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Summary. In this chapter, we deduce a unified formula which allows to discuss
the comparison of clock rates at two different space–time points. In the case of a
perturbed Robertson–Walker metric, our formula returns to an equation for the
comparison of clock rates at different cosmic space–time points, which includes the
Hubble redshift, the Doppler effect, the gravitational redshift, and the Rees–Sciama
effects. In the case of the solar system, when the 2PN metric is substituted into
the unified formula, the comparison of the clock rates both on the earth and a
space station could be made. It might be useful for the discussion on the precise
measurement on future ACES and ASTROD.

1 Introduction

One of the most basic experiments in physics is the measurement of times.
Recently, atomic clocks with a time-keeping accuracy of the order of 10−18

in fractional frequency have been considered [1, 2]. Also a spatial experiment
named Atomic Clock Ensemble in Space (ACES) mission [3, 4] is scheduled
to be launched in 2006 by European Space Agency (ESA). The purpose of
ACES is to obtain an accuracy of order 10−16 in fractional frequency. In such
a situation (10−16–10−18 level), 2PN (second post-Newtonian) approximate
framework has to be carried out before hand. Also, Astrodynamical Space
Test of Relativity using Optical Devices (ASTROD) [5, 6] is planned. The
accuracy of measuring γ (about 10−9) and other parameters will depend on
the stability of the lasers or clocks. This plan also needs a 2PN level on the
comparison of clock rates and equations of motion for planets. The precision
of 2PN level on the comparison of clock rates (or time transfer) has been dis-
cussed in [7,8] by means of world function. But as we know, the calculation of
the world function is not easy. Therefore, we deduce a unified formula in a
different way. Our unified formula can also be applied to cosmos and easily
extended to an even higher order (higher than 2PN level).
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Many formulae have been suggested for the comparison of clock rates at
different positions, based on certain simplifying assumptions about which
effects are dominant. The change of the clock rates can be related to the
relativistic Doppler effect, the gravitational redshift, the Hubble redshift, the
Rees–Sciama effect, and so on. The physical conditions causing all these effects
may prevail at the same time. In early 1990s, the Hubble redshift, the grav-
itational redshift, the Doppler effect, and the Rees-Sciama effect have been
combined into one equation (to see (6) in [9]) in first-order approximation

1 + z =
R(τo)
R(τe)

{

1 +
5
3
(φe − φo) + 2

∫ τo

τe

dτ l · ∇φ+ n · (ve − vo)
}

, (1)

where z is redshift, φ is gravitational potential, the subscript e(o) denote the
emitting (observer) point, l = k/ko (kα is the tangent vector to the null
geodesic connecting the emitting point and observer), and v is 3-velocity.
Since all of terms are the level of the first-order approximation, the coupling
terms do not exist. Also they do not deduce (1) through an exact method, it
is difficult for us to extend the formula to higher-order precision.

Accordingly, a comprehensive approach, starting from first principles, is
needed in which the physical conditions for all these effects are taken into
account at the same time. Such an approach should lead us to a synthetic
formula which reflects all these effects in a compact way and which should
provide additional information, due to possible interactions which could not
be incorporated in the isolated approaches for the individual effects.

In general, a comparison of the clock rates between ∆τA and ∆τB by
means of differential coordinate time ∆tA and ∆tB in global coordinate can be
achieved. The relation of the coordinate time between A and B is established
by null geodesic line (light ray) [10]

cdt =
−g0idx

i ±
√

(g0igoj − g00gij)dxidxj

g00
. (2)

The minus and plus sign are taken in I and III quadrants (in x − t coordi-
nates) and II and IV quadrants, respectively. Normally we take the minus sign.
Using these ideal we first time deduce a unified formula for the comparison of
clock rates by means of “calculus of differences.” Substituting the simplest per-
turbed Robertson–Walker metric into the unified formula, we obtain a formula
for the comparison of clock rates at different cosmic space–time points, which
includes the Hubble redshift, the Doppler effect, the gravitational redshift, and
the Rees–Sciama effects. By using the 2PN metric in multiple coordinates [11],
the 2PN comparison of clock rates both on the earth and a space station in
the solar system is made, it may be useful for the precise measurement of
ACES and ASTROD in future.
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2 General Formula

In a global coordinates (ct, xi), a source A moves with a velocity vi
A and a

receiver B with a velocity vi
B. The clock rates in A and B are directly related

with their own proper time ∆τA and ∆τB . To compare them, we need to know
the relation between the time interval ∆tA and ∆tB , because

∆τA
∆τB

=
∆τA
∆tA

∆tA
∆tB

∆tB
∆τB

. (3)

Since −c2dτ2 = ds2, therefore if the velocity of a standard clock (A or B) in
the global coordinates is v, we have

∆t =
∆τ

√

−[g00 + 2g0ivi/c+ gijvivj/c2]
, (4)

where gµν (g00, g0i, and gij) are the global metric. As abbreviation we
introduce

GA = −(g00(A) + 2g0i(A)vi
A/c+ gij(A)vi

Av
j
A/c

2) ,

GB = −(g00(B) + 2g0i(B)vi
B/c+ gij(B)vi

Bv
j
B/c

2) .

One of the main purpose of our chapter is to calculate the relation between
∆tA and ∆tB by means of a “calculus of differences.” Assuming that, at tA1

(coordinate time) a source A emits a first pulse at position A1(xi
A1

), then a
receiver B received the first pulse at position B1(xi

B1
) at time tB1 . A second

pulse is emitted from A at position A2(xi
A2

) at tA2 , which is received by B
at position B2(xi

B2
) at time tB2 . Then the relation between the emission time

and reception time can be rewritten as

tB = tA +
1
c

∫ B

A

−g0i
dxi

dx −
√

(g0ig0j − g00gij)dxi

dx
dxj

dx

g00
dx , (5)

where we define dx2 ≡ δijdx
idxj , the geometric meaning of dx is the spatial

differential length of the line in the flat space.
In a weak field, g0ig0j is a small quantities (∼O(6)) and the spatial con-

formal isotropic condition [11,12] is

g00gij = −δij −
qij
c4

+O(6) , (6)

where qij is a spatial anisotropic contribution in the second order, O(6) is
the abbreviation symbol for O(c−6) as well as O(n) for O(c−n). Then (5)
simplifies to

tB = tA − 1
c

∫ B

A

1
g00

[

1 + g0i
dxi

dx
+
qij
2c4

dxi

dx

dxj

dx

]

dx . (7)
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Briefly, we define

F (t, xi) ≡
−g0i

dxi

dx −
√

(g0ig0j − g00gij)dxi

dx
dxj

dx

cg00
, (8)

Equation (5) becomes tB = tA +
∫ B

A
F (t, xi)dx. According to the “calculus of

differences,” we have

∆tB = ∆tA +∆

[

∫ B

A

F (t, xi)dx

]

. (9)

Note that in this formula we are dealing with finite differences, not with
infinitesimals ones as in the calculus of variations. In particular in (6) one
would have to use x(A) and x(B), respectively, as integration boundaries.

If we only consider a linear approximation in “calculus of differences,” the
difference of the integral in (6) can be divided into three parts

∆

∫ B

A

Fdx =
∫ x(B+∆B)

x(B)

Fdx−
∫ x(A+∆A)

x(A)

Fdx+
∫ x(B)

x(A)

∆Fdx , (10)

where A + ∆A and B + ∆B are corresponding to A2 and B2. ∆x(A) and
∆x(B) are given by

∆x(A) ≡ x(A+∆A) − x(A) =
kA

|kA|
· dx
dx

∣

∣

∣

∣

A

∆x =
kA

|kA|
· vA∆tA , (11)

∆x(B) ≡ x(B +∆B) − x(B) =
kB

|kB | ·
dx
dx

∣

∣

∣

∣

B

∆x =
kB

|kB | · vB∆tB . (12)

Here kA is the wave vector at point A of the light signal emitted from A and
received at B. kB is the value of this wave vector at the point B. In (11) and
(12) we can replace dxi

dx ∆x by dxi

dt ∆t. The first and second terms in (10) can
be written as

∫ x(B)+x(∆B)

x(B)

Fdx = F (B)
kB · vB

|kB | ∆tB , (13)

−
∫ x(A)+x(∆A)

x(A)

Fdx = −F (A)
kA · vA

|kA|
∆tA . (14)

The last term of (10) is the difference of the integral between line 2 and line
1 when vA = vB = 0 (i.e., the boundary of integral is fixed), which can be
expanded as
∫ x(B)

x(A)

(

F (t+∆t, xi +∆xi) − F (t, xi)
)

dx =
∫ x(B)

x(A)

(

∂F

∂t
∆t+

∂F

∂xi
∆xi

)

dx .

(15)

Asweknow,ifF is independentoftime,then
∫ x(B)

x(A)
∆Fdx=

∫ x(B)

x(A)
∂F
∂xi∆x

idx= 0,
since for fixed boundaries the light ray is unique (no deviation). When F is
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dependent on time, there are two curves. The second term
∫ x(B)

x(A)
∂F
∂xi∆x

idx

caused by time-dependent metric is a higher-order term compared with
∫ x(B)

x(A)
∂F
∂t ∆tdx, i.e.,

∫ x(B)

x(A)

∂F

∂xi
∆xidx�

∫ x(B)

x(A)

∂F

∂t
∆tdx . (16)

Finally we substitute (13–15) into (6), and use (4). The unified formula is
obtained as

∆τB
∆τA

=
√

GB

GA

(

1 − F (A)kA·vA

|kA|

1 − F (B)kB ·vB

|kB |

)

+
√
GB

∆τA

(

1 − F (B)kB ·vB

|kB |

)

∫ x(B)

x(A)

(

∂F

∂t
∆t+

∂F

∂xi
∆xi

)

dx . (17)

As an example, we consider the Doppler effect of a moving source in
Minkowski metric

gµν = ηµν =
(

−1 0
0 δij

)

, (18)

since vB = 0, GB = 1, GA = 1 − v2
A

c2 , and ∂F
∂t = ∂F

∂xi = 0, F (A) = 1
c , so that

∆τB
∆τA

=
1 − v

c · kA

|kA|
√

1 − v2
A

c2

. (19)

This is just the formula of the Doppler effect in the special relativity.
The other simple example is the gravitational redshift. Considering a sta-

tic gravitational field (e.g., Schwarzschild metric), in which both source and
receiver without moving (vA = vB = 0), the unified form then becomes

∆τB
∆τA

=

√

−g00(B)
−g00(A)

� 1 − w(B)
c2

+
w(A)
c2

, (20)

where the last step of above equation is the Newtonian limitation. Equa-
tion (20) is just the formula of gravitational redshift in ordinary textbooks of
gravity.

3 Application in Cosmos with Perturbed R–W Metric

First we recall the unperturbed Robertson–Walker metric

ds2 = −c2dt2 +
R(t)2δijdxidxj

(

1 + k
4 r

2
)2 , (21)
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where R(t) is the cosmic scalar factor, k = −1, 0, +1 is corresponding to the
open, flat, and closed universe, respectively. R(t) has the dimension of length
and dxi is dimensionless. As we already know, R(t) is model dependent. Since
usually we do not consider the local gravitational redshift and the Doppler
effect in the problem of cosmological expansion, we then have ∆tA = ∆τA
and ∆tB = ∆τB , and thus the formula for the Hubble redshift is

∆τA
∆τB

=
∆tA
∆tB

=
R(tA)
R(tB)

. (22)

The results of (22) can easily be deduced directly from the unified for-
mula (17), if we take vA = vB = wA = wB = 0.

Next, we consider a linearly simplest perturbed Robertson–Walker metric
of the form

ds2 = −c2
(

1 − 2w
c2

)

dt2 +
(

1 +
2w
c2

)

R2δijdx
idxj

(

1 + k
4 r

2
)2 , (23)

where the gravitational potential w = w(t, xi) is assumed to be a small quan-
tity. Later we only consider the Doppler effect caused by the motion of the
source, then vB = 0 (also possible vA = 0, then vB �= 0). The velocity of the
source A is

vi
A = R(tA)

dxi
A

dt
. (24)

F (A), GA, and GB can be calculated as follows

F (A) =

(

1 + 2w
c2

)

√

R2δij
dxi

dx
dxj

dx

c
(

1 + kr2

4

) =
R(tA)
c

+O(3) , (25)

where we have neglected all of higher-order terms and consider δijninj = 1
and kr2 as higher-order term also. Then

√

GB

GA
= 1 +

1
c2
w(tA, xi

A) − 1
c2
w(tB , xi

B) +
v2

A

c2
. (26)

Now we calculate the last term of (17). Consider the integral in (17)

I ≡
∫ x(B)

x(A)

∂F

∂t
∆tdx , (27)

where we have omitted the term of
∫ x(B)

x(A)
∂F
∂xi∆x

idx because of (16). Therefore
we have

I =
∫ x(B)

x(A)

∂

∂t

[

R(t)
(

1 +
2w
c2

)]

∆t
√

δijdxidxj

c
(

1 + k
4 r

2
) . (28)
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From (22) we have ∆t = ∆tAR(t)/R(tA), then (28) becomes

I =
∫ x(B)

x(A)

R(t)∆tA
R(tA)

(

Ṙ(t) + Ṙ(t)
2w
c2

+R(t)
∂(2w/c2)

∂t

)
√

δijdxidxj

c
(

1 + k
4 r

2
) . (29)

Considering null geodetic line, (23) yields

(

1 − w

c2

)

dt = ±
(

1 +
w

c2

) R(t)
√

δijdxidxj

c
(

1 + k
4 r

2
) , (30)

which we use to evaluate the integral I and get

I =
∆tA
R(tA)

∫ x(B)

x(A)

(

Ṙ(t) + 2
R(t)
c2

∂w

∂t

)

dt

= ∆tA

[

(

R(tB) −R(tA)
R(tA)

)

+
2

c2R(tA)

∫ x(B)

x(A)

R(t)
∂w

∂t
dt

]

. (31)

The second term of (17) then becomes

√

GB

GA

(

R(tB) −R(tA)
R(tA)

+
2

c2R(tA)

∫ x(B)

x(A)

R(t)
∂w

∂t
dt

)

. (32)

Substituting (25), (26), and (32) into (17) (pay attention to that, in cosmology
the term k

|k| ·v should be replaced by k
|k| ·

v
R in (11), (12), and (17)), we finally

obtain

∆τB
∆τA

=
[

1 +
1
c2
(

w(tA, xi
A) − w(tB , xi

B)
)

+
v2

A

c2

]

×
{

R(tB)
R(tA)

− kA · vA

c|kA|
+

2
c2R(tA)

∫ x(B)

x(A)

R(t)
∂w

∂t
dt

}

, (33)

where 1
c2

(

w(tA, xi
A) − w(tB , xi

B)
)

is the contribution from the normal gravi-

tational redshift; kA·vA

c|kA| and v2
A

c2 are the Doppler effect and transverse Doppler
effect (or relativistic Doppler effect), respectively; R(tB)/R(tA) just con-
tributes to Hubble redshift; and the last term is related to Rees–Sciama ef-
fect [13–16]. If we put vA = 0 and R(t) = R(TA) = R(tB), then

∆τB
∆τA

= 1 +
1
c2
(

w(tA, xi
A) − w(tb, xi

B)
)

+
2
c2

∫ x(B)

x(A)

∂w

∂t
dt , (34)

where w is the same as u in [17] where c = 1 units is taken, and their
results totally agree with ours. We thought that our unified formula allows to
derive the Birkinshaw–Gull effect [18,19] too, if we use suitable perturbation
functions for w(t, xi) and wj(t, xi). This will be discussed in another chapter.



188 C. Xu et al.

4 Application in Solar System with DSX Metric

In near future, high-precision measurement will be done up to 2PN level as
we mentioned before, thus allowing the coupling term (i.e., the term connect-
ing the gravitational redshift, the Doppler redshift, and so on) to be mea-
sured. Our scheme (the unified form (17)) offers the possibility for this if
an appropriate assumptions about the metric are used. Accordingly, in this
section we start from DSX formalism [12,20,21] and its extension [11] and eval-
uate formula (17) for this metric. This extended DSX metric is described by

g00 = − exp
(

−2w
c2

)

+O(6) , (35)

g0i = −4wi

c3
+O(5) , (36)

gij = δij exp
(

2w
c2

)

+
qij
c4

+O(6) , (37)

gijg00 = −δij −
qij
c4

+O(6) . (38)

In fact, in the following calculation, qij appears only in the function F (xi, t),
but in the final 2PN formula of clock rates (see (53)), qij does not exist which
agree with the result in [7]. Substituting (35–38) into (17), calculating all of
components, we can get a unified formula for the comparison of clock rates at
2PN level.

We begin by evaluating the terms GA and GB for the extended DSX
metric:

GA = −g00(A) − 2g0i(A)
vi

A

c
− gij(A)

vi
Av

j
A

c2

= 1 − 2w(A)
c2

+
2w2(A)
c4

+
8wi(A)vi

A

c4
− v2

A

c2
− 2w(A)v2

A

c4
+O(6) , (39)

GB = 1 − 2w(B)
c2

+
2w2(B)
c4

+
8wi(B)vi

B

c4
− v2

B

c2
− 2w(B)v2

B

c4
+O(6) .(40)

Since kA ·vA/|kA| and kB ·vB/|kB | are first order already, so F (A) and F (B)
need to be calculated up to c−5 level. From (8), by using (35–38), we get

F (A) =
1
c

{

1 +
2w(A)
c2

− 4wi(A)
c3

dxi

dx

∣

∣

∣

∣

A

+
2w2(A)
c4

+
1

2c4
qij(A)

(

dxi

dx

dxj

dx

)∣

∣

∣

∣

A

}

+O(6) , (41)

where we have neglected g0ig0j(∼O(6)). Similarly

F (B) =
1
c

{

1 +
2w(B)
c2

− 4wi(B)
c3

dxi

dx

∣

∣

∣

∣

B

+
2w2(B)
c4

+
1

2c4
qij(B)

(

dxi

dx

dxj

dx

)∣

∣

∣

∣

B

}

+O(6) . (42)
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At last, we consider the integral (the second term) in (17)

∫ B

A

(

∂F

∂t
∆t+

∂F

∂xi
∆xi

)

dx . (43)

Because of (16) we will omit the second term in it. We only consider
∫ B

A
∂F
∂t ∆tdx. As we know ∆tA at A and ∆tB at B, we could calculate ∆t at

an arbitrary point between A and B approximately. Then the definite integral
can be evaluated by the median method, i.e.,

∫ B

A

∂F

∂t
∆tdx = ∆t̄

∫ B

A

∂F

∂t
dx , (44)

where ∆t̄ is the median value, for which we introduce a parameter η:

∆t̄ = η∆tA . (45)

η is a value closed to 1. For the term ∂F
∂t one finds

∂F

∂t
=

1
c

(

2
c2
∂w

∂t
− 4
c3
∂wi

∂t

dxi

dx
+

4w
c4

∂w

∂t
+

1
2c4

∂qij
∂t

dxi

dx

dxj

dx

)

+O(6) . (46)

In the solar system the change of the potential (the other metric much smaller)
with time is very small (less then O(2) level), only the leading term is consid-
ered. Therefore the term 2

c2

∫ B

A
∂w
∂t dt is already on O(4) level, but not O(2).

Furthermore, we have dx = dl +O(2) = cdt+O(2). Then (46) simplifies to

∫ B

A

∂F

∂t
dx =

2
c2

∫ B

A

∂w

∂t
dt+O(6) . (47)

If we consider quick variable field (e.g., field in pulsar) we have to take (46)
to substitute into (47).

The second integral term of (17) then becomes
√
GB√
GA

2η
(

1 − F (B)kB ·vB

|kB |

)

c2

∫ B

A

∂w

∂t
dt . (48)

Gathering all evaluations done thus far in this section, we arrive at following
general formula for the solar system:

∆τB
∆τA

=
√

GB

GA

1
(

1 − F (B)kB ·vB

|kB |

)

(

1 − F (A)
kA · vA

|kA|
+

2η
c2

∫ B

A

∂w

∂t
dt

)

.

(49)

In (49) we only consider the leading term, namely the scalar potential changing
with the time, but in our scheme all of the second post-Newtonian terms (see
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(46)) can be included in. Maybe in a system of binary pulsars, the higher-
order terms in (46) are important. Formula (49) in static metric and in 1PN
level agrees with the known formula [22].

We proceed by evaluating the remaining terms in (49). From (39) and (40),
we find

√

GB = 1 − w(B)
c2

− v2
B

2c2
+
w2(B)

2c4
+

4wi(B)vi
B

c4
− 3w(B)v2

B

2c4
− v4

B

8c4
, (50)

1√
GA

= 1 +
w(A)
c2

+
v2

A

2c2
+
w2(A)

2c4
− 4wi(A)vi

A

c4
+

5w(A)v2
A

2c4
+

3v4
A

8c4
. (51)

We also have
(

1 − F (B)
kB · vB

|kB |

)−1

= 1 +
kB · vB

c|kB | +
1
c2

(

kB · vB

|kB |

)2

+
2w(B)
c3

kB · vB

|kB |

+
1
c3

(

kB · vB

|kB |

)3

− 4wi(B)
c4

dxi

dx

∣

∣

∣

∣

B

kB · vB

|kB |

+
4w(B)
c4

(

kB · vB

|kB |

)2

+
1
c4

(

kB · vB

|kB |

)4

. (52)

Substituting (41), (42), and (50–52) into (49), we finally have a unified formula
for the comparison of clock rates in the solar system, on the 2PN level of
precision

∆τB
∆τA

= 1 +

{

1
c2

(

w(A) − w(B)
)

+
1

2c2
(

v2
A − v2

B

)

−
(

kA · vA

c|kA|
− kB · vB

c|kB |

)

− 1
c2

(

kB · vB

|kB |

)(

kA · vA

|kA|
− kB · vB

|kB |

)

}

+
1
c3

{

(

w(B) − w(A)
)(

kB · vB

c|kB | +
kA · vA

c|kA|

)

+2w(A)
(

kB · vB

c|kB | − kA · vA

c|kA|

)

−1
2

(

v2(B) − v2(A)
)(

kB · vB

c|kB | − kA · vA

c|kA|

)

+
(

kB · vB

c|kB |

)2(kB · vB

c|kB | − kA · vA

c|kA|

)

}

+
1
c4

{

1
2

(w(B) − w(A))2 +
1
2

(10w(A) − w(B)) v2
A

−1
2

(w(A) + 6w(B)) v2
B +

1
8
(

3v4
A − 2v2

Av
2
B − v4

B

)

+4
(

wi(B)vi
B − wi(A)vi

B − wi(B)
ki

B

|kB |
kB ·vB

c|kB | + wi(A)
ki

A

|kA|
kA ·vA

c|kA|

)
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+
(

kB · vB

c|kB |

)2(

3w(B) + w(A) +
1
2
(

v2
A − v2

B

)

)

−2
(

kB · vB

c|kB |

)(

kA · vA

c|kA|

)(

w(A) + w(B)
)

+
(

kB · vB

c|kB |

)3(kB · vB

c|kB | − kA · vA

c|kA|

)

}

+
2η
c2

∫ B

A

∂w

∂t
dt+O(5) . (53)

The Formula (53) “contains” the Doppler effect, transverse Doppler effect
(relativistic Doppler effect), gravitational redshift, and their complete coupling
effects to 2PN level in the solar system. In addition there is a term which is the
integral of the rates of change of the scalar potential along the null geodetic
line from source A to receiver B. This is probably the most interesting result
in our chapter. Hopefully this integral term and the coupling effects can be
tested in the future with a deep-space explorer and are confirmed.

5 Conclusion Remarks

We have synthesized all known effects for the comparison of clock rates in one
formula (17). The synthesized formula contains additional coupling terms and
a new integral terms and thus gives essential new but untested information.
Therefore to get this synthesized formula is not an end in itself, but a starting
point for the further test work. We hope that this work could contribute to
the further comparison of clock rates, such as ACES mission planned in 2006.
The general form may be taken as the basis for a starting point to compare
clock rates at any two different space–time points. For example, the frequency
shift caused by gravitomagnetic effect (or Lens–Thirring effect) can also be
considered in our scheme.

The general form is valid not only for any metric gravitational theory, but
also for general relativity. If we substitute the parametrized 2PN metric into
the formula, (53) could include parameters. In Sect. 4, we have discussed the
comparison of two clock rates both on the earth and a space station with 2PN
precision. In fact, the calculation of the higher precision might be done in a
similar way, if we know the metric to higher order.

Equation (17) or (49) says that the clock rates depend on the trajectory
of the transmitted signal and on the metric (especially the scalar potential)
varying with time. While (17) is a unified formula, (49) is valid only in the
solar system; however if replace (47) by the integral of (46), a general 2PN
formula results.

In the case of cosmology, the general form can be used for any linearly
perturbed metric, in particular it allows to include the general Sachs–Wolfe
effects.
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