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7.1
Introduction

Sorghum [Sorghum bicolor (L.) Moench] is the fifth
most important cereal crop, after wheat, rice, maize,
and barley. A largely self-pollinated crop, it is grown
on over 40 million hectares (USDA 2004) in both tem-
perate and tropical regions. Sorghum is mainly grown
as a rainfed crop by subsistence farmers in the semi-
arid tropical regions of Africa and Asia as well as
by other farmers in the USA and Latin America. It is
a suitable crop for drought and heat-stressed environ-
ments and can be grown from sea level to elevations
in excess of 300 m, in high rainfall areas, in semiarid
regions, and in different seasons.
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Center of Origin

The origin of sorghum, an African grass, and its diver-
sification into five major races and thousands of differ-
ent genotypes began in the distant human past and is
only partially known. However, the work of botanists,
plant breeders, archaeologists, and geographers has
uncovered the probable evolutionary pathway in the
domestication of sorghum and the probable spatial
dynamics of that evolution under cultural control.
A great deal has been learned in the last few about the
origins of the cereal and the people responsible for the
domestication of sorghum races years. The Ethiopian
region of Africa is the center of origin of sorghum
(Mann et al. 1983) as it is rich in the number of snow-
denian species and also contains several varieties of
the durra type, which represents the highly evolved
varieties among the cultivated races. From Ethiopia
sorghum was taken to West Africa across the Sudan,
from where it was first grown among the Mande peo-
ple of the upper Niger. Also from Ethiopia sorghum
was taken to East Africa, from where it was distributed
among the Nilotic and Bantu people. From East Africa

the sorghum spread to India during the first millen-
nium and was taken from there to China in the early
Christian era (Doggett 1976). Sorghum races in India
are closely related to those in northeast Africa. From
West Africa sorghum was distributed to the USA and
other parts of the world through slave trade around
the mid-19th century. Before 1900 full-scale cultiva-
tion of sorghum had started in the southern great
plains of the USA.

7.1.2
Domestication

Sorghum has been carried to many new habitats in
different environments to become a staple grain for
millions of people. Sorghum has also been diversified
into a sugar source, a construction material, a raw
material for household implements, and a raw mate-
rial for industry. The change from a harvested wild
plant with much internal variability to an important
resource for use and improvement is the result of man-
agement. Cultivated races of sorghum originated by
disruptive selection and domestication in east central
Africa from the wild snowdenian species, Sorghum
arundinaceum. Human selection for cultivated char-
acters (mainly nonshattering heads, large seeds and
ears, easy threshability, and suitable height and ma-
turity) and natural selection for wild type character
resulted in divergence into polymorphic populations
in the presence of considerable gene flow between
the wild and cultivated types. These processes seem
to have contributed to the evolution of durra, kafir,
bicolor, cernum, and caudatum and other intermedi-
ate types. According to Doggett (1976), most of these
types might have migrated to India and China around
4000 BC and 2000 BC, respectively.

Sorghum is adapted to a wide range of envi-
ronmental conditions but is particularly adapted to
drought. It has a number of morphological and phys-
iological characteristics that contribute to its adap-
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tation to dry conditions, including an extensive root
system, waxy bloom on the leaves that reduces wa-
ter loss, and the ability to stop growth in periods
of drought and resume it again when conditions be-
come favorable. It is also tolerant to water logging
and can be grown in high rainfall areas. It is, how-
ever, primarily a crop of hot, semiarid tropical en-
vironments with 400 to 600 mm rainfall that are too
dry for maize. It is also widely grown in temperate
regions and at altitudes of up to 2,300 m in the trop-
ics.

7.1.3
Taxonomic Position

All commercial groups of sorghum such as grain
sorghum, fodder sorghum, broomcorns, and sor-
gos are classified under a single botanical species
Sorghum bicolor (L.) Moench. The genus Sorghum
belongs to one of the 16 subtribes of the tribe Andro-
pogoneae of the subfamily Panicoidae of the family
Poaceae.

Classification of the Genus Sorghum

Among all the classification attempts, Snowden’s
(1936) is the most comprehensive and practicable to
a certain extent.

Section Eusorghum
Subsection Arundinaceae
Series Spontanea and Sativa
Subsection Halepensia

Section Para-sorghum

Members of the subsection Arundinacea are diploids
with 2n = 20 chromosomes. The series Spontanea
comprises wild species or races, and the series Sativa,
the cultivated races. Using this basic structure, Snow-
den (1936) described 31 cultivated and 17 related wild
species. These species are more appropriately consid-
ered as races of a single species.

Garber (1950) and Celarier (1959) divided the
genus into six subgenera based on cytotaxonomic
data: Eusorghum, which is the same as Snowden’s sec-
tion = Eusorghum, Chaetosorghum, Heterosorghum,
Sorghastrum, Parasorghum, and Stiposorghum. Vari-
ation within these subgenera can best be described
from the key outlined by Celarier (1959):

AA Nodes glabrous or minutely pubescent, first
bloom of sessile spikelet many nerved (>10)

A Sorghum: pedicellate spikelets staminate or
neuter, awns small or wanting.

B Pedicellate spikelets with glumes only, awns
prominent.

1. Heterosorghum: primary branch of panicle
simple and not whorled, glumes of pedicel-
late spikelets subequal, lodicules ciliate

2. Chaetosorghum: primary branch of panicle
simple and not whorled, glumes of pedicel-
late spikelets unequal, lodicules glabrous

Nodes with distinct ring of hairs, first glume of

sessile spikelet few nerved (<10)

BB

1. Parasorghum: callus obtuse, awns <65 mmin
length

2. Stiposorghum: callus pointed, awns >65 mm
in length

Sun et al. (1994) used internal transcribed spacers
of nuclear ribosomal DNA to evaluate the phyloge-
netic relationships within the genus Sorghum. They
found that Chaetosorghum and Heterosorghum ap-
pear to be closely related to each other, and these two
are more closely related to sorghum than to Para-
sorghum.

A simplified classification scheme of cultivated
sorghums was proposed by Harlan and de Wet (1972)
based on morphological characteristics that most
present-day breeders have come to recognize and
utilize. The International Plant Genetic Resources
Institute (formerly IBPGR) Advisory Committee on
sorghum and millet germplasm has recommended
this classification to be used in describing sorghum
germplasm. Their system of classification of cultivated
races into five basic races and ten intermediate races
and those of wild races into six spontaneous races is
presented below:

1. Basic races:

Race 1 bicolor (B)
Race 2 guinea (G)
Race 3 caudatum (C)
Race 4 kafir (K)

- Race 5 durra (D)

2. Intermediate races: (all combinations of basic
races)

- Race 6 guinea-bicolor (GB)
Race 7 caudatum-bicolor (CB)
Race 8 kafir-bicolor (KB)

Race 9 durra-bicolor (DB)
Race 10 guinea-caudatum (GC)
Race 11 guinea-kafir (GK)
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Table 1. Characteristics of commercial grain sorghum types

Grain sorghum Brief morphological description

Geographical location

type
Durra Hairy, rachises, flattened kernels and dry stalks Mediterranean, Near East,
Middle East
Shallu Partly pubescent involute glumes, cone-shaped lax panicles, India, tropical Africa
corneous kernels, dry and non-sweet stalks
Guineense Involute and nearly glabrous glumes and compact panicles Central and Western Africa
Kafir Awnless, compact cylindrical panicles and juicy non-sweet South Africa
stalks
Kaoliang Stiff stalks, thick hard rind, stiff spreading and few Eastern Asia
panicle branches, and dry and no-sweet stalks
Milo Yellow midrib, transverse wrinkle of the glumes, compact, East Africa
awned panicles, large round kernels
Feterita Large kernels, brown testa, and dry and non-sweet stalks Sudan
Hegari Rounded kernels, brown testa midcompact ellipsoid and Sudan

branched panicles, and white kernels with a bluish-white

appearance

- Race 12 guinea-durra (GD)
- Race 13 kafir-caudatum (KC)
- Race 14 durra-caudatum (DC)
- Race 15 kafir-durra (KD)
3. Spontaneous races: S. bicolor ssp. arundinaceum
- Race 1 arundinaceum
- Race 2 aethiopicum
- Race 3 virgatum
- Race 4 verticilliflorum
- Race 5 propinquum
- Race 6 shattercane

Classification within the subgenera was further
developed by de Wet (1978). The three species in the
subgenera sorghum were recognized: Sorghum, two
rhizomatous taxa, S. halepense and S. propinquum,
andSS. bicolor, representing all annual wild, weedy, and
cultivated taxa. S. bicolor was broken down further
into three subspecies: S. bicolor ssp. bicolor, S. bicolor
ssp. drummondii, and S. bicolor ssp. verticilliflorum
(formerly ssp. arundinaceum).

A commercial type of classification is used in the
United States. Several commercial types occur and
are given regional names. Extensive breeding has
eroded the clear-cut differences among the various
types. However, popular regional types such as dur-
ras, shallus, guineas, kafirs, kaoliangs, milos, feteritas,
and hegaris are common in grain sorghum literature.
These groups differ in their genetic characters as ev-
idenced by the diversity resulting from intercrosses

between the groups. Certain factors for disease re-
action, insect resistance, heterosis, cytoplasmic male
sterility, fertility restoration, and tillering tend to be
associated with particular groups. Details of some of
the more popular groups are given in Table 1.

714
Brief Morphology

Sorghum is a vigorous grass that varies between 0.5
and 5.0 min height. It is usually an annual. It produces
one or many tillers, which emerge initially from the
base and later from stem nodes. The root system con-
sists of fibrous adventitious roots that emerge from
the lowest nodes of the stem, below and immediately
above ground level. Roots are normally concentrated
in the top 0.9 m of soil but may extend to twice that
depth and can extend to 1.5 m in lateral spread. The
stem is solid, usually erect. Its center can be dry or
juicy, insipid or sweet to taste. The center of the stem
can become pithy with spaces. Leaves vary in num-
ber from 7 to 24, depending on the cultivar. They are
borne alternately in two ranks. Leaf sheaths vary in
length from 15 to 35 cm and encircle the stem with
their margins overlapping. The leaf sheath often has
a waxy bloom. Leaves are from 30 to 135 cm long and
1.5 to 13 cm wide, with flat or wavy margins. Midribs
are white or yellow in dry pithy cultivars or green in
juicy cultivars. The flower is a panicle, usually erect,
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but sometimes recurved to form a gooseneck. The
panicle has a central rachis, with short or long pri-
mary, secondary, and sometimes tertiary branches,
which bear groups of spikelets. The length and close-
ness of the panicle branches determine panicle shape,
which varies from densely packed conical or oval to
spreading and lax. Grain is usually partially covered
by glumes. The seed is rounded and bluntly pointed,
from 4 to 8 mm in diameter and varying in size, shape,
and color with cultivar.

7.1.5
Cytogenetic Structure

Sorghum bicolor has a haploid chromosome number
of 10, and it is classified as a diploid (2n = 2x = 20).
Most species in the genus Sorghum are diploid
with 2n = 20, but several species, most notably S.
halepense, are tetraploid (2n = 4x = 40). As the basic
chromosome number in the Sorghastrae is five, it
has often been hypothesized that sorghum may be
of tetraploid origin. Meiotic chromosome pairing
analysis did not provide any strong evidence of
a tetraploid origin (Brown 1943; Endrizzi and Mor-
gan 1955), but the large number of complementary
gene loci seems to indicate a tetraploid origin. The
application of fluorescent in situ hybridization (FISH)
to sorghum chromosomes indicates that single-copy
probes consistently identify two loci on separate
chromosomes. This provides strong evidence that
sorghum does in fact have tetraploid origins (Gomez
et al. 1997).

Differences between chromosomes in subgenera
of sorghum are detectable, but karyotypic analysis of
sorghum chromosomes has been difficult due to sim-
ilarities in chromosome size and structure (Huskins
and Smith 1932; Doggett 1988). Karyotype analysis
of several subgenera of the genus Sorghum indicates
that chromosomes in the subgenus Eusorghum are
distinctly different and smaller than chromosomes in
the subgenera Parasorghum and Stiposorghum (Gar-
ber 1950; Celarier 1959; Gu et al. 1984). Gu et al. (1984)
described the karyotype of S. bicolor, but only chro-
mosome I (nucleolar organizing region) and chromo-
some IV (characteristic arm ratio) could be identified
distinctly. Yu et al. (1991) were able to identify all
ten chromosomes in S. bicolor using a combination of
chromosome size, arm ratio, and C-banding patterns.
C-banded karyotype for somatic metaphase chromo-
somes of sorghum (Combined Kafir 60) is presented

in Fig. 1. Later, Kim et al. (2002) used fluorescence in
situ hybridization (FISH) and integrated structural
genomic resources, including large insert genomic
clones in bacterial artificial (BAC) libraries, to iden-
tify ten chromosomes simultaneously. Recently, they
(Kim et al. 2004) have determined linkage group iden-
tities and homologies for metaphase chromosomes of
Sorghum bicolor (2n = 20) by FISH of landed BACs.
They used relative lengths of chromosomes in FISH-
karyotyped metaphase spreads of the elite inbred BT
X 623 to estimate the molecular size of each chromo-
some and to establish a size based nomenclature for
sorghum chromosomes (SBI-01 to SBI-10) and link-
age groups (LG1 to LG10) (Table 2 and Fig. 2).

The genome size for S. bicolor and S. halepense has
been reported to be 735 and 1,617 Mb, respectively
(Laurie and Bennett 1985). Later Arumunganathan
and Earle (1991) estimated the genome size of S. bi-
color to be ca. 750 Mb while Peterson et al. (2002)
reported 692 Mb.

7.1.6
Economic Importance

Sorghum is the fifth most important cereal crop in the
world after wheat, rice, maize, and barley. It is culti-
vated annually on ca. 45 million ha, producing ca. 60
million MT of grain (USDA 2004) (Table 3). Sorghum
grain is a major food in much of Africa, South Asia,
and Central America and an important animal feed
in the USA, Australia, and South America. In addi-
tion to these uses of the grain, sorghum crop residues
and green plants also provide sources of animal feed,
building materials, and fuel, particularly in dryland
areas of the semiarid tropics (SAT). Grain sorghum is
well known for its capacity to tolerate conditions of
limited moisture and to produce during periods of ex-
tended drought, in circumstances that would impede
production in most other grains. Sorghum leaves roll
along the midrib when moisture-stressed, making the
plant more drought resistant than other grain plants.
Like corn, sorghum can be grown under a wide range
of soil and climatic conditions. Unlike corn, however,
sorghum’s yield under different conditions is not so
varied. Consequently, it is grown primarily in arid ar-
eas where corn would not make it without substantial
irrigation.

Sorghum is an important part of the diets of many
people in the world and is nutritionally rich (Table 4).
It is made into unleavened breads, boiled porridge
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1 2 3 4 5 6 7 8 9 10

Fig. 1. C-band k y type for somatic meta ph chromosomes of Combine Kafir 60, sorghum (Reprinted, with permission of
Crop Science Society of Amer f om Yu et al. 1991)
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(a) (b)

(c) (d) (e)

(H) (2) (h) (i) ()

Fig. 2. FISH-based karyotype of sorghum. (a) LG-01. (b) LG-02. (c) LG-03. (d) LG-04. (e) LG-05. (f) LG-06. (g) LG-07. (h) LG-08.
(i) LG-09. (j) LG-10. (Reprinted, with permission of Genetics Society of America, from Kim et al. 2004)

or gruel, malted beverages including beer, and spe-
cialty foods such as popped grain and syrup from
sweet sorghum. In Africa, the straw of traditional tall
sorghums is used to make palisades in villages or
around a homestead. The plant bases are an impor-
tant source of fuel for cooking, and the stems of wild
varieties are used to make baskets or fish traps. Dye
extracted from sorghum is used in West Africa to color
leather red.

Some quantities of grain sorghums go into in-
dustrial uses. Sorghum starch is manufactured in the
USA by a wet-milling process similar to that used for
corn starch, then made into dextrose for use in foods.
Starch from waxy sorghums is used in adhesives and
for sizing paper and fabrics and is an ingredient in
oil drilling “mud”. The grain can be a source of butyl
alcohol.

7.1.7
Breeding Objectives

Sorghum is grown in a wide range of physical con-
ditions in locations ranging from the equator to over
50°N and 30°S. The crop is therefore subjected to
a wide variety of temperature, day-length, and mois-
ture regimes. Improved sorghum cultivars for a par-
ticular environment always involve breeding for adap-
tation to the specific climatic conditions found there.
This is usually indicated by the appropriate crop dura-
tion for that environment and by acceptable and stable
yield levels and appropriate grain qualities. The type
of cultivar required for a targetlocation also influences
the objectives of the plant breeder. For example, the
height of a pure-line variety for a specific environment
and the heights of the parental lines of a hybrid for
the same environment are likely to be different. In ad-
dition, improved cultivars for specific locations must

Table 4. Nutritional composition of sorghum™

Nutrient Amount Unit
Water 9.2 g
Energy 339.0 Kcal
Protein 11.3 g
Total lipid 3.3 g
Carbohydrate 74.6 g
Fiber, total dietary n/a g
Ash 1.57 g
Calcium 110.0 mg
Iron 3 mg
Magnesium n/a mg
Phosphorus 287.00 mg
Potassium 350 mg
Sodium 6 mg
Zinc n/a mg
Copper n/a mg
Manganese n/a mg
Selenium n/a mcg
Vitamin C 0 mg
Thiamin 0 mg
Riboflavin 0.26 mg
Niacin 3.53 mg
Pantothenic acid n/a mg
Vitamin B-6 n/a mg
Folate 150.0 mcg
Vitamin B-12 0 mcg
Vitamin A 2,205 1U
Vitamin E 0.00 mg-ATE
Vitamin D n/a U
TIodine n/a mcg

*Average values (per 100 g), taken from U.S. Department of
Agriculture, Agricultural Research Service (USDA:ARS) 1998
USDA Nutrient Database, Release 12, Laboratory Home Page
(http://www.nal.usda.gov/fnic/foodcomp)
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possess resistance to the major constraints to produc-
tion encountered and grain- and stover-quality factors
appropriate for sorghum there. These constraints in-
clude biotic stresses such as diseases, insects, and par-
asitic weeds, and abiotic stresses, the requirements for
which are usually quite different from one location to
another. Resistance to these constraints is deliberately
bred into cultivars by crossing resistant types with
cultivars possessing other desirable traits and select-
ing plants with both resistance and desirable traits.
Increased yields and improvement of quality are the
main concerns of sorghum-breeding programs. On
a global basis, sorghum breeding aims at specific ob-
jectives including high grain yields, higher fodder
yields, disease resistance, insect resistance, drought
tolerance, high temperature resistance, striga resis-
tance, nutritional quality, cooking quality, and good
stalk quality. In addition, development of suitable va-
rieties to fit into various cropping patterns (intercrop-
ping and sequence cropping) in developing countries
is another objective.

7.1.8
Classical Breeding Achievements

Kharif Sorghum

With the release of CSH I, the first commercial hy-
brid in 1964, sorghum became the second crop af-
ter maize in developing high-yielding hybrids us-
ing a cytoplasmic-genic male sterility system. Since
CSH I, a total of 18 more hybrids have been released.
The hybrids played a major role in raising productiv-
ity and production, particularly in the case of kharif
sorghum. Yield potential shown by the hybrids CSH 5
to CSH 18 requires special mention. CSH 5 and CSH 6
had a yield potential of 34 q/ha, while CSH 9 produces
40 g/ha in. This further increase to 42 to 45 q/ha in
CSH 16-CSH 18 recently.

Besides hybrids, 15 high-yielding varieties (CSV 1
to CSV 15) have also been released with medium ma-
turity (Table 5). Higher preference was shown for
dual-purpose varieties such as CSV 10, CSV 13, SPV
462, and CSV 15. A major advantage of varieties over
hybrids is their relatively better grain quality and mul-
tiple resistance or tolerance against major pests and
diseases. The recently released variety CSV 15 has
established higher grain and fodder yield potential
than hybrids CSH 5 and CSH 6 released two decades
ago.

Rabi Sorghum

Improvement of rabi sorghum did not receive as much
emphasis and effort as the kharif sorghum until the
1990s. However, some of the hybrids and varieties
listed in Table 5 are specifically developed and rec-
ommended for rabi season where the fodder yield is
more important than that in kharif sorghum. There-
fore, rabi grain productivity must be accompanied by
normal or better fodder productivity. From this point
of view, gradual success was achieved from the first
rabi hybrid CSH 7R to the latest hybrids CSH 15R and
18R.

7.1.9
Limitations of Classical Endeavors
and Utility of Molecular Mapping

Plant-breeding efforts over the past six decades have
contributed tremendously to the genetic improve-
ment of cereals in terms of yield and quality. However,
traditional approaches to crop improvement have sev-
eral limitations, and increase in yield and produc-
tivity cannot be sustained indefinitely (Vasil 1994).
Most sorghum-breeding programs have focused on
agronomic performance to insure food security; how-
ever, grain quality is also an essential requirement
for the development of improved cultivars. Sorghum
proteins are not of superior quality. Limited lysine
and the excess of leucine, which affects the leucine-
isoleucine balance, are the primary limiting factors of
sorghum protein quality. The hopes raised by those
of the Ethiopian high-lysine sorghums that are late,
photosensitive, and possess shriveled seeds, as well
as those of P7212, an opaque mutant and N94 with
shriveled seeds, have not been realized so far. Also,
little is known about the genetic control of grain-
quality parameters and their relationships with the
main component of sorghum productivity.

Improving drought tolerance is an important ob-
jective in a sorghum-breeding program. Early breed-
ing for host plant resistance to sorghum midge, shoot
fly, and stem borers brought about worthwhile re-
sistance in sorghum; however, fast evolving races
require incorporation of multiple resistance genes,
which has not been possible through classical breed-
ing efforts.

The genetic improvement of sorghum through
classical plant breeding has resulted in the success-
ful development and deployment of highly adapted
high-yielding cultivars that are stable across years.
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However, to further enhance productivity, quality,and
resistance to the constraints such as drought, striga,
grain mold, and insect pests that are so common on
farm fields in the tropics, much more needs to be done.
The resistance level available in cultivated sorghum
types is not adequate to build durable resistance to
some of the constraints, especially those caused by
insect pests.

Therefore, biotechnological tools like DNA mark-
ers, genome mapping, identification, characterization
and expression of genes, and genetic engineering have
been adopted from the crop improvement perspective
to address limitations of classical breeding efforts. It
will accelerate identification and incorporation of use-
ful genes into cultivars, facilitate positional cloning of
genes, provide new opportunities for assessing and
expanding the gene pool in sorghum through com-
parative mapping of related and unrelated taxa, and
contribute to the understanding of the biological basis
of complex traits and phenomena important to crop
improvement and in the development of transgenics.

7.2
Construction of Genetic Maps

7.2.1
First-Generation Genetic Maps

Construction of a linkage map is the most funda-
mental step required for a detailed genetic study
and marker-assisted breeding approach in any crop
(Tanksley et al. 1989). Sorghum genome mapping
based on DNA markers began in the early 1990s, and
since then several genetic maps of sorghum have been
constructed. All the sorghum molecular maps gen-
erated to date are summarized in Table 6. Initially,
the genetic maps of sorghum were based largely on
DNA probes previously mapped in the maize genome
(Hulbert et al. 1990; Binelli et al. 1992; Whitkus et
al. 1992; Melake-Berhan et al. 1993; Pereira et al.
1994). Later, three more maps were constructed us-
ing mainly sorghum genomic DNA probes (Chitten-
den et al. 1994; Raghab et al. 1994; Xu et al. 1994).
Another sorghum map published was based on both
maize and sugarcane probes (Dufour etal. 1997). All of
these were developed using RFLP markers, and most
of the mapping populations were F,, with the excep-
tion of the maps of Dufour et al. (1997) and Peng et
al. (1999). Dufour et al. (1997) used two recombinant

inbred line (RIL) populations for the construction of
a composite map, which was later extended by Boivin
et al. (1999) with the addition of a large number of
RFLP and AFLP markers to the map of Dufour et al.
(1997). Tao et al. (1998a) constructed a sorghum map
using an RIL population and variety of probes, in-
cluding sorghum genomic DNA, maize genomic DNA
and cDNA, sugarcane genomic DNA and cDNA, cereal
anchor probes, and eight SSR loci. They attempted to
review and compare their map with other published
maps, which is supposed to enhance the effectiveness
of mapping information and facilitate efforts to map
agronomically important traits in sorghum. However,
Subudhiand Nguyen (2000) completely aligned all ten
linkage groups of all major sorghum RFLP maps using
a common RIL population and sorghum probes from
all three sources (Chittenden et al. 1994; Raghab et al.
1994; Xu et al. 1994) along with many cereal anchor
and maize probes.

Kong et al. (2000) mapped 31 polymorphic SSR
loci obtained from 51 clones isolated from a size-
fractionated genomic DNA library of S. bicolor (L.)
Moench that had been probed with four radiolabeled
di- and trinucleotide oligomers using an RI popu-
lation BT x 623 x IS3602C. Taramino et al. (1997)
have characterized a total of 13 SSR loci in S. bicolor
and mapped seven of these using an existing sorghum
RFLP map.

Haussmann et al. (2004) have mapped molecular
markers for resistance of sorghum to the hemipar-
asitic weed Striga hermonthica in two recombinant
inbred populations (RIP-1, -2) of F5 5 lines developed
from the crosses 1S9830 x E36-1 (1) and N13 x E36-
1 (2). The resistant parental lines were 1S9830 and
N13; the former is characterized by a low stimulation
of striga seed germination, the latter by “mechani-
cal” resistance. The genetic maps of RIP-1 and RIP-2
spanned 1,498 cM and 1,599 cM, respectively, with 137
and 157 markers distributed over 11 linkage groups.

7.2.2
Integrated Genetic Maps

An integrated SSR and RFLP linkage map of the
sorghum was reported by Bhattramaki et al. (2000)
using 18 diverse sorghum lines. They designed SSR
loci from clones isolated from two sorghum bacterial
artificial chromosome (BAC) libraries, their enriched
sorghum genomic DNA (gDNA), and sorghum DNA
sequences present in public databases. The linkage
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map spanned 1,406 cM and consisted of 147 SSR loci
and 323 RFLP loci. Klein et al. (2000) constructed an
integrated genetic and physical map of the sorghum
genome (750 Mbp). They have developed a new high-
throughput PCR-based method for building BAC con-
tigs and locating BAC clones on the sorghum genetic
map. Subudhi and Nguyen (2000) attempted align-
ment and integration of all major molecular maps
previously developed for sorghum. To achieve this
objective, a genetic map of 214 loci with a total map of
1,200 cM was constructed using 98 F; sorghum recom-
binant inbred lines from a cross between B35 and T x
700. Five major restriction fragment length polymor-
phism (RFLP) maps independently developed were
used for alignment purposes.

A high-density genetic map using AFLP tech-
nology was constructed by Menz et al. (2002). The
1,713-cM map encompassed 2,926 loci distributed on
10 linkage groups; 2,454 of those loci were AFLP prod-
ucts; 136 SSRs previously mapped in sorghum and
203 were cDNA and genomic clones from rice, barley,
oat and maize. Besides, a comprehensive reference
map of the sorghum genome (Fig. 3) was also con-
structed from two recombinant inbred populations
using AFLP, SSR, RFLP, and RAPD markers (Hauss-
mann et al. 2002a). Recently, Bowers et al. (2003) re-
ported a genetic recombination map for sorghum of
2,5121oci spaced at average 0.4-cM (~300-kb) inter-
vals based on 2,050 RFLP probes, including 865 het-
erologous probes from sugarcane, maize, Oryza, Pen-
nisetum (pearl millet, buffle grass), the Triticeae
(wheat, barley, oat, rye), and Arabidopsis.

7.2.3
Comparative Mapping

Geneticists and evolutionary biologists have a long-
held interest in the mechanisms involved in chromo-
somal evolution. Until recently, the primary means of
addressing questions surrounding this issue has been
via cytological analysis of interspecific hybrids and
surveys of naturally occurring chromosomal diver-
sity within populations (Stebbins 1971; Jackson 1984;
Grant 1987). Comparative genome mapping adds
a powerful new technique for investigating the mode
and tempo of chromosomal evolution. This approach
involves the use of molecular markers such as restric-
tion fragment length polymorphisms (RFLPs) to map
the genomes of two species for a common set of mark-
ers (loci). Although a labor-intensive and expensive

method, comparative genome mapping allows one to
determine the extent and nature of chromosomal rear-
rangements between cross-incompatible species. This
method thus opens up comparisons among distantly
related genomes that are not amenable to analysis by
traditional cytogenetic techniques. This approach was
pioneered by Tanksley and coworkers using tomato
RFLP probes to map the tomato (Tanksley et al. 1988).
Recognition of the considerable conservation of fea-
tures within sets of plants such as rice, wheat, and
maize (Ahn et al. 1993); sorghum and maize (Pereira
et al. 1994; Paterson et al. 1995b); wheat, barley, and
rye (Devos et al. 1993); tomato, pepper, and potato
(Tanksley et al. 1988, 1992); and Arabidopsis and Bras-
sica (Teutonico and Osborn 1994) has inspired the
suggestion of considering such groups as single ge-
netic systems (Bennetzen and Freeling 1993; Helent-
jaris 1993). The recent discovery of small chromoso-
mal regions retaining similar gene order in sorghum
and two dicot species (Arabidopsis and cotton) sug-
gests that comparative mapping may ultimately reach
across a much greater “evolutionary distance” than
has been spanned to date (Paterson et al. 1996). This
concept should have considerable merit and mutual
advantages for both breeders and geneticists.

The comparative mapping results between
sorghum and closely related grass species are
described below.

Sorghum, Maize, and Rice

Within the tribe Andropogoneae, comparative map-
ping facilitates an understanding of sorghum genetics.
Several groups established the relationship between
the sorghum and maize genomes (Hulbert et al. 1990;
Whitkus et al. 1992; Melake-Berhan et al. 1993; Grivet
et al. 1994; Pereira et al. 1994; Paterson et al. 1995b;
Dufour et al. 1997). Gene orders appear to be largely
conserved between sorghum and maize; only a lim-
ited number of rearrangements have been identified.
With the exception of major evolutionary transloca-
tions, which characterize the Panicoideae, extreme
colinearity also appears to have been maintained with
rice. An RFLP linkage map of S. bicolor (L.) Moench
was constructed (Peng et al. 1999) in a population
of 137 F¢_g recombinant inbred lines using sorghum,
maize, oat, barley, and rice DNA clones. The map con-
sisted of 10 linkage group and 323 markers. Compari-
son of the map with RFLP maps of maize, rice, and oat
produced evidence for sorghum-maize linkage group
rearrangements and homoeologies not reported pre-
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Fig. 3. Sorghum genetic map (Reprinted, with permission of Genetics Society of America, from Bowers et al. 2003)
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viously. Comparative maps of riceand maize (Ahnand
Tanksley 1993) may help to link rice and sorghum us-
ing maize as a bridge. This may be extended similarly
to wheat (Ahn et al. 1993). Comparative maps should
make it possible to begin uniting the genetics of these
species and allow for transfer of mapping informa-
tion (including centromere positions) and molecular-
marker resources (e.g., RFLP probes) between species.
In addition, such maps should shed light on the na-
ture of chromosome evolution that accompanied the
radiation of grasses in the early stages of plant diver-
sification.

The extent of colinearity and other aspects of
genome structure in cereals were investigated by
cloning Sh2 homologs from sorghum and rice us-
ing the maize Sh2 gene as a probe in screening
rice and sorghum bacterial artificial chromosome li-
braries (Woo et al. 1994; Zhang et al. 1996). In maize,
the Sh2 and Al loci are separated by about 140 kbp
(Civardi et al. 1994). In both sorghum and rice, an Al
homolog is near the Sh2 homologs, but the Al and Sh2
genes are about seven times closer together than in
maize (Chen et al. 1997). In addition, the sorghum Al
homolog was tandemly duplicated. Sequencing these
regions indicated that the same genes were present
in all three species, but the gene density was about
one per 45kb in maize and about one per 10kb in
sorghum and rice (Chen et al. 1998). A third gene
encoding a putative transcription factor was located
between these two loci, but no other sequences in the
region were conserved except the genes. Comparative
analysis of the orthologous adhl regions of sorghum
and maize revealed the presence of nine known or can-
didate genes, including adhl, in a 225-kbp maize se-
quence, whereas the homolog of the same nine genes
was identified in colinear order along with five addi-
tional genes in a 78-kbp space in sorghum (Tikhonov
et al. 1999).

Significantly, it was discovered that only the genes
cross-hybridized between these two colinear seg-
ments of the sorghum and maize genomes. Intergenic
regions are likely to have accumulated species-specific
sequences, which prohibit prediction of physical dis-
tances between homologous genes in related species.
This made the genomic cross-referencing technique
(i.e., cross-hybridization between homologous seg-
ments) (Avramova et al. 1996) a better method for
gene identification than either transcript identifica-
tion (Avramova et al. 1995) or enrichment for single-
copy DNA (San Miguel et al. 1996). The combined
Al-Sh2 and adhl regions show that grasses often ex-

hibit extensive colinearity and similar gene content
at the 50- to 300-kbp level. Therefore, map-based
cloning, genomic sequencing, and gene identification
using the smaller rice and sorghum genomes will usu-
ally be simpler in these species than in maize, bar-
ley, or wheat. Thus, a successful and efficient way to
find genes in a large region of a complex genome
is to use a homologous colinear clone from another
species.

To gain insight into the relationship between spa-
tial organization of the genome and genome func-
tion, Avramova et al. (1998) identified the locations
of the matrix attachment regions (MARs) in the co-
linear sh2/al homologous chromosome segments of
rice and sorghum (30 and 50 kbp, respectively), which
could serve as anchors for individual structural units
or loops. All identified genes were placed in individ-
ual loops of comparable size for homologous genes.
Hence, gene composition, gene orientation, gene or-
der, and the placement of genes into structural units
have been conserved evolutionarily in this region.
Their analysis demonstrated that the occurrence of
various “MAR motifs” is not indicative of MAR lo-
cation. However, most of the MARs discovered in
the two genomic regions were found to colocalize
with miniature inverted repeat transposable elements
(MITEs), suggesting that MITEs preferentially insert
near MARs and/or that they can serve as MARs.

The nature, timing, and lineages of most of the
genic rearrangements that have differentiated the
chromosome segment that is orthologous to the maize
adhl region of sorghum, rice, and adhl homologous
region of maize, a remnant of the tetraploid history
of the Zea lineage over the last 60 million years, was
described by Ilic et al. (2003). The rice genome has
been the most stable, sharing 11 orthologous genes
with sorghum and exhibiting only one tandem dupli-
cation of a gene in this region. The lineage that gave
rise to sorghum and maize acquired a two-gene in-
sertion (containing the adh locus), whereas sorghum
received two additional gene insertions after its di-
vergence from a common ancestor with maize. The
two homoeologous regions of maize have been par-
ticularly unstable, with complete or partial deletion
of three genes from one segment and four genes from
the other segment. As a result, the region now con-
tains only one duplicated locus compared with the
eight original loci that were present in each diploid
progenitor. Deletion of these maize genes did not re-
move both copies of anylocus. This study suggests that
grass genomes are generally unstable in local genome
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organization and gene content but that some lineages
are much more unstable than others.

Maize, probably because of its polyploidy origin,
has exhibited extensive gene loss so that it is now ap-
proaching a diploid state. Al toxicity is a major con-
straint to crop production on acidic soils. To assess
the possible ancestral relationship between Al tol-
erance genes in the grasses, Magalhaes et al. (2004)
conducted a molecular genetic analysis of Al toler-
ance in sorghum and integrated their findings with
those from previous studies performed in crop species
belonging to different grass tribes. A single locus,
AltSB, was found to control Al tolerance in two highly
Al-tolerant sorghum cultivars. Significant macrosyn-
teny between sorghum and the Triticeae was observed
for molecular markers closely linked to putatively
orthologous Al tolerance loci present in the group
4 chromosomes of wheat, barley, and rye. However,
AltSB was not located within the homoeologous re-
gion of sorghum but rather mapped near the end of
sorghum chromosome 3. Thus, AltSB not only is the
first major Al tolerance gene mapped in a grass species
that does not belong to the Triticeae, but it also ap-
pears to be different from the major Al tolerance locus
in the Triticeae. Intertribe map comparisons suggest
thata major Al tolerance QTL on rice chromosome 1 is
likely to be orthologous to AltSB, whereas a rice QTL
on chromosome 3 is likely to correspond to the Trit-
iceae group 4 Al tolerance loci. Therefore, this study
demonstrates a clear evolutionary link between genes
and QTLs encoding the same trait in distantly related
species within a single plant family.

To provide a phylogenetic context to two maize
genes r1 and bl, which have been a rich source
for studying transposition, Swigonova et al. (2004)
sequenced orthologous regions from maize and
sorghum (>600kb) surrounding these genes and
compared them with the rice genome. This com-
parison showed that the homoeologous regions
underwent complete or partial gene deletions, selec-
tive retention of orthologous genes, and migration of
nonorthologous genes.

Rplisacomplexresistance (R) locusin maize con-
ferring race-specific resistance to a fungal pathogen,
common leaf rust (Puccinia sorghii). A 268-kb chro-
mosomal segment containing sorghum (S. bicolor)
genes that are orthologous to the maize (Zea mays)
Rpl disease resistance (R) gene complex was se-
quenced (Ramakrishna et al. 2002a) to determine
structural variation for an R gene cluster that has di-
verged at least since the ancestral divergence of maize

and sorghum. A region of approx. 27 kb in sorghum
was found to contain five RpI homologs, but most have
structures indicating that they are not functional. In
contrast, maize inbred B73 has 15 RpI homologs in
two nearby clusters of 250 and 300 kb. As at maize Rp1,
the cluster of R gene homologous in sorghum is inter-
rupted by the presence of several genes that appear to
have no resistance role, but these genes were different
from those found within the maize RpI complex.
Conservation of gene order between sorghum and
rice is well documented, which helped to enhance
our understanding of cereal genome structure and
evolution (Moore et al. 1995; Shimano et al. 1995;
Paterson et al. 1995a). Multani et al. (1998) demon-
strated that in sorghum and rice, the homologs of
a pair of unlinked duplicate genes Hml and Hm2 con-
ferring resistance to C. carbonum race 1 in maize map
to two chromosomal regions that are syntenic with
the regions in maize harboring these loci, indicat-
ing that they are related to maize genes by vertical
descent. These results suggest that the Hm-encoded
resistance is of ancient origin and probably is con-
served in all grasses. A direct comparison of the ge-
netic linkage maps of sorghum and rice was done by
Ventelon et al. (2001). It was based on the mapping
of a common set of 123 RFLP probes scattered on the
genomes of both species. For each species a composite
map was established by merging two individual maps
comprising many common loci. This enabled them
to confirm the global correspondence scheme that
had previously been established between the chro-
mosomes of sorghum and rice. Morishige et al. (2002)
have developed a “gene-island” sequencing strategy
that expedites the targeted acquisition of orthologous
gene sequences from related species for comparative
genome analysis. A 152-kb bacterial artificial chro-
mosome (BAC) clone from sorghum (S. bicolor) en-
coding phytochrome A (PHYA) was fully sequenced,
revealing 16 open reading frames with a gene den-
sity similar to many regions of the rice (Oryza sativa)
genome. The sequences of genes in the orthologous
region of the maize (Zea mays) and rice genomes were
obtained using the gene-island sequencing method.
BAC clones containing the orthologous maize and
rice PHYA genes were identified, sheared, subcloned,
and probed with the sorghum PHYA-containing BAC
DNA. Comparative mapping of rhizomatousness be-
tween rice and Sorghum propinquum, a wild relative of
cultivated Sorghum, indicated that each gene closely
corresponds to two major quantitative trait loci (QTL)
(Huetal. 2003). Correspondence of these genes in rice
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and sorghum, which diverged from a common ances-
tor ca. 50 million years ago, suggests that the two
genes may be key regulators of rhizome development
in many poaceae.

Sequence-based alignment of sorghum and rice
chromosomes was attempted by Klein et al. (2003)
for refining the sorghum genetic/physical map based
on the rice genome sequence. A framework of 135
BAC contigs spanning ca. 33 Mbp was anchored to
sorghum chromosome 3. A limited number of se-
quences was collected from 118 of the BACs and sub-
jected to BLASTX analysis to identify putative genes
and BLASTN analysis to identify sequence matches
to the rice genome. Extensive conservation of gene
content and order between sorghum chromosome 3
and the homologous rice chromosome 1 was observed
(Fig. 4). One large-scale rearrangement was detected
involving the inversion of an approx. 59-cM block
of the short arm of sorghum chromosome 3. Several
small-scale changes in gene colinearity were detected,
indicating that single genes and/or small clusters of
genes have moved since the divergence of sorghum
and rice. Additionally, the alignment of the sorghum
physical map to the rice genome sequence allowed
sequence-assisted assembly of an approx. 1.6-Mbp
sorghum BAC contig.

Using bacterial artificial chromosome sequence
analysis Ramakrishna et al. (2002b) have studied
four orthologous regions in barley, rice, sorghum,
and wheat and observed general microcolineariry to
shared genes in this region. However, three genic rear-
rangements were observed. First, the rice region con-
tains a cluster of 48 predicted small nucleolar RNA
genes, but the comparable region from sorghum con-
tains no homologousloci. Second, gene 2 was inverted
in the barley lineage by an apparent unequal recom-
bination after the ancestors of barley and wheat di-
verged 11 to 15 million years ago (mya). Third, gene
4 underwent direct tandem duplication in a common
ancestor of barley and wheat 11 to 29 mya.

A duplication or diploidization event that pre-
dates divergence of taxa from a common ancestor
may account for some incongruence in “comparative
maps”. Specifically, if gene loss were still continuing at
an appreciable rate after taxon divergence occurred,
then differential gene loss in independent lineages
would cause incongruities in their comparative maps.
To test this possibility, Paterson et al. (2004) exam-
ined a sorghum-rice comparative map developed by
BLASTing sequences from 2509 genetically mapped
sorghum loci (Bowers et al. 2003) against the genome

assembly. The positions of 1626 corresponding loci
could be plotted based on the rice physical location
and sorghum genetic location. This revealed much
colinearity, with eight sorghum linkage groups (A,
D,E, E G, H, I, and ]) corresponding to single rice
chromosomes (1, 4, 12, 2, 5, 11, 6, and 8) and two
sorghum linkage groups (B and C) differing from rice
by translocations between chromosomes 7/9 and 3/10,
respectively.

Sorghum and Sugarcane
The first comparison between the sorghum and sug-
arcane genomes was mostly indirect, in which maize
was used as an intermediate, but it hinted at a large
degree of synteny between the genomes of two species
(D’Hont et al. 1994; Grivet et al. 1994; McIntyre et al.
2004). Grivet et al. (1994) determined the syntenic ge-
nomic regions in maize, sorghum, and sugarcane ac-
cording to the existing bridge loci. The distribution of
these synteny clusters closely matched the duplication
pattern in maize. There appear to be common chro-
mosome rearrangements between maize and sugar-
cane and between maize and sorghum. In this respect,
sugarcane and sorghum appear to be more closely re-
lated than either is with maize. Distances between
genes were similar in maize and sorghum, whereas
sugarcane tended to display less recombination.

Existence of large colinear regions among the
three species (sugarcane, maize, and sorghum) was
also revealed in a study involving comparative ge-
netic mapping between duplicated segments on maize
chromosomes 3 and 8 and homologous regions in
sorghum and sugarcane (Dufour et al. 1996). Their
results emphasize that those duplications will con-
siderably complicate precise comparative mapping at
the whole genome scale between maize and other
Poaceae. A more elaborate analysis by Dufour et al.
(1997) revealed a straight synteny between two pairs of
sorghum and sugarcane linkage groups and a large ar-
ray of colinear probes with sugarcane along the other
sorghum linkage groups (Fig. 5). Similarly, coloca-
tion of RFLP markers associated with stalk number
and suckering in sugarcane with QTLs associated with
tillering and rhizomatousness in sorghum was re-
ported by Jordan et al. (2004). Guimaraes et al. (1997)
also observed striking colinearity between Sorghum
and Saccharum genomes.

Alignment of complex polyploid genomes of three
Saccharum species with the compact diploid genome
of sorghum (2n = 2x = 20) was also reported by
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Table 7. Major genes tagged by molecular markers in Sorghum

Trait

Closely linked markers

Reference

Heat smut resistance
Shattering

Organophosphate insecticide reaction

Awn
Mesocarp thickness

RFELP (TXS 560)

RFLP (PSB 766 and PSB 195)
RFLP (TXS 713)

RFLP (SSCIR 203)

RELP (TXS 636)

Oh et al. (1994)
Paterson et al. (1995b)
Toure et al. (1997)
Tao et al. (1998a)

Tao et al. (1998a)

Xu et al. (2000)

Xu et al. (2000)

Xu et al. (2000)

Boora et al. (1999)

Juicy midrib RFLP (CSU6 and UMC34)
Red coleoptile RFLP (UMC 44)

Red pericarp RFLP (TXS 584)

Leaf blight resistance RAPD (OPD12)

Male sterility AFLP

Pollen fertility AFLP; SSR

Yield RFLP

Downy mildew resistance RFLP

Acremonium wilt, downy mildew,
and smut resistance

RFLP, RAPD

Wen et al. (2002)
Klein et al. (2001)
Jordan et al. (2003)
Gowda et al. (1995)
Oh et al. (1996)

Ming et al. (1998). Genetic maps of the six Saccharum
genotypes, constituting up to 72 linkage groups, were
assembled into homologous groups based on paral-
lel arrangements of duplicated loci. About 84% of the
loci mapped by 242 common probes were homolo-
gous between Saccharum and sorghum. One inter-
chromosomal and two intrachromosomal rearrange-
ments differentiated S. officinarum and S. spontaneum
from sorghum, but 11 additional cases of chromosome
structural polymorphism were found within Saccha-
rum. Cross utilization of microsatellites or single se-
quence repeats developed from sugarcane ESTs be-
tween sugarcane and sorghum revealed lower level of
polymorphism in sugarcane and a significantly higher
level of polymorphism in a related genus Sorghum sp.
(Cordeiro et al. 2001).

Mclntyre et al. (2004) mapped a sugarcane cDNA
clone with homoeology to the maize RpI-D rust resis-
tance gene in sorghum. The cDNA probe hybridized
to multiple loci, including one on sorghum linkage
group E in a region where a major rust resistance
QTL had been previously mapped. Partial sorghum
Rp1-D homologs were isolated from genomic DNA
of rust resistance and susceptible progeny selected
from a sorghum mapping population. Sequencing
of the RpI-D homologs revealed five discrete se-
quence classes: three from resistant progeny and two
from susceptible progeny. Cluster analysis of these
sorghum sequences and available sugarcane, maize,
and sorghum RpI-D homolog sequences showed that
the maize RpI-D sequence and the partial sugar-

cane RpI-D homolog were clustered with one of the
sorghum resistant progeny sequence classes.

Sorghum and Foxtail Millet

Comparative mapping revealed a very close relation-
ship between foxtail millet (Setaria italica) with hap-
loid chromosome n = 9 and sorghum with n = 10
(Devos and Gale 1997). The difference in chromosome
number is accounted for by the synteny of foxtail mil-
let chromosome III with sorghum chromosomes E
and I (Devos et al. 1998; Wang et al. 1998). Elsewhere,
only one inversion was detected in sorghum chromo-
some D and one translocation involving foxtail millet
chromosomes III and VII, which differentiate the two
species.

7.3
Gene Mapping

Determination of the relative positions of genes on
a DNA molecule (chromosome or plasmid) and of
the distance, in linkage units or physical units, be-
tween them is critical for marker-assisted selection,
gene cloning, and elucidating the functions of these
genes, thereby contributing to accelerated crop im-
provement. Sorghum is an important target of plant
genomics because of its unusual tolerance to adverse
environments, a small genome (750 Mbp) relative to
most other grasses, a diverse germplasm, and util-
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ity for comparative genomics with rice, maize, and
other grasses. Efforts are under way for discovery
and mapping of genes in sorghum (Table 7). Boora
et al. (1999) analyzed the genetic basis for resistance
to leaf blight, which revealed resistance was transmit-
ted as a dominant single-gene trait. By combining the
random amplified polymorphic DNA (RAPD) tech-
nique with bulked-segregant analysis, it was possi-
ble to identify PCR amplification products that segre-
gated with disease response. Primer OPD12 amplified
a 323-bp band (D12R) that segregated with resistance.

Molecular mapping of a gene for pollen fertility
in Al (milo) type cytoplasm of sorghum using AFLP
and SSR marker analysis was reported by Klein et al.
(2001) that will facilitate the selection of pollen fertil-
ity restoration in sorghum inbred-line development
and provide the foundation for map-based gene iso-
lation. Fifteen AFLP markers were linked to fertility
restoration from the initial screening with 49 unique
AFLP primer combinations (+3/+3 selective basis).
As many of these AFLP markers had been previously
mapped to a high-density genetic map of sorghum,
the target gene (rfl) could be mapped to linkage
group H. Confirmation of the map location of rfI was
obtained by demonstrating that additional linkage
group-H markers (SSR, STS, AFLP) were linked to fer-
tility restoration. The closest marker, AFLP Xtxa2582,
mapped within 2.4 cM of the target loci, while two
SSRs, Xtxp and Xtxp250, flanked the rfl locus at 12 cM
and 10.8 cM, respectively. Wen et al. (2002) also re-
ported three RFLP markers suitable for mapping rf4
linked to restoration of male fertility in the sorghum
IS 1112 (A3) male sterile cytoplasm.

7.4
Detection of Quantitative Trait Loci
(QTL)

Quantitative phenotypes have been a major area of ge-
netic study for over a century because they are a com-
mon feature of natural variation in populations of
all eukaryotes. They include commercially important
traits in crop plants and domestic animals as well as
in vital traits in humans from hypertension to intelli-
gence (Kearsey and Farquhar 1998). The first attempt
to study individual determinants of quantitatively in-
herited characters in plants date back to Sax (1923).
The studies on quantitative variation suffered from
a lack of precision in the absence of complete ge-

netic maps (Thoday 1961). This limitation was over-
come with the advent of DNA markers detected as
restriction fragment length polymorphism (Paterson
etal. 1988). The advent of RFLPs and subsequent PCR-
based markers has revolutionized the field of genetic
mapping and gene identification in both animals and
plants. The basis of all QTL detection is the identifi-
cation of association between genetically determined
phenotypes and specific genetic markers. In sorghum
several QTLs have been associated with plant height
(Lin et al. 1995) and pre- and postflowering drought
tolerance (Tuinstra et al. 1996, 1997). Later Tao et al.
(1998b) mapped four regions, each in a separate link-
age group, associated with rust resistance (Table 8).

Subudhi et al. (2000) determined the consistency
of quantitative traitloci (QTLs) controlling stay-green
in sorghum, which is characterized by the plant’s abil-
ity to tolerate postflowering drought stress by reeval-
uating the recombinant inbred line (RIL) mapping
population from the cross B35 x Tx7000 in two loca-
tions over 2 years and compared it with earlier reports.
Analysis using the combined stay-green-rating means
of seven environments and the expanded molecular
map reconfirmed all four stay-green QTLs (Stgl, Stg2,
Stg3, and Stg4) that had been identified earlier by Xu
et al. (2000). Similarly, comparison of the stay-green
QTL locations with earlier reported results indicated
that all four stay-green QTLs showed consistency
across different genetic backgrounds. Sanchez et al.
(2002) also identified four genomic regions associ-
ated with the stay-green trait using an RIL population
developed from B35 x Tx7000, whereas Kebede et al.
(2001) reported nine QTLs located over seven linkage
groups for stay-green using the method of composite
interval mapping. In addition, three and four major
QTLs responsible for lodging tolerance and preflow-
ering drought tolerance, respectively, were detected.
Haussmann et al. (2002b) reported five to eight QTLs
for the stay-green trait in two recombinant inbred
populations (IS 9830 x E 36-1 and N 13 x E 36-1),
and three QTLs present on linkage groups A, E, and G
were common to both crosses.

Preharvest sprouting (PHS), one of the important
agronomic problems in the production of sorghum
[Sorghum bicolor (L.) Moench] in humid climates, was
studied by Lijavetzky et al. (2000). A molecular link-
age map was developed using 112 molecular markers
in an F, mapping population derived from a cross be-
tween IS 9530 (high resistance to PHS) and Redland
B2 (susceptible to PHS). Two years’ phenotypic data
were obtained. By means of interval mapping analy-
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Table 8. List of QTLs identified in sorghum

S. Trait Population Marker No.of Reference
no. type QTLs
1 Stay green RILs (B35 x TX7000) RFLP, 4 Subudhi et al. 2000
SSR, RAPD
2 Plant height S. bicolor x 8. propinquum RFLP 6 Lin et al. 1995
3 Flowering 3
4 Pre-harvest sprouting F2 (1S9530x Redland B2) RFLP 2 Lijavetzky et al. 2000
5  Tiller number BC1 and F2 (BTx623 x RFLP 4 Paterson et al. 1995a
S. propinquum)
6  Rhizomatousness 3 Paterson et al. 1995a
7 Ratooning ability 6
8  Stay green RILs (SC56 x TX7000) RFLP 9 Kebede at al. 2001
9  Lodging tolerance 3
10  Pre-flowering drought 4
tolerance
11 Flowering time RILs (152807 x TS 7680) RFLP 1 Chantereau et al. 2001
12 Photoperiod sensitivity 2
13 Height of main culm RILs (BTX623 x 1S3620C) RFLP & SSR 3 Hart et al. 2001
14 Tallest basal tiller height 2
15  Number of basal tillers 2
16  Panicle length 3
17 Panicle width 7
18  Leafangle 3
19  Maturity 2
20  Awn length 1
21  Greenbug resistance RILs (GBIK x Redlan) SSR and RAPDs 9 Agrama et al. 2002
and tolerance
22 Staygreen RILs (I1S9830 x e36-1 AFLP, RFLP, 5-8 Haussmann et al. 2002b
and N13 x H36-1) SSR, RAPD
23 Staygreen RILs (B35 x TX70000) - 4 Sanchez et al. 2002
24 Midge resistance RILs (ICSV 745 x 90562) RFLP SSR 2 Tao et al. 2003
(Antixamosis)
25  Striga hermonthica RIPs (IS9830 x E36-1 RFLP AFLP 11 (RIP1) Haussmann et al 2004
and N13 x E36-1) SSRs 9 (RIP2)
26  Grain mold RTx430x Sureno - 5 Rooney and Klein 2000
27  Rust Resistance QL 39 x QL 41 RFLP 4 Tao et al. 1998b

sis, two significant QTLs were detected in two different
linkage groups with LOD scores of 8.77 and 4.39. Each
of these two QTLs individually explained ca. 53% of
the phenotypic variance, but together, in a two-QTL
model, they explained 83% of the phenotypic variance
with a LOD score of 12.37.

The plant vpl gene, which encodes a transcrip-
tion factor originally identified in maize, participates
in the control of the transition from embryogenesis to
seed germination. Different lines of evidence suggest
that vpl participates in preharvest sprouting resis-
tance in cereals. Carrari et al. (2003) studied the con-

nection between vpI and formerly documented QTLs
(Lijavetzky et al. 2000) for PHS in sorghum. Linkage
analysis revealed that the sorghum vp1I (sbvpI) locus
islinked to markers on chromosomes 3 and 8 in maize,
and this gene is not correlated with PHS.

Chantereau et al. (2001) investigated the genetic
control of flowering time in sorghum using a recom-
binant inbred line population derived from a cross
between IS 2807, a slightly photoperiod-sensitive
tropical caudatum landrace, and TS 7680, a highly
photoperiod-sensitive tropical guinea landrace. Em-
phasis was placed on identifying the most relevant
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traits to account for basic vegetative phase (BVP) and
photoperiod sensitivity sensus stricto. One QTL was
detected on linkage group (LG) F for the traits related
to BVP. Two QTLs were detected on LGs C and H for
the traits related to the photoperiod sensitivity sen-
sus stricto. For nine morphological traits, including
the presence vs. the absence and the height of basal
tillers, number of tillers, plant height, and time of an-
thesis, Hart et al. (2001) mapped a minimum of 27
unique QTLs.

For resistance and tolerance to green bug (Schiza-
phids grami-num Rondani) biotypes I and K, Agrama
et al. (2002) mapped 113 markers (38 SSRs and 75
RAPDs) in 12 linkage groups covering 1,530 cM. In
general, nine QTLs were detected affecting both re-
sistance and tolerance to green bug (GB) biotypes I
and K. The phenotypic variance explained by each
QTL ranged from 5.6 to 38.4%. For green bug bio-
types G, E, I, and K, Katsar et al. (2002) also reported
at least nine loci, dispersed on eight linkage groups.
Tao et al. (2003) identified two and one quantitative
trait loci associated with two of the mechanisms of
midge resistance, antixenosis, and antibiosis, respec-
tively, in an RI population from the cross of sorghum
lines ICSV745 x 90562. Haussmann et al. (2004) de-
tected 11 and nine QTLs in two recombinant inbred
populations 1S9830 x E 36-1 and N13 x E36-1, re-
spectively, for resistance to Striga hermonthica

Comparative Mapping of QTLs

Conversion of gene order along the chromosomes is
well known to transgress species boundaries, but the
extent of correspondence in the QTLs that account
for variation in complex phenotypes has been a point
of conjuncture. Paterson et al. (1995b) hypothesized
that if QTLs in separate taxa mapped to correspond-
ing locations more often than would be expected by
chance, such a finding would strongly suggest that
corresponding genes were involved in the evolution
of the relevant phenotypes. They tested the hypoth-
esis by assessing correspondence between QTLs that
affect seed mass, temperate (day-neutral) flowering,
and disarticulation of the mature inflorescence (shat-
tering) in crosses between divergent sorghum, Oryza
and Zea taxa. Three QTLs that affect seed mass (size)
correspond closely in sorghum, rice, and maize, and at
least five additional QTLs correspond between two of
these genera. Among seven QTLs that account for 52%
of phenotypic variance explained (PVE) in sorghum

seed mass, five (on linkage groups A, C, E, F and
I) correspond to five of the eight QTLs that account
for 78% of PVE in rice. Four of the sorghum QTLs
(on linkage groups A, B, C, and F) correspond to
four of the eight QTLs that account for 69% of PVE
in maize. Five maize QTLs correspond to rice QTLs.
Only four QTLs (two on maize chromosome 2, one
on rice chromosome 5, and one on sorghum LG J)
showed no correspondence. The probability that seed
mass QTLs in sorghum, rice, and maize would cor-
respond so frequently by chance is conservatively es-
timated as 0.1 to 0.8%. QTLs that affect seed disper-
sal show similar correspondence across taxa. Shat-
tering mapped to a single locus (ca. 100% PVE) in
sorghum, three loci (24% PVE) in rice, and ten loci
(60% PVE) in maize. The discrete sorghum locus cor-
responds to rice QTLs on chromosome 9 and to maize
QTLs on duplicated regions of chromosomes 1 and
5. Rice QTLs on chromosomes 2 and 3 correspond to
maize QTLs on chromosome 4 and 1. Six additional
QTLs influence shattering in maize but not in rice or
sorghum.

The ability of many cultivated cereals to flower in
the long days of summer temperatures may be largely
the result of mutations at a single ancestral locus.
Sorghum LG D QTL (probably Mal) explains about
86% of PVE in flowering time and accounts for the
dichotomy of F, phenotypes in our day-neutral (S.
bicolor) x short-day (S. propinquum) cross. It also
accounts for short-day flowering in each of the five
races of S. bicolor (Lin et al. 1995). Short-day flower-
ing of sugarcane is closely associated with the DNA
probe PSB188 (Paterson et al. 1995b), which lies near
Mal. The corresponding region of maize chromo-
some 10 accounts for up to 26% of PVE in the flowering
of a temperate/tropical cross (Koester et al. 1993). The
corresponding region in wheat and barley, the short
arm of the group 2 homologs, all harbor photoperi-
odic flowering mutants (Laurie et al. 1994). In rice,
the orthologous (directly descended from a common
ancestral locus) region on chromosome 4 harbors no
known flowering mutants; however, short-day flow-
ering mutations Sel and Se3 both map to a region
of chromosome 6 (Mackill et al. 1993; Causse et al.
1994), that is, are orthologous to sorghum LG I and
paralogous (derived by duplication and subsequent
divergence from a common ancestral locus) to the
sorghum LG D region of Mal. The Sel/Se3 region of
rice corresponds to a region of maize chromosome 9
that harbors QTLs that affect flowering in at least four
populations (Lin et al. 1995). This model implies an-
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cient duplication of regions of maize chromosomes 9
and 10 and regions of rice chromosomes 4 and 6 equiv-
ocally supported by the correspondence of Pi2 and
Pi5t genes that influence rice blast reaction (Causse
et al. 1994). These day-length-insensitive flowering
mutations are not in any of at least three genes for
phytochrome, a key regulator of photomorphogene-
sis (Paterson et al. 1995b).

Comparative mapping has provided the basis for
parallel investigations of other genetic factors. The
first report of detection of orthologous QTLs with the
greatest effects on seed weight in mungbean and cow-
pea was provided by Fatokun et al. (1992). In a similar
manner, comparative mapping in maize and sorghum
has revealed four putatively orthologous regions for
plant height (Pereira and Lee 1995; Lee 1996) and
other possible instances of orthologous QTL included
regions for maturity and tillering. The putative orthol-
ogous regions for plant height are on linkage group
A and the long arm of chromosome 1, D and chro-
mosome 5, E and the long arm of chromosome 6, H
and chromosome 9 of the sorghum linkage map and
maize chromosome, respectively. The regions of the
maize plant height QTL also contain genetic loci de-
fined by mutants with qualitative effects on stature,
such as brl and anl on chromosome 1, nal and tdl
on chromosome 5, pyl on chromosome 6, and d3
on chromosome 9. The effects of some of these maize
mutants strongly resemble those of the sorghum plant
height QTL and dwloci. Atleast three of the maizeloci,
anl, brl,and d3, have been tagged with transposons or
cloned by various laboratories. These sequences could
be used to isolate the related gene from sorghum and
further assess the degree and nature of conservation
between these two genomes. In sorghum, each region
has a major effect on that trait and on a unique suite
of other traits (e.g., tillering, panicle dimensions, leaf
length, and width), much like some of the dw loci in
sorghum. Interestingly, plant height mutants at maize
genetic loci in related regions have pleiotropic effects
on some of the same combinations of traits as the
sorghum QTL and the candidate dw loci. Possible du-
plication of QTLs that affect the height of sorghum
and maize has also been reported (Lin et al. 1995).

Evidence for several other orthologous regions has
also been provided through comparative QTL analysis
(Lee 1996). For example, a region of linkage group A
(isu033 to isul23) was strongly associated with tiller-
ing and production of lateral branches. This region of
the sorghum genome is most closely related to the
long arm of chromosome 1 of maize. This region

of the maize genome is the site of a genetic locus,
tbl. The mutant phenotype at that locus is charac-
terized by the production of many tillers and lateral
branches in a manner strongly resembling the tillering
QTL in sorghum. Other possible instances of orthol-
ogous QTL included regions for maturity. These ob-
servations suggest that the conservation of the maize
and sorghum genomes encompass sequence homol-
ogy, colinearity, and function despite their divergence
millions of years ago and subsequent evolution in dif-
ferent hemispheres with contrasting ecogeographical
conditions. Thus, comparative QTL mapping provides
a means to unify, and thereby simplify, molecular
analysis of complex phenotypes.

7.5
Marker-Assisted Breeding

7.5.1
Marker Conversions

Molecular markers help unravel patterns of diver-
sity in crops and their wild relatives. DNA markers
are used to evaluate the genetic variation in gene
banks as well as to identify phylogenetic and molec-
ular structure of crops and their associated wild
species. Molecular-assisted genetic analysis provides
a means to locate and select genes controlling impor-
tant agronomic, pest-resistance, stress-tolerance, and
food quality traits.

For leaf blight resistance, Boora et al. (1999) devel-
oped RAPD primer OPD12, and a 332-bp PCR band
has been converted into SCAR, which resulted in the
amplification of a single major band of the predicted
size from all the resistant F, progeny and the resistant
parent SC326-6, but not from BT X 623 or 24 of 29 sus-
ceptible F, progeny. The SCAR primers also amplified
a single band with DNA from TS3620C, the female
parent in a cross with BT x 623 that has been used to
produce a recombinant inbred population for RFLP
mapping. An equivalent band was amplified from all
137 recombinant inbred progeny, indicating that or-
ganelle DNA is the amplification target in this cross.

The gene rf4 restores fertility in IS1112 (A3) male
sterile cytoplasm, for which three AFLP markers were
identified and subsequently converted to STS/CAPS
markers, two of which are codominant (Wen et al.
2002). Markers IW8 and LW9 were used to screen
sorghum BAC libraries to identify the genomic region
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encoding rf4. A contig of BAC clones flanking the
LW9 marker represents seed clones on linkage group
E, from which fine mapping of the rf4 locus and chro-
mosome mapping can be initiated.

7.5.2
Marker-Assisted Selection

Conventional plant breeding is primarily based on
phenotypic selection of superior individuals among
segregating progenies resulting from hybridization.
Although significant strides have been made in
crop improvement through phenotypic selections
for agronomically important traits, considerable
difficulties are often encountered during this process
primarily due to genotype-environment interactions.
Molecular-marker-assisted selection (MAS) involves
selection of plants carrying genomic regions that
are involved in the expression of traits of interest
through molecular markers. With the development
and availability of an array of molecular markers
and dense molecular genetic maps in crop plants,
MAS has become possible for traits governed by both
major genes and by quantitative trait loci (QTLs).

Grain mold caused by Curvularia lunata (Wakker)
Boedijn is a serious disease on sorghum especially
when grain development coincides with wet and warm
weather conditions. Rooney and Klein (2000) identi-
fied five QTLs on linkage groups D, E, F, G, and I using
a mapping population consisting of 125 F5 RILs from
a cross between RT x 430 x Sureno. Five populations
were developed using Sureno as grain mold resistant
parent. From each cross, F, progeny were selected
based on maturity and short plant height. A total of
1,000 F,;3 lines were evaluated for agronomic desir-
ability and grain mold resistance. From this evalua-
tion, a total of 100 Fs.4 lines were selected and ad-
vanced. In the F, generation, an array of molecular
markers linked to the sorghum grain mold QTL was
screened. To test the effectiveness of MAS, lines from
each population were classified for QTL marker alleles
at each of the five loci. This comparison indicated that
only one of the five QTLs enhanced selection for grain
mold resistance. The presence of the Sureno allele in
LG-F enhanced mold resistance. MAS was clearly ef-
fective in the population derived from crosses with
RT x 430 since these QTLs were developed in this
population (Rooney and Klein 2000).

Drought is another major limiting factor in
sorghum productivity. Moisture stress during both

pre- and postflowering stages reduces sorghum yield
drastically. Therefore, improvement in both pre-
and postflowering drought tolerance is necessary to
improve and stabilize productivity of sorghum in
stress environments. Subudhi et al. (2000) have iden-
tified QTLs for stay-green, postflowering drought
tolerance trait using three random inbred lines
(RILs). Near-isogenic lines (NILs) for stay-green
QTLs have been developed using MAS to dissect the
QTL regions and to determine the effect of QTLs in
stress environments.

Jordan et al. (2003) investigated the value of
molecular-marker-based distance information to
identify high-yielding grain sorghum hybrids in
Australia. Data from 48 trials were used to produce
hybrid performance estimates for four traits (yield,
height, maturity, and stay-green) for 162 hybrid com-
binations derived from 70 inbred parent lines. Each
line was screened with 113 mapped RFLP markers.
The researchers utilized the concept of using diversity
on linkage groups to predict hybrid performance.
Using data from just two linkage groups, 38% of the
variation in hybrid performance for grain yield could
be explained. A model combining phenotypic trait
data and parental diversity on particular linkage
groups explained 71% of the variation in grain yield
and has potential for use in the selection of heterotic
hybrids.

7.6
Physical Mapping in Sorghum

Molecular physical mapping will provide an invalu-
able, readily accessible system for many detailed ge-
netic studies. The development of large DNA frag-
ment (>100kb) manipulation and cloning technolo-
gies, such as pulsed-field gel electrophoresis (PFGE),
and yeast artificial chromosome (YAC) (Burke et
al. 1987) and bacterial artificial chromosome (BAC)
(Shizuya et al. 1992) cloning have provided the power-
ful tools needed to generate molecular physical maps
for genomes of higher organisms. Once generated,
the physical map will provide a virtually unlimited
number of DNA markers from any chromosomal re-
gion for gene tagging, gene manipulation, and genetic
studies. It will also provide an online framework for
studies in genome molecular structure, genome or-
ganization, evolution, and gene regulation. The iden-
tification, isolation, characterization, and manipula-
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tion of genes will become far more user feasible than
ever before. The physical map, therefore, will become
central to all types of genetic and molecular enquiry
and manipulation, including genome analysis, gene
cloning, and crop improvement.

The first construction and characterization ofa 2.7
x BAC library from S. bicolor cultivar BT x 623
with 13,440 ordered clones and average insert size of
157 kbp was reported by Woo et al. (1994). Sorghum
inserts of up to 315 kbp were isolated and shown to
be stable when grown for over 100 generations in lig-
uid media. No chimeric clones were detected as de-
termined by fluorescence in situ hybridization of 10
BAC clones to metaphase and interphase S. bicolor
nuclei. Lin et al. (1999) constructed and character-
ized a 6.6 x BAClibrary of Sorghum propinquum, with
38,016 clones and average insert size of 126 kbp. This
wild relative of sorghum has been utilized in RFLP
linkage mapping and QTL analysis of many impor-
tant traits related to domestication and productivity
(Chittenden et al. 1994; Lin et al. 1995; Paterson et al.
1995a,b). Further, S. propinquum appears to have been
the ancestor that conferred many “weediness” traits to
johnsongrass (S. helepense) and so offers opportuni-
ties to pursue new dimensions in agricultural research
(Paterson et al. 1995a). This S. propinquum library is
a valuable complement to an established S. bicolor
BAC library (Woo et al. 1994) for the cloning of genes
associated with domestication and many other traits.
Six traits related to domestication were analyzed in
the F, of a cross between S. bicolor cultivar BT x 623
and S. propinquum. S. propinquum possessed most of
the dominant alleles at five traits (grain shattering,
plant height, flowering time, tiller number, and rhi-
zomatousness). Dominant and additive alleles have
an advantage over recessive alleles in physical map-
ping, and the testing of candidate DNA sequences for
mutant complementation requires that the candidate
sequence be genetically dominant or additive. Thus,
BAC libraries of wild species offer unique advantages
for map-based cloning that harbor dominant and ad-
ditive alleles for many traits of agronomic importance.
Bowers et al. (2001) reported their efforts toward the
construction of two physical maps of sorghum based
on a6 x coverage BAC library of S. propinquum and
14x coverage BAC library of S. bicolor. Markers from
a 2,600-loci RFLP-based genetic map of sorghum are
being used to probe the BAClibraries either asindivid-
ual plasmid probes or by using synthetically designed
overgo probes. Attempts at constructing robust phys-
ical maps of sorghum using a high-density RFLP map

as a framework were also reported by Draye et al.
(2001); such a map is being assembled by integrating
hybridization and fingerprint data with comparative
data from related taxa such as rice and using new
methods to resolve genomic duplications into locus-
specific groups. By taking advantage of allelic varia-
tion revealed by heterologous probes, the positions of
corresponding loci on the wheat (Triticum aestivum),
rice, maize, sugarcane, and Arabidopsis genomes are
being interpolated on the sorghum physical map. Bac-
terial artificial chromosomes for the small genome of
rice are shown to close several gaps in the sorghum
contigs. Characterwise positional cloning efforts are
discussed below.

Seed dispersal via disarticulation of inflorescence,
or shattering, is an important agronomic trait con-
tributing to significant yield loss in many common
cereal crops. Isolation of shattering genes can enhance
our understanding of the seed dispersal process and
perhaps help us to reduce grain losses. Lin (1998)
focused on positional cloning of the sorghum shat-
tering gene, Shl, and used substitution mapping to
narrow down the chromosome segment associated
with Shl to 0.8 cM. Based on these data, Shl coseg-
regates with RZ474 and is flanked by pSB097 and
BCD1072b. These three RFLP markers were used to
screen the S. propinquum BAC library. Twelve BAC
clones with an average size of 113 kbp were identi-
fied, and nine of them formed a contig spanning the
region of pSB097 and RZ474 (Shi). Wise et al. (2002)
also screened the S. propinquum BAC library with
DNA markers closely linked to sh1 for the fine map-
ping of a chromosomal segment associated with sh1.
Interval mapping showed that shi cosegregated with
one marker, SOG0128, that is located between mark-
ers SOG0251 and SOG1273 in a genetic interval of
0.42 cM. Thirteen BACs that hybridized markers in the
region formed one contig. One BAC, 39E21, spanned
a large part of the contig with SOG0251 at one end,
and the shl cosegregation marker SOG0128 near the
middle. Sequencing revealed this BAC to be 220 kb in
size. But the researchers were unable to extend the
BAC contig at satisfactory stringency to include the
BAC hybridizing marker SOG1273.

Lin (1998) studied characteristics of photo-
periodic-sensing genes in sorghum, a short-day
plant, focusing on positional cloning of the sorghum
photoperiodic flowering gene, Mal. Previous work
on comparative mapping of flowering-time QTLs
in the Poaceae has revealed that Mal may be
homologous to sugarcane, maize, barley, and wheat
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photoperiodic flowering genes and paralogous to
rice photoperiodic flowering genes. Substitution
mapping was used to narrow down the chromosomal
segment containing Mal to 0.5cM. The two most
closely linked RFLP markers, pSB1113 and CDSR084,
were used to screen a S. propinquum BAC library.
These two markers hybridized to ten BAC clones
with an average size of 190 kbp, which set the stage
for chromosome walking to clone Mal. Positional
cloning and subsequent analysis of the sorghum
photoperiodic flowering gene will pave the way to
understanding how photoperiodic genes regulate
flowering in response to day length.

Stay-green is an important postflowering drought
resistance trait in sorghum. With the objective of
isolating the drought resistance genes in sorghum,
markers linked to stay-green QTLs (Xu et al. 2000)
were used for screening the BAC libraries in Henry
Nguyen’s laboratory. Several positive BAC clones cor-
responding to the stay-green QTL 1 and 2 regions were
identified, and these positive BACs fall entirely into
five contigs. Simultaneously, large mapping popula-
tions have been developed using near-isogenic lines
for the stay-green QTL regions for fine mapping. Iden-
tification of BACs in conjunction with the NIL map-
ping populations will be a useful starting point for
chromosome walking toward the stay-green genes.

The liguleless (Ig-1) linkage group is a highly con-
served region of the rice and maize genome (Ahn
and Tanksley 1993). Zwick et al. (1998) used fluores-
cent in situ hybridization (FISH) for physical map-
ping of BACs to analyze the liguleless (Ig-1) linkage
group in sorghum and compared it to the conserved
region in rice and maize. Six liguleless-associated rice
RFLP markers were used to select 16 homoeologous
sorghum BACs, which were in turn used to physi-
cally map the liguleless linkage group in sorghum. Re-
sults show a basic conservation of the liguleless region
in sorghum relative to the linkage map of rice. Se-
lected BACs, representing RFLP loci, were end-cloned
for RFLP mapping, and the relative linkage order of
these clones was in full agreement with the physical
data. Similarities in locus order and the association of
RFLP-selected BAC markers with two different chro-
mosomes were found to exist between the linkage map
of the liguleless region in maize and the physical map
of the liguleless region in sorghum.

Fertility restorer gene RfI in sorghum is very im-
portant because of its critical role in hybrid seed pro-
duction. Klein et al. (2004) utilized four BAC libraries
from two unique sorghum genotypes to create an in-

tegrated genetic, physical, and cytological map of the
sorghum genome targeting RfI gene for positional
cloning. Initial cytological examination of this ge-
nomic region suggested that the physical size of the
traitlocus was amenable to positional cloning. A min-
imum tiling path of BAC clones spanning the RfI locus
was subsequently assembled. A key feature in physi-
cal map closure in the RfI region was the exploitation
of the synteny between rice and sorghum to identify
sorghum BACs that span gaps in the sorghum physi-
cal map. A 0.5-Mbp genomic region surrounding RfI
was sequenced. The development of a high-resolution
map for the RfI locus was accomplished in part by
identifying sequence polymorphisms in overlapping
BACs derived from two unique sorghum genotypes.
The culmination of these efforts was the identification
of amember of the pentatricopeptide repeat gene fam-
ily that cosegregates with RfI.

Development of modified cDNA selection pro-
tocol to aid the discovery and mapping of genes
across an integrated genetic and physical map of the
sorghum genome has been reported by Childs et al.
(2001). BAC DNA from the sorghum genome map
was isolated and covalently bound in arrayed tubes
for efficient liquid handling. Amplifiable cDNA se-
quence tags were isolated by hybridization to individ-
ual sorghum BACs, cloned, and sequenced. Analysis of
a fully sequenced sorghum BAC indicated that about
80% of known or predicted genes were detected in
the sequence tags, including multiple tags from dif-
ferent regions of individual genes. Data from cDNA
selection using the fully sequenced BAC indicate that
the occurrence of mislocated cDNA tags is very low.
Analysis of 35 BACs (5.25Mb) from sorghum link-
age group B revealed (and therefore mapped) two
sorghum genes and 58 sorghum ESTs. Additionally, 31
cDNA tags that had significant homologies to genes
from other species were also isolated. The modified
cDNA selection procedure described will be useful
for genomewide gene discovery and EST mapping in
sorghum and for comparative genomics of sorghum,
rice, maize, and other grasses.

7.7
Structural Genomics

Structural genomic resources for S. bicolor (L.)
Moench were applied by Islam-Faridi et al. (2002) to
target and develop multiple molecular cytogenetic
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probes that would provide extensive coverage for
aspecific chromosome of sorghum. Bacterial artificial
chromosome (BAC) clones containing molecular
markers mapped across sorghum linkage group
A were labeled as probes for fluorescence in situ
hybridization (FISH). Signals from single-, dual-, and
multiprobe BAC-FISH to spreads of mitotic chro-
mosomes and pachytene bivalents were associated
with the largest sorghum chromosome, which bears
the nucleolus organizing region (NOR). The order of
individual BAC-FISH loci along the chromosome was
fully concordant with that of marker loci along the
linkage map. In addition, the order of several tightly
linked molecular markers was clarified by FISH
analysis. The FISH results indicated that markers
from the linkage map positions 0.0 to 81.8 cM reside
in the short arm of chromosome 1 whereas markers
from 81.8 to 242.9cM are located in the long arm
of chromosome 1. The centromere and NOR were
located in a large heterochromatic region that spans
~60% of chromosome 1. In contrast, this region
represents only 0.7% of the total genetic map distance
of this chromosome. Variation in recombination
frequency among euchromatic chromosomal regions
also was apparent. The integrated data underscore
the value of cytological data because minor errors
and uncertainties in linkage maps can involve
huge physical regions. The successful development
of multiprobe FISH cocktails suggests that it is
feasible to develop chromosome-specific “paints”
from genomic resources rather than flow sorting or
microdissection and that, when applied to pachytene
chromatin, such cocktails provide an especially
powerful framework for mapping. Such a molecular
cytogenetic infrastructure would be inherently cross-
linked with other genomic tools and thereby establish
a cytogenomics system with extensive utility in
development and application of genomic resources,
cloning, transgene localization, development of
plant “chromonomics”, germplasm introgression,
and marker-assisted breeding. In combination with
previously reported work, the results indicate that
a sorghum cytogenomics system would be partially
applicable to other gramineous genera but recent
publication by Kim et al. (2004) has changed this
notion completely. They have used FISH-based
karyotyping in metaphase chromosomes of elite
inbred BT x 623 to estimate the molecular size and
to establish a size-based nomenclature for sorghum
chromosomes. This size-based nomenclature for BT
X 623 represents a reasonable choice as the standard

for a unified chromosome nomenclature. Adoption
of such a common reference for nomenclature of
sorghum chromosomes and a related nomencla-
ture for linkage groups would definitely facilitate
development of gramineous genomics, e.g., by
enhancing communication between research groups
and data usage across genome maps. The unified
nomenclature system for chromosomes and linkage
groups of line BT x 623 provides a reasonable basis
for a genomic nomenclature for S. bicolor in that this
line is readily available, highly inbred, and extensively
used for genetic, breeding, and genomics research.
However, caution must be exercised in applying
the nomenclature to other mapping endeavors
because the incidence of structural rearrangements
in sorghum is inadequately studied, so it remains
reasonably likely that genomes of mapping parents
differ structurally (Kim et al. 2004)

7.8
Functional Genomics

The complete sequence of the Arabidopsis [Arabidop-
sis thaliana (L.) Hyenh.] and rice (Oryza sativa L.)
genomes ushered plant biology into the postgenomic
era. From being largely a genetic black box, the
genome sequence is revealing all the possible genes
that make up a flowering plant. Now the goal for plant
biologists in the postgenome era is to understand the
function of every gene and how individual gene prod-
ucts interact and contribute to major plant processes.
This new challenge for plant functional genomics
is destined to become the most difficult hurdle in
plant biology and requires the systematic application
of global molecular approaches integrated through
bioinformatics. Several tools are now required to deci-
pher gene function including the traditional methods
of random mutagenesis, gene knockout and silenc-
ing, and the new high-throughput “omic” disciplines
of transcriptomics, proteomics, and metabolomics. In
the last few years, new techniques for the global anal-
ysis of gene expression (including microarrays and
DNA chips) using thousands of sequences at a time
have been rapidly changing the way to do research to
determine gene expression and function for both ba-
sic and applied objectives. This shift from the analysis
of one gene at a time to thousands at a time has cre-
ated opportunities to dramatically increase the rate
of gene discovery in higher plants and animals. For
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an important agronomic crop such as sorghum, the
traits of interest include preharvest sprouting, shatter-
ing, flowering and fertility, nutritional quality, disease
and insect resistance, photosynthesis, drought toler-
ance, and many others.

7.8.1
Development of ESTs

Expressed sequence tags (ESTs) are currently the
most widely sequenced nucleotide commodity
from plant genomes in terms of the number of
sequences and the total nucleotide count. ESTs
provide a robust sequence resource that can be
exploited for gene discovery, genome annotation,
and comparative genomics (Rudd 2003). To date,
190,949 ESTs in S. bicolor, 21,387 in S. propinquum,
and 1,641 in S. halepense (Johnsongrass) have been
submitted to GenBank (http://www.ncbi.nlm.nih.gov/
dbEST/dbEST_summary.html; as of 26 November
2004) from various global EST sequencing projects.

7.8.2
Gene Function Analysis

With the advancement of bioinformatics, sequence
analysis of molecular probes to assign function has
been realized. Schloss et al. (2002) collected and ana-
lyzed DNA sequence data for 789 previously mapped
RFLP probes from S. bicolor (L.) Moench. DNA se-
quences, comprising 894 nonredundant contigs and
end sequences, were searched against three Gen-
Bank databases, nucleotide (nt), protein (nr), and
EST (dbEST), using BLAST algorithms. Matching
ESTs were also searched against nt and nr. Translated
DNA sequences were then searched against the con-
served domain database (CDD) to determine if func-
tional domains/motifs were congruent with the pro-
teins identified in previous searches. More than half
(500/894 or 56%) of the query sequences had signifi-
cant matches in at least one of the GenBank searches.
Overall, proteins identified for 148 sequences (17%)
were consistent among all searches, of which 66 se-
quences (7%) contained congruent coding domains.
The 3-deoxyanthocyanidins, a unique class of
flavonoid phytoalexins, have been reported to be syn-
thesized in sorghum in response to fungal infection.
Lo et al. (2002) studied the biosynthetic pathways for
3-deoxyflavonoids, which are known to involve tran-

scriptional activation of chalcone synthase (CHS).
CHS, or naringenin CHS, catalyzes the formation
of naringenin, the precursor for different flavonoids.
They have isolated seven sorghum CHS genes, CHS17,
from a genomic library on high-density filters. CHS1
7 genes are highly conserved and closely related to
the maize C2 and Whp genes. Several of them are
also linked in the genome. These findings suggest
that they are the result of recent gene-duplication
events. Expression of the individual CHS genes was
studied in silico by examination of EST data available
in the public domain. Analyses suggested that CHS1 7
genes were not differentially expressed in the various
growth and developmental conditions represented by
the cDNA libraries used to generate the EST data.
However, a CHS-like gene, CHSS8, was identified with
significantly higher EST abundance in the pathogen-
inducedlibrary. CHS8 shows only 81 to 82% identity to
CHSI 7 and forms a distinct subgroup in the phyloge-
netic analysis. In addition, the active site region con-
tains substitutions that distinguish CHS8 from narin-
genin CHS. The researchers proposed that CHS8 has
evolved new enzymatic functions that are involved in
the synthesis of defense-related flavonoids, such as
the 3-deoxyanthocyanidins, during fungal infection.

Complete sequences of mitochondrial (mt)
genomes or chondrions are now available from
Arabidopsis thaliana. As a consequence of recombi-
nation, the order and localization of mitochondrial
genes differ largely among plant chondrions. But
cotranscripts for two mt genes, nad3 and rpsl2,
are conserved within angiosperms and also in
gymnosperms. The nad3 gene codes for a subunit of
the mitochondrial NADH-ubichinonoxidoreductase
complex, while the rps12 gene product is a protein of
the mitochondrial small ribosomal subunit. Howad
and Kempken (1997) have cloned and sequenced the
nad3-rps12 genes from S. bicolor. The DNA sequence
was very similar to known sequences from wheat
or maize. Both genes were cotranscribed. A total of
17 RNA editing sites in nad3 and six editing sites in
rps12 were detected. Cotranscripts exhibited a low
degree of RNA editing, which was the same in four
different fertile and cytoplasmic male sterile lines. In
contrast to atp6 RNA editing, no cell-type specific
loss of RNA editing was observed.

Photosynthesis depends upon the strict compart-
mentalization of the CO,-assimilatory enzymes of the
Csand Calvin cycle in two different cell types, meso-
phyll and bundle-sheath cells. A differential accumu-
lation is also observed for enzymes of other metabolic
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pathways, and mesophyll and bundle-sheath chloro-
plasts of NADP-malic enzyme type C4 plants dif-
fer even in their photosynthetic electron transport
chains. A large number of studies indicate that this di-
vision of labor between mesophyll and bundle-sheath
cells is the result of differential gene expression. To
investigate the extent of this differential gene ex-
pression and thus gain insight into the genetic basis
of C4 photosynthesis, Wyrich et al. (1998) cataloged
genes that are differentially expressed in the meso-
phyll and bundle-sheath cells in the NADP-malic en-
zyme type C, grass S. bicolor. A total of 58 cDNAs
were isolated by differential screening. Using a tenfold
difference in transcript abundance between meso-
phyll and bundle-sheath cells as a criterion, 25 cDNAs
were confirmed to encode mesophyll-specific gene
sequences, and eight were found to encode bundle-
sheath-specific sequences. Eight mesophyll-specific
cDNAs showed no significant similarities within Gen-
Bank and may therefore represent candidates for the
elucidation of hitherto unknown functions in the dif-
ferentiation of mesophyll and bundle-sheath cells. The
chromosomal location of 50 isolated cDNAs was de-
termined by RFLP mapping using an interspecific
sorghum cross.

Bak et al. (1998) have isolated a cDNA encoding
the multifunctional cytochrome P450, CYP71E], in-
volved in the biosynthesis of the cyanogenic glucoside
dhurrin from S. bicolor (L.) Moench. A PCR approach
based on three consensus sequences of A-type
cytochromes P450 - (V/T) KEX (L/F) R, FXPERE,
and PFGXGRRXCXG - was applied. Three novel
P450 cytochromes (CYP71E1, CYP98, and CYP99),
in addition to a PCR fragment encoding sorghum
cinnamic acid 4-hydroxylase, were obtained. Recon-
stitution experiments with recombinant CYP71El
heterologously expressed in Escherichia coli and
sorghum NADPH-cytochrome P450-reductase in
L-a-dilaurylphosphatidyl choline micelles identified
CYP71E1l as the P450 cytochrome that catalyzes
the conversion of p-hydroxyphenylacetaldoxime
top-hydroxymandelonitrile in dhurrin biosyn-
thesis. In accordance with the proposed pathway
for dhurrin biosynthesis, CYP71El catalyzes the
dehydration of the oxime to the corresponding
nitrile, followed by a C-hydroxylation of the nitrile
to produce p-hydroxymandelonitrile. In vivo ad-
ministration of oxime to E. coli cells results in the
accumulation of the nitrile, which indicates that the
flavodoxin/flavodoxin reductase system in E. coli is
only able to support CYP71El in the dehydration

reaction and not in the subsequent C-hydroxylation
reaction. CYP79 catalyzes the conversion of tyrosine
to p-hydroxyphenylacetaidoxime, the first committed
step in the biosynthesis of the cyanogenic glucoside
dhurrin. Reconstitution of both CYP79 and CYP7 IE1
in combination with sorghum NADPH-cytochrome
P450-reductase resulted in the conversion of tyrosine
to p-hydroxymandelonitrile, i.e., the membranous
part of the biosynthetic pathway of the cyanogenic
glucoside dhurrin. Isolation of the c¢DNA for
CYP71E1 together with the previously isolated cDNA
for CYP79 provided important tools necessary for
the tissue-specific regulation of cyanogenic glucoside
levels in plants to optimize food safety and pest
resistance.

Preharvest sprouting (PHS) in sorghum is related
to the lack of a normal dormancylevel during seed de-
velopment and maturation. Carrari et al. (2001) used
a PCR-based approach to isolate two S. bicolor ge-
nomic and cDNA clones from two genotypes exhibit-
ing different PHS behavior and sensitivity to abscisic
acid (ABA). The two 699 amino-acid-predicted pro-
tein sequences differ in two residues at positions 341
(Gly or Cys within the repression domain) and 448
(Pro or Ser) and show over 80, 70, and 60% homol-
ogy to maize, rice, and oat vpI proteins, respectively.
Expression analysis of the sorghum vpl gene in the
two lines shows a slightly higher level of vpI mRNA
in the embryos susceptible to PHS than in those resis-
tant to PHS during embryogenesis. However, timing
of expression was different between these genotypes
during this developmental process. Whereas for the
former the main peak of expression was observed at
20 d after pollination (DAP), the peak in the latter
was found at later developmental stages when seed
maturation was almost complete. Under favorable
germination conditions and in the presence of fluri-
done (an inhibitor of ABA biosynthesis), sorghum
vpl mRNA proved to be consistently correlated with
sensitivity to ABA but not with ABA content and dor-
mancy.

Sorghum is attacked by Colletrotrichum subline-
olum, which causes leaf blight. Goodwin et al. (2004)
analyzed the types of genes being expressed and their
level of expression by conducting single-pass, par-
tial sequencing of cDNA clones to generate expressed
sequence tags (ESTs). They compared expressed se-
quence tag redundancy between EST collections from
resistant and susceptible S. bicolor inoculated with C.
sublineolum. Differences in expressed sequence re-
dundancy between interactions included a greater
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abundance of heat shock protein ESTs in the suscep-
tible interaction and a greater abundance of cystine
proteinase ESTs in the resistant interaction.

7.9
Future Prospects

Population trends predict increasing food needs,
while progress in developmental and genomic plant
sciences offer new opportunities for crop improve-
ment. Sorghum is an important target for molecular
genetic studies because of its adaptation to harsh
environments, diverse germplasm collection, smaller
genome size, and value for comparing the genomes
of grass species such as corn, rice, and sugarcane.
Concerted efforts over the past one and a half decades
have greatly helped in the construction of integrated
and highly saturated molecular maps in sorghum,
and the majority of the agronomically important
genes have been tagged. Successful utilization of this
information in sorghum genetic improvement has
not yet been realized. This is largely due to lack of
application of marker information in marker-assisted
breeding. Molecular breeders must reassess their
strategies and design efficient MAS programs to
augment efforts in breeding for better plant types to
meet the growing needs of modern agriculture.

The most noted accomplishment is in the filed of
comparative genomics as sorghum stands central in
the Andropogoneae tribe. Sorghum has also served as
a model to bridge the comparative analysis between
the grass relatives. Conservation of gene order across
cereal genomes is evident from several studies. How-
ever, very little information is available on chromo-
some walking and positional cloning of agriculturally
important genes in sorghum to facilitate isolation of
orthologous genes in the related crop species and vice
versa. Physical mapping efforts were initiated (Woo
et al. 1994; Lin 1998; Klein et al. 2000; Bowers et al.
2001) and are near completion, which will eventu-
ally provide innumerable number of DNA markers
from any chromosomal region for map-based gene
isolation and a better understanding of genome orga-
nization, evolution, and gene regulation.

Recent programs to understand the function of
every gene and how individual gene products interact
and contribute to major plant processes resulted in
the development and deposition of 190,949 sorghum
ESTs in GenBank. Utilization of corresponding cDNA

clone libraries in large-scale expression profiling will
prove to be a valuable resource for gene discovery im-
plicated in plant development processes, disease and
insect resistance, drought tolerance, and nutritional
qualities.

With the availability of these efficient molecular
biology tools in hand, there is a great potential for
the exploitation of large genetic diversity as yet un-
tapped so far in sorghum. Furthermore, application
of novel gene-combining techniques has the potential
to meet the challenges of increasing the productivity
of sorghum.
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