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Summary. In almost all of the studies devoted to the time delay and the frequency
shift of light, the calculations are based on the integration of the null geodesic equa-
tions. However, the above-mentioned effects can be calculated without integrating
the geodesic equations if one is able to determine the bifunction Ω(xA, xB) giving
half the squared geodesic distance between two points xA and xB (this bifunction
may be called Synge’s world function). In this chapter, Ω(xA, xB) is determined up
to the order 1/c3 within the framework of the PPN formalism. The case of a station-
ary gravitational field generated by an isolated, slowly rotating axisymmetric body
is studied in detail. The calculation of the time delay and the frequency shift is car-
ried out up to the order 1/c4. Explicit formulae are obtained for the contributions
of the mass, of the quadrupole moment, and of the internal angular momentum
when the only post-Newtonian parameters different from zero are β and γ. It is
shown that the relative frequency shift induced by the mass quadrupole moment
of the Earth at the order 1/c3 will be bounded by 10−16 in space experiments like
ESA’s Atomic Clock Ensemble in Space (ACES) mission. Other contributions are
briefly discussed.

1 Introduction

A lot of fundamental tests of gravitational theories rest on highly precise
measurements of the travel time and/or the frequency shift of electromagnetic
signals propagating through the gravitational field of the solar system. In
practically all of the previous studies, the explicit expressions of such travel
times and frequency shifts as predicted by various metric theories of gravity
are derived from an integration of the null geodesic differential equations. This
method works quite well within the first post-Minkowskian approximation, as
it is shown by the results obtained, e.g., in [1–5]. Of course, it works also
within the post-Newtonian approximation, especially in the case of a static,
spherically symmetric space–time treated up to order 1/c3 [6, 7]. However,
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the solution of the geodesic equations requires heavy calculations when one
has to take into account the presence of mass multipoles in the field or the
tidal effects due to the planetary motions, and the calculations become quite
complicated in the post-post-Minkowskian approximation [8], especially in
the dynamical case [9].

The aim of this chapter is to present a quite different procedure recently
developed by two of us. Based on Synge’s world function [10], this proce-
dure avoids the integration of the null geodesic equations and is particularly
convenient for determining the light rays which connect an emitter and a rece-
iver having specified spatial locations at a finite distance. Thus, we are able
to extend the previous calculations of the time delay and of the frequency
shift up to the order 1/c4. As a consequence, it is now possible to predict
the time/frequency transfers in the vicinity of the Earth at a level of accu-
racy which amounts to 10−18 in fractional frequency. This level of accuracy is
expected to be reached in the foreseeable future with optical atomic clocks [11].

The plan of the chapter is as follows. First, in Sect. 2, the definition of
the time transfer function is given and the invariant expression of the fre-
quency shift is recalled. It is shown that explicit expressions of the frequency
shift can be derived when the time transfer functions are known. In Sect. 3,
the relevant properties of Synge’s world function are recalled. In Sect. 4, the
general expressions of the world function and of the time transfer function
are obtained within the Nordtvedt–Will parametrized post-Newtonian (PPN)
formalism. In Sect. 5, the case of a stationary field generated by an isolated,
slowly rotating axisymmetric body is analyzed in detail. It is shown that the
contributions of the mass and spin multipoles can be obtained by straightfor-
ward derivations of a single function. Retaining only the terms due to the mass
M , to the quadrupole moment J2, and to the intrinsic angular momentum S
of the rotating body, explicit expansions of the world function and of the time
transfer function are derived up to the order 1/c3 and 1/c4, respectively. The
same formalism yields the vectors tangent to the light ray at the emitter and
at the receiver up to the order 1/c3. In Sect. 6, the frequency shift is developed
up to the order 1/c4 on the assumption that β and γ are the only nonvan-
ishing post-Newtonian parameters. Explicit expressions are obtained for the
contributions of J2 and S. Numerical estimates are given for ESA’s Atomic
Clock Ensemble in Space (ACES) mission [12, 13]. Concluding remarks are
given in Sect. 7.

Equivalent results formulated with slightly different notations may be
found in [14] and an extension of the method to the general post-Minkowskian
approximation is given in [15].

Notations

In this work, G is the Newtonian gravitational constant and c is the speed
of light in a vacuum. The Lorentzian metric of space–time is denoted by g.
The signature adopted for g is (+−−−). We suppose that the space–time is
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covered by one global coordinate system (xµ) = (x0,x), where x0 = ct, t being
a time coordinate, and x = (xi), the xi being quasi-Cartesian coordinates. We
choose coordinates xi so that the curves of equations xi =const are timelike.
This choice means that g00 > 0 everywhere. We employ the vector notation
a to denote either {a1, a2, a3} = {ai} or {a1, a2, a3} = {ai}. Considering two
such quantities a and b with for instance a = {ai}, we use a ·b to denote aibi

if b = {bi} or aibi if b = {bi} (the Einstein convention on the repeated indices
is used). The quantity |a | stands for the ordinary Euclidean norm of a.

2 Time Transfer Functions, Time Delay, and Frequency
Shift

We consider here electromagnetic signals propagating through a vacuum
between an emitter A and a receiver B. We suppose that these signals may
be assimilated to light rays traveling along null geodesics of the metric (geo-
metric optics approximation). We call xA the point of emission by A and
xB the point of reception by B. We put xA = (ctA,xA) and xB = (ctB ,xB).
We assume that there do not exist two distinct null geodesics starting from xA

and intersecting the world line of B. These assumptions are clearly satisfied
in all experiments currently envisaged in the solar system.

2.1 Time Transfer Functions and Time Delay

The quantity tB − tA is the (coordinate) travel time of the signal. Upon the
above-mentioned assumptions, tB − tA may be considered either as a function
of the instant of emission tA and of xA, xB, or as a function of the instant
of reception tB and of xA and xB. So, we can in general define two distinct
(coordinate) time transfer functions, Te and Tr by putting:

tB − tA = Te(tA,xA,xB) = Tr(tB ,xA,xB) . (1)

We call Te the emission time transfer function and Tr the reception time
transfer function. As we shall see below, the main problem will consist in
determining explicitly these functions when the metric is given. Of course, it
is, in principle, sufficient to determine one of these functions.

We shall put
RAB = |xB − xA | (2)

throughout this work. The time delay is then defined as tB − tA − RAB/c.
It is well known that this quantity is > 0 in Schwarzschild space–time, which
explains its designation [16].

2.2 Frequency Shift

Denote by uα
A and uα

B the unit 4-velocity vectors of the emitter at xA and of
the receiver at xB , respectively. Let ΓAB be the null geodesic path connecting
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xA and xB , described by parametric equations xα = xα(ζ), ζ being an affine
parameter. Denote by lµ the vector tangent to ΓAB defined as

lµ =
dxµ

dζ
. (3)

Let νA be the frequency of the signal emitted at xA as measured by a clock
comoving with A, and νB be the frequency of the same signal received at xB

as measured by a clock comoving with B. The ratio νA/νB is given by the
well-known formula [10]

νA

νB
=
uµ

A(lµ)A

uµ
B(lµ)B

. (4)

Since it is assumed that the emission and reception points are connected by a
single null geodesic, it is clear that (lµ)A and (lµ)B may be considered either
as functions of the instant of emission tA and of xA, xB , or as functions of
the instant of reception tB and of xA and xB. Therefore, we may write

νA

νB
= Ne(uA, uB ; tA,xA,xB) = Nr(uA, uB ; tB ,xA,xB) . (5)

Denote by vA = (dx/dt)A and vB = (dx/dt)B the coordinate velocities of
the observers at xA and xB, respectively:

vA =
(

dx

dt

)

A

, vB =
(

dx

dt

)

B

. (6)

It is easy to see that the formula (4) may be written as

νA

νB
=
u0

A

u0
B

(l0)A

(l0)B

qA
qB

, qA = 1 +
1
c
̂lA · vA , qB = 1 +

1
c
̂lB · vB , (7)

where ̂lA and ̂lB are the quantities defined as

̂lA =
{(

li
l0

)

A

}

, ̂lB =
{(

li
l0

)

B

}

. (8)

It is immediately deduced from (7) that an explicit expression of Ne (resp.,
Nr) can be derived when the time transfer function Te (resp., Tr) is known.
Indeed, one has Theorem 1 [15].

Theorem 1. Consider a signal emitted at point xA = (ctA,xA) and received
at point xB = (ctB ,xB). Denote by lµ the vector dxµ/dζ tangent to the null
geodesic at point x(ζ), ζ being any affine parameter, and put

̂li =
(

li
l0

)

. (9)
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Then, one has relations as follow at xA and at xB

(

̂li

)

A
= c

∂Te

∂xi
A

[

1 +
∂Te

∂tA

]−1

= c
∂Tr

∂xi
A

, (10)

(

̂li

)

B
= −c ∂Te

∂xi
B

= −c ∂Tr

∂xi
B

[

1 − ∂Tr

∂tB

]−1

, (11)

(l0)A

(l0)B
= 1 +

∂Te

∂tA
=
[

1 − ∂Tr

∂tB

]−1

, (12)

where Te and Tr are taken at (tA,xA,xB) and (tB ,xA,xB), respectively.

This theorem may be straightforwardly deduced from a fundamental prop-
erty of the world function that we introduce in Sect. 3.

Case of a stationary space–time. In a stationary space–time, we can choose
coordinates (xµ) such that the metric does not depend on x0. Then, the travel
time of the signal only depends on xA,xB . This means that (1) reduces to a
single relation of the form

tB − tA = T (xA,xB) . (13)

It immediately follows from (10) and (11) that

(̂li)A = c
∂

∂xi
A

T (xA,xB) , (14)

(̂li)B = −c ∂

∂xi
B

T (xA,xB) , (15)

(l0)A

(l0)B
= 1 . (16)

As a consequence, the formula (7) reduces now to

νA

νB
=
u0

A

u0
B

1 + vA · ∇xA
T

1 − vB · ∇xB
T , (17)

where ∇xf denotes the usual gradient operator acting on f(x).
It is worthy of note that (1, {(̂li)A}) and (1, {(̂li)B}) constitute a set of

covariant components of the vector tangent to the light ray at xA and xB,
respectively. This tangent vector corresponds to the affine parameter chosen
so that (l0)A = (l0)B = 1.

3 The World Function and Its Post-Newtonian Limit

3.1 Definition and Fundamental Properties

For a moment, consider xA and xB as arbitrary points. We assume that there
exists one and only one geodesic path, say ΓAB , which links these two points.
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This assumption means that point xB belongs to the normal convex neigh-
borhood [17] of point xA (and conversely that xA belongs to the normal con-
vex neighborhood of point xB). The world function is the two-point function
Ω(xA, xB) defined by

Ω(xA, xB) =
1
2
εAB [sAB ]2 , (18)

where sAB is the geodesic distance between xA and xB , namely

sAB =
∫

ΓAB

√

gµνdxµdxν (19)

and εAB = 1, 0,−1 according as ΓAB is a timelike, a null, or a spacelike
geodesic. An elementary calculation shows that Ω(xA, xB) may be written in
any case as [10]

Ω(xA, xB) =
1
2

∫ 1

0

gµν(xα(λ))
dxµ

dλ

dxν

dλ
dλ , (20)

where the integral is taken along ΓAB , λ denoting the unique affine parameter
along ΓAB which fulfills the boundary conditions λA = 0 and λB = 1.

It follows from (16) or (18) that the world function Ω(xA, xB) is unchanged
if we perform any admissible coordinate transformation.

The utility of the world function for our purpose comes from the following
properties [10,15]:

1. The vectors (dxα/dλ)A and (dxα/dλ)B tangent to the geodesic ΓAB ,
respectively, at xA and xB are given by

(

gαβ
dxβ

dλ

)

A

= − ∂Ω

∂xα
A

,

(

gαβ
dxβ

dλ

)

B

=
∂Ω

∂xα
B

. (21)

As a consequence, if Ω(xA, xB) is explicitly known, the determination of
these vectors does not require the integration of the differential equations
of the geodesic.

2. Two points xA and xB are linked by a null geodesic if and only if the
condition

Ω(xA, xB) = 0 (22)

is fulfilled. Thus, Ω(xA, x) = 0 is the equation of the null cone C(xA)
at xA.

Consequently, if the bifunction Ω(xA, xB) is explicitly known, it is, in
principle, possible to determine the emission time transfer function Te by
solving the equation

Ω(ctA,xA, ctB ,xB) = 0 (23)

for tB . It must be pointed out, however, that solving (23) for tB yields two
distinct solutions t+B and t−B since the timelike curve xi = xi

B cuts the light cone
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C(xA) at two points x+
B and x−B ; x+

B being in the future of x−B. Since we regard
xA as the point of emission of the signal and xB as the point of reception, we
shall exclusively focus our attention on the determination of t+B − tA (clearly,
the determination of t−B − tA comes within the same methodology). For the
sake of brevity, we shall henceforth write tB instead of t+B.

Of course, solving (23) for tA yields the reception time transfer function Tr.
Generally, extracting the time transfer functions from (23), next using (10)

or (11) will be more straightforward than deriving the vectors tangent at xA

and xB from (21), next imposing the constraint (22).
To finish, note that Theorem 1 is easily deduced from the identities

Ω(ctA,xA, ctA + cTe(tA,xA,xB),xB) ≡ 0

and
Ω(ctB − cTr(tB ,xA,xB),xA, ctB ,xB) ≡ 0 .

3.2 General Expression of the World Function
in the Post-Newtonian Limit

We assume that the metric may be written as

gµν = ηµν + hµν (24)

throughout space–time, with ηµν = diag(1,−1,−1,−1). Let Γ
(0)
AB be the

straight line defined by the parametric equations xα = xα
(0)(λ), with

xα
(0)(λ) = (xα

B − xα
A)λ+ xα

A , 0 ≤ λ ≤ 1 . (25)

With this definition, the parametric equations of the geodesic ΓAB connecting
xA and xB may be written in the form

xα(λ) = xα
(0)(λ) +Xα(λ) , 0 ≤ λ ≤ 1 , (26)

where the quantities Xα(λ) satisfy the boundary conditions

Xα(0) = 0 , Xα(1) = 0 . (27)

Inserting (24) and dxµ(λ)/dλ = xµ
B−xµ

A+dXµ(λ)/dλ in (16), then developing
and noting that

∫ 1

0

ηµν(xµ
B − xµ

A)
dXν

dλ
dλ = 0

by virtue of (27), we find the rigorous formula

Ω(xA, xB) = Ω(0)(xA, xB) +
1
2
(xµ

B − xµ
A)(xν

B − xν
A)
∫ 1

0

hµν(xα(λ))dλ

+
1
2

∫ 1

0

[

gµν(xα(λ))
dXµ

dλ

dXν

dλ
+ 2(xµ

B − xµ
A)hµν(xα(λ))

dXν

dλ

]

dλ,

(28)
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where the integrals are taken over ΓAB and Ω(0)(xA, xB) is the world function
in Minkowski space–time

Ω(0)(xA, xB) =
1
2
ηµν(xµ

B − xµ
A)(xν

B − xν
A) . (29)

Henceforth, we shall consider only weak gravitational fields generated
by self-gravitating extended bodies within the slow-motion, post-Newtonian
approximation. So, we assume that the potentials hµν may be expanded as
follows

h00 =
1
c2
h

(2)
00 +

1
c4
h

(4)
00 +O(6) ,

h0i =
1
c3
h

(3)
0i +O(5) , (30)

hij =
1
c2
h

(2)
ij +O(4) .

From these expansions and from the Euler–Lagrange equations satisfied by
any geodesic curve, namely

d

dλ

(

gαβ
dxβ

dλ

)

=
1
2
∂αhµν

dxµ

dλ

dxν

dλ
, (31)

it results that Xµ(λ) = O(2) and that dxµ/dλ = xµ
B − xµ

A + O(2). As a
consequence, hµν(xα(λ)) = hµν(xα

(0)(λ))+O(4) and the third and fourth terms
in the RHS of (28) are of order 1/c4. These features result in an expression
for Ω(xA, xB) as follows

Ω(xA, xB) = Ω(0)(xA, xB) +Ω(PN)(xA, xB) +O(4) , (32)

where

Ω(PN)(xA, xB) =
1

2c2
(x0

B − x0
A)2

∫ 1

0

h
(2)
00 (xα

(0)(λ))dλ

+
1

2c2
(xi

B − xi
A)(xj

B − xj
A)
∫ 1

0

h
(2)
ij (xα

(0)(λ))dλ

+
1
c3

(x0
B − x0

A)(xi
B − xi

A)
∫ 1

0

h
(3)
0i (xα

(0)(λ))dλ, (33)

the integral being now taken over the line Γ (0)
AB defined by (25).

The formulae (32) and (33) yield the general expression of the world func-
tion up to the order 1/c3 within the framework of the 1 PN approximation.
We shall see in Sect. 3.3 that this approximation is sufficient to determine the
time transfer functions up to the order 1/c4. It is worthy of note that the
method used above would as well lead to the expression of the world function
in the linearized weak-field limit previously found by Synge [10].
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3.3 Time Transfer Functions at the Order 1/c4

Suppose that xB is the point of reception of a signal emitted at xA. Taking
(32) into account, (22) may be written in the form

Ω(0)(xA, xB) +Ω(PN)(xA, xB) = O(4) , (34)

which implies the relation

tB − tA =
1
c
RAB − Ω(PN)(ctA,xA, ctB ,xB)

cRAB
+O(4) . (35)

Using iteratively this relation, we find for the emission time transfer function

Te(tA,xA,xB) =
1
c
RAB − Ω(PN)(ctA,xA, ctA +RAB ,xB)

cRAB
+O(5) (36)

and for the reception time transfer function

Tr(tB ,xA,xB) =
1
c
RAB − Ω(PN)(ctB −RAB ,xA, ctB ,xB)

cRAB
+O(5) . (37)

These last formulae show that the time transfer functions can be explicitly cal-
culated up to the order 1/c4 when Ω(PN)(xA, xB) is known. This fundamental
result will be exploited in the following sections.

It is worthy of note that a comparison of (36) and (37) immediately gives
the following relations:

Tr(tB ,xA,xB) = Te

(

tB − RAB

c
,xA,xB

)

+O(5) (38)

and conversely

Te(tA,xA,xB) = Tr

(

tA +
RAB

c
,xA,xB

)

+O(5) . (39)

The quantity Ω(PN)(ctA,xA, ctA +RAB ,xB) in (36) may be written in an
integral form by using (33), in which RAB and RABλ + ctA are substituted
for x0

B − x0
A and for x0

(0)(λ), respectively. As a consequence

Te(tA,xA,xB) =
1
c
RAB

{

1 − 1
2c2

∫ 1

0

[

h
(2)
00 (zα

+(λ))

+h(2)
ij (zα

+(λ))N iN j +
2
c
h

(3)
0i (zα

+(λ))N i
]

dλ

}

+O(5), (40)
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the integral being taken over curve Γ (0)+
AB defined by the parametric equations

xα = zα
+(λ), where

z0
+(λ) = RABλ+ ctA , zi

+(λ) = RABN
iλ+ xi

A , 0 ≤ λ ≤ 1 , (41)

with

RAB =|RAB | , N i =
xi

B − xi
A

RAB
. (42)

We note that Γ (0)+
AB is a null geodesic path of Minkowski metric from xA,

having the above-defined quantities N i as direction cosines.
A similar reasoning leads to an expression as follows for Tr

Tr(tB ,xA,xB) =
1
c
RAB

{

1 − 1
2c2

∫ 1

0

[

h
(2)
00 (zα

−(λ))

+h(2)
ij (zα

−(λ))N iN j +
2
c
h

(3)
0i (zα

−(λ))N i
]

dλ

}

+O(5), (43)

the integral being now taken over curve Γ (0)−
AB defined by the parametric equa-

tions xα = zα
−(λ), where

z0
−(λ) = −RABλ+ ctB , zi

−(λ) = −RABN
iλ+ xi

B , 0 ≤ λ ≤ 1 . (44)

Curve Γ (0)−
AB is a null geodesic path of Minkowski metric arriving at xB and

having N i as direction cosines.

4 World Function and Time Transfer Functions Within
the Nordtvedt–Will PPN Formalism

4.1 Metric in the 1 PN Approximation

In this section, we use the Nordtvedt–Will post-Newtonian formalism involv-
ing ten parameters β, γ, ξ, α1, . . ., ζ4 [18]. We introduce slightly modified
notations to be closed of the formalism recently proposed by Klioner and
Soffel [20] as an extension of the post-Newtonian framework elaborated by
Damour et al. [21] for general relativity. In particular, we denote by vr the
velocity of the center of mass O relative to the universe rest frame.1

Although our method is not confined to any particular assumption on
the matter, we suppose here that each source of the field is described by the
energy–momentum tensor of a perfect fluid

Tµν = ρc2
[

1 +
1
c2

(

Π +
p

ρ

)]

uµuν − pgµν , (45)

1 This velocity is noted w in [18].
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where ρ is the rest mass density, Π is the specific energy density (ratio of
internal energy density to rest mass density), p is the pressure, and uµ is
the unit 4-velocity of the fluid. In this section and in the following one, v is
the coordinate velocity dx/dt of an element of the fluid. We introduce the
conserved mass density ρ∗ given by

ρ∗ = ρ
√
−gu0 = ρ

[

1 +
1
c2

(

1
2
v2 + 3γU

)

+O(4)
]

, (46)

where g = det(gµν) and U is the Newtonian-like potential

U(x0,x) = G

∫

ρ∗(x0,x′)
|x − x′ | d

3x′ . (47)

To obtain a more simple form than the usual one for the potentials h0i, we
suppose that the chosen (xµ) are related to a standard post-Newtonian gauge
(xµ) by the transformation

x0 = x0 +
1
c3

[(1 + 2ξ + α2 − ζ1)∂tχ− 2α2vr · ∇χ] , xi = xi , (48)

where χ is the superpotential defined by

χ(x0,x) =
1
2
G

∫

ρ∗(x0,x′) |x − x′ | d3x′ . (49)

Moreover, we define ρ̂ by

ρ̂ = ρ∗
[

1 +
1
2
(2γ + 1 − 2ξ + α3 + ζ1)

v2

c2
+ (1 − 2β + ξ + ζ2)

U

c2
+ (1 + ζ3)

Π

c2

+(3γ − 2ξ + 3ζ4)
p

ρ∗c2
− 1

2
(α1 − α3)

v2
r

c2
− 1

2
(α1 − 2α3)

vr · v
c2

+O(4)
]

.

(50)

Then, the post-Newtonian potentials read

h00 = − 2
c2
w +

2β
c4
w2 +

2ξ
c4
φW +

1
c4

(ζ1 − 2ξ)φv − 2α2

c4
vi

rv
j
r∂ijχ+O(6), (51)

h ≡ {h0i} =
2
c3

[(

γ + 1 +
1
4
α1

)

w +
1
4
α1w vr

]

+O(5), (52)

hij = −2γ
c2
wδij +O(4) , (53)

where

w(x0,x) = G

∫

ρ̂(x0,x′)
|x − x′ | d

3x′

+
1
c2

[(1 + 2ξ + α2 − ζ1)∂ttχ− 2α2vr · ∇(∂tχ)] , (54)
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φW (x0,x) = G2

∫

ρ∗(x0,x′)ρ∗(x0,x′′)(x − x′)
|x − x′ |3

×
(

x′ − x′′

|x − x′′ | −
x − x′′

|x′ − x′′ |

)

d3x′d3x′′, (55)

φv(x0,x) = G

∫

ρ∗(x0,x′)[v(x0,x′) · (x − x′)]2

|x − x′ |3 d3x′, (56)

w(x0,x) = G

∫

ρ∗(x0,x′)v(x0,x′)
|x − x′ | d3x′ . (57)

4.2 Determination of the World Function and of the Time
Transfer Functions

For the post-Newtonian metric given by (51–57), it follows from (33) that
Ω(xA, xB) may be written up to the order 1/c3 in the form given by (32) with

Ω(PN)(xA, xB) = Ω(PN)
w (xA, xB) +Ω(PN)

w (xA, xB) +Ω(PN)
vr

(xA, xB) , (58)

where

Ω(PN)
w (xA, xB) = − 1

c2
[

(x0
B − x0

A)2 + γR2
AB

]

∫ 1

0

w(xα
(0)(λ))dλ , (59)

Ω(PN)
w (xA, xB) =

2
c3

(

γ + 1 +
1
4
α1

)

(x0
B − x0

A)

×RAB ·
∫ 1

0

w(xα
(0)(λ))dλ , (60)

Ω(PN)
vr

(xA, xB) =
1

2c3
α1(x0

B − x0
A)(RAB · vr)

∫ 1

0

w(xα
(0)(λ))dλ , (61)

the integrals being calculated along the curve defined by (25).
The emission time transfer function is easily obtained by using (36) or

(40). We get

Te(tA,xA,xB) =
1
c
RAB +

1
c3

(γ + 1)RAB

∫ 1

0

w(zα
+(λ))dλ

− 2
c4

RAB ·
[

(γ + 1 +
1
4
α1)

∫ 1

0

w(zα
+(λ))dλ

+
1
4
α1vr

∫ 1

0

w(zα
+(λ))dλ

]

+O(5) , (62)

the integral being evaluated along the curve Γ (0)+
AB defined by (41).
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The reception time transfer function is given by

Tr(tB ,xA,xB) =
1
c
RAB +

1
c3

(γ + 1)RAB

∫ 1

0

w(zα
−(λ))dλ

− 2
c4

RAB ·
[

(γ + 1 +
1
4
α1)

∫ 1

0

w(zα
−(λ))dλ

+
1
4
α1vr

∫ 1

0

w(zα
−(λ))dλ

]

+O(5) , (63)

the integral being evaluated along the curve Γ (0)−
AB defined by (44).

Let us emphasize that, since w = U + O(2), w may be replaced by the
Newtonian-like potential U in (59–62).

4.3 Case of a Stationary Source

In what follows, we suppose that the gravitational field is generated by a single
stationary source. Then, ∂tχ = 0 and the potentials w and w do not depend
on time. In this case, the integration involved in (59–61) can be performed by a
method due to Buchdahl [19]. Introducing the auxiliary variables yA = xA−x′

and yB = xB − x′, and replacing in (25) the parameter λ by u = λ− 1/2, a
straightforward calculation yields

∫ 1

0

w(x(0)(λ))dλ = G

∫

ρ̂(x′)F (x′,xA,xB)d3x′, (64)
∫ 1

0

w(x(0)(λ))dλ = G

∫

ρ∗(x′)v(x′)F (x′,xA,xB)d3x′ , (65)

where the kernel function F (x′,xA,xB) has the expression

F (x′,xA,xB) =
∫ 1/2

−1/2

du

|(yB − yA)u+ 1
2 (yB + yA) |

. (66)

Noting that yB − yA = RAB , which implies that |yB − yA |= RAB , we find

F (x,xA,xB) =
1

RAB
ln
(

|x − xA | + |x − xB | +RAB

|x − xA | + |x − xB | −RAB

)

. (67)

Inserting (64), (65), and (67) in (59–61) and (62) will enable one to obtain
quite elegant expressions for Ω(PN)(xA, xB) and for T (xA,xB).

5 Isolated, Slowly Rotating Axisymmetric Body

Henceforth, we suppose that the light is propagating in the gravitational field
of an isolated, slowly rotating axisymmetric body. The gravitational field is
assumed to be stationary. The main purpose of this section is to determine
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the influence of the mass and spin multipole moments of the rotating body
on the coordinate time transfer and on the direction of light rays. From these
results, it will be possible to obtain a relativistic modeling of the one-way time
transfers and frequency shifts up to the order 1/c4 in a geocentric nonrotating
frame.

Since we treat the case of a body located very far from the other bodies
of the universe, the global coordinate system (xµ) used until now can be con-
sidered as a local (i.e., geocentric) one. So, in agreement with the UAI/UGG
Resolution B1 (2000) [22], we shall henceforth denote by W and W the quan-
tities w and w, respectively, defined by (54) and (57) and we shall denote by
Gµν the components of the metric. However, we shall continue here with using
lower case letters for the geocentric coordinates to avoid too heavy notations.

The center of mass O of the rotating body is taken as the origin of
the quasi-Cartesian coordinates (x); we choose the axis of symmetry as the
x3-axis. We assume that the body is rotating about Ox3 with a constant
angular velocity ω, so that

v(x) = ω × x . (68)

In what follows, we put r =| x |, rA =| xA |, and rB =| xA |. We call θ the
angle between x and Ox3. We consider only the case where all points of the
segment joining xA and xB are outside the body. We denote by re the radius
of the smallest sphere centered on O and containing the body (for celestial
bodies, re is the equatorial radius). In this section, we assume the convergence
of the multipole expansions formally derived below at any point outside the
body, even if r < re.

5.1 Multipole Expansions of the Potentials

According to (54), (57), and (68), the gravitational potentials W and W obey
the equations

∇2W = −4πGρ̂ , ∇2W = −4πGρ∗ω × x . (69)

It follows from (69) that the potential W is a harmonic function outside the
rotating body. As a consequence, W may be expanded in a multipole series
of the form

W (x) =
GM

r

[

1 −
∞
∑

n=2

Jn

(re

r

)n

Pn(cos θ)

]

. (70)

In this expansion, Pn is the Legendre polynomial of degree n and the quanti-
ties M , J2, . . . , Jn, . . . correspond to the generalized Blanchet–Damour mass
multipole moments in general relativity [23].

For the sake of simplicity, put

z = x3 . (71)
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Taking into account the identity

∂n

∂zn

(

1
r

)

=
(−1)nn!
r1+n

Pn(z/r) , z = x3 , (72)

it may be seen that

W (x) = GM

[

1
r
−

∞
∑

n=2

(−1)n

n!
Jnr

n
e

∂n

∂zn

(

1
r

)

]

. (73)

Substituting for W from (73) into (69) yields an expansion for ρ̂ as follows

ρ̂(x) = M

[

δ(3)(x) −
∞
∑

n=2

(−1)n

n!
Jnr

n
e

∂n

∂zn
δ(3)(x)

]

, (74)

where δ(3)(x) is the Dirac distribution supported by the origin O. This
expansion of ρ̂ in a multipole series will be exploited in Sect. 5.2.

Now, substituting (68) into (57) yields for the vector potential W

W (x) = G

∫

ρ∗(x′)ω × x′

|x − x′ | d3x′ . (75)

It is possible to show that this vector may be written as

W = −1
2
ω × ∇V , (76)

where V is an axisymmetric function satisfying the Laplace equation ∇2V = 0
outside the body. Consequently, we can expand V in a series of the form

V(x) =
GI

r

[

1 −
∞
∑

n=1

Kn

(re

r

)n

Pn(cos θ)

]

, (77)

where I and each Kn are constants. Substituting for V from (77) into (76),
and then using the identity

(n+ 1)Pn(z/r) + (z/r)P ′
n(z/r) = P ′

n+1(z/r) , (78)

we find an expansion for W as follows

W (x) =
GIω × x

2r3

[

1 −
∞
∑

n=1

Kn

(re

r

)n

P ′
n+1(cos θ)

]

, (79)

which coincides with a result previously obtained by one of us [24]. This coinci-
dence shows that I is the moment of inertia of the body about the z-axis. Thus,
the quantity S = Iω is the intrinsic angular momentum of the rotating body.
The coefficients Kn are completely determined by the density distribution ρ∗
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and by the shape of the body [24, 25]. The quantities I,K1,K2, . . .Kn, . . .
correspond to the Blanchet–Damour spin multipoles in the special case of a
stationary axisymmetric gravitational field.

Equation (79) may also be written as

W (x) = −1
2
GS × ∇

[

1
r
−

∞
∑

n=1

(−1)n

n!
Knr

n
e

∂n

∂zn

(

1
r

)

]

. (80)

Consequently, the density of mass current can be expanded in the multipole
series

ρ∗(x)(ω × x) = −1
2
S × ∇

[

δ(3)(x) −
∞
∑

n=1

(−1)n

n!
Knr

n
e

∂n

∂zn
δ(3)(x)

]

. (81)

This expansion may be compared with the expansion of ρ̂ given by (74).

5.2 Multipole Structure of the World Function

The function Ω(PN)(xA, xB) is determined by (58–61) where w and w are,
respectively, replaced by W and W . The integrals involved in the RHS of
(58–61) are given by (64) and (65). Substituting (74) into (64) and using the
properties of the Dirac distribution, we obtain

∫ 1

0

W
(

x(0)(λ)
)

dλ = GM

[

1 −
∞
∑

n=2

1
n!
Jnr

n
e

∂n

∂zn

]

F (x,xA,xB)
∣

∣

∣

∣

x=0

. (82)

Similarly, substituting (81) into (65), we get2

∫ 1

0

W
(

x(0)(λ)
)

dλ =
1
2
GS × ∇

[

1 −
∞
∑

n=1

1
n!
Knr

n
e

∂n

∂zn

]

F (x,xA,xB)
∣

∣

∣

∣

x=0

.

(83)

These formulae show that the multipole expansion of Ω(PN)(xA, xB) can
be thoroughly calculated by straightforward differentiations of the kernel func-
tion F (x,xA,xB) given by (67). They constitute an essential result, since they
give an algorithmic procedure for determining the multipole expansions of the
time transfer function and of the frequency shift in a stationary axisymmetric
field (see also [2]).

To obtain explicit formulae, we shall only retain the contributions due to
M , J2, and S in the expansion yielding Ω

(PN)
W and Ω

(PN)
W . Then, denoting

the unit vector along the z-axis by k and noting that S = Sk, we get for
Ω

(1)
W (xA, xB)

2 Note that the sign of (55) in [14] is erroneous.
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Ω
(PN)
W (xA, xB)

= −GM
c2

(x0
B − x0

A)2 + γR2
AB

RAB
ln
(

rA + rB +RAB

rA + rB −RAB

)

+
2GM
c2

J2r
2
e

(x0
B − x0

A)2 + γR2
AB

[(rA + rB)2 −R2
AB ]2

(rA + rB)
(

k · xA

rA
+

k · xB

rB

)2

−GM
c2

J2r
2
e

(x0
B − x0

A)2 + γR2
AB

(rA + rB)2 −R2
AB

[

(k × xA)2

r3A
+

(k × xB)2

r3B

]

+ . . . (84)

and for Ω(PN)
W (xA, xB)

Ω
(PN)
W (xA, xB) =

(

γ + 1 +
1
4
α1

)

2GS
c3

×(x0
B − x0

A)
rA + rB

rArB

k · (xA × xB)
(rA + rB)2 −R2

AB

+ . . . . (85)

Finally, owing to the limit |α1 |< 4×10−4 furnished in [18], we shall henceforth
neglect all the multipole contributions in Ω

(PN)
vr (xA, xB). Thus, we get

Ω(PN)
vr

(xA, xB) = α1
GM

2c3
(x0

B − x0
A)

RAB · vr

RAB
ln
(

rA + rB +RAB

rA + rB −RAB

)

+ · · · .
(86)

In this section and in the following one, the symbol + . . . stands for the
contributions of higher multipole moments which are neglected. For the sake
of brevity, when + · · · is used, we systematically omit to mention the symbol
O(n) which stands for the neglected post-Newtonian terms.

5.3 Time Transfer Function up to the Order 1/c4

In what follows, we put

nA =
xA

rA
, nB =

xB

rB
, (87)

and
NAB = {N i} =

xB − xA

RAB
. (88)

Furthermore, we use systematically the identity

(rA + rB)2 −R2
AB = 2rArB(1 + nA · nB) . (89)

By substituting RAB for x0
B − x0

A into (84–86) and inserting the corres-
ponding expression of Ω(PN) into (36), we get an expression for the time
transfer function as follows

T (xA,xB) =
1
c
RAB + TM (xA,xB)

+TJ2(xA,xB) + TS(xA,xB) + Tvr
(xA,xB) + . . . , (90)
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where

TM (xA,xB) = (γ + 1)
GM

c3
ln
(

rA + rB +RAB

rA + rB −RAB

)

, (91)

TJ2(xA,xB) = −γ + 1
2

GM

c3
J2

r2e
rArB

RAB

1 + nA · nB

×
[(

1
rA

+
1
rB

)

(k · nA + k · nB)2

1 + nA · nB

−1 − (k · nA)2

rA
− 1 − (k · nB)2

rB

]

, (92)

TS(xA,xB) = −
(

γ + 1 +
1
4
α1

)

GS

c4

(

1
rA

+
1
rB

)

k · (nA × nB)
1 + nA · nB

, (93)

Tvr
(xA,xB) = −α1

GM

2c4
(NAB · vr) ln

(

rA + rB +RAB

rA + rB −RAB

)

. (94)

The time transfer is thus explicitly determined up to the order 1/c4. The
term of order 1/c3 given by (91) is the well-known Shapiro time delay [16].
Equations (92) and (93) extend results previously found for γ = 1 and
α1 = 0 [1]. However, our derivation is more straightforward and yields for-
mulae which are more convenient to calculate the frequency shifts. As a final
remark, it is worthy of note that TM and TJ2 are symmetric in (xA,xB), while
TS and Tvr

are antisymmetric in (xA,xB).

5.4 Directions of Light Rays at xA and xB up to the Order 1/c3

To determine the vectors tangent to the ray path at xA and xB, we use (14)
and (15) where T is replaced by the expression given by (90–94). It is clear
that ̂lA and ̂lB may be written as

̂lA = −NAB + λe(xA,xB) , (95)

̂lB = −NAB + λr(xA,xB) , (96)

where λe and λr are perturbation terms due to TM , TJn
, TS , TKn

, . . . For the
expansion of T given by (90–94), we find

λe(xA,xB) = −λM (xB ,xA)−λJ2(xB ,xA)+λS(xB ,xA)+λvr
(xB ,xA)+· · · ,

(97)

λr(xA,xB) = λM (xA,xB)+λJ2(xA,xB)+λS(xA,xB)+λvr
(xA,xB)+ · · · ,

(98)
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where λM , λJ2 , λS , and λvr
stand for the contributions of TM , TJ2 , TS , and

Tvr
, respectively. We get from (91)

λM (xA,xB) = −(γ+1)
GM

c2

(

1
rA

+
1
rB

)

1
1 + nA · nB

(

NAB − RAB

rA + rB
nB

)

.

(99)

From (92), we get

λJ2(xA, xB)

= (γ + 1)
GM

c2

(

1

rA
+

1

rB

)

J2
r2

e

rArB

1

(1 + nA · nB)2

×
{

NAB

[

(k · nA + k · nB)2

1 + nA · nB

(

rA

rB
+

rB

rA
+

1

2
− 3

2
nA · nB

)

−1

2

rArB

rA + rB

(

1 − (k · nA)2

rA
+

1 − (k · nB)2

rB

)

(

rA

rB
+

rB

rA
+ 1 − nA · nB

)

]

−nB
RAB

rA + rB

[

(k · nA + k · nB)2

1 + nA · nB

(

rA

rB
+

rB

rA
+

3

2
− 1

2
nA · nB

)

−1

2

[

1 − 3(k · nB)2
] rA(2 + nA · nB) + rB

rB

−1

2
(rA + rB)

(

1 − (k · nA)2

rA
− 2(k · nA)(k · nB)

rB

)]

+k
RAB

rB

[

(k · nA) + (k · nB)
rA(2 + nA · nB) + rB

rA + rB

]}

. (100)

From (93) and (94), we derive the other contributions that are not
neglected here:

λS (xA, xB) =
(

γ + 1 +
1

4
α1

)

GS

c3rB

(

1

rA
+

1

rB

)

1

1 + nA · nB

×
{

k × nA − k · (nA × nB)

1 + nA · nB

[

nA +
rA(2 + nA · nB) + rB

rA + rB
nB

]}

,

(101)

λvr (xA, xB) = α1
GM

2c3

[

vr − (vr · NAB)NAB

RAB
ln
(

rA + rB + RAB

rA + rB − RAB

)

+
(vr · NAB)

1 + nA · nB

(

1

rA
+

1

rB

)(

NAB − RAB

rA + rB
nB

)

]

. (102)

We note that the mass and the quadrupole moment yield contributions of
order 1/c2, while the intrinsic angular momentum and the velocity relative to
the universe rest frame yield contributions of order 1/c3.
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5.5 Sagnac Terms in the Time Transfer Function

In experiments like ACES Mission, recording the time of emission tA will
be more practical than recording the time of reception tB. So, it will be very
convenient to form the expression of the time transfer T (xA,xB) from xA(tA)
to xB(tB) in terms of the position of the receiver B at the time of emission
tA. For any quantity QB(t) defined along the world line of the station B, let
us put ˜QB = Q(tA). Thus we may write x̃B(tA), r̃B(tA), ṽB(tA), ṽB =| ṽB |,
etc.

Now, let us introduce the instantaneous coordinate distance DAB = x̃B −
xA and its norm DAB . Since we want to know tB − tA up to the order 1/c4,
we can use the Taylor expansion of RAB

RAB = DAB + (tB − tA)ṽB +
1
2
(tB − tA)2 ãB +

1
6
(tB − tA)3 ˜bB + · · · ,

where aB is the acceleration of B and bB = daB/dt. Using iteratively this
expansion together with (90), we get

T (xA,xB) = T (xA, x̃B) +
1
c2

DAB · ṽB

+
1

2c3
DAB

[

(DAB · ṽB)2

D2
AB

+ ṽ2
B + DAB · ãB

]

+
1
c4

[

(DAB · ṽB)
(

ṽ2
B + DAB · ãB

)

+
1
2
D2

AB

(

ṽB · ãB +
1
3
DAB · ˜bB

)

]

+
1
c

DAB

DAB
· ṽB [TM (xA, x̃B) + TJ2(xA, x̃B)]

− 1
c2
DABṽB · [λM (xA, x̃B) + λJ2(xA, x̃B)] + · · · , (103)

where T (xA, x̃B) is obtained by substituting x̃B, r̃B , and DAB , respectively,
for xB, rB , and RAB into the time transfer function defined by (90–94).
This expression extends the previous formula [6] to the next order 1/c4. The
second, the third, and the fourth terms in (103) represent pure Sagnac terms
of order 1/c2, 1/c3, and 1/c4, respectively. The fifth and the sixth terms are
contributions of the gravitational field mixed with the coordinate velocity of
the receiving station. Since these last two terms are of order 1/c4, they might
be calculated for the arguments (xA,xB).
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6 Frequency Shift in the Field of a Rotating
Axisymmetric Body

6.1 General Formulae up to the Fourth Order

It is possible to derive the ratio qA/qB up to the order 1/c4 from our results
in Sect. 4 since ̂lA and ̂lB are given up to the order 1/c3 by (95–98). Denoting
by ̂l(n)/cn the O(n) terms in ̂l, qA/qB may be expanded as

qA
qB

= 1 − 1
c

NAB · (vA − vB)

1 − NAB · vB

c

+
1
c3

[

̂l
(2)
A · vA − ̂l(2)B · vB

]

+
1
c4

[

̂l
(3)
A · vA − ̂l(3)B · vB

]

+
1
c4

NAB ·
[(

̂l
(2)
B · vB

)

(vA − 2vB) +
(

̂l
(2)
A · vA

)

vB

]

+O(5) . (104)

To be consistent with this expansion, we have to perform the calculation
of u0

A/u
0
B at the same level of approximation. For a clock delivering a proper

time τ , 1/u0 is the ratio of the proper time dτ to the coordinate time dt.
To reach the suitable accuracy, it is therefore necessary to take into account
the terms of order 1/c4 in g00. For the sake of simplicity, we shall henceforth
confine ourselves to the fully conservative metric theories of gravity without
preferred location effects, in which all the PPN parameters vanish except β
and γ. Since the gravitational field is assumed to be stationary, the chosen
coordinate system is then a standard post-Newtonian gauge and the metric
reduces to its usual form

G00 = 1 − 2
c2
W +

2β
c4
W 2 +O(6),

{G0i} =
2(γ + 1)

c3
W +O(5), (105)

Gij = −
(

1 +
2γ
c2
W

)

δij +O(4) , (106)

where W given by (54) reduces to

W (x) = U(x)+
G

c2

∫

ρ∗(x′)
|x − x′ |

[(

γ +
1
2

)

v2 + (1 − 2β)U +Π + 3γ
p

ρ∗

]

d3x′ ,

(107)
and W is given by (75). As a consequence, for a clock moving with the coor-
dinate velocity v, the quantity 1/u0 is given by the formula

1

u0
≡ dτ

dt
= 1 − 1

c2

(

W +
1

2
v2
)

+
1

c4

[(

β − 1

2

)

W 2 −
(

γ +
1

2

)

Wv2

−1

8
v4 + 2(γ + 1)W · v

]

+ O(6), (108)
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from which it is easily deduced that
u0

A

u0
B

= 1 +
1
c2

(

WA −WB +
1
2
v2

A − 1
2
v2

B

)

+
1
c4

{

(γ + 1)(WAv
2
A −WBv

2
B)

+
1
2
(WA −WB)

[

WA −WB + 2(1 − β)(WA +WB) + v2
A − v2

B

]

− 2(γ + 1)(WA · vA − WB · vB) +
3
8
v4

A − 1
4
v2

Av
2
B − 1

8
v4

B

}

+O(6) .

(109)

It follows from (104) and (109) that the frequency shift δν/ν is given by
δν

ν
≡ νA

νB
− 1 =

(

δν

ν

)

c

+
(

δν

ν

)

g

, (110)

where (δν/ν)c is the special-relativistic Doppler effect
(

δν

ν

)

c

= −1
c
NAB · (vA − vB)

+
1
c2

[

1
2
v2

A − 1
2
v2

B − (NAB · (vA − vB)) (NAB · vB)
]

− 1
c3

[

(NAB · (vA − vB))
(

1
2
v2

A − 1
2
v2

B + (NAB · vB)2
)]

+
1
c4

[

3
8
v4

A − 1
4
v2

Av
2
B − 1

8
v4

B

− (NAB · (vA − vB)) (NAB · vB)
(

1
2
v2

A − 1
2
v2

B + (NAB · vB)2
)]

+O(5) (111)

and (δν)/ν)g contains all the contribution of the gravitational field, eventually
mixed with kinetic terms
(

δν

ν

)

g

=
1
c2

(WA −WB)

− 1
c3

[

(WA −WB) (NAB · (vA − vB)) − ̂l(2)A · vA + ̂l(2)B · vB

]

+
1
c4

{

(γ + 1)(WAv
2
A −WBv

2
B)

+
1
2
(WA −WB)

[

WA −WB + 2(1 − β)(WA +WB) + v2
A − v2

B

−2 (NAB · (vA − vB)) (NAB · vB)
]

+NAB ·
[(

̂l
(2)
B · vB

)

(vA − 2vB) +
(

̂l
(2)
A · vA

)

vB

]

+
(

̂l
(3)
A − 2(γ + 1)WA

)

· vA −
(

̂l
(3)
B − 2(γ + 1)WB

)

· vB

}

+O(5) . (112)
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It must be emphasized that the formulae (108) and (109) are valid within
the PPN framework without adding special assumption, provided that β and
γ are the only nonvanishing post-Newtonian parameters. On the other hand,
(112) is valid only for stationary gravitational fields. In the case of an ax-
isymmetric rotating body, we shall obtain an approximate expression of the
frequency shift by inserting the following developments in (112), yielded by
(97–102):

̂l
(2)
A

c2
= −λM (xB ,xA) − λJ2(xB ,xA) + . . . ,

̂l
(3)
A

c3
= λS(xB,xA) + . . . ,

̂l
(2)
B

c2
= λM (xA,xB) + λJ2(xA,xB) + . . . ,

̂l
(3)
B

c3
= λS(xA,xB) + . . . ,

the function λS being now given by (101) written with α1 = 0. Let us recall
that the symbol + · · · stands for the contributions of the higher multipole
moments which are neglected.

6.2 Application in the Vicinity of the Earth

To perform numerical estimates of the frequency shifts in the vicinity of the
Earth, we suppose now that A is onboard the International Space Station
(ISS) orbiting at the altitude H = 400 km and that B is a terrestrial station.
It will be the case for the ACES mission. We use rB = 6.37 × 106 m and
rA−rB = 400 km. For the velocity of ISS, we take vA = 7.7×103 m s−1 and for
the terrestrial station, we have vB ≤ 465 m s−1. The other useful parameters
concerning the Earth are GM = 3.986 × 1014 m3 s−2, re = 6.378 × 106 m,
J2 = 1.083 × 10−3; for n ≥ 3, the multipole moments Jn are in the order
of 10−6. With these values, we get WB/c

2 ≈ GM/c2rB = 6.95 × 10−10 and
WA/c

2 ≈ GM/c2rA = 6.54 × 10−10. From these data, it is easy to deduce
the following upper bounds: | NAB · vA/c |≤ 2.6 × 10−5 for the satellite,
|NAB · vB/c |≤ 1.6× 10−6 for the ground station, and |NAB · (vA − vB)/c |≤
2.76 × 10−5 for the first-order Doppler term.

Our purpose is to obtain correct estimates of the effects in (112) which
are greater than or equal to 10−18 for an axisymmetric model of the Earth.
At this level of approximation, it is not sufficient to take into account the
J2-terms in (WA −WB)/c2. First, the higher-multipole moments J3, J4, . . .
yield contribution of order 10−15 in WA/c

2. Second, owing to the irregularities
in the distribution of masses, the expansion of the geopotential in a series of
spherical harmonics is probably not convergent at the surface of the Earth.
For these reasons, we do not expand (WA −WB)/c2 in (112).

However, for the higher-order terms in (112), we can apply the explicit
formulae obtained in Sect. 5. Indeed, since the difference between the geoid
and the reference ellipsoid is less than 100 m, WB/c

2 may be written as [26]

1
c2
WB =

GM

c2rB
+
GMr2eJ2

2c2r3B
(1 − 3 cos2 θ) +

1
c2

�WB , (113)
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where the residual term �WB/c
2 is such that |�WB/c

2 |≤ 10−14. At a level
of experimental uncertainty about 10−18, this inequality allows to retain only
the contributions due to M , J2, and S in the terms of orders 1/c3 and 1/c4.
As a consequence, the formula (112) reduces to

(

δν

ν

)

g

=
1
c2

(WA −WB) +
1
c3

(

δν

ν

)(3)

M

+
1
c3

(

δν

ν

)(3)

J2

+ . . .

+
1
c4

(

δν

ν

)(4)

M

+
1
c4

(

δν

ν

)(4)

S

+ . . . , (114)

where the different terms involved in the RHS are separately explicited and
discussed in what follows.

By using (89), it is easy to see that (δν/ν)(3)M is given by

(

δν

ν

)(3)

M

= −GM(rA + rB)
rArB

[(

γ + 1
1 + nA · nB

− rA − rB

rA + rB

)

[NAB · (vA − vB)]

+(γ + 1)
RAB

rA + rB

nA · vA + nB · vB

1 + nA · nB

]

. (115)

The contribution of this term is bounded by 5×10−14 for γ = 1, in accordance
with a previous analysis [6].

6.3 Influence of the Quadrupole Moment at the Order 1/c3

It follows from (100) and (112) that the term (δν/ν)(3)J2
in (114) is given by

(

δν

ν

)(3)
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2re
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[
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[
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− 1

2

RAB

rB
(nB · vB)

[

1 − 3(k · nB)2
] rA(2 + nA · nB) + rB

rA + rB

+RAB

[(
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rA
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nB · vB
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)
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. (116)

One has |vA/c| = 2.6×10−5, |vB/c| ≤ 1.6×10−6, and KAB = 3.77×10−3.
A crude estimate can be obtained by neglecting in (116) the terms involving
the scalar products nB ·vB and k ·vB . Since the orbit of ISS is almost circular,
the scalar product nA · vA can also be neglected. On these assumptions, we
find for γ = 1

∣

∣

∣

∣

1
c3

(

δν

ν

)(3)

J2

∣

∣

∣

∣

≤ 1.3 × 10−16. (117)

As a consequence, it will perhaps be necessary to take into account the
O(3) contributions of J2 in the ACES mission. This conclusion is to be com-
pared with the order of magnitude given in [6] without a detailed calculation.
Of course, a better estimate might be found if the inclination i = 51.6 deg
of the orbit with respect to the terrestrial equatorial plane and the latitude
π/2 − θB of the ground station was taken into account.

6.4 Frequency Shifts of Order 1/c4

The term (δν/ν)(4)M in (114) is given by

(

δν

ν

)(4)

M

= (γ + 1)
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rA
v2

A − GM

rB
v2
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)
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(
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×
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)
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}

]

. (118)
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The dominant term (γ + 1)GMv2
A/rA in (118) induces a correction to the

frequency shift which amounts to 10−18. So, it will certainly be necessary to
take this correction into account in experiments performed in the foreseeable
future.

The term (δν/ν)(4)S is the contribution of the intrinsic angular momentum
to the frequency shift. Substituting (79) and (101) into (112), it may be seen
that

(

δν

ν

)(4)

S

= (FS)A − (FS)B , (119)

where

(FS)A = (γ + 1)
GS

r2A

(

1 +
rA

rB

)

vA ·
{

k × nB

1 + nA · nB
− rB

rA + rB
k × nA

+
k · (nA × nB)
(1 + nA · nB)2

[

rA + rB(2 + nA · nB)
rA + rB

nA + nB

]}

, (120)

(FS)B = (γ + 1)
GS

r2B

(

1 +
rB

rA

)

vB ·
{

k × nA

1 + nA · nB
− rA
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− k · (nA × nB)
(1 + nA · nB)2

[

nA +
rA(2 + nA · nB) + rB

rA + rB
nB

]}

. (121)

To make easier the discussion, it is useful to introduce the angle ψ between
xA and xB , and the angle ip between the plane of the photon path and the
equatorial plane. These angles are defined by

cosψ = nA · nB , 0 ≤ ψ < π , k · (nA × nB) = sinψ cos ip , 0 ≤ ip < π .

With these definitions, it is easily seen that

k · (nA × nB)
1 + nA · nB

= cos ip tan
ψ

2
.

Let us apply our formulas to ISS. Due to the inequality vB/vA ≤ 6 × 10−2,
the term (FS)B in (119) may be neglected. From (120), it is easily deduced
that

| (FS)A |≤ (γ + 1)
GS

r2A

(

1 +
rA

rB

)

2 + 3 |tanψ/2 |
|1 + cosψ | vA .

Assuming 0 ≤ ψ ≤ π/2, we have (2 + 3 | tanψ/2 |)/ |1 + cosψ |≤ 5. Inserting
this inequality in the previous one and taking for the Earth GS/c3r2A = 3.15×
10−16, we find

∣

∣

∣

∣

1
c4

(

δν

ν

)(4)

S

∣

∣

∣

∣

≤ (γ + 1) × 10−19 . (122)

Thus, we get an upper bound which is slightly greater than the one
estimated by retaining only the term h0iv

i/c in (109). However, our formula
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confirms that the intrinsic angular momentum of the Earth will not affect the
ACES experiment.

7 Conclusion

It is clear that the world function Ω(xA, xB) constitutes a powerful tool for
determining the time delay and the frequency shift of electromagnetic signals
in a weak gravitational field. The analytical derivations given here are ob-
tained within the Nordtvedt–Will PPN formalism. We have found the general
expression of Ω(xA, xB) up to the order 1/c3. This result yields the expres-
sion of the time transfer functions Te(tA,xA,xB) and Tr(tB ,xA,xB) up to
the order 1/c4. We point out that γ and α1 are the only post-Newtonian pa-
rameters involved in the expressions of the world function and of the time
transfer functions within the limit of the considered approximation.

We have treated in detail the case of an isolated, axisymmetric rotating
body, assuming that the gravitational field is stationary and that the body
is moving with a constant velocity vr relative to the universe rest frame. We
have given a systematic procedure for calculating the terms due to the multi-
pole moments in the world function Ω(xA, xB) and in the single time transfer
function T (xA,xB). These terms are obtained by straightforward differenti-
ations of a kernel function. We have explicitly derived the contributions due
to the mass M , to the quadrupole moment J2, and to the intrinsic angular
momentum S of the rotating body.

Assuming for the sake of simplicity that only β and γ are different from
zero, we have determined the general expression of the frequency shift up to
the order 1/c4. We have derived an explicit formula for the contributions of
J2 at the order 1/c3. Our method would give as well the quadrupole contri-
bution at the order 1/c4 in case of necessity. Furthermore, we have obtained a
thorough expression for the contribution of the mass monopole at the fourth
order, as well as the contribution of the intrinsic angular momentum S, which
is also of order 1/c4. It must be pointed out that our calculations give also
the vectors tangent to the light ray at the emission and reception points. So,
our results could be used for determining the contributions of J2 and S to the
deflection of light.

On the assumption that the gravitational field is stationary, our formulae
yield all the gravitational corrections to the frequency shifts up to 10−18 in
the vicinity of the Earth. Numerically, the influence of the Earth quadrupole
moment at the order 1/c3 is in the region of 10−16 for a clock installed on-
board ISS and compared with a ground clock. As a consequence, this effect
will probably be observable during the ACES mission. We also note that the
leading term in the fourth-order frequency shift due to the mass monopole is
equal to 10−18 for a clock installed onboard ISS and compared with a ground
clock. As a consequence, this effect could be observable in the foreseeable
future with atomic clocks using optical transitions.
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