat cheaper, but not of such a good quality, compared to AMG in these
tests. Moreover, the costs for matrix vector multiplies and multivector linear algebra
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in LOBPCG is a relatively small proportion of the AMG application, but compa-
rable to the computational cost of Schwarz here. Second, one PCG iteration is less
computationally expensive compared to one LOBPCG iteration because of larger
number of linear algebra operations with multivectors in the latter. A single direct
application of AMG as the preconditioner in LOBPCG gives enough improvement in
convergence to make it the best choice, while Schwarz requires more iterations that
are less time consuming if performed using PCG, rather than by direct application
in LOBPCG.

3.3 LOBPCG Performance vs. Block Size

We test both hypre and PETSc LOBPCG codes on a 7–Point 3-D Laplacian with
2,000,000 unknowns with hypre AMG Preconditioner on a Sun Fire 880, 6 CPU 24GB
system by increasing the block size m , i.e. the number of computed eigenvectors,
from 1 to 16. We observe that the growth of the total CPU time with the increase of
the block size is linear, from approximately 100 sec for m = 1 to 2,500 sec for m =
16. We expect that for larger m the complexity term m2n will become visible. We
note, however, that neither hypre nor PETSc currently has efficiently implemented
multivectors, e.g., in the current implementation the number of MPI communications
in the computation of the Gram matrices grows with m . An efficient implementation
of the main multivector functions is crucial in order to significantly reduce the overall
costs for large m .

3.4 Scalability with the Schwarz–PCG and Multigrid–PCG
preconditioners

We test scalability by varying the problem size so it is proportional to the number
of processors. We use a 7–Point 3–D Laplacian and set the block size to m = 1 .

For the Schwarz–PCG, we set the maximum number of inner iterations of the
PCG to 10. The tests are performed on the Beowulf cluster at CU Denver that
includes 36 nodes, two PIII 933MHz processors and 2GB memory per node, running
Linux RedHat and a 7.2SCI Dolpin interconnect and on MCR cluster (dual Xeon
2.4-GHz, 4 GB nodes) at LLNL. In all these tests, the time per iteration is reasonably
scalable, but the number of LOBPCG iterations grows with the problem size i.e.,
the Schwarz–PCG preconditioner in hypre and in PETSc is not optimal in this case.

For the Multigrid–PCG preconditioners, we apply the preconditioners directly,
without calling the PCG. We test here hypre IJ AMG–PCG algebraic multigrid,
hypre Struct PFMG-PCG geometric multigrid and PETSc linked IJ AMG from
hypre on the LLNL MCR cluster, see Figure 3.4 left.

Good LOBPCG scalability can be seen in Figure 3.4, left. The Struct PFMG
takes more time compared to AMG here because of the larger convergence factor. To
satisfy the reader curiosity, we also provide the scalability data for the preconditioner
setup on Figure 3.4 right.

Conclusions

• We present the world’s apparently first parallel code for generalized symmet-
ric definite eigenvalue problems, that can apply preconditioning directly. The
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Fig. 3. 7–Point Laplacian, 2,000,000 unknowns per node. Preconditioners: AMG
and PFMG. System: LLNL MCR. LOBPCG scalability (left) and preconditioner
setup (right).

LOBPCG is our method of choice for preconditioned eigensolver because of its
simplicity, robustness and fast convergence.

• Our hypre/PETSc LOBPCG code illustrates that the LOBPCG “matrix-free”
algorithm can be successfully implemented using parallel libraries that are de-
signed to run on a great variety of multiprocessor platforms.

• In the problems tested with AMG preconditioning, 90%–99% of the computa-
tional effort is required for the preconditioner setup and in the applying the pre-
conditioner and thus the LOBPCG scalability is mainly dependent on the scal-
ability of hypre/PETSc preconditioning. Initial scalability measurements look
promising, but more testing is needed by other users.

• The LOBPCG hypre software has been integrated into the hypre software at
LLNL and has been publicly released in hypre–1.8.2b and above. The LOBPCG
PETSc software is now available in PETSc at Argonne as a part of our BLOPEX,
which is an external PETSc package.

The results of this work have been presented at: 11th and 12th Copper Mountain
Conferences on Multigrid Methods, Preconditioning 2003, SIAM Parallel Process-
ing for Scientific Computing 2004, and 16th International Conference on Domain
Decomposition Methods. Earlier results and the pecularities of our LOBPCG im-
plementation in hypre–1.8.0b can be found in [7].

We are grateful to all members of the Scalable Algorithms Group of the Center
for Applied Scientific Computing, Lawrence Livermore National Laboratory and, in
particular, to Rob Falgout, Edmond Chow, Charles Tong, and Panayot Vassilevski,
for their patient support and help. We thank Matthew Knepley and other members
of the PETSc team for their help with incorporating our BLOPEX as an external
package into the PETSc library.
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University Ostrava, Czech Republic. radek.kucera@vsb.cz

2 Department of Numerical Mathematics, Charles University, Prague, Czech
Republic. haslin@met.mff.cuni.cz

3 Department of Applied Mathematics, VŠB-Technical University Ostrava, Czech
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Summary. The paper deals with solving of contact problems with Coulomb friction
for a system of 3D elastic bodies. The iterative method of successive approximations
is used in order to find a fixed point of certain mapping that defines the solution.
In each iterative step, an auxiliary problem with given friction is solved that is
discretized by the FETI method. Then the duality theory of convex optimization
is used in order to obtain the constrained quadratic programming problem that, in
contrast to 2D case, is subject to quadratic inequality constraints. The solution is
computed (among others) by a novelly developed algorithm of constrained quadratic
programming. Numerical experiments demonstrate the performance of the whole
computational process.

1 Introduction

The FETI method was proposed by [6] for parallel solution of problems described by
elliptic partial differential equations. The key idea is elimination of the primal vari-
ables so that the original problem is reduced to a small, relatively well conditioned
quadratic programming problem (QPP) in terms of the Lagrange multipliers. Then
the iterative solver is used to compute the solution.

In context of 2D contact problems with friction, the FETI procedure leads to
the sequence of QPPs constrained by simple inequality bounds (see [3] or [8]) so
that the fast algorithm with proportioning and gradient projection (see [4]) can be
used. The situation is not so easy in 3D since the QPPs are subject to two types of
constraints. The first one, representing nonnegativity of the normal contact stress,
are again simple inequality bounds while the second one, representing an effect of

∗Supported by grant GAČR 101/04/1145 and 101/05/0423.
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isotropic friction, are quadratic inequalities. In our recent papers [9], [12], we have
used a linear approximation of quadratic inequalities transforming them to simple
inequality bounds so that the fast algorithm mentioned above can be used again. Un-
fortunately, this procedure increases considerably the size of the QPPs if we require
a sufficiently accurate approximation of quadratic inequalities. In order to overcome
this drawback, we have developed a new algorithm of quadratic programming that
treates directly the quadratic inequalities [11]. In this contribution, we shall show
the performance of the whole computational process on model problems.

2 Formulation of the problems

Let us consider a system of elastic bodies that occupy in the reference configuration
bounded domains Ωp ⊂ IR3 , p = 1, 2, . . . , s , with sufficiently smooth boundaries
Γ p that are split into three disjoint parts Γ pu , Γ pt and Γ pc so that Γ p = Γ pu ∪Γ pt ∪
Γ pc . Let us suppose that the zero displacements are prescribed on Γ pu and that the
surface tractions of density t p ∈ (L2(Γ pt ))3 act on Γ pt . Along Γ pc the body Ωp

may get into unilateral contact with some other of the bodies. Finally we suppose
that the bodies Ωp are subject to the volume forces of density f p ∈ (L2(Ωp))3 .

To describe non-penetration of the bodies, we shall use linearized non-penetration

condition that is defined by a mapping χ : Γc −→ Γc , Γc =
s[
p=1

Γ pc , which assigns

to each x ∈ Γ pc some nearby point χ ( x ) ∈ Γ qc , p �= q . Let v p( x ), v q( χ ( x ))
denote the displacement vectors at x , χ ( x ) , respectively. Assuming the small dis-
placements, the non-penetration condition reads

vpn( x ) ≡ ( v p( x ) − v q( χ ( x ))) · n p( x ) ≤ δp( x ),

where δp( x ) = ( χ ( x )− x ) · n p( x ) is the initial gap and n p( x ) is the critical
direction defined by n p( x ) = ( χ ( x ) − x )/‖ χ ( x ) − x ‖ or, if χ ( x ) = x ,
by the outer unit normal vector to Γ pc .

We start with an auxiliary contact problem with given friction. To this end
we introduce the space of virtual displacements V and its closed convex subset of
kinematically admissible displacements K by

V = {v = (v1, . . . ,vs) ∈
sY
p=1

(H1(Ωp))3 : vp = 0 on Γ pu},

K = {v ∈ V : vpn(x) ≤ δp(x) for x ∈ Γ pc }.

Let us assume that the normal contact stress Tn ∈ L∞(Γc) , Tn ≥ 0 , is known
apriori so that one can evaluate the slip bound g on Γc by g = FTn , where
F = F p > 0 is a coefficient of friction on Γ pc . Denote gp = g|Γp

c
.

The variational formulation of the contact problem with given friction reads as
follows:

minJ ( v ) subject to v ∈ K, (1)

where

J (v) =
1

2
a(v,v) − b(v) + j(v)
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is the total potential energy functional with the bilinear form a representing the
inner energy of the bodies and with the linear form b representing the work of the
applied forces t p and f p , respectively. The sublinear functional j represents the
work of friction forces

j( v ) =

sX
p=1

Z
Γ

p
c

gp‖ v p
t ‖ dΓ, (2)

where v p
t is the projection of the displacement v p on the plane tangential to

the critical direction n p . Let us introduce unit tangential vectors t p1, t p2 such
that the triplet B = { n p, t p1, t p2} is an orthonormal basis in IR3 for almost all
x ∈ Γ pc and denote vpt1 = v p · t p1 , vpt2 = v p · t p2 . Then v p

t = (0, vpt1 , v
p
t2

) with
respect to the basis B so that the norm appearing in j reduces to the Euclidean
norm in IR2 . More details about the formulation of contact problems can be found
in [10].

Let us point out that the solution u ≡ u (g) of (1) depends on a particular
choice of g ∈ L∞(Γc) , g ≥ 0 . We can define a mapping Φ which associates with
every g the product FTn( u (g)) , where Tn( u (g)) ≥ 0 is the normal contact
stress related to u (g) . The classical Coulomb’s law of friction corresponds to the
fixed point of Φ which is defined by g = FTn( u (g)) . To find it, we can use the

method of successive approximations which starts from a given g(0) and generates
the iterations g(l) by

(MSA) g(l+1) = Φ(g(l)), l = 1, 2, . . . .

This iterative process converges provided Φ is contractive, that is guaranteed for
sufficiently small F (see [7]).

3 Domain decomposition and discretization

We divide the bodies Ωp into tetrahedron finite elements T with the maximum
diameter h and assume that the partitions are regular and consistent with the
decompositions of ∂Ωp into Γ pu , Γ pt and Γ pc . Moreover, we restrict ourselves to
the geometrical conforming situation where the intersection between the boundaries
of any two different bodies ∂Ωp ∩ ∂Ωq , p �= q , is either empty, a vertex, an entire
edge, or an entire face.

Let the domains Ωp be decomposed into nonoverlaping subdomains Ωp,i , i =
1, . . . , np , each of which is the union of finite elements of T . On Ωp,i , we introduce
the finite element space V p,i

h by

V p,i
h = {vp,i ∈ (C(Ωp,i))3 : vp,i|T ∈ (P1(T ))3 for all T ⊂ Ωp,i,

vp,i|∂Ωp,i∩Γp
u

= 0},

where Pm(T ) denotes the set of all polynomials on T of degree ≤ m . Finally, let

us introduce the product space Vh =
sY
p=1

npY
i=1

V p,i
h .

Replacing V by Vh and using the gluing condition v p,i( x ) = v p,j( x ) for
any x in the interface ∂Ωp,i ∩ ∂Ωp,j , we can rewrite the approximative contact
problem with given friction (1) into the algebraic form
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min
1

2
u�Ku − u�f +

mX
k=1

gk‖((T1u)k, (T2u)k)‖

s.t. Nu ≤ d, BEu = 0.

(3)

Here, K denotes the positive semidefinite block diagonal stiffness matrix, f is
the vector of nodal forces, N , d describe the discretized non-penetration condi-
tion and B E describes the gluing condition. The summation term in the minimized
functional arises using numerical quadrature in (2), where T 1 , T 2 describe pro-
jections of displacements at the nodes lying on Γc to the tangential planes and gk
are values of slip bound.

Let us point out that the problem (3) is non-differentiable due to IR2 -norms
appearing in the summation term. Therefore we shall introduce two kinds of La-
grange multipliers λ t = ( λ �

t1 , λ
�
t2)� and λ c = ( λ �

I , λ
�
E)� . While the first

one removes the non-differentiability, the second one accounts for the constraints in
(3). Denote

B t =

»
T1

T2

–
, B c =

»
N
BE

–
, c =

»
d
o

–
and introduce the Lagrange multiplier sets

Λt( g ) = { λ t : ‖(( λ t1)k, ( λ t2)k)‖ ≤ gk} and Λc = { λ c : ( λ I)k ≥ 0}.

It is well-known that (3) is equivalent to the saddle-point problem

Find ( u , λ t, λ c) s.t. L( u , λ t, λ c) = sup
µt ∈ Λt(g)

µc ∈ Λc

inf
v

L( v , µ t, µ c), (4)

where L is the Lagrangian to (3) defined by

L( u , λ t, λ c) =
1

2
u � K u − u � f + λ

�
t B t u + λ

�
c ( B c u − c ).

After eliminating the primal variables u from (4), we obtain the minimization
problem

min
1

2
λ

�Fλ− λ�h

s.t. λ =

»
λt
λc

–
,λt ∈ Λt(g),λc ∈ Λc, Gλ = e

(5)

with

F =

»
Ftt Ftc
F�
tc Fcc

–
, h =

»
ht
hc

–
, G = [ G t, G c] ,

and Fii = BiK
†B�

i , Gi = R�B�
i , i = t, c , Ftc = BtK

†B�
c , ht = BtK

†f ,
hc = BcK

†f − c , e = R�f , where K† denotes a generalized inverse to K and R
is the full rank matrix whose columns span the kernel of K .

The problem (5) can be adapted by using the orthogonal projectors as proposed
in [5]. To simplify our presentation, we omit description of this modification here.
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4 Algorithms

The problem (5) can be solved by using the algorithm based on the augmented
Lagrangian

L( λ , µ , ρ) =
1

2
λ

� F λ − λ
� h + µ

�( G λ − e )+
ρ

2
( G λ − e )�( G λ − e ).

Algorithm 1. Set µ
(0) , l := 0 .

repeat
λ

(l+1) .
= argmin L( λ , µ (l), ρ) , s.t. λ ∈ Λ t( g ) × Λ c

µ
(l+1) = µ

(l) + ρ( G λ
(l+1) − e )

Update ρ and increase l by one.
until stopping criterion

Algorithms of this type have been intensively studied recently [2], [1] with the
inner minimization represented by the QPP with simple inequality bounds of Λ c .
Here, the quadratic inequality constraints of Λ t( g ) are imposed furthermore.
In order to separate two types of constraints, we can split the inner minimization
by the constrained block Gauss-Seidel method. Then the efficient algorithm using
projections and adaptive precision control may be used for the first QPP with simple
inequality bounds [4] while the second QPP constrained by quadratic inequalities
can be solved by the algorithm proposed in [11]. Let us point out that augmented
Lagrangian based algorithms accept an inexact solution of the inner minimizations
without loss of the accuracy. Therefore it is natural to reduce the number of Gauss-
Seidel iterations even onto one.

The method of successive approximations (MSA) for solving the contact problem
with Coulomb friction can be implemented so that the Algorithm 1 is used in each
iterative step to evaluate the mapping Φ . We shall present a more efficient version of
this method, in which the iterative steps of (MSA) and the loop of the Algorithm 1
are connected in one loop. The resulting algorithm can be viewed as the method
of successive approximations with an inexact solving of the auxiliary problems with
given friction.

Algorithm 2. Set µ
(0) , λ

(0)
t , l := 0 .

repeat

λ
(l+1)
c

.
= argmin {1

2
λ

�
c ( F cc + ρG �

c G c) λ c − λ
�
c ( h c + G �

c (ρ e +

µ
(l)) − ( F �

tc + ρ G �
c G t) λ

(l)
t )} , s.t. λ c ∈ Λ c

λ
(l+1)
t

.
= argmin {1

2
λ

�
t ( F tt + ρ G �

t G t) λ t − λ
�
t ( h t + G �

t (ρ e +

µ
(l))− ( F tc+ρG �

t G c) λ
(l+1)
c )} , s.t. λ t ∈ Λ t(F λ

(l+1)
I )

µ
(l+1) = µ

(l) + ρ( G λ
(l+1) − e )

Update ρ and increse l by one.
until stopping criterion

We have used the fact that the Lagrange multiplier λ I represents the normal
contact stress so that g = F λ

(l+1)
I approximates the slip bound.
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5 Numerical experiments and conclusions

Let us consider the model brick Ω = 〈0, 3〉 × 〈0, 1〉 × 〈0, 1〉 made of an elastic
isotropic, homogeneous material characterized by Young modulus E = 21.2 × 1010

and Poisson’s ratio σ = 0.277 (steel). The brick is unilaterally supported by the
rigid foundation, where the non-penetration condition and the effect of Coulomb
friction is considered. The applied surface tractions and the parts of the boundary
Γu and Γc are seen in Figure 1. The volume forces vanish. The brick Ω is artificially
decomposed onto three parts as seen in Figure 2 so that the resulting problem has
12 rigid modes.

Ω

Γ
c

Γ
u

0 3

Fig. 1. The cross-section of the brick Ω .

The tables below summarize results of numerical experiments, where F is the
coefficient of friction; n denotes the number of primal unknowns (dispalcements);
m denotes the number of dual unknowns (stresses); Time is CPU time in seconds
(in Matlab 7, Pentium(R)4, 3GHz, 512MB); Iter is the number of outer iterations;
nQPPA , nQPQA is the total number of multiplications by the Hessian in the QPP,
QPQ solver, respectively, and nA = nQPPA + nQPQA .

Fig. 2. Discretization and decomposition of the brick Ω .
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Table 1. F = 0.1

n m Time Iter nA

900 180 1 5 102(=63+39)
2646 378 11 5 180(=98+82)
5832 648 34 5 156(=94+62)
10890 990 67 5 112(=50+62)
18252 1404 221 5 155(=73+82)

Table 2. F = 0.3

n m Time Iter nA

900 180 2 7 140(=46+32)
2646 378 12 7 186(=54+69)
5832 648 38 7 169(=72+50)
10890 990 94 7 153(=35+49)
18252 1404 254 7 176(=78+54)

Table 1 and Table 2 demonstrate the numerical scalability of the algorithm for
various coefficients of friction. Table 3 shows the substantial progress with respect
to approximative method used in [9] represented here by Time2 and Time4.

Table 3. F = 0.3

n m Time Time2 Time4

900 180 2 15 61
2646 378 12 101 548
5832 648 38 486 2114
10890 990 94 1542 7724
18252 1404 254 5004 20534
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Summary. Non-conforming meshes are frequently employed in multi-component
simulations and adaptive refinement. In this work , we develop a discontinuous
Galerkin framework capable of accommodating non-conforming meshes and apply
our approach to analyzing the transient heat conduction problem.

1 Introduction

Non-conforming meshes are frequently employed for adaptive solution or simulation
of multi-component systems. Even though non-conforming meshes are easy to gen-
erate, they require the satisfaction of jump conditions across the non-conforming
mesh interface. Several techniques have been developed to enforce these conditions
such as mixed methods ([1]), local constraint equation methods ([9], [7]) and mortar
methods ([5], [16]).

In this work, we present a Discontinuous Galerkin (DG) framework for accom-
modating non-conforming meshes. The DG method naturally accommodates jump
conditions and has been employed to solve hyperbolic, parabolic and elliptic prob-
lems ([6]). For a historical review of DG methods and their applications to elliptic
problems refer to [3]. Recently, DG schemes have been applied to enforce jump con-
ditions across non-conforming mesh interfaces such as those encountered in adaptive
refinement ([4], [8], [14]). Here, we extend the formulation of [4] to parabolic prob-
lems. A benefit of the DG scheme is that it does not introduce constraint equations
and their resulting Lagrange multiplier fields, as done in mixed and mortar methods.
However, the standard DG formulation leads to a large system of equations due to
the presence of “duplicate” nodes.

∗The first and third author would like to acknowledge the support provided by
NSF under grant no. DMR 01-21695
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In sections (2) and (3) , we describe our discontinuous Galerkin (DG) formulation
and provide an a priori analysis. Section (4) presents numerical examples using our
formulation. Finally, in section (5) , we draw conclusions and suggest future work.

2 Problem Definition

We consider the following linear heat conduction problem as our representative ex-
ample of a parabolic equation:

u̇−∆u = f in Ω × I (1)

u = 0 on ∂ΩD × I (2)

−∇u · n = 0 on ∂ΩN × I (3)

u(·, 0) = ũ in Ω (4)

where u(x, t) is the scalar temperature field to be computed over the time interval
I = (0, T ) ; ∂Ω defines the boundary of the region Ω which is divided into two
complimentary regions, ∂ΩD , on which homogeneous Dirichlet boundary conditions
are specified, and ∂ΩN , on which homogeneous Neumann boundary conditions are
specified; and ũ is the prescribed initial condition on u . We solve the above partial
differential equation by discretizing via a DG finite element method that is based
on Nitsche’s method ([13]) to weakly enforce Dirichlet boundary conditions. In our
DG framework this method enables us to weakly enforce the continuity in u across
the non-conforming interface.

Fig. 1. Domain Partitioning.

The region Ω is divided into n open non-overlapping sub-domains ω1, . . . , ωn
with boundaries ∂ω1, . . . , ∂ωn such that Ω = ∪ni=1ωi . Denoting the set of all
interior boundaries as Γ , we have:

Γ = ∪ eij (5)
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where eij = ∂ωi ∩∂ωj is the interior boundary shared by ωi and ωj . On eij , we
define the jump and average operators as

[[u]] = u|∂ωi − u|∂ωj (6)

〈〈u〉〉 =
1

2
(u|∂ωi + u|∂ωj ) (7)

where i < j . In what follows, we describe our DG formulation and relate the final
weak statement to the underlying partial differential equations. Standard Galerkin
finite element formulations employ test and trial functions that are continuous in
Ω . With the DG formulation these functions are no longer continuous across Γ ,
rather they belong to the following spaces:

Vh = {wh ∈ L2(Ω) : wh|ωi ∈ R
p(ωi), for p ≥ 1}

with h being the maximal length of the sides of our quasi-uniform triangulation.
Assuming sufficiently regular boundary and source data , we require our DG formu-
lation to weakly satisfy the following additional conditions on any interior interface
and particularly on Γ , i.e.:

[[u
(ps)
j ]] = 0 on Γ × I (8)

[[∇u
(ps)
j ]] · ni = 0 on Γ × I (9)

Thus, to formulate the weak form of the partial differential equation, we weight
equations (1), (3), (8), and (9) by wh, wh,−〈〈∇wh〉〉 · n , and 〈〈wh〉〉 respectively,
and integrate over their respective domains to obtain:X

i

Z
ωi

wh
“
u̇h −∆u

(ps)
j − f

”
dΩ +

Z
∂ΩN

wh
“
∇u

(ps)
j · n

”
ds

−
Z
Γ

(〈〈∇wh〉〉 · n) [[u
(ps)
j ]] ds +

Z
Γ

〈〈wh〉〉[[∇u
(ps)
j ]] · n ds = 0 (10)

This weak form could lead to instabilities ([4]), so , we stabilize our formulation by
augmenting the above with the following penalty function:

P =

Z
Γ

η

h
[[wh]][[u

(ps)
j ]] ds (11)

which is related to the jump condition on uh (cf. equation (8)). Integration by parts,
and the identity [[a b]] = [[a]]〈〈b〉〉 + 〈〈a〉〉[[b]] yields the DG problem statement:

Find u
(ps)
j : Ω × I → R where u

(ps)
j (t) ∈ Vh such that

(u̇h, wh) + a(u
(ps)
j , wh) = (f,wh) ∀ (wh, t) ∈ Vh × I (12)“

u
(ps)
j (0) − ũ, wh

”
= 0 ∀ wh ∈ Vh (13)

where (u
(ps)
j , wh) is the standard L2 inner product over Ω and

a(u
(ps)
j , wh) =

X
i

Z
ωi

∇wh · ∇u
(ps)
j dΩ −

Z
Γ

[[wh]]〈〈∇u
(ps)
j 〉〉 · n ds

−
Z
Γ

[[u
(ps)
j ]]〈〈∇wh〉〉 · n ds+

Z
Γ

η

h
[[wh]][[u

(ps)
j ]] ds (14)
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For the steady-state case, i.e. u̇ = 0 , our weak form is the same as that of [4],
and [3], and hence their stability and optimal convergence proofs hold. Our formula-
tion leads to a sparse, symmetric system of equations thereby maintaining the com-
putational efficiency of the regular finite element approach. Though, [2], [15], have
formulated two different non-symmetric weak forms for solving nonlinear parabolic
equations, to our knowledge there is no literature where our proposed DG scheme
has been used for parabolic equations.

3 A priori analysis

In this section , we highlight the important results of our a priori analysis. One
can refer to [12] for a detailed description of the a priori analysis. Through our
a priori analysis , we demonstrate that our methodology is consistent, stable and
converges at a rate similar to that of a standard Galerkin scheme. The following
lemma, an extension of that in [4] proves consistency i.e. the exact solution to the
partial differential equation (1)-(4) satisfies the DG weak form (12).

Lemma 1. If u is the solution to equations (1)-(4) then it also solves (12)

Proof. Since u solves equations (1)-(4) [[u]] = 0 , 〈〈u〉〉 = u , 〈〈∇u〉〉 · n = ∇u · n .
Thus

(f,wh) − a(u,wh) = (f,wh) − (u̇, wh) − (∇u,∇wh) +

Z
Γ

[[wh]]∇u · n ds

= (f − u̇ + ∆u,wh)

= 0 (15)

which proves the lemma. �

�

For our error analysis , we introduce Hr the standard Hilbert space with its
associated norm ||·||Hr(Ω) . Since the DG formulation allows for a discontinuous field
across Γ , we introduce the following norm that accounts for the discontinuity in
u

(ps)
j :

˛̨̨˛̨̨
|u(ps)
j |

˛̨̨˛̨̨2
=
˛̨̨˛̨̨
∇u

(ps)
j

˛̨̨˛̨̨2
L2(Ω)

+
˛̨̨˛̨̨
h1/2〈〈∇u

(ps)
j 〉〉 · n

˛̨̨˛̨̨2
L2(Γ )

+
˛̨̨˛̨̨
h−1/2[[u

(ps)
j ]]

˛̨̨˛̨̨2
L2(Γ )

(16)
This norm is equivalent to a H1 norm on a broken space. We now state without
proof our a priori error estimate:

Theorem 1. If u
(ps)
j is the solution of (12) and u is the solution of (1)-(4), then˛̨̨˛̨̨

|u(ps)
j − u|

˛̨̨˛̨̨
≤C

˛̨̨˛̨̨˛̨̨
u

(ps)
j (0) − ũ

˛̨̨˛̨̨˛̨̨

+ Chr−1

 
||ũ||Hr(Ω) + ||u(t)||Hr(Ω) + C2

„Z t

0

||u̇||2Hr(Ω) dz

«1/2
!

for 2 ≤ r ≤ p + 1 u ∈ Hr(Ω) ∩H1
0(Ω) (17)
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The first term on the right side of the inequality accounts for the error in projecting
the initial condition onto the finite element space; weak satisfaction of the initial
condition via equation (13) would ensure that this term converges at an optimal
rate of hr−1 . The second term shows that our error converges at the rate of hr−1

which represents an optimal order of convergence in the ||| · ||| norm.
The following lemma (also stated without proof), an extension of that in [10]

shows the stability of our DG formulation i.e. under suitable assumptions on the
smoothness of the initial condition the DG solution remains bounded and decays
over time.

Lemma 2 (Stability). Let u
(ps)
j be the solution to (12) with f = 0 then it satisfies

the property ˛̨̨˛̨̨
u

(ps)
j (t)

˛̨̨˛̨̨
L2(Ω)

≤
˛̨̨˛̨̨
u

(ps)
j (0)

˛̨̨˛̨̨
L2(Ω)

≤ ||ũ||L2(Ω) ∀ t ∈ I (18)

This lemma which uses coercivity of the bilinear operator a(u
(ps)
j , wh) proves the

stability of the DG formulation for the case when f = 0 .

4 Numerical Results

To validate the DG formulation and the a priori analysis , we consider equation (1)
with initial condition ũ = sin(x) over a 1-D domain Ω = (0, π) . The analytical
solution for this problem is according to Kreyzig [11]

u(x, t) = e−t sin(x) (19)

The numerical examples employ linear elements and a backward-Euler time stepping

Fig. 2. u(x) at various time steps.

scheme. Each element is considered to be a separate sub-domain ωi and the interface
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Γ is the collection of all the end points of the elements. In Fig. (2) , we plot u(x, t)
at various instants in time. As expected u decays with increasing time. Fig. 3(a),
Fig. 3(b) illustrate the error norm (cf. equation (16)) versus the element size h .
Plot 3(a) which is obtained using a time step of ∆t = 0.0001 , and Fig. 3(b) obtained
by varying the time step as ∆t ∝ h2 show the optimal order of error convergence.
To further validate the DG formulation , we repeat the above example using the hat

−4.5 −4 −3.5 −3 −2.5 −2 −1.5
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−
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)|

|| 
)
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Fig. 3. Error norm with (a) ∆t = 0.0001 and (b) with ∆t ∝ h2 .

function initial condition

ũ =

(
x, if 0 < x ≤ π/2 ;

π − x if π/2 < x < π .
(20)

for which the analytical solution is [11]

u(x, t) =
∞X
n=1

Bn sin(nx) e−n
2t (21)

where

Bn =

8<
:

4

n2π
for n = 1, 5, 9, . . .

− 4

n2π
for n = 3, 7, 11, . . .

(22)

In Fig. 4(a) , we plot the evolution of u over time. Though the initial condition in
this example problem is not as smooth as in the previous example, Fig. 4(b) shows
that we still obtain optimal convergence rate.

5 Conclusions

A DG formulation for solving parabolic equations on non-conforming meshes has
been developed. The formulation leads to a symmetric, sparse system and does not
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Fig. 4. Simulation with hat function as initial condition (a) u(x) at various time
steps (b) Error with ∆t = 0.001 .

involve constraint equations or Lagrange multiplier fields like the mortar method.
The a priori analysis of the method shows that the method is consistent, stable and
demonstrates optimal order of convergence. Numerical results validate our analysis.
We believe the method has applications to efficient multi-component simulation and
adaptive refinement. Currently , we are applying this scheme to adaptively refine
interface evolution problems ([12]).
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1 Introduction

A parallel time-domain algorithm is described for the time-dependent nonlinear
Black-Scholes equation, which may be used to build financial analysis tools to help
traders making rapid and systematic evaluation of buy/sell contracts. The algo-
rithm is particularly suitable for problems that do not require fine details at each
intermediate time step, and hence the method applies well for the present problem.

The method relies on a Laplace transform technique applied to the Black-Scholes
equation and generates subproblems that can be executed in a parallel/distributed
computing environment. These subproblems are thus solved independently without
subproblem communication. Early studies of the scalability of the algorithm for
linear Black-Scholes equation may be found in [3] and [4]. This paper extends the
previous work to nonlinear Black-Scholes equation. Two linearization methods are
presented, one based on the updating of nonlinear coefficients within an iterative
loop and the other based on a Newton’s method. A numerical inverse [6, 7] of the
approximate solution is used to retrieve the final solution of the nonlinear Black-
Scholes equation. Numerical tests are performed to demonstrate the viability of the
algorithm. The efficiency of the algorithm is also studied.

This paper concludes with a discussion on an extension of the present Laplace
transform technique to a parallel time-domain algorithm in order to obtain details
of physical quantities at intermediate finer time steps.

2 A Nonlinear Black-Scholes Model

Let v(S, t) denote the value of an option, where S is the current value of the
underlying asset and t is the time. The value of the option relates to the current
value of the underlying asset via the Black-Scholes equation:

∂v

∂t
+

1

2
σ2S2 ∂

2v

∂S2
+ rS − rv = 0 ∈ Ω+ × [T, 0) (1)
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where Ω+ = {S : S ≥ 0} . The stochastic background of the equation is not
discussed in this paper, and readers who are interested should consult [8].

Only European options are considered in this paper. This means that the holder
of the option may execute at expiry a prescribed asset, known as the underlying
asset, for a prescribed amount, known as the strike price. There are two different
types of option, namely the call option and the put option. At expiry, the holder of
the call option has the right to buy the underlying asset and the holder of the put
option has the right to sell the underlying asset. For a European put option with
strike price k and expiry date T , it is sensible to impose the boundary condition
v(0, t) = ke−r(T−t), v(L, t) = 0 , where L is usually a large value. At expiry, if S < k
then one should exercise the call option, i.e. handing over an amount k to obtain an
asset with S . However, if S > k at expiry, then one should not exercise the option
because of the loss k − S . Therefore the final condition v(S, T ) = max{k − S, 0}
needs to be imposed. The solution v for t < T is required.

Since (1) is a backward equation, it needs to be transformed to a forward equation
by using τ = T − t , which leads to,

∂V

∂τ
=

1

2
σ2S2 ∂

2V

∂S2
+ rS − rV ∈ Ω+ × (0, T ] (2)

subject to the initial condition V (S, 0) = max{k − S, 0} and boundary conditions
V (0, τ ) = ke−rτ , V (L, τ ) = 0 . A field method, such as a finite volume method,
is of interest for two reasons. First, there are many examples of multi-factor mod-
els showing that a reduction of the time dependent or nonlinear coefficient to a
constant coefficient heat is impossible. Hence analytic form of solutions cannot be
found. Second, financial modelling typically requires large number of simulations
and solutions at intermediate time steps are usually not of interest. Efficiency of
the numerical algorithm is very important in order to make evaluation and decision
before the agreement of a contract is reached. Ideally one would like to use an al-
gorithm which can be completely distributed onto a number of processors with only
minimal communications between processors.

Very often, over a short period of time the interest rate, r , is fixed while the
volatility, σ , is varying. The volatility may be a function of the transaction costs
[5], the second derivative of the option value [1], or, in some cases, the solution of
a nonlinear initial value problem [5]. In order to develop the nonlinear solver in
this section, the volatility σ = σ0

√
1 + a proposed in [2] is used, where a is the

proportional transaction cost scaled by σ0 and the transaction time. Very often the
transaction cost is related to the option value and follows a Gaussian distribution.
In order to demonstrate the time-domain parallel algorithm for nonlinear problems,
a sine function is used in the subsequent tests to produce the effect of a pulse-like

distribution instead of a Gaussian distribution, i.e. a = sin(
V π

k
) where k is the

strike price.

3 Reference Solutions Using a Temporal Integration

The forward Black-Scholes equation given by (2) is written as

∂V

∂τ
= A(V )

∂2V

∂S2
+ rS − rV = 0 ∈ Ω+ × (0, T ] (3)
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where A(V ) =
1

2
σ(V )2S2 . In order to obtain a reference solution for (3) a linearisa-

tion method combined with a temporal integration may be applied. The coefficient
A is computed by using an approximation V̄ , which is updated in every step of
a nonlinear iterative update process. Each step of the nonlinear iterative update
process involves a numerical solution to the equation

∂V

∂τ
= A(V̄ )

∂2V

∂S2
+ rS − rV = 0 ∈ Ω+ × (ti, ti+1] (4)

defined in the time interval τ ∈ (ti, ti+1] . Let V (n)(S, ti+1) and V (n)(S, ti) be
the numerical solutions of (3) at τ = ti+1 and τ = ti respectively. The nonlin-

ear iterative update process to obtain the numerical solution V (n)(S, ti+1) , using

V (n)(S, ti) as the initial approximation to V̄ , is described in the algorithm below.

Algorithm R: Obtain a reference solution for (3).
do i = 0,1,2,...
ti = iδτ ;

Initial approximation:- V (0)(S, ti+1) := V (n)(S, ti) ; k := 0 ;
Iterate

k := k + 1 ;

V̄ := V (k−1)(S, ti+1) ;
Compute A(V̄ ) ;

V (k)(S, ti+1) := Apply Euler’s method to (4);

Until ‖V (k)(S, ti+1) − V (k−1)(S, ti+1)‖ < ε
n := k ;
end-do

4 The Parallel Time-Domain Method

Let

l(V ) =

Z ∞

0

e−λτV (S, τ )dτ = U(λ;S)

be the Laplace transform of the function V (S.τ ) . Application of the Laplace trans-
form [7] to (4), now being defined in Ω+ × (Ti, Ti+1] , leads to

A(V̄ )
d2U

dS2
+ rs

dU

dS
− (r + λ)U = −V (S, Ti) ∈ Ω+ (5)

where U = U(λ;S) defined in the Laplace space. Here λ ∈ {λj} is a finite set of
transformation parameter defined by

λj = j
ln 2

Ti+1 − Ti
. j = 1, 2, ..., m (6)
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where m should be chosen as an even number [6]. Therefore the problem defined
in (4) is converted to m independent parametric boundary value problems as de-
scribed by (5), and these problems may be distributed and solved independently in
a distributed environment.

In order to retrieve V (S, Ti+1) , we use the approximate inverse Laplace trans-
form due to Stehfest [6] given by

V (S, Ti+1) ≈ ln 2

Ti+1 − Ti

mX
j=1

wjU(λj ;S) (7)

where

wj = (−1)m/2+j
min(j,m/2)X
k=(1+j)/2

km/2(2k)!

(m/2 − k)!k!(k − 1)!(j − k)!(2k − j)!

is known as the weighting factor. We have selected Stehfest’s method because of
previous experience with the method used for linear problems [3, 4] and a wish to
investigate the application of the inverse method to nonlinear problems.

A nonlinear iterative update process is required to update V̄ and to obtain the
numerical solution V (n)(S, Ti+1) , using V (n)(S, Ti) as the initial approximation to
V̄ , and it is described in Algorithm P1:

Algorithm P1: Parallel algorithm 1 for (3).
do i = 0,1,2,...
Ti = i∆τ ;

Initial approximation:- V (0)(S, Ti+1) := V (n)(S, Ti) ; k := 0 ;
Iterate

k := k + 1 ; V̄ := V (k−1)(S, Ti+1) ; Compute A(V̄ ) ;
Parallel for j := 1 to m(i)

Solve (5) for U(λj ;S) ;
End parallel for

Compute V (k)(S, Ti+1) using inverse Laplace transform (7);

Until ‖V (k)(S, Ti+1) − V (k−1)(S, Ti+1)‖ < ε
n := k ;
end-do

Here m(i) is the number of transformation parameters and Ti = ∆τ . In order
to solve (5) for U(λj ;S) , one can employ the finite volume technique as the one
used in Section 3. In essence the actual implementation does not require different
values of m(i) for many problems, and the results shown in this paper use the
same number of transformation parameters, denoted as m̄ , for different values of
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i during the outer iteration loop. Note that in this case ∆τ can be chosen to be
much greater than δτ because the fine details of V (S, τ ) at each time step of a
temporal integration is not required in the present example.

5 Newton Linearisation

Alternatively, a small perturbation may be applied to (2), defined in the time interval
τ ∈ (Ti, Ti+1] , which leads to

{ ∂

∂τ
− (A′(V )

∂2V

∂S2
+ A(V )

∂2

∂S2
+ rS

∂

∂S
− r)}δV

= −{∂V
∂τ

− (A(V )
∂2V

∂S2
+ rS

∂V

∂S
− rV )} (8)

where δV is a small incremental change of V . Application of the Laplace transform
to (8), defined in the interval τ ∈ (Ti, Ti+1] , results in

l(δV ) − δV (S, Ti) − (A′(V )
∂2V

∂S2
+ A(V )

∂2

∂S2
+ rS

∂

∂S
− r)}l(δV )

= −l(V ) − V (S, Ti) − (A(V )
∂2V

∂S2
+ rS

∂V

∂S
− rV )} (9)

The method requires the numerical solution l(δV (n)(S, Ti+1)) using V (n)(S, Ti) as

the initial approximation to V (0)(S, Ti+1) and is described in Algorithm P2:

Algorithm P2: Parallel algorithm 2 for (3).
do i = 0,1,2,...
Ti = i∆τ ;

Initial approximation:- V (0)(S, Ti+1) := V (n)(S, ti) ; k := 0 ;
Iterate

k := k + 1 ; V̄ := V (k−1)(S, Ti+1) ;

Compute A(V̄ ) ; Compute A′(V̄ ) ; Compute A′(V̄ )
∂2V̄

∂S2
;

Compute −l(V̄ ) − V (S, Ti) − (A(V̄ )
∂2V̄

∂S2
+ rS

∂V̄

∂S
− rV̄ )} ;

Parallel for j := 1 to m(i)

Solve (9) for l(δV (k)(S, Ti+1)) ;
End parallel for

Compute δV (k)(S, Ti+1) using inverse Laplace transform (7);

V (k)(S,Ti+1 := V̄ + δV (k)(S, Ti+1) ;

Until ‖δV (k)(S, Ti+1)‖ < ε
n := k ;
end-do

663



C.-H. Lai, D. Crane and A. Davies

6 Numerical Examples

The problem of European put option is solved up to the expiry date T = 0.25 at
the strike price k = 100 . The volatility σ is chosen as the function described in
Section 2 and the parameters σ0 and r are chosen to be 0.4 and 0.5 respectively. A
second order finite volume method is applied to each parametric equation as given
by (5) or (9). The mesh size is chosen to be h = 320/29 .

A sequential computational environment is used in the tests. The approximations
to V (S, T ) obtained by means of algorithms P1 and P2 are denoted as VP1 and

VP2 respectively. Using ∆τ =
T

10
,

T

20
,

T

30
,

T

40
, the number of outer iterations

or time steps required for algorithms P1 and P2 are 10, 20, 40, and 80 respectively.
The above two parallel time-domain algorithms are compared with the reference

solution obtained by means of algorithm R with δτ = 1/365 , i.e. 1 day, in conjunc-
tion with the second order finite volume scheme applied along the spatial axis S .
This discretisation leads to a number of tri-diagonal systems of equations due to
the linearisation step at every time step, which may be solved by a direct method.
The numerical solution V (S, T ) obtained by this temporal integration is denoted
as VR . The stopping criterion used in the linearization step is chosen as ε = 10−5 .

In order to examine the efficiency of the parallel time-domain algorithms, the
computational work required for solving a tri-diagonal system of equations results
from a chosen mesh size is counted as one work unit. The total sequential work
unit is obtained by multiplying the total number of work unit to m̄ , and the total
parallel work unit is simply the total work unit plus overhead due to the calculation
of inverse Laplace transform and communication.

Discrepancies in the solutions, i.e. ‖VR − VP1‖ and ‖VR − VP2‖ using various
∆τ , are presented in Fig. 1 and 2. In general the discrepancy levels off when m ≥ 8
, which suggests that the use of more terms in the inverse Laplace transform at
a fixed value of ∆τ has no effect on the accuracy. On the other hand smaller ∆τ
produces smaller discrepancy at the expense of requiring more work unit as recorded
in Table 1. Furthermore the number of work units required using algorithm P2 is less
than that of algorithm P1, and there is no sudden increase of work when m̄ = 12 .

Fig. 1. Discrepancies of solutions: ‖VR − VP1‖ .
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Fig. 2. Discrepancies of solutions: ‖VR − VP2‖ .

Table 1. Work unit comparison ( VR requires 246 work units).

m̄ 4 6 8 10 12
∆τ

Algorithm P1

9.125δτ 58 58 58 58 180
4.5626δτ 103 103 103 103 123
2.28125δτ 177 177 177 177 186
1.140625δτ 326 326 326 326 327

Algorithm P2

9.125δτ 43 43 43 43 43
4.5626δτ 83 70 71 71 71
2.28125δτ 134 126 126 126 126
1.140625δτ 249 245 220 214 213
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7 Conclusion

Two linearisation methods were used in conjunction with the Laplace transform
method for non-linear Black-Scholes models. Work unit counts of the numerical ex-
periments suggest that the present techniques have advantages in solving nonlinear
option pricing problems using parallel or distributed computing environments. One
such advantage is the use of a larger time step, i.e. ∆τ , when the fine details at
intermediate time steps of the time interval (Ti, Ti+1) are not required. Paralleli-
sation is introduced by solving in parallel a number of parametric problems, each
of which defines in the interval (Ti, Ti+1) , i =1,2,..., T/δτ , in the Laplace space.
Note that as ∆τ approaches δτ the tranform into Laplace space does not offer any
advantages as can be seen from the results in Table 1. Therefore fine details on a fine
time step should not be computed by means of Laplace transform method. Instead
fine details within the time interval (Ti, Ti+1) , for all values of i , may be obtained
in parallel using a temporal integration method. Effectively the present algorithm
provides initial conditions for every interval (Ti, Ti+1) , i =1,2,..., T/δτ . As a result
fine details of the time interval (Ti, Ti+1) are decoupled from other time intervals
and may be obtained independently with a smaller time-step, say δτ .
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1 Introduction

Hierarchical matrices (in short: H -matrices) have first been introduced in 1998
[7] and since then have entered into a wide range of applications. They provide
a format for the data-sparse representation of fully populated matrices. The key
idea is to approximate certain subblocks of a matrix by low rank approximations
which are represented by a product of two low rank matrices: Let A ∈ Rn×n with
rank(A )= k and k � n . Then there exist matrices B,C ∈ Rn×k such that
A = BCT . Whereas A has n2 entries, B and C together have 2kn entries
which results in significant savings in storage if k � n . A new H -matrix arithmetic
has been developed which allows (approximate) matrix-vector multiplication and
matrix-matrix operations such as addition, multiplication and inversion of matrices
in this format in nearly optimal complexity O(n logα n) [5].

In finite element methods, the stiffness matrix is sparse but its inverse is fully
populated and can be approximated by an H -matrix. Such an approximate inverse
may then be used as a preconditioner in iterative methods [1]. Even though the
complexity of the H -matrix inversion is nearly optimal, there are relatively large
constants involved in these complexity estimates which in the past have prevented
H -matrix based preconditioners to be competitive with other state-of-art methods.
The following recent developments have addressed this drawback successfully and
allowed H -matrix based preconditioners to be competitive also in the FEM con-
text: 1) a weak admissibility condition [10] yielding coarser block structures and
therefore reduced constants in the complexity estimates, 2) the introduction of an
H -LU decomposition [13, 2] which is computed significantly faster than an approx-
imate inverse and provides an (in general more accurate) preconditioner, and 3)
the parallelization of H -matrix arithmetic [12]. In this paper, we will add another
improvement to these three components: We will introduce (recursive) domain de-
compositions with an interior boundary, also known as nested dissection, into the
construction of the index cluster tree of an H -matrix. The new clustering algo-
rithm will yield a block structure in which large subblocks are zero and remain zero
in a subsequent LU-factorization, As a result, the constants in the (nearly optimal)
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storage and work complexities will be significantly smaller than for the standard H -
matrix setting. Furthermore, the H -LU factorization is parallelizable. We will then
construct preconditioners based on such an incomplete H -LU-decomposition to ac-
celerate the iterative solution of linear systems of equations. We will illustrate our
new preconditioner with some numerical examples for convection-dominated partial
differential equations.

The remainder of this paper is structured as follows: Section 2 is devoted to
preliminaries and will provide a review of the nested dissection method as well as a
brief introduction to H -matrices. Section 3 introduces the new clustering algorithm.
In Section 4, we will conclude with some numerical results for convection-dominated
problems.

2 Preliminaries: Nested dissection and H -matrices

2.1 A review of nested dissection

Most direct methods for sparse linear systems perform an LU factorization of the
original matrix after some reordering of the indices in order to reduce fill-ins. One
such popular reordering method is the so-called nested dissection which exploits
the concept of separation. The idea of nested dissection has been introduced more
than 30 years ago [4] and since then attracted considerable attention (see, e.g.,
[3, 11] and the references therein). The main idea is to separate a (matrix) graph
into three parts, two of which have no coupling between each other. The third one,
referred to as an interior boundary or separator, contains couplings with (possibly
both of) the other two parts. The nodes of the separator are numbered last. This
process is then repeated recursively in each subgraph. An illustration of the resulting
sparsity pattern is shown in Figure 1 for the first decomposition step. In domain-

Ω1

Ω2

Ω1 Ω2

Ω1

Ω2

Γ

Γ

Γ

Fig. 1. Nested dissection and resulting matrix sparsity structure.

decomposition terminology, we recursively subdivide our domain into two disjoint
subdomains and an interior boundary.

A favorable property of such an ordering is that a subsequent LU factorization
maintains a major part of this sparsity structure, i.e., there occurs no fill-in in the
large, off-diagonal zero matrix blocks. In fact, in the case of regular two-dimensional
grids, the computational complexity amounts to O(n1.5) for a matrix A ∈ Rn×n .
In order to obtain a (nearly) optimal complexity, we approximate all nonzero, off-
diagonal blocks in H -matrix representation and compute them using H -matrix
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arithmetic. The blocks along the diagonal and the corresponding LU factorizations
will be stored as full matrices.

2.2 A brief introduction to H -matrices

An H -matrix approximation to a given (full) matrix is obtained by replacing certain
blocks of the matrix by matrices of low rank, stored in so-called Rk-format defined
in Definition 3. The formal definition of an H -matrix depends on appropriate hier-
archical partitionings of the index set which is organized in a cluster tree. Instead of
a fixed partitioning, such a tree provides a hierarchy of partitions leading to a more
flexible structure.

Definition 1 (Cluster tree). Let I be a finite index set and let TI = (V,E) be
a tree with vertex set V and edge set E . For a vertex v ∈ V , we define the set
of sons of v as S(v) := {w ∈ V | (v, w) ∈ E} . Correspondingly, the father of a
non-root vertex v is defined as the unique vertex F (v) s.t. (F (v), v) ∈ E . The tree
TI is called a cluster tree of I if its vertices consist of subsets of I and satisfy the
following conditions:

1. I ∈ V is the root of TI and v ⊂ I , v �= ∅ , for all v ∈ V .

2. For all v ∈ V there either holds S(v) = ∅ or v =
[̇

w∈S(v)
w .

In the following we identify V and TI , i.e., we write v ∈ TI instead of v ∈ V.
The nodes v ∈ V are called clusters. The nodes with no successors are called leaves
and define the set L(T ) = {v ∈ T | S(v) = ∅} .

Several approaches to construct a cluster tree have been suggested in previous
papers [7, 9, 5, 6]. All these constructions considered the cardinalities and/or the
geometries of the resulting clusters. These constructions have in common that a
cluster is either not subdivided (a leaf) or has exactly two sons. In Section 3, we will
derive a new clustering algorithm in which clusters may have up to three sons, and
thus obtain completely new cluster trees and subsequent partitions.

A hierarchy of block partitionings of the product index set I × I is based upon
a cluster tree TI and is organized in a block cluster tree TI×I :

Definition 2 (Block cluster tree). Let TI be a cluster tree of the index set I . A
cluster tree TI×I is called a block cluster tree (based upon TI ) if for all v ∈ TI×I
there exist t, s ∈ TI such that v = t × s . The nodes v ∈ TI×I are called block
clusters.

A block cluster tree may be constructed from a given cluster tree in the following
canonical way. Here, the admissibility condition Adm : TI×I → {True,False} is a
boolean function which we will specify in more detail later. Given a cluster tree TI ,
we construct the block cluster tree TI×I by root(TI×I) := I × I , and each vertex
s× t ∈ TI×I has the set of successors

S(s× t) :=

8<
:

∅ if Adm(s× t) = True;
∅ if min{#t,#s} ≤ nmin;
{s′ × t′ | s′ ∈ S(s), t′ ∈ S(t); } otherwise.

(1)

The parameter nmin ensures that blocks do not become so small that the ma-
trix arithmetic of a full matrix is more efficient. It is typically set to nmin = 32 or
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even nmin = 64 . The leaves of a block cluster tree obtained through this construc-
tion yield a disjoint partition of the product index set I × I . Matrix blocks which
correspond to admissible block clusters will be approximated by low rank matrices
in the following Rk-matrix representation:

Definition 3 (Rk-matrix representation). Let k, n,m ∈ N0 . Let M ∈ Rn×m

be a matrix of at most rank k . A representation of M in factorized form

M = ABT , A ∈ Rn×k, B ∈ Rm×k, (2)

with A and B stored in full matrix representation, is called an Rk-matrix repre-
sentation of M , or, in short, we call M an Rk-matrix.

If the rank k is small compared to the matrix size given by n and m , we
obtain considerable savings in the storage and work complexities of an Rk-matrix
compared to a full matrix [5].

A standard (or strong) admissibility condition has been employed in most previ-
ous papers [7, 9, 5, 6, 1] and is given by

Adms(s× t) = True :⇔ min(diam(s), diam(t)) ≤ η dist(s, t) (3)

for some 0 < η . Here, “diam” and “dist” denote the Euclidean diameter/distance
of the (union of the) supports of the basis functions with indices in s, t , resp. A
weaker admissibility condition which yields smaller constants in (storage and work)
complexities for H -matrices has been introduced and analyzed in [10]. It is given
by

Admw(s× t) = True :⇔ s �= t. (4)

The block partition which is provided by the leaves of a block cluster tree is used to
define an H -matrix as follows.

Definition 4 ( H -matrix). Let k, nmin ∈ N0 . The set of H -matrices induced by
a block cluster tree T := TI×I with blockwise rank k and minimum block size
nmin is defined by H (T, k) := {M ∈ RI×I | ∀t × s ∈ L(T ) : rank(M |t×s) ≤
k or min{#t,#s} ≤ nmin}. Blocks M |t×s with rank(M |t×s) ≤ k are stored as
Rk-matrices whereas all other blocks are stored as full matrices.

It is our goal to approximate an LU-factorization of a (stiffness) matrix by H -
matrices LH , UH . The storage and computational complexities and also the ac-
curacy of such an H -LU factorization depend strongly on the construction of the
cluster tree, i.e., the hierarchy of index set partitionings. In the following Section
3 we will derive a new index clustering algorithm which will permit a subsequent
H -LU factorization in which 1) large blocks remain zero, 2) non-zero off-diagonal
blocks can be approximated in H -matrix format, and 3) the factorization process
can be parallelized. The actual H -LU factorization is defined recursively in the
block structure and has been derived in [13, 2] for matrices arising in finite element
methods.

670



Domain-decomposition Based H -LU Preconditioners

3 A new domain decomposition clustering algorithm

In [8], a direct domain decomposition method is combined with the hierarchical
matrix technique. In particular, a domain Ω is subdivided into p subdomains and
an interior boundary Γ which separates the subdomains. Within each subdomain,
standard H -matrix techniques are used, i.e., H -matrices are constructed by the
standard index clustering with zero or two subsets. Here, we propose to use the
canonical block cluster tree construction starting from a different cluster tree which
will be derived below. The new idea is not to distinguish between the index clustering
which the domain decomposition yields and the index clustering needed for the H -
matrix construction, but to unify these two clusterings.

In Figure 1, the two subdomains Ω1, Ω2 are not admissible w.r.t. (3), but since
these blocks remain zero during the LU-factorization, we should admit them (rank
zero). Thus, we distinguish between the sets of domain-clusters Cdom and interface
clusters Cint in order to define the admissibility.

We assume some underlying domain decomposition algorithm (e.g., nested dis-
section) which divides an index set into three disjoint subsets of indices: I(Ω1)
consists of indices in the first subdomain Ω1 , I(Ω2) consists of indices in the
second subdomain Ω2 , and I(Γ ) consists of indices of an interior boundary and
separates the index sets I(Ω1) and I(Ω2) , i.e., matrix entries aij equal zero if
i ∈ I(Ωk) and j ∈ I(Ωl) for k �= l . Any interior boundary Γ is bisected into
Γ1 , Γ2 with corresponding index sets I(Γ1) , I(Γ2) . Based upon such a domain
decomposition, we construct the cluster tree from the root to the leaves as follows:
We initialize root(TI) := I , Cdom := {I} , Cint := {} . Each cluster v ∈ TI ∩ Cdom

with #v > nmin is subdivided by the rule

S(v) := {I(Ω1), I(Ω2), I(Γ )} (5)

and we add the sons to the corresponding sets of clusters:

Cdom := Cdom ∪ {I(Ω1), I(Ω2)}, Cint := Cint ∪ {I(Γ )}.

Each node v ∈ TI ∩ Cint is subdivided by the rule

S(v) := {w}, S(w) := {I(Γ1), I(Γ2)}, Cint := Cint ∪ S(w), (6)

where the cluster w is given by w := v , i.e., the boundary Γ corresponding to v
is (eventually) split into two subsets and v = I(Γ1) ∪ I(Γ2) .

Example 1. Figure 2 gives an illustration of the new clustering applied to the 25
vertices (indices) of a regular triangulation of the unit square.

Remark 1. In the new clustering, an index cluster v is either subdivided into the
three clusters (5) corresponding to indices in the two subdomains and the interior
boundary, resp., or it is “subdivided” only every second step by a simple bisection
(6). The latter only happens for clusters corresponding to interior boundaries. This is
motivated by the underlying geometry of two-dimensional subdomains versus one-
dimensional interior boundaries. Roughly, two subdivision steps decrease the Eu-
clidean diameters by a factor of two for both subdomains and the interior boundary
(which is effectively only subdivided once). This has a favorable impact on the re-
sulting H -matrix structure in terms of its storage requirements and approximation
accuracy.
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Fig. 2. Example for the new index clustering with nmin = 4 .

Fig. 3. Example for a domain decomposition H -matrix (left) and a single precision
H -LU decomposition (right). Gray blocks correspond to full submatrices and black
blocks represent non-zero Rk-matrices.

The block cluster tree TI×I is build from the new cluster tree TI by (1), where
a pair (t, s) of clusters is admissible, if they are admissible with respect to (3) or if
both are domain clusters: t, s ∈ Cdom . A typical structure of the resulting H -matrix
and its H -LU decomposition is plotted in Figure 3. The approximation of non-
zero, off-diagonal blocks by Rk-matrices will yield the order reduction from O(n1.5)
(exact LU based on nested dissection) down to O(n log n) (approximate H -LU).
Savings for three-dimensional problems (to which the new clustering generalizes
easily) are even more significant and will be illustrated in a forthcoming paper.

4 Numerical results

We will present numerical results of the domain-decomposition based H -LU pre-
conditioner applied to the convection-diffusion equation

−ε∆u+ b(x, y) · ∇u = f in Ω = [−1, 1] × [−1, 1]

with recirculating flow b(x, y) = (4x(x − 1)(1 − 2y),−4y(y − 1)(1 − 2x)) and ε =
10−8 . In all the following numerical experiments, we set η = 4.0 in the admissibility
condition (3), and we choose adaptive ranks to enforce certain accuracies of the
local Rk-blocks. In particular, we choose the rank k of a given Rk-block such that
σ(k) ≤ a · σ(1) where σ(j) denotes the j’th singular value, and we show numerical
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results for relative accuracies a ∈ {0.1, 0.25, 0.126, 0.0625} . The following examples
have been computed on a DELL Precision 530 workstation (2.4 GHz, 4GB memory).
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Fig. 4. Total time for the H -LU decomposition and iterative solver (left) and
corresponding convergence rates (right).

In Figure 4, on the left we show the time (in seconds) to compute the H -LU
decomposition and the subsequent iterative solution depending on the problem size
n (starting from n = 40000 up to n = 640000 ) for various adaptive accura-
cies a . Here, we have used the H -LU preconditioner in a bicg-stab iteration, and
we stopped the iteration when the residual had been reduced by 10−6 . We note
that the H -LU preconditioner with higher accuracy a leads to significantly faster
convergence, especially for larger problem sizes. The highest accuracy a = 0.0625
yields the overall fastest method for the larger problem sizes. The convergence rates
improve significantly with higher accuracy a , indicating that for a given problem
size, we are able to construct very efficient H -LU preconditioners by increasing the
relative accuracy a .
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Summary. In this paper we study the condition number of the system resulting
from C0 interior penalty methods for fourth order elliptic boundary value problems.
We show that the condition number can be bounded by Ch−4 and that this bound
is sharp, where h is the mesh size of the triangulation and C is a positive constant
independent of the mesh size.

1 Introduction

C0 interior penalty methods provide a new approach for the solution of fourth order
elliptic problems [10, 5]. These methods combine the ideas of continuous Galerkin
methods, discontinuous Galerkin methods and stabilization techniques, and can be
illustrated by the following model problem on a bounded polygonal domain Ω in
R

2 :
Find u ∈ H2

0 (Ω) such that

2X
i,j=1

Z
Ω

∂2u

∂xi∂xj

∂2v

∂xi∂xj
dx =

Z
Ω

fv dx ∀ v ∈ H2
0 (Ω), (1)

where f ∈ L2(Ω) .
Let Th be a simplicial or convex quadrilateral triangulation of Ω . In C0 interior

penalty methods, we choose the discrete space Vh ⊂ H1
0 (Ω) to be either a P
 (� ≥ 2)

triangular Lagrange finite element space or a Q
 (� ≥ 2) tensor product finite
element space associated with Th . By an integration by parts argument [5], it can
be shown that the solution u of (1), which, by elliptic regularity [11, 9, 13, 2],
belongs to H2+α(Ω) for some α > 1/2 , satisfies

Ah(u, v) =

Z
Ω

fv dx ∀ v ∈ Vh, (2)
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where

Ah(w, v) =
X
D∈Th

2X
i,j=1

Z
D

∂2w

∂xi∂xj

∂2v

∂xi∂xj
dx +

X
e∈Eh

η

|e|

Z
e

»»
∂w

∂n

–– »»
∂v

∂n

––
ds

+
X
e∈Eh

Z
e

„
∂2w

∂n2

ffff»»
∂v

∂n

––
+


∂2v

∂n2

ffff»»
∂w

∂n

––«
ds. (3)

In (3), Eh is the set of all the edges of Th , and η is a penalty parameter. The
jumps [[·]] and averages {{·}} are defined as follows.

Let e be an interior edge of Th shared by two elements D− and D+ and ne
be the unit normal vector of e pointing from D− to D+ . We define on e , for any
function v that is piecewise Hs with respect to the triangulation Th and for some

s >
5

2
,

»»
∂v

∂n

––
=

∂v+

∂ne
− ∂v−

∂ne
and


∂2v

∂n2

ffff
=

1

2

h∂2v+

∂n2
e

+
∂2v−
∂n2

e

i
, (4)

where v± = v
˛̨
D±

. For an edge e that is a subset of ∂Ω , we take ne to be the

outward pointing unit normal vector and define»»
∂v

∂n

––
= − ∂v

∂ne
and


∂2v

∂n2

ffff
=

∂2v

∂n2
e

. (5)

Note that [[∂v/∂n]] and {{∂2v/∂n2}} are independent of the choice of ne .
The discrete problem for (1) is then given by:

Find uh ∈ Vh such that

Ah(uh, v) =

Z
Ω

fv dx ∀ v ∈ Vh. (6)

In view of (2), the C0 interior penalty method defined by (6) is consistent and for
a sufficiently large η , it is also stable. Therefore the discretization error u− uh is
quasi-optimal with respect to appropriate norms [10, 5].

In this paper, we show that the condition number of the system of (6) is of
order h−4 , where h is the mesh size of the triangulation. This result implies that
the system of the discrete problem resulting from C0 interior penalty methods is
very ill-conditioned for small h , in which case the convergence rates of classical
iterative methods are very slow. Therefore it is necessary to use modern fast solvers
such as multigrid methods [4] and domain decomposition methods [6] to improve
the efficiency.

The rest of the paper is organized as follows. We introduce the finite element
space and some preliminaries in section 2. In section 3, we derive the upper bound
for the condition number of the system. We obtain the lower bound for the condition
number in the last section.

2 Preliminaries

In this section, we define the finite element space and derive some preliminary es-
timates that can help us to obtain the estimates for the condition number. For
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simplicity we will focus on the case that Th is a quasi-uniform rectangular mesh in
this paper. The results we will show are still true for general convex quadrilateral
meshes and triangular elements.

To avoid the proliferation of constants, we henceforth use the notation A � B
to represent the statement A ≤ C ×B , where C is a constant which depends only
on the aspect ratios of Th . The notation A ≈ B is equivalent to A � B and
B � A .

Let Vh ⊂ H1
0 (Ω) be the Q2 finite element space associated with Th . For η

sufficiently large (which is assumed to be the case), the following relation [5] holds:

Ah(v, v) ≈ |v|2H2(Ω,Th) ∀ v ∈ Vh, (7)

where

|v|2H2(Ω,Th) =
X
D∈Th

|v|2H2(D) +
X
e∈Eh

1

|e| ‖[[∂v/∂n]]‖2
L2 (e). (8)

Here and throughout this paper we follow the standard notation for L2 -based
Sobolev spaces [1, 3, 8].

Let
Ah = (Ah(ϕ1, ϕ2))1≤i,j≤n (9)

be the stiffness matrix, where n is the dimension of Vh and ϕ1, · · · , ϕn are the
nodal basis functions for Vh . We want to estimate the condition number of Ah

given by

κ(Ah) =
λmax(Ah)

λmin(Ah)
. (10)

Note that

λmax(Ah) = max
x∈R

n

x	=0

xTAhx

xTx
≈ max
v∈Vh
v 	=0

Ah(v, v)

h−2‖v‖2
L2(Ω)

, (11)

λmin(Ah) = min
x∈R

n

x	=0

xTAhx

xTx
≈ min
v∈Vh
v 	=0

Ah(v, v)

h−2‖v‖2
L2(Ω)

. (12)

3 Upper bound for the condition number

In this section, we obtain an upper bound for the condition number of Ah . From
(11) and (12), it is sufficient to find an upper bound for the maximum eigenvalue of
Ah and a lower bound for the minimum eigenvalue of Ah .

Lemma 1. For all v ∈ Vh , it holds that

λmax(Ah) � h−2. (13)

Proof. Let v ∈ Vh be arbitrary, using (7), (8), inverse estimates [3], (4) and the
trace theorem (with scaling), we obtain that
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Ah(v, v) ≈ |v|2H2(Ω,Th)

=
X
D∈Th

|v|2H2(D) +
X
e∈Eh

1

|e| ‖ [[∂v/∂n]] ‖2
L2(e)

�
X
D∈Th

(diamD)−4‖v‖2
L2(D) +

X
e∈Eh

1

|e|
X
D∈Te

‖∂vD/∂n‖2
L2(e) (14)

�
X
D∈Th

(diamD)−4‖v‖2
L2(D)

+
X
e∈Eh

X
D∈Te

ˆ
(diamD)−2|v|2H1(D) + |v|2H2(D)

˜
�
X
D∈Th

(diamD)−4‖v‖2
L2(D) +

X
e∈Eh

X
D∈Te

(diamD)−4‖v‖2
L2(D)

�
X
D∈Th

(diamD)−4‖v‖2
L2(D)

� h−4‖v‖2
L2(Ω).

where Te is the set of all rectangles sharing e as a common edge.
Here we have used the fact that

h ≈ diamD ∀ D ∈ Th.

Therefore, the estimate (13) follows from (11) and (14).

�

Next we derive a lower bound for the minimum eigenvalue of Ah .

Lemma 2. It holds that

λmin(Ah) � h2 ∀ v ∈ Vh. (15)

Proof. For general piecewise H2 functions v , we have the following Poincar é -
Friedrichs inequality [7]:

‖v‖2
L2(Ω) + |v|2H1(Ω,Th) �

h
|v|2H2(Ω,Th) + [Φ(v)]2

+
X
e∈Eh

“ 1

|e|3 ‖πe,1[[v]]e‖
2
L2(e) +

1

|e| ‖πe,0[[∂v/∂n]]e‖2
L2(e)

”i
, (16)

where Φ : H2(Ω, Th) −→ R is a seminorm that satisfies certain properties (cf. (I.2),
(I.3), (II.15) and (III.3) of [7]) and the operator πe,0 (resp. πe,1 ) is the orthogonal
projection operator from L2(e) onto P0(e) (resp. P1(e) ).

In (16), taking Φ(v) = ‖π∂Ω,1 v‖L2(Ω) and applying it to v ∈ Vh , we have

‖v‖2
L2(Ω) + |v|2H1(Ω,Th) �

X
D∈Th

|v|2H2(D) +
X
e∈Eh

1

|e| ‖ [[∂v/∂n]] ‖2
L2(e)

= |v|2H2(Ω,Th),

which implies for all v ∈ Vh
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‖v‖2
L2(Ω) � |v|2H2(Ω,Th). (17)

Therefore, by (12), (7) and (17), we obtain

λmin(Ah) ≈ min
v∈Vh
v 	=0

Ah(v, v)

h−2‖v‖2
L2(Ω)

� h2.

�

From Lemma 1 and Lemma 2 we have the following condition number estimate.

Theorem 1. The condition number of Ah satisfies the estimate

κ(Ah) =
λmax(Ah)

λmin(Ah)
� h−4. (18)

4 Lower bound for the condition number

In this section we will show that the bound for the condition number obtained in
the last section is sharp. We begin with an easy lower bound for λmax(Ah) .

Lemma 3. It holds that
λmax(Ah) � h−2. (19)

Proof. In view of (12) and (7), it suffices to construct a function v∗ ∈ Vh such that

|v∗|2H2(Ω,Th) � h−4‖v∗‖2
L2(Ω). (20)

Let D∗ be an arbitrary element in Th . Take v∗ ∈ Vh to be a nodal basis
function which is defined by

v∗(p) =


1, if p is the central node of D∗,
0, otherwise.

(21)

Then it is not difficult to obtain that

v∗(x1, x2) = (diamD∗)
−4 `(diamD∗)

216x1x2 − (diamD∗)16x
2
1x2 (22)

−(diamD∗)16x1x
2
2 + 16x2

1x
2
2

´
.

So (21) and (22) imply that

‖v∗‖2
L2(Ω) = ‖v∗‖2

L2(D∗) =
64

225
(diamD∗)

2, (23)

and

|v∗|2H2(Ω,Th) = |v∗|2H2(D∗) +
X
e∈Eh
e⊂D̄∗

1

|e| ‖∂v∗/∂n‖
2
L2(e) =

5312

45
(diamD∗)

−2. (24)

Therefore, combining (23) and (24), we obtain

|v∗|2H2(Ω,Th) ≥ h−4‖v∗‖2
L2(Ω).
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�

We now derive an upper bound for the minimum eigenvalue of Ah .

Lemma 4. The following estimate for the minimum eigenvalue of Ah holds:

λmin(Ah) � h2. (25)

Proof. From the theory of partial differential equations [12], there exist 0 < λ1 ≤
λ2 ≤ · · · and u1, u2, · · · ∈ H2

0 (Ω) such that

�2ui = λiui and

Z
Ω

uiuj dx = δij .

We now consider the following system:( �2u1 = λ1u1 in Ω,

u1|∂Ω = 0 and
∂u1

∂n

˛̨
∂Ω

= 0.
(26)

Let û1 be the Q2 interpolant of u1 . Then standard interpolation error esti-
mates [3] imply

‖u1 − û1‖2
L2(Ω) � h4|u1|2H2(Ω) � h4‖u1‖2

L2(Ω), (27)

|u1 − û1|2H1(Ω) � h2|u1|2H2(Ω), (28)X
D∈Th

|u1 − û1|2H2(D) � |u1|2H2(Ω). (29)

For h small enough, it follows from (27) that

‖û1‖2
L2(Ω) � ‖u1‖2

L2(Ω) − ‖u1 − û1‖2
L2(Ω) (30)

� ‖u1‖2
L2(Ω) − h4‖u1‖2

L2(Ω)

� ‖u1‖2
L2(Ω).

On the other hand, since u1 ∈ H2
0 (Ω) , by (8), the triangle inequality, (29), the

trace theorem with scaling and (28), we obtain that

|û1|2H2(Ω,Th)

=
X
D∈Th

|û1|2H2(D) +
X
e∈Eh

1

|e| ‖ [[∂û1/∂n]] ‖2
L2(e) (31)

�
X
D∈Th

|û1 − u1|2H2(D) +
X
D∈Th

|u1|2H2(D) +
X
e∈Eh

1

|e| ‖ [[∂(û1 − u1)/∂n]] ‖2
L2(e)

�
X
D∈Th

|u1|2H2(D) +
X
D∈Th

ˆ
(diamD)−2|û1 − u1|2H1(D) + |û1 − u1|2H2(D)

˜
�
X
D∈Th

|u1|2H2(D)

= |u1|2H2(Ω).

Therefore, the estimate (25) follows from (12), (7), (30) and (31):
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λmin(Ah) ≈ min
v∈Vh
v 	=0

Ah(v, v)

h−2‖v‖2
L2(Ω)

�
Ah(û1, û1)

h−2‖û1‖2
L2(Ω)

(32)

≈
|û1|2H2(Ω,Th)

h−2‖û1‖2
L2(Ω)

�
|u1|2H2(Ω)

h−2‖u1‖2
L2(Ω)

� h2.

�

Combining Lemmas 3 and 4, we have the following theorem.

Theorem 2. The following estimate holds for our model problem:

κ(Ah) =
λmax(Ah)

λmin(Ah)
� h−4. (33)
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Summary. In this paper we consider an iterative substructuring method for solving
system of equations arising from mortar Morley finite element discretization of a
model fourth order elliptic problem in 2D. A parallel preconditioner for the interface
problem is introduced using Additive Schwarz Method framework. The method is
quasi-optimal i.e. the number of CG iterations for the preconditioned problem grows
polylogarithmically as the sizes of the meshes decrease and it is independent of the
jumps of the coefficients.

1 Introduction

The discretization methods for partial differential equations are usually built on a
mesh in a uniform way, however sometimes it is necessary to develop discretization
methods which allow us to apply different type of discretization techniques in sub-
domains. The mortar method introduced in [4] is a domain decomposition method
which enable us to introduce independent meshes or discretization methods in non-
overlapping subdomains. A general presentation of mortar method in two and three
dimensions for elliptic boundary value problems of second order can be found e.g. in
[4, 2, 11], see also references therein. Mortar approach for discretizations of fourth
order elliptic problems was studied in [3] where locally spectral discretizations were
utilized, in [6] for DKT local discretizations, and in [9] for HCT and Morley finite
element discretizations. Many parallel algorithms for solving a discrete problem were
also developed, see e.g. [1, 8, 11] and the references therein.

In this paper we consider a mortar nonconforming Morley discretization of the
fourth order elliptic problems. This discretization method was first proposed in [9],

∗This work was partially supported by Polish Scientific Grant 2/P03A/005/24.
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a paper that includes error bounds. A multigrid algorithm for mortar Morley dis-
cretization of plate bending problem was discussed in [12] (in a bit different mortar
setting). To our knowledge no domain decomposition methods for solving the dis-
crete problems obtained by this type of discretization was discussed in literature.

Our method is a substructuring one i.e. we first eliminate the unknowns related
to degrees of freedom interior to subdomains (interior in a special sense) and then
propose a parallel preconditioner based on an Additive Schwarz abstract scheme
(ASM) for the derived system of equations, cf. e.g. [10]. We introduce local sub-
spaces which form a decomposition of the discrete space. Then the ASM abstract
theory allows us to construct a parallel preconditioner and prove condition number
estimates of the preconditioned problem.

In our case we introduce a subdomain based coarse space and edge base
spaces. The condition number of the arising preconditioner is proportional to
(1 + log(H/h))2 where h is the minimum of the local mesh sizes and H is the
maximum of the diameters of the subdomain and is independent of the jumps of the
coefficients.

2 Discrete space

We first assume that we have a polygonal domain Ω in the plane which is divided
into non-overlapping subdomains Ωk that form a coarse decomposition i.e. Ω =
N[
k=1

Ωk and Ωl ∩Ωk is an empty set, a common edge or vertex. We assume shape

regularity of that decomposition in the sense of Section 4 in [5] and let H = max
k

Hk

for Hk = diam Ωk .

Fig. 1. Morley element.

The model differential problem is to find u∗ ∈ H2
0 (Ω) such that

a(u∗, v) = f(v) ∀v ∈ H2
0 (Ω), (1)

where a(u, v) =

NX
k=1

ak(u, v) for ak(u, v) = ρk

Z
Ωk

X
|α|=2

∂αu∂αv dx . Here ρk > 0 is

a constant, α = (α1, α2), (αk ≥ 0) is a multi-index and |α| = α1 + α2 is the order
of the multi-index. Of course we have that ak(u, u) is equivalent to |u|2H2(Ωk) . In
a subdomain Ωk we introduce an independent quasiuniform triangulation Th(Ωk)
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made of triangles with a parameter hk = max
τ∈Th(Ωk)

diam(τ ) . Note that each interface

(a common edge of two substructures) Γ ij = ∂Ωi ∩ ∂Ωj inherits 1D triangulations
T ihi

(Γij) and T jhj
(Γij) from the respective triangulations of Ωi and Ωj , cf. Fig-

ure 2.
In each Ωk we introduce a nonconforming local Morley finite element space

Xh(Ωk) formed by piecewise quadratic functions which are continuous at all vertices
of all triangles from Th(Ωk) , have continuous normal derivatives at the midpoints
of all edges of elements from Th(Ωk) , and have all respective degrees of freedom
related to vertices and midpoints on ∂Ωk ∩ ∂Ω equal to zero, cf. Figure 1. We

introduce a global space Xh(Ω) =

NY
k=1

Xh(Ωk) . We now have to choose one side of

Fig. 2. Master and slave sides of of an interface Γij .

δ m,j γm,i

Γi,j

Ωj Ωi

Γij as the master (mortar) one denoted by γm,i associated with Ωi and the other
one as the slave one (nonmortar) denoted by δm,j (associated with Ωj ) according

to the rule ρi ≥ ρj , cf. Figure 2. An interface Γ =

N[
k=1

∂Ωk \ ∂Ω will play an

important role. We also have to add a technical assumption that hi ≤ Chj , where
C is a positive constant, due to the proof technique. This assumption is necessary
for the proofs of some technical results and is due to the fact that any local Morley
finite element function is not sufficiently regular. Because we assume that hi ≤ Chj
and both triangulations are quasiuniform, we can also assume that the two side
elements of the slave triangulation T jhj

(δm,j) , i.e. the ones that touch the ends of

δm,j , are longer than the respective elements of the master (mortar) triangulation
T ihi

(γm,i) . Let γm,i,h (or δm,j,h ) denotes the set of all midpoints and vertices of

T ihi
(γm,i) (or T jhj

(δm,j) , respectively).

For the simplicity of presentation we also assume that the both 1D triangulations
of the interface Γkl : T khk

(γm,k) and T lhl
(δm,l) , have even numbers of the elements.

For δm,l , we then introduce a coarser 2hl triangulation by joining together two
neighboring elements and get T l2hl

(δm,l) - 2hl 1D triangulation of δm,l formed by

elements which are the union of two neighboring elements of T lhl
(δm,l) , cf. Fig. 3.

Note that the midpoints of elements of T l2hl
(δm,l) are also vertices of Th(Ωl) . Then

let I2hl,2 : C(Γkl) → C(Γkl) be a continuous piecewise quadratic interpolant defined

on T l2hl
(δm,l) and let M2hl

t (δm,l) be the space of continuous piecewise quadratic
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Fig. 3. Tangential test space and 2hl interpolant on T lhl
(δm,l) . Broken line -

v ∈ M
2hl
t (δm,l) , solid line - I2hl,2u , | - the endpoints of elements in T lhl

(δm,l) , X

- the endpoints of elements in T l2hl
(δm,l) .

2h

lelement of T  (     )δm,l

function on T l2hl
(δm,l) which are linear in two end elements of T l2hl

(δm,l) . We also
need another test space related to the trace of normal derivative of finite element
functions: Mhl

n (δm,l) formed by functions piecewise constant on T lhl
(δm,l) .

The 2hk triangulation of the master γm,k : T k2hk
(γm,k) , and the operator I2hl,2

- piecewise quadratic interpolant on T k2hk
(γm,k) defined analogously based on ele-

ments of T khk
(γm,k) . Then for each interface Γkl = γm,k = δm,l ⊂ Γ we say that

uk ∈ Xh(Ωk) and ul ∈ Xh(Ωl) satisfy the mortar conditions ifZ
δm

(I2hk,2uk − I2hl,2ul)φ ds = 0 ∀φ ∈ M2hl
t (δm,l)Z

δm

(∂nuk − ∂nul)ψ ds = 0 ∀ψ ∈ Mhl
n (δm,l).

(2)

Here ∂n is an outer unit normal derivative to Γmk . We now introduce a discrete
space V h as the space formed by all functions from Xh(Ω) which are continuous
at the crosspoints (vertices of the subdomains) and satisfy the mortar conditions
(2). Our discrete problem is to find u∗

h ∈ V h such that

aH(u∗
h, v) =

NX
k=1

ah,k(u, v) = f(v) ∀v ∈ V h, (3)

where ah,k(u, v) = ρk
X

τ∈Tk(Ωk)

Z
τ

X
|α|=2

∂αu ∂αv dx . The problem has a unique solu-

tion, cf. [9].

3 An interface problem

We first eliminate some unknowns in the interiors of subdomains. Because the Morley
element is nonconforming, there are some functions which have all degrees freedom
corresponding to respective vertices or midpoints on ∂Ωk equal to zero and still
the traces onto a master γm,k may be nonzero. Therefore we introduce the set ∆k

which consists of all vertices and midpoints that either are on ∂Ωk , or are interior
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to Ωk such that at least one of its edges is on γm,k but is not an end element of
T kh (γm,k) for any master γm,k ⊂ ∂Ωk . We see that ∆k is a set of nodal points
either on ∂Ωk or interior to Ωk and such that a nodal basis function corresponding
to a degree of freedom of this nodal point may have nonzero traces onto any master
γm,k ⊂ ∂Ωk . Then let Xh,0(Ωk) = {v ∈ Xh(Ωk) : v(p) = ∂nv(m) = 0 for all
vertices p and midpoints m in ∆k} . We excluded the end elements of T kh (Γm,k)
in the definition of ∆k because of our condition on the length of the end elements on
the interface, see above. The situation is analogous to the case of mortar Crouzeix-
Raviart element, cf. [8] where the similar set was introduced.

Each u ∈ Xh(Ωk) is split into two ah,k orthogonal parts: Pku and discrete
biharmonic part of u : Hku = u− Pku defined by8<

:
ah,k(Hku, v) = 0 for all v ∈ Xh,0(Ωk)
Hku(x) = u(x) for all vertices x ∈ ∆k

(∂nHku)(m) = ∂nu(m) for all midpoints m ∈ ∆k.
(4)

We then define Pu = (P1u, . . . , PNu) and Hu = u− Pu the discrete biharmonic
in all subdomains part of u . We also set

Ṽh = HVh = {u ∈ Vh : u is discrete biharmonic in all Ωk} (5)

Note that each function in Ṽh is uniquely defined by the values of all degree of

freedoms associated with nodal points of

N[
k=1

∆k \ (
[

δm,j⊂Γ
δm,j,h) since the values

of the degrees of freedom corresponding to the nodes on the nonmortar (slave) are
set by the mortar conditions (2) and that the values of the degrees of freedom of the
nodes interior to the subdomains (i.e. not in ∆k ) are set by (4). Note that all Pku

∗
h

can be precomputed in parallel and there remains to calculate ũ∗
h = Hu∗

h ∈ Ṽh such
that

aH(ũ∗
h, v) = f(v) ∀v ∈ Ṽh. (6)

4 An additive Schwarz method

Here we describe our Additive Schwarz method for solving (6). We use an abstract
ASM scheme, cf. [10], i.e. give the method in terms of the decomposition of Ṽh into
subspaces, we also need bilinear forms defined on these subspaces. We first introduce
∆γm,k ⊂ ∆k , cf.[8], where a similar set was introduced, a set of these vertices and
midpoints that are either in γm,k,h or are interior to Ωk and are on the boundary of
the elements e ∈ Th(Ωk) such that at least one edge of this triangle e is contained
in γm,k ⊂ ∂Ωk and this edge is neither of the two end elements of T kh (Γkl) , cf.
Figure 4.

Then we introduce Vγm,k as the subspace of Ṽh formed by functions such that
the respective degrees of freedom related to the crosspoints (the ends of all edges

in Γ ) and all the vertices and the midpoints in
[
γs⊂Γ

∆γs \ ∆γm,k are equal to

zero. In nodal points on slaves and interior to subdomains (not in ∆k ) the values
of the respective degrees of freedom are determined by (2) and (4), respectively.
Next we define a coarse space V0 . It is sufficient to define the values of normal
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Fig. 4. The set ∆γm,k . The midpoints are denoted by circles and the vertices by
squares.

γm,k

Ωk

derivatives of u ∈ V0 at the midpoints and the values of u at the crosspoints and

in
[

γm,k⊂∂Ωk

∆γm,k . Note that ∆γm,k ∩∆γs,k = ∅,m �= s . Let V0 ⊂ Ṽh be formed

by all functions u ∈ Ṽh such that for any master (mortar) γs,k ⊂ ∂Ωk there exists
linear polynomial ps(x, y) = ax + by + c , i.e. defined over Ωk , for which it holds
that

u(x) = ps(x) for a vertex x ∈ ∆γm,k ∪ ∂γm,k
(∂nu)(m) = ∂nps(m) for a midpoint m ∈ ∆γm,k .

(7)

Here ∂γm,k denotes the two element set containing the end vertices of this mortar.
Because u ∈ V0 is continuous at the crosspoints, it is easy to see that the dimension
of V0 is equal to the number of crosspoints (vertices of subdomain not on ∂Ω ) and
the number of masters γm ⊂ Γ .

Again for simplicity of presentation we assume that the bilinear forms for all
subspaces equal to aH(u, u) .

Then we can define orthogonal projections: P0 : V0 → Ṽh and Pm : Vγm → Ṽh
as

aH(P0u, v) = aH(u, v) ∀v ∈ V0,

aH(Pmu, v) = aH(u, v) ∀v ∈ Vγm .

Let P = P0 +
NX
k=1

Pm. Next we replace problem (6) by

P ũ∗
h = g, (8)

where g = g0 +
X
γm⊂Γ

gm for g0 = P0ũ
∗
h and gm = Pmũ

∗
h .

We should point out that g0, gm can be computed without knowing ũ∗
h . Then

we have the following result:

Theorem 1. For any u ∈ Ṽh it holds that

c(1 + log(H/h))−2aH(u, u) ≤ aH(Pu,u) ≤ CaH(u, u),
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where C, c are positive constant independent of H and any hk and H = max
k

Hk

and h = min
k

hk .

Sketch of the proof.
The proof of this theorem is based on the abstract ASM scheme, cf. e.g. [10].

We will give only a brief sketch of the proof here. It is enough to check three key
assumptions, cf. Th. 2.7, p. 43 in [10]. In our case the assumption II (Strengthened
Cauchy-Schwarz Inequalities), cf. Ass. 2.3, p.40 in [10], is satisfied with a constant
independent of the number of subdomains by the coloring argument and the constant
ω in the assumption III (Local Stability), cf. Ass. 2.4, p.40 in [10], is equal to one as
P0 and Pm are orthogonal projections. It remains to prove assumption I (Stable
Decomposition), cf. Ass. 2.2, p.40 in [10], i.e. we have to prove that there exists a
positive constant such that for any u ∈ Ṽh there are u0 ∈ V0 and um ∈ Vm for

γm ⊂ Γ such that u = u0 +
X
γm⊂Γ

um and

aH(u0, u0) +
X
γm⊂Γ

aH(um, um) ≤ C(1 + log(H/h))2aH(u, u). (9)

We first define this decomposition. Let u ∈ Ṽh and let us define u0 ∈ V0 . It
is sufficient to define the values of the respective degrees of freedom at each ∆γs,k

associated with each mortar γs,k ⊂ Γ . Let a, b be the ends of γs,k ⊂ ∂Ωk and

uγs,k =
1

Nk

X
m∈γs,k,h

∂nu(m) , where the sum is taken over all midpoints on γs,k and

Nk is the number of those midpoints on γs,k . Then for any mortar γs,k ⊂ ∂Ωk we
introduce a linear polynomial ps such that

ps(a) = u(a) ps(b) = u(b) ∂nps = uγs,k .

Note that the linear polynomial ps is properly defined by these three conditions.
Then we define u0 ∈ V0 by setting the values of the respective degrees of freedom
associated with the vertices and the midpoints in ∆γs,k as

u0(x) = ps(x) for x a vertex in ∆γs,k

∂nu0(m) = ∂nps(m) for m a midpoint in ∆γs,k

Thus u0 is properly defined. Next we define us ∈ Vγs,k . Again it is sufficient
to determine the values of the respective degrees of freedom at the nodal points in
∆γs,k for all masters γs,k ⊂ Γ . Let w = u− u0 and let:

us(x) = w(x) for x a vertex in ∆γs,k

∂nus(m) = ∂nw(m) for m a midpoint in ∆γs,k

and us(x) = ∂nus(m) = 0 for all the vertices x and the midpoints m in
N[
k=1

∆n \

∆γs,k . It is obvious that we have u = u0 +
X
γm,k

um = u0 + w = u.

Then, using a local equivalence operator introduced in [5], some technical tools
(modified) from [8] and following the lines of proofs of [7] we can prove (9).
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Summary. A Local Defect Correction (LDC) method for solving time-dependent
partial differential equations whose solutions have highly localized properties is dis-
cussed. We present some properties of the technique. Results of numerical experi-
ments illustrate the accuracy and the efficiency of the method.

1 Introduction

Solutions of partial differential equations (PDEs) are often characterized by highly
localized properties. Examples are frequently encountered in the area of shock hydro-
dynamics, transport in turbulent flow fields, combustion, etc. An efficient solution
of this kind of problems requires the use of adaptive grid techniques, where a fine
grid spacing and, possibly, a small time step are adopted only where high activity
occurs. Among other techniques, the Local Defect Correction (LDC) method for
time-dependent problems described in [6] has the advantage that only uniform grid
and uniform grid solvers need to be used. At each time step, LDC is an iterative
process in which a global coarse grid solution and a local fine grid solution are
iteratively improved. In particular, the local approximation improves the solution
globally through a defect correction.

The LDC method was introduced in [5] for solving elliptic boundary value prob-
lems. LDC is a domain decomposition technique in which the local domain fully
overlaps the global one. An analysis of LDC in combination with finite differences
is presented in [4]. In [1] the method is extended to include adaptivity, multilevel
refinement, domain decomposition and regridding. In this paper we present the LDC
technique for solving time-dependent PDEs (Section 2) and we discuss some prop-
erties of the method (Section 3). Results of numerical experiments illustrate the
accuracy and the efficiency of the method (Section 4).
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2 The LDC method

We consider the following two-dimensional problem8>>>><
>>>>:

∂u(x, t)

∂t
= Lu(x, t) + f(x, t), in Ω ×Θ,

u(x, t) = ψ(x, t), on ∂Ω ×Θ,

u(x, 0) = ϕ0(x), in Ω ∪ ∂Ω,

(1)

where Ω is a spatial domain, ∂Ω its boundary and Θ the time interval (0, tend] .
Moreover, L is a linear differential operator, f a source term, ψ a Dirichlet bound-
ary condition and ϕ0 a given initial condition.

Problem (1) has to be discretized in space and time in order to be solved nu-
merically. For this reason, we introduce a global uniform coarse grid (grid size H ),
which we denote by ΩH . We also introduce the time step ∆t . We assume that u
has, at each time level, a region of high activity that covers a small part of Ω . At
time tn := n∆t a coarse grid approximation computed with a time step ∆t might
not be adequate to represent u(x, tn) . In order to better capture the local high
activity, we introduce a local uniform fine grid (grid size h < H ), which we denote
by Ωh

l . On Ωh
l the time integration is performed using a time step δt = ∆t/τ ,

with τ an integer ≥ 1 . In LDC the local solution is used to improve the global
approximation through a defect correction.

In the remainder of this section we will assume that a solution uH,h,n−1 is
known at time tn−1 on the composite grid ΩH,h := ΩH ∪Ωh

l , see Fig. 1. It is given
by

uH,h,n−1 :=

(
uh,n−1
l , in Ωh

l ,

uH,n−1, in ΩH \Ωh
l ,

(2)

where uh,n−1
l and uH,n−1 are a local and a global approximation of u(x, tn−1)

respectively. We want to compute an approximation of the solution at the new time
level tn on the composite grid.

The coarse grid problem

A first coarse grid approximation at tn , uH,n0 , can be computed applying the
backward Euler method to the PDE in (1). The use of explicit time integrators on
the global grid is not of interest in LDC; this is discussed in [6]. We obatin

(I −∆tLH)uH,n0 = uH,h,n−1|ΩH + fH,n∆t, (3)

where LH is some spatial discretization of L . In (3), fH,n also includes the Dirich-
let boundary conditions. We rewrite (3) as

MHuH,n0 = uH,h,n−1|ΩH + fH,n∆t. (4)

We assume MH to be invertible. We denote by Γ the interface between Ωl and
Ω \Ωl . For convenience, we partition the coarse grid points as follows

ΩH = ΩH
l ∪ ΓH ∪ ΩH

c , (5)
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Fig. 1. Example of composite grid ΩH,h .

where ΩH
l := ΩH ∩Ωl , ΓH := ΩH ∩Γ and ΩH

c := ΩH \ (ΩH
l ∪ΓH) . In Fig. 1 the

coarse grid points ΩH
l are marked with circles, while the points ΓH and ΩH

c are
denoted by triangles and squares respectively. Assuming that the spatial discretiza-
tion on the coarse grid is such that the stencil at grid point (x, y) involves at most
function values at (x + iH, y + jH) , with i, j ∈ {−1, 0, 1} , we can rewrite (4) as0

BB@
MH
l BH

l,Γ 0

BH
Γ,l M

H
Γ BH

Γ,c

0 BH
c,Γ MH

c

1
CCA
0
BB@
uH,nl,0

uH,nΓ,0

uH,nc,0

1
CCA =

0
BB@
uH,h,n−1|ΩH

l

uH,h,n−1|ΓH

uH,h,n−1|ΩH
c

1
CCA+

0
BB@
fH,nl ∆t

fH,nΓ ∆t

fH,nc ∆t

1
CCA . (6)

The fine grid problem

In order to formulate a discrete problem on Ωh
l , we have to define artificial bound-

ary conditions on Γ . We can prescribe artificial Dirichlet boundary conditions at
time tn by applying an interpolation operator in space, P h,H . The operator P h,H

maps function values in ΓH to function values at grid points of the fine grid that
lie on the interface, denoted by Γ h . In Fig. 1 the points Γ h are marked with small
diamonds. If we want to perform time integration with a time step δt = ∆t/τ ,
we also need to provide boundary conditions on Γ h at all the intermediate time
levels tn−1+k/τ , with k = 1, 2, . . . , τ −1 . Therefore we perform linear time interpo-

lation between uH,h,n−1|Γh and P h,HuH,n0 . A fine grid approximation at time tn
can thus be computed by solving

Mh
l u

h,n−1+k/τ
l,0 = u

h,n−1+(k−1)/τ
l,0 + f

h,n−1+k/τ
l δt

−Bh
l,Γ

„
k

τ
P h,HuH,nΓ,0 +

τ − k

τ
uH,h,n−1|Γh

«
, for k = 1, 2, . . . , τ . (7)

The procedure (7) is initialized using

uh,n−1
l,0 = uH,h,n−1|Ωh

l
. (8)
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We can combine all the equations in (7) to express uh,nl,w , with w = 0 , directly in

terms of uH,h,n−1|Ωh
l

. We obtain

`
Mh
l

´τ
uh,nl,w = uH,h,n−1|Ωh

l
+

τX
k=1

`
Mh
l

´k−1
f
h,n−1+k/τ
l δt

−
τX
k=1

`
Mh
l

´k−1
Bh
l,Γ

„
k

τ
P h,HuH,nΓ,w +

τ − k

τ
uH,h,n−1|Γh

«
, (9)

or `
Mh
l

´τ
uh,nl,w = uH,h,n−1|Ωh

l
+ F h,nl δt−Wn

l,Γ uH,nΓ, + Znl,Γ uH,h,n−1|Γh . (10)

In (10) F h,nl depends only on the source term and on the fine grid operator Mh
l ,

while Wn
l,Γ and Znl,Γ only depend on Mh

l and Bh
l,Γ .

Defect correction and LDC iteration

The fine grid approximation is now used to overall improve the coarse grid solu-
tion at tn . The fine grid solution is regarded as more accurate than the coarse
grid approximation because it is computed with a grid size h < H and a time
step δt ≤ ∆t . The fine grid solution can therefore be used to approximate the local
discretization error or defect in ΩH

l . For w = 1 , the approximated defect is given
by (cf. the first equation in (6))

d̃H,nl,w−1 := MH
l RH,huh,nl,w−1 + BH

l,Γu
H,n
Γ,w−1 − uH,h,n−1|ΩH

l
− fH,nl ∆t, (11)

where RH,h is a restriction operator from the fine to the coarse grid, such that
(RH,huh,nl,w−1)(x, y) = uh,nl,w−1(x, y) for every (x, y) ∈ ΩH

l . The defect d̃H,nl,w−1 is now
added on the right hand side of (6). A more accurate coarse grid approximation can
be computed by solving

MHuH,nw =

0
BB@
uH,h,n−1|ΩH

l

uH,h,n−1|ΓH

uH,h,n−1|ΩH
c

1
CCA+

0
BB@
fH,nl ∆t + d̃H,nl,w−1

fH,nΓ ∆t

fH,nc ∆t

1
CCA

=

0
BB@

0

uH,h,n−1|ΓH

uH,h,n−1|ΩH
c

1
CCA+

0
BB@
MH
l RH,huh,nl,w−1 + BH

l,Γu
H,n
Γ,w−1

fH,nΓ ∆t

fH,nc ∆t

1
CCA .

(12)

The new coarse grid solution can be used to update the boundary conditions for a
new local problem on Ωh

l , which in turn will correct the coarse grid approximation.
At each time step the LDC method is thus an iterative procedure and, as established
in [2] for stationary cases, its convergence is very fast.
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Adaptivity

In a time dependent problem it is likely that the high activity moves as time proceeds.
As a consequence, the local region Ωl might be located in different positions and a
have a different size or shape at the various time levels in Θ . At each time, in order
to perform the next time step ∆t , we have to determine a suitable Ωl . This can
be done, for example, by measuring some characteristics of the solution (e.g. slope,
gradients, etc.). Many methods have proposed in the literature, see for example [3].
If the composite grid changes in time, we interpolate the solution found at tn−1 to
the new grid to construct the initial solution uH,h,n−1 .

3 Properties of the LDC method

In this section we will discuss some properties of the LDC method for time-dependent
PDEs. The following lemma shows that once the coarse grid approximations do not
change on the interface Γ , the LDC algorithm converges and a fixed point of the
iteration has been reached.

Lemma 1. If uH,nΓ,w = uH,nΓ,w−1 for a certain index w , then the LDC iteration con-
verges and

uH,nq = uH,nw , uh,nq = uh,nw , (13)

for all q = w,w + 1, . . . .

Proof. Assume that uH,nΓ,w = uH,nΓ,w−1 for a certain index w . From (10), we have

that uh,nw = uh,nw−1 , and hence, from (12),

MHuH,nw+1 =

0
BB@

0

uH,h,n−1|ΓH

uH,h,n−1|ΩH
c

1
CCA+

0
BB@
MH
l RH,huh,nl,w + BH

l,Γu
H,n
Γ,w

fH,nΓ ∆t

fH,nc ∆t

1
CCA

=

0
BB@

0

uH,h,n−1|ΓH

uH,h,n−1|ΩH
c

1
CCA+

0
BB@
MH
l RH,huh,nl,w−1 + BH

l,Γu
H,n
Γ,w−1

fH,nΓ ∆t

fH,nc ∆t

1
CCA= MHuH,nw

Because we have assumed that MH is invertible, we have uH,nw+1 = uH,nw , for all

grid points in ΩH . Since ΓH ⊂ ΩH , we have uH,nΓ,w+1 = uH,nΓ,w . By induction, we

find uH,nq = uH,nw and uh,nq = uh,nw , for all q = w,w + 1, . . .

�

We can combine (12), (11) and (10), and express the LDC iteration as

695



R. Minero, M. J. H. Anthonissen and R. M. M. Mattheij

0
BBBB@

`
Mh
l

´τ
0 Wn

l,Γ 0

0 MH
l BH

l,Γ 0

0 BH
Γ,l M

H
Γ BH

Γ,c

0 0 BH
c,Γ MH

c

1
CCCCA

0
BBBB@
uh,nl,w

uH,nl,w

uH,nΓ,w

uH,nc,w

1
CCCCA =

0
BBBB@

0 0 0 0

MH
l RH,h 0 BH

l,Γ 0

0 0 0 0

0 0 0 0

1
CCCCA

0
BBBBB@

uh,nl,w−1

uH,nl,w−1

uH,nΓ,w−1

uH,nc,w−1

1
CCCCCA

+

0
BBBBB@

uH,h,n−1|Ωh
l

0

uH,h,n−1|ΓH

uH,h,n−1|ΩH
c

1
CCCCCA+

0
BBBB@
F h,nl ∆t

0

fH,nΓ δt

fH,nc δt

1
CCCCA+

0
BBBB@
Znl,Γ uH,h,n−1|ΓH

0

0

0

1
CCCCA . (14)

We rewrite (14) using the short notation

MH,huH,h,nw = SH,huH,h,nw−1 + ũH,h,n−1 + f̃H,h,n + z̃H,h,n−1. (15)

If the LDC algorithm converges, then (15) has a fixed point, which we denote
by uH,h,n (we remove the subscript that numbers the LDC iterations). The fixed
point uH,h,n satisfies by definition

MH,huH,h,n = SH,huH,h,n + ũH,h,n−1 + f̃H,h,n + z̃H,h,n−1. (16)

The following theorem states that, if the LDC iteration converges, the fine and the
coarse grid approximation coincide in points common to the fine and coarse grids.

Theorem 1. Assume that the LDC iteration converges. Then uH,h,n is such that
the projection of uh,nl on the local coarse grid equals uH,nl , viz.

RH,huh,nl = uHl (17)

Proof. Combining (16) and (14) yields0
BBBBB@

`
Mh
l

´τ
0 Wn

l,Γ 0

−MH
l RH,h MH

l 0 0

0 BH
Γ,l M

H
Γ BH

Γ,c

0 0 BH
c,Γ MH

c

1
CCCCCA

0
BBBB@
uh,nl

uH,nl

uH,nΓ

uH,nc

1
CCCCA = ũH,h,n−1 + f̃H,h,n + z̃H,h,n−1. (18)

The second equation of the system reads

MH
l RH,huh,nl + MH

l uH,nl = 0, (19)

which gives (17), since we supposed MH (and hence MH
l ) to be invertible.

�

We finally write the system of equations that the limit of the LDC iteration
satisfies at time tn .

Theorem 2. Assume that the LDC iteration converges. Then uh,nl , uH,nΓ and uH,nc

satisfy the following system of equations
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BB@
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l

´τ
Wn
l,Γ 0

BH
Γ,lR

H,h MH
Γ BH

Γ,c

0 BH
c,Γ MH

c

1
CCA
0
BB@
uh,nl,w

uH,nΓ,w

uH,nc,w

1
CCA

=

0
BB@
uH,h,n−1|Ωh

l

uH,h,n−1|ΓH

uH,h,n−1|ΩH
c

1
CCA+

0
BB@
F h,nl ∆t

fH,nΓ δt

fH,nc δt

1
CCA+

0
B@
Znl,Γ uH,h,n−1|ΓH

0

0

1
CA . (20)

Proof. Elimination of uH,nl from (18) gives (20).

�

We notice that (20) implies a discretization on the composite grid, while, for solving
that system, we have only used uniform grids and uniform grid solvers.

4 Numerical experiments

In this section we present the results of a 2D numerical experiment. We solve the
following time-dependent convection-diffusion equation

∂u

∂t
+ ∇u = ∇2u + f, (21)

in Ω = (0, 2)× (0, 1) . The initial condition, the boundary condition and the source
term f are chosen is such a way that the exact solution of the problem is

u = 3 − tanh (25 (x− t) + 5 (y − 1)) . (22)

At all times, the exact solution (22) has a region of high activity that covers a small
part of Ω . The problem is solved by means of LDC with different values of H ,
h , ∆t and δt . The spatial discretization is by finite differences both globally and
locally. The backward Euler scheme is used for the time discretization both on the
global and the local grid. The local region is chosen in such a way that at time
level tn

Ωl =
`
(tn − 0.2, tn + 0.4) × (0, 1)

´
∩Ω. (23)

In our tests we perform only one LDC iteration per time step. As a comparison, we
also solve problem (21) using a single uniform global grid with grid size hunif = h
and time step δtunif = δt . At time t = 0.6 we measure the maximum error εmax of
the numerical approximations with respect to the exact solution (22). Table 1 shows
that LDC can achieve practically the same accuracy as the uniform grid solver. Of
course LDC is computanionally less expensive than the uniform grid solver since the
fine grid spacing and the small time step are adopted only in a limited portion of
the domain.

697



R. Minero, M. J. H. Anthonissen and R. M. M. Mattheij

Table 1. Results of the numerical experiment.

Grid size Time step εmax

H h = hunif ∆t δt = δtunif LDC Unif. grid

1/10 H/3 1.0·10−1 ∆t/3 4.36·10−2 4.33·10−2

1/10 H/5 1.0·10−1 ∆t/5 1.21·10−2 1.18·10−2

1/20 H/3 2.5·10−2 ∆t/3 9.50·10−3 9.50·10−3

1/20 H/5 2.5·10−2 ∆t/5 3.02·10−3 3.02·10−3
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Stetter, eds., vol. 5 of Computing Supplementa, Springer Wien, 1984, pp. 89–113.

6. R. Minero, M. J. Anthonissen, and R. M. Mattheij, A local defect correc-
tion technique for time-dependent problems, Numer. Methods Partial Differential
Equations, 22 (2006), pp. 128–144.

698



Extending the p-Version of Finite Elements by
an Octree-Based Hierarchy

R.-P. Mundani 1 , H.-J. Bungartz 1 , E. Rank 2 , A. Niggl 2 , and R. Romberg 2

1 Fakultät für Informatik, Technische Universität München, Germany.
2 Lehrstuhl für Bauinformatik, Technische Universität München, Germany.

Summary. In structural mechanics, a large variety of finite element approaches
are used, some of them – especially of p-type – without an inherent hierarchical
substructuring. This often turns out to be a drawback. By embedding the finite
element decomposition into an octree structure, the elements can be arranged in
a hierarchical way, which does not only open the door to efficient iterative solvers
based on the classical nested dissection algorithm, but also allows to speed up the
solution process in case only parts of the underlying geometric model are changed,
as only those parts and their region of direct influence have to be recomputed.

In this paper, we present an efficient method to map an octree-based hierarchy
onto an arbitrary finite element mesh, to use this octree structure for implementing
a fast iterative solver of nested dissection type, and to set up a framework for com-
pletely embedded simulation processes as they, for example, appear in many civil
engineering applications.

1 Motivation

The cooperation of different simulation tasks often suffers from proprietary data
representations – surface-oriented or volume-oriented, for instance – and insufficient
interfaces between single processes. In [6] we presented a framework for process
integration for applications from the field of structural engineering, where global
consistency among all participants as well as a common data model for all kind of
simulation tasks is achieved by octree-based methods.

In this paper, we present an octree-based approach to arrange the elements re-
sulting from the p-version of a finite element (FE) discretisation in a hierarchical
way. Thus, we can apply efficient iterative solvers based on the classical nested dissec-
tion algorithm. Furthermore, this hierarchical substructuring can also be exploited
for a faster computation of the solution in case some geometric modification occurs.
As only those parts of the octree influenced directly by a geometric alteration have
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to be recomputed, the time for obtaining the solution can be significantly reduced.
Hence, even computations in real time are possible.

By embedding this hierarchical substructuring approach into the framework
mentioned above, different simulation tasks can be handled in a more efficient way.
Thus, for any kind of problem the framework can provide – like a construction kit
– a specific and unique solution, a so called problem solving environment.

2 Octrees

Many simulation tasks, nowadays, are based on hierarchical data structures or oc-
trees, in particular, as they have turned out to be advantageous for a huge amount
of different tasks. Octrees, that is recursively halving a cube containing the entire
geometry in each direction, as long as the resulting cells – aka voxels – are lying
completely inside or outside the geometry. Thus, the overall amount of necessary
cells is reduced from O(n3) for an equidistant discretisation to O(n2) . By a new
technique first presented in [7], we are able to create these octrees in real time and
even on-the-fly also for larger (greater than 12) levels of recursion. Especially in the
field of numerical simulation, octrees provide a big potential for mostly all kinds of
problems due to their fast and easy access of the underlying geometry.

To address each cell by some uniqe identifier, the so called Morton index is
used. By naming a node’s eight sons from ’0’ to ’7’ in some specific order3, one can
obtain the Morton index of a cell by accumulating all node’s numbers on its way
down from the root to the desired cell. One main advantage of these identifiers is
the possibility of easily determining neighbouring cells, an important aspect when
degrees of freedom resulting from an FE discretisation have to be assigned to their
corresponding nodes in an octree.

3 p-Version of Finite Elements

The p-version of the finite element method has turned out to be an efficient discreti-
sation strategy for solving finite element problems arising in structural engineering.
In contrast to the classical h-version approach, the p-version leaves the mesh un-
changed and increases the polynomial degree of the shape functions in order to
reduce the error of approximation. Our p-version implementation uses hierarchical
shape functions for the displacement Ansatz, following Szabó and Babuška [8].
Contrary to the classical approach for higher order modes, the hierarchical bases are
constructed such that all lower order shape functions are completely contained in
the higher order bases. Thus, the finite element basis can be easily extended up to
any desired polynomial degree without changing the complete set of shape functions
for each different polynomial degree.

In the work shown here, the finite element computation is based on a fully
three-dimensional approach using hexahedral elements. The shape functions of the
three-dimensional hexahedral Ansatz spaces are constructed by forming the tensor
product of the one-dimensional bases. One important property is that the hexahedral
p-version elements are very robust w. r. t. element distortions – aspect ratios up to a
factor of 1000 are possible. This makes it possible to use them equally for solid“thick”

3The order itself is not relevant, but it has to be consistent among all nodes.
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structures as well as for thin walled, shell-like structures [3]. The computational effort
can further be decreased by using different polynomial degrees in different directions.
For shell like structures, for example, this anisotropic Ansatz space allows us to
reduce the polynomial degree in the thickness direction while leaving the polynomial
degree in in-plane direction unchanged [4].

With this approach, large structures can be computed using the same element
formulation consistently for the whole domain. Figure 1 shows the computation re-
sults of the structural model of an office tower under vertical load on all plates. The

Fig. 1. Structural model of an office tower consisting of 11762 hexahedral p-version
elements; displacement field of structure with zoomed view.

example was computed with a moderately high polynomial degree of p = 5, which
reflects the global behaviour of the system accurately enough. By using the hierar-
chical organisation in octrees, it is possible to zoom into the structure to a certain
level in order to locally refine the computation simply by increasing the polynomial
degree. Or, after indentifying critical areas on the global level, it is possible to per-
form design studies locally in order to explore different design alternatives. Thus,
using the hierarchical approach presented in this paper, all these local computa-
tions can be done without recomputing the whole domain or without losing global
consistency.

4 Hierarchical Approach

Before any hierarchical solver can be applied to a finite element discretisation, the
corresponding data – stiffness matrices and load vectors – have to be set up in a
hierarchical way. Starting with an octree generation for the elements itself results
in a hierarchical sorting according to some criteria such as the elements’ centre, for
instance. In a second step, all degrees of freedom (DOF) can be assigned to their
corresponding nodes by evaluating the elements’ Morton indices. Once finished with
this initial setup, the system can be processed with a solver of nested dissection
type, e. g., consisting of a bottom-up assembly and top-down solution step.
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4.1 Building a Finite Element Hierarchy

To sort the elements of a FE discretisation in a hierarchical way, each element has to
be separately assigned to one of the octree’s cells. To reduce the computational effort
while generating the corresponding octree all elements are represented by their centre
only. Without loss of generality this could be any arbitrary point of an element, such
as a corner, as long as there’s no other element with the same representative. For n
elements this conforms to a set P of n point coordinates x , y , and z .

Under the assumption of storing exactly one point p ∈ P in each cell, an
octree representation for set P can be easily derived (see Fig. 2). All other cells stay
empty and are not relevant as long as the initial finite element mesh isn’t altered.
For all non-empty cells the corresponding element data – stiffness matrix and load
vector – can already be stored at the same location as well as needed for the later
computations.

�

�

�

�

� �

Fig. 2. A sample FE discretisation in 2D with three elements (left-hand side,
’+’ indicates an element’s centre) and the corresponding quadtree – an octree’s
2-dimensional counterpart – on the right-hand side.

4.2 Assigning Degrees of Freedom

To finish the setup step all DOFs have to be assigned to the octree, too. As a DOF
might belong to more than one element, the lowest common father node (LCF) of
all involved elements has to be found. Lowest means the last node visited within a
top-down descent, starting at the root node, from which all corresponding elements
can still be reached; the octree’s root obviously forms a common father node for
any arbitrary element. The lower one DOF can be assigned to the octree, the better
for the later computations, because it can be eliminated earlier during the nested
dissection’s assembly.

Finding the LCF of some elements is achieved by comparing the respective Mor-
ton indices. They are read number by number from the left-hand side as long as they
match. The resulting Morton index then indicates the LCF where the corresponding
DOF has to be stored. In the worst case the result is empty, thus, the LCF is the
root node. Assume, all of the quadtree’s sons in the right part of Fig. 3 are labelled
from ’0’ to ’3’ from left to right. The LCF of element 2 (Morton index ’20’) and
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element 3 (Morton index ’22’) is ’2’, the LCF of element 2 and element 1 (Morton
index ’0’) is ’ ’ (empty) and, thus, the root node.

Assigning all DOFs to the octree finishes the setup and preparatory work. The
original finite element mesh is no longer necessary as all further computations are
directly processed on the tree structure. Exploiting this hierarchical ordering of
elements/DOFs by a nested dissection algorithm is discussed in the next section.
Figure 3 shows the DOF distribution for the small example from above.
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�
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��
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�

� �
� �
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� �
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� � � �
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Fig. 3. Assuming the following DOFs (light circles) for the sample FE discretisation
on the left-hand side, the final DOF assignment according to the elements’ Morton
indices is shown on the right-hand side.

4.3 Nested Dissection

Applying a nested dissection algorithm on finite element meshes was done very early
by J.A. George [5]. The main idea behind this technique is to decompose the system
of linear equations (SLE) into some smaller parts and to eliminate in a bottom-up
step local unknowns, i. e. unknowns only partially describing the SLE at this point,
before in a final top-down step the solution can be computed. Some more information
about nested dissection, especially for solving the convection-diffusion-equation, can
be found in [1].

In our case, the decomposition step can be skipped, because it was implicitly done
when generating the finite element mesh for some geometric model. Hence, creating
an octree for all elements and assigning the corresponding DOFs to the octree’s
nodes is all the work that is necessary. For precise time measurements related to
this setup step, see the results given in Sect. 5.

Once all preparatory work is finished, a bottom-up assembly is initiated. There-
fore, each stiffness matrix is first rearranged that way. Thus, all unknowns are sep-
arated into blocks of inner (I) – a corresponding DOF is stored in that node – and
outer (O) ones, leading to four blocks II, IO, OI, and OO. If one node does not
contain any DOFs at all, all of the stiffness matrix’s unknowns are treated as outer
ones, hence, only a OO block results.

Thus, the SLE K · u = d with stiffness matrix K , solution vector u, and load
vector d can be written as„

KII KIO

KOI KOO

«
·
„
uI
uO

«
=

„
dI
dO

«
. (1)
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Evaluating (1) leads to

KII · uI + KIO · uO = dI and KOI · uI + KOO · uO = dO ,

which can be rewritten as`
KOO − KOI ·K−1

II ·KIO

´
· uO = dO − KOI ·K−1

II · dI . (2)

In (2) any influence of the inner unknowns uI has been eliminated, thus, the re-
sulting SLE only depends on the outer unknowns uO that are stored somewhere
higher in the tree. There exist several methods of computing the Schur complementeKOO := KOO −KOI · K−1

II · KIO . In our approach, we’ve chosen a direct method
by applying a Gaussian elimination.

The Schur complement is then passed to the node’s father, that assembles it
with all other Schur complements of its sons. For the newly formed SLE the same
steps are applied until the root node is reached. Here, all resulting unknowns are
only inner ones, hence, the SLE can be solved. This solution is passed to the root’s
sons that now can modify their right side and solve the SLE for their inner unknows.
Successively passing the solution to all of a node’s sons until a leaf is reached results
in the entire solution vector u.

4.4 Exploiting the Hierarchy

A huge advantage of this hierarchical approach lies in the reduction of computations
whenever the underlying geometric model changes. As described above, the p-version
of the finite element method allows the alteration of single elements without the
necessity of a complete FE mesh generation from scratch. Thus, only parts of the
tree have to be reassembled for the new stiffness matrices before the new solution
vector can be computed.

Assume, the stiffness of one element changes. Starting from the root node all
Schur complements of nodes visited on the way down to the node representing
this element are obsolete and can be discarded. In fact, the number of necessary
assembly steps is directly related to the node’s depth in the tree. Whenever a new
assembly is initiated, an effort has to be invested only for those nodes without
Schur complement, since for all others the Schur complements still exist from the
last pass. This obviously diminishes the overall amount of computing time as you
can see in the results presented in the next section.

Embedding this approach into the framework presented in [6] allows participating
experts to study different alternative models in a more efficient way due to shorter
computing times in case of geometry alterations and local refinements, resp.

5 Some Examples and Results

To show the potential behind this hierarchical approach a sample prototype was im-
plemented. Based on two different scenarios with different polynomial degree times
were meassured for the setup step, the assembly step, and the solution step. Af-
terwards some elements were exchanged by newer versions4 and the times were
meassured for the reassembly as well as for the new solution step. All computations
were done on an Intel Pentium 4 with 3.4 GHz under Linux.

4The time ( � 0.01 s ) for exchanging some stiffness matrices can be neglected.

704



Extending the p-Version of Finite Elements by an Octree-Based Hierarchy

5.1 Example 1: A Simple Cube

This artificial example shows a cube with an equidistant discretisation in each direc-
tion, consisting of 144 elements in total. It has 2625 DOFs (p = 2) and 7935 DOFs
(p = 4), resp. The octree necessary to store all data has a depth of four, counting
the root level as zero. For simulating a geometry alteration an element on the lowest
level was updated with a new stiffness matrix and load vector. Our results are given
in the following table.

Name DOFs R DOFs T Setup Assembly Solution Reassembly Solution

cube p2 897 2625 0.42 s 0.21 s 0.11 s 0.03 s 0.10 s

cube p4 2319 7935 2.66 s 6.74 s 1.03 s 0.50 s 1.02 s

As we can see, the times for a reassembly – possible because of our approach – are
significant smaller than those for the initial assembly. The more complex the problem
becomes (total amout of DOFs) the more benefit can be achieved. One thing that
also could be observed is a declining percentage of DOFs stored on the root level (in
the following table labelled as ’DOFs R’ for the root level and as ’DOFs T’ for the
overall amount). Nevertheless, this example with nearly 30 % is really the worst.

5.2 Example 2: An Office Tower

The second and more realistic example consists of two floors from an office tower
that can be visited in Vienna5 (also see Fig. 1). It consists of 4171 elements and was
computed for polynomial degrees p = 1 (23856 DOFs) and p = 2 (84660 DOFs).
The necessary octree for storage has a depth of eight. Compared to the example
above, a much better percentage of DOFs on the root level could be observed. For
p = 2 only 8% of all DOFs are stored there.

Name DOFs R DOFs T Setup Assembly Solution Reassembly Solution

uniqa p1 2544 23856 1.89 s 19.27 s 12.64 s 5.14 s 12.09 s

uniqa p2 6414 84660 10.94 s 343.21 s 77.28 s 14.77 s 76.36 s

Here, also the times for a reassembly are much smaller than for the initial assembly
– around 15 s instead of 343 s for p = 2. If we take into account that a solution

5http://tower.uniqa.at
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of the entire system with all 84660 DOFs takes nearly 200 s (cg algorithm) and in
case of a geometry alteration everything has to be computed from scratch, the 90 s
(re-assembly plus solution) are only half that time.

Currently, most of the time (approx. 99%) ist spent at the root level because of
our simple cg solver; a hierarchical multilevel preconditioner will reduce this effect
and, thus, emphasize the advantages of our approach even more. Nevertheless, the
efficiency of this approach has been shown. The next steps will comprise testing
different solver strategies for the root level and a parallelisation. Thus, even larger
problems with higher polynomial degree can be computed.

6 Conclusion

In this paper, we have presented an octree-based approach to set up a hierarchy for
the p-version of the finite element method. It has been shown that this approach
reduces the necessary computations for geometric alterations, as only parts directly
influenced have to be recomputed. Thus, studies of alternative models and local
refinements become very attractive due to the reduced computing times compared
to the standard approaches that always have to start from scratch. Finally, this is the
first step for developing completely embedded simulation processes as they appear
in many technical applications.
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Summary. The Immersed Boundary Method (IBM), originally developed by Pe-
skin [5], is a very practical method of simulating fluid-structure interactions. It
combines Eulerian and Lagrangian descriptions of flow and moving elastic bound-
aries using Dirac delta functions. Incompressible Navier-Stokes (NS) and elasticity
theory can be unified by the same set of equations to get a combined model of the
interaction.

There are numerous applications of the IBM in bio-engineering and in more
general computational fluid dynamics applications.

We present a numerical study of the accuracy and computational cost of the
method, in a framework of finite differences, based on the implementation of several
mathematical tools such as multigrid solvers, τ -extrapolation technique, multilevel
discretization and more generally numerical methods for differential equations with
singular source terms. These implementations are being made on test cases that
are relevant for the IBM applications, keeping in mind that we want to keep the
simplicity of the method.

1 The IBM

While we are using a more sophisticated time stepping scheme [6], let us start with
the basic projection scheme introduced by Chorin [2] for the incompressible NS
equations:

1- Prediction step

ρ

»
V ∗ − V n

∆t
+ (V n.∇)V n

–
− µ∆V ∗ = Fn; (1)

2- Pressure evaluation step
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∆Pn+1 =
ρ

∆t
∇.V ∗; (2)

3- Correction step

ρ

»
V n+1 − V ∗

∆t

–
+ ∇Pn+1 = 0. (3)

The notations are as follow: V , P , ρ and µ are respectively the velocity, pressure,
uniform density and viscosity coefficient of the fluid. F is the force term, ∆t , the
time step, Ω , the domain. In this scheme we have a non-conservative convection
term, an explicit force term and a semi-implicit diffusion term.
Let f(s, t) be the elastic force density along Γ . The boundary immersed in the fluid
is represented in the Cartesian mesh by X(s, t) , where 0 ≤ s ≤ 1 is the curvilinear
coordinate and 0 ≤ t ≤ T is time. The force term F in Eq. (1) is obtained as
follows:

F (x, t) =

Z
Γ

f(s, t)δ(x−X(s, t))ds, (x, t) ∈ Ω × [0, T ]. (4)

It is ideally zero everywhere except along Γ . In the computations, the δ function is
regularized by a discrete Dirac delta function of compact support. Let us describe the
force term in the two-dimensional case after discretization of the immersed boundary,
without considering the time dependency:

Fh(x) = hΓ

MX
j=1

f(sj)δh(x−X(sj)), x ∈ Ω. (5)

The immersed boundary is then a one dimensional curve with this discrete mesh:

sj =
j − 1

M − 1
= (j − 1)hΓ , 1 ≤ j ≤ M.

The NS equations implemented with a finite-difference method is of order two in
space because of the discretization error, but the order is reduced in the IBM by the
discretization of the force term.
If we look at the prediction step (Eq. (1)) of the projection scheme for the NS
equations, we have:

(I − ν∆t∆)V ∗ = RHSn, (6)

where the right-hand side contains singular components, essentially due to the dis-
crete force term that is a sum of discrete Dirac delta functions.
If we look at the pressure correction step (Eq. (2)), we have:

∆(δP )n = RHS∗, (7)

where the right-hand side also contains singular components, but in the form of
dipoles. Consequently, we will focus our study on elliptic equations with singular
source terms and more specifically on these two operators I − k2∆ (k ∈ IR) and
∆ . The standard IBM is first order in space. Our main goal is to get an order of
accuracy larger than one and fast solvers for problems (6) and (7).
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2 The discrete Dirac delta function δh

Let us introduce the discrete Dirac delta functions. They are usually written in this

form in 1D : δh(x) =
1

h
φ(

x

h
). The function φ needs to satisfy several compatibility

conditions:

(a) φ ∈ C0(IR) .
(b) φ has to be of finite support, since the computational cost of the method is

proportional to its width.
(c) If we are using the staggered mesh, as introduced by Harlow and Welch [4],

which requires a regular, rather than a wide, stencil for the Laplace operator in
the pressure equation, we just need to have:X

i∈Z

φ(r − i) = 1 ∀r ∈ IR,

which guarantees that constant functions are interpolated exactly by δh . If we
are not using the staggered mesh, we have the condition:

X
i(even)

φ(r − i) =
X
i(odd)

φ(r − i) =
1

2
∀r ∈ IR.

(d)
X
i∈Z

[φ(r − i)]2 = C ∀r ∈ IR , where C is a constant. That ensures that

X
i∈Z

φ(r1 − i)φ(r2 − i) ≤ C ∀(r1, r2) ∈ IR2.

J. M. Stockie wrote [9] that it “is analogous to the physically reasonable require-
ment that when two fiber points interact, the effect of one boundary point on
the other is maximized when the points coincide”.

(e)
X
i∈Z

(r− i)φ(r− i) = 0 ∀r ∈ IR , which ensures along with property 3 that linear

functions are interpolated exactly by δh .

The minimal width support of a function satisfying these requirements on a tradi-
tional mesh is 2h . It is then defined uniquely, as presented by Peskin [6]. For the

staggered mesh, a function with support
3

2
h is uniquely determined too [7]:

φ(r) =

8>><
>>:

1

6

“
5 − 3|r| −

p
−3(1 − |r|)2 + 1

”
, 0.5 ≤ |r| ≤ 1.5;

1

3

“
1 +

p
−3r2 + 1

”
, |r| ≤ 0.5;

0, otherwise.

(8)

This function described in Eq. (8) gives an IBM that is somewhat faster compu-

tationally due to the fact that the support is
3

2
h instead of 2h . Engquist and

Tornberg showed [3] that the discretization error is proportional to the number of
moment conditions satisfied by the function. But adding some moment conditions
requires increasing the support. If we keep a discrete delta function that has a 2h
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support with the staggered mesh instead of a
3

2
h [7], we can then increase the

accuracy of the method using the following piecewise cubic function [3]:

φ(r) =

8>><
>>:

1 − 1

2
|r| − |r|2 +

1

2
|r|3, 0 ≤ |r| ≤ 1;

1 − 11

6
|r| + |r|2 − 1

6
|r|3, 1 < |r| ≤ 2;

0, otherwise.

(9)

This function satisfies the properties 1,2,3,5 above, as well as these extra moment
properties:

X
i∈Z

(r − i)2φ(r − i) = 0 ∀r ∈ IR,
X
i∈Z

(r − i)3φ(r − i) = 0 ∀r ∈ IR. (10)

Our numerical experiment will use extensively this new discretization of the δ func-
tion, adapted to the staggered meshes.

3 The Multigrid τ –extrapolation

The τ –extrapolation [1, 8] is a modified multigrid method that improves the con-
vergence order of a discrete problem. It is based on the Richardson extrapolation
technique. It combines two solutions obtained on different grids in order to correct
the fine grid solution, but requires the knowledge of the order of the first asymp-
totic expansion term, which can be evaluated experimentally. If this order is α , we
combine the fine solution uh and the coarse solution uH with the following linear
combination ( u∗ is the analytic solution):

ûh =

„
2α

2α − 1

«
uh +

„
1 − 2α

2α − 1

«
uH = u∗ + o(hα). (11)

Here is the τ –extrapolation multigrid algorithm for the problem Au = f :

- pre-smoothing step : uh = Sν1(Ah, uh, fh),

- uh = uh+IhHA
−1
H

„„
2α

2α − 1

«
ÎHh (fh − Ahuh) +

„
1 − 2α

2α − 1

«
(fH − AHI

H
h uh)

«
,

- post-smoothing step : uh = Sν2(Ah, uh, fh),

with the following choices in most cases:
- IhH is a trilinear interpolation prolongation operator,
- ÎHh is a full weighting restriction operator,
- IHh is a full injection prolongation operator,
- ( ν1 , ν2 ), the number of smoothing steps per iteration, are small ( ≤ 2 ).

The good convergence order property of the multigrid methods is due to the fact that
the smoothing iterations improve the high frequency modes of the discrete solution,
while the coarse grid correction improves its low frequency modes. This is especially
true for the stiff elliptic problems solved in the IBM.
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In the τ –extrapolation technique, the linear combination of the Richardson ex-
trapolation significantly improves the discretization order of the coarse grid cor-
rection. This is the idea of the double discretization. A high order discretization
scheme is used on the coarse grid, different from the scheme used for calculating the
residuals transferred to the coarse grid. The smoothing process uses the low order
discretization scheme too, which implies that two discrete problems with slightly
different fixed points are solved. So the τ –extrapolation is a special case of the
double discretization method, where we use the Richardson extrapolation technique
to change the discretization order of the coarse grid. The analytic solution needs to
be smooth enough and the restrictions operator needs to be chosen carefully, for the
τ –extrapolation to improve the regular multigrid method.
A special feature of the τ –extrapolation applied to problems with singular source
points is that we use fH instead of ÎHh fh at the coarse grid correction step. fH
is the discretization of the right-hand side using the discrete Dirac delta functions
that have a 2H = 4h support, while fh is evaluated using the same kind of delta
function but with a 2h support. This is easy to implement and saves an interpolation
process per multigrid iteration.

4 Numerical results

4.1 The 1D Helmholtz operator

Let us compare the different behaviors of both elliptic operators introduced in section
1 with a singular source point at the right-hand side. We solve at first the 1D problem
[10]:

d2u

dx2
(x) − α2u(x) = −2αδ(x− x0), x ∈ [−0.5, 0.5], α ∈ IR∗

+; (12)

x0 ∈ [−0.5, 0.5]; u(−0.5) = e−α|−0.5−x0| and u(0.5) = e−α|0.5−x0|.

The domain is divided in N equidistant intervals. Finite differences and a classic
stencil for the second order derivative are implemented in all of our computations.
The computed solution is compared to the exact solution: uex(x) = e−α|x−x0|,
taking x0 = 0 and α = 60 .
The number of operations represents the number of times the values at the nodes are
updated but does not take into account the extrapolation and interpolation opera-
tions made in the multigrid algorithms in order to switch from one grid to another.
The multigrid algorithm implemented is a classical V-cycle algorithm, with only two
levels. We can see in Fig. (2) that the τ –extrapolation significantly improves the
convergence order for this 1D problem with Dirac point load.
Since the point loads in the IBM can be located anywhere in a cell, it is relevant to
study the behavior of the error depending on the distance between the point load
and the nodes of the mesh. In the following graph, the error relative to the exact
solution is plotted as a function of d , the minimum distance between x0 and the

nodes of the mesh, from 0 to
h

2
:

d(x0) = min
i=1,..,N+1

|(−0.5 + (i− 1)h) − x0| . (13)
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method using the multigrid algorithm
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centered in the middle of a cells. The
order is then 1.4.

We can see in Fig. (3) that the accuracy depends strongly on the distance d(x0) .

If we measure the convergence order of the method when d(x0) =
h

2
, using the

L2-norm, we get only 1.4 (fig. (4)).

4.2 The 2D Laplace operator

Let us study the following benchmark problem [3]:

−∆u(x, y) = δ(x, y, Γ ), (x, y) ∈ Ω = [−1, 1]2; (14)
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Γ =
˘
(x, y) ∈ Ω/x2 + y2 = r2¯ , r < 1, u|∂Ω = uex|∂Ω

uex(x, y) =

8<
: 1 − 1

2
ln

„
1

r

p
x2 + y2

«
, if x2 + y2 > r2;

1, if x2 + y2 ≤ r2.

In this case the source term is distributed along a circle centered at the origin and
with radius r < 1 , which makes this problem close to those in the IBM. This time
we need to use a discrete collection of M Dirac delta functions along the curve Γ .
M is usually a large number so that the discretization error of the delta functions
along Γ is minimized:

δh(x, y, Γ ) =
2πr

M

MX
i=1

δh

„
x− r cos

„
2(i− 1)π

M

««
δh

„
y − r sin

„
2(i− 1)π

M

««
(15)

The error between the computed and analytic solutions is measured along the x-axis
in the L2-norm. We find that the convergence order in the L2-norm is 2.0 without
the τ –extrapolation and 2.8 with. Since the discrete Dirac delta functions are
located along a circle, the distance between them and the nodes of the mesh varies

between 0 and
h√
2

. The error is an average of the errors we would get with the

delta functions centered at the nodes or at the mesh cell center.
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5 Conclusion

We have shown that one can improve the accuracy of the IBM solvers by combining
the τ –extrapolation technique with the piecewise cubic discrete Dirac delta func-

713



F. Pacull and M. Garbey

tion presented by Engquist and Tornberg [3]. Our current experiments with fluid-
structure interactions extends these preliminary results using the IBM on staggered
grid meshes.
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Parc Valrose, 06108 Nice Cedex 02, France. frapetti, rpas@math.unice.fr

2 Department of Mathematics, Universitá di Milano, Via Saldini 50, 20133
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Summary. We construct and study overlapping Schwarz preconditioners for the
iterative solution of elliptic problems discretized with spectral elements based on
Fekete nodes (TSEM). These are a generalization to non-tensorial elements of the
classical Gauss-Lobatto-Legendre hexahedral spectral elements (QSEM). Even if
the resulting discrete problem is more ill-conditioned than in the classical QSEM
case, the resulting preconditioned algorithm using generous overlap is optimal and
scalable, since its convergence rate is bounded by a constant independent of the
number of elements, subdomains and polynomial degree employed.

1 The model problem and SEM formulation

The recent trend toward highly parallel and high-order numerical solvers has led
to increasing interest in domain decomposition preconditioners for spectral element
methods; see [10, 17, 12, 4, 7, 5, 6]. While very successful algorithms have been
constructed and analyzed for classical Gauss-Lobatto-Legendre hexahedral spectral
elements (QSEM), many open problems remain for non-tensorial spectral elements.
In this paper, we consider Fekete nodal spectral elements (TSEM) and propose an
Overlapping Schwarz preconditioner that using generous overlap turns out to be
optimal and scalable.

Let Ω ∈ IRd, d = 2, 3, be a bounded Lipschitz domain with piecewise smooth
boundary. For simplicity, we consider a model elliptic problem in the plane ( d = 2 )
and with homogeneous Dirichlet boundary data, but the techniques presented in
this papers apply equally well to more general elliptic problems in three dimensions:
Find u ∈ V := H1

0 (Ω) such that

a(u, v) :=

Z
Ω

(αgradu · grad v + β u v) dx =

Z
Ω

f v dx ∀v ∈ V, (1)
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where α , β > 0 are piecewise constant in Ω and f ∈ L2(Ω) .
The variational problem (1) is discretized by the conforming spectral element

method, either quadrilateral based (QSEM) or triangle based (TSEM), which is a
Galerkin method that employs a discrete space consisting of continuous piecewise
polynomials of degree N ; see [1, 4, 6] for a general introduction. Let Tref = {(r, s) :
−1 ≤ r, s ≤ +1, r + s ≤ 0} be the reference triangle and PN(Tref) the set of
polynomials on Tref of total degree ≤ N . Let Qref be the reference square [−1, 1]2

and IPN (Qref) the set of polynomials on Qref of degree ≤ N in each variable. We
assume that Ω is decomposed into K nonoverlapping triangular or quadrilateral

finite elements Ωk , Ω =
K[
k=1

Ωk , each of which is the image of Tref or Qref by

means of a suitable mapping, i.e., Ωk = gk(Tref) or Ωk = gk(Qref) . The intersection
between two distinct Ωk is either the empty set or a common vertex or a common
side. We denote by H the maximum diameter of the subdomains Ω′

ks . The space
V is discretized by continuous, piecewise polynomials of total degree ≤ N ,

V T
K,N = {v ∈ V : v|Ωk ◦ gk ∈ PN(Tref), 1 ≤ k ≤ K},

or of degree ≤ N in each variable,

V Q
K,N = {v ∈ V : v|Ωk ◦ gk ∈ IPN (Qref), 1 ≤ k ≤ K}.

QSEM and Gauss-Lobatto-Legendre points. We recall here the conforming
quadrilateral spectral elements QSEM based on Gauss-Lobatto-Legendre (GLL)
quadrature points, which also allows the construction of a very convenient tensor-
product basis for V Q

K,N . We denote by {ξi}Ni=0 the set of GLL points of [−1, 1] , and
by σi the associated quadrature weights. Let li(x) be the Lagrange interpolating
polynomial of degree ≤ N which vanishes at all the GLL nodes except ξi , where it
equals one. The basis functions on the reference square Qref are defined by a tensor
product as li(x)lj(y), 0 ≤ i, j ≤ N . Each function of IPN(Qref) is expanded in
this nodal GLL basis through its values at GLL nodes u(ξi, ξj), 0 ≤ i, j ≤ N . We
replace each integral of (1) by GLL quadrature:

(u, v)QK,N =
KX
k=1

NX
i,j=0

(u ◦ gk)(ξi, ξj)(v ◦ gk)(ξi, ξj)|JQk |σiσj , (2)

where |JQk | is the Jacobian of gk . This inner product is uniformly equivalent to
the standard one on IPN (Ω) . We then obtain the discrete problem: Find u ∈ V Q

K,N

such that
aQK,N (u, v) = (f, v)QK,N , ∀v ∈ V Q

K,N , (3)

where aQK,N (·, ·) is obtained from a(·, ·) by replacing each integral with the GLL
quadrature rule described in (2). The matrix form of (3) is a linear system AQu = b ,
where AQ is here the assembled QSEM matrix (positive definite and symmetric),
b is the load vector and u is the vector of nodal values of the unknown function
u .
TSEM and Fekete points. On triangular elements it is no longer possible to de-
fine spectral elements by tensor product as in QSEM. Let {ψj}nj=1 be an orthonor-
mal basis of PN (Tref ) for the usual L2(Tref ) inner product (for example, the
Koornwinder-Dubiner polynomials may be used to constitute such a basis, see [7]).

716



Overlapping Schwarz Preconditioners for Fekete Spectral Elements

The Fekete points on Tref are defined as the points {x̂i}ni=1 that maximize the de-
terminant of the Vandermonde matrix V with elements Vij = ψj(x̂i) , 1 ≤ i, j ≤ n ,
where n = (N + 1)(N + 2)/2 . For the TSEM introduced in [14], the Fekete points
are used as approximation points and the Lagrange polynomials {φi}ni=1 built on
these points are used as basis functions. Among the main properties of Fekete points
proved in [15], we recall that Fekete points are Gauss-Lobatto points for the cube,
thus providing a strong link with the usual QSEM. Unlikely GLL points, a quadra-
ture formula based on Fekete points is only exact for integrands in PN (Tref ) .
This fact has suggested for the TSEM to separate the sets of approximation and
quadrature points, using the Fekete points {x̂i}ni=1 for the first set and other points
{ŷi}mi=1 for the second set, imposing an exact integration of polynomials, e.g., in
P2N (Tref ) ; see [8]. Given the values at the approximation points of a polynomial
uN ∈ PN(Tref ) , one can set up interpolation and differentiation matrices to com-
pute, at the quadrature points, the values of uN and of its derivatives, respectively.
For instance, denoting by u the vector of the ui = uN (x̂i) , 1 ≤ i ≤ n , and by u′

that of the uN (ŷi) , 1 ≤ i ≤ m , we have u′ = V ′V −1u, where V ′
ij = ψj(ŷi) . On

a generic triangle Ωk = gk(Tref ) , the same relation between u′ and u holds true,
provided that ui = (uN ◦ gk)(x̂i) and u′

j = (uN ◦ gk)(ŷj) . The TSEM requires of
course the use of highly accurate integration rules based on Gauss points. Unfor-
tunately, in practice such integration rules are difficult to define for large values of
N (recent publications show that this is still an open subject of research). In the
present case, we can use integration rules based on Gauss points for quadrilaterals
and then map them to Tref ; see [6]. On a generic triangle Ωk = gk(Tref ) :

(u, v)Ωk,N =
mX
j=1

u′
j v

′
j |JTk (ŷj)|ωj ,

where ωj > 0 , 1 ≤ j ≤ m , are the quadrature weights and |JTk | the Jacobian of
the mapping gk between Tref and Ωk . As for (3), we obtain a discrete problem

aTK,N (u, v) = (f, v)TK,N , ∀v ∈ V T
K,N , (4)

that can be written in matrix form as a linear system ATu = b . The TSEM matrix
AT is less sparse than the QSEM matrix AQ and more ill-conditioned, since its
condition number grows as O(N2(d−1)) (see Sec. 3).

2 Overlapping Schwarz Preconditioners

We now consider the iterative solution of the discrete systems Au = f by the
conjugate gradient method with an Overlapping Schwarz preconditioner; see e.g.
[16, 13, 11] for a general introduction.

Let τ0 be the coarse finite element triangulation of the domain Ω determined
by the elements Ωk , k = 1, ..., K, of characteristic diameter H . Let τN be the
fine triangulation determined by either the Fekete or the GLL nodes introduced in
each element Ωk in Sections 2.1 and 2.2. Thus we can define two different coarse
and fine triangulations and related overlapping partitions of Ω , according to the
spectral element method at issue.
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QSEM. The coarse triangulation τ0 is given by quadrilaterals Ωk providing a
coarse problem with bilinear finite element ( N = 1 in each direction). Then the
local fine discretization τN is determined by the GLL nodes in each quadrilateral
Ωk . We define the overlapping partition of Ω by extending each subdomain Ωk to
a larger subdomain Ω′

k , consisting of all elements of τN within a certain distance
from Ωk ; we measure this distance by the number δ of GLL points extending Ωk
in each direction. See Figure 1 (left) for a two-dimensional example.
TSEM. The coarse triangulation τ0 is given by triangles Ωk providing a coarse
problem with linear finite element (N = 1 ). Then the local fine discretization τN
is determined by Fekete nodes within each Ωk . The overlapping partition of Ω is
generated by extending each triangle Ωk to a large subdomain Ω′

k consisting of
all triangles sharing with Ωk either a vertex or an edge. See Figure 1 (right) for
a two-dimensional example. Overlapping techniques involving a smaller number of
subdomains (e.g., sharing edges of Ωk only) proved unsuccessful, whereas less gen-
erous overlapping partitions considering a few nodes around Ωk can not be designed
straightforwardly since the internal Fekete nodes are not distributed regularly as in
tensorial elements.

Ω
1

Ω
2

Ω
3

Ω
4

Ω
5
′ Ω

6

Ω
7

Ω
8

Ω
9

Fig. 1. Example of Ω′
k subdomains for QSEM with small overlap ( δ = 2 , left) and

TSEM with generous overlap (right).

The overlapping Schwarz preconditioner B−1 for A is based on solving a) a
coarse problem with linear or bilinear elements on the coarse mesh τ0 ; b) local
problems on the overlapping subdomains Ω′

k .
For the coarse solve, we need to define:

a1) a restriction matrix R0 ; its transpose RT0 interpolates coarse linear (resp.
bilinear) functions on τ0 to spectral elements functions on the fine Fekete (resp.
GLL) mesh τN ;

a2) a coarse stiffness matrix A0 = R0AR
T
0 needed for the solution of the coarse

problem with N = 1 on τ0 .
For the local solves, we need to define:

b1) restriction matrices Rk (with 0,1 entries) returning only the degrees of
freedom inside each subdomain Ω′

k ;
b2) local stiffness matrices Ak = RkAR

T
k needed for the solution of the k th

local problem on Ω′
k with zero Dirichlet boundary conditions on ∂Ω′

k .
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These are the building blocks of the proposed preconditioners. The additive form
of the overlapping Schwarz preconditioner is

B−1
add = RT0 A

−1
0 R0 +

KX
k=1

RTkA
−1
k Rk, (5)

Multiplicative and hybrid variants can be considered too, see [13, 16].
These preconditioners are associated with the space decomposition VK,N = V0+

KX
k=1

Vk , where either VK,N ≡ V T
K,N or VK,N ≡ V Q

K,N . V0 is the subspace of VK,N

consisting of piecewise linear or bilinear functions on the coarse mesh τ0 and

Vk = { v ∈ V T
K,N : v = 0 at all the Fekete nodes outside Ω′

k and on ∂Ω′
k }

in the case of triangles, and

Vk = { v ∈ V Q
K,N : v = 0 at all the GLL nodes outside Ω′

k and on ∂Ω′
k }

in the case of quadrilaterals. Defining the operators Tk : VK,N −→ Vk by
aK,N (Tku, v) = aK,N (u, v) ∀v ∈ Vk, 0 ≤ k ≤ K where aK,N ≡ aTK,N for TSEM

and aK,N ≡ aQK,N for QSEM, then (5) is exactly the matrix form of the additive
Schwarz operator Tadd = T0 + T1 + · · · + TK . The theory developed by Casarin
[3] for QSEM and scalar symmetric positive definite problems allows us to transfer
the main domain decomposition results from the finite elements to QSEM (see e.g.
Toselli and Widlund [16, Ch. 7]).

Theorem 1. The condition number of the overlapping Schwarz QSEM operator is
bounded by

cond(Ta) ≤ C(1 +
H

δ̃
),

with δ̃ = min
k

{dist(∂Ωk, ∂Ω
′
k)} and the constant C is independent of N,H, δ̃ .

In case of generous overlap δ̃ = CH , we have a constant upper bound for both
cond(Ta) and the number of iterations; this was already proved in Pavarino [9] for
more general hp finite elements. The analyses in [3] and [9] are no longer valid for
unstructured hp elements on nontensorial elements, and preconditioners with small
overlap are not known; the only theory available is for nonoverlapping methods in
Bica’s doctoral thesis [2]. Nevertheless, we can build preconditioners with generous
overlap as shown before and the numerical results of the next section show that they
are optimal and scalable, hence we conjecture that a bound as in Theorem 1 also
holds for TSEM.

3 Numerical results

In this section, we report the results of numerical experiments for the overlapping
Schwarz preconditioner applied to the model problem (1) discretized with triangular
spectral elements using Fekete nodes. We consider an homogeneous material with
α = β = 1 . The computational domain is Ω = [−1, 1]2 and the body force f is
consistent with u(x) = sin(πx) sin(πy) as the exact solution of (1). The mesh is
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obtained by first dividing Ω into K = k2 identical squares and then by dividing
similarly each of them into two triangles. The grid-size parameter H is chosen equal
to 2/k . The resulting discrete problem is solved by the preconditioned conjugate
gradient (PCG) method without or with Schwarz preconditioner (5), the latter with
or without the coarse solver RT0 A

−1
0 R0 . The initial guess is zero and the stopping

criterion is |r(ν)|/|b(ν)| ≤ 10−7 , where r(ν) is the ν th residual. In Table 1, we
report the iteration counts (It.), spectral condition number ( κ2(A) ) and extreme
eigenvalues ( λmax , λmin ), fixing H = 1/2 (32 subdomains) and varying the degree
N from 3 to 15. Columns 2-3 refers to CG, columns 4-7 refer to PCG without
a coarse solver, and columns 8-11 refer to PCG with a coarse solver. The same
quantities are reported in Tables 2 fixing now N = 3 and varying 1/H from 2 to
10. These results are also plotted in Fig. 2 and 3, that clearly show that while
the very ill-conditioned original TSEM matrix has a condition number that grows
as O(N4H−2) , the overlapping Schwarz preconditioned operator is optimal and
scalable (i.e. independent of N and H ).
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Summary. Computational study of the macroscopic stability of plasmas is a chal-
lenging multi-scale problem. Implicit time integration can be used to relieve stability
constraints due to fast Alfvén waves, and adaptive mesh refinement (AMR) can be
used to resolve highly localized solution features. The strong nonlinearities and nu-
merical stiffness of magnetohydrodynamics (MHD) models present further challenges
that must be solved to make implicit AMR practical. We present initial results on
the application of implicit AMR to a reduced resistive MHD model.

1 Introduction

Magnetohydrodynamics (MHD) models are useful for studying the macroscopic be-
havior of plasmas. Plasmas exhibit a wide range of complex behavior, including
magnetic reconnection, where the magnetic field undergoes a rapid reconfiguration
accompanied by conversion of energy stored in the magnetic field to kinetic energy.
Reconnection is associated with the formation of thin, localized current sheets, which
profoundly influence macroscopic behavior. Thus, it is natural to consider adaptive
mesh refinement (AMR) to locally resolve these features.

MHD models also display behaviors that occur over a wide range of time scales,
many of which are much faster than the time scale over which reconnection occurs.
Time integration methods that are subject to stability constraints that arise from
the fastest time scales are inappropriate for simulation-based study of reconnection
phenomena. We therefore employ implicit time integration methods where time steps
are constrained only by accuracy, not stability.

Implicit time integration requires the solution of large-scale systems of nonlinear
equations at each time step, and fast, robust solution methods are necessary for
implicit methods to be practical. Fortunately, Newton-Krylov methods [2] have met
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this requirement in a variety of contexts [6], provided effective preconditioning is
used. In particular, we have demonstrated excellent preconditioner performance for
reduced MHD models [4, 3]. The key to this success is the design of physics-based
preconditioners that preserve important couplings between variables and allow the
effective use of multigrid methods. On AMR grids, fast multilevel methods that
exploit the structure of the mesh are needed.

2 Adaptive Mesh Refinement

We use structured AMR (SAMR), in which the grid is organized as a collection of
refinement levels. Each refinement level is the union of rectangular patches having
fixed resolution, and is fully nested in the next coarser level (except at physical
boundaries); see Figure 2 for some examples. This hierarchical structure naturally
lends itself to domain decomposition, by treating each refinement level as a separate
subdomain and exploiting the natural partition of each level by its patches. The
fully overlapping nature of the domains enables use of coarse grid points that are
covered by a finer level to accelerate the solution process. In particular, we use the
Fast Adpative Composite grid (FAC) method [7], which is a multiplicative approach
that treats levels sequentially, analogous to a multigrid V-cycle. FAC can employ
simple smoothing on refinement levels, and an approximate solve on the coarsest,
global level.

SAMR requires special discretization procedures to enforce smoothness of the
solution at the interfaces between coarse and fine regions. Continuity of the solution
at coarse/fine interfaces is ensured by providing each level with Dirichlet boundary
conditions that are determined from piecewise quadratic interpolation of data from
the next coarser level. Flux continuity at coarse/fine interfaces is enforced by using
this Dirichlet data to compute O(h3) -accurate gradients normal to the level bound-
ary. Nevertheless, careful selection of the MHD model is required to successfully use
SAMR in this context.

3 Current-Vorticity Formulation of Reduced MHD

The two-dimensional reduced MHD formalism assumes that the plasma is strongly
magnetized by a large magnetic field in the (ignorable) z -direction [5]. It follows that
the dynamics is restricted to the x− y plane, where the plasma is incompressible.
This allows descriptions of the plasma velocity v = (u, v)T in terms of a stream-
function Φ (with u = −Φy and v = Φx ) and the magnetic field B = (B1, B2)

T

in terms of a poloidal flux function Ψ (with B1 = −Ψy and B2 = Ψx ). This leads
to the streamfunction-vorticity formulation

∂tω + v · ∇ω − ν∇2ω = B · ∇J

∂tΨ + v · ∇Ψ − η∇2Ψ = 0

∇2Φ = ω

(1)

where ω is the vorticity, J = ∇2Ψ is the electric current, ν is the viscosity, and η
is the resistivity. While this formulation was successfully treated in [4], it is not well-
suited to SAMR, because of the need to compute J = ∇2Ψ at coarse/fine interfaces,
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even if much higher-order interpolation is used. The fact that J is determined by
differentiation leads to small instabilities along the coarse/fine interface that grow
as the simulation proceeds. Similar difficulties were reported in [9] for ideal MHD on
unstructured grids. Instead, and following [9], we use a current-vorticity formulation

∂tJ + v · ∇J − η∇2J − B · ∇ω = {Φ, Ψ}
∂tω + v · ∇ω − ν∇2ω − B · ∇J = 0

ω −∇2Φ = 0

J − ∇2Ψ = 0

(2)

where {Φ, Ψ} = 2[Φxy(Ψxx − Ψyy) − Ψxy(Φxx − Φyy)] .
Our main task here is to extend the physics-based preconditioner developed in

[4] to handle (2). For the sake of brevity, we assume the reader is familiar with the
derivation in [4], and do not repeat it here. Discretizing (2) in time with a theta
difference scheme yields

(Jn+1 − Jn)/∆t + [v · ∇J ]n+θ − η∇2Jn+θ − [B · ∇ω]n+θ = {Φ, Ψ}n+θ

(ωn+1 − ωn)/∆t + [v · ∇ω]n+θ − ν∇2ωn+θ − [B · ∇J ]n+θ = 0

ωn+θ − ∇2Φn+θ = 0

Jn+θ −∇2Ψn+θ = 0

(3)

where n+ θ -level quantities are calculated as ξn+θ = (1− θ)ξn+ θξn+1 . Backward
Euler time discretization is obtained by θ = 1 and Crank-Nicolson time discretiza-
tion corresponds to θ = 1/2 . We represent (3) generically by G(xn+1) = 0 and
compute the time-advanced solution with a Jacobian-free Newton-Krylov (JFNK)
method.

Each iteration of JFNK requires solution of the linearized system

LηδJ + (4)

θ(δv · ∇J0 − B0 · ∇δω − δB · ∇ω0 − {δΦ, Ψ0} − {Φ0, δΨ}) = −GJ (5)

Lνδω + θ(δv · ∇ω0 − B0 · ∇δJ − δB · ∇J0) = −Gω (6)

δJ − ∇2δΨ = −GΨ (7)

δω − ∇2δΦ = −GΦ, (8)

where Lα =
1

∆t
+ θ(v0 · ∇ − α∇2), α = η, ν . Quantities with subscript 0 refer to

solution quantities at the previous Newton iterate and (GJ , Gω, Gψ, Gφ)
t refers to

the nonlinear residual.
We extend the semi-implicit preconditioner for (1) to handle (2) by first sub-

stituting (7) and (8) in (5) and (6), respectively, and approximating as in [4], to
obtain

P
„
δΨ
δΦ

«
≈ −(∇2)−1

»„
GJ
Gω

«
− P

„
GΨ
GΦ

«–
(9)

where

P ≡
„

Lη −θB0 · ∇
−θB0 · ∇ Lν

«
.

The system in (9) is only approximate, and is treated here as a predictor step for
δΨ and δΦ . Solution of (9) is done as described in [4], namely, by a few sweeps of

725



B. Philip, M. Pernice and L. Chacón

the stationary method obtained by the splitting of P that is induced by separating
Lν into its diagonal and off-diagonal parts, and forming the Schur complement of
the split block matrix for inversion. After this, the system

P
„
δJ
δω

«
= −

„
GJ + θ(δv · ∇J0 − δB · ∇ω0 − {δΦ, Ψ0} − {Φ0, δΨ})

Gω + θ(δv · ∇ω0 − δB · ∇J0)

«
(10)

is solved in the same manner for δJ and δω using the predicted δΨ and δΦ in
the right hand side.

4 Computational Results

We present initial results of applying implicit AMR to the classical tearing resistive
instability problem described in [4]. The current-vorticity formulation (2) is used
on the physical domain Ω = [0, 4] × [0, 1] , with periodic boundary conditions in x
and homogeneous Dirichlet boundary conditions in y . Initial conditions are given
by ω0 = 0 and a Harris current sheet J0 = sech2 ((y − 0.5)/λ) /λ with λ = 0.2 .
We use a fixed time step ∆t = 1 and integrate to t = 250 .

The software infrastructure described in [8] is used. In particular, we use the im-
plementation of JFNK from PETSc’s Scalable Nonlinear Equation Solver (SNES)
package [1] with a constant forcing term, with both absolute and relative stopping
tolerances of 10−4 . We developed implementations of FAC for solving the Pois-
son and convection-tensor diffusion sub-problems that are needed to implement the
preconditioner [(9) and (10)].

Our criteria for dynamic mesh refinement are based on detecting solution fea-
tures. Cells are selected for subdivision when |J | exceeds 85% of its maximum value
(following [9]) or when the curvature in ω exceeds 0.40. Regridding is done every
fourth time step. These choices were determined experimentally to produce accept-
able results. While a systematic study of the accuracy of the adaptive simulation is
needed, Figure 1 shows good agreement of the growth of the magnetic perturbation
calculated on different grid configurations with the same finest resolution. All these
calculations predicted a growth rate of 0.046 .

Figure 2 depicts evolution of the solution and grid for a 32×32 base grid with 3
refinement levels. Initially, refinement is concentrated in a strip surrounding y = 0.5
in order to resolve the current sheet. By t = 120 the magnetic island has opened
up and the flow has organized itself into four distinct vortices of alternating sign.
The mesh tracks the evolution of the solution, with refinement level 1 expanding
to capture the magnetic island, de-refinement in the center of the island, and the
remaining refinement levels focused on the vorticity. By t = 200 , J has increased
in the center of the magnetic island, and re-refinement has occurred to capture this
behavior.

Finally, Table 1 shows the average number of nonlinear and linear iterations
per time step as finer base grids and increasing numbers of refinement levels are
used. The entries marked “–” are cases that were not run. The number of nonlinear
iterations per time step is roughly constant for all cases. Reading horizontally, we
note an increase in the number of linear iterations per time step as resolution is
increased locally. This is consistent with the trend observed by reading vertically,
where resolution is increased globally by using increasingly finer base grids. These
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Fig. 1. Comparison of growth in δΨ for different grid configurations with the same
finest resolution. The curves are labeled as “mB � L”, which indicates an m × m
base grid and � refinement levels.

trends are consistent with results found in [4], and are expected, because by increas-
ing spatial resolution while running at a fixed time step, we are effectively running
at larger multiples of the shear Alfvén wave explicit CFL limit. More importantly,
reading diagonally (from lower left to upper right), we see that the number of linear
iterations per time step is nearly constant for different grid configurations with a
fixed finest resolution.

Table 1. Number of nonlinear iterations (NNI) and linear iterations (NLI), for dif-
ferent base grids and different numbers of refinement levels.

NNI NLI

Levels 1 2 3 4 5 1 2 3 4 5

32 × 32 1.5 2.0 2.0 2.1 2.5 3.4 7.9 12.0 19.3 33.7

64 × 64 1.8 2.0 2.0 2.4 – 6.5 11.7 19.1 33.2 –

128 × 128 1.8 2.0 2.4 – – 12.5 20.1 27.2 – –

256 × 256 1.9 2.0 – – – 19.9 27.5 – – –

512 × 512 1.9 – – – – 26.3 – – – –
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Fig. 2. Evolution of solution and grid over time . The y -axis is scaled by a factor of
4. The current J is on the left and the vorticity ω is on the right. Nested refinement
levels of AMR grid are outlined over the solution.

5 Conclusions

We have successfully demonstrated the use of implicit AMR for a reduced resistive
model of MHD. The conventional streamfunction-vorticity formulation was found
to be inappropriate for SAMR, but the current-vorticity formulation was shown to
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be amenable to this approach. Although a more formal accuracy study remains to
be undertaken, we have demonstrated good agreement among predictions of the
growth rate of the magnetic perturbation obtained from a variety of grid configu-
rations having the finest resolution. By using FAC to implement our physics-based
preconditioner, we have shown that the number of linear iterations per time step at
a given resolution is nearly constant, a property that is necessary for implicit AMR
to achieve performance gains that are commensurate with the reduction in problem
size made possible by local mesh refinement.

6 Disclaimer

This work was performed under the auspices of the U.S. Department of Energy by
Los Alamos National Laboratory, which is operated by the University of California
under contract W-7405-ENG-36. Los Alamos National Laboratory does not endorse
the viewpoint of a publication or guarantee its technical correctness. LA-UR 05-2645
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Summary. In this paper we design and apply new embedded pairs of Fractional
Step Runge-Kutta methods to the efficient solution of multidimensional parabolic
problems. These time integrators are combined with a suitable splitting of the ellip-
tic operator subordinated to a decomposition of the spatial domain and a standard
spatial discretization. With this technique we obtain parallel algorithms which have
the main advantages of classical domain decomposition methods and, besides, avoid
iterative processes like Schwarz iterations, typical of them. The use of these embed-
ded methods permits a fast variable step time integration process.

1 Introduction

Let us consider a linear multidimensional parabolic problem with time dependent
coefficients which we formulate in the following operational form: find u : [t0, T ] → H
such that 8<

:
∂u

∂t
= A(t)u + f(t) ∀ t ∈ (t0, T ],

u(t0) = u0 ∈ H, Bu(t) = g(t) ∈ Hb,
(1)

where (H, ‖.‖) and (Hb, ‖.‖b) are two Hilbert spaces of functions defined on a
bounded open subset Ω ⊆ R

d and on its boundary Γ , respectively. A(t) : D ⊆
H → H is an unbounded elliptic differential operator which contains the derivatives
of the unknown u with respect to the spatial variables and B : D ⊆ H → Hb

is an abstract trace operator which determines the type of boundary conditions

†This research is partially supported by the MEC research project num.
MTM2004-05221.



L. Portero and J. C. Jorge

considered. We assume that the source term f , the initial condition u0 and the
boundary data g are sufficiently smooth and mutually compatible.

Numerical algorithms for the approximate solution of (1) can be designed and
analyzed by combining a standard spatial discretization (using, for example, finite
differences or finite elements) with an ODE solver as a time integrator. It is well
known that if we choose fine grids for the spatial discretization and classical ODE
solvers like Runge-Kutta (RK) or multistep methods, a large computational cost
is required to obtain the numerical solution. Thus, the task of developing faster
algorithms has been of great interest during the last decades and many different
ideas have arisen in order to reduce somehow the computation time.

One alternative to obtain fast and robust algorithms is to discretize problem (1)
first in time using an implicit Runge-Kutta scheme and then to use domain decompo-
sition techniques (see [5]) to solve numerically the elliptic boundary value problems
which arise in each internal stage. In this framework, where we consider the spatial
domain Ω decomposed as the union of certain subdomains, the solution of a large
linear system per internal stage is reduced to the solution of several sets of smaller
linear systems. The main advantage of this technique is that the linear systems of
every set can be solved in parallel. Nevertheless, the cost of an additional iterative
process (e.g. A Schwarz iteration) is required to adjust the boundary conditions on
the interior boundaries of the subdomains.

An interesting alternative to a classical ODE solver is to use a Fractional Step
Runge-Kutta (FSRK) method as time integrator. The key to the efficiency of these
schemes lies in splitting the original elliptic operator as the sum of certain “simpler”

operators ( A =
mX
i=1

Ai ). This decomposition combined with a FSRK method per-

mits that only a part Ai of the elliptic differential operator A acts implicitly at
each internal stage of the method in such a way that the derived elliptic boundary
value problems are easier to solve. In this work we propose to decompose operator
A into parts of the form Ai = ψiA , where {ψi}mi=1 is a smooth partition of unity
subordinated to a decomposition of the spatial domain in m suitable overlapped
subdomains. Similarly to what happens when classical domain decomposition tech-
niques are used, in this case the numerical solution of each fractional step consists
of solving a set of smaller linear systems whose solution can be parallelized. Besides,
these schemes have an advantage over the classical domain decomposition schemes
since they do not need any kind of Schwarz iterative processes to get the numerical
solution. This technique was first introduced by Mathew et als. in [3], where they
analyze this kind of splitting for certain low-order classical fractional step methods
applied to solving parabolic equations with constant coefficients. The generalization
of such a technique to the class of FSRK schemes used to approximate the solution
of parabolic equations with time dependent coefficients is developed in [4].

The aim of the current paper is to follow these ideas but to decrease the com-
putational cost even more by performing a variable time step integration. This will
permit us to adapt the step sizes to the local behaviour of the solution as long as
we have an estimate of the local error. In order to obtain a cheap estimate of such
error we have developed some embedded pairs of FSRK methods of different orders.
As with other classical one-step methods, the use of embedded formulas provides
estimates of the local errors at a lower computational cost than if we choose other
classical options like extrapolation methods or the use of two methods with different
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orders which do not share the internal stages.

2 Time semidiscretization

Let us consider for A and f partitions of the form: A(t) =
mX
i=1

Ai(t), f(t) =

mX
i=1

fi(t) , with Ai(t) = ψiA(t), fi(t) = ψif(t) , where ψi(x̄) are sufficiently smooth

functions such that
Pm
i=1 ψi(x̄) = 1, ∀ x̄ ∈ Ω . To settle the definition of ψi , i =

1, . . . ,m , we decompose Ω as the union of m overlapping subdomains Ω =
m[
i=1

Ωi ,

each of them consisting of the union of a certain number of connected components

Ωi =

mi[
j=1

Ωij such that Ωij ∩ Ωik = ∅ for all j, k ∈ {1, . . . , mi} with j �= k . Then

the partition of unity {ψi}mi=1 subordinated to the previous domain decomposition
is constructed in such a way that, for each i = 1, . . . , m , the function ψi vanishes
outside subdomain Ωi , takes the value 1 in every point which belongs only to
Ωi and some values between 0 and 1 in the overlaps of Ωi with the remaining
subdomains. For domain decompositions which have internal boundaries with simple
geometries, ψi(x), i = 1, . . . ,m , can be easily constructed as products of dilations,
translations, etc., of the following C

∞ function (see section 5)

h(x) = 1 if x < 0, h(x) = e
1
2
e2 log(2) e

− 1
x

x−1 if 0 ≤ x ≤ 1, h(x) = 0 if x > 1. (2)

Let us establish now the formulation of a variable time step integration using an
embedded pair of FSRK methods with m levels as follows8>>>>>>>>>>><

>>>>>>>>>>>:

8><
>:

Un,j = un + τn

jX
k=1

aikjk

“
Aik(tn,k)U

n,k + fik (tn,k)
”
,

BijU
n,j = gij (tn,j), for j = 1, . . . , s,

eun+1 = un + τn

sX
j=1

ebijj “Aij (tn,j)Un,j + fij (tn,j)
”
,

un+1 = un + τn

sX
j=1

b
ij
j

“
Aij (tn,j)U

n,j + fij (tn,j)
”
,

(3)

where i• ∈ {1, . . . ,m} , τn is the variable time step, tn = tn−1 + τn and tn,j =
tn + cjτn+1 . Bi : Di → Hb

i , i = 1, . . . ,m , are the abstract trace operators which
establish the type of boundary conditions required to calculate each internal stage
and gi are the boundary data; in this case, Bi = ψiB, gi = ψig , ∀i = 1, . . . ,m .

We assume that eun+1 approximates u(tn+1) with order ep and that un+1

approximates the same semidiscrete solution also at tn+1 but with a higher order
of approximation p > ep . Consequently, estn+1 = ‖un+1 − eun+1‖ estimates the
local error for the lower order method at tn+1 . Notice that the most expensive
calculations done to obtain eun+1 (i.e., the internal stages Un,j , j = 1, . . . , s ) are
also used in obtaining un+1 .
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In order to come to a more compact notation for FSRK schemes, (3) can be
formulated as an embedded pair of Additive RK schemes8>>>>>>>>>>><

>>>>>>>>>>>:

8><
>:

Un,j = un + τn

mX
i=1

sX
k=1

aijk

“
Ai(tn,k)U

n,k + fi(tn,k)
”
,

BijU
n,j = gij (tn,j), for j = 1, . . . , s,

eun+1 = un + τn

mX
i=1

sX
j=1

ebij “Ai(tn,j)Un,j + fi(tn,j)
”
,

un+1 = un + τn

mX
i=1

sX
j=1

bij

“
Ai(tn,j)U

n,j + fi(tn,j)
”
,

(4)

if we extend the sums which appear in (3) by considering many additional zero

coefficients: aijk = 0 for k > j and aijk = bik = ebik = 0 for i �= ik .
Grouping the coefficients of the method into the following vectors and matrices

c = (ci) ∈ R
s, ebi = (ebij) ∈ R

s, bi = (bij) ∈ R
s, Ai = (aijk) ∈ R

s×s we can organize
the coefficients of (4) in a table

c A1 A2 . . . Am

order ep ebT1 ebT2 . . . ebTm
order p bT1 bT2 . . . bTm

,

which is an extension of the Butcher’s notation for a classical RK scheme. From now
on, we will denote with (c, (Ai)

m
i=1, (ebi)mi=1) and (c, (Ai)

m
i=1, (bi)

m
i=1) the FSRK

schemes involved in the embedded pair (3).

3 Spatial discretization and convergence results

We have to complete the previous time semidiscretization with a suitable spatial
discretization to obtain a totally discrete scheme. Thus, we introduce a spatial dis-
cretization parameter h which tends to zero and we consider Ωh meshes of Ω
which have been constructed taking into account the interior boundaries of the m
subdomains. Next we denote with (Hh, ‖.‖h) and (Hb

i,h, ‖.‖bi,h) some finite dimen-
sional Hilbert spaces of functions whose dimensions grow to infinity as h tends to
zero; e.g. Hh consists of discrete functions on Ωh if we use finite differences or
piecewise polynomial functions associated to the mesh Ωh if we use finite elements.
In this framework we define operators Ai,h : Hh → Hh and Bi,h : Hh → Hb

i,h

as certain consistent approximations of the operators Ai and Bi and we define
ri,h(t) : Di ⊆ H → Hh , πh : H → Hh and πbi,h : H → Hb

i,h as certain restriction
or projection operators depending on whether we consider a spatial discretization
using finite differences or finite elements, respectively. Using the previous notation,
the totally discrete scheme can be expressed as follows
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8>>>>>>>>>>><
>>>>>>>>>>>:

8><
>:

Un,jh = un,h + τn

jX
k=1

aikjk

“
Aik,h(tn,k)U

n,k
h + πhfik (tn,k)

”
,

Bij ,hU
n,j
h = πbij ,hgij (tn,j), for j = 1, . . . , s,

eun+1,h = un,h + τn

sX
j=1

ebijj “Aij ,h(tn,j)Un,jh + πhfij (tn,j)
”
,

un+1,h = un,h + τn

sX
j=1

b
ij
j

“
Aij ,h(tn,j)U

n,j
h + πhfij (tn,j)

”
.

(5)

We can now take estn,h = ‖un,h− eun,h‖h as an approximation of estn and use the
same ideas of time step adaptation as for classical variable step ODE solver codes
in order to keep estn,h below the value of a tolerance but close to it.

The solution of each internal stage in (5) consists of solving a linear system of
the form (Ih − τn a

k
jjAkh(tn,j)U

n,j
h ) = Fn,jh , (k = ij) , which can be decomposed

into mk independent linear subsystems that can be solved in parallel. Each one of
these subsystems has a number of unknowns proportional to the number of mesh
points on each component Ωki of Ωk . It is also important to notice that no Schwarz
iterations are required to obtain uh,n+1 .

Let us now give a brief review of the hypotheses assumed in order to guar-
antee an unconditional convergence result for the totally discrete scheme (5). The
local errors of the time semidiscretization are ρn+1 = ‖u(tn+1) − un+1[tn, u(tn)]‖
and eρn+1 = ‖u(tn+1)− eun+1[tn, u(tn)]‖ , where un+1[tn, u(tn)] and eun+1[tn, u(tn)]
are the approximations to u(tn+1) obtained after one step of scheme (3) start-
ing from un = u(tn) . We assume that the embedded pair of FSRK methods
(3) has orders ep(p) , i.e., eρn+1 ≤ Cτ ep+1, ρn+1 ≤ Cτp+1 , where τ ≡ max

n
τn

and C is a constant independent of τ . With the aim of obtaining a convergence
result for the semidiscrete scheme (3), we combine the consistency with a suit-
able stability property. We say that the FSRK method (c, (Ai)

m
i=1, (bi)

m
i=1) is A-

stable iff |R(z1, . . . , zm)| ≤ 1, ∀ z1, . . . , zm ∈ C
− ≡ {z ∈ C : Re(z) ≤ 0} , where

R(z1, . . . , zm) = 1 +
Pm
i=1 zi b

T
i (I −Pm

j=1 zj Aj)
−1e is the amplification function

associated to the FSRK method. In [1] it is proven that, under suitable hypotheses
on operators Ai(t) the use of an FSRK scheme which is consistent and A-stable
guarantees the convergence of the time discretization process. Regarding the spatial
discretization, we must assume typical order r properties of consistency as well as
suitable stability properties.

Combining all these properties, the following unconditional convergence results
are obtained for the totally discrete scheme (5) ‖rh(tn)u(tn) − euh,n‖h ≤ C(hr +
τ ep), ‖rh(tn)u(tn)− uh,n‖h ≤ C(hr + τp), where C is a constant independent of τ
and h (see [4]).

4 Design of two embedded pairs of FSRK methods

We start with the design of a simple pair of orders 1(2). Let us consider the Frac-
tionary Implicit Euler scheme with two levels

1 1 0
1 1 0 0 1

1 0 0 1
(6)
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as the lower order method of the pair; it is first order consistent and A-stable. Now
we want to construct a second order scheme whose two first stages coincide with
the two first stages of (6). The sufficient and necessary conditions which a FSRK
scheme should satisfy to have order p are shown in [2]; in this case ( p = m = 2 )

such order conditions are bTi e = 1, bTi c =
1

2
, bTi Aj e =

1

2
∀ i, j ∈ {1, 2}, where e =

(1, . . . , 1) ∈ R
s.

We need to add two implicit stages to (6) in order to obtain a second order
method; in such a case we come to a system of 8 non linear equations which depend
on 13 unknowns. After solving it we obtain a family of embedded pairs of FSRK
methods of orders 1(2) with 5 free parameters ( b13, b

2
4, a

1
33, a

1
43, a

2
44 ).

Next we impose the property of A-stability. To simplify the study, we assume

that a1
33 = a2

44 = a and then we impose that a1
43 =

2ab13
b24

to permit a nearly

L-stable behaviour (i.e., R(∞,∞) � 0 ). By means of a numerical swept we obtain
that a ≥ 2.35 is a necessary requirement in order to have an A-stable FSRK scheme
of order 2. We still have three parameters: a, b13, b

2
4 , which we fix in such a way that

the method has simple rational coefficients and also that the main term of the local
error of the second order FSRK method is almost minimized. Using these ideas we

have chosen the values b4 =
3

4
, b3 =

9

10
, a =

12

5
and the resulting pair is

1 1 0

1 1 0 0 1

4

9
− 88

45
0

12

5
0

5

9
0

1

3
− 407

75
0

144

25
0 0 − 31

15
0

12

5
order 1 1 0 0 0 0 1 0 0

order 2
1

10
0

9

10
0 0

1

4
0

3

4

Following a similar technique, we have designed an embedded pair of FSRK
schemes of orders 2(3). In this case we have chosen as the second order method
the time integrator involved in the classical Peaceman & Rachford scheme and, by
adding 4 suitable implicit stages, we have obtained the following pair
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0 0 0

1

2
0

1

2

1

2
0

1 0 1 0
1

2
0

1

2
7

17
0 − 3

34
0

1

2

7

17
0 0 0

1

2
0 − 11

12
0

17

12
0

1

8
0 − 1

8
0

1

2
13

17
0 − 27

34
0

18

17
0

1

2

113

289
0 0 0

108

289
0

1 0 − 208

81
0

289

108
0

289

324
0

1

6
0 − 1

3
0

2

3
0

1

2

order 2 0 1 0 0 0 0 0
1

2
0

1

2
0 0 0 0

order 3 0 − 208

81
0

289

108
0

289

324
0

1

6
0 − 1

3
0

2

3
0

1

2

5 Numerical examples

We consider the following diffusion-reaction problem8><
>:

∂u

∂t
= (1 + e−t)xy∆u− u + f(t, x, y), (t, x, y) ∈ (0, 500] ×Ω,

u(0, x, y) = u0(x, y), (x, y) ∈ Ω,
u(t, x, y) = 0, (t, x, y) ∈ (0, 500] × Γ,

where Ω = (0, 1) × (0, 1) and data f and u0 are chosen in such a way that
u(t, x̄) = 3te−3t+1 sin(πx) sin(πy) is its exact solution.

We have decomposed domain Ω as the union of two overlapped subdomains

Ω1 = ((0,
5

16
) ∪ (

7

16
,
13

16
)) × (0, 1) , Ω2 = ((

3

16
,

9

16
) ∪ (

11

16
, 1)) × (0, 1) ; each

subdomain has two disjoint components. The partition of unity chosen subordi-

nated to this decomposition is: ψ1(x, y) = h(8x − 3

2
), if x ∈ (0,

3

8
), ψ1(x, y) =

h(8x− 7

2
), if x ∈ [

3

8
,
5

8
), ψ1(x, y) = h(8x− 11

2
), if x ∈ [

5

8
, 1) , where h(x) is given

in (2), and ψ2(x, y) = 1−ψ1(x, y) . Finally, we decompose the elliptic operator and

the source term into two parts as follows: Ai(t, x, y) ≡ ψi(x, y)
“
(1+ e−t)xy∆−I

”
,

fi(t, x, y) = ψi(x, y)f(t, x, y) , i = 1, 2 .
We show in the following table the results obtained with the designed embedded

pairs of orders 1(2) and 2(3), respectively. The spatial discretization chosen in both
cases is central differences on a uniform rectangular mesh of N ×N points which is
convergent of second order; that is the reason why we have chosen a tolerance equal

to
1

N2
to control the sizes of the time steps with the aim of having errors of the

same size in space and time.
For different values of N , we show in the table the total number of steps (includ-

ing the accepted and rejected ones), the efficacy, which is the percentage of accepted
steps compared with the total number of steps, the average size of the accepted
time steps and the maximum global errors committed along the whole integration
interval. Note that the efficacy is very high and it improves for smaller tolerances
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1(2) 2(3) ntot efficacy % τ global error

N = 16 71 34 91.55 88.24 7.6923 16.6667 3.4636E-2 3.8192E-2

N = 32 234 52 95.30 90.38 2.2422 10.6383 1.3269E-2 1.3289E-2

N = 64 630 81 97.46 93.83 0.8143 6.5789 4.5409E-3 4.5367E-3

N = 128 1532 128 98.63 96.09 0.3309 4.0650 1.4294E-3 1.4173E-3

N = 256 2017 211 99.90 95.73 0.2481 2.4752 4.3804E-4 4.7210E-4

and that the global errors obtained show a reduction according to the reduction of

the tolerance (
1

4
) chosen when N doubles. As the exact solutions of these prob-

lems decay exponentially (in t ) to the stationary state ( 0 in this case), the sizes of
the time steps τn tend to grow along the integration in time from a certain point
which provides a time integration which requires much fewer steps than when using

constant time step integrators. Notice also that the same tolerance (
1

N2
) has been

used in both pairs for every value of N and that for these tolerances the embedded
pair 1(2) needs many more time steps than the pair 2(3) to realize the integration.
This implies that, although the pair 2(3) has two internal implicit stages more than
the pair 1(2), the total computational cost of the integration for the same tolerance
is much smaller for the embedded pair of orders 2(3), as expected. On the basis of
this comparison, we think that the design of embedded pairs of FSRK schemes of
higher orders is a very interesting task which we plan to pursue in the near future.
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Summary. We report on algebraic multilevel preconditioners for the parallel solu-
tion of linear systems arising from a Newton procedure applied to the finite-element
(FE) discretization of the incompressible Navier-Stokes equations. We focus on the
issue of how to coarsen FE operators produced from high aspect ratio elements. The
method uses on each level � an auxiliary matrix B
 , which contains inter-nodal
distance information of the underlying initial FE grid. Then, a standard coarsening
procedure is performed on B
 and non-smoothed transfer operators are defined.
Preliminary numerical results obtained on distributed memory parallel computers
show that the use of the auxiliary matrix can greatly improve the convergence rate
of the resulting multilevel preconditioner.

1 Introduction

We consider linear systems of type

Ax = b, (1)

where A ∈ R
n×n is a real square (sparse) matrix, arising from a stabilized FE

discretization of the incompressible Navier-Stokes equations, possibly with heat and
mass transfer, and x, b ∈ R

n are the solution vector and the right-hand side, respec-
tively. The elements of A are defined by a Newton procedure (see for instance [11]),
since the original problem is nonlinear.

The linear problem (1) is usually solved using a Krylov accelerator; therefore a
preconditioner is mandatory. Several solution strategies have been presented in the
literature; in this paper we will focus on multilevel methods.

†This work was partially supported by the ASC program and the DOE Office
of Science MICS program at Sandia National Laboratory. Sandia is a multiprogram
laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.
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The basic idea of multilevel methods is to capture errors by utilizing multiple
resolutions in the iterative scheme. Oscillatory components are effectively reduced
through a simple relaxation procedure. In these methods the smooth components
are handled using an auxiliary, lower-resolution version of the problem. The idea is
applied recursively on the next coarser level.

The first and best known example of a multilevel preconditioner is multigrid
(see, for example, [5]). Although extremely successful for certain classes of problems,
multigrid methods have the notable disadvantage of requiring the generation of a set
of coarser grids, which can be difficult to generate for problems defined on complex
geometries and unstructured grids. For this reason, we consider algebraic methods
of the aggregation type; see [12].

Aggregation provides an automatic way of generating coarse levels and transfer
functions to move solutions between the levels. The method has been thoroughly
developed for symmetric systems and relies on the idea of generating low energy
(or smooth) basis functions that capture the kernel (or near kernel) of the discrete
system being solved. In [6] we have shown that aggregation methods can deliver con-
vergence rates comparable to that of geometric multigrid, while being more flexible,
for problems defined on structured non-stretched grids.

For problems with anisotropies, a procedure equivalent to the so-called semi-
coarsening is required; see [7]. The basic idea of semi-coarsening is that the mesh
is only coarsened in directions where smoothing is easily accomplished. Thus, for a
problem which has weak coupling in the x direction, coarsening would only be per-
formed in the y and z directions. Algebraic methods can mimic this approach by
ignoring connections which are “weak” in the graph coarsening phase. That is, if the
coupling between unknowns i and j is ignored, they will not be agglomerated to-
gether to define a coarse unknown. However, this strategy fails to deliver the required
semi-coarsening if applied to matrices arising from bilinear FE on stretched grids,
since all the entries in the computational stencil have comparable value. Without a
proper semi-coarsening, the resulting multilevel preconditioner performs poorly on
anisotropic problems.

In order to recover semi-coarsening, we proceed as follows. On each level � , we
introduce an auxiliary matrix, B
 , defined using some information about the grid,
so that the magnitude of the elements of B
 reflects weak and strong connections
in the FE problem. Anisotropic aggregates can be constructed using B
 , adopting
a conventional dropping technique. B
 is defined using additional information that
is usually available in standard finite-element codes. The use of an auxiliary matrix
is certainly not new in the geometric multigrid community, although to the best of
our knowledge no paper reports on its use with aggregation-based preconditioners.

Several other approaches have been proposed in the literature to improve the
coarsening of algebraic multilevel methods. Chow [3] suggested to compute alge-
braically smoothed vectors, Broker et al. [2] proposed to take advantage of SPAI
smoothers, and Brezina et al. [1] introduced the adaptive smoothed aggregation tech-
nique. Although promising, these techniques all rely on the computation of either
a set of slowly converging vectors or SPAI smoothers, which are usually expensive
operations.

This paper is organized as follows. Section 2 introduces the multilevel precon-
ditioning algorithm we have adopted. Section 3 describes the proposed procedure
to obtain semi-coarsening. Section 4 presents the numerical results, obtained on a
distributed parallel computer. Finally, Section 5 outlines the conclusions.
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2 Aggregation Multilevel Preconditioner

In this paper we focus on non-smoothed aggregation only, since no general theory is
available to define a proper prolongator smoother for non-symmetric equations. The
construction of the multilevel hierarchy in non-smoothed aggregation is performed
by the following five steps. For each level � (except the coarsest), do:

(a) Extract from A
 the graph G
 to coarsen.
(b) Coarsen G
 to define a set of aggregates. Each aggregate defines a “grid point”

on the coarser level.
(c) Define the prolongator P
 and restriction R
 .
(d) Compute the next-level matrix A
+1 as R
 A
 P
 .

We now focus in more details on steps 1 and 2. For systems of equations, we
define G
 by“condensing” all the physical unknowns corresponding to the same grid
point, thus defining the “block” structure of A
 . Each block has size m × m , m
being the number of physical unknowns. The graph coarsening is defined as follows:

eij is an edge of G
 iff |aij | ≥ θ
p

|aii| · |ajj |. (2)

θ is the threshold, and | · | is an appropriate matrix norm. The m × m block
elements ai,j that do not fulfill (2) are dropped in the construction of G
 . A graph
decomposition algorithm (such as those in METIS) is then applied to G
 . The goal
of this algorithm is to define groups of vertices (aggregates) such that each aggregate
contains a tightly connected subgraph and so that each vertex is included in just one
subgraph. Each aggregate will effectively become an unknown on the coarse mesh.
Once the aggregates are defined, the prolongator matrix P
 is constructed such that
each row corresponds to a grid point and each column corresponds to an aggregate.

Once the multilevel hierarchy has been establish, an iteration (V-cycle) of the
recursive algorithm is as follows. Starting from � = 0 , on each level do:

(a) If on the coarsest level, solve with a direct solver and return.
(b) Do ν1 iterations of pre-smoothing Spre
 .
(c) Compute the restricted residual r
+1 = R
 r
 .
(d) Recursively solve A
+1 e
+1 = r
+1 .
(e) Interpolate error, e
 = P
 e
+1 .
(f) Add the correction e
 to the current iterate.
(g) Do ν2 iterations of post-smoothing Spost
 .

3 Definition of the Auxiliary Matrix

For problems defined on stretched grids, the distribution of nodes in the stretched
direction will correctly represent the low frequencies, whereas, in the direction per-
pendicular to the stretching, it will represent the high frequencies. The closer two
nodes are, the better they will represent the high frequency components of the error.
For the problems considered in this paper, the matrix coefficients do not properly
reflect the strength of connection between points, while the geometric information
does (i.e., points that are geometrically distant from each other have a weak con-
nection between them compared to points that are close to each other). Therefore,
we want to form a matrix which captures this geometric information that can be
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used in the coarsening stage of the algorithm. The basic idea is to create a discrete
Laplacian matrix where the size of the off-diagonal entries is related to the distance
between points. In particular, we define

bi,j = − 1

‖xi − xj‖2
, i �= j, bi,i =

X
i	=j

−bi,j ,

where xk represents the coordinates of node k .
B represents the finite-element mesh in the following sense: if a grid node i is

“far” from j , then bi,j is “small”, while if i is “close” to j , then bi,j is “large”.
The dropping technique (2) can now be straightforwardly applied to B to produce
anisotropic aggregates.

The resulting algorithm for the definition of the multilevel preconditioner reads
as follows:

(a) Build the auxiliary matrix B0 using the nodal coordinates x
(b) For each level � , do
(c) Define the dropping value
(d) Build graph G
 based on B

(e) Create the aggregates using G

(f) Create the tentative prolongators P
 and R

(g) B
+1 = R
B
P

(h) Destroy B

(i) EndFor
(j) Build a new hierarchy using A and the P
 , R
 previously computed

4 Numerical Results

We apply the algorithm described in Section 3 to the solution of the linear system
arising from a stabilized FE discretization of the incompressible Navier-Stokes equa-
tions with energy and mass transport; see for instance [10]. The equations in residual
form are:

RP =
δρ

δt
+ ∇ · (ρu) (3)

Rm = ρ
δu

δt
+ ρ(u · ∇u) −∇ · T − ρg (4)

RT = ρCp

»
δT

δt
+ u · ∇T

–
+ ∇ · q − φ−

NsX
k=1

hk∇ · jk (5)

RYk = ρ

»
δYk
δt

+ u · ∇Yk

–
+ ∇ · jk k = 1, 2, ..., Ns − 1 (6)

The FE code used for this work is MPSalsa [10], which uses a parallel Newton-
Krylov solver on unstructured meshes. The calculations were performed on the San-
dia Cplant machine, composed of nodes with one 500-MHz Dec Alpha processor and
1 GB of RAM, connected together by Myrinet. A classical aggregation procedure has
been used to define the aggregates [9]. The smoother is one sweep of Gauss-Seidel
(with damping parameter of 0.67 ) for either the first level or the first two levels,
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Fig. 1. Steady-state x-component of
velocity for model 3D building.

Fig. 2. 3D horizontal CVD reactor
with a rotating disk.

while Aztec’s incomplete factorization were adopted for the other levels. The KLU
solver of the Amesos [8] library was used to solve the coarse problem. The threshold
used in (2) was 0.05.

The first example involves the calculation of fluid flow, without thermal effects,
in a simple prototype model of a building. This model represents a two-story building
with the floors separated by two atria. Figure 1 shows a typical laminar steady-state
solution. The centerline cutting plane shows the x-component of velocity. The worst
aspect ratio hexahedral elements have the largest dimension that is five times larger
than the smallest dimension. We consider laminar steady-state calculations to allow
direct-to-steady-state solutions. Seven nonlinear iterations were required to reach
convergence.

Table 1 shows an algorithmic scaling study for the steady-state calculations on
hexahedral meshes and shows the reduction in iteration count provided by the auxil-
iary matrix as compared to without it. The larger meshes are generated by uniform
refinement of previous meshes, with the number of processors being increased to
maintain a roughly constant number of unknowns per processor. After each level of
uniform refinement of the building geometry, the fine mesh is load-balanced using
the ParMETIS graph partitioner through Zoltan [4]. The first three columns present
the number of processors and unknowns and nonzeros in the fine level matrix. For
both the case with and without an auxiliary matrix, the table presents the complex-
ity of the hierarchy (sum of nonzeros of matrices on all levels divided by those of the
finest matrix), the setup time in seconds, the average linear iterations per Newton
step, and the average time per Newton step in seconds.

In the results, the number of unknowns per processor is kept roughly constant,
and therefore a perfectly scalable preconditioner would converge in the same number
of iterations as the number of processors used in the computation is increased. From
Table 1, one can note that using isotropic aggregates with 16 and 128 processors the
iterations increase from 57 to 90 (an increment of about 57%), while using anisotropic
aggregates the difference is modest (about 25%). This makes the preconditioner
based on the auxiliary matrix nearly scalable in terms of iterations to convergence,
but still unsatisfactory from the point of view of CPU time. The large CPU times are
due to one of the drawbacks of semi-coarsening: higher complexity. For this example,
while isotropic aggregates reduces grid complexity between two consecutive levels
by a factor of 27 in 3D, semi-coarsening only achieves a grid complexity reduction
of 9 in 3D. This increases the setup and application cost of the resulting multilevel
cycle, as well as the time required to compute the ILU factorizations.
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proc fine 5-level (GS/GS/ILU/ILU/KLU)
unks nonzero no auxiliary matrix auxiliary matrix

com- setup avg time/ com- setup avg time/
plex time its/ Newt plex time ts/ Newt

(sec) Newt (sec) (sec) Newt (sec)

2 227K 22.4M 1.02 3.5 41 120 1.16 6.4 25 92

16 1.70M 175M 1.02 4.3 57 164 1.18 13.7 27 112

128 13.1M 1390M 1.02 8.0 90 434 1.21 30.4 34 264

Table 1. Comparison of five-level preconditioner (GS/GS/ILU/ILU/KLU) with
and without auxiliary matrix for 3D model building; uncoupled aggregation; Cplant
machine.

The second example involves the deposition of poly-Silicon in a rotating disk
chemical vapor deposition (CVD) reactor. A mixture of trichlorosilane ( SiCl3H ),
HCl , and H2 enters from the four inlets on the left, flows over a forward facing step,
and over an inset rotating disk, depositing silicon on the wafer. Chemical reactions
occur on the surface of the disk only and not in the flow. Figure 2 shows a schematic
of the CVD reactor. A contour plot of poly-silicon deposition rate on the disk is
shown, along with representative streamlines of the flow through the reactor.

Table 2 shows a scaling study of a simple continuation step where the thermo-
dynamic pressure was increased from 0.6 to 0.85 atmospheres and the inlet flow
velocity from 30 cm/sec to 35 cm/sec. The worst aspect ratio hexahedral element
has largest dimension that is about a factor of ten larger than the smallest dimen-
sion. This table shows a comparison of the 1-level DD ILU preconditioner with the
5-level preconditioners with and without the auxiliary matrix. The smoothers for
the 5-level preconditioner were one sweep of Gauss-Seidel on the finest level with
damping parameter of 0.67 and ILU on the next three levels. Non-restarted GMRES
was used with a linear solve convergence criterion of 3× 10−4 . From the table, one
can see that the auxiliary matrix has improved the iteration count, while the CPU
time is only marginally reduced. This situation might be improved by using GS on
the second level as in the previous example.

5 Conclusions

In this paper we have presented the application of a multilevel preconditioner for the
parallel solution of large, sparse linear systems for FE discretizations on stretched
grids. We have concentrated on the coarsening process. In order to improve the per-
formance of our preconditioner, we introduced an auxiliary matrix, which contains
information about the underlying finite-element grid. The coarsening is performed
on an auxiliary matrix, then the final hierarchy is rebuilt on the linear system matrix.
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proc fine 1-level 5-level (GS/ILU/ILU/ILU/KLU)
unks no auxiliary matrix auxiliary matrix

avg its/ time complex avg its/ time/ complex avg its/ time/
Newt (sec) Newt Newt Newt Newt
step step (sec) step (sec)

2 87400 49 125 1.01 75 118 1.06 48 103

16 636K 95 183 1.02 107 168 1.12 66 141

128 4.85M 221 409 1.02 164 319 1.19 97 313

Table 2. Comparison of five-level preconditioner (GS/ILU/ILU/ILU/KLU) with
and without auxiliary matrix for CVD reactor; uncoupled aggregation; Cplant ma-
chine.

By resorting to an auxiliary matrix, anisotropic aggregation can be constructed
at a negligible computational cost. The reported preliminary numerical results, ob-
tained on a distributed parallel computer, show that the proposed approach can
significantly improve the performance of the algebraic multilevel preconditioner in
terms of iterations to convergence. Although more effective, the preconditioner, of
higher complexity, is more expensive to construct and to apply.

Using anisotropic aggregates, the CPU time is significantly reduced for linear sys-
tems arising from the discretization of the incompressible Navier-Stokes equations,
while for chemically reacting flows the results are less satisfactory. These preliminary
results are encouraging although much more work on a broader range of numerical
tests is required.
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Summary. The balancing methods are hybrid nonoverlapping Schwarz domain de-
composition methods from the Neumann-Neumann family. They are efficient and
easy to implement. We present a new balancing algorithm for mortar finite element
methods. We prove a condition number estimate which depends polylogarithmically
on the number of nodes on each subregion edge and does not depend on the number
of subregions of the partition of the computational domain, just as in the conforming
finite element case.

1 Introduction

The balancing method of Mandel [7] is a hybrid nonoverlapping Schwarz domain
decomposition method from the Neumann-Neumann family. It is easy to imple-
ment and uses a natural coarse space of minimal dimension which allows for an
unstructured partition of the computational domain. The condition numbers of the
resulting algorithms depend polylogarithmically on the number of degrees of free-
dom in each subregion. There is a close connection between the balancing method
and the FETI [5] and FETI–DP [4] methods; cf. [6]. A new version of the balancing
method, also related to FETI–type algorithms, was recently proposed by Dohrmann
et al. [9, 10].

Mortar finite elements were first introduced by Bernardi et al. [2] and are actively
used in practice because of their advantages over the conforming finite elements,
e.g., flexible mesh generation and straightforward local refinement. In this paper,
we propose an extension of the balancing method to mortar finite elements. As in
conforming cases, every local space is associated with a subregion from the partition
of the computational domain. The values of the mortar function on a nonmortar
side depend on, but are not equal to, its values on the mortar sides opposite the
nonmortar. To account for this dependence, the local spaces are defined on extended
subregions, instead of using local spaces and local solvers defined on each subregion.
In this regard, our algorithm is different from classical Neumann-Neumann methods.
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We establish a polylogarithmic upper bound for the condition number of our al-
gorithm. The same bound has been obtained for the balancing algorithm of Dryja [3],
as well as for other mortar algorithms, e.g., the iterative substructuring method of
Achdou et al. [1], in the geometrically nonconforming case.

While the algorithm proposed here is based on a similar philosophy as the method
suggested in [3], since the Schwarz framework is used to study the convergence
properties of both algorithms, major differences exist between the two algorithms.
For example, in the algorithm of [3], the local spaces are associated with pairs of
opposite nonmortar and mortar sides.

2 Abstract Schwarz Theory

We use this elegant framework of the abstract Schwarz theory [12] to study the
convergence properties of the balancing algorithm proposed in this paper.

Let V be a finite dimensional space, with a coercive inner product a : V ×V →
R , and let f : V → R be a continuous operator. We want to find the unique solution
u ∈ V of

a(u, v) = f(v), ∀ v ∈ V. (1)

Assume that V can be written as V = V0 +V1 + . . .+VN , where the sum is not
necessarily direct nor do we necessarily have Vi ⊂ V , i = 0 : N . Let Ii : Vi → V be
embedding operators and let ãi : Vi×Vi → R be bilinear forms which are symmetric,
continuous, and coercive. The corresponding projection-like operators eTi : V → Vi
are defined by

ãi( eTiv, vi) = a(v, Iivi), ∀ vi ∈ Vi, v ∈ V. (2)

Using the operators Ti : V → V , Ti = Ii eTi , the additive and multiplicative
Schwarz methods for solving (1) can be introduced.

The balancing method is a hybrid method, combining the potential for paral-
lelization of the additive methods and the fast convergence of the multiplicative
methods. Choose the bilinear form ã0 to be exact, i.e., ã0(·, ·) = a(·, ·) . The coarse
space solver T0 is therefore a projection, subsequently denoted by P0 . The balanc-
ing method consists of solving Tbalu = gbal , where

Tbal = P0 + (I − P0)(T1 + · · · + TN)(I − P0). (3)

Here, gbal is obtained by solving N local problems of the same form as (2) that do
not require any knowledge of u . The equation Tbalu = gbal is a preconditioned ver-
sion of (1) and can be solved without further preconditioning using CG or GMRES
algorithms.

3 A Mortar Discretization of an Elliptic Problem

As a model problem for two dimensional self–adjoint elliptic PDEs with homoge-
neous coefficients, we choose the Poisson problem with mixed boundary conditions
on Ω : given f ∈ L2(Ω) , find u ∈ H1(Ω) such that

−∆u = f on Ω, with u = 0 on ∂ΩD and ∂u/∂n = 0 on ∂ΩN , (4)
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where ∂ΩN and ∂ΩD are the parts of ∂Ω = ∂ΩN ∪ ∂ΩD where Neumann and
Dirichlet boundary conditions are imposed, respectively, and ∂ΩD has positive
Lebesgue measure.

To keep the presentation concise, we only discuss geometrically conforming mor-
tar elements. Let {Ωi}i=1:N be a geometrically conforming mortar decomposition
of a polygonal domain Ω of diameter 1 into rectangles of diameter of order H .
(This notation is not coincidental: for the balancing method proposed here, each
local space Vi will correspond to one subregion Ωi .) The restriction of the mortar
finite element space V h to any rectangle Ωi is a Q1 finite element function on a
mesh of diameter h . Weak continuity is required across Γ , the interface between
the subregions {Ωi}i=1:N . We choose a set of edges of {Ωi}i=1:N , called nonmor-
tars, which form a disjoint partition of Γ . For each nonmortar side γ there exists
exactly one side opposite to it, which is called a mortar side. The jump [w] of a
mortar function w ∈ V across any nonmortar γ must be orthogonal to a space of
test functions Ψ(γ) , i.e., Z

γ

[w] ψ ds = 0, ∀ ψ ∈ Ψ(γ). (5)

In [2], Ψ(γ) consists of continuous, piecewise linear functions on γ that are constant
in the first and last mesh intervals of γ . Note that the end points of the nonmortar
sides are associated with genuine degrees of freedom.

We discretize the Poisson problem (4) by using the mortar finite element space
V h and obtain the discrete problem:

find uh ∈ V h such that aΓ (uh, vh) = f(vh), ∀ vh ∈ V h, (6)

where the bilinear form aΓ (·, ·) is defined as the sum of contributions from the
individual subregions, and f(·) is the L2 -inner product by the function f :

aΓ (vh, wh) =

NX
i=1

Z
Ωi

∇vh · ∇wh dx and f(v) =

Z
Ω

fv dx.

Let V h(Γ ) be the restriction of V h to the interface Γ , and let V be the
space of discrete piecewise harmonic functions defined as follows: if vΓ ∈ V h(Γ ) ,
then its harmonic extension H(vΓ ) ∈ V is the only function in V h which, on every
subregion Ωi , is equal to the harmonic extension of vΓ |∂Ωi with respect to the
H1 -seminorm.

As in other substructuring methods, we eliminate the unknowns corresponding
to the interior of the subregions. Problem (6) becomes a Schur complement problem
on V h(Γ ) :

find uΓ ∈ V h(Γ ) s.t. aΓ (H(uΓ ),H(vΓ )) = f(H(vΓ )), ∀ vΓ ∈ V h(Γ ). (7)

For simplicity, we denote V h(Γ ) by V and let a(·, ·) = aΓ (H(·),H(·)) be the
inner product on V . Problem (7) can be formulated on V as follows:

find u ∈ V s.t. a(u, v) = f(v), ∀ v ∈ V. (8)
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4 A Balancing Algorithm for Mortars

In this section, we introduce a new balancing algorithm for mortar finite elements.
Our results can be extended to second order self-adjoint elliptic problems with mixed
boundary conditions discretized by geometrically nonconforming mortars, and to
three dimensional problems.

We solve (8) using the technique outlined in Section 2. To do so, we need to
introduce a coarse space V0 and local spaces Vi , i = 1 : N . The major difference
between the classical balancing method and our algorithm for mortars is related to
the extended subregions eΩi , which replace the individual subregions in the defini-
tion of the local bilinear forms ãi(·, ·) . An important role in the balancing algorithm
is played by the counting functions associated with the interface nodes of each ex-
tended subregion. In [11], we have shown that defining ãi(·, ·) only on Ωi does not
lead to a convergent algorithm.

Extended Subregions: The extended subregion eΩi is defined as the union of Ωi and
all its neighbors that have a mortar side opposite ∂Ωi . Let Ni be the set of corner
nodes of Ωi , all the nodes on the mortar sides of Ωi , and all the nodes on the
mortar sides opposite the nonmortar sides of Ωi .

The counting function νi : Γ → R corresponding to Ωi is a mortar function
taking the following values at the genuine degrees of freedom:

νi(x) =

8<
:

number of sets Nj with x ∈ Nj , if x ∈ Ni;
0, if x /∈ Ni;
1, if x ∈ ∂Ωi ∩ ∂ΩN .

In the geometrically conforming case, the value of νi at every interior node of the
mortar sides where νi does not vanish is equal to 2 , and Range(νi) ⊆ {0, 1, . . . , 4} .
Let ν†

i be the mortar function with nodal values ν†
i (x) = 1/νi(x) if νi(x) �= 0 and

ν†
i (x) = 0 otherwise. As in the continuous finite element case, ν†

i form a partition

of unity, i.e.,

NX
i=1

ν†
i = 1 .

Coarse Space V0 : The coarse space V0 has one basis function, H(ν†
i ) , the harmonic

extension of ν†
i , per subregion Ωi . The bilinear form a0 is exact, i.e., ã0(·, ·) =

a(·, ·) . Therefore, a(P0u,H(ν†
i )) = a(u,H(ν†

i )) , and

a((I − P0)u,H(ν†
i )) = 0, ∀ u ∈ V. (9)

Local Spaces: The local space Vi is associated with the subregion Ωi , is embedded
in V , i.e., Vi ⊂ V , and consists of piecewise harmonic functions which vanish at
all the genuine degrees of freedom of Γ \Ni . The bilinear form ãi(·, ·) : Vi×Vi → R

is defined using the extended subregion eΩi :

ãi(vi, wi) =
X

Ωj⊂ eΩi

Z
Ωj

∇H(Ih(νivi)) · ∇H(Ih(νiwi)) dx, (10)

where Ih : L2(Ω) → V is the nodal basis interpolation onto the mortar space V .

The projection-like operator Ti is given by Ti = Ii eTi , where

750



A Balancing Algorithm for Mortar Methods

1 1

2 2

2 2

2 2

3 3

33

2

3 2

1

2

2

1 1

11

0

0

0

0

0

0

0
3

3

Fig. 1. All possible instances of extended subregions eΩi (shaded) corresponding
to one subregion Ωi (center in each picture). The values of the counting function
νi at the corners of Ωi are recorded. Mortar sides are marked with an additional
solid line.

ãi( eTiu, vi) = a(u, vi), ∀ vi ∈ Vi. (11)

If eΩi �= Ωi , i.e., if eΩi contains more than one subregion, then any vi ∈ Vi
vanishes on ∂ eΩi \∂Ωi . The problem (11) is well–posed since it is a Poisson problem

on eΩi with zero Dirichlet boundary conditions on ∂ eΩi \ ∂Ωi .

If eΩi = Ωi , then all the sides of Ωi are mortars; cf. Figure 1, upper left
picture. This corresponds to the case of a floating subregion in the classical balancing
algorithm, and requires using balanced functions. Note that H(νiν

†
i ) is equal to 1

on Ωi , and therefore

ãi( eTiu,H(ν†
i )) =

Z
Ωi

∇H(Ih(νi eTiu)) · ∇H(νiν
†
i ) dx = 0.

For the local problem (11) to be solvable, u must satisfy

a(u,H(ν†
i )) = 0, (12)

for every floating subregion Ωi . Such functions are called balanced functions. From
(9), we conclude that any function in Range(I − P0) is balanced.

Moreover, if eΩi = Ωi , the local problem (11) corresponds to a pure Neumann

problem. We make the solution unique by requiring eTiu to satisfyZ
Ωi

H(Ih(νi eTiu)) dx = 0. (13)
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The preconditioned operator of our balancing algorithm for mortars is Tbal =
P0 + (I − P0)(T1 + · · · + TN)(I − P0) . The convergence analysis of Tbal relies
on that of the Neumann-Neumann operator TN−N = P0 + T1 + · · · + TN , since
κ(Tbal) ≤ κ(TN−N ) ; cf., e.g., [8]. However, Neumann-Neumann algorithms with the
spaces and approximate solvers considered in this paper would not converge.

5 Condition number estimate

The condition number estimate for our algorithm is based on abstract Schwarz
theory; see, e.g., [12]. A technical results has to be proven first, and the techniques
are somewhat different for floating and non-floating regions:

Lemma 1. Let u ∈ V and let ui = H(Ih(ν
†
i (u − αi))) ∈ Vi , where αi is the

weighted averages of u over Ωi , i.e.,

αi =
1

µ(Ωi)

Z
Ωi

u dx. (14)

Then,

a(ui, ui) ≤ C
`
1 + log(H/h)

´2
ãi(ui, ui), ∀ ui ∈ Range(Ti) (15)

a(ui, ui) ≤ C
`
1 + log(H/h)

´2|u|2
H1( fΩi)

. (16)

Also, if Ωi is a floating subregion, i.e., if eΩi = Ωi , then,

ãi(ui, ui) = |u|2
H1(fΩi)

.

If Ωi is a nonfloating subregion, i.e., if eΩi �= Ωi , then ãi(ui, ui) ≤ C
`
1 +

log(H/h)
´2|u|2

H1(fΩi)
.

Using the results of Lemma 1, we can show that ãi(·, ·) is bounded from below
by a(·, ·) , and prove that for any function in V there exists a stable splitting into
local functions; see [11] for detailed proofs.

Lemma 2. There exists a constant C , not depending on the local spaces Vi , such
that

a(ui, ui) ≤ C
`
1 + log(H/h)

´2
ãi(ui, ui), ∀ ui ∈ Range(Ti), ∀ i = 1 : N.

Lemma 3. Let u ∈ V and let αi be the weighted averages (14) of u over Ωi .

Define u0 ∈ V0 as u0 =
NX
i=1

αiH(ν†
i ) and let ui ∈ Vi be given by ui = H(Ih(ν

†
i (u−

αi))) . Then u = u0 +
NX
i=1

ui and

a(u0, u0) +

NX
i=1

ãi(ui, ui) ≤ C
`
1 + log(H/h)

´2
a(u, u).
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Based on the results of Lemmas 2 and 3, a bound on κ(TN−N ) , and therefore
on κ(Tbal) , can be established using the abstract Schwarz theory.

Theorem 1. The condition number of the balancing algorithm is independent of the
number of subregions and grows at most polylogarithmically with the number of nodes
in each subregion, i.e.,

κ(Tbal) ≤ C
`
1 + log(H/h)

´4
,

where C is a constant that does not depend on the properties of the partition.

6 Numerical Results

We have tested the convergence properties of our balancing algorithm for a two
dimensional problem discretized by geometrically nonconforming mortar finite ele-
ments. The model problem was the Poisson equation on the unit square Ω with
mixed boundary conditions. We partitioned Ω into N = 16 , 32 , 64 , and 128
geometrically nonconforming rectangles, and Q1 elements were used in each rect-
angle. For each partition, the number of nodes on each edge, H/h , was taken to be,
on average, 4 , 8 , 16 , and 32 , respectively, for different sets of experiments. The
preconditioned conjugate gradient iteration was stopped when the residual norm had
decreased by a factor of 10−6 . The experiments were carried out in MATLAB. We
report iteration counts, condition number estimates, and flop counts of our algorithm
in Table 1.

Table 1. Convergence results, geometrically nonconforming mortars.

N H/h Iter Cond Mflops N H/h Iter Cond Mflops

16 4 11 9.2 4.7e-1 64 4 14 9.9 4.0e+0
16 8 13 10.8 2.6e+0 64 8 15 12.1 1.6e+1
16 16 14 12.1 1.6e+1 64 16 17 13.4 9.4e+1
16 32 15 13.3 1.3e+2 64 32 19 13.9 7.2e+2

32 4 12 9.6 1.5e+0 128 4 14 10.3 1.0e+1
32 8 14 11.3 7.2e+0 128 8 15 12.0 3.6e+1
32 16 15 12.9 4.5e+1 128 16 18 13.7 2.1e+2
32 32 16 13.6 3.3e+2 128 32 19 13.9 1.5e+3

Our balancing algorithm has similar scalability properties as those of the classical
balancing algorithm. When the number of nodes on each subregion edge, H/h ,
was fixed and the number of subregions, N , was increased, the iteration count
showed only a slight growth. When H/h was increased, while the partition was
kept unchanged, the small increase in the number of iterations was satisfactory. The
condition number estimates exhibited a similar dependence, or lack thereof, on N
and H/h .
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Summary. We have recently developed a preconditioning scheme that can be
viewed as a hybrid of incomplete factorization and sparse approximate inversion
methods. This hybrid scheme attempts to deliver the strengths of both types of
preconditioning schemes to accelerate the convergence of Conjugate Gradients (CG)
on multiprocessors. We provide an overview of our algorithm and report on initial
results for some large sparse linear systems.

1 Introduction

Consider the solution of a sparse linear system Ax = b on a distributed memory
multiprocessor. When A is symmetric positive definite, preconditioned Conjugate
Gradients (PCG) [9, 17] can be used to solve the system. In such a scheme, an effec-
tive preconditioner can accelerate the convergence of CG. Traditionally, incomplete
Cholesky factorization with a drop threshold (ICT) [20] scheme can be used to con-
struct a preconditioner L̂ as an approximation to L , the sparse Cholesky factor
of A (A = LLT ). Such an ICT preconditioner is often the method of choice on
uniprocessors, but its scalable parallel implementation poses many challenges.

A parallel ICT scheme should ideally allow (i) efficient preconditioner construc-
tion, and (ii) latency-tolerant application at each CG iteration. Applying an ICT
preconditioner requires distributed triangular solution which is typically inefficient
due to the relatively large latencies of interprocessor communication on multiproces-
sors. We had earlier addressed this issue by developing a parallel ICT preconditioner
with a feature called ‘Selective Inversion’ (SI) [14, 16, 18]. In our preconditioning
scheme (ICT-SI), certain triangular submatrices were explicitly inverted to replace
distributed substitution schemes by latency-tolerant matrix-vector multiplication.
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Additionally, ordering, partitioning and blocking techniques from parallel sparse di-
rect solvers were used to construct the ICT preconditioner efficiently. Our ICT-SI
scheme enabled the scalable application of the preconditioner at each CG step while
effectively accelerating the convergence of CG [16]. However, preconditioner con-
struction using ICT-SI was still relatively expensive. In this paper, we attempt to
address this issue by using sparse approximate inversion techniques [2, 5, 4, 8] in-
stead of the explicit inversion required in ICT-SI. We call our new scheme ICT-SSAI,
i.e., ICT with ‘selective sparse approximate inversion’ [18].

We provide a brief overview of sparse approximate inverse preconditioning and
our incomplete Cholesky preconditioner with SI (ICT-SI) in Section 2. In Section 3,
we describe our new ICT-SSAI scheme where sparse approximate inversion is used on
selected submatrices in the incomplete factor L̂ as an alternative to the SI scheme.
We also provide some empirical results on the performance of our schemes and other
preconditioners for three large sparse linear systems. We end with some concluding
remarks in Section 4.

2 Background

Incomplete Cholesky factorization is a popular preconditioning scheme on unipro-
cessors. However, on multiprocessors with large latencies of interprocessor commu-
nication, the application of such preconditioners using parallel substitution does not
scale well. This gave rise to a new class of preconditioning schemes that attempted
to approximate an inverse of A which could then be applied using efficient parallel
matrix-vector multiplication. However, these preconditioners may not be as effective
as those from incomplete Cholesky [3] when systems from a wide range of applica-
tions are considered. Earlier, we had developed the ICT-SI scheme to enable latency
tolerant application of ICT preconditioners on parallel multiprocessors. In this sec-
tion, we provide a brief overview of sparse approximate inverse preconditioners and
our ICT-SI. Our new ICT-SSAI preconditioner is in effect a hybrid of these two
schemes.

2.1 Sparse Approximate Inverse Preconditioners

One sparse approximate inverse technique is based on the Frobenius norm mini-
mization [5, 4, 8] of ‖I − AM‖F , where M is the preconditioner. This problem
can be formulated as multiple least squares problems of the form: ‖I − AM‖2

F =
nX
j=1

‖ej −Amj‖2
2 . In this expression, ej is a canonical vector and mj is a j th col-

umn of M . The least-squares solution is computed using either iterative methods
such as minimum-residual [5] or dense direct methods such as QR factorization [4, 8].
We use the freely available implementations of the latter named ‘SPAI’ [4, 8].

In the SPAI algorithm, the sparsity pattern of M is selected a priori. If A is
symmetric and positive definite (SPD), the method tries to minimize ‖I − LG‖F ,
where L is a Cholesky factor of A and G is a lower triangular preconditioner
matrix. Since each least-square solution can be computed independently, the method
is highly suitable for parallel implementation as shown by Grote and Huckle [8], and
by Chow [4]. However, preconditioning quality may lag that of ICT preconditioners.
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2.2 Incomplete Cholesky with Selective Inversion

Our parallel incomplete Cholesky with SI uses many of the ideas from parallel sparse
direct multifrontal solution. We start with a good fill-reducing strategy such as
minimum-degree and nested dissection [7]; the latter also helps provide a natural
data partitioning for the parallel implementations. We then compute an approximate
L̂ corresponding to the true factor L for the given ordering.

The parallel factorization and triangular solution of L̂ is guided by the traversal
of the elimination tree [12], and data is structured using supernodes [11, 13]. The
elimination tree represents the data dependency between columns during factoriza-
tion, and a supernode comprises a set of consecutive columns with nested sparsity
structure to enable the use of cache-efficient techniques. A compact tree can be
obtained from the elimination tree in terms of ancestor-descendant relationships
between supernodes. We use such a supernodal tree in our implementations. The
relationship between the separators and their supernodes in the tree is illustrated
in Figure 1; the separators recursively partition the domain to form supernodes in
a tree structure.

S1S2 S3

S1

S3S2

Fig. 1. Two levels of separators applied to a domain (left) and corresponding nodes
in the supernodal tree (right).

During our ICT factorization some nonzero elements are dropped based on the
drop threshold condition. Consequently, the column dependencies and the structure
for supernodes derived from the coefficient matrix are not exact. However, these
structures are used to manage the implementation of flexible dropping schemes to
compute L̂ for a range of fill to meet a variety of preconditioning needs. In addi-
tion, we utilize efficient dense matrix kernels [6] to perform the factorization at a
supernode before applying drop threshold conditions.

The parallel implementation is based on the supernodal tree. Individual sub-
trees rooted at vertices located at approximately logP levels below the root of the
entire tree are computed independently on each processor; these correspond to lo-
cal sub-domains. At levels above the local subtrees, each supernode corresponds to
a distributed separator and is processed by multiple processors using data-parallel
dense/blocked operations. The incomplete factorization proceeds bottom-up on the
tree. The forward solution proceeds bottom-up on the tree followed by a top-down
backward solution. Figure 2 illustrates the computational scheme using four proces-
sors; computations for processor 0 are highlighted.

The performance of parallel triangular solution using substitution is typically
degraded by the high latencies of interprocessor communication at each distributed
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Fig. 2. The structure of the supernodal tree and submatrices associated with each
node; a 4-processor computation is shown.

supernode. The triangular solution at a supernode a involves:»
L11

a

L21
a

– ˆ
x1
a ˜ =

»
b1
a

b2
a

–
.

The submatrices in the expression above are incomplete forms of the factor subma-
trix at supernode a . Parallel substitution is performed to obtain x1

a using L11
a

and b1
a ; next b2

a is updated as b2 − L21
ax1

a and used in computations at the
ancestor supernode of a .

The SI scheme [14, 16] includes a parallel matrix inversion of L11
a for each

distributed supernode a . Subsequently, parallel substitution is replaced by sparse
matrix vector multiplication x1

a ← La11
−1b1

a . The scheme incurs the extra compu-
tational cost of inversion, but the improvements in applying the preconditioner are
substantial [16].

3 ICT with Selective Sparse Approximate Inversion

Although the ICT-SI scheme described earlier achieves scalable application of the
preconditioner, the construction of the preconditioner is relatively expensive. One of
the reasons is that explicit inversion of the diagonal portion of sparse supernodal ma-
trix causes fill-in, i.e., nonzeros which must be discarded by a drop threshold scheme.
Consequently, even if a very sparse preconditioner is required, the cost of the con-
struction is close to that for a true sparse factorization in a sparse direct solver.
To alleviate this problem at a distributed supernode a , we use sparse approximate
inversion to compute an approximation of L11

a−1 . For model sparse matrices from
finite difference five-point 2-dimensional grids and seven-point 3-dimensional grids,
we can show analytically that the arithmetic and communication costs for construct-
ing the preconditioner using ICT-SSAI is lower in the order of magnitude sense than
for ICT-SI [18].
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We now provide some preliminary results on the performance of parallel ICT-SI
and ICT-SSAI. We include comparisons with Block SSOR, Block Jacobi [1], level-0
incomplete Cholesky (IC(0)) [10], and the sparse approximate inverse preconditioner
(ParaSails) [4]. We also report on the performance of DSCPACK [15], a parallel
sparse direct solver as another point of comparison.

Our experiments were performed on a cluster with Intel Xeon processors and a
Myrinet interconnect using the CG implementation in the PETSc package [1]. We
terminate the CG iteration when the relative residual of a given unpreconditioned
system is smaller than 10−8 . We set default parameters for ParaSails and use the
same parameters for the selective sparse approximate inversion of the ICT-SSAI
preconditioner construction. We report the performance of ICT-SI and ICT-SSAI
with a drop-threshold value of 0.01 and a diagonal shift of 0.01 .

We use three large sparse matrices from finite-element and finite-difference ap-
plications described in Table 1. We used 1–16 processors for the first two smaller
matrices and 4–64 processors to solve the largest matrix, augustus7.

Matrix N |A| Description

cfd2 123,440 3,087,898 CFD: pressure matrix

engine 143,571 2,424,822 Engine head, linear tetrahedral elements

augustus7 1,060,864 9,313,876 Diffusion equation from 3D mesh

Table 1. Description of sparse matrices. N is the matrix dimension, |A| is the
number of nonzeros in the matrix.

The performance of all methods for the first two matrices (cfd2 and engine) is
summarized in Table 2. The best value for each measure, i.e., time for solution, and
number of iterations, is shown in bold. The parallel performance for augustus7 is
shown in Figure 3 when the number of processors is increased from 4–64. In this
figure the performance of DSCPACK on 64 processors is shown by a dotted line,
indicating that all PCG schemes on 16 or more processors outperform the direct
solver on 64 processors.

In Table 2 and Figure 3, our experiments indicate that ICT-SI leads to the
least number of iterations and ICT-SSAI requires a slightly larger number of itera-
tions. The increase in the number of iterations is a consequence of selectively using
sparse approximate inversion. Observe that ParaSails leads to a higher number of
iterations than ICT-SI and ICT-SSAI but fewer iterations than IC(0) and simpler
preconditioners like SSOR and Jacobi. Preconditioner construction is less expensive
in ICT-SSAI than in ICT-SI and this difference results in reduced total time on the
larger number of processors. ICT-SSAI becomes the fastest method on 16 processors.
We expect that the benefits of ICT-SSAI is more significant in applications where
the preconditioner construction costs can be amortized over solutions for a sequence
of right-hand-side vectors.
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Method Number of Processors
1 2 4 8 16 Mem

Time Its Time Its Time Its Time Its Time Its

cfd2 Matrix size: 123,440 Nonzeros: 3,087,898

SSOR NC NC NC NC NC 1.0

Jacobi NC NC NC NC NC 1.7

IC(0) NC NC NC NC NC 2.0

ParaSails 192.8 782 115.7 747 61.4 776 31.7 777 17.5 776 3.9

ICT-SI 88.7 451 45.2 461 39.1 463 24.2 464 21.8 471 4.2

ICT-SSAI 88.7 451 50.8 498 29.9 554 18.8 569 12.2 583 4.0

engine Matrix size: 143,571 Nonzeros: 2,424,822

SSOR 170.4 1153 NC NC NC NC 1.0

Jacobi 97.5 994 76.5 1436 NC NC NC 1.8

IC(0) NC NC NC NC NC 2.0

ParaSails 130.4 760 103.3 760 77.4 761 62.3 762 46.1 761 3.9

ICT-SI 48.1 282 35.2 252 36.1 287 47.2 306 37.8 308 2.6

ICT-SSAI 48.1 282 36.7 336 24.9 356 20.0 356 16.6 387 2.4

Table 2. Performance of parallel preconditioners on two sparse matrix problems
using 1 – 16 processors with the best instances shown in bold. The column labeled
‘Time’ is the total time (in seconds). The column labeled ‘Its’ is number of CG
iterations; NC indicates that convergence was not achieved after 1,500 iterations.
The column labeled ‘MEM’ contains the memory usage as a multiple of the space
for the coefficient matrix.

4 8 16 32 64
0

100

200

300

400

500

600

700

800

900

1000

Processors

S
e
c
o
n
d
s

Time for the total solution: augustus7

SSOR
Jacobi
IC(0)
Parasails(1)
ICT−SI(0.01)
ICT−SSAI(0.01)

Cholesky: 64 processors

4 8 16 32 64
0

200

400

600

800

1000

1200

1400

1600

1800

2000

It
e

ra
ti
o

n
s

Processors

Number of iterations: augustus7

SSOR
Jacobi
IC(0)
Parasails(1)
ICT−SI(0.01)
ICT−SSAI(0.01)

Fig. 3. Time to solve augustus7 (left) and the number of iterations (right).

4 Conclusions

We have developed a parallel hybrid ICT-SSAI scheme which can potentially meet
the preconditioning needs of sparse systems from complex applications. Initial em-
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pirical results are indeed encouraging and we are currently collaborating with Barry
Smith to further test and refine our methods [19]. Our results indicate that ICT-
SSAI successfully trades a slight decrease in the quality of the preconditioner for
faster and more scalable preconditioner construction. We expect that our method
can serve as a scalable limited memory solution scheme for applications that have
traditionally relied on a direct solver for robust sparse linear system solution.
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1 Introduction

This paper presents a numerical scheme to approximate uε ∈ H1
0 (Ω) , the weak

solution of the problem

Lεuε = − ∂

∂xi
(aij(x/ε)

∂

∂xj
uε) = f in Ω, uε = 0 on ∂Ω, (1)

where ε ∈ (0, 1) is the periodicity parameter, a(y) = (aij(y)) is a symmetric matrix
with aij ∈ C1,β

per(Y ), β > 0 , i.e. aij ∈ C1,β

loc
(R2) and is Y periodic. We assume

that there exists γa > 0 such that aij(y)ξiξj ≥ γa‖ξ‖2, ∀ ξ ∈ R
2 and y ∈ Y .

In several real world problems the scale ε is so much smaller than Ω that
even with very heavy computer effort it is impossible to take h < ε , h being the
mesh-size of the discrete method used to approximate uε . Recently new numerical
methods have been proposed for capturing the oscillations of the scale ε presented
in uε , and working with meshes sizes h > ε (or h >> ε) ; see for example
[1, 3, 4, 9, 8, 11]. The numerical method developed in [11] works in the case the
domain Ω is rectangular. Here we extend this method to the case the domain Ω is
a convex polygonal region with rational normals. This is possible due to the Lagrange
multipliers introduced to approximate ∂ηu0 , resulting in a better error estimate for
the H1 broken semi-norm. The method presented here, in contrast to the methods
in [1, 3, 4, 8], is based strongly on asymptotic expansions of uε .

We assume that Y = [0, 1]× [0, 1] and Ω is a bounded convex polygonal region
in R

2 . More specifically, we assume that ∂Ω = ∪Nk=1Γ
k, where each Γ k is a line

segment with outward normal denoted by Nk = (pk, qk)
t , with pk and qk integers

and relative prime. This hypothesis is required to guarantee periodicity of a(x/ε)
on the line containing Γk ; see [6].

‡Research supported in part by ANP.
§Research supported in part by CNPQ (Brazil) under grant 305539/2003-8 and

by the U.S. National Science Foundation under grant CGR 9984404.
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We use the standard notation ‖ · ‖s , ‖ · ‖s,p , and ‖ · ‖s,h for Hs(Ω) and
W s
p (Ω) norms, and for the Hs broken norms related to a regular partition

Th(Ω) = K1,K2, ...., Km of Ω , respectively. We always use the Einstein summa-
tion convention, i.e. repeated indices indicate summation, except for the index k .
In what follows c denotes a generic constant independent of ε , h , and functions
being evaluated.

2 Theoretical Approximation

2.1 The Asymptotic Expansion

The solution uε can be approximated by an asymptotic expansion. This approxi-
mation can be found using Equation (1) and the ansatz

uε(x) = u0(x, x/ε) + εu1(x, x/ε) + ε2u2(x, x/ε) + · · ·,

where the functions uj(x, y) are Y periodic in y. These terms are defined below;
for more details see [2, 6].

Let χj ∈ H1
per(Y ) be the Y periodic weak solution with zero average over Y

of

∇y · a(y)∇yχ
j = ∇y · a(y)∇yyj =

∂

∂yi
aij(y). (2)

By regularity theory, we have that χj ∈ C2,β
per(Y ) when aij ∈ C1,β

per(Y ) . Define the
matrix

Aij =
1

|Y |

Z
Y

alm(y)
∂

∂yl
(yi − χi)

∂

∂ym
(yj − χj)dy. (3)

It is easy to see that the matrix A is symmetric positive definite. Define u0 ∈ H1
0 (Ω)

as the weak solution of
−∇.A∇u0 = f in Ω, (4)

and let u1(x,
x

ε
) = −χj

“x
ε

” ∂u0

∂xj
(x). Note that u0 + εu1 does not satisfy the zero

Dirichlet boundary condition on ∂Ω . In order to deal with this issue, a boundary
corrector term θε ∈ H1(Ω) is introduced as the weak solution of

−∇ · a(x/ε)∇θε = 0 in Ω, θε = −u1(x,
x

ε
) on ∂Ω. (5)

Therefore we obtain u0 + εu1 + εθε ∈ H1
0 (Ω) .

2.2 Boundary Corrector Approximation

Note that the coefficients aij(x/ε) and the boundary values −u1(x,
x

ε
) of the

Equation (5) are highly oscillatory. Hence it is not a trivial problem to obtain a good
discretization for θε . We propose an analytical approximation for θε , denoted by φε
that satisfies the oscillating boundary condition and is more suitable for numerical
approximation.

Observe that u0 = 0 along ∂Ω implies ∇uε|Γk = ηk∂ηku0 , where ηk =

Nk/|Nk| . We then decompose θε = θ̂ε + θ̄ε where
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−∇ · a(x/ε)∇θ̂ε = 0 in Ω, θ̂ε = −u1 − χ∗∂ηu0 on ∂Ω, (6)

−∇ · a(x/ε)∇θ̄ε = 0 in Ω, θ̄ε = χ∗∂ηu0 on ∂Ω, (7)

and χ∗|Γk = χ∗
k are properly chosen constants . In Remark 1, we will show that the

Problems (6) and (7) are well posed. The approximation φε for θε is defined later
as φ̂ε + φ̄ε , where φ̂ε ≈ θ̂ε and φ̄ε ≈ θ̄ε . Next we define constants χ∗

k for which
the approximation φ̂ε decays exponentially to zero away from the boundary.

Let τk = (ηk)⊥ be the π/2 rotation counterclockwise of ηk . We introduce the
following normal and tangential coordinate system„

y′1
y′2

«
= −

„
ηk · y
τk · y

«
(8)

We observe that a function periodic in y with period 1 is periodic in y′ with
period Tk = (p2

k + q2
k)

1/2 . Associated to each side Γk of ∂Ω , let Gk = {y ∈
R

2; y′1 ≤ 0; and 0 ≤ y′2 ≤ Tk} ; vk ∈ H1(Gk) is the weak solution of

−∇y · a(y + δεη
k)∇yvk = 0 in Gk

vk(y) = χj(y + δεη
k)ηkj on{y ∈ Gk, y

′
1 = 0}

vk|y′2=0 = vk|y′2=Tk
, for − ∞ < y′

1 < 0

and
∂vk
∂yi

exp(−γy′1) ∈ L2(Gk), i = 1, 2,

where δε = Tk (sk/ (εTk) − �sk/ (εTk) ) , and sk is such that Γk ⊂ {x ∈ R
2; x·ηk =

sk} ; ( �· denotes the integer part).
Let

χ∗
k =

1

(Aηk, ηk)Tk

 Z Tk

0

»
χlaij

„
δjm − ∂χm

∂yj

«
ηki η

k
mη

k
l

–˛̨̨
˛
y′1=δε

dy′2

+

Z
Gk

(a(y + δεη
k)∇yvk · ∇yvk)dy

«
.

It can be shown [6] that vk −χ∗
k decays exponentially to zero when y′1 → −∞ , i.e.

(vk − χ∗
k)exp(−γy′1) ∈ L2(Gk).

We note by Remark 1 that (u1(x,
x

ε
) − χ∗∂ηu0)|Γk ∈ H

1/2
00 (Γk) . Thus we can

split θ̂ε =
NX
k=1

θ̂kε , where

Lεθ̂
k
ε = 0 in Ω, θ̂kε =

(
−u1(x,

x

ε
) − χ∗∂ηu0 on Γk

0 on ∂Ω \ Γk.

We approximate θ̂kε by φ̂kε given by

φ̂kε(x1, x2) = ϕk(x)

„
vk

„
x− skη

k

ε

«
− χ∗

k

«
∇u0 · ηk, (9)
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where ϕk(x) is a cut-off function such that ϕk|Γk = 1 , ϕk|∂Ω\Γk
= 0 , and ϕk∇u0 ·

ηk ∈ W 1,∞(Ω) if u0 ∈ W 2,∞(Ω) . For example, assume Γk = {x ∈ R
2; x1 = 0, 0 ≤

x2 ≤ c} and that x+
1 is the inner normal direction. Let Γk−1 and Γk+1 be the

edges with vertices at the point (0, c) and (0, 0) , respectively, and let αk > 0 and
αk+1 < 0 be the angles between the x1 axis and Γk−1 and Γk+1 , respectively.
Then we define

ϕk(x) =

8>>>><
>>>>:

1 if 0 ≤ x1 ≤ δ; 0 ≤ x2 ≤ c
1 − (x2 − c)/(x1tanαk) if 0 ≤ x1 ≤ δ; x2 > c
1 + x2/(x1tanαk+1) if 0 ≤ x1 ≤ δ; x2 < 0
smooth if δ ≤ x1 ≤ 2δ
0 if x1 ≥ 2δ.

From [5], we obtain that ϕk ∈ W 1,∞
loc

(Ω) . Since ∂ηku0 ∈ H
1/2
00 (Γk) and assuming

u0 ∈ W 2,∞(Ω) , we obtain ϕk∇u0 · ηk ∈ W 1,∞(Ω) . Hence φ̂ε =

NX
k=1

φ̂kε approxi-

mates θ̂ε , and φ̂ε = θ̂ε on the boundary of Ω .
The boundary condition imposed in Equation (7) does not depend on ε . An

effective approximation for θ̄ε is given by φ̄ ∈ H1(Ω) the solution of

−∇ ·A∇φ̄ = 0 in Ω, φ̄ = χ∗∂ηu0 on ∂Ω.

We define our theoretical approximation for uε as u0+εu1+εφε , where φε = φ̂ε+φ̄.
Note that φε|∂Ω = θε|∂Ω , therefore u0 + εu1 + εφε = 0 on ∂Ω . In [10], we prove
the following error bounds

Theorem 1. Assume that aij ∈ C1,β
per(Y ) and u0 ∈ W 2,∞(Ω) . Then there exists

a constant c , such that

‖uε − u0 − εu1 − εφε‖1 ≤ cε‖u0‖2,∞.

Remark 1. Since u0 satisfies zero Dirichlet boundary condition on ∂Ω and u0 ∈
H2(Ω) , we have

∂u0

∂ηk
∈ H

1/2
00 (Γk) and ‖χ∗∂ηu0‖H1/2(∂Ω) ≤ c(χ∗)‖u0‖2; see [7].

Note also that u1(x,
x

ε
) = −χj

“x
ε

” ∂u0

∂xj
(x) , and since χj ∈ C2,β(R2) and u0 ∈

H2(Ω) ∩H1
0 (Ω) , we get u1|Γk ∈ H

1/2
00 (Γk) .

3 Finite Element Approximation

We now describe how to approximate the terms u0 , u1 , φ̂ε and φ̄ numerically.

• Let χj
ĥ

be a numerical approximation of χj using a second order accurate
conforming finite element on a mesh Tĥ(Y ) .

• Define Aĥij =
1

|Y |

Z
Y

alm(y)
∂

∂yl
(yi − χi

ĥ
)

∂

∂ym
(yj − χj

ĥ
)dy.

• Let V h(Ω) be the space of P1 finite elements associated to a triangular mesh

Th(Ω) , and V h
0 (Ω) = V h(Ω)∩H1

0 (Ω) . Define uh,ĥ0 ∈ V h
0 (Ω) as the solution ofZ

Ω

(Aĥ∇uh,ĥ0 ,∇vh)dx =

Z
Ω

fvhdx, ∀vh ∈ V h
0 (Ω).
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• Let Y h
k = {λh ∈ L2(Γk); λh = φh|Γk , φh ∈ V h(Ω)} , and Y h

0,k = {λh ∈
Y h
k ; λh = 0 at ∂Γk} . Define λhk ∈ Y h

0,k , as the solution ofZ
Γk

λhkφ
hdσ =

Z
Ω

Aĥij∂iu
h,ĥ
0 ∂jφ

hdx−
Z
Ω

fφhdx, (10)

∀φh ∈ V h(Ω); φh|∂Ω\Γk
= 0 . Observe that λhk approximates A∇u0 · ηk and

that u0 ∈ H1
0 (Ω) ∩H2(Ω) implies ∇u0 · τk|Γk = 0 . Hence define νh,ĥ by

Aĥνh,ĥ · ηk = λhk ,

νh,ĥ · τk = 0,

and then approximate ∂ηku0 by µh,ĥ = νh,ĥ · ηk .

• Define the approximation for ∇u0 as Ψh,ĥ = ∇uh,ĥ0 +
NX
k=1

Ek(µ
h,ĥ − ∇uh,ĥ0 ·

ηk)ηk , where given g ∈ L2(Γk) is such that g|Ki∩Γk ∈ V h(Ω)|Ki∩Γk , ∀ Ki ∈
Th(Ω); Ki∩Γk �= ∅ . Ek(g) denotes the extension by zero to Ω of g satisfying
Ek(g)|Ki ∈ V h(Ω)|Ki , ∀ Ki ∈ Th(Ω) .

• Define uh,ĥ1 (x, x/ε) = −Ψh,ĥj (x)χj
ĥ
(x/ε) . Note that this leads to a nonconform-

ing approximation for u1 on the partition Th(Ω) .
• Let p be a positive integer and Gpk = {y ∈ R

2; y′1 ≤ 0, |y′1| ≤ p; and 0 ≤ y′2 ≤
Tk} . Define ṽk ∈ H1(Gpk) as the weak solution of

−∇y · a(y + δεη
k)∇yṽk = 0 in Gpk

ṽk(y) = χj
ĥ
(y + δεη

k)ηkj , on {y ∈ Gk, y
′
1 = 0}

∂ηṽk = 0, on {y ∈ Gpk; |y′1| = p}
and vk|y′2=0 = vk|y′2=Tk

, for |y′1| < p.

Let vĥ,pk be a numerical approximation of ṽk using a second order accurate
conforming finite element on a mesh Tĥ(G

p
e) .

• Define

χ∗,ĥ,p
k =

1

(Aĥηk, ηk)Tk

 Z Tk

0

»
χl
ĥ
aij

„
δjm −

∂χm
ĥ

∂yj

«
ηki η

k
mη

k
l

–˛̨̨
˛
y′1=δε

dy′2

+

Z
Gk

(a(y + δεη
k)∇yv

ĥ,p
k ) · ∇yv

ĥ,p
k dy

«
,

• Observe that the term vk
“
(x− skη

k)/ε
”

appears in Equation (9). Since the

approximation vĥ,pk is defined on Gpk , we can calculate vĥ,pk

“
(x− skη

k)/ε
”

only if |x′
1 − sk| ≤ εp . The functions vk − χ∗

k decays exponentially to zero in
the −ηk direction, hence its is natural to consider the following approximation

φ̂e,h,ĥ,pε (x1, x2) =8><
>:
„
vĥ,pk

„
x− skη

k

ε

«
− χ∗,ĥ,p

k

«
ϕkΨ

h,ĥ · ηk if |x′
1 − sk| < εp

0 if |x′
1 − sk| ≥ εp.
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Let φ̂h,ĥ,pε =
NX
k=1

φ̂k,h,ĥ,pε .

• Let φ̄h,ĥ,p be a second order accurate finite element approximation on a mesh
of size h for the following equation

−∇Aĥ∇ = 0,  = χ∗,ĥ,pµh,ĥ on ∂Ω. (11)

Remark 2. By construction µh,ĥ = 0 at the corners of Ω , therefore χ∗µh,ĥ ∈
H1/2(∂Ω) . This implies that Equation (11) is well posed. In addition χ∗µh,ĥ ∈
V h(Ω)|∂Ω ; hence we can look for a numerical solution of Equation (11) in
V h(Ω) .

• Approximate θε by φh,ĥ,pε = φ̂h,ĥ,pε + φ̄h,ĥ,p and finally define the numerical

solution for Equation (1) by uh,ĥ,pε = uh,ĥ0 + εuh,ĥ1 + εφh,ĥ,pε .

4 Error Analysis

When p → ∞ and ĥ → 0 , we prove in [10] the following estimates.

Theorem 2. Assume that aij ∈ C1,β
per(Y ), β > 0 and u0 ∈ W 2,∞(Ω) . Then

there exists a constant c , such that

‖uε − uh‖1,h ≤ c(h + ε)‖u0‖2,∞,

‖uε − uh‖0 ≤ c(h2 + ε + εh)‖u0‖2,∞.

5 Numerical Experiments

Consider

a(x) =

„
2 + P sin(2πx1/ε)

2 + P cos(2πx2/ε)
+

2 + sin(2πx2/ε)

2 + P sin(2πx1/ε)

«
I2×2, and f(x) = −1.

We compare the solution obtained by our method with the solution obtained by a
second order accurate finite element method on a fine mesh with size hf , which we

call u∗
ε . Table 1 provide absolute errors estimates for u∗

ε − uh,ĥ,pε . We have used
p = 2 , ĥ = 1/64 , hf = 1/2048 , and a triangular mesh with continuous piecewise

linear functions to approximate χj
ĥ

and vĥ,pk .

From Table 1, we see that for ε << h we have errors of order O(h2) and O(h)
for the L2 norm and H1 semi norm , respectively. We observe that when we fix
h and decrease ε the errors almost do not change. This is evidence that in this
case the dominant error term is O(h) . Also looking at the diagonal values in this
table we see clearly that the numerical error agrees with the theoretical rates from
Theorem 2.

Table 2 shows the improvement obtained in the final approximation by consid-
ering the numerical approximation for the boundary corrector. We observe a better
improvement on the ‖ · ‖0 norm rather then on | · |1,h semi norm. The reason for
this is that φ̄ is obtained through the homogenized equation associated to Problem
(7). Therefore it is a good approximation for θ̄ε in the L2(Ω) norm but not in | · |1
semi norm. The term φ̂ε is defined in a thin boundary layer that primarily force
the approximation to satisfy the zero Dirichlet boundary condition.
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Table 1. u∗
ε − uh,ĥ,pε error

‖ · ‖0 error

ε ↓ h → 1/8 1/16 1/32 1/64

1/16 2.3863e-04 1.5793e-04

1/32 2.3241e-04 8.0169e-05 1.7773e-05

1/64 2.3540e-04 5.4314e-05 1.6020e-05 1.5601e-05

| · |1,h error

1/16 0.0097 0.0067

1/32 0.0086 0.0051 0.0036

1/64 0.0086 0.0044 0.0025 0.0018

Table 2.

ε = 1/64, h = 1/32, hf = 1/1024

‖ · ‖0 | · |1,h
u∗
ε − uh,ĥ0 0.0287 0.0215

u∗
ε − uh,ĥ0 − εuh,ĥ1 0.0213 0.0026

u∗
ε − uh,ĥ0 − εuh,ĥ1 − εφ̄h,ĥ,p 5.0450e-05 0.0026

u∗
ε − uh,ĥ0 − εuh,ĥ1 − ε(φ̄h,ĥ,p + φ̂h,ĥ,pε ) 5.1865e-05 0.0025

6 Conclusions

We propose a new method for approximating numerically the solution of Equation
(1). This method is based strongly on the periodicity of the coefficients aij , and for
this reason it has relative low computational cost with an optimal error convergence
rate.
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Summary. The solution of contact problems between solid bodies poses difficul-
ties to solvers because in general neither the distributions of the contact tractions
throughout the areas currently in contact nor the configurations of these areas are
known a priori. This implies that the contact problems are inherently strongly non-
linear. Probably the most popular solution method is based on direct iterations
with the non-penetration conditions imposed by the penalty method ([7] or [6]).
The method enables us easily to enhance to include other non-linearity such as in
the case of large displacements.

In this paper we are concerned with application of a variant of the FETI do-
main decomposition method that enforces feasibility of Lagrange multipliers by the
penalty [1]. The dual penalty method, which has been shown to be optimal for small
displacements is used in inner loop of the algorithm that treats large displacements.
We give results of numerical experiments that demonstrate high efficiency of the
FETI method

1 The Primal Penalty Method

The boundary conditions generated by bodies in contact are formally of the same
form as the boundary conditions induced by externally applied surface tractions.
However, the difficulties with the contact tractions is that in general we know neither
their distributions throughout the areas currently in contact, nor the shapes and
magnitude of these areas until we have solved the problem. Finding them has to be
part of the solution.

From now on, we will consider the frictionless contact. There exist two basic
methods to remove the contact constraints. The first one is the Lagrange multiplier
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method and the second one the penalty method, or in the sense of this paper the
primal penalty method. With the latter method constraints are enforced by penal-
ization. The penalization of the Kuhn–Tucker conditions in the normal direction is
established by introducing a penalty parameter εn in

fn = εn〈g〉 (1)

where fn stands for the normal contact force, g denotes the depth of interpene-
tration of the bodies in contact and 〈.〉 = 0.5[(.) + |.|] is known as the Macauley
bracket. It returns the non-negative part of its operand. The normal penalty can be
seen as the stiffness of a spring placed between corresponding contacting surfaces.
The penalty method yields an exact solution if the penalty tends to infinity, but oth-
erwise permits certain violation of the constraint that the interpenetration has to be
zero. In practice it is necessary to estimate the magnitude of the penalty parameter
to limit the penetration, yet it should not be too large to avoid ill-conditioning. The
penalty parameter should be increased if the grid is refined.

2 Application of FETI to Contact Problems

Let us briefly outline the fundamental formulae of the FETI method. Consider solid
bodies in contact, discretized on a finite element mesh and in addition decomposed
into sub-domains. The numerical approximation to the problem in terms of the finite
element discretization and auxiliary domain decomposition can be expressed as

min
1

2
u�Ku − f�u subject to BIu ≤ 0 and BEu = 0 (2)

where A stands for a positive semi-definite stiffness matrix, BI and BE denote the
full rank matrices which enforce the discretized inequality constraints describing con-
ditions of non-interpenetration of bodies and inter-subdomain equality constraints,
respectively, and f stands for the discrete analogue of the linear form �(u) .

Denoting

λ =

»
λI

λE

–
and B =

»
BI

BE

–
,

we can write the Lagrangian associated with problem (2) as

L(u, λ) =
1

2
u�Ku− f�u + λ�Bu.

It is well known that (2) is equivalent to the saddle point problem

Find (u, λ) s.t. L(u, λ) = sup
λI≥0

inf
u
L(u, λ). (3)

After eliminating the primal variables u from (3), we obtain the minimization prob-
lem

min Θ(λ) s.t. λI ≥ 0 and R�(f −B�λ) = 0, (4)

where

Θ(λ) =
1

2
λ�BK†B�λ− λ�BK†f, (5)

772



A FETI DDM Applied to Contact Problems with Large Displacements

K† denotes a generalized inverse that satisfies KK†K = K , and R denotes the
full rank matrix whose columns span the kernel of K .

Even though problem (4) is much more suitable for computations than (2),
further improvement may be achieved by adopting some simple observations and
the results of Farhat, Mandel, Roux and Tezaur [3, 5]. Let us denote

F = BK†B�, eG = R�B�, ee = R�f, ed = BK†f,

and let eλ solve eGeλ = ee , so that we can transform the problem (4) to the min-
imization on a subset of the vector space by looking for the solution in the form
λ = µ + eλ . Since

1

2
λ�Fλ− λ� ed =

1

2
µ�Fµ− µ�(ed− Feλ) +

1

2
eλ�Feλ− eλ� ed,

problem (4) is, after returning to the old notation, equivalent to

min
1

2
λ�Fλ− λ�d s.t. Gλ = 0 and λI ≥ −eλI (6)

where d = ed−Feλ and G denotes a matrix arising from the orthonormalization of
the rows of eG .

Our final step is based on the observation that the problem (6) is equivalent to

min
1

2
λ�PFPλ− λ�Pd s.t. Gλ = 0 and λI ≥ −eλI (7)

where
Q = G�G and P = I −Q

denote the orthogonal projectors on the image space of G� and on the kernel of
G , respectively. Enhancing the equality constraints in (7) by the penalty into the
function

Θρ(λ) =
1

2
λ�(PFP + ρQ)λ− λ�Pd, (8)

we can approximate the solution of (7) by the solution of

min Θρ(λ) s.t. λI ≥ −eλI (9)

with a sufficiently large penalty parameter ρ . Note that the image spaces of the
projectors P and Q are invariant subspaces of the Hessian Hρ = PFP + ρQ of
Θρ(λ) .

3 A Scalable algorithm based on optimal dual penalty

In this section we shall describe a scalable algorithm for (9). The basic ingredient of
the theoretical development is the estimate by Mandel and Tezaur [5] who proved
that under an assumption on regularity of the discretization and boundedness of
H/h , there is a lower bound α > 0 on the eigenvalues of PFP restricted to the
range of P that is independent of h and H , so that for any vector λ

λ�PFPλ ≥ α‖Pλ‖2. (10)
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Denoting α1 = min{α, ρ0} , it follows that for any δ, ρ0 > 0 and ρ ≥ ρ0

δ�Hρδ ≥ δ�Hρ0δ ≥ α1‖δ‖2. (11)

Another important ingredient is a recently proposed algorithm for bound con-
strained quadratic programming called modified proportioning with reduced gradi-
ent projections (MPRGP) [2]. The MPRGP algorithm with the choice of parameters
Γ = 1 and α ∈ (0, ‖Hρ‖−1] generates the iterates {λk} for the unique solution λ
of (9) so that the rate of convergence in the energy norm defined by ‖λ‖2

Hρ = λ�Hρλ
is given by

‖λk − λ‖2
Hρ ≤ 2ηk

α1

`
Θρ(λ

0) −Θρ(λ)
´
, η = 1 − αα1

4
. (12)

Theorem 1. Let C, ρ and ε denote given positive numbers, and let {λiH,h} denote
the iterations generated by the MPRPG algorithm with the initial approximation
λ0 = 0 for the solution λH,h of the problem (9) arising from a sufficiently regular
discretization of the continous problem with the decomposition, discretization and
penalization parameters H,h and ρ . Then there is an integer k independent of h
and H such that H/h ≤ C implies

‖λkH,h − λH,h‖ ≤ ε‖Pd‖. (13)

Proof. See [1].

�

Theorem 1 shows that we can generate efficiently a value of λ that is near to
the solution of (9). Its feasibility error is considered in the next theorem.

Theorem 2. Let C1 and ρ denote given positive numbers. Then there is a positive
constant C such that if ε > 0 and λH,h,ρ denotes an approximate solution of
the problem (9) arising from a sufficiently regular discretization of the continuous
problem with the decomposition, discretization and penalization parameters H,h and
ρ , respectively, H/h ≤ C1 , ρ ≥ ρ0 and ‖ν(λH,h,ρ)‖ ≤ ε‖Pd‖ , then

‖GλH,h,ρ‖ ≤ C
1 + ε√

ρ
‖Pd‖. (14)

Moreover, there is a constant CH,h that depends on H,h such that for any ρ

‖GλH,h,ρ‖ ≤ CH,h
1 + ε

ρ
‖Pd‖. (15)

Proof. See [1].

�

Theorem 2 shows that a prescribed bound on the relative feasibility error (14)
may be achieved with the penalty parameter ρ independent of the discretization
parameter h . Thus we have shown that we can get an approximate solution of the
problem (7) with prescribed precision in a number of steps that does not depend on the
discretization parameter h . Let us recall that even though large penalty parameters
may destroy conditioning of the Hessian of the Lagrangian, they need not slow down
the convergence of the conjugate gradient based methods.
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4 Contact problems with large displacements

While the FETI method is directly applicable to the solution to contact problems of
linearly elastic bodies with small displacements, any other non-linearity necessitates
application of additional methods for the solution of nonlinear problems. The non-
linearity we take into account, apart from the contact, is the one caused by large
displacements and finite rotations. To this end we use the total Lagrangian formula-
tion which includes all kinematic non-linear effects. As a strain measure we make use
of the Green–Lagrange tensor and as the stress measure the second Piola–Kirchhoff
tensor which is work–conjugate with the previously mentioned strain tensor.

The Modified Newton-Raphson method was used as a tool for solving these
nonlinear problems. Hence, the following algorithm is proposed:

Initial step:

Assembling of stiffness matrix K and matrix of

continuity conditions between subdomains BE

Step 1

Assembling of external nodal forces vector fext
Prescribing conditions of non-interpenetration of bodies

in current configuration BI , cI .
Step 2

Evaluation of internal forces vector fint stemming from

stresses

Step 3

FETI solution of contact problem

min
1

2
uTKu − uT f s.t. BIu ≤ cI and BEu = 0

where the vector f is the residual between the external forces fext
and the contact and internal forces fint .

Step 4

Test of convergence.

In negative case go to Step 1, otherwise stop.

The relative change of nodal displacements can be chosen as a suitable stopping
criterion.

5 Hertzian Problem of Contact of Two Cylinders

Consider a classic Hertzian problem, i.e. a frictionless and elastic one, of two cylinders
with parallel axes in contact as in Figure 1. The radius of the upper cylinder is
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R1 = 1000 mm and that of the lower cylinder is infinite, which means that the lower
body is a half-space. The material properties of the two bodies are as follows: Young’s
modulus E = 2.0×1011 Pa and Poisson’s ratio ν = 0.3 . The load Q = 400 MN/m
is applied along the axis of the upper cylinder. The problem is two-dimensional
from a mathematical point of view, but it was modelled with tri-linear elements
as a three-dimensional problem considering bodies of finite length. The boundary
conditions are imposed in such a way that they generated a plane strain problem.
The complete mesh is shown in Figure 1 as well as its detail along the surfaces
potentially in contact.

The analytical solution by McEwen can be found in [4]. The results yielded by
both the FETI method in terms of the dual penalty approach and the analytical
solution are shown in Figure 2b. It shows the distribution of the normal contact stress
along one half of the contact surface of the lower cylinder from the plane of symmetry
upwards. It is obvious that the difference between the two solutions is small. Let
us notice that the various values of the dual penalty varies from 1e+0 to 1e+4
without significant change of the solution. For comparison Figure 2a depicts solution
of the same problem but in terms of the primal penalty method. The problem is not
semi-coercive but coercive in this case because the primal penalty method cannot
treat problems with sub-domains undergoing the rigid body motions. The penalty
method is applied with five different values of the penalty parameters. It can clearly
be seen how the quality of solution degrades progressively as the penalty parameter
is reduced.

Fig. 1. Hertzian contact problem.

We solve the problem with a load (400 MN/m); the displacements cannot be
regarded as small. Therefore we had to iterate in the outer loop of the algorithm
in section 5, because of the large displacements. The total load was applied in two
steps for better convergence.

Figure 3a depicts the number of conjugate gradients of the inner problem solver
needed for convergence at each cycle of the outer loop. Figure 3b demonstrates the
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independence of the number of conjugate gradients for different choices of the value
of dual penalty.
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