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Summary. We introduce a linearized bimetric theory of gravity with two metrics.
The metric gαβ describes null hypersurfaces of the gravitational field while light
moves on null hypersurfaces of the optical metric ḡαβ . Bimetrism naturally arises
in vector–tensor theories with matter being nonminimally coupled to gravity via
long-range vector field. We derive explicit Lorentz-invariant solution for a light ray
propagating in space–time of the bimetric theory and disentangle relativistic effects
associated with the existence of the two metrics. This analysis may be valuable for
future spaceborne laser missions ASTROD and LATOR dedicated to map various
relativistic gravity parameters in the solar system to unparalleled degree of accuracy.

Recently Carlip [1] has introduced a bimetric theory of gravity with two met-
rics, gαβ and ḡαβ , and a unit vector field wα coupled to matter via constant
parameter ε. This theory is a variant of a vector–tensor theory [2] where the
vector field wα obeys the source-free field equations and is responsible for
the spontaneous violation of the Lorentz invariance of gravity [3, 4] in the
sense that it introduces a preferred frame which effects can be observed only
in gravitational experiments conducted in nonnegligible gravitational field.
One can show that in the case of a bimetric theory of gravity the Huges–
Drever experiments and other precision experiments constrain the asymptotic
(vanishing gravity) difference between these two metrics severely [5–7]. Here
we consider more complicated (nonvanishing gravity) case of geometric optics
of light rays (laser beams) in the bimetric theory. Carlip’s bimetric theory [1]
adopts specific values of parameters in Jackobson’s theory [2] and adds one
more parameter ε which is a coupling constant between the vector field wα

and the stress–energy tensor of matter. It is useful to understand what kind of
relativistic effects one can expect in the bimetric theory in application to the
spaceborne laser ranging experiments like ASTROD [8,9] and LATOR [10–12].
We shall investigate this problem by calculating the time delay of light propa-
gating in the time-dependent gravitational field of an arbitrary moving body.
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In what follows, we shall consider an isolated N -body system (a solar
system) resided in an asymptotically flat space–time of the gravity metric
gαβ . According to Carlip [1] the optical metric

ḡαβ = gαβ +
(

1 − 1
ε2

)

wαwβ , (1)

ḡαβ = gαβ −
(

ε2 − 1
)

wαwβ , (2)

where ε is a constant parameter defining the coupling of the vector field wα

with matter and describing the degree of violation of the Lorentz invariance
for electromagnetic field (and other material fields). Following Carlip [1] we
assume that the Greek indices are raised and lowered with the metric gαβ .

Let us work in a global coordinate system xα = (ct, xi), where c in Carlip’s
theory [1] is the speed of gravity and xi are spatial coordinates. In the global
frame the linearized expansions for the metric and the vector field are

gαβ = ηαβ + hαβ , (3)
gαβ = ηαβ − hαβ , (4)
wα = V α + ζα , (5)
wα = Vα + ζα − hαβV

β , (6)

where ηαβ = diag(−1,+1,+1,+1) is the Minkowski metric, hαβ is the per-
turbation of the gravity metric, and ζα is the perturbation of the vector field
which unperturbed value in the global frame is V α. We emphasize that V α

remains arbitrary and our analysis is not limited to the case of the preferred
frame where V α = (1, 0, 0, 0).

The optical metric ḡαβ is decomposed as follows

ḡαβ = η̄αβ + h̄αβ , (7)
ḡαβ = η̄αβ − h̄αβ , (8)

where the unperturbed part of the optical metric is defined by

η̄αβ = ηαβ −
(

ε2 − 1
)

V αV β , (9)

η̄αβ = ηαβ +
(

1 − 1
ε2

)

VαVβ , (10)

and the perturbation

h̄αβ = hαβ +
(

ε2 − 1
)

(V αζβ + V βζα) . (11)

According to Carlip [1] light propagates in the bimetric theory along light
geodesics of the optical metric ḡαβ . In geometric optics limit, the light rays are
defined by a covariant equation for electromagnetic phase (eikonal) ϕ which
reads [1, 13]
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ḡµν∂µϕ∂νϕ = 0 . (12)

This equation is formally equivalent to the equation of light propagating
through dispersive medium with refraction index ε moving with respect to
a preferred frame with velocity wα. Theory of light propagation through the
dispersive medium has been worked out by Synge [13] and we shall use his
theory to integrate (12) and to interpret its solution.

As follows from (12), we do not need to know solutions for the metric
perturbation hαβ and that of the vector field ζα separately. What we need
to perform the integration of (12) is solution for the perturbation h̄αβ of the
optical metric (8). In the linearized approximation the metric perturbation
h̄αβ obeys the following gravity field equations [1]

�h̄αβ = −1/2
16πG

(1 − 4!)εc2
(

S(α
µT

β)µ − ηαβTλ
λ

)

, (13)

where � ≡ −c−2∂2/∂t2 +∇2 is the wave operator in flat space–time defining
null characteristics of the gravitational field, the constant tensor Sαβ = ηαβ +
2!V αV β , ! is another constant parameter of the bimetric theory (! = 0 in
general relativity), and Tµν is the stress–energy tensor of the point-like bodies
composing of the N -body system. Equation (13) is valid under imposing the
following gauge conditions

∂β

(

hαβ − 1
2
ηαβh

)

+
(

1 − 1
ε2

)

Vα∂βζ
β = 0 . (14)

In the linearized approximation the stress–energy tensor reads [1]

Tαβ(t,x) =
N
∑

a=1

Mau
α
a u

β
a δ

(3)
(

x − xa(t)
)

γa

√

1 − (1 − ε−2) (uµVµ)2
, (15)

where the index a = 1, 2, . . . , N enumerates gravitating bodies of the solar sys-
tem, Ma is the (constant) rest mass of the ath body, xa(t) is time-dependent
spatial coordinate of the ath body, va(t) = dxa(t)/dt is velocity of the ath
body, uα

a = γa(1, va/c) is the 4-velocity of the ath body, γa =
(

1−v2
a/c

2
)−1/2

is the Lorentz factor, and δ(3)(x) is the three-dimensional Dirac’s delta
function.

Because the field equations (13) are linear, we can consider their solution
as a linear superposition of the solutions for each body. It allows us to focus
on the relativistic effects caused by one body (Sun, planet, etc.) only. Solving
(13) by making use of the retarded Liénard–Wiechert tensor potentials [14],
one obtains the metric tensor perturbation

h̄αβ(t,x) =
2GM

(1 − 4!)c2
2uαuβ + ηαβ + 2!

(

uαV β + uβV α
)

(uµVµ)
√

ε2 − (ε2 − 1) (uµVµ)2
1
rR
, (16)
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where rR ≡ −uαr
α, rα = xα − zα(s), zα(t) = (ct,z(t)) is the world line of

the light ray deflecting body parametrized by the coordinate time t, uα(t) =
c−1dzα(t)/dt.

Because we solved the field equations (13) in terms of the retarded
Liénard–Wiechert potentials, the distance rα = xα − zα(s), the body’s world
line zα(s) = (cs,z(s)), and the body’s 4-velocity uα(s) in (16) are functions
of the retarded time s. The retarded time s is found in the linearized approx-
imation of the bimetric theory as a solution of the gravity null cone equation

ηµνr
µrν ≡ ηµν

(

xµ − zµ(s)
)(

xν − zν(s)
)

= 0 , (17)

i.e.,

s = t− 1
c
|x − z(s)| , (18)

where the fundamental constant c in (18) is the fundamental speed of propa-
gation of gravity.

Light rays are defined by a covariant equation (12) for electromagnetic
phase (eikonal) ϕ. Assuming that unperturbed solution of (12) is a plane
wave, we can write a general solution of this equations as follows

ϕ(xα) = ϕ0 + kαx
α + ψ(xα) , (19)

where kα is an unperturbed (constant) wave covector of the electromagnetic
wave, and ψ(x) is a relativistic perturbation of the eikonal generated by the
metric tensor perturbation h̄αβ defined in (16). Substitution of (19) to (12)
yields

η̄αβkαkβ = 0 , (20)

η̄αβkα
∂ψ

∂xβ
=

1
2
hαβkαkβ . (21)

Let us define a vector (see Fig. 1)

σα = η̄αβkβ = kα −
(

ε2 − 1
) (

V βkβ

)

V α , (22)

such that
η̄αβσ

ασβ = 0 , and kασ
α = 0 . (23)

Vector σα defines the direction of propagation of light ray from a source of
light (laser, star) to observer (see Fig. 1). Making use of vector σα simplifies
(21) and reduces it to the following form

σα ∂ψ

∂xα
=

1
2
hαβσ

ασβ . (24)

Unperturbed characteristics of the eikonal equation (24) are straight lines
(light rays) parametrized by the affine parameter λ in such a way that
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Fig. 1. The light and gravity null cones of the bimetric theory are shown. Gravity
propagates from the source of light (laser) to observer along the gravity null cone
defined by the metric gαβ . Gravitationally unperturbed direction to the source of
light is defined by vector σα lying on the null hypersurface of the optical metric ḡαβ .
Gravitationally perturbed direction of the light propagation is lα and this vector
resides on the gravity null cone. Each light ray deflecting body (Sun, planet) deflects
light from its retarded position defined with respect to observer by a null vector
rα = xα−xα

J (s) which also resides on the gravity null cone. The eikonal gravitational
perturbation is ψ = −(2GM/c2)χ ln Φ, where Φ = −lαrα. Gravitational light ray
deflection experiments measure the range χ and shape Φ of the relativistic time
delay of light. The range measurement allows us to pin down the parameter χ while
measuring the shape Φ of the time delay gives us the components of the vector
lα under assumption that vector rα is known. Deviation of lα from the gravity-
unperturbed direction σα of the light ray measures the degree of violation of the
Lorentz invariance of the gravitational field.

d

dλ
= σα ∂

∂xα
. (25)

Integration of (25) by making use of the unperturbed characteristics is
straightforward (see, for example, [15]) and can be written as follows

ψ(xα) = −2GM
c2

χ ln (−lαrα) , (26)

where

χ =
(σαu

α)2 + (1/2) (σασ
α) + 2! (σαu

α) (σαV
α) (uαV

α)

(1 − 4!)(ε2 − (ε−2 − 1) (uµζµ)2)1/2 (Pαβσασβ)1/2
, (27)
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lα = σα
⊥ + σ⊥u

α , (28)
σα
⊥ = Pα

βσ
β , (29)

σ⊥ = (σ⊥ασ
α
⊥)1/2 =

(

Pαβσ
ασβ

)1/2
, (30)

and
Pαβ = ηαβ + uαuβ , (31)

is the operator of projection on the hyperplane orthogonal to the 4-velocity
uα of the light ray deflecting body (PαβP

β
γ = Pαγ). It is easy to confirm that

solution (26) is valid by observing that

d

dλ
ln (−lαrα) = −σ⊥

rR
, (32)

where rR = −uαr
α, and equations

∂αr
µ = δµ

α − uµ

γ
∂αs , (33)

∂αs = −γ rα

rR
, (34)

where γ = (1−β2)−1/2, have been used. Equation (28) allows us to recast the
argument of the logarithm in (26) as

lαr
α = σα

⊥rα − σ⊥rR . (35)

It is remarkable that both vectors lα and rα are null vectors of the gravity
metric gαβ (see Fig. 1). Indeed, in the linearized approximation gαβ = ηαβ

and one can easily prove by inspection that

ηαβl
αlβ = 0 , (36)

ηαβr
αrβ = 0 , (37)

which are consequences of the definitions given by (17) and (28). Thus, neither
lα nor rα belong to the null cone of the optical metric ḡαβ but characterize
the null hypersurfaces of the gravity metric gαβ .

Solutions (19) and (26) for the electromagnetic eikonal in the bimetric the-
ory should be compared with a similar solution for the case of propagation of
light in general relativity where the gravity and light null cones coincide [16].
The reader can see that the null characteristics of the gravity metric gαβ enter
the gravitationally perturbed part of the eikonal (26) in the bimetric theory
in the form of the dot product lαrα which is the argument of the logarithm,
where rα is the null distance of the metric gαβ between the observer and the
light ray deflecting body. A remarkable fact is that both lα and rα are null
vectors of the metric gαβ describing null hypersurfaces of the gravitational
field. Consequently, gravitational light ray deflection experiments in the field
of moving bodies are sensitive to, and can measure, the divergence between
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the null characteristics of the gravity metric gαβ and the optical metric ḡαβ

in the case of a nonstationary gravity field in contrast to other relativistic
experiments limiting the PPN-preferred frame parameters α1, α2, α3 [7]. This
allows us to measure the spontaneous violation of the Lorentz invariance of
the gravitational field predicted by the vector–tensor theories of gravity that
admit existence of a vector field wα coupled to matter via parameter ε para-
metrizing the difference between the gravity and optical metrics. In conven-
tional type of the gravitational light ray deflection experiments conducted
with VLBI [16,17], one needs the angle Φ (see Fig. 1) to be as small as possi-
ble to magnify the Lorentz-invariance violation effects driven by gravity field.
Currently, VLBI can measure gravitomagnetic effects of order v/c beyond the
static Shapiro effect [18,19]. Further progress in measuring more subtle effects
of the bimetric theory of gravity of order v2/c2 and higher beyond the static
Shapiro time delay can be achieved with laser ranging technique in the exper-
iments like LATOR [10–12] and/or ASTROD [8, 9]. In case of laser ranging
between spacecrafts with a gravitating body (Sun) located near the direction
of the laser beam, the angle Φ (see Fig. 1) can vary in a large dynamical range
so that relativistic effects of the bimetric theory of gravity could be explored
with much better precision than in VLBI experiments. We will study this
situation for laser ranging experiment in various theories, e.g., in the more
general vector–metric theories [20] and in the axion electrodynamics [21].
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