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Summary. The propagation of light is treated in the postlinear gravitational field
of binary systems. The light deflection is calculated to quadratic order in Newton’s
gravitational constant and fourth order in the inverse power of the speed of light.
Similarities and dissimilarities of linearized gravity and electrodynamics are discus-
sed. A recent speed-of-gravity controversy is investigated.

1 Introduction

Today, technology has achieved a level at which the extremely high precision
of current ground-based radio interferometric observations are approaching an
accuracy of 1 µarcsec. Moreover the planned space-based astrometric telescope
(GAIA)1 and the space interferometric mission (SIM) are going to measure
the positions and/or the parallaxes of celestial objects with uncertainties in
the range 10−5–10−6 arcsec. Furthermore the interferometer for the planned
laser astrometric test of relativity mission (LATOR) will be able to measure
light deflection angles of the order 10−8 arcsec.

To reach the desired accuracies of 10−6–10−8 arcsec in the computation
of light deflection in gravitational fields, corrections arising from the lack of
spherical symmetry of the gravitating system, the motion of the gravitating
masses, and the relativistic definition of the center of mass must be taken into
account.

In this chapter, the light deflection in the postlinear gravitational field of
two-bounded point-like masses is treated. However, to gain more insight into
the interrelation between the Einstein field equations and the Maxwell equa-
tions, in the first part of the paper, the linear gravitational field is treated and
its structural similarity with the electromagnetic field is discussed. Empha-
sis is put on the difference between linearized gravity and electrodynamics.

1 The name GAIA derives from global astrometric interferometer for astrophysics,
since GAIA was originally planned as a space-based interferometer.
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In the second part of the paper, but still within the context of linearized
gravity, a recent well-known speed-of-gravity controversy is discussed using a
clear-cut approach for clarification. Finally, in the third part of the paper, in
going over to the postlinear gravitational field, the light deflection is treated.

Notation

Let us summarize the notation and symbols used in this paper:

1. G is the Newtonian constant of gravitation
2. c is the speed of light
3. in Sect. 3, by cg we denote the speed of gravity
4. The Greek indices α, β, γ, etc. are space–time indices and run from 0 to 3
5. The Latin indices i, j, k, etc. are spatial indices and run from 1 to 3
6. ηµν = ηµν = diag(−1, 1, 1, 1) is the Minkowski metric
7. gµν is a metric tensor of curved, four-dimensional space–time, depending

on spatial coordinates and time
8. We suppose that space–time is covered by a harmonic coordinate system

(xµ) = (x0, xi), where x0 = c t, t being the time coordinate
9. The three-dimensional quantities (3-vectors) are denoted by a = ai

10. The three-dimensional unit vector in the direction of a is denoted by
ea = ei

a

11. The Latin indices are lowered and raised by means of the unit matrix
δij = δij = diag(1, 1, 1)

12. By ,σ = ∂σ we denote the partial derivative with respect to the coordinate
xσ

13. The scalar product of any two 3-vectors a and b with respect to the
Euclidean metric δij is denoted by a · b and can be computed as a · b =
δija

ibj = aibi

14. The Euclidean norm of a 3-vector a is denoted by a = |a| and can be
computed as a = (δmna

man)1/2

15. By l(0) we denote the vector tangent to the unperturbed light ray and the
unit vector e(0) is defined by e(0) = l(0)/|l(0)|

16. ∇ denotes the vector operator ex∂x + ey∂y + ez∂z

17. ∆ denotes the usual Laplace operator in flat space
18. By � ≡ ηµν∂µ∂ν = −∂2

0 +∆ we denote the flat d’Alembertian operator

2 Analogies Between Electrodynamics
and Einsteinian Gravity

In linearized approximation, the complicated Einstein theory with the group of
general coordinate transformations as symmetry group simplifies to an abelian
gauge theory. Electrodynamics is an abelian gauge theory too, if also with a
single group parameter in contrast to linearized gravity theory which has four
group parameters, so there are analogies between both theories to be expected.
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2.1 Gauge-Invariant Electrodynamics

In vacuum space–time, the Maxwell equations have the form (Gaussian units)

∇ · B = 0, ∇ × E +
1
c

∂

∂t
B = 0, (1)

∇ · E = 4π�, ∇ × B − 1
c

∂

∂t
E =

4π
c

j. (2)

Hereof the conservation equation for the charge follows:

∂

∂t
�+ ∇ · j = 0. (3)

In covariant form, the Maxwell equations read,

∂νF
µν =

4π
c
jµ, ∂σFµν + ∂µFνσ + ∂νFσµ = 0, (4)

and the conservation equation takes the form

∂µj
µ = 0. (5)

Here, the definitions hold,

Fµν = (E,B), jµ = (c�, j), Fµν = −Fνµ. (6)

The Lorentz force and power expressions are, respectively,

k = �E +
1
c
j × B, k · v = E · j, (7)

where j = �v. In covariant notation, the four-dimensional force density reads

kµ =
1
c
Fµνj

ν =
(

−1
c
E · j,k

)

. (8)

All the given expressions in this section have physical meaning, locally.

2.2 Electrodynamics in Gauge-Field Form

Introducing the gauge-field Aµ according to

E = −∇φ− 1
c

∂

∂t
A, B = ∇ × A (9)

or, in four-dimensional form,

Fµν = ∂µAν − ∂νAµ, Aµ = (−φ,A), (10)
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the field equations (1) and (2) transform into the equations

−∂ν∂νA
µ + ∂µ∂νA

ν =
4π
c
jµ. (11)

A gauge transformation is given by,

A′
µ = Aµ + ∂µΛ, F ′

µν = Fµν . (12)

It includes one arbitrary function Λ. The Lorentz gauge condition is defined by

1
c

∂

∂t
φ+ ∇ · A = ∂µA

µ = 0. (13)

Herewith, the field equations (11) result in

∂ν∂νA
µ = −4π

c
jµ. (14)

In gauge-field form, the Maxwell equations were put onto a footing which is
close in form to the Einstein field equations in linearized approximation.

2.3 The Linearized Einstein Theory

In linearized approximation, applying the harmonic or Hilbert–Lorentz gauge
condition, the Einstein field equations read, e.g., see [1]

∂λ∂λh̄
µν = −16πG

c4
Tµν , (15)

where the harmonic coordinate condition reads

∂µh̄
µν = 0. (16)

The field equations (15) together with the harmonic coordinate condition (16)
imply the conservation law for the matter stress–energy tensor

∂µT
µν = 0. (17)

The barred field h̄µν is connected with the metric tensor gµν as follows

hµν = h̄µν − 1
2
ηµνη

αβh̄αβ , gµν = ηµν + hµν , (18)

where raising and lowering of indices are with the Minkowski metric.
Introducing the notations, cf. [2]

T 00 = �c2, T 0i = cji, (19)

h̄00 = 4ϕ/c2, h̄0i = 4ai/c2, h̄ij = O(1/c4), (20)
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and

E = −∇ϕ− 1
c

∂

∂t
a, B = ∇× a, (21)

the field equations (15) take the form,

∇ · B = 0, ∇ × E +
1
c

∂

∂t
B = 0, (22)

∇ · E = 4π�, ∇ × B − 1
c

∂

∂t
E =

4π
c

j. (23)

Hereof the time component of the conservation equation (17) follows

∂

∂t
�+ ∇ · j = 0, (∂νT

0ν = 0). (24)

Obviously, whereas from the field equations (15), together with the gauge
condition (16), four conservation equations follow, namely (17), from the field
equations (22) and (23), only one conservation equation results (24).

The force and power expressions have to be added to (22) and (23) from
outside because (c�, ji) is treated therein as 4-vector and not as components
of a tensor

k = −
(

�E +
4
c
j × B

)

, k · v = −E · j, (25)

where j = �v and where a point-mass model has been assumed for the matter.
For point masses, some analogy between electrodynamics and the linea-

rized Einstein theory has been achieved apart from a minus sign and a factor
of 4. The first difference relates to the attraction of gravity for all masses
and the second one to the tensorial structure of gravity. However, there is a
much bigger difference present which also relates to the treatment of (c�, ji) as
4-vector. The electromagnetic field equations (4) are gauge invariant against
the transformation

A′0 = A0 − ∂0Λ, (26)

A′i = Ai + ∂iΛ. (27)

The linearized Einstein field equations in electrodynamic form, (22) and (23),
however, are not invariant against the gauge transformations of linearized
gravity which are given by, containing four arbitrary functions εµ,

h̄′00 = h̄00 − ∂0ε
0 + ∂jε

j , (28)

h̄′0i = h̄0i + ∂iε
0 − ∂0ε

i, (29)

h̄′ij = h̄ij + ∂iε
j + ∂jε

i − δij∂µε
µ. (30)

Only in the case of vanishing εi, the above field equations (22) and (23) are
invariant. This means that the linearized Einstein field equations in the elec-
trodynamic form, (22) and (23), have no physical meaning, locally, in contrast
to the Maxwell equations (1) and (2).
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2.4 The Linearized Einstein Theory in Gauge-Invariant Form

A locally gauge-invariant representation of the linearized Einstein theory can
be achieved with the aid of the Riemann curvature tensor

Rµνστ =
1
2
(∂ν∂σhµτ + ∂µ∂τhνσ − ∂ν∂τhµσ − ∂µ∂σhντ ) (31)

which is an invariant object under the gauge transformations (28)–(30)

R′
µνστ = Rµνστ . (32)

Calling, respectively, e.g., see [3],

Eij = Ri0j0, Hij =
1
2
εiklRklj0, (33)

the electric and magnetic components of the curvature tensor, all its compo-
nents can be recovered in the form:

Ri0j0 = Eij , Rijk0 = εijlHlk, (34)

Rijkl = εijmεkln

(

−Emn +
1
2
Jmn

)

, (35)

Jij =
8πG
c4

(

−Tij +
1
2
δij(T00 + Tkk)

)

. (36)

The fully gauge-invariant field equations for linearized Einstein theory read

∇ · H = 0, ∇× E +
1
c

∂

∂t
H = 0, (37)

∇ · E = ∇ · J, ∇× HT − 1
c

∂

∂t
E = −1

c

∂

∂t
J, (38)

where HT denotes the transposed of the dyadic H; ET = E, JT = J. (Notice
the similarity of the inhomogeneous equations with the macroscopic Maxwell
equations with polarization, i.e., dipole sources.) These equations do have
local meaning as the expression

Ki = −
(

c2EijX
j + 2cεiklV

kHljX
j
)

= −
(

Ei +
2
c
(V × H)i

)

(39)

does which describes the tidal force on two particles with unit mass, separated
by the vector Xi (V i = dXi

dt ), where

Ei = c2EijX
j , Hi = c2HijX

j . (40)

The second-order field equations for components of the Riemann tensor read

�Eij =
8πG
c4

[

∂2
0(Tij −

1
2
δijT ) + ∂i∂j(T00 +

1
2
T ) − ∂0(∂iTj0 + ∂jTi0)

]

,

(41)
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�Hij =
8πG
c4

εilk

[

∂0∂k(Tjl −
1
2
δjlT ) − ∂k∂jTl0

]

. (42)

Under stationarity conditions, the field equations become,

∆Eij =
4πG
c4

∂i∂j(T00 + Tkk), (43)

∆Hij =
8πG
c4

εilk∂l∂jT0k. (44)

In the Newtonian limit, the well-known tidal-force potential results,

Eij = − 1
c2
∂i∂jϕ, ϕ = G

∫

d3x′
�(x′)

|x − x′| . (45)

3 On the Speed-of-Gravity Controversy

Recently it has been claimed that the speed of gravity should be measurable by
radio observations of a bright radio quasar J0842+1835, during the time of its
line-of-sight close angular encounter with Jupiter by very long baseline inter-
ferometer (VLBI), predicted to occur on 8 September 2002 [4]. The theoretical
basis of above erroneous conclusion rests upon interpreting relativistic correc-
tions to the famous Shapiro delay. The first criticism of [4], raised by Asada,
points out that the excess time delay is a light-cone effect only, hence should
not involve the speed of gravity [5]. Recently, inaugurated by a new paper
which supports Kopeikin’s earlier interpretation of “the higher-order Shapiro
delay” [6], a strong criticism was raised by Will, who presented a detailed
calculation for the relativistic corrections to the Shapiro delay in the para-
metrized post-Newtonian framework and showed that the above-mentioned
VLBI measurements are insensitive to the speed of propagation of gravity [7].
In the final version of his recent publication, Kopeikin strongly criticized the
conclusions reached by Asada and Will by pointing out unsatisfactory aspects,
both conceptual and calculational, of their treatments [6]. In this article, we
will provide a firm mathematical footing to the analysis of Asada and Will,
and convincingly show that the speed of gravity is not sensitive to the mea-
surements of radio waves, emitted by the quasar J0842+1835 and deflected by
the moving Jupiter, performed by VLBI. We shall also point out the concep-
tual error committed by Kopeikin which allowed him to interpret erroneously
the above-mentioned VLBI observations [8].

3.1 The Approach by C.M. Will

Though the final expression for the relativistic time delay presented by Asada
is consistent with that obtained by Kopeikin (compare (10) and (12) in [5]
and [4], respectively), he pointed out that Asada’s derivation assumed that
the position of Jupiter be fixed at retarded light-cone time, which makes
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his derivation somewhat ad hoc. Kopeikin also raised few concerns over the
higher-order time-delay computations in [7], especially the way time-delay
integral was evaluated (refer Sect. B in [6]). Below, we will present an elegant
integration of the relativistic time-delay equation, which is free of blemishes
associated with Will’s treatment, as indicated by Kopeikin. This will help us
to justify mathematically Asada’s result too.

We start with the time-delay equation, (16) of [7], but dropping the sum-
mation symbol there,

∆(tr, te) = (1 + γ)
Gma

c2

∫ tr

te

(1 − (2 + ζ)e(0) · va(sa)/c)dt
|z − xa(sa)| − va(sa) · (z − xa(sa))/cg

, (46)

where xa, va, and ma are the position vector, the velocity vector, and the
mass of the gravitational source, respectively. te and tr denote the light ray
(photon) emission and reception instances. The Newtonian gravitational con-
stant and the speed of gravity are denoted by G and cg. The constant unit
vector along the incoming light ray e(0) helps us to define the unperturbed
photon trajectory as

z ≡ z(t) = e(0)c(t− te) + ze, (47)

and the retarded time sa is given by sa = t− |z −xa(sa)|/cg. The underlying
reference frame is an inertial frame where as well the observer as the source
of the light ray is treated to be at rest. The time-delay expression in the
Einstein theory results from putting γ = 1, ζ = 0, and cg = c. The advantage
of working within a well-posed generalized framework is the natural difference
therein between the speed of gravity and the speed of light.

It may already be noted here that terms of the type e(0) · va(sa)/c in
the numerator of (46) can be neglected for the interpretation of the data
from the Jupiter VLBI experiment. Only the denominator in (46) is relevant.
Throughout the rest of the chapter, we will assume that the source of the
gravitational field is uniformly moving, making va a constant.

Following techniques used in the computation of electric and magnetic
fields, using Liénard–Wiechert potentials (see [10], Sect. 63), we write the de-
nominator in the integrand of (46) as

|z − xa(sa)| − va · z − xa(sa)
cg

= |z − xa(t)|
(

1 −
(

va

cg

)2

sin2 θt

)1/2

, (48)

where θt is the angle between z − xa(t) and va. To elegantly integrate (46),
we introduce the following expression, where the retardation is with respect
to the speed of light c,

|z − xa(ua)| − va · z − xa(ua)
c

= |z − xa(t)|
(

1 −
(va

c

)2

sin2 θt

)1/2

(49)
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where ua = t − |z − xa(ua)| /c. Using the above expression, we may write
(48) as

|z − xa(sa)| − va · z − xa(sa)
cg

=
[

|z − xa(ua)| − va · z − xa(ua)
c

](

1 − (va/cg)2 sin2 θt

1 − (va/c)2 sin2 θt

)1/2

. (50)

Restricting right-hand side of above equation to O(v2
a) and plugging it in (46)

we obtain,

∆(tr, te) = (1 + γ)
Gma

c2

∫ tr

te

(1 − (2 + ζ)e(0) · va/c)dt
|z − xa(ua)| − va · (z − xa(ua))/c

. (51)

Using (25), (28), (45), and (50) in [9], which are quite the merit equations of
that paper, it is straightforward to obtain, without any further approximation,
the relativistic time-delay expression in the following form

∆(tr, te) = −(1 + γ)
Gma

c3

(

1 − (1 + ζ)e(0) ·
va

c

)

ln
rra(ur) − e(0) · rra(ur)
rea(ue) − e(0) · rea(ue)

,

(52)

where the retarded times ur and ue are given by

ui = ti −
ria(ui)
c

, i = r, e (53)

and ria(ui) = zi − xa(ui) with ria(ui) = |ria(ui)|.
It is clear that above equation is not very useful, as it involves unknown

constants like te, the instant of time when the photon was ejected and ze,
a vector associated with its origin. To eliminate te and ze, we introduce a
second observer and let t1 and t2 be the reception times at these receivers
for a photon characterized by te and ze. The relativistic time delay, given by
(52), becomes

∆(t2, t1) = −(1 + γ)
GmJ

c3

(

1 − (1 + ζ)e(0) ·
vJ

c

)

ln
r2J (u2) − e(0) · r2J (u2)
r1J (u1) − e(0) · r1J (u1)

,

(54)

where the index J stands for the Jupiter. The new retarded instances are

ui = ti −
riJ (ui)

c
, i = 1, 2 (55)

along with

riJ(ui) = zi − xJ(ui), riJ = |riJ (ui)|, i = 1, 2. (56)
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It is clear that in the expression for the relativistic time delay, given by
(54), the speed of gravity plays absolutely no role. The expression, which
should be used to interpret astronomical observations like that made by VLBI
on the fall of 2002, may be obtained by simply replacing (1−(1+ζ)e(0) ·vJ/c)
by 1 in (54). This is so as the effects associated with the g0i-component of
the gravitational field (see [7]), the so-called gravitomagnetic field, may be
neglected during such observations. The final expression for the relativistic
Shapiro delay reads

∆(t2, t1) = −(1 + γ)
GmJ

c3
ln
r2J (u2) − e(0) · r2J (u2)
r1J (u1) − e(0) · r1J (u1)

. (57)

This proves the correctness of the ansatz used in [5], when γ = 1. The above
equation also agrees with (34) and (35) of [7]. We feel that it is important to
stress again what (54) or (57) really implies. They demonstrate that, whenever
measurements of the gravitational time delay for electromagnetic radiation
passing by a moving massive object, similar to the VLBI observations of 8
September 2002, are interpreted, the only field velocity that enters the analysis
is that of the light.

3.2 The Treatment by S.M. Kopeikin

In this section, we closely scrutinize Kopeikin’s arguments to see how he
reached his erroneous conclusion that the above-mentioned VLBI observations
measure the speed of gravity. The time-delay equation employed by Kopeikin
reads

∆(tr, te) =
2Gma

c2

∫ tr

te

(

1 − 2e(0) · va(sa)/cg
)

dt

|z − xa(sa)| − va(sa) · (z − xa(sa)) /cg
, (58)

where

sa = τ − |z − xa(sa)|
cg

with τ ≡ ct

cg
. (59)

The velocities va(sa) are also defined with respect to the new time variable
τ . However, for the light propagation he still uses (47), which is

z ≡ z(t) = e(0)c(t− te) + ze, (60)

Note that (58) is quite similar in form to (46), we employed in Sect. 3.1. We
integrate (58) in the same manner as the time-delay integral was performed
in Sect. 3.1. The final result, expressed in terms of τ , reads

∆(τr, τe) = −2Gma

c3

(

1 − e(0) ·
va

cg

)

ln
rra(sr) − e(0) · rra(sr)
rea(se) − e(0) · rea(se)

, (61)
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where the retarded times se and sr, associated with the positions of emission
and reception of the photon, are

si = τi −
ria(si)
c

, i = e, r (62)

In above equation, rea(se) and rra(sr) are given by

ria(si) = |zi − xa(si)| , ria(si) = zi − xa(si) , i = e, r. (63)

Introducing a second observer and following exactly what have been done
after (52) to get (57), we obtain, for γ = 1,

∆(τ2, τ1) = −2GmJ

c3
ln
r2J (s2) − e(0) · r2J (s2)
r1J (s1) − e(0) · r1J (s1)

, (64)

where τ1 and τ2 are the fiducial reception times for the deflected photon at
the positions of two VLBI observers.

Since the time t, associated with the photon propagation, is related to the
fiducial time τ by t = (cg/c) τ , we are free to introduce another retardation
u = (cg/c) s. This indicates that we have the freedom to replace Kopeikin’s
arbitrarily defined retardations s1 and s2 with u1 and u2, where

ua = t− |z − xa(ua)|
c

, a = 1, 2. (65)

In terms of u1 and u2, (64) completely agrees with (57) when γ = 1. We
emphasize that it is the time t, associated with the propagation of light, that
is involved in the true measurements of velocities and hence to be used in the
interpretation of astronomical observations. Kopeikin, however, used fiducial
τ to interpret the VLBI observations of 8 September 2002.

4 Light Deflection in the Gravitational Field
of a Compact Binary System

In this section, we shall recapitulate the computations of the angle of light
deflection in the gravitational field of a compact binary system in the linear
and postlinear approximations, which were presented in [9,11]. Both the light
source and the observer are assumed to be located at infinity in an asymptoti-
cally flat space. The equations of light propagation are explicitly integrated to
the second order in G/c2. We assume that the impact parameter |ξ| is much
larger (five times or more) than the distance r12 between the two components
of the binary system.
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4.1 Light Propagation and Light Deflection in the Gravitational
Field of Compact Binary System

Since the light ray is propagating in a weak gravitational field, we can assume
that the light propagation is very well governed by the laws of geometric optics,
whereby light rays (photons) move in curved space–time along null geodesics.
The equations of null geodesics with the time coordinate as parameter are
given by (e.g., see [12])

dli

dt
+ Γ i

αβl
αlβ = c−1Γ 0

νσl
ν lσli, (66)

where Γµ
ρσ are the Christoffel symbols of the second kind and lµ = dzµ

dt denotes
the 4-vector lµ = (c, li). Here, it is important to point out that lµ is not exactly
a 4-vector since we differentiate with respect to the time coordinate t. So lµ

is a 4-vector up to a factor. The spatial part of lµ given by li = dzi/dt is the
3-vector tangent to the light ray zi(t). In the present case of null geodesics,
lµ has to fulfill the condition

l2 ≡ gµν [z0, zi(t), G]lµlν = 0. (67)

Now we consider a light ray zi(t) that is propagating in a curved space–
time gµν [z0, zi(t), G]. If the gravitational field is weak, we can write the fun-
damental metric tensor as a power series in the gravitational constant G

gµν [z0, zi(t), G] ≡ ηµν +
∞
∑

n=1

h(n)
µν [z0, zi(t), G], (68)

where ηµν is the Minkowski metric and h
(n)
µν [z0, zi(t), G] is a perturbation

of the order n in the gravitational constant G (physically, this means an
expansion in the dimensionless parameter Gm/c2d which is very small, d
being the characteristic length of the problem and m a characteristic mass).

To obtain from (66) the equations of light propagation for the metric given
in (68), we substitute the Christoffel symbols into (66). To save writing we
denote the metric coefficients h(1)

pq [z0, zi(t), G] and h(2)
pq [z0, zi(t), G] by h(1)

pq and
h

(2)
pq . Then the resulting equation of light propagation to the second order in
G/c2 is

dli

dt
=

1
2
c2h

(1)
00,i − c2h

(1)
0i,0 − c h

(1)
0i,ml

m + c h
(1)
0m,il

m − c h
(1)
mi,0l

m

−h(1)
mi,nl

mln +
1
2
h

(1)
mn,il

mln − 1
2
c h

(1)
00,0l

i − h
(1)
00,kl

kli

+
(

1
2
c−1h

(1)
mp,0 − c−1h

(1)
0p,m

)

lmlpli +
1
2
c2h

(2)
00,i −

1
2
c2h(1)ikh

(1)
00,k

−h(2)
00,kl

kli −
(

h
(2)
mi,n − 1

2
h

(2)
mn,i

)

lmln + h(1)ik

(

h
(1)
mk,n − 1

2
h

(1)
mn,k

)

lmln

−h(1)
00 h

(1)
00,kl

kli, (69)
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where by , 0 and , i we denote ∂/∂z0 and ∂/∂zi, respectively. To calculate the
light deflection we need to solve (69) for li. To solve this complicated nonlinear
differential equation, we turn to approximation techniques.

The Approximation Scheme

We can write the 3-vector li(t) as

li(t) = li(0) +
∞
∑

n=1

δli(n)(t), (70)

where li(0) denotes the constant incoming tangent vector li(−∞) and δli(n)(t)
the perturbation of the constant tangent vector li(0) of order n in G. After in-
troducing the expression for li(t) given by (70) into (69), we obtain differential
equations for the perturbations δli(1) and δli(2)

dδli(1)

dt
=

1
2
c2h

(1)
00,i − c2h

(1)
0i,0 − c h

(1)
0i,ml

m
(0) + c h

(1)
0m,il

m
(0) − c h

(1)
mi,0l

m
(0)

−h(1)
mi,nl

m
(0)l

n
(0) +

1
2
h

(1)
mn,il

m
(0)l

n
(0) −

1
2
c h

(1)
00,0l

i
(0) − h

(1)
00,kl

k
(0)l

i
(0)

+
(

1
2
c−1h

(1)
mp,0 − c−1h

(1)
0p,m

)

lm(0)l
p
(0)l

i
(0) (71)

and

dδli(2)

dt
=

1
2
c2h

(2)
00,i −

1
2
c2h(1)ikh

(1)
00,k − h

(2)
00,kl

k
(0)l

i
(0) −

(

h
(2)
mi,n − 1

2
h

(2)
mn,i

)

lm(0)l
n
(0)

+h(1)ik

(

h
(1)
mk,n − 1

2
h

(1)
mn,k

)

lm(0)l
n
(0) − h

(1)
00 h

(1)
00,kl

k
(0)l

i
(0)

−c h(1)
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(1) + c h

(1)
0m,iδl

m
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(1)
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(1)
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m
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(1)
mi,nl
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(0)δl

n
(1) + h

(1)
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(1)
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(1)
00,kδl
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i
(0) − h

(1)
00,kl

k
(0)δl

i
(1)

+c−1h
(1)
mp,0δl

m
(1)l

p
(0)l

i
(0) − c−1h

(1)
0p,mδl

m
(1)l

p
(0)l

i
(0) − c−1h

(1)
0p,ml

m
(0)δl

p
(1)l

i
(0)

+
(

1
2
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(1)
mp,0 − c−1h

(1)
0p,m

)

lm(0)l
p
(0)δl

i
(1). (72)

To calculate the perturbations δli(1)(t) and δli(2)(t), we have to integrate
(71) and (72) along the light ray trajectory to the appropriate order.
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Angle of Light Deflection

The dimensionless vector αi
(n) of order n in G, describing the angle of total

deflection of the light ray measured at the point of observation and computed
with respect to the vector li(0), is given by

αi
(n)(t) = P i

q

δlq(n)(t)

|l(0)|
, (73)

where δli(n) is the perturbation of the constant tangent vector of order n in
G. Here,

P i
q = δi

q − ei
(0)e(0)q, (74)

with ei
(0) = li(0)/|l(0)|, is the projection tensor onto the plane orthogonal to

the vector li(0). In the case of light rays (photons) |l(0)| = c.

4.2 The Gravitational Field of a Compact Binary in the Linear
Approximation

In the linear approximation (68) reduces to

gµν(t,x) = ηµν + h(1)
µν (t,x). (75)

The metric perturbation h
(1)
µν (t,x) can be found by solving the Einstein field

equations which in the linear approximation and in the harmonic gauge (see
[12]) are given by

�h(1)
µν (t,x) = −16π

G

c4
Sµν(t,x), (76)

where

Sµν(t,x) = Tµν(t,x) − 1
2ηµνT

λ
λ(t,x). (77)

As is well known, the solution of these equations has the form of a Liénard–
Wiechert potential (e.g., see [13]).

For a binary system the matter stress–energy tensor reads

Tµν(t,x) =
2
∑

a=1

µa(t)vµ
av

ν
aδ(x − xa), (78)

where the trajectory of the mass ma (in harmonic coordinates) is denoted by
xa(t); the coordinate velocity is va(t) = dxa(t)/dt and vµ ≡ (c,va); µa(t)
represents a time-dependent mass of the body a defined by

µa(t) =
ma

√

1 − v2
a(t)/c2

, (79)

where ma is the (constant) Schwarzschild mass.
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After performing the integration of (76) with the help of the flat-retarded
propagator, we finally get

h(1)
µν (t,x) = 4

G

c4

2
∑

a=1

µa(sa)vaµ(sa)vaν(sa) − (1/2)ηµνµa(sa)vλ
a (sa)vaλ(sa)

ra(sa) − (1/c)(va(sa) · ra(sa))
,

(80)

where ra(sa) is given by ra(sa) = x − xa(sa), and ra(sa) is the Euclidean
norm of ra(sa). In (80) sa denotes the retarded time sa = sa(t,x) for the ath
body which is a solution of the light-cone equation

sa +
1
c
ra(sa) = t. (81)

4.3 The Angle of Light Deflection in the Linear Approximation

By virtue of (71), (73), and considering that the metric coefficients h(1)
µν in

(71) are smooth functions of t and z, it can be shown that the expression for
the angle of light deflection is given by (e.g., see [9])

αi
(1)(τ) =

1
2c

∫ τ

−∞
dσlα(0)l

β
(0)∂̂ih

(1)
αβ(τ,z(τ)) − 1

c
P i

q l(0)δh
(1)δq(τ,z(τ)), (82)

where ∂̂i ≡ P q
i ∂/∂ξ

q. Here, τ is an independent parameter defined by

τ = t− t∗, (83)

where t∗ is the time of closest approach of the unperturbed light ray to the ori-
gin of an asymptotically flat harmonic coordinate system. Then the equation
of the unperturbed light ray can be represented by

z(τ)unpert. = τ l(0) + ξ, (84)

where ξ is a vector directed from the origin of the coordinate system toward
the point of closest approach (i.e., the impact parameter).

The integral in (82) can be calculated by applying the method developed
by Kopeikin and Schäfer in [9]. After inserting the metric coefficients (80) into
(82) and computing the integral, we finally obtain

αi
(1)(τ) =

∑

a

4(G/c3)ma

[

1 − e(0)·va(sa)

c

]

√

1 − v2
a(sa)
c2

[

ra(τ, sa) − va(sa)·ra(τ,sa)
c

]
P i

qv
q
a(sa)

−
∑

a

2(G/c2)ma

[

1 − e(0)·va(sa)

c

]2
[

ra(τ, sa) + (e(0) · ra(τ, sa))
]

P i
qr

q
a(τ, sa)

√

1 − v2
a(sa)
c2

[

r2a(τ, sa) − (e(0) · ra(τ, sa))2
]

[

ra(τ, sa) − va(sa)·ra(τ,sa)
c

]
.

(85)



120 G. Schäfer and M.H. Brügmann

For an observer located at infinity, we find

αi
(1) = lim

τ→∞
αi

(1)(τ)

= −4
G

c2

2
∑

a=1

ma

[

1 − e(0)·va(sa)

c

]

√

1 − v2
a(sa)
c2 Ra(sa)

[

ξi − P i
qx

q
a(sa)

]

, (86)

where the quantity Ra(sa) is defined by

Ra(sa) = r2a(0, sa) − (e(0) · xa(sa))2. (87)

4.4 The Postlinear Gravitational Field of a Compact Binary

In [14,15], it was shown that leading order terms for the effect of light deflec-
tion in the linear gravitational field in the case of a small impact parameter
|ξ| (i.e., an impact parameter small with respect to the distance between the
deflector and the observer) depend neither on the radiative part (∼1/|ξ|) of
the gravitational field nor on the intermediate (∼1/|ξ|2) zone terms. The main
effect rather comes from the near zone (∼1/|ξ|3) terms. Taking into account
this property of strong suppression of the influence of gravitational waves on
the light propagation, we can assume that the light deflection in the postlinear
gravitational field of a compact binary is mainly determined by the near zone
metric.

The Metric in the Near Zone

In [16], Blanchet et al. calculated the conservative 2PN harmonic coordinate
metric for the near zone of a system of two-bounded point-like masses as
function of the distance z and of the positions and velocities of the masses
xa(t) and va(t), respectively, with a = 1, 2. For the sake of simplicity we split
the 2PN metric into two parts: the G-2PN and GG-2PN parts.

G-2PN Metric

The G-2PN part is given by

h
(1)
00 = 2

G

c2

2
∑

a=1

ma

ra
+
G

c4

2
∑

a=1

ma

ra

[

− (na · va)2 + 4v2
a

]

,

h
(1)
0p = −4

G

c3

2
∑

a=1

ma

ra
vp

a,

h(1)
pq = 2

G

c2

2
∑

a=1

ma

ra
δpq +

G

c4

2
∑

a=1

ma

ra

[

− (na · va)2 δpq + 4vp
av

q
a

]

, (88)
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where vp
a denotes the velocity of the mass ma, and np

a is the unit vector defined
by np

a = rp
a/ra. By rp

a we denote the vector rp
a = zp−xp

a(t) and by ra we denote
its Euclidean norm ra = |z − xa(t)|.

Here, it is worthwhile to point out that the parts of the G-2PN metric
which contain the accelerations of the masses were introduced into the part of
the GG-2PN metric after substituting the accelerations by explicit functions
of the coordinate positions of the masses by means of the Newtonian equations
of motion.

GG-2PN Metric

The GG-2PN part is given by

h
(2)
00 =

G2

c4

{

−2
m2

1

r21
+m1m2

(

− 2
r1r2

− r1
2r312

+
r21

2r2r312
− 5

2r2r12

)}

+
G2

c4
(1 ↔ 2),

h(2)
pq =

G2

c4

{

δpq

[

m2
1

r21
+m1m2

(

2
r1r2

− r1
2r312

+
r21

2r2r312
− 5

2r1r12
+

4
r12S

)]

+
m2

1

r21
np

1n
q
1 − 4m1m2n

p
12n

q
12

(

1
S2

+
1

r12S

)

}

+
4G2m1m2

c4S2

(

n
(p
1 n

q)
2 + 2n(p

1 n
q)
12

)

+
G2

c4
(1 ↔ 2), (89)

where the symbol (1 ↔ 2) refers to the preceding term in braces but with
the labels 1 and 2 exchanged; by S we denote S = r1 + r2 + r12, where
r1 = |z − x1(t)|, r2 = |z − x2(t)|, and r12 = |x1(t) − x2(t)|. The vectors
np

1, n
p
2, and np

12 are unit vectors defined by np
1 = rp

1/r1, n
p
2 = rp

2/r2, and
np

12 = rp
12/r12.

The Barycentric Coordinate System

We use a harmonic coordinate system, the origin of which coincides with the
1PN-center of mass. Using the 1PN-accurate center of mass theorem of [17], we
can express the individual center of mass frame positions of the two masses
in terms of the relative position r12 ≡ x1 − x2 and the relative velocity
v12 ≡ v1 − v2 as

x1 =
[

X2 +
1
c2
ε1PN

]

r12, (90)

x2 =
[

−X1 +
1
c2
ε1PN

]

r12, (91)



122 G. Schäfer and M.H. Brügmann

where X1, X2, and ε1PN are given by

X1 ≡ m1

M
, (92)

X2 ≡ m2

M
, (93)

ε1PN =
ν(m1 −m2)

2M

[

v2
12 −

GM

r12

]

. (94)

Here, we have introduced

M ≡ m1 +m2, v12 = |v12| (95)

and

ν ≡ m1m2

M2
. (96)

It is important to remark that, in our computation of the postlinear light
deflection up to the order G2/c4, we need only to consider the 1PN corrections
to the Newtonian center of mass, because, as we shall see in Sect. 4.5, the 2PN
corrections to the Newtonian center of mass are related to postlinear light
deflection terms of order higher than G2/c4.

4.5 The Postlinear Angle of Light Deflection

From (72) and (73), we see that the postlinear angle of light deflection αi
(2) is a

function of the GG-2PN metric coefficients h(2)
µν , the G-2PN metric coefficients

h
(1)
µν , and the linear perturbation δli(1)(τ). To facilitate the computations, we

separate the light deflection terms that are functions of the GG-2PN metric
coefficients from the terms that are functions of the G-2PN metric coefficients
and the linear perturbations.

The Linear Perturbation δli(1)(τ )

From (71) it follows that the perturbation δli(1)(τ) is given by

δli(1)(τ) =
1
2

∫ τ

−∞
dσ lα(0)l

β
(0)h

(1)
αβ,i

∣

∣

∣

(→)
− c h

(1)
0i − h

(1)
mil

m
(0) − h

(1)
00 l

i
(0)

+
1
2
c

∫ τ

−∞
dσ h

(1)
00,0l

i
(0)

∣

∣

∣

(→)

+
∫ τ

−∞
dσ lm(0)l

p
(0)

[

1
2
c−1h

(1)
mp,0 − c−1h

(1)
0p,m

]

li(0)

∣

∣

∣

(→)
. (97)

On the right-hand side of (97) after evaluating the partial derivatives of the
metric coefficients with respect to the photon’s coordinates (i.e., (z0, zi(t))),
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we replace in the integrals the photon trajectory by its unperturbed approxi-
mation zi(σ)unpert. = σli(0) + ξi and the time coordinate z0 by σ + t∗. In this
chapter, we denote this operation by the symbol |(→). After introducing the
G-2PN metric coefficients (88) into (97), we obtain the explicit expression for
δli(1)(τ) which we have to integrate. Since the G-2PN metric coefficients are
functions of the positions and velocities of the masses xa(t) and va(t), respec-
tively, the expression for δli(1)(τ) is a function of these quantities. This means
that we have to take into account the motion of the masses when we are going
to compute the integrals. Considering that the influence of the gravitational
field on the light propagation is strongest near the barycenter of the binary
and that the velocities of the masses are small with respect to the velocity of
light, we are allowed to make the following approximations:

1. We may assume that the linear gravitational field is determined by the
positions and velocities of the masses taken at the time of closest approach
(t = t∗) of the unperturbed light ray to the barycenter of the binary (i.e.,
to the origin of the asymptotically flat harmonic coordinate system). The
expression, resulting from (97) after introducing the G-2PN metric coef-
ficients and setting t = t∗ for the positions and velocities and computing
the integrals, is denoted by δli(1)I(τ).

2. We treat the effect of the motion of the masses on light propagation as
a correction to the expression of δli(1)I(τ), which we denote by δli(1)II(τ).
We shall compute this correction in Sect. 4.6.

The total linear perturbation δli(1)(τ) is then given by

δli(1)(τ) = δli(1)I(τ) + δli(1)II(τ). (98)

Consequently, the corresponding angle of light deflection reads

αi
(1)(τ) =

1
c
P i

q

[

δli(1)I(τ) + δli(1)II(τ)
]

, (99)

where P i
q is defined by (74).

Here, it is important to remark that to obtain the total linear light def-
lection we have to add to (99) terms arising from the 1PN corrections in the
positions of the masses, which we shall compute in Sect. 4.6. Since these terms
are proportional to v2

12/c
2, it is easy to see by virtue of the virial theorem that

they are of the same order as the terms in G2/c4.

The Postlinear Light Deflection Terms That Depend
on the GG-2PN Metric

It follows from (72) and (73) that a part of the postlinear light deflection is
given by:

αi
(2)I =

1
c
P i

q

[

1
2
c2
∫ ∞

−∞
dτh

(2)
00,q

∣

∣

∣

(→)
+
∫ ∞

−∞
dτ

[

1
2
h(2)

mn,q − h(2)
qm,n

]

lm(0)l
n
(0)

∣

∣

∣

(→)

]

.

(100)
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Upon introducing the GG-2PN metric coefficients given by (89) into (100),
we obtain integrals whose integrands are functions of the distances r1, r2, S,
and their inverses. Through the distances r1, r2, and S, the resulting integrals
from (100) are functions of the positions of the masses xa(t).

For the same reason as in the case of the linear perturbation, we are here
allowed to fix the values of the positions of the masses xa(t) to their values
at the time t∗ before performing the integration.

To evaluate the integrals that cannot be represented by elementary func-
tions, we resort as usual to a series expansion of the integrands. The order of
the expansion should be chosen in a consistent manner with the expansion in
terms of G/c2.

The Postlinear Light Deflection Terms That Depend
on the G-2PN Metric

We denote the postlinear light deflection terms, which are functions of the
G-2PN metric coefficients and the linear perturbations δli(1)(τ), by αi

(2)II. It
follows from (72) and (73) that the resulting expression for the postlinear light
deflection αi

(2)II is given by

αi
(2)II =

1
c
P i

q

[

− 1
2
c2
∫ ∞

−∞
dτ h(1)qmh

(1)
00,m|(→)

+
∫ ∞
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2
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+c
∫ ∞
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h
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(1)
0q,m

]
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∣

∣

∣

(→)

+
∫ ∞

−∞
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mn,qδl

m
(1)(τ)l

n
(0) −h(1)

mq,nδl
m
(1)(τ)l

n
(0) −h(1)

mq,nl
m
(0)δl

n
(1)(τ)

]∣

∣

∣

(→)

−
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−∞
dτ h

(1)
00,kl
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(0)δl

q
(1)(τ)

∣

∣

∣

(→)

−1
c

∫ ∞

−∞
dτ h

(1)
0p,ml

m
(0)l

p
(0)δl

q
(1)(τ)

∣

∣

∣

(→)

]

. (101)

To compute αi
(2)II, we introduce the expressions for the perturbations

δli(1)(τ) given by (98) and the G-2PN metric coefficients given by (88) into the
expression for αi

(2)II. Here, we may use the same approximations as before,
i.e., we can fix the values of the positions and velocities of the masses to their
values at the time t∗ before performing the integrals. As explained in the pre-
ceding section, with the help of a Taylor expansion of the integrands we can
evaluate the integrals, which cannot be represented by elementary functions.
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4.6 Relativistic Corrections

In this section, we give a brief account of the corrections that we have to
consider in the calculation of the linear and postlinear light deflection. Further
details are given in [11]:

– Light deflection and the motion of the masses
As we mentioned before, the general expression for the linear perturba-
tion δli(1)(τ) is through the G-2PN metric coefficients, a function of the
positions and velocities of the components of the binary.
To find the correction terms to the linear perturbation δli(1)I(τ) and post-
linear light deflection, we perform the Taylor expansion of the general
expression for δli(1)(τ) (i.e., of the expression resulting from the introduc-
tion of the G-2PN metric coefficients (88) into (97)) in which the coeffi-
cients depend on the sources’ coordinates and their successive derivatives
with respect to t, namely

dxi
a

dt
= vi

a(t);
d2xi

a

dt2
=
dvi

a

dt
= ai

a(t); . . .

The corrections arising from the motion of the binary’s components are
denoted by δli(1)II and αi

(2)III.
– The postlinear light deflection and the perturbed light trajectory

The linear perturbation of the light trajectory reads

δzi
(1)(τ) =

∫

dτ
[

δli(1)I(τ) + δli(1)II(τ)
]

+Ki, (102)

where Ki is a vectorial integration constant. After introducing the pertur-
bation δzi

(1)(τ) into (99), we obtain additional postlinear light deflection
terms, which are denoted by αi

(2)IV.
– Light deflection and the center of mass

After introducing the 1PN corrections in the positions given by

δx1 = δx2 =
1
c2
ε1PNr12 (103)

into (99), we get additional terms to the linear and postlinear light
deflection, which we denote by α̃i

(1)(2). From (94) and (103), it is easy
to see that the corrections vanish for equal masses and circular orbits.

4.7 The Total Linear and Postlinear Light Deflection

The total linear light deflection results from summing up (99) with the cor-
rection terms arising from the part of α̃i

(1)(2) that is linear in G. Consequently
the total linear light deflection reads

αi
(1)(τ)tot. =

1
c
P i

q

[

δli(1)I(τ) + δli(1)II(τ)
]

+ α̃i
(1)(2)(G). (104)
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From Sects. 4.5 and 4.6, it follows that the total postlinear light deflection up
to the order G2/c4 is given by

αi
(2) = αi

(2)I + αi
(2)II + αi

(2)III + αi
(2)IV + α̃i

(1)(2)(G
2), (105)

where α̃i
(1)(2)(G

2) denotes the part of α̃i
(1)(2) that is quadratic in G.

4.8 Results

From (104) and (105), we obtain the general formulas for the angle of light
deflection linear and quadratic in G. These formulas are given in an explicit
form in [11]. Here, to study the important features of the derived formulas
and in view of an application of the obtained formulas to the double pulsar
PSR J0737-3039, we shall consider only the special case when the light ray is
originally parallel to the orbital plane of a binary with equal masses (see [18]).
In this case the resulting expressions for the angle of light deflection linear
and quadratic in G (see [11]) read
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+
GMADM

c3 ξ

{

− (e(0) · v12)
(

r12
ξ

)

+
[

1
4

(e(0) · v12)
[

1 + (e(0) · n12)2
]

− 1
2

(n12 · v12) (e(0) · n12)
](

r12
ξ

)3

+
[

− 1
16

(e(0) · v12)
[

1 + 2 (e(0) · n12)2 − 3 (e(0) · n12)4
]

+
1
4

(n12 · v12) (e(0) · n12)
[

1 − (e(0) · n12)2
]

](

r12
ξ

)5

+
[

1
64

(e(0) · v12)
[

1 + 3 (e(0) · n12)2 − 9 (e(0) · n12)4 + 5 (e(0) · n12)6
]

− 3
32

(n12 · v12)(e(0) · n12)
[

1 − 2(e(0) · n12)2 + (e(0) · n12)4
]

](

r12
ξ

)7

+O
[

(

r12
ξ

)9
]}

P i
qn

q
12

+
GMADM

c3 ξ
(e(0) · n12)

{

1
2

(

r12
ξ

)

− 1
8

[

1 − (e(0) · n12)2
](

r12
ξ

)3

+
1
32

[

1 − 2 (e(0) · n12)2 + (e(0) · n12)4
](

r12
ξ

)5

− 1
128

[

1 − 3 (e(0) · n12)2 + 3 (e(0) · n12)4 − (e(0) · n12)6
](

r12
ξ

)7

+O
[

(

r12
ξ

)9
]}

P i
qv

q
12

+
GMADM

c4 ξ
(e(0) · n12)2

{

1
4

[

v2
12 − (e(0) · v12)2

](

r12
ξ

)2

+O
[

(

r12
ξ

)4
]}

ei
ξ

(106)

and
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where in this case the ADM mass is given by

MADM = M

[

1 +
1
4

(

v2
12

2c2
− GM

c2r12

)]

. (108)

Here, we have assumed that the mass of each component of the binary is
equal to M/2. In (106) the components ei

ξ, P
i
qn

q
12, and P i

qv
q
12 of the linear

light deflection were expanded to the order (r12/ξ)12, (r12/ξ)7, and (r12/ξ)7,
respectively, to reach the accuracy of the postlinear light deflection (107).

In (106)–(108), the quantities n12, v12, and r12 are taken at the time t∗.
Note that in this case the correction arising from the shift of the 1PN-center
of mass with respect to the Newtonian center of mass (see (103)) vanishes.

In the limit r12 → 0 (106) and (107) reduce to

αi
(1)(E) = −4

GMADM

c2ξ
ei

ξ (109)

and

αi
(2)(E−S) = −15

4
π
G2M2

ADM

c4ξ2
ei

ξ, (110)

which are the Einstein and Epstein–Shapiro light deflection angles, respec-
tively [19].

Application of the formulas for the deflection angle given by (106) and
(107) to the double pulsar PSR J0737-3039 for an impact parameter five times
greater than the relative separation distance of the binary’s components shows
that the absolute corrections to an Epstein–Shapiro angle of about 10−6 arcsec
lie between 10−7 and 10−8 arcsec.

5 Concluding Remarks

The main steps in the computations of the angle of light deflection in the grav-
itational field of a compact binary in the linear and postlinear approximations
were recapitulated.

The equations of light propagation were explicitly integrated to the second
order in G/c2.

The expressions for the angle of light deflection in the event that the light
ray is originally parallel to the orbital of a binary with equal masses were
given in an explicit form. In the limit r12 → 0 the Einstein angle and the
Epstein–Shapiro light deflection angle were obtained from the expressions for
the linear and postlinear light deflection, respectively.

Application of the derived formulas for the deflection angle to the dou-
ble pulsar PSR J0737-3039 for an impact parameter five times greater than
the relative separation distance of the binary’s components has shown that
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the absolute corrections to an Epstein–Shapiro angle of about 10−6 arcsec lie
between 10−7 and 10−8 arcsec.

We conclude that the corrections to the Epstein–Shapiro light deflection
angle are beyond the sensitivity of the current astronomical interferometers.
Nevertheless, taking into account that the interferometer for the planned mis-
sion LATOR (see [20]) will be able to measure light deflection angles of the
order 10−8 arcsec, we believe that the corrections to the Epstein–Shapiro light
deflection could well be measured by space-borne interferometers in the fore-
seeable future.

On the level of the light propagation in linear gravitational fields, the
controversy on the speed-of-gravity measurement by the radio observations
of the bright radio quasar J0842+1835 has been investigated. The conclusion
has been drawn that, in that measurement, no speed-of-gravity effect was
included.

Finally, a comparison of linearized Einstein’s field equations with electro-
dynamics has been undertaken to clearly show the similarities and dissimi-
larities between both theories. We feel that this comparison should be useful
for those researchers who like to think about linearized Einstein theory in
terms of electrodynamics because on this route errors may enter easily when
ignoring the different invariance groups of the both theories.
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