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Abstract. Myotonic dystrophy (DM), the most common form of adult onset mus-
cular dystrophy, affects skeletal muscle, heart, and the central nervous system
(CNS). Mortality results primarily from muscle wasting and cardiac arrhythmias.
There are two forms of the disease: DM1 and DM2. DM1, which constitutes 98%
of cases, is caused by a CTG expansion in the 3′ untranslated region (UTR) of the
DMPK gene. DM2 is caused by a CCTG expansion in the first intron of the ZNF9
gene. RNA containing CUG- or CCUG-expanded repeats are transcribed but are
retained in the nucleus in foci. Disease pathogenesis results primarily from a gain
of function of the expanded RNAs, which alter developmentally regulated alter-
native splicing as well as pathways of muscle differentiation. The toxic RNA has
been implicated in sequestration of splicing regulators and transcription factors
thereby causing specific symptoms of the disease. Here we review the proposed
mechanisms for the toxic effects of the expanded repeats and discuss the molecular
mechanisms of splicing misregulation and disease pathogenesis.

1
Myotonic Dystrophy

DM is a multisystemic, autosomal dominant disorder that is the most com-
mon form of adult onset muscular dystrophy. Manifestations of the disease
are highly variable, consisting of muscular, neuronal, and endocrine features,
each of which may vary in severity. Muscle dysfunction is the most common
symptom including muscle weakness, pain, and myotonia (difficulty relaxing
muscle after voluntary contraction). Cardiac symptoms include conduction
defects and arrhythmias, potentially resulting in sudden death. Endocrine
abnormalities result in glucose intolerance. Testicular failure is common and
is associated with sterility (Harper 2001).

Myotonic dystrophy type I (DM1) is the most common form, account-
ing for approximately 98% of DM cases. DM1 is caused by a CTG expan-
sion in the 3′UTR of the myotonic dystrophy protein kinase (DMPK ) gene
on chromosome 19q13.3 (Brook et al. 1992; Fu et al. 1992; Mahadevan
et al. 1992). While DMPK alleles in unaffected individuals contain 5–34
repeats, expanded alleles can reach 50–2000 repeats in individuals with
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DM1. The prevalence of DM1 is estimated to be 1 in 8,000 worldwide
(Harper 2001).

Longer repeat lengths correlate with a younger age of onset and increased
severity of the disease (Tsilfidis et al. 1992). The most severe form of DM1
is congenital myotonic dystrophy (CDM) in which repeat sizes are >1,400.
CDM is characterized by neonatal hypotonia, respiratory failure, which is
often fatal, facial diplegia, and mental retardation (Harper 2001). The hypo-
tonia in infants with CDM is thought to involve a developmental defect in
skeletal muscle differentiation and maturation. The survival rate for individ-
uals with CDM is approximately 50%. Those that survive improve but then
later develop adult DM symptoms in their second or third decade (Harper
2001). These observations suggest that CDM and adult onset disease signif-
icantly differ in that CDM represents a developmental abnormality while
adult onset disease represents a degenerative process.

DM type 2 (DM2), also called proximal myotonic myopathy
(PROMM), makes up 2–3% of myotonic dystrophy cases (Harper 2001).
The mutation that causes DM2 is a CCTG expansion in the first intron of
the ZNF9 gene located on chromosome 3q21 (Liquori et al. 2001). DM2
appears to be a milder disease than DM1 but DM2 expansions are larger
ranging from 75 to 11,000 CCTG repeats. The clinical presentation of
DM1 and DM2 are strikingly similar, however, there are important differ-
ences, potentially reflecting mechanistic differences in disease pathology. A
congenital form of DM2 has not been identified. In addition, DM1 is asso-
ciated with atrophy of type 1 skeletal muscle fibers in contrast to DM2, in
which atrophy of type 2 fibers is observed (Tohgi et al. 1994).

Recently, a novel multisystemic myotonic disorder has been identified in
a large French pedigree, associated with frontotemporal dementia (Le Ber
et al. 2004). Histological features in muscle and brain were similar to his-
tological features of DM and the causative region was mapped within chro-
mosome 15 (15q21–24). Therefore, the disease was designated as DM type
3 (DM3). The causative mutation has not been identified.

2
Repeat Instability

DM is typified by anticipation in which disease severity increases in suc-
cessive generations. The molecular basis for anticipation is germline
instability in which repeats expand. In addition to germ line instability,
the repeat sizes in DM1 alleles expand in somatic tissues during
aging (Ashizawa et al. 1993; Martorell et al. 2004; Wong and Ashizawa
1997). The molecular mechanisms for the genetic instability of triplet
repeat expansions have been extensively investigated in bacteria, yeast,
and mice (Cummings and Zoghbi 2000; Gomes-Pereira et al. 2004;
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Gourdon et al. 1997; Pearson et al. 1997; Savouret et al. 2003; Wells
1996). One proposed mechanisms for genetic instability is the DNA poly-
merase slippage model, which predicts that repeat size variability arises
during DNA replication in a cell-division dependent manner (Richards
and Sutherland 1994). Folding of expanded CTG repeats into hairpin or
alternative non-B DNA structures is thought to cause slippage of DNA
polymerase during replication due to mismatched base pairs (Gacy et al.
1995; Gellibolian R 1997). In support to this, NMR studies showed that
CTG repeats can form three different types of hairpin structures generat-
ing mismatched base pairs, which allows expansion of repeats during
DNA replication (Chi and Lam 2005).

Transgenic mouse models have been used to establish a strong link
between mismatch repair (MMR) proteins and repeat instability. For exam-
ple, transgenic mice containing the entire human DMPK gene with 55-CTG
repeats obtained from a mildly affected patient showed both intergenera-
tional and somatic repeat instability as observed in individuals with DM
(Gourdon et al. 1997). When transgenic mice expressing expanded CTG
repeats in the mouse Dmpk gene were mated with mice lacking individual
MMR proteins, the instability of expanded CTG repeats was altered. In
mice lacking Msh3, the instability of CTG repeats was corrected. Conversely,
the instability of repeats worsened in mice lacking Msh6 (Pearson et al.
1997). The absence of Msh2 in transgenic mice expressing >300 unstable
CTG repeats favored contractions of the repeats, both in tissues and
through generations (Savouret et al. 2003). When transgenic mice deficient
for Pms 2 were mated with mice expressing CAG/CTG repeats, the rate of
somatic expansions were reduced by 50% and a higher frequency of large
deletions was detected (Gomes-Pereira et al. 2004). On the other hand,
deletion of genes involved in various DNA repair pathways like Rad52,
Rad54 (homologous recombination) and DNA-PKcs (non-homologous
end-joining) did not affect repeat instability (Savouret et al. 2003). These
results indicate that MMR proteins are involved in different aspects of
triplet repeat instability. In addition to the MMR pathway, methylation is
found to be important for repeat instability. Expansions of CTG repeats
were destabilized in DM1 cells in the presence of DNA methyltransferase
inhibitors (Gorbunova et al. 2004). These results indicate that there is more
than one mechanism involved in CAG/CTG repeat instability.

3
Mechanism of DM Pathogenesis

The mutant alleles containing CTG or CCTG expansions are transcribed
and processed normally into polyadenylated and spliced mRNAs. The
mature DMPK mRNAs containing the expanded CUG repeats are not
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exported to the cytoplasm but rather accumulate in nuclear foci detectable
by in situ hybridization (Davis et al. 1997; Fardaei et al. 2001; Fardaei et al.
2002; Taneja et al. 1995). Similarly, the excised intron from the expanded
ZNF9 allele also accumulates in nuclear foci (Liquori et al. 2001; Ranum
and Day 2002). However, it is unclear how the CTG and CCTG expansions
in noncoding regions cause a multisystemic disease.

Three hypotheses have been proposed for the molecular mechanisms of
DM pathogenesis: (1) loss of function of DMPK, (2) loss of function
of surrounding genes, and (3) RNA gain of function. Knockout mouse
models generated to test the loss of function of DMPK and surrounding
genes were only mildly related to a DM phenotype. In contrast, the trans-
genic animal models with expanded CTG repeats strongly supported the
RNA “gain of function” hypothesis.

3.1
Loss of Function of DMPK

DMPK is a serine–threonine kinase expressed in skeletal muscle, heart, and
to a lesser extent in brain and testes (Lam et al. 2000; Ueda et al. 2000).
DMPK transcripts are subject to cell-type-dependent alternative splicing
(Groenen et al. 2000; Wansink et al. 2003). All isoforms contain CTG
repeats in the 3′ UTR except one isoform that splices out the repeats using
an alternative splice acceptor site in exon 15 (Tiscornia and Mahadevan
2000). The biological function of DMPK is unknown, however, data suggest
that DMPK protein might be involved in regulation of actin cytoskeleton
(Jin et al. 2000) and in calcium homeostasis (Kaliman et al. 2005). In addi-
tion, specific DMPK splice variants localize to endoplasmic reticulum and
mitochondrial membranes, and their presence causes ER and mitochondr-
ial clustering (van Herpen et al. 2005). In individuals with DM1, nuclear
retention of DMPK mRNA from the expanded allele results in reduced
DMPK protein levels (Ueda et al. 1999). Thus, it was proposed that low lev-
els of DMPK protein contribute to disease pathogenesis. To understand the
function of DMPK and its role in DM pathogenesis, Dmpk knockout mice
were generated (Reddy et al. 1996). These mice developed cardiac conduc-
tion abnormalities (Berul et al. 1999; Reddy et al. 1996; Saba et al. 1999),
altered calcium homeostasis (Benders et al. 1997), abnormal sodium chan-
nel gating (Mounsey et al. 2000), and reduced skeletal muscle force (Reddy
et al. 1996), suggesting that Dmpk may be involved in maintenance of mus-
cle fiber. While a Dmpk knockout mouse displayed the relatively mild symp-
toms observed in DM1 patients, it did not reproduce the most characteristic
and severe features of the disease like myotonia or muscle wasting.

Transgenic mice overexpressing DMPK developed hypertrophic
cardiomyopathy and increased neonatal mortality (Jansen et al. 1996),
however these transgenic mice did not show prominent features of DM.
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3.2
Loss of Function of Surrounding Genes

Expanded CTG repeats were shown to alter chromatin structure and have
regional effects on gene expression (Otten and Tapscott 1995; Wang et al.
1994). The CTG expansion in the DMPK 3′UTR are located immediately
upstream of the SIX5 promoter region and were shown to lower SIX5
expression (Gennarelli et al. 1999; Inukai et al. 2000; Klesert et al. 1997;
Thornton et al. 1997). Six5 is a transcription factor required for eye devel-
opment in Drosophila, and the mouse homologue is implicated in distal
limb muscle development (Harris et al. 2000). Six5 knockout mice develop
ocular cataracts and infertility resembling some features of DM1 (Klesert
et al. 2000; Sarkar et al. 2000). Cardiac conduction abnormalities were also
noted in Six5 knockout mice (Wakimoto et al. 2002). However, the most
common symptoms of DM1 such as muscle weakness, wasting, and
myotonia were not reproduced in Six5 knockout mice (Klesert et al. 2000;
Sarkar et al. 2000). The identification of a second locus causing DM2
reduced the likelihood that loss of function of DMPK or flanking genes
was the determinative mechanism for at least the symptoms common for
DM1 and DM2.

3.3
RNA “Gain of Function” Hypothesis

Transgenic mice expressing 250 CTG in the final exon of the human skele-
tal alpha actin gene (HSA250) displayed characteristics of the DM pheno-
type (Mankodi et al. 2000). Specifically, HSA250 mice but not mice
expressing transgenes containing five repeats (HSA5) developed myotonia,
a classical feature of DM (Mankodi et al. 2000). Muscle histology showed
increased central nuclei, ringed fibers in muscle, and variability in fiber size
similar to histological features observed in individuals with DM1. Nuclear
foci were detected by in situ hybridization. These mice had a higher
mortality rate than normal controls. The reason for increased mortality was
unclear (Mankodi et al. 2000). These results suggested that CTG repeats in
the absence of DMPK mRNA are sufficient to cause several DM symp-
toms and strongly supported a hypothesis proposing an RNA gain of func-
tion (Timchenko et al. 1996a; Wang et al. 1995). On the other hand,
HSA250 mice did not develop muscle weakness or wasting, indicating that
there are likely to be other determinants involved in disease pathogenesis.

A second set of transgenic mice expressing 300 CUG repeats in the natu-
ral context of the human DMPK mRNA developed mild muscle and brain
abnormalities consistent with DM1 (Seznec et al. 2001). Histological abnor-
malities in muscle included central nuclei, mild muscle regeneration, degen-
eration, and altered mitochondrial morphology without significant muscle
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weakness and wasting. The authors detected myotonia in transgenic mice by
EMG (Seznec et al. 2001). Unlike HSA250, expression of RNA containing
expanded CUG repeats was not limited to skeletal muscle. These transgenic
mice showed abnormal tau protein expression in the brain similar to DM1
patients, providing evidence for toxic effects of CUG expansion in CNS.

Here we summarize the additional evidence for an RNA gain-of-
function hypothesis. First, the fact that two different loci containing similar
expanded repeats cause strikingly similar diseases strongly suggest that
DM1 and DM2 pathogenesis is independent of a loss of function of the
affected loci. Second, only the repeats and no other mutations within the
DM1 or DM2 locus cause DM, indicating that the expanded repeats them-
selves rather than a loss of function of the mutant alleles are determinative
for the disease. Third, the RNA transcribed from the mutated allele con-
taining expanded repeats (CUG/CCUG) accumulates in discrete nuclear
foci detectable by in situ hybridization (Liquori et al. 2001; Taneja et al.
1995). Fourth, Dmpk and Six5 knockout mice do not reproduce a strong
DM phenotype (Benders et al. 1997; Berul et al. 1999; Klesert et al. 2000;
Reddy et al. 1996; Saba et al. 1999; Sarkar et al. 2000). These results indi-
cate that expression of expanded CUG or CCUG repeats independent of
the loci is sufficient to induce the major features of the disease.

The expression of CUG or CCUG repeat containing RNAs is proposed
to induce pathogenesis by at least three mechanisms: (1) misregulation of
pre-mRNA alternative splicing, (2) interference with muscle differentiation,
and (3) transcriptional interference. Each of these potential mechanisms
will be discussed below.

3.3.1
Misregulation of Alternative Splicing

Alternative splicing is a process by which multiple mRNA isoforms are gen-
erated from individual genes. The majority of human genes undergo alter-
native splicing explaining, in part, the disparity between the relatively small
number of genes and the complexity of the human proteome (Modrek and
Lee 2002; Xu et al. 2002). Alternative splicing gives rise to protein isoforms
that significantly differ in their functions (Black 2003). Alternative splicing
is often regulated according to cell type or developmental stage. Regulation
involves binding of regulatory factors to intronic or exonic elements (Black
2003). The regulation of alternative splicing can have an enormous impact
on multiple aspects of cell and tissue physiology (Lopez 1998). Aberrant
regulation of alternative splicing has been implicated in several human dis-
eases (Faustino and Cooper 2003; Lopez 1998). Ten misregulated alterna-
tive splicing events that have been identified in DM1 heart, skeletal muscle,
and central nervous system are summarized in Table 1.

IR splicing has been shown to be misregulated in DM2 skeletal muscle
consistent with a similar pathogenic mechanism as in DM1 (Savkur et al.
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2004). In all cases, the regulation of alternative splicing is disrupted such
that normal mRNA variants are expressed, but in inappropriate tissues or
developmental stages. Alternative splicing of only a subset of genes is mis-
regulated in DM indicating that most genes are unaffected (Jiang et al.
2004; Philips et al. 1998). Interestingly, all pre-mRNAs misregulated in
DM1 normally undergo a developmentally regulated splicing switch. In DM
adult tissues, the embryonic or fetal splicing patterns for these genes are
retained. Misexpression of the early developmental isoforms for IR and
CLCN-1 has been shown to directly correlate with disease symptoms such
as insulin resistance and myotonia, respectively (Charlet-B. et al. 2002b;
Mankodi et al. 2002; Savkur et al. 2001). The next section summarizes all
the pre-mRNAs that are misspliced in individuals with DM.

3.3.1.1 TNNT2 (cTNT ) Contraction of striated muscle is regulated by
binding of calcium to the troponin complex located on the actin-based thin
filament. This complex consists of troponin T, troponin I, and troponin C
(TNT, TNI, and TNC, respectively). This complex regulates the calcium-
dependent interaction of actin and myosin that results in muscle contrac-
tion (Cullen et al. 2004).

TNNT2 is the cardiac isoform of TNT, which is the gene expressed in
embryonic heart, embryonic skeletal muscle, and adult cardiac muscle
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Table 1. Summary of alternative splicing events misregulated in DM1

Pre-mRNA Mis-regulated Reference
exon/intron

Cardiac troponin T exon 5 Philips et al. (1998)
(TNNT2 or cTNT )

Insulin receptor (IR) exon 11 Savkur et al. (2001)

Chloride channel intron 2 and Charlet-B. et al.
(CLCN-1) exon 7a (2002b); Mankodi et al.

(2002)

Microtubule-associated exon 2 and 10 Sergeant et al. (2001);
protein tau (MAPT ) Jiang et al. (2004)

Myotubularin-related exons 2.1 and 2.3 Buj-Bello et al. (2002)
protein 1 MTMR1

Fast skeletal troponin T fetal exon Kanadia et al. (2003a)
(TNNT3)

N-methyl-D-aspartate exon 5 Jiang et al. (2004)
receptor (NMDAR1)

Amyloid precursor protein exon 7 Jiang et al. (2004)
(APP)



(Anderson et al. 1991). Alternative splicing of exon 5 is regulated such that
the exon is included in mRNAs produced during early development of
heart and skeletal muscle but the exon is skipped in adult heart (Anderson
et al. 1995). The two major TNNT2 isoforms generated by alternative splic-
ing of exon 5 confer different calcium sensitivity to the myofilament, affect-
ing the contractile properties of maturing muscle (Godt et al. 1993;
McAuliffe et al. 1990). TNNT2 alternative splicing is disrupted in DM1
such that exon 5 is inappropriately included in adult cardiac muscle (Philips
et al. 1998). Mutations in TNNT2 and cTNI genes are associated with
inherited heart diseases including hypertrophic and dilated cardiomy-
opathies (Lu et al. 2003). Specifically, mutations in TNNT2 gene are impli-
cated in dominantly inherited familial cardiomyopathies (Forissier et al.
1996; Nakajima-Taniguchi et al. 1997; Thierfelder et al. 1994; Watkins
et al. 1995). Thus, the expression of fetal TNNT2 isoform in DM1 patients
might contribute to the reduced myocardial function and conduction
abnormalities seen in DM patients.

3.3.1.2 TNNT3 The TNNT3 gene encodes the TNT isoform expressed in
fast-twitch skeletal muscle myofibers. A fetal exon is located between exons
8 and 9 of TNNT3 gene and this fetal exon is inappropriately included in
adult DM1 skeletal muscle (Kanadia et al. 2003a). The functional conse-
quences of the inappropriate isoform are unknown.

3.3.1.3 IR IR is a tetrameric complex with two alpha and two beta
subunits. Binding of insulin to the extracellular alpha subunits causes
autophoshorylation of intracellular beta subunits (Joost 1995; Kellerer
et al. 1992). Alternative splicing of exon 11 of the alpha subunit generates
two isoforms: IR-A, which lacks exon 11, and IR-B, which includes
exon 11 (Mosthaf et al. 1990; Seino and Bell 1989). Expression of the two
isoforms is regulated in a tissue-specific manner such that IR-B is
expressed predominantly in tissues responsible for glucose homeostasis
such as liver, adipose tissue, and skeletal muscle (Condorelli et al. 1994).
IR-A has a higher affinity for insulin with lower signaling capacity and is
expressed at low levels in these tissues (Kosaki et al. 1995; Vogt et al. 1991).
The inappropriate expression of IR-A in skeletal muscle directly correlates
with the insulin resistance seen in DM1 and DM2 patients (Savkur et al.
2001; Savkur et al. 2004).

3.3.1.4 ClC-1 The muscle-specific chloride channel (ClC-1), encoded
by CLCN-1 gene, is the predominant chloride channel in adult skeletal
muscle (Bardouille et al. 1996; Pusch 2002), and loss of function muta-
tions in this gene results in inherited myotonias in humans and other
mammals (Beck et al. 1996; Koch et al. 1992; Rhodes et al. 1999; Zhang
et al. 2000). Aberrant splicing of the CLCN-1 pre-mRNA results in the
loss of CIC-1 protein in skeletal muscle of individuals with DM1 or
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DM2 due to introduction of premature termination codons, which is
thought to trigger nonsense mediated decay, resulting in degradation of
CLCN-1 mRNA (Charlet-B. et al. 2002b; Mankodi et al. 2002). The loss
of CIC-1 correlates well with the myotonia observed in individuals with
DM1 and DM2.

3.3.1.5 Tau Tau (encoded by the MAPT gene) is a microtubule-associated
protein that is required for polymerization and stability of microtubules
involved in axonal transport (Buee et al. 2000; Goedert et al. 1992). Exons
2, 3 and 10 are alternative exons that are developmentally regulated giving
rise to six different isoforms (Andreadis et al. 1992). Exon 10 encodes an
additional microtubule-binding domain, which increases its affinity to
microtubules (Hartmann et al. 2001; Varani et al. 2000). Exon 2 alters the
structure and function of the membrane-binding domain of tau allowing
connection of microtubules to the axonal membrane (Brandt et al. 1995;
Li et al. 2003). Exon 10 is not included in fetal brain but is included in 50%
of the transcripts in adult brain. Similar to exon 10, exons 2 and 3 are
excluded in fetus but included in adult. Two independent studies demon-
strated that fetal forms of MAPT (excluding exons 2, 3 and 10) were
inappropriately expressed in adult brain of individuals with DM1 (Jiang
et al. 2004; Sergeant et al. 2001). Expression of human fetal tau isoforms in
transgenic mice results in neurofibrillary tangles which are also seen in other
neurological diseases (Andreadis 2005; Gotz et al. 2001; Ishihara et al.
2001). In addition, neurofibrillary tangles can be detected in brains of indi-
viduals with DM1 (Kiuchi et al. 1991; Vermersch et al. 1996). These
observations raise the possibility that expression of a fetal tau isoform might
be involved in production of neurofibrillary tangles affecting behavioral and
cognitive functions in individuals with DM1.

3.3.1.6 APP The characteristic features of Alzheimer’s disease are senile
plaques and neurofibrillary tangles in the brains of affected individuals.
The major component of senile plaques is amyloid, a peptide derived from
proteolysis of a large beta-amyloid precursor protein (APP). APP is a
type I trans-membrane glycoprotein existing in eight isoforms generated by
alternative splicing of exons 7, 8, and 15 (Sandbrink et al. 1996). Exon 7 is
believed to encode a serine protease inhibitor domain (Ponte et al. 1988).
The APP mRNA, which excludes exon 2 and 7 is fetus-specific (Tang et al.
2003). Fetal forms of APP excluding exon 7 are inappropriately expressed
in brains of individuals with DM (Jiang et al. 2004). The consequences for
the loss of this protease inhibitory domain by exclusion of exon 7 in DM1
are unclear.

3.3.1.7 NMDAR1 N-methyl-D-aspartate receptors (NMDAR) are
involved in excitatory transmission in the mammalian brain and are crucial
for brain development, learning, and memory (Sato et al. 2000; Tsien et al.

Misregulation of Alternative Splicing Causes Pathogenesis 141



1996). NMDAR1 pre-mRNA has three alternative exons: 5, 21, and 22.
Differential usage of these exons generates at least seven mRNA isoforms
that encode proteins with different physiological properties and subcellular
distribution (Durand et al. 1993; Zukin and Bennett 1995). The protein seg-
ment encoded by exon 21 is believed to be important for localization of
NMDAR1 to the post-synaptic plasma membrane (Ehlers et al. 1995). The
NMDAR1 isoform including exon 21 was increased in brain tissues of indi-
viduals with DM1 (Jiang et al. 2004). Similarly, the inclusion of exon 5 of
NMDAR1 is thought to affect the intracellular distribution of NMDAR1
(Pal et al. 2003; Traynelis et al. 1995). Increased exon 5 and exon 21 inclu-
sion was detected in brain tissues of DM1 patients (Jiang et al. 2004),
implicating a possible correlation between a change in the distribution of
NMDAR1 and the CNS symptoms of DM.

3.3.1.8 MTMR1 The MTMR1 gene belongs to a conserved family of
phosphatidylinositol 3-phosphate [PI (3)P] phosphatases (Laporte et al.
2001) involved in regulation of intracellular vesicular trafficking and mem-
brane transport (Simonsen et al. 2001). Alternative splicing of exons 2.1,
2.2, and 2.3 generates the muscle-specific protein isoforms A, B, and C
(Buj-Bello et al. 2002). Exons 2.1, 2.2, and 2.3 encode 8, 9, and 17 amino
acids, respectively (Buj-Bello et al. 2002). A switch from isoform A to C is
detected in individuals with CDM. It is unclear whether there is a change
in protein function due to the isoform switch since phosphatase activities
seems to be similar (Buj-Bello et al. 2002). However, there are two
independent reports suggesting that point mutations or deletions in the
MTMR1 gene are associated with myotubular myopathy, a disease associ-
ated with hypotonia and respiratory insufficiency resembling some features
of CDM (Copley et al. 2002; Zanoteli et al. 2005). In addition, the loss of
MTM1, a gene closely related to MTMR1, is implicated in a congenital
muscular disorder called X–linked myotubular myopathy, exhibiting some
similarities to CDM such as hypotonia, muscle weakness, and muscle fibers
with central nuclei (Wallgren-Pettersson et al. 1995).

3.4
Mechanisms of Misregulated Alternative Splicing

The specific mechanism by which expression of CUG- or CCUG-repeat
RNA induces splicing misregulation is unclear. However, there is substan-
tial evidence linking the misregulation of alternative splicing observed in
DM tissues with two families of RNA binding proteins: CUG-BP and
ETR-3-Like Factors (CELF) and muscleblind-like (MBNL). Members of
both the CELF and MBNL families were first identified based on their
binding to CUG-repeat RNA in vitro (Lu et al. 1999; Michalowski et al.
1999; Miller et al. 2000; Timchenko et al. 1996b). Members of both protein
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families have been demonstrated to bind RNA and to directly regulate
alternative splicing of multiple pre-mRNAs including several that undergo
misregulated alternative splicing in DM (Charlet-B. et al. 2002b; Ho et al.
2004; Philips et al. 1998; Savkur et al. 2001). Interestingly, CELF and
MBNL proteins have been shown to antagonistically regulate two splicing
events that are misregulated in DM tissues (TNNT2 and IR), and the splic-
ing patterns of at least these two pre-mRNAs are consistent with either loss
of MBNL activity and/or a gain of CELF activity (Ho et al. 2004). There
is evidence strongly supporting both increased CELF activity and reduced
MBNL activity as determinative factors in misregulated splicing in DM.
Each of these families will be described as well as their potential role in
misregulated alternative splicing.

3.4.1
Increased CUG-BP1 Splicing Activity

There are six CELF paralogues in humans: ETR-3 (CUG-BP2/
BRUNOL3/NAPOR), CELF3 (BRUNOL1), CELF4 (BRUNOL4),
CELF5 (BRUNOL5), CELF6 (BRUNOL6), and CUG-BP1 (BRUNOL2/
CUG-BP1). The CELF paralogues are 43–78% identical and all six have
three RNA recognition motifs (RRMs) and a 160–230 amino acid divergent
domain separated by RRMs 2 and 3 (Ladd et al. 2001). CELF proteins
are involved in both nuclear and cytoplasmic events such as alternative
splicing, RNA editing, and mRNA stability and translation (Anant et al.
2001; Ladd et al. 2001; Ladd et al. 2004; Mukhopadhyay et al. 2003;
Timchenko et al. 1999). With regard to alternative splicing, CELF
proteins have been shown to regulate a number of pre-mRNAs by directly
binding to U/G-rich motifs within introns (Charlet-B. et al. 2002a;
Charlet-B. et al. 2002b; Faustino and Cooper 2005; Philips et al. 1998).
Alternatively spliced genes that are regulated by CELF proteins include
TNNT2 exon 5, IR exon 11, CLCN-1 intron 2, NMDAR1 exons 5 and 21,
actinin muscle-specific exon, and MTMR1 exon 2.1 and 2.2 (Charlet-B.
et al. 2002a; Charlet-B. et al. 2002b; Faustino and Cooper 2005; Gromak
et al. 2003; Philips et al. 1998; Savkur et al. 2001; Zhang et al. 2002).

CUG-BP1 is the most studied member of the CELF protein family.
CUG-BP1 has been demonstrated to directly regulate three alternative
splicing events that are misregulated in DM: CLCN-1 intron 2, TNNT2
exon 5, and IR exon 11 (Charlet-B. et al. 2002b; Philips et al. 1998; Savkur
et al. 2001). In tissue culture, the misregulated splicing patterns observed
for these three genes in DM1 tissues can be recapitulated by overexpression
of CUG-BP1, suggesting that DM cells exhibit an increased activity of
CUG-BP1 or other members of the CELF family (Charlet-B. et al. 2002b;
Philips et al. 1998; Savkur et al. 2001). Consistent with increased CUG-BP1
splicing activity, CUG-BP1 protein levels are increased in DM1 skeletal
muscle tissue (Savkur et al. 2001), DM1 skeletal muscle cultures
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(Dansithong et al. 2005; Savkur et al. 2001) and in DM1 heart tissue
(Timchenko et al. 2001a). In addition, transgenic mice expressing CUG-
BP1 eight to ten fold above endogenous levels inhibited muscle
differentiation and resulted in neonatal lethality (Timchenko et al. 2004).
Histological features were variably consistent with what is observed in
CDM patients including centrally positioned nuclei suggestive of immature
skeletal muscle. However, type 1 slow myofiber numbers were increased
while these are decreased in DM skeletal muscle. The mechanism of mus-
cle immaturity is thought to be due to altered translation of p21 and myo-
genin mRNAs by CUG-BP1. In another line of transgenic mice
overexpressing CUG-BP1 in heart and skeletal muscle using the mouse cre-
atine kinase promoter (MCKCUG-BP), transgene expression was associ-
ated with neonatal lethality (Ho et al. 2005a). Histological changes were
consistent with CDM, as well as splicing changes observed for TNNT2 exon 5
and MTMR1 exons 2.1 and 2.2 in cardiac muscle, and MTMR1 exons 2.1 and
2.2 and CLCN-1 exon 7a in skeletal muscle tissue (Ho et al. 2005a).

3.4.2
Sequestration of MBNL Proteins

The three human MBNL paralogues are homologues of Drosophila mus-
cleblind (mbl ), which is required for Drosophila photoreceptor and muscle
differentiation (Artero et al. 1998; Begemann et al. 1997). MBNL1,
MBNL2, and MBNL3 are located on chromosomes 3, 13, and X, respec-
tively (Fardaei et al. 2002; Miller et al. 2000). MBNL1 was identified based
on its ability to bind double-stranded CUG-repeat RNA in HeLa cell
nuclear extracts (Miller et al. 2000). All three MBNL proteins colocalize
with expanded CUG and CCUG RNA nuclear foci in cultured cells as
detected by immunofluorescence (Fardaei et al. 2002; Mankodi et al. 2001;
Miller et al. 2000). In addition, MBNL can bind to expanded (up to 50)
CCUG, CUG, and CAG repeats as detected by a yeast three-hybrid assay
(Kino et al. 2004). Both MBNL1 and MBNL2 are expressed in skeletal
muscle and heart, two tissues that are prominently affected in DM
(Kanadia et al. 2003b). MBNL3 expression is restricted to the placenta in
the adult mice and is more widely expressed in the embryo (Fardaei et al.
2002; Miller et al. 2000).

The observations that muscleblind proteins colocalize with the expanded
CUG and CCUG repeats strongly suggests that loss of MBNL function
due to sequestration on CUG-repeat RNA plays a major role in DM
pathogenesis (Dansithong et al. 2005; Fardaei et al. 2002; Jiang et al. 2004;
Mankodi et al. 2001; Miller et al. 2000). Results from Mbnl knockout mice
strongly support this hypothesis (Kanadia et al. 2003a). Targeted deletion
of exon 3 in mice (MBNL1∆E/∆E) to eliminate the MBNL1 isoforms that
bind expanded CUG/CCUG RNA repeats resulted in myotonia, cataracts,
and RNA splicing defects that are striking characteristics of DM.
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Histological analysis of muscle revealed increased central nuclei and split-
ting of myofibers. MBNL1∆E/∆E mice showed abnormal retention of the
TNNT3 fetal exon and CLCN-1 exon7a in skeletal muscle and TNNT2
exon 5 in heart consistent with splicing changes seen in individuals with
DM1 and without changes in steady state levels of CUG-BP1 (Kanadia
et al. 2003a).

The MBNL family was recently identified as direct regulators of alter-
native splicing (Ho et al. 2004). Specifically, MBNL proteins regulate splic-
ing of TNNT2 exon 5 and IR exon 11 via direct binding to adjacent intronic
elements (Ho et al. 2004). MBNL and CELF proteins have antagonistic
effects on the splicing patterns of these two pre-mRNAs, however, MBNL
and CELF proteins bind to different sites within the pre-mRNAs indicat-
ing that the antagonism is not due to a competition for a common binding
site. In addition, regulation by CELF and MBNL appeared to be com-
pletely independent, as TNNT2 minigenes containing mutant CUG-BP1
binding sites still responded to MBNL1, and vice versa (Ho et al. 2004).

The patterns of misregulation for TNNT2, IR, and CLCN-1 are consis-
tent with increased CUG-BP1 activity and with decreased MBNL1 activ-
ity. Whether the splicing effects in DM are due primarily to loss of MBNL
activity or a gain of CELF protein activity remains an open question, with
evidence supporting both. Several pieces of evidence, some of which was
noted above, support a role for MBNL depletion. First, MBNL proteins
colocalize with CUG- and CCUG-repeat RNA foci, which is consistent
with a loss of function due to sequestration (Fardaei et al. 2002; Mankodi
et al. 2001; Miller et al. 2000). Second, misregulated splicing patterns and
striking phenotypic similarities to DM are observed in Mbnl knockout
mice (Kanadia et al. 2003a). Third, a recent study showed that loss of
MBNL1 function was the critical event in aberrant splicing of IR in DM1
cultured cells (Dansithong et al. 2005). Fourth, of the two pre-mRNAs
directly regulated by MBNL proteins (TNNT2 and IR), the splicing pat-
terns of both alternative exons in DM tissues are consistent with a loss of
MBNL activity (Ho et al. 2004).

There are also several results that support a role for increased CELF
activity. First, CUG-BP1 steady state levels are increased in DM skeletal
muscle and heart tissues as well as in DM cell cultures (Dansithong et al.
2005; Savkur et al. 2001; Timchenko et al. 2001a). Second, the splicing
patterns of all of the three pre-mRNAs (TNNT2, IR, and CLCN-1) shown
to be directly regulated by CUG-BP1 are consistent in DM tissues with
increased CUG-BP1 activity (Charlet-B. et al. 2002b; Philips et al. 1998;
Savkur et al. 2001). Third, a TNNT2 minigene expressed in DM cell
cultures reproduces the splicing pattern observed for the endogenous
TNNT2 pre-mRNA in DM tissues (Philips et al. 1998). Similarly, the
“DM” splicing pattern for both TNNT2 and IR minigenes can be induced
in normal cells by co-expression of a plasmid containing expanded CTG
repeats (Ho et al. 2004; Philips et al. 1998; Savkur et al. 2001). Importantly,
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minigenes that contain mutations in the CUG-BP1 binding site are no
longer responsive to CUG-BP1, to the effects in DM cell cultures, or to co-
expression of CUG-repeat RNA (Philips et al. 1998; Savkur et al. 2001).
These results indicate that the effects of the repeats on splicing require the
CUG-BP1 binding site and suggest a direct role for CUG-BP1.

There is also evidence suggesting that sequestration of MBNL proteins
is not sufficient to explain the trans-acting effects of CUG-repeat RNA on
splicing. First, the mutated TNNT2 minigene that is not responsive to
CUG-repeat RNA remains responsive to depletion of MBNL1 using
siRNAs (Ho et al. 2004). The finding that a minigene that does not respond
to co-expression of CUG-repeat RNA still responds to MBNL1 depletion
indicates that the effects of CUG RNA on splicing involves more than
MBNL depletion (Ho et al. 2004). Second, recent results indicate that
MBNL colocalizes with nuclear RNA foci containing either CUG- or
CAG-repeat RNA from transiently transfected plasmids. Expanded CUG-
repeat RNA induces splicing changes of TNNT2 and IR minigenes when
coexpressed with the minigenes but CAG repeats of equal length and
expressed at comparable levels have little effect on splicing (Ho et al. 2005b).
When FRAP analysis was used to determine the relative affinity of a
MBNL1-GFP fusion protein for CUG- and CAG-repeat RNA foci in vivo;
no differences were detected (Ho et al. 2005b). Therefore, CUG and CAG
RNA appear to have similar abilities to sequester MBNL while only CUG
repeats have a trans-dominant effect on splicing. Finally, MBNL3, also
called CHCR (Cys3His CCG1-Required), was identified as an inhibitor of
muscle differentiation in C2C12 cells (Squillace et al. 2002). Muscle differ-
entiation defects observed in DM is not consistent with loss of MBNL3
function since MBNL3 sequestration in nuclear foci should favor differen-
tiation. These results suggest that while loss of MBNL activity is likely to
play a role in the splicing abnormalities observed in DM, the effects of the
repeats on alternative splicing regulation appear to involve a mechanism
more complex than sequestration of MBNL alone.

Accumulation of RNA foci is an important hallmark of DM (Davis
et al. 1997; Jiang et al. 2004; Liquori et al. 2001; Mankodi et al. 2003; Miller
et al. 2000; Taneja et al. 1995). The formation of the foci was recently
shown to require MBNL as RNAi-mediated depletion of MBNL in DM1
myoblasts reduced the number of foci by 70% (Dansithong et al. 2005). It
is clear that the repeat-containing RNA is pathogenic but it is not clear
whether foci contain the pathogenic form of the RNA. The finding that
CAG-repeat RNA forms foci, colocalizes with MBNL but does not alter
splicing strongly suggest that foci formation and the potential to sequester
MBNL alone is not sufficient for misregulated alternative splicing.
Additional support for the inconsistency between toxicity and foci forma-
tion comes from a recent report showing that expression of 162 CTG repeats
in the 3′ UTR of a reporter gene formed foci in Drosophila tissues without
inducing pathology, suggesting that foci formation was not toxic to Drosophila
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(Houseley et al. 2005). Similarly, foci formation by RNAs containing only
CUG repeats is not sufficient to induce muscle-differentiation defects in the
C2C12 cell line (Amack and Mahadevan 2001). In summary, these results
strongly suggest that foci formation alone is not pathogenic.

3.4.3
Sequestration of Other RNA Binding Proteins

In addition to MBNL proteins, the splicing regulators hnRNP H and F colo-
calize with CUG foci in neurons of DM1 patient brain samples (Jiang et al.
2004). Neuron-specific c-src N1 exon is regulated by hnRNP F (Min et al.
1995) and hnRNP H regulates NF-1 exon 3, thyroid stimulating hormone
beta subunit (TSH beta) genes (Buratti et al. 2004), HIV-1 tev-specific
exon 6D (Caputi and Zahler 2002) and beta tropomyosin (Chen et al. 1999).
The relevance of hnRNP H and hnRNP F colocalization with RNA foci is
not clear since splicing of c-src is not disrupted in neurons (Jiang et al. 2004).

Double-stranded-RNA-dependent protein kinase R (PKR), is activated
by double-stranded RNA as a response to viral infections (Williams 2001).
Activation of PKR inhibits translation by phosphorylation of translation
initiation factor eIF2 alpha (Clemens 2001). PKR was identified as one of
the RNA-binding proteins that bind to double-stranded CUG repeats, and
PKR is activated by CUG-repeat expression in vitro (Tian et al. 2000).
Further studies using mouse models; however, indicated that PKR is not
crucial to disease pathogenesis. Neither myotonia nor histological changes
were altered in HSA250 mice on a PKR−/− or PKR−/+ background, sug-
gesting that PKR is unlikely to be relevant to DM pathogenesis (Mankodi
et al. 2003).

3.4.4
Transcriptional Interference

The toxicity of expanded CUG repeats is proposed to result from seques-
tering transcription factors similar to a mechanism of pathogenesis for
polyglutamine expansions (Ebralidze et al. 2004). The transcription factors
Sp1 and retinoic acid receptor gamma were found to be recruited to the
expanded CUG repeats and depleted from the active chromatin correlating
with reduced expression of several genes including CLCN-1 (encodes for
ClC-1 protein) detected by real time RT-PCR analysis (Ebralidze et al.
2004). In addition to alternative splicing misregulation and likely downreg-
ulation by NMD, reduced transcription of CLCN-1 mRNA might also
contribute to loss of ClC-1 protein and myotonia. In contrast to the expec-
tation that transcription factors are sequestered with CUG-repeat RNA,
however, Jiang and colleagues could not detect Sp1 or retinoic acid recep-
tor gamma associated with RNA foci in brain tissues of DM1 patient cells
by immunofluorescence (Jiang et al. 2004).
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3.4.5
Muscle Differentiation Defects and Altered Translation
Regulation

Muscle weakness and wasting are the major causes of mortality in individ-
uals with DM1 (Harper 2001). Delays or defects in muscle differentiation
have been proposed as the major factors that lead to muscle weakness and
wasting. In culture, normal muscle cells proliferate in growth medium;
upon removal of growth factors, the cell cycle is inhibited and the cells
enter the differentiation pathway. Differentiating cells fuse into multi-nucle-
ated myotubes and express muscle-specific genes (Olson 1992). A defect in
muscle differentiation has been observed both in individuals with congeni-
tal and adult onset DM1 (Furling et al. 2001; Timchenko et al. 2001b).
Morphological and histochemical studies revealed developmental defects
in satellite cells from individuals with CDM expressing 2300 CTG repeats.
Myoblast fusion was less complete in cells with nuclear RNA foci suggest-
ing a defect in myogenic differentiation associated with CUG-repeat RNA.
In addition to poor muscle differentiation, satellite cells had a reduced life
span and proliferation capacity in culture (Furling et al. 2001).

Myoblasts from individuals with DM1 were unable to withdraw from the
cell cycle when stimulated to differentiate (Timchenko et al. 2001b). In
C2C12 cells, four- to ten-fold constitutive overexpression of the human
DMPK 3′UTR inhibited muscle differentiation. The inhibitory activity was
mapped to a 239-nucleotide region located upstream of the CTG repeats
(Sabourin et al. 1997). Recently, the toxic effects of DMPK 3′ UTR was
reproduced in transgenic mice overexpressing DMPK 3′-UTR with wild
type (11) or expanded (91) CTG repeats (Storbeck et al. 2004). Both
expanded and wild-type CTG-repeat-expressing mice displayed muscle
atrophy supporting the previous findings that mainly DMPK 3′ UTR is
responsible for muscle differentiation defects (Storbeck et al. 2004).
Myoblast cultures from these animals showed reduced fusion, but disrup-
tion of muscle differentiation was worse in the presence of expanded CTG
repeats. These results suggest that the DMPK 3′UTR was sufficient for
defects in muscle differentiation. On the other hand, in C2C12 cell lines sta-
bly expressing the normal DMPK 3′UTR, muscle differentiation was not
disrupted. Only DMPK 3′UTR expressing 200 CTG repeats inhibited
C2C12 myoblast differentiation (Amack et al. 1999). These results suggest
that repeats are necessary for inhibition of muscle differentiation. MyoD
was identified as a target for the inhibitory effects of DMPK 3′UTR with
expanded CTG repeats during C2C12 differentiation as well as during
DM1 myoblast differentiation (Amack et al. 2002; Timchenko et al. 2001b).
Specifically, expression of the DMPK 3′UTR with 200 CTG repeats
severely reduced MyoD levels (Amack et al. 2002) and reduced levels of
MyoD were detected in myoblasts from individuals with DM1 (Timchenko
et al. 2001b).
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The p21 protein, which is an important regulator of cell cycle progres-
sion and muscle differentiation, was identified as a downstream target for
the muscle differentiation defects induced by expanded CTG repeats
(Timchenko et al. 2001b). CUG-BP1 was shown to enhance p21 translation
by binding to GCN repeats in the 5′ UTR of p21 mRNA (Timchenko et al.
2001b). Accumulation of CUG-BP1 in the nuclei of DM cells resulted in
reduced levels of p21 translation leading to reduced differentiation of these
cells. These results suggest that reduced MyoD and p21 are directly
involved in muscle development abnormalities seen in CDM or defects in
muscle regeneration seen in DM1.

The molecular mechanisms for muscle weakness and wasting in DM2
patients are not clear since there is no involvement of DMPK 3′UTR in
DM2. To date, none of the transgenic or knockout mouse models have
reproduced a clear progressive muscular dystrophy phenotype as observed
in individuals with DM1 (Berul et al. 2000; Kanadia et al. 2003a; Klesert
et al. 2000; Mankodi et al. 2000; Mounsey et al. 2000; Reddy et al. 1996;
Sarkar et al. 2000; Seznec et al. 2001; Timchenko et al. 2004). There are sev-
eral possibilities for the lack of this phenotype in mouse models. First, mice
might not show the same phenotype as humans due to physiological differ-
ences. Second, there is no mouse model that expresses more than 300 CTG
repeats. Longer repeats might have more severe effects in muscle develop-
ment. Alternatively, higher levels of expression of shorter repeats could
also show a more severe phenotype. Finally, the mouse life span might not
be long enough for the disease to worsen. In the future, it will be important
to have animal models that could represent dystrophy seen in DM to better
understand the molecular mechanisms involved and find better ways to
treat patients.
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