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Summary. In 1964 Shapiro pointed out that γ can be determined from measure-
ments of the relativistic time delay for electromagnetic waves passing near a massive
body such as the Sun. The delay for two-way measurements from Earth to a space-
craft passing behind the Sun can be more than 200 µs. Microwave range and range-
rate measurements of this kind from Earth to several spacecraft have provided our
best information so far on γ. Laser time-delay measurements and determinations of
the deflection of laser beams near the Sun also have been proposed. A mission of
this kind called Laser Astrometric Test of Relativity (LATOR) currently is being
considered. Here we discuss a considerably different mission which would use drag-
free spacecraft, whose orbits can be accurately determined, to measure the Shapiro
time delay for laser beams passing near the Sun. One spacecraft would be located
near the L1 Lagrange point, between the Earth and the Sun. The other would be
launched into an orbit similar to the ones used in LATOR, with 1.5 year period and
eccentricity such that three occultations by the Sun would occur within 2 years after
launch. We also consider higher-order time-delay effects. In the present experiment
laser signals are sent from a drag-free spacecraft at the L1 point, and transponded
back by a drag-free spacecraft passing behind the Sun. A high-stability frequency
standard located on the L1 spacecraft permits accurate measurement of the time
delay. Both spacecraft are designed for extremely low spurious accelerations at pe-
riods out to roughly 20 days.

1 Introduction

Historically, the first accurate measurements of the Shapiro time delay [1]
were made using microwave range measurements to the Mariner 9 spacecraft
orbiting around Mars [2, 3] and to the Viking Orbiters and Landers [3–5].
Recently, a measurement of the spatial curvature parameter γ with 2.3 · 10−5

accuracy was made during the Cassini mission [6]. The time derivative of
the time delay was measured from Doppler shifts in microwave signals sent
from Earth to a transponder on the spacecraft and back. Great care was
taken to minimize spurious effects due to the Earth’s atmosphere and to the
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interplanetary electron density. An additional improvement in the accuracy
for γ to roughly 1 · 10−6 is expected from measurement of the gravitational
deflection of light rays during the GAIA astrometric mission of the European
Space Agency.

The LATOR experiment [7–9] is intended to give further improvements
in the measurement of γ. It involves placing two spacecraft in very similar
solar orbits with periods of 1.5 years. The orbits can be chosen so that the
spacecraft make three passes behind the Sun during a 7-month period cen-
tered on 18 months after launch, and the angular separation between them as
seen from Earth is roughly 1◦. An optical interferometer on the International
Space Station observes laser beams from the two distant spacecraft and would
measure the angular separation between the spacecraft with high accuracy.
The lengths of the three sides of the triangle would be measured with lasers.
From the non-Euclidian geometry of the triangle when one arm passes near
the Sun, γ can be determined.

As an alternate approach, we consider making Shapiro time-delay mea-
surements from a satellite near the L1 point of the Earth–Sun system to a
single transponder spacecraft in a LATOR-type orbit when the line of sight
passes near the Sun. The L1 spacecraft would have a high-stability atomic
frequency standard with performance similar to that expected for the cooled
Cs clocks that have been developed for the ACES [10] and the PARCS exper-
iments [11] on the International Space Station. Both the distant spacecraft
and the L1 spacecraft would be designed to have very low levels of nongravi-
tational orbit disturbances. The atomic frequency standard would need to be
quite small, but the environmental disturbances near the L1 point would be
considerably lower than those on the Space Station.

The size of the Shapiro time delay and its variation with time for the
LATOR-type orbit of the distant spacecraft will be discussed in Sect. 2.
In Sect. 3, the expected signal-to-noise ratio will be derived for determin-
ing γ from an idealized Gravitational Time Delay (GTD) mission. For this
ideal case, only white frequency noise in the clock on the L1 spacecraft is
allowed for. In Sect. 4, the requirements on the drag-free systems to minimize
nongravitational accelerations of the spacecraft will be considered, along with
possible excess clock noise at very low frequencies. Then, the limitations from
the actual time-delay measurement method will be discussed in Sect. 5. The
overall results will be summarized in Sect. 6.

2 Shapiro Time Delay

Because of the sensitivity of the measurements discussed in this chapter, we
have performed a more accurate calculation of the Shapiro time delay than is
quoted in many textbooks. Usually a “straight line” approximation is used, in
which the delay is calculated assuming the path of the photon is straight [1].
A more careful calculation including the bending of the path shows that
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there is an additional contribution of first order in the quantity GM�/c
3. For

example, Weinberg gives the following expression for the time delay required
for a photon to pass from the point of closest approach to the Sun, at r = b,
to the radius r [12]:
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The last term in this result can amount to tens of microseconds. The result
is expressed in the isotropic coordinates that are customarily used when dis-
cussing time-delay observations.

Because of its possible importance in solar system time-delay observations,
we have extended the delay calculation to higher order. We briefly describe the
method here. If the Sun is taken to be a spherically symmetric mass source,
then the motion of a photon can be assumed to lie in the θ = π/2, equatorial
plane. Also, in isotropic coordinates the metric does not depend explicitly on
coordinate time or on azimuthal angle. The cyclic nature of these two co-
ordinates leads immediately to two constants of the motion, corresponding
roughly to energy and angular momentum. These two constants allow the
azimuthal angle and the scalar orbit parameter to be eliminated in favor of
the coordinate time. Since the path followed by a photon is a null geodesic,
there results a first-order differential equation for dt/dr, where t is the co-
ordinate time (x0 = ct). Contributions to this equation can be expanded in
powers of µ = GM�/c

2 and the equation can be integrated. The result of
these calculations gives for the next-order contribution to time delay [13]
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where β is a PPN parameter measuring the strength of the nonlinear term
in g00, and δ is defined by expanding the isotropic metric component g11 to
higher order:

g11(r) = 1 +
2γµ
r

+
3δµ2

r2
. (3)

In general relativity, δ = 1.
Figure 1 shows the second-order time-delay contributions of (2) for several

different values of the distance of closest approach, b. The three curves, upper
to lower, correspond, respectively, to b = 1.1, 1.2, 1.3 solar radii, and the quan-
tity plotted is (2) in picoseconds, for the delay during one-way travel from the
point of closest approach to the radial distance r. The horizontal axis is the
final radial distance expressed in units of the solar radius. In the experiment
proposed here, this delay will contribute four times, so the total second-order
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Fig. 1. Second-order contributions to time delay for one-way passage of a photon
from the point of closest approach to a radial distance r from the Sun.

delay can amount to about a quarter of a microsecond, and certainly has to
be taken into account. The effect of a deviation γ − 1 on these contributions
is negligible.

We have also estimated the time delay due to the solar quadrupole
moment. Such contributions are controlled by the parameter

GM�J2a
2
1

b2c3
< 10−12 s, (4)

where J2 ≈ 2 · 10−7 is the Sun’s quadrupole moment coefficient and a1 is the
Sun’s equatorial radius. There is a complicated dependence of this delay on
the orientation of the Sun’s rotation axis with respect to the photon’s path,
but the net effect is only 2 or 3 ps and we shall not consider it further.

In the present modification of the LATOR mission, the line of sight from
the spacecraft at L1 to the distant spacecraft passes across the Sun three
times. Figure 2 plots the total Shapiro time delay in microseconds, and the
angle (in milliradians) between the line to the Sun’s center and the line to
the occulted spacecraft. Both first-order contributions of (1) are included.
The second-order effects are too small to see on the graph.

This figure shows that during conjunctions the time delay is, to a very good
approximation, symmetric about the time t0 when the distant spacecraft is
exactly behind the center of the Sun. The logarithm clearly dominates the
time dependence. For purposes of analysis in the following sections, we have
found that the time-delay function, within a span of ±20 days on either side
of t0, can be fit very well by a function of the form

0.97 · 8GM
c3

ln(R|t− t0|) + const., (5)

where R is the rate of motion of the line of sight with respect to the Sun’s
center in solar radii per day, and t is in days. The constant is not important
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Fig. 2. Plots of the first-order time delay (in microseconds) as the occulted space-
craft passes behind the Sun, and the angle between the line from L1 to the Sun and
the line from L1 to the distant spacecraft (in milliradians).

when discussing uncertainties, since it would represent a constant bias in the
time delay. The logarithmic dependence is the distinctive time signature for
the Shapiro effect, and we shall henceforth drop the constant.

3 Idealized Gravitational Time-Delay Mission

Most of the accuracy for determining the relativistic time delay is expected
to come from a period of roughly 20 days around the time of passage of the
line of sight behind the Sun, as will be discussed later. Thus the noise in the
frequency standard and in displacements of the spacecraft due to nongravita-
tional accelerations will be of interest at frequencies down to about 5·10−7 Hz.
It is assumed that the measurements will be made continuously from time −t2
to −t1 and from time t1 to t2, where t = 0 when the line of sight between the
spacecraft passes through the center of the Sun.

For simplicity, the distance between the spacecraft is assumed to be con-
stant except for the relativistic time delay. The time signature of γ∗ = (γ+1)/2
is taken to be

g(t) = −B(ln |Rt| −M) , (6)

where M =< ln |Rt| > is the mean value of ln |Rt| over the periods −t2 to
−t1 and t1 to t2, and B = 0.97 · 8GM�/c

3 = 3.82 · 10−5 s.
The rate at which the line of sight to the distant spacecraft passes across

the Sun varies substantially between the three conjunctions with the Sun,
with the second one having a considerably lower rate than the other two. In
solar radii per day, the rate for the first and third conjunctions is about 0.7,
and we will assume this value for our reference case. To avoid measurements
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closer than 0.4 solar radii from the limb, we chose to make t1 be 2 days after
t0 and t2 be 10 days after t0. For the second conjunction, the rate would be
only about 0.2 solar radii per day.

In the reference case, we assume that the only noise in the measurements
is white fractional frequency noise n(f) at a level of 1 · 10−13 Hz−1/2 at all
frequencies. This is close to the noise level expected for the ACES and PARCS
clocks [10,11] at frequencies above 5 ·10−7 Hz. This noise affects the results in
two ways. One is the jitter in the measured round-trip travel time of roughly
2,000–2,200 s due to the phase jitter in the output from the frequency stan-
dard. However, this error is reduced strongly when the measurements are
averaged over periods of hours. The other, more serious, noise is the varia-
tions in the frequency over the whole measurement time. If the frequency of
the standard is different near the end of the measurement time from what it
was earlier in the measurement period, the measured total travel time will be
affected proportionately.

The usual method of optimal filtering (see, e.g., [14] and references therein)
would be used to determine the value of γ∗. Let g(f) be the Fourier transform
of g(t) over the time of the measurements. Then the square of the signal-to-
noise ratio is given by

(

S

N

)2

=
∫ ∞

0

2|g(f)|2
n(f)2

df . (7)

We also assume for the reference case that t1 = 2 days and t2 = 10 days.
Because of the symmetry of the signal before and after t = 0, only the cosine
terms of g(f) are nonzero

g(f) = 2
∫ t2

t1

g(t) cos(ωt) dt, (8)

where ω = 2πf . The factor 2 comes from time symmetry of the time-delay
signal.

Since n(f) is assumed to be independent of frequency in the reference case,
it can be taken outside the integral in (7):

(

S

N

)2

=
2

n(f)2

∫ ∞

0

g(f)2df , (9)

and Parseval’s theorem implies:
∫ ∞

0

g(f)2 df ≈ 2π
∫ t2

t1

g(t)2 dt . (10)

After some algebra,
∫ t2

t1
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(
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)

(11)



Measurement of the Shapiro Time Delay Between Drag-Free Spacecraft 225

where M is the mean value

M =
(

t2 ln(Rt2) − t1 ln(Rt1)
)

/(t2 − t1) − 1 . (12)

From the above,
∫ t2

t1

g(t)2 dt = B2R

(

(t2 − t1) −
(

t2t1/(t2 − t1)
)(

ln(Rt2) − ln(Rt1)
)2
)

. (13)

For our reference case, t2 = 8.64 · 105 s, t1 = 1.728 · 105 s, and
∫ ∞

0

g(f)2df = 2π · 1.317 · 105B2(s3). (14)

Because only the cosine terms in the noise contribute, the effective noise
level is reduced from 1 · 10−13 to 0.71 · 10−13 Hz−1/2. Since the total round-
trip time is about 2,200 s for the first and third conjunctions, the noise in
measuring it is

n(f) = 1.56 · 10−10 s Hz−1/2. (15)

Thus, from (9), (10), and (13),

(S/N)2 = 1.655 · 106B2/[2.42 · 10−20] = 9.3 · 1016. (16)

This corresponds to an idealized precision of 0.33 · 10−8 for determining
γ∗, or 0.66 · 10−8 for γ.

4 Effects of Nongravitational Accelerations

For the GTD mission, the level of nongravitational accelerations of the
spacecraft has to be kept very low out to long periods. For comparison, a
joint mission of the European Space Agency and NASA called the Laser
Interferometer Space Antenna (LISA) [15] has a requirement of less than
3 · 10−15 ms−2 Hz−1/2 for the spurious accelerations of proof masses aboard
each spacecraft at frequencies down to 0.1 mHz [16]. Each spacecraft is ser-
vocontrolled to follow the average position of two proof masses inside it to
roughly 3 · 10−9 m Hz−1/2. This is done by a disturbance reduction system
(DRS) (“drag-free” system) [17] that uses micronewton thrusters to can-
cel out the solar radiation pressure force and other nongravitational forces
on the spacecraft. The relative displacements of the spacecraft with respect
to the proof masses are determined by two gravitational reference sensors
(GRSs) [18, 19] containing the proof masses. For the GTD mission, only a
single GRS would be needed on each spacecraft.

Below 0.1 mHz, it has been suggested [20] that a spurious acceleration
level increasing only as ((0.1mHz)/f)0.5 between 0.1 and 0.003 mHz could
be achieved with only moderate additional experimental constraints. At still
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lower frequencies, we assume that the acceleration level will increase as
(0.003mHz)/f . If a(f) is the spurious acceleration level at frequency f for
the GRS on each spacecraft, the resulting noise level in the round-trip dis-
tance between the spacecraft will be

x(f) = 2
√

2
a(f)
ω2

. (17)

The equivalent time-delay noise p(f) = x(f)/c will cross the value of
n(f) = 1 · 10−13 Hz−1/2 that we have adopted at a frequency of 4.0 · 10−7 Hz,
and near that frequency it is given by

p(f) = 2 · 10−10
(

4.0 · 10−7 Hz/f
)3s Hz−1/2. (18)

In view of the rapid increase of p(f) with decreasing f , we can approximate
its effect by cutting off the integral in (2) on the lower end at 4.0 · 10−7 Hz.
To see what the effect of the assumed level of spurious accelerations is, we
have calculated g(f) from (3) and then numerically integrated the function
(g(f)/B)2. The dependence of this function on f is shown in Fig. 3. The total
integral is 8.1 · 105 s, in good agreement with (14), and the fraction of the
integral from frequencies below 4 · 10−7 Hz is only about 5%. Thus the effect
of limitations from the spurious accelerations of the spacecraft appears to be
small, if the assumed performance level for the DRSs can be achieved. At
the very low acceleration levels and frequencies involved, verification of the
necessary performance will have to be achieved from modeling rather than
direct testing, but this approach seems quite feasible for the types of forces
involved.

The most serious challenge for the DRS at the lowest frequencies is likely to
be the rate of change of the solar intensity at the distant spacecraft. During the
20 day periods around the first and third solar conjunctions, the equilibrium
temperature of the spacecraft would change by roughly 8 K if special measures
were not taken. To minimize the effect on the GRS, both active temperature

Fig. 3. Plot of the function g(f)2/B2 for frequencies up to 0.01 mHz.
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control of the spacecraft and careful design to minimize temperature gradients
across the GRS will be needed.

5 Other Time-Delay Measurement Errors

One method for measuring the time delay for signals sent between spacecraft
that are far apart is the use of pulsed lasers. Lasers giving 100 ps pulses in the
green with 0.1 J per pulse energy and 20 Hz repetition rate are available com-
mercially. We assume that a laser giving a train of such pulses is located on
each spacecraft, and that a fast detector measures the time delay between the
receipt of a pulse and the next pulse generated onboard. The expected accu-
racy is 5 ps or better. For the round-trip travel time, the resulting contribution
of the timing to the error will be 10 ps or less.

It is difficult to know what should be assumed concerning the time vari-
ation of pulse timing errors, since they may well be systematic in nature.
During the time of perhaps 8 days for the line of sight between the two space-
craft to go from 0.4 to 6.0 times the solar radius from the limb, the change
in the round-trip time delay will be about 6.4 · 10−5 s. Thus a drift of 10 ps
in the timing error over this time, and an opposite sign drift during the cor-
responding time before conjunction, could give as much as a roughly 3 · 10−7

error in γ. This is what would result from treating the timing error as a worst
case error, in terms of its time dependence. An error this large is unlikely,
and some additional reduction in the timing system error probably is possible
by improvements in the system design. However, to achieve an accuracy of
better than 1 · 10−7 for γ for the reference case would require a substantial
improvement in the travel time measurement approach.

In view of this situation, it is also desirable to investigate what could be
done with a cw laser travel time measurement system. The system we will con-
sider consists of taking perhaps 0.5 W of cw output at 1,030 or 1,064 nm wave-
length from a frequency-stabilized YbYAG or NdYAG laser on each spacecraft
and putting it through an electrooptic phase modulator. Such modulators at
frequencies up to 40 GHz are now commercially available, and probably will
be space qualified in the next few years. This is because of strong interest in
laser communications at high data rates between spacecraft. A short Fabry–
Perot interferometer would be included after the modulator to pass the two
sidebands and strongly suppress the carrier. The beam would then be sent to
the distant spacecraft through a roughly 100 mm diameter transmitting tele-
scope. A separate 100 mm diameter receiving telescope, with careful attention
to reducing the effect of scattered sunlight hitting the entrance aperture, also
would be provided on each spacecraft, to minimize the problem of making
measurements near the limb of the Sun.

To detect changes in the round-trip travel time, it would be necessary to
compensate for the Doppler shifts in the received signals. The one-way Doppler
shifts near the times of the first and third solar conjunctions will be up to
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about 5 GHz. This can be compensated for by adding additional sidebands
to the local oscillator laser beams. With corrections, the phase difference of
the two beat notes measured at each end of the path would give a measure
of the time delay over the path. For a modulation frequency of 40 GHz and
sidebands 80 GHz apart, the sum of the phase differences would change by
1 cycle each time the round-trip time changes by 12.5 ps. Measurement of the
phase differences to 5◦ accuracy on each spacecraft would correspond to less
than a 0.35 ps measurement error for the round-trip time delay. If a drift in the
error of this magnitude occurred over the 8 days of the measurements before
conjunction and an opposite drift occurred during the measurements after
conjunction, this would give a worst case error of 1.1 · 10−8 for γ. However,
a one-sigma error estimate of 0.4 · 10−8 for γ from this error source seems
reasonable.

Another benefit of an improved travel time measurement method is related
to the stability requirements for the L1 clock. We assumed earlier that a
power spectral amplitude of 1 · 10−13 Hz−1/2 for the performance of the L1
clock can be maintained at frequencies down to about 4 ·10−7 Hz. Laboratory
data on this seem quite encouraging, but as for spurious acceleration sources,
considerable reliance on modeling of the disturbing effects at low frequencies
may be needed. On the other hand, checks on the clock stability on orbit
may be possible by sending optical timing signals from the Earth to the L1
spacecraft and back. If measurements of roughly 2 ps or better accuracy from
day to day can be achieved, they can be used to compare the frequency of
the L1 clock with the best available frequency standards on the ground. In
principle, the average frequency difference over 1 day could be measured to
roughly 5 · 10−17. Since this would be a clock time comparison using two-way
measurements, most of the effects of the atmospheric time-delay uncertainty
and of spacecraft motion uncertainty would be avoided.

6 Summary

The earliest studies of a dedicated mission aimed mainly at determining the
GTD were carried out by the European Space Research Organization during
1969–1973. The mission was called A Space Experiment on Gravitational The-
ories (SOREL) [21]. A drag-free spacecraft was proposed, and time-delay mea-
surements were to be made when the spacecraft passed behind the Sun. Both
microwave tracking and pulsed laser time-delay measurements were assumed.
One approach studied was to measure the arrival times of laser pulses against
an atomic frequency standard on the spacecraft. The other was to transmit
laser pulses back to the ground, and rely less on having a high-accuracy fre-
quency standard onboard.

The type of mission described in the present chapter has much higher
accuracy goals than SOREL, and makes use of many technology develop-
ments that have occurred in the last three decades or so. One important
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difference is the proposal to make use of DRSs similar to those proposed for
the LISA mission. Such DRSs are scheduled for flight in 2009 on the LISA
Pathfinder mission of the European Space Agency [18,19,22]. However, major
improvements in the expected performance at frequencies down to roughly
4 · 10−7 Hz would be required. Another difference is the proposal to make the
measurements from a spacecraft near the L1 point of the Earth–Sun system,
to avoid the problem of going through the Earth’s atmosphere.

In the preceding sections, three of the four main error sources for the
suggested GTD mission have been discussed. The remaining one, which we
have not investigated, is the orbit determination part of the problem. For
both spacecraft, the main limitation is likely to be the performance of the
disturbance compensation system over periods perhaps twice as long as the
20 days assumed for the main part of the time-delay measurement process.
However, the effect of uncertainty in the motion perpendicular to the ecliptic
also needs to be considered.

If the round-trip delay can indeed be determined to 0.4 ps in terms of the
instantaneous clock frequency, then a measurement of γ from the GTD with
an accuracy of 1 or 2 ·10−8 seems possible. However, the limitations from
the disturbance compensation system and the orbit determination problem
clearly need to be investigated further.
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