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Preface

Special and general relativity are the theories describing the physics of space
and time. Space and time are explored with clocks and electromagnetic signals.
Therefore, special and general relativity are related to precise clocks and the
thorough understanding of signal propagation. The ever-increasing accuracy
of clocks together with novel methods for precision time transfer and clock
synchronization are pivotal for the new generation of experiments probing the
validity of Einstein’s theories from subatomic distances to cosmic scales.

Such tests are not only motivated by the requirement that fundamental
theories like special and general relativity which need the best experimental
basis one can obtain, but also by the request to explore as far as possible the
range of applicability of these theories, and finally by the search for gravita-
tional waves. The search for quantum gravity and recent progress in astro-
physics and cosmology has provided new strong motivation for high-accuracy
tests of relativistic gravity. A number of recently proposed experiments will
probe the foundations of general relativity by testing the equivalence principle,
Lorentz invariances, the universalities of a free fall and gravitational redshift,
as well as the constancy of gravitational and fine-structure constants. If de-
tected, a violation of any of these principles will signal the presence of new
physics and may show us the way to gravity quantization or/and to a grand
unified field theory. As such these experiments have a significant discovery
potential and will likely be the focus of the community effort for the next
decade.

When conducted in space, these experiments will benefit from well-
understood and controlled laboratory environments. A significant advance in
the field of experimental gravitational physics can be expected from highly
accurate laser ranging paired with new optical and/or microwave frequency
standards or based entirely on optical frequency combs together with atomic
sensors and drag-free technologies for attitude control. These new technologies
allow taking full advantage of the variable gravity potentials, large heliocentric
distances, and high velocity and acceleration regimes achievable in the solar
system. As a result, the gravity research in the near future can significantly
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advance knowledge of fundamental physics and will also provide new capabil-
ities to improve our life on Earth.

In the present volume we will discuss the issues that are relevant for fu-
ture space missions aiming at testing and exploring gravity with much higher
accuracy, namely:

– Quest from fundamental physics
– Space conditions
– Space technologies
– Space missions

In particular, we will discuss the present status and expected progress in
the laser-enabled technologies (ranging, communication, and interferometry),
atomic and optical frequency standards, atomic sensors, and drag-free techno-
logies.

All these issues have been discussed on the 359th WE-Heraeus seminar
on “Lasers, Clocks, and Drag-Free: New Technologies for Testing Relativistic
Gravity in Space” that took place at the Center for Applied Space Technology
and Microgravity (ZARM) at the University of Bremen from 30 May to 1
June 2005. It is our great pleasure to thank all the speakers for their pre-
sentations and especially those who were willing to write them up for this
volume. We also like to thank the Wilhelm and Else Heraeus Foundation for
its generous support without which this seminar could not have been carried
through.

Bremen and Pasadena, Hansjörg Dittus
May 2007 Claus Lämmerzahl

Slava G. Turyshev
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Fundamental Physics, Space, Missions
and Technologies

Claus Lämmerzahl and Hansjörg Dittus

ZARM, University of Bremen, Am Fallturm, 28359 Bremen, Germany

Summary. We review the relation between fundamental physics, the space condi-
tions which in some cases are of great advantage for carrying through experiments,
and already developed and emerging technologies used in fundamental physics space
missions.

1 Introduction

Fundamental physics is becoming very exciting these days. The reasons are
twofold: on the theoretical side, the unification of general relativity and quan-
tum theory seems to lead to deviations from standard physics. On the exper-
imental side, new developments of high-precision apparatus make new realms
of physics accessible, leading to new tests and observations. Consequently,
the expectation for “new physics” as well as improvements in experimental
devices strongly pushes the efforts for the realization of new experiments and
observations. An important aspect in this connection is the quality of the
experimental environment. It is clear that most experiments need a noise-free
environment with stable thermal, seismic, electric, etc. conditions. Further-
more, some experiments might profit a lot if they will be carried out in a
free-fall and non-rotating environment and some experiments necessarily re-
quire that environment. This leads one to the conclusion that there are quite
a few experiments which will give results that are orders of magnitude better
when carried through in space than when carried through on Earth.

In the following survey, which is based on [1], we will shortly review these
three aspects, namely the status of the fundamental quests, new experimental
developments and the conditions in space. In the case that these three condi-
tions complement one another appropriately, it is reasonable to think about
doing these experiments in space, see Fig. 1.

The first dedicated space mission for fundamental physics was GP-A,
which measured the gravitational redshift with an until today unrivaled ac-
curacy. It was during the last years that it was recognized that for many
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fundamental
physics quests

technologies
space

conditions

space
experiments

Fig. 1. The conditions for space projects.

experiments space conditions are really indispensable. As a consequence, many
space missions have been proposed. Though most of these proposed missions
are definitely worth to be carried through, the huge expenses, long planning
time and troublesome efforts for space qualification of experimental devices
cut down the number of missions expected to fly to a very few. This is a big
disadvantage which might be overcome by developing and using more stan-
dardized space techniques. Furthermore, in some cases it is more efficient,
instead of developing a dedicated mission, to make use of the ISS which is
already existing – even at the price of experimental conditions that are not
optimal (see Sect. 4)

For the convenience of the reader we give a list of acronyms of the missions
mentioned in this short review:

ACES Atomic clock ensemble in space
ASTROD Astrodynamical space test of relativity using optical

devices
DSGE Deep-space gravity explorer
GG Galileo Galilei
GP-A Gravity probe A
GP-B Gravity probe B
HYPER Hyper precision atomic interferometer in space
LAGEOS Laser geodynamic satellite
LATOR Laser astrometric test of relativity
LISA Laser interferometer space antenna
LLR Lunar laser ranging
MICROSCOPE Micro-satellite a trainée Compensée pour

l’Observation du Principe d’Equivalence
OPTIS Optical test of the isotropy of space
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PHARAO Projet d’Horloge Atomique par Refroidissement d’Atomes
en Orbite

PARCS Primary atomic reference clock in space
RACE Rubidium atomic clock experiment
SEE Satellite energy exchange
STEP Satellite test of the equivalence principle
STM Spacetime mission

2 Fundamental Physics

2.1 The General Scheme

Today’s fundamental physics is characterized by two schemes [2], see Table 1:
by the universal theories and by the four interactions. The universal theories
which are applicable to any kind of physical phenomenon are (1) quantum
theory, (2) special relativity (SR), (3) general relativity (GR) and (4) many
particle physics. The interactions are (1) gravity, (2) electromagnetism, (3) the
weak and (4) the strong interaction. Except for gravity, they have been suc-
cessfully unified. It can be seen that gravity is exceptional since it appears on
both sides: it is universal due to its universal couplings and it is a particular
interaction.

A big problem in the theoretical description of physics is the incompat-
ibility of quantum theory and GR as relativistic theory of gravity. This can
be seen from the fact that in GR from very general assumptions singularities,
spatial points, where all the surrounding matter fall into, will occur. Such a
localization of matter is forbidden by quantum theory. Such incompatibilities
make it necessary to look for a unification of quantum theory and GR, i.e. for
a quantum gravity theory (see, e.g. [3], for a recent review). There are sev-
eral approaches to such a new theory, e.g. string theory, canonical quantum
gravity, or non-commutative geometry. In any case, deviations from standard
physics given by the theories of Table 1 are predicted. Each of these theo-
ries predicts deviations, e.g. from the universality of free fall, modifications

Table 1. Universal theories and the four presently known interactions.

Universal theories Interactions

– Quantum theory – Gravity
– Special relativity – Electromagnetism
– General relativity – Weak interaction
– Many particle physics – Strong interaction
Problem: incompatibility between gen-
eral relativity and quantum theory

Wish: unification of all interactions

Possible solution: quantum gravity
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of the electromagnetic and of the gravitational interaction in terms of, e.g. a
Yukawa-like potential, etc. All these theoretical considerations are strong rea-
sons to make an effort to get better experimental results. In addition, physics
always requires the best experimental foundation of its basic theories being
the pillars of modern understanding of physics.

As already mentioned, gravity plays an outstanding role. It plays this role
not only because of the reasons described above but also because in most cases
a violation of the principles underlying GR can be observed if the description
of interactions like the Maxwell’s equations or the Dirac equation underly-
ing particle physics is modified. Indeed, only the present form of Maxwell’s
equations and Dirac equation is compatible with GR, i.e. the structure of the
Maxwell and Dirac equations strongly determines the structure of the grav-
itational field (a modification of Maxwell’s equation, for example, leads to a
violation of the universality of free fall [4]). Consequently, tests of GR play an
outstanding role in this search for new physics.

Behind all these physical structures there are the principles of many par-
ticle physics. Today, this field is deeply connected with renormalization group
theory. Due to the fact that renormalization group theory not only is a method
describing the physics of gases and their phase transitions but, more gener-
ally, also is a mathematical method with applications in many parts of physics,
from statistical physics to hydrodynamics, solid state physics to elementary
particle physics, and even to problems in quantum gravity, it is very impor-
tant to understand the principles underlying this theory more deeply and to
improve the quality of its tests.

2.2 Structure of Gravity

The present theory of gravity, Einstein’s general relativity, is based on a set
of universality principles [5] (1) the universality of free fall (UFF), (2) the
universality of the gravitational redshift (UGR) and (3) a universality with
respect to the state of motion of the observer, called local Lorentz invariance
(LLI). If these principles are valid, then gravity can be described by a space–
time metric as given in the mathematical framework of Riemannian geometry.
Further requirements on the structure of the equations the metric has to fulfil
then lead to the Einstein field equation, see Fig. 2.

Indeed, most fundamental physics experiments are devoted to tests the
principles underlying GR. Owing to the fact that GR deals with the structure
of space–time, all tests of GR are tests involving the measurement of time,
paths (either paths of light or paths of massive bodies) and directions. Here,
clocks play a really fundamental role: they are used for a complete test of
the principles underlying SR and also for tests concerning the gravitational
redshift, see Fig. 3. That is also the reason why each improvement in the
precision of clocks is followed by new tests of SR and GR. The observation
of paths, i.e. geodesic paths driven only by the gravitational interaction, is
difficult due to many disturbing and competitive effects. Disturbing effects
are, e.g., atmospheric drag and radiation from the Earth and the Sun which
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Einstein’s
theory of gravity

metric theory of gravity

Einstein Equivalence
Principle

Universality
of Free Fall

Universality of
Gravitational Redshift

Local
Lorentz Invariance

• gravitational redshift
• perihelion shift
• light deflection
• gravit. time delay
• Lense–Thirring effect
• Schiff effect
• gravitational waves

Yukawa potential
Gravity at large scales
Weak gravity
Nordtvedt effect
Ġ

MICROSCOPE, STEP,
GG, HYPER, DSGE

ACES/PHARAO,
SPACETIME, OPTIS, DSGE

ACES, OPTIS,
PARCS, RACE

GP-A, Cassini, LAGEOS,
GP-B, LISA, HYPER, DSGE,
ASTROD, LATOR, OPTIS

LLR, LAGEOS, ASTROD,
LATOR, OPTIS, SEE,

DSGE

Fig. 2. The structure of experimental exploration of the theory of gravity. Testable
issues are described in grey boxes, theoretical concepts in white boxes. Metric theories
of gravity are based on the directly testable principles: universality of free fall,
universality of the gravitational redshift and local Lorentz invariance. Particular
effects like the Nordtvedt effect, a time-varying G, a deviation from ordinary Newton
potential at large distances and for small gravitational acceleration denote deviations
from ordinary Einstein’s general relativity. The predictions of Einstein’s GR are
found in the upper right box. The missions aiming at the exploration of the various
effects are shown below the grey boxes.

Clock 1
ν1

Clock with a
hypothetical anomal

dependence on velocity,
orientation, and position

Clock 2
ν2

Clock with different
hypothetical anomal

dependence on velocity,
orientation and position

×

Comparison
ν2 − ν1

Fig. 3. General scheme for testing SR and GR with clocks. Tests of the constancy
of the speed of light and of UGR are essentially carried through with clocks whose
frequency may change with orientation, velocity and position. Furthermore, if the
clocks are assumed to move with different velocities or to be at different positions,
then this scheme also applies to tests of the time dilation and the gravitational
redshift.
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lead to non-gravitational accelerations and competing effects come from, e.g.,
gravitational multipole moments of the Earth and the Sun which are not
known to the needed precision or which need a complicated data analysis.
Only GP-B tests the parallel transport of a direction given by a distinguished
physical system, namely gyroscopes.

3 Fundamental Quests

According to the scheme outlined above, there are two lines of fundamental
quests (which are, of course, related to each other): the first line is along an
improved verification of the predictions of Einstein’s theory of general relativ-
ity. This, in particular, requires improved clock and navigation technologies
as well as an improved description of post-Newtonian effects (see the chapters
in the theory part of this volume). The second line consists in the search for
“new physics” or, equivalently, for possible quantum gravity effects (see the
subsequent contribution of Bertolami, Parámos and Turyshev in this volume).

As already mentioned, all approaches to a quantum gravity theory predict
deviations from the principles underlying GR asking for refined tests of all
the aspects of GR. More specifically, these experiments look for:

1. Violations of the UFF
2. Violations of the UGR

– Time and/or position dependence of the fine structure constant and
other fundamental constants

– Time and/or position dependence of the gravitational constant
3. Violations of LLI in many aspects

– Non-isotropy of light propagation
– Non-constancy of velocity of light
– Fundamental dispersion of light propagation
– Non-isotropy of elementary particle parameters like mass
– Search for anomalous spin interactions

4. Non-Einsteinian effects like
– Yukawa-like gravitational potential
– Modification of gravity at large scales
– Modification of weak gravity
– Nordtvedt effect
– Time variation of the gravitational constant G
– Different active and passive gravitational mass

The corresponding space missions can be found in Fig. 2. Besides tests of
relativity and gravity, there are also issues for testing the fundamentals of the
other universal theories like quantum theory and many particle theory:

– Linearity of quantum physics
– Entanglement
– Casimir force
– Physics of Bose–Einstein condensates
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– Search for a fundamental decoherence
– Test of renormalization group theory

(See also recent reviews on these topics [3, 6–8].)
Since quantum gravity is characterized by the Planck energy EP ∼ 1028 eV

and laboratory energies are of the order eV for ordinary, e.g. optical laboratory
experiments, to GeV for large particle accelerators, quantum gravity effects are
too small by many orders of magnitude to be detectable in laboratories. Indeed,
expected quantum gravity-induced violations of LLI, for example, are looked
for in ultra-high energy cosmic rays. However, all the present predictions from
quantum gravity are in fact merely hypotheses; they are not based on complete
theories. Furthermore, perhaps some additional mechanism has to be applied
which may lead to some enhancement of the expected effect as it is the case for
deviations from Newton potential at small distances as predicted from higher
dimensional theories. Therefore, there is always a possibility that deviations
from standard physics may occur at lower energies than given by the Planck
scale. Consequently, any improvement of the accuracy of experimental results
is of great value.

We also address the question what happens if an experiment shows a
violation of one of these basic principles. This not necessarily means that one
has found a violation of one of these principles. This effect may also be a
result of a new interaction which might well be in accordance with the tested
principles. Therefore one first has to search whether this effect can be shielded,
or whether one can find a cause of this effect in the sense of a source which
creates a field causing this effect. In both cases the effect can be considered to
be a new interaction. Only if all these questions are answered appropriately
one can speak about a violation of a basic principle.

Particular predictions and models of deviations from standard physics are:

– Violation of the UFF at the 10−13 level predicted from dilaton scenarios [9]
and at the 10−14 level from quintessence theories [10].

– Deviation from GR in terms of the PPN parameters γ and β, again pre-
dicted within dilaton scenarios [11].

– Violations of LLI at Planck scale predicted from non-commutative geom-
etry approaches [12].

– The time dependence of constants [10,13–15].
– Additional Yukawa part of the gravitational potential at small distances

predicted from higher-dimensional theories [16].
– The gravitational interaction at large distances or for weak gravitational

fields (Yukawa for large ranges [17] or MOND for small gravitational ac-
celerations [18]). This may be relevant for the Pioneer anomaly [19].

4 The Space Conditions

In many cases the sensitivity of measuring devices and/or the accuracy of
measurements itself will increase if the experiments can be performed under
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conditions of free fall, i.e. under conditions of weightlessness. The advantages
of such conditions are:

1. The infinitely long, and periodic, free fall. As an example, long free-fall
conditions enable high-precision tests of the UFF for all kinds of struc-
tureless (i.e. pointlike) matter.

2. Long interaction times. This is, for example, a big advantage in atomic
or molecular interferometers, where the laser-cooled atoms or molecules
may interact with other external fields for a long time and do not fall
out of the interferometer as it happens on Earth. Only in a microgravity
environment in space one has the opportunity of a dedicated long exposure
to certain interactions.

3. Large potential differences. In a large class of experiments (e.g. tests of the
gravitational redshift), the magnitude of the signals looked for depends on
the difference of the positions of the clocks in the gravitational potential.
It is obvious that this can be achieved best by going into space.

4. Large velocity changes. For macroscopic devices used for, e.g. testing the
dependence of the speed of light with respect to the laboratory velocity
(Kennedy–Thorndike tests), the maximum velocity on Earth might be of
the order 1,000 km h−1. In space this can be increased by about one order
of magnitude. For example, the velocity variations along the orbit (e.g. in
a high elliptical Earth orbit) is 30 times higher than one can attain using
the Earth’s rotation.

5. Availability of long distances. In space, much longer distances are available
than in any laboratory on Earth. This is essential, e.g. in the study of low
frequency (10−3 Hz) gravity waves using interferometric techniques, where
the strain of spacetime is to be measured at or below the 10−21 level.

6. A low noise/vibration environment. Seismic noise is a limiting factor for
many experiments on Earth (e.g. for gravitational wave detectors and for
torsion balances) in the frequency range below 10 Hz.

7. For certain interactions, only in space one has the opportunity to search
for the corresponding effects. As an example, only in space there are ap-
propriate conditions adapted to the detection of the gravitational time
delay, of gravitational waves with very low frequencies, of the Schiff or of
the Lense–Thirring effect.

8. Due to the absence of the atmosphere, the true particle content in outer
space is directly observable.

As a consequence, there are quite a few instances where it is really in-
dispensable to go to space to achieve improved accuracies as compared to
experiments on ground.

However, these advantages have to be compared with some disadvantages.
These disadvantages are in many cases:

1. Huge financial effort
2. Long time for preparation and development
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3. No direct access to the experiment during operation
4. No possibility of a post-mission analysis of the experimental payload

As an example, the analysis of the Pioneer anomaly heavily rests on properties
of materials the spacecraft are built of. These properties may change with
time and, thus, in principle may be responsible for the observed effect. A
direct access and a post-mission analysis of devices is a big advantage of, e.g.
ISS-based experiments.

5 Past and Running Missions

Until now, there have been only very few space missions which carried through
dedicated experiments concerning gravitational physics or which could be used
for that. Nevertheless, the results of these missions have been widely discussed
and led to a much better experimental basis and understanding of gravita-
tional physics. Without these missions some effects like the gravitational red-
shift or the gravitational time delay would have been confirmed with much
lower accuracy, and some effects even would have still remained unobserved
like the geodetic precession of the Earth–Moon system or the Lense–Thirring
effect. Already from this, one can infer the scientific potential of further space
missions.

GP-A. This was the first space mission dedicated to fundamental physics
issues. The time given by a H-maser on a rocket was compared with the time
of a ground-based H-maser. Due to a three-channel method, one could separate
between the Doppler effect from the gravitational redshift. This yielded the
up to now best confirmation of the absolute gravitational redshift with an
accuracy of 1.4 · 10−4 [20].

Viking. Due to a microwave link to the Mars explorer one could measure the
time needed for a signal to propagate from Earth to the Viking satellite and
back. In case of a conjunction, the travel time should be longer according to
GR. This could be seen with an accuracy of almost 10−3. Competing and
limiting effects came from the solar and Earth’s atmosphere.

LLR. Various Apollo Moon missions as well as Russian unmanned Moon mis-
sions placed several laser retroreflectors on the Moon. Laser tracking from the
Earth yielded an accuracy of about 1 cm after 20 years for the determination of
the Earth–Moon distance. Using these data, effects like the geodetic precession
of the Earth–Moon system could be verified, the validity of the strong equiv-
alence principle (UFF together with the gravitational self-energy) could be
tested, and a comparison of the data with a hypothetical Newtonian Yukawa
potential yielded strong estimates on such effects.

LAGEOS. This mission consists of two passive small satellites orbiting the
Earth which are laser tracked; it gives information about the gravitational
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field of the Earth. The orbital data of these satellites have been used to
experimentally check for the first time the existence of the gravitomagnetic
Lense–Thirring effect with a claimed 20–30% accuracy [21]. The difficulty lies
in competing effects from higher gravitational multi-poles of the Earth which
are actually much larger than the effect looked for. The basic idea of the data
analysis is to combine the data of two satellites (LAGEOS and LAGEOS II)
in such a way that the lowest order gravitational multi-poles cancel. Any im-
provement of Earth gravity models [22] as well as additional data from further
satellites [23] will improve the results.

Cassini. The Cassini mission to Saturn is equipped with a multi-frequency
radio link to the Earth. Using this technique, the disturbing effects due to the
Sun’s corona for measurement of the travel time of signals from the Earth to
Cassini and back could be removed almost completely. The achieved accuracy
of 2 · 10−5 is almost two orders of magnitude better than the previous Viking
result.

6 Possible Future Missions

Here we shortly describe the scientific objectives and other main issues of
planned space missions devoted to fundamental physics. For most of these
missions, more information can be found in the reviews [2, 24, 25] and the
references cited therein.

GP-B. With this mission [26], the gravitomagnetic Schiff or frame-dragging
effect, shall be observed with 0.1% accuracy [26]. The main part of the satel-
lite is a huge dewar which maintains a cryogenic environment for 18 months.
The main parts of the experimental payload located inside the dewar are gy-
roscopes made from superconducting rotating spheres and a telescope. The
gyroscopes represent the inertial systems which, due to the gravitomagnetic
field of the rotating Earth, start to precess. The precession is read out with
SQUIDs using a magnetic field attached to the rotating spheres. This direction
is then compared with the direction given by distant stars which is observed
by the telescope. This mission should have started in 2004.

ACES/PHARAO. In this mission [27] the PHARAO clock, based on a foun-
tain of cold caesium atoms, and a hydrogen maser clock will be brought on-
board the ISS, complemented by a microwave link for synchronization with
clocks on Earth. With this equipment, better tests of the gravitational red-
shift can be performed and one can search for a time dependence of the fine
structure constant at the 10−16 level. Furthermore, establishing such clocks
in space represents an enormous improvement over the present level of syn-
chronization that is possible using GPS clocks.

PARCS. This ISS project (see, e.g. the review [24]) consists, similar to
PHARAO, of a caesium atomic clock which, together with SUMO, will test
the universality of the gravitational redshift, the constancy and isotropy of
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the speed of light and intends to establish a better time standard by a factor
of 20. The accuracy of PARCS will be 10−16.

RACE. For RACE, a double magneto-optical trap (MOT) design is used to
multiply launch Rb atoms, which, as compared with Cs, possesses a much
lower collision shift error. Furthermore, RACE uses two cavities to interrogate
the atomic frequency. Among others, one advantage of that design is the
possibility to eliminate the vibrational noise of the ISS. RACE will aim at a
clock accuracy of 10−17 (see, e.g. [24]).

MICROSCOPE. This already approved mission [28] is devoted to a test of
the UFF to an accuracy of 10−15 in terms of the Eötvös parameter. The
relative accelerations of two pairs of test masses are measured: the first pair
consists of a Pt/Rh alloy and special Ti alloy (TA6V), and the second pair
consists of two identical Pt/Rh alloys. The second pair is taken for redundancy
and drag-free control. The relative acceleration is measured using capacitive
sensors. MICROSCOPE will fly in 2011.

LISA. With a huge two-arm interferometer made up of three satellites being
5 million km apart one will detect gravitational waves in the frequency range
10−1–10−4 Hz. Each of these satellites carries two phase-locked laser systems
and two mirrors. Each mirror is controlled by a drag-free system in order that
the satellite very precisely moves on a geodesic path within the timescale of
1,000 s. LISA has the status of an ESA–NASA cornerstone mission. See the
contribution of Rüdiger, Heinzel and Tröbs in this volume.

STEP. This mission [29] wants to test the UFF to a precision of 10−18. In
contrast to MICROSCOPE it uses cryogenic techniques: SQUIDs are used
to determine the relative position between the freely flying test masses. Four
pairs of test masses are used, i.e. the pair Pt/Ir–Nb, the pair Nb–Be, and two
pairs Pt/Ir–Be, so that there is a redundancy as well as a cyclic condition
for which the total acceleration difference between pairs of test masses must
add to zero in the case that UFF holds. The high accuracy requires several
additional techniques. One of these is that the test masses must have an
appropriate design to be insensitive to gravity gradients.

ASTROD. This is a proposed Chinese interplanetary laser ranging mis-
sion [30] which aims at (1) an improvement of the determination of the PPN
parameters γ and β by three to six orders of magnitude, (2) the detection of
gravitational waves below the mHz range and (3) to improve the knowledge of
solar system parameters like the angular momentum of the Sun and asteroid
masses. The main technique is laser ranging for which new techniques for the
coupling of very weak laser light to local oscillators have to be developed.

LATOR. This recently proposed interplanetary ranging mission, see the con-
tribution of Turyshev, Shao and Nordtvedt in this volume, aims at measuring
the deflection of light with a precision of 10−8. The main idea is to have two
small spacecrafts and a reference on the ISS spanning a triangle and to mea-
sure the lengths of the three sides of this triangle and, in addition, the observed
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angle of the light rays from the satellites to the ISS. From the gravity-induced
deformations of ordinary Euclidean geometry of the paths of light one can
infer the gravitational influence. The aimed high precision can be achieved
by an optical truss provided by a 100-m long multi-channel optical interfer-
ometer mounted on the ISS. Besides the deflection of light, the second order
effects, the Sun’s quadrupole momentum and the Lense–Thirring effect can
be measured.

OPTIS. This mission aims at an improvement of quite a few tests of SR
and GR, namely (1) the isotropy of the speed of light, (2) the constancy of
the speed of light, (3) the Doppler effect (or time dilation), (4) tests of the
UGR comparing various atomic clocks, (5) tests of UGR comparing an optical
resonator and atomic clocks, (6) measurement of the absolute gravitational
redshift, (7) measurement of the Lense–Thirring effect, (8) measurement of the
perigee advance and (9) test of Newton’s 1/r potential. The main components
of the experimental payload are clocks (resonators and atomic clocks (H-
maser, ion clocks)), a laser link to the Earth and a drag-free control of the
satellite. More information can be found in [31].

SPACETIME. With this mission [32], three ion clocks with a stability of the
order 10−16 will be brought to the Sun as close as about 5 solar radii. From
the comparison of these highly accurate clocks during their motion through
a strongly changing gravitational potential one gets a huge improvement of
tests of the UGR. The errors can be reduced considerably by the possibility
to place all three clocks in the same environment.

GG. Here again the UFF is aimed to be tested at an accuracy of 10−17. The
main idea of this Italian proposal [33] is that a high frequency modulation of
the UFF-violating signal induced by a rotation of the test mass can improve
the signal-to-noise ratio.

SEE. In this mission [34], two free-falling interacting test masses are placed
in a big container orbiting the Earth in free fall. Using a newly invented and
highly precise device for monitoring the positions of the two masses, one can
(1) test the validity of the Newton’s 1/r potential over distances between the
two masses and between the Earth and the satellite, (2) make better tests of
the UFF, (3) make more precise measurements of the gravitational constant
and (4) search for a time dependence of the gravitational constant.

HYPER. This missions aims at (1) measuring the Schiff effect, (2) testing the
UFF, (3) searching for a fundamental decoherence in quantum mechanics and
(4) making more precise measurement of the fine structure constant [35]. The
main feature of this mission is that it wants to employ atomic interferometry in
space. A more technical aspect is that with this mission accelerometers (grav-
ity reference sensors) and gyroscopes based on atomic interferometry might
be introduced. Working with atomic interferometry, prerequisite techniques
are lasers, laser cooling and MOTs.
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DSGE. The primary task of the deep-space gravity explorer is to confirm
the Pioneer anomaly, the anomalous constant acceleration of the Pioneer 10
and 11 spacecraft of aPioneer = (8.74 ± 1.33) · 10−10 ms−2 towards the Sun.
Further tasks are the precise determination of the direction of the acceleration
and of the way how the anomaly turns on. The DSGE may be able to explore
the range between solar system physics and galactic physics and cosmology.
Furthermore, the exploration of the interplanetary matter content is another
science goal of such a mission. See also the article of Johann, Dittus and
Lämmerzahl in this volume.

7 Key Technologies

Since gravity is the physics of space and time technologies which are relevant
for the determination of position, velocity and time are most important for
the exploration of the physics of the gravitational interaction. Furthermore,
to provide a force-free motion governed only by the gravitational interaction,
other techniques like drag-free control and micro-thrusters are needed. We are
describing present and emerging technologies relevant for space missions to
explore the gravitational interaction. These technologies nowadays experience
very fast improvements.

7.1 Key Space Technologies

Drag-free control. This technique is necessary to assure that the satellitemoving
as close as possible along a geodesic path is given only by gravity. It needs the
interplaybetweenverysensitive inertial sensorsandveryprecisemicro-thrusters.
For this purpose, algorithms have to be developed which process the signals from
the sensors and precisely drive the micro-thrusters, where their corresponding
noiseproperties have tobe taken into account.The corresponding control system
is called drag-free and attitude control system (DFACS). See the contribution
of Theil and of Fichter, Schleicher and Vitale in this volume.

Gravity reference sensors (inertial sensors). In the last years so-called “drag-
free sensors” have been developed that offer the opportunity to cancel out all
non-gravitational disturbing forces and torques (like air drag, solar pressure,
magnetic field disturbances, etc.) on orbiting satellites. The drag-free concept
involves centring a free-floating test mass located inside a satellite which is
free of external disturbances and follows a purely gravitational orbit. External
(non-gravitational) forces and torques will move the satellite relative to the
test mass. The change in the relative position is measured and then used to
derive the appropriate control force which has to be applied by the DFACS to
drive the test mass displacement to zero. Since the satellite is forced to follow
the test mass, it follows the same gravitational orbit.

The test mass displacement can be measured electrostatically or magnet-
ically. In most cases (e.g. for MICROSCOPE), a capacitive method is used
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where the test mass is surrounded by electrodes. One area of the test mass
and one electrode form a capacitor and the displacement-induced change of
its capacity can be measured, see, e.g. [36].

Micro-thrusters. Micro-thrusters are needed for very precise navigation of
satellites. Field electric emission propulsion (FEEP) ion thrusters or colloidal
thrusters are used to control the residual acceleration down to 10−10 ms−2

in the signal bandwidth. This sets an upper limit for the thrust: linear forces
acting on the satellite are less than 50 μN in all three axes and maximum
torques are about 10 μN m. The resolution of thrust control has to be done
with an accuracy of about 0.1 μN. For a satellite diameter of about 1.5 m, the
solar radiation pressure of about 4.4 μN m−2 and the radiation pressure of the
Earth albedo of 1.2 μN m−2 sum up to a total drag of about 10 μN.

Timekeeping. To perform precision positioning and navigation, precise clocks
on Earth are needed. Clocks on Earth approach a precision at the 10−16

level and may reach in the not too far future an accuracy of 10−18. Such
clocks are sensitive to heights at the mm-level. Since the height on Earth is
not defined to this accuracy, it is preferable to place such precise clocks in
space. A second point to mention is that such precise timekeeping requires
a thorough understanding of the basic principles underlying the physics of
clocks. In particular, for space navigation one needs a comparison of Earth
bound clocks with astrophysical clocks like pulsars and binary systems to
exclude a mutual drift of time.

Laser tracking. To measure the distance between a ground station and the
satellite (or another object) with very high precision the satellite laser ranging
(SLR) technique can be used. This is important for LLR and LAGEOS and
will be used in OPTIS, LATOR and ASTROD. Very short laser pulses are
transmitted from a telescope in a ground station to a satellite, from which they
are retroreflected back to the station by a corner cube reflector. The round trip
time is measured and gives the distance. In other words, SLR measures the
absolute time of flight of photons so that the geometry of satellite and laser
station can be determined precisely as long as the system calibration error
is controlled to a negligible level. With the present state-of-the-art one can
measure the travel time of signals with an accuracy of 50 ps or better. This is
equivalent to an accuracy of 1 cm or less. Currently, NASA is building up the
satellite laser ranging 2000 system. SLR2000 is an autonomous and eyesafe
photon-counting SLR station with an expected single short-range precision of
about 1 cm and a normal point precision better than 3 mm. The system will
provide continuous 24-h tracking coverage of artificial satellites at altitudes
up to 20,000 km. Approximately 40 laser station systems, distributed all over
the world, now contribute to this technique. These stations form a network
that is coordinated by the International Laser Ranging Service: ILRS and by
a European consortium EUROLAS.

Star trackers. Star trackers are sensors that are used in satellite attitude con-
trol to achieve accurate pointing measurements. The sky is scanned by, e.g. a
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CCD camera. From the detected star patterns a computer algorithm can de-
termine the pointing direction of the sensor and thus of the spacecraft. Today
state-of-the-art high-precision star trackers can provide a single star angular
accuracy better than 3 arcsec.

7.2 Key Payload Techniques

Here we describe a few key payload techniques which already played a role in
missions or which are planned to be part of future missions.

Gyroscopes. High-precision gyroscopes are based on mechanical gyroscopes
with a SQUID-based readout or use laser or cold atom interferometry (see
below).

Clocks. All kinds of clocks will play a major role in future fundamental
physics missions. The reason is that most of these tests are clock-comparison
tests: Tests of LLI consist in comparison of clocks with different inter-
nal orientations, of clocks with a different hypothetical velocity dependence
(Kennedy–Thorndike tests) and clocks in different states of motion. All red-
shift experiments compare clocks at different positions in the gravitational
field. We shortly list the types of clocks:

– H-maser. H-masers are based on a hyperfine transition of the ground state
of the hydrogen atom with a life time of about 1 s which is coupled to a
resonator. The frequency is 1.420405751 Hz and the Allan deviation is less
than 10−15. H-masers are already space qualified.

– Atomic fountain clocks. These kinds of clocks are based on the Ramsey
interaction scheme. Atoms interact with microwaves during two time inter-
vals. The accuracy of the clock is directly related to the time span between
these two interaction intervals. Since the atoms have to be in free motion
(free fall) in this time span, only a time span of up to 0.1 s is possible on
Earth. In space a much longer time span can be achieved. The present
accuracy is better than 10−15 [37]. This clock has been used for the best
test of UGR [38]. In space one or two orders of magnitude of improvement
are feasible.

– Ion clocks. Today, ion clocks [39] approach the level of 10−16 in their
stability (in terms of the Allan variance). Ion clocks are based on hyperfine
transitions of trapped ions (e.g. Hg+, Cd+, Yb+).

– Resonators. Resonators (cavities) are a realization of so-called light clocks.
Locking of lasers to optical resonators used for the best Michelson–
Morley tests [40] will give highly stabilized frequencies which carry, via
ν = nc/(2L) where L is the length of the cavity, the information about the
velocity of light c for propagation along the cavity axis. This information
is used to make statements about the isotropy and the constancy of the
speed of light. For this, the length of the cavity has to be very stable since
otherwise this could mask the searched effect. For cryogenic resonators the
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stability is δL/L ≤ 7 ·10−16 [40] which corresponds to the 30th part of the
diameter of the proton. The high-dimensional stability requires materi-
als with low thermal expansion coefficients. Another requirement is stable
lock of lasers to the cavity which can be obtained. Microwave resonators
work in the same way, the only difference is the longer wavelength (in the
cm range) of the electromagnetic radiation in the resonator. A particu-
lar development in this area are the whispering gallery resonators where
the resonators have cylindric geometry and the radiation possesses large
angular mode numbers. These have been used for the today’s best test [41]
of the constancy of c.

Today the most advanced clocks approach an accuracy of 10−16. From the
gravitational redshift, it can be seen that these clocks run differently if they
are located at a height difference of 90 cm. If the precision of clocks improve
by one or two orders, then, due to the fact that the surface of the Earth is not
really constant, these clocks cannot define a well-defined time. For that one
has to go to space. Only in space the conditions are well defined enough in
order that such high-precision apparatus can yield unique and interpretable
results.

Lasers. There are already space-proved lasers available. These lasers are
diode-pumped Nd:YAG lasers. They possess high intensity and frequency sta-
bility. Lasers will be applied in the missions LISA, HYPER, OPTIS, LATOR
and ASTROD, indicating the overall importance of this device in space tech-
nology.

Frequency combs. Tests of the constancy of c and of the UGR with optical
resonators require a high-precision technique for comparing frequencies in the
microwave and optical range, differing by more than five orders of magnitude.
The recently invented frequency comb is the appropriate technique, see [42]
for an overview. This technique is simpler, cheaper, power-saving and more
accurate than previous methods. In the laboratory, the comparison of the
frequencies with an accuracy of 10−15 has already been achieved.

SQUIDs. SQUIDs are based on the flux quantization and on the Josephson
effect in superconducting electrical loops. They provide the presently most
sensitive magnetic flux detector. Therefore, any low-frequency signal that can
be converted into a change of the magnetic flux can be observed with high
precision. GP-B [26] and STEP [29] use SQUIDs to measure the position, the
linear acceleration and the angular momentum of test masses. For distance
measurements the achieved sensitivity is [43] δx ∼ 4 · 10−14 mHz−1/2 and for
acceleration measurements δa ∼ 10−14 ms−2 Hz−1/2, and for the measurement
of the angular velocity one gets δω ∼ 10−17 deg s−1 for a year integration time.
Therefore SQUIDs are the best gyroscopes available.

Cold atoms. Using laser-cooled atoms it is possible to build up highly pre-
cise and sensitive atomic interferometers. These devices can serve as highly
precise accelerometers and gyroscopes, as has been demonstrated on Earth.
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The achieved sensitivity is δa ∼ 10−9 ms−2 Hz−1/2 and δω ∼ 6 · 10−10 rad s−1

Hz−1/2. In the HYPER proposal, atomic interferometry should be used to test
the UFF for quantum matter with an accuracy of 10−16 and to measure the
Schiff effect. There are also ideas to use Bose–Einstein condensates as source
for coherent sources of atoms thus enhancing the sensitivity even more, see
the article of Bouyer et al in this volume.

BEC. Bose–Einstein condensates are a source for coherent atomic beams and,
thus, for an atomic laser. Interferometry with coherent atoms will give a much
better accuracy.

Machining. In some cases, a high-precision machining of parts of the exper-
imental payload is uttermost important. As examples we mention the gyro-
scopes for GP-B and the test masses for STEP. In the first case spheres had
to be machined with a relative non-sphericity of about 10−6 (this means that
the radius of a sphere of about 3 cm diameter is precise within 1 μm) and for
the tests of the equivalence principle the test masses have to be machined
with an absolute accuracy of better than 1 μm.

8 Summary and Outlook

In Fig. 4, we list all the experiments on GR together with completed and
planned missions dedicated to such tests. What is not covered by this list are
searches for anomalous couplings of spin particles with gravity, the search of
a fundamental dispersion of electromagnetic propagation and strong gravity
effects like the observation of binary systems and cosmological observations.

8.1 Summary

We outlined the interplay between current quest from fundamental physics,
space conditions and the development of new technologies. In some cases, this
interplay is very fruitful and can lead to new space missions. We summarize
the discussed items in terms of space projects, see Table 2.

8.2 Fundamental vs. Applied Physics

As a final remark, we like to stress that it certainly is a wrong attitude to con-
trast fundamental research with applied research. It is a matter of experience
that fundamental physics and applied physics and technologies are just two
sides of the same medal: most new fundamental physics results immediately
will be used for applications, and all newly developed technologies will be
used for fundamental physics. Furthermore, also technological requirements
will trigger fundamental physics research and vice versa.

As one example for the latter we mention that the technological require-
ment of synchronizing clocks in distant towns for reliable train schedules at the
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end of the 19th motivated Poincaré and Einstein to revolutionize the notion of
time which in turn made possible the development of the theory of SR [44]. SR,
on the other side, was necessary to establish a new frame for mechanics and
a theory of gravity which then led to the famous insight that mass is related
to energy (E = mc2) and to the development of general relativity which is at
the basis of today’s GPS and Earth science, see, e.g. [45]. Furthermore, even
technological requirements in the sense of applications on commercial scales
requires fundamental research [46]. Otherwise any technological development
is just an ad hoc development without any possibility to systematize the tech-
nological achievement or to apply this to other or more general situations.
Another example is the development of atomic clocks. Immediately after its
development, Hafele and Keating used these clocks to verify the relativistic
time dilation in their famous Hafele–Keating experiment [47,48].

On the other side, new fundamental physics results in most cases lead to
the development of new technologies. As examples we may mention super-
conductivity and the quantum Hall effect. Furthermore, fundamental physics
quest motivate the development of new technologies. A recent example for
this is GP-B with its gyroscopes, star tracker and drag-free control.

Therefore, fundamental physics and applied technology are two sides of
the some medal. Cutting one part away means truncate ones capabilities and
possible future developments. The development of technologies based merely
on known physics is a dead-end road.
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Summary. The nature of gravity is fundamental to the understanding of our own
solar system, the galaxy, and the structure and evolution of the Universe. Einstein’s
general theory of relativity is the standard model that is used for almost 90 years
to describe gravitational phenomena on various scales. We review the foundations
of general relativity, discuss the recent progress in the tests of relativistic grav-
ity, and present motivations for high-accuracy gravitational experiments in space.
We also summarize the science objectives and technology needs for the laboratory
experiments in space with laboratory being the entire solar system. We discuss the
advances in our understanding of fundamental physics anticipated in the near future
and evaluate discovery potential for the recently proposed gravitational experiments.

1 Introduction

To understand the Universe in its vast and complex splendor seems a daunting
task, yet curiosity and wonder over centuries and civilizations have always led
humankind to seek answers to some of the most compelling questions of all:
How did the Universe come to be? What is it made of? What forces rule its
behavior? Why is it the way it is? What will ultimately become of it? With its
prominent influence on natural phenomena at every distance scale, gravitation
plays a pivotal role in this intellectual quest.

Gravity was known to humans long before the present-day picture of four
fundamental interactions was formed. The nature of gravity is fundamental
to the understanding of our solar system, the galaxy, and the structure and
evolution of the Universe. It was Newton who first understood that not only
gravity dictates the fall of apples and all bodies on Earth, but also plan-
etary motion in our solar system and the Sun itself are governed by the
same physical principles. On the larger scales the effects of gravity are even
more pronounced, guiding the evolution of the galaxies, galactic clusters, and
ultimately determining the fate of the Universe. Presently, Einstein’s general
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theory of relativity is a key to understand a wide range of phenomena, span-
ning from the dynamics of compact astrophysical objects such as neutron stars
and black holes, to cosmology where the Universe itself is the object of study.
Its striking predictions include gravitational lensing and waves, and only black
holes have not yet been directly confirmed.

The significance that general relativity (GR) plays in our understanding
of nature makes the theory a focus of series of experimental efforts performed
with ever-increasing accuracy. However, even after more than 90 years since
general relativity was born, Einstein’s theory has survived every test. Such
longevity does not mean that it is absolutely correct, but serves to motivate
more precise tests to determine the level of accuracy at which it is violated.
This motivates various precision tests of gravity both in laboratories and in
space; as a result, we have witnessed an impressive progress in this area over
the last two decades. However, there are a number of reasons to question the
validity of this theory, both theoretical and experimental.

On the theoretical front, the problems arise from several directions, most
dealing with the strong gravitational field regime; this includes the appear-
ance of spacetime singularities and the inability to describe the physics of very
strong gravitational fields using the standard of classical description. A way
out of this difficulty would be attained through gravity quantization. However,
despite the success of modern gauge field theories in describing the electro-
magnetic, weak, and strong interactions, it is still not understood how gravity
should be described at the quantum level. Our two foundational theories of
nature, quantum mechanics and GR, are not compatible with each other.
In theories that attempt to include gravity, new long-range forces can arise
in addition to the Newtonian inverse-square law. Even at the classical level,
and assuming the equivalence principle, Einstein’s theory does not provide the
most general way to establish the spacetime metric. Regardless of whether the
cosmological constant should be included, there are also important reasons to
consider additional fields, especially scalar fields. Although the latter naturally
appear in these modern theories, their inclusion predicts a non-Einsteinian be-
havior of gravitating systems. These deviations from GR lead to the violation
of the equivalence principle, the foundation of general relativity, modification
of large-scale gravitational phenomena, and cast doubt upon the constancy
of the fundamental “constants.” These predictions motivate new searches for
very small deviations of relativistic gravity from GR and provide a new the-
oretical paradigm and guidance for further gravity experiments.

Meanwhile, on the experimental front, recent cosmological observations
have forced us to accept the fact that our current understanding of the origin
and evolution of the Universe is at best incomplete, and possibly wrong. It
turned out that, to our surprise, most of the energy content of the Universe
resides in presently unknown dark matter and dark energy that may permeate
much, if not all of spacetime. If so, then this dark matter may be accessible
to laboratory experimentation. It is likely that the underlying physics that
resolve the discord between quantum mechanics and GR will also shed light
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on cosmological questions addressing the origin and ultimate destiny of the
Universe. Recent progress in the development of vastly superior measurement
technology placed fundamental physics in a unique position to successfully
address these vital questions. Moreover, because of the ever-increasing prac-
tical significance of the general theory of relativity (i.e., its use in spacecraft
navigation, time transfer, clock synchronization, etalons of time, weight and
length, etc.), this fundamental theory must be tested to increasing accuracy.

This chapter is organized as follows. Section 2 discusses the foundations
of the general theory of relativity and reviews the results of the recent exp-
eriments designed to test the foundations of this theory. Section 3 presents
motivations for extending the theoretical model of gravity provided by GR;
it presents a model arising from string theory, discusses the scalar–tensor
theories of gravity, and also highlights phenomenological implications of these
proposals. This section also reviews the motivations and the search for new
interactions of nature and discusses the hypothesis of gravitational shielding.
Section 4 addresses the astrophysical and cosmological phenomena, which
led to some recent proposals that modify gravity on large scales; it discusses
some of these proposals, and reviews their experimental implications. Section 5
discusses future missions and experiments aiming to expand our knowledge of
gravity. Finally, conclusions and an outlook are presented.

2 Testing Foundations of General Relativity

General relativity began its empirical success in 1915, by explaining the anom-
alous perihelion precession of Mercury’s orbit, using no adjustable theoretical
parameters. Shortly thereafter, Eddington’s 1919 observations of stellar lines-
of-sight during a solar eclipse confirmed the doubling of the deflection angles
predicted by the Einstein’s theory, as compared to Newtonian-like and equiv-
alence principle arguments; this made the theory an instant success. From
these beginnings, GR has been extensively tested in the solar system, success-
fully accounting for all data gathered to date. Thus, microwave ranging to the
Viking Lander on Mars yielded accuracy ∼0.2 in the tests of GR [1–3]. Space-
craft and planetary radar observations reached an accuracy of ∼0.15 [4]. The
astrometric observations of quasars on the solar background performed with
Very long-baseline interferometry (VLBI) improved the accuracy of the tests
of gravity to ∼0.045 [5–7]. Lunar laser ranging (LLR) yields a 0.001 verifica-
tion of GR via precision measurements of the lunar orbit [8–14]. Finally, the
recent experiments with the Cassini spacecraft improved the accuracy of the
tests to ∼0.0023 [15]. As a result, GR became the standard theory of gravity
when astrometry and spacecraft navigation are concerned.

To date, GR is also in agreement with the data collected from the binary
millisecond pulsars. In fact, a considerable interest has recently developed
concerning the physical processes occurring in the strong gravitational field
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regime with relativistic pulsars providing a promising possibility to test grav-
ity in this qualitatively different dynamical environment. The general theoret-
ical framework for pulsar tests of strong-field gravity was introduced in [16];
the observational data for the initial tests were obtained with PSR1534 [17].
An analysis of strong-field gravitational tests and their theoretical justifica-
tion was presented in [18–20]. The recent analysis of the pulsar data tested
GR to ∼0.04 at a 3σ confidence level [21].

In this section, we present the framework used to plan and analyze the
data in a weak-field and slow-motion approximation which is appropriate to
describe dynamical conditions in the solar system.

2.1 Metric Theories of Gravity and PPN Formalism

Within the accuracy of modern experiments, the weak-field and slow-motion
approximation provides a useful starting point for testing the predictions of
different metric theories of gravity in the solar system. Following Fock [22,23]
and Chandrasekhar [24], a matter distribution in this approximation is often
represented by the perfect fluid model with the density of energy–momentum
tensor T̂mn as given by

T̂mn =
√−g ([ρ0(1 + Π) + p]umun − pgmn) , (1)

where ρ0 is the mass density of the ideal fluid in coordinates of the comoving
frame of reference, uk = dzk/ds are the components of invariant four-velocity
of a fluid element, and p(ρ) is the isentropic pressure connected with ρ by
an equation of state. The quantity ρΠ is the density of internal energy of an
ideal fluid. The definition of Π results from the first law of thermodynamics,
through the equation un

(
Π;n + p

(
1/ρ̂
)
;n

)
= 0, where the subscript; n denotes

a covariant derivative and ρ̂ =
√−gρ0u

0 is the conserved mass density (see
further details in [23–26]). Given the energy–momentum tensor, one finds the
solutions of the gravitational field equations for a particular theory of gravity.1

Metric theories of gravity have a special position among all the other
possible theoretical models. The reason is that, independently of the many
different principles at their foundations, the gravitational field in these theories
affects the matter directly through the metric tensor gmn, which is determined
from the field equations. As a result, in contrast to Newtonian gravity, this
tensor expresses the properties of a particular gravitational theory and carries
information about the gravitational field of the bodies.
1 A powerful approach developing a weak-field approximation for GR was presented

in [27–29]. It combines an elegant “Maxwell-like” treatise of the spacetime metric
in both the global and local reference frames with the Blanchet–Damour multi-
pole formalism [30]. This approach is applicable for an arbitrary energy–stress
tensor and is suitable for addressing problems of strong-field regime. Application
of this method to a general N -body problem in a weak-field and slow-motion
approximation was developed in [31].
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Generalizing on a phenomenological parameterization of the gravitational
metric tensor field, which Eddington originally developed for a special case,
a method called the parameterized post-Newtonian (PPN) metric has been
developed [32–34]. This method represents the gravity tensor’s potentials for
slowly moving bodies and weak interbody gravity, and is valid for a broad
class of metric theories, including GR as a unique case. Several parameters
in the PPN metric expansion vary from theory to theory, and they are indi-
vidually associated with various symmetries and invariance properties of the
underlying theory. Gravity experiments can be analyzed in terms of the PPN
metric, and an ensemble of experiments will determine the unique value for
these parameters, and hence the metric field itself.

As we know it today, observationally, GR is the most successful theory so
far as solar system experiments are concerned (see, e.g., [35] for an updated
review). The implications of GR for solar system gravitational phenomena
are best addressed via the PPN formalism for which the metric tensor of
the general Riemannian spacetime is generated by some given distribution of
matter in the form of an ideal fluid, given by (1). It is represented by a sum
of gravitational potentials with arbitrary coefficients, the PPN parameters. If,
for simplicity, one assumes that Lorentz invariance, local position invariance,
and total momentum conservation hold, the metric tensor in four dimensions
in the so-called PPN-gauge may be written2 as

g00 = −1 + 2U − 2β U2 + 2(γ + 1)Φ1

+2 [(3γ + 1 − 2β)Φ2 + Φ3 + 3γΦ4] + O(c−5), (2)

g0i = −1
2
(4γ + 3)Vi −

1
2
Wi + O(c−5) ,

gij = δij(1 + 2γU) + O(c−4) . (3)

The order of magnitude of the various terms is determined according to
the rules U ∼ v2 ∼ Π ∼ p/ρ ∼ ε, vi ∼ |d/dt|/|d/dx| ∼ ε1/2. The parameter γ
represents the measure of the curvature of the spacetime created by the unit
rest mass; the parameter β is the measure of the nonlinearity of the law of
superposition of the gravitational fields in a theory of gravity or the measure
of the metricity. The generalized gravitational potentials, proportional to U2,
result from integrating the energy–stress density (1), are given by

U(x, t) =
∫

d3x′ ρ0(x′, t)
|x − x′| , V α(x, t) = −

∫
d3x′ ρ0(x′, t)vα(x′, t)

|x − x′| , (4)

W i(x, t) =
∫

d3x′ρ0(x′, t)vj(x′, t)
(xj − x′j)(xi − x′i)

|x − x′|3 , (5)

2 Note the geometrical units � = c = G = 1 are used throughout, as is the metric
signature convention (− + ++).
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Φ1(x, t) = −
∫

d3x′ ρ0(x′, t)v2(x′, t)
|x − x′| , Φ2(x′, t) =

∫
d3x′ ρ0(x′, t)U(x′, t)

|x − x′| ,

(6)

Φ3(x, t) =
∫

d3x′ ρ0(x′, t)Π(x′, t)
|x − x′| d3z′ν , Φ4(x, t) =

∫
d3x′ p(x

′, t)
|x − x′| . (7)

In the complete PPN framework, a particular metric theory of gravity
in the PPN formalism might be fully characterized by means of ten PPN
parameters [26, 36]. Thus, besides the parameters γ, β, there are eight other
parameters α1, α2, α3, ζ, ζ1, ζ2, ζ3, ζ4. The formalism uniquely prescribes the
values of these parameters for each particular theory under study. In the
standard PPN gauge [26] these parameters have clear physical meaning, each
quantifying a particular symmetry, conservation law, or fundamental tenant
of the structure of spacetime. Thus, in addition to the parameters γ and β
discussed above, the group of parameters α1, α2, α3 specify the violation of
Lorentz invariance (or the presence of the privileged reference frame), the pa-
rameter ζ quantifies the violation of the local position invariance, and, finally,
the parameters ζ1, ζ2, ζ3, ζ4 reflect the violation of the law of total momentum
conservation for a closed gravitating system. Note that GR, when analyzed
in standard PPN gauge, gives γ = β = 1 and all the other eight parameters
vanish. The Brans–Dicke theory [37] is the best known of the alternative the-
ories of gravity. It contains, besides the metric tensor, a scalar field and an
arbitrary coupling constant ω, which yields the two PPN parameter values,
β = 1, γ = (1 + ω)/(2 + ω), where ω is an unknown dimensionless parameter
of this theory. More general scalar–tensor theories (see Sect. 3.2) yield values
of β different from one [38].

The main properties of the PPN metric tensor given by Eqs. (3)–(7) are
well established and widely in use in modern astronomical practice [25,26,36,
39–41]. For practical purposes one uses this metric to generate the equations
of motion for the bodies of interest. These equations are then used to produce
numerical codes in relativistic orbit determination formalisms for planets and
satellites [36, 40, 41] as well as for analyzing the gravitational experiments in
the solar system [26,42].

In what follows, we discuss the foundations of general theory of relativity
together with our current empirical knowledge on their validity. We take the
standard approach to GR according to which the theory is supported by the
following basic tenants:

1. Equivalence principle (EP), which states that freely falling bodies do have
the same acceleration in the same gravitational field independent of their
compositions, which is also known as the principle of universality of the
free fall (discussed in Sect. 2.2);

2. Local Lorentz invariance (LLI), which suggests that clock rates are inde-
pendent of the clock’s velocities (discussed in Sect. 2.3);

3. Local position invariance (LPI), which postulates that clock rates are also
independent of their spacetime positions (discussed in Sect. 2.4).
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2.2 The Equivalence Principle

Since Newton, the question about the equality of inertial and passive gravi-
tational masses has risen in almost every theory of gravitation. Thus, almost
100 years ago, Einstein postulated that not only mechanical laws of motion
but also all nongravitational laws should behave in freely falling frames as if
gravity were absent. It is this principle that predicts identical accelerations
of compositionally different objects in the same gravitational field, and also
allows gravity to be viewed as a geometrical property of spacetime, leading to
the general relativistic interpretation of gravitation.

Below we shall discuss two different “flavors” of the equivalence principle,
the weak and the strong forms of the EP that are currently tested in vari-
ous experiments performed with laboratory test masses and with bodies of
astronomical sizes.

2.2.1 The Weak Equivalence Principle

The weak form of the EP (the WEP) states that the gravitational properties
of strong and electroweak interactions obey the EP. In this case, the rele-
vant test-body differences are their fractional nuclear-binding differences, their
neutron-to-proton ratios, their atomic charges, etc. Furthermore, the equality
of gravitational and inertial masses implies that different neutral massive test
bodies will have the same free-fall acceleration in an external gravitational
field, and therefore in freely falling inertial frames, the external gravitational
field appears only in the form of a tidal interaction [43]. Apart from these tidal
corrections, freely falling bodies behave as if external gravity is absent [44].

According to GR, the light rays propagating near a gravitating body
are achromatically scattered by the curvature of the spacetime generated by
the body’s gravity field. The entire trajectory of the light ray is bent to-
ward the body by an angle depending on the strength of the body’s gravity.
In the solar system, the Sun’s gravity field produces the largest effect, deflect-
ing the light by as much as 1.75′′ · (R�/b), where R� is the solar radius and
b is the impact parameter. The Eddington’s 1919 experiment confirmed the
fact that photons obey the laws of free fall in a gravitational field as predicted
by GR. The original accuracy was only 10% which was recently improved
to 0.0023% by a solar conjunction experiment performed with the Cassini
spacecraft [15].

The Pound–Rebka experiment, performed in 1960, further verified effects
of gravity on light by testing the universality of gravity-induced frequency
shift, Δν, that follows from the WEP

Δν

ν
=

gh

c2
= (2.57 ± 0.26) × 10−15, (8)

where g is the acceleration of gravity and h the height of fall [45].
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The WEP can be scrutinized by studying the free fall of antiprotons and
antihydrogen, even though the experimental obstacles are considerable; the
subject has been extensively reviewed in [46]. This would help in investigat-
ing to what extent gravity respects the fundamental CPT symmetry of local
quantum field theories, namely if antiparticles fall as particles in a gravi-
tational field. As we shall see later, CPT symmetry may be spontaneously
broken in some string/M-theory vacua’s; some implications of this will also
be mentioned in the context of the validity LLI. The ATHENA (apparatus
for high-precision experiments on neutral antimatter) and the ATRAP collab-
orations at CERN have developed techniques to deal with the difficulties of
storing antiprotons and creating an antihydrogen atom (see [47,48] for recent
accounts), but no gravitational test has been performed so far. On the other
hand, the former CPLEAR collaboration has reported on a test of the WEP
involving neutral kaons [49], with limits of 6.5, 4.3, and 1.8 × 10−9, respec-
tively, for scalar, vector, and tensor potentials originating from the Sun with
a range much greater than 1 AU acting on kaons and antikaons. Despite their
relevance, these results say nothing about new forces that couple to the baryon
number, and therefore are at best complementary to further tests yet to be
performed with antiprotons and antihydrogen atoms.

Most extensions to GR are metric in nature, i.e., they assume that the
WEP is valid. However, as emphasized by [50,51], almost all extensions to the
standard model of particle physics generically predict new forces that would
show up as apparent violations of the EP; this occurs specially in theories
containing macroscopic-range quantum fields and thus predicting quantum
exchange forces that generically violate the WEP, as they couple to generalized
“charges,” rather than to mass/energy as does gravity [52].

In a laboratory, precise tests of the EP can be made by comparing the
free-fall accelerations, a1 and a2, of different test bodies. When the bodies are
at the same distance from the source of the gravity, the expression for the
equivalence principle takes the elegant form

Δa

a
=

2(a1 − a2)
a1 + a2

=
(
MG

MI

)
1

−
(
MG

MI

)
2

= Δ

(
MG

MI

)
, (9)

where MG and MI are the gravitational and inertial masses of each body.
The sensitivity of the EP test is determined by the precision of the differential
acceleration measurement divided by the degree to which the test bodies differ
(e.g., composition).

The WEP has been subject to various laboratory tests throughout the
years. In 1975, Collela et al. [53] showed with their interferometric experi-
ment that a neutron beam split by a silicon crystal traveling through distinct
gravitational paths interferes as predicted by the laws of quantum mechanics,
with a gravitational potential given by Newtonian gravity, thus enabling an
impressive verification of the WEP applied to an elementary hadron. Present-
day technology has achieved impressive limits for the interferometry of atoms
rising against gravity, of order 3 × 10−8 [54].
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Various experiments have been performed to measure the ratios of gravita-
tional to inertial masses of bodies. Recent experiments on bodies of laboratory
dimensions verify the WEP to a fractional precision Δ(MG/MI) � 10−11

by [55], to � 10−12 by [56, 57] and more recently to a precision of
� 1.4 × 10−13 [58]. The accuracy of these experiments is sufficiently high
to confirm that the strong, weak, and electromagnetic interactions contribute
equally to the passive gravitational and inertial masses of the laboratory bod-
ies. A review of the most recent laboratory tests of gravity can be found in [59].

Quite recently, Nesvizhevsky and collaborators have reported evidence for
the existence of gravitational bound states of neutrons [60]; the experiment
was, at least conceptually, put forward long ago, in 1978 [61]. Subsequent steps
toward the final experiment are described in [62]. This consists in allowing
ultra-cold neutrons from a source at the Institute Laue–Langevin reactor in
Grenoble to fall toward a horizontal mirror under the influence of the Earth’s
gravitational field. This potential confines the motion of the neutrons, which
do not move continuously vertically, but rather jump from one height to an-
other as predicted by quantum mechanics. It is reported that the minimum
measurable energy is of 1.4×10−12 eV, corresponding to a vertical velocity of
1.7 cm s−1. A more intense beam and an enclosure mirrored on all sides could
lead to an energy resolution down to 10−18 eV.

We remark that this experiment opens fascinating perspectives, both for
testing noncommutative versions of quantum mechanics and for the connec-
tion of this theory with gravity [63]. It also enables a new criterion in under-
standing the conditions for distinguishing quantum from classical behavior in
function of the size of an observed system [64].

This impressive evidence of the WEP for laboratory bodies is incomplete
for astronomical body scales. The experiments searching for WEP violations
are conducted in laboratory environments that utilize test masses with negligi-
ble amounts of gravitational self-energy and therefore a large-scale experiment
is needed to test the postulated equality of gravitational self-energy contribu-
tions to the inertial and passive gravitational masses of the bodies [32]. Recent
analysis of the LLR data demonstrated that no composition-dependent accel-
eration effects [65] are present.

Once the self-gravity of the test bodies is nonnegligible (currently with
bodies of astronomical sizes only), the corresponding experiment will be test-
ing the ultimate version of the EP – the strong equivalence principle (SEP) –
that is discussed below.

2.2.2 The Strong Equivalence Principle

In its strong form the EP is extended to cover the gravitational properties
resulting from gravitational energy itself. In other words, it is an assumption
about the way that gravity begets gravity, i.e., about the nonlinear property
of gravitation. Although GR assumes that the SEP is exact, alternate metric
theories of gravity, such as those involving scalar fields, and other extensions
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of gravity theory, typically violate the SEP [8,32,66,67]. For the SEP case, the
relevant test-body differences are the fractional contributions to their masses
by gravitational self-energy. Because of the extreme weakness of gravity, SEP
test bodies that differ significantly must have astronomical sizes. Currently,
the Earth–Moon–Sun system provides the best solar system arena for testing
the SEP.

A wide class of metric theories of gravity are described by the parameter-
ized post-Newtonian formalism [33, 34, 66], which provides a common frame-
work to study the motion of celestial bodies in external gravitational fields.
Over the last 35 years, the PPN formalism has become a useful framework for
testing the SEP for extended bodies. To facilitate investigation of a possible
violation of the SEP, in that formalism the ratio between gravitational and
inertial masses, MG/MI , is expressed [32,66] as[

MG

MI

]
SEP

= 1 + η

(
Ω

Mc2

)
, (10)

where M is the mass of a body, Ω is the body’s (negative) gravitational
self-energy, Mc2 is its total mass energy, and η is a dimensionless parameter
that quantifies SEP violation: in fully conservative, Lorentz-invariant theories
of gravity [26, 68], the SEP parameter is related to the PPN parameters by
η = 4β − γ − 3. In GR, γ = β = 1, so that η = 0.

The self-energy of a body B is given by(
Ω

Mc2

)
B

= − G

2MBc2

∫
B

d3xd3y
ρB(x)ρB(y)

|x − y| . (11)

For a sphere with radius R and uniform density, Ω/Mc2 = −3GM/5Rc2 =
−3v2

E/10c2, where vE is the escape velocity. Accurate evaluation for solar
system bodies requires numerical integration of the expression of (11). Eval-
uating the standard solar model [69] results in (Ω/Mc2)� ∼ −3.52 × 10−6.
Because gravitational self-energy is proportional to M2 and also because of
the extreme weakness of gravity, the typical values for the ratio (Ω/Mc2) are
∼10−25 for bodies of laboratory sizes. Therefore, the experimental accuracy of
a part in 1013 [58], which is so useful for the study of the validity of the WEP,
is not sufficient to test on how gravitational self-energy contributes to the
inertial and gravitational masses of small bodies. To test the SEP, one must
consider planetary-sized extended bodies, where the ratio (11) is considerably
higher.

Nordtvedt [8,32,70] suggested several solar system experiments for testing
the SEP. One of these was the lunar test. Another, a search for the SEP effect
in the motion of the Trojan asteroids, was carried out in [71, 72]. Interplan-
etary spacecraft tests have been considered in [44] and discussed in [73]. An
experiment employing existing binary pulsar data has been proposed [74]. It
was pointed out that binary pulsars may provide an excellent possibility for
testing the SEP in the new regime of strong self-gravity [18,19]; however, the
corresponding tests have yet to reach competitive accuracy [75,76].
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To date, the Earth–Moon–Sun system has provided the most accurate
test of the SEP; recent analysis of LLR data tests the EP to a high precision,
yielding Δ(MG/MI)EP = (−1.0 ± 1.4) × 10−13 [14]. This result corresponds
to a test of the SEP of Δ(MG/MI)SEP = (−2.0 ± 2.0) × 10−13 with the SEP
violation parameter η = 4β − γ − 3 found to be η = (4.4 ± 4.5) × 10−4.
Using the recent Cassini result for the PPN parameter γ, PPN parameter β is
determined at the level of β−1 = (1.2±1.1)×10−4 (see more details in [14]).

2.3 Local Lorentz Invariance

Invariance under Lorentz transformations states that the laws of physics are
independent of the frame velocity; this is an underlying symmetry of all
current physical theories. However, some evidence recently found in the con-
text of string field theory indicates that this symmetry can be spontaneously
broken. Naturally, the experimental verification of this breaking poses a sig-
nificant challenge. It has already been pointed out that astrophysical obser-
vations of distant sources of gamma radiation could hint what is the nature
of gravity-induced wave dispersion in vacuum [77, 78] and therefore points
toward physics beyond the Standard Model of Particles and Fields (here-
after Standard Model). Limits on Lorentz symmetry violation based on the
observations of high-energy cosmic rays with energies beyond 5 × 1019 eV,
the so-called Greisen–Zatsepin–Kuzmin (GKZ) cutoff [79], have also been dis-
cussed [80–83].

A putative violation of Lorentz symmetry has been a repeated object of
interest in the literature. A physical description of the effect of our velocity
with respect to a presumably preferred frame of reference relies on a constant
background cosmological vector field, as suggested in [84]. Based on the be-
havior of the renormalization group β-function of non-abelian gauge theories,
it has also been argued that Lorentz invariance could be just a low-energy
symmetry [85].

Lorentz symmetry breaking due to nontrivial solutions of string field the-
ory was first discussed in [86]. These arise from the string field theory of open
strings and may have implications for low-energy physics. For instance, as-
suming that the contribution of Lorentz-violating interactions to the vacuum
energy is about half of the critical density implies that feeble tensor-mediated
interactions in the range of ∼10−4 m should exist [87]. Furthermore, Lorentz
violation may induce the breaking of conformal symmetry; this, together with
inflation, may explain the origin of the primordial magnetic fields required to
explain the observed galactic magnetic field [88]. Also, violations of Lorentz
invariance may imply in a breaking of the fundamental CPT symmetry of local
quantum field theories [89]. Quite remarkably, this can be experimentally veri-
fied in neutral-meson [90] experiments,3 Penning-trap measurements [92], and
3 These CPT violating effects are unrelated with those due to possible nonlinearities

in quantum mechanics, presumably arising from quantum gravity and already
investigated by the CPLEAR Collaboration [91].
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hydrogen–antihydrogen spectroscopy [93]. This spontaneous breaking of CPT
symmetry allows for an explanation of the baryon asymmetry of the Universe:
in the early Universe, after the breaking of the Lorentz and CPT symmetries,
tensor–fermion interactions in the low-energy limit of string field theories give
rise to a chemical potential that creates in equilibrium a baryon–antibaryon
asymmetry in the presence of baryon number violating interactions [94].

Limits on the violation of Lorentz symmetry are available from laser in-
terferometric versions of the Michelson–Morley experiment, by comparing the
velocity of light, c, and the maximum attainable velocity of massive particles,
ci, up to δ ≡ |c2/c2i − 1| < 10−9 [95]. More accurate tests can be performed
via the Hughes–Drever experiment [96,97], where one searches for a time de-
pendence of the quadrupole splitting of nuclear Zeeman levels along Earth’s
orbit. This technique achieves an impressive limit of δ < 3 × 10−22 [98].
A recent reassessment of these results reveals that more stringent bounds
can be reached, up to eight orders of magnitude higher [99]. The parame-
terized post-Newtonian parameter α3 can be used to set astrophysical limits
on the violation of momentum conservation and the existence of a preferred
reference frame. This parameter, which vanishes identically in GR can be
accurately determined from the pulse period of pulsars and millisecond pul-
sars [35,100]. The most recent results yields a limit on the PPN parameter α3

of |α3| < 2.2 × 10−20 [101].
After the cosmic microwave background radiation (CMBR) has been dis-

covered, an analysis of the interaction between the most energetic cosmic-ray
particles and the microwave photons was mandatory. As it turns out, the prop-
agation of the ultra-high-energy nucleons is limited by inelastic collisions with
photons of the CMBR, preventing nucleons with energies above 5 × 1019 eV
from reaching Earth from further than 50–100 Mpc. This is the already men-
tioned GZK cutoff [79]. However, events where the estimated energy of the
cosmic primaries is beyond the GZK cutoff were observed by different col-
laborations [102–105]. It has been suggested [80,81] (see also [82]) that slight
violations of Lorentz invariance would cause energy-dependent effects that
would suppress otherwise inevitable processes such as the resonant scattering
reaction, p + γ2.73K → Δ1232. The study of the kinematics of this process
produces a quite stringent constraint on the validity of Lorentz invariance,
δ < 1.7 × 10−25 [83, 106].

Quite recently, the High-Resolution Fly’s Eye collaboration suggested that
the gathered data show that the GZK cutoff holds for their span of observa-
tions [107]. Confirmation of this result is of great importance, and the coming
into operation of the Auger collaboration [108] in the near future will un-
doubtedly provide further insight into this fundamental question. It is also
worth mentioning that the breaking of Lorentz invariance can occur in the
context of noncommutative field theories [109], even though this symmetry
may hold (at least) at first nontrivial order in perturbation theory of the non-
commutative parameter [110]. Actually, the idea that the noncommutative
parameter may be a Lorentz tensor has been considered in some field theory
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models [111]. Also, Lorentz symmetry can be broken in loop quantum grav-
ity [112], quantum gravity-inspired spacetime foam scenarios [113], or via the
spacetime variation of fundamental coupling constants [114]. For a fairly com-
plete review about Lorentz violation at high energies the reader is directed
to [115]. Note that a gravity model where LLI is spontaneously broken was
proposed in [116,117] and solutions where discussed in [118].

2.3.1 Spontaneous Violation of Lorentz Invariance

The impact of a spontaneous violation of Lorentz invariance on theories of
gravity is of great interest. In this context, the breaking of Lorentz invariance
may be implemented, for instance, by allowing a vector field to roll to its
vacuum expectation value. This mechanism requires that the potential that
rules the dynamics of the vector field possesses a minimum, in the way sim-
ilar to the Higgs mechanism [116]. This, so-called, “bumblebee” vector thus
acquires an explicit (four-dimensional) orientation, and Lorentz symmetry is
spontaneously broken. The action of the bumblebee model is written as

S =
∫

d4x
√−g

[
1
2κ

(R + ξBμBνRμν) − 1
4
BμνBμν − V (BμBμ ± b2)

]
,

(12)
where Bμν = ∂μBν−∂νBμ, ξ and b2 are a real coupling constant and a free real
positive constant, respectively. The potential V driving Lorentz and/or CPT
violation is supposed to have a minimum at BμBμ ± b2 = 0, V ′(bμb

μ) = 0.
Since one assumes that the bumblebee field Bμ is frozen at its vacuum exp-
ectation value, the particular form of the potential driving its dynamics is
irrelevant. The scale of bμ, which controls the symmetry breaking, must be
derived from a fundamental theory, such as string theory or from a low-energy
extension to the Standard Model; hence one expects either b of order of the
Planck mass, MP = 1.2 × 1019 GeV, or of order of the electroweak breaking
scale, MEW � 102 GeV.

Previously, efforts to quantify an hypothetical breaking of Lorentz invari-
ance were primarily directed toward the phenomenology of such spontaneous
Lorentz symmetry breaking in particle physics. Only recently its implications
for gravity have been more thoroughly explored [116, 117]. In that work, the
framework for the LSB gravity model is set up, developing the action and
using the vielbein formalism. A later study [118] considered consequences of
such a scenario, assuming three plausible cases (1) the bumblebee field ac-
quires a purely radial vacuum expectation value, (2) a mixed radial and tem-
poral vacuum expectation value, and (3) a mixed axial and temporal vacuum
expectation value.

In the first case, an exact black hole solution was found, exhibiting a
deviation from the inverse-square law such that the gravitational potential
of a point mass at rest depends on the radial coordinate as r−1+p where p
is a parameter related to the fundamental physics underlying the breaking
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of Lorentz invariance. This solution has a removable singularity at a horizon
of radius rs = (2Mr−p

0 )1/(1−p), slightly perturbed with respect to the usual
Scharzschild radius rs0 = 2M , which protects a real singularity at r = 0.
Known deviations from Kepler’s law yield p ≤ 2 × 10−9.

In the second case, no exact solution was discovered, although a per-
turbative method allowed for the characterization of the Lorentz symme-
try breaking in terms of the PPN parameters β ≈ 1 − (K + Kr)/M and
γ ≈ 1 − (K + 2Kr)/M , directly proportional to the strength of the induced
effect, given by K and Kr ∼ K, where K and Kr are integration constants
arising from the perturbative treatment of the timelike spontaneous LSB su-
perimposed on the vacuum Scharzschild metric. An analogy with Rosen’s
bimetric theory yields the parameter γ � (A + B)d, where d is the distance
to the central body and A and B rule the temporal and radial components of
the vector field vacuum expectation value.

In the third case, a temporal/axial vacuum expectation value for the bum-
blebee vector field clearly breaks isotropy, thus forbidding a standard PPN
analysis. However, for the case of the breaking of Lorentz invariance occur-
ring in the x1 direction, similar direction-dependent PPN-like parameters were
defined as γ1 � b2 cos2 θ/2 and γ2 � a2b2 cos2 θ/4, where a and b are propor-
tional, respectively, to the temporal and axial components of the vacuum
expectation value acquired by the bumblebee. This enables a crude estima-
tive of the measurable PPN parameter γ, yielding γ ≈ b2(1 − e2)/4, where
e is the orbit’s eccentricity. A comparison with experiments concerning the
anisotropy of inertia yields |b| ≤ 2.4 × 10−11 [98].

2.4 Local Position Invariance

Given that both the WEP and LLI postulates have been tested with great
accuracy, experiments concerning the universality of the gravitational red-
shift measure the level to which the LPI holds. Therefore, violations of the
LPI would imply that the rate of a free-falling clock would be different when
compared with a standard one, for instance on the Earth’s surface. The accu-
racy to which the LPI holds as an invariance of Nature can be parameterized
through Δν/ν = (1 + μ)U/c2. From the already mentioned Pound–Rebka
experiment (cf. (8)) one can infer that μ � 10−2; the most accurate verifi-
cation of the LPI was performed by Vessot and collaborators, by comparing
hydrogen-maser frequencies on Earth and on a rocket flying to altitude of
104 km [119]. The resulting bound is |μ| < 2 × 10−4. Recently, one order-of-
magnitude improvement was attained, thus establishing the most stringent
result on the LPI so far [120], |μ| < 2.1 × 10−5 (Table 1).

2.5 Summary of Solar System Tests of Relativistic Gravity

Although, these available experimental data fit quite well with GR, while
allowing for the existence of putative extensions of this successful theory,
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Table 1. The accuracy of determination of the PPN parameters γ and β [14,35,42].

PPN parameter Experiment Result

γ − 1 Cassini 2003 spacecraft radiotracking 2.3 × 10−5

Observations of quasars with astrometric VLBI 3 × 10−4

β − 1 Helioseismology bound on perihelion shift 3 × 10−3

LLR test of the SEP, assumed: η = 4β − γ − 3 1.1 × 10−4

and the Cassini result for PPN γ

provided any new effects are small at the post-Newtonian scale [26]. We shall
here discuss the available phenomenological constraints for alternative theories
of gravity.

LLR investigates the SEP by looking for a displacement of the lunar orbit
along the direction to the Sun. The equivalence principle can be split into two
parts: the WEP tests the sensitivity to composition and the SEP checks the
dependence on mass. There are laboratory investigations of the WEP which
are about as accurate as LLR [58, 65]. LLR is the dominant test of the SEP
with the most accurate testing of the EP at the level of Δ(MG/MI)EP =
(−1.0 ± 1.4) × 10−13 [14]. This result corresponds to a test of the SEP of
Δ(MG/MI)SEP = (−2.0 ± 2.0) × 10−13 with the SEP violation parameter
η = 4β − γ − 3 found to be η = (4.4 ± 4.5) × 10−4. Using the recent Cassini
result for the PPN parameter γ, PPN parameter β is determined at the level
of β − 1 = (1.2 ± 1.1) × 10−4 (see Fig. 1).

LLR data yielded the strongest limits to date on variability of the gravita-
tional constant (the way gravity is affected by the expansion of the Universe),
the best measurement of the de Sitter precession rate, and is relied upon to
generate accurate astronomical ephemerides. The possibility of a time varia-
tion of the gravitational constant, G, was first considered by Dirac in 1938 on
the basis of his large number hypothesis, and later developed by Brans and
Dicke in their theory of gravitation (for more details consult [26,68]). Variation
might be related to the expansion of the Universe, in which case Ġ/G = σH0,
where H0 is the Hubble constant, and σ is a dimensionless parameter whose
value depends on both the gravitational constant and the cosmological model
considered. Revival of interest in Brans–Dicke-like theories, with a variable
G, was partially motivated by the appearance of string theories where G is
considered to be a dynamical quantity [122].

In Brans–Dicke theory, as well as in more general scalar–tensor theories,
the gravitational coupling depends on the cosmic time. Observational bounds
arising from the timing of the binary pulsar PSR1913+16 yield quite restric-
tive bounds [123] of Ġ/G = (1.0 ± 2.3) × 10−11 year−1, with a magnitude
similar to the cosmological bounds available [124–126] (see [127] and refer-
ences therein for a discussion on a connection with the accelerated expan-
sion of the Universe). Varying-G solar models [128] and measurements of
masses and ages of neutron stars yield even more stringent limits [129] of
Ġ/G = (−0.6 ± 2.0) × 10−12 year−1.
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Fig. 1. The progress in determining the PPN parameters γ and β for the last
30 years (adapted from [121]).

The most stringent limit on a change of G comes from LLR, which is one
of the important gravitational physics result that LLR provides. GR does not
predict a changing G, but some other theories do, thus testing for this effect is
important. As we have seen, the most accurate limit published is the current
LLR test, yielding Ġ/G = (4±9)×10−13 year−1 [14]. The Ġ/G uncertainty is
83 times smaller than the inverse age of the Universe, t0 = 13.4 Gyr with the
value for Hubble constant H0 = 72 km s−1 Mpc−1 from the WMAP data [130].
The uncertainty for Ġ/G is improving rapidly because its sensitivity depends
on the square of the data span. This fact puts LLR, with its more than 35 years
of history, in a clear advantage as opposed to other experiments.

LLR has also provided the only accurate determination of the geodetic
precession. Williams et al. [14] report a test of geodetic precession, which ex-
pressed as a relative deviation from GR, is Kgp = −0.0019± 0.0064. The GP-B
satellite should provide improved accuracy over this value, if that mission is
successfully completed. LLR also has the capability of determining PPN β
and γ directly from the point-mass orbit perturbations. A future possibility is
detection of the solar J2 from LLR data combined with the planetary ranging
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data. Also possible are dark matter tests, looking for any departure from the
inverse-square law of gravity, and checking for a variation of the speed of light.
The accurate LLR data have been able to quickly eliminate several suggested
alterations of physical laws. The precisely measured lunar motion is a reality
that any proposed laws of attraction and motion must satisfy.

3 Search for New Physics Beyond General Relativity

The nature of gravity is fundamental to the understanding of the solar sys-
tem and the large-scale structure of the Universe. This importance motivates
various precision tests of gravity both in laboratories and in space. To date,
the experimental evidence for gravitational physics is in agreement with GR;
however, there are a number of reasons to question the validity of this theory.
Despite the success of modern gauge field theories in describing the electro-
magnetic, weak, and strong interactions, it is still not understood how gravity
should be described at the quantum level. In theories that attempt to include
gravity, new long-range forces can arise in addition to the Newtonian inverse-
square law. Even at the purely classical level, and assuming the validity of
the equivalence principle, Einstein’s theory does not provide the most general
way to describe the space–time dynamics, as there are reasons to consider
additional fields and, in particular, scalar fields.

Although scalar fields naturally appear in the modern theories, their in-
clusion predicts a non-Einsteinian behavior of gravitating systems. These de-
viations from GR lead to a violation of the EP, modification of large-scale
gravitational phenomena, and imply that the constancy of the “constants”
must be reconsidered. These predictions motivate searches for small devia-
tions of relativistic gravity from GR and provide a theoretical paradigm and
constructive guidance for further gravity experiments. As a result, this theo-
retical progress has motivated high-precision tests of relativistic gravity and
especially those searching for a possible violation of the equivalence principle.
Moreover, because of the ever-increasing practical significance of the general
theory of relativity (i.e., its use in spacecraft navigation, time transfer, clock
synchronization, standards of time, weight and length, etc.) this fundamental
theory must be tested to increasing accuracy.

An understanding of gravity at a quantum level will allow one to as-
certain whether the gravitational “constant” is a running coupling constant
like those of other fundamental interactions of nature. String/M-theory [131]
hints a negative answer to this question, given the nonrenormalization theo-
rems of supersymmetry, a symmetry at the core of the underlying principle
of string/M-theory, and brane models [132, 133]. However, one-loop higher-
derivative quantum gravity models may permit a running gravitational cou-
pling, as these models are asymptotically free, a striking property [134]. In
the absence of a screening mechanism for gravity, asymptotic freedom may
imply that quantum gravitational corrections take effect on macroscopic and
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even cosmological scales, which of course has some bearing on the dark matter
problem [135] and, in particular, on the subject of the large-scale structure of
the Universe [136,137] (see, however, [124]). Either way, it seems plausible to
assume that quantum gravity effects manifest themselves only on cosmological
scales.

In this section we review the arguments for high-accuracy experiments
motivated by the ideas suggested by proposals of quantization of gravity.

3.1 String/M-Theory

String theory is currently referred to as string/M-theory, given the unifica-
tion of the existing string theories that is achieved in the context M-theory.
Nowadays, it is widely viewed as the most promising scheme to make GR
compatible with quantum mechanics (see [131] for an extensive presentation).
The closed string theory has a spectrum that contains as zero mass eigenstates
the graviton, gMN , the dilaton, Φ, and an antisymmetric second-order tensor,
BMN . There are various ways in which to extract the physics of our four-
dimensional world, and a major difficulty lies in finding a natural mechanism
that fixes the value of the dilaton field, since it does not acquire a potential
at any order in string perturbation theory.

Damour and Polyakov [52] have studied a possible mechanism to circum-
vent the above difficulty by suggesting string loop contributions, which are
counted by dilaton interactions, instead of a potential. After dropping the
antisymmetric second-order tensor and introducing fermions, ψ̂, Yang–Mills
fields, Âμ, with field strength F̂μν , in a spacetime described by the metric ĝμν ,
the relevant effective low-energy four-dimensional action is

S =
∫

M

d4x
√
−ĝB(Φ)

{
1
α′ [R̂ + 4∇̂μ∇̂μΦ− 4(∇̂Φ)2]

−k

4
F̂μνF̂

μν − ψ̂γμD̂μψ̂ + ...

}
, (13)

where
B(Φ) = e−2Φ + c0 + c1e

2Φ + c2e
4Φ + ..., (14)

α′ is the inverse of the string tension and k is a gauge group constant; the
constants c0, c1, . . . , etc., can, in principle, be determined via computation.

To recover Einsteinian gravity, a conformal transformation must be per-
formed with gμν = B(Φ)ĝμν , leading to an action where the coupling constants
and masses are functions of the rescaled dilaton, φ:

S =
∫

M

d4x
√−g

[
1
4q

R− 1
2q

(∇φ)2 − k

4
B(φ)FμνF

μν − ψγμDμψ + ...

]
, (15)

from which follows that 4q = 16πG = 1
4α

′ and the coupling constants
and masses are now dilaton dependent, through g−2 = kB(φ) and mA =
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mA(B(φ)). Damour and Polyakov proposed the minimal coupling principle
(MCP), stating that the dilaton is dynamically driven toward a local mini-
mum of all masses (corresponding to a local maximum of B(φ)). Due to the
MCP, the dependence of the masses on the dilaton implies that particles fall
differently in a gravitational field, and hence are in violation of the WEP.
Although, in the solar system conditions, the effect is rather small being of
the order of Δa/a � 10−18, application of already available technology can
potentially test prediction. Verifying this prediction is an interesting prospect,
as it would present a distinct experimental signature of string/M-theory. We
have no doubts that the experimental search for violations of the WEP, as
well as of the fundamental Lorentz and CPT symmetries, present important
windows of opportunity to string physics and should be vigorously pursued.

Recent analysis of a potential scalar field’s evolution scenario based on
action (15) discovered that the present agreement between GR and experiment
might be naturally compatible with the existence of a scalar contribution to
gravity. In particular, Damour and Nordtvedt [38] (see also [52] for nonmetric
versions of this mechanism together with [138] for the recent summary of a
dilaton-runaway scenario) have found that a scalar–tensor theory of gravity
may contain a “built-in” cosmological attractor mechanism toward GR. These
scenarios assume that the scalar coupling parameter 1

2 (1 − γ) was of order 1
in the early Universe (say, before inflation), and show that it then evolves to
be close to, but not exactly equal to, zero at the present time.

The Eddington parameter γ, whose value in general relativity is unity,
is perhaps the most fundamental PPN parameter, in that 1

2 (1 − γ) is a mea-
sure, for example, of the fractional strength of the scalar gravity interaction in
scalar–tensor theories of gravity [18,19]. Within perturbation theory for such
theories, all other PPN parameters to all relativistic orders collapse to their
general relativistic values in proportion to 1

2 (1− γ). Under some assumptions
(see, e.g., [38]), one can even estimate what is the likely order of magnitude of
the left-over coupling strength at present time which, depending on the total
mass density of the Universe, can be given as 1− γ ∼ 7.3× 10−7(H0/Ω

3
0)1/2,

where Ω0 is the ratio of the current density to the closure density and H0 is the
Hubble constant in units of 100 km s−1 Mpc−1. Compared to the cosmological
constant, these scalar field models are consistent with the supernovae obser-
vations for a lower matter density, Ω0 ∼ 0.2, and a higher age, (H0t0) ≈ 1.
If this is indeed the case, the level (1 − γ) ∼ 10−6–10−7 would be the lower
bound for the present value of the PPN parameter γ [38]. This is why mea-
suring the parameter γ to accuracy of one part in a billion, as suggested for
the laser astrometric test of relativity (LATOR) mission [121], is important.

3.2 Scalar–Tensor Theories of Gravity

In many alternative theories of gravity, the gravitational coupling strength
exhibits a dependence on a field of some sort; in scalar–tensor theories, this
is a scalar field ϕ. A general action for these theories can be written as
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S =
c3

4πG

∫
d4x

√−g

[
1
4
f(ϕ)R− 1

2
g(ϕ)∂μϕ∂

μϕ + V (ϕ)
]
+
∑

i

qi(ϕ)Li, (16)

where f(ϕ), g(ϕ), V (ϕ) are generic functions, qi(ϕ) are coupling functions, and
Li is the Lagrangian density of the matter fields; it is worth mentioning that
the graviton-dilaton system in string/M-theory can be viewed as one of such
scalar–tensor theories of gravity. An emblematic proposal is the well-known
Brans–Dicke theory [37] which corresponds to the specific choice

f(ϕ) = ϕ, g(ϕ) =
ω

ϕ
, (17)

and a vanishing potential V (ϕ). Note that in the Brans–Dicke theory, the
kinetic energy term of the field ϕ is noncanonical, and the latter has a dimen-
sion of energy squared. In this theory, the constant ω marks observational
deviations from GR, which is recovered in the limit ω → ∞. We point out
that, in the context of the Brans–Dicke theory, one can operationally intro-
duce the Mach’s principle which, we recall, states that the inertia of bodies
is due to their interaction with the matter distribution in the Universe. In-
deed, in this theory, the gravitational coupling is proportional to ϕ−1, which
depends on the energy–momentum tensor of matter through the field equa-
tions. Observational bounds require that |ω| � 500 [2, 5], and even higher
values |ω| � 40, 000 are reported in [35]. In the so-called induced gravity
models [139], the functions of the fields are initially given by f(ϕ) = ϕ2 and
g(ϕ) = 1/2, and the potential V (ϕ) allows for a spontaneous symmetry break-
ing, so that the field ϕ acquires a nonvanishing vacuum expectation value,
f(〈0|ϕ|0〉) = 〈0|ϕ2|0〉 = M2

P = G−1. Naturally, the cosmological constant is
given by the interplay of the value V (〈0|ϕ|0〉) and all other contributions to
the vacuum energy.

Therefore, it is clear that in this setup Newton’s constant arises from dy-
namical or symmetry-breaking considerations. It is mesmerizing to conjecture
that the ϕ field could be locally altered: this would require the coupling of this
field with other fields to locally modify its value. This feature can be found in
some adjusting mechanisms devised as a solution of the cosmological constant
problem (see, e.g., [140] for a list of references). However, Weinberg [140]
has shown that these mechanisms are actually unsuitable for this purpose,
although they nevertheless contain interesting multifield dynamics. Recent
speculations, suggesting that extra dimensions in braneworld scenarios may
be rather large [141, 142], bring forth gravitational effects at the much lower
scale set by M5, the five-dimensional Planck mass. Phenomenologically, the
existence of extra dimensions should manifest itself through a contribution to
Newton’s law on small scales, r � 10−4 m, as discussed in Sect. 3.3.

3.3 Search for New Interactions of Nature

The existence of new fundamental forces beyond the already known four fun-
damental interactions, if confirmed, will have several implications and bring
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important insights into the physics beyond the Standard Model. A great inter-
est on the subject was sparked after the 1986 claim of evidence for an interme-
diate range interaction with subgravitational strength [143], both theoretical
(see [46] for a review) and experimental, giving rise to a wave of new setups,
as well as repetitions of “classical” ones using state-of-the-art technology.

In its simplest versions, a putative new interaction or a fifth force would
arise from the exchange of a light boson coupled to matter with a strength
comparable to gravity. Planck-scale physics could give origin to such an in-
teraction in a variety of ways, thus yielding a Yukawa-type modification in
the interaction energy between point-like masses. This new interaction can be
derived, for instance, from extended supergravity theories after dimensional
reduction [46, 144], compactification of five-dimensional generalized Kaluza–
Klein theories including gauge interactions at higher dimensions [145], and
also from string/M-theory. In general, the interaction energy, V (r), between
two point masses m1 and m2 can be expressed in terms of the gravitational
interaction as4

V (r) = −G∞m1m2

r

(
1 + α e−r/λ

)
, (18)

where r = |r2−r1| is the distance between the masses, G∞ is the gravitational
coupling for r → ∞, and α and λ are, respectively, the strength and range
of the new interaction. Naturally, G∞ has to be identified with Newton’s
gravitational constant and the gravitational coupling becomes dependent on
r. Indeed, the force associated with (18) is given by:

F(r) = −∇V (r) = −G(r)m1m2

r2
r̂, (19)

where
G(r) = G∞

[
1 + α (1 + r/λ)e−r/λ

]
. (20)

The suggestion of existence of a new interaction arose from assuming that the
coupling α is not an universal constant, but instead a parameter depending
on the chemical composition of the test masses [146]. This comes about if one
considers that the new bosonic field couples to the baryon number B = Z+N ,
which is the sum of protons and neutrons. Hence the new interaction between
masses with baryon numbers B1 and B2 can be expressed through a new
fundamental constant, f , as:

V (r) = −f2B1B2

r
e−r/λ, (21)

such that the constant α can be written as

α = −σ

(
B1

μ1

)(
B2

μ2

)
, (22)

with σ = f2/G∞m2
H and μ1,2 = m1,2/mH , mH being the hydrogen mass.

4 We use here the units c = � = 1.
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The above equations imply that in a Galileo-type experiment a difference
in acceleration exists between the masses m1 and m2, given by

a12 = σ

(
B

μ

)
⊕

[(
B1

μ1

)
−
(
B2

μ2

)]
g, (23)

where g is the field strength of the Earth’s gravitational field.
Several experiments (see, for instance, [46, 143] for a list of the most rel-

evant) studied the parameters of a new interaction based on the idea of
a composition-dependent differential acceleration, as described in (23), and
other composition-independent effect.5 The current experimental status is
essentially compatible with the predictions of Newtonian gravity, in both
composition-independent and -dependent setups. The bounds on parameters
α and λ are summarized below (Fig. 2):

– Laboratory experiments devised to measure deviations from the inverse-
square law are most sensitive in the range 10−2 m � λ � 1 m, constraining
α to be smaller than about 10−4.

– Gravimetric experiments sensitive in the range of 10m � λ � 103 m
indicate that α � 10−3.

– Satellite tests probe the ranges of about 105 m � λ � 107 m suggest that
α � 10−7.

Fig. 2. Experimentally excluded regions for the range and strength of possible new
forces, as shown in [148].

5 For instance, neutron interferometry has been suggested to investigate a possible
new force that couples to neutron number [147].
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– Analysis of the effects of the inclusion of scalar fields into the stellar
structure yields a bound in the range 108 m � λ � 1010 m, limiting α to
be smaller than approximately 10−2 [148].

The latter bound, although modest, is derived from a simple computation
of the stellar equilibrium configuration in the polytropic gas approximation,
when an extra force due to a Yukawa potential is taken into account on the
hydrostatic equilibrium equation.

Remarkably, α is so far essentially unconstrained for λ < 10−3 m and
λ > 1013 m. The former range is particularly attractive as a testing ground
for new interactions, since forces with submillimetric range seems to be fa-
vored from scalar interactions in supersymmetric theories [149]; this is also
the case in the recently proposed theories of TeV scale quantum gravity, which
stem from the hypothesis that extra dimensions are not necessarily of Planck
size [141,142]. The range λ < 10−3 m also arises if one assumes that scalar [150]
or tensor interactions associated with Lorentz symmetry breaking in string
theories [87] account for the vacuum energy up to half of the critical density.
Putative corrections to Newton’s law at millimeter range could have relevant
implications, especially taking into account that, in certain models of extra
dimensions, these corrections can be as important as the usual Newtonian
gravity [142, 151]. From the experimental side, this range has recently been
available to experimental verification; state-of-the-art experiments rule out
extra dimensions over length scales down to 0.2 mm [152].

3.4 Gravity Shielding: The Majorana Effect

The possibility that matter can shield gravity is not predicted by modern the-
ories of gravity, but it is a recurrent idea and it would cause a violation of the
equivalence principle test. In fact, the topic has been more recently reviewed
in [125] renewing the legitimacy of this controversial proposal; consequently,
a brief discussion is given in this section.

The idea of gravity shielding goes back at least as far as to Majorana’s
1920 paper [153]. Since then a number of proposals and studies have been put
forward and performed to test the possible absorption of the gravitational
force between two bodies when screened from each other by a medium other
than vacuum. This effect is a clear gravitational analogue of the magnetic
permeability of materials, and Majorana [153] suggested the introduction of
a screening or extinction coefficient, h, to measure the shielding of the gravi-
tational force between masses m1 and m2 induced by a material with density
ρ(r); such an effect can be modeled as

F ′ =
Gm1m2

r2
exp

[
−h

∫
ρ(r) dr

]
, (24)

which clearly depends on the amount of mass between attracting mass ele-
ments and a universal constant h. Naturally, one expects h to be quite small.
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Several attempts to derive this parameter from general principles have
been made. Majorana gave a closed form expression for a sphere’s gravitational
to inertial mass ratio. For weak shielding, a simpler expression is given by the
linear expansion of the exponential term, MG/MI ≈ 1 − hfRρ̄, where f is
a numerical factor, ρ̄ is the mean density, and R is the sphere’s radius. For
a homogeneous sphere, Majorana and Russell give f = 3/4. For a radial
density distribution of the form ρ(r) = ρ(0)(1 − r2/R2)n, Russell derives
f = (2n + 3)2/(12n + 12). Russell [154] realized that the large masses of
the Earth, Moon and planets made the observations of the orbits of these
bodies and the asteroid Eros a good test of such a possibility. He made a
rough estimate that the equivalence principle was satisfied to a few parts
per million, which was much smaller than a numerical prediction based on
Majorana’s estimate for h. If mass shields gravity, then large bodies such as,
for instance, the Moon and the Earth will partly shield their own gravitational
attraction. The observable ratio of gravitational mass to inertial mass would
not be independent of mass, which would violate the equivalence principle.

Eckhardt [155] showed that LLR can be used to set the limit h ≤
1.0 × 10−22 m2 kg−1, six orders of magnitude smaller than the geophysi-
cal constraint. In [155], an LLR test of the equivalence principle was used
to set a modern limit on gravity shielding. That result is updated as fol-
lows: the uniform density approximation is sufficient for the Moon and
f R ρ̄ = 4.4× 109 kg m−2. For the Earth we use n ≈ 0.8 with Russell’s expres-
sion to get f R ρ̄ = 3.4×1010 kg m−2. Using the difference −3.0×109 g cm−2 h
along with the LLR EP solution for the difference in gravitational to inertial
mass ratios gives h = (3±5)×10−24 m2 kg−1 [156]. The value is not significant
compared with the uncertainty. To give a sense of scale to the uncertainty, for
the gravitational attraction to be diminished by 1/2 would require a column
of matter with the density of water stretching at least half way from the solar
system to the center of the galaxy. The LLR equivalence principle tests give
no evidence that mass shields gravity and the limits are very strong.

For completeness, let us mention that Weber [157] argued that a quasi-
static shielding could be predicted from an analysis of relativistic tidal phe-
nomena, concluding that such effect should be extremely small. Finally, the
most stringent laboratory limit on the gravitational shielding constant had
been obtained during the recent measurement of Newton’s constant, resulting
in h ≤ 4.3 × 10−15 m2 kg−1 [158].

4 The “Dark Side” of Modern Physics

To a worldwide notice, recent cosmological observations dealt us a challeng-
ing puzzle forcing us to accept the fact that our current understanding of
the origin and evolution of the Universe is incomplete. Surprisingly, it turns
out that most of the energy content of the Universe is in the form of the
presently unknown dark matter and dark energy that may likely permeate all
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of spacetime. It is possible that the underlying physics that resolve the dis-
cord between quantum mechanics and GR will also shed light on cosmological
questions addressing the origin and ultimate destiny of the Universe.

In this section we consider mechanisms that involve new physics beyond
GR to explain the puzzling behavior observed at galactic and cosmological
scales.

4.1 Cold Dark Matter

The relative importance of the gravitational interaction increases as one con-
siders large scales, and it is at the largest scales where the observed gravi-
tational phenomena do not agree with our expectations. Thus, based on the
motion of the peripheral galaxies of the Coma cluster of galaxies, in 1933 Fritz
Zwicky found a discrepancy between the value inferred from the total number
of galaxies and brightness of the cluster. Specifically, this estimate of the total
amount of mass in the cluster revealed the need for about 400 times more
mass than expected. This led Zwicky conclude that there is another form of
matter in the cluster which, although unaccounted, contains most of the mass
responsible for the gravitational stability of the cluster. This nonluminous
matter became known as the “dark matter.” The dark matter hypothesis was
further supported by related problems, namely the differential rotation of our
galaxy, as first discussed by Oort in 1927, and the flatness of galactic rotation
curves [159].

The most common approach to these problems is to assume the presence
of unseen forms of energy that bring into agreement the observed phenomena
with GR. The standard scenario to explain the dynamics of galaxies consists in
the introduction of an extra weakly interacting massive particle, the so-called
cold dark matter (CDM), that clusters at the scales of galaxies and provides
the required gravitational pull to hold them together. The explanation of the
observed acceleration of the expansion of the Universe requires however the
introduction of a more exotic form of energy, not necessarily associated with
any form of matter but associated with the existence of space–time itself –
vacuum energy.

Although CDM can be regarded as a natural possibility given our knowl-
edge of elementary particle theory, the existence of a nonvanishing but very
small vacuum energy remains an unsolved puzzle for our high-energy under-
standing of physics. However, the CDM hypothesis finds problems when one
begins to look at the details of the observations. Increasingly precise simu-
lations of galaxy formation and evolution, although relatively successful in
broad terms, show well-known features that seem at odds with their real
counterparts, the most prominent of which might be the “cuspy core” prob-
lem and the overabundance of substructure seen in the simulations (see, for
instance, [160]).

At the same time, the CDM hypothesis is required to explain the corre-
lations of the relative abundances of dark and luminous matter that seem
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to hold in a very diverse set of astrophysical objects [161]. These correla-
tions are exemplified in the Tully–Fisher law [162] and can be interpreted as
pointing to an underlying acceleration scale, a0 � 10−10 ms−2, below which
the Newtonian potential changes and gravity becomes stronger. This is the
basic idea of MOND (modified Newtonian dynamics), a successful phenom-
enological modification of Newton’s potential proposed in 1983 [163] whose
predictions for the rotation curves of spiral galaxies have been realized with in-
creasing accuracy as the quality of the data has improved [164]. Interestingly,
the critical acceleration required by the data is of order a0 ∼ cH0 where H0

is today’s Hubble constant and c the speed of light (that we will set to 1 from
now on). The problem with this idea is that MOND is merely a modification
of the classical Poisson equation for the Newtonian potential, and therefore
inadequate in any situation in which relativistic effects are important. Efforts
have been made to obtain MONDian phenomenology in a relativistic generally
covariant theory by including other fields in the action with suitable couplings
to the spacetime metric [165].

On the other hand, in what concerns the CDM model, one can state that
if matter is purely baryonic, early structure formation does not occur, as its
temperature and pressure could not account for the latter. The presence of
cold (i.e., nonrelativistic) dark matter allows for gravitational collapse and
thus solves this issue. Another hint of the existence of exotic dark matter
lies in the observation of gravitational lensing, which may be interpreted as
due to the presence of undetected clouds of nonluminous matter between the
emitting light source and us, which bends the light path due to its mass. This
could also be the cause for the discrepancies in the measured Lyman-alpha
forest, the spectra of absorption lines of distant galaxies and quasars. The
most likely candidates to account for the dark matter include a linear combi-
nation of neutral supersymmetrical particles, the neutralinos (see, e.g., [166]),
axions [167], self-interacting scalar particles [168], etc.

On a broader sense, one can say that these models do not address in a
unified way the dark energy (discussed in Sect. 4.2) and dark matter problems,
while a common origin is suggested by the observed coincidence between the
critical acceleration scale and the dark energy density. This unification feature
is found in the so-called generalized Chaplygin gas [169] (see Sect. 4.2).

4.1.1 Modified Gravity as an Alternative to Dark Matter

There are two types of effects in the dark-matter-inspired gravity theories
that are responsible for the infrared modification. First, there is an extra
scalar excitation of the spacetime metric besides the massless graviton. The
mass of this scalar field is of the order of the Hubble scale in vacuum, but
its mass depends crucially on the background over which it propagates. This
dependence is such that this excitation becomes more massive near the source,
and the extra degree of freedom decouples at short distances in the spacetime
of a spherically symmetric mass. This feature makes this excitation behave in
a way which resembles the chameleon field of [170–172], however, quite often
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this “chameleon” field is just a component of the spacetime metric coupled to
the curvature.

There is also another effect in these theories: the Planck mass that controls
the coupling strength of the massless graviton also undergoes a rescaling
or “running” with the distance to the sources (or the background curva-
ture). This phenomenon, although a purely classical one in this context, is
reminiscent of the quantum renormalization group running of couplings. So
one might wonder if MONDian type actions could be an effective classical
description of strong renormalization effects in the infrared that might appear
in GR [134,173], as happens in QCD. A phenomenological approach to struc-
ture formation bored on these effects has been attempted in [136]. Other
implications, such as lensing, cosmic virial theorem, and nucleosynthesis were
analyzed in [124, 174, 175]. Additionally, these models offer a phenomenology
that seems well suited to describe an infrared strongly coupled phase of gravity
and especially at high energies/curvatures when one may use the GR action or
its linearization being a good approximation; however, when one approaches
low energies/curvatures one finds a nonperturbative regime. At even lower
energies/curvatures perturbation theory is again applicable, but the relevant
theory is of scalar–tensor type in a de Sitter space.

Clearly, there are many modifications of the proposed class of actions that
would offer a similar phenomenology, such that gravity would be modified
below a characteristic acceleration scale of the order of the one required in
MOND. Many of these theories also offer the unique possibility of being tested
not only through astrophysical observations, but also through well-controlled
laboratory experiments where the outcome of an experiment is correlated with
parameters that can be determined by means of cosmological and astrophys-
ical measurements.

4.2 Dark Energy as Modern Cosmological Puzzle

In 1998, Perlmutter and collaborators [176] and Riess and collaborators [177]
have gathered data of the magnitude-redshift relation of Type Ia supernovae
with redshifts z ≥ 0.35 and concluded that it strongly suggests that we live
in an accelerating Universe, with a low matter density with about one third
of the energy content of the Universe. Currently, there are about 250 super-
novae data points which confirm this interpretation. Dark energy is assumed
to be a smooth distribution of nonluminous energy uniformly distributed over
the Universe to account for the extra dimming of the light of far away Type
Ia supernovae, standard candles for cosmological purposes. If there is a real
physical field responsible for dark energy, it may be phenomenologically de-
scribed in terms of an energy density ρ and pressure p, related instantaneously
by the equation-of-state parameter w = p/ρ. Furthermore, covariant energy
conservation would then imply that ρ dilutes as a−3(1+w), with a being the
scale factor. Note that p = wρ is not necessarily the actual equation of state
of the dark energy fluid, meaning that perturbations may not generally obey
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δp = wδρ; however, if one were to have such an equation of state, one can
define the speed of sound by c2s = ∂p/∂ρ. The implications of this phenom-
enology would make much more sense in the context of theories proposed to
provide the required microscopic description.

4.2.1 Cosmological Constant and Dark Energy

One of the leading explanations for the accelerated expansion of the Uni-
verse is the presence of a nonzero cosmological constant. As can be seen from
Einstein’s equation, the cosmological term can be viewed not as a geomet-
ric prior to the spacetime continuum, but instead interpreted as a energy–
momentum tensor proportional to the metric, thus enabling the search for
the fundamental physics mechanism behind its value and, possibly, its evo-
lution with cosmic time. An outstanding question in today’s physics lies in
the discrepancy between the observed value for Λ and the prediction arising
from quantum field theory, which yields a vacuum energy density about 120
orders of magnitude larger than the former. To match the observed value,
requires a yet unknown cancelation mechanism to circumvent the fine tuning
of 120 decimal places necessary to account for the observations. This is so as
observations require the cosmological constant to be of order of the critical
density ρc = 3H2

0/8πG � 10−29 g cm−3:

ρV ≡ Λ

8πG
� 10−29g cm−3 � 10−12eV4 , (25)

while the natural number to expect from a quantum gravity theory is M4
P �

1076 GeV4.
Besides the cosmological constant, a slow-varying vacuum energy6 of some

scalar field, usually referred to as “quintessence” [179], and an exotic fluid
like the generalized Chaplygin gas [169] are among other the most discussed
candidates to account for this dominating contribution for the energy density.
It is worth mentioning that the latter possibility allows for a scenario where
dark energy and dark matter are unified.

We mention that the presented bounds result from a variety of sources,
of which the most significant are the CMBR, high-z supernovae redshifts and
galaxy cluster abundances. These joint constraints establish that the amount
of dark energy, dark matter, and baryons are, in terms of the critical density,
ΩΛ � 0.73, ΩDM = 0.23, and ΩBaryons = 0.04, respectively [180].

Current observational constraints imply that the evolution of dark energy
is entirely consistent with w = −1, characteristic of a cosmological constant
(Λ). The cosmological constant was the first, and remains the simplest, theo-
retical solution to the dark energy observations. The well-known “cosmological
constant problem” – why is the vacuum energy so much smaller than we ex-
pect from effective-field-theory considerations? – remains, of course, unsolved.
6 For earlier suggestions see [178].
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Recently, an alternative mechanism to explain Λ has arisen out of string
theory. It was previously widely perceived that string theory would continue
in the path of QED and QCD, wherein the theoretical picture contained few
parameters and a uniquely defined ground state. However, recent develop-
ments have yielded a theoretical horizon in distinct opposition to this, with
a “landscape” of possible vacua generated during the compactification of 11
dimensions down to 3 [181]. Given the complexity of the landscape, anthropic
arguments have been put forward to determine whether one vacuum is pre-
ferred over another. It is possible that further development of the statistics of
the vacua distribution, and characterization of any distinctive observational
signatures, such as predictions for the other fundamental coupling constants,
might help to distinguish preferred vacua and extend beyond the current vacua
counting approach.

Although dark energy is the most obvious and popular possibility to the
recently observed acceleration of the Universe, other competing ideas have
been investigated, and among them is modifications of gravity on cosmological
scales. Indeed, as we discussed earlier, GR is well tested in the solar system,
in measurements of the period of binary pulsars, and in the early Universe,
via primordial nucleosynthesis. None of these tests, however, probe the ultra-
large length scales and low curvatures characteristic of the Hubble radius
today. Therefore, one can potentially think that gravity is modified in the
very far infrared allowing the Universe to accelerate at late times.

In this section, we discuss some of the gravity modification proposals sug-
gested to provide a description of the observed acceleration of the Universe.

4.2.2 Modified Gravity as an Alternative to Dark Energy

A straightforward possibility is to modify the usual Einstein–Hilbert action by
adding terms that blow up as the scalar curvature goes to zero [182,183]. Re-
cently, models involving inverse powers of the curvature have been proposed
as an alternative to dark energy [183, 184]. In these models, one generically
has more propagating degrees of freedom in the gravitational sector than the
two contained in the massless graviton in GR. The simplest models of this
kind add inverse powers of the scalar curvature to the action (ΔL ∝ 1/Rn),
thereby introducing a new scalar excitation in the spectrum. For the values
of the parameters required to explain the acceleration of the Universe this
scalar field is almost massless in vacuum and one might worry about the pres-
ence of a new force contradicting solar system experiments. However, it can be
shown that models that involve inverse powers of other invariant, in particular
those that diverge for r → 0 in the Schwarzschild solution, generically recover
an acceptable weak-field limit at short distances from sources by means of a
screening or shielding of the extra degrees of freedom at short distances [185].
Such theories can account for late-time acceleration, but unfortunately typi-
cally lead to one of two problems. Either they are in conflict with tests of GR
in the solar system, due to the existence of additional dynamical degrees of
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freedom [186], or they contain ghost-like degrees of freedom that seem difficult
to reconcile with fundamental theories. The search is ongoing for versions of
this idea that are consistent with experiment.

A more dramatic approach would be to imagine that we live on a brane
embedded in a large extra dimension. Although such theories can lead to
perfectly conventional gravity on large scales, it is also possible to choose
the dynamics in such a way that new effects show up exclusively in the
far infrared. An example is the Dvali–Gabadadze–Porrati (DGP) braneworld
model, in which the strength of gravity in the bulk is substantially less than
that on the brane [187]. Such theories can naturally lead to late-time accel-
eration [188, 189], but may have difficulties with strong-coupling issues [190].
Furthermore, the DGP model does not properly account for the supernova
data, as does its generalization, the Dvali–Turner model, and also other ad hoc
modifications of the Friedmann equation, the so-called Cardassian model [191].
Most interestingly, however, DGP gravity and other modifications of GR hold
out the possibility of having interesting and testable predictions that distin-
guish them from models of dynamical dark energy. One outcome of this work
is that the physics of the accelerating Universe may be deeply tied to the prop-
erties of gravity on relatively short scales, from millimeters to astronomical
units.

4.2.3 Scalar Field Models as Candidate for Dark Energy

One of the simplest candidates for dynamical dark energy is a scalar field,
ϕ, with an extremely low-mass and an effective potential, V (ϕ), as shown
by (16) [127]. If the field is rolling slowly, its persistent potential energy is
responsible for creating the late epoch of inflation we observe today. For the
models that include only inverse powers of the curvature, besides the Einstein–
Hilbert term, it is however possible that in regions where the curvature is large
the scalar has naturally a large mass and this could make the dynamics to be
similar to those of GR [192]. At the same time, the scalar curvature, while
being larger than its mean cosmological value, is still very small in the solar
system (to satisfy the available results of gravitational tests). Although a
rigorous quantitative analysis of the predictions of these models for the tests
in the solar system is still noticeably missing in the literature, it is not clear
whether these models may be regarded as a viable alternative to dark energy.

Effective scalar fields are prevalent in supersymmetric field theories and
string/M-theory. For example, string theory predicts that the vacuum expec-
tation value of a scalar field, the dilaton, determines the relationship between
the gauge and gravitational couplings. A general, low-energy effective action
for the massless modes of the dilaton can be cast as a scalar–tensor theory
as (16) with a vanishing potential, where f(ϕ), g(ϕ), and qi(ϕ) are the dila-
tonic couplings to gravity, the scalar kinetic term, and gauge and matter fields,
respectively, encoding the effects of loop effects and potentially nonperturba-
tive corrections.
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A string-scale cosmological constant or exponential dilaton potential in
the string frame translates into an exponential potential in the Einstein
frame. Such quintessence potentials [193, 194] can have scaling [195], and
tracking [196] properties that allow the scalar field energy density to evolve
alongside the other matter constituents. A problematic feature of scaling
potentials [195] is that they do not lead to accelerative expansion, since
the energy density simply scales with that of matter. Alternatively, certain
potentials can predict a dark energy density which alternately dominates the
Universe and decays away; in such models, the acceleration of the Universe is
transient [197–199]. Collectively, quintessence potentials predict that the den-
sity of the dark energy dynamically evolves in time, in contrast to the cosmo-
logical constant. Similar to a cosmological constant, however, the scalar field
is expected to have no significant density perturbations within the causal hori-
zon, so that they contribute little to the evolution of the clustering of matter
in large-scale structure [200].

In addition to couplings to ordinary matter, the quintessence field may
have nontrivial couplings to dark matter [201, 202]. Nonperturbative string-
loop effects do not lead to universal couplings, with the possibility that the
dilaton decouples more slowly from dark matter than it does from gravity
and fermions. This coupling can provide a mechanism to generate acceler-
ation, with a scaling potential, while also being consistent with equivalence
principle tests. It can also explain why acceleration is occurring only recently,
through being triggered by the nonminimal coupling to the CDM, rather than
a feature in the effective potential [203,204]. Such couplings cannot only gener-
ate acceleration, but also modify structure formation through the coupling to
CDM density fluctuations [205], in contrast to minimally coupled quintessence
models. Dynamical observables, sensitive to the evolution in matter pertur-
bations as well as the expansion of the Universe, such as the matter power
spectrum as measured by large-scale surveys and weak lensing convergence
spectra, could distinguish nonminimal couplings from theories with minimal
effect on clustering. The interaction between dark energy and dark matter is,
of course, present in the generalized Chaplygin gas model, as in this proposal
the fluid has a dual behavior.

It should be noted that for the runaway-dilaton scenario presented in
Sect. 3.1, comparison with the minimally coupled scalar field action,

Sφ =
c3

4πG

∫
d4x

√−g

[
1
4
R +

1
2
∂μφ∂

μφ− V (φ)
]
, (26)

reveals that the negative scalar kinetic term leads to an action equivalent to
a “ghost” in quantum field theory, and is referred to as “phantom energy” in
the cosmological context [206]. Such a scalar field model could in theory gen-
erate acceleration by the field evolving up the potential toward the maximum.
Phantom fields are plagued by catastrophic UV instabilities, as particle exci-
tations have a negative mass [207,208]; the fact that their energy is unbounded
from below allows vacuum decay through the production of high-energy real
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particles and negative energy ghosts that will be in contradiction with the
constraints on ultra-high-energy cosmic rays [209].

Such runaway behavior can potentially be avoided by the introduction of
higher-order kinetic terms in the action. One implementation of this idea is
“ghost condensation” [210]: here, the scalar field has a negative kinetic energy
near φ̇ = 0, but the quantum instabilities are stabilized by the addition of
higher-order corrections to the scalar field Lagrangian of the form (∂μφ∂

μφ)2.
The “ghost” energy is then bounded from below, and stable evolution of the
dilaton occurs with w ≥ −1 [211]. The gradient ∂μφ is nonvanishing in the
vacuum, violating Lorentz invariance, and may have interesting consequences
in cosmology and laboratory experiments.

In proposing the scalar field as physical and requiring it to replace CDM
and DE, one has to also calculate how the scalar field density fluctuations
evolve, to compare them with density power spectra from large-scale structure
surveys. This is true for the broader set of phenomenological models including
the generalized Born–Infeld action, associated to the generalized Chaplygin
gas model [169]. Despite being consistent with kinematical observations, it
has been pointed that they are disfavored in comparison with the ΛCDM
scenario [212,213], even though solutions have been proposed [214].

5 Gravitational Physics and Experiments in Space

Recent developments in observation astronomy, astrophysics and cosmology
have raised important questions related to gravity and other fundamental laws
of nature. There are two approaches to physics research in space: one can de-
tect and study signals from remote astrophysical objects, whereas the other
relies on a carefully designed experiment. Although the two methods are com-
plementary, the latter has the advantage of utilizing a well-understood and
controlled laboratory environment in the solar system. Newly available tech-
nologies in conjunction with existing space capabilities offer unique opportuni-
ties to take full advantage of the variable gravity potentials, large heliocentric
distances, and high velocity and acceleration regimes that are present in the
solar system. As a result, solar system experiments can significantly advance
our knowledge of fundamental physics and are capable of providing the miss-
ing links connecting quarks to the cosmos.

In this section, we discuss theoretical motivation of and innovative ideas
for the advanced gravitational space experiments.

5.1 Testable Implications of Recent Theoretical Proposals

The theories that were discussed in the previous section offer a diverse range
of characteristic experimental predictions differing from those of GR that
would allow their falsification. The most obvious tests would come from the
comparison of the predictions of the theory to astrophysical and cosmological
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observations where the dynamics are dominated by very small gravitational
fields. As a result, one might expect that these mechanisms would lead to small
effects in the motion of the bodies in the solar system, short- and long-scale
modifications of Newton’s law, as well as astrophysical phenomena.

In the following sections, we discuss these possible tests and estimate the
sizes of the expected effects.

5.1.1 Testing Newton’s Law at Short Distances

It was observed that many recent theories predict observable experimental sig-
natures in experiments testing Newton’s law at short distances. For instance
in the case of MOND-inspired theories discussed in Sect. 4.1.1, there may be
an extra scalar excitation of the spacetime metric besides the massless gravi-
ton. Thus, in the effective gravitational theory applicable to the terrestrial
conditions, besides the massless spin two graviton, one would also have an
extra scalar field with gravitational couplings and with a small mass. A pecu-
liar feature of such a local effective theory on a Schwarzschild background is
that there will be a preferred direction that will be reflected in an anisotropy
of the force that this scalar excitation will mediate. For an experiment con-
ducted in the terrestrial conditions one expects short-range modifications of
Newton’s law at distances of ∼0.1 mm, regime that is close to that already
being explored in some laboratory experiments [215,216].

For an experiment on an Earth-orbiting platform, one explores another
interesting regime for which the solar mass and the Sun–Earth distance are
the dominant factors in estimating the size of the effects. In this case, the
range of interest is ∼104 m. However, in measuring the gravitational field of
an object one has to measure this field at a distance that is larger than the
critical distance for which the self-shielding of the extra scalar excitation in-
duced by the object itself is enough to switch off the modification. This means
that, for an experiment in the inner solar system, we could only see signif-
icant modifications in the gravitational field of objects whose characteristic
distance is smaller than 104 m, thus limiting the mass of the body to be below
∼109 kg. As an example, one can place an object with mass of 103 kg placed
on a heliocentric orbit at ∼1 AU distance. For this situation, one may expect
modifications of the body’s gravitational field at distances within the range
of ∼10–104 m. Note that at shorter distances the scalar effectively decouples
because of the self-gravitational effect of the test object; also, at longer dis-
tances the mass induced by solar gravitational field effectively decouples the
scalar.

5.1.2 Solar System Tests of Relativistic Gravity

Although many effects expected by gravity modification models are suppressed
within the solar system, there are measurable effects induced by some long-
distance modifications of gravity (notably the DGP model [187]). For instance,
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in the case of the precession of the planetary perihelion in the solar system,
the anomalous perihelion advance, Δφ, induced by a small correction, δVN ,
to Newton’s potential, VN , is given in radians per revolution [217] by

Δφ � πr
d

dr

(
r2 d

dr

(
δVN

rVN

))
. (27)

The most reliable data regarding the planetary perihelion advances come
from the inner planets of the solar system [218], where most of the corrections
are negligible. However, with its excellent 2-cm-level range accuracy [14], LLR
offers an interesting possibility to test for these new effects. Evaluating the
expected magnitude of the effect to the Earth–Moon system, one predicts an
anomalous shift of Δφ ∼ 10−12, to be compared with the achieved accuracy of
2.4 × 10−11 [217]. Therefore, the theories of gravity modification result in an
intriguing possibility of discovering new physics, if one focuses on achieving
higher precision in modern astrometrical measurements; this accuracy increase
is within the reach and should be attempted in the near future.

The quintessence models discussed in Sect. 4.2.3 offer the possibility of
observable couplings to ordinary matter makes these models especially at-
tractive for the tests even on the scales of the solar system. Even if we restrict
attention to nonrenormalizable couplings suppressed by the Planck scale, tests
from fifth-force experiments and time dependence of the fine-structure con-
stant imply that such interactions must be several orders of magnitude less
than expected [219]. Further improvement of existing limits on violations of
the equivalence principle in terrestrial experiments and also in space would
also provide important constraints on dark energy models.

Another interesting experimental possibility is provided by the “chameleon”
effect [170,172]. Thus, by coupling to the baryon energy density, the scalar field
value can vary across space from solar system to cosmological scales. Though
the small variation of the coupling on Earth satisfies the existing terrestrial
experimental bounds, future gravitational experiments in space such as mea-
surements of variations in the gravitational constant or test of equivalence
principle may provide critical information for the theory.

There is also a possibility that the dynamics of the quintessence field
evolves to a point of minimal coupling to matter. In [52] it was shown that
φ could be attracted toward a value φm(x) during the matter-dominated
era that decoupled the dilaton from matter. For universal coupling, f(ϕ) =
g(ϕ) = qi(ϕ) (see (16)), this would motivate for improving the accuracy of the
equivalence principle and other tests of GR. Veneziano [220] suggested that
with a large number of non-self-interacting matter species, the coupling con-
stants are determined by the quantum corrections of the matter species, and φ
would evolve as a runaway dilaton with asymptotic value φm → ∞. More re-
cently [138], the quantity 1

2 (1− γ) has been estimated, within the framework
compatible with string theory and modern cosmology, which basically con-
firms the previous result [38]. This recent analysis discusses a scenario where
a composition-independent coupling of dilaton to hadronic matter produces
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detectable deviations from GR in high-accuracy light deflection experiments
in the solar system. This work assumes only some general property of the
coupling functions and then only assumes that (1−γ) is of order of one at the
beginning of the controllably classical part of inflation. It was shown in [138]
that one can relate the present value of 1

2 (1 − γ) to the cosmological density
fluctuations; the level of the expected deviations from GR is ∼0.5×10−7 [138].
Note that these predictions are based on the work in scalar–tensor extensions
of gravity which are consistent with, and indeed often part of, the present
cosmological models and provide a strong motivation for improvement of the
accuracy of gravitational tests in the solar system.

5.1.3 Observations on Astrophysical and Cosmological Scales

These new theories also suggest interesting effects on astrophysical and cos-
mological observations (see for instance [221]). In this respect, one can make
unambiguous predictions for the rotation curves of spiral galaxies with the
mass-to-light ratio being the only free parameter. Specifically, it has been
argued that a skew-symmetric field with a suitable potential could account for
galaxy and cluster rotation curves [222]. One can even choose an appropriate
potential that would then give rise to flat rotation curves that obey the Tully–
Fisher law [162]. But, also other aspects of the observations of galactic dynam-
ics can be used to constrain a MOND-like modification of Newton’s potential
(see [223]). Also, note that such a theory violates the SEP, as expected for
any relativistic theory for MOND [163], since locally physics will intrinsically
depend on the background gravitational field. This will be the case if the
background curvature dominates the curvature induced by the local system,
similar to the “external field effect” in MOND.

At larger scales, where one can use the equivalence with a scalar–tensor
theory more reliably, one can then compare the theory against the observa-
tions of gravitational lensing in clusters, the growth of large-scale structure,
and the fluctuations of the CMBR. In fact, it has been pointed out that if
GR was modified at large distances, an inconsistency between the allowed
regions of parameter space would allow for dark energy models verification
when comparing the bounds on these parameters obtained from CMBR and
large-scale structure [224]. This means that although some cosmological ob-
servables, like the expansion history of the Universe, can be indistinguishable
in modified gravity and dark energy models, this degeneracy is broken when
considering other cosmological observations and in particular the growth of
large-scale structure and the integrated Sachs–Wolfe effect (ISW) have been
shown to be good discriminators for models in which GR is modified [225]. It
has been recently pointed out that the fact that in the DGP model the effec-
tive Newton’s constant increases at late times as the background curvature
diminishes causes a suppression of the ISW that brings the theory into better
agreement with the CMBR data than the ΛCDM model [226].
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5.2 New Experiments and Missions

Theoretical motivations presented above have stimulated development of sev-
eral highly accurate space experiments. Below we will briefly discuss science
objectives and experimental design for several advanced experiments, namely
MICROSCOPE, STEP, and HYPER missions, APOLLO LLR facility, and
the LATOR mission.

5.2.1 MICROSCOPE, STEP, and HYPER Missions

Ground experiments designed to verify the validity of the WEP are limited
by unavoidable microseismic activity of Earth, while the stability of space
experiments offers an improvement in the precision of current tests by a fac-
tor of 106. Most probably, the first test of the WEP in space will be car-
ried out by the MICROSCOPE (MICROSatellite a traine Compensee pour
l’Observation du Principe d’Equivalence) mission led by CNES and ESA. The
drag-free MICROSCOPE satellite, transporting two pairs of test masses, will
be launched into a Sun-synchronous orbit at 600 km altitude. The differen-
tial displacements between each test masses of a pair will be measured by
capacitive sensors at room temperature, with an expected precision of one
part in 1015.

The more ambitious joint ESA/NASA STEP (satellite test of the equiva-
lence principle) mission is proposed to be launched in the near future into a
circular, Sun-synchronous orbit with altitude of 600 km. The drag-free STEP
spacecraft will carry four pairs of test masses stored in a dewar of superfluid
He at a 2 K temperature. Differential displacements between the test masses
of a pair will be measured by SQUID (superconducting quantum interference
device) sensors, testing the WEP with an expected precision of Δa/a ∼ 1018.

Another quite interesting test of the WEP involves atomic interferometry:
high-precision gravimetric measurements can be taken via the interferometry
of free-falling cesium atoms, and such a concept has already yielded a precision
of seven parts per 109 [227]. This can only be dramatically improved in space,
through a mission like HYPER (HYPER-precision cold atom interferometry
in space). ESA’s HYPER spacecraft would be in a Sun-synchronous circular
orbit at 700 km altitude. Two atomic Sagnac units are to be accommodated
in the spacecraft, comprising four cold atom interferometers that are able to
measure rotations and accelerations along two orthogonal planes. By compar-
ing the rates of fall of cesium and rubidium atoms, the resolution of the atom
interferometers of the HYPER experiment could, in principle, test the WEP
with a precision of one part in 1015 or 1016 [228].

It is worth mentioning that proposals have been advanced to test the
WEP by comparing the rate of fall of protons and antiprotons in a cryogenic
vacuum facility that will be available at the ISS [229]. The concept behind
this weak equivalence antimatter experiment (WEAX) consists of confining
antiprotons for a few weeks in a Penning trap, in a geometry such that gravity
would produce a perturbation on the motion of the antiprotons. The expected
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precision of the experiment is of one part in 106, three orders of magnitude
better than for a ground experiment.

It is clear that testing the WEP in space requires pushing current tech-
nology to the limit; even though no significant violations of this principle are
expected, any anomaly would provide significant insight into new and funda-
mental physical theories. The broad perspectives and the potential impact of
testing fundamental physics in space were discussed in [230].

5.2.2 APOLLO: A mm-Class LLR Facility

The Apache point observatory lunar laser-ranging operation is a new LLR
effort designed to achieve millimeter-range precision and corresponding order-
of-magnitude gains in measurements of fundamental physics parameters. The
APOLLO project design and leadership responsibilities are shared between
the University of California at San Diego and the University of Washington.
In addition to the modeling aspects related to this new LLR facility, a brief
description of APOLLO and associated expectations is provided here for ref-
erence. A more complete description can be found in [231].

The principal technologies implemented by APOLLO include a robust
Nd:YAG laser with 100 ps pulse width, a GPS-slaved 50 MHz frequency stan-
dard and clock, a 25-ps-resolution time interval counter, and an integrated
avalanche photodiode (APD) array. The APD array, developed at Lincoln
Labs, is a new technology that will allow multiple simultaneous photons to
be individually time tagged, and provide two-dimensional spatial information
for real-time acquisition and tracking capabilities.

The overwhelming advantage APOLLO has over current LLR operations
is a 3.5 m astronomical quality telescope at a good site. The site in the Sacra-
mento Mountains of southern New Mexico offers high altitude (2,780 m) and
very good atmospheric “seeing” and image quality, with a median image res-
olution of 1.1 arcsec. Both the image sharpness and large aperture enable the
APOLLO instrument to deliver more photons onto the lunar retroreflector
and receive more of the photons returning from the reflectors, respectively.
Compared with current operations that receive, on average, fewer than 0.01
photons per pulse, APOLLO should be well into the multiphoton regime, with
perhaps 5–10 return photons per pulse. With this signal rate, APOLLO will
be efficient at finding and tracking the lunar return, yielding hundreds of times
more photons in an observation than current operations deliver. In addition to
the significant reduction in statistical error (∼

√
N reduction), the high-signal

rate will allow assessment and elimination of systematic errors in a way not
currently possible.

The new LLR capabilities offered by the newly developed APOLLO ins-
trument offer a unique opportunity to improve accuracy of a number of fun-
damental physics tests. The APOLLO project will push LLR into the regime
of millimetric range precision which translates to an order-of-magnitude im-
provement in the determination of fundamental physics parameters. For the
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Earth and Moon orbiting the Sun, the scale of relativistic effects is set by
the ratio (GM/rc2) ∼ v2/c2 ∼ 10−8. Relativistic effects are small compared
with Newtonian effects. The APOLLO’s 1-mm-range accuracy corresponds to
3 × 10−12 of the Earth–Moon distance. The resulting LLR tests of gravita-
tional physics would improve by an order of magnitude: the equivalence prin-
ciple would give uncertainties approaching 10−14, tests of GR effects would
be <0.1%, and estimates of the relative change in the gravitational constant
would be 0.1% of the inverse age of the Universe. This last number is impres-
sive considering that the expansion rate of the Universe is approximately one
part in 1010 year−1.

Therefore, the gain in our ability to conduct even more precise tests of
fundamental physics is enormous, thus this new instrument stimulates devel-
opment of better and more accurate models for the LLR data analysis at an
mm-level [232].

5.2.3 The LATOR Mission

The recently proposed LATOR [121, 233–235] is an experiment designed to
test the metric nature of gravitation – a fundamental postulate of Einstein’s
theory of general relativity. By using a combination of independent time series
of highly accurate gravitational deflection of light in the immediate proximity
to the Sun, along with measurements of the Shapiro time delay on interplan-
etary scales (to a precision, respectively, better than 10−13 rad and 1 cm),
LATOR will significantly improve our knowledge of relativistic gravity. The
primary mission objective is to (1) measure the key post-Newtonian Edding-
ton parameter γ with accuracy of a part in 109. The quantity (1 − γ) is a
direct measure for presence of a new interaction in gravitational theory, and,
in its search, LATOR goes a factor 30,000 beyond the present best result,
Cassini’s 2003 test. Other mission objectives include (2) first measurement of
gravity’s nonlinear effects on light to ∼0.01% accuracy; including both the
traditional Eddington β parameter via gravity effect on light to ∼0.01% accu-
racy and also the spatial metric’s second-order potential contribution δ (never
measured before); (3) direct measurement of the solar quadrupole moment J2

(currently unavailable) to accuracy of a part in 200 of its expected size; and
(4) direct measurement of the “frame-dragging” effect on light due to the
Sun’s rotational gravitomagnetic field, to 0.1% accuracy. LATOR’s primary
measurement pushes to unprecedented accuracy the search for cosmologically
relevant scalar–tensor theories of gravity by looking for a remnant scalar field
in today’s solar system. The key element of LATOR is a geometric redundancy
provided by the laser ranging and long-baseline optical interferometry.

As a result, LATOR will be able to test the metric nature of the Einstein’s
general theory of relativity in the most intense gravitational environment
available in the solar system – the extreme proximity to the Sun. It will also
test alternative theories of gravity and cosmology, notably scalar–tensor theo-
ries, by searching for cosmological remnants of scalar field in the solar system.
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LATOR will lead to very robust advances in the tests of fundamental physics:
this mission could discover a violation or extension of GR, or reveal the pres-
ence of an additional long-range interaction in the physical law. There are no
analogues to the LATOR experiment; it is unique and is a natural culmination
of solar system gravity experiments [121].

LATOR mission is the twenty-first-century version of Michelson–Morley-
type experiment searching for a cosmologically evolved scalar field in the
solar system. In spite of the previous space missions exploiting radiowaves
for tracking the spacecraft, this mission manifests an actual breakthrough in
the relativistic gravity experiments as it allows one to take full advantage of
the optical techniques that recently became available. LATOR has a number
of advantages over techniques that use radiowaves to measure gravitational
light deflection. Thus, optical technologies allow low-bandwidth telecommu-
nications with the LATOR spacecraft. The use of the monochromatic light
enables the observation of the spacecraft at the limb of the Sun. The use of
narrowband filters, coronagraph optics, and heterodyne detection will sup-
press background light to a level where the solar background is no longer
the dominant noise source. The short wavelength allows much more effi-
cient links with smaller apertures, thereby eliminating the need for a deploy-
able antenna. Finally, the use of the ISS enables the test above the Earth’s
atmosphere – the major source of astrometric noise for any ground-based inter-
ferometer. This fact justifies LATOR as a space mission. LATOR is envisaged
as a partnership between European and US institutions and with clear areas
of responsibility between the space agencies: NASA provides the deep-space
mission components, whereas optical infrastructure on the ISS would be an
ESA contribution.

6 Conclusions

General theory of relativity is one of the most elegant theories of physics;
it is also one of the most empirically verified theories. Thus, almost 90 years
of testing have also proved that GR has so far successfully accounted for all
encountered phenomena and experiments in the solar system and with binary
pulsars. However, the predictions of the theory require still confirmation and
detailed analysis, most notably the direct detection of gravitational waves.
However, there are new motivations to test the theory to even a higher preci-
sions that already led to a number of experimental proposals to advance the
knowledge of fundamental laws of physics.

Recent progress in observational astronomy, astrophysics, and cosmology
has raised important questions related to gravity and other fundamental laws
of nature. There are two approaches to physics research in space: one can
detect and study signals from remote astrophysical objects, whereas the other
relies on a carefully designed experiment. Although the two methods are
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complementary, the latter has the advantage of utilizing a well-understood
and controlled laboratory environment in the solar system.

Newly available technologies in conjunction with existing space capabilities
offer unique opportunities to take full advantage of the variable gravity poten-
tials, large heliocentric distances, and high velocity and acceleration regimes
that are present in the solar system. A common feature of precision gravity
experiments is that they must operate in the noise-free environment needed to
achieve the ever-increasing accuracy. These requirements are supported by the
progress in the technologies, critical for space exploration, namely the highly
stable, high-powered, and space-qualified lasers, highly accurate frequency
standards, and the drag-free technologies. This progress advances both the
science and technology for the laboratory experiments in space with labora-
tory being the entire solar system. As a result, solar system experiments can
significantly advance our knowledge of fundamental physics and are capable
of providing the missing links connecting quarks to the cosmos.

To conclude, it is our hope that the recent progress will lead to establishing
a more encompassing theory to describe all physical interactions in an uni-
fied fashion that harmonizes the spacetime description of GR with quantum
mechanics. This unified theory is needed to address many of the standing diffi-
culties we face in theoretical physics: Are singularities an unavoidable property
of spacetime? What is the origin of our Universe? How to circumvent the cos-
mological constant problem and achieve a successful period of inflation and
save our Universe from an embarrassing set of initial conditions? The answer
to these questions is, of course, closely related to the nature of gravity. It is
an exciting prospect to think that experiments carried out in space will be
the first to provide the essential insights on the brave new world of the new
theories to come.
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117. R. Bluhm and V.A. Kostelecký, Phys. Rev. D 71, 065008 (2005), hep-th/
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Summary. A collection is made of presently unexplained phenomena within our
solar system and in the universe. These phenomena are (1) the Pioneer anomaly,
(2) the flyby anomaly, (3) the increase of the astronomical unit, (4) the quadrupole
and octupole anomaly, (5) dark energy, and (6) dark matter. A new data analysis
of the complete set of Pioneer data is announced to search for systematic effects
or to confirm the unexplained acceleration. We also review the mysterious flyby
anomaly where the velocities of spacecraft after Earth swingbys are larger than ex-
pected. We emphasize the scientific aspects of this anomaly and propose systematic
and continuous observations and studies at the occasion of future flybys. Further
anomalies within the solar system are the increase of the astronomical unit and the
quadrupole and octupole anomaly. We briefly mention dark matter and dark energy
as in some cases a relation between them and the solar system anomalies have been
speculated.

1 Introduction

Progress in physics has always been stimulated by observations which could
not be explained within the presently standard physical theories. In the late
nineteenth century the observations and experiments of Bradley as well as
Airy who both observed aberration of distant starlight, of Fizeau who ob-
served a dragging of light in moving media not compatible with theory at
that time, and finally of Michelson and Morley who showed that the failure of
the application of the nonrelativistic mechanical laws to light propagation. All
these effects, which could not be made compatible with nonrelativistic physics
without introducing various unnatural elements into the theory, culminated
into the invention of special relativity. Then, the theoretical incompatibility
of Newtonian gravity with special relativity as well as the since long observed
perihelion shift of Mercury which has first been attributed to systematic errors
or solely to be due to the solar quadrupole moment led to the formulation of
general relativity. Later on, the experimental study of atomic spectra which
could not be explained using the laws of classical mechanics first led to Bohr’s
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atomic model and, subsequently, to the various formulations of quantum me-
chanics.

The situation of gravitational physics today bears many similarities. At
first, the theoretical inconsistency of quantum mechanics and general rela-
tivity makes a new theory combining these two universal theories necessary.
Furthermore, there are observations which at least until now and after many
years of studies have not yet found any convincing explanation. These ob-
servations are (1) dark energy which is necessary – under the assumption of
the validity of Einstein’s equations – to describe the accelerated expansion
of the universe and (2) dark matter which – again under the assumption of
general relativity – is necessary to account for the galactic rotation curves,
for observed gravitational lensing of light, and for the structure formation
in the early universe. Of a slightly weaker observational basis is (3) the Pi-
oneer anomaly, an unexplained constant acceleration of the Pioneer 10 and
11 spacecrafts, (4) the flyby anomaly, an unexplained increase of the velocity
of a series of spacecrafts after Earth gravity assists, (5) the recently realized
increase of the astronomical unit defined by the distance of the planets from
the Sun by approximately 10 m per century, and (6) the quadrupole and oc-
tupole anomaly which describes the correlation of the low-l contributions of
the cosmic microwave background to the orientation of the solar system.

These six phenomena, including dark energy and dark matter which at this
stage are nothing more than a synonym for these observations, had neither
found any convincing interpretation or solution nor culminated into a finally
convincing theory. Lacking any explanation until now, these phenomena have
the potential to be of importance for a new physics.

In this chapter we describe all these unexplained observations, state the
open questions, and suggest new observations and new missions to obtain
better data for a better analysis of these phenomena.

2 Dark Matter

Dark matter has been introduced to “explain” the gravitational field needed
for the galactic rotation curves, the gravitational lensing of galaxies, and the
formation of structures in our universe [1]. It also appears in the spectral
decomposition of the cosmic microwave background radiation [2]. Dark mat-
ter is needed if one assumes Einstein’s field equations to be valid. However,
there is no single observational hint at particles which could make up this
dark matter. As a consequence, there are attempts to describe the same ef-
fects by a modification [3] of the gravitational field equations, e.g., of Yukawa
form, or by a modification of the dynamics of particles, like the MOND
ansatz [4,5],1 recently formulated in a relativistic frame [7]. Due to the lack of
1 In a nice short paper Veltman [6] speculates how astronomers may build up laws of

gravity by observing gravity on larger scales (scale of galaxies and of the universe)
and compares that with a quantum field theory approach.
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direct detection of dark matter particles, all those attempts are on the same
footing.

3 Dark Energy

Similarly, recent observations of type Ia supernovae indicate that the expan-
sion of the universe is accelerating and that 75% of the total energy density
consists of a dark energy component with negative pressure [8, 9]. Further-
more WMAP measurements of the cosmic microwave background [10,11], the
galaxy power spectrum, and the Lyman-alpha forest data lines [12–14] also
indicate – when compared with standard cosmological models – the existence
of the mysterious dark energy that leads to the acceleration of the universe,
rather than a modification of the basic laws of gravitation [15]. However, also
in this case there are attempts to give an explanation in terms of modified
field equations, see, e.g., [16]. Recently it has been claimed that dark energy
or, equivalently, the observed acceleration of the universe can be explained
by inhomogeneous cosmological models, such as the spherically symmetric
Lemaitre–Tolman–Bondi model, see, e.g., [17–19].

4 The Pioneer Anomaly

The Pioneer anomaly is an anomalous unexplained acceleration of the Pioneer
10 and 11 spacecraft of

aPioneer = (8.74 ± 1.33) · 10−10 ms−2 (1)

toward the Sun [20,21]. This acceleration seems to have been turned on after
the last flyby at Saturn and stayed constant within a 3% range.

4.1 The Observation

The principle of observation was two-way Doppler tracking: a sender on the
Earth emits a signal of frequency ν0 which is “seen” by the spacecraft as
frequency

ν′ =
1√

1 − v2/c2

(
1 − v

c

)
ν0 . (2)

The spacecraft sends this frequency back (with a slight offset what, however,
will not affect the principle of measurement), so that the receiver on Earth
observes the frequency

ν′′ =
1√

1 − v2/c2

(
1 − v

c

)
ν′ . (3)
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The comparison of the sent and received frequency gives the velocity of the
spacecraft

y =
ν′′ − ν0

ν0
= −2

v/c

1 + v/c
≈ −2

v

c
. (4)

This measured frequency can be compared with the calculated frequency ob-
tained from the calculated orbit given by the gravitational field inside the
solar system together with all kinds of modeling needed (see below).

The outcome of the observation was a continuous drift between the ob-
served and calculated frequency shifts

d(yobs − ycalc)
dt

= (3.84 ± 0.01) · 10−18 s−1 . (5)

This corresponds to a continuous drift in the velocity of the spacecraft or,
equivalently, in the constant acceleration (1).

4.2 Orbit Determination

As the observations are made with tracking stations on the moving Earth
observing the frequency of signals, the orbit determination consists of six
segments:

– Model of gravitational forces
– Model of external nongravitational forces
– Model of internal (spacecraft) nongravita-

tional forces
– Model of observation stations
– Model of signal propagation
– Codes

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
=⇒ Orbit and velocity

determination

We just mention the main aspects of this scheme. Most of this can be found
in [21].

Gravitational forces. The calculation of the orbits has been performed using
relativistic equations of motion for celestial bodies including order v4/c4:

– The relativistic gravitational accelerations (EIH model) include the Sun,
the Moon, and the nine planets as point masses in an isotropic PPN N -
body metric

– Newtonian gravity from large asteroids is included
– Terrestrial and lunar figure effects
– Earth tides
– Lunar physical librations have been considered

External nongravitational forces. These forces include:

– Solar radiation and solar wind pressure
– Drag from interplanetary dust
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Internal (spacecraft) nongravitational forces. These forces include:

– Thermal radiation
– Attitude-control propulsive maneuvers and propellant (gas) leakage from

the spacecraft’s propulsion system
– Torques produced from the above forces

Model of observation stations. An orbit determination has to include a model
of the ground stations. This is based on:

– Precession, nutation, sidereal rotation, polar motion, tidal effects, and
tectonic plates drift. The information on tidal deceleration, nonuniformity
of rotation, Love numbers, and Chandler wobble has been obtained from
LLR, SLR, and VLBI (from ICRF) measurements.

– Model of DSN antennae and their influence on the tracking data.

Modeling of signal propagation. The propagation of the radio signals includes:

– A relativistic model for light propagation including order v2/c2

– Dispersion due to solar wind and interplanetary dust

Codes. Four independent codes have been used for the orbit determination:

– JPL Orbit Determination Program (various generations from 1970 to
2001)

– The Aerospace Corporation code POEAS (during period 1995–2001)
– Goddard Space Flight Center conducted a study in 2003 (data from

NSSDC)
– Code of University of Oslo

The definition of these models has to be complemented by a discussion
of possible errors. This is tantamount to the search for possible conventional
explanations of the effect. We present only a few points.

4.3 Discussion of Some Conventional Effects

In the following, we discuss recent and ongoing work on conventional effects
which may contribute to errors or perhaps may also be responsible for the
observed acceleration. Not included here is the spin-rotation coupling [22].

Dust

The interplanetary medium consists of (1) interplanetary dust and (2) inter-
stellar dust. The first one consists of hot wind plasma (mainly protons and
electrons) distributed within the Kuiper belt (from 30 to 100 AU). The den-
sity of this plasma has been modeled to be of the order ρIPD ≤ 10−24 g cm−3

(Man and Kimura 2000). The second one, interstellar dust, which can be dis-
tinguished from the interplanetary dust by its greater impact velocity has
been measured by Ulysses to have a density of ρISD ≤ 3 · 10−26 g cm−3.
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The drag acceleration of a spacecraft moving through dust of density ρ is
given by

adrag = −Ksρv
2
s

As

ms
, (6)

where Ks is the satellite’s drag coefficient which can be taken to be ≈ 2. If
we assume the drag acceleration to be the observed anomalous acceleration of
the Pioneer spacecraft, then this needs a density which is 3 · 105 larger than
the interplanetary dust. Therefore dust cannot be the origin of the Pioneer
acceleration [23].

Additional Masses in the Solar System

Additional masses may be present not only in the form of dust but also in
the form of larger particles. Irrespective of being dust and of the size of these
particles, any additional mass will act as an additional gravitational field
which may decelerate the spacecraft when leaving the solar system. Nieto [24]
has analytically calculated the gravitational effect of various configurations,
i.e., shells, thin rings, and wedges of various density profiles. He obtained
that for rings with a density falling off with 1/r as well as a wedge with a
density falling off like 1/r2 yields a nearly constant acceleration (neglecting
discontinuities at the sharp boundaries of the matter distributions which are,
of course, just results of the mathematical model). However, for the constant
acceleration to be of the order of the observed Pioneer acceleration, the mass
of the thin ring or the wedge has to be about 10 times the mass of the Earth
which is, by far, not compatible with the observations of, e.g., comets.

Accelerated Sun

A nongravitational acceleration of the Sun orthogonal to the ecliptic will
also cause an acceleration toward the Sun. Such an accelerated Sun is the
consequence of an exact solution of the Einstein equation, the so-called C-
metric [25]. In the frame of an accelerated Sun, the equation of motion for
test masses reads

r̈ + GM�
r

r3
+ a� = 0, (7)

where r is the distance between the Sun and the test mass and a� is the
acceleration orthogonal to the eccpliptic. This gives a constant acceleration
toward the Sun [25]. However, to obtain an acceleration of the order of the
Pioneer anomaly, the acceleration of the Sun orthogonal to the ecliptic has to
be larger than what would be obtained if all radiation of the Sun were emitted
in one direction.

Cosmic Expansion

Due to the quite good equality aPioneer ≈ cH, where H is the Hubble constant,
it has been speculated whether the cosmic expansion has some influence on (1)
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the signal propagation, (2) the trajectory of the spacecraft, (3) the magnitude
of the gravitational field inside the solar system, or (4) the definition of the
distance, i.e., the definition of the astronomical unit.

The influence of the expansion of the universe on the procedure of Doppler
tracking is negligible. For an expansion described by an Einstein–de Sitter
universe

ds2 = −dt2 + R2(t)
(
dx2 + dy2 + dz2

)
, (8)

we obtain the conserved quantities νu(t)R(t) = const., where ν = νu = k(u)
is the measured frequency of a light ray g(k, k) = 0; u with g(u, u) = 1 is the
4-velocity of an observer at rest in the cosmic substrate. To first order in the
expansion,

νu(t) =
R(t0)
R(t)

νu(t0) ≈ (1 −H(t− t0)) νu(t0) , (9)

where H = Ṙ/R is the Hubble constant. This describes the Hubble redshift.
For massive particles we have the conserved quantity

R2(t)
dr(s)
ds

= const. ⇔ R(t)
1√

1 − V 2(t)
V (t) = const., (10)

where V , defined by g(u, v) = 1/
√

1 − V 2/c2, is the measured velocity of an
object moving with 4-velocity v along a geodesic, Dvv = 0. For small velocities
R(t)V (t) = const. implying a slowing down of the velocity

V (t) =
R(t1)
R(t)

V (t1) = (1 −H(t− t1))V (t1). (11)

A distance D measured by time-of-flight of light rays is defined by D =
R(r2 − r1) . The measured velocity of a moving object is then

d

dt
D = Ṙ(r2 − r1) + Rṙ2 = HD + V2, (12)

where V2 is the velocity of the object measured with respect to the cosmologi-
cal substrate. As a consequence, the trajectory of an object which has constant
distance to an observer, 0 = Ḋ = HD + V2, has to move with velocity

V2 = −HD (13)

with respect to the substrate.
Therefore, the two-way Doppler ranging is influenced by three effects (a)

the cosmological redshift (9), (b) the slowing down of the velocity of the
spacecraft (11), and (c) the velocity of the unit distances with respect to the
cosmological substrate (13). Taking all together results in the final two-way
Doppler ranging signal

Δν

ν0
= −2V (t1)(1 −H(t2 − t1)) , (14)
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where t1 and t2 are the cosmological time parameters for the emission and
reception of the signal. The expansion-induced effect is a chirp of Doppler
signal related to an acceleration

a = HV =
V

c
cH, (15)

which is by a factor V/c smaller than the observed Pioneer acceleration
aPioneer ∼ cH. Therefore, Doppler tracking in an expanding universe cannot
account for the observed Pioneer anomaly.

Furthermore, the influence of the expansion of the universe on the grav-
itational field of the Sun or the planetary orbits is much too small to be of
any influence, see Sect. 9.2.

To sum up, the expansion of our universe seems to be of no relevance for
the occurrence of the Pioneer acceleration.

Drift of Clocks on Earth

Though a drift of clocks by itself is a nonconventional physics (the drift of
atomic clocks with respect to, in our case, gravitational timescales needs some
“new physics”) it may yield a conventional explanation of the Pioneer anom-
aly. A quadratic drift of the timekeeping of clocks on Earth

t → t +
1
2c

aPt
2 . (16)

may simulate the Pioneer anomaly [21, 26]. The numerical value is 1
2caP ≈

10−18 s−1. If we assume such a kind of clock drift then the question arises
whether this clock drift is consistent with the measurements from other satel-
lites and, in particular, with the ranging of satellites. Another question is
whether this time drift is also consistent with the observations of pulsars and
binary systems which also define clocks. Pulsars are very stable clocks [27].
Owing to the radiation of gravitational waves the revolution time of binary
systems goes down. However, also in this case the stability of this process can
be defined [28]. A comparison with a hypothetical drift of atomic clocks on
Earth seems not to have been carried through.

4.4 Outlook

New activities are planned for the very near future. During the last months
the complete set of Pioneer data has been recovered [31,32] and brought into
a digital form readable by modern computers. These data are now ready for a
new data analysis covering all data and the total mission duration, see Table 1.
This new data analysis will be carried through at ZARM and at JPL. It is
important to find out, e.g., whether the anomalous acceleration was really not
present before the last flyby.
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Table 1. Pioneer data sets analyzed previously and to be analyzed in the future.

Previously used data set Data set to be analyzed

Time span AU Distance Time span AU Distance

Pioneer 10 3.1.1987–22.7.1998 40–70.5 8.9.1973–27.4.2002 4.6–80.2
Pioneer 11 5.1.1987–1.10.1990 22.4–31.7 10.4.1974–11.10.1994 1.0–41.7

Table 2. Observed flybys.

Mission Agency Year rp (km) v∞ (km s−1) e Δv (mm s−1)

Galileo NASA Dec 1990 959.9 8.949 2.47 3.92 ± 0.08
Galileo NASA Dec 1992 303.1 8.877 2.32 No reliable dataa

NEAR NASA Jan 1998 538.8 6.851 1.81 13.46 ± 0.13
Cassini NASA Aug 1999 1,173 16.01 5.8 0.11

Stardust NASA Jan 2001 5,950 ?? No reliable datab

Rosetta ESA Mar 2005 1,954 3.863 1.327 1.82 ± 0.05
Hayabusa Japan May 2004 3,725 ?? ?? No data available
MESSENGERc Private Aug 2005 2,347 4.056 1.36 ∼ 0
rp pericenter, e eccentricity, v∞ velocity at infinity, and Δv velocity increase.
aToo low orbit with too large atmospheric drag.
bThruster activities.
cUS spacecraft operated by a private company.

Furthermore, a new Deep-Space Gravity Explorer (DSGE) mission has
been proposed [33]. A new DSGE mission has the potentiality to explore the
range between solar system physics and the physics of our galaxy and perhaps
of the universe which perhaps is characterized by the Pioneer acceleration
which is of the order cH and of the characteristic acceleration appearing in
MOND theories.

5 The Flyby Anomaly

5.1 The Observations

It has been observed at various occasions that satellites after an Earth swingby
possess a significant unexplained velocity increase by a few mm s−1. This
unexpected and unexplained velocity increase is called the flyby anomaly.
According to information from [34, 35, 37], the observed flybys are listed in
Table 2. For the actual data for the Galileo and NEAR flyby see Fig. 1.

The data can be put into diagrams where the velocity increase can be
plotted as a function of the two orbit parameters eccentricity e and pericenter
rp, see Fig. 2. In general, this is a three-dimensional plot Δv = f(e, rp). For
a plot of this surface four data points are far too less. Therefore, in Fig. 2
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(a) Two-way S-band Doppler residuals and range residuals during the first Galileo
flyby

(b) Two-way X-band Doppler residuals and range residuals during NEAR flyby

Fig. 1. Galileo and NEAR flyby data (from [35]).
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Fig. 2. The velocity increase Δv as function of the eccentricity and of the perigee.
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a plot of the velocity increase Δv as function of e and rp is given.2 Though
from five data points it is much too early to draw any serious conclusion
one may speculate the following: if the velocity increase really is due to an
unknown gravitational interaction, then it makes sense that (1) the effect goes
down with increasing eccentricity, since for larger eccentricity the strength
and duration of the interaction with the gravitational field of the Earth goes
down and (2) that it also should go down for an eccentricity approaching
e = 1 because the transition to bound orbits, where no effect has been seen,
certainly should show no discontinuity due to many kinds of disturbances like
drag and nonideal circumstances like gravitational multipoles, etc. But relying
on this poor data base this interpretation is pure speculation only.

The main problem is not just the limited number of flybys for which suf-
ficiently precise data are publicly available so that the anomaly can be seen
at all. Even these available data suffer from low cadence (the anomaly often
appears between two data points) and so far only allow an anomaly in the
speed, but not in the direction of motion, etc. to be identified. Precise data
at a much higher cadence of all the motion parameters of the spacecraft prior
to, during and after the flyby would allow a qualitatively improved analysis.

5.2 Error Analysis

As a first remark we give the order of the acceleration leading to the veloc-
ity increase. This anomalous acceleration, estimated by the velocity increase
during the time-of-flight near the Earth, is of the order 10−4 ms−2. This is
considerably larger than the above-discussed Pioneer anomaly. Below we will
use this acceleration as an approximate value to be compared with disturbing
influences.

It should be kept in mind that the velocity increase has been observed in
the two-way Doppler measurements as well as in the ranging measurements.

Before one starts with possible fundamental explanations of this effect, a
serious and reliable error analysis has to be carried through. This analysis has
to cover (1) atmospheric mismodeling, (2) ocean tides, (3) if the spacecraft
becomes charged, then it may experience an additional force due to the Earth’s
magnetic field, (4) also the interaction of a hypothetical magnetic moment of
the spacecraft with the Earth’s magnetic field may give an additional force,
(5) ion plasma drag, (6) Earth albedo, and (7) solar wind. Here we give very
short first-order estimates on these various effects which certainly have to be
improved, and show that even with very rough pessimistic assumptions none
of these can be held responsible for the flyby anomaly.

Atmosphere. If a spacecraft of mass ms and effective area As moves with
velocity vs through a medium of density ρ, then it experiences a drag
acceleration again given by (6). For a mass of 1 ton, an area of 2m2, a

2 We like to thank J.D. Anderson, J.K. Campbell, and T. Morley for providing us
with the relevant data.
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velocity of 30 km s−1 and an atmospheric density at 1,000 km height of
approx. ρ ≈ 10−14 kg m−3 we get an acceleration of adrag ≈ 4 · 10−8 ms−2

which is far too small to be of any relevance for our problem. Furthermore,
this acceleration due to drag has the wrong sign.

Uncertainties in the Earth gravity model. The gravitational field of the Earth
is known, combining Grace and Champ data, up to the 360th multipole
moment. However, the component of each moment is always equipped with
an error bar. This may lead to the idea that the unexplained velocity is
due to multipole moments known not precisely enough. However, a study
of the trajectories of spacecraft for multipole components within the given
error bars shows that this is not possible [36].

Ocean tides. The ocean tides will lead to a change of the Earth’s surface of
the order of δr ± 10m. This means that the corresponding quadrupole
part of the Earth’s gravitational potential is of the order ε = 2δr/R⊕
smaller than the monopole part of the Earth, where R⊕ is the radius of
the Earth. Since ε ≈ 10−6, the corresponding additional acceleration also
is factor 10−6 smaller than the ordinary acceleration from the monopole
part of the Earth’s gravitational field. The latter being less than 10m s−2,
the acceleration due to tides is at most 10−5 ms−2 and, thus, cannot be
responsible for the flyby anomaly.

Solid Earth tides. Since Earth solid tides are much smaller than ocean tides,
the analysis above shows that this cannot cause the effect.

Charging of the spacecraft. In a recent study of charging of the LISA test
masses [38] the charging has been estimated by 10−10 C. So, for the whole
satellite it might be a conservative assumption that the charge is less than
Q ≤ 10−7 C. A satellite of 1 ton carrying a charge Q and moving with
v = 30 km s−1 in the magnetic field of the Earth which is of the order
0.2 G will experience an acceleration 10−8 ms−2 far below the observed
effect.

Magnetic moment. The force on such a body carrying a magnetic moment
m moving in a magnetic field B is F = ∇(m · B). Since the magnetic
moment of a spacecraft is not more than 2Am2 and the steepness of the
magnetic field can be estimated by |ΔB/Δx| ≤ 2 · 10−7 G m−1, see Fig. 3,
the maximum force of a spacecraft is F ≤ 4 · 10−11 N implying typically a
maximum acceleration of 4 · 10−15 ms−2 which safely can be neglected.

Earth albedo. The Earth albedo causes a pressure on the spacecraft of approx.
1 μNm−2 which leads, for an effective area of 2m2, to a force of 2.4 μN. For
a mass of the spacecraft of 1 ton, this will give an acceleration of aalbedo ≈
2.4 · 10−9 ms−2 which can be neglected compared with the searched for
effect of 10−4 ms−2.

Solar wind. The solar wind exerts on a spacecraft a pressure of approx.
4 μNm−2 which gives an acceleration of max asolar wind ≈ 2.4 · 10−9 ms−2

which again can be safely neglected.
Spin-rotation coupling. A coupling of the helicity of the radiowaves with the

rotation of the spacecraft and the rotation of the Earth also leads to an
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Fig. 3. The magnetic field of the Earth as function of attitude.

effect which simulates a changing velocity [22]. This, however, applies to
the two-way Doppler data only. Since simultaneously also ranging, which
is independent of the helicity-rotation coupling, indicated an increase of
the velocity, spin-rotation cannot be responsible for this observation.

Also estimates of the influence of the Moon including Moon oblateness, the
Sun, other planets, relativistic effects, and indirect oblateness of the Earth
have been shown to be orders of magnitude smaller than the observed effect
[35].

None of these disturbing effects could explain the flyby anomaly.

5.3 Explanations from “New Physics”?

As reported in [35] several nonstandard physical models have been used to ex-
plain this velocity increase. Since these considerations have not been published
we just mention the discussed models:

– Nonconservative potential energy
– Non-Newtonian gravity (e.g., Moffat, Yukawa, etc.)
– PPN
– Modifications of relativity
– Torsion, i.e., the eps2 model. This model is said to fit the data, but is not

compatible with the stability of planetary orbits

As reported in [35] none of these could explain the flyby anomaly. Being so
large and so near to the Earth, the expansion of the universe should also
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play no role for this anomaly. In Sect. 9, we sketch a general approach to a
description of the motion of test bodies. Among the terms found, there are
several which may be considered as phenomenological description of a velocity
increase. To be able to pin down a specific interaction term it is necessary to
make detailed studies of the nature of the velocity increase.

5.4 Future Flybys

In the near future there will be two flybys, both by Rosetta [37]:

– Rosetta: flyby on 13 November 2007 (pericenter altitude 4,942 km)
– Rosetta: flyby on 13 November 2009 (pericenter altitude 2,483 km)

We strongly suggest that due to the lack of explanation of the flyby anomaly
one should use these opportunities to carry through a better observation of
the Rosetta flybys. A better data basis then will enable one to establish a
correlation between the observed velocity increase and the orbital parame-
ters like eccentricity, perihelion distance to the Earth, perihelion velocity, or
inclination. In particular, a continuous observation (Doppler tracking, rang-
ing, positioning, and perhaps other data from the spacecraft like temperature,
pressure, etc.) also should give hints to the particular direction of the local
acceleration and also on the strength and, thus, to the position dependence
of the anomalous force. Furthermore, it would also be of great importance to
know whether after a flyby the direction of the motion of the spacecraft also
is different compared with the standard result. This information is extremely
important for the search for a conventional explanation of this effect or for
the modeling of a new force.

As a consequence, a complete, accurate and continuous observation of
spacecraft during flybys is very important to study the nature of this unex-
plained velocity increase. It is an advantage of these planned observations
that they will in no way whatsoever modify the mission scenario.

Furthermore, since new missions like the Mars Reconnaissance Orbiter will
measure very precisely the gravitational field of Mars, also the Mars flyby of
Rosetta on 25 February 2007 should be observed as precise as possible to see
whether also at Mars a velocity increase will occur. A Mars flyby would pro-
vide an excellent augmentation of the Earth flybys. Since Mars possesses other
conditions than the Earth (weaker atmosphere, almost no magnetic field, other
gravitational field, lower thermal radiation, etc.), many competing effects and
also possible explanation schemes based on the fact that the effect as well as
the observation occurs at and on the Earth can be ruled out. Therefore the
effect, if it will be observed also at Mars, then will turn out to be universal and
beyond any doubt and will become an extremely important science case. In the
case of Mars, it is of course, impossible to have a continuous observation (at
least due to a Mars eclipse), but the initial and final velocity should be mea-
sured with the best possible precision. Furthermore, if this effect really seems
to be existent, then a dedicated mission with a good drag-free control system
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(which can control the acceleration better than 10m s−2 for 1 s measurement
time) for well-defined flybys at Earth for small perigees and, thus, for extreme
parameter values might be very helpful for an even better exploration of this
effect.

6 The Increase of the Astronomical Unit

6.1 The Observation

From the analysis of radiometric measurements of distances between the Earth
and the major planets including observations from Martian orbiters and lan-
ders from 1961 to 2003 a secular increase of the astronomical unit of ap-
proximately 10 m per century has been reported [39] (see also [40] and the
discussion therein).

6.2 Search for Explanation

Time-Dependent Gravitational Constant and Velocity of Light

This increase cannot be explained by a time-dependent gravitational constant
G because the Ġ/G needed is larger than the restrictions obtained from LLR.

It has also been speculated that a time-dependent change in the velocity
of light can be responsible for this effect. Indeed, if the speed of light becomes
smaller, then ranging will simulate a drift of distances. However, the inspection
of Kepler’s third law,

T 2

a3
=

4π2

GM�
, (17)

shows that, if one replaces the distance a by a ranging time a = ct, then effec-
tively the quotient G/c3 appears. Only this combination of the gravitational
constant and the speed of light governs the ratio between the orbit time, in
our case the orbit time of the Earth. Consequently, a time-dependent speed
of light is equivalent to a time-dependent gravitational constant. Since the
latter has been ruled out to be possibly responsible for an increase of the
astronomical unit, also a time-dependent speed of light has to be ruled out.

Cosmic Expansion

The influence of the cosmic expansion on planetary orbits is by many orders
of magnitude too small to be in principle responsible for such an observation,
see Sect. 9.2. Neither the modification of the gravitational field of the Sun nor
the drag of the planetary orbits due to the expansion is big enough to explain
this drift.
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Clock Drift

An increase of ranged distances might also be due to a drift of the timescale
of the form t → t + αt2 for α > 0. This is of the same form as the time drift
needed to account for the Pioneer anomaly. From Kepler’s third law, one may
ask which α is suitable to simulate the increase of the astronomical unit. One
obtains α ≈ 3 · 10−20 s−1 what is astonishing close to the clock drift needed
for a clock drift simulation of the Pioneer anomaly, see (16) and below.

7 The Quadrupole and Octupule Anomaly

Recently, an anomalous behavior of the low-l contributions to the cosmic
microwave background has been reported. It has been shown that (1) there
exists an alignment between the quadrupole and octupole with >99.87% C.L.
[41] and (2) the quadrupole and octupole are aligned to solar system ecliptic
to >99% C.L. [42]. No correlation with the galactic plane has been found.

The reason for this is totally unclear. One may speculate that an unknown
gravitational field within the solar system slightly redirects the incoming cos-
mic microwave radiation (in the similar way as a motion with a certain velocity
with respect to the rest frame of the cosmological background redirects the
cosmic background radiation and leads to modifications of the dipole and
quadrupole parts). Such a redirection should be more pronounced for low-l
components of the radiation. It should be possible to calculate the gravita-
tional field needed for such a redirection and then to compare that with the
observational data of the solar system and the other observed anomalies.

8 Summary of Anomalies

8.1 Summary

In our opinion, these above-described anomalies split into three groups accord-
ing to their observational status: (1) the observations related to dark matter
and dark energy are beyond any doubt, (2) the Pioneer anomaly and the flyby
anomaly are on a good basis, and (3) the increase of the astronomical unit as
well as the quadrupole and octupole anomaly is still under debate (Table 3).

This list of anomalies and unexplained phenomena immediately induces a
bunch of tasks and questions:

– For each of these phenomena, except for the dark energy and dark matter,
one still should try to find a systematic cause.

– One should also try to find conventional explanations of these effects
within general relativity leading perhaps to an effect within conventional
physics not considered up to now.
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Table 3. List of anomalies and their status.

Anomaly Observational status Interpretation

Dark energy,
dark matter

Well established Under discussion

Pioneer anomaly,
flyby anomaly

Quite well established Unclear

Quadrupole anomaly,
increase of AU

Unclear Unclear

– A big step in understanding these effects might be to find a relation be-
tween two or more of the unexplained phenomena (all of these anomalies
very probably are no isolated phenomena).

– This is tantamount to the important question whether all or at least some
of these effects have a common cause.

– Motivated by the surprising fact aPioneer ≈ cH one should analyze the
influence of the cosmic expansion on the physics within gravitationally
bound systems. There already appeared quite some literature related this
topic [43–46], and references therein (see also below).

– Since there seem to exist some strange phenomena within our solar system,
one should look whether it might be possible to observe similar things in
other gravitating systems like binary systems, binary pulsars, stars moving
around the black hole in the center of our galaxy, etc.

– Is something wrong with weak gravity or gravity at large distances?
– Furthermore, one should propose new dedicated missions and space ex-

periments.

8.2 Other Anomalies?

There is one further observation which status is rather unclear bit which
perhaps may fit into the other observations. This is the observation of the
return time of comets: comets usually come back a few days before they are
expected when applying ordinary equations of motion. The delay usually is
assigned to the outgassing of these objects. In fact, the delay is used for an
estimate of the strength of this outgassing. On the other hand, it has been
calculated in [47] that the assumption that starting with 20 AU there is an
additional acceleration of the order of the Pioneer anomaly also leads to the
effect that comets come back a few days earlier. It is not clear whether this
is a serious indications, but a further study of the trajectories of comets is
certainly worthwhile.

9 Ways to Describe the Effects

Many approaches have been attempted to explain these anomalies. In most
of these attempts a link between one phenomenon and the issues of (1) the
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influence of the expansion of the universe on the physics within our solar sys-
tem, (2) dark energy, and (3) dark matter has been tried to establish. We
like to emphasize again that indeed it should be the first thing to explore
whether there are links between these various observed and unexplained phe-
nomena. It should be strange if all these unexplained phenomena will be really
independent of each other, i.e., are not linked by a common (perhaps new)
physical principle. (However, it also seems to be a rather difficult task to find
similarities between the Pioneer anomaly and the flyby anomaly.)

9.1 Cosmological Constant

One first very simple attempt to generalize general relativity and to incor-
porate also findings related to dark energy is to describe the physics of
gravitating bodies within a theory involving a cosmological constant. The
corresponding field equations are

Rμν − 1
2
gμνR + gμνΛ = κTμν , (18)

where Rμν is the Ricci tensor; R the Ricci scalar; and Tμν the energy–
momentum tensor.

In the first step one may use this equation to describe the gravitational
field of the Sun and physics within the solar system (Perihelion shift, light de-
flection, gravitational redshift, gravitational time delay, geodetic precession),
see [48] as well as Iorio [49] and Sereno and Jetzer [50]. It comes out that
the ordinary cosmological constant Λ = Λ0 = 10−52 m−2 has no observable
influence on all the solar system tests. One also can show that if one assumes
a constant Λ such large that it may explain the Pioneer acceleration, then
this is ruled out by the perihelion shift observation [48]. Therefore, a cosmo-
logical constant cannot be an explanation for the Pioneer anomaly. In the
article by Jetzer and Sereno [51] also the influence of the cosmological con-
stant on the motion of binary systems has been evaluated with the result that
in the future binary systems may be precise enough to “see” the cosmological
constant. Some of these effects have also been considered in a Kerr–de Sitter
space–time [52].

The calculation of solar system effects in a Schwarzschild–de Sitter space–
time is certainly only a simple first step. One may redo this kind of calculation
in a more general context like quintessence [15, 53] (for a first step in this
direction see [54]) in varying G scenarios [55], in dilaton scenarios [56,57], and
in braneworld models [58].

9.2 The Influence of the Expansion of the Universe

We show that the expansion of the universe has no measurable influence what-
soever on the physics within the solar system. This includes the modifications
of the gravitational field created by the Sun and the planetary orbits.
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Modified Gravitational Field of the Sun

It is conceivable that the cosmic expansion may weaken the gravitational field
of the Sun. However, it can be shown [45] that the corresponding effect is
far beyond being observable. Starting from an expansion of the local metric
around the cosmological background metric bμν

gμν = bμν + hμν , where hμν � bμν , (19)

we obtain linearized Einstein equations for hμν [59]

gρσDρDσh̄μν + 2gρσRκ
μρν h̄κσ = 16πGTμν . (20)

The static solution for a small spherically symmetric mass distribution is given
by

h00 =
2GM

R

cos
(√

6|Ṙ|r
)

r
=

GM

Rr

(
1 − 3H2(Rr)2 ± . . . .

)
(21)

At lowest order we obtain the standard Newtonian potential with the mea-
sured distance R(t)r. Since the modification is quadratic in the Hubble con-
stant, the Newtonian potential practically does not participate in the cosmic
expansion. This confirms the findings in [39].

Modified Planetary Orbits

If the planetary orbits may expand due to a drag from the cosmic expan-
sion, then this might be interpreted as if the length unit, astronomical unit,
increases so that it might appear that other distances may become smaller.
However, from the theorem of adiabatic invariance [60], it can be shown that
the parameters of the planetary orbits remain the same with very high sta-
bility [45]. This stability is characterized by the factor exp(−t/T ) where t is
the timescale of the planetary orbit and T is the timescale of the temporal
change of the environment, in our case the Hubble time. Therefore, t/T is of
the order 1010 so that the planetary orbits are extremely stable.

Another approach is based on the geodesic deviation which relates the
relative acceleration of freely moving particles with the curvature of space–
time, in our case with the expansion of the universe. This has been taken
in [61] as the basis for estimates that this deviation is much too small to be
of any influence in the solar system or even within galaxies. For a broader
discussion of this approach, see the recent valuable review of Carrera and
Giulini [46].

9.3 General Approach to Describe a Modified Particle Dynamics

Gravity describes or, equivalently, can be characterized by the behavior of
light and point particles [62]. Light is related to a space–time metric while
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point particles are related to a geodesic equation. In Riemannian geometry,
the mathematical model for general relativity, the equation of motion for
particles and the behavior of light are related: The equation of motion for
particles is completely determined by the space–time metric. For a general
analysis of anomalous gravitational effects, it therefore may be appropriate
to start by a general ansatz for the metric and of the equation of motion for
particles.3

In a weak-field approximation the metric can be written in the form

gμν =
(

1 − U g0i

gi0 −δij (1 − V )

)
, (22)

where U , V , and g0i = gi0 are assumed to be small quantities. U may be
identified with the Newtonian potential. We denote ds2 = gμνdx

μdxν .
By definition, the readout of moving clocks is given by

T =
∫

worldline of clock

ds ≈
∫ (

1 − U + ẋ2 + V ẋ2
)
dt +

∫
h · dx, (23)

which is the proper time of the clock. A clock at rest will measure the gravi-
tational redshift given by

ν1

ν2
=

√
g00(x1)
g00(x2)

≈ 1 + U(x2) − U(x1) . (24)

Now we are going to give a general description of the equation of motion
for particles. This approach is according to the philosophy of axiomatic ap-
proaches to theories of gravity, see, e.g., [62, 63]. The equation of motion for
a particle respecting the universality of free fall can be represented as

0 = vν∂μv
ν + Hμ(x, v) = { μ

ρσ } vμvσ + γμ(x, v), (25)

where { μ
ρσ } = 1

2g
μν (∂ρgσν + ∂σgρν − ∂νgμν) is the Christoffel connection and

Hμ(x, v) some vector valued function of the position and the velocity. We de-
fined γμ(x, v) = Hμ(x, v)−{ μ

ρσ } vρvσ. Since no particle parameter enters this
equation, the universality of free fall automatically is preserved. However, it
is no longer possible to make a transformation to a coordinate system so that
3 In the axiomatic approach [62], the mathematical relation between the point

particle dynamics and the properties of light came in through a compatibility
condition. One feature of this condition is a causal dynamics of point particles;
particles are not allowed to move faster than light. The requirement of this condi-
tion implies a rather restricted geometrical structure, namely a Weylian structure.
Since in [62] this condition has been applied to autoparallel curves and since we
are here more general in admitting also nonlinear connections as they appear,
e.g., in a Finslerian context, the resulting allowed particle dynamics is certainly
still more general than a Weylian structure. However, this has to be worked out
explicitly.
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gravity disappears at one point (Einstein’s elevator is not possible). Physically
this means that, e.g., the acceleration of a body toward the Earth can depend
on the velocity of the body: differently moving bodies feel a different gravi-
tational acceleration which, however, does not depend on the composition or
the weight of the (point-like) body.

From this general equation of motion, we can derive the 3-acceleration

d2xi

dt2
= −

({
i

μν

}
−
{

0
μν

} dxi

dt

)
dxμ

dt

dxν

dt
+

1(
dt
ds

)2 (γi(v, x) − dxi

dt
γ0(v, x)

)
= −

(
{ i

00 } − { 0
00 }

dxi

dt

)
− 2

({
i

j0

}
−
{

0
j0

} dxi

dt

)
dxj

dt

−
({

i
jk

}
−
{

0
jk

} dxi

dt

)
dxj

dt

dxk

dt
+

1(
dt
ds

)2 (γi(v, x) − dxi

dt
γ0(v, x)

)
≈ ∂iU︸︷︷︸

Newton

+(∂ihj − ∂jhi)ẋj︸ ︷︷ ︸
Lense–Thirring

+ẋ2∂iV + ẋiV̇ + Υ i + Υ i
j ẋ

j + Υ i
jkẋ

j ẋk + . . . ,

(26)

where we neglected all relativistic corrections since these play no role in the
Pioneer and flyby anomalies.

The first term in (26) is the ordinary Newtonian acceleration and the
second term the action of the gravitomagnetic field on the orbit of a satellite
which has been observed by LAGEOS with a 10% accuracy [64]. This field
also acts on spinning objects like gyroscopes and should be confirmed by GP-
B with an accuracy better than 1%. The other terms are hypothetical terms
beyond ordinary post-Newtonian approximation.

The V term which can be motivated by a running coupling constant to
be proportional to the distance V ∼ r2 has been introduced by Jaekel and
Reynaud [65] to describe the constant anomalous Pioneer acceleration. The
other terms, most of them are velocity dependent, have not yet been ana-
lyzed. (The influence of an arbitrary force on the trajectories of planets has
been analyzed recently in [29] with the main conclusion that any radial force
that might be considered as being responsible for the Pioneer anomaly is
not compatible with the recent analysis of the motion of the outer planets.
This indicates that the modification of the equation of motion should include
velocity-dependent terms. The same conclusion can be drawn from the fact
that any metric modification of gravity which leads the Pioneer acceleration
is in contradiction to solar system data [30].)

The coefficients Υ i
jk... depend only on the position and may vanish for

vanishing gravitating mass. Therefore, the coefficients can contain M , r, ri,
and ∂i only. Accordingly, these coefficients can be of the form
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Υ i = A11
GM

r2

ri

r
, (27)

Υ i
j = A21

GM

r2

rirj

r2
+ A22

GM

r2
δi
j , (28)

Υ i
jk = A31

GM

r2

rirjrk

r3
+ A32

GM

r2

ri

r
δjk + A33

GM

r2

rj

r
δi
k. (29)

Here Aij are constants parametrizing the various contributions. It is under-
stood that the influence of the gravitating body, i.e., all the Υ -coefficients,
vanishes at spatial infinity. This is certainly true for a description of the flyby
anomaly but may be relaxed for the Pioneer anomaly. Terms which do not
vanish at spatial infinity but are of Newtonian form at small distances are
polynomials rl, l ≥ 1.

The above terms lead to accelerations

ẍi = A11
GM

r2

ri

r
, (30)

ẍi = A21
GM

r2

rir · ṙ
cr2

+ A22
GM

r2

ṙi

c
,

= (A21 + A22)
GM

r2

rir · ṙ
cr2

+ A22
GM

r2

ṙi
⊥
c
, (31)

ẍi = A31
GM

r2c2
ri(r · ṙ)2

r3
+ A32

GM

c2r2

ri

r
ṙ2 + A33

GM

c2r2

ṙi

r
(r · ṙ), (32)

where ri
⊥ = ri−ri(r ·ṙ)/r2 is the component of the body’s velocity orthogonal

to the connecting vector r.
The first term associated with A11 is of Newtonian form and can be com-

bined with the already existing one which amounts to a redefinition of the
gravitational constant. The A22 term describes an additional acceleration in
direction of the velocity. It fades away for large r. The A21 term projects the
component of the velocity which is parallel to the connecting vector and leads
to an acceleration in direction of the connecting vector. This term vanishes at
the perigee.

These A21 and A22 terms may be chosen in such a way that they have the
potential to describe an increase of the velocity during a flyby: near the Earth
the A22 term is dominant since there the connecting vector is more or less
orthogonal to the velocity vector. For large r both terms contribute. That is,

ẍi =

⎧⎪⎨⎪⎩
A22

GM

r2

ṙi

c
for r ≈ rperigee

(A21 + A22)
GM

r2

ṙi

c
for r large.

(33)

Therefore, in principle it is possible to have an acceleration near the perigee
(for A22 > 0) and a deceleration for large distances (for A21 +A22 < 0). Note
that for a typical perigee and velocity at perigee the acceleration at perigee
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for A22 = 1 is about 10−4 ms−2 which is just the value given for a typical
Earth flyby, see Sect. 5.2. However, this model does not include the Pioneer
deceleration because the acceleration is not constant for large r. It also can
be shown that a term of the form (31) leads to unstable planetary orbits.4

The A32 term just adds to the ẋ2∂iV term. Both the A31 and the A33

terms first project the velocity in direction of the connecting vector and then
make out of this an acceleration in direction of the connecting vector and in
direction of the velocity. These A3i terms are about five orders of magnitude
smaller than the A2i terms and can, thus, play no role in an explanation of
the flyby anomaly. The higher-order terms will be of more complicated but
similar structure.

In general, this equation of motion does not respect energy conservation:
multiplication of (26) with the velocity yields

d

dt

(
1
2 ẋ2 − U

)
= 2ẋ2V̇ + ẋ · Υ + Υ i

j ẋ
j ẋi + Υ i

jkẋ
j ẋkẋi + . . . . (34)

Therefore, the terms on the right-hand side might be candidates for effects
reducing or enlarging the kinetic energy of moving bodies and, thus, may play
a role in the description of the flyby or the Pioneer anomaly.

It should be clear from the independence of the metric from the equation
of motion for point particles that it is necessary both to track position and ve-
locity of the satellite and to have a clock onboard to determine all components
of the space–time metric.

10 Summary and Outlook

We collected the anomalies related to the physics of the solar system and
discussed to some extent the error sources and possibilities to explain these
anomalies. In particular, we tried to find similarities or fundamental differ-
ences between these anomalies.

As final statement we like to stress that there are at least three important
science cases related to the exploration of these anomalies which we strongly
suggest to be tackled in the near future:

1. Analysis of the complete set of Pioneer data
2. Continuous and complete (velocity, distance, time onboard, and direction)

observations of future flybys
4 Nearly all experiences with the gravitational interaction come from the observa-

tion of bodies in bound orbits: moons are in bound orbits around planets, planets
around stars, stars are bound within the galaxy, galaxies are bound in galaxy
clusters. We know only a very few examples of escape orbits mainly form ar-
tificial satellites. Therefore one may speculate that escape orbits might behave
differently than bound orbits, an idea which also came up in discussions of the
Pioneer anomaly. However, it is at least not obvious how this property of an orbit
can be built into the equation of motion.
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3. Search for clock drifts by comparison of clock rates on Earth with clocks
defined by astrophysical systems
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Summary. The propagation of light is treated in the postlinear gravitational field
of binary systems. The light deflection is calculated to quadratic order in Newton’s
gravitational constant and fourth order in the inverse power of the speed of light.
Similarities and dissimilarities of linearized gravity and electrodynamics are discus-
sed. A recent speed-of-gravity controversy is investigated.

1 Introduction

Today, technology has achieved a level at which the extremely high precision
of current ground-based radio interferometric observations are approaching an
accuracy of 1 μarcsec. Moreover the planned space-based astrometric telescope
(GAIA)1 and the space interferometric mission (SIM) are going to measure
the positions and/or the parallaxes of celestial objects with uncertainties in
the range 10−5–10−6 arcsec. Furthermore the interferometer for the planned
laser astrometric test of relativity mission (LATOR) will be able to measure
light deflection angles of the order 10−8 arcsec.

To reach the desired accuracies of 10−6–10−8 arcsec in the computation
of light deflection in gravitational fields, corrections arising from the lack of
spherical symmetry of the gravitating system, the motion of the gravitating
masses, and the relativistic definition of the center of mass must be taken into
account.

In this chapter, the light deflection in the postlinear gravitational field of
two-bounded point-like masses is treated. However, to gain more insight into
the interrelation between the Einstein field equations and the Maxwell equa-
tions, in the first part of the paper, the linear gravitational field is treated and
its structural similarity with the electromagnetic field is discussed. Empha-
sis is put on the difference between linearized gravity and electrodynamics.

1 The name GAIA derives from global astrometric interferometer for astrophysics,
since GAIA was originally planned as a space-based interferometer.
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In the second part of the paper, but still within the context of linearized
gravity, a recent well-known speed-of-gravity controversy is discussed using a
clear-cut approach for clarification. Finally, in the third part of the paper, in
going over to the postlinear gravitational field, the light deflection is treated.

Notation

Let us summarize the notation and symbols used in this paper:

1. G is the Newtonian constant of gravitation
2. c is the speed of light
3. in Sect. 3, by cg we denote the speed of gravity
4. The Greek indices α, β, γ, etc. are space–time indices and run from 0 to 3
5. The Latin indices i, j, k, etc. are spatial indices and run from 1 to 3
6. ημν = ημν = diag(−1, 1, 1, 1) is the Minkowski metric
7. gμν is a metric tensor of curved, four-dimensional space–time, depending

on spatial coordinates and time
8. We suppose that space–time is covered by a harmonic coordinate system

(xμ) = (x0, xi), where x0 = c t, t being the time coordinate
9. The three-dimensional quantities (3-vectors) are denoted by a = ai

10. The three-dimensional unit vector in the direction of a is denoted by
ea = ei

a

11. The Latin indices are lowered and raised by means of the unit matrix
δij = δij = diag(1, 1, 1)

12. By ,σ = ∂σ we denote the partial derivative with respect to the coordinate
xσ

13. The scalar product of any two 3-vectors a and b with respect to the
Euclidean metric δij is denoted by a · b and can be computed as a · b =
δija

ibj = aibi

14. The Euclidean norm of a 3-vector a is denoted by a = |a| and can be
computed as a = (δmna

man)1/2

15. By l(0) we denote the vector tangent to the unperturbed light ray and the
unit vector e(0) is defined by e(0) = l(0)/|l(0)|

16. ∇ denotes the vector operator ex∂x + ey∂y + ez∂z

17. Δ denotes the usual Laplace operator in flat space
18. By � ≡ ημν∂μ∂ν = −∂2

0 + Δ we denote the flat d’Alembertian operator

2 Analogies Between Electrodynamics
and Einsteinian Gravity

In linearized approximation, the complicated Einstein theory with the group of
general coordinate transformations as symmetry group simplifies to an abelian
gauge theory. Electrodynamics is an abelian gauge theory too, if also with a
single group parameter in contrast to linearized gravity theory which has four
group parameters, so there are analogies between both theories to be expected.



Propagation of Light in the Gravitational Field of Binary Systems 107

2.1 Gauge-Invariant Electrodynamics

In vacuum space–time, the Maxwell equations have the form (Gaussian units)

∇ · B = 0, ∇ × E +
1
c

∂

∂t
B = 0, (1)

∇ · E = 4π�, ∇ × B − 1
c

∂

∂t
E =

4π
c

j. (2)

Hereof the conservation equation for the charge follows:

∂

∂t
� + ∇ · j = 0. (3)

In covariant form, the Maxwell equations read,

∂νF
μν =

4π
c
jμ, ∂σFμν + ∂μFνσ + ∂νFσμ = 0, (4)

and the conservation equation takes the form

∂μj
μ = 0. (5)

Here, the definitions hold,

Fμν = (E,B), jμ = (c�, j), Fμν = −Fνμ. (6)

The Lorentz force and power expressions are, respectively,

k = �E +
1
c
j × B, k · v = E · j, (7)

where j = �v. In covariant notation, the four-dimensional force density reads

kμ =
1
c
Fμνj

ν =
(
−1
c
E · j,k

)
. (8)

All the given expressions in this section have physical meaning, locally.

2.2 Electrodynamics in Gauge-Field Form

Introducing the gauge-field Aμ according to

E = −∇φ− 1
c

∂

∂t
A, B = ∇ × A (9)

or, in four-dimensional form,

Fμν = ∂μAν − ∂νAμ, Aμ = (−φ,A), (10)
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the field equations (1) and (2) transform into the equations

−∂ν∂νA
μ + ∂μ∂νA

ν =
4π
c
jμ. (11)

A gauge transformation is given by,

A′
μ = Aμ + ∂μΛ, F ′

μν = Fμν . (12)

It includes one arbitrary function Λ. The Lorentz gauge condition is defined by

1
c

∂

∂t
φ + ∇ · A = ∂μA

μ = 0. (13)

Herewith, the field equations (11) result in

∂ν∂νA
μ = −4π

c
jμ. (14)

In gauge-field form, the Maxwell equations were put onto a footing which is
close in form to the Einstein field equations in linearized approximation.

2.3 The Linearized Einstein Theory

In linearized approximation, applying the harmonic or Hilbert–Lorentz gauge
condition, the Einstein field equations read, e.g., see [1]

∂λ∂λh̄
μν = −16πG

c4
Tμν , (15)

where the harmonic coordinate condition reads

∂μh̄
μν = 0. (16)

The field equations (15) together with the harmonic coordinate condition (16)
imply the conservation law for the matter stress–energy tensor

∂μT
μν = 0. (17)

The barred field h̄μν is connected with the metric tensor gμν as follows

hμν = h̄μν − 1
2
ημνη

αβh̄αβ , gμν = ημν + hμν , (18)

where raising and lowering of indices are with the Minkowski metric.
Introducing the notations, cf. [2]

T 00 = �c2, T 0i = cji, (19)

h̄00 = 4ϕ/c2, h̄0i = 4ai/c2, h̄ij = O(1/c4), (20)
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and

E = −∇ϕ− 1
c

∂

∂t
a, B = ∇× a, (21)

the field equations (15) take the form,

∇ · B = 0, ∇ × E +
1
c

∂

∂t
B = 0, (22)

∇ · E = 4π�, ∇ × B − 1
c

∂

∂t
E =

4π
c

j. (23)

Hereof the time component of the conservation equation (17) follows

∂

∂t
� + ∇ · j = 0, (∂νT

0ν = 0). (24)

Obviously, whereas from the field equations (15), together with the gauge
condition (16), four conservation equations follow, namely (17), from the field
equations (22) and (23), only one conservation equation results (24).

The force and power expressions have to be added to (22) and (23) from
outside because (c�, ji) is treated therein as 4-vector and not as components
of a tensor

k = −
(
�E +

4
c
j × B

)
, k · v = −E · j, (25)

where j = �v and where a point-mass model has been assumed for the matter.
For point masses, some analogy between electrodynamics and the linea-

rized Einstein theory has been achieved apart from a minus sign and a factor
of 4. The first difference relates to the attraction of gravity for all masses
and the second one to the tensorial structure of gravity. However, there is a
much bigger difference present which also relates to the treatment of (c�, ji) as
4-vector. The electromagnetic field equations (4) are gauge invariant against
the transformation

A′0 = A0 − ∂0Λ, (26)

A′i = Ai + ∂iΛ. (27)

The linearized Einstein field equations in electrodynamic form, (22) and (23),
however, are not invariant against the gauge transformations of linearized
gravity which are given by, containing four arbitrary functions εμ,

h̄′00 = h̄00 − ∂0ε
0 + ∂jε

j , (28)

h̄′0i = h̄0i + ∂iε
0 − ∂0ε

i, (29)

h̄′ij = h̄ij + ∂iε
j + ∂jε

i − δij∂με
μ. (30)

Only in the case of vanishing εi, the above field equations (22) and (23) are
invariant. This means that the linearized Einstein field equations in the elec-
trodynamic form, (22) and (23), have no physical meaning, locally, in contrast
to the Maxwell equations (1) and (2).
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2.4 The Linearized Einstein Theory in Gauge-Invariant Form

A locally gauge-invariant representation of the linearized Einstein theory can
be achieved with the aid of the Riemann curvature tensor

Rμνστ =
1
2
(∂ν∂σhμτ + ∂μ∂τhνσ − ∂ν∂τhμσ − ∂μ∂σhντ ) (31)

which is an invariant object under the gauge transformations (28)–(30)

R′
μνστ = Rμνστ . (32)

Calling, respectively, e.g., see [3],

Eij = Ri0j0, Hij =
1
2
εiklRklj0, (33)

the electric and magnetic components of the curvature tensor, all its compo-
nents can be recovered in the form:

Ri0j0 = Eij , Rijk0 = εijlHlk, (34)

Rijkl = εijmεkln

(
−Emn +

1
2
Jmn

)
, (35)

Jij =
8πG
c4

(
−Tij +

1
2
δij(T00 + Tkk)

)
. (36)

The fully gauge-invariant field equations for linearized Einstein theory read

∇ · H = 0, ∇× E +
1
c

∂

∂t
H = 0, (37)

∇ · E = ∇ · J, ∇× HT − 1
c

∂

∂t
E = −1

c

∂

∂t
J, (38)

where HT denotes the transposed of the dyadic H; ET = E, JT = J. (Notice
the similarity of the inhomogeneous equations with the macroscopic Maxwell
equations with polarization, i.e., dipole sources.) These equations do have
local meaning as the expression

Ki = −
(
c2EijX

j + 2cεiklV
kHljX

j
)

= −
(
Ei +

2
c
(V × H)i

)
(39)

does which describes the tidal force on two particles with unit mass, separated
by the vector Xi (V i = dXi

dt ), where

Ei = c2EijX
j , Hi = c2HijX

j . (40)

The second-order field equations for components of the Riemann tensor read

�Eij =
8πG
c4

[
∂2
0(Tij −

1
2
δijT ) + ∂i∂j(T00 +

1
2
T ) − ∂0(∂iTj0 + ∂jTi0)

]
,

(41)
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�Hij =
8πG
c4

εilk

[
∂0∂k(Tjl −

1
2
δjlT ) − ∂k∂jTl0

]
. (42)

Under stationarity conditions, the field equations become,

ΔEij =
4πG
c4

∂i∂j(T00 + Tkk), (43)

ΔHij =
8πG
c4

εilk∂l∂jT0k. (44)

In the Newtonian limit, the well-known tidal-force potential results,

Eij = − 1
c2

∂i∂jϕ, ϕ = G

∫
d3x′ �(x′)

|x − x′| . (45)

3 On the Speed-of-Gravity Controversy

Recently it has been claimed that the speed of gravity should be measurable by
radio observations of a bright radio quasar J0842+1835, during the time of its
line-of-sight close angular encounter with Jupiter by very long baseline inter-
ferometer (VLBI), predicted to occur on 8 September 2002 [4]. The theoretical
basis of above erroneous conclusion rests upon interpreting relativistic correc-
tions to the famous Shapiro delay. The first criticism of [4], raised by Asada,
points out that the excess time delay is a light-cone effect only, hence should
not involve the speed of gravity [5]. Recently, inaugurated by a new paper
which supports Kopeikin’s earlier interpretation of “the higher-order Shapiro
delay” [6], a strong criticism was raised by Will, who presented a detailed
calculation for the relativistic corrections to the Shapiro delay in the para-
metrized post-Newtonian framework and showed that the above-mentioned
VLBI measurements are insensitive to the speed of propagation of gravity [7].
In the final version of his recent publication, Kopeikin strongly criticized the
conclusions reached by Asada and Will by pointing out unsatisfactory aspects,
both conceptual and calculational, of their treatments [6]. In this article, we
will provide a firm mathematical footing to the analysis of Asada and Will,
and convincingly show that the speed of gravity is not sensitive to the mea-
surements of radio waves, emitted by the quasar J0842+1835 and deflected by
the moving Jupiter, performed by VLBI. We shall also point out the concep-
tual error committed by Kopeikin which allowed him to interpret erroneously
the above-mentioned VLBI observations [8].

3.1 The Approach by C.M. Will

Though the final expression for the relativistic time delay presented by Asada
is consistent with that obtained by Kopeikin (compare (10) and (12) in [5]
and [4], respectively), he pointed out that Asada’s derivation assumed that
the position of Jupiter be fixed at retarded light-cone time, which makes
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his derivation somewhat ad hoc. Kopeikin also raised few concerns over the
higher-order time-delay computations in [7], especially the way time-delay
integral was evaluated (refer Sect. B in [6]). Below, we will present an elegant
integration of the relativistic time-delay equation, which is free of blemishes
associated with Will’s treatment, as indicated by Kopeikin. This will help us
to justify mathematically Asada’s result too.

We start with the time-delay equation, (16) of [7], but dropping the sum-
mation symbol there,

Δ(tr, te) = (1 + γ)
Gma

c2

∫ tr

te

(1 − (2 + ζ)e(0) · va(sa)/c)dt
|z − xa(sa)| − va(sa) · (z − xa(sa))/cg

, (46)

where xa, va, and ma are the position vector, the velocity vector, and the
mass of the gravitational source, respectively. te and tr denote the light ray
(photon) emission and reception instances. The Newtonian gravitational con-
stant and the speed of gravity are denoted by G and cg. The constant unit
vector along the incoming light ray e(0) helps us to define the unperturbed
photon trajectory as

z ≡ z(t) = e(0)c(t− te) + ze, (47)

and the retarded time sa is given by sa = t− |z −xa(sa)|/cg. The underlying
reference frame is an inertial frame where as well the observer as the source
of the light ray is treated to be at rest. The time-delay expression in the
Einstein theory results from putting γ = 1, ζ = 0, and cg = c. The advantage
of working within a well-posed generalized framework is the natural difference
therein between the speed of gravity and the speed of light.

It may already be noted here that terms of the type e(0) · va(sa)/c in
the numerator of (46) can be neglected for the interpretation of the data
from the Jupiter VLBI experiment. Only the denominator in (46) is relevant.
Throughout the rest of the chapter, we will assume that the source of the
gravitational field is uniformly moving, making va a constant.

Following techniques used in the computation of electric and magnetic
fields, using Liénard–Wiechert potentials (see [10], Sect. 63), we write the de-
nominator in the integrand of (46) as

|z − xa(sa)| − va · z − xa(sa)
cg

= |z − xa(t)|
(

1 −
(
va

cg

)2

sin2 θt

)1/2

, (48)

where θt is the angle between z − xa(t) and va. To elegantly integrate (46),
we introduce the following expression, where the retardation is with respect
to the speed of light c,

|z − xa(ua)| − va · z − xa(ua)
c

= |z − xa(t)|
(

1 −
(va

c

)2

sin2 θt

)1/2

(49)
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where ua = t − |z − xa(ua)| /c. Using the above expression, we may write
(48) as

|z − xa(sa)| − va · z − xa(sa)
cg

=
[
|z − xa(ua)| − va · z − xa(ua)

c

](
1 − (va/cg)2 sin2 θt

1 − (va/c)2 sin2 θt

)1/2

. (50)

Restricting right-hand side of above equation to O(v2
a) and plugging it in (46)

we obtain,

Δ(tr, te) = (1 + γ)
Gma

c2

∫ tr

te

(1 − (2 + ζ)e(0) · va/c)dt
|z − xa(ua)| − va · (z − xa(ua))/c

. (51)

Using (25), (28), (45), and (50) in [9], which are quite the merit equations of
that paper, it is straightforward to obtain, without any further approximation,
the relativistic time-delay expression in the following form

Δ(tr, te) = −(1 + γ)
Gma

c3

(
1 − (1 + ζ)e(0) ·

va

c

)
ln

rra(ur) − e(0) · rra(ur)
rea(ue) − e(0) · rea(ue)

,

(52)

where the retarded times ur and ue are given by

ui = ti −
ria(ui)

c
, i = r, e (53)

and ria(ui) = zi − xa(ui) with ria(ui) = |ria(ui)|.
It is clear that above equation is not very useful, as it involves unknown

constants like te, the instant of time when the photon was ejected and ze,
a vector associated with its origin. To eliminate te and ze, we introduce a
second observer and let t1 and t2 be the reception times at these receivers
for a photon characterized by te and ze. The relativistic time delay, given by
(52), becomes

Δ(t2, t1) = −(1 + γ)
GmJ

c3

(
1 − (1 + ζ)e(0) ·

vJ

c

)
ln

r2J (u2) − e(0) · r2J (u2)
r1J (u1) − e(0) · r1J (u1)

,

(54)

where the index J stands for the Jupiter. The new retarded instances are

ui = ti −
riJ (ui)

c
, i = 1, 2 (55)

along with

riJ(ui) = zi − xJ(ui), riJ = |riJ (ui)|, i = 1, 2. (56)
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It is clear that in the expression for the relativistic time delay, given by
(54), the speed of gravity plays absolutely no role. The expression, which
should be used to interpret astronomical observations like that made by VLBI
on the fall of 2002, may be obtained by simply replacing (1−(1+ζ)e(0) ·vJ/c)
by 1 in (54). This is so as the effects associated with the g0i-component of
the gravitational field (see [7]), the so-called gravitomagnetic field, may be
neglected during such observations. The final expression for the relativistic
Shapiro delay reads

Δ(t2, t1) = −(1 + γ)
GmJ

c3
ln

r2J (u2) − e(0) · r2J (u2)
r1J (u1) − e(0) · r1J (u1)

. (57)

This proves the correctness of the ansatz used in [5], when γ = 1. The above
equation also agrees with (34) and (35) of [7]. We feel that it is important to
stress again what (54) or (57) really implies. They demonstrate that, whenever
measurements of the gravitational time delay for electromagnetic radiation
passing by a moving massive object, similar to the VLBI observations of 8
September 2002, are interpreted, the only field velocity that enters the analysis
is that of the light.

3.2 The Treatment by S.M. Kopeikin

In this section, we closely scrutinize Kopeikin’s arguments to see how he
reached his erroneous conclusion that the above-mentioned VLBI observations
measure the speed of gravity. The time-delay equation employed by Kopeikin
reads

Δ(tr, te) =
2Gma

c2

∫ tr

te

(
1 − 2e(0) · va(sa)/cg

)
dt

|z − xa(sa)| − va(sa) · (z − xa(sa)) /cg
, (58)

where

sa = τ − |z − xa(sa)|
cg

with τ ≡ ct

cg
. (59)

The velocities va(sa) are also defined with respect to the new time variable
τ . However, for the light propagation he still uses (47), which is

z ≡ z(t) = e(0)c(t− te) + ze, (60)

Note that (58) is quite similar in form to (46), we employed in Sect. 3.1. We
integrate (58) in the same manner as the time-delay integral was performed
in Sect. 3.1. The final result, expressed in terms of τ , reads

Δ(τr, τe) = −2Gma

c3

(
1 − e(0) ·

va

cg

)
ln

rra(sr) − e(0) · rra(sr)
rea(se) − e(0) · rea(se)

, (61)
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where the retarded times se and sr, associated with the positions of emission
and reception of the photon, are

si = τi −
ria(si)

c
, i = e, r (62)

In above equation, rea(se) and rra(sr) are given by

ria(si) = |zi − xa(si)| , ria(si) = zi − xa(si) , i = e, r. (63)

Introducing a second observer and following exactly what have been done
after (52) to get (57), we obtain, for γ = 1,

Δ(τ2, τ1) = −2GmJ

c3
ln

r2J (s2) − e(0) · r2J (s2)
r1J (s1) − e(0) · r1J (s1)

, (64)

where τ1 and τ2 are the fiducial reception times for the deflected photon at
the positions of two VLBI observers.

Since the time t, associated with the photon propagation, is related to the
fiducial time τ by t = (cg/c) τ , we are free to introduce another retardation
u = (cg/c) s. This indicates that we have the freedom to replace Kopeikin’s
arbitrarily defined retardations s1 and s2 with u1 and u2, where

ua = t− |z − xa(ua)|
c

, a = 1, 2. (65)

In terms of u1 and u2, (64) completely agrees with (57) when γ = 1. We
emphasize that it is the time t, associated with the propagation of light, that
is involved in the true measurements of velocities and hence to be used in the
interpretation of astronomical observations. Kopeikin, however, used fiducial
τ to interpret the VLBI observations of 8 September 2002.

4 Light Deflection in the Gravitational Field
of a Compact Binary System

In this section, we shall recapitulate the computations of the angle of light
deflection in the gravitational field of a compact binary system in the linear
and postlinear approximations, which were presented in [9,11]. Both the light
source and the observer are assumed to be located at infinity in an asymptoti-
cally flat space. The equations of light propagation are explicitly integrated to
the second order in G/c2. We assume that the impact parameter |ξ| is much
larger (five times or more) than the distance r12 between the two components
of the binary system.
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4.1 Light Propagation and Light Deflection in the Gravitational
Field of Compact Binary System

Since the light ray is propagating in a weak gravitational field, we can assume
that the light propagation is very well governed by the laws of geometric optics,
whereby light rays (photons) move in curved space–time along null geodesics.
The equations of null geodesics with the time coordinate as parameter are
given by (e.g., see [12])

dli

dt
+ Γ i

αβl
αlβ = c−1Γ 0

νσl
ν lσli, (66)

where Γμ
ρσ are the Christoffel symbols of the second kind and lμ = dzμ

dt denotes
the 4-vector lμ = (c, li). Here, it is important to point out that lμ is not exactly
a 4-vector since we differentiate with respect to the time coordinate t. So lμ

is a 4-vector up to a factor. The spatial part of lμ given by li = dzi/dt is the
3-vector tangent to the light ray zi(t). In the present case of null geodesics,
lμ has to fulfill the condition

l2 ≡ gμν [z0, zi(t), G]lμlν = 0. (67)

Now we consider a light ray zi(t) that is propagating in a curved space–
time gμν [z0, zi(t), G]. If the gravitational field is weak, we can write the fun-
damental metric tensor as a power series in the gravitational constant G

gμν [z0, zi(t), G] ≡ ημν +
∞∑

n=1

h(n)
μν [z0, zi(t), G], (68)

where ημν is the Minkowski metric and h
(n)
μν [z0, zi(t), G] is a perturbation

of the order n in the gravitational constant G (physically, this means an
expansion in the dimensionless parameter Gm/c2d which is very small, d
being the characteristic length of the problem and m a characteristic mass).

To obtain from (66) the equations of light propagation for the metric given
in (68), we substitute the Christoffel symbols into (66). To save writing we
denote the metric coefficients h(1)

pq [z0, zi(t), G] and h
(2)
pq [z0, zi(t), G] by h

(1)
pq and

h
(2)
pq . Then the resulting equation of light propagation to the second order in

G/c2 is

dli

dt
=

1
2
c2h

(1)
00,i − c2h

(1)
0i,0 − c h

(1)
0i,mlm + c h

(1)
0m,il

m − c h
(1)
mi,0l

m

−h
(1)
mi,nl

mln +
1
2
h

(1)
mn,il

mln − 1
2
c h

(1)
00,0l

i − h
(1)
00,kl

kli

+
(

1
2
c−1h

(1)
mp,0 − c−1h

(1)
0p,m

)
lmlpli +

1
2
c2h

(2)
00,i −

1
2
c2h(1)ikh

(1)
00,k

−h
(2)
00,kl

kli −
(
h

(2)
mi,n − 1

2
h

(2)
mn,i

)
lmln + h(1)ik

(
h

(1)
mk,n − 1

2
h

(1)
mn,k

)
lmln

−h
(1)
00 h

(1)
00,kl

kli, (69)
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where by , 0 and , i we denote ∂/∂z0 and ∂/∂zi, respectively. To calculate the
light deflection we need to solve (69) for li. To solve this complicated nonlinear
differential equation, we turn to approximation techniques.

The Approximation Scheme

We can write the 3-vector li(t) as

li(t) = li(0) +
∞∑

n=1

δli(n)(t), (70)

where li(0) denotes the constant incoming tangent vector li(−∞) and δli(n)(t)
the perturbation of the constant tangent vector li(0) of order n in G. After in-
troducing the expression for li(t) given by (70) into (69), we obtain differential
equations for the perturbations δli(1) and δli(2)

dδli(1)

dt
=

1
2
c2h

(1)
00,i − c2h

(1)
0i,0 − c h

(1)
0i,mlm(0) + c h

(1)
0m,il

m
(0) − c h

(1)
mi,0l

m
(0)

−h
(1)
mi,nl

m
(0)l

n
(0) +

1
2
h

(1)
mn,il

m
(0)l

n
(0) −

1
2
c h

(1)
00,0l

i
(0) − h

(1)
00,kl

k
(0)l

i
(0)

+
(

1
2
c−1h

(1)
mp,0 − c−1h

(1)
0p,m

)
lm(0)l

p
(0)l

i
(0) (71)

and

dδli(2)

dt
=

1
2
c2h

(2)
00,i −

1
2
c2h(1)ikh

(1)
00,k − h
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00,kl

k
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i
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(
h

(2)
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2
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+h(1)ik

(
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(1)
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(1)
00,kl
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(1)
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(1)
0m,iδl
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(1)
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(1)

−h
(1)
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(1)
mi,nl

m
(0)δl

n
(1) + h
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00,0δl

i
(1) − h

(1)
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00,kl
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i
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+c−1h
(1)
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(1)l

p
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i
(0) − c−1h

(1)
0p,mδlm(1)l

p
(0)l

i
(0) − c−1h

(1)
0p,mlm(0)δl

p
(1)l

i
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+
(

1
2
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(1)
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(1)
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)
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p
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i
(1). (72)

To calculate the perturbations δli(1)(t) and δli(2)(t), we have to integrate
(71) and (72) along the light ray trajectory to the appropriate order.
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Angle of Light Deflection

The dimensionless vector αi
(n) of order n in G, describing the angle of total

deflection of the light ray measured at the point of observation and computed
with respect to the vector li(0), is given by

αi
(n)(t) = P i

q

δlq(n)(t)

|l(0)|
, (73)

where δli(n) is the perturbation of the constant tangent vector of order n in
G. Here,

P i
q = δi

q − ei
(0)e(0)q, (74)

with ei
(0) = li(0)/|l(0)|, is the projection tensor onto the plane orthogonal to

the vector li(0). In the case of light rays (photons) |l(0)| = c.

4.2 The Gravitational Field of a Compact Binary in the Linear
Approximation

In the linear approximation (68) reduces to

gμν(t,x) = ημν + h(1)
μν (t,x). (75)

The metric perturbation h
(1)
μν (t,x) can be found by solving the Einstein field

equations which in the linear approximation and in the harmonic gauge (see
[12]) are given by

�h(1)
μν (t,x) = −16π

G

c4
Sμν(t,x), (76)

where

Sμν(t,x) = Tμν(t,x) − 1
2ημνT

λ
λ(t,x). (77)

As is well known, the solution of these equations has the form of a Liénard–
Wiechert potential (e.g., see [13]).

For a binary system the matter stress–energy tensor reads

Tμν(t,x) =
2∑

a=1

μa(t)vμ
av

ν
aδ(x − xa), (78)

where the trajectory of the mass ma (in harmonic coordinates) is denoted by
xa(t); the coordinate velocity is va(t) = dxa(t)/dt and vμ ≡ (c,va); μa(t)
represents a time-dependent mass of the body a defined by

μa(t) =
ma√

1 − v2
a(t)/c2

, (79)

where ma is the (constant) Schwarzschild mass.
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After performing the integration of (76) with the help of the flat-retarded
propagator, we finally get

h(1)
μν (t,x) = 4

G

c4

2∑
a=1

μa(sa)vaμ(sa)vaν(sa) − (1/2)ημνμa(sa)vλ
a (sa)vaλ(sa)

ra(sa) − (1/c)(va(sa) · ra(sa))
,

(80)

where ra(sa) is given by ra(sa) = x − xa(sa), and ra(sa) is the Euclidean
norm of ra(sa). In (80) sa denotes the retarded time sa = sa(t,x) for the ath
body which is a solution of the light-cone equation

sa +
1
c
ra(sa) = t. (81)

4.3 The Angle of Light Deflection in the Linear Approximation

By virtue of (71), (73), and considering that the metric coefficients h
(1)
μν in

(71) are smooth functions of t and z, it can be shown that the expression for
the angle of light deflection is given by (e.g., see [9])

αi
(1)(τ) =

1
2c

∫ τ

−∞
dσlα(0)l

β
(0)∂̂ih

(1)
αβ(τ,z(τ)) − 1

c
P i

q l(0)δh
(1)δq(τ,z(τ)), (82)

where ∂̂i ≡ P q
i ∂/∂ξ

q. Here, τ is an independent parameter defined by

τ = t− t∗, (83)

where t∗ is the time of closest approach of the unperturbed light ray to the ori-
gin of an asymptotically flat harmonic coordinate system. Then the equation
of the unperturbed light ray can be represented by

z(τ)unpert. = τ l(0) + ξ, (84)

where ξ is a vector directed from the origin of the coordinate system toward
the point of closest approach (i.e., the impact parameter).

The integral in (82) can be calculated by applying the method developed
by Kopeikin and Schäfer in [9]. After inserting the metric coefficients (80) into
(82) and computing the integral, we finally obtain

αi
(1)(τ) =

∑
a

4(G/c3)ma

[
1 − e(0)·va(sa)

c

]
√

1 − v2
a(sa)
c2

[
ra(τ, sa) − va(sa)·ra(τ,sa)

c

]P i
qv

q
a(sa)

−
∑

a

2(G/c2)ma

[
1 − e(0)·va(sa)

c

]2 [
ra(τ, sa) + (e(0) · ra(τ, sa))

]
P i

qr
q
a(τ, sa)√

1 − v2
a(sa)
c2

[
r2
a(τ, sa) − (e(0) · ra(τ, sa))2

] [
ra(τ, sa) − va(sa)·ra(τ,sa)

c

] .
(85)
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For an observer located at infinity, we find

αi
(1) = lim

τ→∞αi
(1)(τ)

= −4
G

c2

2∑
a=1

ma

[
1 − e(0)·va(sa)

c

]
√

1 − v2
a(sa)
c2 Ra(sa)

[
ξi − P i

qx
q
a(sa)

]
, (86)

where the quantity Ra(sa) is defined by

Ra(sa) = r2
a(0, sa) − (e(0) · xa(sa))2. (87)

4.4 The Postlinear Gravitational Field of a Compact Binary

In [14,15], it was shown that leading order terms for the effect of light deflec-
tion in the linear gravitational field in the case of a small impact parameter
|ξ| (i.e., an impact parameter small with respect to the distance between the
deflector and the observer) depend neither on the radiative part (∼1/|ξ|) of
the gravitational field nor on the intermediate (∼1/|ξ|2) zone terms. The main
effect rather comes from the near zone (∼1/|ξ|3) terms. Taking into account
this property of strong suppression of the influence of gravitational waves on
the light propagation, we can assume that the light deflection in the postlinear
gravitational field of a compact binary is mainly determined by the near zone
metric.

The Metric in the Near Zone

In [16], Blanchet et al. calculated the conservative 2PN harmonic coordinate
metric for the near zone of a system of two-bounded point-like masses as
function of the distance z and of the positions and velocities of the masses
xa(t) and va(t), respectively, with a = 1, 2. For the sake of simplicity we split
the 2PN metric into two parts: the G-2PN and GG-2PN parts.

G-2PN Metric

The G-2PN part is given by

h
(1)
00 = 2

G

c2

2∑
a=1

ma

ra
+

G

c4

2∑
a=1

ma

ra

[
− (na · va)2 + 4v2

a

]
,

h
(1)
0p = −4

G

c3

2∑
a=1

ma

ra
vp

a,

h(1)
pq = 2

G

c2

2∑
a=1

ma

ra
δpq +

G

c4

2∑
a=1

ma

ra

[
− (na · va)2 δpq + 4vp

av
q
a

]
, (88)
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where vp
a denotes the velocity of the mass ma, and np

a is the unit vector defined
by np

a = rp
a/ra. By rp

a we denote the vector rp
a = zp−xp

a(t) and by ra we denote
its Euclidean norm ra = |z − xa(t)|.

Here, it is worthwhile to point out that the parts of the G-2PN metric
which contain the accelerations of the masses were introduced into the part of
the GG-2PN metric after substituting the accelerations by explicit functions
of the coordinate positions of the masses by means of the Newtonian equations
of motion.

GG-2PN Metric

The GG-2PN part is given by

h
(2)
00 =

G2

c4

{
−2

m2
1

r2
1

+ m1m2

(
− 2
r1r2

− r1
2r3

12
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r2
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2r2r3
12

− 5
2r2r12

)}
+
G2

c4
(1 ↔ 2),
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pq =

G2

c4

{
δpq
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1

r2
1

+ m1m2

(
2

r1r2
− r1

2r3
12

+
r2
1

2r2r3
12

− 5
2r1r12

+
4

r12S
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+
m2

1

r2
1

np
1n

q
1 − 4m1m2n

p
12n

q
12

(
1
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+
1

r12S
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+
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c4S2

(
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(p
1 n
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2 + 2n(p

1 n
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12

)
+
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c4
(1 ↔ 2), (89)

where the symbol (1 ↔ 2) refers to the preceding term in braces but with
the labels 1 and 2 exchanged; by S we denote S = r1 + r2 + r12, where
r1 = |z − x1(t)|, r2 = |z − x2(t)|, and r12 = |x1(t) − x2(t)|. The vectors
np

1, np
2, and np

12 are unit vectors defined by np
1 = rp

1/r1, np
2 = rp

2/r2, and
np

12 = rp
12/r12.

The Barycentric Coordinate System

We use a harmonic coordinate system, the origin of which coincides with the
1PN-center of mass. Using the 1PN-accurate center of mass theorem of [17], we
can express the individual center of mass frame positions of the two masses
in terms of the relative position r12 ≡ x1 − x2 and the relative velocity
v12 ≡ v1 − v2 as

x1 =
[
X2 +

1
c2

ε1PN

]
r12, (90)

x2 =
[
−X1 +

1
c2

ε1PN

]
r12, (91)
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where X1, X2, and ε1PN are given by

X1 ≡ m1

M
, (92)

X2 ≡ m2

M
, (93)

ε1PN =
ν(m1 −m2)

2M

[
v2
12 −

GM

r12

]
. (94)

Here, we have introduced

M ≡ m1 + m2, v12 = |v12| (95)

and

ν ≡ m1m2

M2
. (96)

It is important to remark that, in our computation of the postlinear light
deflection up to the order G2/c4, we need only to consider the 1PN corrections
to the Newtonian center of mass, because, as we shall see in Sect. 4.5, the 2PN
corrections to the Newtonian center of mass are related to postlinear light
deflection terms of order higher than G2/c4.

4.5 The Postlinear Angle of Light Deflection

From (72) and (73), we see that the postlinear angle of light deflection αi
(2) is a

function of the GG-2PN metric coefficients h(2)
μν , the G-2PN metric coefficients

h
(1)
μν , and the linear perturbation δli(1)(τ). To facilitate the computations, we

separate the light deflection terms that are functions of the GG-2PN metric
coefficients from the terms that are functions of the G-2PN metric coefficients
and the linear perturbations.

The Linear Perturbation δli(1)(τ )

From (71) it follows that the perturbation δli(1)(τ) is given by

δli(1)(τ) =
1
2

∫ τ

−∞
dσ lα(0)l

β
(0)h

(1)
αβ,i

∣∣∣
(→)

− c h
(1)
0i − h

(1)
mil

m
(0) − h

(1)
00 li(0)

+
1
2
c

∫ τ

−∞
dσ h

(1)
00,0l

i
(0)

∣∣∣
(→)

+
∫ τ

−∞
dσ lm(0)l

p
(0)

[
1
2
c−1h

(1)
mp,0 − c−1h

(1)
0p,m

]
li(0)

∣∣∣
(→)

. (97)

On the right-hand side of (97) after evaluating the partial derivatives of the
metric coefficients with respect to the photon’s coordinates (i.e., (z0, zi(t))),
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we replace in the integrals the photon trajectory by its unperturbed approxi-
mation zi(σ)unpert. = σli(0) + ξi and the time coordinate z0 by σ + t∗. In this
chapter, we denote this operation by the symbol |(→). After introducing the
G-2PN metric coefficients (88) into (97), we obtain the explicit expression for
δli(1)(τ) which we have to integrate. Since the G-2PN metric coefficients are
functions of the positions and velocities of the masses xa(t) and va(t), respec-
tively, the expression for δli(1)(τ) is a function of these quantities. This means
that we have to take into account the motion of the masses when we are going
to compute the integrals. Considering that the influence of the gravitational
field on the light propagation is strongest near the barycenter of the binary
and that the velocities of the masses are small with respect to the velocity of
light, we are allowed to make the following approximations:

1. We may assume that the linear gravitational field is determined by the
positions and velocities of the masses taken at the time of closest approach
(t = t∗) of the unperturbed light ray to the barycenter of the binary (i.e.,
to the origin of the asymptotically flat harmonic coordinate system). The
expression, resulting from (97) after introducing the G-2PN metric coef-
ficients and setting t = t∗ for the positions and velocities and computing
the integrals, is denoted by δli(1)I(τ).

2. We treat the effect of the motion of the masses on light propagation as
a correction to the expression of δli(1)I(τ), which we denote by δli(1)II(τ).
We shall compute this correction in Sect. 4.6.

The total linear perturbation δli(1)(τ) is then given by

δli(1)(τ) = δli(1)I(τ) + δli(1)II(τ). (98)

Consequently, the corresponding angle of light deflection reads

αi
(1)(τ) =

1
c
P i

q

[
δli(1)I(τ) + δli(1)II(τ)

]
, (99)

where P i
q is defined by (74).

Here, it is important to remark that to obtain the total linear light def-
lection we have to add to (99) terms arising from the 1PN corrections in the
positions of the masses, which we shall compute in Sect. 4.6. Since these terms
are proportional to v2

12/c
2, it is easy to see by virtue of the virial theorem that

they are of the same order as the terms in G2/c4.

The Postlinear Light Deflection Terms That Depend
on the GG-2PN Metric

It follows from (72) and (73) that a part of the postlinear light deflection is
given by:

αi
(2)I =

1
c
P i

q

[
1
2
c2
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dτh
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00,q
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]
lm(0)l

n
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]
.

(100)
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Upon introducing the GG-2PN metric coefficients given by (89) into (100),
we obtain integrals whose integrands are functions of the distances r1, r2, S,
and their inverses. Through the distances r1, r2, and S, the resulting integrals
from (100) are functions of the positions of the masses xa(t).

For the same reason as in the case of the linear perturbation, we are here
allowed to fix the values of the positions of the masses xa(t) to their values
at the time t∗ before performing the integration.

To evaluate the integrals that cannot be represented by elementary func-
tions, we resort as usual to a series expansion of the integrands. The order of
the expansion should be chosen in a consistent manner with the expansion in
terms of G/c2.

The Postlinear Light Deflection Terms That Depend
on the G-2PN Metric

We denote the postlinear light deflection terms, which are functions of the
G-2PN metric coefficients and the linear perturbations δli(1)(τ), by αi

(2)II. It
follows from (72) and (73) that the resulting expression for the postlinear light
deflection αi

(2)II is given by
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p
(0)δl
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(1)(τ)

∣∣∣
(→)

]
. (101)

To compute αi
(2)II, we introduce the expressions for the perturbations

δli(1)(τ) given by (98) and the G-2PN metric coefficients given by (88) into the
expression for αi

(2)II. Here, we may use the same approximations as before,
i.e., we can fix the values of the positions and velocities of the masses to their
values at the time t∗ before performing the integrals. As explained in the pre-
ceding section, with the help of a Taylor expansion of the integrands we can
evaluate the integrals, which cannot be represented by elementary functions.
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4.6 Relativistic Corrections

In this section, we give a brief account of the corrections that we have to
consider in the calculation of the linear and postlinear light deflection. Further
details are given in [11]:

– Light deflection and the motion of the masses
As we mentioned before, the general expression for the linear perturba-
tion δli(1)(τ) is through the G-2PN metric coefficients, a function of the
positions and velocities of the components of the binary.
To find the correction terms to the linear perturbation δli(1)I(τ) and post-
linear light deflection, we perform the Taylor expansion of the general
expression for δli(1)(τ) (i.e., of the expression resulting from the introduc-
tion of the G-2PN metric coefficients (88) into (97)) in which the coeffi-
cients depend on the sources’ coordinates and their successive derivatives
with respect to t, namely

dxi
a

dt
= vi

a(t);
d2xi

a

dt2
=

dvi
a

dt
= ai

a(t); . . .

The corrections arising from the motion of the binary’s components are
denoted by δli(1)II and αi

(2)III.
– The postlinear light deflection and the perturbed light trajectory

The linear perturbation of the light trajectory reads

δzi
(1)(τ) =

∫
dτ
[
δli(1)I(τ) + δli(1)II(τ)

]
+ Ki, (102)

where Ki is a vectorial integration constant. After introducing the pertur-
bation δzi

(1)(τ) into (99), we obtain additional postlinear light deflection
terms, which are denoted by αi

(2)IV.
– Light deflection and the center of mass

After introducing the 1PN corrections in the positions given by

δx1 = δx2 =
1
c2

ε1PNr12 (103)

into (99), we get additional terms to the linear and postlinear light
deflection, which we denote by α̃i

(1)(2). From (94) and (103), it is easy
to see that the corrections vanish for equal masses and circular orbits.

4.7 The Total Linear and Postlinear Light Deflection

The total linear light deflection results from summing up (99) with the cor-
rection terms arising from the part of α̃i

(1)(2) that is linear in G. Consequently
the total linear light deflection reads

αi
(1)(τ)tot. =

1
c
P i

q

[
δli(1)I(τ) + δli(1)II(τ)

]
+ α̃i

(1)(2)(G). (104)
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From Sects. 4.5 and 4.6, it follows that the total postlinear light deflection up
to the order G2/c4 is given by

αi
(2) = αi

(2)I + αi
(2)II + αi

(2)III + αi
(2)IV + α̃i

(1)(2)(G
2), (105)

where α̃i
(1)(2)(G

2) denotes the part of α̃i
(1)(2) that is quadratic in G.

4.8 Results

From (104) and (105), we obtain the general formulas for the angle of light
deflection linear and quadratic in G. These formulas are given in an explicit
form in [11]. Here, to study the important features of the derived formulas
and in view of an application of the obtained formulas to the double pulsar
PSR J0737-3039, we shall consider only the special case when the light ray is
originally parallel to the orbital plane of a binary with equal masses (see [18]).
In this case the resulting expressions for the angle of light deflection linear
and quadratic in G (see [11]) read
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and
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where in this case the ADM mass is given by

MADM = M

[
1 +

1
4

(
v2
12

2c2
− GM

c2r12

)]
. (108)

Here, we have assumed that the mass of each component of the binary is
equal to M/2. In (106) the components ei

ξ, P i
qn

q
12, and P i

qv
q
12 of the linear

light deflection were expanded to the order (r12/ξ)12, (r12/ξ)7, and (r12/ξ)7,
respectively, to reach the accuracy of the postlinear light deflection (107).

In (106)–(108), the quantities n12, v12, and r12 are taken at the time t∗.
Note that in this case the correction arising from the shift of the 1PN-center
of mass with respect to the Newtonian center of mass (see (103)) vanishes.

In the limit r12 → 0 (106) and (107) reduce to

αi
(1)(E) = −4

GMADM

c2ξ
ei

ξ (109)

and

αi
(2)(E−S) = −15

4
π
G2M2

ADM

c4ξ2
ei

ξ, (110)

which are the Einstein and Epstein–Shapiro light deflection angles, respec-
tively [19].

Application of the formulas for the deflection angle given by (106) and
(107) to the double pulsar PSR J0737-3039 for an impact parameter five times
greater than the relative separation distance of the binary’s components shows
that the absolute corrections to an Epstein–Shapiro angle of about 10−6 arcsec
lie between 10−7 and 10−8 arcsec.

5 Concluding Remarks

The main steps in the computations of the angle of light deflection in the grav-
itational field of a compact binary in the linear and postlinear approximations
were recapitulated.

The equations of light propagation were explicitly integrated to the second
order in G/c2.

The expressions for the angle of light deflection in the event that the light
ray is originally parallel to the orbital of a binary with equal masses were
given in an explicit form. In the limit r12 → 0 the Einstein angle and the
Epstein–Shapiro light deflection angle were obtained from the expressions for
the linear and postlinear light deflection, respectively.

Application of the derived formulas for the deflection angle to the dou-
ble pulsar PSR J0737-3039 for an impact parameter five times greater than
the relative separation distance of the binary’s components has shown that



Propagation of Light in the Gravitational Field of Binary Systems 129

the absolute corrections to an Epstein–Shapiro angle of about 10−6 arcsec lie
between 10−7 and 10−8 arcsec.

We conclude that the corrections to the Epstein–Shapiro light deflection
angle are beyond the sensitivity of the current astronomical interferometers.
Nevertheless, taking into account that the interferometer for the planned mis-
sion LATOR (see [20]) will be able to measure light deflection angles of the
order 10−8 arcsec, we believe that the corrections to the Epstein–Shapiro light
deflection could well be measured by space-borne interferometers in the fore-
seeable future.

On the level of the light propagation in linear gravitational fields, the
controversy on the speed-of-gravity measurement by the radio observations
of the bright radio quasar J0842+1835 has been investigated. The conclusion
has been drawn that, in that measurement, no speed-of-gravity effect was
included.

Finally, a comparison of linearized Einstein’s field equations with electro-
dynamics has been undertaken to clearly show the similarities and dissimi-
larities between both theories. We feel that this comparison should be useful
for those researchers who like to think about linearized Einstein theory in
terms of electrodynamics because on this route errors may enter easily when
ignoring the different invariance groups of the both theories.
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On the Radar Method in General-Relativistic
Spacetimes

V. Perlick

TU Berlin, Institute of Theoretical Physics, Sekr. PN 7-1,
Hardenbergstrasse 36, 10623 Berlin, Germany

Summary. If a clock, mathematically modeled by a parametrized timelike curve
in a general-relativistic spacetime, is given, the radar method assigns a time and
a distance to every event which is sufficiently close to the clock. Several geometric
aspects of this method are reviewed and their physical interpretation is discussed.

1 Introduction

When Einstein was asked about the meaning of time he used to say: “Time is
the reading of a clock.” Taking this answer seriously, one is forced to accept
that time is directly defined only at the position of a clock; if one wants
to assign a time to events at some distance from the clock, one needs an
additional prescription. As such prescription, Einstein suggested the radar
method with light rays.

Although originally designed for special relativity, the radar method works
equally well in general relativity. What one needs is a clock in an arbitrary
general-relativistic spacetime. Here and in the following, our terminology is as
follows. A general-relativistic spacetime is a four-dimensional manifold M with
a smooth metric tensor field g of Lorentzian signature and a time orientation;
the latter means that a globally consistent distinction between future and
past has been made. A clock is a smooth embedding γ : t �→ γ(t) from a real
interval into M such that the tangent vector γ̇(t) is everywhere timelike with
respect to g and future-pointing. This terminology is justified because we can
interpret the value of the parameter t as the reading of a clock. Note that our
definition of a clock does not demand that “its ticking be uniform” in any
sense. Only smoothness and monotonicity are required.

The radar method assigns a time and a distance to an event q in the
following way. One has to send a light ray from an event on the curve γ, say
γ(t1), to q and receive the reflected light ray at another event on γ, say γ(t2)



132 V. Perlick

V

qp

γ(t1)

γ(t2)

U

Fig. 1. The radar method.

(see Fig. 1). The radar time T and the radar distance R of the event q with
respect to γ are then defined by

T =
1
2
(
t2 + t1

)
, (1)

R =
1
2
(
t2 − t1

)
. (2)

Here and in the following, “light ray” tacitly means “freely propagating light
ray,” i.e., it is understood that there is no optical medium and that mirrors
or other appliances that deviate a light ray are not used. Adopting the stan-
dard formalism of general relativity, “light ray” is then just another word for
“lightlike geodesic of the spacetime metric g.”
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In the following, we discuss the radar method from a geometrical point
of view, reviewing some known results and formulating a few new ones. The
radar method has obvious relevance for the communication with satellites in
the solar system, because all such communication is made with the help of
electromagnetic radiation that can be modeled, in almost all cases, in terms
of light rays. By sending a light ray to a satellite and receiving the reflected
signal, the radar time T and the radar distance R of events at the satellite are
directly measurable quantities. Note that we do not need an experimentalist
at the event q where the light ray is reflected; a passive reflecting body, such
as the LAGEOS satellites, would do.

2 Radar Neighborhoods

The radar time T and the radar distance R of an event q with respect to a
clock γ are well defined if there is precisely one future-pointing and precisely
one past-pointing light ray from q to γ. Neither existence nor uniqueness of
such light rays is guaranteed.

It is possible that an event q cannot be connected to γ by any future-
pointing (or any past-pointing) light ray. There are two physically different
situations in which this occurs: first, q may be in a “shadow” of some obstacle
that lies in the direction to γ; second, q may be behind an “event horizon” of
γ (see Fig. 2).

γ
γ

III

I

II

I

II

III

Fig. 2. Shadows (left) and horizons (right) are obstacles for the radar method. The
example on the left shows a clock γ in Minkowski spacetime with a subset removed.
The example on the right shows a clock γ with uniform acceleration in Minkowski
spacetime. In both cases, events in the region II cannot be connected to γ by a
future-pointing light ray, events in the region III cannot be connected to γ by a
past-pointing light ray, and events in the region I cannot be connected to γ by any
light ray.
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It is also possible that an event q can be connected to γ by two or more
future-pointing (or past-pointing) light rays. Whenever the future light cone
(or the past light cone) of q has a caustic or a transverse self-intersection,
it meets some timelike curves at least twice, see [26] or [27] for a detailed
discussion. If the past light cone of q intersects γ at least twice, an observer at
q sees two or more images of γ, i.e., we are in a gravitational lensing situation.
Figure 5 shows an example of a past light cone that has two intersections
with appropriately chosen timelike curves, as is geometrically evident from
the picture.

These observations clearly show that, in an arbitrary general-relativistic
spacetime, the radar method does not work globally. However, it always works
locally. This is demonstrated by the following simple proposition.

Proposition 1. Let γ be a clock in an arbitrary general-relativistic spacetime
and p = γ(t0) be some point on γ. Then there are open subsets U and V of
the spacetime with p ∈ U ⊂ V such that every point q in U \ image(γ) can be
connected to the world line of γ by precisely one future-pointing and precisely
one past-pointing light ray that stays within V (see Fig. 1). In this case, U is
called a radar neighborhood of p with respect to γ.

To prove this, we just have to recall that every point in a general-relativistic
spacetime admits a convex normal neighborhood, i.e., a neighborhood V such
that any two points in V can be connected by precisely one geodesic that stays
within V . Having chosen such a V , it is easy to verify that every sufficiently
small neighborhood U of p satisfies the desired property.

As an aside, we mention that the existence of radar neighborhoods, in
the sense of Proposition 1, was chosen as one of the axioms in the axiomatic
approach to spacetime theory by Ehlers et al. [5].

If U is a radar neighborhood, the radar time T and the radar distance
R are well-defined functions on U \ image(γ). By continuous extension onto
the image of γ, one gets smooth hypersurfaces T = constant that intersect
γ orthogonally; hence, they are spacelike near γ. Note, however, that they
need not be spacelike on the whole radar neighborhood. The hypersurfaces
R = constant have a cylindrical topology (see Fig. 3). Incidentally, if one
replaces (1) by T = p t1 + (1 − p)t2 with any number p between 0 and 1,
each hypersurface T = constant gets a conic singularity at the intersection
point with γ. This clearly shows that the choice of the factor 1/2 is the most
natural and the most convenient one. (If one allows for direction-dependent
factors, one can get smooth hypersurfaces with factors other than 1/2. This
idea, which however seems a little bit contrived, was worked out by Havas [13]
where the reader can find more on the “conventionalism debate” around the
factor 1/2.)

By covering γ with radar neighborhoods U (and the pertaining convex
normal neighborhoods V ), it is easy to verify that T and R coincide on the
intersection of any two radar neighborhoods. Hence, T and R are well defined
on some tubular neighborhood of γ. We will now investigate how large this
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T = constant

R = constant

γ

Fig. 3. Hypersurfaces T = constant and hypercylinders R = constant defined by
the radar method.

neighborhood can be for the case of a clock moving in the solar system, the
latter being modeled by the Schwarzschild spacetime around the Sun.

To that end we consider the Schwarzschild spacetime around a nontrans-
parent spherical body of radius r∗ and mass m. (The radius is measured in
terms of the radial Schwarzschild coordinate and for the mass we use geomet-
rical units, i.e., the Schwarzschild radius is 2m.) Using the standard deflection
formula for light rays in the Schwarzschild spacetime, the following result can
be easily verified. If a bundle of light rays comes in initially parallel from
infinity, the rays that graze the surface of the central body will meet the axis
of symmetry of the bundle at radius

rf =
r∗

4 m
r∗

+ O
(
( m

r∗
)2
) ≈ r2

∗
4m

(3)

see Fig. 4. This radius rf is sometimes called the focal length of a nontrans-
parent body of radius r∗ and mass m. If we insert the values of our Sun, we
find

rf ≈ 550 a.u. (4)
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rf

Fig. 4. The focal length rf of a nontransparent spherical body.

Fig. 5. Past light cone of an event at radius r > rf in the field of a nontransparent
gravitating body. The “chimney” is the world tube of the gravitating body. The
“shadow” is clearly seen as a gap in the light cone. In this 2+1-dimensional picture
the light cone forms a transverse self-intersection. If the gravitating body is spherical
symmetric, taking the missing spatial dimension into account shows that actually a
sphere’s worth of light rays is focused at each point of the intersection set.

where 1 a.u. = 1 astronomical unit is the average distance from the Earth to
the Sun. From any event at r < rf , the future-pointing and past-pointing light
rays spread out without intersecting each other. They cover the whole space
r > r∗ with the exception of those points that lie in the “shadow” cast by the
central body (see Fig. 4). By contrast, light rays from an event at r > rf do
intersect; the past light cone of such an event is shown in Fig. 5.

As a consequence, for a clock γ moving arbitrarily in the region r > r∗, an
event q at a radius r with r∗ < r < rf can be connected to the world line of
γ by at most one future-pointing and at most one past-pointing light ray. We
shall make the additional assumption that γ is inextendible and approaches
neither the surface of the central body nor infinity in the future or in the
past. This assures that there are no event horizons for γ. As a consequence,
any event q at radius r with r∗ < r < rf can be connected to γ by precisely
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one future-pointing and precisely one past-pointing light ray unless γ moves
through the shadow cast by the central body for light rays issuing from q.

An event q at radius r > rf , on the other hand, may be connected to the
world line of a clock by several future-pointing (or past-pointing) light rays.
This is geometrically evident from Fig. 5.

So for any clock in the solar system, the radar method assigns a unique time
T and a unique distance R to any event at radius r < rf , with the exception
of those events for which the clock lies in the shadow of the central body.
Note that for all existing spacecraft the distance from the Sun is considerably
smaller than rf = 550 a.u. (In October 2005, the spacecraft farthest away
from the Sun was Pioneer 10 with a distance of 89 a.u.)

The idea of sending a spacecraft to r > 550 a.u. was brought forward by
Eshleman [8] in 1979. What makes this idea attractive is the possibility of
observing distant light sources strongly magnified by the focusing effect of the
gravitational field of the Sun (see again Fig. 4). For a detailed discussion of
the perspectives of such a mission, see Turyshev and Andersson [37].

It should be emphasized that our consideration applies only to a nontrans-
parent body. If the central body is transparent, light rays passing through
the central region of the body are focussed at a radius that is much smaller
than the rf given above. If the interior is modeled by a perfect fluid with
constant density, one finds for the Sun a focal length of 30 a.u., in comparison
to the 550 a.u. for the nontransparent case, see Nemiroff and Ftaclas [22]. A
transparent Sun is a reasonable model for neutrino radiation (which travels
approximately, though not precisely, on lightlike geodesics) and for gravita-
tional radiation (which travels along lightlike geodesics if modeled as a linear
perturbation of the Schwarzschild background). So, the focusing at 30 a.u.
might have some futuristic perspective in view of neutrino astronomy and
gravitational wave astronomy.

3 Characterization of Standard Clocks with the Radar
Method

If we reparametrize the curve γ, the hypersurfaces T = constant and R =
constant change. Therefore, the radar method can be used to characterize
distinguished parametrizations of world lines, i.e., distinguished clocks. In a
general-relativistic spacetime, the standard clock parametrization is defined
by the condition

d

dt
g
(
γ̇(t), γ̇(t)

)
= 0 (5)

where g is the spacetime metric. This defines a parametrization along any
timelike curve that is unique up to affine transformations, t �→ at + b with
real constants a and b. As we restrict to future-pointing parametrizations, a
must be positive. Then the choice of a determines the unit and the choice of
b determines the zero on the dial. By choosing a appropriately, we can fix the
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unit of a standard clock such that g
(
γ̇(t), γ̇(t)

)
= −1. Then the parameter of

the clock is called proper time. Note that under an affine reparametrization
t �→ at+ b the radar time and the radar distance transform according to T �→
aT + b and R �→ aR, i.e., the hypersurfaces T = constant and R = constant
are relabeled but remain unchanged.

With the help of the radar method, one can formulate an operational
prescription that allows to test whether a clock is a standard clock. This
prescription is now briefly reviewed, for details and proofs see [24]. Here we
assume that the test is made in a general-relativistic spacetime; in [24] the
more general case of a Weylian spacetime is considered.

To test whether a clock γ behaves like a standard clock in a particular event
γ(t0), we emit at this event two freely falling particles in spatially opposite
directions. These two freely falling particles are mathematically modeled by
timelike geodesics μ and μ, and the condition that they are emitted in spatially
opposite directions means that the future-oriented tangent vector to γ is a
convex linear combination of the future-oriented tangent vectors to μ and μ.
If we restrict to a radar neighborhood of γ(t0), the radar method assigns a
time T and a distance R to each event on μ, and a time T and a distance
R to each event on μ (see Fig. 6). These quantities can be actually measured
provided that the two freely falling particles are reflecting objects. From these

Fig. 6. Testing a clock as a standard clock with the radar method.
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measured quantities we can calculate the differential quotients dR/dT and
d2R/dT 2 along μ and the differential quotients dR/dT and d2R/dT 2 along
μ, i.e., the radar velocity and the radar acceleration of the two freely falling
particles. It is shown in [24] that the standard clock condition (5) holds at
t = t0 (which corresponds to T = T = t0) if and only if

d2R

dT 2

1 −
(
dR

dT

)2

∣∣∣
T=t0

= −
d2R

dT 2

1 −
(
dR

dT

)2

∣∣∣
T=t0

. (6)

This prescription can be used, in particular, to directly test whether atomic
clocks are standard clocks. All experiments so far are in agreement with this
hypothesis, but a direct test has not been made.

There are alternative characterizations of standard clocks by Marzke and
Wheeler [19] and Kundt and Hoffman [18] which also work with light rays
and freely falling particles. The advantages of the method reviewed here in
comparison to these two older methods are outlined in [25].

4 Radar Coordinates, Optical Coordinates, and Fermi
Coordinates

Given any clock γ in any general-relativistic spacetime, the radar method
assigns, as outlined above, to each event q in some tubular neighborhood
of γ a radar time T and a radar distance R. To get a coordinate system
(radar coordinates) on this tubular neighborhood, we may add two angu-
lar coordinates ϑ and ϕ in the following way. Choose at each point γ(t) an
orthonormal tetrad (E0(t), E1(t), E2(t), E3(t)), smoothly dependent on t, such
that E0(t) is future-pointing and tangent to γ. To each event q consider the
past-oriented light ray, in the notation of Fig. 1, from γ(t2) to q. The tangent
vector to this light ray at γ(t2) must be proportional to a vector of the form
−E0(t2) + cosϕ sinϑE1(t2) + sinϕ sinϑE2(t2) + cosϑE3(t2) which defines ϑ
and ϕ. Thus, ϑ and ϕ indicate at which point on the sky of γ the event q is
seen. Just as with ordinary spherical coordinates, there are coordinate singu-
larities at R = 0 and at sinϑ = 0, and ϕ has to be identified with ϕ + 2π.
Apart from these obvious pathologies, the radar coordinates (T,R, ϑ, ϕ) form
a well-defined coordinate system on some tubular neighborhood of γ. There
are two possibilities of modifying the radar coordinates without changing the
information contained in them. First, one may replace T and R by t1 and t2,
according to (1) and (2), and use the modified radar coordinates (t1, t2, ϑ, ϕ).
Second, one may switch to Cartesian-like coordinates (T, x, y, z) by intro-
ducing x = R cosϕ sinϑ, y = R sinϕ sinϑ, and z = R cosϑ to remove the
coordinate singularities at R = 0 and sinϑ = 0. Radar coordinates have been
used as a tool, e.g., in the axiomatic approach to spacetime theory of Schröter
and Schelb [32–34].
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We will now compare radar coordinates with two other kinds of coordinate
systems that can be introduced near the world line of any clock γ: “optical
coordinates” and “Fermi coordinates.” We will see that there are some sim-
ilarities but also major differences between these three types of coordinate
systems. For an alternative discussion of optical coordinates and Fermi coor-
dinates, see Synge [35].

Optical coordinates were introduced by Temple [36]. The alternative name
observational coordinates is also common, see Ellis et al. [6, 7]. They assign
to the event q the four-tuple (t2, s, ϑ, ϕ), where t2, ϑ, and ϕ have the same
meaning as above and s is the “affine length” (or “projected length”) along
the past-oriented light ray from γ(t2) to q. Using the exponential map exp
determined by the spacetime metric, s can be defined by the equation

q = expγ(t2)

(
s
(
−E0(t2)+ cosϕ sinϑE1(t2)+ sinϕ sinϑE2(t2)+ cosϑE3(t2)

))
.

(7)

Just as radar coordinates, optical coordinates are well defined, apart from
the obvious coordinate singularities at s = 0 and sinϑ = 0 on some tubu-
lar neighborhood of γ. The boundary of this neighborhood is reached when
the past light cone of an event on γ develops a caustic or a transverse self-
intersection. (Beyond such points, the optical coordinates are multivalued.
This does not mean that they are useless there; however, they do not define
a coordinate system in the usual sense.) As radar coordinates require a simi-
lar condition not only on past light cones but also on future light cones, the
domain of radar coordinates is always contained in the domain of optical coor-
dinates. Also, there is an important advantage of optical coordinates in view
of calculations: optical coordinates only require to calculate the past-pointing
lightlike geodesics issuing from points on γ; radar coordinates require to cal-
culate past-pointing and future-pointing lightlike geodesics from points on γ,
and to determine their intersections. Nonetheless, for applications in the solar
system radar coordinates are advantageous because they have an operational
meaning. In principle, optical coordinates also have an operational meaning:
(t2, ϑ, ϕ) are the same as in radar coordinates, and for the affine (or pro-
jected) length s a prescription of measurement was worked out by Ruse [29]
after this length measure had been introduced mathematically by Kermack,
McCrea, and Whittaker [16]. However, this prescription requires the distrib-
ution of assistants with rigid rods along each light ray issuing from γ into the
past which is, of course, totally unrealistic in an astronomical situation. In
this sense, optical coordinates have an operational meaning only in principle
but not in practice, whereas radar coordinates have an operational meaning
both in principle and in practice, at least in the solar system. In cosmology,
however, this is no longer true. Then the radar coordinates, just as the optical
coordinates, have an operational meaning only in principle but not in prac-
tice: sending a light ray to a distant galaxy and waiting for the reflected ray
is a ridiculous idea. As a matter of fact, optical coordinates are much more
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useful in cosmology than radar coordinates. Although s is not directly mea-
surable, it is related in some classes of spacetimes to other distance measures,
such as the redshift or the angular diameter distance, which can be used to
replace s. For applications of optical coordinates in cosmology, see [7]. As
the simplest example, one may consider optical coordinates and radar coor-
dinates in Robertson–Walker spacetimes, cf. Jennison and McVittie [15] and
Fletcher [10].

We now turn to Fermi coordinates which were introduced by Enrico
Fermi [9]. Let us recall how they are defined. As above, we have to choose
along γ an orthonormal tetrad (E0(t), E1(t), E2(t), E3(t)) with E0 tangent to
γ. Following Fermi, we require that the covariant derivative of each spatial axis
Eμ (μ = 1, 2, 3) is parallel to the tangent of γ. This Fermi transport law can
be operationally realized by means of gyroscope axes [20] or Synge’s bounc-
ing photon method [28, 35]. (Actually, the construction below can be carried
through equally well if the spatial axes are not Fermi parallel. What is needed
is only smooth dependence on the foot-point, just as with radar coordinates
and optical coordinates.) Then every event q in a sufficiently small tubular
neighborhood of γ can be written in the form

q = expγ(τ)

(
ρ
(
cosφ sin θ E1(τ) + sinφ sin θ E2(τ) + cos θ E3(t2)

))
. (8)

The Fermi coordinates of the point q are the four numbers (τ, ρ, θ, φ). Thus,
each surface τ = constant is generated by the geodesics issuing orthogonally
from the point γ(τ). The distance ρ is defined analogously to the affine length
in the optical coordinates, but now along spacelike rather than lightlike geo-
desics. Also, the angular coordinates θ and φ are analogous to the angu-
lar coordinates ϑ and ϕ in the radar and optical coordinates, but now they
indicate the direction of a spacelike vector, rather than the direction of the
spatial part of a lightlike vector. Just as the other two coordinate systems,
Fermi coordinates are well defined only on some tubular neighborhood of γ.
There are two reasons that limit this neighborhood. First, a hypersurface
τ = constant might develop caustics or self-intersections. Second, two hyper-
surfaces τ = constant might intersect. In contrast to radar coordinates, Fermi
coordinates are insensitive to reparametrizations of γ (apart from the fact that
the surfaces τ = constant are relabeled). The difficulty involved in their cal-
culation is the same as for optical coordinates which is considerably less than
for radar coordinates, as already mentioned above. The essential drawback
of Fermi coordinates is in the fact that they have absolutely no operational
meaning: none of the four coordinates τ , ρ, θ, and φ can be measured because
there is no prescription for physically realizing a spacelike geodesic orthogonal
to a world line.

In spite of this fact, Fermi coordinates have found many applications
because sometimes physically relevant effects can be conveniently calculated
in terms of Fermi coordinates. For a plea in favor of Fermi coordinates, in
comparison to radar coordinates, see Bini et al. [1]. In Minkowski spacetime,
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e.g., it is fairly difficult to calculate the radar time hypersurfaces T = constant
for an accelerating clock. By contrast, the Fermi time hypersurfaces τ =
constant are just the hyperplanes perpendicular to the world line which are
quite easy to determine. (Of course, for an accelerating clock these hyper-
planes necessarily intersect, so they cannot form a smooth foliation on all of
Minkowski spacetime.) It is an interesting question to ask for which clocks
the radar time hypersurfaces T = constant coincide with the Fermi time hy-
persurfaces τ = constant. For standard clocks (recall Sect. 3) in Minkowski
spacetime, Dombrowski et al. [4] have found the following answer.

Proposition 2. Let γ be a standard clock in Minkowski spacetime. Then the
following two statements are equivalent:

(a) The radar time hypersurfaces T = constant are hyperplanes, i.e., they
coincide with the Fermi time hypersurfaces τ = constant.

(b)The 4-acceleration of γ is constant (i.e., a Fermi-transported vector
along γ).

A world line with constant 4-acceleration in Minkowski spacetime is either
a straight line (“inertial observer,” for which the 4-acceleration is zero) or
a hyperbola (“Rindler observer,” for which the 4-acceleration is a nonzero
Fermi-transported vector, see Fig. 2). It is easy to check that, indeed, in
both cases the radar time hypersurfaces with respect to proper time para-
metrization are hyperplanes. The nontrivial statement of Proposition 2 is in
the fact that these are the only cases for which the radar time hypersurfaces
are hyperplanes.

We end this section with a remark on the fact that the term “radar
coordinates” has been used in the literature also in another way. Instead of
supplementing the radar time T and the radar distance R with two angular
coordinates, one could choose a second clock γ̃ which defines a radar time T̃
and a radar distance R̃. If the two clocks are sufficiently close, (T,R, T̃ , R̃) can
be used as coordinates on some open subset which is not a tubular neighbor-
hood of either clock. Of course, one can replace (T,R) by (t1, t2) according to
(1) and (2), and analogously (T̃ , R̃) by (t̃1, t̃2). In the coordinates (t1, t2, t̃1, t̃2),
which are used, e.g., by Ehlers et al. [5], the coordinate hypersurfaces are
light cones. Thus, the construction makes use of the fact that four light cones
generically intersect in a point. (Two light cones generically intersect in a
two-dimensional manifold, where “generically” means that we have to exclude
points where one of the light cones fails to be a submanifold and points where
the two light cones are tangent. Similarly, three light cones generically inter-
sect in a one-dimensional manifold.) In this sense the radar coordinates of
Ehlers et al. are similar to the GPS type coordinates of Blagojević et al. [2].
The only difference is that the latter characterize each point as intersection
of four future light cones that issue from four given world lines (“GPS satel-
lites”), whereas the former characterize each point as intersection of two future
and two past light cones that issue from two given world lines.
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5 Synchronization of Clocks

Let γ be a clock in an arbitrary general-relativistic spacetime, and consider a
second clock γ̃. If γ̃ is sufficiently close to γ, the radar method, carried through
with respect to the clock γ, assigns a unique time T (t̃) and a unique distance
R(t̃) to each event γ̃(t̃). We say that γ̃ is synchroneous to γ if T (t̃) = t̃ for
all t̃ in the considered time interval. (Instead of synchroneous one may say
Einstein synchroneous or radar synchroneous to be more specific.) Clearly,
for every world line sufficiently close to γ, there is a unique parametrization
that is synchroneous to γ. Selecting this particular parametrization is called
synchronization with γ. Note that the relation of being synchroneous is not
symmetric: γ̃ may be synchroneous to γ without γ being synchroneous to γ̃.
As an example, we may choose two affinely parametrized straight timelike
lines γ and γ̃ in Minkowski spacetime that are not parallel. If we arrange the
parameters such that γ̃ is synchroneous to γ, the converse is not true. Also,
the relation of being synchroneous is not transitive: if γ̃ is synchroneous to
γ and γ̂ is synchroneous to γ̃, it is not guaranteed that γ̂ is synchroneous to
γ. This nontransitivity is best illustrated with the Sagnac effect : consider a
family of clocks along the rim of a rotating circular platform in Minkowski
spacetime. Starting with any one of these clocks, synchronize each clock with
its neighbor on the right. Then there is a deficit time interval after completing
the full circle.

Proposition 3 characterizes the special situation that two clocks are
mutually synchroneous.

Proposition 3. Let γ : R −→ M and γ̃ : R −→ M be two clocks, in an arb-
itrary spacetime, for which the parameter extends from −∞ to +∞. Assume
that the world lines of the two clocks have no intersection but are sufficiently
close to each other such that the radar method can be carried through in both
directions. If γ̃ is synchroneous to γ and γ is synchroneous to γ̃, then the
radar distance R of γ̃ with respect γ is a constant R0, and the radar distance
R̃ of γ with respect to γ̃ is the same constant R0.

Proof. The radar method carried through with γ assigns to each event γ̃(t̃) a
time T (t̃) and a distance R(t̃). Analogously, the radar method carried through
with respect to γ̃ assigns to each event γ(t) a time T̃ (t) and a distance R̃(t).
This implies the following identities (see Fig. 7)

t = T
(
T̃ (t) − R̃(t)

)
+ R

(
T̃ (t) − R̃(t)

)
,

t̃ = T̃
(
T (t̃) −R(t̃)

)
+ R̃

(
T (t̃) −R(t̃)

)
.

(9)

If the clocks are mutually synchroneous, T and T̃ are the identity maps, so
(9) simplifies to

R̃(t) = R
(
t− R̃(t)

)
,

R(t̃) = R̃
(
t̃−R(t̃)

)
.

(10)
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Fig. 7. Illustration of the proof of Proposition 3.

These equations hold for all t and for all t̃ in R. By considering the special
case t = t̃−R(t̃) we find

R(t̃) = R
(
t̃− 2R(t̃)

)
(11)

for all t̃ in R. To ease notation, we drop the tilde in the following. By induction,
(11) yields

R(t) = R
(
t− 2nR(t)

)
for all n ∈ N. (12)

It is now our goal to prove that (12) implies that R is a constant. By contra-
diction, assume there is a point where R has negative derivative, R′(t∗) < 0.
Then we must have

t∗ − (t∗ + ε) + 2R(t∗ + ε)
2
(
R(t∗) −R(t∗ + ε)

) −→ ∞ for ε → +0, (13)

because, by our assumption that the world lines of the two clocks do not
intersect, R(t∗) > 0. Thus, there is an infinite sequence tn that converges
toward t∗ from above, such that
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n =
t∗ − tn + 2R(tn)
2
(
R(t∗) −R(tn)

) for all sufficiently large n ∈ N . (14)

As (14) can be rewritten as

tn − 2 (n + 1)R(tn) = t∗ − 2nR(t∗) , (15)

our earlier result (12) yields R(tn) = R(t∗) for all members tn of our sequence,
which obviously contradicts the assumption R′(t∗) < 0. We have thus proven
that R′(t) ≥ 0 for all t. But then we must have R′(t) = 0 for all t, because,
again by (12), to every t there is a smaller parameter value at which the
function R takes the same value. Hence, R must be a constant, R(t) = R0

for all t. It is obvious from (10) that then R̃ must take the same constant
value. ��

We illustrate this result with an example in Minkowski spacetime, using
standard coordinates (x0, x1, x2, x3) such that the metric takes the form

g = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 . (16)

We consider the two clocks

γ(t) = ( t , 0 , 0 , 0 ) , (17)

γ̃(t̃) =
(√

1 − ω2R2
0 t̃ , R0 cosωt̃ , R0 sinωt̃ , 0

)
, (18)

where ω and R0 are constants such that ω2R2
0 < 1. In both cases the parameter

is proper time, i.e., both clocks are standard clocks with the usual choice
of the time unit. The first clock is at rest at the origin of the coordinate
system, the other clock moves with constant angular velocity ω on a circle
with radius R0 around the origin. An elementary exercise shows that the radar
method carried through with respect to γ assigns to each event γ̃(t̃) the time
T (t̃) =

√
1 − ω2R2

0 t̃ and the distance R(t̃) = R0. On the other hand, the radar
method carried through with respect to γ̃ assigns to each event γ(t) the time
T̃ (t) = t/

√
1 − ω2R2

0 and the distance R̃(t) = R0/
√

1 − ω2R2
0. Thus, neither

clock is synchroneous to the other, and they assign to each other constant
but different distances. Now let us modify this example by changing the time
unit for γ̃ according to the affine transformation t̃ �→ t̂ =

√
1 − ω2R2

0 t̃. This
transformation replaces γ̃ with a new clock γ̂,

γ̂(t̂) =
(
t̂ , R0 cos

ω t̂√
1 − ω2R2

0

, R0 sin
ω t̂√

1 − ω2R2
0

, 0
)
. (19)

Note that γ̂ is still a standard clock, but not with the usual time unit. We
now find that the radar method carried through with respect to γ assigns
to each event γ̂(t̂) the time T (t̂) = t̂ and the distance R(t̃) = R0. On the
other hand, the radar method carried through with respect to γ̂ assigns to
each event γ(t) the time T̂ (t) = t and the distance R̂(t) = R0. This modified
example illustrates that Proposition 3 may apply to situations where there is
no symmetry between the two clocks.
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6 Observer Fields

By an observer field on a general-relativistic spacetime, we mean a smooth
vector field V which is everywhere timelike and future-pointing. An observer
field V is called a standard observer field if g(V, V ) = −1. According to our
earlier terminology, integral curves of observer fields are clocks, and integral
curves of standard observer fields are standard clocks with the usual choice
of time unit. For the sake of brevity, we will refer to the integral curves of an
observer field V as to “clocks in V .” Note that V fixes the parametrization for
each of its integral curves uniquely up to an additive constant, i.e., for each
clock in V there is still the freedom of “choosing the zero point on the clock’s
dial.”

In this section, we consider the following four properties of an observer
field V , and for each of them we give necessary and sufficient conditions on V
under which it is satisfied:

Property A. For each clock γ in V , any other clock in V that is sufficiently
close to γ such that the radar method can be carried through is syn-
chroneous with γ, provided that the additive constant has been chosen
appropriately.

Property B. For each clock γ in V , any other clock in V that is sufficiently
close to γ such that the radar method can be carried through has tempo-
rally constant radar distance from γ.

Property C. For any three clocks γ1, γ2, and γ3 in V which are sufficiently
close to each other, the following is true: if one light ray from γ1 to γ3

intersects the world line of γ2, then all light rays from γ1 to γ3 intersect
the world line of γ2.

Property D. For any two clocks γ1 and γ2 in V that are sufficiently close to
each other, the light rays from γ1 to γ2 and the light rays from γ2 to γ1

span the same 2-surface.

All four properties are obviously closely related to the radar method, and
we will discuss them one by one. In the following we have to assume that the
reader is familiar with the standard textbook decomposition of the covariant
derivative of an observer field into acceleration, rotation, shear, and expansion,
and with the related physical interpretation.

We begin with Property A. We emphasize that, in the formulation of this
property, we restricted to clocks that are sufficiently close to each other such
that the radar method can be carried through, but not to clocks that are
infinitesimally close. The synchronizability condition for infinitesimally close
clocks is a standard textbook matter, see, e.g., Sachs and Wu [30], Sects. 2.3
and 5.3. One finds that this condition is satisfied, for an appropriately rescaled
observer field efV , if and only if V is irrotational, i.e., locally hypersurface
orthogonal. The rescaling means that the clocks of the observers have to be
changed appropriately. The synchronization condition for clocks that are not
infinitesimally close to each other is less known. It is given in Proposition 4.
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Proposition 4. (i) A standard observer field V satisfies Property A if and
only if V is an irrotational Killing vector field.

(ii)An arbitrary (not necessarily standard) observer field V satisfies Property
A if and only if V is an irrotational conformal Killing vector field.

Proof. The hard part of the proof is in a paper by Kuang and Liang [17]
who proved the following. If V is a standard observer field, any point admits
a neighborhood that can be sliced into hypersurfaces that are synchroniza-
tion hypersurfaces for all clocks in V if and only if V is proportional to an
irrotational Killing vector field. In this case, the flow of the Killing vector
field maps synchronization hypersurfaces onto synchronization hypersurfaces.
Clearly, Property A requires in addition that the hypersurfaces can be la-
beled such that along each integral curve of V the labeling coincides with
proper time. Thus, the flow of V itself must map synchronization hypersur-
faces onto synchronization hypersurfaces. This completes the proof of Propo-
sition 4(i). Now let V be an arbitrary observer field on the spacetime (M, g).
Then it is a standard observer field on the conformally rescaled spacetime
(M,−g(V, V )−1g). Clearly, as a conformal factor does not affect the paths of
lightlike geodesics, V satisfies Property A on the original spacetime if and only
if it satisfies Property A on the conformally rescaled spacetime. By Proposi-
tion 4(i), the latter is true if and only if V is a normalized irrotational Killing
vector field of the metric −g(V, V )−1g and, thus, if and only if V is an irrota-
tional conformal Killing vector field of the original metric g. This completes
the proof of Proposition 4(ii). ��

A spacetime that admits an irrotational Killing vector field normalized to
−1 is called ultrastatic, and a spacetime that admits an irrotational confor-
mal Killing vector field is called conformally static. Hence, we can summarize
that ultrastaticity is necessary and sufficient for the existence of a standard
observer field that satisfies Property A, and conformal staticity is necessary
and sufficient for the existence of a (not necessarily standard) observer field
that satisfies Property A. A simple and instructive example is an expanding
Robertson–Walker spacetime. Such a spacetime admits a timelike conformal
Killing vector field W orthogonal to hypersurfaces such that g(W,W ) is non-
constant along the integral curves of W . The flow lines of W are often referred
to as the “Hubble flow.” By Proposition 4(ii), the observer field W satisfies
Property A, i.e., if we use on the Hubble flow lines a parametrization adapted
to W (often called “conformal time”), then the clocks are synchroneous. How-
ever, the standard observer field V that results by normalizing W does not
satisfy Property A, i.e., if we use on the Hubble flow lines the parametrization
by proper time, the clocks are not synchroneous (unless they are infinitesi-
mally close to each other). This example demonstrates that it is sometimes
mathematically convenient to use nonstandard observer fields.

We now turn to Property B which may be viewed as a rigidity condition.
Again, there is a well-known textbook result on the situation where only clocks
that are infinitesimally close are considered: for a standard observer field, any
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two clocks that are infinitesimally close to each other have temporally constant
radar distance if and only if V has vanishing shear and vanishing expansion.
This is known as the Born rigidity condition, referring to a classical paper by
Born [3] who introduced this rigidity notion in special relativity. The differ-
ential equations for Born rigid observer fields in general relativity were first
written by Salzmann and Taub [31]. They have nontrivial integrability condi-
tions, i.e., Born rigid observer fields do not exist on arbitrary spacetimes. The
following important result is known as the generalized Herglotz–Noether theo-
rem: if V is a Born-rigid, not hypersurface orthogonal standard observer field
on a spacetime with constant curvature, then V is proportional to a Killing
vector field. This was proven by Herglotz [14] and Noether [23] for the case of
vanishing curvature (Minkowski spacetime) and generalized by Williams [38]
to the case of positive or negative curvature (deSitter or anti-deSitter space-
time). As in the case of the synchronization condition, the rigidity condition
for clocks that are not infinitesimally close to each other is less well known.
It is given in Proposition 5.

Proposition 5. (i) A standard observer field V satisfies Property B if and
only if V is proportional to a Killing vector field.

(ii)An arbitrary (not necessarily standard) observer field V satisfies Property
B if and only if V = efW , where W is a conformal Killing vector field
and f is a scalar function that is constant along each integral curve of V .

Proof. For the proof of Proposition 5(i) we refer to Müller zum Hagen [21].
To prove Proposition 5(ii), let V be an arbitrary observer field. As in the
proof of Proposition 4(ii), we make use of the fact that V satisfies Property
B with respect to the metric g if and only if V satisfies Property B with
respect to the conformally rescaled metric −g(V, V )−1g. The latter is true, by
Proposition 5(i), if and only if V = efW where W is a Killing vector field
of the metric −g(V, V )−1g. The latter condition is true if W is a conformal
Killing vector field of the original metric g and −g(V, V )−1g(W,W ) = e−2f is
constant along each integral curve of V . This completes the proof. ��

A spacetime that admits a timelike Killing vector field is called stationary
and a spacetime that admits a timelike conformal vector field is called con-
formally stationary. Hence, we can summarize that stationarity is necessary
and sufficient for the existence of a standard observer field with Property B,
and that conformal stationarity is necessary and sufficient for the existence of
a (not necessarily standard) observer field with Property B. As an example,
we may again consider the Hubble flow in an expanding Robertson–Walker
spacetime. As with Property A, Property B is satisfied if we use conformal
time but not if we use proper time.

We now turn to Property C. This property can be rephrased in the fol-
lowing way. If, from the position of one clock in V , two other clocks in V are
seen at the same spot in the sky (i.e., one behind the other), then this will
be true for all times. In a more geometric wording, Property C requires that
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the light rays issuing from any one integral curve of V into the past together
with the integral curves of V are surface forming. In Hasse and Perlick [12],
observer fields with this property were called parallax free, and Proposition 6
was proven.

Proposition 6. An observer field V satisfies Property C if and only if V is
proportional to a conformal Killing vector field.

The “if” part follows from the well-known fact that the flow of a conformal
Killing vector field maps light rays onto light rays. The proof of the “only if”
part is more involved, see [12]. Clearly, Property C refers only to the motion of
the clocks, but not to their “ticking” (i.e., not to the parametrization). Hence,
it is irrelevant whether we consider standard observer fields or nonstandard
observer fields.

Finally we turn to Property D which is a way of saying that light rays
from γ1 to γ2 take the same spatial paths as light rays from γ2 to γ1. If this
property is satisfied, there is a timelike 2-surface between γ1 and γ2 that is
ruled by two families of lightlike geodesics. Note that any timelike 2-surface is
ruled by two families of lightlike curves; in general, however, these will not be
geodesics. Foertsch et al. [11] have shown that a timelike 2-surface is ruled by
two families of lightlike geodesics if and only if its second fundamental form is
a multiple of its first fundamental form. In the mathematical literature, such
surfaces are called totally umbilic. Some construction methods and examples
of timelike totally umbilic 2-surfaces are discussed in Foertsch et al. [11]. Note
that in an arbitrary spacetime totally umbilic 2-surfaces need not exist. This
shows that Property D, which requires such a 2-surface between any two
sufficiently close integral curves of some observer field, is quite restrictive. A
criterion is given in Proposition 7.

Proposition 7. An observer field V satisfies Property D if and only if V is
proportional to an irrotational conformal Killing vector field.

Proof. The proof of the “if” part follows from Foertsch et al. [11], Proposi-
tion 3. To prove the “only if” part, fix any event p and let γ be the clock in V
that passes through p. On a neighborhood of p, with the world line of γ omit-
ted, consider two vector fields X and Y such that the integral curves of X are
future-pointing light rays and the integral curves of Y are past-pointing light
rays issuing from the world line of γ. This condition fixes X and Y uniquely
up to nowhere vanishing scalar factors. Property D requires X and Y to be
surface forming and V to be tangent to these surfaces. The first condition is
true, by the well-known Frobenius theorem, if and only if the Lie bracket of
X and Y is a linear combination of X and Y , and the second condition is
true if and only if V is a linear combination of X and Y . As a consequence,
the Lie bracket of Y and V must be a linear combination of Y and V , i.e., Y
and V must be surface forming. This proves that V must satisfy Property C.
Hence, by Proposition 6, V must be proportional to a conformal Killing vector
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field. What remains to be shown is that this conformal Killing vector field is
irrotational, i.e., hypersurface orthogonal. To that end we come back to the
observation that V is a linear combination of X and Y . This means that, for
any integral curve of V in the considered neighborhood, light rays from γ are
seen in the same spatial direction in which light rays to γ are emitted. This is
true, in particular, for integral curves of V that are infinitesimally close to γ.
Synge [35] and, in a simplified way, Pirani [28] have shown that this “bounc-
ing photon construction” implies that the connecting vector between the two
world lines is Fermi transported. This is true for all pairs of infinitesimally
neighboring world lines of V if and only if V is irrotational. This completes
the proof of Proposition 7. ��

The important result to be kept in mind is that, in a spacetime that is not
conformally stationary, it is impossible to find an observer field that satisfies
any of the four Properties A, B, C, and D. This demonstrates that several
features of the radar method, which intuitively might be taken for granted,
are actually not satisfied in many cases of interest.
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Summary. In almost all of the studies devoted to the time delay and the frequency
shift of light, the calculations are based on the integration of the null geodesic equa-
tions. However, the above-mentioned effects can be calculated without integrating
the geodesic equations if one is able to determine the bifunction Ω(xA, xB) giving
half the squared geodesic distance between two points xA and xB (this bifunction
may be called Synge’s world function). In this chapter, Ω(xA, xB) is determined up
to the order 1/c3 within the framework of the PPN formalism. The case of a station-
ary gravitational field generated by an isolated, slowly rotating axisymmetric body
is studied in detail. The calculation of the time delay and the frequency shift is car-
ried out up to the order 1/c4. Explicit formulae are obtained for the contributions
of the mass, of the quadrupole moment, and of the internal angular momentum
when the only post-Newtonian parameters different from zero are β and γ. It is
shown that the relative frequency shift induced by the mass quadrupole moment
of the Earth at the order 1/c3 will be bounded by 10−16 in space experiments like
ESA’s Atomic Clock Ensemble in Space (ACES) mission. Other contributions are
briefly discussed.

1 Introduction

A lot of fundamental tests of gravitational theories rest on highly precise
measurements of the travel time and/or the frequency shift of electromagnetic
signals propagating through the gravitational field of the solar system. In
practically all of the previous studies, the explicit expressions of such travel
times and frequency shifts as predicted by various metric theories of gravity
are derived from an integration of the null geodesic differential equations. This
method works quite well within the first post-Minkowskian approximation, as
it is shown by the results obtained, e.g., in [1–5]. Of course, it works also
within the post-Newtonian approximation, especially in the case of a static,
spherically symmetric space–time treated up to order 1/c3 [6, 7]. However,
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the solution of the geodesic equations requires heavy calculations when one
has to take into account the presence of mass multipoles in the field or the
tidal effects due to the planetary motions, and the calculations become quite
complicated in the post-post-Minkowskian approximation [8], especially in
the dynamical case [9].

The aim of this chapter is to present a quite different procedure recently
developed by two of us. Based on Synge’s world function [10], this proce-
dure avoids the integration of the null geodesic equations and is particularly
convenient for determining the light rays which connect an emitter and a rece-
iver having specified spatial locations at a finite distance. Thus, we are able
to extend the previous calculations of the time delay and of the frequency
shift up to the order 1/c4. As a consequence, it is now possible to predict
the time/frequency transfers in the vicinity of the Earth at a level of accu-
racy which amounts to 10−18 in fractional frequency. This level of accuracy is
expected to be reached in the foreseeable future with optical atomic clocks [11].

The plan of the chapter is as follows. First, in Sect. 2, the definition of
the time transfer function is given and the invariant expression of the fre-
quency shift is recalled. It is shown that explicit expressions of the frequency
shift can be derived when the time transfer functions are known. In Sect. 3,
the relevant properties of Synge’s world function are recalled. In Sect. 4, the
general expressions of the world function and of the time transfer function
are obtained within the Nordtvedt–Will parametrized post-Newtonian (PPN)
formalism. In Sect. 5, the case of a stationary field generated by an isolated,
slowly rotating axisymmetric body is analyzed in detail. It is shown that the
contributions of the mass and spin multipoles can be obtained by straightfor-
ward derivations of a single function. Retaining only the terms due to the mass
M , to the quadrupole moment J2, and to the intrinsic angular momentum S
of the rotating body, explicit expansions of the world function and of the time
transfer function are derived up to the order 1/c3 and 1/c4, respectively. The
same formalism yields the vectors tangent to the light ray at the emitter and
at the receiver up to the order 1/c3. In Sect. 6, the frequency shift is developed
up to the order 1/c4 on the assumption that β and γ are the only nonvan-
ishing post-Newtonian parameters. Explicit expressions are obtained for the
contributions of J2 and S. Numerical estimates are given for ESA’s Atomic
Clock Ensemble in Space (ACES) mission [12, 13]. Concluding remarks are
given in Sect. 7.

Equivalent results formulated with slightly different notations may be
found in [14] and an extension of the method to the general post-Minkowskian
approximation is given in [15].

Notations

In this work, G is the Newtonian gravitational constant and c is the speed
of light in a vacuum. The Lorentzian metric of space–time is denoted by g.
The signature adopted for g is (+−−−). We suppose that the space–time is
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covered by one global coordinate system (xμ) = (x0,x), where x0 = ct, t being
a time coordinate, and x = (xi), the xi being quasi-Cartesian coordinates. We
choose coordinates xi so that the curves of equations xi =const are timelike.
This choice means that g00 > 0 everywhere. We employ the vector notation
a to denote either {a1, a2, a3} = {ai} or {a1, a2, a3} = {ai}. Considering two
such quantities a and b with for instance a = {ai}, we use a ·b to denote aibi

if b = {bi} or aibi if b = {bi} (the Einstein convention on the repeated indices
is used). The quantity |a | stands for the ordinary Euclidean norm of a.

2 Time Transfer Functions, Time Delay, and Frequency
Shift

We consider here electromagnetic signals propagating through a vacuum
between an emitter A and a receiver B. We suppose that these signals may
be assimilated to light rays traveling along null geodesics of the metric (geo-
metric optics approximation). We call xA the point of emission by A and
xB the point of reception by B. We put xA = (ctA,xA) and xB = (ctB ,xB).
We assume that there do not exist two distinct null geodesics starting from xA

and intersecting the world line of B. These assumptions are clearly satisfied
in all experiments currently envisaged in the solar system.

2.1 Time Transfer Functions and Time Delay

The quantity tB − tA is the (coordinate) travel time of the signal. Upon the
above-mentioned assumptions, tB − tA may be considered either as a function
of the instant of emission tA and of xA, xB, or as a function of the instant
of reception tB and of xA and xB. So, we can in general define two distinct
(coordinate) time transfer functions, Te and Tr by putting:

tB − tA = Te(tA,xA,xB) = Tr(tB ,xA,xB) . (1)

We call Te the emission time transfer function and Tr the reception time
transfer function. As we shall see below, the main problem will consist in
determining explicitly these functions when the metric is given. Of course, it
is, in principle, sufficient to determine one of these functions.

We shall put
RAB = |xB − xA | (2)

throughout this work. The time delay is then defined as tB − tA − RAB/c.
It is well known that this quantity is > 0 in Schwarzschild space–time, which
explains its designation [16].

2.2 Frequency Shift

Denote by uα
A and uα

B the unit 4-velocity vectors of the emitter at xA and of
the receiver at xB , respectively. Let ΓAB be the null geodesic path connecting
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xA and xB , described by parametric equations xα = xα(ζ), ζ being an affine
parameter. Denote by lμ the vector tangent to ΓAB defined as

lμ =
dxμ

dζ
. (3)

Let νA be the frequency of the signal emitted at xA as measured by a clock
comoving with A, and νB be the frequency of the same signal received at xB

as measured by a clock comoving with B. The ratio νA/νB is given by the
well-known formula [10]

νA

νB
=

uμ
A(lμ)A

uμ
B(lμ)B

. (4)

Since it is assumed that the emission and reception points are connected by a
single null geodesic, it is clear that (lμ)A and (lμ)B may be considered either
as functions of the instant of emission tA and of xA, xB , or as functions of
the instant of reception tB and of xA and xB. Therefore, we may write

νA

νB
= Ne(uA, uB ; tA,xA,xB) = Nr(uA, uB ; tB ,xA,xB) . (5)

Denote by vA = (dx/dt)A and vB = (dx/dt)B the coordinate velocities of
the observers at xA and xB, respectively:

vA =
(
dx

dt

)
A

, vB =
(
dx

dt

)
B

. (6)

It is easy to see that the formula (4) may be written as

νA

νB
=

u0
A

u0
B

(l0)A

(l0)B

qA

qB
, qA = 1 +

1
c
l̂A · vA , qB = 1 +

1
c
l̂B · vB , (7)

where l̂A and l̂B are the quantities defined as

l̂A =
{(

li
l0

)
A

}
, l̂B =

{(
li
l0

)
B

}
. (8)

It is immediately deduced from (7) that an explicit expression of Ne (resp.,
Nr) can be derived when the time transfer function Te (resp., Tr) is known.
Indeed, one has Theorem 1 [15].

Theorem 1. Consider a signal emitted at point xA = (ctA,xA) and received
at point xB = (ctB ,xB). Denote by lμ the vector dxμ/dζ tangent to the null
geodesic at point x(ζ), ζ being any affine parameter, and put

l̂i =
(
li
l0

)
. (9)
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Then, one has relations as follow at xA and at xB(
l̂i

)
A

= c
∂Te

∂xi
A

[
1 +

∂Te

∂tA

]−1

= c
∂Tr

∂xi
A

, (10)

(
l̂i

)
B

= −c
∂Te

∂xi
B

= −c
∂Tr

∂xi
B

[
1 − ∂Tr

∂tB

]−1

, (11)

(l0)A

(l0)B
= 1 +

∂Te

∂tA
=
[
1 − ∂Tr

∂tB

]−1

, (12)

where Te and Tr are taken at (tA,xA,xB) and (tB ,xA,xB), respectively.

This theorem may be straightforwardly deduced from a fundamental prop-
erty of the world function that we introduce in Sect. 3.

Case of a stationary space–time. In a stationary space–time, we can choose
coordinates (xμ) such that the metric does not depend on x0. Then, the travel
time of the signal only depends on xA,xB . This means that (1) reduces to a
single relation of the form

tB − tA = T (xA,xB) . (13)

It immediately follows from (10) and (11) that

(l̂i)A = c
∂

∂xi
A

T (xA,xB) , (14)

(l̂i)B = −c
∂

∂xi
B

T (xA,xB) , (15)

(l0)A

(l0)B
= 1 . (16)

As a consequence, the formula (7) reduces now to

νA

νB
=

u0
A

u0
B

1 + vA · ∇xA
T

1 − vB · ∇xB
T , (17)

where ∇xf denotes the usual gradient operator acting on f(x).
It is worthy of note that (1, {(l̂i)A}) and (1, {(l̂i)B}) constitute a set of

covariant components of the vector tangent to the light ray at xA and xB,
respectively. This tangent vector corresponds to the affine parameter chosen
so that (l0)A = (l0)B = 1.

3 The World Function and Its Post-Newtonian Limit

3.1 Definition and Fundamental Properties

For a moment, consider xA and xB as arbitrary points. We assume that there
exists one and only one geodesic path, say ΓAB , which links these two points.
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This assumption means that point xB belongs to the normal convex neigh-
borhood [17] of point xA (and conversely that xA belongs to the normal con-
vex neighborhood of point xB). The world function is the two-point function
Ω(xA, xB) defined by

Ω(xA, xB) =
1
2
εAB [sAB ]2 , (18)

where sAB is the geodesic distance between xA and xB , namely

sAB =
∫

ΓAB

√
gμνdxμdxν (19)

and εAB = 1, 0,−1 according as ΓAB is a timelike, a null, or a spacelike
geodesic. An elementary calculation shows that Ω(xA, xB) may be written in
any case as [10]

Ω(xA, xB) =
1
2

∫ 1

0

gμν(xα(λ))
dxμ

dλ

dxν

dλ
dλ , (20)

where the integral is taken along ΓAB , λ denoting the unique affine parameter
along ΓAB which fulfills the boundary conditions λA = 0 and λB = 1.

It follows from (16) or (18) that the world function Ω(xA, xB) is unchanged
if we perform any admissible coordinate transformation.

The utility of the world function for our purpose comes from the following
properties [10,15]:

1. The vectors (dxα/dλ)A and (dxα/dλ)B tangent to the geodesic ΓAB ,
respectively, at xA and xB are given by(

gαβ
dxβ

dλ

)
A

= − ∂Ω

∂xα
A

,

(
gαβ

dxβ

dλ

)
B

=
∂Ω

∂xα
B

. (21)

As a consequence, if Ω(xA, xB) is explicitly known, the determination of
these vectors does not require the integration of the differential equations
of the geodesic.

2. Two points xA and xB are linked by a null geodesic if and only if the
condition

Ω(xA, xB) = 0 (22)

is fulfilled. Thus, Ω(xA, x) = 0 is the equation of the null cone C(xA)
at xA.

Consequently, if the bifunction Ω(xA, xB) is explicitly known, it is, in
principle, possible to determine the emission time transfer function Te by
solving the equation

Ω(ctA,xA, ctB ,xB) = 0 (23)

for tB . It must be pointed out, however, that solving (23) for tB yields two
distinct solutions t+B and t−B since the timelike curve xi = xi

B cuts the light cone
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C(xA) at two points x+
B and x−

B ; x+
B being in the future of x−

B. Since we regard
xA as the point of emission of the signal and xB as the point of reception, we
shall exclusively focus our attention on the determination of t+B − tA (clearly,
the determination of t−B − tA comes within the same methodology). For the
sake of brevity, we shall henceforth write tB instead of t+B.

Of course, solving (23) for tA yields the reception time transfer function Tr.
Generally, extracting the time transfer functions from (23), next using (10)

or (11) will be more straightforward than deriving the vectors tangent at xA

and xB from (21), next imposing the constraint (22).
To finish, note that Theorem 1 is easily deduced from the identities

Ω(ctA,xA, ctA + cTe(tA,xA,xB),xB) ≡ 0

and
Ω(ctB − cTr(tB ,xA,xB),xA, ctB ,xB) ≡ 0 .

3.2 General Expression of the World Function
in the Post-Newtonian Limit

We assume that the metric may be written as

gμν = ημν + hμν (24)

throughout space–time, with ημν = diag(1,−1,−1,−1). Let Γ
(0)
AB be the

straight line defined by the parametric equations xα = xα
(0)(λ), with

xα
(0)(λ) = (xα

B − xα
A)λ + xα

A , 0 ≤ λ ≤ 1 . (25)

With this definition, the parametric equations of the geodesic ΓAB connecting
xA and xB may be written in the form

xα(λ) = xα
(0)(λ) + Xα(λ) , 0 ≤ λ ≤ 1 , (26)

where the quantities Xα(λ) satisfy the boundary conditions

Xα(0) = 0 , Xα(1) = 0 . (27)

Inserting (24) and dxμ(λ)/dλ = xμ
B−xμ

A+dXμ(λ)/dλ in (16), then developing
and noting that ∫ 1

0

ημν(xμ
B − xμ

A)
dXν

dλ
dλ = 0

by virtue of (27), we find the rigorous formula

Ω(xA, xB) = Ω(0)(xA, xB) +
1
2
(xμ

B − xμ
A)(xν

B − xν
A)
∫ 1

0

hμν(xα(λ))dλ

+
1
2

∫ 1

0

[
gμν(xα(λ))

dXμ

dλ

dXν

dλ
+ 2(xμ

B − xμ
A)hμν(xα(λ))

dXν

dλ

]
dλ,

(28)



160 P. Teyssandier et al.

where the integrals are taken over ΓAB and Ω(0)(xA, xB) is the world function
in Minkowski space–time

Ω(0)(xA, xB) =
1
2
ημν(xμ

B − xμ
A)(xν

B − xν
A) . (29)

Henceforth, we shall consider only weak gravitational fields generated
by self-gravitating extended bodies within the slow-motion, post-Newtonian
approximation. So, we assume that the potentials hμν may be expanded as
follows

h00 =
1
c2

h
(2)
00 +

1
c4

h
(4)
00 + O(6) ,

h0i =
1
c3

h
(3)
0i + O(5) , (30)

hij =
1
c2

h
(2)
ij + O(4) .

From these expansions and from the Euler–Lagrange equations satisfied by
any geodesic curve, namely

d

dλ

(
gαβ

dxβ

dλ

)
=

1
2
∂αhμν

dxμ

dλ

dxν

dλ
, (31)

it results that Xμ(λ) = O(2) and that dxμ/dλ = xμ
B − xμ

A + O(2). As a
consequence, hμν(xα(λ)) = hμν(xα

(0)(λ))+O(4) and the third and fourth terms
in the RHS of (28) are of order 1/c4. These features result in an expression
for Ω(xA, xB) as follows

Ω(xA, xB) = Ω(0)(xA, xB) + Ω(PN)(xA, xB) + O(4) , (32)

where

Ω(PN)(xA, xB) =
1

2c2
(x0

B − x0
A)2

∫ 1

0

h
(2)
00 (xα

(0)(λ))dλ

+
1

2c2
(xi

B − xi
A)(xj

B − xj
A)
∫ 1

0

h
(2)
ij (xα

(0)(λ))dλ

+
1
c3

(x0
B − x0

A)(xi
B − xi

A)
∫ 1

0

h
(3)
0i (xα

(0)(λ))dλ, (33)

the integral being now taken over the line Γ
(0)
AB defined by (25).

The formulae (32) and (33) yield the general expression of the world func-
tion up to the order 1/c3 within the framework of the 1 PN approximation.
We shall see in Sect. 3.3 that this approximation is sufficient to determine the
time transfer functions up to the order 1/c4. It is worthy of note that the
method used above would as well lead to the expression of the world function
in the linearized weak-field limit previously found by Synge [10].
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3.3 Time Transfer Functions at the Order 1/c4

Suppose that xB is the point of reception of a signal emitted at xA. Taking
(32) into account, (22) may be written in the form

Ω(0)(xA, xB) + Ω(PN)(xA, xB) = O(4) , (34)

which implies the relation

tB − tA =
1
c
RAB − Ω(PN)(ctA,xA, ctB ,xB)

cRAB
+ O(4) . (35)

Using iteratively this relation, we find for the emission time transfer function

Te(tA,xA,xB) =
1
c
RAB − Ω(PN)(ctA,xA, ctA + RAB ,xB)

cRAB
+ O(5) (36)

and for the reception time transfer function

Tr(tB ,xA,xB) =
1
c
RAB − Ω(PN)(ctB −RAB ,xA, ctB ,xB)

cRAB
+ O(5) . (37)

These last formulae show that the time transfer functions can be explicitly cal-
culated up to the order 1/c4 when Ω(PN)(xA, xB) is known. This fundamental
result will be exploited in the following sections.

It is worthy of note that a comparison of (36) and (37) immediately gives
the following relations:

Tr(tB ,xA,xB) = Te

(
tB − RAB

c
,xA,xB

)
+ O(5) (38)

and conversely

Te(tA,xA,xB) = Tr

(
tA +

RAB

c
,xA,xB

)
+ O(5) . (39)

The quantity Ω(PN)(ctA,xA, ctA +RAB ,xB) in (36) may be written in an
integral form by using (33), in which RAB and RABλ + ctA are substituted
for x0

B − x0
A and for x0

(0)(λ), respectively. As a consequence

Te(tA,xA,xB) =
1
c
RAB

{
1 − 1

2c2

∫ 1

0

[
h

(2)
00 (zα

+(λ))

+h
(2)
ij (zα

+(λ))N iN j +
2
c
h

(3)
0i (zα

+(λ))N i
]
dλ

}
+ O(5), (40)
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the integral being taken over curve Γ
(0)+
AB defined by the parametric equations

xα = zα
+(λ), where

z0
+(λ) = RABλ + ctA , zi

+(λ) = RABN iλ + xi
A , 0 ≤ λ ≤ 1 , (41)

with

RAB =|RAB | , N i =
xi

B − xi
A

RAB
. (42)

We note that Γ
(0)+
AB is a null geodesic path of Minkowski metric from xA,

having the above-defined quantities N i as direction cosines.
A similar reasoning leads to an expression as follows for Tr

Tr(tB ,xA,xB) =
1
c
RAB

{
1 − 1

2c2

∫ 1

0

[
h

(2)
00 (zα

−(λ))

+h
(2)
ij (zα

−(λ))N iN j +
2
c
h

(3)
0i (zα

−(λ))N i
]
dλ

}
+ O(5), (43)

the integral being now taken over curve Γ
(0)−
AB defined by the parametric equa-

tions xα = zα
−(λ), where

z0
−(λ) = −RABλ + ctB , zi

−(λ) = −RABN iλ + xi
B , 0 ≤ λ ≤ 1 . (44)

Curve Γ
(0)−
AB is a null geodesic path of Minkowski metric arriving at xB and

having N i as direction cosines.

4 World Function and Time Transfer Functions Within
the Nordtvedt–Will PPN Formalism

4.1 Metric in the 1 PN Approximation

In this section, we use the Nordtvedt–Will post-Newtonian formalism involv-
ing ten parameters β, γ, ξ, α1, . . ., ζ4 [18]. We introduce slightly modified
notations to be closed of the formalism recently proposed by Klioner and
Soffel [20] as an extension of the post-Newtonian framework elaborated by
Damour et al. [21] for general relativity. In particular, we denote by vr the
velocity of the center of mass O relative to the universe rest frame.1

Although our method is not confined to any particular assumption on
the matter, we suppose here that each source of the field is described by the
energy–momentum tensor of a perfect fluid

Tμν = ρc2
[
1 +

1
c2

(
Π +

p

ρ

)]
uμuν − pgμν , (45)

1 This velocity is noted w in [18].
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where ρ is the rest mass density, Π is the specific energy density (ratio of
internal energy density to rest mass density), p is the pressure, and uμ is
the unit 4-velocity of the fluid. In this section and in the following one, v is
the coordinate velocity dx/dt of an element of the fluid. We introduce the
conserved mass density ρ∗ given by

ρ∗ = ρ
√−gu0 = ρ

[
1 +

1
c2

(
1
2
v2 + 3γU

)
+ O(4)

]
, (46)

where g = det(gμν) and U is the Newtonian-like potential

U(x0,x) = G

∫
ρ∗(x0,x′)
|x − x′ | d3x′ . (47)

To obtain a more simple form than the usual one for the potentials h0i, we
suppose that the chosen (xμ) are related to a standard post-Newtonian gauge
(xμ) by the transformation

x0 = x0 +
1
c3

[(1 + 2ξ + α2 − ζ1)∂tχ− 2α2vr · ∇χ] , xi = xi , (48)

where χ is the superpotential defined by

χ(x0,x) =
1
2
G

∫
ρ∗(x0,x′) |x − x′ | d3x′ . (49)

Moreover, we define ρ̂ by

ρ̂ = ρ∗
[
1 +

1
2
(2γ + 1 − 2ξ + α3 + ζ1)

v2

c2
+ (1 − 2β + ξ + ζ2)

U

c2
+ (1 + ζ3)

Π

c2

+(3γ − 2ξ + 3ζ4)
p

ρ∗c2
− 1

2
(α1 − α3)

v2
r

c2
− 1

2
(α1 − 2α3)

vr · v
c2

+ O(4)
]
.

(50)

Then, the post-Newtonian potentials read

h00 = − 2
c2

w +
2β
c4

w2 +
2ξ
c4

φW +
1
c4

(ζ1 − 2ξ)φv − 2α2

c4
vi

rv
j
r∂ijχ + O(6), (51)

h ≡ {h0i} =
2
c3

[(
γ + 1 +

1
4
α1

)
w +

1
4
α1w vr

]
+ O(5), (52)

hij = −2γ
c2

wδij + O(4) , (53)

where

w(x0,x) = G

∫
ρ̂(x0,x′)
|x − x′ | d

3x′

+
1
c2

[(1 + 2ξ + α2 − ζ1)∂ttχ− 2α2vr · ∇(∂tχ)] , (54)
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φW (x0,x) = G2

∫
ρ∗(x0,x′)ρ∗(x0,x′′)(x − x′)

|x − x′ |3

×
(

x′ − x′′

|x − x′′ | −
x − x′′

|x′ − x′′ |

)
d3x′d3x′′, (55)

φv(x0,x) = G

∫
ρ∗(x0,x′)[v(x0,x′) · (x − x′)]2

|x − x′ |3 d3x′, (56)

w(x0,x) = G

∫
ρ∗(x0,x′)v(x0,x′)

|x − x′ | d3x′ . (57)

4.2 Determination of the World Function and of the Time
Transfer Functions

For the post-Newtonian metric given by (51–57), it follows from (33) that
Ω(xA, xB) may be written up to the order 1/c3 in the form given by (32) with

Ω(PN)(xA, xB) = Ω(PN)
w (xA, xB) + Ω(PN)

w (xA, xB) + Ω(PN)
vr

(xA, xB) , (58)

where

Ω(PN)
w (xA, xB) = − 1

c2
[
(x0

B − x0
A)2 + γR2

AB

] ∫ 1

0

w(xα
(0)(λ))dλ , (59)

Ω(PN)
w (xA, xB) =

2
c3

(
γ + 1 +

1
4
α1

)
(x0

B − x0
A)

×RAB ·
∫ 1

0

w(xα
(0)(λ))dλ , (60)

Ω(PN)
vr

(xA, xB) =
1

2c3
α1(x0

B − x0
A)(RAB · vr)

∫ 1

0

w(xα
(0)(λ))dλ , (61)

the integrals being calculated along the curve defined by (25).
The emission time transfer function is easily obtained by using (36) or

(40). We get

Te(tA,xA,xB) =
1
c
RAB +

1
c3

(γ + 1)RAB

∫ 1

0

w(zα
+(λ))dλ

− 2
c4

RAB ·
[
(γ + 1 +

1
4
α1)

∫ 1

0

w(zα
+(λ))dλ

+
1
4
α1vr

∫ 1

0

w(zα
+(λ))dλ

]
+ O(5) , (62)

the integral being evaluated along the curve Γ
(0)+
AB defined by (41).
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The reception time transfer function is given by

Tr(tB ,xA,xB) =
1
c
RAB +

1
c3

(γ + 1)RAB

∫ 1

0

w(zα
−(λ))dλ

− 2
c4

RAB ·
[
(γ + 1 +

1
4
α1)

∫ 1

0

w(zα
−(λ))dλ

+
1
4
α1vr

∫ 1

0

w(zα
−(λ))dλ

]
+ O(5) , (63)

the integral being evaluated along the curve Γ
(0)−
AB defined by (44).

Let us emphasize that, since w = U + O(2), w may be replaced by the
Newtonian-like potential U in (59–62).

4.3 Case of a Stationary Source

In what follows, we suppose that the gravitational field is generated by a single
stationary source. Then, ∂tχ = 0 and the potentials w and w do not depend
on time. In this case, the integration involved in (59–61) can be performed by a
method due to Buchdahl [19]. Introducing the auxiliary variables yA = xA−x′

and yB = xB − x′, and replacing in (25) the parameter λ by u = λ − 1/2, a
straightforward calculation yields∫ 1

0

w(x(0)(λ))dλ = G

∫
ρ̂(x′)F (x′,xA,xB)d3x′, (64)∫ 1

0

w(x(0)(λ))dλ = G

∫
ρ∗(x′)v(x′)F (x′,xA,xB)d3x′ , (65)

where the kernel function F (x′,xA,xB) has the expression

F (x′,xA,xB) =
∫ 1/2

−1/2

du

|(yB − yA)u + 1
2 (yB + yA) | . (66)

Noting that yB − yA = RAB , which implies that |yB − yA |= RAB , we find

F (x,xA,xB) =
1

RAB
ln
( |x − xA | + |x − xB | +RAB

|x − xA | + |x − xB | −RAB

)
. (67)

Inserting (64), (65), and (67) in (59–61) and (62) will enable one to obtain
quite elegant expressions for Ω(PN)(xA, xB) and for T (xA,xB).

5 Isolated, Slowly Rotating Axisymmetric Body

Henceforth, we suppose that the light is propagating in the gravitational field
of an isolated, slowly rotating axisymmetric body. The gravitational field is
assumed to be stationary. The main purpose of this section is to determine
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the influence of the mass and spin multipole moments of the rotating body
on the coordinate time transfer and on the direction of light rays. From these
results, it will be possible to obtain a relativistic modeling of the one-way time
transfers and frequency shifts up to the order 1/c4 in a geocentric nonrotating
frame.

Since we treat the case of a body located very far from the other bodies
of the universe, the global coordinate system (xμ) used until now can be con-
sidered as a local (i.e., geocentric) one. So, in agreement with the UAI/UGG
Resolution B1 (2000) [22], we shall henceforth denote by W and W the quan-
tities w and w, respectively, defined by (54) and (57) and we shall denote by
Gμν the components of the metric. However, we shall continue here with using
lower case letters for the geocentric coordinates to avoid too heavy notations.

The center of mass O of the rotating body is taken as the origin of
the quasi-Cartesian coordinates (x); we choose the axis of symmetry as the
x3-axis. We assume that the body is rotating about Ox3 with a constant
angular velocity ω, so that

v(x) = ω × x . (68)

In what follows, we put r =| x |, rA =| xA |, and rB =| xA |. We call θ the
angle between x and Ox3. We consider only the case where all points of the
segment joining xA and xB are outside the body. We denote by re the radius
of the smallest sphere centered on O and containing the body (for celestial
bodies, re is the equatorial radius). In this section, we assume the convergence
of the multipole expansions formally derived below at any point outside the
body, even if r < re.

5.1 Multipole Expansions of the Potentials

According to (54), (57), and (68), the gravitational potentials W and W obey
the equations

∇2W = −4πGρ̂ , ∇2W = −4πGρ∗ω × x . (69)

It follows from (69) that the potential W is a harmonic function outside the
rotating body. As a consequence, W may be expanded in a multipole series
of the form

W (x) =
GM

r

[
1 −

∞∑
n=2

Jn

(re

r

)n

Pn(cos θ)

]
. (70)

In this expansion, Pn is the Legendre polynomial of degree n and the quanti-
ties M , J2, . . . , Jn, . . . correspond to the generalized Blanchet–Damour mass
multipole moments in general relativity [23].

For the sake of simplicity, put

z = x3 . (71)
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Taking into account the identity

∂n

∂zn

(
1
r

)
=

(−1)nn!
r1+n

Pn(z/r) , z = x3 , (72)

it may be seen that

W (x) = GM

[
1
r
−

∞∑
n=2

(−1)n

n!
Jnr

n
e

∂n

∂zn

(
1
r

)]
. (73)

Substituting for W from (73) into (69) yields an expansion for ρ̂ as follows

ρ̂(x) = M

[
δ(3)(x) −

∞∑
n=2

(−1)n

n!
Jnr

n
e

∂n

∂zn
δ(3)(x)

]
, (74)

where δ(3)(x) is the Dirac distribution supported by the origin O. This
expansion of ρ̂ in a multipole series will be exploited in Sect. 5.2.

Now, substituting (68) into (57) yields for the vector potential W

W (x) = G

∫
ρ∗(x′)ω × x′

|x − x′ | d3x′ . (75)

It is possible to show that this vector may be written as

W = −1
2
ω × ∇V , (76)

where V is an axisymmetric function satisfying the Laplace equation ∇2V = 0
outside the body. Consequently, we can expand V in a series of the form

V(x) =
GI

r

[
1 −

∞∑
n=1

Kn

(re

r

)n

Pn(cos θ)

]
, (77)

where I and each Kn are constants. Substituting for V from (77) into (76),
and then using the identity

(n + 1)Pn(z/r) + (z/r)P ′
n(z/r) = P ′

n+1(z/r) , (78)

we find an expansion for W as follows

W (x) =
GIω × x

2r3

[
1 −

∞∑
n=1

Kn

(re

r

)n

P ′
n+1(cos θ)

]
, (79)

which coincides with a result previously obtained by one of us [24]. This coinci-
dence shows that I is the moment of inertia of the body about the z-axis. Thus,
the quantity S = Iω is the intrinsic angular momentum of the rotating body.
The coefficients Kn are completely determined by the density distribution ρ∗
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and by the shape of the body [24, 25]. The quantities I,K1,K2, . . .Kn, . . .
correspond to the Blanchet–Damour spin multipoles in the special case of a
stationary axisymmetric gravitational field.

Equation (79) may also be written as

W (x) = −1
2
GS × ∇

[
1
r
−

∞∑
n=1

(−1)n

n!
Knr

n
e

∂n

∂zn

(
1
r

)]
. (80)

Consequently, the density of mass current can be expanded in the multipole
series

ρ∗(x)(ω × x) = −1
2
S × ∇

[
δ(3)(x) −

∞∑
n=1

(−1)n

n!
Knr

n
e

∂n

∂zn
δ(3)(x)

]
. (81)

This expansion may be compared with the expansion of ρ̂ given by (74).

5.2 Multipole Structure of the World Function

The function Ω(PN)(xA, xB) is determined by (58–61) where w and w are,
respectively, replaced by W and W . The integrals involved in the RHS of
(58–61) are given by (64) and (65). Substituting (74) into (64) and using the
properties of the Dirac distribution, we obtain∫ 1

0

W
(
x(0)(λ)

)
dλ = GM

[
1 −

∞∑
n=2

1
n!

Jnr
n
e

∂n

∂zn

]
F (x,xA,xB)

∣∣∣∣
x=0

. (82)

Similarly, substituting (81) into (65), we get2∫ 1

0

W
(
x(0)(λ)

)
dλ =

1
2
GS × ∇

[
1 −

∞∑
n=1

1
n!

Knr
n
e

∂n

∂zn

]
F (x,xA,xB)

∣∣∣∣
x=0

.

(83)

These formulae show that the multipole expansion of Ω(PN)(xA, xB) can
be thoroughly calculated by straightforward differentiations of the kernel func-
tion F (x,xA,xB) given by (67). They constitute an essential result, since they
give an algorithmic procedure for determining the multipole expansions of the
time transfer function and of the frequency shift in a stationary axisymmetric
field (see also [2]).

To obtain explicit formulae, we shall only retain the contributions due to
M , J2, and S in the expansion yielding Ω

(PN)
W and Ω

(PN)
W . Then, denoting

the unit vector along the z-axis by k and noting that S = Sk, we get for
Ω

(1)
W (xA, xB)

2 Note that the sign of (55) in [14] is erroneous.
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Ω
(PN)
W (xA, xB)

= −GM

c2
(x0

B − x0
A)2 + γR2

AB

RAB
ln
(

rA + rB + RAB

rA + rB −RAB

)

+
2GM

c2
J2r

2
e

(x0
B − x0

A)2 + γR2
AB

[(rA + rB)2 −R2
AB ]2

(rA + rB)
(

k · xA

rA
+

k · xB

rB

)2

−GM

c2
J2r

2
e

(x0
B − x0

A)2 + γR2
AB

(rA + rB)2 −R2
AB

[
(k × xA)2

r3
A

+
(k × xB)2

r3
B

]
+ . . . (84)

and for Ω
(PN)
W (xA, xB)

Ω
(PN)
W (xA, xB) =

(
γ + 1 +

1
4
α1

)
2GS

c3

×(x0
B − x0

A)
rA + rB

rArB

k · (xA × xB)
(rA + rB)2 −R2

AB

+ . . . . (85)

Finally, owing to the limit |α1 |< 4×10−4 furnished in [18], we shall henceforth
neglect all the multipole contributions in Ω

(PN)
vr (xA, xB). Thus, we get

Ω(PN)
vr

(xA, xB) = α1
GM

2c3
(x0

B − x0
A)

RAB · vr

RAB
ln
(

rA + rB + RAB

rA + rB −RAB

)
+ · · · .

(86)

In this section and in the following one, the symbol + . . . stands for the
contributions of higher multipole moments which are neglected. For the sake
of brevity, when + · · · is used, we systematically omit to mention the symbol
O(n) which stands for the neglected post-Newtonian terms.

5.3 Time Transfer Function up to the Order 1/c4

In what follows, we put

nA =
xA

rA
, nB =

xB

rB
, (87)

and
NAB = {N i} =

xB − xA

RAB
. (88)

Furthermore, we use systematically the identity

(rA + rB)2 −R2
AB = 2rArB(1 + nA · nB) . (89)

By substituting RAB for x0
B − x0

A into (84–86) and inserting the corres-
ponding expression of Ω(PN) into (36), we get an expression for the time
transfer function as follows

T (xA,xB) =
1
c
RAB + TM (xA,xB)

+TJ2(xA,xB) + TS(xA,xB) + Tvr
(xA,xB) + . . . , (90)
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where

TM (xA,xB) = (γ + 1)
GM

c3
ln
(

rA + rB + RAB

rA + rB −RAB

)
, (91)

TJ2(xA,xB) = −γ + 1
2

GM

c3
J2

r2
e

rArB

RAB

1 + nA · nB

×
[(

1
rA

+
1
rB

)
(k · nA + k · nB)2

1 + nA · nB

−1 − (k · nA)2

rA
− 1 − (k · nB)2

rB

]
, (92)

TS(xA,xB) = −
(
γ + 1 +

1
4
α1

)
GS

c4

(
1
rA

+
1
rB

)
k · (nA × nB)
1 + nA · nB

, (93)

Tvr
(xA,xB) = −α1

GM

2c4
(NAB · vr) ln

(
rA + rB + RAB

rA + rB −RAB

)
. (94)

The time transfer is thus explicitly determined up to the order 1/c4. The
term of order 1/c3 given by (91) is the well-known Shapiro time delay [16].
Equations (92) and (93) extend results previously found for γ = 1 and
α1 = 0 [1]. However, our derivation is more straightforward and yields for-
mulae which are more convenient to calculate the frequency shifts. As a final
remark, it is worthy of note that TM and TJ2 are symmetric in (xA,xB), while
TS and Tvr

are antisymmetric in (xA,xB).

5.4 Directions of Light Rays at xA and xB up to the Order 1/c3

To determine the vectors tangent to the ray path at xA and xB, we use (14)
and (15) where T is replaced by the expression given by (90–94). It is clear
that l̂A and l̂B may be written as

l̂A = −NAB + λe(xA,xB) , (95)

l̂B = −NAB + λr(xA,xB) , (96)

where λe and λr are perturbation terms due to TM , TJn
, TS , TKn

, . . . For the
expansion of T given by (90–94), we find

λe(xA,xB) = −λM (xB ,xA)−λJ2(xB ,xA)+λS(xB ,xA)+λvr
(xB ,xA)+· · · ,

(97)

λr(xA,xB) = λM (xA,xB)+λJ2(xA,xB)+λS(xA,xB)+λvr
(xA,xB)+ · · · ,

(98)
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where λM , λJ2 , λS , and λvr
stand for the contributions of TM , TJ2 , TS , and

Tvr
, respectively. We get from (91)

λM (xA,xB) = −(γ+1)
GM

c2

(
1
rA

+
1
rB

)
1

1 + nA · nB

(
NAB − RAB

rA + rB
nB

)
.

(99)

From (92), we get

λJ2(xA, xB)

= (γ + 1)
GM

c2

(
1

rA
+

1

rB

)
J2

r2
e

rArB

1

(1 + nA · nB)2

×
{

NAB

[
(k · nA + k · nB)2

1 + nA · nB

(
rA

rB
+

rB

rA
+

1

2
− 3

2
nA · nB

)
−1

2

rArB

rA + rB

(
1 − (k · nA)2

rA
+

1 − (k · nB)2

rB

)(
rA

rB
+

rB

rA
+ 1 − nA · nB

)]
−nB

RAB

rA + rB

[
(k · nA + k · nB)2

1 + nA · nB

(
rA

rB
+

rB

rA
+

3

2
− 1

2
nA · nB

)
−1

2

[
1 − 3(k · nB)2

] rA(2 + nA · nB) + rB

rB

−1

2
(rA + rB)

(
1 − (k · nA)2

rA
− 2(k · nA)(k · nB)

rB

)]
+k

RAB

rB

[
(k · nA) + (k · nB)

rA(2 + nA · nB) + rB

rA + rB

]}
. (100)

From (93) and (94), we derive the other contributions that are not
neglected here:

λS (xA, xB) =
(
γ + 1 +

1

4
α1

)
GS

c3rB

(
1

rA
+

1

rB

)
1

1 + nA · nB

×
{

k × nA − k · (nA × nB)

1 + nA · nB

[
nA +

rA(2 + nA · nB) + rB

rA + rB
nB

]}
,

(101)

λvr (xA, xB) = α1
GM

2c3

[
vr − (vr · NAB)NAB

RAB
ln
(

rA + rB + RAB

rA + rB − RAB

)
+

(vr · NAB)

1 + nA · nB

(
1

rA
+

1

rB

)(
NAB − RAB

rA + rB
nB

)]
. (102)

We note that the mass and the quadrupole moment yield contributions of
order 1/c2, while the intrinsic angular momentum and the velocity relative to
the universe rest frame yield contributions of order 1/c3.
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5.5 Sagnac Terms in the Time Transfer Function

In experiments like ACES Mission, recording the time of emission tA will
be more practical than recording the time of reception tB. So, it will be very
convenient to form the expression of the time transfer T (xA,xB) from xA(tA)
to xB(tB) in terms of the position of the receiver B at the time of emission
tA. For any quantity QB(t) defined along the world line of the station B, let
us put Q̃B = Q(tA). Thus we may write x̃B(tA), r̃B(tA), ṽB(tA), ṽB =| ṽB |,
etc.

Now, let us introduce the instantaneous coordinate distance DAB = x̃B −
xA and its norm DAB . Since we want to know tB − tA up to the order 1/c4,
we can use the Taylor expansion of RAB

RAB = DAB + (tB − tA)ṽB +
1
2
(tB − tA)2 ãB +

1
6
(tB − tA)3 b̃B + · · · ,

where aB is the acceleration of B and bB = daB/dt. Using iteratively this
expansion together with (90), we get

T (xA,xB) = T (xA, x̃B) +
1
c2

DAB · ṽB

+
1

2c3
DAB

[
(DAB · ṽB)2

D2
AB

+ ṽ2
B + DAB · ãB

]

+
1
c4

[
(DAB · ṽB)

(
ṽ2

B + DAB · ãB

)
+

1
2
D2

AB

(
ṽB · ãB +

1
3
DAB · b̃B

)]

+
1
c

DAB

DAB
· ṽB [TM (xA, x̃B) + TJ2(xA, x̃B)]

− 1
c2

DABṽB · [λM (xA, x̃B) + λJ2(xA, x̃B)] + · · · , (103)

where T (xA, x̃B) is obtained by substituting x̃B, r̃B , and DAB , respectively,
for xB, rB , and RAB into the time transfer function defined by (90–94).
This expression extends the previous formula [6] to the next order 1/c4. The
second, the third, and the fourth terms in (103) represent pure Sagnac terms
of order 1/c2, 1/c3, and 1/c4, respectively. The fifth and the sixth terms are
contributions of the gravitational field mixed with the coordinate velocity of
the receiving station. Since these last two terms are of order 1/c4, they might
be calculated for the arguments (xA,xB).
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6 Frequency Shift in the Field of a Rotating
Axisymmetric Body

6.1 General Formulae up to the Fourth Order

It is possible to derive the ratio qA/qB up to the order 1/c4 from our results
in Sect. 4 since l̂A and l̂B are given up to the order 1/c3 by (95–98). Denoting
by l̂(n)/cn the O(n) terms in l̂, qA/qB may be expanded as

qA

qB
= 1 − 1

c

NAB · (vA − vB)

1 − NAB · vB

c

+
1
c3

[
l̂
(2)
A · vA − l̂

(2)
B · vB

]
+

1
c4

[
l̂
(3)
A · vA − l̂

(3)
B · vB

]
+

1
c4

NAB ·
[(

l̂
(2)
B · vB

)
(vA − 2vB) +

(
l̂
(2)
A · vA

)
vB

]
+ O(5) . (104)

To be consistent with this expansion, we have to perform the calculation
of u0

A/u0
B at the same level of approximation. For a clock delivering a proper

time τ , 1/u0 is the ratio of the proper time dτ to the coordinate time dt.
To reach the suitable accuracy, it is therefore necessary to take into account
the terms of order 1/c4 in g00. For the sake of simplicity, we shall henceforth
confine ourselves to the fully conservative metric theories of gravity without
preferred location effects, in which all the PPN parameters vanish except β
and γ. Since the gravitational field is assumed to be stationary, the chosen
coordinate system is then a standard post-Newtonian gauge and the metric
reduces to its usual form

G00 = 1 − 2
c2

W +
2β
c4

W 2 + O(6),

{G0i} =
2(γ + 1)

c3
W + O(5), (105)

Gij = −
(

1 +
2γ
c2

W

)
δij + O(4) , (106)

where W given by (54) reduces to

W (x) = U(x)+
G

c2

∫
ρ∗(x′)
|x − x′ |

[(
γ +

1
2

)
v2 + (1 − 2β)U + Π + 3γ

p

ρ∗

]
d3x′ ,

(107)
and W is given by (75). As a consequence, for a clock moving with the coor-
dinate velocity v, the quantity 1/u0 is given by the formula

1

u0
≡ dτ

dt
= 1 − 1

c2

(
W +

1

2
v2
)

+
1

c4

[(
β − 1

2

)
W 2 −

(
γ +

1

2

)
Wv2

−1

8
v4 + 2(γ + 1)W · v

]
+ O(6), (108)
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from which it is easily deduced that
u0

A

u0
B

= 1 +
1
c2

(
WA −WB +

1
2
v2

A − 1
2
v2

B

)
+

1
c4

{
(γ + 1)(WAv2

A −WBv2
B)

+
1
2
(WA −WB)

[
WA −WB + 2(1 − β)(WA + WB) + v2

A − v2
B

]
− 2(γ + 1)(WA · vA − WB · vB) +

3
8
v4

A − 1
4
v2

Av2
B − 1

8
v4

B

}
+ O(6) .

(109)

It follows from (104) and (109) that the frequency shift δν/ν is given by
δν

ν
≡ νA

νB
− 1 =

(
δν

ν

)
c

+
(

δν

ν

)
g

, (110)

where (δν/ν)c is the special-relativistic Doppler effect(
δν

ν

)
c

= −1
c
NAB · (vA − vB)

+
1
c2

[
1
2
v2

A − 1
2
v2

B − (NAB · (vA − vB)) (NAB · vB)
]

− 1
c3

[
(NAB · (vA − vB))

(
1
2
v2

A − 1
2
v2

B + (NAB · vB)2
)]

+
1
c4

[
3
8
v4

A − 1
4
v2

Av2
B − 1

8
v4

B

− (NAB · (vA − vB)) (NAB · vB)
(

1
2
v2

A − 1
2
v2

B + (NAB · vB)2
)]

+O(5) (111)

and (δν)/ν)g contains all the contribution of the gravitational field, eventually
mixed with kinetic terms(

δν

ν

)
g

=
1
c2

(WA −WB)

− 1
c3

[
(WA −WB) (NAB · (vA − vB)) − l̂

(2)
A · vA + l̂

(2)
B · vB

]
+

1
c4

{
(γ + 1)(WAv2

A −WBv2
B)

+
1
2
(WA −WB)

[
WA −WB + 2(1 − β)(WA + WB) + v2

A − v2
B

−2 (NAB · (vA − vB)) (NAB · vB)
]

+NAB ·
[(

l̂
(2)
B · vB

)
(vA − 2vB) +

(
l̂
(2)
A · vA

)
vB

]
+
(
l̂
(3)
A − 2(γ + 1)WA

)
· vA −

(
l̂
(3)
B − 2(γ + 1)WB

)
· vB

}
+O(5) . (112)
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It must be emphasized that the formulae (108) and (109) are valid within
the PPN framework without adding special assumption, provided that β and
γ are the only nonvanishing post-Newtonian parameters. On the other hand,
(112) is valid only for stationary gravitational fields. In the case of an ax-
isymmetric rotating body, we shall obtain an approximate expression of the
frequency shift by inserting the following developments in (112), yielded by
(97–102):

l̂
(2)
A

c2
= −λM (xB ,xA) − λJ2(xB ,xA) + . . . ,

l̂
(3)
A

c3
= λS(xB,xA) + . . . ,

l̂
(2)
B

c2
= λM (xA,xB) + λJ2(xA,xB) + . . . ,

l̂
(3)
B

c3
= λS(xA,xB) + . . . ,

the function λS being now given by (101) written with α1 = 0. Let us recall
that the symbol + · · · stands for the contributions of the higher multipole
moments which are neglected.

6.2 Application in the Vicinity of the Earth

To perform numerical estimates of the frequency shifts in the vicinity of the
Earth, we suppose now that A is onboard the International Space Station
(ISS) orbiting at the altitude H = 400 km and that B is a terrestrial station.
It will be the case for the ACES mission. We use rB = 6.37 × 106 m and
rA−rB = 400 km. For the velocity of ISS, we take vA = 7.7×103 ms−1 and for
the terrestrial station, we have vB ≤ 465 m s−1. The other useful parameters
concerning the Earth are GM = 3.986 × 1014 m3 s−2, re = 6.378 × 106 m,
J2 = 1.083 × 10−3; for n ≥ 3, the multipole moments Jn are in the order
of 10−6. With these values, we get WB/c2 ≈ GM/c2rB = 6.95 × 10−10 and
WA/c2 ≈ GM/c2rA = 6.54 × 10−10. From these data, it is easy to deduce
the following upper bounds: | NAB · vA/c |≤ 2.6 × 10−5 for the satellite,
|NAB · vB/c |≤ 1.6× 10−6 for the ground station, and |NAB · (vA − vB)/c |≤
2.76 × 10−5 for the first-order Doppler term.

Our purpose is to obtain correct estimates of the effects in (112) which
are greater than or equal to 10−18 for an axisymmetric model of the Earth.
At this level of approximation, it is not sufficient to take into account the
J2-terms in (WA − WB)/c2. First, the higher-multipole moments J3, J4, . . .
yield contribution of order 10−15 in WA/c2. Second, owing to the irregularities
in the distribution of masses, the expansion of the geopotential in a series of
spherical harmonics is probably not convergent at the surface of the Earth.
For these reasons, we do not expand (WA −WB)/c2 in (112).

However, for the higher-order terms in (112), we can apply the explicit
formulae obtained in Sect. 5. Indeed, since the difference between the geoid
and the reference ellipsoid is less than 100 m, WB/c2 may be written as [26]

1
c2

WB =
GM

c2rB
+

GMr2
eJ2

2c2r3
B

(1 − 3 cos2 θ) +
1
c2

�WB , (113)
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where the residual term �WB/c2 is such that |�WB/c2 |≤ 10−14. At a level
of experimental uncertainty about 10−18, this inequality allows to retain only
the contributions due to M , J2, and S in the terms of orders 1/c3 and 1/c4.
As a consequence, the formula (112) reduces to(

δν

ν

)
g

=
1
c2

(WA −WB) +
1
c3

(
δν

ν

)(3)

M

+
1
c3

(
δν

ν

)(3)

J2

+ . . .

+
1
c4

(
δν

ν

)(4)

M

+
1
c4

(
δν

ν

)(4)

S

+ . . . , (114)

where the different terms involved in the RHS are separately explicited and
discussed in what follows.

By using (89), it is easy to see that (δν/ν)(3)M is given by(
δν

ν

)(3)

M

= −GM(rA + rB)
rArB

[(
γ + 1

1 + nA · nB
− rA − rB

rA + rB

)
[NAB · (vA − vB)]

+(γ + 1)
RAB

rA + rB

nA · vA + nB · vB

1 + nA · nB

]
. (115)

The contribution of this term is bounded by 5×10−14 for γ = 1, in accordance
with a previous analysis [6].

6.3 Influence of the Quadrupole Moment at the Order 1/c3

It follows from (100) and (112) that the term (δν/ν)(3)J2
in (114) is given by(

δν

ν

)(3)

J2

=
GM

2re
J2 (NAB · (vA − vB))

[(
re

rA

)3 [
3(k · nA)2 − 1

]
−
(

re

rB

)3 [
3(k · nB)2 − 1

]]
+(γ + 1)GM

(
1

rA
+

1

rB

)
J2

r2
e

rArB

1

(1 + nA · nB)2

×
{

[NAB · (vA − vB)]

[
(k · nA + k · nB)2

1 + nA · nB

(
rA

rB
+

rB

rA
+

1

2
− 3

2
nA · nB

)
−1

2

(
1 − rA(k · nB)2 + rB(k · nA)2

rA + rB

)
×
(

rA

rB
+

rB

rA
+ 1 − nA · nB

)]
+

RAB

rA + rB
(nA · vA + nB · vB)

(k · nA + k · nB)2

1 + nA · nB

(
rA

rB
+

rB

rA
+

3

2
− 1

2
nA · nB

)
−1

2

RAB

rA
(nA · vA)

[
1 − 3(k · nA)2

] rA + rB(2 + nA · nB)

rA + rB



Time Delay and the Frequency Shift of Light 177

− 1

2

RAB

rB
(nB · vB)

[
1 − 3(k · nB)2

] rA(2 + nA · nB) + rB

rA + rB

+RAB

[(
nA · vA

rA
+

nB · vB

rB

)
(k · nA)(k · nB)

−1

2
(nA · vA)

1 − (k · nB)2

rB
− 1

2
(nB · vB)

1 − (k · nA)2

rA

]
−RAB

rA
(k · vA)

[
k · nA

rA + rB(2 + nA · nB)

rA + rB
+ k · nB

]
−RAB

rB
(k · vB)

[
k · nA + k · nB

rA(2 + nA · nB) + rB

rA + rB

]}
. (116)

One has |vA/c| = 2.6×10−5, |vB/c| ≤ 1.6×10−6, and KAB = 3.77×10−3.
A crude estimate can be obtained by neglecting in (116) the terms involving
the scalar products nB ·vB and k ·vB . Since the orbit of ISS is almost circular,
the scalar product nA · vA can also be neglected. On these assumptions, we
find for γ = 1 ∣∣∣∣ 1

c3

(
δν

ν

)(3)

J2

∣∣∣∣ ≤ 1.3 × 10−16. (117)

As a consequence, it will perhaps be necessary to take into account the
O(3) contributions of J2 in the ACES mission. This conclusion is to be com-
pared with the order of magnitude given in [6] without a detailed calculation.
Of course, a better estimate might be found if the inclination i = 51.6 deg
of the orbit with respect to the terrestrial equatorial plane and the latitude
π/2 − θB of the ground station was taken into account.

6.4 Frequency Shifts of Order 1/c4

The term (δν/ν)(4)M in (114) is given by

(
δν

ν

)(4)

M

= (γ + 1)
(

GM

rA
v2

A − GM

rB
v2

B

)
− GM(rA − rB)

2 rArB
(v2

A − v2
B)

+
1
2

(
GM

rArB

)2 [
(rA − rB)2 + 2(β − 1)(r2

A − r2
B)
]
− GM(rA + rB)

rArB

×
[(

2(γ + 1)
1 + nA · nB

− rA − rB

rA + rB

)
[NAB · (vA − vB)] (NAB · vB)

+
γ + 1

1 + nA · nB

RAB

rA + rB

{
(nA · vA) (NAB · vB)

− [NAB · (vA − 2vB)] (nB · vB)
}]

. (118)
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The dominant term (γ + 1)GMv2
A/rA in (118) induces a correction to the

frequency shift which amounts to 10−18. So, it will certainly be necessary to
take this correction into account in experiments performed in the foreseeable
future.

The term (δν/ν)(4)S is the contribution of the intrinsic angular momentum
to the frequency shift. Substituting (79) and (101) into (112), it may be seen
that (

δν

ν

)(4)

S

= (FS)A − (FS)B , (119)

where

(FS)A = (γ + 1)
GS

r2
A

(
1 +

rA

rB

)
vA ·

{
k × nB

1 + nA · nB
− rB

rA + rB
k × nA

+
k · (nA × nB)
(1 + nA · nB)2

[
rA + rB(2 + nA · nB)

rA + rB
nA + nB

]}
, (120)

(FS)B = (γ + 1)
GS

r2
B

(
1 +

rB

rA

)
vB ·

{
k × nA

1 + nA · nB
− rA

rA + rB
k × nB

− k · (nA × nB)
(1 + nA · nB)2

[
nA +

rA(2 + nA · nB) + rB

rA + rB
nB

]}
. (121)

To make easier the discussion, it is useful to introduce the angle ψ between
xA and xB , and the angle ip between the plane of the photon path and the
equatorial plane. These angles are defined by

cosψ = nA · nB , 0 ≤ ψ < π , k · (nA × nB) = sinψ cos ip , 0 ≤ ip < π .

With these definitions, it is easily seen that

k · (nA × nB)
1 + nA · nB

= cos ip tan
ψ

2
.

Let us apply our formulas to ISS. Due to the inequality vB/vA ≤ 6 × 10−2,
the term (FS)B in (119) may be neglected. From (120), it is easily deduced
that

| (FS)A |≤ (γ + 1)
GS

r2
A

(
1 +

rA

rB

)
2 + 3 |tanψ/2 |
|1 + cosψ | vA .

Assuming 0 ≤ ψ ≤ π/2, we have (2 + 3 | tanψ/2 |)/ |1 + cosψ |≤ 5. Inserting
this inequality in the previous one and taking for the Earth GS/c3r2

A = 3.15×
10−16, we find ∣∣∣∣ 1

c4

(
δν

ν

)(4)

S

∣∣∣∣ ≤ (γ + 1) × 10−19 . (122)

Thus, we get an upper bound which is slightly greater than the one
estimated by retaining only the term h0iv

i/c in (109). However, our formula
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confirms that the intrinsic angular momentum of the Earth will not affect the
ACES experiment.

7 Conclusion

It is clear that the world function Ω(xA, xB) constitutes a powerful tool for
determining the time delay and the frequency shift of electromagnetic signals
in a weak gravitational field. The analytical derivations given here are ob-
tained within the Nordtvedt–Will PPN formalism. We have found the general
expression of Ω(xA, xB) up to the order 1/c3. This result yields the expres-
sion of the time transfer functions Te(tA,xA,xB) and Tr(tB ,xA,xB) up to
the order 1/c4. We point out that γ and α1 are the only post-Newtonian pa-
rameters involved in the expressions of the world function and of the time
transfer functions within the limit of the considered approximation.

We have treated in detail the case of an isolated, axisymmetric rotating
body, assuming that the gravitational field is stationary and that the body
is moving with a constant velocity vr relative to the universe rest frame. We
have given a systematic procedure for calculating the terms due to the multi-
pole moments in the world function Ω(xA, xB) and in the single time transfer
function T (xA,xB). These terms are obtained by straightforward differenti-
ations of a kernel function. We have explicitly derived the contributions due
to the mass M , to the quadrupole moment J2, and to the intrinsic angular
momentum S of the rotating body.

Assuming for the sake of simplicity that only β and γ are different from
zero, we have determined the general expression of the frequency shift up to
the order 1/c4. We have derived an explicit formula for the contributions of
J2 at the order 1/c3. Our method would give as well the quadrupole contri-
bution at the order 1/c4 in case of necessity. Furthermore, we have obtained a
thorough expression for the contribution of the mass monopole at the fourth
order, as well as the contribution of the intrinsic angular momentum S, which
is also of order 1/c4. It must be pointed out that our calculations give also
the vectors tangent to the light ray at the emission and reception points. So,
our results could be used for determining the contributions of J2 and S to the
deflection of light.

On the assumption that the gravitational field is stationary, our formulae
yield all the gravitational corrections to the frequency shifts up to 10−18 in
the vicinity of the Earth. Numerically, the influence of the Earth quadrupole
moment at the order 1/c3 is in the region of 10−16 for a clock installed on-
board ISS and compared with a ground clock. As a consequence, this effect
will probably be observable during the ACES mission. We also note that the
leading term in the fourth-order frequency shift due to the mass monopole is
equal to 10−18 for a clock installed onboard ISS and compared with a ground
clock. As a consequence, this effect could be observable in the foreseeable
future with atomic clocks using optical transitions.
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Summary. In this chapter, we deduce a unified formula which allows to discuss
the comparison of clock rates at two different space–time points. In the case of a
perturbed Robertson–Walker metric, our formula returns to an equation for the
comparison of clock rates at different cosmic space–time points, which includes the
Hubble redshift, the Doppler effect, the gravitational redshift, and the Rees–Sciama
effects. In the case of the solar system, when the 2PN metric is substituted into
the unified formula, the comparison of the clock rates both on the earth and a
space station could be made. It might be useful for the discussion on the precise
measurement on future ACES and ASTROD.

1 Introduction

One of the most basic experiments in physics is the measurement of times.
Recently, atomic clocks with a time-keeping accuracy of the order of 10−18

in fractional frequency have been considered [1, 2]. Also a spatial experiment
named Atomic Clock Ensemble in Space (ACES) mission [3, 4] is scheduled
to be launched in 2006 by European Space Agency (ESA). The purpose of
ACES is to obtain an accuracy of order 10−16 in fractional frequency. In such
a situation (10−16–10−18 level), 2PN (second post-Newtonian) approximate
framework has to be carried out before hand. Also, Astrodynamical Space
Test of Relativity using Optical Devices (ASTROD) [5, 6] is planned. The
accuracy of measuring γ (about 10−9) and other parameters will depend on
the stability of the lasers or clocks. This plan also needs a 2PN level on the
comparison of clock rates and equations of motion for planets. The precision
of 2PN level on the comparison of clock rates (or time transfer) has been dis-
cussed in [7,8] by means of world function. But as we know, the calculation of
the world function is not easy. Therefore, we deduce a unified formula in a
different way. Our unified formula can also be applied to cosmos and easily
extended to an even higher order (higher than 2PN level).
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Many formulae have been suggested for the comparison of clock rates at
different positions, based on certain simplifying assumptions about which
effects are dominant. The change of the clock rates can be related to the
relativistic Doppler effect, the gravitational redshift, the Hubble redshift, the
Rees–Sciama effect, and so on. The physical conditions causing all these effects
may prevail at the same time. In early 1990s, the Hubble redshift, the grav-
itational redshift, the Doppler effect, and the Rees-Sciama effect have been
combined into one equation (to see (6) in [9]) in first-order approximation

1 + z =
R(τo)
R(τe)

{
1 +

5
3
(φe − φo) + 2

∫ τo

τe

dτ l · ∇φ + n · (ve − vo)
}

, (1)

where z is redshift, φ is gravitational potential, the subscript e(o) denote the
emitting (observer) point, l = k/ko (kα is the tangent vector to the null
geodesic connecting the emitting point and observer), and v is 3-velocity.
Since all of terms are the level of the first-order approximation, the coupling
terms do not exist. Also they do not deduce (1) through an exact method, it
is difficult for us to extend the formula to higher-order precision.

Accordingly, a comprehensive approach, starting from first principles, is
needed in which the physical conditions for all these effects are taken into
account at the same time. Such an approach should lead us to a synthetic
formula which reflects all these effects in a compact way and which should
provide additional information, due to possible interactions which could not
be incorporated in the isolated approaches for the individual effects.

In general, a comparison of the clock rates between ΔτA and ΔτB by
means of differential coordinate time ΔtA and ΔtB in global coordinate can be
achieved. The relation of the coordinate time between A and B is established
by null geodesic line (light ray) [10]

cdt =
−g0idx

i ±
√

(g0igoj − g00gij)dxidxj

g00
. (2)

The minus and plus sign are taken in I and III quadrants (in x − t coordi-
nates) and II and IV quadrants, respectively. Normally we take the minus sign.
Using these ideal we first time deduce a unified formula for the comparison of
clock rates by means of “calculus of differences.” Substituting the simplest per-
turbed Robertson–Walker metric into the unified formula, we obtain a formula
for the comparison of clock rates at different cosmic space–time points, which
includes the Hubble redshift, the Doppler effect, the gravitational redshift, and
the Rees–Sciama effects. By using the 2PN metric in multiple coordinates [11],
the 2PN comparison of clock rates both on the earth and a space station in
the solar system is made, it may be useful for the precise measurement of
ACES and ASTROD in future.
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2 General Formula

In a global coordinates (ct, xi), a source A moves with a velocity vi
A and a

receiver B with a velocity vi
B. The clock rates in A and B are directly related

with their own proper time ΔτA and ΔτB . To compare them, we need to know
the relation between the time interval ΔtA and ΔtB , because

ΔτA

ΔτB
=

ΔτA

ΔtA

ΔtA
ΔtB

ΔtB
ΔτB

. (3)

Since −c2dτ2 = ds2, therefore if the velocity of a standard clock (A or B) in
the global coordinates is v, we have

Δt =
Δτ√

−[g00 + 2g0ivi/c + gijvivj/c2]
, (4)

where gμν (g00, g0i, and gij) are the global metric. As abbreviation we
introduce

GA = −(g00(A) + 2g0i(A)vi
A/c + gij(A)vi

Avj
A/c2) ,

GB = −(g00(B) + 2g0i(B)vi
B/c + gij(B)vi

Bvj
B/c2) .

One of the main purpose of our chapter is to calculate the relation between
ΔtA and ΔtB by means of a “calculus of differences.” Assuming that, at tA1

(coordinate time) a source A emits a first pulse at position A1(xi
A1

), then a
receiver B received the first pulse at position B1(xi

B1
) at time tB1 . A second

pulse is emitted from A at position A2(xi
A2

) at tA2 , which is received by B
at position B2(xi

B2
) at time tB2 . Then the relation between the emission time

and reception time can be rewritten as

tB = tA +
1
c

∫ B

A

−g0i
dxi

dx −
√

(g0ig0j − g00gij)dxi

dx
dxj

dx

g00
dx , (5)

where we define dx2 ≡ δijdx
idxj , the geometric meaning of dx is the spatial

differential length of the line in the flat space.
In a weak field, g0ig0j is a small quantities (∼O(6)) and the spatial con-

formal isotropic condition [11,12] is

g00gij = −δij −
qij

c4
+ O(6) , (6)

where qij is a spatial anisotropic contribution in the second order, O(6) is
the abbreviation symbol for O(c−6) as well as O(n) for O(c−n). Then (5)
simplifies to

tB = tA − 1
c

∫ B

A

1
g00

[
1 + g0i

dxi

dx
+

qij

2c4
dxi

dx

dxj

dx

]
dx . (7)
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Briefly, we define

F (t, xi) ≡
−g0i

dxi

dx −
√

(g0ig0j − g00gij)dxi

dx
dxj

dx

cg00
, (8)

Equation (5) becomes tB = tA +
∫ B

A
F (t, xi)dx. According to the “calculus of

differences,” we have

ΔtB = ΔtA + Δ

[∫ B

A

F (t, xi)dx

]
. (9)

Note that in this formula we are dealing with finite differences, not with
infinitesimals ones as in the calculus of variations. In particular in (6) one
would have to use x(A) and x(B), respectively, as integration boundaries.

If we only consider a linear approximation in “calculus of differences,” the
difference of the integral in (6) can be divided into three parts

Δ

∫ B

A

Fdx =
∫ x(B+ΔB)

x(B)

Fdx−
∫ x(A+ΔA)

x(A)

Fdx +
∫ x(B)

x(A)

ΔFdx , (10)

where A + ΔA and B + ΔB are corresponding to A2 and B2. Δx(A) and
Δx(B) are given by

Δx(A) ≡ x(A + ΔA) − x(A) =
kA

|kA|
· dx
dx

∣∣∣∣
A

Δx =
kA

|kA|
· vAΔtA , (11)

Δx(B) ≡ x(B + ΔB) − x(B) =
kB

|kB | ·
dx
dx

∣∣∣∣
B

Δx =
kB

|kB | · vBΔtB . (12)

Here kA is the wave vector at point A of the light signal emitted from A and
received at B. kB is the value of this wave vector at the point B. In (11) and
(12) we can replace dxi

dx Δx by dxi

dt Δt. The first and second terms in (10) can
be written as ∫ x(B)+x(ΔB)

x(B)

Fdx = F (B)
kB · vB

|kB | ΔtB , (13)

−
∫ x(A)+x(ΔA)

x(A)

Fdx = −F (A)
kA · vA

|kA|
ΔtA . (14)

The last term of (10) is the difference of the integral between line 2 and line
1 when vA = vB = 0 (i.e., the boundary of integral is fixed), which can be
expanded as∫ x(B)

x(A)

(
F (t + Δt, xi + Δxi) − F (t, xi)

)
dx =

∫ x(B)

x(A)

(
∂F

∂t
Δt +

∂F

∂xi
Δxi

)
dx .

(15)

Asweknow,ifF is independentoftime,then
∫ x(B)

x(A)
ΔFdx=

∫ x(B)

x(A)
∂F
∂xi Δxidx= 0,

since for fixed boundaries the light ray is unique (no deviation). When F is
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dependent on time, there are two curves. The second term
∫ x(B)

x(A)
∂F
∂xi Δxidx

caused by time-dependent metric is a higher-order term compared with∫ x(B)

x(A)
∂F
∂t Δtdx, i.e., ∫ x(B)

x(A)

∂F

∂xi
Δxidx �

∫ x(B)

x(A)

∂F

∂t
Δtdx . (16)

Finally we substitute (13–15) into (6), and use (4). The unified formula is
obtained as

ΔτB

ΔτA
=
√

GB

GA

(
1 − F (A)kA·vA

|kA|
1 − F (B)kB ·vB

|kB |

)

+
√

GB

ΔτA

(
1 − F (B)kB ·vB

|kB |
) ∫ x(B)

x(A)

(
∂F

∂t
Δt +

∂F

∂xi
Δxi

)
dx . (17)

As an example, we consider the Doppler effect of a moving source in
Minkowski metric

gμν = ημν =
(
−1 0
0 δij

)
, (18)

since vB = 0, GB = 1, GA = 1 − v2
A

c2 , and ∂F
∂t = ∂F

∂xi = 0, F (A) = 1
c , so that

ΔτB

ΔτA
=

1 − v
c · kA

|kA|√
1 − v2

A

c2

. (19)

This is just the formula of the Doppler effect in the special relativity.
The other simple example is the gravitational redshift. Considering a sta-

tic gravitational field (e.g., Schwarzschild metric), in which both source and
receiver without moving (vA = vB = 0), the unified form then becomes

ΔτB

ΔτA
=

√
−g00(B)
−g00(A)

� 1 − w(B)
c2

+
w(A)
c2

, (20)

where the last step of above equation is the Newtonian limitation. Equa-
tion (20) is just the formula of gravitational redshift in ordinary textbooks of
gravity.

3 Application in Cosmos with Perturbed R–W Metric

First we recall the unperturbed Robertson–Walker metric

ds2 = −c2dt2 +
R(t)2δijdx

idxj(
1 + k

4 r
2
)2 , (21)
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where R(t) is the cosmic scalar factor, k = −1, 0, +1 is corresponding to the
open, flat, and closed universe, respectively. R(t) has the dimension of length
and dxi is dimensionless. As we already know, R(t) is model dependent. Since
usually we do not consider the local gravitational redshift and the Doppler
effect in the problem of cosmological expansion, we then have ΔtA = ΔτA

and ΔtB = ΔτB , and thus the formula for the Hubble redshift is

ΔτA

ΔτB
=

ΔtA
ΔtB

=
R(tA)
R(tB)

. (22)

The results of (22) can easily be deduced directly from the unified for-
mula (17), if we take vA = vB = wA = wB = 0.

Next, we consider a linearly simplest perturbed Robertson–Walker metric
of the form

ds2 = −c2
(

1 − 2w
c2

)
dt2 +

(
1 +

2w
c2

)
R2δijdx

idxj(
1 + k

4 r
2
)2 , (23)

where the gravitational potential w = w(t, xi) is assumed to be a small quan-
tity. Later we only consider the Doppler effect caused by the motion of the
source, then vB = 0 (also possible vA = 0, then vB �= 0). The velocity of the
source A is

vi
A = R(tA)

dxi
A

dt
. (24)

F (A), GA, and GB can be calculated as follows

F (A) =

(
1 + 2w

c2

)√
R2δij

dxi

dx
dxj

dx

c
(
1 + kr2

4

) =
R(tA)

c
+ O(3) , (25)

where we have neglected all of higher-order terms and consider δijn
inj = 1

and kr2 as higher-order term also. Then√
GB

GA
= 1 +

1
c2

w(tA, xi
A) − 1

c2
w(tB , xi

B) +
v2

A

c2
. (26)

Now we calculate the last term of (17). Consider the integral in (17)

I ≡
∫ x(B)

x(A)

∂F

∂t
Δtdx , (27)

where we have omitted the term of
∫ x(B)

x(A)
∂F
∂xi Δxidx because of (16). Therefore

we have

I =
∫ x(B)

x(A)

∂

∂t

[
R(t)

(
1 +

2w
c2

)]
Δt
√

δijdxidxj

c
(
1 + k

4 r
2
) . (28)
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From (22) we have Δt = ΔtAR(t)/R(tA), then (28) becomes

I =
∫ x(B)

x(A)

R(t)ΔtA
R(tA)

(
Ṙ(t) + Ṙ(t)

2w
c2

+ R(t)
∂(2w/c2)

∂t

) √
δijdxidxj

c
(
1 + k

4 r
2
) . (29)

Considering null geodetic line, (23) yields(
1 − w

c2

)
dt = ±

(
1 +

w

c2

) R(t)
√

δijdxidxj

c
(
1 + k

4 r
2
) , (30)

which we use to evaluate the integral I and get

I =
ΔtA
R(tA)

∫ x(B)

x(A)

(
Ṙ(t) + 2

R(t)
c2

∂w

∂t

)
dt

= ΔtA

[(
R(tB) −R(tA)

R(tA)

)
+

2
c2R(tA)

∫ x(B)

x(A)

R(t)
∂w

∂t
dt

]
. (31)

The second term of (17) then becomes√
GB

GA

(
R(tB) −R(tA)

R(tA)
+

2
c2R(tA)

∫ x(B)

x(A)

R(t)
∂w

∂t
dt

)
. (32)

Substituting (25), (26), and (32) into (17) (pay attention to that, in cosmology
the term k

|k| ·v should be replaced by k
|k| · v

R in (11), (12), and (17)), we finally
obtain

ΔτB

ΔτA
=
[
1 +

1
c2
(
w(tA, xi

A) − w(tB , xi
B)
)

+
v2

A

c2

]
×
{

R(tB)
R(tA)

− kA · vA

c|kA|
+

2
c2R(tA)

∫ x(B)

x(A)

R(t)
∂w

∂t
dt

}
, (33)

where 1
c2

(
w(tA, xi

A) − w(tB , xi
B)
)

is the contribution from the normal gravi-

tational redshift; kA·vA

c|kA| and v2
A

c2 are the Doppler effect and transverse Doppler
effect (or relativistic Doppler effect), respectively; R(tB)/R(tA) just con-
tributes to Hubble redshift; and the last term is related to Rees–Sciama ef-
fect [13–16]. If we put vA = 0 and R(t) = R(TA) = R(tB), then

ΔτB

ΔτA
= 1 +

1
c2
(
w(tA, xi

A) − w(tb, xi
B)
)

+
2
c2

∫ x(B)

x(A)

∂w

∂t
dt , (34)

where w is the same as u in [17] where c = 1 units is taken, and their
results totally agree with ours. We thought that our unified formula allows to
derive the Birkinshaw–Gull effect [18,19] too, if we use suitable perturbation
functions for w(t, xi) and wj(t, xi). This will be discussed in another chapter.
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4 Application in Solar System with DSX Metric

In near future, high-precision measurement will be done up to 2PN level as
we mentioned before, thus allowing the coupling term (i.e., the term connect-
ing the gravitational redshift, the Doppler redshift, and so on) to be mea-
sured. Our scheme (the unified form (17)) offers the possibility for this if
an appropriate assumptions about the metric are used. Accordingly, in this
section we start from DSX formalism [12,20,21] and its extension [11] and eval-
uate formula (17) for this metric. This extended DSX metric is described by

g00 = − exp
(
−2w

c2

)
+ O(6) , (35)

g0i = −4wi

c3
+ O(5) , (36)

gij = δij exp
(

2w
c2

)
+

qij

c4
+ O(6) , (37)

gijg00 = −δij −
qij

c4
+ O(6) . (38)

In fact, in the following calculation, qij appears only in the function F (xi, t),
but in the final 2PN formula of clock rates (see (53)), qij does not exist which
agree with the result in [7]. Substituting (35–38) into (17), calculating all of
components, we can get a unified formula for the comparison of clock rates at
2PN level.

We begin by evaluating the terms GA and GB for the extended DSX
metric:

GA = −g00(A) − 2g0i(A)
vi

A

c
− gij(A)

vi
Avj

A

c2

= 1 − 2w(A)
c2

+
2w2(A)

c4
+

8wi(A)vi
A

c4
− v2

A

c2
− 2w(A)v2

A

c4
+ O(6) , (39)

GB = 1 − 2w(B)
c2

+
2w2(B)

c4
+

8wi(B)vi
B

c4
− v2

B

c2
− 2w(B)v2

B

c4
+ O(6) .(40)

Since kA ·vA/|kA| and kB ·vB/|kB | are first order already, so F (A) and F (B)
need to be calculated up to c−5 level. From (8), by using (35–38), we get

F (A) =
1
c

{
1 +

2w(A)
c2

− 4wi(A)
c3

dxi

dx

∣∣∣∣
A

+
2w2(A)

c4

+
1

2c4
qij(A)

(
dxi

dx

dxj

dx

)∣∣∣∣
A

}
+ O(6) , (41)

where we have neglected g0ig0j(∼O(6)). Similarly

F (B) =
1
c

{
1 +

2w(B)
c2

− 4wi(B)
c3

dxi

dx

∣∣∣∣
B

+
2w2(B)

c4

+
1

2c4
qij(B)

(
dxi

dx

dxj

dx

)∣∣∣∣
B

}
+ O(6) . (42)
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At last, we consider the integral (the second term) in (17)∫ B

A

(
∂F

∂t
Δt +

∂F

∂xi
Δxi

)
dx . (43)

Because of (16) we will omit the second term in it. We only consider∫ B

A
∂F
∂t Δtdx. As we know ΔtA at A and ΔtB at B, we could calculate Δt at

an arbitrary point between A and B approximately. Then the definite integral
can be evaluated by the median method, i.e.,∫ B

A

∂F

∂t
Δtdx = Δt̄

∫ B

A

∂F

∂t
dx , (44)

where Δt̄ is the median value, for which we introduce a parameter η:

Δt̄ = ηΔtA . (45)

η is a value closed to 1. For the term ∂F
∂t one finds

∂F

∂t
=

1
c

(
2
c2

∂w

∂t
− 4

c3
∂wi

∂t

dxi

dx
+

4w
c4

∂w

∂t
+

1
2c4

∂qij

∂t

dxi

dx

dxj

dx

)
+ O(6) . (46)

In the solar system the change of the potential (the other metric much smaller)
with time is very small (less then O(2) level), only the leading term is consid-
ered. Therefore the term 2

c2

∫ B

A
∂w
∂t dt is already on O(4) level, but not O(2).

Furthermore, we have dx = dl + O(2) = cdt + O(2). Then (46) simplifies to∫ B

A

∂F

∂t
dx =

2
c2

∫ B

A

∂w

∂t
dt + O(6) . (47)

If we consider quick variable field (e.g., field in pulsar) we have to take (46)
to substitute into (47).

The second integral term of (17) then becomes
√

GB√
GA

2η(
1 − F (B)kB ·vB

|kB |
)
c2

∫ B

A

∂w

∂t
dt . (48)

Gathering all evaluations done thus far in this section, we arrive at following
general formula for the solar system:

ΔτB

ΔτA
=
√

GB

GA

1(
1 − F (B)kB ·vB

|kB |
) (1 − F (A)

kA · vA

|kA|
+

2η
c2

∫ B

A

∂w

∂t
dt

)
.

(49)

In (49) we only consider the leading term, namely the scalar potential changing
with the time, but in our scheme all of the second post-Newtonian terms (see



190 C. Xu et al.

(46)) can be included in. Maybe in a system of binary pulsars, the higher-
order terms in (46) are important. Formula (49) in static metric and in 1PN
level agrees with the known formula [22].

We proceed by evaluating the remaining terms in (49). From (39) and (40),
we find√

GB = 1 − w(B)
c2

− v2
B

2c2
+

w2(B)
2c4

+
4wi(B)vi

B

c4
− 3w(B)v2

B

2c4
− v4

B

8c4
, (50)

1√
GA

= 1 +
w(A)
c2

+
v2

A

2c2
+

w2(A)
2c4

− 4wi(A)vi
A

c4
+

5w(A)v2
A

2c4
+

3v4
A

8c4
. (51)

We also have(
1 − F (B)

kB · vB

|kB |

)−1

= 1 +
kB · vB

c|kB | +
1
c2

(
kB · vB

|kB |

)2

+
2w(B)

c3
kB · vB

|kB |

+
1
c3

(
kB · vB

|kB |

)3

− 4wi(B)
c4

dxi

dx

∣∣∣∣
B

kB · vB

|kB |

+
4w(B)

c4

(
kB · vB

|kB |

)2

+
1
c4

(
kB · vB

|kB |

)4

. (52)

Substituting (41), (42), and (50–52) into (49), we finally have a unified formula
for the comparison of clock rates in the solar system, on the 2PN level of
precision

ΔτB

ΔτA
= 1 +

{
1
c2

(
w(A) − w(B)

)
+

1
2c2

(
v2

A − v2
B

)
−
(

kA · vA

c|kA|
− kB · vB

c|kB |

)

− 1
c2

(
kB · vB

|kB |

)(
kA · vA

|kA|
− kB · vB

|kB |

)}

+
1
c3

{(
w(B) − w(A)

)(
kB · vB

c|kB | +
kA · vA

c|kA|

)
+2w(A)

(
kB · vB

c|kB | − kA · vA

c|kA|

)
−1

2

(
v2(B) − v2(A)

)(
kB · vB

c|kB | − kA · vA

c|kA|

)
+
(

kB · vB

c|kB |

)2(kB · vB

c|kB | − kA · vA

c|kA|

)}

+
1
c4

{
1
2

(w(B) − w(A))2 +
1
2

(10w(A) − w(B)) v2
A

−1
2

(w(A) + 6w(B)) v2
B +

1
8
(
3v4

A − 2v2
Av2

B − v4
B

)
+4
(
wi(B)vi

B − wi(A)vi
B − wi(B)

ki
B

|kB |
kB ·vB

c|kB | + wi(A)
ki

A

|kA|
kA ·vA

c|kA|

)
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+
(

kB · vB

c|kB |

)2(
3w(B) + w(A) +

1
2
(
v2

A − v2
B

))
−2
(

kB · vB

c|kB |

)(
kA · vA

c|kA|

)(
w(A) + w(B)

)
+
(

kB · vB

c|kB |

)3(kB · vB

c|kB | − kA · vA

c|kA|

)}

+
2η
c2

∫ B

A

∂w

∂t
dt + O(5) . (53)

The Formula (53) “contains” the Doppler effect, transverse Doppler effect
(relativistic Doppler effect), gravitational redshift, and their complete coupling
effects to 2PN level in the solar system. In addition there is a term which is the
integral of the rates of change of the scalar potential along the null geodetic
line from source A to receiver B. This is probably the most interesting result
in our chapter. Hopefully this integral term and the coupling effects can be
tested in the future with a deep-space explorer and are confirmed.

5 Conclusion Remarks

We have synthesized all known effects for the comparison of clock rates in one
formula (17). The synthesized formula contains additional coupling terms and
a new integral terms and thus gives essential new but untested information.
Therefore to get this synthesized formula is not an end in itself, but a starting
point for the further test work. We hope that this work could contribute to
the further comparison of clock rates, such as ACES mission planned in 2006.
The general form may be taken as the basis for a starting point to compare
clock rates at any two different space–time points. For example, the frequency
shift caused by gravitomagnetic effect (or Lens–Thirring effect) can also be
considered in our scheme.

The general form is valid not only for any metric gravitational theory, but
also for general relativity. If we substitute the parametrized 2PN metric into
the formula, (53) could include parameters. In Sect. 4, we have discussed the
comparison of two clock rates both on the earth and a space station with 2PN
precision. In fact, the calculation of the higher precision might be done in a
similar way, if we know the metric to higher order.

Equation (17) or (49) says that the clock rates depend on the trajectory
of the transmitted signal and on the metric (especially the scalar potential)
varying with time. While (17) is a unified formula, (49) is valid only in the
solar system; however if replace (47) by the integral of (46), a general 2PN
formula results.

In the case of cosmology, the general form can be used for any linearly
perturbed metric, in particular it allows to include the general Sachs–Wolfe
effects.
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Summary. Experimental tests of gravity performed in the solar system show a
good agreement with general relativity. The latter is, however, challenged by the
Pioneer anomaly which might be pointing at some modification of gravity law at
ranges of the order of the size of the solar system. We introduce a metric extension
of general relativity which, while preserving the equivalence principle, modifies the
coupling between curvature and stress tensors and, therefore, the metric solution
in the solar system. The “post-Einsteinian extension” replaces Newton gravitation
constant by two running coupling constants, which depend on the scale and differ in
the sectors of traceless and traced tensors, so that the metric solution is characterized
by two gravitation potentials. The extended theory has the capability to preserve
compatibility with gravity tests while accounting for the Pioneer anomaly. It can
also be tested by new experiments or, maybe, by having a new look at data of
already performed experiments.

1 Introduction

Most gravitation tests performed in the solar system show a good agreement
with general relativity (GR). In particular, the equivalence principle (EP),
lying at the basis of GR, is one of the most accurately verified properties of
nature [1]. This entails that the gravitational field has to be identified with
the metric tensor gμν in a Riemannian space–time. Then, the parametrized
post-Newtonian (PPN) formalism allows one to give a quantitative form to the
agreement of observations with the metric tensor predicted by GR, through
its confrontation with a family of more general metric solutions. Alternatively,
GR can be tested by looking for hypothetical deviations of gravity force law
from its standard form [2], as predicted by unification models although not
observed up to now.

Besides these successes, GR is challenged by observations performed at
galactic and cosmological scales. Anomalies have been known for some time
to affect the rotation curves of galaxies. They are commonly accounted for by
keeping GR as the theory of gravity at galactic scales but introducing unseen
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“dark matter” to reproduce the rotation curves [3, 4]. Anomalies have been
seen more recently in the relation between redshifts and luminosities for type
II supernovae. They are usually interpreted as an unexpected acceleration of
cosmic expansion due to the presence of some “dark energy” of completely
unknown origin [5]. As long as the “dark side” of the universe is not obs-
erved through other means, these galactic and cosmic anomalies may also be
interpreted as deviations from GR occurring at large scales [6–8].

The Pioneer anomaly constitutes a new piece of information in this puz-
zling context, which may already reveal an anomalous behavior of gravity
at scales of the order of the size of the solar system [9]. The anomaly was
discovered when Doppler tracking data from the Pioneer 10/11 probes were
analyzed during their travel to the outer parts of the solar system. After the
probes had reached a quieter environment, after flying by Jupiter and Saturn,
a precise comparison of tracking data with predictions of GR confirmed that
the Doppler velocity was showing an anomaly varying linearly with elapsed
time (see Fig. 8 of [10]). The deviation may be represented as an anomalous ac-
celeration directed toward the Sun with an approximately constant amplitude
over a large range of heliocentric distances (AU≡ astronomical unit)

aP = (0.87 ± 0.13) nm s−2, 20 AU � r � 70 AU (1)

Though a number of mechanisms have been considered to this aim [11–14],
the anomaly has escaped up to now all attempts of explanation as a systematic
effect generated by the spacecraft itself or its environment. In particular,
present knowledge of the outer part of the solar system does apparently pre-
clude interpretations in terms of gravity [15] or drag effects [16] of ordinary
matter. The inability of explaining the anomaly with conventional physics
has given rise to a growing number of new theoretical propositions. It has
also motivated proposals for new missions designed to study the anomaly and
try to understand its origin [17]. The importance of the Pioneer anomaly for
space navigation already justifies it to be submitted to further scrutiny while
its potential impact on fundamental physics, especially on gravitation theory,
can no more be neglected. The possibility that the Pioneer anomaly be the
first hint of a modification of gravity law at large scales cannot be let aside
investigations [18]. In this context, the compatibility of the Pioneer anomaly
with other gravity tests appears to be a key question.

To discuss this point, we first recall that, though the interpretation of grav-
itation as the metric of space–time constitutes an extremely well-tested basis,
the precise form of the coupling between space–time curvature and gravity
sources can still be discussed [19]. Like the other fundamental interactions,
gravitation may also be treated within the framework of field theory [20–22].
Radiative corrections, due to its coupling to other fields, then naturally lead
to embed GR within the larger class of fourth-order theories [23–25]. Modifi-
cations are thus expected to appear [26–28] and they may affect large length
scales [29–32]. This suggests to consider GR as an effective theory of grav-
ity valid at the length scales for which it has been accurately tested but
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not necessarily at smaller or larger scales. Note that, in contrast to GR [33],
fourth-order theories show renormalizability as well as asymptotic freedom
at high energies [34]. Hence, they constitute a strong basis for extending
the gravitation theory at scales not already constrained by experiments, for
instance using renormalization group trajectories [35]. Renormalizability of
these theories, however, comes with a counterpart, i.e., the problem of ghosts.
It has, however, been convincingly argued that this problem does not con-
stitute a definitive dead end for an effective field theory valid in a limited
scale domain [36]. In particular, the departure from unitarity is expected to
be negligible at ordinary scales tested in present-day universe [37].

In this chapter, we will review the main features of a phenomenological
framework which has been recently developed [38–40]. It relies upon a the-
ory of gravitation lying in the vicinity of GR, the deviation representing, for
example, the radiative corrections due to the coupling of gravity with other
fields [41]. It is presented below in its linearized form, where its significance
is more easily given, and then in its full nonlinear version. It is also inter-
preted as an extension of the PPN Ansatz with the Eddington parameters β
and γ being functions of heliospheric distances rather than mere constants.
The extended framework is shown to have the ability to account for Pioneer
anomaly while remaining compatible with other gravity tests. It also leads to
the prediction of other anomalies related to Pioneer anomaly, which can be
tested by new experiments or, in some cases, by having a new look at data of
already performed experiments.

2 Gravity Tests in the Solar System

GR provides us with an excellent theoretical description of gravitational phe-
nomena in the solar system. To discuss the experimental evidences in favor of
this statement, we first recall a few basic features of this description.

To apply the principle of relativity to accelerated motions, Einstein [42,43]
introduced what is now called the equivalence principle. A weak form of this
principle is expressed by the universality of free fall, a property reflecting the
universal coupling of all bodies to gravitation. With Einstein, this property
acquires a geometrical significance, gravitation fields being identified with the
metric tensor gμν while freely falling motions are geodesics of the associated
space–time. Universality of free fall is then a consequence of the metric nature
of gravitation theory.

The equivalence principle is one of the best ever tested properties of nature.
Potential violations are usually parametrized by a relative difference η in the
accelerations a1 and a2 undergone by two test bodies of different compositions
in free fall at the same location. Modern experiments constrain the parame-
ter η to stay below the 10−12 level. These experiments test the principle at
distances ranging from the millimeter in laboratory experiments ( [44] and
references in) to the sizes of Earth–Moon [45] or Sun–Mars orbit [46,47].
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To obtain GR, it remains to write the equations determining the metric
tensor from the distribution of energy and momentum in space–time. GR cor-
responds to a particular choice of the form of the coupling between curvature
tensor and stress tensor [48–50]: the Einstein curvature tensor Eμν is simply
proportional to the stress tensor Tμν , the proportionality constant being rela-
ted to the Newton gravitation constant GN inherited from classical physics

Eμν ≡ Rμν − 1
2
gμν R =

8πGN

c4
Tμν . (2)

Note that this relation accounts in a simple manner for the fact that Eμν

and Tμν both have a null covariant divergence: the first property comes with
Riemannian geometry (Bianchi identities) while the second one expresses con-
servation of energy and momentum and is a necessary and sufficient condition
for motions of test masses to follow geodesics.

The metric tensor in the solar system is then deduced by solving the
Einstein–Hilbert equation (2). Here we consider the simple case where the
gravity source, i.e., the Sun, is described as a point-like motionless mass M
so that the metric is simply written in terms of the Newton potential φ. The
solution is conveniently written in terms of spherical coordinates (c denotes
light velocity, t and r the time and radius, and θ and ϕ the colatitude and
azimuth angles) with the gauge convention of isotropic spatial coordinates

ds2 = g00c
2dt2 + grr

(
dr2 + r2(dθ2 + sin2 θdϕ2)

)
g00 = 1 + 2φ + 2φ2 + . . . , grr = −1 + 2φ + . . .

φ ≡ −κ

r
, κ ≡ GNM

c2
, |φ| � 1 (3)

GR is usually tested through its confrontation with the family of PPN
metric tensors introduced by Eddington [51] and then developed by several
physicists [52–55]

g00 = 1 + 2αφ + 2βφ2 + . . . , grr = −1 + 2γφ + . . . (4)

The three parameters α, β, and γ are constants, the first of which can be
set to unity by redefining Newton constant GN . Within the PPN family, GR
corresponds to γ = β = 1. Anomalous values of γ or β differing from unity
affect geodesic motions and can therefore be evaluated from a comparison of
observations with predictions deduced from (4).

Experiments which have now been performed for more than four decades
have led to more and more strict bounds on the anomalies γ−1 and β−1. For
example, Doppler ranging on Viking probes in the vicinity of Mars [46] and
deflection measurements using VLBI astrometry [56] or radar ranging on the
Cassini probe [57] give smaller and smaller values of γ − 1, with presently a
bound of a few 10−5. Analysis of the precession of planet perihelions [58] and
of the polarization by the Sun of the Moon orbit around the Earth [59] allows
for the determination of linear superpositions of β and γ, resulting now to β−1
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smaller than a few 10−4. These tests are compatible with GR with, however,
a few exceptions, among which notably the anomalous observations recorded
on Pioneer probes. We will see below that this contradiction between Pioneer
observations and other gravity tests may be cured in an extended framework,
thanks to the fact that the anomaly γ−1 is no longer a constant but a function
in this more general framework.

An alternative manner to test GR has been to check the 1/r dependence
of the Newton potential φ, i.e., also of the component g00 in (3). Hypothetical
modifications of its standard expression are usually parametrized in terms of
an additional Yukawa potential depending on two parameters: the range λ
and the amplitude α measured with respect to Newton potential φ

ΦN (r) = φ(r)
(
1 + αe−

r
λ

)
. (5)

The presence of such a Yukawa correction has been looked for at various
distances ranging from the millimeter in laboratory experiments [44] to the size
of planetary orbits [60]. The accuracy of short-range tests has been recently
improved, as gravity experiments were pushed to smaller distances [61–63] and
as Casimir forces, which become dominant at submillimeter range, were more
satisfactorily taken into account [64–67]. On the other side of the distance
range, long-range tests of the Newton law are performed by monitoring the
motions of planets or probes in the solar system. They also show an agreement
with GR with a good accuracy for ranges of the order of the Earth–Moon [45]
or Sun–Mars distances [46,47,68,69]. When the whole set of results is reported
on a global figure (see Fig. 1 in [70] reproduced, thanks to a courtesy of the
authors of [60]), it appears that windows, however, remain open for violations
of the standard form of Newton force law at short ranges, below the millimeter,
as well as long ones, of the order of or larger than the size of the solar system.

One merit of the latter tests is to shed light on a potential scale dependence
of violations of GR. As a specific experiment is only sensitive to a given range
of distances, this has to be accounted for, especially in the context, recalled
in Sect. 1, where doubts arise about the validity of GR at galactic or cosmic
scales. To discuss this scale dependence, it is worth rewriting the Yukawa
perturbation (5) in terms of a running constant replacing Newton gravitation
constant. To this aim, we introduce the expression of the potential ΦN [k]
in Fourier space, with k the spatial wave vector, and relate it to a coupling
constant G̃N [k]

−k2ΦN [k] ≡ 4π
G̃N [k]M

c2
, G̃N [k] = GN

(
1 + α

k2

k2 + 1
λ2

)
(6)

The left-hand equation extends the standard Poisson equation (−k2 is the
Laplacian operator), with the constant GN replaced by a “running coupling
constant” G̃N [k] which depends on spatial wave vector k.

Note that the Yukawa correction (5) gives rise in the domain r � λ
to a perturbation δΦN which is linear in the distance ∼ −(α/2λ2)(κr).
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In (6) equivalently, the correction of the running constant scales as δG̃N ∼
(α/λ2)(GN/k2) in the domain |kλ| � 1. In fact, experimental constraints
obtained at scales of the order of the size of the solar system can be writ-
ten as bounds on the combination α/λ2, so that they can be translated into
bounds on the anomalous acceleration ∂rδΦN or, equivalently, on k2δG̃N . It is
worth emphasizing that these bounds result in allowed anomalous accelera-
tions which remain 2,000 times too small to account for the Pioneer anom-
aly [70]. In other words, the Pioneer anomaly cannot be due to a modification
of Newton law, as such a modification would be much too large to remain
unnoticed by planetary tests. Anew, this contradiction between Pioneer obs-
ervations and other gravity tests may be cured by the extended framework
studied below, now thanks to the fact that the existence of an anomalous
space-dependent potential will not only be considered for the metric compo-
nent g00, but also for grr.

To summarize this section, tests performed on gravity in the solar system
confirm its metric character and provide strong evidence in favor of gravitation
theory being very close to GR. They, however, still leave room for alternative
metric theories, which deviate from GR in a specific way. Anomalies in the
metric components remain allowed, as long as they modify spatial dependen-
cies without strongly affecting the time component g00. It is shown in Sect. 3
that such extensions of GR may in fact arise naturally, in particular when
effects of radiative corrections are taken into account.

3 Linearized Gravitation Theory

We come now to the description of the “post-Einsteinian” extension of GR.
We first repeat that tests performed at various length scales have showed that
the equivalence principle was preserved at a higher accuracy level (10−12) than
the EP violation which would be needed to account for the Pioneer anomaly.
As a matter of fact, the standard Newton acceleration at 70 UA is of the
order of 1 μms−2 while the Pioneer anomaly is of the order of 1 nm s−2, which
would correspond to a violation level of the order of 10−3. This does not mean
that EP violations are excluded, and they are indeed predicted by unification
models [71, 72]. However, any such violations are bound to occur at a lower
level than needed to affect the Pioneer anomaly. Hence, EP violations will be
ignored in the following and we shall restrict our discussion to a confrontation
of GR with alternative metric theories.

Furthermore, neither PPN extensions of GR nor mere modifications of
Newton force laws have the ability to account for the Pioneer anomaly (see
Sect. 2). However, such extensions do not cover the totality of possible exten-
sions of GR. In particular, there exist extended metric theories characterized
by the existence of two gravitation potentials instead of a single one [38–40].
The first one merely represents a modified Newton potential while the second
one can be understood in terms of a space-dependent PPN parameter γ. In this
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larger family of extensions, there is enough room available for accommodating
the Pioneer anomaly while preserving compatibility with other gravity tests.
Let us stress that this larger family is not introduced as an ad hoc solution
to the Pioneer anomaly. It emerges as the natural extension of GR induced
by radiative corrections due to the coupling of gravity with other fields, and
some phenomenological consequences were explored [41] before noticing that
they included Pioneer-like anomalies [38–40]. To present these ideas in a sim-
ple manner, we will start with the linearized version of gravitation theory,
which is approximately valid for describing Pioneer-like probes having escape
motions in the outer solar system [38, 39]. We will then present some salient
features of the nonlinear theory [40].

In the linearized treatment, the metric field may be represented as a small
perturbation hμν of Minkowski metric ημν

gμν = ημν + hμν

ημν = diag(1,−1,−1,−1), |hμν | � 1. (7)

The field hμν is a function of position x in space–time or, equivalently in
Fourier space, of wave vector k

hμν(x) ≡
∫

d4k

(2π)4
e−ikxhμν [k]. (8)

Gauge-invariant observables of the metric theory, i.e., quantities which do
not depend on a choice of coordinates, are given by curvature tensors. In
the linearized theory, i.e., at first order in hμν , Riemann, Ricci, scalar, and
Einstein curvatures are written in momentum representation as

Rλμνρ =
1
2

(kλkνhμρ − kλkρhμν − kμkνhλρ + kμkρhλν)

Rμν = Rλ
μλν , R = Rμ

μ, Eμν = Rμν − 1
2ημνR (9)

We use the sign conventions of [73], indices being raised or lowered using
Minkowski metric.

These curvature fields are similar to the gauge-invariant electromagnetic
fields of electrodynamics so that, while being supported by its geometrical int-
erpretation, GR shows essential similarities with other field theories [21, 23].
This suggests that GR may be considered as the low energy effective limit of
a more complete unified theory [27,28] which should describe the coupling of
gravity with other fields. In any case, this theory should contain radiative cor-
rections to the graviton propagator, leading to a modification of gravitation
equations (2) and to a momentum dependence of the coupling between curva-
ture and stress tensors. In the weak-field approximation, it is easily seen that
Einstein tensor, which is divergenceless, has a natural decomposition on the
two sectors corresponding to different conformal weights [41], i.e., also on
traceless (conformal weight 0) and traced components (conformal weight 1).
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The general coupling between curvature and stress tensors can be written in
terms of a linear response function constrained by the transversality condition

Eμν [k] = χμνλρ[k] Tλρ[k], kμχμνλρ[k] = 0. (10)

We consider as above the isotropic and stationary situation with a point-
like and motionless Sun of mass M . We then deduce that the general cou-
pling (10) is described by two running constants G̃0 and G̃1, depending on
the spatial wave vector k and living in the two sectors (0) and (1), so that
gravitation equations (10) become [38,39]

Eμν [k] ≡ 2πδ(k0)Eμν [k], πμν ≡ ημν − kμkν

k2

Eμν [k] = π0
μπ

0
ν G̃0[k]

8πM
c2

+ πμνπ
00 G̃1[k] − G̃0[k]

3
8πM
c2

. (11)

The Newton gravitation constant GN in (2) has been replaced in (11) by two
running coupling constants G̃0 and G̃1 which are related through Poisson-like
equations to two potentials Φ0 and Φ1 (compare with (6))

−k2Φa[k] = G̃a[k]
4πM
c2

, a = 0, 1. (12)

These two potentials determine the metric, i.e., the solution of the modified
equations (11), written here with spatial isotropic coordinates

g00 = 1 + 2ΦN , ΦN ≡ 4Φ0 − Φ1

3

grr = −(1 − 2ΦN + 2ΦP ) , ΦP ≡ 2(Φ0 − Φ1)
3

, (13)

where ΦN is defined from the difference (g00−1) and identified as an extended
Newton potential while ΦP is defined from (−g00grr − 1) and interpreted as
measuring the difference between the potentials Φ0 and Φ1 in the two sectors
of traceless and traced curvatures. As Φ0 and Φ1, ΦN and ΦP obey Poisson
equations with running constants G̃N and G̃P written as linear combinations
of G̃0 and G̃1

−k2Φa[k] = G̃a[k]
4πM
c2

, a = N,P

G̃N ≡ 4G̃0 − G̃1

3
, G̃P ≡ 2(G̃0 − G̃1)

3
. (14)

Standard Einstein equation is recovered when the running constants G̃0

and G̃1 are momentum independent and equal to each other, i.e., also when

[G̃N ]st ≡ GN [G̃P ]st = 0
[ΦN (r)]st ≡ φ(r) [ΦP (r)]st = 0. (15)
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The two potentials Φa will be written as sums of these standard expressions
and anomalies which, according to the discussions of Sect. 3, will remain small

Φa(r) ≡ [Φa(r)]st + δΦa(r), |δΦa(r)| � 1. (16)

4 Nonlinear Gravitation Theory

Before embarking in the discussion of phenomenological consequences of these
anomalous potentials, let us recall briefly that the linearized theory presen-
ted in the Sect. 3 can be transformed into a full nonlinear theory. The linea-
rized theory will indeed be sufficient to discuss the anomalous acceleration of
Pioneer probes as well as potential effects on light-like waves [38, 39] but the
nonlinear theory will be needed to address the case of planetary tests [40].
The relation between metric and curvature tensors now takes a nonlinear
form going beyond (9) which was valid only at first order around Minkowski
space–time. We may, nevertheless, simplify this relation by working at first
order in deviations from standard Einstein theory [40].

To this aim, we write the metric, now in terms of Schwarzschild coordi-
nates [74]

ds2 = ḡ00(r̄)c2dt2 + ḡrr(r̄)dr̄2 − r̄2
(
dθ2 + sin2θdϕ2

)
ḡμν(r) ≡ [ḡμν(r)]st + δḡμν(r), |δḡμν(r)| � 1. (17)

The standard GR solution is then treated exactly

[ḡ00]st = 1 − 2κū = − 1
[ḡrr]st

, ū ≡ 1
r̄
. (18)

while the anomalous metric components are taken into account at first order.
Proceeding in this manner, it is possible to define in the nonlinear theory two
potentials δΦ̄N and δΦ̄P which generalize (16)

δḡrr =
2ū

(1 − 2κū)2
(δΦ̄N − δΦ̄P )′, f ′ ≡ ∂ūf

δḡ00 = 2(1 − 2κū)
∫

δΦ̄N
′ − 2κūδΦ̄P

′

(1 − 2κū)2
dū. (19)

In the linearized approximation, corrections in κū are disregarded and the
simple relations of Sect. 3 are recovered. In the general case, (19) fully describe
nonlinear effects of the Newton potential κū. The precise form of the nonlinear
version (19) has been chosen so that potentials are related in a simple way to
the corresponding anomalous Einstein curvatures

δĒ0
0 ≡ 2ū4(δΦ̄N − δΦ̄P )′′

δĒr
r ≡ 2ū3δΦ̄′

P . (20)
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At this stage, it is worth noticing that the PPN metric [1] may be recov-
ered as a particular case of the more general extension (19). This particular
case corresponds to the following expressions of anomalous potentials and
anomalous Einstein curvatures [40]

δΦ̄N = (β − 1)κ2ū2 + O(κ3ū3), [PPN]
δΦ̄P = (γ − 1)κū + O(κ2ū2) (21)

δE0
0 = ū2O(κ2ū2), [PPN]

δEr
r = ū2

(
2(γ − 1)κū + O(κ2ū2)

)
. (22)

Note that the PPN metric already shows an anomalous behavior of Einstein
curvatures which have non-null values apart from the gravity source. This
is the case for δEr

r at first order in κ, and for δE0
0 at higher orders. Rela-

tions (20) thus extend this anomalous behavior to more general dependences
of the curvatures δE0

0 and δEr
r . Similar statements apply as well for anom-

alous potentials δΦ̄N and δΦ̄P , which generalize the specific dependence of
PPN potentials (21) where β− 1 and γ− 1 are constants. In other words, the
post-Einsteinian metric (19) can be thought of as an extension of PPN metric
where β − 1 and γ − 1 are no longer constants but rather functions of space.

5 Phenomenological Consequences

As already discussed, the new phenomenological framework is characterized
by two anomalous potentials: the first one δΦ̄N is a modification of Newton
potential while the second one δΦ̄P represents the difference of gravitational
couplings in the two sectors of traceless and traced curvatures. The first poten-
tial is not able by itself to explain the Pioneer anomaly: its anomalous part
is indeed bound by planetary tests to be much smaller than would be needed
to account for the Pioneer anomaly [70]. This is why we will focus the atten-
tion in the following on the second potential which can produce a Pioneer-like
anomaly for probes on escape trajectories in the outer solar system [38, 39].
This second potential can also be understood as promoting the PPN parame-
ter γ to the status of a space-dependent function and it has therefore other
consequences which have to be evaluated with great care. It is clear that the
modification of GR needed to produce the Pioneer anomaly should not spoil
its agreement with other gravity tests.

We first discuss the effect of the second potential on Doppler tracking of
Pioneer-like probes. To this aim, we calculate the Doppler velocity taking into
account the perturbations on probe motions as well as on light propagation
between stations on Earth and probes. We then write the time derivative of
this velocity as an acceleration a and finally subtract the expression obtained
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in standard theory from that obtained in extended one. We thus obtain the
prediction of the post-Einsteinian extension [38, 39] for the Pioneer anom-
alous acceleration δa ≡ a− [a]st. In a configuration similar to that of Pioneer
10/11 probes, which follow nearly radial trajectories with a kinetic energy
much larger than their potential energy, this anomalous acceleration takes
the simplified form

δa � 2
dδΦP

dr
v2

P . (23)

Thus, an anomaly in Doppler tracking of Pioneer-like probes is a direct conse-
quence of the presence of the second potential δΦP . Note that the anomalous
acceleration comes out as proportional to the kinetic energy, which is a remar-
kable prediction of the new framework. Data on probes with very different
kinetic energies (unfortunately not available at the moment) could thus be
used to confirm or infirm this prediction.

Using the known velocity of the Pioneer probes (vP ∼ 12 km s−1), and
identifying the acceleration (23) with the recorded Pioneer anomaly (1), we
deduce the value of the derivative dδΦP /dr in the outer solar system. The con-
stancy of recorded anomaly over a large range of distances agrees with a simple
parametrization of the second potential [38]

δΦP (r) ≡ −GPM

rc2
+ ζPM

r

c2∣∣∣∣GP

GN

∣∣∣∣� 1, ζPM ∼ 0.25 m s−2. (24)

This value of the parameter ζPM is much larger than that allowed for the
parameter ζNM which could be defined on the first potential [38]. This shows
in a clear manner how the second potential δΦP opens the possibility to
account for the Pioneer anomaly. It has to be kept in mind for the forthcoming
discussions that the simple model (24) does not need to be exact in the whole
solar system. However, the expression of δΦP can generally be given the form
(24), provided ζP denotes a function of the heliocentric distance.

We come now to the discussion of the effects of the second potential δΦP

on the propagation of light rays, which can be done in the linearized theory.
Considering in particular deflection experiments usually devoted to the deter-
mination of Eddington parameter γ, we obtain the following expression for
the anomaly δψ (with respect to GR) of the deflection angle of rays grazing
the surface of the Sun [39] (the same decomposition as in (24) is used for δΦP )

δψ � −κ
∂

∂ρ

(
δγ(ρ) ln

4r1r2

ρ2

)
δγ(ρ) = −GP

GN
+

ζP (ρ)ρ2

2GN
. (25)
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Terms which are not amplified near occultation have been neglected; r1 and
r2 correspond to the heliocentric distances of the receiver and emitter, and
ρ is the distance of closest approach of the light ray to the Sun; and δγ(ρ)
is a range-dependent anomalous part in Eddington parameter γ. These exp-
ressions are reduced to PPN ones when the function ζP vanishes. Otherwise,
they show that Eddington deflection tests could reveal the presence of δΦP

through a space dependence of the parameter γ.
We conclude this survey of phenomenological consequences of the new

framework by discussing planetary tests and, in particular, those involving
the perihelion precession of planets. As the latter are known to depend on
the two PPN parameters β and γ, this discussion has to be presented in the
context of the nonlinear theory. Still focusing the attention on the effects of the
second potential, one thus obtains the following expression for the anomaly
δΔϕ (with respect to GR) of the perihelion precession [40]

δΔϕ

2π
� ū

(
ūδΦ̄P

)′′ + e2ū2

8

(
ū2δΦ̄P

′′ + ūδΦ̄P
′)′′

. (26)

This expression has been truncated after leading and subleading orders in the
eccentricity e; the function δΦ̄P and its derivatives have thus to be evaluated
at the inverse radius ū of the nearly circular (e � 1) planetary orbit. As
the leading order vanishes for a contribution ζPMr/c2 with ζP constant, the
main result is thus proportional to e2 in this case. This means that perihelion
precession of planets could be used as a sensitive probe of the value and
variation of ζP for distances corresponding to the radii of planetary orbits [40].

6 Discussion

Gravity tests which have been performed up to now in the solar system firmly
support the validity of the equivalence principle, i.e., also the metric nature
of gravitation. They also strongly indicate that the actual gravitation the-
ory should be very close to GR. Nonetheless, these tests still leave room for
alternative metric theories of gravitation, and the anomaly observed on the
trajectories of the Pioneer 10/11 probes may well be a first indication of a
modification of gravity law in the outer part of the solar system. This possibil-
ity would have such a large impact on fundamental physics, astrophysics, and
maybe cosmology that it certainly deserves further investigations. We have
discussed in the present chapter a new extension of GR which allows one to
address these questions in a well-defined theoretical framework [39,40].

When its radiative corrections are taken into account, GR appears as
imbedded in a family of metric theories characterized, at the linearized level,
by two running coupling constants which replace the single Newton gravita-
tion constant or, equivalently, by two potentials which replace the standard
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Newton potential. When applied to the solar system, this post-Einsteinian
extension of GR leads to a phenomenological framework which has the ability
to make the Pioneer anomaly compatible with other gravity tests. Precisely,
the first potential ΦN remains close to its standard Newtonian form to fit
planetary tests but the second potential ΦP opens a phenomenological free-
dom which can be understood as an Eddington parameter γ differing from
unity, as in PPN metric, with now a possible space dependence.

To confirm, or infirm, the pertinence of this framework with respect to
gravity tests in the solar system, it is now necessary to reanalyze the motions
of massive or massless probes in this new context. Contrarily to what has
been done here, it is particularly important to take into account the effects
of anomalous potentials δΦN and δΦP simultaneously. Let us scan in the last
paragraphs of this paper some ideas which look particularly promising.

The main novelty induced by the second potential δΦP is to produce
an anomaly on Doppler tracking of Pioneer-like probes having highly eccen-
tric motions in the outer solar system. As already discussed, if the recorded
anomaly is identified with this effect, one deduces the value of the derivative
dδΦP /dr of the second potential at the large distances explored by Pioneer
probes. A natural idea is therefore to confront the more detailed prediction
deduced from the new theory [39] against the larger set of data which will soon
be available [75, 76]. It is particularly clear that the eccentricity of the orbits
plays a key role in the evaluation of the Pioneer anomaly: it takes large values
for Pioneer-like motions which sense δΦP whereas it is zero for circular orbits
which do not. This suggests to devote a dedicated analysis to the intermediate
situation, not only for the two categories of bound and unbound orbits, but
also for the flybies used to bring Pioneer-like probes from the former category
to the latter one. While Pioneer probes may sense the second potential at the
large heliocentric distances they are exploring, planets or planetary probes
may feel its presence at distances of the order of the astronomical unit. Then,
it would be worth studying planetary probes on elliptical orbits, for example
on transfer orbits from Earth to Mars or Jupiter. Another natural target for
such a study is LISA with its three crafts on elliptical orbits [77].

The second potential δΦP also affects the propagation of light waves, and
it could thus be detected as a range dependence of the anomalous Eddington
parameter (γ − 1) to be seen, for example, in deflection experiments. This
might already be attainable through a reanalysis of existing data, given by
the Cassini experiment [57], VLBI measurements [56], or HIPPARCOS [78].
It may also be reached in the future by higher accuracy Eddington tests, as
for example the LATOR project [79], or global mapping of deflection over
the sky (GAIA project [80]). Reconstruction of the dependence of γ vs. the
impact parameter ρ would directly provide the space dependence of the second
potential δΦP . This would then either produce a clear signature of the new
framework presented in this chapter or put constraints on the presence of the
second potential at small heliocentric distances.
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Summary. We introduce a linearized bimetric theory of gravity with two metrics.
The metric gαβ describes null hypersurfaces of the gravitational field while light
moves on null hypersurfaces of the optical metric ḡαβ . Bimetrism naturally arises
in vector–tensor theories with matter being nonminimally coupled to gravity via
long-range vector field. We derive explicit Lorentz-invariant solution for a light ray
propagating in space–time of the bimetric theory and disentangle relativistic effects
associated with the existence of the two metrics. This analysis may be valuable for
future spaceborne laser missions ASTROD and LATOR dedicated to map various
relativistic gravity parameters in the solar system to unparalleled degree of accuracy.

Recently Carlip [1] has introduced a bimetric theory of gravity with two met-
rics, gαβ and ḡαβ , and a unit vector field wα coupled to matter via constant
parameter ε. This theory is a variant of a vector–tensor theory [2] where the
vector field wα obeys the source-free field equations and is responsible for
the spontaneous violation of the Lorentz invariance of gravity [3, 4] in the
sense that it introduces a preferred frame which effects can be observed only
in gravitational experiments conducted in nonnegligible gravitational field.
One can show that in the case of a bimetric theory of gravity the Huges–
Drever experiments and other precision experiments constrain the asymptotic
(vanishing gravity) difference between these two metrics severely [5–7]. Here
we consider more complicated (nonvanishing gravity) case of geometric optics
of light rays (laser beams) in the bimetric theory. Carlip’s bimetric theory [1]
adopts specific values of parameters in Jackobson’s theory [2] and adds one
more parameter ε which is a coupling constant between the vector field wα

and the stress–energy tensor of matter. It is useful to understand what kind of
relativistic effects one can expect in the bimetric theory in application to the
spaceborne laser ranging experiments like ASTROD [8,9] and LATOR [10–12].
We shall investigate this problem by calculating the time delay of light propa-
gating in the time-dependent gravitational field of an arbitrary moving body.
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In what follows, we shall consider an isolated N -body system (a solar
system) resided in an asymptotically flat space–time of the gravity metric
gαβ . According to Carlip [1] the optical metric

ḡαβ = gαβ +
(

1 − 1
ε2

)
wαwβ , (1)

ḡαβ = gαβ −
(
ε2 − 1

)
wαwβ , (2)

where ε is a constant parameter defining the coupling of the vector field wα

with matter and describing the degree of violation of the Lorentz invariance
for electromagnetic field (and other material fields). Following Carlip [1] we
assume that the Greek indices are raised and lowered with the metric gαβ .

Let us work in a global coordinate system xα = (ct, xi), where c in Carlip’s
theory [1] is the speed of gravity and xi are spatial coordinates. In the global
frame the linearized expansions for the metric and the vector field are

gαβ = ηαβ + hαβ , (3)
gαβ = ηαβ − hαβ , (4)
wα = V α + ζα , (5)
wα = Vα + ζα − hαβV

β , (6)

where ηαβ = diag(−1,+1,+1,+1) is the Minkowski metric, hαβ is the per-
turbation of the gravity metric, and ζα is the perturbation of the vector field
which unperturbed value in the global frame is V α. We emphasize that V α

remains arbitrary and our analysis is not limited to the case of the preferred
frame where V α = (1, 0, 0, 0).

The optical metric ḡαβ is decomposed as follows

ḡαβ = η̄αβ + h̄αβ , (7)
ḡαβ = η̄αβ − h̄αβ , (8)

where the unperturbed part of the optical metric is defined by

η̄αβ = ηαβ −
(
ε2 − 1

)
V αV β , (9)

η̄αβ = ηαβ +
(

1 − 1
ε2

)
VαVβ , (10)

and the perturbation

h̄αβ = hαβ +
(
ε2 − 1

)
(V αζβ + V βζα) . (11)

According to Carlip [1] light propagates in the bimetric theory along light
geodesics of the optical metric ḡαβ . In geometric optics limit, the light rays are
defined by a covariant equation for electromagnetic phase (eikonal) ϕ which
reads [1, 13]
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ḡμν∂μϕ∂νϕ = 0 . (12)

This equation is formally equivalent to the equation of light propagating
through dispersive medium with refraction index ε moving with respect to
a preferred frame with velocity wα. Theory of light propagation through the
dispersive medium has been worked out by Synge [13] and we shall use his
theory to integrate (12) and to interpret its solution.

As follows from (12), we do not need to know solutions for the metric
perturbation hαβ and that of the vector field ζα separately. What we need
to perform the integration of (12) is solution for the perturbation h̄αβ of the
optical metric (8). In the linearized approximation the metric perturbation
h̄αβ obeys the following gravity field equations [1]

�h̄αβ = −1/2
16πG

(1 − 4�)εc2
(
S(α

μT
β)μ − ηαβTλ

λ

)
, (13)

where � ≡ −c−2∂2/∂t2 +∇2 is the wave operator in flat space–time defining
null characteristics of the gravitational field, the constant tensor Sαβ = ηαβ +
2�V αV β , � is another constant parameter of the bimetric theory (� = 0 in
general relativity), and Tμν is the stress–energy tensor of the point-like bodies
composing of the N -body system. Equation (13) is valid under imposing the
following gauge conditions

∂β

(
hαβ − 1

2
ηαβh

)
+
(

1 − 1
ε2

)
Vα∂βζ

β = 0 . (14)

In the linearized approximation the stress–energy tensor reads [1]

Tαβ(t,x) =
N∑

a=1

Mau
α
a uβ

a δ(3)
(
x − xa(t)

)
γa

√
1 − (1 − ε−2) (uμVμ)2

, (15)

where the index a = 1, 2, . . . , N enumerates gravitating bodies of the solar sys-
tem, Ma is the (constant) rest mass of the ath body, xa(t) is time-dependent
spatial coordinate of the ath body, va(t) = dxa(t)/dt is velocity of the ath
body, uα

a = γa(1, va/c) is the 4-velocity of the ath body, γa =
(
1−v2

a/c
2
)−1/2

is the Lorentz factor, and δ(3)(x) is the three-dimensional Dirac’s delta
function.

Because the field equations (13) are linear, we can consider their solution
as a linear superposition of the solutions for each body. It allows us to focus
on the relativistic effects caused by one body (Sun, planet, etc.) only. Solving
(13) by making use of the retarded Liénard–Wiechert tensor potentials [14],
one obtains the metric tensor perturbation

h̄αβ(t,x) =
2GM

(1 − 4�)c2
2uαuβ + ηαβ + 2�

(
uαV β + uβV α

)
(uμVμ)√

ε2 − (ε2 − 1) (uμVμ)2
1
rR

, (16)
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where rR ≡ −uαr
α, rα = xα − zα(s), zα(t) = (ct,z(t)) is the world line of

the light ray deflecting body parametrized by the coordinate time t, uα(t) =
c−1dzα(t)/dt.

Because we solved the field equations (13) in terms of the retarded
Liénard–Wiechert potentials, the distance rα = xα − zα(s), the body’s world
line zα(s) = (cs,z(s)), and the body’s 4-velocity uα(s) in (16) are functions
of the retarded time s. The retarded time s is found in the linearized approx-
imation of the bimetric theory as a solution of the gravity null cone equation

ημνr
μrν ≡ ημν

(
xμ − zμ(s)

)(
xν − zν(s)

)
= 0 , (17)

i.e.,

s = t− 1
c
|x − z(s)| , (18)

where the fundamental constant c in (18) is the fundamental speed of propa-
gation of gravity.

Light rays are defined by a covariant equation (12) for electromagnetic
phase (eikonal) ϕ. Assuming that unperturbed solution of (12) is a plane
wave, we can write a general solution of this equations as follows

ϕ(xα) = ϕ0 + kαx
α + ψ(xα) , (19)

where kα is an unperturbed (constant) wave covector of the electromagnetic
wave, and ψ(x) is a relativistic perturbation of the eikonal generated by the
metric tensor perturbation h̄αβ defined in (16). Substitution of (19) to (12)
yields

η̄αβkαkβ = 0 , (20)

η̄αβkα
∂ψ

∂xβ
=

1
2
hαβkαkβ . (21)

Let us define a vector (see Fig. 1)

σα = η̄αβkβ = kα −
(
ε2 − 1

) (
V βkβ

)
V α , (22)

such that
η̄αβσ

ασβ = 0 , and kασ
α = 0 . (23)

Vector σα defines the direction of propagation of light ray from a source of
light (laser, star) to observer (see Fig. 1). Making use of vector σα simplifies
(21) and reduces it to the following form

σα ∂ψ

∂xα
=

1
2
hαβσ

ασβ . (24)

Unperturbed characteristics of the eikonal equation (24) are straight lines
(light rays) parametrized by the affine parameter λ in such a way that
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*

α
l

rα

Observer

σα

Source of Light

Φ

Gravity Null Cone

Body’s world−line

Light−ray deflecting body

Light Null Cone

Fig. 1. The light and gravity null cones of the bimetric theory are shown. Gravity
propagates from the source of light (laser) to observer along the gravity null cone
defined by the metric gαβ . Gravitationally unperturbed direction to the source of
light is defined by vector σα lying on the null hypersurface of the optical metric ḡαβ .
Gravitationally perturbed direction of the light propagation is lα and this vector
resides on the gravity null cone. Each light ray deflecting body (Sun, planet) deflects
light from its retarded position defined with respect to observer by a null vector
rα = xα−xα

J (s) which also resides on the gravity null cone. The eikonal gravitational
perturbation is ψ = −(2GM/c2)χ ln Φ, where Φ = −lαrα. Gravitational light ray
deflection experiments measure the range χ and shape Φ of the relativistic time
delay of light. The range measurement allows us to pin down the parameter χ while
measuring the shape Φ of the time delay gives us the components of the vector
lα under assumption that vector rα is known. Deviation of lα from the gravity-
unperturbed direction σα of the light ray measures the degree of violation of the
Lorentz invariance of the gravitational field.

d

dλ
= σα ∂

∂xα
. (25)

Integration of (25) by making use of the unperturbed characteristics is
straightforward (see, for example, [15]) and can be written as follows

ψ(xα) = −2GM

c2
χ ln (−lαr

α) , (26)

where

χ =
(σαu

α)2 + (1/2) (σασ
α) + 2� (σαu

α) (σαV
α) (uαV

α)

(1 − 4�)(ε2 − (ε−2 − 1) (uμζμ)2)1/2 (Pαβσασβ)1/2
, (27)
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lα = σα
⊥ + σ⊥uα , (28)

σα
⊥ = Pα

βσ
β , (29)

σ⊥ = (σ⊥ασ
α
⊥)1/2 =

(
Pαβσ

ασβ
)1/2

, (30)

and
Pαβ = ηαβ + uαuβ , (31)

is the operator of projection on the hyperplane orthogonal to the 4-velocity
uα of the light ray deflecting body (PαβP

β
γ = Pαγ). It is easy to confirm that

solution (26) is valid by observing that

d

dλ
ln (−lαr

α) = −σ⊥
rR

, (32)

where rR = −uαr
α, and equations

∂αr
μ = δμ

α − uμ

γ
∂αs , (33)

∂αs = −γ
rα

rR
, (34)

where γ = (1−β2)−1/2, have been used. Equation (28) allows us to recast the
argument of the logarithm in (26) as

lαr
α = σα

⊥rα − σ⊥rR . (35)

It is remarkable that both vectors lα and rα are null vectors of the gravity
metric gαβ (see Fig. 1). Indeed, in the linearized approximation gαβ = ηαβ

and one can easily prove by inspection that

ηαβl
αlβ = 0 , (36)

ηαβr
αrβ = 0 , (37)

which are consequences of the definitions given by (17) and (28). Thus, neither
lα nor rα belong to the null cone of the optical metric ḡαβ but characterize
the null hypersurfaces of the gravity metric gαβ .

Solutions (19) and (26) for the electromagnetic eikonal in the bimetric the-
ory should be compared with a similar solution for the case of propagation of
light in general relativity where the gravity and light null cones coincide [16].
The reader can see that the null characteristics of the gravity metric gαβ enter
the gravitationally perturbed part of the eikonal (26) in the bimetric theory
in the form of the dot product lαr

α which is the argument of the logarithm,
where rα is the null distance of the metric gαβ between the observer and the
light ray deflecting body. A remarkable fact is that both lα and rα are null
vectors of the metric gαβ describing null hypersurfaces of the gravitational
field. Consequently, gravitational light ray deflection experiments in the field
of moving bodies are sensitive to, and can measure, the divergence between
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the null characteristics of the gravity metric gαβ and the optical metric ḡαβ

in the case of a nonstationary gravity field in contrast to other relativistic
experiments limiting the PPN-preferred frame parameters α1, α2, α3 [7]. This
allows us to measure the spontaneous violation of the Lorentz invariance of
the gravitational field predicted by the vector–tensor theories of gravity that
admit existence of a vector field wα coupled to matter via parameter ε para-
metrizing the difference between the gravity and optical metrics. In conven-
tional type of the gravitational light ray deflection experiments conducted
with VLBI [16,17], one needs the angle Φ (see Fig. 1) to be as small as possi-
ble to magnify the Lorentz-invariance violation effects driven by gravity field.
Currently, VLBI can measure gravitomagnetic effects of order v/c beyond the
static Shapiro effect [18,19]. Further progress in measuring more subtle effects
of the bimetric theory of gravity of order v2/c2 and higher beyond the static
Shapiro time delay can be achieved with laser ranging technique in the exper-
iments like LATOR [10–12] and/or ASTROD [8, 9]. In case of laser ranging
between spacecrafts with a gravitating body (Sun) located near the direction
of the laser beam, the angle Φ (see Fig. 1) can vary in a large dynamical range
so that relativistic effects of the bimetric theory of gravity could be explored
with much better precision than in VLBI experiments. We will study this
situation for laser ranging experiment in various theories, e.g., in the more
general vector–metric theories [20] and in the axion electrodynamics [21].
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Summary. In 1964 Shapiro pointed out that γ can be determined from measure-
ments of the relativistic time delay for electromagnetic waves passing near a massive
body such as the Sun. The delay for two-way measurements from Earth to a space-
craft passing behind the Sun can be more than 200 μs. Microwave range and range-
rate measurements of this kind from Earth to several spacecraft have provided our
best information so far on γ. Laser time-delay measurements and determinations of
the deflection of laser beams near the Sun also have been proposed. A mission of
this kind called Laser Astrometric Test of Relativity (LATOR) currently is being
considered. Here we discuss a considerably different mission which would use drag-
free spacecraft, whose orbits can be accurately determined, to measure the Shapiro
time delay for laser beams passing near the Sun. One spacecraft would be located
near the L1 Lagrange point, between the Earth and the Sun. The other would be
launched into an orbit similar to the ones used in LATOR, with 1.5 year period and
eccentricity such that three occultations by the Sun would occur within 2 years after
launch. We also consider higher-order time-delay effects. In the present experiment
laser signals are sent from a drag-free spacecraft at the L1 point, and transponded
back by a drag-free spacecraft passing behind the Sun. A high-stability frequency
standard located on the L1 spacecraft permits accurate measurement of the time
delay. Both spacecraft are designed for extremely low spurious accelerations at pe-
riods out to roughly 20 days.

1 Introduction

Historically, the first accurate measurements of the Shapiro time delay [1]
were made using microwave range measurements to the Mariner 9 spacecraft
orbiting around Mars [2, 3] and to the Viking Orbiters and Landers [3–5].
Recently, a measurement of the spatial curvature parameter γ with 2.3 · 10−5

accuracy was made during the Cassini mission [6]. The time derivative of
the time delay was measured from Doppler shifts in microwave signals sent
from Earth to a transponder on the spacecraft and back. Great care was
taken to minimize spurious effects due to the Earth’s atmosphere and to the
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interplanetary electron density. An additional improvement in the accuracy
for γ to roughly 1 · 10−6 is expected from measurement of the gravitational
deflection of light rays during the GAIA astrometric mission of the European
Space Agency.

The LATOR experiment [7–9] is intended to give further improvements
in the measurement of γ. It involves placing two spacecraft in very similar
solar orbits with periods of 1.5 years. The orbits can be chosen so that the
spacecraft make three passes behind the Sun during a 7-month period cen-
tered on 18 months after launch, and the angular separation between them as
seen from Earth is roughly 1◦. An optical interferometer on the International
Space Station observes laser beams from the two distant spacecraft and would
measure the angular separation between the spacecraft with high accuracy.
The lengths of the three sides of the triangle would be measured with lasers.
From the non-Euclidian geometry of the triangle when one arm passes near
the Sun, γ can be determined.

As an alternate approach, we consider making Shapiro time-delay mea-
surements from a satellite near the L1 point of the Earth–Sun system to a
single transponder spacecraft in a LATOR-type orbit when the line of sight
passes near the Sun. The L1 spacecraft would have a high-stability atomic
frequency standard with performance similar to that expected for the cooled
Cs clocks that have been developed for the ACES [10] and the PARCS exper-
iments [11] on the International Space Station. Both the distant spacecraft
and the L1 spacecraft would be designed to have very low levels of nongravi-
tational orbit disturbances. The atomic frequency standard would need to be
quite small, but the environmental disturbances near the L1 point would be
considerably lower than those on the Space Station.

The size of the Shapiro time delay and its variation with time for the
LATOR-type orbit of the distant spacecraft will be discussed in Sect. 2.
In Sect. 3, the expected signal-to-noise ratio will be derived for determin-
ing γ from an idealized Gravitational Time Delay (GTD) mission. For this
ideal case, only white frequency noise in the clock on the L1 spacecraft is
allowed for. In Sect. 4, the requirements on the drag-free systems to minimize
nongravitational accelerations of the spacecraft will be considered, along with
possible excess clock noise at very low frequencies. Then, the limitations from
the actual time-delay measurement method will be discussed in Sect. 5. The
overall results will be summarized in Sect. 6.

2 Shapiro Time Delay

Because of the sensitivity of the measurements discussed in this chapter, we
have performed a more accurate calculation of the Shapiro time delay than is
quoted in many textbooks. Usually a “straight line” approximation is used, in
which the delay is calculated assuming the path of the photon is straight [1].
A more careful calculation including the bending of the path shows that
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there is an additional contribution of first order in the quantity GM�/c3. For
example, Weinberg gives the following expression for the time delay required
for a photon to pass from the point of closest approach to the Sun, at r = b,
to the radius r [12]:

Δt
(1)
delay = (1 + γ)

GM�
c3

ln

(
r +

√
r2 − b2

b

)
+ (1 + γ)

GM�
c3

√
r − b

r + b
. (1)

The last term in this result can amount to tens of microseconds. The result
is expressed in the isotropic coordinates that are customarily used when dis-
cussing time-delay observations.

Because of its possible importance in solar system time-delay observations,
we have extended the delay calculation to higher order. We briefly describe the
method here. If the Sun is taken to be a spherically symmetric mass source,
then the motion of a photon can be assumed to lie in the θ = π/2, equatorial
plane. Also, in isotropic coordinates the metric does not depend explicitly on
coordinate time or on azimuthal angle. The cyclic nature of these two co-
ordinates leads immediately to two constants of the motion, corresponding
roughly to energy and angular momentum. These two constants allow the
azimuthal angle and the scalar orbit parameter to be eliminated in favor of
the coordinate time. Since the path followed by a photon is a null geodesic,
there results a first-order differential equation for dt/dr, where t is the co-
ordinate time (x0 = ct). Contributions to this equation can be expanded in
powers of μ = GM�/c2 and the equation can be integrated. The result of
these calculations gives for the next-order contribution to time delay [13]

Δt
(2)
delay =

(3δ/2 + 4(γ + 1) − 2β)(GM�)2

bc5
ArcTan

(√
r2 − b2

b

)

− (γ + 1)2(GM�)2

2bc5

(
2 +

b

r + b

)
, (2)

where β is a PPN parameter measuring the strength of the nonlinear term
in g00, and δ is defined by expanding the isotropic metric component g11 to
higher order:

g11(r) = 1 +
2γμ
r

+
3δμ2

r2
. (3)

In general relativity, δ = 1.
Figure 1 shows the second-order time-delay contributions of (2) for several

different values of the distance of closest approach, b. The three curves, upper
to lower, correspond, respectively, to b = 1.1, 1.2, 1.3 solar radii, and the quan-
tity plotted is (2) in picoseconds, for the delay during one-way travel from the
point of closest approach to the radial distance r. The horizontal axis is the
final radial distance expressed in units of the solar radius. In the experiment
proposed here, this delay will contribute four times, so the total second-order
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Fig. 1. Second-order contributions to time delay for one-way passage of a photon
from the point of closest approach to a radial distance r from the Sun.

delay can amount to about a quarter of a microsecond, and certainly has to
be taken into account. The effect of a deviation γ − 1 on these contributions
is negligible.

We have also estimated the time delay due to the solar quadrupole
moment. Such contributions are controlled by the parameter

GM�J2a
2
1

b2c3
< 10−12 s, (4)

where J2 ≈ 2 · 10−7 is the Sun’s quadrupole moment coefficient and a1 is the
Sun’s equatorial radius. There is a complicated dependence of this delay on
the orientation of the Sun’s rotation axis with respect to the photon’s path,
but the net effect is only 2 or 3 ps and we shall not consider it further.

In the present modification of the LATOR mission, the line of sight from
the spacecraft at L1 to the distant spacecraft passes across the Sun three
times. Figure 2 plots the total Shapiro time delay in microseconds, and the
angle (in milliradians) between the line to the Sun’s center and the line to
the occulted spacecraft. Both first-order contributions of (1) are included.
The second-order effects are too small to see on the graph.

This figure shows that during conjunctions the time delay is, to a very good
approximation, symmetric about the time t0 when the distant spacecraft is
exactly behind the center of the Sun. The logarithm clearly dominates the
time dependence. For purposes of analysis in the following sections, we have
found that the time-delay function, within a span of ±20 days on either side
of t0, can be fit very well by a function of the form

0.97 · 8GM

c3
ln(R|t− t0|) + const., (5)

where R is the rate of motion of the line of sight with respect to the Sun’s
center in solar radii per day, and t is in days. The constant is not important
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Fig. 2. Plots of the first-order time delay (in microseconds) as the occulted space-
craft passes behind the Sun, and the angle between the line from L1 to the Sun and
the line from L1 to the distant spacecraft (in milliradians).

when discussing uncertainties, since it would represent a constant bias in the
time delay. The logarithmic dependence is the distinctive time signature for
the Shapiro effect, and we shall henceforth drop the constant.

3 Idealized Gravitational Time-Delay Mission

Most of the accuracy for determining the relativistic time delay is expected
to come from a period of roughly 20 days around the time of passage of the
line of sight behind the Sun, as will be discussed later. Thus the noise in the
frequency standard and in displacements of the spacecraft due to nongravita-
tional accelerations will be of interest at frequencies down to about 5·10−7 Hz.
It is assumed that the measurements will be made continuously from time −t2
to −t1 and from time t1 to t2, where t = 0 when the line of sight between the
spacecraft passes through the center of the Sun.

For simplicity, the distance between the spacecraft is assumed to be con-
stant except for the relativistic time delay. The time signature of γ∗ = (γ+1)/2
is taken to be

g(t) = −B(ln |Rt| −M) , (6)

where M =< ln |Rt| > is the mean value of ln |Rt| over the periods −t2 to
−t1 and t1 to t2, and B = 0.97 · 8GM�/c3 = 3.82 · 10−5 s.

The rate at which the line of sight to the distant spacecraft passes across
the Sun varies substantially between the three conjunctions with the Sun,
with the second one having a considerably lower rate than the other two. In
solar radii per day, the rate for the first and third conjunctions is about 0.7,
and we will assume this value for our reference case. To avoid measurements
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closer than 0.4 solar radii from the limb, we chose to make t1 be 2 days after
t0 and t2 be 10 days after t0. For the second conjunction, the rate would be
only about 0.2 solar radii per day.

In the reference case, we assume that the only noise in the measurements
is white fractional frequency noise n(f) at a level of 1 · 10−13 Hz−1/2 at all
frequencies. This is close to the noise level expected for the ACES and PARCS
clocks [10,11] at frequencies above 5 ·10−7 Hz. This noise affects the results in
two ways. One is the jitter in the measured round-trip travel time of roughly
2,000–2,200 s due to the phase jitter in the output from the frequency stan-
dard. However, this error is reduced strongly when the measurements are
averaged over periods of hours. The other, more serious, noise is the varia-
tions in the frequency over the whole measurement time. If the frequency of
the standard is different near the end of the measurement time from what it
was earlier in the measurement period, the measured total travel time will be
affected proportionately.

The usual method of optimal filtering (see, e.g., [14] and references therein)
would be used to determine the value of γ∗. Let g(f) be the Fourier transform
of g(t) over the time of the measurements. Then the square of the signal-to-
noise ratio is given by (

S

N

)2

=
∫ ∞

0

2|g(f)|2
n(f)2

df . (7)

We also assume for the reference case that t1 = 2 days and t2 = 10 days.
Because of the symmetry of the signal before and after t = 0, only the cosine
terms of g(f) are nonzero

g(f) = 2
∫ t2

t1

g(t) cos(ωt) dt, (8)

where ω = 2πf . The factor 2 comes from time symmetry of the time-delay
signal.

Since n(f) is assumed to be independent of frequency in the reference case,
it can be taken outside the integral in (7):(

S

N

)2

=
2

n(f)2

∫ ∞

0

g(f)2df , (9)

and Parseval’s theorem implies:∫ ∞

0

g(f)2 df ≈ 2π
∫ t2

t1

g(t)2 dt . (10)

After some algebra,∫ t2

t1

g(t)2 dt = B2R
(
t2(ln(Rt2))2 − t1(ln(Rt1))2 − 2 (t2 ln(Rt2) − t1 ln(Rt1))

+2(t2 − t1) −M2(t2 − t1)
)

(11)
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where M is the mean value

M =
(
t2 ln(Rt2) − t1 ln(Rt1)

)
/(t2 − t1) − 1 . (12)

From the above,∫ t2

t1

g(t)2 dt = B2R

(
(t2 − t1) −

(
t2t1/(t2 − t1)

)(
ln(Rt2) − ln(Rt1)

)2)
. (13)

For our reference case, t2 = 8.64 · 105 s, t1 = 1.728 · 105 s, and∫ ∞

0

g(f)2df = 2π · 1.317 · 105B2(s3). (14)

Because only the cosine terms in the noise contribute, the effective noise
level is reduced from 1 · 10−13 to 0.71 · 10−13 Hz−1/2. Since the total round-
trip time is about 2,200 s for the first and third conjunctions, the noise in
measuring it is

n(f) = 1.56 · 10−10 sHz−1/2. (15)

Thus, from (9), (10), and (13),

(S/N)2 = 1.655 · 106B2/[2.42 · 10−20] = 9.3 · 1016. (16)

This corresponds to an idealized precision of 0.33 · 10−8 for determining
γ∗, or 0.66 · 10−8 for γ.

4 Effects of Nongravitational Accelerations

For the GTD mission, the level of nongravitational accelerations of the
spacecraft has to be kept very low out to long periods. For comparison, a
joint mission of the European Space Agency and NASA called the Laser
Interferometer Space Antenna (LISA) [15] has a requirement of less than
3 · 10−15 ms−2 Hz−1/2 for the spurious accelerations of proof masses aboard
each spacecraft at frequencies down to 0.1 mHz [16]. Each spacecraft is ser-
vocontrolled to follow the average position of two proof masses inside it to
roughly 3 · 10−9 mHz−1/2. This is done by a disturbance reduction system
(DRS) (“drag-free” system) [17] that uses micronewton thrusters to can-
cel out the solar radiation pressure force and other nongravitational forces
on the spacecraft. The relative displacements of the spacecraft with respect
to the proof masses are determined by two gravitational reference sensors
(GRSs) [18, 19] containing the proof masses. For the GTD mission, only a
single GRS would be needed on each spacecraft.

Below 0.1 mHz, it has been suggested [20] that a spurious acceleration
level increasing only as ((0.1mHz)/f)0.5 between 0.1 and 0.003 mHz could
be achieved with only moderate additional experimental constraints. At still
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lower frequencies, we assume that the acceleration level will increase as
(0.003mHz)/f . If a(f) is the spurious acceleration level at frequency f for
the GRS on each spacecraft, the resulting noise level in the round-trip dis-
tance between the spacecraft will be

x(f) = 2
√

2
a(f)
ω2

. (17)

The equivalent time-delay noise p(f) = x(f)/c will cross the value of
n(f) = 1 · 10−13 Hz−1/2 that we have adopted at a frequency of 4.0 · 10−7 Hz,
and near that frequency it is given by

p(f) = 2 · 10−10
(
4.0 · 10−7 Hz/f

)3sHz−1/2. (18)

In view of the rapid increase of p(f) with decreasing f , we can approximate
its effect by cutting off the integral in (2) on the lower end at 4.0 · 10−7 Hz.
To see what the effect of the assumed level of spurious accelerations is, we
have calculated g(f) from (3) and then numerically integrated the function
(g(f)/B)2. The dependence of this function on f is shown in Fig. 3. The total
integral is 8.1 · 105 s, in good agreement with (14), and the fraction of the
integral from frequencies below 4 · 10−7 Hz is only about 5%. Thus the effect
of limitations from the spurious accelerations of the spacecraft appears to be
small, if the assumed performance level for the DRSs can be achieved. At
the very low acceleration levels and frequencies involved, verification of the
necessary performance will have to be achieved from modeling rather than
direct testing, but this approach seems quite feasible for the types of forces
involved.

The most serious challenge for the DRS at the lowest frequencies is likely to
be the rate of change of the solar intensity at the distant spacecraft. During the
20 day periods around the first and third solar conjunctions, the equilibrium
temperature of the spacecraft would change by roughly 8 K if special measures
were not taken. To minimize the effect on the GRS, both active temperature

Fig. 3. Plot of the function g(f)2/B2 for frequencies up to 0.01 mHz.
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control of the spacecraft and careful design to minimize temperature gradients
across the GRS will be needed.

5 Other Time-Delay Measurement Errors

One method for measuring the time delay for signals sent between spacecraft
that are far apart is the use of pulsed lasers. Lasers giving 100 ps pulses in the
green with 0.1 J per pulse energy and 20 Hz repetition rate are available com-
mercially. We assume that a laser giving a train of such pulses is located on
each spacecraft, and that a fast detector measures the time delay between the
receipt of a pulse and the next pulse generated onboard. The expected accu-
racy is 5 ps or better. For the round-trip travel time, the resulting contribution
of the timing to the error will be 10 ps or less.

It is difficult to know what should be assumed concerning the time vari-
ation of pulse timing errors, since they may well be systematic in nature.
During the time of perhaps 8 days for the line of sight between the two space-
craft to go from 0.4 to 6.0 times the solar radius from the limb, the change
in the round-trip time delay will be about 6.4 · 10−5 s. Thus a drift of 10 ps
in the timing error over this time, and an opposite sign drift during the cor-
responding time before conjunction, could give as much as a roughly 3 · 10−7

error in γ. This is what would result from treating the timing error as a worst
case error, in terms of its time dependence. An error this large is unlikely,
and some additional reduction in the timing system error probably is possible
by improvements in the system design. However, to achieve an accuracy of
better than 1 · 10−7 for γ for the reference case would require a substantial
improvement in the travel time measurement approach.

In view of this situation, it is also desirable to investigate what could be
done with a cw laser travel time measurement system. The system we will con-
sider consists of taking perhaps 0.5 W of cw output at 1,030 or 1,064 nm wave-
length from a frequency-stabilized YbYAG or NdYAG laser on each spacecraft
and putting it through an electrooptic phase modulator. Such modulators at
frequencies up to 40 GHz are now commercially available, and probably will
be space qualified in the next few years. This is because of strong interest in
laser communications at high data rates between spacecraft. A short Fabry–
Perot interferometer would be included after the modulator to pass the two
sidebands and strongly suppress the carrier. The beam would then be sent to
the distant spacecraft through a roughly 100 mm diameter transmitting tele-
scope. A separate 100 mm diameter receiving telescope, with careful attention
to reducing the effect of scattered sunlight hitting the entrance aperture, also
would be provided on each spacecraft, to minimize the problem of making
measurements near the limb of the Sun.

To detect changes in the round-trip travel time, it would be necessary to
compensate for the Doppler shifts in the received signals. The one-way Doppler
shifts near the times of the first and third solar conjunctions will be up to
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about 5 GHz. This can be compensated for by adding additional sidebands
to the local oscillator laser beams. With corrections, the phase difference of
the two beat notes measured at each end of the path would give a measure
of the time delay over the path. For a modulation frequency of 40 GHz and
sidebands 80 GHz apart, the sum of the phase differences would change by
1 cycle each time the round-trip time changes by 12.5 ps. Measurement of the
phase differences to 5◦ accuracy on each spacecraft would correspond to less
than a 0.35 ps measurement error for the round-trip time delay. If a drift in the
error of this magnitude occurred over the 8 days of the measurements before
conjunction and an opposite drift occurred during the measurements after
conjunction, this would give a worst case error of 1.1 · 10−8 for γ. However,
a one-sigma error estimate of 0.4 · 10−8 for γ from this error source seems
reasonable.

Another benefit of an improved travel time measurement method is related
to the stability requirements for the L1 clock. We assumed earlier that a
power spectral amplitude of 1 · 10−13 Hz−1/2 for the performance of the L1
clock can be maintained at frequencies down to about 4 ·10−7 Hz. Laboratory
data on this seem quite encouraging, but as for spurious acceleration sources,
considerable reliance on modeling of the disturbing effects at low frequencies
may be needed. On the other hand, checks on the clock stability on orbit
may be possible by sending optical timing signals from the Earth to the L1
spacecraft and back. If measurements of roughly 2 ps or better accuracy from
day to day can be achieved, they can be used to compare the frequency of
the L1 clock with the best available frequency standards on the ground. In
principle, the average frequency difference over 1 day could be measured to
roughly 5 · 10−17. Since this would be a clock time comparison using two-way
measurements, most of the effects of the atmospheric time-delay uncertainty
and of spacecraft motion uncertainty would be avoided.

6 Summary

The earliest studies of a dedicated mission aimed mainly at determining the
GTD were carried out by the European Space Research Organization during
1969–1973. The mission was called A Space Experiment on Gravitational The-
ories (SOREL) [21]. A drag-free spacecraft was proposed, and time-delay mea-
surements were to be made when the spacecraft passed behind the Sun. Both
microwave tracking and pulsed laser time-delay measurements were assumed.
One approach studied was to measure the arrival times of laser pulses against
an atomic frequency standard on the spacecraft. The other was to transmit
laser pulses back to the ground, and rely less on having a high-accuracy fre-
quency standard onboard.

The type of mission described in the present chapter has much higher
accuracy goals than SOREL, and makes use of many technology develop-
ments that have occurred in the last three decades or so. One important
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difference is the proposal to make use of DRSs similar to those proposed for
the LISA mission. Such DRSs are scheduled for flight in 2009 on the LISA
Pathfinder mission of the European Space Agency [18,19,22]. However, major
improvements in the expected performance at frequencies down to roughly
4 · 10−7 Hz would be required. Another difference is the proposal to make the
measurements from a spacecraft near the L1 point of the Earth–Sun system,
to avoid the problem of going through the Earth’s atmosphere.

In the preceding sections, three of the four main error sources for the
suggested GTD mission have been discussed. The remaining one, which we
have not investigated, is the orbit determination part of the problem. For
both spacecraft, the main limitation is likely to be the performance of the
disturbance compensation system over periods perhaps twice as long as the
20 days assumed for the main part of the time-delay measurement process.
However, the effect of uncertainty in the motion perpendicular to the ecliptic
also needs to be considered.

If the round-trip delay can indeed be determined to 0.4 ps in terms of the
instantaneous clock frequency, then a measurement of γ from the GTD with
an accuracy of 1 or 2 ·10−8 seems possible. However, the limitations from
the disturbance compensation system and the orbit determination problem
clearly need to be investigated further.
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Laser Transponders for High-Accuracy
Interplanetary Laser Ranging and Time
Transfer

John J. Degnan

Sigma Space Corporation, 4801 Forbes Blvd., Lanham, MD 20706 USA

Summary. Satellite laser ranging (SLR) and lunar laser ranging (LLR) to pas-
sive reflectors have been carried out successfully since 1964 and 1969, respectively.
The single-ended SLR ranging technique, although capable of providing millime-
ter precision range data to satellites, is not practical over interplanetary ranges.
Double-ended laser transponders for decimeter or better accuracy interplanetary
ranging and subnanosecond time transfer are well within the state-of-the-art, how-
ever, as was recently demonstrated in two successful transponder experiments car-
ried out by the NASA Goddard Space Flight Center to laser altimeters onboard
the Messenger spacecraft (currently enroute to Mercury) and the Mars Global Sur-
veyor spacecraft (presently in Mars Orbit). A high-accuracy interplanetary ranging
capability would support a number of new scientific investigations (e.g., solar sys-
tem and planetary physics, general relativity, etc.) and enhance deep-space mission
operations and reliability through vastly improved navigation accuracy and time
synchronization with Earth mission control centers. The performance of future lu-
nar or interplanetary laser transponder and laser communications instruments can
be simulated and tested at distances to Pluto and beyond using existing passive
SLR and LLR targets already in space.

1 Satellite and Lunar Laser Ranging

Laser ranging to passive retroreflectors on Earth orbiting satellites was first
demonstrated at the NASA Goddard Space Flight Center on 31 October
1964 [8]. The basic measurement of this single-ended instrument is both sim-
ple and unambiguous. The outgoing laser pulse starts a highly precise timer, is
reflected by the satellite, and the return signal stops the timer. One then mul-
tiplies the time interval by the speed of light, correcting for satellite signature
(impulse response) and atmospheric propagation delay effects, to compute
a range to the satellite center of mass. Today, an international network of
approximately 40 satellite laser ranging (SLR) stations routinely track two
dozen space missions in Earth orbit. Over the past four decades, the ranging
precision has improved from a few meters to 1 or 2 mm, and the subcentimeter
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Fig. 1. Global distribution of the ILRS satellite laser ranging network.

absolute accuracy is presently limited, not by the instrumentation, but by un-
certainties in the atmospheric propagation model and pulse spreading by the
satellite target arrays. For more information on SLR, the reader is referred
to a series of review articles devoted to SLR history [3], hardware [1], and
mathematical models [2].

Since its inception in 1998, the International Laser Ranging Service
(ILRS), an Official service of the International Association for Geodesy (IAG),
has set mission tracking policy and managed the daily operations of the
international SLR network. The global distribution of ILRS stations is shown
in Fig. 1, and, as will be demonstrated later, most of these stations are poten-
tially capable of supporting future centimeter ranging and subnanosecond
time transfer to the other planets within our solar system.

A select few of the ILRS stations have successfully tracked one or more
of the five retroreflectors placed on the Moon by the manned US Apollo 11,
14, and 15 and two unmanned Soviet Lunakhod missions to the Moon. Most
of the operational lunar laser ranging (LLR) data over the past 36 years has
come from three sites – the NASA/University of Texas station at McDonald
Observatory, the French CERGA station in the coastal Mediterranean town
of Grasse, and the NASA/University of Hawaii station at the top of Mt.
Haleakala in Maui (which was decommissioned in 1992 due to NASA funding
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cuts). It is important to note that, even with meter class telescopes located at
mountaintop sites with excellent atmospheric “seeing” and with moderately
high subnanosecond pulse energies on the order of 100–200 mJ, LLR systems
typically detect one single photon return from the lunar arrays out of every
10–20 laser fires, or roughly one photon per second at typical 10–20 Hz fire
rates. This low signal photon return rate makes the extraction of the signal
from background noise difficult except when the sunlit lunar surface is outside
the receiver field of view (FOV). On the other hand, LLR observers have also
found it necessary to offset their pointing from prominent lunar features to
guide their narrow laser beam successfully to the target. The net consequence
of these two constraints is to limit lunar tracking to temporal periods which
are far from both “Full Moon” and “New Moon.” In spite of these limitations,
LLR has proved invaluable to a number of important scientific endeavors in
the fields of lunar physics and general relativity [6]. These include:

Lunar Physics (LLR)

– Centimeter accuracy lunar ephemerides
– Lunar librations (variations from uniform rotation)
– Lunar tidal displacements
– Lunar mass distribution
– Secular deceleration due to tidal dissipation in Earth’s oceans
– Measurement of G(ME + MM )

General Relativity

– Test/evaluation of competing theories
– Support atomic clock experiments in aircraft and spacecraft
– Verify equivalence principle
– Constrain β-parameter in the Robertson–Walker metric
– Constrain time rate of change in G

Under the Apache Point Observatory Lunar Laser-ranging Operation
(APOLLO) program in New Mexico, activities have been underway to produce
multiphoton lunar ranging returns through the use of larger 3.5 m diameter
telescopes and more powerful lasers [7], and the first lunar returns were re-
ported in October 2005.1 Returns from both the strongest (Apollo 15 with
300 retroreflectors) and weakest (Apollo 11 with 100 retroreflectors) lunar tar-
gets were obtained including some successful experimental sessions near Full
Moon. During the best run reported to date, 420 returns were detected out of
5,000 attempts for an 8.4% return rate. Nevertheless, the conventional SLR
technique of ranging to passive retroreflectors is unlikely to be useful for tar-
gets much beyond the Earth–lunar distance (384,000 km or 0.0026 AU). This
is due to the R−4 dependence of the received signal strength, where R is the
target range.
1 http://physics.ucsd.edu/∼tmurphy/apollo/first range.html
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2 Science and Mission Benefits of Interplanetary
Ranging

Transponders can overcome the distance limitations of conventional SLR and
LLR systems. Transponders consist of two terminals – each with its own laser,
telescope, and timing receiver [5]. Their principal advantage is that the signal
strength falls off only as R−2, and this greatly extends the range over which
they can be used. The possibility of interplanetary ranging at the centimeter
level provides new measurement opportunities in the fields of solar system
and planetary science and general relativity. It also provides new operational
capabilities, which can reduce the risk and cost of navigating and monitoring
future spacecraft missions. Some examples follow:

Solar System and Planetary Science

– Solar physics: gravity field, internal mass distribution, and rotation
– Few millimeter accuracy lunar ephemerides and librations
– Improves ranging accuracy and temporal sampling over current LLR

operations to Apollo retroreflectors on the Moon with small, low energy,
ground stations

– Decimeter or better accuracy planetary ephemerides
– Mass distribution within the asteroid belt

General Relativity

It provides more accurate (2–3 orders of magnitude) tests of relativity and
constraints on its metrics than LLR or microwave radar ranging to the planets,
e.g.:

– Precession of Mercury’s perihelion
– Constraints on the magnitude of Ġ (1 × 10−12 from LLR)
– Gravitational and velocity effects on spacecraft clocks
– Shapiro time delay

Lunar and Planetary Mission Operations

– Decimeter or better accuracy spacecraft ranging
– Calibration/validation/backup for Deep Space Network (DSN) microwave

tracking
– Subnanosecond transfer of GPS time to interplanetary spacecraft; for

improved synchronization of Earth/spacecraft operations
– Transponder can serve as independent self-locking beacon for collocated

laser communications systems
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3 Echo vs. Asynchronous Transponders

There are two types of transponder: echo and asynchronous. The timing dia-
grams for echo and asynchronous transponders are shown in Fig. 2a,b, respec-
tively. In an Earth–Moon echo transponder, for example, a pulse emitted from
the Earth terminal at time tE1 is detected by the lunar terminal at time tM1

which then generates a response pulse at time tM2 subsequently detected by
A at time tE2. The delay between the received and transmitted pulse at the
lunar terminal, td, would be either known a priori through careful calibration
or controlled via active electronics and would be subtracted from the observed
round-trip time before computing the target range. Alternatively, the delay
can be measured locally by a timer at the lunar terminal and transmitted
to the Earth terminal via a communications link. The signal return rate at
the primary station is then equal to the fire rate of the laser multiplied by
the joint probability that pulses are detected at both ends of the link. Thus,
the simple echo approach works very well when the round-trip time-of-flight is
relatively short and there is a high probability of detection at both ends of the
link, i.e., when both the uplink and downlink signal is reasonably strong and
pointing uncertainties are small relative to the transmitter divergence. This
approach should work very well over Earth–Moon or shorter links. However,
in interplanetary links where the light transit time is relatively long (several

(a)
Moon

Earth

tE1 tE2

tM1 tM2

td

tEM tME

(b)
Mars

Earth

tM1 tM2

tE1 tE2

tEM tME

τ

R

Fig. 2. Timing diagrams for (a) echo and (b) asynchronous transponder.
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minutes to hours) and the probability of detection is small at one or both ends
of the link, it is worthwhile considering the asynchronous laser transponder.

In an asynchronous transponder, the two terminals independently fire
pulses at each other at a known laser fire rate, as illustrated by the timing
diagram in Fig. 2b. For an Earth–Mars link, for example, the Earth terminal
records the times of departure of its own transmitted pulses (tE1) as well as
the times of arrival of pulses from Mars (tE2) and vice versa. In a high SNR
system with good pointing, the pulses arrive at roughly the laser fire rate
whereas, in low Signal-to-Noise Ratio (SNR) or photon-counting systems [5],
the pulses may arrive intermittently. The departure and arrival times mea-
sured at each terminal are then communicated to, and properly paired at, an
Earth-based processor which then calculates a range and clock offset between
the two terminals for each set of two-way measurements occurring within a
reasonably short time interval. The relevant equations are

R =
c

2
[
tME + tEM

]
=

c

2
[
(tE2 − tE1) + (tM2 − tM1)

]
(1)

for the inter-terminal range at the time when the two photon world lines cross
in Fig. 2b and

τ =
(tE2 − tE1) − (tM1 − tM2)

2(1 + Ṙ/c)
(2)

for the corresponding time offset between the pulses departing from each ter-
minal, where Ṙ/c is a correction for the range rate between the two terminals.

For a more extensive discussion of the theory of laser transponders, back-
ground noise and error sources, proposed methods for terminal and signal ac-
quisition, and detailed analyses of an Earth–Mars link, the reader is referred
to a comprehensive article previously published by Degnan [5]. The remainder
of the present chapter will concentrate on new insights gained by comparisons
with the SLR effort and on recent experiments that clearly demonstrate that
interplanetary laser transponders are well within the present state-of-the-art.

4 Recent Deep-Space Transponder Experiments

In late May 2005, NASA Goddard Space Flight Center (GSFC) was con-
ducting the first successful two-way transponder experiments at a wavelength
of 1,064 nm with a laser altimeter onboard the Messenger spacecraft, which
is currently enroute to Mercury. From a distance of about 24 million km
(0.17 AU), the Messenger spacecraft performed a raster scan of the Earth
while firing its Q-switched Nd:YAG laser at an 8 Hz rate. Simultaneously,
a ground based Q-switched Nd:YAG laser at GSFC’s 1.2 m telescope was
aimed at the Messenger spacecraft. During the few second periods when the
Messenger raster scan passed over the Earth station, pulses were successfully
exchanged between the two terminals [10]. The pulse time of departure and
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Table 1. Summary of key instrument parameters for recent deep-space transponder
experiments at 1,064 nm.

Experiment MLA (cruise) MOLA(Mars)
Range (106 km) 24.3 ∼80.0
Wavelength (nm) 1,064 1,064

Uplink Downlink Uplink
Pulse width (ns) 10 6 5
Pulse energy (mJ) 16 20 150
Repetition rate (Hz) 240 8 56
Laser power (W) 3.84 0.16 8.4
Full divergence (μrad) 60 100 50
Receive area (m2) 0.042 1.003 0.196
EA-product (J m−2) 0.00067 0.020 0.0294
PA-product (Wm−2) 0.161 0.160 1.64

arrival data collected by the two terminals was used to estimate the Earth–
spacecraft range with decimeter precision [9], a precision orders of magnitude
better than could be achieved with the spacecraft microwave Doppler data.

In late September 2005, a similar experiment was conducted by the same
GSFC team to the Mars Orbiter Laser Altimeter (MOLA), an instrument on
the Mars Global Surveyor (MGS) spacecraft in orbit about Mars. Because
the MOLA laser was no longer operable following a successful topographic
mapping mission at Mars, this was necessarily a one-way experiment in which
the MOLA detector saw hundreds of pulses from a modestly powered Q-
switched Nd:YAG laser at GSFC. The instrument parameters for these two
experiments are summarized in Table 1.

It must be stressed that the latter were experiments of opportunity, not
design. The near-infrared (NIR) detectors used in these experiments are far
less sensitive than the photon-counting visible detectors typically used in SLR
or LLR. As a result, the energy–aperture (EA) product needed to observe a
return in these preliminary experiments, although modest, was significantly
higher than would be necessary for a dedicated deep-space transponder mis-
sion. Furthermore, neither spacecraft had a capability of independently acquir-
ing and locking onto the opposite terminal and instead relied on temporary
illumination during the raster scan.

5 Testing Future Transponders/Lasercom Systems
in Space

Interest at NASA in laser communications has been intermittently high since
the 1960s and, with the recent successful transponder experiments, interest
in laser transponders is on the rise as well. Past initiatives for interplanetary
transponders or laser communications often were bogged down in esoteric
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discussions on difficult topics such as the effects of atmospheric turbulence
on beam propagation. It is well known that turbulence has several effects on
laser beam propagation including beam spreading, short-term beam wander,
and scintillation (fading) [2]. End-to-end ground-based experiments which can
convincingly simulate all aspects of these complex systems are both difficult
to envision and expensive to implement. Fortunately, atmospheric transmis-
sion and turbulence effects on the uplink and downlink beams are the same,
whether the uplink beam is being reflected from a passive high altitude satel-
lite in Earth orbit as in SLR/LLR or transmitted from a distant transponder
or lasercom terminal in deep space. It may be relevant, therefore, to consider
an experiment in which two closely spaced ground terminals range at different
wavelengths to the same passive Earth-orbiting satellite as in Fig. 3. Each sta-
tion must be located within the reflected return spot of the other station. The
larger terminal, simulating the Earth station, would exchange reflected pulses
from the satellite with a smaller station, simulating the remote transponder
or lasercom terminal. In Fig. 3, we show SLR Station A ranging to a passive
satellite (e.g., LAGEOS) in the infrared (1,064 nm) while Station B ranges to
the same satellite in the green (532 nm). Each station is equipped with an addi-
tional receiver channel at the opposite wavelength to detect reflected pulses
from the other station to simulate a dual wavelength transponder or lasercom
experiment. The experiment is self-calibrating since the transponder measures
the dogleg defined by Station A-satellite and Station B-satellite while the indi-
vidual ranging systems measure the Station A-satellite and Station B-satellite

Station B:
Remote

Transponder
Simulator

Station A:
Earth Station

Simulator

passive target
e.g. LAGEOS

data flow

532
nm

1064
nm

53
2

nm10
64

nm

Fig. 3. Dual station laser ranging to LAGEOS with Station A simulating the Earth
station and Station B simulating the remote transponder or lasercom terminal. Both
stations must lie within each other’s reflected spot.
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distances and ground surveys typically define the interstation vector, or third
leg of the triangle, to better than 2 mm. This provides an accurate way to test
the ranging and time transfer algorithms. Automated acquisition of the Earth
station by the remote terminal can be demonstrated by either turning off or
ignoring the closed ranging loop at 532 nm while it searches for the reflected
light at 1,064 nm. The ability to lock Station A onto the satellite via a closed
single-ended ranging loop at 1,064 nm ensures a steady source of photons from
the Earth station for the remote terminal to find and lock onto.

The link equations define the received signal strength at either station.
For the infrared link from the Earth station A to the remote terminal B via
a passive satellite, the link equation is given by [4]

ηAB
R =

4ηB
q ηA

t σsη
B
r T 2 sec θA

A

hνA(θA
t )2(4π)2

EA
t AB

r

R4
R

(3)

which depends on the transmitted energy Et, the receive aperture Ar, the
detector quantum efficiency ηq, the laser photon energy hν, the one-way zenith
atmospheric transmission TA, the satellite zenith angle θA ,the divergence half-
angle of the laser beam θt, the target optical cross-section σt (measured in
square meters), and the optical throughput efficiencies of the transmitter (ηt)
and receiver (ηr) optics, respectively. The A and B superscripts and subscripts
indicate the terminal for which the value applies, and are reversed for the
opposite link from terminal B to A. The quantity RR is the slant range to the
target satellite. For the nominally circular orbits of typical SLR targets, RR

can be expressed as a function of the satellite height above sea level h, and
the satellite zenith angle

RR(h, θA) = −RE cos θA +
√

(RE cos θA)2 + h(h + 2RE), (4)

where RE =6,378 km is the mean volumetric radius of the Earth and (4)
reduces to h when θA = 0.

For interplanetary transponder (or lasercom) links, the link equation is
given by [4]
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Setting the two mean signal counts equal in (3) and (5), we can derive an
expression for the equivalent transponder distance, RT , in terms of the actual
slant range to the satellite, RR, i.e.,

RT (h, θA, σs) = R2
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(6)

where the approximation holds if the remote terminal is in interplanetary
cruise phase, in orbit, or sitting on the surface of a planet or moon with little
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Fig. 4. The minimum and maximum distances from the Earth to the Moon and the
eight planets listed at the top of the graph are illustrated by the two upper curves
in the figure. The minimum and maximum transponder ranges simulated by the
various SLR satellites listed at the bottom of the figure are indicated by the two
lower curves.

or no atmosphere (TB ∼ 1). Since the SLR satellites are normally tracked over
the range 0◦ ≤ θA ≤ 70◦, (6) defines a maximum and minimum simulated
transponder range for each satellite. These are indicated by the blue curves
in Fig. 4 for our selected satellites. In the plots, we have assumed a value
TA = 0.7 corresponding to the one-way zenith transmission for a standard
clear atmosphere at 532 nm. The red curves are plots of the minimum and
maximum interplanetary distances of the Moon and other planets from Earth.

It is worthwhile to note that atmospheric turbulence can influence the
effective transmitter beam divergence on the uplink, but this cancels out in
our derivation of (6). Furthermore, the fading statistics for the dual station
ranging experiment to the passive satellite should be comparable to that of
an interplanetary transponder or lasercom experiment, at least to the extent
that the satellite mimics a coherent point source of radiation.

Figure 4 shows that a dual station ranging experiment to the lowest of
the SLR satellites, Champ, provides a weaker return than a two-way lunar
transponder. Low elevation angle experiments to Jason are comparable to
a Venus or Mars link when they are closest to Earth. Experiments to the
LAGEOS and Etalon satellites would simulate ranging to Mercury, Venus, and
Mars throughout their synodic cycles while experiments to GPS and LRE (at
25,000 km) would simulate links up to and beyond Jupiter and Saturn. Dual
station experiments to the Apollo 15 reflector on the lunar surface would
simulate transponder links to over 100 AU, well beyond the orbit of Pluto
(<40 AU).

The nine SLR satellites in Fig. 4 were chosen based on their ability to
simulate different transponder ranges and because the effects of target signa-
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Table 2. Characteristics of selected SLR satellites which can be used to simulate
deep-space transponder or lasercom links (from ILRS website).

Mean target Minimum Maximum
Satellite Altitude cross-section transponder transponder

(km) (106 m2) range (AU) range (AU)

Champ 500 1.0 0.007 0.057
ERS 1 and 2 800 0.85 0.02 0.135
Starlette–Stella 950 1.8 0.019 0.123
Jason 1,300 0.8 0.054 0.306
LAGEOS 6,000 15 0.263 0.771
GLOHASS 19,000 55 1.38 2.72
GPS 20,000 19 2.60 5.06
LRE (elliptical) 25,000 2 12.52 23.12
Apollo 15 384,000 1, 400 111.6

ture are minimized. The reduced pulse spreading by the target significantly
improves the precision of the measured transponder range and also provides
a reasonably high fidelity facsimile of the outgoing optical pulse train from
a ground-based lasercom transmitter. The primary characteristics of these
satellites, used in the computation of equivalent transponder ranges, are sum-
marized in Table 2.

Another way to interpret Fig. 4 is to say that any single SLR station
that can track the aforementioned satellites has demonstrated an adequate
EA-product for the corresponding transponder link under the same noise
background and atmospheric conditions. Since all of the ILRS stations are req-
uired to track LAGEOS for membership, they all have adequate EA-product
to track out to about 1 AU. About a third of ILRS stations regularly track
GPS, which from Fig. 4 or Table 2 implies an equivalent transponder range
out to 5 AU. The workhorse NASA MOBLAS system, with an EA-product of
0.045 J m−2 and a power–aperture (PA) product of 0.23 W m−2, falls into this
category as does the photon-counting Graz station in Austria with EA and PA
products of 0.79 × 10−5 J m−2 and 0.157 W m−2, respectively. As mentioned
previously, three stations have routinely tracked the Apollo reflectors but only
at night with low noise background and single photon returns. Nevertheless,
the same EA-product, which is only about 70% larger than a MOBLAS, should
permit transponder links beyond 100 AU under equivalent operating condi-
tions.

6 Concluding Remarks

It is clear from the recent successes that decimeter or better interplanetary
ranging and subcentimeter time transfer is within the current state-of-the-art
and can be achieved with very modest laser powers and telescope apertures.
These experiments of opportunity have bolstered interest at NASA in laser
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transponders and laser communications. In a recent development, NASA’s
Lunar Reconnaissance Orbiter (LRO), tentatively scheduled for launch in
2008, will carry a small (21 mm diameter) telescope, with a relatively wide
(1.15◦) FOV, on its S-band microwave communications antenna. The latter
will be used to view Earth-based SLR systems from lunar orbit. The incom-
ing optical pulses at 532 nm will be transmitted from the focal plane of the
telescope via fiber to one of the ranging detectors in the Lunar Orbiter Laser
Altimeter (LOLA) instrument. The LOLA detectors, although designed pri-
marily for the few nanosecond resolution altimetry channel at 1,064 nm, have
sensitivity at 532 nm and will provide one-way differential range data to the
altimetric mission, which requires highly accurate orbits for mapping the lunar
topography and gravity field. Due to schedule constraints, there are no plans
to put a transmitter on the LRO mission for full two-way transponding.
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Summary. Spaceborne interferometric gravitational wave detectors, sensitive in
the low-frequency (millihertz) band, will fly in the next decade. In these detectors the
spacecraft-to-spacecraft light travel times will necessarily be unequal, time-varying,
and (due to aberration) have different time delays on up- and downlinks. By using
knowledge of the interspacecraft light travel times and their time evolution, it
is possible to cancel in postprocessing the otherwise dominant laser phase noise
and obtain a variety of interferometric data combinations sensitive to gravitational
radiation. This technique, which has been named time-delay interferometry (TDI),
can be implemented with constellations of three or more formation-flying space-
craft that coherently track each other. As an example application we consider the
Laser Interferometer Space Antenna (LISA) mission and show that TDI combi-
nations can be synthesized by properly time shifting and linearly combining the
phase measurements performed onboard the three spacecraft. Since TDI exactly
suppresses the laser noises when the delays coincide with the light travel times, we
then show that TDI can also be used for estimating the time delays needed for its
implementation. This is done by performing a postprocessing nonlinear minimiza-
tion procedure, which provides an effective, powerful, and simple way for making
measurements of the interspacecraft light travel times. This processing technique,
named time-delay interferometric ranging (TDIR), is highly accurate in estimating
the time delays and allows TDI to be successfully implemented without the need of
a dedicated ranging subsystem.

1 Introduction

Interferometric detectors of gravitational radiation (with frequency content
0 < f < fu) use a coherent train of electromagnetic waves (of nominal fre-
quency ν0 � fu) folded into several beams, and at one or more points where
these intersect, monitor relative fluctuations of frequency or phase (homo-
dyne detection). The observed low-frequency fluctuations are due to several
causes (a) frequency variations of the source of the electromagnetic signal
about ν0, (b) relative motions of the electromagnetic source and the mirrors
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(or amplifying transponders) that do the folding, (c) temporal variations of the
index of refraction along the beams, and (d) according to general relativity, to
any time-variable gravitational fields present, such as the transverse–traceless
metric curvature of a passing plane gravitational wave (GW). To observe
gravitational waves in this way, it is thus necessary to control, or monitor,
the other sources of relative frequency fluctuations, and, in the data analysis,
to use optimal algorithms based on the different characteristic interferom-
eter responses to gravitational waves (the signal) and to the other sources
(the noise) [1]. By comparing phases of electromagnetic beams referenced to
the same frequency generator and propagated along nonparallel equal-length
arms, frequency fluctuations of the frequency reference can be removed and
gravitational wave signals at levels many orders of magnitude lower can be
detected.

In the present single spacecraft Doppler tracking observations, for instance,
many of the noise sources can be either reduced or calibrated by implementing
appropriate microwave frequency links and by using specialized electronics [2],
so the fundamental limitation is imposed by the frequency (time-keeping)
fluctuations inherent to the reference clock that controls the microwave sys-
tem. Hydrogen maser clocks, currently used in Doppler tracking experiments,
achieve their best performance at about 1,000 s integration time, with a frac-
tional frequency stability of a few parts in 10−16. This is the reason why
these one-arm interferometers in space (which have one Doppler readout and
a “3-pulse” response to gravitational waves [3]) are most sensitive to millihertz
gravitational waves. This integration time is also comparable to the microwave
propagation (or “storage”) time 2L/c to spacecraft en route to the outer solar
system (for example L � 5 − 8 AU for the Cassini spacecraft) [2].

Next-generation low-frequency interferometric gravitational wave detec-
tors in solar orbits, such as the Laser Interferometer Space Antenna (LISA)
mission [4] and the Astrodynamical Space Test of Relativity using Optical
Devices (ASTROD) mission [5], have been proposed to achieve greater sensi-
tivity to millihertz gravitational waves. Since the arm lengths of these space-
based interferometers can differ by a few percent (for LISA) to tens of percents
(for ASTROD), the direct recombination of the two beams at a photodetec-
tor will not effectively remove the laser frequency noise. This is because the
frequency fluctuations of the laser will be delayed by different amounts within
the two unequal-length arms. To cancel the laser frequency noise, the time-
varying Doppler data must be recorded and postprocessed to allow for arm-
length differences [6]. The data streams will have temporal structure, which
can be described as due to many-pulse responses to δ-function excitations,
depending on time-of-flight delays in the response functions of the instrumen-
tal Doppler noises and in the response to incident plane-parallel, transverse,
and traceless gravitational waves.

In what follows we will give an account of TDI as it will be implemented by
LISA. Each of its three spacecraft orbiting the Sun will be equipped with two
lasers sending beams to the other two (∼0.03 AU away) while simultaneously
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measuring the beat frequencies between the local laser and the laser beams
received from the other spacecraft. The description of TDI that will be pre-
sented in this chapter will assume a successful prior removal of any first-order
Doppler beat notes due to spacecraft relative motions [7], giving six residual
interspacecraft Doppler time series as the raw data of a stationary time-delay
space interferometer. Following [8–10], we will regard LISA not as constituting
one or more conventional Michelson interferometers, but rather, in a symmet-
rical way, a closed array of six one-arm delay lines between the test masses.
This point of view is very powerful since it allows one to synthesize new data
combinations that cancel laser frequency noises, and estimate achievable sen-
sitivities of these combinations in terms of the separate and relatively simple
single arm responses both to gravitational wave and instrumental noise.

In contrast to Earth-based interferometers, which operate in the long-
wavelength limit (LWL) (arm lengths� gravitational wavelength ∼c/f0,
where f0 is a characteristic frequency of the GW), LISA will not operate
in the LWL over much of its frequency band. When the physical scale of a
free mass optical interferometer intended to detect gravitational waves is com-
parable to or larger than the GW wavelength, time delays in the response of
the instrument to the waves, and travel times along beams in the instrument,
cannot be ignored and must be allowed for in computing the detector response
used for data interpretation.

This chapter is organized as follows. In Sect. 2 we summarize the one-arm
Doppler transfer functions of an optical beam between two carefully shielded
test masses inside each spacecraft resulting from (1) frequency fluctuations of
the lasers used in transmission and reception, (2) fluctuations due to nonin-
ertial motions of the spacecraft, and (3) beam-pointing fluctuations and shot
noise [11]. Among these, the dominant noise is from the frequency fluctuations
of the lasers and is several orders (perhaps 7 or 8) above the other noises. This
noise must be very precisely removed from the data to achieve the GW sensi-
tivity at the level set by the remaining Doppler noise sources, which are at a
much lower level and constitute the noise floor after the laser frequency noise
is suppressed. We show that this can be accomplished by shifting and linearly
combining the 12 one-way Doppler data that LISA will measure. The actual
procedure can easily be understood in terms of properly defined time-delay
operators that act on the one-way Doppler measurements.

As an example application, we then derive the unequal-arm Michelson
interferometric combination in the simple case in which the light travel times
are constant in time and independent from being up- or downlinks. The
expressions for the Sagnac interferometric combinations (α, β, γ, ζ), as well
as all those combinations that rely only on four of the possible six interspace-
craft Doppler measurements (denoted P , E, and U), are not derived in this
chapter, and the reader is referred to [12,13] for details on their derivations.

In Sect. 3, we then consider the formulation of TDI when spacecraft-to-
spacecraft light travel times are not constant in time, and dependent from
being up- or downlinks. Reduction of data from moving interferometric laser
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arrays in solar orbit will in fact encounter nonsymmetric up- and downlink
light time differences that are significant, and need to be accounted for to
exactly cancel the laser frequency fluctuations [12,14,15]. In Sect. 4, we show
that, by introducing a set of noncommuting time-delay operators, there exists
a quite general procedure for deriving generalized TDI combinations that
account for the effects of time dependence of the arms. Using this approach,
it is possible to derive “flex-free” expression for the unequal-arm Michelson
combinations X1, and obtain the generalized expressions for all the TDI
observables [13].

Since TDI relies on the accurate knowledge of the time delays that have to
be applied to the phase measurements, in Sect. 4, we show that it is possible to
estimate the delays by implementing a nonlinear least-squares minimization
procedure in which a TDI combination is used for estimating the time delays.
This procedure, which has been called time-delay interferometric ranging [16],
relies on the fact that TDI nulls all the laser noises when the time delays
are chosen to match the travel times experienced by the laser beams as they
propagate along the sides of the array. TDIR allows the implementation of TDI
without a separate interspacecraft ranging subsystem, significantly simplifying
the design of the LISA instrument. At the very least, TDIR can supplement
such a subsystem, allowing the synthesis of TDI combinations during ranging
dropouts or glitches.

2 Time-Delay Interferometry

2.1 Statement of the Problem

Equal-arm interferometer detectors of gravitational waves can observe gravi-
tational radiation by canceling the laser frequency fluctuations affecting the
light injected into their arms. This is done by comparing phases of split beams
propagated along the equal (but nonparallel) arms of the detector. The laser
frequency fluctuations affecting the two beams experience the same delay
within the two equal-length arms and cancel out at the photodetector where
relative phases are measured. This way gravitational wave signals of dimen-
sionless amplitude less than 10−20 can be observed when using lasers whose
frequency stability can be as large as roughly a few parts in 10−13.

If the arms of the interferometer have different lengths, however, the exact
cancellation of the laser frequency fluctuations, say C(t), will no longer take
place at the photodetector. In fact, the larger the difference between the two
arms, the larger will be the magnitude of the laser frequency fluctuations
affecting the detector response. If L1 and L2 are the lengths of the two arms, it
is easy to see that the amount of laser relative frequency fluctuations remaining
in the response is equal to (units in which the speed of light c = 1)

ΔC(t) = C(t− 2L1) − C(t− 2L2). (1)
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In the case of LISA, whose lasers are expected to display relative frequency
fluctuations equal to about 10−13 Hz−1/2 in the millihertz band, and whose
arms will differ by a few percent [4], (1) implies the following expression for
the amplitude of the Fourier components of the uncanceled laser frequency
fluctuations (an overimposed tilde denotes the operation of Fourier transform)

|Δ̃C(f)| � |C̃(f)| 4πf |(L1 − L2)|. (2)

At f = 10−3 Hz, for instance, and assuming |L1 −L2| � 0.5 s, the uncanceled
fluctuations from the laser are equal to 6.3 × 10−16 Hz−1/2. Since the LISA
sensitivity goal is about 10−20 Hz−1/2 in this part of the frequency band,
it is clear that an alternative experimental approach for canceling the laser
frequency fluctuations is needed.

The solution to this problem can be understood through Fig. 1. In this
idealized model the two beams exiting the two arms are not made to interfere
at a common photodetector. Rather, each is made to interfere with the incom-
ing light from the laser at a photodetector, decoupling in this way the phase
fluctuations experienced by the two beams in the two arms. Now two Doppler
measurements are available in digital form, and the problem becomes one of
identifying an algorithm for digitally canceling the laser frequency fluctuations
from a resulting new data combination.

The algorithm that performs the cancellation of the laser noise from the
two Doppler measurements from the two arms, say y1(t) and y2(t), works
as follows. Let us denote with h1(t) and h2(t) the gravitational wave sig-
nals entering into the Doppler data y1 and y2, respectively, and with n1 and
n2 any other remaining noise affecting y1 and y2, respectively. The resulting

Fig. 1. Light from a laser is split into two beams, each injected into an arm formed by
pairs of free-falling mirrors. Since the length of the two arms, L1 and L2, are different,
the light beams from the two arms are not recombined at one photodetector. Instead
each is separately made to interfere with the light that is injected into the arms.
Two distinct photodetectors are used, and phase (or frequency) fluctuations are then
monitored and recorded there.
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expressions for the Doppler observables y1 and y2 can be written in the fol-
lowing form

y1(t) = C(t− 2L1) − C(t) + h1(t) + n1(t), (3)
y2(t) = C(t− 2L2) − C(t) + h2(t) + n2(t). (4)

From (3) and (4), it is important to note the characteristic time signature of
the random process C(t) in the Doppler responses y1 and y2. The time signa-
ture of the noise C(t) in y1(t), for instance, can be understood by observing
that the frequency of the signal received at time t contains laser frequency fluc-
tuations transmitted 2L1 seconds earlier. By subtracting from the frequency
of the received signal the frequency of the signal transmitted at time t, we
also subtract the frequency fluctuations C(t) with the net result shown in (3).

From (3) and (4) we may notice that, by taking the difference of the two
Doppler data y1(t) and y2(t), the frequency fluctuations of the laser enter into
this new data set in the following way:

y1(t) − y2(t) = C(t− 2L1) − C(t− 2L2) + h1(t) − h2(t) + n1(t) − n2(t). (5)

If we now compare how the laser frequency fluctuations enter into (5) against
how they appear in (3) and (4), we can further make the following observation.
If we time shift the data y1(t) by the round-trip light time in arm 2, y1(t−2L2),
and subtract from it the data y2(t) after it has been time shifted by the round-
trip light time in arm 1, y2(t− 2L1), we obtain the following data set

y1(t− 2L2) − y2(t− 2L1) = C(t− 2L1) − C(t− 2L2) + h1(t− 2L2)
−h2(t− 2L1) + n1(t− 2L2) − n2(t− 2L1).(6)

In other words, the laser frequency fluctuations enter into y1(t) − y2(t) and
y1(t − 2L2) − y2(t − 2L1) with the same time structure. This implies that,
by subtracting (6) from (5), we can generate a new data set that does not
contain the laser frequency fluctuations C(t)

X ≡ [y1(t) − y2(t)] − [y1(t− 2L2) − y2(t− 2L1)]. (7)

The expression above of the X combination shows that it is possible to cancel
the laser frequency noise in the time domain by properly time shifting and
linearly combining Doppler measurements recorded by different Doppler read-
outs. This in essence is what TDI amounts to. In what follows we will further
elaborate and generalize TDI to the realistic LISA configuration.

2.2 Time-Delay Interferometry

The description of TDI for LISA is greatly simplified if we adopt the notation
shown in Fig. 2, where the overall geometry of the LISA detector is defined.
There are three spacecraft, six optical benches, six lasers, six proof masses, and
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Fig. 2. Schematic LISA configuration. The spacecraft are labeled 1, 2, and 3. The
optical paths are denoted by Li, where the index i corresponds to the opposite
spacecraft. The unit vectors n̂i point between pairs of spacecraft, with the orienta-
tion indicated.

12 photodetectors. There are also six phase difference data going clockwise and
counterclockwise around the LISA triangle. For the moment we will make the
simplifying assumption that the array is stationary, i.e., the back and forth
optical paths between pairs of spacecraft are simply equal to their relative
distances [12–15].

The spacecraft are labeled 1, 2, 3 and their separating distances are
denoted L1, L2, L3, with Li being opposite spacecraft i. We orient the vertices
1, 2, 3 clockwise in Fig. 2. Unit vectors between spacecraft are n̂i, oriented as
indicated in Fig. 2. We index the phase difference data to be analyzed as fol-
lows: the beam arriving at spacecraft i, transmitted by spacecraft j, gives
rise to the phase measurement sji (along Lk). Similarly, sij is the phase dif-
ference series derived from reception at spacecraft j with transmission from
spacecraft i. The other four one-way phase difference time series from signals
exchanged between the spacecraft are obtained by cyclic permutation of the
indices: 1 → 2 → 3 → 1. We also adopt a notation for delayed data streams,
which will be convenient later for algebraic manipulations. We define the three
time-delay operators Di, i = 1, 2, 3 where for any data stream x(t)

Dix(t) ≡ x(t− Li), (8)

where Li, i = 1, 2, 3 are the light travel times along the three arms of the LISA
triangle (the speed of light c is assumed to be unity in this chapter). Thus, for
example, D2s13(t) = s13(t−L2), D2D3s13(t) = s13(t−L2−L3) = D3D2s13(t),
etc. Note that the operators commute here. This is because the arm lengths
have been assumed to be constant in time. If the Li are functions of time,
then the operators no longer commute [12,13,15], as will be described later.

Six more phase difference series result from laser beams exchanged between
adjacent optical benches within each spacecraft; these are similarly indexed
as τij , i, j = 1, 2, 3, i �= j. The proof mass plus optical bench assemblies for
LISA spacecraft number 1 are shown schematically in Fig. 3. The photore-
ceivers that generate the data s21, s31, τ21, and τ31 at spacecraft 1 are shown.
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Fig. 3. Schematic diagram of proof masses plus optical benches for a LISA space-
craft. The left-hand bench reads out the phase signals s21 and τ21. The right-hand
bench analogously reads out s31 and τ31. The random displacements of the two proof
masses and two optical benches are indicated (lower case δi, δ

∗
i for the proof masses,

upper case Δi, Δ
∗
i for the optical benches).

The phase fluctuations from the six lasers, which need to be canceled, can
be represented by six random processes pi, p

∗
i , where pi, p

∗
i are the phases

of the lasers in spacecraft i on the left and right optical benches, respec-
tively, as shown in Fig. 3. We extend the cyclic terminology so that at vertex
i (i = 1, 2, 3) the random displacement vectors of the two proof masses are,
respectively, denoted by δi(t), δ∗

i (t), and the random displacements (perhaps
several orders of magnitude greater) of their optical benches are correspond-
ingly denoted by Δi(t),Δ∗

i (t) where a ∗ added to a quantity means that it is
located on the right optical bench. As pointed out in [11], the analysis does
not assume that pairs of optical benches are rigidly connected, i.e., Δi �= Δ∗

i ,
in general. The present LISA design shows optical fibers transmitting signals
both ways between adjacent benches. We ignore time-delay effects for these
signals and will simply denote by μi(t) the phase fluctuations upon transmis-
sion through the fibers of the laser beams with frequencies νi and ν∗

i . The
μi(t) phase shifts within a given spacecraft might not be the same for large
frequency differences νi − ν∗

i . For the envisioned frequency differences (a few
hundred megahertz), however, the remaining fluctuations due to the optical
fiber can be neglected [11]. It is also assumed that the phase noise added by
the fibers is independent of the direction of light propagation through them.
For ease of presentation, in what follows we will assume the center frequencies
of the lasers to be the same, and denote this frequency by ν0.
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The laser phase noise in s23 is therefore equal to D1p2(t)−p∗3(t). Similarly,
since s32 is the phase shift measured on arrival at spacecraft 2 along arm 1
of a signal transmitted from spacecraft 3, the laser phase noises enter into
it with the following time signature: D1p

∗
3(t) − p2(t). Figure 3 endeavors to

make the detailed light paths for these observations clear. An outgoing light
beam transmitted to a distant spacecraft is routed from the laser on the local
optical bench using mirrors and beam splitters; this beam does not interact
with the local proof mass. Conversely, an incoming light beam from a distant
spacecraft is bounced off the local proof mass before being reflected onto the
photoreceiver where it is mixed with light from the laser on that same optical
bench. The interspacecraft phase data are denoted s21 and s31 in Fig. 3.

Beams between adjacent optical benches within a single spacecraft are
bounced off proof masses in the opposite way. Light to be transmitted from
the laser on an optical bench is first bounced off the proof mass it encloses and
then directed to the other optical bench. Upon reception it does not interact
with the proof mass there, but is directly mixed with local laser light, and
again down converted. These data are denoted τ21 and τ31 in Fig. 3.

The expressions for the sji and τji phase measurements can now be devel-
oped from Figs. 2 and 3, and they are for the particular LISA configuration in
which all the lasers have the same nominal frequency ν0, and the spacecraft
are stationary with respect to each other. Consider the s31(t) process (11).
The photoreceiver on the right bench of spacecraft 1, which (in the space-
craft frame) experiences a time-varying displacement Δ∗

1, measures the phase
difference s31 by first mixing the beam from the distant optical bench 3 in
direction n̂2, and laser phase noise p3 and optical bench motion Δ3 that have
been delayed by propagation along L2, after one bounce off the proof mass
(δ∗

1), with the local laser light (with phase noise p∗1). Since for this simplified
configuration no frequency offsets are present, there is of course no need for
any heterodyne conversion [7].

In (10) the τ21 measurement results from light originating at the right-
bench laser (p∗1, Δ∗

1), bounced once off the right proof mass (δ∗
1), and directed

through the fiber (incurring phase shift μ1(t)), to the left bench, where it
is mixed with laser light (p1). Similarly the right bench records the phase
differences s31 and τ31. The laser noises, the gravitational wave signals, the
optical path noises, and proof mass and bench noises enter into the four data
streams recorded at vertex 1 according to the following expressions [11]:

s21 = sgw
21 + sopt.path

21 + D3p
∗
2 − p1 + ν0 [−2n̂3 · δ1 + n̂3 · Δ1 + n̂3 · D3Δ

∗
2], (9)

τ21 = p∗1 − p1 − 2ν0n̂2 · (δ∗
1 − Δ∗

1) + μ1, (10)

s31 = sgw
31 + sopt.path

31 + D2p3 − p∗1 + ν0 [2n̂2 · δ∗
1 − n̂2 · Δ∗

1 − n̂2 · D2Δ3], (11)
τ31 = p1 − p∗1 + 2ν0n̂3 · (δ1 − Δ1) + μ1. (12)

Eight other relations, for the readouts at vertices 2 and 3, are given by cyclic
permutation of the indices in (9–12).
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The gravitational wave phase signal components, sgw
ji , in (9) and (11) are

given by integrating with respect to time equations (1) and (2) of [9], which
relate metric perturbations to optical frequency shifts. The optical path phase
noise contributions, sopt. path

ij , which include shot noise from the low signal-to-
noise ratio (SNR) in the links between the distant spacecraft, can be derived
from the corresponding terms given in [11]. The τij measurements will be
made with high SNR so that for them the shot noise is negligible.

To simplify the derivation of the expressions canceling the laser and optical
bench noises, let us focus for the moment only on the laser and optical bench
noises entering into the observables sij and τij . Note that by subtracting (12)
from (10), we can rewrite the resulting expression (and those obtained from
it by permutation of the spacecraft indices) in the following form

z1 ≡ 1
2
(τ21 − τ31) = φ∗

1 − φ1 , (13)

where φ∗
1 and φ1 are defined as,

φ∗
1 ≡ p∗1 + ν0n̂2 · Δ∗

1,

φ1 ≡ p1 − ν0n̂3 · Δ1. (14)

The importance in defining these combinations is that the expressions for the
data streams sij simplify into the following form,

s21 = D3φ
∗
2 − φ1,

s31 = D2φ3 − φ∗
1. (15)

If we now combine the sij and zi in the following way,

η1 ≡ s21 −D3z2 = D3φ2 − φ1 , η1∗ ≡ s31 + z1 = D2φ3 − φ1 , (16)

η2 ≡ s32 −D1z3 = D1φ3 − φ2 , η2∗ ≡ s12 + z2 = D3φ1 − φ2 , (17)

η3 ≡ s13 −D2z1 = D2φ1 − φ3 , η3∗ ≡ s23 + z3 = D1φ2 − φ3 , (18)

we have just reduced the problem of canceling of six laser and six optical bench
noises to the equivalent problem of removing the three random processes,
φ1, φ2, and φ3, from the six linear combinations, ηi and η∗i , of the one-way
measurements sij and zi.

2.3 The Unequal-Arm Michelson Combination

To show how the delay operators can be used for deriving interferometric
measurements, we will consider the simple case of the unequal-arm Michelson
interferometer combination X. This TDI combination relies on the four mea-
surements η1, η1∗, η2∗, and η3. Note that the two combinations η3 + D3η2∗
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and η1∗ + D2η3, which represent the two synthesized two-way data measured
onboard spacecraft 1, can be written in the following form

η1 + D3η2∗ = (D3D3 − I) φ1, (19)
η1∗ + D2η3 = (D2D2 − I) φ1, (20)

where I is the identity operator. Note that in the stationary case any pairs of
these operators commute since up and down delays are equal. This, in general,
is no longer true when the delays are functions of time.
From (19) and (20) it is easy to derive the following expression for X, by
requiring the elimination of φ1

X = [D2D2 − I] (η1 + D3η2∗) − [(D3D3 − I)] (η1∗ + D2η3)
= [(η1∗ + D2η3) + D2D2(η1 + D3η2∗)]

−[(η1 + D3η2∗) + D3D3(η31 + D2η13)]. (21)

After replacing (16–18) into (21), we obtain the final expression for X valid
in the case of a static LISA array

X = [(s31 + D2s13) + D2D2(s21 + D3s12)] − [(s21 + D3s12)

+D3D3(s31 + D2s13)] +
1
2
[
D2D2D3D3(τ21 − τ31) −D3D3(τ21 − τ31)

−D2D2(τ21 − τ31) + (τ21 − τ31)
]
. (22)

As pointed out in [12, 17], (21) shows that X is the difference of two sums of
phase measurements, each corresponding to a specific light path from a laser
onboard spacecraft 1 having phase noise φ1. The first square-bracket term in
(21) represents a synthesized light-beam transmitted from spacecraft 1 and
made to bounce once at spacecraft 3 and 2, respectively. The second square-
bracket term instead corresponds to another beam also originating from the
same laser, experiencing the same overall delay as the first beam, but bouncing
off spacecraft 2 first and then spacecraft 3. When they are recombined they
will cancel the laser phase fluctuations exactly, having both experienced the
same total delays.

3 Time-Delay Interferometry with Moving Spacecraft

The rotational motion of the LISA array results in a difference of the light
travel times in the two directions around a Sagnac circuit [14, 15]. Two time
delays along each arm must be used, say L

′
i and Li for clockwise or counter-

clockwise propagation as they enter in any of the TDI combinations. Further-
more, since Li and L

′
i not only differ from one another but also can be time

dependent (they “flex”), it was shown that the “first generation” TDI combi-
nations do not completely cancel the laser phase noise (at least with present
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laser stability requirements), which can enter at a level above the secondary
noises. For LISA, and assuming L̇i � 10 m s−1 [18], the estimated magnitude
of the remaining frequency fluctuations from the laser can be about 30 times
larger than the level set by the secondary noise sources in the center of the
frequency band. To solve this potential problem, it has been shown that there
exist new TDI combinations that are immune to first-order shearing (flexing,
or constant rate of change of delay times). These combinations can be derived
by using the time-delay operators formalism introduced in Sect. 2, although
one has to keep in mind that now these operators no longer commute [13].

To derive the new “flex-free” TDI combinations, we will start by taking
specific combinations of the one-way data in such a way so as to retain only
one of the three noises φi, i = 1, 2, 3 if possible. In this way we can then
implement an iterative procedure based on the use of these basic combinations
and of time-delay operators, to cancel the laser noises after dropping terms
that are quadratic in L̇/c or linear in the accelerations. This iterative time-
delay method, to first order in the velocity, is illustrated abstractly as follows.
Given a function of time Ψ = Ψ(t), time delay by Li is now denoted either
with the standard comma notation [9] or by applying the delay operator Di

introduced in Sect. 2
DiΨ = Ψ,i ≡ Ψ(t− Li(t)) . (23)

We then impose a second time delay Lj(t):

DjDiΨ = Ψ;ij ≡ Ψ(t− Lj(t) − Li(t− Lj(t)))

� Ψ(t− Lj(t) − Li(t) + L̇i(t)Lj)

� Ψ,ij + Ψ̇,ijL̇iLj . (24)

A third time delay Lk(t) gives:

DkDjDiΨ = Ψ;ijk

= Ψ(t− Lk(t) − Lj(t− Lk(t)) − Li(t− Lk(t) − Lj(t− Lk(t))))

� Ψ,ijk + Ψ̇,ijk[L̇i(Lj + Lk) + L̇jLk], (25)

and so on, recursively; each delay generates a first-order correction propor-
tional to its rate of change times the sum of all delays coming after it in the
subscripts. Commas have now been replaced with semicolons [12], to remind
us that we consider moving arrays. When the sum of these corrections to the
terms of a data combination vanishes, the combination is called flex-free.

Also, note that each delay operator, Di, has a unique inverse, D−1
i , whose

expression can be derived by requiring that D−1
i Di = I, and neglecting

quadratic and higher-order velocity terms. Its action on a time series Ψ(t) is

D−1
i Ψ(t) ≡ Ψ(t + Li(t + Li)). (26)

Note that this is not like an advance operator one might expect, since it
advances not by Li(t) but rather Li(t + Li).
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3.1 The Unequal-Arm Michelson

The unequal-arm Michelson combination relies on the four measurements η1,
η1∗, η2∗, and η3. Note that the two combinations η1 + η2∗,3 and η1∗ + η3,2′

represent the two synthesized two-way data measured onboard spacecraft 1,
and can be written in the following form

η1 + η2∗,3 = (D3D3′ − I) φ1, (27)
η1∗ + η3,2′ = (D2′D2 − I) φ1, (28)

where I is the identity operator, and we have also used interchangeably the
comma notation. Since in the stationary case any pairs of these operators
commute, i.e., DiDj′ − Dj′Di = 0, from (27) and (28) it is easy to derive
the following expression for the unequal-arm interferometric combination, X,
which eliminates, φ1

X = [D2′D2 − I] (η1 + η2′,3) − [(D3D3′ − I)] (η1∗ + η3,2′). (29)

If, on the other hand, the time delays depend on time, the expression of the
unequal-arm Michelson combination above no longer cancels φ1. To derive the
new expression for the unequal-arm interferometer that accounts for “flexing,”
let us first consider the following two combinations of the one-way measure-
ments entering into the X observable given in (29):

[(η1∗ + η3;2′) + (η1 + η2;3);22′ ] = [D2′D2D3D3′ − I]φ1, (30)
[(η1 + η2∗;3) + (η1∗ + η3;2′);3′3] = [D3D3′D2′D2 − I]φ1. (31)

Using (30) and (31), we can use the delay technique to finally derive the
following expression for the new unequal-arm Michelson combination X1 that
accounts for the flexing effect,

X1 = [D2D2′D3′D3 − I] [(η21 + η12;3′) + (η31 + η13;2);33′ ]
− [D3′D3D2D2′ − I] [(η31 + η13;2) + (η21 + η12;3′);2′2] . (32)

This expression is readily shown to be laser-noise-free to first order of space-
craft separation velocities L̇i: it is “flex-free.” As usual, X2 and X3 are
obtained by cyclic permutation of the spacecraft indices.

The reader is referred to [12, 13] for a derivation of all the other TDI
combinations valid for the nonstationary LISA configuration.

4 Time-Delay Interferometric Ranging

In the case of a stationary LISA spacecraft array, it was estimated [19] that the
time delays need to be known with an accuracy of about 100 ns, if the various
TDI combinations are to work effectively, suppressing the residual laser phase
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fluctuations to a level below the secondary noises (such as the proof mass
and optical path noises). For an array of spacecraft in relative motion along
realistic solar orbits, the more complicated (second-generation) TDI combi-
nations require an even more accurate knowledge of the time delays [20].
The most direct implementation of TDI consists in triggering the phase mea-
surements at the correct delayed times (within the required accuracy), as
suggested in [19]. This approach requires the real-time, onboard knowledge
of the light travel times between pairs of spacecraft, which determine the
TDI time delays. Although the triggering approach is feasible in principle, it
complicates the design of the optical phase meter system, and it requires an
independent onboard ranging capability. Recently, it was pointed out [21] that
the phase measurements at the specific times needed by the TDI algorithm can
be computed in postprocessing with the required accuracy, by the fractional-
delay interpolation (FDI) [21,22] of regularly sampled data (with a sampling
rate of 10 Hz for a GW measurement band extending to 1 Hz). This implies
that it is then possible to implement numerically a variational procedure to
determine the TDI time delays from the phase difference measurements them-
selves, eliminating the need for an independent onboard ranging capability.
Since this variational procedure relies on the TDI combinations, it has been
named time-delay interferometric ranging.

In conventional spacecraft ranging either one-way or two-way delay times
are measured. In one-way ranging, for instance, two or more tones are coher-
ently modulated onto the transmitted carrier and their phases are measured at
the receiver. By then further differencing and dividing them by the spanned
bandwidth, one gets the group delay and hence the time delay (up to an
ambiguity of c divided by the spanned bandwidth of the ranging tones). In
two-way ranging instead a known ranging code is modulated on the transmit-
ted carrier, transponded by a distant spacecraft back to the originator, and
the received signal is then cross-correlated with the ranging code to determine
the two-way time of flight.

TDIR differs from these methods in that it uses the unmodulated laser
noises in a three-element array, which are canceled in TDI combinations
assembled with the correct interspacecraft light travel times. This means that
TDI can be used to estimate the light travel times by minimizing the laser
noise power in the TDI combinations as a function of the postulated light
travel times: this process defines TDIR. As an example of how TDIR works,
we shall consider again the second-generation TDI combinations X1 derived
above. Note, however, that expression should now be rewritten in the following
form

X1 = [D2̂D2̂′D3̂′D3̂ − I]
[
(η21 + η12;3̂′) + (η31 + η13;2̂);3̂3̂′

]
− [D3̂′D3̂D2̂D2̂′ − I]

[
(η31 + η13;2̂) + (η21 + η12;3̂′);2̂′2̂

]
. (33)

The time-delay indices that appear in (33) with a hat need to be provided
by the data analyst (or, in the triggering approach, by the onboard ranging
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subsystem) with the accuracy required for effective laser noise cancellation.
Thus, the X1-based implementation of TDIR works by minimizing the power
in X1 with respect to the hatted delays L̂k. Since the TDI combinations con-
structed with the actual delays cancel laser phase noise to a level 108 below
the secondary noises [12], it follows that if we neglect all nonlaser sources of
phase noise affecting the X1 combination, the minimum of the power integral

I(0)(L̂k) =
1
T

∫ T

0

[X(0)
1 (L̂k)]2 dt (34)

will occur for L̂k = Lk (with k = 1, 2, 3, 1′, 2′, 3′; here the superscript (0)

denotes laser-noise-only quantities). The search for this minimum can be
implemented in postprocessing, using FDI [21] to generate the needed sij

and τij samples at the delayed times corresponding to any choice of the L̂k.
In reality, the presence of nonlaser phase noises (possibly including GWs)

will displace the location of the minimum from Lk. Writing X1 = X
(0)
1 +X

(n)
1

(with X
(n)
1 obtained by setting all φi, φ∗

i to zero), the power integral becomes

I(n)(L̂k) =
1
T

∫ T

0

[
X1(L̂k)

]2
dt, (35)

or explicitly,

I(n)(L̂k) = I(0)(L̂k) +
1
T

∫ T

0

[
X

(n)
1

]2
dt +

2
T

∫ T

0

X
(n)
1 X

(0)
1 (L̂k) dt. (36)

Here we have written the nonlaser phase noise X
(n)
1 as independent of the

delays L̂k: this holds true for a search conducted sufficiently close to the true
minimum, since the φi and φ∗

i are much larger than the secondary noises,
and so are their variations. The minimum of I(n)(L̂k) can be displaced from
L̂k = Lk because the third term of (35) (the cross-correlation integral of X(n)

1

and X
(0)
1 (L̂k)) can be negative and offset a concurrent increase in I(0)(L̂k).

The achievable time-delay accuracies will depend on the level of the residual
laser noise, the levels of the secondary noises in X1, and the integration time
T . We expect the arm-length errors to be determined by the interplay of the
first and third terms in (36). By equating the variance from the imperfect
cancellation of the laser with the estimation-error variance of the crossterm
in (36), we can roughly estimate how well the time delays will be determined
with TDIR: δLk ∼ (σ

X
(n)
1

/σ
Ẋ

(0)
1

)
√

ρ/T , where σ
X

(n)
1

and σ
Ẋ

(0)
1

are the root
mean squares of the secondary noises and of the time derivative of the laser
noise in X1, and ρ is the temporal width of the secondary-noise autocorrelation
function. For nominal LISA noises and T � 10,000 s, we thus expect δLk of
30 ns or better to be achievable.

The TDIR concept described above was simulated, for a realistic model
of the LISA orbits and instruments, with the Synthetic LISA software
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package [23]. The simulation included the generation of a number of chunks
of contiguous data for the sij and τij measurements, sampled at intervals
of 0.25 s, and containing pseudorandom laser, proof mass, and optical path
noises at the nominal level set by the LISA prephase A specification [4, 23].
The data durations considered were 8,192, 16,384, and 32,768 s.

The 18 noise processes (corresponding to the six lasers, proof masses,
and optical paths) were assumed to be uncorrelated, Gaussian, and station-
ary, with, respectively, white, f−2, and f2 PSDs, band-limited at 1 Hz. The
frequency-fluctuation measurements contained also the responses due to GWs
from two circular binaries with fGW � 1 and 3 mHz, located, respectively,
at the vernal equinox and at ecliptic latitude 45◦ and longitude 120◦. The
strength of the two sources was adjusted to yield an optimal S/N of ∼ 500
over a year (for X1), guaranteeing that there will be times of the year when
each source will be clearly visible above the noise in an observation time
∼ 10, 000 s.

By putting the three LISA spacecraft on realistic trajectories, the resulting
time and direction dependence [12] of the light travel times can be written in
the following form [23,24]

Lk(t) = L +
1
32

(eL) sin(3Ωt− 3ξ0) −
[
15
32

(eL) ± (ΩRL)
]

sin(Ωt− λk), (37)

where the plus (minus) refers to unprimed (primed) indices. In (37) L/c �
16.68 s is the average light travel time, and

(λ1, λ2, λ3) = (ξ0, ξ0 +
4π
3

, ξ0 +
2π
3

), (38)

with ξ0 an arbitrary constant (set to 0 in our simulations) giving the phase of
the spacecraft motion around the guiding center of the LISA array. The start-
ing times of the chunks were spread across a year to sample the time depen-
dence of the Lk and the directionality of the GW responses.

Separately for each chunk, we minimized I(n)[L̂k(t)] (35) starting from
guesses for the L̂k affected by errors � 50 km/c, very much larger than typical
accuracy of radio tracking from Earth [18]. The minimization was carried out
using a Nelder–Mead simplex-based algorithm [25]. The effective cancellation
of laser noise with TDI requires modeling the time dependence of the travel
times within the chunks. In our simulations, we used two such models:

1. An orbital-dynamics model (ODM) given by (37), with êL, Ω̂RL, and ξ̂0
taken as the independent search parameters with respect to which I(n) is
minimized. We excluded L and Ω from the search because the dependence
of the Lk(t) on such an extended parameter set is degenerate on timescales
∼10,000 s.

2. A linear model (LM) given by L̂k(t) = L̂0
k + L̂1

k(t− t0) (with t0 set to the
beginning of each chunk). Because the expression for X1 does not contain
the travel times L1 and L1′ , our independent search parameters are the
constants L̂0

k and L̂1
k for k = 2, 2′, 3, 3′ (eight numbers altogether).
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Fig. 4. Distribution of errors ΔL (see (39) and the main text above it) in the
determination of light travel times, using X1-based TDIR with chunk durations of
8,192 s (for the LM and ODM models), and 16,384 and 32,768 s (for the ODM model
only). As expected, the errors are lower for longer integration times T ; for the LM
model, the larger errors are due to the unmodeled curvature in the time dependence
of the light travel times. The distributions shown correspond to samples of 512,
256, and 128 chunks for T =8,192, 16,384, and 32,768 s, respectively, spread across
a year.

Figures 4 and 5 show the results of our simulations. The average travel
time errors ΔL displayed in Fig. 4 are defined as ΔL = (ΔL2 +ΔL2′ +ΔL3 +
ΔL3′)/4, with

ΔLk =

√
1
T

∫ t0+T

t0

(
L̂k(t) − Lk(t)

)2

dt. (39)

Because the noises have different realizations in each chunk and because the
local behavior of the Lk(t) (37) changes along the year, the average error
ΔL of each chunk is a random variable. Its distribution is approximated by
the histograms of Fig. 4, which refer to populations of, respectively, 512 (for
T = 8,192 s), 256 (for T = 16,384 s), and 128 (for T = 32,768 s) chunks (hence
the roughness of the curves).

It turns out that the linear model is not quite sufficient to model the
changes of the time delays during the chunk lengths considered, since the
minimum ΔLs (computed by least-squares fitting the parameters L̂0

k and
L̂1

k to the Lk(t)) are in the range 0.25–2.60 m (for T = 8,192 s), 1–10 m (for
T = 16,384 s), and 4–40 m (for T =32,768 s). Thus, in Figs. 4 and 5 we show
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Fig. 5. Spectra of frequency laser noise (bottom curves) and of GW plus secondary
noises (top curve) at the end of TDIR minimization using chunk durations of 8,192 s
(for the LM and ODM models), and 16,384 and 32,768 s (for the ODM model only).
We show averages of the spectra computed separately for each chunk using a triangle-
windowed periodogram; the averages are taken over populations of 512, 256, and
128 chunks for T = 8,192, 16,384, and 32,768 s, respectively, spread across a year.
In all cases, laser noise is suppressed to levels several orders of magnitude below
the secondary noises: the cutout graph on the right shows that the typical laser-
noise suppression factor with respect to secondary noise is ∼5 × 103 for the worst
case considered (8,192 s LM); it improves by a factor ∼2 for 8,192 s ODM, and by
factors of ∼√

2 for each successive doubling of T . The GWs from the two circular
binaries stand clearly above the noise at 1 and 3 mHz.

results only for the linear model with T = 8,192 s. (The minimization of I(n)

over the LM parameters is delicate, because for X1 the laser-noise residuals
turn out to depend strongly on ΔL2, ΔL3′ , and ΔL2′ −ΔL3, but only weakly
on ΔL2′ + ΔL3. In this case, the Nelder–Mead algorithm can be made to
return accurate results by using the search parameters L̂0

2, L̂
0
3′ , ̂L0

2′ − L0
3, and

̂L0
2′ + L0

3, plus the corresponding L̂1
k parameters.)

Figure 5 shows the spectra of the residual laser noise (i.e., of X
(0)
1 at the

minimum of I(n)(L̂k)), as compared with spectra of GWs and secondary noises
(i.e., of X

(n)
1 ). The spectra are computed separately for each chunk using

triangle-windowed periodograms, and then averaged over the chunk popula-
tions. The two GW sources stand clearly above the secondary noises at 1 and
3 mHz. We see that the TDI cancellation of laser noise with TDIR-determined
time delays is essentially complete, with the residual laser noise several orders
of magnitude below the secondary noises. We conclude that for T ∼ 10, 000 s,
with the nominal LISA noises, and even in the presence of very strong GW
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signals, TDIR can easily reach the time-delay accuracy required for second-
generation TDI. For frequencies below 10 mHz, the residual laser-noise power
decays as f6, while the secondary noises decrease only as f2. We attribute
the flattening near 0.1 mHz (which is insignificant with respect to the LISA
performance) to a combination of leakage and aliasing in the numerical esti-
mation of the spectra and of real effects due to the first nonconstant terms in
the travel time errors across the chunks.

Finally, we estimated the power in the Fourier bins containing the simu-
lated signals using two different time series: in the first X1 was formed using
perfectly known time delays, in the second using the TDIR-determined time
delays. Analyzing the 32,768 s chunks at the times along the simulated year
where the signal amplitudes were maximum, we find that the signal powers in
the two time series agree to the numerical precision of the calculation (about
a part in 105).

From Figs. 4 and 5 we conclude that, for the nominal LISA noises, inte-
gration times ∼10, 000 s, TDIR determines the time delays with accuracies
sufficient to suppress the laser phase fluctuations to a level below the LISA
secondary noises, while at the same time preserving GW signals. Our simu-
lations assumed synchronized clocks aboard the spacecraft, but we anticipate
that TDIR may be extended to achieve synchronization, by minimizing noise
power also with respect to clock parameters.

TDIR has the potential of simplifying the LISA design, allowing the
implementation of TDI without a separate interspacecraft ranging subsys-
tem. At the very least, TDIR can supplement such a subsystem, allowing
the synthesis of TDI combinations during ranging dropouts or glitches. TDIR
may be applicable in other forthcoming space science missions that rely on
spacecraft formation flying and on interspacecraft ranging measurements to
achieve their science objectives.
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Technology for Precision Gravity
Measurements

Robert D. Reasenberg and James D. Phillips
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for Astrophysics, 60 Garden Street, MS-63, Cambridge, MA 02138, USA

Summary. We discuss four technologies applicable to precision measurements in
space and on the ground. The first is our tracking frequency laser distance gauge
(TFG), which we developed ca. 1990 for a spaceborne astrometric optical interfer-
ometer, POINTS, and which we are using today for our principle of equivalence
measurement (POEM), a laboratory test of the equivalence principle. The second is
an extension of the TFG to use a semiconductor laser (SL-TFG) with the intention
to make the instrument more robust and applicable to space-based experiments.
In particular, we wish to apply the SL-TFG to a version of POEM that could oper-
ate in space at substantially higher accuracy. Further, some versions of the SL-TFG
have reduced complexity and thus have enhanced reliability and reduced cost. The
third technology is an approach to using the TFG as part of an extended space-
based optical instrument. We discuss the launching of multiple beams from a single
device as a means of achieving a “strong optical truss” without excess complexity
or endpoint connection error. The fourth and final technology is for creating a brief
period of free fall in the laboratory, and being able to repeat the free-fall rapidly.
This technology is a key part of POEM.

1 Introduction

We discuss four technologies applicable to precision measurements in space
and on the ground. These are all related to our principle of equivalence mea-
surement (POEM), which requires both the accurate (ca. 1 mm) control of the
motion of a mass (ca. 50 kg) over an extended range (ca. 1.5 m and 5 m s−1)
and advanced laser gauging.

In Sect. 2, we provide a brief introduction to POEM, a laboratory equiv-
alence principle (EP) test with an accuracy goal of σ(Δg)/g = 5 × 10−14.
POEM is the prime scientific driver for the technologies described in the sub-
sequent sections. In Sect. 3, we discuss the tracking frequency laser distance
gauge (TFG), starting with a brief review of the art, our reasons for develop-
ing the TFG, and its known advantages. We describe recent advances in the
development of the TFG, and also its precision in measuring both incremental
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and absolute distance. We speculate on an improved means of measuring ab-
solute distance. In Sect. 4, we discuss space-based applications for the TFG.
We introduce a novel multibeam launcher for ultra-stable optical trusses as
a component for an architecture for pointing and stabilizing a large imaging
interferometer. An extension of that architecture is shown for Stellar Imager.
Finally, in Sect. 5, we discuss achieving free-fall conditions in the laboratory,
with emphasis on the POEM approach of moving a vacuum chamber along a
vertical path under computer control.

2 Principle of Equivalence Measurement

To test the EP to an accuracy of at least σ(Δg)/g = 5 × 10−14, we are
developing POEM in which we directly examine the relative motion of two
test masses that are freely falling. The test mass assemblies (TMA) will be in
free fall in a comoving vacuum chamber for about 0.8 s per “toss,” i.e., motion
both up and down along a vertical path of about 90 cm. Such an experiment
tests both for a possible violation of the weak equivalence principle (WEP)
and for new forces that might mimic a WEP violation.

Figure 1 shows the principal components of the measurement system.
Inside the vacuum chamber is a single pair of TMA resting on shelves sep-
arated by 0.5 m. Each TMA contains a sample of a test substance (A or B)

Fig. 1. Principle components of the measurement system. Both key technologies
are shown: motion system and laser gauge.
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and a corner-cube retroreflector. Conditioned laser light entering at the lower
right reaches the beamsplitter, illuminating the optical cavity formed by the
two retroreflectors, and is then passed to the detector (upper left). The
compensator plate makes possible the alignment of the cavity in the pres-
ence of imperfect retroreflectors. Considerable work has been done on selec-
ting the test substances. One approach (e.g., [4]) is to select one element
from each of three groups: {Be}, {W, Pt, Au}, and {C, Mg, Si, Al}. This
allows the experiment to efficiently search for EP violations due to three
types of energy characterized by ξ1 = (N + Z)/μ, ξ2 = (N − Z)/μ, and
ξ3 = E/μ ≈ Z(Z−1)/((N +Z)1/3μ), where N =neutron number, Z = proton
number = lepton number, and μ= atomic mass.

The vacuum chamber is mounted to a cart that rides along a vertical track
and contains a precision position sensor that reads a ruled bar mounted to the
track assembly. Inside the track assembly is a linear motor (fixed magnets,
moving coils mounted to the cart, and a coarse position sensor). The motor
is driven by a control unit that includes the power amplifier and a pair of
computers. The track, cart, motor, and its controller are a commercial sys-
tem. In our approach, there is no need for mechanisms inside the chamber
to drive the motion of the TMA and the TMA-observing devices during each
toss. However, this approach entails moving tens of kg at speeds approaching
5 m s−1, which implies large forces and the potential for significant amounts
of vibrational energy from which the measurement must be protected.

During the upper portion of the chamber motion, the linear motor and its
control system serve to enforce a free-fall trajectory, overcoming friction. At
the bottom of the free-fall portion of the motion, the chamber encounters a
“bouncer” that passively applies an upward force, absorbs the energy of the
falling chamber, and returns the chamber to upward motion with a minimum
of force required from the motor. This reversal of the moving vacuum chamber
takes place in about 0.4 s and the measurement will be repeated every 1.3 s.
The bouncer will be discussed later.

In a more advanced version of POEM, there will be two pairs of TMA
(Fig. 2) with a lateral separation of 7 cm, permitting a double difference
observable that cancels many systematic errors. Prominent among these is
gravity gradient, including the vertical component, dg/dz = 3 × 10−7 g m−1.

Fig. 2. Placement of test masses in a more advanced version of POEM. In the
double difference observable, the EP violating signal adds and many errors cancel.
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Additionally, there are small components that are time dependent, including
those due to groundwater variation and parked cars on the nearby street. With
a science goal of σ(Δg)/g = 5× 10−14 and a TMA mass that is 30% test sub-
stance, we require a measurement accuracy of σ(Δg)/g = 1.5 × 10−14 for the
TMA. This requirement, when combined with the vertical gravity gradient,
implies a requirement for absolute distance measurement with an uncertainty
under 0.05 μm. The required laser gauge will be discussed later.

The laser gauge is expected to yield a 10 pm uncertainty in a 10 ms
observation. We assume white noise, making this equivalent to 1 pm in 1 s.
The POEM distance measurement uses a low finesse cavity formed by two
solid glass retroreflectors and fed by an intracavity beamsplitter. With the
expected laser gauge precision, the derived relative acceleration from a single
toss of a pair of TMA has a precision of 3 × 10−12 g. A 1-h run will have
a corresponding acceleration error of 0.64 × 10−13 g (on TMA; 2.1 × 10−13 g
on test substances for R = 0.3) due to the laser gauge. This is only a factor
of 4.2 larger than the experiment goal of σ(Δg)/g = 0.5 × 10−13. Thus, an
experiment of the intended accuracy will be quick, and we will be able to test
several (compositionally) different sample pairs.

3 Tracking Frequency Laser Distance Gauge

In the late 1980s, we were working on POINTS [15], an affordable spaceborne
astrometric interferometer with a nominal single-measurement accuracy of
2 μas for a pair of bright stars separated by 90 ± 3◦. Because of the close
connection among size, weight, complexity, and cost, we kept the baseline
length at 2 m and thus required high precision in the metrology to achieve
the nominal single-measurement astrometric accuracy. The mission require-
ment, shown in Fig. 3, was for a single metrology leg (laser gauge) to have an
accuracy of 2 pm on timescales from 1 to 100 min. We could find no existing
laser gauge that would meet the requirement. In particular, we first looked
at a quadrature homodyne interferometer. These are normally described as
achieving λ/8 measurement uncertainty. We could not see how to extend this
approach beyond λ/100.

We next looked at the standard precision laser gauge, the heterodyne
interferometer. Figure 4 shows one realization of this laser gauge. A stabilized
(HeNe) laser provides a polarized beam that is split into a pair of orthogo-
nally polarized beams by a polarizing beamsplitter oriented at 45◦ from the
initial plane of polarization. A pair of acousto-optic modulators (AOM) shift
the frequencies of these beams before they are recombined. The recombined
beam is sampled and detected to provide a reference phase at the difference of
the AOM drive frequencies. The recombined beam is also sent into the mea-
surement interferometer where a polarizing beamsplitter separates the two
beams, sending one along the measurement path and the other along a refer-
ence path. Finally, the beams are again combined and detected to provide a
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Fig. 3. Allan deviation (root variance) for the TFG.

Fig. 4. Heterodyne laser gauge. This is a version of the standard commercial
precision laser gauge.

measurement phase at the AOM difference frequency. The difference between
the measurement and reference phases is taken as an incremental measure (in
units of the laser wavelength, λ) of the distance under study.

There are three problems with this laser gauge. First, the heterodyne gauge
does not lend itself easily to the measurement of absolute distance, although
with enough additional complexity, this can be overcome [6]. Second, the
polarizing beamsplitters are imperfect, which results in a small portion of
each beam traveling the unintended path. This gives rise to a cyclic bias in the
laser gauge reading with λ/2 period and a nm typical amplitude. This cyclic
bias problem has been partially overcome [5] at the expense of measurement
speed and instrument complexity. The bias can also be overcome by employing
spatial separation of the two required beams [7,8,17,18], again at the expense
of complexity. For the scheme based on the spatial separation of beams, we



268 R.D. Reasenberg and J.D. Phillips

do not know of an analog of the space- and weight-saving technique discussed
below for launching multiple beams from the same set of optics.

As we discuss below, for high-precision applications, it is useful to operate
the laser gauge in a cavity. This increases the precision in proportion to the
finesse. The third problem with the heterodyne gauge is that it does not oper-
ate in a cavity. It can be operated in a multibounce configuration that gains in
precision in proportion to the number of bounces. However, the multibounce
configuration does not enjoy the cavity’s passive suppression of alignment
errors. It also makes substantially more difficult the question of what distance
is being measured to high precision since there is not a single reference point
at the end of the measurement path. Further, the multibounce configuration
has increased complexity and requires larger endpoint assemblies.

Looking at these options and being unable to find additional existing
schemes left us convinced that we needed to find a new approach to laser
gauging. We investigated a few possible new architectures, including one that
used dichroic mirrors in much the same way as the heterodyne gauge used
a polarizing beamsplitter. We selected the scheme now known as the TFG,
which is the subject of the rest of this section.

Figure 5 shows the classic realization of the TFG. It is a closed-loop system
based on Pound–Drever–Hall locking. In this realization, an optical signal
from the variable frequency source (VFS) of an adjustable wavelength λV FS

is phase modulated at a frequency fm and introduced into the measurement
interferometer whose length, L, is to be determined. When λV FS is away from
λx, the wavelength at the intensity extremum, the optical signal emerging from
the interferometer is amplitude modulated, resulting in an electrical signal
at the detector output at fm with a magnitude and sign that indicate the
offset. Synchronous detection at fm and filtering yield a signal that is used
to control λV FS , driving it back to λx. The corresponding optical frequency
shift is measured by a frequency counter.

Fig. 5. Classic realization of the TFG. Pound–Drever–Hall locking is used to tie
the frequency of the variable frequency source (VFS) to the changing length under
measurement. (VCO: voltage controlled oscillator)
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The TFG offers four advantages over the heterodyne gauge. First, it is
intrinsically free of the cyclic bias that plagues the heterodyne gauges. It has
only one beam and thus it cannot be subject to problems associated with
separating beams of different frequencies. Second, it naturally operates in
either a cavity or a nonresonant interferometer (Michelson, Mach-Zehnder,
etc.). Thus, additional accuracy is accessible when needed. Third, as will be
discussed below, the TFG can be used to measure absolute distance with little
additional effort.

The fourth advantage is that the TFG can suppress some additional errors.
Many laser gauges use corner-cube retroreflectors at their endpoints to sim-
plify alignment. Light entering along the cube diagonal impinges on the mirror
surfaces at an angle of 55◦ from normal incidence. At far from normal inci-
dence, the phase shift on reflection may differ by tens of degrees between S
and P polarization, and this differential phase shift will vary from mirror to
mirror. Thus, after passing around a retrocavity once, the polarization state
of the light may be substantially altered. Since the S–P phase difference is
not identical among the mirrors, there is no option to have the polarization
effect of one retroreflector canceled by the other. Finally, the light exiting the
cavity will be mixed with a sample of the incoming beam, optionally passed
through a polarizer, and detected.

If the polarization of the incoming light is not dictated by a requirement
that it be aligned with the (polarizing) beamsplitter, one may choose it ad-
vantageously to reduce errors. In the case of a Michelson interferometer, one
finds that the measured path varies smoothly as the incoming polarization is
rotated. That polarization can be set to give an extreme path length, which
minimizes the polarization sensitivity. In the case of a cavity, one expects
(and we have found) two polarization eigenmodes, which need not be linearly
polarized. If the incoming polarization is set to minimize the excitation of one
of the modes, then its effect is further suppressed if the two eigenfrequencies
are separated by a modest multiple of the cavity full width at half maximum
(FWHM). The TFG will keep the optical signal at the center of the excited
mode where the suppressed mode would have a slowly changing phase and
amplitude response. Thus, even if the suppressed mode were excited and of
the correct polarization to contribute to the cavity response, it would not sig-
nificantly perturb the optical frequency of lock. The required mode separation
becomes increasingly likely as the finesse increases.

In a similar way, operating in a cavity suppresses distance measurement
error due to misalignment. If the beam entering the cavity is misaligned from
the cavity axis by ε, there is an error of L(1/ cos ε − 1). In a cavity, small
misalignment will decrease coupling to the principal mode and may permit
coupling to other modes. However, if these modes are well separated in fre-
quency from the principal mode, they will not be excited, and they will not
corrupt the distance measurement. It is often possible to design a cavity to
have good frequency separation between the principal mode and the first few
higher-order modes.
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Fig. 6. Frequency response of a Michelson interferometer (thin line) and a cavity
(thick line). The separation between orders is the free spectral range (FSR = Φ).
The finesse (F = Φ/FWHM) depends on the losses.

In considering the precision of the TFG, it is natural to start with the limit
set by photon counting statistics. For 1 μW of HeNe (633 nm) power detected
from a Michelson interferometer, the limit is 0.06 pm after 1 s. The current
TFG is limited by technical noise: σ = 10 pm at either 1 or 100 samples per
second. When we completed the TFG development for POINTS, we measured
the deviation as shown in Fig. 3. Note that no further improvements were made
as we had met the POINTS mission requirements.

More recently, we have needed higher performance for POEM: 1 pm in 1 s
of observing and the ability to sample much faster losing only by t−1/2. For
this purpose, we are operating in a low finesse cavity (Fig. 6). Note that there
are limits to the use of high finesse cavities. In particular, the storage time
is approximately 1/FWHM, and this limits the unit-gain bandwidth of the
Pound–Drever–Hall locking.

The initial TFG was intended as a proof of concept. Recently, we have
refined and improved the classic TFG. As originally implemented, the TFG
frequency shift was based on passing the HeNe light twice through an acousto-
optic deflector-modulator (ADM). The second pass doubles the frequency shift
and cancels the deflection, yielding a beam that can be introduced into fiber.
The ADM operated over a frequency range of 100 MHz which yielded a dis-
tance range of 0.2 μm over a 0.5 m path. More recently, we have introduced
an ADM with a frequency range of 125 MHz and passed the light through it
four times. This yields a distance range of 0.5 μm over the same path. Since
the mode spacing is λ/2 = 0.316 μm, one mode is always accessible with the
available frequency shift, and often there are two.

We have introduced a nonlinear aspect to the TFG loop controller. It
detects that it is running out of the frequency shifter’s range and hops to
a mode at the far end of the range, shifting the optical frequency by the
free spectral range of c/2L=300 MHz. The hop is fast enough (about 1 μs)
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to be “unobserved” by the classical portion of the loop controller. We have
demonstrated a rate of 5×104 hops s−1, which corresponds to a linear velocity
of 16 mm s−1.

This speed is more than adequate for most scientific applications. However,
in one commercially important application it falls far short. In the manufac-
ture of integrated circuits, structures are photocopied onto the silicon wafer in
a process that requires both the mask and silicon to move at speeds in excess
of 1 m s−1. This motion must be under laser-gauge control to submicron pre-
cision. In this application, the heterodyne gauge is the natural choice.

The original TFG had a unit-gain bandwidth of 100 Hz. This was adequate
for the task of showing that it could meet the POINTS mission requirements.
However, POEM requires a more agile laser gauge, so as to follow vibrations
when the TMA are not in free fall, to reacquire lock rapidly should it be lost,
and to follow accurately the TMA acceleration while in free fall. We have
rebuilt the controller with a unit-gain bandwidth of 50 kHz. The limit to the
unit-gain frequency with the classic TFG is the acoustic propagation delay
internal to the ADM, 1.7 μs with the present unit. The semiconductor laser
TFG (SL-TFG) described below can operate substantially faster.

The TFG employs a frequency measurement to determine incremental dis-
tance. Standard frequency counters have well-defined start and stop times and
high time-base accuracy. However, they generally have a dead time between
measurements. For many purposes, one needs to read out the laser-gauge
frequency counter at 102–104 times per second, which is not possible with
typical counter dead time. Further, it is often necessary to combine measure-
ments made at high speed by fitting a model, say by the method of least
squares. This treats the data locally in a manner similar to averaging. Having
zero dead time results in certain of the measurement errors being correlated
between adjacent samples in a way that causes them to cancel when the data
are averaged. The ideal counter for the TFG does a continuous count of the
incoming cycles, sampling the count at precisely defined intervals, and send-
ing those samples to a computer for storage or analysis. Such a device was
built for us at the Harvard Physics Department Electronic Instrument Design
Lab. This advanced frequency counter has synchronized dual channel opera-
tion and a network (100 base-T, UDP) interface to a PC. It has a maximum
counting rate of 200 MHz and internal dividers (2×, 4×, 8×) that permit
counting rates up to 1,200 MHz. The counter can be read continuously, using
an ordinary PC, at ∼ 10K samples per second. Timing mismatch between the
effective gate times for its two channels is well under 1 ns, and variations of
this mismatch are far smaller. For POEM, with 10 ms sampling, a 0.1 ns dif-
ferential timing error would cause a differential distance error of 1× 10−12 m,
in 2% of the counting intervals. Due to the continuous counting, these errors
would be largely compensated by an opposite error in the neighboring count-
ing interval. The counter operates from an external commercial oven-stabilized
crystal time base with a stability of Δf/f < 5 × 10−10 per 24 h.
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The hopping provides an easy means of measuring absolute distance. By
measuring the frequency shift before and after a hop, the TFG measures the
free spectral range, Φ, of the measurement interferometer corresponding to
the current length L. The estimate of L is then c/(2Φ). For the case of a
dispersive medium in the path, see the Appendix of [14]. A few years ago,
when we added hopping to the TFG, we demonstrated this capability to low
accuracy (0.1 mm) in a preliminary test plagued by technical noise. We an-
ticipate demonstrating a substantial improvement in this capability by using
the refined TFG described below.

Recently, as we evaluated the requirements for an advanced version of
POEM, we concluded that we needed a new TFG realization. There were four
driving factors. First, the initial realization used a HeNe laser, which is not
likely to be used in space today. There are several potential spaceborne ap-
plications for the TFG including POEM on the ISS or other platform, Stellar
Imager, and MAXIM [1–3,12]. For POEM, we would like to increase the pre-
cision to between 0.1 and 0.01 pm in 1 s to make use of an expensive platform.
Second, the initial realization used free-space beams, which pose an alignment
and drift problem. Third, the ADM may pose a reliability problem. Fourth, a
far greater tuning range would make the instrument more flexible and increase
the accuracy of the measurement of absolute distance. In addition, we were
interested in the possibility of a simplified version that might find applications
where the number of laser gauge links was high.

We are developing a SL-TFG on which a spaceworthy instrument could
be based. In this version of the TFG, we use a distributed feedback (DFB)
semiconductor diode laser operating in the 1,550 nm (190 THz) band. These
lasers are available at moderate cost from several vendors, create most of
their output in a single longitudinal mode, have adequate coherence length
(>1 km), can be purchased with fiber-coupled output, and are rapidly tunable
via their injection current. They have been used for atomic spectroscopy for
more than a decade [16]. In the SL-TFG, we eliminate both the ADM and
most of the free-space path in the VFS. When operating in either air or
vacuum, eliminating free-space path will reduce error due to thermally driven
movement of components. When testing in laboratory air, this will reduce the
influence of turbulence.

In the SL-TFG, one laser (tunable laser in Fig. 7) will have its wavelength
locked to the measurement interferometer. A second laser (reference laser)
will be locked to a high-stability reference cavity, and the frequency difference
(beat note) counted. A change of beat note indicates a change in L. The
tunable laser’s frequency control input is an analog signal that can be read
faster, but with lower accuracy. For the SL-TFG, servobandwidth higher than
100 kHz is a secondary goal. In the SL-TFG, with a rapidly tuning DFB laser,
the only intrinsic limit to bandwidth will be the light propagation time in the
measurement interferometer.
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Fig. 7. TFG based on a tunable laser, e.g., a DFB laser. Pound–Drever–Hall locking
is used to tie the frequency of the VFS to the changing length under measurement.

Table 1. Characteristics of the DFB lasers in use at SAO for development of the
SL-TFG.

Attribute As received at SAO Comments

Line width 0.1 MHz OK for L < 1 km, can be narrowed if
needed

Bandwidth
of tuning port

30MHz
(tuning range, 6 GHz)

With suitable drivers, can have 60 GHz
range and ∼ 400 MHz BW

Range of 60 GHz
tuning (bias port) (bandwidth, 1 Hz)
Tuning sensitivity 200MHz mA−1

Power sensitivity dP/dI = 0.1 mW
(optical) mA−1

Maximum current, 400mA ⇒ 35 mW
(optical); operating threshold, 40 mA

We recently purchased a pair of DFB lasers, packaged with drive elec-
tronics, from Dicos Technologies, Quebec.1 The principal characteristics of
these lasers are given in Table 1. With a TFG based on the widely tunable
DFB laser, absolute distance measurements should be of intrinsically higher
accuracy. It can be shown that

σT (L) =
2
η

√
τ

T
(δL),

where T and τ are the integration times for absolute (L) and incremental
(δL) distance, respectively. η is the fractional bandwidth, ΔF/F , where ΔF
is the change of laser frequency after a hop and F is the initial laser frequency.
With the DFB laser, we can have ΔF = KΦ, where K is an integer and ΔF
is limited by the range of the frequency counter.

How large can η be? In the initial realization of the TFG, ΔF is lim-
ited to 500 MHz by the ADM. Since Φ= 300 MHz in the test interferome-
1 This information is for technical communication only and does not constitute an

endorsement of these products.
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Fig. 8. Frequency map for an approach to the measurement of absolute distance
using extended bandwidth.

ter and the HeNe operates at 633 nm, η = 300 MHz/470 THz= 0.6 × 10−6.
In the SL-TFG, we could shift frequency both upward and downward from
nominal to achieve ΔF =2 GHz. For the DFB laser operating at 1,550 nm,
η = 2 GHz/200 THz= 10−5. Adding additional scaling to the frequency counter
would permit an increase in η, and the limit to η comes when quantization
noise dominates στ (δL). There are two ways around this obstacle. The first
is to use a frequency counter that can count at a higher frequency without
prescaling.

The second is to use the scheme shown in Fig. 8. The scheme [13] allows the
measurement of absolute distance based on a frequency shift not limited by the
frequency range of the counter or photodetector. There would be two reference
lasers at optical frequencies νR1 and νR2, both locked to modes of the reference
cavity that are separated by as large a frequency span ΔfA as possible, limited
by the tuning range of the lasers. The first and second measurement lasers
would be locked to measurement interferometer modes at frequencies νM1

and νM2, near νR1 and νR2, respectively. With the lasers locked this way,
the frequency differences νMi − νRi, i = 1, 2, would be accurately known by
counting beat notes. The quantity νM2−νM1 = [(νM2−νR2)− (νM1−νR1)+
(νR2 − νR1)] would be a large integer multiple, K ′, of Φ.

To measure νR2 − νR1, the first reference laser would remain locked to a
reference cavity mode at νR1, and the second reference laser would start locked
to a reference cavity mode near (e.g., adjacent to) the first, at a frequency
difference within the range of the photodiode and frequency counter. The free
spectral range of the reference cavity would be precisely determined, taking
as much time as necessary. The second reference laser would then be hopped
a known number of reference cavity modes away, to lock to a mode at νR2.
νR2 − νR1 would now be known accurately, although at a frequency too high
to count directly.

We have developed conceptually two variants of the TFG. In the first, a
fast additional loop is used to narrow the linewidth of the laser. This technique
has been applied to semiconductor lasers [10]. Critical aspects of the design
are noted in the caption to Fig. 9. In the second, the parts count has been



Technology for Precision Gravity Measurements 275

Fig. 9. TFG with narrowed laser linewidth. A tunable laser is phase locked to a
reference laser, with frequency offset. This is accomplished by comparing the phase
of the optical heterodyne of the lasers with that of the radio frequency (RF) signal
from frequency offset, a voltage-to-frequency converter. The servoloop that does
this comprises the phase detector, tunable laser, photodetector, and amplifier. The
delay for a signal traveling around this loop can be conveniently kept to �10 ns,
so the unit-gain frequency can be ∼10 MHz. This is comfortably more than the
typical intrinsic linewidth of the DFB laser, a few 100 kHz. Thus, the tunable laser’s
linewidth can be reduced to that of the reference laser, which could be ∼1 kHz. The
offset frequency may be tuned rapidly. The technique of narrowing the linewidth of
semiconductor lasers by electrical feedback is not new [10].

reduced to yield a lower cost (and likely more reliable) laser gauge that we
believe is capable of being made to work at the pm level. Critical aspects of
the design are noted in the caption to Fig. 10.

4 TFG for Space Projects

In this section, we present a hypothetical metrology scheme added onto the
James Webb Space Telescope (JWST; Fig. 11). (Any resemblance to actual
plans of the JWST project is incidental.) We assume that the instrument is to
look at targets that do not contain a bright point source suitable for serving
as the pointing reference. For example, the targets could be a combination of
diffuse and faint. A solution will be shown in the form of a gimbaled pointing
platform that is connected by laser metrology to the instrument (since the
much simpler approach of using angle encoders is unlikely to work at the
mas level). In support of this approach, we introduce both a fine star tracker,
showing that it is technologically achievable, and a multibeam launcher, which
permits the construction of an optical truss with endpoints that are relatively
simple and free of errors. Without the multibeam launcher there must be a
set of endpoints attached to the structure at slightly different places, making
the optical truss vulnerable to mechanical and thermal changes in that part
of the structure.
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Fig. 10. Simplified TFG. In this approach, the phase modulator has been elim-
inated, and the modulating signal at fm is added directly to the laser’s injection
current. The rest of the TFG is the same as in Fig. 7. The only optical component,
aside from the measurement interferometer common to all laser gauges, is the laser
diode itself. Applying the modulating signal to the laser’s injection current generates
a combination of amplitude and frequency modulation. In the POEM cavity, using
the optimum modulating frequency, the spurious AM would generate an offset of
75 pm. This offset depends on the FM/AM ratio of the laser, which can be expected
to remain largely constant with time, and depends only weakly on (DC) injection
current.

Fig. 11. The front end and shield of the JWST (from STScI).
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Figure 12 shows a gimbaled platform mounted in front of the JWST sec-
ondary so as not to obscure the primary. The platform contains a two axis
precision star tracker with characteristics shown in Table 2. The platform is
assumed to be rigid and is connected to the telescope by means of an optical
truss. In the configuration shown, there are three beam launchers on the plat-
form. Each sends multiple beams toward the telescope secondary, including
two beams to retroreflectors on the back of the secondary and other beams to
additional beam launchers mounted on the back of the secondary. These hang
over the edge of the secondary mirror and send their beams to retroreflectors
mounted on the primary mirror segments. Thus, the main optical system is
tied to the platform.

Central to this architecture is the beam launcher. It must be capable of
launching several beams, simultaneously or sequentially, in different directions.

Fig. 12. Approach to pointing the JWST using a gimballed platform carrying a
precision star tracker and connected to the telescope optical system by an optical
truss.

Table 2. Characteristics of a precision star tracker.

Parameter Value Notes

Diameter 30 cm FWHM=0.4 arcsec at λ = 0.5 μm
Target magnitude V = 10 >105 photons per second detected (20% of photons

entering aperture)
(V = 10) ⇒ 8 stars per square degree (3.5 at galactic
pole)

Read rate 250 Hz 400 photoelectrons per read
σ ≈ 0.02 arcsec. (Assumes cooled detectors.)
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Further, all of the launched beams must be tied to a single point so as to pro-
duce a highly rigid optical truss. Finally, it is desirable that there be some
degree of pointing adjustability for each beam to simplify manufacture, align-
ment and maintenance. Figure 13 shows the design of such a multibeam
launcher. The extended caption describes the design.

Stellar Imager is a NASA Vision Study of a distributed-aperture telescope
capable of resolving 30 pixels across a star’s diameter. It has a maximum
resolution of λ/D = 0.15 nrad =32 μas at the shortest wavelength of 155 nm.
For purposes of the study, the focal length is from 1 to 10 km, the diameter
is from 100 to 1,000 m, the subapertures are 1–2 m in diameter, and there
will be up to 30 of them. For a telescope of this scale, pointing is a major
issue.

We presented a poster with M. Karovska at AAS Meeting 204, Denver,
6/2004 on an approach to pointing the telescope [11]. We require a pointing
knowledge of 5 prad =1 μas, to support control to 3 μas. To achieve this, we
proposed to extend the gimbaled platform approach discussed above. The pre-
cision star tracker is replaced by a pair of astrometric optical interferometers.
These are tied directly by laser gauges to a metrology boom aligned with the
direction to the pointing-system target. Laser gauges mounted on the end of
the metrology boom survey the subaperture mirrors.

Fig. 13. Method for launching multiple beams from a single endpoint retroreflector.
Each steering mirror is reimaged by the lens to a plane inside the retroreflector and
thus passes through a “launch window” inside the retroreflector. Adjustment to a
steering mirror causes the direction, but not the position, of the beam to change as
it passes through the launch window. The prisms are necessary to make each beam
appear to come from a steering mirror on the optical axis of the lens.



Technology for Precision Gravity Measurements 279

5 Free Fall in the Laboratory

A key technology for POEM is free fall in the laboratory. At the beginning
of the project, we looked at several aspects of this issue. Two things were
apparent from the start. First, if the free fall can start while the experimental
apparatus is moving upward, the observing time is doubled and the signal from
an EP violation is quadrupled. Second, it is important to be able to repeat
the free fall quickly after the last one has ended. These ideas are embodied in
figures of merit for a Galilean test, X = Q2T 1/2/K and M = X/σ0, where
Q is the free-fall time, T is the total observing time, σ0 is the measurement
precision, and K is a factor that depends on the kind of motion that will
be induced by an EP violation. The value of K is obtained from an analytic
covariance analysis. For linear acceleration, a dropping or tossing experiment,
Q is the free-fall time and K = 12

√
5 ≈ 27. (Assuming the initial position

and velocity are estimated along with the acceleration, as they must be.)
For a sinusoidal motion, as one expects, for example, in a rotating spacecraft
or a torsion balance, the acceleration is modulated by sin(2πt/P ). We take
Q = P/2 and find that K = π2

√
2 ≈ 14. (Alternatively, we could have taken

Q = P , in which case we would find that K = 4π2
√

2 ≈ 56. There would be
no effect on X or M and the choice of Q = P/2 seems more natural.) In both
cases, measurements must be taken several times per interval, Q.

In evaluating M or X, there may be an overall schedule factor, which fa-
vors experiments that can be run continuously (or nearly continuously), such
as torsion balances and our free-fall experiment. For drop-tower experiments,
there is a gap between drops, which makes the running time longer (in some
cases, much longer) than T . In the periodic-modulation experiments, the sig-
nal has the form sin(u)+cos(u) sin(2πt/P ), where u depends on the geometry.
The cos(u) term may be significantly less than 1. Further, the advantage of
long Q may be partially offset by a “one over f noise” in addition to the
white noise assumed above. Thus, for example, in the carefully optimized
STEP mission, Q is shortened by rotating the spacecraft.

There are many approaches to achieving free fall (Table 3) without going
into space. Guided motion can use recirculating ball bushings or wheels with
rolling bearings. These devices are generally limited to speeds of 3–5 m s−1.
Higher speeds are possible using air bearings, which also offer a lower level of
vibration. Unguided motion is limited to about 10 s of free fall near the ground
and a few tens of seconds by dropping from a high altitude balloon. Longer
times are possible in space at considerably higher cost. The unguided motion
has the advantage of being free of the vibration generated by wheels and
bushings, and the vibration passed through them from the support structure.

In the POEM approach, a vacuum chamber is in free fall for about 0.8 s.
This removes the complexity of having mechanisms inside the chamber for
moving the TMA and adds the complication of a moving vacuum cham-
ber. Further, the comoving vacuum chamber provides a natural means for
maintaining the required alignment of the laser gauges and the capacitance
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Table 3. Characteristics of dropping facilities, approximately in increasing order of
the figure of merit, X.

Quantity N (drops) Q T X Note
Units (day−1) (s) (s) note 1

JILA EP experiment 5,760 0.2 1,152 0.2 g
JILA (toss upward) g
GRC-short 12 2.2 26.4 3.7 2 u
GRC-tall 2 5.18 10.4 12.9 2 u
Falling inside a tube dropped from 40 km 1 2 25 1.4 3 u
POEM (drop only) 300 0.5 150 0.5 4 g
POEM (toss upward) 55,000 0.8 44,000 20 5 g
Bremen tower 3 4.8 14.4 13 u
Bremen tower (toss upward) 3 9.5 28.5 71.8 u
Parabolic flight research aircraft 40 10 400 298 6 u

In each case we consider a single day’s effort.

Notes:
g Guided motion.
u Unguided motion.
1 K = 6.71 in all cases, except for the dropped tube (#5) for which K = 14.
2 NASA Glenn Research Center (GRC).
3 Balloon drop. Repeat time is nominally a month. The description of the balloon

drop comes from the ambitious experiment of [9]. In this experiment, the sensor
falls inside the 3 m long tube and rotates at about 0.25 Hz (Lorenzini, private
communication, 5/2000). Thus, T = 25 s, Q = 2 s, K = 14, and X = 1.4. The
high sensitivity of this experiment comes from the high precision (small σ0(τ))
of the differential detector, operating at cryogenic temperatures. The system is
intended to be reused, but not likely more often than once per month.

4 POEM “drop only” used for early testing only.
5 N lowered from 65,000 to account for lateral interchange of TMA in Gen-III.
6 Figures are for NASAs “Weightless Wonder” KC-135 research aircraft, run by

Johnson Space Center. This aircraft typically achieved g/100 for 25 s and g/1,000
for 10 s. Additional aircraft are in use. Unfortunately, the gravitational pertur-
bations in this environment (e.g., changing orientation and fuel levels) make it
unacceptable for a WEP test. In addition, short-range forces from the Earth
would be lost.

gauges with the falling TMA, thus obviating the need for possible additional or
enhanced mechanisms inside the chamber. This approach results in a massive
moving object (ca. 50 kg) and the associated problem of large forces and large
amounts of energy in vibration. Our analysis showed this to be a favorable
trade.

In such a system, one must supply the energy required to launch the mov-
ing system at nearly 5 m s−1 and later absorb that energy at the end of the
fall. Both the energy handling and the rapid recycling are facilitated by having
a “bouncer” at the bottom of the chamber’s path. The requirements for the
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bouncer are (1) it should produce only modest acceleration of the moving
system, which is to contain sensitive components; (2) the acceleration should
not change so rapidly that the servocontroller driving the motion system is
unable to respond properly; and (3) there should be minimal loss of energy.

Our initial analysis taught us that we should avoid two things. The first
is having the chamber hit a solid object, such as a leaf spring or a beam (e.g.,
bridging between two springs), at the bottom of the free fall because energy is
lost as vibration that, at best, is dissipated and, at worst, may continue after
the moving system returns to upward free fall. Further, there is an abrupt
change of velocity that causes an undesirable transient response from the
motion control servo. The second thing to avoid is the use of coil springs to
provide an upward force on the moving system, because they have internal
resonances with periods comparable with the intended turnaround time of
1/3 s. At best, the energy that goes into the internal modes is lost. At worst,
the internal modes interact unfavorably with the motion control servo.

The first version of the bouncer is shown in Fig. 14. The mass on the right
(103 kg) stores and returns the kinetic energy of the moving system via the
lever and cable. The (5:1) lever shifts the energy storage to being principally
gravitational potential, i.e., it reduces the kinetic energy stored in the mass.
This in turn requires the mass to be larger by the same ratio. A pulley at
the bottom of the chamber makes contact with the cable. The “1/4 in.” cable
ensures that the onset of force on the falling system is gradual and that only a
very small mass needs to be accelerated as the pulley makes contact. The 1.1 m
of cable has a mass of 0.18 kg, but an effective mass of 0.06 kg. In addition,

Fig. 14. Original bouncer design.
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Fig. 15. Original bouncer hardware. The pulley at the bottom of the chamber (left)
encounters a cable which lifts a ton of lead (right, enclosed in plastic) via the lever.

the cable probably flexes on initial pulley contact, further reducing the shock
to the moving system. The hardware is shown in Fig. 15.

We have used an LVDT to investigate the ability of the motion system to
put the TMA into free fall. The magnetic assembly is attached to the moving
chamber and the sensor core is allowed to move freely. We have seen the
LVDT core go into free fall regularly and to drift up or down by a few mm
with respect to the chamber during the free-fall period.

Our experience with this configuration has shown it to be only fair. Ini-
tial pulley contact causes a step increase in the cable tension, which excites
an oscillation. We have added damping material and made other changes to
significantly mitigate the vibration. More serious is the dissipation caused by
the cable running over the pulleys; the cable flexes and the strands shift and
rub. This loss of energy causes the motion control servo to react badly and
stop functioning. We could find no solution to this frictional problem short of
replacing the cable with a steel band.

Instead, we have designed an entirely new bouncer based on torsion bars
(made of 4340 steel, with a 75.5 inch working length, 1” working diameter,
and splined ends) to apply the upward force and store the energy of the
moving system. We have preserved the use of a horizontal cable to provide a
gradual onset of force without requiring the sudden acceleration of significant
mass. The cable ends are connected to levers on the rotating ends of a pair of
torsion bars. Like coil springs, the torsion bars have internal modes. However,
the lowest frequency is over 1 kHz and cannot be significantly excited because
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of the gentle twisting profile induced by the horizontal cable approach. Note
that this design is left–right symmetric, where the previous bouncer was not.
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Summary. In this chapter we discuss a technology development program at JPL to
address the diminished opportunities for experimental tests of fundamental physics
in space. By developing instruments that can serve multiple functions, we hope to
gain flight opportunities that would otherwise be unavailable, due to recent refo-
cusing of the space science mission in support of manned flights. We discuss the
development of a liter-sized clock based on trapped mercury ions that can serve
one-way navigation functions, as well as provide high stability for sensitive tests of
general relativity, and possible variation of fine structure constant. We also describe
progress in the development of an atom interferometer-based gravity gradiometer.
This instrument is aimed at providing detailed subsurface mapping of earth and
planetary bodies. It can also be used, with minor modifications, to serve as an in-
strument to test the equivalence principle. Finally, we report on recent progress for
the development of a dual-beam atom laser based on spinor condensates, for future
advanced instrumentation supporting fundamental physics studies in space.

1 Introduction

Since the early days of space exploration, the value of laboratory style exp-
eriments with clocks and accelerometers in space to test the fundamental
models of physics has been well recognized. These “laboratory instruments”
were identified as effective tools to test the range of validity of general relativ-
ity (GR), and soon missions such as Gravity Probe A and B were designed.
It is noteworthy, however, that NASA did not select a follow-on mission to
Gravity Probe A, which consisted of a hydrogen maser clock onboard a Scout
rocket in a suborbital flight in 1976, until the mid-1990s. This is because tests
of fundamental physics did not constitute a priority for space investigations,
which mostly concentrated on observational investigations of the solar system
and the space beyond.

In the 1990s two sets of unrelated developments rekindled the interest in
testing physics with laboratory style experiments in space. On the theoretical
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front, the physics community had reached the consensus that the Standard
Model fell short of providing a complete picture of the physical universe. The
proper theory that would adequately address unanswered questions such as
the link between gravity and quantum fields is likely to be based on radically
new schemes such as M theory. This view has been reenforced by the observa-
tional astronomy that has radically changed our view of the evolution of the
universe, leading to a nearly complete reformulation of cosmology. We now
generally believe that our universe is flat, and is expanding at an accelerated
rate. These discoveries, together with the previously known inadequacies rela-
ted to, for example, the physics of black holes further amplify the need for
a new physical model that can adequately describe the underlying basis for
astronomical observations.

The second development pertained to the interest in conducting funda-
mental science on the International Space Station (ISS). The ISS was des-
igned as a platform to conduct microgravity science, and it was apparently
very well suited for laboratory style instruments as well. The use of clocks and
accelerometers to test fundamental physics, then, was a natural step in the
utilization of scientific potential of the ISS, especially since these instruments
could indeed benefit from the microgravity environment to enhance their sen-
sitivity. Soon, the ESA and NASA planned several clock and accelerometer
experiments with instruments that were based on new technologies fueled by
laser cooling of atoms, and atom wave interferometry. These planned inves-
tigations in turn spurred new interest in the physics community, and several
new experiments to test GR and look for possible variation of fundamental
constants were proposed. These proposals, several of which are described in
this volume, are based on platforms other than the ISS, and continue to be
under study today.

Despite these renewed interest, the prospects for missions based on instru-
ments such as clocks and accelerometers are realistically rather poor. This is
because of the recent plans to limit the utilization of the ISS, and focus the
bulk of space missions to explore Moon and Mars. The challenge presented by
sustaining the ISS for the next few years, and developing the infrastructure
for manned missions to the moon within a fixed budget, has placed severe
constraints on the NASA budget, with a correspondingly similar situation
for ESA.

With this backdrop, the focus of fundamental physics research at the
Quantum Sciences and Technology Group at JPL has been reformulated. Real-
izing that independent missions such as spacetime [1], and ISS investigations
such as PARCS and QuITE are not realistically viable in the current bud-
get environment of NASA, which is likely to remain constrained in the next
several years, we have shifted our focus toward the development of science
experiments that can be performed as adjunct to other space missions. In
particular, we have focused on the development of technologies that reduce
size, cost, and power of precision instruments, allowing them to become att-
ractive for applications other than tests of fundamental physics. By designing
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and developing instruments that can satisfy needed functions in completely
different areas of space exploration, such as navigation and subsurface map-
ping, we hope to create more opportunity for tests of fundamental physics.

In the following sections, we provide brief descriptions of the development
of a small high performance clock with 1 l of volume and about 1 kg of mass,
and an atom wave interferometer for gravity gradiometry. We will also give a
short description of experiments toward more advanced accelerometers based
on Bose–Einstein condensation.

2 LITE: A Liter-Sized High Performance Atomic Clock

The development of high performance atomic clocks based on ion traps is
motivated by the inherent immunity of trapped ions to perturbing influences
on the atomic energy structure, which in turn influence the stability of the
clock. Ions in a trap do not experience collisions with the walls of a container,
or with themselves. The use of heavier ions, such as mercury, allows lowering
the sensitivity of the clock transition to the perturbing magnetic fields. These
and other similar attributes of ion traps have led to the development of clocks
that use microwave or optical transitions in a variety of ion systems.

At JPL, the work in the past two decades has been the development of a
stable clock based on trapped mercury ion with performance parameters, in-
cluding operational reliability, superior to that of the hydrogen maser, which
has been the workhorse of navigation and communications system at NASA’s
deep-space network (DSN). After a successful demonstration of such an instru-
ment dubbed the Linear Ion Trap Standard (LITS) based on mercury ions,
the focus of the work has been placed on the development of a small, high
performance clock suitable for direct deployment onboard planetary space-
craft [2–7]. Since this class of space platforms has limited capability for pay-
load due to mass and power constraints, it is instrumental that any additional
payload such as an advanced clock be small in volume and mass, and inher-
ently reliable for the expected mission duration that generally average more
than 5 years.

To transform the technology of LITS into a spacecraft clock with features
mentioned above, several technological advances were developed. To begin
with, the size and mass of the LITS as deployed in the DSN were dominated
by the four layers of magnetic shielding required to keep the ions from the
magnetic perturbation of the outside environment. The design of LITS req-
uired that the magnetic shields cover the trap as well as the lamp and the light
detection system that is used to optically pump the ions and interrogate their
clock transition. These elements include magnetic components that must be
kept within the shields to ensure that their residual fields do not change by
any interaction with fields external to the clock. This approach was required
as the same region in the trap was used to both optically interact with the ions
and apply the microwave field that induces the clock transition in the ions.
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To reduce the size and weight associated with the magnetic shields that
had a diameter of nearly 1 m, a new trap was designed to allow the separation
of the optical interaction region from the microwave excitation region. Taking
advantage of the electric charge carried by each ion, this new “shuttle trap”
has two segments. In the first segment, the ions are produced through collision
of electrons emitted from a hot filament with a background of mercury vapor
produced by mild heating of an oxide of mercury. The ions were then subjected
to the pump light from an RF-excited mercury lamp which produced the
optical pumping of the ground hyperfine state (F = 0, 2S1/2) via the first
excited electronic state (2P1/2). After this step which prepared the ions in the
F = 0 hyperfine sublevel of the ground state, the ions are “shuttled” to a
second segment of the trap through the application of a small (a few volts)
DC potential. In this region ions are exposed to the microwave radiation (at
40.5 GHz) that induces the F = 0 to F = 1 clock transition in the ground state
before they are shuttled back to the first, optical interrogation, region. Since
the ions must be kept isolated from any perturbations only during the interval
that they interact with the applied microwave field, a magnetic shielding of
the second segment of the trap will be all that is required. As the second
segment of the trap is away from the light source and the photon detectors,
the size of the shields is reduced by about an order of magnitude.

To further reduce the sensitivity of the ions to external perturbations, a
second innovation was introduced to the design of the trap. The conventional
design for ion traps used in atomic clocks and frequency standards is based on
electrode structures that produce a quadrupole oscillating field. Such a field
can be produced with the original hyperbolic electrodes, as well as with the
four-rod linear trap. A feature of the quadrupole field is that it contains a
node (in the case of the hyperbolic design) or a line of nodes (in the case of
the linear trap) where the oscillating electric field applied to the electrodes
is zero, and so is the force on the ions. When the ions move away from the
node, they experience a ponderomotive force that increases quadratically as
they approach any electrode. It is this ponderomotive force that keeps the ions
close to the node(s) in the trap. The quadratic increase in the field away from
a node, though, results in an increase in the velocity and “heating” on the
ions. This effect produces a relatively large second-order Doppler shift that in
turn limit the achievable accuracy with trapped ion standards.

At JPL, the microwave interrogation segment of the “shuttle” trap was
designed with a multipole electrode configuration. Sixteen rods alternatively
excited with the applied oscillating field produce a potential that is essentially
zero at the interior of the trap and increases sharply only very close to each
electrode. This flat potential allows a much larger region in which the field
experienced by the ions is zero, allowing ions to move in a mostly field-free
region. Thus the influence of heating and the associated second-order Doppler
is greatly reduced.

These innovations have been combined with a design that utilizes small
size components, and a sealed vacuum enclosure that is pumped only with
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getters to allow a significant reduction in the size of the clock. The current
laboratory prototype is essentially smaller than 2 l in volume with a projected
mass below 2 kg. The next version being developed will approach the goal of
about 1 l in size and 1 kg through improvements in packaging and integration
of the electronic circuitry. The projected power requirement is less than 20 W.

The prototype laboratory small clock has already demonstrated a stability
performance that breaks into the 10−15 region at an averaging interval of
about 10,000 s set by the performance of the quartz local oscillator. Similar
performance is anticipated for the clock as it is engineered for a 1 kg and
1 l parameters. Such a clock can be used onboard spacecraft to allow one-way
navigation. This style of spacecraft navigation, in contrast to the conventional
two-way navigation that requires both an uplink and a downlink, does not
require an uplink, and will significantly reduce the cost of the SDN operation,
while reducing the burden of multiple spacecraft navigation with the same
antennas. A modified version of this clock will operate with three different
ion species with about a doubling of mass and power. A “triclock” instrument
with this geometry can be placed on planetary spacecraft to perform tests of
relativity similar to the scheme of the proposed spacetime mission [1].

3 The Quantum Gravity Gradiometer

The development of atom interferometers using laser light pulses to drive
stimulated Raman transitions in atoms has provided a sensitive new tech-
nique for gravity gradiometry [8]. Unlike gradiometers employing mechani-
cal accelerometers, this approach employs the individual atoms as identical
drag-free test masses. The de Broglie wave associated with each atom is then
utilized to perform an interferometric measurement of the local acceleration.
As in conventional gradiometers, the atom interferometer-based gravity gra-
diometer employs two accelerometers to allow cancellation, as common-mode
noise, of any vibrations of the reference platform. This dual interferometric
technique holds great potential for subsurface gravity mapping and monitor-
ing applications, including studies of planetary inner structures and dynamics,
changes in ice sheets and ocean currents, changes in underground water stor-
age, and geodesy. The accelerometers can also be used to perform tests of
the equivalence principle (EP) with atomic test masses to a sensitivity rival-
ing proposed measurements with macroscopic test masses in free fall, such as
MICROSCOPE [9] and STEP [10]. Toward this end, we are developing at JPL
a compact and robust instrument by making extensive use of modular opti-
cal components and fiber optics in the laser and optics system, and a highly
symmetric geometry in the atomic physics package suitable for microgravity
operation.

The current laboratory-based gradiometer consists of two atom interfer-
ometers separated by 1.4 m in the vertical direction. The lower interferometer
is based on an ultra-high vacuum (UHV) magneto-optic trap (MOT), which is
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loaded directly from a two-dimensional MOT-based cesium atom beam source.
The two-dimensional MOT generates an atom flux greater than 109 atom s−1

from a volume of only 4×4×13 cm3, including magnetic coils and optics [11].
The UHV MOT enclosure is a nonmagnetic titanium chamber with high-
quality AR-coated windows for optical access. A 250-mm tall vertical tower
above the trapping region allows the UHV MOT to operate as an “atom foun-
tain” to obtain long interrogation times in ground-based operation. The same
lasers used for trapping and cooling are employed for the state-normalized de-
tection of the launched atoms upon their return. This interferometer geometry
is also well suited for microgravity operation, where long-baseline interroga-
tions can be performed simply in the central trap region and under UHV
conditions.

The upper interferometer, developed as an early testbed system, is based
on a vapor cell MOT. The state selection and normalized detection are per-
formed in a separate detection region, and graphite getters are employed to
minimize the background cesium vapor in this region. Due to the different
geometry, atoms in the two fountains are launched at different times to oper-
ate the interferometers simultaneously.

The modular laser system consists of two frequency-stabilized external-
cavity diode lasers as master oscillators and nine injection-locked slave lasers.
A phase-locked loop serves the difference frequency between the master lasers
to obtain a phase stability better than 1 mrad between 10 Hz and 10 kHz in
the Raman lasers. The spectrum of the beatnote between the two Raman
frequencies reveals that the central peak contains greater than 99% of the
RF power. The master lasers, slave lasers, and frequency-control and beam-
splitting modules are interconnected via fiber optics to provide a versatile
yet robust laser system. The laser beams for trapping and interferometry are
also delivered to the two fountains using fiber optics. The overlapping Raman
beams are collimated to 24 mm diameter and aligned vertically through large-
diameter (75 mm) windows at the top and bottom of the vacuum chambers
for each fountain. The retro-optic for the Raman beams is mounted on a
passive vibration isolation platform on the laboratory floor. A schematic of
the gradiometer is shown in Fig. 1.

We launch up to 6×109 atoms in each atomic fountain at temperatures of
1.8 μK, as measured by stimulated Raman velocimetry. A Doppler-sensitive
Raman pulse is applied to select a narrow velocity subgroup so that the
remaining atoms are characterized by a one-dimensional temperature of about
100 nK. The atom interferometer is then realized by employing a π/2−π−π/2
stimulated Raman pulse sequence [12]. The difference frequency of the Raman
lasers is “chirped” during this sequence to continuously track the Doppler shift
of free-falling atoms. By scanning the relative phase of the final p/2 pulse, the
relative populations of the F = 3 and F = 4 hyperfine ground states are
modulated to produce the interferometer fringes that are observed via laser-
induced fluorescence. Interferometer fringes are shown in Fig. 2.
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Fig. 1. Illustration of a gravity gradiometer based on dual atom interferometers.
The Raman laser along the vertical axis measures the phase shift of atoms in each
fountain, so that the gravity gradient along this axis is determined by Δg/Δz =
(Δφ1 − Δφ2)/(keffT 2d), and platform vibrations ap are effectively canceled.

The current instrument has demonstrated a measurement sensitivity of
34 EHz−1/2 (1 E≡ 10−9 s−2), corresponding to a sensitivity of 5 E Hz−1/2 for
a 10 m measurement baseline. A second generation instrument is currently
being designed with the goal of sensitivity improved by at least an order of
magnitude. This second generation instrument will be used for the design
and development of a spaceborne instrument for gravity gradiometry in sup-
port of geophysical investigations. With relatively small modifications, the
same instrument could also be used to test EP at a sensitivity level exceeding
all ground-based experiments, and similar to those planned as independent
missions.
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Fig. 2. Simultaneous measurements of atom interferometer fringes in two fountains
using a common laser to drive the Raman transitions.

4 Bose–Einstein Condensates for Advanced
Atomic-Based Accelerometers

It is widely known in atomic and optical physics community that the Bose–
Einstein condensate (BEC) can be used to devise an atom laser producing
coherent matter waves. Such a counterpart to the conventional photon-based
lasers can be used to improve the sensitivity of matter wave interferometers
that are being developed to test fundamental physics, in the same way that
photon lasers improve the performance of optical interferometers [13]. Because
of this potential to devise vastly improved atom wave interferometers, a pro-
gram has been underway at JPL to develop a dual-beam atom laser based on
spinor condensates [14]. This has led to a recent experimental scheme aimed
at the generation of dual atom laser beams, oppositely propagating, with an
inherent number correlation between them due to their spin-mixing origin.
The novelty of the scheme lies not in the output coupler (simple field gradi-
ents that tilt the confining optical potential) but rather in the origin of the
outcoupled populations in the dynamics of the coherent spin–spin interaction
process. In addition, the presence of a true reservoir and the ability to control
both the strength of the output coupler as well as the rate of “pumping” make
this a particularly intriguing atom laser scheme.

Our apparatus is built around a single-beam running-wave dipole trap
produced by a focused CO2 laser, which provides at full power a trap depth
of approximately 1.6 mK via the DC polarizability of rubidium. We load the
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dipole trap from a UHV magneto-optical trap (MOT) which is itself loaded
by a cold atomic beam provided by an upstream two-dimensional MOT. The
two-dimensional MOT exists in a rubidium vapor cell which is differentially
pumped from the adjoining science chamber. All 780 nm trapping light is
provided by a unique laser system based on a frequency-doubled 1,560 nm
fiber amplifier, described elsewhere. The loading of the dipole trap proceeds
according to established technique; we obtain initial populations in the trap
of about 2×106 rubidium atoms at about 120 μK. The initial trap frequencies
(measured via parametric resonance) are approximately 3.2 kHz transversely
and 220 Hz longitudinally.

Evaporative cooling proceeds via a programmed rampdown of CO2 laser
intensity. We observed the onset of BEC at critical temperatures near 100 nK,
and typically obtain condensates of 104 atoms with little or no discernible
thermal component. Application of a magnetic field gradient along the weakly
trapping axis of the trap during the first few seconds of evaporation preferen-
tially biases out the mF = 1 components, resulting in a BEC solely occupying
the field-insensitive mF = 0 projection. Finally, application of a small mag-
netic field gradient in the vertical direction provides a bias for one or the other
polarized components. If this supportive gradient is only on for the first few
seconds of evaporation, we obtain polarized condensates of number similar to
the other options.

For the observations of the dual-beam laser, we begin with a nominally
pure mF = 0 condensate held in a trap whose unperturbed depth is 5 μK
and is approximately a factor of 10 weaker due to gravitational tilt. We fix
the background field levels at 60 mG as determined by RF spectroscopy. To
coherently mix the condensate, we adiabatically compress the trapping field,
typically by raising the laser power from 100 to 700 mW over 100 ms, hold
the compressed condensate for a variable time, adiabatically expanding, and
ballistically expanding while applying the Stern–Gerlach field. We observe
that the fraction of atoms evolved into the polarized projections increases
with high-density hold time and eventually reaches a static level of 50%. We
also observe that the time taken to reach this steady state varies linearly in
density, with an offset given by the critical density at which the quadratic
Zeeman effect dominates the dynamics.

Slight changes in the offset field, beam tilt, and direction of the extraction
gradient affect several variants of the dual-beam atom laser: most commonly,
we observe immediate outcoupling and ballistic flight of the mF = −1 compo-
nent while the mF = +1 component first propagates in the opposite direction
(as expected), then reverses its motion, passes through the parent mF = 0 con-
densate, and escapes along a different trajectory (see Figs. 3 and 4). We also
observe the more intuitive case of both polarized components escaping into
ballistic flight from opposite ends of the cigar-shaped trap.

Future work will explore the nature of correlations and entanglement in
these beams, the possibility of spin-independent outcoupling, and also explore
the possibilities of improving this process into the quasicontinuous regime.
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Fig. 3. A typical outcoupling run of the spinor dynamics-driven dual-beam atom
laser. (a) 0 ms: the full condensate, in situ. (b) +20 ms: immediately after outcou-
pling. The mF = −1 component immediately passes beyond the reach of the dipole
trap and experiences ballistic flight and mean-field expansion. The mF = +1 com-
ponent remains confined in an effective guide and travels in the opposite direction.
(c) +25 ms: the mF = −1 beam continues to propagate while the mF = +1 beam
is turned around and returned toward the origin. (d) +45 ms: the mF = +1 beam
now falls freely and experiences mean-field expansion, like the mF = −1 compo-
nent before it. Note a slightly different path than mF = −1. (e) +50 ms: continued
mF = +1 propagation; note the mF = −1 component has traveled out of the field
of view by this point. Images are 1–0.25 mm; gravity is directed toward the lower
right and the trapping laser is directed toward the upper right.

Finally, it should be possible to implement a number measurement on one
outcoupled component, rendering the untouched component into a known
Fock state and thus ideal for Heisenberg-limited phase measurements. The
scheme of the dual-beam atom laser can be tailored for applications with atom
interferometry with a sensitivity beyond what is achieved with conventional
laser cooled clouds.
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Fig. 4. The effect of adiabatic compression on the spin-mixing process; the top row
shows condensates held for equivalent durations without compression. (a) 100ms of
hold time at 700 mW, (b) 400 ms of hold time, (c) 1.2 s of hold time. The slightly
fewer overall number in (c) is due to condensate lifetime. The ballistic expansion
time for all images is 17.5 ms. Images are 1–0.8 mm.

5 Summary

In this chapter we have presented a summary of technology development effo-
rts at JPL aimed at demonstration of instruments for use in NASA missions in
support of navigation and earth and planetary exploration. By designing these
instruments based on approaches that support fundamental physics investiga-
tion, we hope to gain access to space platforms that are otherwise unavailable
to the fundamental physics community. This strategy is aimed at keeping the
prospects of laboratory style experimental tests of physics in space alive in an
era when support for such investigations has been largely abandoned in favor
of observational experiments, and manned flights.

The research described in this chapter was carried out at the Jet Propul-
sion Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.
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Summary. The techniques of atom cooling combined with atom interferometry
make possible the realisation of very sensitive and accurate inertial sensors like
gyroscopes or accelerometers. Besides earth-based developments, the use of these
techniques in space should provide extremely high sensitivity for research in funda-
mental physics.

1 Introduction

Inertial sensors are useful devices in both science and industry. Higher pre-
cision sensors could find scientific applications in the areas of general rela-
tivity [1], geodesy and geology. There are also important applications of
such devices in the field of navigation, surveying and analysis of earth struc-
tures. Matter-wave interferometry was envisaged for its potential to be an
extremely sensitive probe for inertial forces [2]. First, neutron interferometers
have been used to measure the acceleration due to gravity [3] and the rota-
tion of the Earth [4] at the end of the seventies. In 1991, atom interference
techniques [5, 31] have been used in proof-of-principle work to measure rota-
tions [6] and accelerations [7]. In the following years, many theoretical and
experimental works have been performed to investigate this new kind of iner-
tial sensors [8]. Some of the recent works have shown very promising results
leading to a sensitivity comparable to other kinds of sensors, for rotation [9,10]
as well as for acceleration [11,12].

Atom interferometry [2,6,8,13,14] is nowadays one of the most promising
candidates for ultra-precise and ultra-accurate measurement of gravito-inertial
forces [9–12, 15–17] or for precision measurements of fundamental constants
[18]. The realisation of Bose–Einstein condensation (BEC) of a dilute gas of
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trapped atoms in a single quantum state [19–21] has produced the matter-
wave analog of a laser in optics [22–25]. Alike the revolution brought by lasers
in optical interferometry [1,26,27], it is expected that the use of Bose–Einstein
condensed atoms will bring the science of atom optics, and in particular atom
interferometry, to an unprecedented level of accuracy [28, 29]. In addition,
BEC-based coherent atom interferometry would reach its full potential in
space-based applications where micro-gravity will allow the atomic interfero-
meters to reach their best performance [30].

2 Inertial Sensors Based on Atom Interferometry:
Basic Principle

Generally, atom interferometry is performed by applying successive coherent
phase-locked beam-splitting processes separated by a time T to an ensemble
of particles (see Fig. 1) [31,32], followed by detection of the particles in each of
the two output channels. The interpretation in terms of matter waves follows
from the analogy with optical interferometry. The incoming matter wave is
separated into two different paths by the first beam splitter. The accumu-
lation of phases along the two paths leads to interference at the last beam
splitter, producing complementary probability amplitudes in the two output
channels [33–35]. The detection probability in each channel is then a sine
function of the accumulated phase difference, Δφ.

coherent
beam splitting

coherent
beam mixing

Atom cloud
(N atoms)

Interrogation time: T

N1

N2

~1/T

Output channel 1

Output channel 2

Sensitivity: Δφ
Δφ

Δφ

Δφmin
~ NxT α  

  

Fig. 1. Principle of an atom interferometer. An initial atomic wave packet is split
into two parts by the first beam splitter. The wave packets then propagate freely
along the two different paths for an “interrogation time” T , during which the two
wave packets can accumulate different phases. A second pulse is then applied to the
wave packets so that the number of atoms at each output is modulated with respect
to this phase difference. The maximum sensitivity achievable for such an apparatus
can be defined by comparing the variation of the number of atoms ΔN due to the
phase difference Δφ at the output (ΔN ∼ NΔφ/2π ∝ NT α) with the quantum
projection noise arising from atom counting

√
N . It scales as

√
N × T α.
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Atomic clocks [36–38] can be considered one of the most advanced appli-
cation of atom interferometry [39]. In this “interferometer”, the two differ-
ent paths of Fig. 1 consist of the free evolution of atoms in different internal
states with an energy separation �ωat. An absolute standard of frequency
is obtained by servo-locking a local oscillator to the output signal of the
interferometer. The output signal of the clock then varies as cos(Δω × T )
where Δω is the frequency difference between the transition frequency ωat

and the local oscillator frequency ω. Atom interferometers can also be used
as a probe of gravito-inertial fields. In such applications, the beam splitters
usually consist of pulsed near-resonance light fields which interact with the
atoms to create a coherent superposition of two different external degrees
of freedom, by coherent transfer of momentum from the light field to the
atoms [2, 5, 31]. Consequently, the two interferometer paths are separated in
space, and a change in the gravito-inertial field in either path will result in a
modification of the accumulated phase difference. Effects of acceleration and
rotation can thus be measured with very high accuracy. To date, ground-based
experiments using atomic gravimeters (measuring acceleration) [11,40], grav-
ity gradiometers (measuring acceleration gradients) [15,41] and gyroscopes [9,
10] have been realised and proved to be competitive with existing optical [42]
or artefact-based devices [43].

3 Atom Interferometers Using Light Pulses
as Atom-Optical Elements

The most developed atom interferometer inertial sensors are today atomic
state interferometers [31,48] which in addition use two-photon velocity selec-
tive Raman transitions [44, 45] to manipulate atoms while keeping them
in long-lived ground states. With the Raman excitation, two laser beams
of frequency ω1 and ω2 are tuned to be nearly resonant with an allowed
optical transition. Their frequency difference ω1 − ω2 is chosen to be reso-
nant with a microwave transition between two atomic ground-state levels.
Under appropriate conditions, the atomic population Rabi flops between the
ground-state levels with a rate proportional to the product of the two single-
photon Rabi frequencies and inversely proportional to the optical detuning.
When the beams are aligned to counter-propagate, a momentum exchange of
approximately twice the single-photon momentum accompanies these transi-
tions. This leads to a strong Doppler sensitivity of the two-photon transition
frequency, and can be used to coherently divide (with a π/2 pulse) or deflect
(with a π pulse) atomic wave packets. (On the other hand, when the beams are
aligned to co-propagate, these transitions have a negligible effect on the atomic
momentum, and the transition frequency is almost Doppler insensitive.)
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Usually, an interferometer is formed using a π/2− π− π/2 pulse sequence
to coherently divide,1 deflect and finally recombine an atomic wave packet (as
in a Mach–Zehnder interferometer in optics). The resulting interference can
be directly observed by measuring the atomic ground-state populations [13].
In comparison with mechanical nano-fabricated gratings [14], optical gratings
can be easily vibrationally isolated from the vacuum chamber [46]. Scattering
from standing waves [32, 47] can be efficient and capable of large momentum
transfer. However, these beam splitters typically require a highly collimated
atomic beam. In contrast, the stimulated Raman transition linewidth can
be adjusted to address large transverse velocity spreads, relaxing collimation
requirements and increasing interferometer count rates.

We present in this section a summary of recent work with light-pulse
interferometer-based inertial sensors. We first outline the general principles
of operation of light-pulse interferometers. This atomic interferometer [31,48]
uses two-photon velocity selective Raman transitions [44], to manipulate
atoms while keeping them in long-lived ground states.

3.1 Principle of Light-Pulse Matter-Wave Interferometers

Light-pulse interferometers work on the principle that, when an atom absorbs
or emits a photon, momentum must be conserved between the atom and
the light field. Consequently, an atom which emits (absorbs) a photon of
momentum �k will receive a momentum impulse of Δp = −�k(+�k). When
a resonant travelling wave is used to excite the atom, the internal state of
the atom becomes correlated with its momentum: an atom in its ground state
|1〉 with momentum p (labelled |1,p〉) is coupled to an excited state |2〉 of
momentum p + �k (labelled |2,p + �k〉) [31, 48]. A precise control of the
light-pulse duration allows a complete transfer from one state (for example
|1,p〉) to the other (|2, p + �k〉) in the case of a π pulse and a 50/50 splitting
between the two states in the case of a π/2 pulse (half the area of a π pulse).
This is analogous to a polarising beam splitter (PBS) in optics, where each
output port of the PBS (i.e. the photon momentum) is correlated to the laser
polarisation (i.e. the photon state). In the optical case, a precise control of
the input beam polarisation adjusts the balance between the output ports. In
the case of atoms, a precise control of the light-pulse duration plays the role
of the polarisation control.

In the π/2 − π − π/2 configuration, the first π/2 pulse excites an atom
initially in the |1,p〉 state into a coherent superposition of states |1,p〉 and
|2,p + �k〉. If state |2〉 is stable against spontaneous decay, the two parts
of the wave packet will drift apart by a distance �kT/m in time T . Each
partial wave packet is redirected by a π pulse which induces the transitions

1 There are other possible configurations, such as the Ramsey–Bordé π/2 − π/2 −
π/2−π/2 [6] which can be extended to include multiple intermediate π pulses [8]
or adiabatic transfers [49] to increase the area.
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|1,p〉 → |2,p + �k〉 and |2,p + �k〉 → |1,p〉. After another interval T the two
partial wave packets overlap again. A final pulse causes the two wave pack-
ets to recombine and interfere. The interference is detected by measuring, for
example, the number of atoms in state |2〉. We obtain a large wave packet sep-
aration by using laser-cooled atoms and velocity selective stimulated Raman
transitions [44]. A very important point of these light-pulse interferometers is
their intrinsic accuracy, thanks to the knowledge of the light frequency which
defines the scaling factor of the interferometers.

3.2 Application to Earth-Based Inertial Sensors

Inertial forces manifest themselves by changing the relative phase of the de
Broglie matter waves with respect to the phase of the driving light field,
which is anchored to the local reference frame. The physical manifestation of
the phase shift is a change in the probability to find the atoms, for exam-
ple, in state |2〉, after the interferometer pulse sequence described above. A
complete analytic treatment of wave packet phase shifts in the case of accel-
eration, gradient of acceleration and rotation together [34, 39, 50–52] can be
realised with the ABCDξ formalism, a formalism generalising to matter waves
the ABCD matrices for light optics. In these calculations, it is always impor-
tant to remember that the external fields act not only on the atoms but also
on other components of the experiments, such as mirrors and laser beams
and that additional contributions may enter in the final expression of the
phase (the final phase expression should be independent of the gauge [39,52]).
As an example, the gravitational phase shift, that can be calculated to first
order using the gravitational field action integral on the atomic wave packets
[31, 33, 35, 48], can be removed from the general expression of the interfero-
meter phase shift by a simple coordinate transformation. It will then reappear
in the beam-splitter phases.

The phase shift calculation obtained by an action integral along the unper-
turbed trajectory of the atoms works only to first order. The exact expres-
sion of the phase involves the sum of three contributions: the first one comes
from the beam splitters, the second from the action integral along both paths
and the third from the interferometer end points splitting under the influence
of the perturbing field. When the action is calculated along the perturbed
trajectories, for equal masses, one can show that it cancels for the most part
with the end points splitting contribution [34, 39, 51–53], leaving the beam-
splitter contribution alone with recoil correction terms. This beam-splitter
contribution is a scalar product, hence invariant in coordinate transforma-
tions. If masses are unequal, the action integral produces an additional clock
term which is the product of the mass difference by the mean proper time
along both arms.

If the three light pulses of the pulse sequence are separated only in time,
and not separated in space (usually if the velocity of the atoms is parallel
to the laser beams), the interferometer is in an accelerometer (or gravimeter)
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configuration. In a uniformly accelerating frame with the atoms, the frequency
of the driving laser changes linearly with time at the rate of −k ·a. The phase
shift arises from the interaction between the light and the atoms [8,34,52] and
can be written:

Δφ = φ1(t1) − 2φ2(t2) + φ3(t3) (1)

where φi(ti) is the phase of light pulse i at time ti relative to the atoms. If
the laser beams are vertical, the gravitationally induced chirp can be written
to first order2 in g:

Δφacc = −k · g T 2 (2)

It is important to note that the phase shift Δφ can be calculated in a
more general relativistic framework [8, 54, 55], in which the atomic fields are
second quantized. The starting point is the use of coupled field equations for
atomic fields of a given spin in curved space–time: e.g. coupled Klein–Gordon,
Dirac or Proca equations. Gravitation is described by the metric tensor gμν =
ημν + hμν and by tetrads, which enter in these equations. By considering
hμν as a spin-two tensor field in flat space–time [56–58] and using ordinary
relativistic quantum field theory, it is possible to derive field equations that
display all interesting terms coupling Dirac atomic fields, gravitational and
electromagnetic fields and simple expressions of the corresponding relativistic
phase shifts in atom interferometers [54]. The terms involving h00 lead to the
gravitational shift (h00 = 2g·r/c2), to shifts involving higher derivatives of the
gravitational potential and to the analogue of the Thomas precession (spin–
orbit coupling corrected by the Thomas factor). The gravitational phase shift
(2) can then be seen as the flux of a gravito-electric field −c2∇h00/2 = g
through the interferometer space–time area divided by a quantum of flux
�/M in analogy with electromagnetism. It should be noted that this phase
shift does not depend on the initial atomic velocity or on the mass of the
particle (this is a direct consequence of the equivalence principle).

Recently, an atomic gravimeter with accuracy comparable to the best
corner cube device (FG5) has been achieved [12] (Fig. 2). The main limi-
tation of this kind of gravimeter on earth is due to spurious acceleration from
the reference platform. Measuring gravity gradient may allow to overcome
this problem. Indeed, using the same reference platform for two independent
gravimeters enables to extract gravity fluctuations. Such an apparatus [41],
using two gravimeters as described above but sharing the same light pulses,
has shown a sensitivity of 3 · 10−8 s−2 Hz−1/2 and has a potential on Earth as
good as 10−9 s−2 Hz−1/2.

2 A detailed calculation of the complete phase shifts can be found in [51]. Equa-
tion (1) can be simply written Δφ = −k[(zdown

3 + zup
3 )/2 − zdown

2 − zup
2 + zdown

1 ],
where zdown

i and zup
i represent the intersection of the wave packet classical tra-

jectory with the ith light pulse. The notation down and up are related to the upper
and lower trajectories as depicted in Fig. 1.



Atom Interferometric Inertial Sensors 303

Vibration
Isolator

Raman Beams

magnetic
shield

trapping
beams

blow-away
beam

detection
beams

repumping
beam

trapping
coils

microwave

cesium
atoms

Monitoring of local gravity using T = 400 ms fringes

O
ffs

et
 m

ea
su

re
d 

g 
(μ

G
al

 =
 1

0−8
m

s−2
)

O
ce

an
 lo

ad
in

g 
(μ

G
al

 )

250

200

150

100

50

30

20

10

18 24 30 36 42 48 54 60 66

−10

−20

0

0

−50

−100

−150

−200

Time after 03.07.01 : 00:00 (Pacific Standard Time)/hr

Ocean loading model I (Le Provost et al, 1994)

Experimental data from T = 400 ms fringes
Solid earth tide and ocean loading (model II)

Ocean loading model II (Ray, 1999)
Data corrected for solid earth tide

Fig. 2. Principle of the atom fountain-based gravimeter achieved in S. Chu group
at Stanford. The right figure shows a 2 days recording of the variation of gravity.
The accuracy enables to resolve ocean loading effects.

In the case of a spatial separation of the laser beams (usually if the atomic
velocity is perpendicular to the direction of the laser beams), the interfero-
meter is in a configuration similar to the optical Mach–Zehnder interferome-
ters. Then, the interferometer is also sensitive to rotations, as in the Sagnac
geometry [59] for light interferometers. For a Sagnac loop enclosing an area A,
a rotation Ω produces a phase shift to first order3 in Ω:

Δφrot =
4π
λvL

Ω · A (3)

where λ is the particle wavelength and vL its longitudinal velocity. The area
A of the interferometer depends on the distance L covered between two pulses
and on the recoil velocity vT = �k/m:

A = L2 vT

vL
(4)

In the general relativistic frame, (3) corresponds to the flux of a gravito-
magnetic field c2∇ × h = 2cΩ through an area in space A divided by a
quantum of flux �c/M . The terms that involve h = {h0k} give the Sagnac
effect in a rotating frame, the spin-rotation coupling and a relativistic correc-
tion (analogous to the Thomas precession term for h00). They also describe
the Lense–Thirring effects from inertial frame dragging by a massive rotating
body, which is a source for h.

Thanks to the use of massive particles, atomic interferometers can achieve
a very high sensitivity. An atomic gyroscope [10] using thermal caesium atomic
beams (where the most probable velocity is vL ∼ 300 m s−1) and with an
3 A complete calculation can be found in [39].
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Fig. 3. Schematic diagram of the atomic Sagnac interferometer built at Yale [10].
Individual signals from the outputs of the two interferometers (grey lines), and
difference of the two signals corresponding to a pure rotation signal (black line) vs.
rotation rate.

Fig. 4. General scheme of the two contra-propagating atomic interferometers. The
atoms from the left (interferometer L) are launched with a velocity vL = {vx, 0, vz}
and the atoms from the right (interferometer R) with a velocity vR = {−vx, 0, vz}.
They interact with the Raman beams at time ti at position rL,R

i=1,2,3, respectively.

overall interferometer length of 2 m has demonstrated a sensitivity (Fig. 3) of
6 · 10−10 rad s−1 Hz−1/2. The apparatus consists of a double interferometer
using two counter-propagating sources of atoms, sharing the same lasers.
The use of the two signals enables to discriminate between rotation and
acceleration.

Indeed, acceleration cannot be discriminated from rotation in a single
atomic beam sensor, as stated above. This limitation can be circumvented
by installing a second, counter-propagating, cold atomic beam (see Fig. 4).
When the two atomic beams are aligned to perfectly overlap, the area vectors
for the resulting interferometer loops have opposite directions, and the corre-
sponding rotational phase shifts Δφrot have opposite signs while the acceler-
ation phase shift Δφacc remains unchanged. Consequently, taking the sum of
the two sensors readouts will render the sensor sensitive to acceleration only:
Δφ+ ∼ 2Δφacc while taking the difference between the phase shifts of each
sensor, common mode rejects uniform accelerations so that Δφ− ∼ 2Δφrot.
In addition, the difference Δφ− common rejects the residual geometrical
phase error δΦgeo if the phase fluctuations have no temporal variation on
a timescale 2T , the interferometer time. This is not the case for Δφ+ where
a absolute phase bias 2δΦgeo appears.
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4 Cold Atom Sensors

4.1 Cold Atom Accelerometers

Accelerometer

Following the pioneering work of S. Chu, M. Kasevich and coworkers (see
Fig. 2), new experiments have been developed to test new gravimeter config-
urations [60–62] or to improve previous measurements [63, 64]. We discuss in
detail here the cold atom accelerometer developed at LNE-SYRTE in Paris for
the watt balance experiment [65,141] which is currently setup in the prospect
of a new definition of the mass unit. This gravimeter measures the accelera-
tion of freely falling 87Rb atoms. Here, k (used in (2)) is the effective wave
vector of the Raman transition, and T is the time between the interferometer
Raman pulses.

This setup uses an original frequency locking system that enables to con-
trol dynamically the frequency of the two lasers, over the whole experimen-
tal sequence. First the lasers are tuned to the frequencies required to cool
87Rb atoms in a magneto-optical trap (MOT). Dividing the total available
laser power between a two-dimensional MOT (2D-MOT) [66] and a three-
dimensional MOT (3D-MOT), loading rates of 3 · 109 atoms per second are
obtained. Then, the magnetic field is turned off for further cooling of the
atoms. Once the atoms have been released from the molasses, a frequency
ramp detunes the two vertical counter-propagating beam to a detuning Δ of
up to 2 GHz from the optical transition resonance. This will allow to use both
the cooling and re-pumping vertical laser beam of the MOT as the Raman
laser with negligible spontaneous emission (which is a decoherence process).
To be used as Raman lasers, the frequency difference between these two lasers
has to be subsequently phase locked with a high-bandwidth PLL. To reach an
accuracy of 10−9 × g, the phase error arising from the transient evolution of
their relative phase has to remain below 0.3 mrad [63]. It takes a few hundreds
μs for the lock to come perfectly to the right frequency and to start phase
locking (see Fig. 5), the 0.3 mrad criterion being reached in about 2 ms. (The
measured spectral phase noise density in steady state [67] corresponds to a
contribution of 0.56 mrad rms of phase noise in the atomic interferometer, i.e.
10−9 × g rms.)

The Raman detuning Δ can be changed at will and other sweeps can be
added in the cycle. This enables to realise first a velocity selective Raman
pulse (∼ 35 μs), with the detuning of 2 GHz which reduces the spontaneous
emission. Then the detuning is swept back by 1 GHz for the interferometer
itself, to achieve a better transfer efficiency.4 Finally, the phased-locked Raman
lasers are used to realise the interferometer. Owing to the Doppler effect, the

4 Roughly speaking, the transfer efficiency is related to the pulse duration τ ∝ Δ/I
where I is the Raman laser intensity, since for smaller τ , the Raman diffraction
process will be less velocity selective [45].
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Fig. 5. Left : Relative Raman beams phase error. The phase lock loop (PLL) is
closed at t = 0 after the 2 GHz sweep. After 0.5 ms, the phase error is exponentially
decreasing with a time constant of 2ms. Right : Atomic interferometer fringes obt-
ained by scanning the Raman detuning chirp rate within the interferometer. The
time between the Raman pulses is T = 50 ms. The solid line is a sinusoidal fit of
the experimental points.

Raman detuning has to be chirped to compensate for the increasing vertical
velocity of the atomic cloud. This chirp a, obtained by sweeping the frequency
difference between the two lasers, induces an additional phase shift. The total
interferometric phase is then given by: ΔΦ = (kg−a)T 2. Figure 5 displays the
interferometric fringes obtained by scanning the chirp rate. In this experiment,
T is 50 ms and the sensitivity is presently of 3.5 · 10−8 g Hz−1/2, limited by
residual vibrations of the apparatus.

ONERA currently develops a gravimeter with cold atoms that should sus-
tain external disturbances to make the instrument capable of being put on-
board. For that, they take advantage of the abundance and the reliability of
fibred components resulting from telecommunication technology. Indeed, the
first limitations with the embarquability of these devices are optical: the laser
sources necessarily require a good spectral quality (< 1 MHz), to be tunable
near the atomic transition, operating CW with high powers (of a few tens to
a few hundreds of milliwatts). The conventional techniques use lasers diode
with external cavities, which makes the source sensitive to the vibrations.
Moreover, the optical benches necessary to prepare the beams are generally
large and hardly reducible. As shown later on in this chapter, the use of the
components resulting from telecommunication technology will enable to profit
from the robustness, perennity of those components and make it possible at
the same time to miniaturize the optical system and to improve its reliability
(Fig. 6).

Gradiometers

The measurement of the gradient of gravitational fields has important scientific
and technical applications. These applications range from the measurement
of G, the gravitational constant and tests of general relativity [68,69] to covert
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Fig. 6. The Girafon gravimeter which is being constructed at ONERA, Palaiseau.

navigation, underground structure detection, oil-well logging and geodesy [70].
Initially at Stanford university in 1996, the development of a gravity gradiome-
ter, whose operation is based on recently developed atom interference and laser
manipulation techniques, has been followed by other developments for either
space [71] or fundamental physics measurements [72]. A crucial aspect of every
design is its intrinsic immunity to spurious accelerations.

The overall method is illustrated in Fig. 7. It uses light-pulse atom inter-
ferometer techniques [7,8,13] to measure the simultaneous acceleration of two
laser-cooled ensembles of atoms. The relative acceleration of the atom clouds
is measured by driving Doppler-sensitive stimulated two-photon Raman tran-
sitions [44] between atomic ground-state hyperfine levels. The geometry is
chosen so that the measurement axis passes through both laser-cooled ensem-
bles. Since the acceleration measurements are made simultaneously at both
positions, many systematic measurement errors, including platform vibration,
cancel as a common mode. This type of instrument is fundamentally different
from current state-of-the-art instruments [73, 74]. First, the proof masses are
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Fig. 7. Gradiometer developed in Stanford. Insert (bottom right), example of an
application of this gradiometer to make a measurement of G [41]. A mass of 540 kg
lead is alternatively brought closer to each atomic gravimeter. This preliminary
measurement shows the strong potential of this system for precise measurements.

individual atoms rather than precisely machined macroscopic objects. This
reduces systematic effects associated with the material properties of macro-
scopic objects. Second, the calibration for the two accelerometers is referenced
to the wavelength of a single pair of frequency-stabilised laser beams, and is
identical for both accelerometers. This provides long-term accuracy. Finally,
large separations (�1 m) between accelerometers are possible. This allows for
the development of high sensitivity instruments.

The relative acceleration of the two ensembles along the axis defined by the
Raman beams is measured by subtracting the measured phase shifts Δφ(r1)
and Δφ(r2) at each of two locations r1 and r2. The gradient is extracted
by dividing the relative acceleration by the separation of the ensembles. This
method determines only one component of the gravity-gradient tensor.

The Measurement of G

The Newtonian gravitational constant G is – together with the speed of light –
the most popular physical constant. Introduced by Newton in 1686 to describe
the gravitational force between two massive objects and first measured by
Cavendish more than a hundred years later [75], G became more and more
the subject of high-precision measurements. There are many motivations for
such measurements [76], ranging from purely metrological interest for deter-
minations of mass distributions of celestial objects to geophysical applications.
In addition, many theoretical models profit from an accurate knowledge of G.
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Fig. 8. Graphical illustration of the MAGIA experimental setup with the vacuum
system, the atomic trajectories and the source mass positions. The laser systems, the
detection units and the source mass holder are not included. The atomic trajectories
during the time of the interferometer pulse sequence are sketched (dashed arrows).

Despite these severe motivations and some 300 measurements in the past
200 years, the 1998 CODATA [77] recommended value of G = (6.673 ±
0.010) · 1011 m3 kg−1 s−2 includes an uncertainty of 1,500 parts per million
(ppm). Thus, G is still the least accurately known fundamental physical con-
stant. Recently, two measurements with much smaller uncertainties of 13.7
and 41 ppm have been reported [78]. However, the given values for G still
disagree on the order of 100 ppm. Therefore, it is useful to perform high res-
olution G measurements with different methods. This may help to identify
possible systematic effects. It is worthwhile to mention that, so far, only few
conceptually different methods have resulted in G measurements at the level of
1,000 ppm or better [79]. All these methods have in common that the masses,
which probe the gravitational field of external source masses, are suspended
(e.g. with fibres). One way to exclude this possible source of systematic effects
is to perform a free-fall experiment. A high-precision measurement of G using
a free-falling corner cube (FFCC) has already been performed [80] but the un-
certainty remained on the order of 1,400 ppm. Experiments such as the Yale
gradiometer or MAGIA developed in Italy, in which free-falling atoms are used
to probe the gravitational acceleration originating from nearby source masses,
are expected to surpass these results (Fig. 8).
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4.2 Cold Atom Gyroscope and Cold Atom Inertial Base

Cold matter-wave gyroscopes using atomic samples with slow drift velocities
of a few m s−1 are at present under construction at the IQ (Institut für Quan-
tenoptik, Hannover) and have been demonstrated at LNE-SYRTE (Systèmes
de Référence Temps-Espace, Paris). Both devices follow different design strate-
gies. The cold atom sensor GOM (for Gyromètre à Onde de Matière) deve-
loped in collaboration between SYRTE and IOTA [81] is based on two
caesium fountains. The two caesium ensembles are simultaneously prepared
in MOTs and launched by the moving molasses technique with a speed of
about 2.4 m s−1 and 82◦ in vertical direction such that they cross each other
at the vertex. The interferometer is realised by applying the Raman pulses at
the vertex of the atomic parabolas. The expected resolution of the setup is
4 · 10−8 rad s−1 Hz−1/2.

The cold atom Sagnac interferometer (CASI) at the IQ is based on a flat
parabola design and uses intense sources of cold 87Rb atoms. Figure 9 shows
the vacuum chamber made out of aluminium with glued optical windows. The
atomic sources on each end of the apparatus are based on a 3D-MOT loaded
by a 2D-MOT. The 2D-MOT displays high performance with more than 1010

atoms per second. The typical loading rate of the 3D-MOT is a few 109 atoms
per second such that 108 atoms can be loaded in the MOT in 0.1 s. Alterna-
tively, the performance of the 3D-MOT can be further improved by Raman
cooling in optical lattices. The actual interferometer will have a length of up

Fig. 9. The vacuum chamber of CASI. The central part shows the interferometry
chamber with three spatially separated optical viewports for the interferometry
lasers. On both sides of this chamber, a dual stage atom source is mounted which
serves for the preparation of the cold atomic ensembles. The four wings on each side
are the telescopes that generate elliptically shaped laser beams out of fibre-coupled
lasers for cooling and trapping the Rubidium atoms.
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to 15 cm. The coherent manipulation of the atoms (splitting, reflection and
recombination) is performed by a temporal and/or spatially separated seq-
uence of Raman-type interactions at the centre of the apparatus. With these
parameters a shot-noise limited resolution of about 2 · 10−9 rad s−1 Hz−1/2

should be feasible using about 108 atoms per shot. CASI will investigate the
ultimate sensitivity obtainable in cold matter-wave sensors. There is a large
potential for further improvements, thanks to the expected higher stability
with the use of intense cold atomic sources with a flux of more than 1010

atoms per second. Apart from lowering the atomic speed, the sensitivity of
the apparatus can be enhanced by increasing the momentum transferred at the
beam splitter as in higher-order Raman or Bragg transitions or in magneto-
optical blazed light gratings. Their suitability for metrological applications
(reproducibility, accuracy, systematic errors), however, is still to be verified.
Viewing the relatively small areas achieved by present atom interferometers,
an interesting alternative for such sensors may consist in waveguides (which
do not deteriorate the achievable uncertainty).

The GOM is a six-axis inertial sensor. The direction of sensitivity of the
setup is defined by the direction of the Raman interrogation laser with respect
to the atomic trajectory. As illustrated in Fig. 10, with a classical three-pulse
sequences (π/2 − π − π/2), a sensitivity to vertical rotation Ωz and to hori-
zontal acceleration ay is achieved by placing the Raman lasers horizontal
and perpendicular to the atomic trajectory [9] (Fig. 10a). The same sequence,
using vertical lasers, leads to the measurement of horizontal rotation Ωy and
vertical acceleration az (Fig. 10b). Thanks to the specific setup of the GOM, it
is possible to have access to the other components of acceleration and rotation
which lie along the horizontal direction of propagation of the atoms (x-axis).
The use of cold atoms in strongly curved trajectories allows to point the
Raman lasers along the x-direction, offering a sensitivity to acceleration ax

and no sensitivity to rotation (Fig. 10c). Easy access to the horizontal rotation
Ωx is achieved by changing the pulse sequence to four pulses: π/2−π−π−π/2
(Fig. 10d).

The new butterfly configuration was first proposed to measure the gravity
gradient [2, 82]. It can be used to measure rotations with the same Raman
beams as in the previous configuration (y-axis) but in a direction (x-axis)
that cannot be achieved with a standard three-pulse sequences. Four pulses,
π/2− π − π − π/2, are used, separated by times T/2− T − T/2, respectively.
The atomic paths cross each other leading to a twisted interferometer. The
horizontal projection of the oriented area cancels out so that the interferometer
is insensitive to rotation around the z-axis. In contrast, the vertical projection
now leads to a sensitivity to rotation around the x-axis:

Δφ =
1
2
(k × (g + a)) · Ω T 3 . (5)

This sensitivity to rotation appears from a crossed term with acceleration
(g+a) and is no longer dependent on the launching velocity. This configuration
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Fig. 10. Six-axis inertial sensor principle. The atomic clouds are launched on a
parabolic trajectory, and interact with the Raman lasers at the top. The four con-
figurations (a)–(d) give access to the three rotations and three accelerations. In the
three pulses configuration, the Raman beams direction can be horizontal or verti-
cal, creating the interferometer in a horizontal (a) or vertical (b, c) plane. With
a butterfly four-pulse sequence of horizontal beams (d), the rotation Ωx can be
measured.

is not sensitive to DC accelerations along the direction of the Raman laser, but
remains sensitive to fluctuations of horizontal and vertical accelerations. With
an isolation platform, the remaining fluctuations are negligible compared to g,
which does not compromise the stability of the scaling factor. The sensitivity
to rotation is comparable with that of configurations (a) and (b). With 2T =
60 ms, this configuration leads to a interferometer area reduced by a factor 4.5,
but it scales with T 3 and thus should present a higher sensitivity for longer
interrogation times.

The atomic fringe patterns are presented in Fig. 11 and show contrasts of
4.9 and 4.2% for interferometers A and B, respectively. By operating the inter-
ferometer on the fringe side, as explained before, a signal-to-noise ratio from
shot to shot of 18, limited by the residual vibrations, is achieved. The sensitiv-
ity to rotation is equal to 2.2·10−5 rad s−1 in 1 s, decreasing to 1.8·10−6 rad s−1

after 280 s of averaging time.
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Fig. 11. Fringes obtained with both interferometers A and B in the four-pulse
butterfly configuration for a total interrogation time of 2T = 60 ms.

4.3 Ultra-Cold Sources and Applications in Space

The ultimate phase sensitivity of an atom interferometer is, aside from tech-
nical difficulties, limited by the finite number of detected particles N and
scales as Δφmin = 1/

√
N (quantum projection noise limit [83,84]). Of course,

the relation between the relative phases accumulated along the two different
paths and the actual physical property to be measured is a function of the
“interrogation” time T spent by the particles between the two beam splitters.
Thus, the ideal sensitivity of an atom interferometer is expected to scale5 as√

N Tα with α > 0, and it is obviously of strong interest to increase these two
factors. Using cold atomic sources helps this quest for higher performances in
two ways. First, a reduction of the velocity dispersion of the atomic sample
(a few mms−1) allows to reduce drastically the longitudinal velocity of the
atoms vL (few cm s−1) and enhances in the same way the enclosed area and
the sensitivity for a constant length. Second, the accuracy and the knowledge
of the scaling factor depend directly on the initial velocity of the atoms and
can be better controlled with cold atomic sources than with thermal beams,
as it has already been demonstrated with atomic clocks [85].

Nevertheless, seeking to increase the sensitivity of on-ground atom inter-
ferometers by increasing the interrogation time T , one soon reaches a limit
imposed by gravity. With the stringent requirements of ultra-high vacuum
and a very well-controlled environment, the current state-of-the-art in exp-
erimental realisations does not allow more than a few metres of free fall,

5 An atomic clock or an atomic gyrometer, for example, has a sensitivity propor-
tional to T and an on-ground gravimeter has a sensitivity proportional to T 2 due
to the quadratic nature of free-fall trajectory in a constant gravitational field.
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atoms at ultra-cold temperatures, close to the quantum degenerate regime.

with corresponding interrogation times of the order of T ∼ 400ms. Space-
based applications will allow much longer interrogation times to be used,
thereby increasing dramatically the sensitivity and accuracy of atom interfer-
ometers [30].

Even in space, atom interferometry with a classical atomic source will not
outperform the highest-precision ground-based atom interferometers that use
samples of cold atoms prepared using standard techniques of Doppler and
sub-Doppler laser cooling [86]. Indeed, the temperature of such sub-Doppler
laser-cooled atom cloud is typically ∼1 μK (vrms ∼1 cm s−1). In the absence of
gravity, the time evolution of cold samples of atoms will be dominated by the
effect of finite temperature: in free space, a cloud of atoms follows a ballistic
expansion until the atoms reach the walls of the apparatus where they are lost.
Therefore the maximum interrogation time reasonably available for space-
based atom interferometers will strongly depend on the initial temperature of
the atomic source. As shown in Fig. 12, the 200 ms limit imposed by gravity
for a 30 cm free fall is still compatible with typical sub-Doppler temperatures,
whereas an interrogation time of several seconds is only accessible by using
an “ultra-cold” source of atoms (far below the limit of laser cooling) with a
temperature of the order of a few hundred nano-kelvin.
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4.4 HYPER: A Proposal to Measure the Lense–Thirring Effect
in Space

The HYPER project (hyper precision cold atom interferometry in space) was
proposed to ESA in 2002 with the goal to benefit from the space environment,
which enables very long interaction times (a few seconds) and a low spurious
vibrational level. The sensitivity of the atomic interferometer is expected to
reach a few 10−12 rad s−1 Hz−1/2 for rotation and 10−12 × g Hz−1/2 for acc-
eleration. This very sensitive and accurate apparatus offers the possibility
of different tests of fundamental physics [30]. It can realise tests of general
relativity by measuring the signature of the Lense–Thirring effect (magnitude
and sign) or testing the equivalence principle on individual atoms. It can also
be used to determine the fine structure constant by measuring the ratio of
Planck’s constant to an atomic mass.

The Lense–Thirring Effect

The measurement of the Lense–Thirring effect is the first scientific goal of
the HYPER project and will be described in more detail in this section. The
Lense–Thirring effect consists of a precession of a local inertial reference frame
(realised by inertial gyroscopes) with respect to a non-local one realised by
pointing the direction of fixed stars under the influence of a rotating massive
body. This Lense–Thirring precession is given by

ΩLT =
GI

c2
3(ω · r)r − ωr2

r5
(6)

where G is Newton’s gravitational constant, I the Earth’s inertial momen-
tum and ω the angular velocity of the Earth. The high sensitivity of atomic
Sagnac interferometers to rotation rates will enable HYPER to measure the
modulation of the precession due to the Lense–Thirring effect while the satel-
lite orbits around the Earth. In a Sun-synchronous circular orbit at 700 km
altitude, HYPER will detect how the direction of the Earth’s drag varies over
the course of the near-polar orbit as a function of the latitudinal position θ(

Ωx

Ωy

)
∝ 3

2

(
sin(2θ)

cos(2θ) − 1
3

)
, (7)

where ex and ey define the orbital plane with ey being parallel to the Earth’s
inertial momentum I and θ ≡ arcos(r · ex) (Fig. 13).

The HYPER Payload

HYPER carries (Fig. 14) two atomic Sagnac interferometers, each of which is
sensitive to rotations around one particular axis, and a telescope used as highly
sensitive star tracker (10−9 rad in the 0.3–3 Hz bandwidth). The two units will
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Fig. 13. Hyper gyroscopes consist of two differential atomic Sagnac interferometers
in two orthogonal planes. The beam-splitting optical components are rigidly con-
nected to the optical bench which carries the precision star tracker and serves as a
non-inertial reference.

Fig. 14. Diagram of the measurement of the Lense–Thirring effect. The black lines
visualise the vector field of the Earth’s drag ΩLT . The sensitive axes of the two
ASUs are perpendicular to the pointing of the telescope. The direction of the Earth’s
drag varies over the course of the orbit showing the same structure as the field of a
magnetic dipole. Due to this formal similarity, the Lense–Thirring effect is also called
gravito-magnetic effect. The modulation of the rotation rate ΩLT due to Earth’s
gravito-magnetism as sensed by the two orthogonal ASUs in the orbit around the
Earth appears at twice the orbit frequency.

measure the vector components of the gravito-magnetic rotation rate along the
two axes perpendicular to the telescope pointing direction which is directed
to a guide star. The drag variation written above describes the situation for
a telescope pointing in the direction perpendicular to the orbital plane of
the satellite. The orbit, however, changes its orientation over the course of
a year which has to be compensated by a rotation of the satellite to track
continuously the guide star. Consequently the pointing of the telescope is not
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always directed parallel to the normal of the orbital plane. According to the
equation, the rotation rate signal will oscillate at twice the frequency of the
satellite revolution around the Earth. The modulated signals have the same
amplitude (3.75 · 10−14 rad s−1) on the two axes but are in quadrature. The
resolution of the atomic Sagnac units (ASU) is about 3 · 10−12 rad s−1 for a
drift time of about 3 s. Repeating this measurement every 3 s, each ASU will
reach after one orbit of 90 min the level of 7 · 10−14 rad s−1, in the course of
1 year the level of 2 · 10−15 rad s−1, i.e. a tenth of the expected effect.

5 Coherent Atom Sensors: BEC and Atom Lasers

Dense ultra-cold samples of atoms are now routinely produced in laboratories
all around the world. Using evaporative cooling techniques [19–21], one can
cool a cloud of a few 106 atoms to temperatures below 100 nK [87]. At a
sufficiently low temperature and high density, a cloud of atoms undergoes a
phase transition to quantum degeneracy. For a cloud of bosonic (integer spin)
atoms, this is known as Bose–Einstein condensation, in which all the atoms
accumulate in the same quantum state (the atom-optical analog of the laser
effect in optics). A BEC exhibits long-range correlation [24, 25, 88] and can
therefore be described as a coherent “matter wave”: an ideal candidate for
the future of atom interferometry in space. The extremely low temperature
associated with a BEC results in a very slow ballistic expansion, which in turn
leads to interrogation times of the order of several tens of seconds in a space-
based atom interferometer. In addition, the use of such a coherent source for
atom optics could give rise to novel types of atom interferometry [28, 29, 52,
62,89,90].

5.1 Atom Laser: A Coherent Source for Future Space Applications

The idea for an atom laser pre-dates the demonstration of the exotic quantum
phenomenon of BEC in dilute atomic gases. But it was only after the first such
condensate was produced in 1995 that the pursuit to create a laser-like source
of atomic de Broglie waves became intense.

In a Bose–Einstein condensate all the atoms occupy the same quantum
state and can be described by the same wave function. The condensate there-
fore has many unusual properties not found in other states of matter. In
particular, a Bose condensate can be seen as a coherent source of matter
waves. Indeed, in a (photonic) laser all the photons share the same wave func-
tion. This is possible because photons have an intrinsic angular momentum,
or “spin”, equal to the Planck’s constant �. Particles that have a spin that is
an integer multiple of � obey Bose–Einstein statistics. This means that more
boson can occupy the same quantum state. Particles with half-integer spin
– such as electrons, neutrons and protons, which all have spin �/2 – obey
Fermi–Dirac statistics. Only one fermion can occupy a given quantum state.
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Fig. 15. Evaporative cooling towards Bose–Einstein condensation (from [91]).
Initially, atoms are trapped in optical molasses using radiative forces. Then, the
atoms are transferred in magnetic trap where they can stay trapped for hundred of
seconds. Since no damping exists in such trap (as opposed to radiative traps), an
evaporative cooling technique is used to remove the hottest atoms. In this technique,
the trap is capped at a chosen height (using RF-induced spin flip) and the atoms
with higher energy escape. By lowering the trap height, an ultra-cold high-density
sample of atoms is obtained. The bottom right picture shows the BEC transition
where a tiny dense peak of atoms (a coherent matter wave) appears at the centre of
a Maxwell–Boltzman distribution (incoherent background).

A composite particle, such as an atom, is a boson if the sum of its pro-
tons, neutrons and electrons is an even number; the composite particle is a
fermion if this sum is an odd number. Rubidium-87 or Caesium-133 atoms, for
example, are bosons, so a large number of them can be forced to occupy the
same quantum state and therefore have the same wave function. To achieve
this, a large number of atoms must be confined within a tiny trap and cooled
to sub-millikelvin temperatures using a combination of optical and magnetic
techniques (see for example [92]). The Bose–Einstein condensates are pro-
duced in confining potentials such as magnetic or optical traps by exploiting
either the atom’s magnetic moment or an electric dipole moment induced by
lasers (Fig. 15). In a magnetic trap, for instance, once the atoms have been
cooled and trapped by lasers, the light is switched off and an inhomogeneous
magnetic field provides a confining potential around the atoms. The trap is
analogous to the optical cavity formed by the mirrors in a conventional laser.
To make a laser we need to extract the coherent field from the optical cavity
in a controlled way. This technique is known as “output coupling”. In the case
of a conventional laser the output coupler is a partially transmitting mirror.
Output coupling for atoms can be achieved by transferring them from states
that are confined to ones that are not, typically by changing an internal de-
gree of freedom, such as the magnetic states of the atoms. The development of
such atom laser is providing atom sources that are as different from ordinary
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Fig. 16. Various types of atom lasers: (a) At MIT, intense RF pulses spin flips the
atoms from a trapped state to an untrapped state. They fall under gravity. (b) In
Yale, the condensate is loaded in an optical lattice. The combination of tunnel effect
and gravity produces coherent pulses of atoms. (c) At NIST, Raman pulses extract
atoms’ pulses in a chosen direction. When the pulses overlap, a quasi-continuous
atom laser is achieved. (d) In Munich, a weak RF coupler extracts a continuous
atom wave from the condensate.

atomic beams as lasers are from classical light sources, and promises to out-
perform existing precision measurements in atom interferometry [28,29,90] or
to study new transport properties [93–95].

The first demonstration of atomic output coupling from a Bose–Einstein
condensate was performed with sodium atoms in a magnetic trap by
W. Ketterle and co-workers at the Massachusetts Institute of Technology
(MIT) in 1997. Only the atoms that had their magnetic moments pointing in
the opposite direction to the magnetic field were trapped. The MIT researchers
applied short radio-frequency pulses to “flip” the spins of some of the atoms
and therefore release them from the trap (see Fig. 16a). The extracted atoms
then accelerated away from the trap under the force of gravity. The output
from this rudimentary atom laser was a series of pulses that expanded as they
fell due to repulsive interactions between the ejected atoms and those inside
the trap. Later T. Hänsch and colleagues at the Max Planck Institute for
Quantum Optics in Munich extracted a continuous atom beam that lasted
for 0.1 s. The Munich team used radio-frequency output coupling in an exp-
erimental setup that was similar to the one at MIT but used more stable
magnetic fields (see Fig. 16b). Except for a few cases [24,96], the outcoupling
methods do not allow to chose neither the direction nor the wavelength of the
atom laser beam. In addition, the intrinsic repulsion between the atom laser
beam and the BEC has dramatic effects [97,98] and gravity plays a significant
role [99], such that the atom laser wavelength becomes rapidly small (Fig. 17).
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Fig. 17. Absorption images of a non-ideal atom laser, corresponding to density
integration along the elongated axis x of the BEC. The figures correspond to differ-
ent heights of RF-outcoupler detunings with respect to the bottom of the BEC:
(a) −0.37 μm, (b) −2.22 μm, (c) −3.55 μm. The graph above shows the
RF-outcoupler (dashed line) and the BEC slice (red) which is crossed by the atom
laser and results in the observation of caustics. The field of view is 350×1,200 μm2

for each image.

The solution to overcome these limitations is either to develop coherent
sources in space [90] or to suspend the atom laser during its propagation.
For the latter, many atomic waveguides have been developed for cold thermal
beams [100–107] or even for degenerate gases [95,108,109]. Nevertheless, as in
optics, the transfer of cold atoms from magneto-optical traps into these small
atom guides represents a critical step and so far, coupling attempts using
either cold atomic beams [102, 110] or cold atomic clouds [101, 104, 105, 111]
have led to relatively low coupling efficiency. To increase this efficiency, a
solution consists in creating the atom laser directly into the guide [112], leading
eventually to a continuous guided atom laser [113] analogous to the photonic
fibre laser. This has been recently achieved in Orsay (LCFIO), where the BEC
from which the atom laser is extracted from is pigtailed to the atom guide.
In this setup, an atom laser is outcoupled from a hybrid opto-magnetic trap to
a optical guide. The propagation direction is fixed by the propagation direction
of the dipole trap laser beam and the velocity of the outcoupled atoms can
be controlled by carefully adjusting the guide parameters. Using this scheme,
atomic de Broglie wavelengths as high as 0.7 μm was observed (Fig. 18).

5.2 Application to �/m Measurement

The quantized exchange of momentum between light and atoms has opened
the way to measurements of the de Broglie–Compton frequency of atomic
species mc2/h by direct frequency measurements [141]. The use of cold atom
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Fig. 18. (a) Schematic view of the setup. The BEC is obtained in a crossed hybrid
magnetic and optical trap. The optical trap is horizontal. Its focus is shifted in the
longitudinal direction z so as to attract the atoms. (b) Experimental absorption
image of a guided atom laser after 50ms of outcoupling. The imaging is along the
x-axis.

interferometric techniques has subsequently led to very accurate determina-
tions of the fine structure constant α from the ratio of the Rydberg constant
to this frequency [18,60].

Among the various new experiments aiming to improve these measure-
ments of α via the measurement of the ratio �/m, two experiments demon-
strated a coherent matter-wave interferometer based on Bragg scattering [29,
90]. In the following, we shall review the measurement achieved in the Groupe
d’Optique Atomique in Orsay (LCFIO).

Principle of Bragg Scattering

The principle of Bragg scattering is the following [114, 115]: two counter-
propagating laser beams of wave vector ±kL and frequencies νL and νL + δν
form a moving light grating. The common frequency νL is chosen to be in the
optics domain but far detuned from atomic resonances to avoid spontaneous
emission. A two-photon transition, involving absorption of a photon from one
beam and stimulated re-emission into the other beam, results in a coherent
transfer of momentum pf − pi = 2�kL from the light field to the atoms,
where pi and pf are the initial and final momenta of the atoms. Conservation
of energy and momentum leads to the resonance conditions Ef = Ei + hδν,
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Fig. 19. Principle of Bragg scattering: a moving standing wave, formed from two
counter-propagating laser beams with a small relative detuning δν, can coherently
transfer a fraction of the atoms to a state of higher momentum when the resonance
condition is fulfilled. A two-photon Bragg scattering event imparts a momentum
2�kL, and an energy of hδν to the atoms: thus, the first-order (two photon) Bragg res-
onance for atoms with zero initial velocity occurs at a detuning of hδν = 4�2k2

L/2m.
This resonance condition depends on the initial velocity of the atoms relative to the
optical standing wave.

where (in free space) the initial and final energies of the atoms are given by
Ei = p2

i /2m and Ef = p2
f /2m, respectively. Bragg scattering can be used for

different types of matter-wave manipulation, depending on the pulse length τ .
Using a short pulse (τ < 100 μs), the Bragg beams are sufficiently frequency
broadened that the Bragg process is insensitive to the momentum distribution
within the condensate: the resonance condition is then satisfied simultaneously
for the entire condensate. If the Bragg laser power and pulse duration are then
selected to correspond to the π/2 condition, the probability of momentum
transfer to the atoms is 50%: this is a 50/50 beam splitter for the conden-
sate, between two different momentum states. When using longer pulses (for
example τ = 2 ms in [116]), the Bragg process is velocity selective, and one
can apply this technique to momentum spectroscopy [88,116] (Fig. 19).

�/m Measurement

The experimental sequence proceeds as follows [116,117]: a laser-cooled sample
of 87Rb atoms is magnetically trapped in the 5S1/2|F = 1,mF = −1〉 state
and then evaporatively cooled to quantum degeneracy. The magnetic trap-
ping fields are switched off and the atoms fall for 25 ms. During this free-fall
period, the coherent Bragg scattering “velocimeter” pulse is applied. In this
experiment, the implementation of Bragg scattering is as follows: two orthogo-
nally polarised, co-propagating laser beams of frequencies νL and νL + δν and
wave vector kL are retroreflected by a highly stable mirror, with 90◦ pola-
risation rotation (see Fig. 20). With this scheme, the atoms are submitted
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Fig. 20. Principle of our four photon, dual direction Bragg scattering scheme. Top:
schematic of the experimental apparatus. Two retroreflected laser beams form two
standing waves of orthogonal polarisations, moving in opposite directions. Middle:
normalised number of atoms diffracted into each of the two output channels as a
function of Bragg detuning δν. (Inset : typical absorption image after Bragg dif-
fraction and free evolution during a time ttof .) Bottom: schematic picture of the
four-photon Bragg resonance condition. For zero initial momentum, the resonance
condition is fulfilled by both standing waves for a detuning δν0. For non-zero initial
momentum pi, the resonance frequency is equally and oppositely shifted for each of
the two channels.

to two standing waves moving in opposite directions and with orthogonal
polarisations. In addition, the relative detuning δν is chosen so as to fulfill the
second-order (four photon) resonance condition. This four laser Bragg scatter-
ing scheme produces a coherent transfer of momentum of +4�kL and −4�kL.
This scheme enables to reject the effect of a non-zero initial velocity, which can
arise from imperfections in the magnetic trap switch-off. For an initial veloc-
ity pi/m, the four-photon resonance conditions for the two oppositely moving
standing waves are δν+ = δν0(1+pi/2�kL) and δν− = δν0(1−pi/2�kL), where
δν0 is the Doppler-free value, δν0 = (8/2π)(�k2

L/2m) (see Fig. 20). Scanning
the Bragg scattering efficiency in the two directions as a function of δν yields
two peaks with widths corresponding to the condensate momentum width,
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Fig. 21. Final spectrum (corrected for Doppler effect). The fit to this spectrum
yields the centre frequency δν0, from which we obtain the ratio h/m.

centred at each of the resonance frequencies, δν+ and δν− (Fig. 20). After
fitting each individual spectrum with a Gaussian distribution, the two centre
frequencies δν± are extracted. To correct the data for the non-zero initial
velocity, both spectra are then centred around the average value δν0 =
(δν+ + δν−)/2.

After averaging over 350 spectra (Fig. 21), the centre detuning was mea-
sured to be δν0 = 30.189(4) kHz where the figure in parentheses is the 68%
confidence interval of the fit. This corresponds to a value h/m ≡ λ2×δν0/4 =
4.5946(7) · 10−9 m2 s−1 where the wavelength λ = 780.246291(2) · 10−9 of the
Bragg beams, slightly detuned from the

(
52S1/2,F = 2

)
→
(
52P3/2,F = 3

)
optical transition, is very accurately known from [118,119]. The offset between
the measurement and the CODATA value of h/m (4.59136 · 10−9 m2 s−1) can
be explained by two major systematic effects. First, as described in [116], the
frequencies νL and νL + δν of the Bragg scattering beams were obtained by
using two independently driven acousto-optical modulators (AOM) of cen-
tre frequency 80 MHz. The frequency difference δν was then deduced from
the measurement of the frequency of each AOM driver with a high-precision
frequency metre that had an accuracy of about 4× 10−7, giving a ±16 Hz in-
accuracy in the actual frequency difference δν. The resulting systematic error
then gives h/m = 4.5946(20)(7) · 10−9 m2 s−1. The second systematic effect is
a collisional shift due to interactions in the high-density atomic cloud.

Effects of Interactions in a High-Density Atomic Sample

Ultra-cold 87Rb atoms have repulsive interactions which modify the Bragg
scattering resonance condition. The energy of an atom in the condensate is
Ei = p2

i /2m + Un(r). The second term is the condensate interaction energy:
n(r) is the local atomic density of the condensate and U = 5.147(5) ×
10−51 J m3 is the interaction parameter. Immediately after Bragg scattering
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into a different momentum state, an atom experiences an effective poten-
tial 2Un(r) due to the surrounding condensate, and its energy is then
Ef = p2

f /2m + 2Un(r) [88]. We can therefore replace the Bragg resonance
condition (for zero initial momentum) with a local resonance condition which
takes into account the effect of interactions:

2hδν0(r) = 16
�2k2

L

2m
+ Un(r) (8)

The parabolic density distribution of our Bose–Einstein condensate, at the
time where the Bragg diffraction occurs, is

n(x, y, z) = n0 · max
[
0 ; 1 − (x2 + y2)/R2

⊥ − z2/R2
z

]
with peak density n0 � 3.6(4) · 1018 m−3 and half-lengths R⊥ � 9.8 μm and
Rz � 126 μm, where z is the direction of the Bragg scattering. Since the above
measurement of the diffraction efficiency averages over the whole cloud, the
resulting spectrum is then shifted by U〈n〉/2h ∼ 4Un0/7 and broadened.
Taking this interaction shift into account, the corrected measured value of
h/m is:

h

m
=

λ2

4

(
〈δν0〉 −

U〈n〉
2h

)
� 4.5939(21)(7) · 10−9 m2 s−1, (9)

which is in agreement with the CODATA value.

5.3 The Prospect and Limits of High-Density Coherent Samples

The fact that ultra-cold bosons interact is a major drawback for precision mea-
surements using atom interferometry. In the above experiment, interactions
result in a systematic shift as well as a decrease in measurement precision.
In principle, the systematic shifts can be calculated. However, the interaction
parameter U is hard to measure and is generally not known to better than
∼ 10−4. The atomic density is also subject to time fluctuations and is difficult
to know to better than ∼ 10−2, reducing the absolute accuracy. In addition,
as shown in earlier experiments [116, 120], interactions produce a loss of co-
herence of the atomic samples at ultra-low, finite temperatures, limiting the
maximum interrogation time of a coherent matter-wave atom interferometer.
Finally, even at zero temperature, the mean-field energy due to interactions
is converted into kinetic energy during free fall, giving rise to a faster ballistic
expansion. This last effect will ultimately reduce interrogation times.

The Need of an Ideal Coherent Atomic Source

From the observations of both MIT and Orsay, we conclude that one should
ideally use an interaction-free, ultra-cold atomic source for ultimate-precision
atom interferometry in space. Using bosons, one could think of two ways of
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decreasing interaction effects. Close to a Feshbach resonance [121], one can
control the interaction parameter U , which can be made equal to zero for a
certain magnetic field [122, 123]. However, magnetic fields introduce further
systematic shifts that are not controllable to within a reasonable accuracy.
Alternatively, one could try to decrease the density of the sample of atoms,
but the production of large atom number, ultra-low density Bose–Einstein
condensate is a technical challenge not yet overcome [124].

A promising alternative solution is to use quantum-degenerate fermionic
atomic sources [61]. The Pauli exclusion principle forbids symmetric two-body
collision wave functions, so at zero temperature a sample of neutral atomic
fermions has no interactions. An ultra-cold fermionic source may still allow
very long interrogation times, even if limited by the excess energy of the Fermi
pressure, and would therefore be an ideal candidate for atom interferometry
in space with ultimate precision and accuracy.

6 Research and Technology: Towards a Space Atom
Sensor

Intense research effort has focused on the study of atom interferometers minia-
turization since their first demonstration in 1990. Atom interferometers benefit
from the use of trapped ultra-cold atomic gases, gaining good signal-to-noise
ratios due to the high atomic densities, and the coherence required for the visi-
bility of interference patterns due to the low temperatures [8]. Since the recent
development of atom chip-based coherent sources, efforts to incorporate inter-
ferometry on an “atom chip” [125–128] are motivated by the large physical
size of a traditional apparatus and a desire to better tailor interferometer
geometries. Most attempts to implement a coherent beam splitter/recombiner
on a chip have used current-induced magnetic fields, typically forming dou-
ble potential wells that merge and then split apart either in space, in time,
or in both. Nevertheless, except in one experiment [129], various technical
issues, such as noise coupled into the current and roughness or impurities of
the wires, have stymied attempts to demonstrate on-chip interference. On the
other hand, traditional light-pulse interferometer demonstrated already very
high performances. Thus, efforts to reduce the size such as the CASI, GOM
and Girafon scientific programs might lead to future small size, industrial
atom interferometry inertial sensors. In fact, such transportable sensors are
already available in the group of M. Kasevich at Stanford (Fig. 22).

The sensitivity of an interferometric measurement also depends on the
interrogation time, the time during which the sample freely evolves. This time
is limited by both the free fall of the atomic cloud, requiring tall vacuum cham-
bers, and by its free expansion, demanding extra-sensitive detection systems
for extremely dilute clouds. Ultra-low temperatures further reduce the expan-
sion and should allow for more compact systems and for the full use of the
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Fig. 22. The transportable interferometers developed at Stanford in M. Kasevich
group (credit M. Kasevich).

Fig. 23. The space clock PHARAO (courtesy EADS SODERN). Left : Photograph
of the integrated laser source with cover removed. The dimensions are 530 × 350 ×
150 mm3 and the mass is 20.054 kg. The ten polarisation-maintaining optical fibres
in yellow guide the laser beams to the caesium tube. All diode lasers (JDSU) are
mounted on a Peltier cooler for temperature regulation within 2 mK. Right : The
integrated caesium tube without the two external magnetic shields. The volume is
990 × 336 × 444mm3 and the total mass is 44 kg.

long free-fall time offered by a micro-gravity environment. For that purpose,
the French space agency CNES is funding and acting as the prime contrac-
tor of the PHARAO clock, a micro-gravity atomic clock which was designed
by SYRTE, LKB and CNES building upon several years of experience with
cold atom fountain frequency standards using caesium and rubidium atoms.
After the first free-fall demonstration in a zero-g Airbus, the clock industrial
development began in 2002 by the realisation of an engineering model repre-
sentative of the flight model in terms of interfaces, design and fully functional
(Fig. 23).
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As far as atom interferometry is concerned, the fact that bosons suffer
from interaction shifts leading to systematic errors might prevent to achieve
the ultimate limit of those sensors. As for the clock case, this problem might
not be apparent in ultra-cold fermions [130]. However, degenerate fermions
have an intrinsically broad momentum distribution due to Pauli blocking,
limiting the visibility of interference patterns. Furthermore, to achieve quan-
tum degeneracy, fermions must be cooled using a buffer gas, typically an
ultra-cold gas of bosons, thus complicating experiments using fermions. Pairs
of fermions (molecules or Cooper pairs [131]) can be created by applying a
homogeneous magnetic field (Feshbach resonances [132]), offering yet more
possible candidate species for atom interferometers.

A further bonus to free fall is the possibility of using weaker confining
forces for the atoms, since gravity need not be compensated with additional
levitation forces [124]. Temperatures achieved by evaporative cooling and adi-
abatic expansion are lowered as the trapping potential is reduced. Not only
does the sensitivity of an interferometric measurement benefit, but also new
phases of matter may be observed if the kinetic energy can be made smaller
than the interatomic potential. A reduced-gravity environment will permit
study of new physical phenomena, e.g. spin dynamics and magnetic ordering
(see for example [133] and references therein).

6.1 ICE: Towards a Coherent Atom Sensor for Space Applications

The objective of ICE [134], a CNES-funded project that share the experi-
ence of various partners (SYRTE, ONERA and IOTA), is to produce an
accelerometer for space with a coherent atomic source. It uses a mixture of
Bose–Einstein condensates with two species of atoms (Rb and K) to carry
out a first comparison of accelerations measured by the two different types of
atomic species (with two bosons and one boson and one fermion). The central
components of this project are the atomic physics vacuum system, the optics
and their supports. The atomic manipulation starts with alkali-metal vapour
dispensers for rubidium and potassium [135]. A slow jet of atoms is sent from
the collection chamber by a dual species, 2D-MOT to the trapping chamber,
for collection and cooling in a 3D-MOT. Atoms are then to be transferred to a
conservative, far-off-resonance optical-dipole trap (FORT) for further cooling
towards degeneracy. The sample is then ready for coherent manipulation in
an atom interferometer. Raman two-photon transition will be used as atomic
beam splitters and mirrors. Three-pulse sequences (π/2 − π − π/2) will be
used for accelerometry.

As for the Girafon project, all light for the experiment arrives by optical
fibres, making the laser sources independent of the vacuum system. Trans-
portable fibred laser sources for laser cooling and trapping have been fabri-
cated with the required frequency stability. The techniques for mechanically
stable power distribution by free-space fibre couplers function according to
specifications. The vacuum chamber is compatible with the constraints of
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micro-gravity in an Airbus parabolic flight. Such a flight permits total interro-
gation times up to 7 s, giving a potential sensitivity of better than 10−9 ms−2

per shot, limited by phase noise on the frequency reference for the Raman
transitions.

6.2 Laser Systems

Continuous-Wave Fibre-Laser Source at 780 nm
for Rubidium Cooling

An entirely pigtailed laser source is particularly appropriate in our case as it
does not suffer from misalignments due to environmental vibrations. More-
over, telecommunication laser sources in the C-band (1,530–1,570 nm) have
narrow linewidths ranging from less than 1 MHz for laser diodes, down to a
few kHz for Erbium-doped fibre lasers. By second-harmonic generation (SHG)
in a non-linear crystal, these 1.56 μm sources can be converted to 780 nm
sources [136–138]. Such devices avoid the use of extended cavities as their
linewidths are sufficiently narrow to satisfy the requirements of laser cooling.

The laser setup is sketched in Fig. 24. A 1,560 nm Erbium-doped fibre
laser is amplified by a 500 mW polarisation-maintaining (PM) Erbium-doped
fibre amplifier (EDFA). A 90/10 PM fibre coupler directs 10% of the pump
power to a pigtailed output. Ninety per cent of light is then sent into a periodi-
cally poled Lithium–Niobate waveguide (PPLN-WG). This crystal is pigtailed
on both sides with 1,560 nm single-mode fibres. The input fibre is installed
in a polarisation loop system to align the electric field with principal axes
of the crystal. A fibre coupler, which is monomode at 780 nm, filters pump
light after the crystal and sends half of the 780 nm light into a saturated-
absorption spectroscopy device for frequency servo-control. The other half is
the frequency-stabilised pigtailed output. The whole device, including the fre-
quency control electronics, was implemented in a rack for ease of transport.
Typical output from the first generation device was 500 μW of 780 nm light,
with more than 86 dB attenuation of 1,560 nm light after 3 m of monomode
fibre. A more recent version (> 50 mW) has been used to power a MOT.

Fig. 24. Left : Transportable laser setup schematic. A double-loop feedback system
is used for frequency control: the first returns a saturated absorption signal to the
piezoelectric transducer; the second loop compensates thermal drifts of the fibre
laser when the error signal of the first loop becomes large. Right : The fibre splitters
developed at SYRTE.



330 P. Bouyer et al.

Fibre Power Splitters

The optical bench and the vacuum chamber are not rigidly connected to
each other, and laser light is transported to the vacuum chamber using opti-
cal fibres. Stability in trapping and coherent atom manipulation is assured
by using only polarisation-maintaining fibres. Six trapping and cooling laser
beams are needed for the 3D-MOT and five for the 2D-MOT, with relative
power stability better than a few per cent. The fibre beam splitters are based
on polarising cubes and half-wave plates with one input fibre and the relevant
number of output fibres. The stability of the beam splitters has been tested
by measuring the ratio of output powers between different outputs as a func-
tion of time. Fluctuations are negligible on short timescales (less than 10−4

relative intensity over 1 s), and very small over typical periods of experimen-
tal operation (less than 1% over a day). Even over months, drifts in power
distribution are only a few per cent, which is sufficient for this experiment.

6.3 Mechanical and Vacuum Systems

The mechanical construction of the apparatus is critical to any free-fall
experiment. Atomic physics experiments require heavy vacuum systems and
carefully aligned optics. The ICE design is based around a cuboidal frame
of foam-damped hollow bars with one face being a vibration-damped opti-
cal breadboard (see Fig. 25). The outside dimensions are 1.2 × 0.9 × 0.9 m3,
and the total weight of the final system is estimated to be 400 kg (exclud-
ing power supplies, lasers, control electronics, air and water flow). The frame
provides support for the vacuum system and optics, which are positioned in-
dependently of one another. The heavy parts of the vacuum system are rigged
to the frame using steel chains and high-performance polymer slings under

Fig. 25. Left : Artist’s impression of the vacuum system. Atoms are transferred
from the collection chamber, using a 2D-MOT, to the trapping chamber, where
they are collected in a 3D-MOT. The trapping chamber has large optical accesses
for the 3D-MOT, optical-dipole trap (FORT), imaging and interferometry. There is
a getter pump between the two chambers to ensure a large pressure difference. The
other pump is a combined ion pump–titanium sublimation pump. Right : The ICE
mechanical structure with optics and light paths represented.
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tension, adjusted using turnbuckles; most of the equipment being standard
in re-creational sailing or climbing. The hollow bars have precisely positioned
grooves which permit optical elements to be rigidly fixed (bolted and glued)
almost anywhere in the volume within the frame. An adaptation for trans-
portability will be to enclose the frame in a box, including acoustic and mag-
netic shielding, temperature control, air overpressure (dust exclusion), as well
as ensuring safety in the presence of the high-power lasers.

The vacuum chamber has three main parts: the collection chamber (for
the 2D-MOT), the trapping chamber (for the 3D-MOT and the FORT) and
the pumps (combined ion pump and titanium sublimation pump). Between
the collection and trapping chambers, there is an orifice and a getter pump,
allowing for a high differential pressure, permitting rapid collection by the
2D-MOT but low trap losses in the 3D-MOT and FORT. The magnetic coils
for the 2D-MOT are under vacuum, and consume just 5 W of electrical power.

To avoid heating due to vibrations in the FORT optics, or measurement
uncertainties due to vibrations of the imaging system, the trapping chamber
is as close as possible to the breadboard. For laboratory tests, the breadboard
is at the bottom and the 2D-MOT arrives at 45◦ to the vertical, leaving the
vertical axis available for addition of interferometry for precise measurements,
e.g. a standing light wave. Around the main chamber, large electromagnet coils
in Helmholtz configuration will be added to produce homogeneous stable fields
up to 0.12 T (1,200 G), or gradients up to 0.6 Tm−1 (60 G cm−1).

2D MOT

The 2D-MOT is becoming a common source of cold atoms in two-chamber
atomic physics experiments [66], and is particularly efficient for mixtures [139]
of 40K and 87Rb, if isotopically enriched dispensers are used. Briefly, a 2D-
MOT has four sets of beams (two mutually orthogonal, counter-propagating
pairs) transversely to the axis of the output jet of atoms, and a cylindrical-
quadrupole magnetic field generated by elongated electromagnet pairs (one
pair, or two orthogonal pairs). Atoms are cooled transverse to the axis, as
well as collimated. Implicitly, only slow atoms spend enough time in the 2D-
MOT to be collimated, so the output jet is longitudinally slow. The number of
atoms in the jet can be increased by the addition of the push beam, running
parallel to the jet: a 2D-MOT+. Typically the output jet has a mean velocity
below 30 m s−1, with up to 1010 atoms per second of 87Rb and 108 atoms per
second of 40K.

The ICE design uses 40 mW per species for each of the four transverse
beams, each divided into two zones of about 20 mm using non-polarising beam-
splitter cubes, corresponding to about three times the saturation intensity for
the trapping transitions. The pushing beam uses 10 mW of power, and is
about 6 mm in diameter. Each beam comes from an individual polarisation-
maintaining optical fibre, with the light at 766.5 and 780 nm being super-
imposed on entry to the fibres. The 2D-MOT is seen as two bright lines of
fluorescence in the collection chamber.
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Fig. 26. Left : Artist’s impression of the 3D-MOT (dark, red beams, and the elec-
tromagnets) and far-off-resonance optical-dipole trap (FORT; pale, yellow beams).
Right : Photograph of the vacuum chamber, the support structure and the optics for
magneto-optical traps. The main chamber has two very large viewports as well as
seven side windows (and one entry for the atoms from the 2D-MOT). Thus there is
plenty of optical access for the 3D-MOT, the FORT, imaging and interferometry. To
preserve this optical access, the magnetic coils are outside of the chamber, although
this markedly increases their weight and power consumption.

3D-MOT and Optical-Dipole Trap (Fig. 26)

The atomic jet from the 2D-MOT is captured by the 3D-MOT in the trapping
chamber. At the time of writing, we have observed the transfer and capture
of atoms, significantly increased by the addition of the pushing beam. The
3D-MOT uses one polarisation-maintaining fibre input per species. Beams
are superimposed and split into six arms (on a small optical breadboard fixed
near one face of the frame) for the three, orthogonal, counter-propagating
beam pairs. Once enough number of atoms are collected in the 3D-MOT, the
2D-MOT is to be turned off, and the 3D-MOT optimised for transfer to the
FORT.

The FORT consists of two nearly orthogonal (70◦) beams making a crossed
dipole trap using 50 W of light at 1,565 nm. Rapid control over intensity is
achieved using an electro-optical modulator, and beam size using a mechani-
cal zoom, after the design of Kinoshita et al. [140]. Optimisation of transfer
from the 3D-MOT to the FORT, and the subsequent evaporative cooling, can
be enhanced with strong, homogeneous, magnetic fields that will be used to
control inter-species interactions via Feshbach resonances [132], to expedite
sympathetic cooling of 40K by 87Rb. With the expected loading of the 3D-
MOT during less than 5 s, then cool to degeneracy in the optical-dipole trap
in around 3–10 s, ICE will be able to prepare a sample for interferometry in
less than the free-fall time of a parabolic flight (around 20 s).

7 Conclusion

Previous experiments measuring the gravitational acceleration of Earth and
its gradient or rotations have been demonstrated to be very promising.
Sensitivities better than 1 nrad s−1 Hz−1/2 for rotation measurements and
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2 · 10−8 × g Hz−1/2 for a gravity measurement have already been obtained.
The sensitivity of matter-wave interferometers for rotations and accelerations
increases with the measurement time and can therefore be dramatically en-
hanced by reducing the atomic velocity. Moreover, the use of optical transi-
tions to manipulate the atomic wave packets enables an intrinsic knowledge
of the scaling factor of these inertial sensors, which is directly linked to the
frequency of the transition. Therefore, combining cold atomic sources and
Raman transition-based atomic interferometers results in highly sensitive and
highly accurate inertial sensors.

Going to space will enhance the benefit of cold atoms by increasing the
interaction time, and opens up entirely new possibilities for research in fun-
damental physics or for inertial navigation with unprecedented precision, and
operation in space is thus strong motivation for many ongoing projects.

Several missions along this line have thus only recently been proposed
by NASA as well as ESA. Therefore, quantum sensors may be used as long-
term inertial references for astronomy, deep-space navigation, or in missions
to precisely map and monitor Earth’s gravitational field (such as GOCE, etc.).
In fundamental physics these space-based cold atom sensors may be the key
for ground-breaking experiments on fundamental issues, such as gravitational
wave astronomy (LISA-II, etc.) or the quest for a universal theory reconciling
quantum theory and gravity (e.g. tests of the equivalence principle).

Cold atom quantum sensors display an excellent sensitivity for the abs-
olute measurement of gravity, gravity gradients, magnetic fields as well as
the Earth rotation and, thus, are particularly suited for applications in Earth
sciences, or more generally for future “Earth watch” facilities. The range of
fascinating applications of gravity mapping extends from earthquake and vol-
canic eruptions prediction, earth tectonics, to the search for oil and mineral
resources, to the measurement of the effect of climate changes such as vari-
ations of the ocean level. As all these topics have a large impact on society
as whole, the impact of improvements generated by this new technology will
be accordingly high (large “leverage factor”). On the practical side such imp-
rovements should come from alleviating the need of constantly re-calibrating
gravimeters (more than 1,500 deployed) in prospecting for natural resources,
as atomic quantum sensors are intrinsically free of drift – or from alleviating
the need of gyroscopically stabilised inertial platforms (expensive, large and
service intensive) for mounting air- or sea-borne gravity gradiometers (more
than 100 complex systems deployed), as multi-axes atomic quantum sensors
can be made sufficiently orientation independent.

In addition, since quantum sensors rely on well-defined quantum mechani-
cal properties of the atomic internal structure and the precisely known interac-
tion with light, they may be used in new definitions of base units – similarly to
what has already been done for time and frequency standards (atomic clocks)
or for the practical realisation of resistance (quantum Hall effect) and volt-
age (Josephson effect). Immediate applications would be in the re-definition
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of the kilogram, the only base unit in the international system of units (SI)
that is defined by a material artefact of suspected stability. A very promis-
ing approach to overcome this unsatisfactory state of affairs is the use of a
so-called watt balance, in which mechanical and electrical powers are com-
pared. If the electrical power is measured in terms of the two quantum effects,
the Josephson and the quantum Hall effect, the unit of mass can be linked
to the fundamental Planck constant h through its de Broglie–Compton fre-
quency MKc2/h. For proper operation, such a watt balance requires a “gravity
reference” at a performance level that is difficult to achieve with classical sen-
sors, but should be well within the range of capability of an atomic quantum
gravimeter. The other way to determine the de Broglie–Compton frequency
MKc2/h of the kilogram is through the product of the Avogadro number by
the de Broglie–Compton frequency muc

2/h of the atomic mass unit deter-
mined by atom interferometry [141]. Unfortunately these two ways do not yet
agree at the 1.3 · 10−6 level and further progress is necessary. As mentioned
before the determination of muc

2/h by atom interferometry leads to a new
determination of the fine structure constant α and hence to an experimental
validation of the formula RK = h/e2 = Z0/2α which is supposed to give the
Von Klitzing resistance RK compared to the vacuum impedance Z0 in the
Thompson–Lampard experiment.

Finally, handling BEC or atom lasers on ground or in space will be a leap
towards the practical construction of cold coherent sources that can be used in
ultra-high-precision atomic matter-wave sensors. Indeed, the long interroga-
tion time requires a very strong collimation of the atomic source. Combining
this with the high flux required for a high sensitivity leads to the need of an
atom laser (like in optics, an atom laser is characterised by its high brilliance).
On Earth, the best outcoupling device uses gravity to extract atoms from the
magnetic cavity (except for the recent guided atom laser). Novel techniques
can be explored in space, such as Raman output coupling, to extract a CW
atom laser beam into a controlled propagation direction. In addition, novel
types of atom interferometers using coherent sources, such as a resonant atom
cavity [62] or a three-dimensional atom sensor [52], might be applied with these
new sources. Ultimately, the correlation properties of the particles within the
atom laser field may have a serious impact on the performance of future atom
interferometer-based sensors. Hence, just as in the optical case, the sensitivity
will be quantum limited by the uncertainty principle for the phase and num-
ber quadratures for single-mode operation. It is possible to go beyond this
standard quantum limit with a coherent source prepared in phase–number
squeezed states, i.e. Heisenberg-limited interferometry. Alternatively, entan-
gled two-mode operation schemes, like the correlated emission laser (CEL) in
laser physics, can also be used to suppress quantum noise in the relative phase.
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25. I. Bloch, T.W. Hänsch, and T. Esslinger, Phys. Rev. Lett. 82, 3008 (1999).
26. G. E. Stedman et al., Phys. Rev. A 51, 4944 (1995).
27. G.E. Stedman, Rep. Prog. Phys. 60, 615 (1997).
28. P. Bouyer and M. Kasevich, Phys. Rev. A 56, R1083 (1997).



336 P. Bouyer et al.

29. S. Gupta, K. Dieckmann, Z. Hadzibabic, and D.E. Pritchard, Phys. Rev. Lett.
89, 140401 (2002).

30. Hyper-Precision Cold Atom Interferometry in Space (HYPER), Assessment
Study Report ESA-SCI(2000)10, European Space Agency (2000).
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48. Ch.J. Bordé, in M. Ducloy, E. Giacobino, G. Camy (eds.), Laser spectroscopy

X (World scientific, Singapore 1992), p. 239.
49. J.M. McGuirk, M.J. Snadden, and M.A. Kasevich, Phys. Rev. Lett. 85, 4498

(2000)
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Summary. Scientific satellite missions trying to investigate questions regarding
geodesy and fundamental physics have become increasingly dependent on ultra-
low disturbance environments. The precision demanded by the experiments has
risen continuously as experimenters strive to deepen their understanding. Standard
attitude and orbital control systems are not capable of providing such an ultra-low
disturbance environment which lead to the introduction of so-called drag-free control
systems.

Drag-free control is an enabling technology with the capability to provide these
ultra-low disturbance environments. The application of drag-free control systems is
of course not limited to geodesy and fundamental physics. It is a useful technology
for every mission that requires a low disturbance free-fall environment.

Drag-free control has come a long way since the introduction of the original
drag-free concept by Benjamin Lange in 1964. The aim of this chapter is to give
an introduction and overview about the drag-free technology and its implications
for scientific satellite missions. In addition to the original drag-free concept and
its advancements, the chapter introduces key technologies in sensors and actuators
whose development was fueled by the application of the drag-free concept in scientific
satellite missions. Moreover, problems and challenges connected to drag-free satellite
control and the technologies involved are discussed, and current drag-free missions
like LISA and its technology demonstrator LISA Pathfinder, MICROSCOPE, STEP,
or GOCE are presented.

1 Introduction

1.1 The Drag-Free Satellite Principle

The motion of satellites on orbits around Earth is mainly determined by the
gravitational field of the Earth. In addition to that, forces and torques are act-
ing on the satellite which affect attitude and orbit. In 1964 B. Lange proposed
to compensate these disturbing forces and torques using a control system to
get a “force- and torque-free” satellite. Since the force due to interaction with



342 S. Theil

Fig. 1. Planar schematic of a drag-free satellite with its test mass (TM ).

Fig. 2. Planar schematic of drag-free satellite with its test mass (TM ) and coupling
between satellite and test mass.

the upper atmosphere – which is denoted as air drag – is the main distur-
bance for satellites in low Earth orbits, the term “drag-free satellite” was
introduced. The control system for compensation of the disturbance forces is
called “drag-free control system.”

The concept of a drag-free satellite involves centering a test mass inside a
satellite. The test mass (or proof mass) is shielded by the surrounding satellite
against the disturbances acting on the surface (see Fig. 1). As the test mass
is free of external disturbances, it will follow a purely gravitational orbit.

To avoid a collision with the test mass, the satellite has to be controlled
to follow the test mass. For that purpose the distance between satellite and
test mass must be measured. This can be done by magnetic, electrostatic,
or optical sensors. In all three cases the measurement cannot be obtained
without applying a force on the test mass. Therefore a dynamic coupling
exists between the satellite and the proof mass. This is denoted by the springs
in Fig. 2. Due to this coupling the test mass inside the satellite is not free
from external forces anymore. The coupling will perturb the orbit of the test
mass. To minimize this effect the springs can be chosen to be very weak. But
this has the disadvantage that the accuracy of the displacement measurement
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between test mass and satellite may become poor. As an example consider the
magnetic measurement which is more accurate if a stronger field is applied.
So an optimum for the equivalent stiffness of the magnetic field can be found.
The second way is to reduce the displacement of the satellite w.r.t. the test
mass to put the test mass at the equilibrium point of the relaxed equivalent
springs. This can only be achieved by precise control. It has the advantage
that the residual acceleration on the whole satellite is minimized.

1.2 Review of Drag-Free Satellite Development

Similar systems to the drag-free system are known in microgravity research
where airplanes were flown on a parabolic trajectory. This was done by keep-
ing a small object centered in free space inside the cabin which is the basic
principle of parabolic flights.

The first suggestions of the drag-free control concept for a satellite were
made by several investigators independently. M. Schwarzschild (1961),
R.A. Ferrell, G.E. Pugh (1959), G.J.F. MacDonald, C.W. Sherwin (1962), and
B.O. Lange (1961) have proposed the drag-free satellite in various forms.
Lange derived in his thesis [8] the nine-degree-of-freedom equations of motion.
He evaluated and discussed special cases of the equations of motions and
gave a comprehensive list of applications for the drag-free satellite. In 1970,
J.D. Powell developed the first analog estimator for estimating the center of
mass of a spinning drag-free satellite in two-dimensional space.

The first successfully flown drag-free satellite was TRIAD I [3]. The dis-
turbance compensation system DISCOS was developed at Stanford University
under responsibility of D.B. DeBra. The drag-free control system compen-
sated the disturbances on the satellite in three degrees of freedom. It reached
a residual acceleration on the satellite of about 5 · 10−11 ms−2 when averaged
over 3 days. The second drag-free satellite application was the TIP II satellite
which was partially drag-free in one axis [11]. This first generation of drag-free
satellites was designed to improve the ephemeris prediction of the U.S. Navy’s
navigation satellite system TRANSIT.

The next generation of drag-free satellites is used for scientific missions
like the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE)
mission, Gravity Probe B (GP-B), the Satellite Test of the Equivalence Prin-
ciple (STEP), and the Laser Interferometer Space Antenna (LISA) mission.
The difference with respect to the first generation is, on one hand, that in
some missions more than one test mass is used which can improve the overall
performance of the drag-free control system; on the other hand, the qual-
ity of the “zero-g” environment is orders of magnitudes better than for the
first generation. Especially this improvement made drag-free control to one
of the enabling technologies for current and future fundamental physics space
missions.
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2 Dynamic Model

To design a control system for the dynamics of a drag-free satellite, the equa-
tions of motion are needed. This chapter will show the significant differences
to conventional satellites.

2.1 Equations of Motion

Satellite Equations of Motion

The equations of motion for the satellite are similar to the dynamics of con-
ventional satellites. One term is added to the equation for the translational
motion as well as to the equation for the rotational motion. They become

r̈i
i,b = gi

i,b

(
ri

i,b

)
+ f i

control + f i
dist + f i

coupl,sat (1)

where r̈i
i,b is the acceleration of the satellite relative to the inertial frame

expressed in the inertial frame; gi
i,b the gravitational acceleration as a function

of the satellite’s position; f i
control the specific control force; f i

dist the sum of
all disturbance-specific forces acting on the satellite; and f i

coupl,sat the specific
force on the satellite due to the coupling between satellite and all test masses,
and sum of coupling forces from each single test mass.
And
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ω̂b
i,b � qb
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where ωb
i,b is the angular velocity of the satellite w.r.t. inertial frame exp-

ressed in body-fixed coordinate frame; Ib
b the moments of inertia tensor of the

satellite; T b
control the control torques applied for attitude control expressed

in the body-fixed frame; T b
dist the disturbance torques acting on the satel-

lite expressed in the body-fixed frame; T b
coupl,sat the torques generated from

satellite–test mass coupling expressed in the body-fixed frame, and sum of
coupling torques generated by each single test mass; and qb

i the attitude
quaternion describing the orientation of the satellite body-fixed frame w.r.t.
the inertial frame.

The term ω̂b
i,b is the quaternion representation of the angular velocity. The

operator � is the quaternion multiplication.

Test Mass Equations of Motion

The equations of motion of a test mass relative to the satellite can be derived
from the equations of motion in the inertial frame. This relative motion of
the test mass is conveniently expressed in the rotating sensor frame which is
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fixed to the satellite body. For that reasons terms due to the rotation and
acceleration of the satellite will be included in the equation of motion for the
test mass. Then the translational motion of the test mass w.r.t. the satellite-
fixed sensor frame can be described as

r̈b
b,tm =Δgb

b,tm − f b
control − f b

dist − f b
coupl,sat + f b

coupl,tm

− 2 ωb
i,b × ṙb

b,tm − ω̇b
i,b × rb

b,tm − ωb
i,b ×

(
ωb

i,b × rb
b,tm

)
,

(4)

where rb
b,tm is the position of the test mass relative to the satellite body frame;

gb
b,tm the gravitational acceleration as a function of the test mass position;

f b
coupl,tm the specific force acting on the test mass due to satellite–test mass

coupling; and ωb
i,b the rotation of the satellite w.r.t. the inertial frame.

The formulation of the equations of motion for the test mass attitude w.r.t.
the sensor is based on the conservation of the angular momentum. The test
mass inside the satellite is shielded from all external nongravitational forces
and torques. So the equation for the rotational motion can be written as

ω̇tm
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Itm

tm
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T tm
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where ωtm
b,tm is the angular velocity of the test mass relative to the satellite

body-fixed frame expressed in the test mass body-fixed frame; Itm
tm the mo-

ments of inertia matrix of the test mass; T tm
gg,tm the gravity-gradient torque for

the test mass from Earth gravity field as well as from gravity gradient inside
the satellite; and T tm

coup,tm the torque on the test mass due to satellite–test
mass coupling.

The attitude of the test mass w.r.t. the sensor frame can be expressed by
quaternions. The differential equation describing the kinematics of the test
mass w.r.t. the satellite is written as

q̇tm
b =

1
2

ω̂tm
b,tm � qtm

b . (6)

2.2 Forces and Torques

To model the dynamic behavior of satellite and test masses, the forces and
torques acting on both have to be modeled too. There exist forces and torques
acting on both – satellite and test masses – as well as forces and torques acting
on the satellite only.

The first group includes the effect of gravitation between celestial body,
satellite, and test masses as well as interaction of satellite and test masses via
the coupling which is inherent in a measurement and/or positioning system
for the test masses.
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Forces and torques acting on the satellite only are:

– Controlled actuation forces and torques for satellite attitude and transla-
tion control (ATC)

– Forces and torques due to interaction with the upper atmosphere (for low
Earth orbits)

– Electromagnetic radiation-induced forces and torques on the satellite
surface

– Torques due to interaction of satellite components with the external mag-
netic field

– Force and torque impulses from space debris and meteoroid hits

The following subsections will focus on the forces acting directly on the
test masses. These forces are due to the coupling between satellite and test
masses as to due to gravitational attraction.

Test Mass–Satellite Coupling

If the drag-free satellite houses only one test mass, the equations of motion
become relatively simple as denoted in Sect. 2.1. If more than one test mass
is onboard the satellite the dynamics of all bodies (satellite and test masses)
are connected via the coupling force and gravitational attraction.

We assume that the satellite is connected to a test mass via a sensor system
which produces a force and a torque on the satellite. This force and torque
can be described as a function of the test mass states w.r.t. the body-fixed
frame. For the force and torque on the satellite produced by the coupling to
test mass j, we can write:
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The forces and torques for all test masses j have to be added. They render
the total force and torque due to coupling which are part of the equations of
motion (see (1),1 (2), and (4)).

The force and the torque on the test mass due to the coupling with the
satellite is the same but in the opposite direction. In addition the test mass
might experience forces and torques from a coupling with other test masses. In
case there is a coupling to a second test mass k, the force and torque become:
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b
b,j

)
+ fF,j,k

(
t, rb

b,j , ṙ
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k
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) (8)

1 The specific force in (1) is the force divided by the mass of the satellite, respec-
tively, test mass.
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The functions f for the coupling force and torque can be depending on the
sensor type nonlinear in the states. In a first approximation a linear coupling
(spring-damper system) is used.

Gravitational Attraction Between Satellite and Test Masses

For most satellite applications the gravitational field created by the satellite
is usually negligible. In case of the drag-free satellite, it becomes a force which
connects the dynamics of satellite and test masses. This force can be reduced
or compensated by design, e.g., placing the test mass in the center of mass
of the satellite. Since this configuration is not always possible – e.g., if more
than one test mass is used – the gravitational force between satellite and test
mass has to be taken into account.

If the structure of the satellite is stiff and has no moving parts, the grav-
itational attraction between satellite and test mass is constant. However, if
there is a transient deformation, e.g., due to thermal expansion or sloshing of
liquid (fuel), there are moving masses which make the gravitational attraction
force between satellite and test mass a time-varying quantity (see [14]).

Gravity-Gradient Acceleration

In the equation of translational motion for the test mass 4, the term Δgb,tm

denotes the gravity-gradient acceleration of the test mass. It is the difference
in the gravitational acceleration of satellite and test mass

Δgb,tm = gtm − gb. (9)

If we neglect the gravitational attraction between satellite and test mass,
the gravitational acceleration on each body can be treated independently. In
contradiction to conventional satellites, the gravitational force on the satel-
lite cannot be assumed to be independent from the attitude of the satellite.
Since the center of gravity might move with the attitude of the satellite, the
gravitational force resp. acceleration changes with the attitude. Though this
is a very small effect it should be considered in the modeling of a drag-free
satellite (see [7]).

3 Technology

The increasing interest by the scientific community in the drag-free idea and
its applications has fueled the technological development in this area. In re-
cent years a number of different concepts for sensors and actuators has been
proposed and developed. This section will give a brief overview about the
different technologies that are out there.



348 S. Theil

3.1 Sensors

A central part of the drag-free control system is of course the drag-free sensor.
Most of the sensors available today are custom made for specific applica-
tions. Nevertheless three main categories can be identified that can be used
to classify the different sensors: namely, the mode of operation the sensor is
used in, the measurement principle, and the discharging mechanism.

Mode of Operation

The mode of operation is the main category used to classify different sen-
sors as it is directly connected to the application of the sensor. In general
one can distinguish between two different modes of operation, the so-called
accelerometer mode (AM) and the displacement mode (DM).

The DM concept uses a free-floating test mass. The displacement of this
test mass relative to its housing is measured by the sensor and this signal
is used to control the satellite to follow the test mass to drive the relative
displacement to zero, thus minimizing the external disturbances on the test
mass. The test mass will therefore follow a purely gravitational orbit. The
DM concept is used most often in satellites where the drag-free sensor is
the experiment itself, because of the very high sensitivity of the sensor in this
mode. However the DM concept has the drawback that it requires complicated
discharging mechanisms since a permanent grounding of the test mass via a
gold wire is not possible. An example for a sensor that is used in displacement
mode is the LISA Pathfinder sensor (see Fig. 3).

Fig. 3. LISA Pathfinder sensor.
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The AM concept, on the other hand, uses the relative displacement mea-
surements of the test mass w.r.t. the housing in an internal suspension control
loop. This loop drives the displacement to zero by forcing the test mass to
follow the satellite. The force that is needed to drive the displacement to zero
is a measure for the acceleration on the satellite. This is the reason why the
AM concept is most often used in missions that require highly sensitive ac-
celerometers. The measurements of theses accelerometers are then fed back
to the drag-free control system that uses the acceleration measurements to
minimize the disturbances on the satellite thus providing a low disturbance
environment for experiments onboard the spacecraft. Although less accurate
the AM concept has the big advantage that permanent grounding of the test
mass via a gold wire is possible.

Measurement Principle

The two most commonly used measurement principles that are used in drag-
free sensors today are the electrostatic measurement principle and magnetic
measurement principle.

Electrostatic Measurement Principle

In the electrostatic measurement principle, the relative displacement between
the test mass and its housing is measured through a series of electrodes that
are distributed around the test mass. An electrode and the opposing test mass
area are forming a condenser. These condensers act as capacitive detectors.
Two different methods have been proposed to measure relative displacement
and attitude based on this setup, namely the gap-sensing and the slide-sensing
method. Concerning the gap-sensing method, as the test mass moves relative
to its housing the gap between the test mass and the electrode varies. This
leads to a variation in the electric field which can be measured. Therefore the
capacitive difference between the electrode and the test mass is a measure for
the displacement of the test mass w.r.t. the electrode and thus the housing.
If the slide-sensing method is applied, the test mass slides over the electrodes.
The gap between the electrode and the test mass is constant but the overlap-
ping area varies. The strength of the electric field depends on this overlapping
area.

Magnetic Measurement Principle

A very interesting application of magnetic measurement principles is the sup-
erconducting quantum interference device (SQUID) that is used in the STEP
sensor (see Fig. 4). SQUIDs combine a measurement sensitivity of as little
as 10−15 m with the stability possible in a 2 K cryogenic environment using
supercurrents.
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Fig. 4. STEP sensor.

Discharging Mechanism

The two most commonly used discharging methods include the ultraviolet-
lamp (UV-lamp) and the gold wire. Which type of discharging mechanism
has to be used is heavily influenced by the mode of operation that is used for
the sensor. The most simple discharging method is the gold wire. Here the test
mass is permanently grounded through the connection of the test mass with
the housing via the gold wire. However the gold wire does limit the sensitivity
of the sensor and cannot be used at all in case the test mass has to be free
floating as in the displacement mode. This means that whenever the sensor
shall be used in DM other means of discharging have to be applied. Unlike the
gold wire the UV-lamp can be applied even if the test mass is free floating.
The lamp emits ultraviolet photons which are used to release photoelectrons
from the surface of the test mass. The freed electrons are then redistributed
to neutralize the charge of the test mass. The UV-lamp does not limit the
sensitivity of the sensor in the way the gold wire will but it is a very complex
device that requires the charge on the test mass to be measured.

3.2 Actuators

As drag-free control systems are used to provide ultra-low disturbance environ-
ments, they usually require very low thrust levels. These low thrust demands
combined with a demand for very small and accurate thrust steps gave rise
to the development of new micropropulsion systems. These micropropul-
sion systems usually generate proportional thrust commands and operate in
the thrust range from 0.1 to 100 μN. Different concepts and principles have
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Fig. 5. Helium proportional thruster.

been proposed. The four most commonly used micropropulsion systems will
be introduced in this section.

Helium Proportional Thrusters

The concept for Helium proportional thrusters has been developed for the
Gravity Probe B mission and builds a synergy between the propulsion system
and the temperature control of the cryogenic dewar. To stabilize the temper-
ature inside the dewar, Helium is constantly vented. Instead of just venting
the Helium the idea came up to use this Helium to produce the thrust for the
control system. The Helium proportional thrusters produce a continuously
variable thrust which is controlled by an internal control loop (Fig. 5).

Micropropulsion Cold Gas Thrusters

Micropropulsion cold gas systems are very similar to standard cold gas sys-
tems that are able to provide proportional thrust. They differ mainly in the
thrust range. A very recent concept has been proposed by the Ångström Space
Technology Centre at the University of Uppsala in Sweden. They have used
microelectromechanical systems (MEMS) techniques to develop an all-in-one
thruster that includes everything from propellant reservoir to control elec-
tronics (Fig. 6).

Field Emission Electric Propulsion

Field emission electric propulsion (FEEP) thrusters are ion thrusters that ex-
tract ions from a reservoir of liquid metal. The ions are accelerated in a strong
electric field. Similar to the other propulsion concepts the FEEP thrusters are
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Fig. 6. Micropropulsion cold gas thruster.

Fig. 7. FEEP concept (needle emitter).

able to produce a proportional thrust in the μN range. FEEP thrusters are ca-
pable of delivering very low thrust with very high accuracy and controllability.
In addition fuel consumption is very low (Fig. 7).

Colloid Thrusters

The principle of the colloid thrusters is very similar to the FEEP concept.
Colloid thrusters work by electrostatically accelerating a spray of charged,
submicron diameter droplets of a conducting, nonmetallic liquid. They have
a very small specific impulse and very low noise levels.



Drag-Free Satellite Control 353

4 Missions

For the drag-free satellite several applications exist. First it can be used for
geodesy. The higher harmonics of the Earth’s gravitational potential perturb
the orbit of a satellite. By observing the flight path of the satellite, the higher
harmonics of the gravitational field can be determined. Another way for deter-
mining the gravitational potential is the measurement of the gravity gradient.
The ESA mission GOCE (gravity field and steady-state ocean circulation ex-
plorer mission) has a payload consisting of two accelerometers each having a
test mass which are measuring the gradient of the gravity field. The satellite is
flown drag-free to reduce the disturbances and to reduce the dynamical range
of the accelerometers [15].

A second application of drag-free satellites is aeronomy. Conventionally the
density of the upper atmosphere is determined by observing the change in the
period of a satellite’s orbit. This depends on the averaging over one or more
orbits. Instantaneous measurements at high frequency cannot be obtained
using this method. The test mass onboard the satellite provides a signal for
the drag-free control system. In operation, the control system can be used to
measure instantaneously the force from the upper atmosphere as well as other
forces (e.g., from radiation pressure). So every drag-free mission can obtain
data for aeronomy (see [4]).

A further and most recent application is the utilization of drag-free satel-
lites to provide a “real” zero-g or free-fall environment. This is used in a
number of current and planned future missions. Especially experiments on
fundamental physics are demanding a very low level of disturbances. The fol-
lowing missions will utilize a drag-free control system:

1. Gravity Probe B (GP-B). Test of relativistic effects on a gyroscope: the
geodetic effect and the frame-dragging (or Lense–Thirring) effect

2. Satellite Test of the Equivalence Principle (STEP). Test of the weak equiv-
alence principle

3. MICROSCOPE. Test of the weak equivalence principle at a lower level
(precursor mission to STEP)

4. Laser Interferometer Space Antenna (LISA). Detection of gravitational
waves

5. HYPER. Spatial mapping of the Lense–Thirring effect using atomic in-
terferometers

All of them are going beyond the initial idea of one test mass shielded
by the satellite. So in case of STEP, eight test masses are arranged in four
differential accelerometers. Onboard the LISA spacecraft the baseline design
uses two test masses. In addition to that the attitude of the test masses w.r.t.
the LISA satellite is important for this experiment because the test masses
are acting as mirrors for the laser beams between the satellites of the LISA
constellation. It can be seen that the drag-free technology is becoming more
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and more important for scientific satellite missions which need a very low
disturbance environment.

In the following sections, a few of the missions named above are described
with a focus on the drag-free control system.

4.1 Gravity Probe B

Gravity Probe B is the relativity gyroscope experiment developed by NASA
and Stanford University to test two extraordinary, unverified predictions of
Albert Einstein’s general theory of relativity.

The experiment will measure, very precisely, tiny changes in the direction
of spin of four gyroscopes contained in an Earth satellite orbiting at 640 km
altitude directly over the poles. The quality of the disturbance environment
provided by the Gravity Probe B spacecraft will enable the gyroscopes to
provide an almost perfect space–time reference system. They will measure
how space and time are warped by the presence of the Earth, and, more
profoundly, how the Earth’s rotation drags space–time around with it. These
effects, though small for the Earth, have far-reaching implications for the
nature of matter and the structure of the Universe.

The GP-B satellite was launched on 20 April 2004 from Vandenberg Air
Force Base, CA, USA. After the in-orbit checkout phase, it will start its ex-
perimental measurement phase where the ATC system maintains the residual
acceleration on the satellite below a level of 10−12 × g. The ATC (= drag-
free control system) uses the suspended gyroscopes (spherical test mass) as
the drag-free sensor. This measurement is obtained using the magnetic mea-
surement principle based on a SQUID. To get the superconductivity for the
SQUID and to reduce thermal noise, the experiment is contained in a liquid
helium filled dewar. The boil-off gas from the dewar is used for ATC of the
spacecraft. The Helium proportional thrusters which were especially devel-
oped for Gravity Probe B are used as the actuators to provide a six degrees
of freedom control.

4.2 LISA and LISA Pathfinder

The LISA is a joint mission with NASA. It is a three-spacecraft mission,
designed to detect the gravitational waves in space given out when very mas-
sive objects undergo strong acceleration. LISA will be the first mission to try
and detect them from space. To achieve that goal, the relative position of
several solid blocks placed in different spacecraft, 5 million kilometers apart,
will have to be constantly monitored with high accuracy using laser-based
techniques. A gravitational wave passing through the spacecraft will change
the separations between them, thereby revealing itself. The existence of gravi-
tational waves follows from Einstein’s theory of general relativity. When a
massive body is accelerated, or its motion is disturbed, it should “radiate.”
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This radiation takes the form of gravitational waves, a kind of feeble emis-
sion that should affect any type of matter. In particular, a solid body should
vibrate if a gravitational wave hits it. No technique yet exists to detect the
resulting vibrations. However, using laser interferometry, it is possible to mon-
itor how the distance between solid bodies varies when a gravitational wave
passes by.

Each of the three LISA spacecraft will carry two telescopes with associ-
ated lasers and optical systems. Pointing in directions separated by 60◦, the
telescopes in each spacecraft will communicate with the other two spacecraft,
located at the other two corners of an equal-sided triangle. Apart from the
complexity of aiming the laser beams from one small spacecraft to another
across 5 million kilometers of space, LISA has to deal with other forces besides
gravitational waves which will alter the separation of the spacecraft, e.g., the
solar pressure.

The spacecraft must sense the extraneous forces and counteract them. The
central part of each optical system will be a cube with a side length of 4 cm,
made from a gold–platinum alloy. This test mass will float freely in most of
its degrees of freedom. Acting as a reflector for the laser beams, the cube will
provide the benchmark for measuring the distance between spacecraft.

The forces and torques acting on the satellite have to be canceled out by
the drag-free control system. The position and attitude of the two test masses
onboard each spacecraft are measured using an electrostatic measurement
principle. The same principle is used to suspend the masses fully or in selected
degrees of freedom. The thruster system is planned to be made up of FEEP
thrusters. They will provide tiny control forces and torques which are needed
to control the spacecraft in the required accuracy. The residual acceleration
on the test masses shall be below 10−16 ms−2 in the bandwidth between 10−4

and 10−1 Hz [5,6, 12].
Currently ESA and NASA are developing and building the technology

demonstrator LISA Pathfinder. Launch is scheduled in 2008. LISA Pathfinder
shall demonstrate and test new technologies developed for LISA. The drag-free
control system including sensors and actuators is among these new technolo-
gies to be tested.

4.3 STEP

The STEP is a joint European–U.S. space project to investigate one of the
most fundamental principles in physics, the equivalence of inertial and passive
gravitational mass. STEP will advance the sensitivity of the equivalence prin-
ciple tests by six orders of magnitude, into regions where the principle may
break down. A violation of equivalence at any level would have significant
consequences for modern gravitational theory.

The STEP experiment is conceptually a modern version of Galileo Galilei’s
free-fall experiment, in which he is said to have dropped two weights from the
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Leaning Tower of Pisa to demonstrate that they fall at the same rate. Any
difference in the ratio of inertial to passive gravitational mass of the weights
results in a difference in the rate of fall. In STEP, the masses are in free fall
in an orbit around the Earth and if there is a violation of the equivalence
principle they tend to follow slightly different orbits.

The STEP satellite will carry four of these differential accelerometers to
test a range of different materials and of course for redundancy. The spacecraft
will have a nearly circular orbit at an altitude of about 550 km. For thermal
stability eclipses have to be avoided. Therefore a Sun-synchronous dusk-dawn
orbit is chosen which will prevent the spacecraft from passing through the
Earth’s shadow during its 6-month lifetime.

Due to the low altitude of STEP’s orbit, the interaction with the Earth’s
atmosphere is the main disturbance for the experiment. Unfortunately it oc-
curs at the same frequency as the science signal. This disturbance has to be
reduced to a level of 10−14 ms−2 in the bandwidth of 10−6 Hz around the
measurement signal [13].

STEP is mainly developed at the W.W. Hansen Experimental Physics
Laboratory of Stanford University. It inherits a lot of technologies from the
recently launched Gravity Probe B mission. For example the test mass position
is measured applying the magnetic measurement principle using SQUIDs. The
experiment is also carried out in a cryogenically cooled environment to reduce
the thermal noise and to enable the superconductivity needed for the magnetic
suspension and the SQUIDs. The boil-off from the Helium is again used for
the microthrust propulsion needed for the drag-free control system.

4.4 GOCE

The GOCE is dedicated to measuring the Earth’s gravity field and modeling
the geoid with extremely high accuracy and spatial resolution. It is scheduled
for launch in 2006.

From its mission objective, GOCE does not need to have a free-fall envi-
ronment. Nevertheless it carries a very sensitive gradiometer onboard which is
sensitive to the very small gravity gradient along the spacecraft. To allow the
measurement of this tiny gradient, the disturbances have to be reduced below
the level of 2.5 · 10−8 ms−2 Hz−1/2 in the measurement bandwidth between 5
and 100 mHz [1, 2]. For that reason a drag-free control system is applied to
cancel out the disturbances.

This control system has a second effect on the orbit of the satellite. Since
it is now following a purely gravitational orbit there is no orbit decay due to
the interaction with the upper atmosphere. This allows to have the GOCE
satellite in a very low orbit (250 km) for a mission time of 2 years.

4.5 MICROSCOPE

MICROSCOPE (Microsatellite a trainée Compensée pour l’Observation du
Principe d’Equivalence) is a CNES/ESA collaborative mission to test the
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equivalence principle (EP) in space to a precision of one part in 1015 (1018

for STEP, see Sect. 4.3). Even with the simplest experiment in space, the
precision of the test can be improved by 2–3 orders of magnitude over the
best ground-based and lunar laser-ranging tests.

The MICROSCOPE payload comprises two differential electrostatic ac-
celerometers, one testing a pair of materials of equal composition (platinum–
platinum), to provide an upper limit for systematic errors, the other testing
a pair of materials of different composition (platinum–titanium) as the EP
test proper. As on STEP, the test masses in the MICROSCOPE payload are
concentric hollow cylinders. Unlike STEP, the problem of test mass charging
is eliminated by a thin gold grounding wire.

To separate the signal frequency from error sources, the spacecraft will
spin at a frequency around 10−3 Hz. The three-axis 120 kg MICROSCOPE
satellite will be launched in 2007 by a Dnepr rocket (to be confirmed) into
a Sun-synchronous, quasicircular (eccentricity 10−2) orbit at 700 km altitude.
The drag from the residual atmosphere and solar radiation pressure will be
compensated for by a system of proportional FEEP thrusters. A total of 8–12
thrusters, each with a thrust authority of 150 μN, will be employed. Their noise
level must not exceed 0.1 μN Hz−1/2 to provide the required drag-free control
performance of 3 · 10−10 ms−2 Hz−1/2 in the measurement bandwidth [16].
The FEEP thrusters also serve as actuators for fine attitude control.

4.6 Further Applications

In the missions described in the sections before, the drag-free control system
is closely connected to the experiment. In most of the missions the test masses
for the drag-free control system are the central part of the experiment. Besides
this configuration a more decoupled application can be imagined.

First, the drag-free control system can be used to generate a high-
quality microgravity environment for experiments. These experiments are not
connected to the drag-free control system. The DFC simply serves as a very
accurate control system of the spacecraft bus. Thus the capabilities of a satel-
lite are extended by adding the drag-free control system.

Secondly, the drag-free control system can be used to decouple very sensi-
tive subsystems from external disturbances. If we consider a highly sensitive
experiment in a box as the test mass, it can be shielded by the surrounding
satellite. Then the experiment box is free from all external disturbances.

This concept was already studied for the Hubble Space Telescope succes-
sor the James Webb Space Telescope (or Next Generation Space Telescope –
NGST; see [9, 10]). This concept offers the opportunity for high-accuracy
pointing even in orbits with large disturbances.
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5 Summary

The drag-free control technology has become an enabling technology for cur-
rent and future space missions in the area of fundamental physics, geodesy,
and also microgravity research. Although the idea of the drag-free controlled
satellite is already 40 years old [8], it has taken the time to develop the needed
sensor and actuator technologies for applying the idea of the drag-free satel-
lite.

Today the drag-free technology is mainly used for fundamental physics
but future space missions in other areas may utilize this technology and its
variations.
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Summary. Drag-free control is an important technology required for scientific
experiments in space that need free-fall conditions. This chapter describes a con-
trol design of a drag-free system that uses test masses with cubic shape (rather
than spherical or cylindrical). Three interconnected control problems are consid-
ered: drag-free control of the test masses, suspension control of the test masses, and
attitude control of the spacecraft. The case of two test masses is treated here rather
generally, such that an application to more than two test masses or a reduction to
a single test mass is straightforward. Both the derivation of the control structure
and the performance optimization procedure of the feedback loops are described. It
is shown that the proposed control design yields a very simple architecture of the
onboard software for drag-free control and furthermore that it leads to an extreme
operational flexibility for the experimentalist with respect to redefinition of control
modes and performance optimization, on ground and in-flight.

1 Introduction

1.1 Free Fall and Control

Satellites or test masses in free fall open up many opportunities for missions in
the areas of fundamental physics and geodesy.1 Free fall of a test mass (TM)
means that its motion is determined by gravity only, i.e., all nongravitational
forces, including self-gravity from the spacecraft, is below a specified limit.
Free-fall requirements are specified as acceleration noise spectral densities in
m s−2 Hz−1/2 along a specific axis (the “sensitive axis” of the experiment),
together with a frequency range, the measurement bandwidth.

The most important driver of the free-fall performance is the instrument
itself. It must be designed in such a way that any nongravitational forces
on the test mass are below the requirement specifications. In practice instru-
ment design is imperfect: there will be residual forces, in the “best case” at
1 Many examples are described in this volume.
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propulsion 
system

external 
disturbance

direct internal disturbances 
(self-gravity, magnetic, etc.)

suspension 
system

S/C
stiffness

TM1

Fig. 1. Single test mass (TM ) with disturbance forces, stiffness, and actuation
systems.

zero frequency, and spatial gradients of these forces which create stiffness
coupling between spacecraft and test mass [4, 5]. These effects, together with
any external disturbance force on the spacecraft, require active stabilization
of the test mass(es) with respect to the spacecraft, i.e., the relative motion
of test mass with respect to the spacecraft must be controlled. In Fig. 1 the
disturbance effects, i.e., external force, internal force, and stiffness, are shown
schematically.

The relative motion between test mass and spacecraft can be controlled
with two different actuation systems, according to two control principles
(shown also in Fig. 1). The first principle is drag-free control, where the space-
craft follows the test mass by actuation of a propulsion system. In this case
any imperfect control yields a nongravitational acceleration of the form “stiff-
ness×displacement control error.” The second principle is suspension control,
where the test mass follows the spacecraft by actuation of a suspension sys-
tem. Here, the residual nongravitational acceleration caused by control is of
the form “stiffness×displacement + suspension control force.” From an accel-
eration point of view, drag-free control is always the preferred option since
any nongravitational forces due to suspension actuation are eliminated by de-
finition. However, drag-free control is limited to six degrees of freedom (DoF)
that represent the rigid body motion of the spacecraft which follows the test
mass(es). This means that suspension control has to be applied to some DoF
whenever there are two test masses or more.

In addition to the control of the test mass motion, attitude control of
the spacecraft must ensure proper orientation, usually with respect to a Sun-
pointing reference frame. Whenever the spacecraft’s attitude changes, the test
masses must follow that motion. This means there must be suspension actu-
ation commands in at least three DoF of the test masses.

In general, the contribution to the sensitive axis acceleration of any relative
coordinate between test mass and spacecraft can be expressed as

ax =
∑

i

ω2
xiqi + bxiui . (1)

Here ax denotes the acceleration along the sensitive axis x, i.e., the axis along
free fall shall be obtained. The ω2

xi are stiffness coupling coefficients from any
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axis i into the sensitive axis x. The bxi are suspension actuation coupling
coefficients from axis i into the sensitive axis x. Nominally it is bxx = 1 and
all other bxi = 0, i �= x, are zero. In practice, all of the bxi, i �= x, are nonzero
due to imperfections.

Prior to the control design, a breakdown of the sensitive axis acceleration
must be performed. This consists of a definition of the drag-free coordinates
and suspension coordinates, which also determines the coefficients ωxi and bxi.
Then for each term in (1), an acceleration contribution is allocated, which
yields performance requirements (noise spectral densities) for the control
errors qi and the actuation commands ui.

1.2 System Block Diagram

A schematic block diagram of a drag-free control system with two test masses,
including measurement and actuation hardware, is shown in Fig. 2. For the
measurement of the test mass motion a metrology system (electrostatic, op-
tical, or a combination of both) provides information about all test mass dis-
placements and attitudes. The inertial spacecraft attitude is measured with
a star sensor. Therefore, 15 DoF can be measured or derived from the sensor
raw data. Note that three DoF of spacecraft translation are a result of the
drag-free motion and cannot be measured.

Actuation of the spacecraft motion is performed with a micropropulsion
system that provides actuation authority along all six DoF. Furthermore each
test mass can be actuated along six DoF with an electrostatic suspension
system. In total, all 18 rigid body DoF of the spacecraft and the two test
masses can be actuated.

On-Board Computer

(3x1) inertial attitude(6x1) force/torque on SC

(6x1) force/torque on TM1
(6x1) force/torque on TM2

(6x1) displacement/attitude TM1
(6x1) displacement/attitude TM2

Thruster
Actuation
Algorithm

Suspension
Actuation
Algorithm

Control
Algorithm

Sensor Data
Processing

Suspension
System

μ-Propulsion
System

S/C
Disturbances

TM
Disturbances

S/C & TM Dynamics

Test Mass
Metrology

Star Tracker

(18x1) force/torque commands

(15x1) measurements

Fig. 2. System block diagram.
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The onboard algorithms consist of three main units (see Fig. 2). In the
sensor data processing unit displacement and rotation information of each
test mass is derived from raw data. The suspension and thruster actuation
algorithms convert force and torque requests from the controller into raw data
that is sent to the actuator hardware, see, e.g., [1–3].2 The remainder of this
chapter is about the third set of algorithms, the control algorithms. They
determine the closed-loop behavior, and thus, the acceleration contributions.

1.3 Problem Statement

The problem treated in the following is the control algorithm design for a
spacecraft with two test masses.3 Thus, in total there are 15 DoF to be con-
trolled, which can be subdivided into three interconnected control problems:

1. Spacecraft attitude pointing (three DoF), with respect to a reference
frame, typically a Sun-pointing frame. The requirement is given as a 3σ
attitude control error. The 3 × 1 attitude is denoted by ϕ.

2. Test mass drag-free control to stabilize six preselected test mass DoF
(drag-free coordinates), denoted by the 6-vector qDF .

3. Test mass suspension control to stabilize the remaining test mass DoF,
denoted by the 6-vector qSUS .

The control design shall take into account a predefined but “generic” set of
drag-free and suspension coordinates, qDF and qSUS . “Generic” means that
any meaningful linear combination of the test mass coordinates in Cartesian
coordinates shall be considered. The following performance requirements shall
be considered, as a result of an acceleration breakdown procedure outlined
above:

– Spacecraft attitude control error requirement given as a 3σ value for each
axis. The requirements are originated mainly by thermal conditioning and
communication issues.

– Requirements for the test mass control errors qi and actuation commands
ui given as spectral densities in the measurement bandwidth. These req-
uirements are a result of the acceleration breakdown explained above.

It shall be assumed that all 15 control variables can be measured in m
and rad, and all 18 rigid body DoF can be actuated by means of appropri-
ate algorithms for the micropropulsion and electrostatic suspension actuation
system.

2 Thruster actuation is a linear programming problem. For electrostatic actuation
it is nonlinear, since force is proportional to voltage squared.

3 The generalization to more than two test masses is straightforward and the single
test mass case can easily be obtained by simplification.
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2 Design Model

2.1 Linear Equations of Motion

Formal derivation of the linearized dynamics of a rigid body spacecraft and
two test masses as it is shown schematically in Fig. 3 yields

⎛⎜⎜⎜⎜⎝
ϕ̈
r̈1

ϕ̈1

r̈2

ϕ̈2

⎞⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎣
0 E 0 0 0 0

−T 1B r̃01 E 0 0 0
0 −T 1B 0 E 0 0

−T 2B r̃02 0 0 E 0
0 −T 2B 0 0 0 E

⎤⎥⎥⎥⎥⎦ ·

⎛⎜⎜⎜⎜⎜⎜⎝
a
α
a1

α1

a2

α2

⎞⎟⎟⎟⎟⎟⎟⎠ (2)

This can be verified by illustration. The 3-vectors ri, ϕi represent the test
mass displacement and rotation; the index i stands for test mass 1 and 2. The
3-vector ϕ denotes the spacecraft attitude with respect to the reference frame;
E is the unit matrix with appropriate dimension; T iB is the transformation
matrix from the spacecraft (body) to the test mass i in nominal position; and
the vector r0i denotes the vector from the spacecraft CoM to the test mass
i in nominal position and any vector with a ∗̃ represents a skew-symmetric
crossproduct matrix, i.e.,

r̃0i =

⎡⎣ 0 −r0i,z r0i,y

r0i,z 0 −r0i,x

−r0i,y r0i,x 0

⎤⎦ (3)

The accelerations a, α, a1, α1, a2, and α2 include all applied forces per
unit mass and torques per unit inertia on the spacecraft and test masses, i.e.,
actuation signals as well as reaction forces and torque. In particular, they
also include stiffness contributions. The inertial position of the spacecraft is

CoM

rO1

ϕϕϕϕ1

r1

TM2

TM1

rO2

x1

y1

z1

x2

y2

z2

Fig. 3. Test mass nominal positions and test mass coordinates.
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eliminated from the above equation since it has no coupling with all other
coordinates. The equations of motion can be written in more compact nota-
tion as (

ϕ̈
q̈TM

)
=
[
BATT 0

B1 E

]
·
(

aSC

aTM

)
(4)

with the following definitions

BATT =
[
0 E

]
, B1 =

⎡⎢⎢⎣
−T 1B r̃01

0 −T 1B

−T 2B r̃02

0 −T 2B

⎤⎥⎥⎦ (5)

and

q̈TM =
(
r̈1 ϕ̈1 r̈2 ϕ̈2

)T
, aSC =

(
a α

)T
, aTM =

(
a1 α1 a2 α2

)T (6)

2.2 Control Coordinates

The equations of motion are now transformed into control coordinates, i.e., the
test mass coordinates are split up into six coordinates that shall be drag-free
controlled and remaining six coordinates that shall be suspension controlled.
The transformation is defined by the matrices DDF and DSUS(

qDF

qSUS

)
=
[

DDF

DSUS

]
· qTM (7)

A simple example for these matrices is

DDF =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , DSUS =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ (8)

Their selection must be such that the resulting drag-free controlled coor-
dinates form a linear-independent set of coordinates. In control coordinates
the dynamics equation becomes⎛⎝ ϕ̈

q̈DF

q̈SUS

⎞⎠ =

⎡⎣BATT 0 0
BDF E 0
BSUS 0 E

⎤⎦(aSC

aTM

)
(9)

with
BDF = DDF · B1, BSUS = DSUS · B1 (10)

The applied forces aSC and aTM are now further subdivided into actu-
ation, disturbance, and stiffness contributions, denoted by the variables u,
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d, and Ω2 · q, with appropriate indices. This yields the final model used for
design purposes⎛⎝ ϕ̈

q̈DF

q̈SUS

⎞⎠ =

⎡⎣BATT 0 0
BDF E 0
BSUS 0 E

⎤⎦⎛⎝⎛⎝uTHR

uES1

uES2

⎞⎠+

⎛⎝ dSC

dTM1

dTM2

⎞⎠⎞⎠
+

⎡⎣0 0 0
0 −Ω2

DF 0
0 0 −Ω2

SUS

⎤⎦⎛⎝ ϕ
qDF

qSUS

⎞⎠ (11)

where uTHR are the forces per unit mass generated by the micropropulsion
system whereas uES1 and uES2 are forces per unit mass from the electro-
static actuation system along drag-free and suspension coordinates; the dSC ,
dTM1, and dTM2 are the corresponding external disturbance forces per unit
mass; and the Ω2

i · qi are stiffness forces along drag-free and suspension coor-
dinates. For design purposes any stiffness crosscoupling is negligible, i.e., the
stiffness matrices Ω2

DF and Ω2
SUS are considered to be diagonal.

3 Control Structure Design

3.1 Feedback Interconnection

First, new control signals (actuation commands) are introduced that lead to
input decoupling of the drag-free coordinates:

uT = BDF · uTHR ⇐⇒ uTHR = B−1
DF · uT (12)

The model for further design purposes is then given as⎛⎝ ϕ̈
q̈DF

q̈SUS

⎞⎠ =

⎡⎣BATT · B−1
DF 0 0

E E 0
BSUS · B−1

DF 0 E

⎤⎦⎛⎝⎛⎝ uT

uES1

uES2

⎞⎠+

⎛⎝ dT

dTM1

dTM2

⎞⎠⎞⎠
+

⎡⎣0 0 0
0 −Ω2

DF 0
0 0 −Ω2

SUS

⎤⎦⎛⎝ ϕ
qDF

qSUS

⎞⎠ (13)

with a unit matrix at the block entry (2, 1) of the input matrix and where it
is dT = BDF · dSC . Laplace transformation yields the following system⎛⎝ ϕ

qDF

qSUS

⎞⎠ =

⎡⎣GSC · BATT · B−1
DF 0 0

GDF GDF 0
GSC · BSUS · B−1

DF 0 GSUS

⎤⎦⎛⎝⎛⎝ uT

uES1

uES2

⎞⎠+

⎛⎝ dT

dTM1

dTM2

⎞⎠⎞⎠
(14)
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with

GSC =
1
s2

· E, GDF =

⎡⎣ 1
s2+ω2

DF i

. . .

⎤⎦ , GSUS =

⎡⎣ 1
s2+ω2

SUSi

. . .

⎤⎦ (15)

This system has the following properties:

– First, the dynamics of the drag-free coordinates qDF consists of six de-
coupled undamped or instable second-order systems, assuming parasitic
off-diagonal stiffness to be negligible for design (not analysis) purposes.
Each coordinate has two inputs, one with thrusters and one with electro-
static suspension.

– Second, there are crosscouplings from the drag-free control inputs to the
attitudes due to the matrix BATT ·B−1

DF . This means that more than one
thruster actuation signal acts on one (scalar) attitude coordinate. This is
the price to pay for decoupling the drag-free coordinates.

– Third, the attitude and drag-free coordinates (nine coordinates) are not
controllable with thrusters alone (in total six inputs). This fact is physi-
cally obvious.4 Controllability of the total system is obtained only through
the suspension loops.

The feedback loops are now closed in the following way: the drag-free con-
troller KDF feeds back the drag-free coordinates via the thruster actuation,
the suspension controller KSUS feeds back the suspension coordinates via the
suspension actuation. Both KDF and KSUS can be diagonal, since the associ-
ated plant transfer functions (14) and (15) are diagonal. The inertial attitude
can be fed back in two different ways: either by thruster actuation K

(1)
ATT ,

i.e., the satellite is “moved,” or by suspension actuation K
(2)
ATT , i.e., the test

masses are “moved.” Therefore a general controller for the input-decoupled
system is given by⎛⎝ uT

uES1

uES2

⎞⎠ =

⎡⎢⎣−K
(1)
ATT −KDF 0

−K
(2)
ATT 0 0
0 0 −KSUS

⎤⎥⎦
⎛⎝ ϕ

qDF

qSUS

⎞⎠ (16)

with KDF and KSUS being diagonal.
To asses the properties of the two attitude control strategies, first the drag-

free and suspension loops only are closed, i.e., attitude controller K
(1)
ATT =

K
(2)
ATT = 0 are set to zero. This results in the following partially closed-loop

system ⎛⎝ ϕ
qDF

qSUS

⎞⎠ =

⎡⎣G11 G12 0
G21 G22 0
G31 G32 G33

⎤⎦⎛⎝ dT

dTM1

dTM2

⎞⎠ (17)

4 A proper mathematical check of the observability matrix yields the same result.
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where

G11 = GSC · BATT · B−1
DF · SDF

G12 = −GSC · BATT · B−1
DF · T DF

G21 = SDF · GDF

G22 = SDF · GDF

G31 = SSUS · GSUS · BSUS · B−1
DF · SDF

G32 = −SSUS · GSUS · BSUS · B−1
DF · T DF

G33 = SSUS · GSUS

Here SSUS denotes the diagonal matrix of sensitivity function of the suspen-
sion loop whereas SDF and T DF are the diagonal matrices of sensitivity and
complementary sensitivity functions of the drag-free loop, respectively.5 From
the partially closed-loop system, the plant dynamics preferred for attitude
control can be identified. In case of attitude control with thrusters the plant
dynamics is given by G11, i.e., by

GSC · BATT · B−1
DF · SDF (18)

In the case of attitude control with suspension actuation, the design plant
is given by G12. Moreover, under the assumption that the bandwidth of
the attitude controllers is much smaller than the bandwidth of the drag-free
controllers,6 T DF can be approximated by E. Then the plant dynamics is
given by

−GSC · BATT · B−1
DF (19)

Comparing (18) and (19), it becomes clear that suspension actuation for
attitude control is the preferred approach, because the design plant (19) is
very simple and does not rely on the closed loop of the drag-free feedback.
Physically speaking, spacecraft attitude control using suspension actuation
corresponds to inertial “orientation” of the test masses (with very low band-
width though), the spacecraft follows due to the relatively fast drag-free con-
trol loop. Subsequently, attitude control via thrusters is discarded, i.e., K1

ATT

in (16) is set to zero.7

To eliminate the coupling of the input matrix BATT B−1
DF in the design

plant (19) the pseudoinverse of the input matrix has to be considered. Then
the overall controller becomes

5 The usual definitions S = [E + GK]−1 and T = E − S are used here.
6 This is virtually no restriction, since it is in line with overall acceleration mini-

mization.
7 If attitude control is realized by thrusters, the controllers for attitude and the

drag-free controller are in conflict with each other at low frequencies. The design
is much more complicated.
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uES1

uES2

⎞⎠ =

⎡⎣ 0 −KDF 0
−
(
BATT · B−1

DF

)I
KATT 0 0

0 0 −KSUS

⎤⎦⎛⎝ ϕ
qDF

qSUS

⎞⎠ (20)

Note that the attitude control is performed by feeding back the attitude
error to suspension commands along drag-free controlled axes. The method
can further be refined by introducing an additional selection matrix Z that
selects the (drag-free) coordinates that shall be used for suspension commands
of the attitude control. By defining

uz = Z · uES1 (21)

where Z is a diagonal matrix with zeros and ones in the main diagonal
selecting the appropriate coordinates, the plant can be written as⎛⎝ ϕ

qDF

qSUS

⎞⎠ =

⎡⎣GSC · BATT · B−1
DF 0 0

GDF GDF · Z−1 0
GSC · BSUS · B−1

DF 0 GSUS

⎤⎦⎛⎝⎛⎝ uT

uES1

uES2

⎞⎠+

⎛⎝ dT

dTM1

dTM2

⎞⎠⎞⎠
(22)

With a controller structure as shown in (20) and applying the same derivation
procedure as shown above, the overall controller can be expressed as⎛⎝ uT

uES1

uES2

⎞⎠ =

⎡⎣ 0 −KDF 0
−
(
BATT · B−1

DF · Z−1
)I

KATT 0 0
0 0 −KSUS

⎤⎦⎛⎝ ϕ
qDF

qSUS

⎞⎠
(23)

Now the remaining task is the design of single-input–single-output (SISO)
controllers for drag-free, suspension and attitude control. For the attitude
control loops, taking into account decoupling, the design plant can be chosen
simply as

GATT,i = − 1
s2

. (24)

The expected closed-loop bandwidths of the drag-free controllers are much
higher than the corresponding stiffness frequencies, thus the plant stiffness
can be neglected for the design of the drag-free controllers and the resulting
design plant becomes

GDF,i =
1
s2

. (25)

The same, however, is not true for the design of the suspension controllers as
the expected bandwidths will be in the same region as the stiffness frequencies.
Thus the stiffness cannot be neglected and the design plant becomes

GSUS,i =
1

s2 + ω2
SUS,i

. (26)
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3.2 Analytical Closed-Loop Description

Taking into account the feedback interconnection presented in Sect. 3.1, an an-
alytical expression of the closed-loop system can be derived. This closed-loop
expression shall include the transfer functions from noise inputs to control
coordinates as well as actuation commands, thus providing the means to an-
alyze the effect of any input variable on the system states and the actuation
signals. To derive the closed-loop expression the plant model including distur-
bance noise and the controller including sensor noise have to be considered⎛⎝ ϕ

qDF

qSUS

⎞⎠ =

⎡⎣GSC · α 0 0
GDF GDF 0

GSUS · β 0 GSUS

⎤⎦⎛⎝ uT

uES1

uES2

⎞⎠
+

⎡⎣GSC · α 0 0
GDF GDF 0

GSUS · β 0 GSUS

⎤⎦⎛⎝ ηT

ηES1

ηES2

⎞⎠ (27)

⎛⎝ uT

uES1

uES2

⎞⎠ =

⎡⎣ 0 −KDF 0
αI · KATT 0 0

0 0 −KSUS

⎤⎦⎛⎝ ϕ
qDF

qSUS

⎞⎠
+

⎡⎣ 0 −KDF 0
αI · KATT 0 0

0 0 −KSUS

⎤⎦⎛⎝ηSTR

ηDF

ηSUS

⎞⎠ , (28)

where we used the following definitions

α = BATT · B−1
DF , β = BSUS · B−1

DF (29)

Taking into account that

ηDF = DDF · ηIS , ηSUS = DSUS · ηIS

ηES1 = DDF · ηES , ηES2 = DSUS · ηES (30)
ηT = BDF · ηTHR

and defining the noise input vector η as

η =
(
ηSTR ηIS ηTHR ηES

)T (31)

yields the following modified equations⎛⎝ ϕ
qDF

qSUS

⎞⎠ =

⎡⎣GSC · α 0 0
GDF GDF 0

GSUS · β 0 GSUS

⎤⎦⎛⎝ uT

uES1

uES2

⎞⎠

+

⎡⎣0 0 GSC · BATT 0
0 0 GDF · BDF GDF · DDF

0 0 GSUS · BSUS GSUS · DSUS

⎤⎦
⎛⎜⎜⎝

ηSTR

ηIS

ηTHR

ηES

⎞⎟⎟⎠ (32)
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uES1

uES2

⎞⎠ =

⎡⎣ 0 −KDF 0
αI · KATT 0 0

0 0 −KSUS

⎤⎦⎛⎝ ϕ
qDF

qSUS

⎞⎠

+

⎡⎣ 0 −KDF · DDF 0 0
αI · KATT 0 0 0

0 −KSUS · DSUS 0 0

⎤⎦
⎛⎜⎜⎝

ηSTR

ηIS

ηTHR

ηES

⎞⎟⎟⎠ . (33)

Substituting these equations into each other and solving first for the control
coordinates and then for control signals finally yield the desired closed-loop
expression ⎛⎜⎜⎜⎜⎜⎜⎝

ϕ
qDF

qSUS

uT

uES1

uES2

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎢⎢⎣
M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

M51 M52 M53 M54

M61 M62 M63 M64

⎤⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎝

ηSTR

ηIS

ηTHR

ηES

⎞⎟⎟⎠ , (34)

where the elements Mij are lengthy expressions of transfer matrices that will
not be repeated here. A schematic representation of this closed-loop system
is shown in Fig. 4.
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Fig. 4. Closed-loop system.
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4 Controller Optimization Procedure

4.1 Control Loop Design Methodology

Due to the decoupling scheme presented in Sect. 3.1, the controller design
simplifies to closing a number of simple SISO loops. Many techniques are
available for this design problem. For the problem treated here, H∞ design
techniques are considered to be best suited, because closed-loop responses
can be optimized and performance requirements given in the form of spectral
densities valid in a certain measurement bandwidth can be directly taken into
account in the design process [6]. Another advantage of this scheme is that
it can easily be extended by considering model uncertainties in the design to
increase robustness. However, this chapter will focus on the nominal design
without uncertainty model.

H∞ optimization techniques rely on extending the nominal design plant
with specific weighting functions that act as bounds for the respective closed-
loop sensitivity function. Especially the S/T weighting scheme has been widely
used throughout the literature, where the sensitivity S which is a measure for
the disturbance rejection in the closed-loop system and the complementary
sensitivity function T that specifies the noise rejection are bounded through
the use of (frequency-dependent) weighting functions. In bounding S and T
the weighting functions will define cut-off frequency and roll-off of the sensi-
tivity functions and will thus also define the bandwidth ωbw of the controller.
However, the sensitivity functions always have to meet the following additional
constraint

S(s) + T (s) = 1 (35)

Typical plots of the sensitivity function S and the complementary sensitivity
function T are shown in Fig. 5.

Nevertheless, the slightly modified GS/T weighting scheme shall be used
here as the standard S/T weighting scheme may result in a controller that in-
verts the plant. Instead of shaping S directly this scheme shapes S via shaping

S
T

ω

1

ωbw

Fig. 5. Typical sensitivity functions.
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Fig. 6. GS/T weighting scheme.

the combination of the plant G and T . A block diagram of the GS/T weight-
ing scheme is shown in Fig. 6. Here Wz and Wr are the weighting functions
that bound GS and T , respectively.

The control structure design described above provides not perfect decou-
pling. There are still feedforward coupling in the overall system (drag-free
to suspension) and frequency decoupling (attitude and drag-free) will not be
perfect. Therefore, it is important to define the proper design sequence. As
the drag-free loops are the loops most important for the overall performance
of the drag-free system, they are closed first. The suspension loops are closed
next taking into account the influences of the closed drag-free loops. This is
very important as the suspension loops are very sensitive to crosscoupling.
The attitude loops are closed last because the requirements on the spacecraft
attitude are not very stringent compared to the requirements on the drag-free
and suspension loops. This additional freedom in the design can be used to
take into account additional requirements imposed on the attitude loop by the
drag-free and the suspension loop, i.e., the influence of the attitude control
loop on drag-free and suspension performance can be made negligible.

4.2 Derivation of Closed-Loop Specifications

The requirements on test mass control errors and actuation signals need to be
translated into closed-loop specifications on S and T before the actual con-
troller synthesis. Thus the analytical closed-loop expression derived in Sect. 3.2
shall be revisited.

The first step in the derivation of a drag-free system is the design of the
drag-free loops. For the design of the drag-free loops a simple double integrator
design plant is sufficient as has been shown earlier. However, depending on
the system under consideration, it may be necessary to consider a delay in the
design plant as the drag-free loops are sensitive to delays due to their higher
bandwidth. The higher bandwidth of the drag-free loops in combination with
the proposed feedback structure causes the star tracker noise ηSTR and the
electrostatic actuation noise ηES to have only a minor influence on the drag-
free loop. So, for the design of the drag-free loop the following subset of the
closed-loop expression can be considered
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qDF =
[
M22 M23

]( ηIS

ηTHR

)
(36)

Under the assumption that the bandwidth of the drag-free controllers is above
the measurement bandwidth, the closed-loop expressions M22 and M23 can
be approximated as

M22 = T DF · DDF (37)
M23 = SDF · GDF · BDF

Now the specification for S shall be derived from the respective closed-
loop expression as an example to explain the process in more detail. Thus the
closed-loop transfer function from thruster noise to control coordinates (M23)
must be considered

qDF = SDF · GDF · BDF · ηTHR . (38)

Here SDF and GDF are diagonal transfer function matrices and BDF is a
matrix mapping the thruster noise into the drag-free coordinates. Now sub-
stituting the test mass jitter requirements for qDF and the noise shape filter
for ηTHR and considering SDF ·BDF · ηTHR to be a modified expression for
the thruster noise, the specifications for the sensitivity of the drag-free loops
are easily derived for each of the SISO axes. The complete set of S and T
specifications that can be derived for the drag-free loops are summarized in
Table 1 along with their origin.

The next step in the derivation of the drag-free system is the design of the
suspension loops. To derive specifications for S and T the following subset of
the closed-loop expressions shall be considered

(
qSUS

uES2

)
=
[
M32 M33 M34

M62 M63 M64

]⎛⎝ ηIS

ηTHR

ηES

⎞⎠ (39)

Note that the influence of the star tracker noise on the suspension loop is
considered in the design of the attitude control loop, i.e., the attitude loop
is designed such that the influence on the suspension loop is minimized. The
complete set of S and T specifications that can be derived form this subset is
summarized in Table 2.

The attitude loops are closed last. They have to be designed taking into
account the already closed drag-free and suspension loops with the goal to

Table 1. Drag-free loop specifications.

Specification Origin Description

Sspec M23 Input disturbance noise suppression
Tspec M22 Readout noise suppression
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Table 2. Suspension loop specifications.

Specification Origin Description

Sspec1 M34 Suspension noise suppression
Sspec2 M33 Micropropulsion noise suppression
Tspec1 M32 Readout noise suppression
Tspec2 M62 Limiting the control signal jitter due to readout noise
Tspec3 M64 Limiting the control signal jitter due to suspension noise
Tspec4 M63 Limiting the control signal jitter due to micropropulsion noise

Table 3. Attitude loop specifications.

Specification Origin Description

Sspec M14 Input disturbance noise suppression
Tspec1 M51 Control signal requirement derived from attitude actuation
Tspec2 M51 Control signal requirement derived from drag-free jitter
Tspec3 M51 Control signal requirement derived from suspension actuation
Tspec4 M51 Control signal requirement derived from suspension jitter

minimize the influence of the attitude loops on the other loops. To derive
the S and T specifications for the attitude loops the following subset of the
closed-loop expression shall be considered(

ϕ
uES1

)
=
[

∗ M14

M51 ∗

](
ηSTR

ηES

)
(40)

Note that more than one specification for T can be derived from the transfer
function M51 from star tracker noise to the suspension actuation on the drag-
free axes. The difference between the T specifications lies in the derivation
of the control signal requirement that is used to formulate the specification.
Each specification covers one of the influences of the attitude loops on drag-
free and suspension loops, thus ensuring that this influence is negligible. The
complete set of S and T specifications for the attitude loops is summarized in
Table 3.

For all loop designs the specifications derived here are used to derive the
weighting functions that bound S and T such that the specifications are ful-
filled.

5 Software and Operational Design

Drag-free control systems are usually a part of experiments. This puts spe-
cial requirements on the operational aspects. In particular, an exceptionally
large number of different operational modes may be required to fulfill the sci-
entific mission objectives. Traditional control systems are often designed and
implemented on a mode-by-mode basis. Applying this approach to experimen-
tal drag-free systems would result in an unacceptable software complexity. A
mode of a drag-free system is defined by:
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Fig. 7. Functional units in a drag-free system.

– Coordinates to be controlled, and the associated control principle to be
applied

– Sensor data to be used
– Settings of the actuation system, e.g., low/high voltage range for electro-

static actuation

The first point is most important. With the proposed control design, any
“new” modes introduced due to coordinate definition are covered by the single
implementation of (23), with an appropriate parameterization obtained by
the design procedure described in Sect. 4. Thus, the software can be divided
into a number of functional units that are configured/parameterized to map
any mode requirements. A mode is then represented by a set of configuration
parameters for the individual functional units. This results in a large reduction
of software complexity. A block diagram representation of the functional units
in a drag-free system is shown in Fig. 7.

To simplify the operational interface, sets of configuration parameters rep-
resenting the baseline modes can be stored onboard the S/C and can then
be called through a single-mode command. By including a number of custom
modes that can be freely configured and called through the mode command,
the system provides operational flexibility. Even during in-orbit operations
the system can be easily reconfigured to respond to any change requests from
the scientists without having to change any software module.

6 Conclusion

The control design method proposed in this chapter solves the problem of
drag-free, suspension, and attitude control of a spacecraft with two cubical
test masses. The method can readily be generalized to more than two test
masses or reduced to a single test mass case, respectively. The design pro-
cedure is independent of any specific definition/selection of drag-free coordi-
nates (the coordinates to be drag-free controlled). It is demonstrated that the
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overall problem can always be decomposed into a set of 15 SISO systems by
input decoupling and frequency separation. Furthermore it is shown how this
decoupling can be exploited to systematically optimize the closed-loop trans-
fer functions with respect to control performance, and thus, how the overall
free-fall performance can be optimized.

The properties of the proposed control approach have a number of prac-
tical implications. First, the formulation and solution of the control problem
with “generalized” drag-free coordinates result in functional flexibility: any
“new mode” that may be needed by a specific choice of drag-free coordinates
from the experimentalist can be handled with the same control algorithm
and thus, the same onboard software. Furthermore it keeps the onboard soft-
ware architecture simple which leads to efficient software coding and testing.
Second, the optimization with respect to control performance becomes very
simple and efficient, i.e., any further optimization and/or redesign can be
accomplished very quickly, even in-flight. Furthermore it allows a traceable
(“axis by axis”) assessment of the overall free-fall performance.

All of these implications support a large degree of flexibility for the exper-
imentalist and a high reuse potential for future missions.
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Summary. Solar sails enable a wide range of high-energy missions, many of which
are difficult or even impossible to accomplish with any other type of conventional
propulsion system. They are also an enabling propulsion technology for two types
of deep-space missions that are very favorable for testing current gravitational
theories and the large-scale gravitational field of the solar system: the first type
comprises missions that go very close to the Sun (<8 solar radii) and the second
one comprises missions that go fast very far away from the Sun (∼200 AU). Being
propelled solely by the freely available solar radiation pressure, solar sails do not con-
sume any propellant. Therefore, their capability to gain (or reduce) orbital energy
is theoretically unlimited and practically only limited by their lifetime in the space
environment and their distance from the Sun (because the solar radiation pressure
decreases with the square of solar distance). Nevertheless, solar sails make also mis-
sions that go far away from the Sun feasible because they can gain a large amount
of orbital energy by first making one or more close solar approaches that turn the
trajectory hyperbolic. For both mission types, the temperature limit of the sail film
is a critical issue. In this chapter, we briefly review the physics and the current
technological status of solar sails, and then present mission outlines and trade-offs
for both mission types. Thereby, we will show that even near- or medium-term solar
sails with a relatively moderate performance enable these kinds of missions.

1 Introduction

Innovative deep-space missions require ever larger orbital energy changes (typ-
ically expressed as velocity increments, ΔV s1) and thus ever more demanding
propulsion capabilities. The so-called rocket equation gives the total ΔV that
spacecraft can gain as

ΔV = Ve ln
m0

mf
(1)

1 The ΔV s are always positive, no matter whether they are used for gaining or
reducing the spacecraft’s orbital energy.



380 B. Dachwald et al.

where Ve is the exhaust velocity of the propellant, m0 is the initial space-
craft mass, and mf is the final spacecraft mass. Due to the energy barrier
inherent in chemical combustion, chemical high-thrust propulsion systems
(rocket engines) have a limited Ve and thus a limited ΔV -capability (the
exhaust velocity of chemical rocket engines is less than 5 km s−1, typically
about 4 km s−1).

Utilizing solely the freely available solar radiation pressure (SRP) for
propulsion, solar sails do not consume any propellant. Therefore, their
ΔV -capability is theoretically unlimited and practically only limited by their
lifetime in the space environment and their distance from the Sun (be-
cause the SRP decreases with 1/r2, where r is the solar distance). Solar
sails enable a wide range of high-ΔV missions, many of which are diffi-
cult or even impossible to accomplish with any other type of conventional
propulsion system. Solar sails are also an enabling propulsion technology for
two types of deep-space missions that are very favorable for testing current
gravitational theories and the large-scale gravitational field of the solar sys-
tem: the first type comprises missions that go very close to the Sun (<8
solar radii) and the second one comprises missions that go fast very far
away from the Sun (∼200 AU). For a mission that goes into a very close
solar orbit (8 solar radii2 = 5.568 × 106 km = 0.03722AU, where 1 AU is 1
astronomical unit, which is Earth’s mean distance from the Sun), the ΔV
that is required from a low Earth orbit for a Hohmann transfer orbit is
ΔV1 = 22.0 km s−1. The ΔV that is required to circularize the transfer orbit
at the Sun is ΔV2 = 60.0 km s−1. Thus, using (1) and Ve = 4 km s−1, the
payload ratio of a rocket would be m0/mf = exp(ΔV/Ve) = 1.3 × 109 (or,
skipping the circularization maneuver, m0/mf = 245, which is still extremely
large). Because solar sails are particularly effective within the inner solar sys-
tem, they are able to attain very close solar orbits rapidly. Afterwards, to
allow high-precision measurements, the solar sail would be jettisoned. For
a mission that goes very fast far away from the Sun (e.g., with a solar
system escape velocity of vesc = 5 AU year−1),3 the required ΔV at Earth
is 19.2 km s−1 ⇒ m0/mf = 122, which is also very large. Although the SRP
decreases with 1/r2, solar sails enable not only missions that go very close to
the Sun but also missions that go fast very far away from the Sun. Sauer [1]
observed that the solar sail may gain a large amount of energy by making a
close approach to the Sun that turns the trajectory hyperbolic, a maneuver
for which Leipold [2, 3] coined the term “solar photonic assist” (SPA). Also
for this mission type, after the last SPA, the solar sail can be jettisoned at
about 5 AU to allow high-precision measurements.

2 We will show later that this can be achieved with a near- to medium-term solar
sail.

3 We will show later that this can be achieved with a medium-term solar sail.
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The chapter is organized as follows. First, we briefly review the physics of
solar sails (Sect. 2) and introduce the commonly used performance parameters
for solar sails (Sect. 3). Then, using the DLR solar sail ground demonstra-
tion as an example, the current technological status of solar sails is out-
lined (Sect. 4). Finally, after having outlined our solar sail simulation model
(Sect. 5), we propose two types of deep-space missions that are very favorable
for testing current gravitational theories and the large-scale gravitational field
of the solar system: the first type comprises missions that go very close to the
Sun (Sect. 6) and the second one comprises missions that go fast very far away
from the Sun (Sect. 7).

2 Solar Sail Orbital Mechanics

2.1 Solar Sail Force Model

For the description of the SRP force exerted on a solar sail, it is convenient
to introduce two unit vectors. The first one is the sail normal vector n, which
is perpendicular to the sail surface and always directed away from the Sun.
In the orbit frame4 O, the direction of n, which describes the sail attitude, is
expressed by the pitch angle α and the clock angle δ (Fig. 1). The second unit
vector is the thrust unit vector m, which points along the direction of the
SRP force. Its direction is described likewise by the cone angle θ and, again,
by the clock angle δ.

Fig. 1. Definition of the sail normal vector n and the thrust normal vector m.

4 O = {er, et, eh} is an orthogonal right-handed polar coordinate frame. er points
always along the Sun–spacecraft line, eh is the orbit plane normal (pointing along
the spacecraft’s orbital angular momentum vector), and et completes the right-
handed coordinate system (er × et = eh).
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At a distance r from the Sun, the SRP is

P =
S0

c

(r0

r

)2

= P0

(r0

r

)2

(2)

where S0 = 1,368 W m−2 is the solar constant, c is the speed of light in vacuum,
and r0 = 1 AU, so that P0 = 4.563 μN m−2. Because the SRP is so small, solar
sails have to be very large and lightweight.

In this chapter, the standard nonperfectly reflecting SRP force model5

by Wright is employed, which uses the set of optical coefficients P =
{ρ, s, εf , εb, Bf , Bb} to parameterize the optical characteristics of the sail film,
where ρ is the reflection coefficient, s is the specular reflection factor, εf and
εb are the emission coefficients of the front and back side, respectively, and
Bf and Bb are the non-Lambertian coefficients of the front and back side,
respectively, which describe the angular distribution of the emitted and the
diffusely reflected photons. The optical coefficients for a solar sail with a highly
reflective aluminum-coated front side and with a highly emissive chromium-
coated back side (to keep the sail temperature at a moderate limit) are
PAl|Cr = {ρ = 0.88, s = 0.94, εf = 0.05, εb = 0.55, Bf = 0.79, Bb = 0.55} [4].
It can be shown6 that in a sail-fixed two-dimensional coordinate frame7

S = {n, t} (see Fig. 2), the SRP force exerted on the solar sail with the
area A has a normal component F⊥ (along n) and a tangential component
F|| (along t) with

F⊥ = FSRP · n = 2PA cosα (a1 cosα + a2) (3a)
F|| = FSRP · t = −2PA cosαa3 sinα (3b)

Fig. 2. SRP force on a solar sail according to the nonperfectly reflecting force model.

5 See, e.g., [4], pp. 223–233 or [5], pp. 47–51 for a more detailed description of this
model.

6 See, e.g., [5], pp. 47–49 for derivation.
7 Because of the symmetry, the third dimension is not relevant here.
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with

a1 :=
1
2
(1 + sρ) (4a)

a2 :=
1
2

[
Bf(1 − s)ρ + (1 − ρ)

εfBf − εbBb

εf + εb

]
(4b)

a3 :=
1
2
(1 − sρ) (4c)

The total SRP force vector may then be written as

FSRP = 2PA cosαΨ m (5)

with
Ψ :=

[
(a1 cosα + a2)2 + (a3 sinα)2

]1/2
(6)

where Ψ depends only on the pitch angle α and the optical coefficients P of
the sail film. This way, the solution for nonperfect reflection has a similar
structure than the solution for ideal reflection, F ideal

SRP = 2PA cosα cosαn.
However, the SRP force is smaller and not more perpendicular to the sail (i.e.,
along n). The angle between m and n, φ = arctan [a3 sinα/(a1 cosα + a2)],
is referred to as centerline angle. The cone angle, i.e., the angle between m
and er, is then obtained as θ = α− φ.

FSRP is constrained to lie on the surface of a bubble that is always directed
away from the Sun (Fig. 3). Nevertheless, by controlling the sail orientation
relative to the Sun, a solar sail can gain orbital energy (if FSRP · et > 0) and
spiral outward, away from the Sun, or lose orbital energy (if FSRP · et < 0)
and spiral inward, toward the Sun.

Fig. 3. Spiralling toward and away from the Sun.
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3 Solar Sail Performance Parameters

The performance of solar sailcraft can be expressed by the following para-
meters:

– The sail assembly loading
σs =

ms

A
(7)

is defined as the mass of the sail assembly (the sail film and the required
structure for storing, deploying, and tensioning the sail, index s) per unit
area. Thus, the sail assembly loading is the key parameter for the perfor-
mance of a solar sail and the efficiency of its structural design.

– The sailcraft loading

σ =
m

A
=

ms + mp

A
= σs +

mp

A
(8)

is defined accordingly as the specific mass of the whole sailcraft including
the payload (index p). Note that the term “payload” stands for the total
sailcraft except the solar sail assembly (i.e., except the propulsion system).

– The most commonly used performance parameter is the characteristic
acceleration ac. It is defined as the SRP acceleration acting on a sailcraft
that is oriented perpendicular to the Sun line (n ≡ er) at r0 (1 AU). For
the nonperfectly reflecting SRP force model, it is

ac =
2P0(a1 + a2)A

m
=

2P0(a1 + a2)A
ms + mp

=
2P0(a1 + a2)

σs + mp

A

(9)

– The lightness number β, which is independent from solar distance, is
defined as the ratio of the SRP acceleration experienced by a sailcraft
that is oriented perpendicular to the Sun line and the solar gravitational
acceleration (5.93 mm s−2 at 1 AU)

β =
ac

5.93mms−2
(10)

– Another important performance parameter is the sail temperature limit
Tlim. A solar sail’s equilibrium temperature at a distance r from the
Sun is [5]

T =
(

1 − ρ

εf + εb

S0r
2
0

σ̃

cosα
r2

)1/4

(11)

where σ̃ = 5.67051× 10−8 W m−2 K−4 is the Stefan–Boltzmann constant.
Therefore, the minimum distance to the Sun is, for a given sail attitude
α, limited by the temperature limit of the sail film,

rmin =
(

1 − ρ

εf + εb

S0r
2
0

σ̃

cosα
T 4

lim

)1/2

(12)
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The sail temperature limit Tlim is sometimes also expressed as the solar
distance rlim, where the equilibrium temperature of the Sun-facing solar
sail (α = 90◦) equals the sail temperature limit, e.g., rlim = 0.264 AU
for an Al|Cr-coated sail with a temperature limit of Tlim = 240◦C. Note,
however, that the sail can fly closer to the Sun, provided

α ≥ αlim = arccos
(

εf + εb

1 − ρ

σ̃

S0r2
0

T 4
limr2

)
(13)

4 Solar Sail Hardware Development

In December 1999, a ground-based demonstration of solar sail technology was
performed at the German Aerospace Center (DLR) at Cologne, where a 20×
20m2 solar sail was successfully deployed in a simulated zero-g environment
and ambient environmental conditions (Fig. 4a) [6, 7].

The solar sail consisted of four carbon fiber-reinforced plastics (CFRP)
booms with a specific mass of 101 g m−1 and of four triangular sail segments
made of 0.1-μm aluminum-coated plastic films with a thickness between 4
and 12 μm. The booms consisted of two CFRP shells that were bonded at
the edges to form a tubular shape, so that they can be pressed flat and
rolled up (Fig. 4b). The booms were rolled up in a 60 × 60 × 65 cm3-sized
deployment module, from where they unfolded automatically. After deploy-
ment they returned to their tubular shape with high bending and buckling
strength. Subsequently, the four sail segments were deployed by ropes. To
assess the handling behavior of different sail materials, the sail segments were
made of three different aluminum-coated plastic films: 12 μm polyethylene
terephtalate (PET, Mylar�), 7.5 μm polyimide (PI, Kapton�), and 4 μm poly-
ethylene naphthalate (PEN). All segments were reinforced along the three
edges of the triangle to prevent rips. The specific mass of the sail film was

(a) Fully deployed 20 m×20 m solar sail (b) Deployable CFRP boom

Fig. 4. Solar sail hardware development at DLR.
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18.9 g m−2 for the Mylar� segment, 12.4 g m−2 for the Kapton� segment, and
10.5 g m−2 for the PEN segment. The total mass of the solar sail assembly
was 35 kg (5 kg Kapton� film,8 6 kg booms, and 24 kg deployment module),
which yields a sail assembly loading of 87.5 g m−2 and a characteristic acceler-
ation of ac = 0.09 mm s−2, however, without payload. The deployment module
and the cross-section of the booms for this ground-based demonstration were
dimensioned for a 40 × 40m2 solar sail (which was too large for an indoor
demonstration). Two load cases were considered for the structural sizing of
the booms, bending – due to the SRP force – and buckling – due to sail de-
ployment and sail tensioning forces. According to FEM calculations, similar
booms could be used also for larger sails [8].

5 Solar Sail Simulation Model

Besides the gravitational forces of all celestial bodies and the SRP force, many
disturbing forces influence the motion of solar sails in space, as they are caused,
e.g., by the solar wind, the finiteness of the solar disk, the reflected light
from close celestial bodies, and the aberration of solar radiation (Poynting–
Robertson effect). Furthermore, a real solar sail bends and wrinkles depending
on the actual solar sail design. All these issues have to be considered for high-
precision trajectory determination and control. For mission feasibility analysis,
however, as it is done within this chapter, the following simplifications can be
made:

1. The solar sail is flat.
2. The solar sail is moving under the sole influence of solar gravitation and

radiation.
3. The Sun is a point mass and a point light source.
4. The solar sail attitude can be changed instantaneously.
5. The optical characteristics of the sail film do not degrade over time.

Let the reference frame I = {ex,ey,ez} be a heliocentric inertial right-handed
Cartesian coordinate frame. The equations of motion for a solar sail in the
I-frame are:

ṙ = v, v̇ = − μ

r3
r +

FSRP

m
+ ad (14)

where r = (rx, ry, rz) is the solar sail position, v = (vx, vy, vz) is the solar sail
velocity, μ is the Sun’s gravitational parameter, and ad is the disturbing ac-
celeration, which is – according to the simplifications made above – neglected
within this chapter.

8 Assuming that all sail segments are made of Kapton�.
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6 Missions to Very Close Solar Orbits

6.1 Mission Rationale

The peculiarity of being very close to the Sun is the large value of the gravi-
tational potential,9 being the best what we get within light years. The grav-
itational potential mainly influences the rate of clocks. Therefore, missions
close to the Sun are a good environment for testing the behavior of clocks,
i.e., to test the validity of the universality of the gravitational redshift, and,
furthermore, to measure the redshift. It is a nice coincidence that one does
not need a good drag-free environment for clock tests. The important thing
to know is the position of the clock.

A test of the universality of the gravitational redshift includes a search
for a time and position dependency of constants (e.g., the fine structure con-
stant, the electron-to-proton mass ratio, the fine structure constant of the
weak interaction, etc.). Such a time and position dependence of constants is
predicted by theories describing the low-energy limit of quantum gravity the-
ories like the string theory [9,10]. Constants also will become time dependent
in quintessence scenarios [11] where the value of the constants is related to
the cosmological evolution.

6.2 Solar Sail Technology

As the trajectory calculations in Sect. 6.3 will show, a quite conservative
near- to medium-term solar sail technology is sufficient for this mission type:
a 40 × 40m2 solar sail with a total mass of 100 kg (19.8 kg Kapton� film
with 12.4 g m−2, 11.4 kg CFRP booms with 101 g m−1, and 68.8 kg deploy-
ment module+ scientific spacecraft). According to (8), the sailcraft loading
is σ = 62.5 g m−2 and according to (9), the characteristic acceleration is
ac = 0.1326 mms−2.

6.3 Mission Design

A local steering law (LSL) was used for the trajectory design of this mis-
sion. LSLs give the locally optimal thrust direction to change some specific
osculating orbital element of the spacecraft with a locally maximum rate. To
obtain LSLs, Lagrange’s planetary equations in Gauss’ form may be used,
which describe the rate of change of a body’s osculating orbital elements
due to some (propulsive and/or disturbing) acceleration. This can best be
done in the orbit frame O = {er,et,eh}. According to [12], the equation for
the semimajor axis a can be written as

da

dt
=

2a2

h

(
e sin far +

p

r
at

)
(15)

9 Note that it is the large value of the gravitational potential and not the strength
of the gravitational acceleration what is of use.
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where ar and at are the acceleration components along er and et, respectively,
h = |h| is the orbital angular momentum per spacecraft unit mass, e is the
eccentricity, f is the true anomaly, and p is the semilatus rectum of the orbit.
Because (15) can be written as

da

dt
=

⎛⎝ 2a2

h e sin f
2a2

h
p
r

0

⎞⎠ ·

⎛⎝ar

at

ah

⎞⎠ = ka · a (16)

it is clear that to decrease the semimajor axis with a maximum rate, the
thrust vector has to be along the direction −ka, a vector that is in the orbital
plane (⇒ ah = 0).

For all trajectory calculations within this chapter, a direct interplanetary
insertion of the solar sail by the launch vehicle with zero hyperbolic excess
energy (C3 = 0 km2 s−2) is assumed. By applying the LSL for decreasing the
semimajor axis with a maximum rate to a solar sail with ac = 0.1326 mms−2,
the trajectory shown in Fig. 5 is obtained. The solar sail would allow to de-
liver the scientific spacecraft into a circular orbit at ∼5.4 solar radii10 within
6.9 years, but the solar sail film would not sustain the high temperatures that
are associated with this steering profile.

Therefore, we have used Tlim = 300◦C, the temperature limit of Kapton�

[13], as a path constraint for the following calculations. This was realized by
constraining the sail attitude so that the light incidence angle cannot become
smaller than the critical one, α ≥ αlim, where the sail temperature limit of

(a) Trajectory (b) Trajectory over trip
time

Fig. 5. Trajectory to a close solar orbit without temperature constraint.

10 For closer solar distances the numerical integrator, a Runge–Kutta–Fehlberg
method of order 4(5), failed to meet the required numerical accuracies (10−12

relative error, 10−12 absolute error).
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(a) Trajectory (b) Trajectory over trip
time

Fig. 6. Trajectory to a close solar orbit with temperature constraint.

300◦C would be exceeded. This way, the trajectory shown in Fig. 6 is obtained.
The solar sail allows to deliver the scientific spacecraft into a circular orbit at
∼7.8 solar radii11 within 6.6 years. At this distance, the solar sail would be
jettisoned to prevent disturbing accelerations on the scientific payload during
the measurements.

One can see from Fig. 6b that the orbits close to the Sun take longer
because of the larger pitch angles, which keep the sail colder but also reduce
the SRP force.

7 Fast Solar System Escape Missions

7.1 Mission Rationale

Recently, the physics in weak gravitational fields attracted much interest
because of some unexplained phenomena that occur under these conditions.
These weak gravity phenomena are the galactic rotation curves and the
Pioneer anomaly (see the review by Lämmerzahl, Preuss, and Dittus on page
75 in this volume, and the article on the Pioneer anomaly by Johann, Dittus,
and Lämmerzahl on page 577). Because these phenomena may have a com-
mon origin, there are some attempts to describe both phenomena with one
theory. Such theories are a Yukawa modification of the gravitational field [14]
or the MOND theory [15]. The knowledge of the nature of weak gravitational
fields is very important for the understanding the dynamics of galaxies and
the universe as a whole.

11 Again, for closer solar distances the numerical integrator failed to meet the
required numerical accuracies.
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Related to the nature of the gravitational field at large distances is also the
validity of the Einstein equivalence principle at large distances, in particular,
the validity of the universality of free fall at large distances and the universality
of the gravitational redshift at large distances [16]. For a discussion of the
Einstein equivalence principle, see [17].

Doppler tracking and ranging will give information about the spacecraft
trajectory and, thus, about the equation of motion, the geodesic equation.
The rates of clocks will give independent information about the gravitational
field at the position of the spacecraft. In Einstein’s theory of general relativ-
ity, both the trajectory and the clocks contain the same information about
the gravitational field, namely the space–time metric. In a generalized theory
of gravity, both phenomena may become disentangled. Therefore, either to
have an independent tool to explore the gravitational field or to explore new
components of gravity, it is important to have a clock onboard of the space-
craft. An additional nice feature about clocks is that – according to standard
theory – clocks are sensitive to the gravitational field independently of the
state of motion of the clock. Such a scenario yields, in particular, a confirma-
tion or falsification of the Pioneer anomaly and, in the case of confirmation,
the resolution of the direction of the anomalous acceleration.

To sum up, solar system escape missions are important for:

– Testing the universality of free fall at large distances
– Testing the universality of the gravitational redshift at large distances
– Measuring the gravitational field via Doppler tracking and ranging (in

particular to confirm the Pioneer anomaly and to resolve the direction of
the anomalous acceleration)

– Measuring independently the gravitational fields via clocks

Of course, beyond these fundamental quests, there is also much interest in
the exploration of the outer planets and the nature of near-interstellar space
(e.g., particle content), the heliopause, and trans-Neptunian objects.

7.2 Solar Sail Technology

As the trajectory calculations in Sect. 7.3 will show, a more advanced solar
sail technology with ac ≥ 0.4 mm s−2 is required for this mission type. This
could be achieved by using larger solar sails, thinner sail films, more advanced
materials for the films and the booms, e.g., carbon nanotube sheets [18], and
by reducing the mass of the deployment mechanism.

7.3 Mission Design

Evolutionary neurocontrol (ENC) was used for the calculation of near-globally
optimal trajectories. This method is based on artificial neural networks
(ANNs) and evolutionary algorithms (EAs) and attacks low-thrust trajec-
tory optimization problems from the perspective of artificial intelligence and
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(a) Trip time (b) Solar system escape velocity

Fig. 7. Optimal transfer to the outer planets and to 200 AU.

machine learning. ENC was implemented by one of the authors (Dachwald)
within a low-thrust trajectory optimization program called InTrance, which
stands for “Intelligent Trajectory optimization using neurocontroller evolu-
tion” [19–21].

Figure 7 shows the minimum trip times τ and the achieved solar system
escape velocities vesc for optimal trajectories to Uranus distance, Neptune
distance, and 200 AU using a sail film temperature limit of Tlim = 240◦C.

Figure 7b shows that vesc increases for more distant targets because it
is beneficial, in this case, to spend more time in the inner solar system to
gain more energy. Figure 7a shows that even medium-term solar sails (ac ≈
0.4 mm s−2) are able to reach Uranus within less than 10 years, and that a little
more advanced solar sails (ac ≈ 0.6 mm s−2) are able to reach Neptune and
the inner Edgeworth–Kuiper belt within less than 10 years. A very advanced
solar sail, ac = 3.0 mm s−2, can reach 200 AU within less than 15 years.

Figure 8 shows the trajectories for optimal transfers to 200 AU for four dif-
ferent characteristic accelerations, the solar sail film temperature being limited
to Tlim = 240◦C in all four cases. One can see that more and more SPAs are
required as the characteristic acceleration of the sail decreases. The optimal
trajectory for the lightest solar sail (ac = 3.0 mm s−2) makes only a single SPA,
whereas the optimal trajectory for the heaviest solar sail (ac = 0.5 mm s−2)
first spirals toward the Sun and then requires four SPAs to reach 200 AU in
minimum time. The lower the characteristic acceleration of the solar sail, the
larger also the fraction of flight time that must be spent in the inner solar
system for gaining orbital energy [22]. For solar sailcraft with a low character-
istic acceleration, the larger flight time fraction in the inner solar system may
– additionally to the longer total flight time – render sail film degradation a
serious problem [22,23].

Figure 9 shows for three different sail temperature limits (200, 240, and
280◦C) the minimum trip times and the achieved solar system escape velocities
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(a) ac = 0.4 mm/s2 (b) ac = 0.8 mm/s2

(c) ac = 1.4 mm/s2 (d) ac = 3.0 mm/s2

Fig. 8. Geometry of optimal transfer trajectories to 200 AU for different character-
istic accelerations.

(a) Trip time (b) Solar system escape velocity

Fig. 9. Optimal transfer to 200 AU for different solar sail temperature limits.
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for optimal transfers to 200 AU. A translation of the sail temperature limits
into sail film materials is not within the scope of this chapter because the
allowed maximum sail film temperature depends not only on the film material,
but also on the sail design (stresses, wrinkles, etc.).

Figure 9 shows that the minimum trip times and the achieved solar system
escape velocities obey a potential law for all sail temperature limits,

τ(ac, Tlim) = c1(Tlim)ac2
c

with c2 = 0.543±0.011 and

vesc(ac, Tlim) = c3(Tlim)ac4
c .

with c4 = −0.605±0.006. Note that both c2 and c4 do not depend on Tlim.
Figure 9 shows that the minimum trip times to 200 AU depend considerably
on the sail temperature limit (rmin varies also considerably with Tlim, but
little with ac: 0.222AU < rmin < 0.238AU for Tlim = 200◦C, 0.195AU <
rmin < 0.204AU for Tlim = 240◦C, and 0.165AU < rmin < 0.181AU for
Tlim = 280◦C). For Tlim = 280◦C, a characteristic acceleration of about
1.0 mm s−2 is required to reach 200 AU within 25 years from launch, whereas
a characteristic acceleration of about 1.4 mm s−2 is required for Tlim = 200◦C.
Note that the solar sail design parameters are typically very sensitive with
respect to the characteristic acceleration, as the following example may show:
if a solar sail with a sail assembly loading of σs = 5 g m−2 should be used
to transport a payload (including spacecraft bus) of mp = 50 kg to 200 AU,
ac = 1.0 mm s−2 yields according to (9) a sail area of A = 123 × 123m2,
whereas ac = 1.4 mm s−2 yields a sail area of A = 233 × 233m2. If the sail
size is held fixed at 123×123m2, the payload reduces to mp = 14 kg. Another
possibility is to decrease the sail assembly loading to σs = 2.6 g m−2, which
can only be done with some much more advanced sail fabrication/deployment
technology.

8 Conclusions

Solar sails allow high-energy trajectories that are difficult or even impossible
to accomplish with any other type of conventional propulsion system. We have
shown that solar sails are also an enabling propulsion technology for missions
that go very close to the Sun and for missions that go fast very far away
from the Sun. Those two types of deep-space missions are very favorable for
doing fundamental physics in unique gravitational environments. Even near-
to medium-term solar sails (ac ≈ 0.13 mm s−2) are able to deliver spacecraft
into very close (circular) solar orbits (≈ 8 solar radii in ≈ 7 years). Medium-
term solar sails (ac ≈ 0.4 mm s−2) are required to deliver spacecraft fast to
the outer solar system (≈ 40 AU in ≈ 16 years), but very advanced solar sails
(ac ≈ 3.0 mm s−2) are necessary to deliver spacecraft fast into near-interstellar
space (200 AU in ≈ 15 years).
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Summary. The relativistic aspects of space astrometry missions like Gaia and SIM
are summarized. After a short overview of the relativistic modelling of high-accuracy
positional observations, various relativistic tests with astrometric data are discussed.

1 Introduction

The quick progress in accuracy of positional observations that we witness
in the last decades (the accuracy of astrometric VLBI in radio band and
HIPPARCOS in optical band is 50–100 times better than astrometric accuracy
20 years ago) is expected to continue even faster due to the space astrometry
projects [3,12,47], SIM [54] and JASMINE [16] to be launched within a decade.
The positional accuracy should attain the level of 1 μas, which is the angle
at which an observer in Europe would see the thickness of a sheet of paper
on which this book in printed (about 30 μm) if the book is in New Zealand.
This accuracy, which we could not dream of 20 years ago, makes it possible
to boost our knowledge in many fields of astronomy and also in gravitational
physics. Especially, promising for gravitational physics is Gaia because of its
109 objects observed as close as 45◦ from the Sun. In this paper, we deal mostly
with relativistic experiments with Gaia, although the relativistic modelling
and the relativistic experiments for other missions can be considered along
the same lines.

The ESA project Gaia [12, 47] aimed at measuring positions, proper
motions, parallaxes, radial velocities and photometric parameters of about
109 celestial objects can be used not only for the declared principal scientific
goals of the mission (reference frame, stellar physics and evolution, Galaxy
dynamics), but also as a tool to test relativity in a variety of ways. Consider-
ing the experience with similar but less ambitious ESA project HIPPARCOS
[14], the merit of Gaia for testing relativity has been recognized from the
very beginning of the mission planning [12]. The main expected relativistic
experiments with Gaia are the measurements of gravitational light deflection
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with a precision of about 10−6 and of relativistic perihelion advances of as-
teroids with a precision of about 10−4. These relativistic experiments were
discussed in detail in a number of publications [12, 18, 19, 40, 61]. However, a
number of additional experiments can be performed provided that the whole
Gaia data processing is made compatible within a single consistent relativistic
framework. Several such experiments are suggested and discussed below.

Needless to say how important it is for fundamental physics and astronomy
to measure the predictions of general relativity as reliably and as precisely as
possible. Recently, theoretical arguments were put forward suggesting that the
present agreement between general relativity and experiment may be naturally
compatible with the existence of a scalar contribution to gravity [7,43]. Later
similar mechanisms were formulated in a non-metric framework by Damour
and Polyakov [8] and in the framework of string theory and inflatory cosmology
(the so-called dilaton-runaway scenario) by Damour et al. [9]. In particular,
Damour and Nordtvedt [6,7] have found that a scalar–tensor theory of gravity
may contain a “built-in” cosmological attractor mechanism towards general
relativity. A possible scenario for cosmological evolution of the scalar field was
given by Nordtvedt [43] and Damour and Nordtvedt [7]. All these arguments
assume that the parameter 1 − γ was of the order of 1 in the early universe,
at the time of inflation, and has evolved to be close to zero at the present
time. The analyses discussed above predict that small deviations from general
relativity are currently present in the range from 4×10−5 to ∼ 5×10−8 of the
post-Newtonian effects. These predictions strongly motivate new searches for
very small deviations of relativistic gravity in the solar system. Although Gaia
will not be able to test the most stringent limit of that prediction, it is expected
to produce a determination of γ with an accuracy of 10−6 – 5 × 10−7, which
is the most precise determination of that PPN parameter expected by 2015.

Let us first consider the relativistic modelling of positional observations
with an accuracy of 1 μas and then discuss the possibilities to test relativity
with these observations.

2 Modelling of Positional Observations in Newtonian
Physics

Reduction scheme of positional observations in Newtonian physics is rather
simple. Absolute Euclidean space and absolute time of Newtonian physics
lead to the existence of global preferred coordinates: inertial coordinates
that are unique up to a constant shift of the origin of the time coordinate,
time-independent rotation of spatial axes and a shift of the origin of spatial
coordinates, which is at most linear in time. Although already in Newtonian
physics one can introduce arbitrary coordinates (e.g. some curvilinear coordi-
nates), inertial coordinates are certainly preferred, since the laws of physics
look especially simple when expressed in an inertial reference system. More-
over, observed quantities (distances, directions, etc.) are directly related to
those global inertial coordinates.
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observer

object

light ray

observation

Fig. 1. Four parts of an astronomical event from the point of view of Newtonian
physics: (1) motion of the observed object; (2) motion of the observer; (3) trajectory
of an electromagnetic signal from the observed object to the observer, which is
tacitly assumed to be a straight line in Newtonian astronomy and (4) the process
of observation responsible for Newtonian aberration. The coordinate grid in the
background symbolizes a global inertial reference system.

Let us briefly consider the Newtonian scheme of reduction of astronomi-
cal observations. Figure 1 sketches the four constituents of an astronomical
observation from the point of view of Newtonian physics (1) motion of the
observed object, (2) motion of the observer, (3) propagation of an electromag-
netic signal from the object to the observer and (4) the process of observation.
The last two parts can be formulated in a quite simple way in Newtonian
physics. It is normally tacitly assumed here that the light rays are straight lines
in some inertial coordinates. As for “the process of observation”, it is respon-
sible for the appearance of Newtonian aberration that reflects the difference
in observed directions to the source as seen by a moving observer and by an
observer at rest relative to the chosen coordinates.

The goal of Newtonian reduction of astronomical observations is to model
(to predict) the results of observations performed by a fictitious observer (nor-
mally situated at the origin of the chosen reference system, e.g. at the barycen-
ter of the solar system), at some given moment of time. One attempts here to
correct for all the effects in observations that are produced by the motion and
the barycentric position of the real observer (aberration and, e.g. parallax,
respectively) and by the motion of the object (proper motion and, possibly,
light travel time effects). The structure of a Newtonian reduction scheme does
not depend on the goal accuracy of reduction and can be described as follows
(1) aberration, (2) parallax, (3) proper motion and/or (4) light travel time
effects. For lower accuracies when only linear effects from aberration, parallax
and proper motion are of interest, one could apply the corresponding correc-
tions in arbitrary order. On the contrary, for higher accuracies the order of
these reductions is important. All parameters of the model, i.e. the coordinates
of the observer and the object as functions of time, are defined in the chosen
inertial reference system. That is, the five standard astrometric parameters
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of the object (right ascension α, declination δ, parallax π, proper motion in
right ascension μα and proper motion in declination μδ) are also defined in
the chosen reference system.

Rapid increase of observational accuracy of astronomical observations has
already made indispensable to use general relativity for modelling of the obser-
vational data. For many kinds of observations, the Newtonian scheme sketched
above fails to describe observational data with the required accuracy. In many
cases the deviations from the model are several orders of magnitude larger
than the accuracy of observations. Examples are astrometric (geodetic) VLBI
observations, lunar laser ranging, radar ranging to the planets, experiments
with high-accuracy clocks, and GPS observations. It is also widely known
and accepted that the deviations can be eliminated by using Einstein’s gen-
eral theory of relativity (instead of Newtonian physics) for the modelling of
observations.

The accuracy of positional observations to be produced by Gaia is expected
to attain 2–3 μas for the stars with magnitude V < 10 mag and 15 μas for the
stars of V = 15 mag. It is clear that not only the largest relativistic effects but
also many additional subtle effects should be taken into account to attain that
accuracy. It is also quite clear that relativistic effects cannot be considered as
small corrections to a Newtonian model as has been often done earlier when
the accuracy was not so high. The whole model should be formulated in a
language compatible with general relativity. In such a relativistic framework,
many Newtonian concepts must be abandoned and the meaning of astrometric
parameters such as position, parallax and proper motion of a star should be
redefined.

3 Relativistic Modelling of Astronomical Observations

Let us now outline general principles of relativistic modelling of astronom-
ical observations. It is interesting that in spite of a deep conceptual differ-
ence between Newtonian physics and general relativity, the structure of the
reduction scheme changes, in principle, only in one point: light rays are no
longer straight lines and should be carefully modelled. Figure 2 shows the
four constituents of an astronomical observation in the relativistic framework.
In curved space–time, there is no preferred coordinates where the laws of
physics would have substantial simpler form than in other coordinates. There-
fore, any reference system covering the space–time region under study can be
used. Instead of Newtonian inertial coordinates, one has to choose some ref-
erence system in curved space–time, which is sketched symbolically on Fig. 2
as a grid of curved coordinates.

3.1 General Scheme of Relativistic Modelling

General scheme of relativistic modelling is presented on Fig. 3. Starting from
general theory of relativity, any other metric theory of gravity or the PPN
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observer
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light ray
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Fig. 2. Four parts of an astronomical event from the point of view of relativistic
physics: (1) motion of the observed object; (2) motion of the observer; (3) trajec-
tory of an electromagnetic signal from the observed object to the observer, which
represents a geodetic line (i.e. a “curved” line) in the chosen reference system and
(4) the process of observation. The grid of curved coordinates in the background
symbolizes the chosen relativistic reference system.

a metric theory of 
gravity

a set of relativistic 
reference systems

motion of 
the object

motion of 
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light 
propagation

definition of 
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Fig. 3. General principles of relativistic modelling of astronomical observations (see
text for further explanations).

formalism one should define at least one relativistic four-dimensional refer-
ence system covering the region of space–time where all the processes con-
stituting particular kind of astronomical observations are located. Each of
four constituents of an astronomical observation should be modelled in the
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relativistic framework. The equations of motion of both the observed object
and the observer relative to the chosen reference system should be derived
and a method to solve these equations should be found. The equations of
light propagation relative to the chosen reference system should be derived
and a way to solve them should be found. The equations of motion of the
object and the observer and the equations of light propagation enable one
to compute positions and velocities of the object, observer and the photon
(light ray) with respect to that particular reference system at a given moment
of the coordinate time, provided that the positions and velocities at some
initial epoch are known. However, the positions and velocities calculated in
this way obviously depend on the reference system, i.e. on the preferences of
the person who writes down the equations. On the other hand, the results of
observations cannot depend on the choice of the reference system. Therefore, it
is clear that one more step of the modelling is needed: a relativistic description
of the process of observation. This part of the model allows one to compute
a coordinate-independent theoretical prediction of observables starting from
the coordinate-dependent quantities mentioned earlier.

These four components can now be combined into relativistic models of
observables. The models give expressions for relevant observables as functions
of a set of parameters. These parameters can then be fitted to observational
data using some kind of parameter estimation scheme. The sets of certain
estimated parameters appearing in the relativistic models of observables rep-
resent astronomical reference frames (see Sect. 4.2). It is important to under-
stand at this point that the relativistic models contain some parameters that
are defined only in the chosen reference system(s) and are thus coordinate-
dependent. For example, position and velocity of an observed object are clearly
coordinate-dependent.

3.2 Relativistic Reference Systems

From the physical point of view, any reference system covering the region
of space–time under consideration can be used to describe physical pheno-
mena within that region. In this sense, we are free to choose the reference
system to be used to model the observations. However, reference systems,
in which mathematical description of physical laws is in one sense or an-
other simpler than in some other reference systems, are more convenient for
practical calculations. Therefore, one can use the freedom to choose the ref-
erence system to make the parametrization as convenient and reasonable as
possible.

Three relativistic reference systems play a role for modelling of high-
accuracy positional observations: Barycentric Celestial Reference System
(BCRS), Geocentric Celestial Reference System (GCRS) and Centre-of-Mass
Reference System (CoMRS) of the satellite. The latter represents a local
proper reference system of the satellite considered as a massless observer.
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The Barycentric Celestial Reference System

Two working groups on relativity in astrometry, celestial mechanics and
metrology established in 1997 by the International Astronomical Union (IAU)
and Bureau International des Poids et Mesures (BIPM) have come to the
conclusion that the most convenient relativistic reference system for the
applications in astrometry, solar system dynamics, and time keeping and dis-
semination is defined by the following metric tensor [59]:

g00 = −1 +
2w
c2

− 2w2

c4
+ O(c−5),

g0i = − 4
c3

wi + O(c−5),

gij = δij

(
1 +

2
c2

w

)
+ O(c−4) (1)

with the post-Newtonian potentials w and wi defined by
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σ and σi being related to the components of the energy–momentum tensor
Tαβ as

σ =
1
c2
(
T 00 + T ss

)
, σi =

1
c

T 0i . (4)

The origin of spatial coordinates of this reference system is chosen to coincide
with the barycenter of the solar system. The reference system defined in this
way is called Barycentric Celestial Reference System (BCRS). The BCRS has
been explicitly recommended by the IAU for the modelling of high-accuracy
astronomical observations [20,52,59]. With its current definition, the BCRS is
a post-Newtonian reference system with higher-order terms neglected in the
metric tensor (1). This is satisfactory since the post-Newtonian approximation
is sufficient to model any observations in the foreseeable future (including
micro-arcsecond astrometry as long as the observations are made further than
about one degree from the Sun). Post-post-Newtonian terms can be added to
the metric tensor as soon as they are necessary for some applications (for
example for LATOR [60]). The word “celestial” in the name of BCRS is used
to stress that the BCRS does not rotate with the Earth and that remote
sources do not move relative to the BCRS in some averaged sense. The PPN
version of the BCRS valid for certain class of metric theories of gravity can
be found in Klioner and Soffel [27] and Will [63]. The BCRS will be used to
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model Gaia observations. This is a reference system underlying the resulting
Gaia catalogue (see Sect. 4.2). The coordinate time of the BCRS is called
Barycentric Coordinate Time (TCB). The TCB will be used to parametrize
the Gaia catalogue.

The Geocentric Celestial Reference System

The second reference system defined by the same IAU resolutions [52] is the
GCRS. This reference system is only marginally important for Gaia (mostly
for modelling of orbit tracking data and relating the Gaia onboard clock to
TAI [21]). Nevertheless, it is important to understand the principles of GCRS,
since they are important for the CoMRS of the satellite.

The GCRS is constructed for any of the bodies belonging to an N -body
system. A body is just a region of space–time (a “world tube”) where the
energy–momentum tensor is not zero (i.e. a body is a blob of matter),
the energy–momentum tensor being assumed to be zero between the bodies.
The GCRS possesses two remarkable properties:

(A)The gravitational field of external bodies is represented only in the form of
a relativistic tidal potential, which is at least of second order in the local
spatial coordinates and coincides with the usual Newtonian tidal potential
in the Newtonian limit.

(B)The internal gravitational field of the subsystem coincides with the gravi-
tational field of the corresponding isolated source provided that the tidal
influence of the external matter is neglected.

These two requirements can simultaneously be satisfied in general relativity as
a consequence of the validity of the Strong Equivalence Principle [27,59]. The
GCRS is the reference system where the influence of external matter (all other
bodies of the N -body system except for the arbitrarily selected central body)
is effaced as much as it is allowed by general relativity. The GCRS can be
constructed for any body of the N -body system, but is, currently, especially
important for the Earth (hence the word “geocentric”). The metric tensor of
in the GCRS coordinates (T,X) has the same form as (1), but with geocentric
gravitational potentials W and W a instead of w and wi, respectively. Both
these geocentric potentials consists of three parts:

W (T,X) = WE + Qa Xa + WT , (5)
W a(T,X) = W a

E + 1
2 εabc Cb X

c + W a
T , (6)

where WE and W a
E is the gravitational potential of the Earth, WT and W a

T

are tidal gravitational potentials due to external matter and the two other
terms Qa(T )Xa and 1

2 εabc Cb(T )Xc, Qa and Ca being arbitrary functions of
time T , describe inertial forces. The Qa defines the translational motion of the
GCRS origin relative to the geocentric momentarily co-moving locally inertial
reference system. In other words, an accelerometer attached at the GCRS
origin measures Qa [27, Sect. VIII]. The Ca defines the rotational motion of
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the spatial axes of the GCRS relative to the momentarily co-moving locally
inertial reference system. Clearly, the equations of test particles relative to
the GCRS with Ca �= 0 contain Coriolis forces. Possible choices of Ca and its
relation to the rotational matrix in the coordinate transformations between
the GCRS and BCRS are discussed, e.g. in [59].

Local Reference System of the Observer

The local reference system of a test (massless) observer is a version of the
GCRS for a massless body. As discussed by Klioner [24], this reference sys-
tem is called CoMRS in the Gaia nomenclature and can be constructed from
the BCRS in totally the same way as the GCRS except that all the internal
potentials should be set to zero. The CoMRS possesses property (B) formu-
lated above and, therefore, is adequate for modelling physical processes in
the immediate vicinity of the satellite (to define observables, and kinematical
and/or dynamical description of the satellite’s attitude).

BCRS as a Local Reference System of the Solar System

Normally, one believes that the BCRS is constructed for the solar system
considered to be isolated. One neglects herewith two kinds of effects (1) tidal
forces due to any particular external body (e.g. nearby stars or the Galaxy)
and (2) effects of cosmological background. The tidal forces can be easily taken
into account using the same theoretical framework as that used to construct
the GCRS (e.g. [59]): the BCRS for the solar system is then the same as
the GCRS for the Earth. The BCRS metric tensor would contain some tidal
potentials from other stars or the Galaxy as a whole, but those potentials can
be demonstrated to be numerically negligible.

To include effects from the cosmological background a new approach is
necessary. Klioner and Soffel [28] have argued that neglecting the interaction
of the cosmological fluid (including the cosmological constant) with the solar
system matter, one gets the following simple version of the BCRS metric with
cosmological terms
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a(t) and k = −1, 0,+1 being the usual parameters of the Robertson–Walker
metric. The details of the derivation and a discussion of the neglected terms
can be found in [28].

3.3 Motion of the Objects and the Observer

Typically, for objects situated in the solar system (asteroids, planets, space
vehicles) the equations of motion are ordinary differential equations of second
order and numerical integration with suitable initial or boundary condi-
tions can be used to solve them. For objects outside of the solar system,
one use often simple models like uniform and rectilinear motion in space or
more complicated ones, e.g. for binary stars. In any case one should under-
stand that in the relativistic framework, all these ad hoc models give posi-
tions and velocities of observed objects in the chosen relativistic reference
system.

The principal relativistic effects in the translational motion of solar system
bodies (including Gaia satellite, asteroids, etc.) in the BCRS are contained
in the so-called Einstein–Infeld–Hoffmann (EIH) equations of motion of N
gravitating bodies, whose gravitational fields can be described by their masses
MA only:

ẍA = −
∑
B �=A

GMB
xA − xB

|xA − xB|3 +
1
c2

FpN (MB ,xB , ẋB) + O(c−4) . (10)

The Newtonian part of these equations (shown explicitly above) follows from
the term of order c−2 in g00. The relativistic terms require all other terms
in the BCRS metric tensor specified above. Various parts of these equations
represent (1) relativistic perihelion advance (∼43′′ per century for Mercury,
∼10′′ per century for Icarus, etc.), (2) geodetic precession (∼2′′ per century for
Lunar orbit) and (3) various periodic relativistic effects (important mostly for
LLR and binary pulsar timing observations). Further effects not contained in
the EIH equations are the effects due to rotation of the bodies (Lense–Thirring
or gravitomagnetic effects) and those due to non-sphericity of the gravitating
bodies. These additional effects are marginal for the current accuracy of LLR
and SLR, but negligible for Gaia.

In case of Gaia satellite, one should use a slightly simplified version of
the EIH equations, since the influence of the mass of the satellite on the
motion of other gravitating bodies can be neglected. The influence of the
post-Newtonian force FpN on the motion of Gaia has been investigated in
detail by Klioner [25]. Klioner [25] has considered six different dynamical
models for the motion of Gaia: the purely Newtonian mode (N), the full post-
Newtonian model (pN) and four restricted post-Newtonian models with the
following bodies in the post-Newtonian force FpN : the Sun only (S), the Sun
and the Earth (S+E), the Sun, Earth and Jupiter (S+E+J) and the Sun,
Earth and the Moon (S+E+M). The errors of the Newtonian and restricted
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Fig. 4. The maximal errors in positions (in km, logarithmic scale (e.g. −2 corre-
sponds to 10−2 km), upper panel) and velocity (in mm s−1, logarithmic scale (e.g.
0 corresponds to 100 = 1 mms−1), lower panel) of models N (upper line), S (sec-
ond upper line), S+E (third upper line), S+E+J (fourth upper line), and S+E+M
(lower line) grow in time (abscissa on both plots is the time in days from the start
of integrations). The plots show maximal errors for the given time span among the
12,000 integrations performed by Klioner [26]. Logarithmic growth for all the mod-
els is easy to see. The black horizontal line on the lower plot corresponds to the
goal velocity accuracy of 0.6 mms−1 adopted for Gaia. The intersections of that line
and the curves give the maximal time spans during which the corresponding errors
remains below 0.6 mm s−1.

post-Newtonian models are then found by comparing the results of numerical
integrations to the results obtained with the full post-Newtonian model using
the same initial conditions on a Lissajous orbit around the Lagrange point L2

of the Sun–Earth–Gaia problem. The main results of this study, which will
help to optimize the Gaia orbit modelling and determination, are represented
on Fig. 4.

The GCRS metric tensor allows one also to derive the equations of rota-
tional motion of an extended body (i.e. of the Earth). In the same way, the
CoMRS allows one to model the rotational motion of the satellite [24]. These
equations will not be discussed here, since they are only marginally important
for Gaia.
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3.4 Light Propagation

In any metric theory of gravity, the equations of light propagation coincide
with the equations of geodetic lines in the chosen reference system. The equa-
tions are ordinary differential equations of second order. These equations could
also be solved by numerical integration, but normally one prefers to use some
approximate analytical solutions. Only in some special (normally, highly sym-
metrical) cases like Schwarzschild metric exact analytical solutions are known.
Anyway, an appropriate way to solve the equations of light propagation should
be found.

The structure of the BCRS equations of light propagation can be written
as follows:

x(t) = x0 + cσ (t− t0) + c−2 SpN (t) + c−3 S1.5pN (t) , (11)

where x0 and σ are the parameters of Newtonian straight line, SpN are the
post-Newtonian terms and S1.5pN are the additional effects induced by the
motion of gravitating matter (i.e. by translational and rotational motion of
gravitating bodies). The terms of order of c−2 in both g00 and gij are required
to derive SpN (t), and the terms c−3 in g0i are needed for S1.5pN . The next
order effects, the so-called post-post-Newtonian effects, would require terms
of order of c−4 in both g00 and gij (the c−4 terms in gij are not in the current
definition of the BCRS metric tensor). The principle observable effects in the
light propagation are (1) the gravitational light deflection (amounting to 1.75′′

for a light ray grazing the Sun) and (2) the gravitational signal retardation
(the Shapiro effect; this effect amounts to ∼240 μs for the radar ranging of
Venus in upper conjunction).

3.5 Conversion to Observables: Proper Direction

As mentioned above, the conversion of the coordinate-dependent quantities
into coordinate-independent observables is an important part of relativistic
modelling. From the mathematical point of view the coordinate-independent
quantities are scalars. Special mathematical techniques are known to perform
the suitable conversion in each particular case. One of the most important
application of this conversion procedure is a conversion of the coordinate
direction n into the source into the corresponding observable direction s.
The observable direction is often called “proper direction” in gravitational
physics. Proper direction is a direction relative to the proper reference frame
of the observer (see Sect. 4.2 about the difference of the concept of “reference
frame” in astronomy and gravitational physics). A proper reference frame is a
mathematical model of an ideal clock and three orthogonal rigid rods, which
the observer uses to measure time intervals, distances and directions in his
vicinity. Such a proper reference frame represents the coordinate basis of the
CoMRS at its origin [24]. In special theory of relativity, the proper reference
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frame of an observer is related to some inertial reference system by a Lorentz
transformation. It is therefore, sufficient to use Lorentz transformations to
convert n into s. The parameter of the Lorentz transformation in this case
coincides with the velocity of the observer relative to the chosen reference sys-
tem. In general relativity, it is also sufficient to use Lorentz transformations,
but the parameter ν of the transformations should be related to the BCRS
velocity of the observer as

ν = ẋo

(
1 +

2
c2

w(t,xo)
)

+ O(c−4) , (12)

where xo and ẋo are the BCRS positions and velocity of the observer, respec-
tively. A detailed discussion of this conversion and a comparison of different
approaches can be found in [24]. The relativistic terms in (12) are derived
from the c−2 terms in g00 and gij of the BCRS metric tensor. The difference
between n and s can be called relativistic aberration. The difference between
the Newtonian aberration and the relativistic one may amount to several
milliarcsecond for Gaia observations.

3.6 Conversion to Observables: Proper Time

Another important case is the conversion of intervals of the coordinate time
t into the corresponding intervals of the proper time τ of the observer. The
general form of this conversion reads

dτ

dt
= 1 + c−2 ApN + c−4 AppN + O(c−5) , (13)

where ApN and AppN are the post-Newtonian and post-post-Newtonian terms,
respectively. Explicit form of these two functions depends on the metric tensor:
to compute for ApN the c−2 terms in g00 are needed, while the c−4 terms in
g00, the c−3 terms in g0i, and the c−2 ones in gij are required to compute
AppN . Typically in the solar system and in particular for Gaia onboard clocks
|c−2 ApN | ∼ 10−8 and |c−4 AppN | ∼ 10−16.

3.7 Additional Effects: Relativistic Effects on the Imaging
by a Rotating Telescope

For high-accuracy astrometry, special care should be taken to define the
observables in accordance with the technical design of the instrumentation.
One of the problems is related to the non-uniform motion of the instrumenta-
tion in space. In the framework of relativity, one usually considers point-like
observers. The methods to calculate observed quantities for such observers
were outlined earlier. It is assumed herewith that the instrumentation of the
observer is so small that each part of the instrument has the same position
and velocity. However, it is clear that the velocities of different parts of the
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primary mirror in “inertial” coordinates (e.g. not rotating with the Earth) are
slightly different. However, normally the observational accuracy is considered
to be “too low” and the telescope size “too small” for those differences to be
of practical relevance. In case of Gaia, we deal with a scanning satellite that
permanently rotates in space with a period of 6 h. The size of the primary mir-
ror of Gaia is comparable with the size of the spacecraft itself and amounts to
a few metres. Therefore, at the Gaia’s goal accuracy of about 1 μas, one can-
not neglect the difference of the velocities of various parts of the instruments.
Considering the situation in the CoMRS, one can argue that for the purposes
of imaging one can consider that we deal with an inertial reference system
of special relativity. Then, considering the special-relativistic light reflection
law and finite light velocity, one can calculate the deviation of the images
produced by a rotating telescope from the images from the same telescope at
rest. In some cases, these effects should be taken into account. These effects
are discussed in details in [1].

4 Relativity for Gaia

Now, having all these theoretical tools one can formulate the relativistic model
for Gaia. The relativistic model for Gaia is well documented [21], so that we
just outline the overall structure of the model here.

4.1 Structure of the Standard Relativistic Model

The model consists essentially in subsequent transformations between five
following vectors (Fig. 5):

Fig. 5. Five principal vectors used in the model (see text for explanations).
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remote sources: s
(1)←→ n

(2)←→ σ
(3)←→ k

(4)←→ l, π
(5)←→ l(t0), π(t0), μ(t0), . . .

solar system objects: s
(1)←→ n

(2,3)←→ k
(6)←→ orbit

Fig. 6. Transformation sequences (see text for explanations).

(a) s is the unit observed direction (the word “unit” means here and below
that the formally Euclidean scalar product s · s = si si is equal to unity).

(b)n is the unit vector tangential to the light ray at the moment of observation.
(c) σ is the unit vector tangential to the light ray at t = −∞.
(d)k is the unit coordinate vector from the source to the observer.
(e) l is the unit vector from the barycenter of the solar system to the source.

Note that the last four vectors should be interpreted as sets of three num-
bers characterizing the position of the source with respect to the BCRS. All
these vectors would change their numerical values if some other relativistic
reference system is used instead of the BCRS. Vector s represents components
of the observed direction relative to the CoMRS. The model consists then in
a sequence of transformations between these vectors as shown on Fig. 6. The
physical meaning of each transformation can be summarized as follows (the
numbering here coincides with the numbering on Fig. 6):

(1) Aberration (effects vanishing together with the barycentric velocity of
the observer): this step converts the observed direction to the source s
into the unit BCRS coordinate velocity of the light ray n at the point of
observation.

(2) Gravitational light deflection for the source at infinity: this step converts
n into the unit direction of propagation σ of the light ray infinitely far
from the solar system at t → −∞.

(3) Coupling of finite distance to the source and the gravitational light deflec-
tion in the gravitational field of the solar system: this step converts σ into
a unit BCRS coordinate direction k going from the source to the observer.

(4) Parallax: this step converts k into a unit BCRS direction l going from the
barycenter of the solar system to the source.

(5) Proper motion, etc.: this step provides a reasonable parametrization of
the time dependence of l (and, possibly, of the parallax π) caused by the
motion of the source relative to the barycenter of the solar system.

(6) Orbit determination process for solar system objects.

These transformations have already been discussed in full detail [21, 22,
24, 29]. The most complicated part of the model is the light deflection model
where the effects of (1) monopole fields of all major solar system bodies,
(2) quadrupole fields of the giant planets and (3) gravitomagnetic fields due
to translational motion of all major bodies should be taken into account to
attain the accuracy of 1 μas [29]. Moreover, each body with a mean density
ρ and radius R ≥ (ρ/1 g cm−3)−1/2 × 650 km produces a light deflection of
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Table 1. Various gravitational effects in the light propagation in μas. δpN and
δppN are the post-Newtonian and post-post-Newtonian effects due to the spherically
symmetric field of each body, δQ are the effects due to the quadrupole gravitational
fields, respectively. Symbol “–” means that the corresponding effect is smaller than
0.1 μas. Physical parameters of the bodies are taken from [62]. The angle ψmax

is the maximal angular distance between the body and the source at which the
corresponding effect still attains 1 μas. For these estimates the observer is supposed
to be within a few million kilometres from the Earth orbit.

Body δpN ψmax δQ ψmax δppN ψmax

Sun 1.75 · 106 180◦ ∼1 11 53′

Mercury 83 9′ – –
Venus 493 4.5◦ – –
Earth 574 178◦ 0.6 –
Moon 26 9◦ – –
Mars 116 25′ 0.2 –
Jupiter 16,270 90◦ 240 152′′ –
Saturn 5,780 17◦ 95 46′′ –
Uranus 2,080 71′ 8 4′′ –
Neptune 2,533 51′ 10 3′′ –

Ganymede 35 32′′

Titan 32 14′′

Io 31 19′′

Callisto 28 23′′

Europe 19 11′′

Triton 10 0.7′′

Pluto 7 0.4′′

Titania 2.8 0.2′′

Oberon 2.4 0.2′′

Rhea 1.9 0.3′′

Charon 1.7 0.05′′

Iapetus 1.6 0.2′′

Ariel 1.4 0.1′′

Ceres 1.2 0.3′′

Dione 1.2 0.2′′

Umbriel 1.2 0.1′′

at least 1 μas. Therefore, a few ten of minor bodies (mainly, satellites of the
giant planets) should also be taken into account in certain rare cases [21].
Table 1 summarizes the deflection effects due to various bodies.

4.2 Gaia Reference Frame

It is important to remember that all astrometric parameters of sources
obtained from Gaia observations will be defined in the BCRS coordinates:
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positions, proper motions, parallaxes, radial velocities, orbits of minor planets,
binaries, etc. All these parameters will represent the Gaia reference frame,
which is a materialization of the BCRS. The Gaia reference frame is, so to
say, a model of the universe in the BCRS. Thus, the goal of astrometry in the
relativistic framework is not to find “the” barycentric inertial reference frame,
which is unique in the Newtonian formulation, but to find a materialization
of some chosen relativistic reference system.

Let us note here that the meaning of words “reference system” and “refer-
ence frame” in relativistic astronomy is different from the meaning normally
used in gravitational physics. Reference system is a purely mathematical
construction (a chart) giving “names” to space–time events. A reference
frame is, in contrast, some materialization (realization) of a reference system.
In astronomy, the materialization is normally given in a form of a catalogue
(or ephemeris) containing positions of some celestial objects relative to the
selected reference system. Any astronomical reference frame (a catalogue, an
ephemeris, etc.) is defined only through the reference system(s) used to cons-
truct physical models of observations.

4.3 Beyond the Standard Relativistic Model

In the model described above, any influence of gravitational fields gener-
ated outside of the solar system is ignored. For the majority of the sources,
the external field can indeed be fully neglected, but there are a number of
cases when the external gravitational fields produce observable effects. Sev-
eral authors have discussed these additional effects in detail (see, e.g. [21,30]).
Let us briefly list here the main effects of this kind: (1) gravitational light
deflection caused by the masses situated outside of the solar system (a) weak
micro-lensing on the stars of the Galaxy [2], (b) lensing on gravitational waves
(both primordial ones and those from compact sources) and (c) lensing of the
companions of edge-on binary systems; (2) cosmological effects and (3) more
complicated models for the motions of observed objects in the BCRS that are
necessary for the case of binary stars, etc.

Note that all these effects can be easily taken into account by a simple
additive extension of the standard model, since at the required accuracy the
external gravitational fields can be linearly superimposed on the solar system
gravitational field. The only exception could be the effects of cosmological
background, but a preliminary study by [28] shows that even here the coupling
of the local solar system fields and the external ones can be neglected.

5 Gaia for Relativity

An important part of Gaia is testing relativity. Although it is quite clear
how to use general relativity to model Gaia observations, the question how
to use Gaia data to test relativity in the most efficient way is by no means
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trivial and still has no final answer. It would be too simplistic if Gaia confines
itself to fitting the PPN parameter γ, i.e. just to fitting the amplitude of one
particular signature in the light deflection. A much more ambitious approach
is possible and desirable for Gaia. First of all, the whole Gaia data processing –
from planetary ephemerides and orbit determination to the final parameter
determination – should be consistent in the framework of a formalism chosen
for testing relativity with Gaia (e.g. with the PPN formalism or some extension
of it). To ensure the reliability of relativistic parameter estimations, special
efforts should be made to monitor this relativistic consistency during the whole
project.

The whole set of relativistic experiments with Gaia can be divided into two
groups (1) core (or global) tests that are related with Gaia global astrometric
solution and should use the whole Gaia data or at least as much data as
possible and (2) shell (or local) tests that are related to some specially designed
differential solutions and involve a relatively small amount of specially selected
data. Below some of these experiments are discussed.

5.1 Core Tests: Gravitational Redshift from the Gaia Onboard
Clock

Depending on the final design of Gaia, it may be possible to use Gaia onboard
clock to test gravitational redshift. As shown by Mignard et al. [41], the total
rate difference between TCG and the onboard clock is rather small (∼ 5 ×
10−12) because of a subtle cancellation of the second-order Doppler term and
the gravitational redshift for an observer on a Lissajous orbit around the
Lagrange libration point L2 of the three-body system Sun–Earth–satellite.
The value of the gravitational redshift terms themselves is about 6 × 10−10.
Writing the well-known relation between the proper time τ of Gaia and t =
TCB with two additional parameters α1 and α2 as

dτ

dt
= 1 − 1

c2

(
α1

1
2
|vo|2 + α2 U

)
+ . . . ,

where vo is the velocity of Gaia and U is the gravitational potential at the
Gaia location, one can argue that with the Gaia nominal orbit the test of the
gravitational redshift is most sensitive to α1 − α2.

5.2 Core Tests: Robertson–Mansouri–Sexl Parameters
from Aberration

The Robertson–Mansouri–Sexl parameters [39, 51] are numerical parameters
of the simplest version of a test theory for special relativity (just as the PPN
formalism is a test theory for general relativity in the post-Newtonian app-
roximation). These parameters reflect possible violations of special relativity
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(or local invariance of physical laws under Lorentz transformation). These
parameters were constrained using many different experiments (Michelson–
Morley, Kennedy–Thorndike, and many newer laboratory experiments and
even LLR). The idea for Gaia is to test special relativity’s expression for
aberration and estimate the Robertson–Mansouri–Sexl parameters. It seems
that Gaia will be unable to improve the current best estimates, but since Gaia
is a totally different kind of experiment it is still interesting to do this.

5.3 Core Tests: The PPN γ from Light Deflection

The most precise and, in this sense, the most important relativistic test pos-
sible with Gaia is the global test of the gravitational light deflection. As it
was mentioned earlier, it is expected that Gaia will be able to measure the
gravitational light deflection with a precision of 10−6 – 5 × 10−7 [12, 40].
It is clear that such subtle estimates that could potentially have very deep
physical consequences should be made with the highest possible quality and
reliability. A number of recent estimates of the PPN parameters are based
on a special post-processing of the post-fit residuals of the “standard fits” for
which general relativity was assumed to be valid. Examples are the estimate
of γ from the differential Shapiro delay observed with geodetic VLBI [57] and
the estimate of the Lense–Thirring precession from post-fit residuals of SLR
observations of geodetic satellites LAGEOS and LAGEOS II [4]. This situ-
ation is unsatisfactory since it is impossible to give the realistic accuracy of
the estimates (e.g. possible correlations with other fitted parameters are not
taken into account directly during the fit, but can only be verbally discussed
a posteriori). Moreover, in current practice no realistic simulations with faked
observational data are performed for VLBI or SLR observations. The simula-
tions could give us the possibility to check for which kind of effects particular
kind of observational data is sensitive and with which accuracy. Both these
drawbacks should be addressed during the Gaia data processing, especially
since the data processing in Gaia is a highly complex scientific problem.

Many calibration and instrumental parameters should be derived from
the observations simultaneously with the desired astrometric parameters of
sources and global (e.g. relativistic) parameters. Considering the enormous
number of parameters to be fitted and observations to be processed (5× 109

source parameters, 4 × 106 instrumental parameters and 108 attitude para-
meters, a significant number of global parameters should be determined from
about 1012 equations), a single least-squares fit is not feasible. A solution
for this problem is the so-called Global Iterative Solution (GIS) proposed
in [12, Sect. 9.5.2]. The basic idea of GIS goes back to [32]. The GIS is an iter-
ative procedure aimed at step-by-step improvement of the parameters, which
are split into four groups:

(C)Calibration parameters (instrumentation parameters characterizing each
CCD)
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(A)Attitude parameters (characterizing the orientation of the satellite relative
to a kinematically non-rotating co-moving triad [24])

(S) Source parameters (characterizing position, proper motion and parallax of
each source)

(G)Global parameters (e.g. PPN parameter γ)

The process consists in cyclical repetition of the steps C, A, S and G until
convergence. A detailed discussion of the GIS is given in [33–35] and [12].
Currently, this process is considered as the only possibility to process the
Gaia data. A disadvantage of this process is that the full covariant matrix
remains unknown and that the practical convergence behaviour is not yet
fully understood. First realistic experiments with the GIS [13] show that this
approach really works. It is clear that in this situation one must perform full-
scale simulations of the data processing in order to understand to what kinds
of deviations from general relativity Gaia observations are really sensitive.
The situation is further complicated by fact that the light deflection due to
the Sun is known to be correlated with the parallax zero point at a level of
up to 0.9. These full-scale simulations will allow us to check the accuracy of γ
determinations at least in the following versions:

1. Standard light deflection test: one parameter γ for all bodies and all data.

Because of its magnitude the light deflection due to the Sun will bring
most of the Gaia sensitivity to the possible violations of general-relativistic
light deflection law. Other bodies will help to de-correlate γ from other
parameters like parallax zero point. This approach is expected to provide
the highest overall precision for γ, but should be supported and augmented
by additional experiments described below.

2. Separate deflection parameters γ for each deflecting body (at least for the
Sun, Earth, Jupiter and Saturn).

The deflection due to other bodies (first of all due to the Earth, Jupiter
and Saturn) is big enough to be tested with a significant precision. One can
expect a precision of at least 10−3 for Jupiter and Saturn and 10−2 for the
Earth. This is especially important since independent light deflection tests
for Jupiter, Saturn and Earth provide a test of the Equivalence Principle
(we effectively test that the motion of massive bodies that provide us with
the value of the mass of the corresponding body is governed by the same
mass as the motion of massless photons).

3. Stability check: time dependence of γ.

To check the stability of the solution, it is useful to check if the Gaia
observations are compatible with the hypothesis of γ changing with time.
The data could be first divided into a number of pieces and γ could be
determined for each of these independent data sets. A linear model for γ
could then be also tested.
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4. Alternative deflection patterns: ψn.

It is also important not to restrict ourselves to testing only the general-
relativistic light deflection law (angular dependence of the deflection),
but also to test other possibilities. This will improve the reliability of the
light deflection test. Here we suggest to test other angular dependence
of the deflection. Namely, to test if the light deflection contains a signal
that falls off as ψn, n being an integer or real number and ψ being the
angular distance to the deflecting body. In general relativity, the deflection
is proportional to ψ−1.

5. Alternative deflection patterns: non-radial patterns.

Another possibility is to look for some non-radial patterns in the light
deflection. The most general approach here is to expand the deflection
into vector spherical harmonics and fit the coefficients of these harmonics
from observations.

6. Higher-order effects.

Although Gaia is not able to observe close enough to the Sun (the min-
imal Sun avoidance angle is expected to be 45◦) and cannot measure
the expected post-post-Newtonian light deflection effect due to the Sun
(see Table 1), it is useful to fit the data against a parametrized post-
post-Newtonian model of light deflection. One reason is again a check of
stability of the main solution of γ. Another reason is to check if the pat-
terns predicted by higher-order terms in alternative theories of gravity are
compatible with the Gaia observational data.

5.4 Core Tests: Pattern Matching in the Individual Positions
and Proper Motions

Several interesting effects could be searched for by matching certain patterns
in individual positions and/or proper motions of celestial objects in their
distribution over the sky:

1. Secular change of the secular aberration due to acceleration of the solar
system with respect to the remote sources (or our Galaxy).

The observational accuracy of 1 μas together with the mission lifetime of
at least 5 years allow one to see the apparent proper motions of QSOs (and
perhaps other remote sources) due to the acceleration of the solar system
barycenter relative to the centre of the Galaxy [12, Sect. 1.8.10]. These
proper motions should be of order ∼4 μas year−1, if one assumes the solar
system to be on a circular orbit around the Galactic centre, but could
be larger if one considers other options. Attempts to measure this effect
from the geodetic VLBI measurements, which have been undertaken since
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1992 at least, failed up to now due to a very high complexity of the noise
sources in VLBI data processing. On the other hand, a determination of
this parameter would be very interesting for both galactic dynamics and
relativity (especially since the accuracy of the famous double pulsar test
[10] is based on the assumption that the acceleration in question is known).
Several options to measure the acceleration with Gaia should be checked:
additional global parameters in the GIS and subsequent processing, and
fitting the acceleration-induced pattern in the individual proper motions.

2. Gravitational light deflection due to a hypothetical unknown massive body
in the vicinity of the solar system.

A preliminary study [15] shows that for a hypothetical massive body mov-
ing around the Sun far enough from the barycenter of the solar system (so
that the effect of its proper motion is much less that of its parallax), one
can hope (if the body is massive enough) to discover its presence without
seeing the body itself. The idea is to match a light deflection pattern to
individual positions of the observed sources.

3. Gravitational light deflection on primordial gravitational radiation.

Pyne et al. [50] have demonstrated how to estimate the flux of ultra-low-
frequency primordial gravitational radiation from geodetic VLBI observa-
tions. Similar approach for high-accuracy positional observations is clearly
possible. One can expect that Gaia will significantly improve the estimates
of the flux given by Pyne et al. [50].

4. Some additional parameters of cosmological interest.

Estimates of shear and vorticity from the apparent proper motions of
QSOs. This brings a few additional global parameters to the GIS or the
corresponding post-processing.

5.5 Shell Tests: Differential Light Deflection Due to the Giant
Planets

The accuracy of modern and expected solar system ephemerides were assessed
by Klioner [23]. It was concluded that because of relatively large uncertain-
ties in positions of the giant planets (Jupiter, Saturn, Uranus and Neptune)
the light deflection cannot be predicted at the level of 1 μas for observations
performed too close to these bodies. The clear consequence of this fact is the
necessity to exclude observations too close to the giant planets from the global
solution and the possibility to process those excluded observations in special
differential solutions. These differential solutions will allow us:

1. to measure the light deflection parameters γ for each of these planets (note
that this solution is independent from the determination of parameters γ
for each deflecting body as discussion in Sect. 5.3),
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2. to detect the quadrupole light defection from Jupiter and, possibly, Saturn
(this effect has never been observed up to now),

3. to measure the light deflection due to the gravimagnetic gravitational field
induced by translational motion of the planets [29,31],

4. to determine the positions of the planets themselves (which cannot be
observed directly with competitive accuracy).

Some preliminary analysis of the quadrupole deflection experiment was done
by Crosta and Mignard [5].

5.6 Shell Tests: Relativistic Effects in the Motion of Asteroids

Already 4 years after discovery of Icarus it was suggested [16] to use its motion
to test general relativistic perihelion precession. The idea was then used many
times [36,55,56,58,64] and leaded to an independent determination of the rel-
ativistic perihelion precession with a precision of currently 4%. Although the
perihelion precession for Icarus (10.05′′ per century) is significantly lower than
for Mercury (∼ 43′′ per century), it has been recognized already by Dicke [11]
that asteroids with their large inclinations and their range of semi-major axes
allow one to distinguish between the general-relativistic perihelion precession
and the possible effects of the solar quadrupole. (It is well known that from the
motion of Mercury only such a distinction is virtually impossible.) Although
in the recent years the analysis of motion of the whole system of the inner
planets did allow to determine separately the solar quadrupole and the rel-
ativistic precession [48], it remains unclear how reliable these estimates are.
Anyway, it is clear that high-accuracy observations of about half a million of
asteroids expected from Gaia will allow us not only to boost our knowledge of
the solar system but also to significantly improve the tests of general relativity
related to the motion of solar system bodies.

The largest relativistic effects in the motion of asteroids come from the
Schwarzschild terms due to the Sun, the largest effect here being the relativis-
tic perihelion precession. Although for all 253,000 asteroids registered by the
Minor Planet Centre of the International Astronomical Union by September
2005 the relativistic perihelion precession Δω is smaller than for Mercury, as
it is shown in Table 2, the really observable effect proportional to the product
of Δω and the orbital eccentricity e is for many asteroids larger than for Mer-
cury. Especially near-Earth objects (NEOs) have large relativistic perihelion
precession. Analysis [19] shows that even with a relatively small number of as-
teroids (a few thousands), one can achieve the accuracies similar to the recent
determinations from planetary data (∼ 10−3 for the PPN parameter β, and
∼ 10−7 for the solar quadrupole). Even better accuracies could be expected
from a global solution with all asteroids observed by Gaia.

These accuracy estimates are to be compared to the much lower accuracies
expected for some specially selected asteroids from Earth-bound observations
discussed by Shahid-Saless and Yeomans [53]. The reason for such a signif-
icant increase of accuracy is not only the amount of observed asteroids but
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Table 2. Orbital elements (semi-major axes a, eccentricity e and inclination i) and
relativistic perihelion precession Δω for some planets and asteroids.

Name Number a (AU) e i (◦) Δω eΔω
(′′ per century) (′′ per century)

Major planets

Mercury 0.39 0.21 7.00 42.98 8.84
Venus 0.72 0.01 3.39 8.62 0.06
Earth 1.00 0.02 0.00 3.84 0.06
Mars 1.52 0.09 1.85 1.35 0.12

. . .

Main belt asteroids

Phaethon 3200 1.27 0.89 22.17 10.13 9.01
Icarus 1566 1.08 0.83 22.85 10.06 8.31
Talos 5786 1.08 0.83 23.24 9.98 8.25
Hathor 2340 0.84 0.45 5.85 7.36 3.31
Ra-Shalom 2100 0.83 0.44 15.75 7.51 3.28
. . .

Near-Earth objects (NEOs)

2004 XY60 0.64 0.80 23.79 32.14 25.63
2000 BD19 0.89 0.90 25.67 26.83 24.01
1995 CR 0.91 0.87 4.04 19.97 17.36
1999 KW4 66,391 0.64 0.69 38.89 22.06 15.19
2004 UL 1.27 0.93 23.70 15.08 13.98
2001 TD45 0.80 0.78 25.42 17.12 13.31
1999 MN 0.67 0.67 2.02 18.45 12.28
2000 NL10 0.91 0.82 32.51 14.44 11.80
1998 SO 0.73 0.70 30.35 16.39 11.45
1999 FK21 85,953 0.74 0.70 12.60 16.18 11.38
2005 HC4 1.82 0.96 8.39 11.27 10.83
2004 QX2 1.29 0.90 19.07 11.04 9.97
2002 AJ129 1.37 0.91 15.52 10.70 9.79
2000 WO107 0.91 0.78 7.78 12.39 9.67
2005 EP1 0.89 0.77 16.19 12.50 9.60
. . .

also the accuracy of Gaia. Up to now typical accuracy of Earth-bound posi-
tional observations is about 1′′. Gaia is expected to boost that accuracy by
a factor of 103–104 at least (the observational accuracy for asteroids will be
lower than for stars because of the fact that asteroids are non-point objects of
complicated (mostly even unknown) shape that makes it difficult to fully cor-
rect for the phase effects). This accuracy makes it indispensable to account
for many subtle effects in the corresponding dynamical models. In partic-
ular, non-Schwarzschild (N -body problem) relativistic effects described by
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the EIH equations (possibly with PPN parameters) are expected to play an
important role. The consequences of the EIH equations for orbital evolution
of major planets are relatively well known. However, for asteroids having large
eccentricities and inclinations and moving in various resonances with major
planets, the non-Schwarzschild relativistic effects have never been investigated
in details. Resonant phenomena [49] in the motion of asteroids may lead to an
enhancement of the smaller relativistic perturbations (e.g. due to Jupiter) and
should be very carefully taken into account. Preliminary analysis [26] shows
that the non-Schwarzschild perturbations typically amount to several metres
(up to a hundred metres in some cases) after a few hundred days, but in some
special resonant cases can grow fast reaching a few kilometres after several
years of motion.

Up to quite recently either the data processing for asteroids was purely
Newtonian or the Schwarzschild terms due to the Sun were taken into account.
The relativistic effects could mimic non-gravitational forces and also deterio-
rate the estimated parameters. To exploit the full accuracy of Gaia, one should
make the asteroid data processing fully compatible with general relativity.
It is clear that the full EIH equations must be used as relativistic dynamical
model.

Special attention for the motion of asteroids should be paid to the rel-
ativistic effects in the framework of a restricted three-body problem Sun–
Jupiter–asteroid. The relativistic effects in the positions of the stable triangu-
lar Lagrangian libration points L4 and L5 were historically the first example of
the Nordtvedt effect given by Nordtvedt [42] (see also [46]). The Nordtvedt’s
idea has been used in practice by Orellana and Vucetich [44,45] to obtain an
estimate η = −0.56 ± 0.48 for the Nordtvedt parameter from Earth-bound
optical observations of the Trojan asteroids. Hestroffer [18] has pointed out
that this effect could be used with Gaia data to improve the determination
accuracy of the “asteroidal” Nordtvedt effect. One can expect an accuracy
increase by a factor of 102–103. The Lagrangian motion within the general-
relativistic restricted three-body problem was investigated by Maindl [37] and
Maindl and Dvorak [38]. Similar detailed study in the framework of the PPN
formalism will be published elsewhere.
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13. F. Figueras, B. López-Marti, C. Fabricius, J. Torra, C. Jordi, P. Llimona,
E. Masana, X. Luri: Proc. of the Symposium “The Three-Dimensional Universe
with Gaia”, 4–7 October 2004, Observatoire de Paris-Meudon, France, ESA SP-
576, 369 (2004).
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LISA, the Laser Interferometer Space Antenna,
Requires the Ultimate in Lasers, Clocks,
and Drag-Free Control

Albrecht Rüdiger, Gerhard Heinzel, and Michael Tröbs

Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,
Callinstr. 38, D – 30176 Hannover, Germany

Summary. The existence of gravitational waves is the most prominent of Einstein’s
predictions that has not yet been directly verified. The space project LISA shares
its goal and principle of operation with the ground-based interferometers currently
being operated, the detection and measurement of gravitational waves by laser in-
terferometry. Ground and space detection differ in their frequency ranges, and thus
in the detectable sources. Toward low frequencies, ground-based detection is lim-
ited by seismic noise, and yet more fundamentally by “gravity-gradient noise,” thus
covering the range from a few Hz on upward to a few kHz. It is only in space that
detection of signals below, say, 1 Hz is possible, opening a wide window to a different
class of interesting sources of gravitational waves. The project LISA consists of three
spacecraft in heliocentric orbits, forming a triangle of 5 million km sides. A technol-
ogy demonstrator, the LISA Pathfinder, designed to test vital LISA technologies, is
to be launched by ESA in 2009.

LISA will face great challenges in reducing measurement noise, and thus, it will
very strongly depend on the technologies of lasers, clocks, and drag-free control.

1 Introduction

The talks on which this chapter is based dealt with a new window in astro-
nomic observation presently being opened: the detection and measurement
of gravitational waves (GW) and, in particular, using laser interferometry in
space. This is one of the great challenges to modern physics. Although pre-
dicted by Einstein in 1916, a direct observation of these waves has yet to be
accomplished.

Great hopes of such detection lie in the ground-based laser-interferometric
detectors that are currently in the final phases of commissioning, approaching
their design sensitivities. These ground-based detectors are sensitive in the
“audio” frequencies of a few Hz up to a few kHz.

Perhaps even more promising are the spaceborne interferometers, where we
will mainly have to think of the joint ESA–NASA project Laser Interferometer
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Space Antenna (LISA), which would cover the frequency range from about
10−4 to 1 Hz. It is in that frequency range that the most violent cosmic events
occur, and their detection will provide new insights into the cosmology of our
universe.

Gravitational waves share their elusiveness with neutrinos: they have very
little interaction with the measuring device, which is why these gravitational
waves have not yet directly been detected. But that same feature also is a great
advantage: because of their exceedingly low interaction with matter, gravita-
tional waves can give us an unobstructed view into astrophysical and cosmo-
logical events that will forever be obscured in the electromagnetic window.

The price we have to pay is that, to detect and measure these minute effects
of the gravitational waves, we will require the most advanced technologies
in optics, lasers, and interferometry. LISA, the Laser Interferometer Space
Antenna, will in unprecedented fashion depend on the advances made in the
fields that gave this conference its title: lasers, clocks, and drag-free.

1.1 Gravitational Wave Detection

Several projects to observe gravitational waves with ground-based interferom-
eters have gone into their final phase of commissioning and are approaching
their design sensitivity, and next-generation detectors are already being ex-
tensively investigated.

Furthermore, and constituting the topic of this chapter, an international
collaboration on placing a huge interferometer, LISA, into an interplanetary
orbit is close to reaching final approval.

At the start, we will briefly discuss the characteristics of the large terres-
trial GW detectors of the current generation.

In this way, we will learn how the detectors on ground and in space differ,
in how far aims and technologies overlap, and what can scientifically be gained
from the complementarity of these researches.

The main interest will then be on the laser interferometers in space,
exemplified by the joint ESA–NASA project LISA, and sketched in Fig. 1.

1.2 Gravitational Waves

In two publications [1, 2], Albert Einstein has predicted the existence and
estimated the strength of gravitational waves. They are a direct outcome not
only of his Theory of General Relativity, but also a necessary consequence of
all theories with finite velocity of interaction. Good introductions to the nature
of gravitational waves, and on the possibilities of measuring them are given
in two chapters by Kip Thorne [3, 4].

It can be shown that gravitational waves of measurable strengths are
emitted only when large cosmic masses undergo strong accelerations, for
instance – as shown schematically in Fig. 2 – in the orbits of a (close) binary
system. The effect of such a gravitational wave is an apparent strain in space,
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Fig. 1. Orbits of the three spacecraft of LISA, trailing the Earth by 20◦. The triangle
“rolls” on a cone tilted by 60◦ out of the ecliptic. The triangle arms (of 5 million km
in length) are scaled by a factor 5.

Fig. 2. Generation and propagation of a gravitational wave emitted by a binary
system.

transverse to the direction of propagation, that makes distances  between
test bodies shrink and expand by small amounts δ , at twice the orbital fre-
quency: ω = 2Ω. The strength of the gravitational wave, its “amplitude,” is
generally expressed by h = 2 δ / . An interferometer of the Michelson type,
typically consisting of two orthogonal arms, is an ideal instrument to register
such differential strains in space.

But what appears so straightforward in principle turns out to be an almost
insurmountable problem. The difficulty lies in the magnitude, or rather the
smallness, of the effect.

1.3 Strength of Gravitational Waves

In a linearized approximation, the so-called “quadrupole formula,” the strength
of the gravitational wave emitted by a mass quadrupole can be estimated.
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For a binary with components of masses M1 and M2, or their respective
Schwarzschild radii R1, R2, the strain h to be expected is of the order

h ≈ R1R2

dD
(1)

where d and D are the distances between the partners and from binary to the
observer (see Fig. 2). For neutron stars, and even better for black holes, the
distance d can be of the order of a Schwarzschild radius, which then would
further simplify the estimate.

From such an inspiral of a neutron star binary out at the Virgo cluster
(a cluster of about 2,000 galaxies, D ∼ 15Mpc away), we could expect a strain
of something like h ≈ 10−22, in this case in the frequency region accessible
to the terrestrial detectors. That we insert such a large distance as the Virgo
cluster is to have a reasonable rate of a few events per year. Inside a single
galaxy (as ours), we would count at most a few detectable events per century.

Equation (1) lends itself to an extension to more massive binary partners,
such as (super)massive Black Holes. With massive black holes of, say, 105 M�,
the numerator would rise by a factor of 1010, whereas the closest distance d
in the denominator would rise only linearly, by 105. This would then, even
though at much lower frequencies, allow “seeing” farther out into the universe
by a factor 105, i.e., one could with the same sensitivity in h, cover the whole
universe, and with a high signal-to-noise ratio.

1.4 Complementarity of Ground and Space Observation

Shown in Fig. 3 are some typical expected sources of gravitational radiation.
They range in frequency over a vast spectrum, from the kHz region of super-
novae and final mergers of compact binary stars down to mHz events due to
formation and coalescence of supermassive black holes. Indicated are sources
in two clearly separated regimes: events in the range from, say, 5 Hz to sev-
eral kHz (detectable with terrestrial antennas), and a low-frequency regime,
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10−5 to 1 Hz, accessible only with a space project such as LISA. In the fol-
lowing sections, we will see how the sensitivity profiles of the detectors come
about. No single detector covering the whole spectrum shown could be devised.

Events Observable with Ground-Based Detectors

Clearly, one would not want to miss the information of either of these two
(rather disjoint) frequency regions. The upper band (“Earth”), with super-
novae and compact binary coalescence, can give us information about rela-
tivistic effects and equations of state of highly condensed matter, in highly
relativistic environments. Binary inspiral is an event type than can be calcu-
lated to high post-Newtonian order, as shown, e.g., by Buonanno and Damour
[5]. This will allow tracing the signal, possibly even by a single detector, until
the final merger, a much less predictable phase. The ensuing phase of a ring-
down of the combined core does again lend itself to an approximate calcu-
lation, and thus to an experimental verification. Chances for detection are
reasonably good, particularly with the advanced detectors now being planned.

Events Observable with Space Detectors

As can be seen from Fig. 3, the events to be detected by the space project
LISA, on the other hand, may have extremely high signal-to-noise ratios,
and failure to find them would shatter the very foundations of our present
understanding of the universe. The strongest signals will come from events
involving (super)massive black holes, their formation as well when galaxies
with their BH cores collide. Mergers of supermassive black hole (SMBH)
binaries will produce signals so strong that they can be detected by LISA
no matter where in the universe they originate. But also the (quasicontinu-
ous) signals from neutron-star and black-hole binaries are among the events to
be detected (“Compact Binaries” in Fig. 3). Interacting white dwarf binaries
inside our galaxy (“IWDB” in Fig. 3) may turn out to be so numerous that
they cannot all be resolved as individual events, but rather form a noise back-
ground above the instrumental noise in some frequency range around 1 mHz.
While catastrophic events such as the Gamma-ray bursts are not yet well
enough understood to estimate their emission of gravitational waves, there is
a potential of great usefulness of GW detectors for their study, mainly at low
frequencies. In addition, signals from unexpected sources are probable.

Combined observation with electromagnetic and gravitational waves could
lead to a deeper understanding of the violent cosmic events in the far reaches
of the universe [6].

2 Ground-Based Interferometers

The underlying concept of all ground-based laser detectors is the Michelson
interferometer (see schematic in Fig. 4), in which an incoming laser beam is
divided into two beams traveling along different (usually perpendicular) arms.
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Fig. 4. Advanced Michelson interferometer with Fabry–Perots in the arms and extra
mirrors MP, MS for power and signal recycling.

On their return, these two beams are recombined, and their interference (mea-
sured with a photodiode PD) will depend on the difference in the gravitational
wave effects that the two beams have experienced. It is a very essential feature
of the ground-based detectors that the beams are reflected back to the beam
splitter, with practically unreduced power, to perform the interference at that
beam splitter. This feature will, due to the immense distance (5 million km)
between the spacecraft, no longer be possible in the space detector LISA.

A gravitational wave of frequency f propagating normal to the plane of
the interferometer would give rise to a path difference δL between the two
arms of

δL = h+ · L · sin(πfτ)
πfτ

= h+ · L · sin(πL/Λ)
πL/Λ

. (2)

The changes δL in optical path increase with the optical paths L, until the
optimum is reached at about half the wavelength Λ = c/f of the gravitational
wave, which amounts to a seemingly unrealistic 150 km for a 1 kHz signal.
Schemes were devised to make the optical path L significantly longer than
the geometrical arm length  , which is limited on Earth to only a few km.
One way is to use “optical delay lines” in the arms, with the beam bouncing
back and forth in a zigzag pattern between two concave mirrors (the simplest
version of this is used in GEO600 and shown in Fig. 5).

The other scheme is to use Fabry–Perot cavities (Fig. 4), again with the
aim of increasing the interaction time of the light beam with the gravitational
wave. For GW frequencies f beyond the inverse of the storage time τ , the
response of the interferometer will, however, roll off with frequency, as 1/fτ ,
or actually with the sinc function as in Eq. (2).

2.1 The Large-Scale Projects

To give an impression of the wide international scope of the interferometer
efforts, the current large-scale detectors are listed below, ordered by size. All of
these projects will use low-noise Nd:YAG lasers (λ = 1.064 μm), pumped with
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Fig. 5. The DL4 configuration with dual recycling to be used in GEO600.

laser diodes for high overall efficiency. A wealth of experience has accumulated
on highly stable and efficient lasers, from which the space missions will also
profit. More details about the laser source in Sect. 4.5.

LIGO The largest is the US project named LIGO [7]. It comprises two
facilities at two widely separated sites, in the states of Washington and
Louisiana. Both house a 4 km interferometer, Hanford an additional 2 km
one.

VIRGO Next in size (3 km) is the French–Italian project VIRGO [8] near Pisa,
Italy. An elaborate seismic isolation system, with six-stage pendulums, will
allow measurement down to GW frequencies of 10 Hz or even below, but
still no overlap with the space interferometer LISA.

GEO 600 The detector of the British–German collaboration, GEO600 [9],
with an arm length of 600 m, is located near Hannover in northern
Germany. It employs the advanced optical technique of “signal recycling,”
SR [10,11] to make up for the shorter arms.

TAMA 300 In Japan, on a site at the National Astronomical Observatory near
Tokyo, not a very quiet site, TAMA 300 has had several successful data
runs and exhibited encouragingly long in-lock duty cycles [12]. TAMA is,
just as LIGO and VIRGO, equipped with standard Fabry–Perot cavities
in the arms. A large-scale cryogenic detector (LCGT) to be built under-
ground, in a mine near Kamioka in central Japan, is in planning [17].

AIGO Australia also had to cut back from earlier plans of a 3 km detector, due
to lack of funding. Currently a 80 m prototype detector is being built near
Perth, Western Australia, with the aim of investigating new interferometry
configurations [13].

2.2 International Collaboration

It is fortunate that the progress of these projects is rather well in synchro-
nism. For the received signal to be meaningful, coincident recordings from at
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least two detectors at well-separated sites are essential. A minimum of three
detectors (at three different sites) is required to locate the position of the
source, and there is general agreement that only with at least four detectors
can we speak of a veritable gravitational wave astronomy, based on a close
international collaboration in the exchange and analysis of the experimental
data.

2.3 First Common Data Runs

Since the turn of the year 2001/2002, common data runs between all three
LIGO detectors and GEO600, some also including TAMA 300, were under-
taken. Since then, repeated Science runs have been successfully performed,
with ever-improving sensitivity and duty cycle. The LIGO interferometers are
now very close to their design sensitivity, and also GEO600 and TAMA300
are approaching theirs. The data accumulated are being analyzed for evidence
of gravitational wave events of different types, and improved upper limits for
the strengths of such event types have been established. Upgrades of these cur-
rent detectors are envisaged and partially already firmly approved, and these
will, with great certainty, be sensitive enough to observe numerous events per
year.

After the first direct detection of gravitational waves will have been accom-
plished in hopefully no more than a few years from the time of this writing
(2006), the real goal of gravitational wave detectors, starting a completely
new branch of astronomy, can begin.

3 Noise and Sensitivity

The measurement of gravitational wave signals is a constant struggle against
the many types of noise entering the detectors. These noise sources have pre-
sented a great technological challenge, and interesting schemes of reducing
their effects have been forwarded. Two very prominent noise sources, ones
that also play a decisive role in space detectors, will be discussed below.

3.1 Laser Noise

The requirements on the quality (“purity”) of the laser light used for the GW
interferometry are extraordinarily demanding. As it happens, the light sources
for the ground-based and the spaceborne interferometers will both be Nd:YAG
lasers emitting at 1064 nm in the near-infrared. High stability is achieved
by unidirectional operation of nonplanar ring oscillators (NPROs) [14] (see
Fig. 6). Pumped by laser diodes, they exhibit a high overall efficiency. Their
good tunability allows efficient stabilization schemes.

How the very high requirements for the laser are met will be discussed
in detail in Sect. 4.6. A few straightforward requirements will just briefly be
listed here:
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Fig. 6. NPRO laser, scheme, dimensions in mm (left), photo (right).

Frequency Stability

A perfect Michelson interferometer (with exactly matching arms) would be
insensitive to frequency fluctuations of the light used. The detectors will,
however, by necessity have unequal arms, the ones on the ground due to civil
engineering tolerances and a particular modulation scheme chosen, the space
detector due to orbital dynamics of the individual spacecraft.

Therefore, a very accurate control of the laser frequency is required, with
(linear) spectral densities of the frequency fluctuations of the order δ̃ν =
10−4 HzHz−1/2 for the ground-based detectors and even less for LISA. Control
schemes have been devised to reach such extreme stability, albeit only in the
frequency band required, and not all the way down to DC.

Beam Purity

Any geometrical asymmetry of the Michelson interferometer will make it prone
to noise from geometrical fluctuations of the laser beam. Ideally the illumina-
tion of the Michelson would be a pure TEM00 mode. For small light powers,
below 1 W as in the space project, a clean circular beam can be obtained by
passing the light through a single-mode fiber. For the laser powers needed in
the ground-based interferometers, however, a “mode-cleaner” is used: a non-
degenerate cavity that is tuned for the TEM00 mode, but suppresses the (time
dependent) lateral modes that represent fluctuations in position, orientation,
and width of the beam [15].

3.2 Shot Noise

Particularly at higher frequencies, the sensitivity is limited by a rather funda-
mental source of noise, the so-called shot noise, a fluctuation in the measured
interference coming from the “graininess” of the light.

These statistical fluctuations fake apparent fluctuations in the optical path
difference ΔL that are inversely proportional to the square root of the light
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power P used in the interferometer. The spectral density (in the “linear” form
we prefer) of the fluctuations of the path difference, Δ̃L, is given by

Δ̃L =
(

�c

2π
λ

η P

) 1
2

(3)

where η is the conversion efficiency of the photo diode, and λ the laser’s
wavelength.

For measuring the minute changes of the order of ΔL ∼ 10−18 m in our
kilometric “advanced” ground-based detectors, as much as 1 MW of light
power, in the visible or in the near-infrared, would be required. This is not as
unrealistic as it may sound; using the concept of “power recycling” [16], such
high effective powers circulating in the interferometer can be realized with
modest laser powers, as already indicated in Figs. 4 and 5.

The Shot Noise Limit

Shot noise is a “white” noise, but as the response in (2) rolls off as 1/fτ at
frequencies above the inverse storage time τ , the apparent strain noise rises
linearly with frequency, as shown in the curves “Space” and “Earth” in Fig. 3.
As we will see later, this frequency-proportional rise of the sensitivity curve
will limit the sensitivity in spaceborne interferometers in a similar way as in
the ground-based detectors.

4 The Space Interferometer LISA

Only a space mission allows us to investigate the gravitational wave spec-
trum at very low frequencies. For all ground-based measurements, there is
a natural, insurmountable boundary toward lower frequencies. This is given
by the (unshieldable) effects due to varying gravity gradients of terrestrial
origin: moving objects, meteorological phenomena, as well as motions inside
the Earth. To overcome this “brick wall,” the only choice is to go far enough
away, either into a wide orbit around the Earth, or better yet further out into
interplanetary space. Once we have left our planet behind and find ourselves
in outer space, we have some great benefits for free: to get rid of terrestrial
seismic and gravity-gradient noise, to have excellent vacuum along the arms,
and in particular to be able to choose the arm length large enough to match
the frequency of the astrophysical sources we want to observe.

4.1 The LISA Configuration

The European Space Agency (ESA) and NASA have agreed to collaborate
on such a space mission called LISA, “Laser Interferometer Space Antenna”
[18,19].
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Fig. 7. Orbits of the three spacecraft of LISA, trailing the Earth by 20◦. The triangle
arms are scaled by factor 10.

Fig. 8. View of one LISA spacecraft, housing two optical assemblies. The solar panel
at top not shown, the thermal shield shown as semitransparent.

LISA consists of three identical spacecraft, placed at the corners of an
equilateral triangle (Fig. 7). The sides are to be 5 million km long (5 · 109 m).
This triangular constellation is to revolve around the Sun in an Earth-like
orbit, about 20◦ (i.e., roughly 50 million km) behind the Earth. The plane
of this equilateral triangle needs to have an inclination of 60◦ with respect to
the ecliptic to make the common rotation of the triangle most uniform. The
three spacecraft form a total of three, but not independent, Michelson-type
interferometers, here of course with 60◦ between the arms.

The spacecraft at each corner will have two optical assemblies that are
pointed, subtending an angle of 60◦, to the two other spacecraft (indicated in
Fig. 8, with the Y-shaped thermal shields shown semitransparent). An optical
bench, with the test mass housing in its center, can be seen in the middle of
each of the two arms, and a telescope of 40 cm diameter at the outer ends.
Each of the spacecraft has two separate lasers that can be phase-locked so
as to represent the “beam splitter” of a Michelson interferometer. However, a
different scheme of data analysis would relax that requirement of locked phase
considerably [20].
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Sun

60�

Fig. 9. Annual motion of the LISA configuration: the heavier orbit represents the
Earth’s orbit, and the orbit on which the center of the LISA triangle circles the
Sun. The motion of one of the LISA spacecraft is indicated by the (slightly inclined)
lighter orbit.

4.2 Annual Orbit of LISA

During its yearly motion around the Sun, the three spacecraft of LISA will
“roll” on a cone of half-angle 60◦, as indicated in Figs. 1 and 9. Each space-
craft moves on a slightly elliptic orbit around the Sun, as indicated for one
spacecraft by the lighter orbit, slightly tilted with respect to the (heavier)
Earth orbit.

This configuration has a number of advantages that make several of the
design requirements less stringent.

Constant Angle to Sun

The spacecraft face the Sun by a constant angle of incidence of 30◦, which
provides a very stable thermal environment for the sensitive parts (optical
assembly, the sensors) of the spacecraft. It also allows a design of the spacecraft
such that no sunlight will ever enter the sensitive optical assembly.

Constant Triangle Shape

The orbits of the three spacecraft provide a stable configuration, close to an
equilateral triangle. The maximum changes in the (≈60◦) angles subtended by
the lines of sight to the other two spacecraft are in the order of 1◦ (Fig. 10).
Thus it becomes possible to devise articulation schemes for the two “tele-
scopes” in each spacecraft to follow these deviations.

The maximum distance variations are in the order of 100,000 km, which is
also small when compared with the very large baseline of 5 million km: ≈2%
The velocity along the line-of-sight between the spacecraft varies by about
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±10m s−1 during each year (Fig. 11), giving rise to Doppler shifts of about
±10MHz in the received beams, which must be taken into account in the
interferometer design. The precise design of the orbits is subject of ongoing
optimizations, with the aim to minimize these deviations from a constant
triangle.

Constant Distance to Earth

The center of the LISA triangle trails the Earth in its orbit by 20◦, or about 50
million km. This makes the distance to Earth, for radio communication, also
quite stable, which reduces the problems of radio antenna design and radio
transmission power. The radio antennas must, however, provide a rotational
degree of freedom that allows them to be pointed toward the Earth for the
(intermittent) data transmissions, as well as for the (probably continuous)
preparedness for control signals from Earth.

An auxiliary modulation on the laser link will provide for data transfer
between the spacecraft, thus allowing to swap the data to be downlinked
between the spacecraft for increased redundancy and reduced downtime due
to antenna repositioning.

4.3 Gravitational Reference Sensors

The distances between the different spacecraft are measured from test masses
housed drag-free in these three spacecraft. The three LISA spacecraft each
contain two test masses, one for each arm forming the link to another LISA
spacecraft. The test masses, 4 cm cubes made of an Au/Pt alloy of low mag-
netic susceptibility, reflect the light coming from the YAG laser and define the
reference mirror of the interferometer arm. These test masses are to be freely
floating in space, subject only to gravity.

For this purpose, these test masses are also used as inertial references for
the drag-free control of the spacecraft that constitutes a shield to external
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Fig. 12. Layout of gravitational sensor: (a) test mass and (b) electrode housing

forces. Development of these sensors is done at various institutions. Figure 12
shows an engineering model of a test mass and its electrode housing [22].
These sensors feature a three-axis electrostatic suspension of the test mass
with capacitive position and attitude sensing.

A noise level of 10−9 mHz−1/2 is needed to limit the disturbances induced
by relative motions of the spacecraft with respect to the test mass: for
instance the disturbances due to the spacecraft self-gravity or to the test
mass charge.

4.4 Micronewton Thrusters

The very weak forces required to keep up drag-free operation, less than 100 μN,
are to be supplied by electrical propulsion devices. In the so-called field-effect
electrical propulsion (FEEP) devices, a strong electrical field forms the sur-
face of liquid metal (Cs or In) into a cusp from which ions are accelerated to
propagate into space with a velocity (of the order 60 km s−1) depending on the
applied voltage. Another technology (“colloidal thrusters”) uses small droplets
of a conducting organic colloidal liquid instead. At least two of these technolo-
gies will be tested in space aboard the LISA Pathfinder (LPF) mission.

4.5 Lasers

In ground-based interferometric gravitational wave detectors, diode-pumped
NPROs have proven as reliable laser sources, and they have also been identi-
fied as suitable laser candidates for LISA. Their operation has been described
in detail in [23–25]. The principle is readily described: In an NPRO, the laser
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crystal alone forms the resonator. No additional external mirrors are necessary.
This monolithic setup results in very stable operation. A typical NPRO laser
crystal is shown in Fig. 6. Inside the laser crystal a ring resonator is formed.
The beam is reflected at the dielectrically coated front facet of the laser crystal
and by total internal reflection at three faces of the crystal. The fact that the
beam does not stay in one plane results in a reciprocal polarization rotation
during a round-trip. If the crystal is placed in a magnetic field as indicated in
Fig. 6, then the nonvanishing Verdet constant of the crystal material Nd:YAG
results in nonreciprocal polarization rotation. This causes different eigenpo-
larizations for the two round-trip directions. Since the dielectrically coated
front facet has higher losses for one round-trip direction, the laser operates
unidirectionally and hence in single-longitudinal mode as is required for most
stable operation.

NPROs are longitudinally pumped by laser diodes through the front facet.
The front facet is hence antireflection (AR) coated for the pump wavelength
of 808 nm and partially reflecting for the laser wavelength (1064 nm).

The most promising configurations for a LISA laser are a stand-alone high-
power NPRO or a fiber amplifier seeded by a low-power NPRO. For LISA,
approximately 1 W of output power is required. To obtain such output powers
from a single NPRO, the thermally induced lens of the NPRO has to be
partially compensated. This can be achieved by a concave front facet of the
laser crystal. Additionally, the region directly behind the front facet has to
be made of undoped YAG to avoid spatial hole burning and to ensure single-
frequency operation [25].

Both power noise and frequency noise couple into the phase measure-
ment of LISA. Although NPROs show intrinsically low-power noise and fre-
quency noise, both need to be further suppressed (for details see Sect. 4.6).
This requires that the laser needs to have actuators for both frequency and
power. In the case of the single-stage laser system for LISA, a piezoelectrical
crystal (PZT) glued onto the laser crystal can be used as fast frequency actu-
ator. A second actuator is the temperature of the laser crystal. It is slower but
offers a higher tuning range than the PZT. The current of the pump diodes is
commonly used as power actuator. Other requirements to the lasers include a
minimum lifetime of 5 years and space qualification (vacuum, vibration, tem-
perature cycles).

An alternative concept for a LISA laser system consists of a low-power
NPRO amplified by a fiber amplifier. An advantage of such a system would
be that a low-power NPRO is being built for LISA Pathfinder and thus already
space qualified. The fiber amplifier in this configuration would typically use an
Ytterbium-doped fiber that is seeded by the output of the low-power NPRO
and pumped by laser diodes at a wavelength of 976 nm. Suitable frequency
actuators for the two-stage system are the PZT of the seed laser and the laser
crystal temperature. As power actuator for low frequencies, the current of the
amplifier pump diodes can be used. A detailed investigation on power and
frequency actuators in a laser amplifier system can be found in [26].
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4.6 Power and Frequency Stabilization

As already mentioned, stabilizations for laser power and laser frequency are
required by LISA (see Sect. 3.1). The stability that can be achieved is not a
property of the laser itself. Instead, it depends on a number of properties of
the overall control loop (reference, sensor, loop gain).

For frequency stabilization, optical resonators will be used in LISA as the
first of three methods of increasing performance (Fig. 13). Their lengths de-
fine reference frequencies. Using an RF technique named after its inventors
Pound, Drever, and Hall [27], the difference between laser frequency and op-
tical resonator eigenfrequency will be measured and used as error signal for
the control loop. Figure 14 shows the goal for the frequency prestabilization
with measured data.

The frequencies of two identical NPROs were stabilized to two indepen-
dent optical resonators made of ULE, a material with a low thermal expansion
coefficient (2·10−8 K−1). Each resonator was located in its own vacuum cham-
ber and surrounded by thermal shields. The thermal shields consisted of four
gold-coated steel cylinders separated by ceramic spacers. The cylinders acted
as thermal capacitors, the ceramics spacers as thermal resistors. The thermal
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stability at the location of the optical resonators and their thermal expan-
sion coefficient limit the frequency stability that can be achieved with this
technique.

The remaining 7–8 orders of magnitude in laser frequency stability will be
bridged by two more steps: arm locking and time-delay interferometry (TDI).
The latter is a data processing technique that synthesizes a virtual equal-arm
interferometer and thus reduces the effect of laser frequency fluctuations (see
Sect. 6).

Arm locking, on the other hand, is a novel technique that uses the 5 million
km LISA arms as reference for a real stabilization of the LISA laser frequency.
The novelty lies in the fact that a unity-gain frequency of more than 10 kHz is
necessary while the “sensor” has a delay of 33 s (the round-trip travel time).
Meanwhile, several laboratory experiments have shown the feasability of such
an unusual control loop [28–30].

For power stabilization, a fraction of the laser beam is split off using a
glass wedge and detected by a photo diode. The resulting signal is compared
with a stable reference voltage, and the difference is amplified and used for
feedback. Special care has to be taken with temperature fluctuations and their
effect on beam splitting and beam detection. In particular, the temperature
of photodiodes must be stabilized to achieve the required stability [31].

4.7 Noise in LISA

This section will cover some of the most worrying noise sources in the LISA
project, which then will also be relevant for other planned space projects such
as Big Bang Observer [32], DECIGO [33], and the Chinese project ASTROD
[34,35].

Figure 3 showed sensitivity curves for the ground-based interferometers, as
well as for LISA. In both cases the shape is that of a trough, with a steeper
slope at the left than on the right. The curve for LISA is again shown in
Fig. 15, enlarged and in greater detail. That LISA sensitivity curve consists
of three main parts, as indicated by the three differently shaded frequency
regions, in which different noise mechanisms take hold.

Shot Noise

With the 40 cm optics planned, from 1 W of infrared laser power transmitted,
only some 10−10 W will be received after 5 million km, and it would be hopeless
to have that light reflected back to the central spacecraft.

Instead, also the distant spacecraft are equipped with lasers of their own,
which are phase-locked with an offset to either the incoming light or the second
laser on the same spacecraft. One laser in the configuration serves as master
and is stabilized with both a cavity and the arm locking method [36].
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Because of the low level of light power received, shot noise plays a deci-
sive role in the total noise budget above 5 mHz. In the LISA noise budget
above 5 mHz, 12 pm Hz−1/2 are allocated for the optical metrology in a sin-
gle optical link, and 7.6 pmHz−1/2 out of these are allocated to shot-noise
alone.

The effect of shot noise is a spurious “path difference” δ̃L inversely pro-
portional to the square root of the power P available for interferometry. In
the case of LISA, at arm lengths of 5 million km, this received power is of the
order 10−10 W. With an increased arm length, perhaps to the order of 2 AU,
i.e., 300 million km, the power would decrease by a factor of 602, and both
the apparent spurious path differences δ̃L and the optical path L would thus
increase by an identical factor of 60. This means that the sensitivity of a space
probe, other characteristics remaining the same, would have a shot noise limit
for the strain h ∼ δL/L that is independent of the arm length, L/2. This
fact will be of importance in estimating also the sensitivities of other space
projects being discussed.

Antenna Transfer Function

Again, as shown in the section “The Shot Noise Limit,” we have to consider
that the antenna response rolls off as 1/fτ at frequencies f above the inverse
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of the round-trip time τ . Thus at these frequencies the shot noise leads to the
frequency-proportional rise at the right-hand side of the sensitivity curve in
Fig. 3 and, in more detail, in Fig. 15.

Acceleration Noise

At frequencies below 5 mHz, the noise is mainly due to accelerations of the test
mass that cannot be shielded even by the drag-free scheme: forces due to grav-
itating masses on the spacecraft when temperature changes their distances,
charging of the test masses due to cosmic radiation, residual gas in the test
mass housing, and nonzero “stiffness” that couples spacecraft motion to the
test mass. Except for the cosmic ray charging, the acceleration noise contribu-
tions are dependent on temperature variations, and this is why in Fig. 15 they
come under the heading “temperature fluctuations.” These accelerations have
a rather “white” spectral distribution, which thus results in position errors
rolling off roughly as 1/f2.

Gravity-Gradient Noise

The test mass, housed in the LISA spacecraft, is subject to the gravity
field of the other masses that form part of the spacecraft. These masses,
though “rigidly” connected to each other, will undergo small changes in their
positions, due, e.g., to the changes in temperature distribution. This thermal
distortion of the spacecraft actually is one of the most prominent sources of
“acceleration noise.” Elaborate calculations on the temperature fluctuations
to be expected (e.g., from variations in the solar radiation) and on the thermal
behavior of the spacecraft’s masses have resulted in a set of requirements for
the LISA design [19]. Also, a drift of the spacecraft with respect to the freely
falling test mass must be avoided. The technique to do that is what is termed
“drag-free control.”

Noise Due to Charging of the Test Mass

Cosmic radiation will cause the test mass to acquire an electrical charge,
which will result in a number of noise effects. A broad discussion is given
in the LISA Pre-Phase A Study (PPA2) [18]. These charges will give rise
to electrostatic forces of attraction to the cage walls. The charges will also,
if not perfectly shielded by the cage and the spacecraft shields, be subject
to Lorentz forces due to LISA’s motion in the interplanetary magnetic field.
And, similarly, changes in that magnetic field will also produce forces on the
test mass. As remedies, the test mass will be quite well shielded from outside
fields, and in particular, the charge that has accumulated on the test mass
will be monitored, and from time to time a discharge by shining ultraviolet
light on the test mass and its housing, will be carried out [18].
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Noise Due to Residual Gas

A very wide field of acceleration noise contributions is due to the residual gas
inside the sensor. Although the vacuum will have high quality, 10−8 mbar =
10−6 Pa, the test mass will be subject to several nonnegligible accelerations.
Foremost among these can be the stochastic noise due to the buffeting by the
impinging residual gas molecules. This statistical noise is proportional to the
square root of the residual gas pressure, p. If the casing of the sensor has a
temperature gradient, due, e.g., to changes in solar radiation or in the power
dissipation in the spacecraft electronics, differences in gas pressure inside the
sensor will build up. Here we must mention the so-called radiometer effect, but
perhaps even more worrisome the effect of temperature-dependent outgassing
of the cage walls.

Noise Total

With a myriad of other, smaller, noise contributions the total apparent path
noise amounts to something like δ̃L ≈ 40 · 10−12 mHz−1/2 at the lowest part,
the bottom of the trough. For signals monitored over a considerable fraction
of a year, and taking into account a reasonable signal-to-noise ratio of 5, and
furthermore averaging over all angles of incidence (

√
5), the best sensitivity

is about h ≈ 10−23, indicated in Fig. 3 by the curve marked “Space,” and in
more detail in Fig. 15.

The LISA Prospects

Some of the gravitational wave signals are guaranteed to be much larger,
resulting in signal-to-noise ratios of 1,000 or higher. Failure to observe them
would cast severe doubts on our present understanding of the laws that govern
the universe. Successful observation, on the other hand, would give new insight
into the origin and development of galaxies, existence and nature of dark
matter, and other issues of fundamental physics.

4.8 Status of LISA

In 2007, LISA has been unanimously approved by ESA science programme
committee as the first large mission candidate L1 in the new Cosmic Visions
programme (2005–2025) with an anticipated launch date in 2018. A System
and Technology Study [19] has substantiated that improved technology, light-
weighting, and collaboration with NASA will lead to a considerable reduction
of cost. Since January 2005 LISA is in the mission formulation phase of the
ESA mission life cycle. LISA has a nominal lifetime of 5 years, but the equip-
ment and thruster supply are chosen to allow even 10 years of operation. A
collection of papers given at the Sixths International LISA Symposium, 2006,
is presented in [37].
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4.9 Technology Demonstrator

Some of LISA’s essential technologies (gravitational sensor, interferometry,
micronewton thrusters) are to be tested in the LISA Pathfinder (LPF) mission
to be launched by ESA in 2009. The core payload is the European LISA
Technology package (LTP). The package will contain, on a common optical
bench, two gravitational sensors, similar to the one of Sect. 4.3.

The relative motion between the two freely floating test masses will be
monitored with high accuracy by interferometry [38–40]. The sensitivity in this
(scaled-down) experiment will come to within a factor of ten of the proposed
LISA sensitivity.

This package is to be flown in an orbit near the Sun–Earth Lagrange point
L1, relatively far away from Earth, so as to avoid the many disturbances near
the Earth. The same mission LPF will also host a NASA contribution, the
Disturbance Reduction System (DRS).

4.10 LISA Follow-Ons

Even as early as now concepts are being discussed for a successor to LISA, on
the possible enhancements in sensitivity and/or frequency band. One scheme,
the Japanese project DECIGO [33] would try to bridge the frequency gap
between ground and space detectors, by reducing the arm lengths, leaving the
general configuration unchanged.

The Big Bang Observer BBO [32] would have an increased number (four)
of LISA-type triangles, such that independent interferometers result. These
can be used to detect and measure a stochastic background of gravitational
waves, similar to, but reaching much further back than the 3 K electromagnetic
background radiation.

ASTROD will extend to a low-frequency range not fully covered by LISA,
and thus it would be – given similar sensitivity – a further useful extension in
the search for and measurement of gravitational waves from, e.g., supermassive
black holes.

5 LISA Data Analysis

Because of the low-frequency band of the LISA detection, the data rate,
and thus also the total amount of data, is rather low. Data will be collected
onboard, and transmitted to Earth once per two to three days.

5.1 Directivity

LISA, as all interferometric GW detectors, has a preferred direction and a
preferred polarization of the incoming gravitational wave. This would cause
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an antenna, fixed in space, to be particularly sensitive in some directions, and
totally blind in others.

The annual motion of LISA will, however, average out these types of
directivity, as LISA is facing different locations at the sky, and with different
preferred polarization directions at different times, see Fig. 9. This is why the
sensitivity curve in Fig. 15 for a signal-to-noise ratio of 5 is drawn by factor
of 5

√
5 = 11.2 higher than the lower curve.

On the other hand, LISA’s detection can make use of the “signature” that
continuous-wave signals will have, due to the changing response sensitivity,
and due to the Doppler shifts that the signal will undergo as LISA approaches
and recedes from the source during its annual orbit.

A detailed analysis of the LISA sensitivity under these assumptions was
made by Schilling [18, 41]. One important result was that the drastic drops
in sensitivity for gravitational waves with wavelengths fitting into the arm
lengths are benignly smoothed out in this averaging, as will be seen in the
curve of Fig. 17.

5.2 Noise Due to Fluctuating Laser Frequency

The strength of the Michelson-interferometer scheme is that the high symme-
try between the two arms makes the interferometer insensitive to a number
of fluctuations of the illuminating light source. The most serious of these
is the fluctuation in laser phase, δφ, or in frequency, δν. Any change in
laser frequency will cause spurious signals proportional to the difference in
arm lengths. In the simplest case of a Michelson interferometer, the phases
φi accumulated in the round-trips in the two arms are measured, si(t) =
φi(t) − φi(t− 2Ti), and then compared with each other:

Φ(t) = s1(t) − s2(t) = φ1(t) − φ1(t− 2T1) − φ2(t) + φ2(t− 2T2) . (4)

In each arm, the current laser phase is compared with the (echoed) phase of
one round-trip ago, these times 2T1 and 2T2 differing by a relatively small
misalignment Δ = 2T1 − 2T2. For the sake of simplicity, let us also assume
equal laser phase φ1(t) = φ2(t) = φ0 + δφ(t) in the two arms, with a phase
noise component δφ(t). Clearly, for unequal round-trip times Ti, the error
δΦ(t) would become

δΦ(t) =
d
dt

φ(t− 2T ) (2T1 − 2T2) = 2πδν(t− 2T )Δ. (5)

The celestial mechanics of the LISA orbits will cause relative arm length
variations in the order of 10−2, and these would produce spurious signals from
the natural laser frequency fluctuations well above the true gravitational wave
signals.
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6 Unequal-Arm length Interferometry

Even if the laser frequency is well stabilized to the best of current technology,
perhaps to 30 HzHz−1/2, a drastic further reduction of the effect is required.
Here, a scheme first proposed by Giampieri et al. [42], and then optimized with
respect to the suppression of several LISA error sources [20,43,44], promises a
significant improvement. The concept of Giampieri et al. was to estimate, from
the phases measured separately for each arm and each spacecraft, the under-
lying laser phase noise and appropriately correct for it. This scheme operates
in the frequency domain. The approach to be discussed below, operating in
the time domain, will offer even better compensation of the laser noise, and
it is the current baseline for LISA [19].

6.1 Time-Delay Interferometry

The basic principle of the method is best demonstrated using the simplified
case of a Michelson interferometer with only one master laser, and the phase
measurements done in only one spacecraft. What is used is a linear combina-
tion of the readout data si with data additionally delayed, in each arm by the
travel time in the other arm

X(t) = s1(t) − s2(t) − s1(t− 2τ2) + s2(t− 2τ1) , (6)

where the delays τi are chosen to equal the true travel times Ti. It is easily
verified that this algorithm can fully cancel the laser phase noise δφ(t). One
can estimate what degree of cancelation could be achieved if there were slight
deviations δi = 2Ti − 2τi between the true round-trip times Ti and the delay
times τi used in (6).

The laser phase noise in the measurements taken in the two arms will have
the general form δsi(t) = δφ(t) − δφ(t− 2Ti) , so that (6) will lead to a total
phase error of

δΦ(t) = δφ(t) − δφ(t− 2T1) − δφ(t− 2τ2) + δφ(t− 2T1 − 2τ2)
−δφ(t) + δφ(t− 2T2) + δφ(t− 2τ1) − δφ(t− 2T2 − 2τ1) . (7)

The undelayed terms δφ(t) cancel right away. And clearly, for τi = Ti, this
combination of noise terms cancels fully, regardless of any difference in the
values for T1, T2. If, however, we have small deviations of the assumed values
τi from the true round-trip times Ti, we must evaluate (7) for plausible values
of Ti, τi.

6.2 The LISA Case of Almost Equal Arms

The typical LISA case would be a relatively small difference Δ between the
two round-trip times, Δ = 2T1 − 2T2, and also we will assume the delay time
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errors δi = 2τi −2Ti to be relatively small. Then, we can consider appropriate
difference terms in (7) as derivatives at a mean time t− 2T :

−δφ(t− 2T1) + δφ(t− 2T2) ≈ δω(t− 2T ) · (Δ)
+δφ(t− 2τ1) − δφ(t− 2τ2) ≈ δω(t− 2T ) · (−Δ− δ1 + δ2) . (8)

Thus, the terms with delays of 2T and 4T result in phase errors of

δΦ(t)
∣∣
2T

≈ δω(t− 2T ) · (−δ1 + δ2)

δΦ(t)
∣∣
4T

≈ δω(t− 4T ) · (δ1 − δ2) . (9)

In this approximation, the errors δ1, δ2 in guessing the round-trip times T1, T2

would still not result in an error δΦ if they happened to be identical: δ1 = δ2,
and they would be disturbing the most if they had opposite sign.

Furthermore, at very low frequencies, the laser frequency noise δω would
not change drastically from delay 2T to 4T . So then the terms of delays 2T
and 4T would cancel to a large extent, regardless of the error difference δ1−δ2.
This is, however, very similar to the reduction in response to the genuine GW
signals and will thus lead to neither an improvement nor a deterioration of
the noise introduced by the misestimates δ1 − δ2. For noise frequencies f at
which the argument 2πf Δ becomes significant (say, ≈ 1), this low-frequency
cancelation ceases.

With the allowance in optical-path noise for the laser phase noise of δ̃L =
10 · 10−12 mHz−1/2 (total, from four spacecraft, see PPA2 [18]), and with
the LISA laser stability of δ̃ν < 100 HzHz−1/2, the allowable delay-time error
δ1 − δ2 would be

|δ1 − δ2| <
δ̃L
c

/ δ̃ν

ν
= 10−11 mHz−1/2

/(
100Hz Hz−1/2 × 10−6 m

)
≈ 10−7 s

(10)

corresponding to 30 m. A more detailed analysis is given in Tinto et al. [20]

6.3 The LISA Analysis Algorithms

How powerfully the time-delay interferometry cancels out not only laser phase
noise but also other instrumental errors is shown in various papers by Arm-
strong, Estabrook, and Tinto [20,43,44]. These form the baseline for the LISA
procedure [19]. It is assumed that phase measurements are made in all three
spacecraft, each equipped with independent lasers, with independent highly
stable clocks (USOs: ultra-stable oscillators), and with an intraspacecraft link
between the two lasers onboard each spacecraft. Figure 16 shows four types
of such configurations. The nominal LISA configuration is an unequal-arm
Michelson interferometer, as in Fig. 16, top left.

The links from one spacecraft to another are specified by two indices, of
which the first one indicates the arm (via the number of the spacecraft oppo-
site that arm), and the second one the direction (via the target spacecraft).
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Fig. 16. The four types of four-link LISA data combining possibilities.

Indices after a comma will indicate the individual delays of the data, again
by specifying the arm via the opposite spacecraft. Multiple (up to fourfold)
delays are used.

One typical example (the Michelson configuration of Fig. 16, upper left)
would look like this:

X = y32,322 − y23,233 + y31,22 − y21,33 + y23,2 − y32,3 + y21 − y31

+
1
2

(−z21,2233 + z21,33 + z21,22 − z21)

+
1
2

(+z31,2233 − z31,33 − z31,22 + z31) (11)

This set of time-domain combinations of the yij from the two arms and from
the intraspacecraft signals zij cancels all noise due to laser phase fluctuations
and to motions of the optical benches [43,44]. In a different approach [20], the
frequency fluctuations of lasers and USOs can all be canceled.

It is assumed that shot noise and optical path noise (i.e., total optical path
noise, as specified in PPA2 [18]) have the same transfer functions. The LISA
sensitivity would then have the form given in Fig. 17, again averaged over one
year, and over all directions of propagation and polarization, and for SNR = 5.
This is where the shape of the (simplified) sensitivity curve of Fig. 15 comes
from.
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Fig. 17. Sensitivity plot for the unequal-arm combination of Fig. 16, top left
(Michelson).

6.4 Constancy of Arm Lengths

A sufficient equality of the (three) arm lengths cannot be maintained by LISA,
the arms of which will have annual changes in length of the order 100,000 km.
The variation in ASTROD will be even larger, by orders of magnitude. Thus
the above data analysis needs to be employed to suppress faked signals result-
ing from short-term fluctuations in laser frequency. These schemes require a
knowledge of the lengths of the arms to better than 30 m to be able to apply
the proper time delays to the various time series. The auxilliary modulation
on the carrier light provides for ranging with sufficient accuracy in addition
to clock synchronization and data transfer.

The processing techniques [20,44] required for LISA to cancel out fluctua-
tions in laser frequency and position of the test mass inside the sensor will also
have to be applied in the case of ASTROD. In LISA, the application is rela-
tively easy, as the arm lengths are rather well constant throughout the course
of the year. For ASTROD, the arm lengths change much more rapidly, and by
much larger amounts. So an increased effort has to be made to render the LISA
data-analysis routines applicable also under these more challenging conditions.

7 Conclusion

The difficulties (and thus the great challenges) of gravitational wave detection
stem from the fact that gravitational waves have so little interaction with mat-
ter (and space), and thus also with the measuring apparatus. Great scientific
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and technological efforts, large detectors, and a working international collab-
oration are required to detect and to measure this elusive type of radiation.
And yet – just on account of their weak interaction – gravitational waves
can give us knowledge about cosmic events to which the electromagnetic win-
dow will be closed forever. This goes for the processes in the (millisecond)
moments of a supernova collapse, as well as of the many mergers of binaries
that might be hidden by galactic dust. Such high-frequency events (a few Hz
up to a few kHz) will be accessible from the detectors on Earth. For the sig-
nals to be significant, a number of ground-based detectors should be operated
in coincidence, and only such joint analyses will allow to locate the source in
the sky.

The perspective of detecting events with gravitational wave radiation
also holds for the distant, but violent, mergers of galaxies and their central
(super)massive black holes. The low frequencies (10−5 to 1 Hz) characteristic
of such sources are accessible only from space, e.g., with LISA. The expected
high signal-to-noise ratios will allow unquestionable detection with only one
detector, and will even allow to locate the source in a narrow region in the sky.

A LISA follow-on mission, and also combinations of terrestrial detectors,
might probe the GW background from the very beginning of our universe
(10−14 s or even only 10−22 s after the big bang) [45]. In this way, gravitational
wave detection can be regarded as a new window to the universe, but to open
this window we must continue on our way in building and perfecting our
antennas. It will only be after these large interferometers are completed (and
perhaps even only after the next generation of detectors) that we can reap
the fruits of this enormous effort: a sensitivity that will allow us to look far
beyond our own galaxy, perhaps to the very limits of the universe.
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Summary. Lunar laser ranging (LLR) is used to conduct high-precision measure-
ments of ranges between an observatory on Earth and a laser retroreflector on the
lunar surface. Over the years, LLR has benefited from a number of improvements
both in observing technology and data modeling, which led to the current accu-
racy of postfit residuals of ∼2 cm. Today LLR is a primary technique to study the
dynamics of the Earth–Moon system and is especially important for gravitational
physics, geodesy, and studies of the lunar interior. When the gravitational physics is
concerned, LLR is used to perform high-accuracy tests of the equivalence principle,
to search for a time variation in the gravitational constant, and to test predictions of
various alternative theories of gravity. The gravitational physics parameters cause
both secular and periodic effects on the lunar orbit that are detectable with the
present day LLR; in addition, the accuracy of their determination benefits from
the 35 years of the LLR data span. On the geodesy front, LLR contributes to the
determination of Earth orientation parameters, such as nutation, precession (includ-
ing relativistic precession), polar motion, and UT1, i.e., especially to the long-term
variation of these effects. LLR contributes to the realization of both the terrestrial
and selenocentric reference frames. The realization of a dynamically defined iner-
tial reference frame, in contrast to the kinematically realized frame of VLBI, offers
new possibilities for mutual crosschecking and confirmation. Finally, LLR also in-
vestigates the processes related to the Moon’s interior dynamics. Here, we review
the LLR technique focusing on its impact on relativity and give an outlook to fur-
ther applications, e.g., in geodesy. We present results of our dedicated studies to
investigate the sensitivity of LLR data with respect to the relativistic quantities;
we also present the computed corresponding spectra indicating the typical periods
related to the relativistic effects. We discuss the current observational situation and
the level of LLR modeling implemented to date. We emphasize the need for model-
ing improvement for near future LLR opportunities. We also address improvements
needed to fully utilize the scientific potential of LLR.
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1 Introduction

Being one of the first space geodetic techniques, lunar laser ranging (LLR)
has routinely provided observations for more than 35 years. The LLR data
are collected as normal points, i.e., the combination of lunar returns obtained
over a short time span of 10–20 min. Out of ≈1019 photons sent per pulse by
the transmitter, less than 1 is statistically detected at the receiver [14]; this is
because of the combination of several factors, namely energy loss (i.e., 1/R4

law), atmospherical extinction, and geometric reasons (rather small telescope
apertures and reflector areas). Moreover, the detection of real lunar returns
is rather difficult as dedicated data filtering (spatially, temporally, and spec-
trally) is required. These conditions are the main reason, why only a few
observatories worldwide are capable of laser ranging to the Moon.

Observations began shortly after the first Apollo 11 manned mission to
the Moon in 1969, which deployed a passive retroreflector on its surface. Two
American and two French-built reflector arrays (transported by Soviet space-
craft) followed until 1973.1 Most observations are taken to the largest reflector
array that of the Apollo 15 mission. Over the years, more than 16,000 LLR
measurements by now have been made of the distance between Earth ob-
servatories and lunar reflectors. Most LLR data have been collected by the
Observatoire de la Côte d’Azur (OCA, France), the McDonald observatory
(TX, USA) and – until 1990 – Haleakala (HI, USA). The new data are still
coming, but today only the first two stations operate regularly. Understanding
unexpected and small effects is very difficult with only one or two operating
stations, because possible instrumental systematics of the ranging system can-
not be separated from real scientific effects reliably. To further increase the
impact of LLR in Relativity and Earth sciences more stations, with a wide
geographical distribution, are needed. Therefore, the Italian colleagues have
setup a new site in Matera, which has provided first LLR data quite recently.
A new site with lunar capability is currently being built at the Apache Point
Observatory, New Mexico, USA. This station, called APOLLO, is designed
for a millimeter level accuracy ranging [13, 16]. However, to fully exploit the
available LLR potential, a few more sites capable of tracking the Moon are
needed, especially at diverse locations including the Southern hemisphere.

Figure 1a shows the number of LLR normal points per year since 1970.
As shown there and in Fig. 1b, the range data have not been accumulated
uniformly; substantial variations in data density exist as a function of syn-
odic angle D, these phase angles are represented by 36 bins of 10◦ width. In
Fig. 1b, data gaps are seen near new Moon (0◦ and 360◦) and full Moon (180◦)
phases, and asymmetry about quarter Moon (90◦ and 270◦) phases also is ex-
hibited. The former properties of this data distribution are a consequence of
1 One of the reflector arrays (of the Soviet Luna 17 mission, see also Fig. 8) has

not been tracked operationally. The reason could be that the coordinates are not
known well enough or that the reflectors are covered by dust or the transport
cap.
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Fig. 1. (a) Lunar observations per year, 1970–2005. (b) Data distribution as a
function of the synodic angle D.
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Fig. 2. (a) Data distribution as a function of the sidereal angle S, where the Moon
is south of equator from 0◦ to 180◦. (b) Weighted residuals (observed-computed
Earth–Moon distance) annually averaged.

operational restrictions, such as difficulties to operate near the bright Sun in
daylight (i.e., new Moon) or of high background solar illumination noise (i.e.,
full Moon). Also note asymmetry about quarter Moon phases. The uneven dis-
tribution with respect to the lunar sidereal angle shown in Fig. 2a represents
the increased difficulty of making observations from Northern hemisphere ob-
servatories to the Moon when it is located over the Southern hemisphere.
Here, the situation will only be improved if a southern observatory (e.g., in
Australia) will start to track the Moon. It might be possible that new mis-
sions to the Moon could be helpful in this respect; the deployment of active
laser transponders could allow satellite laser ranging systems to participate in
LLR.

Although measurement precision for all model parameters benefits from
the ever-increasing improvement in precision of individual range measure-
ments (which now is at the few centimeter level, see also Fig. 2b), some
parameters of scientific interest, such as time variation of Newton’s coupling
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parameter Ġ/G or precession rate of lunar perigee, particularly benefit from
the long time period (35 years and growing) of range measurements.

In the 1970s, LLR was an early space technique for determining Earth
orientation parameters (EOPs). Today, LLR still competes with other space
geodetic techniques, and because of large improvements in ranging precision
(30 cm in 1969 to ∼2 cm today), it now serves as one of the strongest tools
in the solar system for testing general relativity. Moreover, parameters such
as the station coordinates and velocities contributed to the International Ter-
restrial Reference Frame ITRF2000. EOP quantities were used in combined
solutions of the International Earth Rotation and Reference Systems Service
IERS (σ = 0.5 mas).

2 LLR Model and Relativity

The existing LLR model at IfE has been developed to compute the LLR
observables – the round-trip travel times of laser pulses between stations on
the Earth and passive reflectors on the Moon (see, e.g., [8, 10] or [6, 7, 11, 18]
and the references therein). The model is fully relativistic and is complete up
to first post-Newtonian (1/c2) level; it uses the Einstein’s general theory of
relativity – the standard theory of gravity. The modeling of the relativistic
parts is much more challenging than, e.g., in SLR, because the relativistic
corrections increase the farther the distance becomes. The basic observation
equation reads

d = c
τ

2
= |rem − rstation + rreflector| + c Δτ (1)

where d is the station-reflector distance, c the speed of light, τ the pulse travel
time, rem the vector connecting the geocenter and the selenocenter, rstation the
geocentric position vector of the observatory, and rreflector the selenocentric
position vector of the reflector arrays. Δτ describes corrections of the travel
time caused by atmospheric effects, but also (relativistic) transformations into
the right time system as well as the light time equation (Shapiro effect).
To apply (1), all vectors have to be transformed in one common reference
frame (in our case the inertial frame), which requires consistent relativistic
transformations, so-called pseudo-Lorentz transformations. The Earth–Moon
vector rem can only be obtained by numerical integration of the corresponding
equation of motion (here in simplified version)

r̈em = −GMe+m

r3
em

rem + GMs

(
rs − rem

|rs − rem|3
− rs

r3
s

)
+ bnewtonian + brelativistic,

(2)

where r̈em is the relative acceleration vector between Earth and Moon, GMe+m

is the Earth–Moon mass times the gravitational constant, rs the geocentric
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position vector of the Sun, rs the Earth–Sun distance, Ms the solar mass,
bnewtonian comprises all further Newtonian terms like the effect of the other
planets or the gravitational fields of Earth and Moon, and brelativistic indicates
all “relativistic” terms, i.e., those entering the Einstein–Infeld–Hofmann (EIH)
equations. Corresponding relativistic equations are applied to describe the
rotational motion of the Moon. The rotation angles are then applied to rotate
the selenocentric reflector coordinates of (1) into the inertial frame. For the
transformation of the geocentric station coordinates, the well known rotation
matrices (precession, nutation, GAST, etc.) are used, see IERS 2003.

The modeling of the “Newtonian” parts has been setup according to IERS
Conventions (IERS 2003) [3], but it is restricted to the 1 cm level. The weights
are based upon the accuracy estimates for the normal points as provided by
the observatories. On the basis of this model, two groups of parameters (170
in total) are determined by a weighted least-squares fit of the observations.
The first group includes the so-called “Newtonian” parameters such as:

– Geocentric coordinates of three Earth-based LLR stations and their ve-
locities

– A set of EOPs (luni-solar precession constant, nutation coefficients of the
18.6 years period, Earth’s rotation UT0, and variation of latitude by polar
motion)

– Selenocentric coordinates of four retroreflectors
– Rotation of the Moon at one initial epoch (physical librations)
– Orbit (position and velocity) of the Moon at this epoch
– Orbit of the Earth–Moon system about the Sun at one epoch
– Mass of the Earth–Moon system times the gravitational constant
– The lowest mass multipole moments of the Moon
– Lunar Love number and a rotational energy dissipation parameter
– Lag angle indicating the lunar tidal acceleration responsible for the in-

crease of the Earth–Moon distance (about 3.8 cmyear−1), the increase in
the lunar orbit period, and the slowdown of Earth’s angular velocity

The second group of parameters is used to perform LLR tests of viable
modifications of the general theory of relativity. The general theory of relativ-
ity is not expected to be perfect, because Einstein’s theory and quantum me-
chanics are fundamentally incompatible. Therefore, it is important in physics
to find out at what level of accuracy it fails. Relativistic parameters to be
determined by LLR analyses are (values for general relativity are given in
parentheses) mentioned below:

1. Strong equivalence principle (EP) parameter η, which for metric theories
is η = 4β − 3 − γ (= 0). In LLR, a violation of the equivalence principle
would show up as a displacement of the lunar orbit along the direction
to the Sun. LLR is the dominant test of the strong equivalence principle,
i.e., for self-gravitating bodies.
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2. Space-curvature parameter γ (= 1) and nonlinearity parameter β (= 1).
LLR also has the capability of determining the PPN parameters β and γ
directly from the point-mass orbit perturbations (i.e., as described by the
EIH equations), but, e.g., β may be derived much better by combining
the EP parameter η with an independent determination of γ (see later).

3. Time variation of the gravitational coupling parameter Ġ/G (= 0 year−1).
This is the second most important gravitational physics result that LLR
provides. Einstein’s theory does not predict a changing G, but some other
theories do. So it is important to measure this as well as possible. The
sensitivity improves like the square of the data span.

4. Geodetic de Sitter precession ΩdS of the lunar orbit (� 1.92′′ per century).
LLR has also provided the only accurate determination of the geodetic
precession. The dedicated space mission GP-B will provide an improved
accuracy, if that mission is successfully completed.

5. Coupling constant α (= 0) of Yukawa potential for the Earth–Moon dis-
tance that corresponds to a test of Newton’s inverse-square law.

6. α1 (= 0) and α2 (= 0) which parametrize “preferred-frame” effects in
metric gravity.

7. Combination of parameters ζ1 − ζ0 − 1 (= 0) derived in the Mansouri
and Sexl [5] formalism indicating a violation of special relativity (there:
Lorentz contraction parameter ζ1 = 1/2, time dilation parameter
ζ0 = −1/2).

8. EP-violating coupling of normal matter to “dark matter” at the galactic
center. It is a similar test to item 1 above, but now different periods are
affected (mainly the sidereal month).

9. A further application is the detection of the Sun’s J2 (≈10−7) from LLR
data (independent to other methods such as solar seismology), which
affects the anomalous perihelion shift of Mercury, one of the classical tests
of relativity. The present uncertainty (≈10−6) is larger than the expected
value. The parameter J2 is not further discussed in this chapter and will
be addressed in more detail in an upcoming study.

The determination of the relativistic parameters indicated earlier can be
accomplished by either modifying the equations of motion (i.e., parametriz-
ing present terms or adding new ones) or deriving analytical expressions for
their effect on the Earth–Moon distance. In the first case, the needed partial
derivatives can be computed by numerical differentiation and in the second
case by direct derivation of the analytical terms.

Many relativistic effects produce a sequence of periodic perturbations of
the Earth–Moon range

ΔrEM =
n∑

i=1

[
Ai cos(ωiΔt + Φi) + BiΔt sin(ωiΔt + Φi)

]
. (3)
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Table 1. Typical periods of some relativistic quantities, taken from [9].

Parameter Typical periods

η Synodic (29d12h44m2.9s)

Ġ/G Secular + emerging periodic
α1 Sidereal, annual, sidereal-2·annual,

anomalistic (27d13h18m33.2s) ± annual, synodic

α2 2·sidereal, 2·sidereal-anomalistic, nodal (6,798d)

ζ1 − ζ0 − 1 Annual (365.25d)

δggalactic Sidereal (27d7h43m11.5s)

Ai and Bi, ωi, and φi are the amplitudes, frequencies, and phases, respec-
tively, of the various perturbations. Some sample periods of perturbations
important for the measurement of various parameters are given in Table 1.2

3 Sensitivity Study

As indicated in (1) and (2), LLR is affected in various ways and at various lev-
els by relativity. Relativity enters the equation of motion, i.e., the orbit and
the rotation of the Moon. More precisely, the Earth–Moon system behaves
according to relativity. But also the light propagation and the transforma-
tions between the reference and time frames that are used have to be modeled
in agreement with general relativity. The lunar measurements contain the
summed signal of all effects in one, so that the separation of the individual
effects is a big challenge. To better understand what the individual contri-
butions of the different relativistic effects are, sensitivity studies have been
carried out, as

Δrp
em =

δrem

δp
Δp, (4)

where Δrp
em is the perturbation of the Earth–Moon distance caused by a pa-

rameter p, which is one of the relativistic parameters described in Sect. 2.
δrem/δp is the partial derivative of the Earth–Moon distance with respect to
p; it is obtained by numerical differentiation. Δp is a small value indicating
the variation in p, here we have used the present realistic error as derived from
LLR analyses (see Table 2). As an example, Fig. 3a represents the sensitivity
of the Earth–Moon distance with respect to a possible temporal variation of
the gravitational constant in the order of 8·10−13 year−1, the present accuracy
of that parameter. It seems as if perturbations of up to 9 m are still caused,

2 Note: the designations should not be used as formulae for the computation of the
corresponding periods, e.g., the period “sidereal-2·annual” has to be calculated
as 1/(1/27.32d − 2/365.25d) ≈ 32.13d. In addition, “secular + emerging periodic”
means the changing orbital frequencies induced by Ġ/G are starting to become
better signals than the secular rate of change of the Earth–Moon range in LLR.
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Table 2. Determined values for the relativistic quantities and their realistic errors.

Parameter Results

Equivalence principle parameter η (6 ± 7) . 10−4

Metric parameter γ − 1 (4 ± 5) . 10−3

Metric parameter β − 1: direct measurement (−2 ± 4) . 10−3

and from η = 4β − 3 − γCassini (1.5 ± 1.8) . 10−4

Time-varying gravitational constant Ġ/G (year−1) (6 ± 8) . 10−13

Differential geodetic precession ΩGP - ΩdeSit (′′ per century) (6 ± 10) . 10−3

Yukawa coupling constant α (for λ = 4 · 105 km) (3 ± 2) . 10−11

“Preferred-frame” parameter α1 (−7 ± 9) . 10−5

“Preferred-frame” parameter α2 (1.8 ± 2.5) . 10−5

Special relativistic parameters ζ1 − ζ0 − 1 (−5 ± 12) . 10−5

Influence of dark matter δggalactic (cm s−2) (4 ± 4) . 10−14

Fig. 3. (a) Sensitivity of LLR with respect to Ġ/G assuming ΔĠ/G = 8 ·
10−13 year−1. (b) Sensitivity of LLR with respect to space curvature γ, nonlinearity
couplings β, and geodetic precession using their present LLR accuracy (see Table 2)
as perturbation value.

but this range (compared with the ranging accuracy at the centimeter level)
cannot fully be exploited, because the lunar tidal acceleration perturbation is
similar. Figures 3b and 4a,b show the results of corresponding investigations
for all relativistic parameters that were investigated during the present study
(i.e., without the parameters discussed in items 7–9 of Sect. 2). The perturba-
tions vary between 5 cm (α1) and 25 m (β), which indicates that the former
parameter is determined quite well from LLR data, as the sensitivity values
are close to the observation accuracy, whereas the latter is only poorly deter-
mined because of its high correlation with the Newtonian orbit perturbations.
Nevertheless, the continuation of LLR over a longer time span will help to
further decorrelate the various parameters.

To better understand those couplings, corresponding power spectra have
been computed. The largest periods for the EP parameter are shown in Fig. 5a
and for Ġ/G in Fig. 5b. Obviously, many periods are affected simultaneously,
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Fig. 4. (a) Sensitivity of LLR with respect to Yukawa interaction parameter α,
equivalence principle violation η and time-variable gravitational constant Ġ/G using
their present LLR accuracy (see Table 2) as perturbation value. (b) Sensitivity of
LLR with respect to preferred-frame effects α1 and α2 using their present LLR
accuracy (see Table 2) as perturbation value.

Fig. 5. (a) Power spectrum of a possible equivalence principle violation assuming
Δ(mG/mI) ≈ 10−13. (b) Power spectrum of the effect of Ġ/G in the Earth–Moon
distance assuming ΔĠ/G = 8 · 10−13 year−1.

because the perturbations, even if caused by a single beat period only (e.g., the
synodic month for η parameter3), change the whole lunar orbit (and rotation)
and, therefore, excite further frequencies. For comparisons also the spectra
of the geodetic precession gpm and the Yukawa coupling parameter α are
indicated (Fig. 6a,b). Again a different combination of periods is visible. As
before, mainly the monthly (e.g., sidereal, synodic, anomalistic), half-monthly,
etc., periods dominate, but longer periods (low frequencies) are also present,
e.g., annual, 3 years, or combinations of the monthly and annual frequencies.
Similar pictures are obtained when considering the preferred-frame parame-
ters α1 and α2 (Fig. 7a,b). A huge variety of periods show up again, but

3 Note, here and throughout the chapter, the relation mG/mI = 1 + η(U/Mc2)
has been used equivalently, where the second term describes the self-energy of a
body, cf. [18].
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Fig. 6. (a) Power spectrum of an additional (deviating from Einstein’s value) geo-
detic precession assuming Δgpm = 10−2. (b) Power spectrum of a possible Yukawa
term assuming Δα = 2 · 10−11.

Fig. 7. (a) Power spectrum of a possible preferred-frame effect by α1 assuming
Δα1 = 9 · 10−5. (b) Power spectrum of a possible preferred-frame effect by α2

assuming Δα2 = 2.5 · 10−5.

they differ partly from each other (note, e.g., the very low-frequency contri-
butions). The spectra of γ and β (not shown here) are very similar to the
geodetic precession spectrum. Although there are big similarities between the
various spectra, the typical properties of each can be used to identify and
separate the different effects and to determine corresponding parameters.

4 Results

The global adjustment of the model by least-squares fit procedures gives im-
proved values for the estimated parameters and their formal standard errors,
while consideration of parameter correlations obtained from the covariance
analysis and of model limitations lead to more “realistic” errors. Incompletely
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modeled solid Earth tides, ocean loading or geocenter motion, and uncertain-
ties in values of fixed model parameters have to be considered in those esti-
mations. See Table 2 for the determined values for the relativistic quantities
and their realistic errors.

The EP parameter η
(
= (6 ± 7) · 10−4

)
benefits mostly from highest ac-

curacy over a sufficient long time span (e.g., 1 year) and a good data coverage
over the synodic month, as far as possible. Also any observations reducing
the asymmetry about the quarter Moon phases (compare Fig. 1b) would im-
prove the fit of η. The improvement of the EP parameter was not so big since
1999, as the LLR RMS residuals increased a little bit in the past years, see
Fig. 2b. The reason for that increase is not completely understood and has to
be investigated further.

In combination with the recent value of the space-curvature parameter
γCassini

(
γ − 1 = (2.1 ± 2.3) · 10−5

)
derived from Doppler measurements to

the Cassini spacecraft [1], the nonlinearity parameter β can be determined
by applying the relationship η = 4β − 3 − γCassini. One obtains β − 1 =
(1.5± 1.8) · 10−4 (note that using the EP test to determine parameters η and
β assumes that there is no composition-induced EP violation). The LLR result
for the space-curvature parameter γ as determined from the EIH equations is
less accurate than the results derived from other measurements, because its
effect is very similar to the Newtonian orbit perturbations.

For the temporal variation of the gravitational constant, Ġ/G = (6 ± 8) ·
10−13 has been obtained, where the formal standard deviation has been scaled
by a factor 3 to yield the given value. This parameter benefits mostly from
the long time span of LLR data and has experienced the biggest improvement
over the past years (cf. [9]).

For the estimation of the de Sitter precession of the lunar orbit, a Coriolis-
like term is added to the equation of motions, which adds the precession effect
as predicted by Einstein for a second time. This term is scaled by a parameter
called gpm, which has to give 0 if Einstein is correct. gpm = 0 is obtained
with an accuracy of about 1%.

The Yukawa coupling parameter α has been determined by adding corre-
sponding perturbation terms to the equations of motion, where the partials
were computed by numerical differentiation. The recently determined value
shows small deviations from the expected value; it will be further investigated
in future.

The preferred-frame parameters α1 and α2 can be either determined by
extending the equations of motion or by adding analytical terms to the Earth–
Moon distance. In both cases, quite similar results are obtained (see [9, 10]).
Recent determinations are given in Table 2.

The Mansouri–Sexl parameters ζ0 and ζ1 as well as the quantity indicat-
ing a possible EP-violating coupling with dark matter were not investigated
during our present studies; the values given in Table 2 are taken from [9].

A further question to be considered in more detail in future is the right
combination of the parameters. That means, shall all relativistic parameters
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be estimated together in one global adjustment, or each one alone (together
with the parameters of the standard solution)? We carried out several tests
considering the correlation of the relativistic quantities with each other, but
also with the “classical” ones, e.g., with the orbital parameters or site veloc-
ities [4]. It is too early to make a final decision. On the one hand, “overesti-
mation” of an effect has to be avoided, on the other hand over constraining
by fixing too many parameters should also be avoided.

Final results for all relativistic parameters obtained from the IfE analysis
are shown in Table 2 (see also [12]). The realistic errors are comparable with
those obtained in other recent investigations, e.g., at JPL (see [14–16,18]).

5 Further Applications

In addition to the relativistic phenomena discussed earlier, more effects related
to lunar physics, geosciences, and geodesy can be investigated. The following
items are of special interest (see also [12]), as they touch recent activities in
the afore-mentioned disciplines:

1. Celestial reference frame. A dynamical realization of the International
Celestial Reference System (ICRS) by the lunar orbit is obtained (σ =
0.001′′) from LLR data. This can be compared and analyzed with respect
to the kinematical ICRS from very long baseline interferometry (VLBI).
Here, the very good long-term stability of the lunar orbit is of great ad-
vantage.

2. Terrestrial reference frame. The results for the station coordinates and
velocities, which are estimated simultaneously in the standard solution,
contribute to the realization of the international terrestrial reference
frame, e.g., to the last one, the ITRF2000.

3. Earth rotation. LLR contributes, among others, to the determination of
long-term nutation parameters, where again the stable, highly accurate
orbit, and the lack of nonconservative forces from air-drag or solar radia-
tion pressure (which affect satellite orbits substantially) is very convenient.
Additionally, UT0 and VOL values are computed, which stabilize the com-
bined EOP series, especially in the 1970s when less data from other space
geodetic techniques were available. The precession rate is another example
in this respect.

4. Relativity. As discussed in the previous sections, the dedicated investi-
gation of Einstein’s theory of relativity is of major interest. With an im-
proved accuracy of the LLR measurements and the modeling (see Sect. 6),
the investigation of further effects (e.g., the Lense–Thirring precession) or
those of alternative theories might become possible.

5. Lunar physics. By the determination of the libration angles of the Moon,
LLR gives access to underlying processes affecting lunar rotation (e.g.,
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Fig. 8. Distribution of retroreflectors on the lunar surface.

Moon’s core, dissipation), cf. [17]. A better distribution of the retroreflec-
tors on the Moon (see Fig. 8) would be very helpful.

6. Selenocentric reference frame. The determination of a selenocentric refer-
ence frame, the combination with high-resolution images, and the estab-
lishment of a better geodetic network on the Moon is a further big item,
which then allows accurate lunar mapping.

7. Earth–Moon dynamics. The mass of the Earth–Moon system, the lunar
tidal acceleration, possible geocenter variations and related processes as
well as further effects can be investigated in detail.

8. Timescales. The lunar orbit can also be considered as a long-term sta-
ble clock so that LLR can be used for the independent realization of
timescales, which can then be compared or combined with other determi-
nations.

Those features shall be addressed in the future, when more and better
LLR data are available and the analysis models have been improved to the
millimeter level, see Sect. 6.

6 Model and Observation Refinement

To exploit the full available potential of LLR, the theoretical models as well
as the measurements require optimization. Using the 3.5 m telescope at the
APOLLO site in New Mexico, USA, a millimeter-level ranging becomes pos-
sible. To allow an order of magnitude gain in determination of various quan-
tities in the complete LLR solution, the current models have to be updated
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according to the IERS conventions 2003, and made compatible with the IAU
2000 resolutions [2]. This requires, e.g., to better model:

– Higher degrees of the gravity fields of Earth and Moon and their couplings
– The effect of the asteroids (up to 1,000)
– Relativistically consistent torques in the rotational equations of the Moon
– Relativistic spin–orbit couplings
– Torques caused by other planets like Jupiter
– The lunar tidal acceleration with more periods (diurnal and semidiurnal)
– Ocean and atmospheric loading by updating the corresponding subrou-

tines
– Nutation using the recommended IAU model
– The tidal deformation of Earth and Moon
– Moon’s interior (e.g., solid inner core) and its coupling to the Earth–Moon

dynamics

Besides modeling, the overall LLR processing shall be optimized. The best
strategy for the data fitting procedure needs to be explored for (highly) cor-
related parameters.

Finally, LLR should be prepared for a renaissance of lunar missions where
transponders or new retroreflectors may be deployed on the surface of the
Moon, which would enable many pure SLR stations to observe the Moon.
NASA is planning to return to the Moon by 2008 with Lunar Reconnaissance
Orbiter (LRO), and later with robotic landers, and then with astronauts until
2018. The primary focus of these planned missions will be lunar exploration
and preparation for trips to Mars, but they will also provide opportunities
for science, particularly if new reflectors are placed at more widely separated
locations than the present configuration (see Fig. 8). New installations on the
Moon would give stronger determinations of lunar rotation and tides. New
reflectors on the Moon would provide additional accurate surface positions
for cartographic control [18], would also aid navigation of surface vehicles or
spacecraft at the Moon, and they also would contribute significantly to re-
search in fundamental and gravitational physics, LLR-derived ephemeris, and
lunar rotation. Moreover in the case of colocation of microwave transponders,
the connection to the VLBI system may become possible which will open a
wide range of further activities such as frame ties.

7 Conclusions

LLR has become a technique for measuring a variety of relativistic gravity
parameters with unsurpassed precision. Sensitivity studies have been per-
formed to estimate the order of magnitude of relativistic effects on lunar
ranges and the potential capability to better determine certain relativistic
features. Spectral analyses showed the typical frequencies related to each
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effect, indicating as well, how (highly) correlated parameters might be sep-
arated. No violations of general relativity are found in our investigations.
Both the weak and strong forms of the EP are verified, while strong empiri-
cal limitations on any inverse-square law violation, time variation of G, and
preferred-frame effects are also obtained.

LLR continues as an active program, and it can remain as one of the most
important tools for testing Einstein’s general relativity theory of gravitation
if appropriate observations strategies are adopted and if the basic LLR model
is further extended and improved down to the millimeter level of accuracy.
The deployment of transponders on the Moon would considerably improve
the performance for lunar ranging applications. Lunar science, fundamental
physics, control networks for surface mapping, and navigation would benefit.
Demonstration of active devices would prepare the way for very accurate
ranging to Mars and other solar system bodies.
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Summary. The Laser Astrometric Test of Relativity (LATOR) is a Michelson–
Morley type experiment designed to test the metric nature of gravitation – a funda-
mental postulate of the Einstein’s general theory of relativity. The key element
of LATOR is a geometric redundancy provided by the long-baseline optical inter-
ferometry and interplanetary laser ranging. By using a combination of independent
time-series of gravitational deflection of light in the immediate proximity to the Sun,
along with measurements of the Shapiro time delay on interplanetary scales (to a
precision, respectively, better than 0.1 picoradians and 1 cm), LATOR will signi-
ficantly improve our knowledge of relativistic gravity and cosmology. The primary
mission objective is (1) to measure the key post-Newtonian Eddington parameter γ
with accuracy of a part in 109. 1

2
(1 − γ) is a direct measure for presence of a new

interaction in gravitational theory and, in its search, LATOR goes a factor 30,000
beyond the present best result, Cassini’s 2003 test; other mission objectives include
(2) first measurement of gravity’s nonlinear effects on light to ∼0.01% accuracy,
including both the traditional Eddington β parameter and also the spatial metric’s
second-order potential contribution (never measured before); (3) direct measure-
ment of the solar quadrupole moment J2 (currently unavailable) to accuracy of a
part in 200 of its expected size of 
10−7; and (4) direct measurement of the “frame-
dragging” effect on light due to the Sun’s rotational gravitomagnetic field, to 0.1%
accuracy.

LATOR’s primary measurement pushes to unprecedented accuracy the search
for cosmologically relevant scalar–tensor theories of gravity by looking for a remnant
scalar field in today’s solar system. We discuss the science objectives of the mission,
its technology, mission and optical designs, as well as expected performance of this
experiment. LATOR will lead to very robust advances in the tests of fundamental
physics: this mission could discover a violation or extension of general relativity
and/or reveal the presence of an additional long-range interaction in the physical
law. There are no analogs to LATOR; it is unique and is a natural culmination of
solar system gravity experiments.



474 S.G. Turyshev et al.

1 Introduction

After almost 90 years since general theory of relativity was born, the Einstein’s
gravitational theory has survived every test. Such longevity, of course, does
not mean that this theory is absolutely correct, but it serves to motivate more
accurate tests to determine the level of accuracy at which it is violated. Gen-
eral theory of relativity began with its empirical success in 1915 by explaining
the anomalous perihelion precession of Mercury’s orbit. Shortly thereafter,
Eddington’s 1919 observations of star lines-of-sight during a solar eclipse con-
firmed the doubling of the deflection angles predicted by general relativity as
compared to Newtonian-like and Equivalence Principle arguments. This test
of gravitational deflection of light made general relativity an instant success.

From these beginnings, general theory of relativity has been verified at
ever higher accuracy. Thus, microwave ranging to the Viking Lander on
Mars yielded a ∼0.2% accuracy in the tests of general relativity [80, 93, 94].
Spacecraft and planetary radar observations reached an accuracy of ∼0.15%
[4, 78]. The astrometric observations of quasars on the solar background
performed with Very Long-Baseline Interferometry (VLBI) improved the
accuracy of the tests of gravity to ∼0.045% [37, 48, 81, 95]. Lunar laser
ranging, a continuing legacy of the Apollo program, provided ∼0.011% verifi-
cation of general relativity via precision measurements of the lunar orbit
[64, 66, 70–72, 111, 112, 114, 115]. Finally, the recent experiments with the
Cassini spacecraft improved the accuracy of the tests to ∼0.0023% [11, 43]
(see Sect. 2 and Fig. 1 on page 42). As a result, today general relativity is
the standard theory of gravity when astrometry and spacecraft navigation are
concerned.

Considering gravitation and fundamental physics, our solar system is the
laboratory that still offers many opportunities to improve the tests of rela-
tivistic gravity. A carefully designed gravitational experiment that utilizes the
strongest gravity potential available in the solar system, that provided by the
Sun itself, also has the advantage to conduct tests in a controlled and well-
understood environment. Indeed, compared to terrestrial conditions, the Sun
offers a factor of M�/M⊕ ∼ 3.3×105 increase in the strength of gravitational
effects, the fact, that was recognized in a number of experiments proposed
over the years (see discussion [109, 110]). Most of these proposals rely on
sending an ensemble of ultra-stable clocks to a close proximity to the Sun,
typically to distances of four solar radii [1,51,88]. An approach, alternative to
sending spacecraft on a highly eccentric trajectory into the challenging near-
solar environment, would be to send a laser light instead. This is due to the
fact that optical technologies (i.e., long-baseline interferometry, laser ranging,
etc.) have recently demonstrated a very significant progress achieving the level
of maturity needed for a major improvement of the accuracy of gravitational
experiments in space. The use of these technologies allows one to probe the
strongest gravity in the solar system while still being separated by a safe
distance from the Sun; later we will develop this idea further.
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This chapter discusses the Laser Astrometric Test of Relativity (LATOR),
the space-based experiment that is designed to significantly improve the tests
of relativistic gravity in the solar system. The test will be performed in the
solar gravity field using optical interferometry between two microspacecraft.
Precise measurements of the angular position of the spacecraft will be made
using a fiber-coupled optical interferometer on the ISS with a 100 m baseline.
The primary objective of the LATOR mission will be to measure the gravi-
tational deflection of light by the solar gravity to accuracy of 0.1 picoradians
(prad), which corresponds to ∼10 picometers (pm) on a 100 m interferometric
baseline. A combination of laser ranging among the spacecraft and direct int-
erferometric measurements will allow LATOR to measure deflection of light
in the solar gravity by a factor of ∼30,000 better than that had recently been
accomplished with the Cassini spacecraft. In particular, LATOR will not only
measure the key PPN parameter γ to unprecedented levels of accuracy of one
part in 109, but it will also reach ability to measure the next post-Newtonian
order (∝G2) of light deflection resulting from gravity’s intrinsic nonlinearity.
As a result, LATOR will measure values of other PPN parameters (see (1))
such as parameter δ to one part in 104 (never measured before), the solar
quadrupole moment parameter J2 to one part in 200, and the frame-dragging
effects on light due to the solar angular momentum to a precision of one part
in 103.

The chapter is organized as follows. Section 2 discusses the theoretical
framework and science motivation for the precision gravity tests in the solar
system; it also presents the science objectives for the LATOR experiment.
Section 3 provides an overview for the LATOR experiment, including basic
elements of the current mission and optical designs. Section 4 addresses design
of the LATOR long-baseline optical interferometer, including the laser metrol-
ogy system. Section 5 discusses the current design for the LATOR flight system
and presents a preliminary design for LATOR optical receivers. In Sect. 6 we
discuss modeling of the mission observables and address observational logic of
LATOR measurements. In Sect. 7 we present major constituents of the mis-
sion’s error budget and discuss the expected mission performance. Section 8
compares LATOR with other proposed gravity experiments and also discusses
the next steps that will be taken in the development of LATOR.

2 Scientific Motivation

Recent remarkable progress in observational cosmology has again submitted
general relativity to a test by suggesting a non-Einsteinian model of universe’s
evolution [76, 83, 102]. From the theoretical standpoint, the challenge is even
stronger – if the gravitational field is to be quantized, general relativity will
have to be modified. This is why the recent advances in the scalar–tensor
extensions of gravity, which are consistent with the current inflationary model
of the Big Bang, have motivated new search for a very small deviation from the
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Einstein’s theory, at the level of accuracy of three to five orders of magnitude
below the level tested by experiment.

In this section we will consider the recent theoretical end experimental
motivations for the high-accuracy gravitational tests. We will also present the
scientific objectives of the LATOR experiment.

2.1 The PPN Formalism

Generalizing on a phenomenological parameterization of the gravitational
metric tensor field which Eddington originally developed for a special case, a
method called the parameterized post-Newtonian (PPN) metric, has been de-
veloped [62–66,107,109]. This method represents the gravity tensor’s potentials
for slowly moving bodies and weak interbody gravity, and it is valid for a broad
class of metric theories, including general relativity as a unique case. The sev-
eral parameters in the PPN metric expansion vary from theory to theory, and
they are individually associated with various symmetries and invariance prop-
erties of underlying theory. Gravity experiments can be analyzed in terms of
the PPN metric, and an ensemble of experiments will determine the unique
value for these parameters, and hence the metric field itself.

In locally Lorentz-invariant theories, the expansion of the metric field for
a single, slowly rotating gravitational source in PPN coordinates is given by
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where M and J being the mass and angular momentum of the Sun, J2 being
the quadrupole moment of the Sun, and R being its radius. r is the distance
between the observer and the center of the Sun. β, γ, δ are the PPN parame-
ters and in general relativity they are all equal to 1. The M/r term in the
g00 equation is the Newtonian limit; the terms multiplied by the post-post-
Newtonian parameters β, γ are post-Newtonian terms. The term multiplied by
the post-Newtonian parameter δ also enters the calculation of the relativistic
light deflection [68].

This PPN expansion serves as a useful framework to test relativistic gravi-
tation in the context of the LATOR mission. In the special case, when only
two PPN parameters (γ, β) are considered, these parameters have clear phys-
ical meaning. Parameter γ represents the measure of the curvature of the
space–time created by a unit rest mass; parameter β is a measure of the non-
linearity of the law of superposition of the gravitational fields in the theory of
gravity. General relativity, which corresponds to γ = β = 1, is thus embedded
in a two-dimensional space of theories. The Brans–Dicke is the best known
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theory among the alternative theories of gravity. It contains, besides the met-
ric tensor, a scalar field and an arbitrary coupling constant ω, which yields
the two PPN parameter values γ = (1 + ω)/(2 + ω) and β = 1. More general
scalar–tensor theories yield values of β different from one.

Current Limits on the PPN Parameters γ and β

The PPN formalism has proved to be a versatile method to plan gravita-
tional experiments in the solar system and to analyze the data obtained
[2, 10, 62–68, 102, 107–110]. Different experiments test different combinations
of the PPN parameters (for more details, see [109, 110]). The most pre-
cise value for the PPN parameter γ is at present given by the Cassini
mission as γ − 1 = (2.1 ± 2.3) × 10−5 [11]. (Note that the Cassini result
constraints the Brans–Dicke scalar coupling constant at the level of |ω| ≥
4.35× 104.) The secular trend of Mercury’s perihelion, when described in the
PPN formalism, depends on another linear combination of the PPN para-
meters γ and β and the quadrupole coefficient J2 of the solar gravity field:
λ� = (2+2γ−β)/3+0.296×J2×104. The combination of parameters λ� was
obtained with Mercury ranging data as λ� = 0.9996±0.0006 [77,78]. Analysis
of planetary ranging data recently yielded an independent determination of
parameter γ: γ − 1 = 0.0015 ± 0.0021; it also gave β with accuracy at the
level of β − 1 = −0.0010 ± 0.0012 [3, 4, 112]. The astrometric observations of
quasars on the solar background performed with VLBI further reduced the
uncertainty in the knowledge of the PPN parameter γ, resulting in the limit
of γ = 0.99983 ± 0.00045 [37,95].

The PPN formalism has provided a useful framework for testing the vio-
lation of the strong equivalence principle (SEP) for gravitationally bound
bodies. In that formalism, the ratio of passive gravitational mass MG to iner-
tial mass MI of the same body is given by MG/MI = 1− ηUG/(M0c

2), where
M0 is the rest mass of this body and UG is the gravitational self-energy. The
SEP violation is quantified by the parameter η, which is expressed in terms of
the basic set of PPN parameters by the relation η = 4β− γ− 3. Additionally,
with LLR finding that Earth and Moon fall toward the Sun at rates equal to
1.5 parts in 1013, even in a conservative scenario, where a composition depen-
dence of acceleration rates masks a gravitational self-energy dependence, η is
constrained to be less than 0.0008 [3]; without such accidental cancelation
the η constraint improves to 0.0003. Using the recent Cassini result [11] on
the PPN γ, the parameter β was measured as β − 1 = (0.9 ± 1.1) × 10−4

from LLR [113–115] (see Fig. 1 on page 42). The next order PPN parameter
δ has not yet been measured, though its value can be inferred from other
measurements.

Over the recent decade, the technology has advanced to the point that one
can consider carrying out direct tests in a weak field to second order in the
field strength parameter (∝G2). Although any measured anomalies in first or
second-order metric gravity potentials will not determine strong-field gravity,
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they would signal that modifications in the strong-field domain will exist. The
converse is perhaps more interesting: if to high precision no anomalies are
found in the lowest order metric potentials, and this is reinforced by finding
no anomalies at the next order, then it follows that any anomalies in the strong
gravity environment are correspondingly quenched under all but exceptional
circumstances.1

We shall now discuss the recent motivations for the precision gravity
experiments.

2.2 Motivations for Precision Gravity Experiments

The continued inability to merge gravity with quantum mechanics and recent
cosmological observations indicate that the pure tensor gravity of general rela-
tivity needs modification. The tensor–scalar theories of gravity, where the
usual general relativity tensor field coexists with one or several long-range
scalar fields, are believed to be the most promising extension of the theo-
retical foundation of modern gravitational theory. The superstring, many-
dimensional Kaluza–Klein and inflationary cosmology theories have revived
interest in the so-called “dilaton fields,” i.e., neutral scalar fields whose back-
ground values determine the strength of the coupling constants in the effective
four-dimensional theory. The importance of such theories is that they provide
a possible route to the quantization of gravity and the unification of physical
laws.

Although the scalar fields naturally appear in the theory, their inclusion
predicts different relativistic corrections to Newtonian motions in gravitating
systems. These deviations from general relativity lead to a violation of the
Equivalence Principle (either weak or strong or both), modification of large-
scale gravitational phenomena, and generally lead to space and time variation
of physical “constants.” As a result, this progress has provided new strong
motivation for high-precision relativistic gravity tests.

Tensor–Scalar Extensions of General Relativity

Recent theoretical findings suggest that the present agreement between gen-
eral relativity and experiment might be naturally compatible with the exis-
tence of a scalar contribution to gravity. In particular, Damour and Nordtvedt
[22, 23] (see also [24, 25] for nonmetric versions of this mechanism together
with [31,32] for the recent summary of a dilaton-runaway scenario) have found
that a scalar–tensor theory of gravity may contain a “built-in” cosmological
attractor mechanism toward general relativity. These scenarios assume that
the scalar coupling parameter 1

2 (1− γ) was of order one in the early universe
(say, before inflation), and show that it then evolves to be close to, but not

1 For example, a mechanism of a “spontaneous-scalarization” that, under certain
circumstances, may exist in tensor–scalar theories [26].



Laser Astrometric Test of Relativity 479

Fig. 1. Typical cosmological dynamics of a background scalar field is shown in the
case when that field’s coupling function to matter, V (φ), has an attracting point
φ0. The strength of the scalar interaction’s coupling to matter is proportional to
the derivative (slope) of the coupling function, and so it weakens as the attracting
point is approached, and both the Eddington parameters γ and β (and all higher
structure parameters as well) approach their pure tensor gravity values in this limit
[22,23,27,28,31,32]. But a small residual scalar gravity should remain today because
this dynamical process is not complete, and that is what LATOR experiment seeks
to find.

exactly equal to, zero at the present time (Fig. 1 illustrates this mechanism in
more details).

The Eddington parameter γ, whose value in general relativity is unity,
is perhaps the most fundamental PPN parameter, in that 1

2 (1 − γ) is a mea-
sure, for example, of the fractional strength of the scalar gravity interaction in
scalar–tensor theories of gravity [27,28]. Within perturbation theory for such
theories, all other PPN parameters to all relativistic orders collapse to their
general relativistic values in proportion to 1

2 (1−γ). This is why measurement
of the first-order light deflection effect at the level of accuracy comparable with
the second-order contribution would provide the crucial information separat-
ing alternative scalar–tensor theories of gravity from general relativity [65] and
also to probe possible ways for gravity quantization and to test modern theo-
ries of cosmological evolution [22–25, 31, 32]. Under some assumptions (see,
e.g., [22, 23]) one can even estimate what is the likely order of magnitude of
the left-over coupling strength at present time which, depending on the total
mass density of the universe, can be given as 1 − γ ∼ 7.3 × 10−7(H0/Ω

3
0)1/2,

where Ω0 is the ratio of the current density to the closure density and H0 is the
Hubble constant in units of 100 km s−1 Mpc−1. Compared to the cosmological
constant, these scalar field models are consistent with the supernovae obser-
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vations for a lower matter density, Ω0 ∼ 0.2, and a higher age, (H0t0) ≈ 1. If
this is indeed the case, the level (1 − γ) ∼ 10−6 to 10−7 would be the lower
bound for the present value of PPN parameter γ [22, 23].

More recently, Damour et al. [31, 32] have estimated 1
2 (1 − γ) within the

framework compatible with string theory and modern cosmology, which basi-
cally confirms the previous result [22,23]. This recent analysis discusses a sce-
nario when a composition-independent coupling of dilaton to hadronic matter
produces detectable deviations from general relativity in high-accuracy light
deflection experiments in the solar system. This work assumes only some gen-
eral property of the coupling functions (for large values of the field, i.e., for
an “attractor at infinity”) and then assume that only (1 − γ) is of the order
of one at the beginning of the controllably classical part of inflation. It was
shown in [32] that one can relate the present value of 1

2 (1 − γ) to the cosmo-
logical density fluctuations. For the simplest inflationary potentials (favored
by WMAP mission, i.e., m2χ2 [7], see also WMAP technical papers at the
mission’s website: http://map.gsfc.nasa.gov/m mm/pub papers/), Damour
et al. [31,32] found that the present value of (1−γ) could be just below 10−7.
In particular, within this framework 1

2 (1 − γ) � α2
had, where αhad is the dila-

ton coupling to hadronic matter, its value depends on the model taken for
the inflation potential V (χ) ∝ χn, with χ being the inflation field; the level of
the expected deviations from general relativity is ∼0.5×10−7 for n = 2 [32].
Note that these predictions are based on the work in scalar–tensor exten-
sions of gravity, which are consistent with, and indeed often part of, present
cosmological models.

Another example of recent theoretical progress is the Dvali–Gabadadze–
Porrati (DGP) brane-world model, which explores a possibility that we live
on a brane embedded in a large extra dimension, and where the strength of
gravity in the bulk is substantially less than that on the brane [33]. Although
such theories can lead to perfectly conventional gravity on large scales, it is
also possible to choose the dynamics in such a way that new effects show up
exclusively in the far infrared, providing a mechanism to explain the acceler-
ation of the universe [76, 83]. It is interesting to note that DGP gravity and
other modifications of GR hold out the possibility of having interesting and
testable predictions that distinguish them from models of dynamical Dark
Energy. One outcome of this work is that the physics of the accelerating uni-
verse may be deeply tied to the properties of gravity on relatively short scales,
from millimeters to astronomical units [8, 34,35].

To date general relativity and some other alternative gravitational theo-
ries are in good agreement with the experimental data collected from the
relativistic celestial mechanical extremes provided by the relativistic motions
in the binary millisecond pulsars. At the same time, many modern theoreti-
cal models, which include general relativity as a standard gravity theory, are
faced with the problem of the unavoidable appearance of space–time singu-
larities. It is generally suspected that the classical description, provided by
general relativity, breaks down in a domain where the curvature is large, and



Laser Astrometric Test of Relativity 481

hence, a proper understanding of such regions requires new physics. This is
a reason why recently a considerable interest has been shown in the physical
processes occurring in the strong gravitational field regime with relativistic
pulsars, providing a promising possibility to test gravity in this qualitatively
different dynamical environment. The general theoretical framework for pulsar
tests of strong-field gravity was introduced in [30]; the observational data for
the initial tests were obtained with PSR1534 [97]. An analysis of strong-field
gravitational tests and their theoretical justification was presented in [27–29].
The recent analysis of the pulsar data resulted in 1

2 (1− γ) � α2
had ∼4× 10−4

at a 3σ confidence level [47], with αhad being the dilaton coupling to hadronic
matter. While being a natural alternative to the weak-gravity tests, the pul-
sar tests of gravitation currently cannot offer the accuracy at the level that is
presently available within the solar system. In fact, a carefully designed ded-
icated experiment that utilizes the strongest gravitational potential available
in the solar system, provided by the Sun itself, offers a unique opportunity to
test gravitation in a controlled and well-understood environment. Therefore,
despite the relative weakness of its gravitational field, the Sun still has an
advantage and offers an attractive opportunity to perform accurate tests of
gravity.

The analyses discussed above not only motivate new searches for very small
deviations of relativistic gravity in the solar system, but they also predict that
such deviations are currently present in the range from 10−5 to 5 × 10−8 for
1
2 (1−γ), i.e., for observable post-Newtonian deviations from general relativity
predictions and, thus, should be easily detectable with LATOR. This would
require measurement of the effects of the next post-Newtonian order (∝ G2)
of light deflection resulting from gravity’s intrinsic nonlinearity. An ability to
measure the first-order light deflection term at the accuracy comparable with
the effects of the second order is of the utmost importance for gravitational
theory and a major challenge for the twenty-first century fundamental physics.

Observational Motivations for Higher Accuracy Tests of Gravity

Recent astrophysical measurements of the angular structure of the cosmic
microwave background (CMB) [12], the masses of large-scale structures [75],
and the luminosity distances of type Ia supernovae [76,83] have placed strin-
gent constraints on the cosmological constant Λ and also have led to a
revolutionary conclusion: the expansion of the universe is accelerating. The
implication of these observations for cosmological models is that a classically
evolving scalar field currently dominates the energy density of the universe.
Such models have been shown to share the advantages of Λ: compatibility
with the spatial flatness predicted inflation; a universe older than the stan-
dard Einstein-de Sitter model; and, combined with cold dark matter, predic-
tions for large-scale structure formation in good agreement with data from
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galaxy surveys. Combined with the fact that scalar field models imprint dis-
tinctive signature on the CMB anisotropy, they remain currently viable and
should be testable in the near future. This completely unexpected discovery
demonstrates the importance of testing the important ideas about the nature
of gravity. We are presently in the “discovery” phase of this new physics, and
while there are many theoretical conjectures as to the origin of a nonzero
Λ, it is essential that we exploit every available opportunity to elucidate the
physics that is at the root of the observed phenomena.

There is now multiple evidence indicating that 70% of the critical density
of the universe is in the form of a “negative-pressure” dark energy component;
there is no understanding as to its origin and nature. The fact that the expan-
sion of the universe is currently undergoing a period of acceleration now seems
rather well tested: it is directly measured from the light curves of several hun-
dred type Ia supernovae [76,83,98], and independently inferred from observa-
tions of CMB by the WMAP satellite [7] and other CMB experiments [41,59].
Cosmic speed-up can be accommodated within general relativity by invoking a
mysterious cosmic fluid with large negative pressure, dubbed dark energy. The
simplest possibility for dark energy is a cosmological constant; unfortunately,
the smallest estimates for its value are 55 orders of magnitude too large (for
reviews see [16,74]). Most of the theoretical studies operate in the shadow of
the cosmological constant problem, the most embarrassing hierarchy problem
in physics. This fact has motivated a host of other possibilities, most of which
assume Λ = 0, with the dynamical dark energy being associated with a new
scalar field (see [18, 19] and references therein). However, none of these sug-
gestions is compelling and most have serious drawbacks. Given the challenge
of this problem, a number of authors considered the possibility that cosmic
acceleration is not due to some kind of stuff, but rather arises from new gravi-
tational physics (see discussion in [16–18,74]). In particular, certain extensions
to general relativity in a low energy regime [15,18,20] were shown to predict an
experimentally consistent universe evolution without the need for dark energy
(see discussion on the interplay between theory, experiment, and observation
in [6, 9]). These dynamical models are expected to explain the observed ac-
celeration of the universe without dark energy, but may produce measurable
gravitational effects on the scales of the solar system. In particular, corre-
sponding contribution to the parameter γ in experiments conducted in the
solar system are expected at the level of 1−γ ∼ 10−7 −5×10−9, thus further
motivating the relativistic gravity research. Therefore, the PPN parameter γ
may be the only key parameter that holds the answer to most of the questions
discussed earlier. Also an anomalous parameter δ will most likely be accom-
panied by a “γ mass” of the Sun, which differs from the gravitational mass of
the Sun and therefore will show up as anomalous γ (see discussion in [72]).

Even in the solar system, general relativity still faces challenges. There is
the long-standing problem of the size of the solar quadrupole moment and its
possible effect on the relativistic perihelion precession of Mercury (see review
in [109]). The interest is in the study of the behavior of the solar quadrupole
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moment vs. the radius and the heliographic latitudes. This solar parameter
has been very often neglected in the past, because it was rather difficult to
determine an accurate value. The improvement of the accuracy of our knowl-
edge of J2 is certainly due to the fact that, today, we are able to take into
account the differential rotation with depth. In fact, the quadrupole moment
plays an important role in the accurate computation of several astrophysical
quantities, such as the ephemeris of the planets or general relativistic predic-
tion for the precession of the perihelion of Mercury and minor planets such as
Icarus. Finally, it is necessary to accurately know the value of the quadrupole
moment to determine the shape of the Sun, i.e., to say its oblateness. Solar
oblateness measurements by Dicke and others in the past gave conflicting
results for J2 (reviewed on p. 145 of [21]). A measurement of solar oblateness
with the balloon-borne Solar Disk Sextant gave a quadrupole moment on the
order of 2×10−7 [50]. Helioseismic determinations using solar oscillation data
have since implied a small value for J2, on the order of ∼10−7, i.e., consistent
with simple uniform rotation [13, 40, 109]. However, there exist uncertainties
in the helioseismic determination for depths below roughly 0.4 R�, which
might permit a rapidly rotating core. (LATOR can measure J2 with accuracy
sufficient to put this issue to rest.)

In summary, there are a number of theoretical and experimental reasons to
question the validity of general relativity. Despite the success of modern gauge
field theories in describing the electromagnetic, weak, and strong interactions,
it is still not understood how gravity should be described at the quantum level.
In theories that attempt to include gravity, new long-range forces can arise
in addition to the Newtonian inverse-square law. Even at the purely classical
level, and assuming the validity of the Equivalence Principle, Einstein’s theory
does not provide the most general way to generate the space–time metric.
Regardless of whether the cosmological constant should be included, there
are also important reasons to consider additional fields, especially scalar fields.
The LATOR mission is designed to directly address theses challenges with an
unprecedented accuracy; we shall now discuss LATOR in more details.

3 Overview of LATOR

The LATOR experiment uses the standard technique of time-of-fight laser
ranging (extended to interplanetary scales) between two microspacecraft
whose lines-of-sight pass close by the Sun and also a long-baseline stellar
optical interferometer (placed above the Earth’s atmosphere) to accurately
measure deflection of light by the solar gravitational field in the extreme prox-
imity to the Sun [101]. Figure 2 shows the general concept for the LATOR mis-
sions, including the mission-related geometry, experiment details, and required
accuracies.

In this section we will consider the LATOR mission architecture in more
detail.
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3.1 Evolving Light Triangle

The LATOR mission architecture uses an evolving light triangle formed by
laser ranging between two spacecraft (placed in ∼1 AU heliocentric orbits) and
a laser transceiver terminal on the International Space Station (ISS) (realized
via European collaboration [106]). The objective is to measure the gravita-
tional deflection of laser light as it passes in extreme proximity to the Sun
(see Fig. 2). To that extent, the long-baseline (∼100 m) fiber-coupled optical
interferometer on the ISS will perform differential astrometric measurements
of the laser light sources on the two spacecraft as their lines-of-sight pass
behind the Sun.

As seen from the Earth, the two spacecraft will be separated by ∼1◦, which
will be accomplished by a small maneuver immediately after their launch
[101, 104]. This separation would permit differential astrometric observations
to an accuracy of ∼0.1 prad needed to significantly improve measurements of
gravitational deflection of light in the solar gravity.

The schematic of the LATOR experiment is quite simple and is given
in Fig. 2. Two spacecraft are injected into a heliocentric solar orbit on the
opposite side of the Sun from the Earth. The triangle in the figure has three
independent quantities and three arms are monitored with laser metrology.
Each spacecraft is equipped with a laser ranging system that enables the
measurement of the arms of the triangle formed by the two spacecraft and the
ISS. The uniqueness of this mission comes with its geometrically redundant
architecture that enables LATOR to measure the departure from Euclidean
geometry (∼8.48 × 10−6 rad) caused by the solar gravity field, to a very high
accuracy [101]. This departure is shown as a difference between the calculated

Fig. 2. The overall geometry of the LATOR experiment. The objective is to measure
distances, t1, t2, t3, between the three nodes of the space triangle to accuracy of
0.5 cm. To benefit from the geometric redundancy, the experiment will also measure
the angle between the two spacecraft to accuracy of 0.05 prad.
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Euclidean value for an angle in the triangle and its value directly measured by
the interferometer. This discrepancy, which results from the curvature of the
space–time around the Sun and can be computed for every alternative theory
of gravity, constitutes LATOR’s signal of interest. The precise measurement
of this departure constitutes the primary mission objective.

A version of LATOR with a ground-based receiver was proposed in [120].
Because of atmospheric turbulence and seismic vibrations that are not com-
mon mode to the receiver optics, a very long-baseline interferometer (30 km)
was proposed. This interferometer could only measure the differential light
deflection to an accuracy of 0.1 μas, with a spacecraft separation of less than
1 arcmin. The shortening of the interferometric baseline (as compared to the
previously studied version [90, 91, 120]) is achieved solely by going into space
to avoid the atmospheric turbulence and Earth’s seismic vibrations. On the
space station, all vibrations can be made common mode for both ends of
the interferometer by coupling them by an external laser truss. This relaxes
the constraint on the separation between the spacecraft, allowing it to be as
large as few degrees, as seen from the ISS. Additionally, the orbital motion
of the ISS provides variability in the interferometer’s baseline projection as
needed to resolve the fringe ambiguity of the stable laser light detection by
an interferometer.

We shall now consider the basic elements of the LATOR optical design.

3.2 General Approach in Optical Design

A single aperture of the interferometer on the ISS consists of three 30 cm
diameter telescopes (see Fig. 3 for a conceptual design). One of the telescopes
with a very narrow bandwidth laser line filter in front and with an InGaAs
camera at its focal plane, sensitive to the 1,064 nm laser light, serves as the
acquisition telescope to locate the spacecraft near the Sun.

The second telescope emits the directing beacon to the spacecraft. Both
spacecraft are served out of one telescope by a pair of piezocontrolled mir-
rors placed on the focal plane. The properly collimated laser light (1 W) is
injected into the telescope focal plane and deflected in the right direction by
the piezoactuated mirrors.

The third telescope is the laser light tracking interferometer input aper-
ture, which can track both spacecraft at the same time. To eliminate beam
walk on the critical elements of this telescope, two piezoelectric X–Y–Z stages
are used to move two single-mode fiber tips on a spherical surface while main-
taining focus and beam position on the fibers and other optics. Dithering at a
few Hz is used to make the alignment to the fibers and the subsequent tracking
of the two spacecraft completely automatic. The interferometric tracking tele-
scopes are coupled together by a network of single-mode fibers whose relative
length changes are measured internally by a heterodyne metrology system to
an accuracy of less than 5 pm.
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Fig. 3. Basic elements of optical design for the LATOR interferometer. The
laser light (together with the solar background) is going through a full aperture
(∼30 cm) narrow band-pass filter with 5 × 10−5 μm bandwidth around wavelength
of λ = 1, 064 nm. The remaining light illuminates the baseline metrology corner
cube and falls onto a steering flat mirror where it is reflected to an off-axis telescope
with no central obscuration (needed for metrology). It then enters the solar corono-
graph compressor (with 1 × 10−5 suppression properties) by first going through a
1/2 plane focal plane occulter and then coming to a Lyot stop. At the Lyot stop,
the background solar light is reduced by a factor of 106. This combination of a nar-
row band-pass filter and coronograph enables the solar luminosity reduction from
V = −26 to V = 4 (as measured at the ISS), thus enabling the LATOR precision
observations.

The spacecrafts are identical in construction and contain a relatively high-
powered (1 W), stable (2 MHzh−1 ∼ 500 Hz s−1), small cavity fiber-amplified
laser at 1,064 nm. The power of this laser is directed to the Earth through a
20 cm aperture telescope and its phase is tracked by the interferometer. With
the available power and the beam divergence, there are enough photons to
track the slowly drifting phase of the laser light. There is another 0.2 W laser
operating at 780 nm, the power of which is transmitted through another tele-
scope with small aperture of 5 cm, which points toward the other spacecraft. In
addition to the two transmitting telescopes, each spacecraft has two receiving
telescopes. The receiving telescope, which points toward the area near the
Sun, has laser line filters and a simple knife-edge coronagraph to suppress
the Sun’s light to one part in 105 of the light level of the light received from
the space station. The receiving telescope that points to the other spacecraft
is free of the Sun light filter and the coronagraph.

In addition to the four telescopes they carry, the spacecraft also carry a
tiny (2.5 cm) telescope with a CCD camera. This telescope is used to initially
point the spacecraft directly toward the Sun so that their signal may be seen at
the space station. One more of these small telescopes may also be installed at
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right angles to the first one to determine the spacecraft attitude, using known
bright stars. The receiving telescope looking toward the other spacecraft may
be used for this purpose part of the time, reducing hardware complexity.
Star trackers with this construction were demonstrated many years ago and
they are readily available. A small RF transponder with an omni-directional
antenna is also included in the instrument package to track the spacecraft
while they are on their way to assume the orbital position needed for the
experiment.

The LATOR experiment has a number of advantages over techniques that
use radio waves to measure gravitational light deflection. Advances in optical
communications technology allow low bandwidth telecommunications with the
LATOR spacecraft without having to deploy high gain radio antennae needed
to communicate through the solar corona. The use of the monochromatic light
enables the observation of the spacecraft almost at the limb of the Sun, as
seen from the ISS. The use of narrow band filters, coronagraph optics, and
heterodyne detection will suppress background light to a level where the solar
background is no longer the dominant noise source. In addition, the short
wavelength allows much more efficient links with smaller apertures, thereby
eliminating the need for a deployable antenna. Finally, the use of the ISS will
allow conducting the test above the Earth’s atmosphere – the major source
of astrometric noise for any ground based interferometer. This fact justifies
LATOR as a space mission.

3.3 Science Objectives

LATOR is a Michelson–Morley type experiment designed to test the pure
tensor metric nature of gravitation – a fundamental postulate of Einstein’s
theory of general relativity [101]. With its focus on gravity’s action on light
propagation, it complements other tests that rely on the gravitational dyna-
mics of bodies. The idea behind this experiment is to use a combination of
independent time-series of highly accurate measurements of the gravitational
deflection of light in the immediate proximity to the Sun along with measure-
ments of the Shapiro time delay on the interplanetary scales (to a precision,
respectively, better than 0.1 prad and 1 cm). Such a combination of observ-
ables is unique and enables LATOR to significantly improve tests of relativistic
gravity.

The LATOR’s primary mission objective is to measure the key post-
Newtonian Eddington parameter γ with an accuracy of a part in 109. When
the light deflection in solar gravity is concerned, the magnitude of the first-
order effect as predicted by general relativity for the light ray just grazing
the limb of the Sun is ∼1.75 arcsecond (as) (for more details see Table 1).
(Note that 1 as � 5 μrad; when convenient, later we will use the units of
radians and arcseconds interchangeably.) The effect varies inversely with the
impact parameter. The second-order term is almost six orders of magni-
tude smaller, resulting in ∼3.5 microarcseconds (μas) light deflection effect,
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Table 1. Comparable sizes of various light deflection effects in the solar gravity
field.

Effect Analytical form Deflection Delay
angle (μas) (pm)

First order 2(1 + γ)M
b

1.75 as 0.849mm

Second order
[(

2(1 + γ) − β + 3
4
δ
)

π − 2(1 + γ)2
]

M2

b2
3.5 1,697

Frame dragging ±2(1 + γ) J
b2

±0.7 ±339
Solar quadrupole 2(1 + γ)J2

M
b3

0.2 97

The value of deflection angle is calculated on the limb of the Sun (b = R�); the
corresponding delay is given for a b = 100m interferometric baseline proposed for
LATOR.

and which falls off inversely as the square of the light ray’s impact parame-
ter [36, 38, 65, 84, 85, 101]. The relativistic frame-dragging term2 is ±0.7 μas,
and contribution of the solar quadrupole moment, J2, is sized as 0.2 μas (using
theoretical value of the solar quadrupole moment J2 � 10−7). The small mag-
nitudes of the effects emphasize the fact that, among the four forces of nature,
gravitation is the weakest interaction; it acts at very long distances and con-
trols the large-scale structure of the universe, thus making the precision tests
of gravity a very challenging task.

If the Eddington’s 1919 experiment was performed to confirm the general
theory of relativity, LATOR is motivated to search for physics beyond the
Einstein’s theory of gravity with an unprecedented accuracy [101]. In fact,
this mission is designed to address the questions of fundamental importance
to modern physics. In particular, this solar system scale experiment would
search for a cosmologically evolved scalar field that is predicted by modern
theories of quantum gravity and cosmology, and also by superstring and brane-
world models [8, 9, 33]. LATOR will also test the cosmologically motivated
theories that attempt to explain the small acceleration rate of the Universe
(so-called “dark energy”) via modification of gravity at very large horizon or
superhorizon distances.

By studying the effect of gravity on light and measuring the Eddington
parameter γ, this mission will test the presently viable alternative theories
of gravity, namely the scalar–tensor theories. The value of the parameter γ
may hold the key to the solution of the most fundamental questions concern-
ing the evolution of the universe. In the low energy approximation suitable
for the solar system, a number of modern theories of gravity and cosmology
studied as methods for gravity quantization or proposed as an explanation
to the recent cosmological puzzles predict measurable contributions to the
parameter γ at the level of 1

2 (1 − γ) ∼ 10−6 − 10−8; detecting this deviation

2 Gravitomagnetic frame dragging is the effect in which both the orientation and
trajectory of objects in orbit around a body are altered by the gravity of the
body’s rotation. It was studied by Lense and Thirring in 1918.
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Table 2. LATOR mission summary: science objectives.

Qualitative objectives

– To test the metric nature of the Einstein’s general theory of relativity in the most
intense gravitational environment available in the solar system – the extreme
proximity to the Sun

– To test alternative theories of gravity and cosmology, notably scalar–tensor
theories, by searching for cosmological remnants of scalar field in the solar
system

– To verify the models of light propagation and motion of the gravitationally
bounded systems at the second post-Newtonian order (i.e., including effects
∝G2)

Quantitative objectives

– To measure the key Eddington PPN parameter γ with accuracy of one part in
109 – a factor of 30,000 improvement in the tests of gravitational deflection of
light

– To provide direct and independent measurement of the Eddington PPN para-
meter β via gravity effect on light to ∼0.01% accuracy

– To measure effect of the second-order gravitational deflection of light with
accuracy of one part in 104, including first ever measurement of the post-PPN
parameter δ

– To directly measure the frame-dragging effect on light (first such observation
and also first direct measurement of solar spin) with accuracy of one part in 103

– To measure the solar quadrupole moment J2 (using the theoretical value of
J2 
 10−7, currently unavailable) to one part in 200

is LATOR’s primary objective. With the accuracy of one part in 109, this
mission could discover a violation or extension of general relativity, and/or
reveal the presence of any additional long-range interaction (see Table 2).

We now outline the basic elements of the LATOR trajectory.

3.4 Spacecraft Trajectory: A 3:2 Earth Resonant Orbit

To enable the primary objective, LATOR will place two spacecraft into a
heliocentric orbit, to provide conditions for observing the spacecraft when
they are behind the Sun as viewed from the ISS (see Figs. 4 and 7). With
the help of the JPL Advanced Project Design Team (Team X), we recently
conducted detailed mission design studies [39]. In particular, we analyzed
various trajectory options for the deep-space flight segment of LATOR, using
both the Orbit Determination Program (ODP) and Satellite Orbit Analysis
Program (SOAP) – the two standard JPL navigation software packages.

One trajectory option would be to use a Venus flyby to place the spacecraft
in a 1 year orbit (perihelion at Venus orbit ∼0.73 AU and aphelion ∼1.27 AU).
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Fig. 4. Left: the Sun–Earth–Probe angle during the period of three occultations
(two periodic curves) and the angular separation of the spacecraft as seen from the
Earth (lower smooth line). Time shown is days from the moment when one of the
spacecraft are at 10◦ distance from the Sun. Right : view from the North Ecliptic
of the LATOR spacecraft in a 3:2 resonance. The epoch is taken near the first
occultation.

One complication of this approach is that the Venus orbit is inclined about 3.4◦

with respect to the ecliptic and the out-of-plane position of Venus at the time
of the flyby determines the orbit inclination [39]. The LATOR observations
require that the spacecraft pass directly behind the Sun, i.e., with essentially
no orbit inclination. To minimize the orbit inclination, the Venus’ flyby would
need to occur near the time of Venus nodal crossing. An approach with a
type IV trajectory and a single Venus flyby requires a powered Venus flyby
with about 500–900 m s−1. However, a type I trajectory to Venus with two
Venus gravity assists would get LATOR into a desirable 1 year orbit at Earth’s
opposition. This option requires no velocity change, called Δv, and provides
repeated opportunities for the desired science observations. (Δv is a desired
spacecraft velocity change, which is typically enabled by either the onboard
propulsion system or a planetary flyby.) At the same time this orbit has a
short launch window ∼17 days, which motivated us to look for an alternative.

An orbit with a 3:2 resonance with the Earth3 was found to uniquely satisfy
the LATOR orbital requirements [39, 101]. For this orbit, 13 months after
the launch, the spacecraft are within ∼10◦ of the Sun with first occultation
occurring 15 months after launch [101]. At this point, LATOR is orbiting at
a slower speed than the Earth, but as LATOR approaches its perihelion, its
motion in the sky begins to reverse and the spacecraft is again occulted by
the Sun 18 months after launch. As the spacecraft slows down and moves out

3 The 3:2 resonance occurs when the Earth does three revolutions around the Sun
while the spacecraft does exactly two revolutions on a 1.5 year orbit. The exact
period of the orbit may vary slightly, <1%, from a 3:2 resonance depending on
the time of launch.
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toward aphelion, its motion in the sky reverses again, and it is occulted by
the Sun for the third and final time 21 months after launch.

This entire process will again repeat itself in about 3 years after the initial
occultation; however, there may be a small maneuver required to allow for
more occultations. Therefore, to allow for more occultations in the future,
there may be a need for an extra few tens of m s−1 of Δv. The energy re-
quired for launch, C3, will vary approximately between 10.6 and 11.4 km2 s−2

depending on the time of launch, but it is suitable for a Delta II launch ve-
hicle. The desirable ∼1◦ spacecraft separation (as seen from the Earth) is
achieved by performing a 30 m s−1 maneuver after the launch. This results in
the second spacecraft being within ∼(0.6◦–1.4◦) separation during the entire
period of three occultations by the Sun.

Figure 4 shows the trajectory and the occultations in more details. The
figure on the right is the spacecraft position in the solar system showing
the Earth’s and LATOR’s orbits (in the 3:2 resonance) relative to the Sun.
The epoch of this figure shows the spacecraft passing behind the Sun as viewed
from the Earth. The figure on the left shows the trajectory when the space-
craft would be within 10◦ of the Sun as viewed from the Earth. This period of
280 days will occur once every 3 years, provided the proper maneuvers are per-
formed. Two similar periodic curves give the Sun–Earth–Probe (SEP) angles
for the two spacecraft while the lower smooth curve gives their angular sepa-
ration as seen from the Earth.

As a baseline design for the LATOR orbit,4 both spacecraft will be
launched on the same launch vehicle. Almost immediately after the launch
there will be a 30 m s−1 maneuver that separates the two spacecraft on their
3:2 Earth resonant orbits (see Fig. 4). The sequence of events that occurs dur-
ing each observation period will be initiated at the beginning of each orbit
of the ISS. It is assumed that bore sighting of the spacecraft attitude with
the spacecraft transmitters and receivers have already been accomplished.
This sequence of operations is focused on establishing the ISS-to-spacecraft
link. The interspacecraft link is assumed to be continuously established after
deployment, since the spacecraft never lose line of sight with one another
(for more details consult Sect. 5.5).

4 In addition to this 3:2 Earth resonant orbit, here is also an option to have both
spacecraft move in opposite directions during each of the solar conjunctions [73].
In this option, the two LATOR spacecraft move either toward or away from each
other, as seen from the Earth. At the beginning of each conjunction the two craft
are on the opposite sides from the Sun, moving toward each other in such a way
that not only their impact parameters are equal (i.e., p1 = −p2), but also the rates
of change of these impact parameters are also equal (i.e., ṗ1 = −ṗ2). This option
would increase the amount of Δv, which LATOR spacecraft should carry onboard,
but it significantly reduces the experiment’s dependence on the accuracy of the
determination of the solar impact parameter. This particular option is currently
being investigated and results will be reported elsewhere.
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The 3:2 Earth resonant orbit provides an almost ideal trajectory for the
LATOR mission, specifically (1) it imposes no restrictions on the time of
launch; (2) with a small propulsion maneuver after launch, it places the two
LATOR spacecraft at the distance of less then 3.5◦ (or ∼14 R�) for the entire
duration of the experiment (or ∼8 months); (3) it provides three solar con-
junctions even during the nominal mission lifetime of 22 months, all within a
7 month period; (4) at a cost of an extra maneuver, it offers a possibility of
achieving small orbital inclinations (to enable measurements at different solar
latitudes); and, finally, (5) it offers a very slow change in the Sun–Earth–
Probe angle of about ∼R� in 4 days. Furthermore, such an orbit provides
three observing sessions during the initial 21 months after the launch, with
the first session starting in 15 months [101]. As such, this orbit represents a
very attractive choice for LATOR. We intend to further study this 3:2 Earth
resonant trajectory as the baseline option for the mission.

In Sect. 4 we will discuss the preliminary design of the LATOR interfer-
ometer on the ISS.

4 LATOR Interferometry

In this section, we describe the process of how the LATOR interferometer will
be measuring angles. Since the spacecraft will carry lasers that are monochro-
matic sources, the interferometer can efficiently use heterodyne detection to
measure the phase of the incoming signal. To this extent, we first present a
simplified explanation of heterodyne interferometry proposed for the LATOR
interferometer. We then describe the interferometric design of the LATOR
station on the ISS.

4.1 Heterodyne Interferometry

Figures 5 and 6 show a simplified schematic of how angles are measured using
a heterodyne interferometer. In Fig. 5, two siderostats are pointed at a target.
Two fiducials, shown as corner cubes, define the end points of the interferom-
eter baseline. The light from each of the two arms is interfered with stable
local oscillators (LOs) and the phase difference recorded. If the LOs in each
arm were phase-locked, the angles of the target with respect to the baseline
normal is

θ = arcsin
[ (2πn + φ1 − φ2)λ

2πb

]
, (2)

where λ is the wavelength of the downlink laser, n is an unknown integer
arising from the fringe ambiguity, and b is the baseline length. To resolve this
ambiguity, multiple baselines were used in the previous mission design (this is
discussed in greater detail in [120]). In reality, it is difficult to phase-lock the
two LOs over the long-baseline lengths. The left graphics in Fig. 6 shows how a
single LO can be used and transmitted to both siderostats, using a single mode
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Fig. 5. Heterodyne interferometry on one spacecraft with phase-locked local
oscillator.

Fig. 6. Left: fiber-linked heterodyne interferometry and fiber metrology system.
Right : fiber-linked heterodyne interferometry on two spacecraft.

fiber. In this configuration, a metrology system is used to monitor changes in
the path length as seen by the LO as it propagates through the fiber. The
metrology system measures the distance from one beam splitter to the other.
In this case, the angle is given by

θ = arcsin
[ (2πn + φ1 − φ2 + m1)λ

2πb

]
, (3)

where m1 is the phase variations introduced by changes in the optical path of
the fiber as measured by the metrology system.

Now consider the angle measurement between two spacecraft (shown on
the right in Fig. 6). In this case the phase variations due to changes in the path
through the fiber are common to both spacecraft. The differential angle is

θ = arcsin
[ (2π(n1 − n2) + (m1 −m2))λ

2πb
+

((φ11 − φ12) − (φ21 − φ22))λ
2πb

]
.

(4)
Since the spacecraft are monochromatic sources, the interferometer can effi-
ciently use heterodyne detection to measure the phase of the incoming signal.
Note that because of the fact that this is a differential measurement, it is
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Fig. 7. Left: location of the LATOR interferometer on the ISS. To utilize the inherent
ISS Sun-tracking capability, the LATOR optical packages will be located on the
outboard truss segments P6 and S6 outward. Right : signal acquisition for each orbit
of the ISS. Note that variation of the baseline’s projection allows to successfully
solve the issue of the monochromatic fringe ambiguity.

independent of any changes in the fiber length. In reality, the interferometer
will have optical paths that are different between the two spacecraft signal
paths. These paths must be monitored accurately with a metrology system
to correct for phase changes in the optical system due to thermal variations.
However, this metrology must only measure path lengths in each interfero-
metric station and not along the entire length of the fiber.

The use of multiple interferometers is a standard solution to resolve the
fringe ambiguity resulting from the interferometric detection of monochro-
matic light [101]. The current LATOR mission proposal is immune from the
fringe ambiguity problem, as the orbit of the ISS provides enough variability
(at least ∼30%) in the baseline projection (see Fig. 7 for general description
of the geometry of the interferometer on the ISS and its orbit). This variablity
enables one to take multiple measurements during one orbit, to uniquely re-
solve the baseline orientation for each ISS orbit, which successfully solves the
fringe ambiguity issue for LATOR.

4.2 Long-Baseline Optical Interferometer on the ISS

The LATOR station on the ISS is used to interferometrically measure the
angle between the two spacecraft and also to transmit and receive the laser
ranging signals to each of the spacecraft. A block diagram of the laser station
is shown in Fig. 8 and is described in more detail later. The station on the ISS
is composed of a two laser beacon stations that perform communications and
laser ranging to the spacecraft and two interferometer stations that collect
the downlink signal for the astrometric measurement. This station also uses
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Fig. 8. The LATOR station on the ISS.

a fiber optic link to transmit the common local oscillator to the interferome-
ter station.

General Description

The interferometer on the ISS will be formed by two optical packages (or
laser beacon stations) with approximate dimensions of (0.6 × 0.6 × 0.6 m3) for
each package. The mass of each telescope assembly ∼120 kg. Both laser beacon
stations must be physically located and integrated with the ISS infrastructure
(see description of the ISS in [44]). Their location must provide a straight-
line separation of ∼100 m between the two stations and have a clear line-of-
sight (LOS) path between the two transceivers during the observation periods.
Both packages must have clear LOS to both spacecraft during predefined
measurement periods. Location on the ISS should maximize the inherent ISS
Sun-tracking capability. Both telescope assemblies will have to be able to
point toward the Sun during each observing period, which can be achieved
by locating these payloads on the ISS outboard truss segments (P6 and S6
outward, see Fig. 7). In addition, a limited degree of automatic Sun-tracking
capability is afforded by the α-gimbals on the ISS.

The minimum unobstructed LOS time duration between each transponder
on the ISS and the transponders and their respective spacecraft will be 58 min
per the 92 min orbit of the ISS. The pointing error of each transceivers to its
corresponding spacecraft will be no greater than 1 μrad for control, 1 μrad for
knowledge, with a stability of 0.1 μrad s−1, provided by a combination of the
standard GPS link available on the ISS and μg accelerometers.
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Laser Beacon Station

The laser beacon stations provide the uplink signals to the LATOR spacecraft
and detect their downlink signals (see Fig. 9). The transmitter laser signal is
modulated for laser ranging and to provide optical communications. Separate
transmitters are used for each spacecraft, each using a 1 W laser at 1,064 nm
as the source for each laser beacon. The laser beam is expanded to a diameter
of 30 cm and is directed toward the spacecraft using a siderostat mirror. Fine
pointing is accomplished with a fast steering mirror in the optical train.

During initial acquisition, the optical system of the laser beacon is modified
to produce a beam with a 10 as divergence. This angular spread is necessary
to guarantee a link with the spacecraft, albeit a weak one, in the presence of
pointing uncertainties. After the acquisition sequence is complete, the beam is
narrowed to a diffraction limited beam, thereby increasing the signal strength.

The downlink laser signal at 1,064 nm is detected using a 12×12 (10×10 as)
array of Germanium detectors. To suppress the solar background, the signal
is heterodyned with a local oscillator and detected within a narrow 1 MHz
bandwidth. In the initial acquisition mode, the detection system searches over
a 300 MHz bandwidth and uses a spiral search over a 30 as angular field to
find the downlink signal. Upon acquisition, the search bandwidth is decreased
to 1 MHz and a quad-cell subarray is used to point the siderostat and fast
steering mirrors of the beacon.

Interferometer Station

The interferometer stations collect the laser signal from both spacecraft to
perform the heterodyne measurements needed for the interferometric angle

Fig. 9. The laser beacon station on the ISS.
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Fig. 10. Component description of the receiver on the ISS.

Fig. 11. Principal diagram for the dual feed optical system. The diagram describes
propagation of laser starlight and metrology beams through the optical system (note
metrology corner cube, beam compressor, and field separator).

measurement. There are a total of five receivers to make the four angular
measurements needed to resolve fringe ambiguity.

Figure 10 shows a schematic of an interferometer station. The detection
and tracking system is basically similar to the receiver arm of the laser bea-
con described in the previous section. Light is collected by a 0.3 m siderostat
mirror and compressed with a telescope to a manageable beam size. The light
from each of the spacecraft is separated using a dual feed optical system as
shown in Fig. 11. A fast steering mirror is used for high bandwidth pointing
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of the receiver. In addition, a combination of a wideband interference filter
and a narrow band Faraday Anomalous Dispersion Optical Filter (FADOF)
will be used to reject light outside a 0.05 nm band around the laser line. Each
spacecraft signal is interfered with a local oscillator and the phase measure-
ment time tagged and recorded. A 6 × 6 Ge array (5 × 5 as FOV) is used to
provide heterodyne acquisition and tracking of the LATOR spacecraft.

Interferometer on the ISS

Figure 12 shows a schematic of the ISS-based fiber interferometer that will be
used to perform the angular measurement between the two LATOR spacecraft.
The interferometer includes the heterodyne detection of the downlink signals
that have been described in the previous section. The local oscillator (LO) is
generated in one of the ground station receivers and is frequency locked to
the laser signal from one of the spacecraft. The LO is then broadcast to the
other station on the ISS through a 100 m single mode polarization preserving
fiber. The heterodyne signals from all the stations (two stations, two signals
each) are recorded and time tagged.

Figure 12 also shows two metrology systems used in the interferometer.
The first metrology system measures the difference in optical path between
the two laser signal paths and is essential for proper processing of the hetero-
dyne data. The second metrology system measures the changes in the optical
path through the fiber. This measurement monitors the length of the fiber
and is used in the post processing of the interferometer data. The internal
path metrology system, shown in the figure, measures the paths from corner
cube on the siderostat mirror (shown as two, really only one) to the metrology
beam splitter. It is essential that the laser metrology system be boresighted
to the laser signal path so that the correct distance is measured. A Michelson
interferometer with a frequency shift in one arm measures changes in the
length of each signal path. Both spacecraft signal paths are measured simul-
taneously. This is accomplished by using an electro-optic cell and modulating

Fig. 12. Component description of the ISS-based interferometer.
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Fig. 13. Fiber metrology system.

each beam at a different frequency. A He–Ne laser is used as the light source
for this metrology system. Filters at the output of the detector are then used
to separate the signals corresponding to each metrology beam.

The fiber metrology system measures changes in the optical path through
the fiber. This system uses local oscillator signal in a Michelson configuration.
Figure 13 shows the correspondence between a standard Michelson interfero-
meter and the fiber metrology system. The two X couplers serve as the beam
splitters. Reflectors at the ends of the fiber couplers serve as the reference and
signal mirrors. One of these reflectors is dithered to frequency shift the output
signal. The phase measurement at the detector measures changes in the path
length between points X1 and X2, if Ml-X1 and M2-X2 are held constant.
This is accomplished by placing the X couplers and mirrors at each end of the
fiber on a single thermally stable optical breadboard.

4.3 Laser Metrology Transceiver Subsystem

The metrology transceiver consists of the laser, frequency modulators, optics,
and frequency stabilizer. The laser light is first frequency-stabilized to better
than one part in 1010, this is done to make the measurements. The laser light
is then frequency-modulated to produce the heterodyne signal and distinguish
between incoming and outgoing beams. Finally, light is collimated and injected
into the beam launcher optics. The incoming metrology signal is received by
the beam launcher optics and is interfered with the local laser. A cat’s eye
retroreflector serves as the spacecraft fiducial and is common to all three beam
launchers. Below we discuss these elements in more details.
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Laser

A 1 W Nd:YAG laser operating at 1,064 nm is used to transmit the metrology
signals to the other spacecraft. The laser will be thermally tunable over a
range of several GHz. Two lasers are used in each spacecraft for redundancy.

Frequency Stabilization

The source laser is stabilized to one part in 1010 long-term using a temperature
controlled Fabry–Perot etalon. A Pound–Drever scheme is used to servo the
frequency of the laser to one of the longitudinal modes of the cavity. Control
of the ∼3 cm cavity to 10 mK will achieve the required stability. Calibration
of the cavity length on the ground will be done by injecting a second laser
locked onto an adjacent longitudinal cavity mode and beating the two signals
together. For the 3 cm cavity, the 5 GHz beat frequency must be known to
10−10. Temperature control of the cavity will allow fine tuning of the laser
frequencies between the spacecraft so that the heterodyne signal between two
lasers lies below 2 MHz. This will require knowledge of the spacecraft relative
velocity to 1 m s−1, which is easily achievable.

Frequency Modulators

The laser frequency is modulated to distinguish between the various trans-
mit and receive beams used in the LATOR measurements. In addition, the
relative velocity between the spacecraft can reach as high as 100 m s−1. This
will produce a Doppler frequency of up to 200 MHz between lasers from two
spacecraft. The frequency of the modulator will be tuned to slightly offset
from the Doppler frequency to minimize the bandwidth at which the data
needs to be recorded.

Acousto-optic modulators (AOM) with fiber-coupled input and output are
used. For a single metrology channel three different frequencies are needed for
the reference, and two unknown signals. One implementation is a fiber-fed
modulator, which uses a bulk AOM and is insensitive to alignment errors.
Other implementations for the AOMs will also be studied. These include in-
tegrated optic AOMs and multichannel Bragg cells, both of which will be
capable of generating the multiple signals at much lower mass.

The metrology system will also need to phase lock the outgoing laser with
the incoming laser. The AOM provides the phase modulation to the laser
beam. The incoming signal and the laser output from the AOM are interfered
on a high frequency detector. This signal is then used to servo the frequency
of the AOM to null. This will produce a phase-locked signal whose phase error
is determined by the level of the null. In reality, because of the AOM, center
frequency, the interfered signal will be upshifted by a stable local oscillator
and the servoing done in RF. The stability of this local oscillator is the same as
the required stability of the phase-locked loop, 10−10 (discussed in Sect. 4.3).
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Beam Launcher and Receiver Optics

In the current instrument design, the modulated laser beam is injected using
a polarization preserving single mode fiber and expanded to a 0.5 cm beam.
A cat’s eye retroreflector is one of the several devices that can be used as the
metrology fiducial and is common to the three metrology beams. The cat’s eye
uses two optically contacted concentric hemispheres with radius of ∼10 and
∼20 cm. The cat’s eye is sized many times larger than the beam to minimize
the effect of spherical aberration.

The beam is then expanded to a 5 cm beam using a refractive telescope. A
refractive design was chosen because changes in the optical path are relatively
insensitive to changes in the position and orientation of the optical elements.

To measure the path length to better ∼5 pm, errors due to thermal effects
on the beam launcher optics must be controlled. For example, a change in the
temperature of 1 mK on a 0.5 cm beam splitter would produce a path length
error of ∼5 pm; consequently, an active thermal controller would be used on
the beam splitters and telescope optics. Furthermore, baffles on the optics
will be used to prevent external radiation from affecting the temperature of
the instrument. The metrology optics will be mounted on a GrEp bench for
thermal stability.

Acquisition Camera Subsystem

The acquisition camera will be used as the sensor for pointing the metrology
beam. A 512×512 camera may be used to detect the position of the incoming
laser beam to 0.5 as over a 1◦ field by interpolating the centroid of the spot to
0.1 pixel. Three cameras will be used to track each of the incoming metrology
beams. The outgoing laser beam will be retroreflected from the alignment
corner cube to produce a spot on the acquisition camera on which to servo
the pointing gimbal. The direction of the outgoing beam is set to the position
of the target spacecraft, taking into account the point-ahead angle.

Pointing Subsystem

In the current instrument design, the entire beam launcher optical assembly is
gimbaled to point the metrology beam to the target spacecraft. The two-axis
gimbal has a center of rotation at the center of the cat’s eye retroreflector.
This optical arrangement measures the distance between the optical fiducials
and is not sensitive to slight misalignments to the first order. The gimbal will
have a range of 1◦ and a pointing resolution of 0.5 as.

Laser Ranging Subsystem

The laser ranging system is used to determine the positions of the spacecraft
with respect to the ISS. This is required to determine the impact parameter
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of the laser beam grazing the Sun as well as the coplanarity of the three
spacecraft. A time of flight laser ranging system is used to triangulate the
spacecraft positions. A laser transponder system on the spacecraft is used to
increase the SNR of the return pulse.

Laser ranging will be performed with an accuracy of ∼1 cm by integrating
over a number of laser pulses. If the system were capable of instantaneously
detecting delays of 100 ps (3 cm), at a 1 kHz repetition rate, it would take less
than 1 s to reach the desired accuracy. Assuming this level of ranging and using
baseline 100 m will result in an accuracy in the transverse direction of 1 m at
LATOR’s orbit, with spacecraft separated as much as 2 AU (see discussion of
interspacecraft laser ranging operations in Sect. 5.1).

In Sect. 5 we turn our attention to the mission flight system.

5 LATOR Flight System

The LATOR flight system consists of two major components: the deep-space
component that will be used to transmit and receive the laser signals needed
to make science measurements and the interferometer on the ISS that will be
used to interferometrically measure the angle between the two spacecraft and
to transmit and receive the laser ranging signals to each of the spacecraft.

There are two LATOR spacecraft in the deep-space component of the mis-
sion, which will be used to transmit and receive the laser signals needed to
make the science measurements. Figure 14 shows a schematic of the flight
system without the solar cell array. The flight system is subdivided into the

Fig. 14. LATOR spacecraft concept.
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Fig. 15. A typical Spectrum Astro SA-200S/B bus. With minor modifications this
configuration may be adopted for the deep-space component of the LATOR mission.

instrument payload and the spacecraft bus (note that SA200S spacecraft built
by Spectrum Astro already has the needed capabilities, see Fig. 15). The in-
strument includes the laser ranging and communications hardware and is de-
scribed in more detail in the following section. The spacecraft contains the
remainder of the flight hardware, which includes solar cells, attitude control,
and the spacecraft structure.

In this section we will discuss the design of these components in more
detail.

5.1 LATOR Instrument

The LATOR instrument in each of the two spacecraft consists of three laser
metrology transmitters and receivers that can be gimbaled to point at the
other spacecraft, and a camera system to acquire the incoming laser signals
and to control the pointing of the outgoing beams. In addition, the instrument
contains a laser ranging transponder to determine the spacecraft position from
the ground. The LATOR instrument is used to perform laser ranging between
the two spacecraft; it is also used (the second set) for laser ranging and optical
communications between the spacecraft and the ISS. Figure 16 shows a block
diagram of the instrument subsystems, which we describe in more detail below.

ISS-to-Spacecraft Receiver and Transmitter

The ISS-to-spacecraft receiver performs the acquisition, tracking, and detec-
tion of the signals from the ISS (Fig. 17). This uplinked signal will be sent at
1,064 nm and will contain modulation both to perform laser ranging and to
send control signals to the spacecraft. The signals from the ISS are detected
by a telescope with a collecting aperture of 20 cm. A coronograph will be used
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Fig. 16. LATOR instrument subsystem block diagram.

Fig. 17. Spacecraft transmitter and receiver for the ISS–spacecraft link.

to suppress stray light from the Sun. In addition, a combination of a wide-
band interference filter and a narrow band FADOF filter will be used to reject
light outside a 0.05 nm band around the laser line. The incoming signal is sub-
divided with one portion going to a high bandwidth detector and the other
to an acquisition and tracking CCD array. Using a 64 × 64 CCD array with
pixels sized to a diffraction limited spot, this array will have a 5 arcmin field
of view, which is greater than the pointing knowledge of the attitude control
system and the point-ahead angle (30 as). After acquisition of the ISS beacon,
a 2×2 element subarray of the CCD will be used as a quad cell to control the
ISS–S/C two axis steering mirror. This pointing mirror is common to both
the receiver and transmitter channel to minimize misalignments between the
two optical systems due to thermal variations. The pointing mirror will have
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10 arcmin throw and a pointing accuracy of 0.5 as, which will enable placement
of the uplink signal on the high bandwidth detector.

The ISS-to-spacecraft transmitter sends a laser signal to both the inter-
ferometer collectors and the beacon receivers. The signal will be encoded for
both ranging and communication information. In particular, the transmitted
signal will include the interspacecraft ranging measurements. The transmitter
uses a 1 W frequency stabilized Nd:YAG laser at 1,064 nm. A 5 kHz line width
is required to simplify heterodyne detection at the ground station. A 20 cm
telescope is used to transmit the laser beam and a steering mirror is used
for pointing. The mirror uses information from the attitude control system,
the quad-cell detector in the receiver, and the point-ahead information from
the instrument controller to determine the transmit direction. A fast steer-
ing mirror is used to maintain high bandwidth pointing control for both the
transmitter and receiver.

We have also considered the possibility of using a common optical system
for both the transmitter and receiver. Figure 18 shows a schematic of such
a transmitter/receiver system. Because of the difference in the receive and
transmit wavelengths, dichroic beam splitters and filters are used to minimize
losses from the optics and leakage into the detectors. In this scheme a point-
ahead mirror is used to maintain a constant angular offset between the received
and transmitted beams. Because of the common optical elements, this system
is more tolerant to misalignments than the previous configuration.

Fig. 18. ISS-to-spacecraft link with common optics: spiral scanning spatial acqui-
sition; open loop point-ahead control with piezoactuators; fiber-coupled, frequency
stabilized transmitter; pupil planes at the steering mirror and mixing apertures.
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Fig. 19. The interspacecraft transmitter and receiver.

Interspacecraft Receiver and Transmitter

The interspacecraft receiver/transmitter uses two separate optical systems.
The receiver detects the laser ranging signal from the other spacecraft (shown
in Fig. 19). The receiver is similar in design to the ISS–spacecraft receiver
subsystem. Since there is no solar background contribution, the coronograph
and FADOF filter have been removed. Detection of the signal is accomplished
using a CCD for acquisition and a quad cell subarray for tracking. The tracking
signal is also used to control the pointing of the transmitter minor. A separate
high bandwidth detector is used for detecting the laser ranging signal.

The interspacecraft transmitter sends the laser ranging signal to the other
spacecraft. The transmitter uses a 780 nm laser with an output power of 0.2 W
(alternatively it may use a small fraction of the laser light that is used to es-
tablish spacecraft-to-ISS link). The transmitter and receiver telescopes have
an aperture of 5 cm diameter. Because of the proximity of the LATOR space-
craft, thermal drifts that cause misalignments between the transmitter and
receiver optical systems can be sensed and corrected rapidly. In addition, the
LATOR geometry requires minimal point ahead, since the transverse velocity
between spacecraft is nearly zero.

Instrument Controller

The instrument controller subsystem contains the remainder of the instrument
hardware. This includes the electronics needed for the laser ranging and optical
communications as well as the computer used to control the instrument. The
instrument computer will take information from the attitude control system
and receiver subsystems to control the pointing of the transmit subsystems
and the modulation of their laser signals.

5.2 LATOR Spacecraft

The LATOR spacecraft, like most spacecraft, will be composed of the following
subsystems: thermal, structural, attitude control, power, command and data
handling, telecommunications, and propulsion, which will be discussed below.
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Thermal Subsystem

The basic thermal design will be similar to that of the SA-200B, with mod-
ifications to account for the variation in range. This design uses basically
passive thermal control elements with electric heaters/thermostats. The ther-
mal control flight elements are multilayer insulation, thermal surfaces, thermal
conduction control, and sensors. The active elements are minimized and will
be only electric heaters/thermostats. To minimize heater power thermal lou-
vers may be used. The current design assumes that the spacecraft uses passive
thermal control with heaters/thermostats, because it is basically designed for
Earth orbit (alternative thermal designs that utilize active elements are also
being studied).

Structural Subsystem

The current best estimate for the total dry mass is 115 kg, including a set of
required modifications to the standard SA-200B bus (i.e., a small propulsion
system, a 0.5 m HGA for deep-space telecom, etc.) The design calls for launch-
ing the two spacecraft on a custom carrier structure, as they should easily fit
into the fairing (for instance, Delta II 2425-9.5). The total launch mass for the
two spacecraft will be 552 kg. (This estimate may be further reduced, given
more time to develop a point design.)

Attitude Control Subsystem

An attitude control system may be required to have pointing accuracy of
6 μrad and a pointing knowledge of 3 μrad. This may be achieved using a
star tracker and Sun sensor combination to determine attitude together with
reaction wheels (RWs) to control attitude. Cold-gas jets may be used to
desaturate RWs. A Spectrum Astro SA-200B three-axis stabilized bus with
RWs for fine pointing and thrusters for RW desaturation is a good plat-
form [39]. For the current experiment design it is sufficient to utilize a point-
ing architecture with the following performance (3σ, per axis): control 6 μrad;
knowledge 3 μrad; stability 0.1 μrad s−1. The SA-200B readily accommodates
these requirements.

Power Subsystem

The flight system will require ∼50 W of power. This may be supplied by a
1 square meter GaAs solar cell array. To maintain a constant attitude with
respect to the Sun, the solar cells must be deployed away from the body of
the spacecraft. This will allow the cells to radiate away its heat to maintain
the cells within their operating temperature range.
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Telecommunications Subsystem

The telecommunications subsystem will be a hybrid that utilizes the opti-
cal communications capability of the instrument as the primary means of
transmitting and receiving commands and data. In addition, a small low gain
antenna for low data rate radio communications will be used for emergency
purposes. This system will use a 15 W transmitter and 10 dB gain antenna.
Using X band this system can operate with a 5 bit per second (bps) data
rate. The design calls for an SDST X-Band transponder, operating at 15 W;
X-Band SSPA; a 0.5 m HGA; two X-Band LGAs pointed opposite each other;
a duplexer; two switches; and coax cabling – the standard options of present
day spacecraft design.

Propulsion Subsystem

The propulsion subsystem for SA-200S bus may be used as it is. This will
ensure that a minimal amount of engineering is required. The system is a
blowdown monopropellant system with eight 5-N thrusters and two 32 cm
tanks each with 22 kg propellant capacity. The system exists and was tested
in many applications.

We shall now consider the basic elements of the LATOR optical receiver
system. While we focus on the optics for the two spacecraft, the interferometer
has essentially similar optical architecture.

5.3 Optical Receiver System

The LATOR 200 mm receiver optical system is a part of a proposed experi-
ment. This system is located at each of the two separate spacecraft placed on
heliocentric orbits, as shown in Fig. 2. The receiver optical system captures
optical communication signals from a transmitter on the ISS, which orbits the
Earth. To support the primary mission objective, this system must be able to
receive the optical communication signal from the uplink system at the ISS
that passes through the solar corona at the immediate proximity of the solar
limb (at a distance of no more than five Airy disks).

Our recent analysis of the LATOR receiver optical system successfully sat-
isfied all the configuration and performance requirements (shown in Table 3)
[79,103,104]. We have also performed a conceptual design (see Fig. 20), which
was validated with a ray-trace analysis. The ray-trace performance of the
designed instrument is diffraction limited in both the APD and CCD chan-
nels over the specified field of view at 1,064 nm. The design incorporated
the required field stop and Layot stop. A preliminary baffle design has been
developed for controlling the stray light.

The optical housing is estimated to have very accommodating dimensions;
it measures 500 × 220 × 250 mm3. The housing could be made even shorter
by reducing the focal length of the primary and secondary mirrors, which
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Table 3. Summary of design parameters for the LATOR spacecraft optical receiver
system.

Parameters/requirements Value/description

Aperture 200 mm, unobstructed

Wavelength 1,064 nm

Narrow band-pass filter 0.05 nm FWHM over full aperture

Focal planes APD Data & CCD acquisition/tracking

APD field of view Airy disk field stop (pinhole) in front of APD

APD field stop (pinhole) Approximately 0.009 mm in diameter

APD detector size TBD (a little larger than 0.009 mm)

CCD field of view 5 arcmin

CCD detector size 640 × 480 pixels (9.6 × 7.2 mm2)

CCD detector pixel size 15 μm

Beam splitter ratio (APD/CCD) 90/10

Field stop “D”-shaped at primary mirror focus

Lyot stop Circular aperture located at telescope exit pupil

Fig. 20. Layout for LATOR optical receiver system. The following design parame-
ters were used: (1) the primary and secondary mirrors are concave off-axis parabolas,
(2) the field stop is a “D”-shaped aperture with a 5 arcmin diameter, (3) a pupil
image of the primary mirrors is located at the Lyot stop, (4) the primary and sec-
ondary mirrors form an off-axis unobscured afocal 10× beam reducer, (5) the APD
imager lens is an f/3.6 triplet, and (6) the CCD imager lens is an f/45.5 telephoto
doublet.
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Fig. 21. Preliminary baffle design for LATOR optical receiver system.

may impose some fabrication difficulties. These design opportunities are being
currently investigated.

Preliminary Baffle Design

Figure 21 shows the LATOR preliminary baffle design. The out-of-field solar
radiation falls on the narrow band-pass filter and primary mirror; the scatter-
ing from these optical surfaces puts some solar radiation into the FOV of the
two focal planes. This imposes some requirements on the instrument design.
Thus, the narrow band-pass filter and primary mirror optical surfaces must be
optically smooth to minimize narrow angle scattering. This may be difficult
for the relatively steep parabolic aspheric primary mirror surface. However,
the field stop will eliminate direct out-of-field solar radiation at the two focal
planes, but it will not eliminate narrow angle scattering for the filter and pri-
mary mirror. Finally, the Lyot stop will eliminate out-of-field diffracted solar
radiation at the two focal planes. Additional baffle vanes may be needed at
several places in the optical system.

This design will be further investigated in series of trade-off studies by
also focusing on the issue of stray light analysis. Figure 22 shows the design
of the focal plane capping. The straight edge of the “D”-shaped CCD field
stop is tangent to the limb of the Sun and it is also tangent to the edge of
APD field stop. There is a 2.68 as offset between the straight edge and the
concentric point for the circular edge of the CCD field stop. The results of
the analysis of APD and CCD channels point spread functions (PSFs) can be
found in [103,104].

Focal Plane Mapping

Figure 22 shows the design of the focal plane capping. The straight edge of the
D-shaped CCD field stop is tangent to the limb of the Sun and it is also tangent
to the edge of APD field stop (pinhole). There is a 2.68 as offset between the
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Fig. 22. LATOR focal plane mapping (the diagram not to scale).

Fig. 23. APD channel geometric (left) and diffraction (right) PSF.

straight edge and the concentric point for the circular edge of the CCD field
stop (D-shaped aperture). In addition, the APD field of view and the CCD
field of view circular edges are concentric with each other. Depending on
the spacecraft orientation and pointing ability, the D-shaped CCD field stop
aperture may need to be able to be rotated to bring the straight edge into a
tangent position relative to the limb of the Sun. The results of the analysis of
APD and CCD channels PSFs are shown in Figs. 23 and 24.
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Fig. 24. CCD channel geometric (left) and diffraction (right) PSF.

Fig. 25. LATOR coronograph system.

5.4 LATOR Coronograph

To have adequate rejection of the solar background surrounding the laser
uplink from Earth, the spacecraft optical system must include a coronagraph.
Figure 25 shows a schematic of the coronagraph. A 20 cm telescope forms
an image on the chronographic stop. This stop consists of a knife-edge mask
placed 6 arcsec beyond the solar limb. The transmitted light is then reimaged
onto a Lyot stop, which transmits 88% of the incident intensity. Finally, the
light is reimaged onto the tracking detector.

The results of a simulated coronograph showing the stray light rejection
as a function of the distance from the solar limb is shown in Fig. 26. The
solar surface has been approximated as a vertical edge extending along the
entire length of a 256 × 256 array. The upper curve shows the stray light
levels for an optical system without a coronograph. In this case, the flux
from the solar surface has only been decreased by a factor of 100. With the
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Fig. 26. Results of coronograph performance simulation.

coronograph, however, a further factor of 100 rejection can be achieved. In
addition to decreasing the stray solar radiation, the coronograph will decrease
the transmission of the laser signal by 78% (for a signal 12 as from limb) due
to coronographic transmission and broadening of the PSF. At these levels of
solar rejection, it is possible for the spectral filter to reject enough starlight to
acquire the laser beacon. It is interesting to note that without the coronograph,
the stray light from the Sun decreases proportionally to the distance from the
limb. In contrast, with the use of the coronograph, the stray light decreases
as the square of the distance from the limb.

5.5 LATOR Observing Sequence

It is important to discuss the sequence of events that will lead to the signal
acquisition and that occur during each observation period (i.e., every orbit of
the ISS). This sequence will be initiated at the beginning of the experiment
period, after ISS emergence from the Earth’s shadow (see Fig. 7). It assumes
that boresighting of the spacecraft attitude with the spacecraft transmitters
and receivers have already been accomplished. This sequence of operations is
focused on establishing the ISS-to-spacecraft link. The interspacecraft link is
assumed to be continuously established after final deployment (at ∼15◦ off
the Sun), since the spacecraft never lose LOS with one another.

The laser beacon transmitter at the ISS is expanded to have a beam
divergence of 10 as to guarantee illumination of the LATOR spacecraft (see
Table 4). After reemerging from the Earth’s shadow this beam is transmitted
to the craft and reaches them in about 18 min. At this point, the LATOR
spacecraft acquire the expanded laser beacon signal. In this mode, a signal-
to-noise ratio (SNR) of 23.2 can be achieved with 60 s of integration. With an
attitude knowledge of 10 as and an array field of view of 30 as no spiral search
is necessary. Upon signal acquisition, the receiver mirror on the spacecraft
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Table 4. Analysis of various links between ISS and spacecraft in observation and
acquisition modes.

Spacecraft-to-ISS link ISS-to-spacecraft link
spacecraft=Xmit, ISS=Rcv ISS=Xmit, spacecraft=Rcv

Optical link parameters Acquisition Observation Acquisition Observation

Transmitter parameters
Laser power (W) 1 1 1 1
Wavelength (μm) 1.064 1.064 1.064 1.064
Xmit telescope diameter (m) 0.2 0.2 0.3 0.3
Beam divergence (μrad) 10 as 5.32 10 as 3.55
Distance (L = 2 AU) (m) 3.00 × 1011 3.00 × 1011 3.00 × 1011 3.00 × 1011

Footprint diameter at L (m) 1.45 × 107 1.59 × 106 1.45 × 107 1.06 × 106

Optics efficiency 0.7 0.7 0.7 0.7
Pointing efficiency 0.9 0.9 0.9 0.9

Receiver parameters
Rcv telescope diameter (m) 0.3 0.3 0.2 0.2
Rcv optics efficiency 0.7 0.7 0.7 0.7
Detector quantum efficiency 0.9 0.9 0.9 0.9
Power received (W) 1.70 × 10−16 1.41 × 10−14 7.55 × 10−17 1.41 × 10−14

Photon flux received (ph s−1) 9.10 × 102 7.55 × 104 4.04 × 102 7.55 × 104

Solar background parameters
Solar irradiance
(ph s−1 m−2 sr−1 μm−1)

4.64 × 1025 4.64 × 1025 4.64 × 1025 4.64 × 1025

Rcv detector size (μrad) 3.55 3.55 5.32 5.32
Heterodyne spectral bandwidth 300 MHz 1 MHz – –
Narrow band-pass filter (μm) – – 5 × 10−5 5 × 10−5

Coronograph efficiency 1 × 10−5 1 × 10−5 1 × 10−5 1 × 10−5

Solar photon flux received
(ph s−1)

2.95 × 102 9.82 × 10−1 1.30 × 104 1.30 × 104

Signal-to-noise ratio 22.5 24.7 23.2 21.4
Integration time 1 s 10 ms 60 s 10 ms

will center the signal and use only the center quad array for pointing control.
Transition from acquisition to tracking should take about 1 min. Because of
the weak uplink intensity, at this point, tracking of the ISS station is done at a
very low bandwidth. The pointing information is fed-forward to the spacecraft
transmitter pointing system and the transmitter is turned on. The signal is
then retransmitted down to the ISS with a light-travel time of 18 min.

Each interferometer station and laser beacon station searches for the space-
craft laser signal. In acquisition mode, the return is heterodyned by using an
expanded bandwidth of 300 MHz to assure capture of the laser frequency. In
this case, the solar background is the dominant source of noise, and an SNR
of 22.5 is achieved with 1 s integration. Because of the small field of view of
the array, a spiral search will take 30 s to cover a 30 as field. Upon acquisition,
the signal will be centered on the quad cell portion of the array and the local
oscillator frequency locked to the spacecraft signal. The frequency band will
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Table 5. Spacecraft-to-spacecraft link parameters.

Transmitter parameters
Laser power (W) 0.2
Wavelength (μm) 0.780
Xmit telescope diameter (m) 0.05
Beam divergence (μrad) 15.6
Distance (r, 0.5◦ at 2 AU) (m) 2.61 × 109

Footprint at r (m) 4.07 × 104

Optics efficiency 0.7
Pointing efficiency 0.9

Receiver parameters
Rcv telescope diameter (m) 0.05
Rcv optics efficiency 0.7
Detector quantum efficiency 0.9
Power at detector (W) 1.20 × 10−13

Photon flux received (ph s−1) 4.70 × 105

Signal-to-noise ratio 30.1
Integration time 10 ms

then be narrowed to 1 MHz and the local oscillator frequency locked to the
download laser. In this regime, the solar background is no longer the dominant
noise source and an SNR of 24.7 can be achieved in only 10 ms of integration.
The laser beacon transmitter will then narrow its beam to be diffraction lim-
ited (∼1 as) and to point toward the LATOR spacecraft. This completes the
signal acquisition phase, and the entire architecture is in-lock and transmits
scientific signal. This procedure is reestablished during each 92-min orbit of
the ISS.

The interspacecraft optical link budget is given in Table 5. In this case,
the Sun is not contributing to the signal-to-noise analysis, one has to account
for the detector’s noise contribution only.

5.6 Factors Affecting SNR Analysis

In conducting the signal-to-noise analysis we pay significant attention to sev-
eral important factors. In particular, we estimate what fraction of the trans-
mitted signal power is captured by the 20 cm receiver aperture and analyze the
effect of the Gaussian beam divergence (estimated at ∼7 μrad) of the 30 cm
transmit aperture on the ISS. Given the fact that the distance between the
transmitter and receiver is on the order of 2 AU, the amount captured is about
2.3 × 10−10 of the transmitted power.

We also consider the amount of solar disk radiation scattered into the two
receiver focal planes. In particular, the surface contamination, coating defects,
optical roughness, and substrate defects could scatter as much as 1× 10−4 or
more (possibly 1 × 10−3) of the solar energy incident on the receive aperture
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into the field of view. These issues are being considered in our current analysis.
We also study the amount of the solar corona spectrum within the receive
field of view that is not blocked by the narrow band-pass filter. The factors
we consider is the filter’s FWHM band-pass is 0.05 nm, the filter will have 4.0
optical density blocking outside the 0.05 nm filter band-pass from the X-ray
region of 1,200 nm; the filter efficiency within the band-pass will be about
35%, and the detector is probably sensitive from 300 to 1,200 nm.

Additionally, we consider the amount of out-of-field solar radiation scat-
tered into the focal plane by the optical housing. This issue needs to be
investigated in a stray light analysis, which can be used to optimize the baffle
design to minimize the stray light at the focal plane. Finally, we study the
effectiveness of the baffle design in suppressing stray light at the focal plane.
Thus, in addition to the stray light analysis, the effectiveness of the final baffle
design should be verified by building an engineering model that can be tested
for stray light.

Our recent conceptual design and a CODEV ray-trace analysis met all
the configuration and performance requirements (shown in Table 3). The ray-
trace performance of the resulted instrument is diffraction limited in both
the APD and CCD channels over the specified field of view at 1,064 nm. The
design incorporated the required field stop and Layot stop. A preliminary
baffle design has been developed for controlling the stray light. In the near
future, we plan to perform a stray light analysis, which should be performed
to optimize the baffle design and calculate the amount of stray light that could
be present at each of the two focal planes. This stray light analysis will take
into account the optical smoothness of the band-pass filter and primary mirror
surfaces. Narrow angle scattering may be a problem at the two focal planes
in the filter and primary mirror are not optically very smooth and, thus, it
requires a more detailed study. Finally, a rigorous signal-to-noise analysis will
be performed to validate the power required to achieve a high signal-to-noise
ratio in detecting received beam signal in the presence of the expected focal
beam stray light predicted by the stray light analysis and the engineering
model stray light tests.

In Sect. 6 we will consider the modeling of the LATOR observables and
will discuss the logic of its measurements.

6 LATOR Preliminary Observational Model

The goal of measuring deflection of light in solar gravity with accuracy of one
part in 109 requires serious consideration of systematic errors. One would have
to properly identify the entire set of factors that may influence the mission
accuracy at this level. Fortunately, we initiated this process aided by previous
experience in the development of a number of instruments that require similar
technology and a comparable level of accuracy [101], notably Space Interfer-
ometry Mission, Keck and Palomar Testbed Interferometers. This experience
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comes with understanding various constituents of the error budget, expertise
in developing appropriate instrument models; it is also supported by the ex-
tensive verification of the expected performance with instrumental testbeds
and existing flight hardware. Details of the LATOR error budget are being
developed and will be published elsewhere, when fully analyzed. Recent co-
variance studies confirmed the expected mission performance and emphasized
the significant potential of the mission [73,79].

In this section we will discuss the LATOR observables, based on a sim-
plified model that will be used to introduce the observational logic of this
experiment. We first discuss the model for the relativistic delay of the laser
signals as they transit between the nodes of the LATOR’s light triangle. We
then will introduce the model for differential astrometric interferometry to be
implemented for the mission.

6.1 Relativistic Light–Time Model

In development of the mission’s error budget we use a simple model to capture
all error sources and their individual impact on the mission performance [101].
The first step into a relativistic modeling of the light path consists of deter-
mining the direction of the incoming photon as measured by an observer as a
function of the barycentric coordinate position of the light source.

From a geometrical point of view, the Sun, Earth, and other planets each
curve space–time in their vicinity to varying degrees. The effect of this curva-
ture is the increase of the round-trip travel time of a laser pulse. Effects of the
gravitational monopole on light propagation are the largest among those in
the solar system. To the first order in gravitational constant, the one-way rela-
tivistic light–time expression was derived in heliocentric form by Shapiro [92];
in its most general form it was given by Tausner [96] and independently by
Holdridge [42]. It was formulated in expanded solar system barycentric form
and incorporated into JPL orbit determination software by Moyer [57,58].

The portion of the Moyer’s formulation due to the Sun and Earth is
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The first term on the right is the geometric travel time due to coordinate sep-
aration; the remaining two terms represent the gravitational curvature effects
due to the Sun and Earth. The complete equation gives the elapsed coor-
dinate time between two photon events, where an event is indicated by the
subscript i, j ∈ {1, 3} (with subscript i = 3 reserved for the ISS). μ� = GMS

and μE = GME are the solar and Earth’s gravitational constants correspond-
ingly. A Latin superscript denotes the origin of a vector: B is the solar system
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barycenter, S is the Sun, and E is the Earth. The use of the symbols in the
equation is as follows. rS

i = |rS
i | is the magnitude of the vector from the Sun to

photon event i transmission (or reception) at coordinate time ti. rij = rS
j −rS

i

is the vector and rij = |rij | is the magnitude of the difference between the
vector from the Sun to photon event j at time tj and the vector from the Sun
to photon event i at time ti.

When the ray path is near the solar limb, (5) is greatly simplified taking
the following standard [109] form

(tj − ti) =
rij

c
+ (1 + γ)

μ�
c3

ln
(4rirj

p2

)
. (6)

For the shortest arm of the triangle,  12, the solar impact parameter is compa-
rable to the distances involved, thus the relativistic delay in this arm is very
small and, for the purposes of this chapter, it can be neglected; thus, we can
write (t2 − t1) � r12/c, which is sufficient for our purposes here.

The obtained equations may be used to model the light paths,  ij =
c(tj − ti), for the signals to transit between all three vortices of the LATOR
triangle, as shown in Fig. 2. Indeed, one can write the following approximate
expressions:

 3j = r3j + (1 + γ)
μ�
c2

ln
(4rjr3

p2
j

)
,  12 = r12. (7)

Another observable that will be available to LATOR is the range-rate,  ̇ij

that essentially is a time-derivative of  ij(pj(t)). The accuracy of the range-
rate time series is expected to produce even more accurate results, similar to
the situation with recent Cassini experiment [5, 11]. The impact of the high-
accuracy range-rate data on the final accuracy of the experiment is being
investigated and results will be reported elsewhere.

A more rigorous analysis that includes effects of the order G2v/c had been
initiated at JPL. The results of this analysis and the corresponding covariance
studies will be reported elsewhere. The recent covariance studies already show
very interesting results [73,79].

6.2 Interferometric Delay Model

Because a light signal propagating in a gravitational potential is retarded rel-
ative to its travel time in an field-free space, as predicted by general relativity,
the computed value for the differential time of arrival of the signals at two
telescopes forming an interferometer must be corrected for gravitational ef-
fects [87]. The LATOR interferometer is highly sensitive to these effects of
gravity on light propagation. In this section we will derive the expression for
the contribution of the relativistic gravity to the optical path difference (OPD)
measured by an interferometer in solar orbit.
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Let us define r3(i)(ti) with i = 1, 2 to be the barycentric positions of
the two telescopes of the interferometer, such that b = r3(2) − r3(1) is the
interferometer’s baseline. By keeping only the terms to first order in grav-
itational constant G, the expression (5) can be used to derive the OPD
dj =  j3(r3 + b) −  j3(r3) = c(t3(2) − tj) − (t3(1) − tj) registered by the
interferometer for the light received from the jth source:

dj = rj3(2) − rj3(1)+(1 + γ)
μ�
c2

ln
[(rj + r3(2) + rj3(2)

rj + r3(1) + rj3(1)

)(rj + r3(1) − rj3(1)

rj + r3(2) − rj3(2)

)]
.

(8)
This is the required correction to coordinate time delay due to the solar grav-
itational monopole to the time of arrival of the light sent by jth spacecraft
and received by (i)th telescope.

Equation (8) is the differenced Shapiro time delay for the two telescopes
separated by b; it is appropriate for the most general geometry, in which
rj ≈ r3(i) ≈ rj3(i). For practical purposes, however, (rj3(2) − rj3(1))/rj3(1)

is a small quantity that allows further simplification of (8). Using relations
r3(2) � r3(1)+(b·r̂3(1)), rj3(2) � rj3(1)+(b·r̂j3(1)), and expressing all quantities
at t3 ≡ t3(1), we can present the interferometric delay dj as follows:

dj � (b · r̂j3)
1 − (v3 · r̂j3)/c

+ (1 + γ)
μ�
c2

[
rj + r3 − rj3

2rjr3

b · (r̂3 + r̂j3)
1 + (r̂j · r̂3)

−rj + r3 + rj3

2rjr3

b · (r̂3 − r̂j3)
1 + (r̂j · r̂3)

]
, (9)

where rj3 ≡ rj3(1) and r3 ≡ r3(1), and v3 is the barycentric velocity of the
interferometer. The obtained expression (9) is appropriate for the most general
geometry; however, when the ray path is near the solar limb and also the
corresponding impact parameters pj are small compare to the barycentric
distances to emitter and receiver, pj/rj � 1, pj/r3 � 1, it is further simplified,
taking the form:

dj � bpj

r3

1
1 − (v3 · r̂j3)/c

+ (1 + γ)
2μ�
c2

b

pj

rj

r3 + rj
. (10)

The interferometric delay (10) is for the geometry when both transmitter
and receiver are at finite and comparable distances from the Sun. Note that,
if transmitter is located at a distance far greater then that of the receiver,
rj � r3, (10) transforms to a typical expression for VLBI observations with
sources being at infinity [87, 109]. Therefore, for a typical LATOR geometry
with rj ≈ r3, the magnitude of the relativistic delay (and corresponding angle)
is approximately twice smaller when compared to the case when the light
source is at infinity.

As we discussed in Sect. 4.1, the LATOR interferometer reaches its highest
accuracy in differential mode by accurately measuring differential OPD, d12 =
d2 − d1, which is given from (10) as
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d12 � b

r3

[
p2

1 − (v3 · r̂23)/c
− p1

1 − (v3 · r̂13)/c

]
+(1 + γ)

2μ�
c2

[
b

p2

r2

r3 + r2
− b

p1

r1

r3 + r1

]
. (11)

Note that interferometric delay rate is another observable that will be available
for LATOR. Having determined the expression for delay (11), the delay rate,
ḋ12, is simply given as time-derivative of the delay d12(pj(t)). Currently, we
are investigating the impact of this observable on the experiment and will
incorporate ḋ12 in our further studies.

Equation (11) captures the largest terms in the model of LATOR inter-
ferometric observations. The entire LATOR model accounts for a signifi-
cant number of other effects, including those due to gravitational multipoles,
second-order deflection, angular momentum contribution, etc. The work to
develop a complete mission model work had being initiated; the results will
be reported elsewhere.

In Sect. 6.3 we will consider on a conceptual formulation of the LATOR
observables.

6.3 Logic of LATOR Observations

In this section, we discuss the observational logic of the LATOR experiment.
This is done to only conceptually demonstrate the features of the mission
design.

The range observations (7) may be used to measure any angle between the
three fiducials in the triangle. However, for observations in the solar gravity
field, measuring the lengths do not give you a complete information to deter-
mine the angles, and some extra information is needed. This information is
the mass of the Sun, and, at least one of the impact parameters. Nevertheless,
noting that the paths  ij correspond to the sides of the connected, but gravi-
tationally distorted triangle, one can write  12 +  23 +  31 = 0, where  ij is the
null geodesic path for light moving between the two points i and j. This leads
to an expression for the angle between the two spacecraft computed from the
range measurements; using (7) this quantity may be given as

sin(∠ 31 32) � sinα3

−(1 + γ)
μ�
c2

r12

r31r32

[
cosα1 ln

4r3r1

p2
1

+ cosα2 ln
4r3r2

p2
2

]
cotα3,

(12)

where the three Euclidian angles within the LATOR light triangle are compu-
ted from the laser ranging measurements of the three arms of the triangle,
r12, r31, r32 using usual formulae cosα3 = (r2

32 + r2
31− r2

12)/(2r32r31), cosα1 =
(r2

31 +r2
12−r2

32)/(2r31r12), and cosα2 = (r2
32 +r2

12−r2
31)/(2r32r12), and sinα3

is given as below:
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sinα3 =
1

2r31r32

[
2r2

12(r
2
31 + r2

32) − (r2
32 − r2

31)
2 − r4

12

]1/2

. (13)

LATOR will provide highly accurate time-series of r12, r31, r32, which can be
used to simulate measurement of sin(∠ 31 32). For a typical LATOR configu-
ration, (12) can be approximated as

sin(∠ 31 32) �
r12

2r3
− (1+γ)

μ�
c2

r12

4r2
3

ln
4r2

3

p1p2
≈ 0.01745− 1

2
(1+γ) 1.82× 10−9,

(14)
where we evaluated the expression for a typical set of numerical values suitable
for LATOR, with one spacecraft at the solar limb: r1 ∼ r2 ∼ r3 ∼ 1 AU,
p1 = R� ≡ 0.2667◦, α3 = 1◦, p2 = 2r3 sin(∠p1 + α3), and r12 = 2r3 sinα3.

Equation (14) has an immediate impact on the logic of the LATOR obser-
vations. In particular, it follows from this equation that the smallness of the
opening angle α3 makes it very difficult to measure γ to a sufficient accuracy
using only laser ranging observables. Thus, if one desires to achieve accuracy
of σγ ∼ 10−8 in measuring the PPN γ, one needs to know r12 = 5 × 106 km
to accuracy of Δr12 ∼ 2 μm. This ranging accuracy is certainly achievable
with modern technologies, but would rely on drag-free spacecraft and very
precise clocks. Notably, in the next decade, LISA (i.e., Laser Interferometer
Space Antenna) would be able to achieve the accuracy of few pm over the
same distance by utilizing a complex scheme of coherent detection of light.
However, this is not what LATOR is going to do. The experiment uses time-
of-flight laser ranging to measure distances between the nodes of the light
triangle. These observations are then used to directly compute the opening
angle ∠ 31 32 for further input in the astrometric observations. Below we shall
discuss the interferometric component of the mission model.

Differential astrometric observations (11) will be used to obtain another
measurement of the same angle ∠ 31 32 between the two spacecraft. The LA-
TOR interferometer will perform differential observations between the two
sources of laser light, measuring the differential delay d12 = d2 − d1 to the
high accuracy. Note that, for a typical LATOR configuration, r1 ∼ r2 ∼ r3

and p2 � p1 + r3 sinα3 and one can benefit from the following approximate
relation:

sin(∠ 31 32) � sinα3 � p2 − p1

r3
� r12

2r3
. (15)

This is exactly the angle that will be measured interferometrically. However,
the obtained relation (15) may be used to provide a direct geometric mea-
surement of the opening angle ∠ 31 32 to the required accuracy, which would
aid the LATOR astrometric interferometry.

We will use result (15) to further simplify the expression for the differential
delay (11), which for a typical LATOR geometry and circular motion of the
interferometer takes the following form:

d12 � b

[
r12

2r3
− v3

c

p2
3 − p2

1

r2
3

+ (1 + γ)
μ�
c2

(
1
p2

− 1
p1

)]
. (16)
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The LATOR interferometer is designed to provide highly accurate time-
series of the interferometric delay d12, while laser ranging will determine the
light-travel times between the nodes of the triangle, Δtij = tj−ti (that will be
used to compute rij = cΔtij). Evaluating expression (16) for a typical LATOR
configuration with one spacecraft is at the solar limb and v3 = 30 km s−1, one
finds the characteristic sizes of the effects:

d12 �
(
1.745 − 4.675 × 10−6 − 1

2
(1 + γ) 3.352 × 10−4

)
m. (17)

Optical interferometry is a mature technology that may achieve very high
accuracy in measuring the quantities involved in (17). Thus, a measurement
of the delay d12 with uncertainty of 5 pm results in the accuracy in the pa-
rameter γ of Δγ = 2 × 10−8. Currently we are able to measure delays on
large interferometric baselines with accuracy ∼1 pm, which certainly benefit
LATOR by satisfying its primary objective.

As is evident from Fig. 2, the key element of the LATOR experiment is a
redundant-geometry optical truss to measure the effects of gravity on the laser
signal trajectories. LATOR will generate four time series of measurements: one
for the optical range of each side of the triangle, plus the angle between light
signals arriving at one vertex of the light triangle. Within the context of a
moving Euclidean light triangle, these measurements are redundant. From a
combination of these four times series of data, the several effects of gravity
on the light propagations can be precisely and separately determined. For
example, the first and second-order gravity monopole deflections go as p−1

and p−2 while the solar quadrupole deflection goes as p−3, with p(t) being a
laser signal’s evolving impact parameter; the quadrupole moment’s deflection
has further latitude dependence if spacecraft lines-of-sight are so located.

The data will be taken over periods in which the laser light’s impact pa-
rameters p(t) vary from one to ten solar radii, producing time signatures in
the data, which permits both the separation of the several gravitational ef-
fects and the determination of key spacecraft location coordinates needed to
calibrate the deflection signals. In our mission simulations we use the com-
plete set of LATOR observables, including range and range-rates and also
delay and delay rates. These additional data types account for the temporal
evolution of the entire LATOR light triangle and further improve the mission
accuracy. To demonstrate our design considerations in the discussion below,
we will use only equations for range and interferometric delay given by (7)
and (11) correspondingly.

In Sect. 7 we will discuss the expected performance of the experiment and
will present criteria for the mission design.

7 LATOR Astrometric Performance

It is convenient to present error sources in three broad categories (1) the ones
that are related to mission architecture, (2) those that are external to the



Laser Astrometric Test of Relativity 523

triangle and have an astrophysical origin, and (3) those that originated within
the instrument itself. Typical mission-related errors are those that result
from the uncertainties in the orbits of the spacecraft and the ISS, chosen
mission design and observing scenario and, in general, those errors that result
from the geometry of the experiment and affect the range and angle determi-
nation. The astrophysical errors are those that are external to the instrument
and are due to various phenomena that influence both mission planning and
observing scenario. Such errors are due to the gravity effects of planets and
largest asteroids, unmodeled motion of the fiducial stars, optical properties
of the Sun and solar corona near the limb, etc. Example of the instrumen-
tal errors include effects of the long-term laser stability, errors in pointing of
the laser beams, instrumental drifts, and other systematic and random errors
originating within the instrument itself. (By instrument we understand the
experimental hardware situated at all three vortices of the triangle.)

We consider Δγ = 2 × 10−8 to be the accuracy of determining the PPN
parameter γ in a single measurement. This design accuracy drives the flow-
down of mission requirements that we will discuss in this section. Thus, based
on (16), such a design accuracy results in the following requirement on the
accuracy of the OPD measurements:

Δd12 � Δγ
μ�
c2

b(p2 − p1)
p1p2

= 5pm
( Δγ

2 × 10−8

)( b

100 m

)(R�
p1

)(
1 − p1

p2

)
.

(18)
Therefore, in our design considerations we take Δd12 = 5 pm to be the tar-
get accuracy for the interferometric measurements on the LATOR’s 100 m
baseline.

Here we discuss a preliminary astrometric error budget for the LATOR
experiment and present design considerations that enable the desirable in-
strument performance. (A more detailed model to the second order in grav-
itational effects is available and is being used in simulations to verify the
expected mission performance.) Our goal for this section is to present a com-
parative analysis of the accuracy that mission needs to achieve to satisfy its
science requirements.

7.1 Trajectory Measurement Accuracy

In this section we will discuss the constituents of LATOR error budget for
the measurement of the angular deflection light. The error budget is subdi-
vided into three components – range and interferometer measurements, and
spacecraft stability, which are described in this section.

Range Measurement

This component describes the angular errors due to uncertainties in the dis-
tance between the spacecraft and the ISS as determined by laser ranging. The
angular uncertainty due to an interspacecraft ranging error, Δr12, is
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Δr12 � Δγ
μ�
c2

2r3(p2 − p1)
p1p2

= 1 cm
( Δγ

2 × 10−8

)( r3

AU

)(R�
p1

)(
1 − p1

p2

)
. (19)

Therefore, the experiment will require a spacecraft-to-spacecraft laser ranging
accuracy of 1 cm, which for spacecraft separated by 1◦ at 2 AU distance, results
in an angular error of 0.03 prad (i.e., corresponding to a delay uncertainty of
σd = 3 pm).

The angular error due to an ISS-to-spacecraft ranging error is given by

Δr31 � Δγ
μ�
c2

4r2
3

r12

(p2 − p1)
p1p2

= 60 cm
( Δγ

2 × 10−8

)( sin 1◦

sinα3

)( r3

AU

)(R�
p1

)(
1 − p1

p2

)
. (20)

Therefore, we have allocated a 60 cm range uncertainty for each of the two
ISS-to-spacecraft laser links, resulting in an angular uncertainty of 0.035 prad
(i.e., σd = 3.5 pm). The total error budget for the laser ranging distance
measurements is 4.6 pm.

Knowledge of the Baseline

Experiment uncertainties in the ISS interferometer measurement contribute
additional terms to the overall error budget. The baseline design for the in-
strument is a 100 m baseline with a 10 s integration time. Using (16), one
obtains the requirements on the accuracy of the baseline estimation:

Δb � Δγ
μ�
c2

2r3

r12

b(p2 − p1)
p1p2

= 0.2 nm
( Δγ

2 × 10−8

)( sin 1◦

sinα3

)( b

100 m

)(R�
p1

)(
1 − p1

p2

)
. (21)

Based on theoretical predictions for narrow angle measurements, we require an
angular error of 0.025 prad (i.e., σd = 2.5 pm), limited by long-term instrument
systematics.

The current requirement for systematic errors in the instrument has been
set at 0.05 prad. This corresponds to measurement of the laser fringe phase to
one part in 2.9 × 105 (λ = 1.064 μm, b = 100 m). This term includes errors in
the metrology and fringe detection of the interferometer, as well as the effect
of photon noise.

Orbit Stability of the Spacecraft

To determine the first and second-order terms of gravitational deflection,
LATOR will make a number of measurements at different spacecraft sepa-
rations and various impact parameters. During the period between measure-
ments, it is assumed that the impact parameter is known. An error in this
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assumption will cause an equivalent error in the computation of the deflec-
tion term. Thus, it is important to set a requirement on the knowledge of the
impact parameter, which is given by

Δp1 � Δγ
1
2

p1p2

p1 + p2
= 5.75 m

( Δγ

2 × 10−8

)( p1

R�

)( 1
1 + p1/p2

)
. (22)

This is a highly requirement if one conducts only a static measurement of
the light deflection. In our case, the delay-rate observable and smooth motion
of the spacecraft significantly reduce the sensitivity of the experiment on the
absolute knowledge of the impact parameter p1 = p1(t0) + ṗj(t− t0). In fact,
LATOR will have a very good orbit determined by the combination of the laser
ranging and conventional radiometric navigation, which will provide ṗj to a
high accuracy. This allows that one can solve for the initial impact parameter
p1(t0) in the numerical analysis.

Therefore, one might require that the spacecraft be stable to 4 μas, which
corresponds to a drift in the transverse distance of 5.8 m and results in an
angular error of 0.04 prad.

Similarly, the separation between the spacecraft should also be stable to
keep the knowledge of the impact parameters. This is quantified by the al-
lowable uncertainty in the difference between impact parameters δp = p2 −p1

that is given by

Δδp � Δγ
p2

2p1
(p2 − p1) = 124.0 m

( Δγ

2 × 10−8

)(p2

p1

)( r3

AU

)( sinα3

sin 1◦
)
. (23)

Therefore, we require that the spacecraft be stable to 0.05 mas, which results
in an angular error of 0.035 prad (i.e., σd = 3.5 pm of corresponding delay
uncertainty).

Orbit Stability of the ISS

In addition to the spacecraft error, the ISS’s orbital error will also produce
contribution to the angular measurement. Most of the errors on the ISS can
be made common-mode; therefore, their influence on the differential astrom-
etry with LATOR interferometer will be either negligible or it will be small
and well modeled. However, there are some errors that would still produce
measurable contribution to the differential delay, if not properly addressed;
notably, the accuracy of the ISS orbit. The current mission design calls for an
enhancement of the ISS orbit solution by utilizing GPS receivers at the loca-
tion of each optical (see Sect. 5.5). This will also help to address the issue of
the extended structure low-frequency vibrations of the ISS. As we mentioned
earlier, the effect of these vibrations will be addressed by using μg level ac-
celerometers, which will be integrated within both optical packages on the ISS.
A combination of the GPS receivers and μg accelerometers will provide infor-
mation needed to improve the ISS attitude information; this improvement will
be done for each corner cube fiducial (needed for the interferometric baseline
determination).
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Our current error budget for the differential observations with the LATOR
interferometer allocates ∼2.7 pm of error in 100 s of integration for the uncer-
tainty in the ISS orbit, its attitude, and the extended structure vibrations.

7.2 Mission Errors

Although one could in principle setup complicated engineering models to pre-
dict all or each of the systematics, often the uncertainty of the models is too
large to make them useful, despite the significant effort required. A different
approach is to accept our ignorance about a nongravitational acceleration and
assess to what extent these can be assumed a constant bias over the timescale
of all or part of the mission. (In fact, a constant acceleration produces a lin-
ear frequency drift that can be accounted for in the data analysis by a single
unknown parameter.) In fact, we will use both approaches.

In most orbit determination programs some effects, like the solar radiation
pressure, are included in the set of routinely estimated parameters. Neverthe-
less, we want to demonstrate their influence on LATOR’s navigation from the
general physics standpoint. This is not only to validate our results, but also
to be a model as to how to study the influence of the other physical phe-
nomena that are not yet included in the standard navigational packages for
future more demanding missions. Such missions will involve either spacecraft
that will be distant or spacecraft at shorter distances where high-precision
spacecraft navigation will be required.

In the current design, the LATOR experiment requires that the location of
one of the spacecraft with respect to the Sun is known to be within 20 m over
the duration of the each observing session or ∼92 min. The major perturbation
to the spacecraft trajectory is from local spacecraft disturbances, such as gas
leaks for thruster valves and solar radiation pressure. The spacecraft can be
designed to eliminate spacecraft errors leaving solar radiation pressure as the
major source for the position noise. Other disturbances such as solar wind,
magnetic fields, cosmic rays, etc. have been identified and are at least three
orders of magnitude lower than solar radiation pressure.

In this section we will discuss possible systematics generated external to
the spacecraft, which might affect the LATOR’s mission accuracy.

Direct Solar Radiation Pressure

There is an exchange of momentum when solar photons impact the spacecraft
and are either absorbed or reflected. Models for this solar pressure effect are
usually developed before a mission is launched. The models take into account
various parts of the spacecraft exposed to solar radiation; they compute the
acceleration directed away from the Sun as a function of spacecraft orientation
and solar distance

as.p.(r) =
2f�A

c m

cos θ(r)
r2

, (24)
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where f� = 1, 367W m−2 (AU)−2 is the (effective-temperature Stefan–
Boltzmann) “solar radiation constant” at 1 AU from the Sun and A is the
effective size of the craft as seen by the Sun. θ is the angle between the axis
of the antenna and the direction of the Sun, c is the speed of light, M is the
mass of the spacecraft, and r is the distance from the Sun to the spacecraft
in AU. For expected spacecraft values of A = 1.0m2 and m = 150 kg, gives
an acceleration of as.p. � 6.1 × 10−8 ms−2 at r = 1 AU from the Sun.

This acceleration will produce an unmodeled force, which ultimately may
result in the error in the radial position of the spacecraft. Over a time t this
error is δr = 1

2 δa t2, where δa is the unmodeled acceleration. In turn, this
error would lead to a transverse position error of δx = 1

4 δa n t3, where n is
the spacecraft velocity about the Sun, n ∼ 2×10−7 rad s−1. If the effect of solar
radiation pressure were completely unmodeled, over a period of 21 days, the
transverse position error due to solar pressure would be ∼18.2 km, potentially
resulting in a 61 nrad astrometric error. (This is one of the reasons to consider a
drag-free spacecraft for the experiment as suggested in Plowman and Hellings
[79].) However, if one conducts laser ranging with position knowledge of 60 cm,
the transverse position uncertainty over a period of 21 day would only be
∼10 cm. Consequently, it is necessary to use the laser ranging information to
predict the transverse position of the spacecraft.

The laser ranging information will be used to solve for the slowly varying
changes in the solar pressure, leaving the random fluctuations of the solar
pressure as the dominant source of position error. Figure 27 shows one re-
alization of the position error of the spacecraft. In this simulation, random
fluctuations correspond to 1% RMS of the total solar radiation pressure, the
spacecraft wanders ∼1 m in the radial direction and 8 cm in the transverse
direction in a day. The use of a redundant optical truss offers an excellent

Fig. 27. Simulation of spacecraft motion due to random solar pressure fluctuations.
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alternative to an ultra-precise orbit determination. This feature also makes
LATOR insensitive to spacecraft buffeting from solar wind and solar radia-
tion pressure. This is why, as opposed to other gravitational missions, there is
no need for a drag-free spacecraft to enable the high accuracy of the LATOR
experiment. (The drag-free option was studied in [79], resulting in several
interesting design considerations that will be further investigated.)

Effect of the Solar Corona

The electron density and density gradient in the solar atmosphere influence
the propagation of light and radiowaves through the medium. In fact, radio-
metric observables will experience effect of the electron density in the solar
corona [14]; however, effect on laser ranging and astrometric observations will
be significantly less. The use of optical wavelengths offer a significant advan-
tage for the spacecraft communication in the solar system as opposed to the
microwave radiation – the current navigation standard. Such a choice makes
the deep-space communication effectively free from the solar corona noise.
Indeed, the solar plasma effects on wave propagation decrease as λ2 and there
is a factor of 1010 reduction in the solar plasma optical path fluctuations by
simply moving from the S-band microwave signal λ = 10 cm (f = 3 GHz)
to the optical wavelengths of λ ∼ 1 μm (f = 300 THz). This 1010 reduc-
tion of the dispersive media effects offers tremendous gain in the quality of
both spacecraft navigation (increased pointing precision and timing) and deep-
space communication (very high data transmission rates). LATOR will utilize
design capable of rejecting background solar noise in combination with optical
wavelengths for precision navigation; this combination will lead to a signifi-
cant reduction of the solar corona effect, making its contribution harmless to
the mission.

For the navigation purposes, both LATOR spacecraft will be equipped
with X-band transponders with both Doppler and range capabilities. The elec-
tron density and density gradient in the solar atmosphere will influence the
propagation of radiowaves through the medium. So, both range and Doppler
observations at X-band will be affected by the electron density in the inter-
planetary medium and outer solar corona. This would result in the spacecraft
not being able to communicate with the ground when the impact parameter
will be less than ∼2.5R�. This is why the current mission plan includes pro-
vision that the radio-navigation will not be conducted for the solar impact
parameters smaller than 2.5R�. Most of the important navigational, instru-
mental, and experimental information will be stored onboard until the time of
clear communication link with the NASA Deep-Space Network. This is when
the mission will step-up to its full potential by utilizing its optical communica-
tion capabilities from the extreme solar environment to enable high-precision
navigation of the spacecraft.
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Earth’s Orbit Velocity

The knowledge of the Earth’s orbital velocity, vE, puts requirements on the
correction for the stellar aberration. The error associated with the accuracy
of knowledge of the Earth’s motion is given as

ΔvE � cΔγ
μ�
c2

r2
3

p1p2(p2 + p1)

= 2.15 cm s−1
( Δγ

2 × 10−8

)( r3

AU

)2(R�
p1

)3 [ 1
(1 + p2/p1)p2/p1

]
. (25)

Therefore, the experiment will require a knowledge of the earth’s barycentric
velocity of 2.2 cm s−1, resulting in an angular error of 0.03 prad. Note that a
similar uncertainty is tolerable for the ISS’s orbit about the Earth.

7.3 Astrophysical Errors

Physical phenomena of an astrophysical origin that are external to the LA-
TOR triangle, but do not affect the mission navigation accuracy, are treated
as the sources of astrophysical errors. These errors would nominally influence
both the mission planning and observing scenario, they would be due to non-
stationary behavior of the gravity field in the solar system (gravity effects of
planets and asteroids), unmodeled motion of the fiducial stars, optical prop-
erties of the Sun and solar corona near the limb, the properties of the solar
surface, etc. We will discuss these sources in some detail.

Knowledge of Solar Interior

Laser ranging between the ISS and spacecraft will be used to measure the
orbits of the flight segments with ∼1 cm accuracy. This implies that the solar
impact parameter should be measured to 8 × 10−9, a scaling error for the
measurement of parameter γ, but an insignificant error for the other mea-
surements.

Along with the impact parameter, other solar parameters such as its mass,
angular momentum, and quadrupole moment must be also known (or will be
solved for directly from the data). The LATOR instrument may actually be
used to gain additional knowledge on the Sun by observing its surface with a
Doppler imager. This information may than be used to study the propagation
of the sound waves through the solar interior. The resulted data may be used
to bootstrap the gravitational solution for the solar oblateness and the higher
spherical multipoles of the solar interior. The instrumental implication of this
possibility are currently being investigated and, if feasible, it may be included
for the mission proposal.
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Solar System Gravity

Since the solar system is not static and the spacecraft are in the orbits around
the Sun, many large solar system bodies, such as the Sun itself, planets, aster-
oids, and even the galaxy, would have a significant effect on the measurement
of γ at the eighth decimal place. Fortunately, the ephemerides for the solar
system objects are known to sufficient accuracy and the motion of the solar
system about the galactic center is sufficiently smooth during the 92 min of
each observing session. Earth orbit crossing asteroids may cause a significant
disturbance if they come within ∼10,000 km of one of the arms of the triangle.
The relativity measurement may either have to be delayed or conducted with
a slightly higher sampling rate if one of these are nearby.

The change in the first-order relativistic time delay due to other bodies
in the solar system has to be known to ∼10−9 of the effect from the Sun.
The final observational model would have to account for the effects due to all
the major solar system bodies. A similar theoretical and algorithmic work is
currently being conducted for both SIM and Gaia astrometric missions and
may well be used for this mission [45,99].

7.4 Instrument Errors

In our design considerations we address two types of instrumental errors,
namely the offset and scale errors. Thus, in some cases, when a measured
value has a systematic offset of a few pm, there may be instrumental errors
that lead to further offset errors. There are many sources of offset (additive)
errors caused by imperfect optics or imperfectly aligned optics at a pm level;
there are also many sources for scale errors. We take a comfort in the fact
that, for the space-based stellar interferometry, we have an ongoing technology
program at JPL; not only has this program already demonstrated metrology
accurate to a sub-pm level, but it also has identified a number of the error
sources and developed methods to either eliminate them or to minimize their
effect at the required level.

The second type of error is a scale error. For instance, to measure γ in
a single measurement with accuracy of two parts in 108, the laser frequency
also must be stable at least to 10−8 long term; lower accuracy would result in
a scale error. The measurement strategy adopted for LATOR would require
the laser stability to be only ∼1% to achieve the accuracy needed to measure
the second-order gravity effect. Absolute laser frequency must be known to
10−9 in order for the scaling error to be negligible. Similarly, robust solutions
were developed to address the effects of other known sources of scale errors.

There is a considerable effort currently underway at JPL to evaluate a
number of potential errors sources for the LATOR mission, to understand
their properties, and to establish methods to mitigate their contributions. (A
careful strategy is needed to isolate the instrumental effects of the second order
of smallness; however, our experience with SIM [55,56,100] is critical in helping
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us to properly capture its contribution in the instrument models.) The work
is ongoing, this is why the discussion below serves for illustration purposes
only. We intend to publish the corresponding analysis and simulations in the
subsequent publications.

The final error would have contributions from multiple measurements of
the light triangle’s four attributes (to enable the redundancy) taken by range
and interferometer observations at a series of times. The corresponding errors
will be combined with those from the orbital position and velocity coordi-
nate uncertainty. These issues are currently being investigated in the mis-
sion covariance analysis; the detailed results of this analysis will be reported
elsewhere. However, our current understanding of the expected mission and
instrumental accuracies suggests that LATOR will offer a very significant im-
provement compared to any other available techniques. This conclusion serves
as the strongest experimental motivation to conduct the LATOR experiment.

8 Discussion

The LATOR mission aims to carry out a test of the curvature of the solar
system’s gravity field with an accuracy better than one part in 109. In spite
of previous space missions exploiting radio waves for tracking the spacecraft,
this mission manifests an actual breakthrough in the relativistic gravity ex-
periments as it allows one to take full advantage of the optical techniques that
recently became available. The LATOR experiment benefits from a number of
advantages over techniques that use radiowaves to study the light propagation
in the solar vicinity. The use of monochromatic light enables the observation
of the spacecraft almost at the limb of the Sun, as seen from the ISS. The
use of narrow band filters, coronagraph optics, and heterodyne detection will
suppress background light to a level where the solar background is no longer
the dominant noise source. The short wavelength allows much more efficient
links with smaller apertures, thereby eliminating the need for a deployable an-
tenna. Advances in optical communications technology allow low bandwidth
telecommunications with the LATOR spacecraft, without having to deploy
high gain radio antennae needed to communicate through the solar corona.
Finally, the use of the ISS not only makes the test affordable, but also allows
conducting the experiment above the Earth’s atmosphere – the major source
of astrometric noise for any ground based interferometer. This fact justifies
the placement of LATOR’s interferometer node in space.

The concept is technologically sound; the required technologies have been
demonstrated as part of the international laser ranging activities and optical
interferometry programs at JPL. (i.e., Space Interferometry Mission (SIM)
and Keck Interferometer developments. Accuracy of 5 pm was already demon-
strated in our SIM-related studies.) The LATOR concept arose from several
developments at NASA and JPL that initially enabled optical astrometry
and metrology, and also led to developing expertise needed for the precision
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gravity experiments. Technology that has become available in the last several
years such as low cost microspacecraft, medium power highly efficient solid
state and fiber lasers, and the development of long-range interferometric tech-
niques make possible an unprecedented factor of 30,000 improvement in this
test of general relativity. This mission is unique and is the natural next step
in solar system gravity experiments that fully exploit modern technologies.

LATOR uses geometric redundancy of the optical truss to achieve a
very precise determination of the interplanetary distances between the two
microspacecraft and a beacon station on the ISS. The experiment takes
advantage of the existing space-qualified optical technologies, leading to an
outstanding performance in a reasonable mission development time. In addi-
tion, the issues of the extended structure vibrations on the ISS, interferomet-
ric fringe ambiguity, and signal acquisition on the solar backgrounds have all
been analyzed, and do not compromise mission goals. The ISS is the default
location for the interferometer; however, ground- and free-flying versions have
also been studied. While offering programmatic benefits, these options differ in
cost, reliability, and performance. The availability of the ISS (via European
collaboration) makes presented concept realizable in the near future. A re-
cent JPL Team X study [39] confirmed the feasibility of LATOR as a NASA
Medium Explorer (MIDEX) class mission; the current mission concept calls
for a launch as early as 2014.

8.1 LATOR vs. Other Gravity Experiments

Tests of fundamental gravitational physics feature prominently among NASA
and ESA goals, missions, and programs. Prediction of possible deviation
of PPN parameters from the general relativistic values provides a robust
theoretical paradigm and constructive guidance for experiments that would
push beyond the present empirical upper bound on the PPN parameter γ of
γ − 1 = (2.1 ± 2.3) × 10−5 obtained by recent conjunction experiments with
Cassini spacecraft [11].5 Among the future missions that will study the nature
of gravity, we discuss here the missions most relevant to LATOR science:

– Configuration similar to the geometry of the Cassini conjunction experi-
ments may be utilized for the microwave ranging between the Earth and a
lander on Mars. If the lander were to be equipped with a Cassini-class dual
X- and Ka-band communication system, the measurement of the PPN
parameter γ is possible with the accuracy of ∼one part in 106. However,
as opposed to any scenario involving accurate ranging out to the Martian
vicinity, the LATOR operations will be conducted at ∼1 AU heliocentric
distances (well within the asteroid belt) and, thus, will not be affected by
the damaging effects of the asteroid belt [46,69].

5 In addition, any experiment pushing the present upper bounds on β (i.e., β−1 =
(1.2 ± 1.1) × 10−4 from Williams et al. [114,115] will also be of interest.
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– An ambitious test of the Equivalence Principle – one of the foundations of
general relativity – is proposed for the Space Test of Equivalence Principle
(STEP) mission. The experiment will test the composition independence
of gravitational acceleration for laboratory-sized bodies by searching for a
violation of the EP with a fractional acceleration accuracy of Δa/a ∼ 10−18

[53,119]. STEP will be able to test very precisely for any nonmetric, long-
range interactions inphysical law;however, the results of thismissionwill say
nothing about themetric component of gravity itself. TheLATORmission is
designedspecificallytotest themetricnatureof thegravitational interaction.

– The Solar Orbit Relativity Test (SORT) mission concept proposes to use
laser pulses and a drag-free spacecraft aided with a precision clock or-
biting around the Sun to precisely measure γ and J2 (solar quadrupole
moment) [52,116,117]. SORT would combine a time-delay experiment (via
laser signals sent from the Earth and recorded by precise clocks onboard
two satellites orbiting the Sun) with a light deflection experiment (in-
terferometric measurement on Earth of the angle between the two light
signals emitted from the satellites) [52,82]. As such, SORT would attempt
to measure parameter γ with accuracy of one part in 106. In its basic con-
figuration, the LATOR experiment will relay on the redundant geometry
formed by the three flight segments (two spacecraft and the ISS) and will
depend neither on ultra-stable clocks nor on ground-based interferometry
that is severely limited by the atmosphere [89].

– The ESA’s BepiColombo mission will explore the planet Mercury with
equipment allowing an extremely accurate tracking. This mission will
conduct relativity experiments, including the study of Mercury’s peri-
helion advance and the relativistic light propagation near the Sun. The
BepiColombo mission will enable achievement of the following accuracies:
σγ � 2× 10−6, σβ � 2× 10−6, and σJ2 � 2× 10−9 in measuring the main
post-Newtonian parameters [54]. While a very impressive mission design,
its expected accuracy is at least two orders of magnitude worse than that
expected from LATOR. The LATOR mission is a designated relativity
mission and it is designed to test solar gravity with accuracy at the level
of one part in a billion.

– We stress that the future optical interferometers in space such as NASA’s
Space Interferometry Mission (SIM) and ESA’s Gaia (formerly known as,
Global Astrometric Interferometer for Astrophysics [49]) would provide
improvement in measurement of relativistic parameters as a byproduct of
their astrometric program. Thus, SIM will be able to reach accuracy of
∼10−6 in measuring PPN parameter γ. Gaia may potentially reach the
accuracy of 10−5 − 6 × 10−7 in measuring the γ [118]. However, both of
these missions will have rather large exclusion angles and will not be able
to test gravity effects on light near the Sun.

– A mission concept aiming to reach comparable accuracies in the tests of
relativistic gravity in the solar system had been studied in [60] (see also
references therein) and [61]. The Astrodynamical Space Test of Relativity
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using Optical Devices (ASTROD) is an ambitious mission concept that
utilizes three drag-free spacecraft – one near L1/L2 point, one with an
inner solar orbit, and one with an outer solar orbit, ranging coherently
with one another using lasers to test relativistic gravity and to detect low
frequency gravitational waves. The mission may improve the accuracy of
determination of the PPN parameter γ to ∼10−7 for mini-ASTROD and
to ∼5×10−9 for a full-scale version [60]. Because of the technological and
programmatic complexities, the launch of an ASTROD-like mission is not
expected before 2025.

A clear advantage of the LATOR mission concept is its independence on
both the drag-free spacecraft environment and ultra-precise phase-coherent
laser transponding techniques. In fact, LATOR will utilize the photon-counting
laser ranging methods and redundant optical truss provided by the long-
baseline optical multichanneled interferometer on the ISS. The LATOR experi-
ment is optimized for its primary science goal – to measure gravitational
deflection of light in the solar gravity to one part in 109 (or at the level of
the effects of the second post-Newtonian order of light deflection resulting
from gravity’s intrinsic nonlinearity). There is no major technological break-
throughs needed to satisfy the LATOR mission requirements. All the required
technologies already exist and most are space-qualified as a part of our ongoing
interferometry program at JPL (SIM, Terrestrial Planet Finder (TPF), and
Palomar Testbed and Keck Interferometers).

Concluding this section, we point out that the recent progress in relativistic
gravity research resulted in a significant tightening of the existing bounds on
the PPN parameters obtained at the first post-Newtonian level of accuracy.
However, this improvement is not sufficient to lead to ground-breaking tests
of fundamental physical laws addressed above. This is especially true, if the
cosmological attractor discovered in [23,31,32] is more robust, time variation in
the fine structure constant will be confirmed in other experiments and various
general relativity extensions will demonstrate feasibility of these methods for
cosmology and relativistic gravity. The LATOR mission is proposed to directly
address the challenges discussed above.

8.2 Conclusions and Further Considerations

Concluding, we would like to summarize the most significant results of our
LATOR mission study. The most natural question is “Why is LATOR poten-
tially orders of magnitude more sensitive and less expensive?”

First of all, there is a significant advantage in using optical wavelengths as
opposed to the microwaves, the present navigational standard. This is based on
the fact that solar plasma effects decrease as λ2 and, in the case of LATOR,
we gain a factor of 1010 reduction in the solar plasma optical path fluctu-
ations by simply moving from λ = 10 cm to λ = 1 μm. Another LATOR
advantage is its independence of a drag-free technology. In addition, the use
of a redundant optical truss offers an excellent alternative to an ultra-precise
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orbit determination. This feature also makes LATOR insensitive to spacecraft
buffeting from solar wind and solar radiation pressure.

Furthermore, the use of existing technologies, laser components and space-
craft make this mission a low cost experiment. Thus, 1 W lasers with sufficient
frequency stability and >10 years lifetime already developed for optical tele-
com and also are flight-qualified for SIM. Additionally, small optical apertures
∼10–20 cm are sufficient and provide this experiment with a high signal-to-
noise ratio. There is also a significant advantage in using components with no
motorized moving parts. This all makes LATOR an excellent candidate for
the next flight experiment in fundamental physics. Table 2 summarizes the
science objectives for this mission.

LATOR is envisaged as a partnership between NASA and ESA wherein
both partners are essentially equal contributors, while focusing on different
mission elements: NASA provides the deep-space mission components and
interferometer design, while building and servicing infrastructure on the ISS
is an ESA contribution. The NASA focus is on mission management, system
engineering, software management, integration (both of the payload and the
mission), the launch vehicle for the deep-space component, and operations.
The European focus is on interferometer components, the initial payload in-
tegration, optical assemblies, and testing of the optics in a realistic ISS envi-
ronment. The proposed arrangement would provide clean interfaces between
familiar mission elements.

This mission may become a twenty-first century version of the Michelson–
Morley experiment in the search for a cosmologically evolved scalar field in the
solar system. As such, LATOR will lead to very robust advances in the tests
of fundamental physics: it could discover a violation or extension of general
relativity, and/or reveal the presence of an additional long-range interaction
in the physical law. With this mission testing theory to several orders of mag-
nitude higher precision, finding a violation of general relativity or discovering
a new long-range interaction could be one of this era’s primary steps forward
in fundamental physics. There are no analogs to the LATOR experiment; it
is unique and is a natural culmination of solar system gravity experiments.
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LATOR’s Measured Science Parameters
and Mission Configuration

Kenneth Nordtvedt

Northwest Analysis, 118 Sourdough Ridge Road, Bozeman MT 59715 USA

Summary. A LATOR mission to measure the non-Euclidean features of a light tri-
angle with sides passing close by the Sun is analyzed as a probe of General Relativity
and alternative theories of gravity. It measures second post-Newtonian features of
gravity as well as a novel mass parameter of the Sun — the spatial metric’s “gamma
mass” — while carrying out the main science goal of measuring basic PPN gamma
to a part in 109 precision. By arranging orbits for the two LATOR spacecrafts which
have their lines of sight from the near-Earth laser interferometer being about equal
and opposite the Sun center during their close passings, transverse knowledge of
spacecraft positions are much relaxed and allow elimination of onboard drag free
systems.

1 Introduction

LATOR is a proposed mission in which four properties of a light triangle
surrounding the Sun are measured. Laser ranging measures each side of the
triangle in round trip propagation times that serve as surrogate lengths, while
a laser interferometer measures the small angle of the triangle formed by the
two arriving laser pulse streams from each of the spacecraft both located
beyond the Sun from Earth. This experimental configuration is illustrated in
the top panel of Fig. 1. In idealization of light propagating at fixed speed in
straight Euclidean lines around a fixed triangle, the relationship between the
four observables would be given by

sinψEuc =
1

2TATB

√
2T 2

AB(T 2
A + T 2

B) − (T 2
A − T 2

B)2 − T 4
AB (1)

But in general relativity and viable alternative theories of gravity, two
relativistic effects of gravity on light propagation will alter this relationship.
First, the speed of light, globally observed, decreases as the light propagates
closer to a gravitating body such as the Sun, and second, this location depen-
dence of the global speed of light results in deflection of the light paths. For
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Fig. 1. The top panel illustrates LATOR’s light triangle and its the four observables:
TA, TB , TAB , ψ. The location of the light triangle relative to the Sun’s center needs
also to be very precisely known to infer the two indicated impact parameters of the
light paths. The bottom panel shows the movements of the two spacecraft lines
of sight as seen from the interferometer. The shown configuration with equal-and-
opposite locations relaxes the needed precision in locating the light triangle relative
to the Sun. The polar passages of the spacecraft lines of sight helps to orthogonalize
the mission’s deflection signals due to the monopolar and quadrupolar potentials of
the Sun, thereby reducing the variance of the science parameter estimates.

light triangles with two of the sides passing close by the Sun, the deflection
of light by gravity becomes the more sensitive observational measure of grav-
ity’s action. The failure of (1) to correctly give the relationship between the
four actual observables, TA, TB , TAB , ψ, then becomes LATOR’s probe of
gravitational theory.

In Sect. 2, I show that the main scientific signal of the experiment, proposed
to be measured to a part in 109 precision, is not simply the parameterized
post-Newtonian γ coefficient, but as well involves the Sun’s gravitational to
inertial mass ratio. This will necessitate either an independent measurement
of that ratio for the Sun or an inference of that ratio from the same underlying
model of gravity theory. This brings the PPN β coefficient into that observable
and calls for an improvement in the measurement precision of β from lunar
laser ranging or other means.

In Sect. 3, a configurational scenario for the passage of the two space-
craft lines of sight by the Sun is discussed, which has several advantages for
achieving mission goals. This scenario has the angular locations of the two
spacecraft from the Sun center, as seen from the interferometer, remain close
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to equal but opposite throughout the data taking period(s) of the mission
experiment. Doing this substantially relaxes the transverse location tracking
precision needed for the two spacecraft during their transits and eliminates the
need for drag-free systems included on the spacecraft. This configuration also
doubles the strength of the deflection signals that correspondingly increases
precision of measurement of scientific parameters. And if the spacecraft lines
of sight are designed not to pass across the Sun’s equator, but pass instead
at equal-and-opposite high latitudes, then some of the key fit-for parameters
of the scientific model acquire “partials” whose shapes more easily “separate”
in the least-squares-fit process, resulting in an even greater precision of fit-for
the science parameters of interest.

2 The Chief Scientific Parameter of the Mission

For a metric tensor gravitational field produced by bodies of negligible gravi-
tational self-energies, the deflection of light rays passing close by the Sun has
leading contributions

Θ = 2(1 + γ)
GMS

c2

(
1
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+

1
DB

)
+ χ
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)2( 1
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+ . . . (2)

with DA, DB being light path distances of closest approach, and these
expressions neglecting small corrections for light trajectories’ finite endpoints
being about 1 AU from the Sun. The first-order deflection term includes the
PPN coefficient γ, which appears in the spatial metric field potential. γ equals
precisely one in general relativity but generally deviates from this value in
alternative theories of gravity. Its very precise measurement at the part in
109 is the chief scientific goal of LATOR. The next contributions to the light
deflection scale as the inverse square of light impact parameters and receive
contributions from both the nonlinear properties of the metric gravity field –
including nonlinearities in the spatial metric potentials – and from quadratic
corrections to the first-order deflection. The third shown contribution is due to
the Sun’s Newtonian quadrupole moment contributing a corrective deflection
that depends on the directional location of the passing light rays with respect
to the Sun’s equator; it scales as the inverse third power of impact parameter.
MS is the Sun’s mass. An experiment aiming for a part in 109 measurement of
PPN γ requires knowledge of the solar mass parameter GMS to five parts in
1010. The accumulated observations of planetary motion in the solar system
have achieved this level of knowledge for only the solar gravitational mass –
GM(G)S . For experiments of the past, that was sufficient.

But at the part in 109 precision, account must be taken that the Sun’s
gravitational self-energy, about four parts in 106 of the whole solar mass,
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could produce a solar gravitational mass that differs from that body’s inertial
mass [1].

M(G)S = M(I)S + (4β − γ − 3)
US

c2
(3)

US being the Sun’s gravitational self-energy and β being the other first post-
Newtonian order coefficient for metric gravity (β = 1 in general relativity).
But the solar mass parameter, which appears in the spatial metric, will also
generally differ from the Sun’s inertial and gravitational masses; this depends
on the structure of the nonlinear gravitational potentials in the spatial metric
[3]:

M(γ)S = M(I)S + ξ
Us

c2
(4)

with parameter ξ summarizing the effect of compactifying the higher-order
spatial metric potential contributions to the Sun’s coupling strength due to
its internal gravitational binding. This parameter probes novel second post-
Newtonian order aspects of gravity; it has value zero in general relativity but
not generally in alternative theories. The first-order metric tensor potentials
then read [2]

g00 = 1 − 2
GM(G)

c2R

−gij = δij

(
1 + 2γ

GM(γ)
c2R

)
(5)

and the speed of light function that determines the ranging times and deflec-
tions and that follows from the null geodesic principle for light, gμνdx

μdxν =
0, then becomes in leading order

c(R) = c

(
1 − G(M(G) + γM(γ))

c2R

)
(6)

The effect of considering the Sun as a realistic body with substantial gravi-
tational self-energy then results in the first-order deflection term in (2) being
proportional to the combination G (M(G)S +γM(γ)S); its measurement does
not yield simply γ.

It has been shown, however, that if the metric gravitational field not
only fulfills local Lorentz-invariance, but also fulfills “extended Lorentz-
invariance,”1 then the unknown solar GM(γ) will be given by more famil-
iar mass parameters of the Sun, the gravitational and inertial masses. The
required relationship is [2]

1 The local Lorenz-invariance violating PPN coefficients α1 and α2 have been
experimentally found to be zero to respective precisions of a few times 10−5 and
10−7 suggesting that this invariance is not destroyed by cosmic boundary con-
ditions. Generalized Brans–Dicke type scalar–tensor theories automatically fulfill
extended Lorentz-invariance
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GM(G) + γGM(γ) = (1 + γ)GM(I) (7)

After pulling out the well-measured gravitational mass parameter of the Sun,
GM(G)S , it is seen that the science parameter to be measured by LATOR
and which scales the leading order light deflection signal is the combination

γ∗ = (1 + γ)
(

M(I)
M(G)

)
S

− 1 (8)

The Sun’s gravitational to inertial mass ratio has not yet been measured to
precision of five parts in 1010. With a slight improvement in our knowledge
of PPN β, however, this ratio can be inferred to that accuracy. By using
metric theory’s expression for a body’s gravitational to inertial mass ratio
(3) and with the Sun’s gravitational binding energy fraction being about
4 · 10−6, knowledge of β is needed to 3 · 10−5 precision. That is about a
factor of 3 better than lunar laser ranging presently measures this parameter,
but the new generation (APOLLO)lunar ranging program should improve the
β measurement to the needed precision by the time the LATOR mission is
carried out.

The Sun does contain a type of energy that has not been appreciably
present in other bodies for which their gravitational to inertial mass ratios
have been measured – the energy of free electromagnetic radiation. In the
Sun, this fractional contribution to the body’s mass reaches about 1.6 · 10−7.
So a direct measurement of the Sun’s gravitational to inertial mass ratio to
5 · 10−10 precision would be desirable. This could be achieved by transponded
laser ranging between Earth and Mars [4]. An anomalous gravitational to
inertial mass ratio of the Sun will produce a polarization of the inner planet
orbits in the direction of Jupiter if the Sun experiences an anomalous accel-
eration toward Jupiter. Measuring these polarization amplitudes to several
centimeters precision would yield the desired precision in direct measurement
of the Sun’s gravitational to inertial mass ratio as needed in (8).

The nonlinearity in the spatial components of the tensor metric field is
also tested by LATOR through the direct rescaling of the PPN γ due to the
distant matter in our part of the universe, which creates the cosmologically
local gravity potential inhomogeneities. If UC/c2 is considered as the dimen-
sionless background Newtonian potential deviation from cosmic average of
distant matter outside of the solar system, then by considering an enlarged
portion of the universe as the system under consideration, the two types of
nonlinear potentials in the spatial metric components become renormaliza-
tion or rescaling contributions to the linear gravitational potentials within
the solar system;

G2

c4

∑
ij

mimj

rirj
−→ 2

UC

c2
G
∑

i

mi

ri
(9)

G2

c4

∑
ij

mimj

ririj
−→ UC

c2
G
∑

i

mi

ri
(10)
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Then after rescaling Newtonian G and the spatial coordinates within the solar
system,

G −→ G

(
1 − (4β − γ − 3)

UC

c2

)
(11)

r −→ r

(
1 + γ

UC

c2

)
(12)

a rescaled PPN γ results. With our galaxy’s contribution to UC/c2 being of
order 10−6 and the nearest cluster of galaxies contributing of order 10−5 to
UC/c2, a LATOR mission can test the spatial metric’s nonlinearity at the part
in 103 or 104 level by means of its γ measurement. These nondirect methods of
testing the spatial metric’s nonlinearity in the LATOR mission are generally
more precise than its direct measurement from the deflections proportional to
χ in (10).

3 LATOR Mission Configuration

No matter how precise the three sides and one angle of LATOR’s light trian-
gle are measured, the relationship between those four observables cannot be
used to test theory unless that light triangle can also be located with respect
to the Sun’s gravitational potential center with sufficient precision. In the
expression for light angle deflection (2), the distances of closest approach of
the light rays to the Sun’s center must apparently be known to five parts in
1010 if the theory-dependent coefficient of the leading monopolar deflection
is to be inferred to a part in 109. For the rays passing closest by the Sun
that amounts to a less than 35 cm precision in impact parameter, or about
twice that in transverse location of spacecraft. Over the whole data collec-
tion period that requirement relaxes somewhat as the line of sight passes the
Sun at larger distances; but nevertheless a transverse (to lines of sight), non-
modelable acceleration of spacecraft greater than about 10−10 cm s−2 seems
unacceptable. This would seem to require drag-free or drag-measuring systems
onboard the spacecraft with very high performance near-zero frequency.

However, a mission configuration in which the two spacecraft lines of sight
are about equal-and-opposite with respect to the Sun center relaxes the pre-
cision with which the transverse location of the light triangle is needed. This
can be seen by expressing the leading monopolar deflection in terms of the
angle measured by the interferometer, the distance to Sun’s center from the
interferometer, and a common mode angle ψC of the two spacecraft angular
locations (See Fig. 1.)

Θγ = 2(1 + γ)
GMS

c2

(
1

DA
+

1
DB

)
= 4

GMs

c2RE

(
1

sin(ψ/2 + ψC)
+

1
sin(ψ/2 − ψC)

)
+ ... (13)
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with

Da = Re sin(ψ/2 − ψC) (14)
Db = Re sin(ψ/2 + ψC) (15)

The distance from Earth to Sun will be known to part in 109 precision, and the
interferometer angle is very well measured in the mission. The common mode
angle then acts as the variable that transversely locates the light triangle with
respect to the Sun. If the partial of this monopolar deflection signal is taken
with respect to the common mode angle,

∂Θγ

∂ψC

∼= 8GMSRE

c2D2

DA −DB

D
≤ 3.6 10−3

(
DA −DB

D

)
(16)

this sensitivity is diminished for near-equal impact parameters, DA � DB .
This directly translates into a less stringent requirement in the knowledge of
this coordinate. Since it is the total deflection of the two light paths of the
triangle that contributes to the measured angle at the interferometer, in this
equal-and-opposite mission configuration, the error to first order in inferring
the contribution of one light path to that total angle is compensated for by an
opposite error from the other light path when there is uncertainty in the light
triangle’s location, i.e., ψC . One way to then treat the time-varying common
mode angle ψC(t) is to include both its value and time rate of change at some
fiducial time, ψC(to) and dψC(to)/dt, as two fit-for parameters in the least-
squares-fit of the mission’s entire data set of observations, and to include
the modelable gravitational dynamics of this variable routinely as part of
the model. The accumulated error in the common mode angle due to the
unmodeled, nongravitational accelerations on the spacecraft will not, over the
life of the data taking phase of the mission, disturb the deflection observable
due to the suppression of sensitivity indicated in (16).

Another positive feature of the equal-and-opposite configuration of space-
craft passages by the Sun is that the total deflection of the two light paths
are additive and double the sensitivity (mission performance) of the observed
interferometer angles to the scientific parameters of interest and being esti-
mated in the least-squares-fit of the data.

There is the additional question of whether the two spacecraft trajectories
should pass by the Sun such that their lines of sight basically traverse the solar
equator, or should they pass above and below that line toward the solar poles?
Although the explicit nonlinear parameter χ in (2) may or may not need to
be a fit-or parameter along with the chief scientific parameter γ∗, there is
no question that the Sun’s quadrupole moment parameter J2 will have to be
simultaneously fit to the data. LATOR will measure this parameter to higher
precision than it is known from other means, and that higher precision will be
necessary so that the estimate for γ∗ is not biased by its uncertainty. In a mul-
tiparameter fit of data, the precision with which any parameter is determined
is proportional to the norm of that parameter’s orthogonalized partial–the
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Table 1. Standard deviations for science parameter estimations (based on 100
independent light triangle measurements).

Three-parameter fit Two-parameter fit

Z/RS 109 · δγ 108 · δJ2 103 · δχ 109 · δγ 108 · δJ2

0 23 33 22 3.7 4.1
0.25 28 49 29 3.8 4.7
0.50 15 79 26 4.8 8.2
0.75 9 15 3 3.6 13.3
1 11 6 5 1.9 2.6

orthogonalized partial being that portion of the partial, considered as a data
vector with component values for each observation, which is orthogonal to all
the other partial vectors for the other fit-for parameters of the model that are
adjusted to best-fit the data. The latitude dependence of the partial for the
quadrupole parameter J2 has a zero and sign change at ± 45◦ of latitude, so
passages of the spacecraft near the poles produce a J2 partial, which tends
to have minimal projection onto the partial for γ∗, consequently improving
the precision for the estimation of this latter parameter. The high latitude
passages shown in the lower panel of Fig. 1 also have the spacecraft spending
more time close to the Sun’s center, permitting more high quality data to be
accumulated and thereby enhancing the magnitude of the parameter partials.
Table 1 shows the results of some simulation studies in which least-squares-
fit for the triplet of parameters, γ∗, J2, χ, or just the doublet, γ∗, J2, were
estimated for spacecraft passages at various out-of-ecliptic distances measured
in units of the solar radius. High latitude passages are seen to improve esti-
mation precision for the science parameters. The table values are based on
there being 100 independent measurements of the four light triangle observ-
ables over the mission; these results can be rescaled as 10/N1/2 for different
assumed numbers N of total mission measurements.
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Summary. The OPTIS mission is a satellite equipped with a variety of clocks and
laser ranging and tracking facilities for performing improved tests of the foundations
as well as predictions of special and general relativity. This mission makes advantage
of the space conditions of large differences in the velocity and the gravitational
potential. Here, we report on recent progress made in the studies of the behavior of
the resonator in the field of a gravity gradient.

1 Introduction

It has been outlined in the survey articles on pages 26 and 75 in this vol-
ume that Einstein’s general relativity (GR) is mainly based on the Einstein
equivalence principle, i.e., on the universality of free fall, the universality of the
gravitational redshift (UGR), and the local validity of Lorentz invariance (LI).
The proposed OPTIS mission aims at an improvement of the complete test
of LI and of UGR by three orders of magnitude compared with the present
ground experiments. Therefore, together with the test of UFF by MICRO-
SCOPE and STEP, we will have a complete tests of the foundations of GR.

2 Science Objectives

The mission OPTIS is a collection of clocks in an highly elliptic Earth bound
orbit. Laser tracking devices and a laser link to the Earth completes the
scientific hardware components. As a consequence, many issues related to
clocks and to the orbit can be measured with high precision. Therefore, OPTIS
aims at improving tests of the foundations of special and general relativity by
up to three orders of magnitude. The scientific basis for this has been outlined
in detail in [5]. The science objectives are listed in Table 1.
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Table 1. The scientific objectives of OPTIS.

Test Method Present OPTIS

accuracy accuracy

1 Isotropy of speed of light Cavity–cavity comparison 1.5 · 10−9 10−12

2 Constancy of speed of light Cavity–clock comparison 7 · 10−7 10−8

3 Time dilation – Doppler effect Laser link 2 · 10−7 10−9

4 Universality of gravitational
redshift I

Cavity–clock comparison 1.7 · 10−2 10−4

5 Universality of gravitational
redshift II

Clock–clock comparison 2.5 · 10−5 10−7

6 Absolute gravitational
redshift

Time transfer 1.4 · 10−4 10−8

7 Lense–Thirring effect Laser tracking 0.3 10−3

8 Einstein perigee advance Laser tracking 3 · 10−3 6 · 10−4

9 Test of Newton potential Laser tracking 10−5 10−12

Except for the Universality of Free Fall, which will be tested by MICRO-
SCOPE and STEP, OPTIS represents a complete test of the foundations of
the metric theories of gravity. Furthermore, relativistic orbital effects as pre-
dicted by Einstein’s theory of gravity will be tested.

3 Mission Design

To have a good test of the UGR, the clocks should move through a large grav-
itational potential difference. Therefore, a highly elliptical orbit is preferable.
For tests of special relativity, also a large variation of the velocity is needed.
This again can be obtained from a highly elliptical orbit. From tracking and
ranging, highly precise orbital data can be obtained, which are of use for the
exploration of the structure of the gravitational field of the Earth, the Sun
and the Moon.

The mission scenario is shown below in Fig. 1.

4 Mission Technology

For this mission, technologies are required, which have been used recently, to
carry through the most precise tests of special relativity. The precision of these
tests can be further increased under space conditions thanks to longer integra-
tion times, larger changes in the orbital velocity, and larger differences of the
gravitational potential. Furthermore, very precise laser tracking and linking
of satellites is a well-established technique and will provide, in combination
with the active drag-free control system, very accurate orbit data.
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Fig. 1. The mission scenario (apogee and perigee heights measured from Earth’s
surface).

The core technologies for OPTIS are mentioned below:

1. Optical resonators
2. Highly stabilized lasers
3. Capacitive gravitational reference sensors
4. Drag-free control
5. Ion clocks
6. Frequency combs
7. Laser tracking systems

These technologies are also key technologies for other future missions.

5 The Deformation of the Resonator in a Tidal
Gravitational Field

Although many of the disturbances acting on a resonator can be minimized
by means of an appropriate satellite control system, some intrinsic distur-
bances cannot be eliminated as a matter of principle and distort the resonator
shape leading to a systematic frequency shift. In particular, the tidal gravita-
tional force,1 which acts through every extended body, cannot be eliminated
by choosing an appropriate frame and, thus, will induce distortions on the
resonator.

1 In space and engineering sciences, the tidal gravitational force is often referred to
as “gravity gradient.”
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We give a rough estimate of the expected effect of the tidal gravitational
force on a freely moving cube of length L. If the position of the cube is
at a distance R from the center of the Earth, then the difference of the
Earth’s acceleration on the top and bottom of the cube is Δa = (∂2U/∂r2)L,
where U is the Earth’s Newtonian potential U = GM⊕/R. For an orbit
with R = 10, 000 km and a typical resonator length of L = 5 cm we have
Δa ≈ GM⊕/R3L ≈ 2 · 10−8 ms−2. In a rough estimate, we assume that a
force F = mΔa to act on the top surface of the cube. Now Hook’s law of
elasticity

F

A
= E

ΔL

L
(1)

gives the change of the length ΔL of the cube due to a force F acting on the
area A. In our case F = mΔa = ρL3Δa and we get

ΔL

L
=

ρL

E
Δa ≈ 10−17 (2)

assuming an elasticity modulus of E = 90GPa and a density of 2,350 kg m−3,
which is typical for Zerodur.

In the OPTIS mission, the science goal for the measurement of the isotropy
of the speed of light is better than Δc/c = 10−18 [5]. This can only be achieved
if the resonator has a length stability of ΔL/L = 10−18 [5]. As one can
see from our estimates, the tidal gravitational force will lead to systematic
deformations, which are one order of magnitude larger than the expected
accuracy. Therefore, the effect has to be investigated carefully by including
the tidal gravitational force into the equations of elasticity, calculating the
resulting resonator shape, and then subtract the effect.

5.1 Analytical Solution for an elastic Cylinder in a Tidal
Gravitational Force Field

Simplified Model of the Resonator

The problem of an optical resonator flying on a geodetic Earth orbit can be
simplified by treating the problem in a body-fixed coordinate system. We also
consider, for simplicity, the body to be a homogeneous and isotropic cylinder
of radius R and height 2L. The body coordinates are (r, ϕ, z) with the origin
being at the center-of-mass of the cylinder. The z-axis coincides with the
symmetry axis of the cylinder, see Fig. 2. The only force present is the volume
force due to the tidal gravitational force K = −ρ∇U , which will be modeled
as gradient of a spherically symmetric Earth acceleration field.

To calculate the elastic deformations of the cylinder, the equations of elas-
ticity have to be solved including the influence of the tidal gravitational force.
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Fig. 2. Simplified model of an optical resonator on a geodetic Earth orbit.

The equilibrium equation of elasticity describes the equilibrium state of a
homogeneous isotropic body when a volume force K is acting [4]

Δξ +
1

1 − 2ν
∇(∇ · ξ) +

1
ρ
K = 0 (3)

where ξ is the displacement vector. For vanishing volume forces K = 0, we
get the homogeneous equation of elasticity. The general solution of (3) is a
superposition of a homogeneous and a particular solution

ξ = ξh + ξp . (4)

Assuming a spherical Earth potential, U(r) = GM⊕/r, where GM⊕ is the
gravitational constant times the mass of Earth, the potential acting at an
arbitrary point P inside the cylinder can be calculated via Taylor expansion

U(rM + r) = U(rM ) +
∂U(rM )

∂ri
ri +

1
2
∂2U(rM )
∂ri∂rj

rirj (5)

= U(rM ) + ∇U(rM )r +
GM⊕
2r3

M

(r2 − 2z2) (6)

where rM is the vector from the center-of-mass of the Earth to the center-of-
mass of the cylinder and r is the vector from the cylinder center-of-mass to
point P . The linear term in the Taylor expansion vanishes as this equation is
valid in the freely falling reference frame of the cylinder.

Beside the axial symmetry, we also have the following symmetries for the
r and z components of the displacement vector for reflection at the z = 0
plane: ξz(r,−z) = −ξz(r, z) and ξr(r,−z) = ξr(r, z).

The boundary conditions for the solution are given through the condition
of weightlessness in space, that means no external forces are present and, thus,
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the forces p at the cylinder surfaces are zero, which gives us the boundary
conditions

σijnj = pi = 0 . (7)

Concerning axis symmetry, the boundary conditions at the top and bottom
surface of the cylinder, i.e., for z = ±L are σrz(r, z = ±L) and σzz(r, z = ±L)
and at the superficies cylinder surface, i.e., r = R, 0 = σrr(r = R, z) and
0 = σzr(r = R, z).

The Solution

Particular Solution

To find a particular solution of the problem, one can assume that the solution
of the equilibrium equation can be written as gradient of a scalar ψ [4] ξp =
∇ψ. Inserting this approach into (3) and using the potential U calculated in
(5), we get for the r and z components of the displacement (with μ = λ 1−2ν

2ν )

ξp
r = − 1 − 2ν

2(1 − ν)μ
ρ
GM⊕
2r3

M

(
−r3

4
+ 2cr

)
=

ν

λ(1 − ν)
γ

(
−r3

4
+ 2cr

)
(8)

ξp
z = − 1 − 2ν

2(1 − ν)μ
ρ
GM⊕
2r3

M

(
2
3
z3 + 2dz

)
=

ν

λ(1 − ν)
γ

(
2
3
z3 + 2dz

)
,

where we substituted γ := −GM/(2r3
M )ρ. Herein, c and d are arbitrary con-

stants.
Using the well-known relations between displacements and stresses σij

for cylindrical coordinates [2, 4], we obtain the stress components out of the
displacements

σp
rr = γ

(
(2ν − 3)
4(1 − ν)

r2 +
2(c + νd)

1 − ν
+

2ν
1 − ν

z2

)
σp

zz = γ

(
4cν

1 − ν
− ν

1 − ν
r2 + 2(z2 + d)

)
σp

rz = 0 . (9)

Homogeneous Solution

Derivation of the Boundary Conditions. Now we are looking for a homo-
geneous solution, i.e., a displacement vector that satisfies the homogeneous
equation of elasticity

Δξh +
1

1 − 2ν
∇(∇ · ξh) = 0 . (10)

The boundary conditions the homogeneous solution part has to fulfill
can be derived from the boundary conditions (7) of the complete solution.
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Then the boundary conditions at the cylinder top and bottom surface, i.e.,
z = ±L are

σh
zz(r, z = ±L) = −σp

zz(r, z = ±L) = −γ

(
4cν

1 − ν
− ν

1 − ν
r2 + 2(L2 + d)

)
σh

rz(r, z = L) = −σp
rz(r, z = L) = 0 . (11)

For the superficies surface, i.e., r = R we get

σh
rr(r = R, z) = −σp

rr(r = R, z)

= −γ

(
(2ν − 3)
4(1 − ν)

R2 +
2(c + νd)

1 − ν
+

2ν
1 − ν

z2

)
σh

zr(r = R, z) = −σp
zr(r = R, z) = 0 . (12)

General Ansatz for the Homogeneous Solution. Love [3] showed that the de-
formations in an elastic axis-symmetric body can be expressed in terms of the
so-called Love function χ

ξh
r = −1 + ν

E

∂2χ

∂r∂z

ξh
z =

1 + ν

E

(
(1 − 2ν)∇2χ +

∂2χ

∂r2
+

1
r

∂χ

∂r

)
(13)

where ξr and ξz are the displacement components.
The corresponding stress components are

σh
rr =

∂

∂z

(
ν∇2χ− ∂2χ

∂r2

)
σh

rz =
∂

∂r

(
(1 − ν)∇2χ− ∂2χ

∂z2

)
σh

zz =
∂

∂z

(
(2 − ν)∇2χ− ∂2χ

∂z2

)
σh

φφ =
∂

∂r

(
ν∇2χ− 1

r

∂χ

∂r

)
. (14)

The Love function χ necessarily fulfills the biharmonic equation

∇2∇2χ = 0 . (15)

The major obstacle is to find an adequate approach for the Love func-
tion fulfilling all boundary conditions. By modifying the so-called Papkovich–
Neuber approach [1], one can make an ansatz for the Love function suggested
in [6]

χ = B0z
3 +

∞∑
j=1

(
Aj

sinh(λjz)
sinh(λjL)

+ Bjz
cosh(λjz)
sinh(λjL)

)
J0(λjr)

λ2
j

+D0r
2z +

∞∑
n=1

(
Cn

I0(knr)
I1(knR)

+ Dnr
I1(knr)
I1(knR)

)
sin(knz)

k2
n

. (16)
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Herein, J0 are the Bessel functions of first kind and order zero and I1 are the
modified Bessel functions of order one. Furthermore, ζj = λjR are the zeros
of the Bessel functions of order one, J1(ζj) = 0, and kn = nπ

L where n is an
integer number.

By inserting the Love function approach into (14), one obtains the equa-
tions for the stress components that have to fulfill the boundary conditions
(11) and (12). Thus, one can determine the unknown coefficients. The Love
function approach was chosen in such a way that arbitrary boundary con-
ditions at the cylinder boundaries can be fulfilled. For the determination of
the coefficients, the properties of Bessel functions, trigonometric functions as
well as Fourier and Dini series have to be used. As the derivation is somewhat
bulky, we just give the results here and refer to [7] for the detailed calculations.

The coefficients in (16) are (n, j = 1 . . .∞):

Ajλj = −Bj (2ν + λjL coth(λjL)) (17)

Cnkn = −Dn

(
(2 − 2ν) + knR

I0(knR)
I1(knR)

)
(18)

Dn = −
(
knR

(
I0(knR)2

I1(knR)2
− 1
)
− 2 − 2ν

knR

)−1

×
(

4ĉ2(−1)n

k2
n

+
∞∑

m=1

Bm(−1)n 4λmk2
n

L(k2
n + λ2

m)2
J0(λmR)

)
(19)

Bj =
(
J0(λjR)

(
coth(λjL) +

λjL

sinh2(λjL)

))−1

×
(

2
λ2

j

ĉ2 −
∞∑

k=1

(−1)kDkkk

(
4λ2

j

R(k2
k + λ2

j )2

))
(20)

B0 =
1
6

(−ĉ0 − ĉ1 − S) −D0 (21)

D0 =
1

2(1 + ν)
((1 − ν)ĉ1 − ν (ĉ0 + S) + R) (22)

with

ĉ0 = γ

(
4cν

1 − ν
+ 2(L2 + d)

)
ĉ1 = γ

(
(2ν − 3)
4(1 − ν)

R2 +
2(c + νd)

1 − ν

)
ĉ2 = γ

2ν
1 − ν

(23)

and
S = R + Z (24)
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R =
∞∑

j=1

Bj

(
(1 − λjL coth(λjL))

sinh(λjL)

)
J0(λjR)

+
∞∑

n=1

Dn

(
knR

(
I0(knR)2

I1(knR)2
− 1
)
− 2 − 2ν

knR

)
(25)

Z =
∞∑

j=1

Bj

(
coth(λjL) +

λjL

sinh2(λjL)

)

+
∞∑

n=1

(−1)nDn

(
2 − knR

I0(knR)
I1(knR)

)
1

I1(knR)
(26)

Having found all unknown coefficients in (16), we can, following (13),
directly calculate the homogeneous displacement. By adding the homogeneous
and the particular solution from (8), we get the total displacement of the
cylinder. Note that the solution forms an infinite system of equations whose
convergence can be shown. So it can be approximately solved by reducing it
to a finite system, i.e., by expanding the sums only to n = N and j = J .
Then, we have a system of N + J equations. By increasing the values of N
and J , one can improve the accuracy of the solution and find their limits.

Comparison Between Analytical and FEM Solution

Table 2 shows the results from numerical evaluation of the infinite system of
equations for different orders N = J . Although the infinite series converge
very quickly, an expansion to higher orders N = J still gives an improvement
of accuracy.

Figure 3 shows the resulting total displacement field from the analytical
solution of (4). The infinite sums in the analytical solution were expanded to
N = J = 1,700.

Now we can compare our analytical solution for our simplified problem
with the result obtained with help of a finite element code to verify its
applicability. The finite element analysis was done with the commercial FEM
code ANSYS. The cylinder model of radius R = 1 and length L = 2R was

Table 2. Comparison of the analytical solution at point r = 1 = R, z = 2 = L for
different expansion orders N = J of the infinite sums in equation system (19).

N = J ξr ξz

100 −6.471 · 10−15 1.637 · 10−13

1,000 −6.233 · 10−15 1.629 · 10−13

1,700 −6.218 · 10−15 1.628 · 10−13
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Fig. 3. Displacement field of a cylinder under influence of a spherical tidal gravita-
tional force field. The displacements are plotted over the body coordinates r and z.
The cylinder boundaries are at z = ±L = ±2 and r = R = 1.

Fig. 4. Finite element solution: deformation of the cylinder under influence of a
spherical tidal gravitational force field. The deformation is scaled by a factor of
6 · 1013. Right : deformed cylinder shape and original finite element mesh. Left : the
scale shows the z displacements.

divided into approximately 110,000 hexahedron elements. Hexahedron ele-
ments allow the creation of a structured finite element mesh that ensures
a high relative accuracy of the finite element solution. Figure 4 shows the
deformation of the cylinder in the tidal gravitational force field as result of
the FEM calculation.
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Table 3. Displacements ξr and ξz in r- and z-direction.

Analytical Numerical

r z ξr ξz ξr ξz

1 2 −6.218 · 10−15 1.628 · 10−13 −6.202 · 10−15 1.625 · 10−13

1 0 −3.491 · 10−14 0 −3.486 · 10−14 −1.66 · 10−23

0.49507
√

2 1 −2.059 · 10−14 1.151 · 10−13 −2.062 · 10−14 1.150 · 10−13

0.11888
√

2 1 −5.208 · 10−15 1.183 · 10−13 −5.236 · 10−15 1.182 · 10−13

Comparison between analytical and FEM solution. The cylinder boundaries are
r = R = 1 and z = ±L = ±2. In the analytical solution, the infinite series were
expanded to N = J = 1, 700. The constant γ := −GM⊕

2r3
M

ρ ≈ −1.4 · 10−3 which

corresponds to a 7,000 km Earth orbit.

Table 3 contains a quantitative comparison between the displacements
from the analytical and FEM solution for special points of the cylinder.
Analytical as well as FEM solutions are completely symmetric, i.e., the norms
of the displacements of two opposing points of the cylinder are equal. Please
note that we have chosen a very fine mesh for the finite element solution to
get high accuracy.

Obviously, the FEM solution and the analytical solution agree very well.
The small differences are based on the nature of the FEM analysis. The ele-
ments in which the cylinder is divided cannot be chosen to be infinite small,
they are “finite” and thus the FEM solution is a kind of summation over all
elements of finite size instead of an integration where the limit to infinitesimal
small element size can be performed. Furthermore, during the FEM analysis,
at least three points must be fixed to prevent the cylinder from rigid rotations.
In the current FEM analysis, the center-of-mass as well as four of the next
nodes were fixed so as to assure the perfect symmetry of the FEM solution.

5.2 The OPTIS Resonator Under a Tidal Gravitational Force

As we have estimated analytically that the influence of the gravity gradient
on a resonator in space will be larger than the science requirement for the
OPTIS mission, it has to be investigated numerically. Therefore, we carried
out structural analysis within the FEM program ANSYS.

We modeled the OPTIS resonator as a cube with side length 6 cm, having
three drillings, one in each body axis direction. The drillings are closed by
circular mirrors at each end. In contrast to the Earth experiments, all three
axis are equal, thus laser beams can be coupled into the resonator in three axis
directions. We used the material properties of Corning ULE (ultra-low expan-
sion) glass, which means elasticity modulus E = 67.6 GPa, Possion number
ν = 0.17, density ρ = 2, 210 kg m−3.
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Fig. 5. Deformation of the OPTIS resonator under the influence of a gravity-
gradient force. The color bar gives the values of the z displacements in meter.

Figure 5 shows the result of the FEM analysis giving the deformation of
the resonator under the influence of a gravity-gradient force field acting in
z-direction of the form

K0
x = 2xγ

K0
y = 2yγ

K0
z = −4zγ (27)

where γ := −GM⊕/
2r3

M

ρ. For the numerical calculations, the constant is γ ≈≈
−1.4 · 10−3 which corresponds to a 7,000 km Earth orbit.

One can see that the originally cubical resonator is squeezed in x- and
y-direction and is pulled out in z-direction.

As the resonator is rotating around the Earth, it is subject to a changing
gravity-gradient field. Therefore, the deformations of the resonator on his
orbits around the Earth have to be investigated. In addition, the resonator is
rotating around its body z-axis approximately once per 10 s.

Thus, the resulting changing deformation due to the gravity gradient will
be visible in the measurement signal of the Michelson–Morley experiment and
has to be subtracted.

In the following, we show plots for the relative displacements dx, dy, dz
between two mirror midpoints on the resonator axes. The FEM calculations
were carried out for half an orbital rotation of the resonator within the inertial
x−z plane around the Earth (that means a rotation around the inertial y-axis
with angle φy = 0 . . . π) and a simultaneous rotation of the resonator around
its body z-axis with angle φz = 0 . . . 2π.

Figures 6–9 show the displacements of the mirrors Δx,Δy,Δz for the two
opposing mirrors on each resonator axis as well as the relative displacements
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Fig. 6. OPTIS resonator with gravity gradient at point φy = π/2 on its orbit around
the Earth. Left side of each subfigure: displacements at the mirror midpoints, dotted
line represents mirror on negative original coordinate point and full line represents
mirror on positive original coordinate point; Right side: relative displacements be-
tween two opposing mirrors.

dx, dy, dz on these axes. The data show one complete rotation of the res-
onator around its body z-axis when the resonator is at point φy = π/2 on it
way around the Earth, which means when the gravity-gradient force is acting
completely in the body x-direction.

Figure 7–9 shows contour plots as two-dimensional representation of the
three-dimensional data. In all plots, the data for φy = φz = 0, that means at
the status of deformation where the laser beams are coupled into the resonator,
have already been subtracted. That means the numbers on the contour lines
give the relative displacements of the mirrors with respect to this starting
state.
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Fig. 7. OPTIS resonator with gravity gradient. The data correspond to an orbital
rotation around the inertial y-axis for half an orbit with angle φy and a rotation of
the resonator around its body z-axis with angle φz.

6 OPTIS Resonator Under Thermal Gradient

To analyze the influence of thermal gradients on the deformation of the OPTIS
resonator, a thermal analysis within the FEM program ANSYS was carried
out. Figure 10 shows the deformation of the resonator assuming a thermal gra-
dient of 10−9 K between the upper and lower surface in z-direction. We used
the material properties of Corning ULE (ultra-low expansion) glass, which
has so far the lowest thermal expansion coefficient of α ≈ 10−9 K−1.

The relative deformations between the mirrors on the x, y, and z-axis
resulting from this temperature gradient are dx = dy = dz = 2.99 · 10−20 m.
This is still within the science requirement dL/L ≤ 10−18, which means for a
resonator of L = 6 cm dL ≤ 6 · 10−20.
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displacements dz on the y-axis

Fig. 8. OPTIS resonator with gravity gradient. The data correspond to an orbital
rotation around the inertial y-axis for half an orbit with angle φy and a rotation of
the resonator around its body z-axis with angle φz.

Enlarging the temperature gradient by one order of magnitude increases
the displacements by one order of magnitude and thus the science require-
ment cannot be fulfilled. Using a material with an higher thermal expansion
coefficient, e.g., Zerodur with α ≈ 10−7 K−1, enlarges the deformations by
two orders of magnitude.

Thus, we can conclude that for the OPTIS resonator made of ULE the
temperature gradient must be smaller than 10−9 K over its length of 6 cm,
which corresponds to a requirement of smaller than 10−7 K m−1, to fulfill the
science requirements. Furthermore, this means that the temperature stability
between the endpoints of the resonator must be better than 10−9 K on a
timescale (L2/χT ) that is determined by the temperature conductivity χT of
the material.
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Fig. 9. OPTIS resonator with gravity gradient. The data correspond to an orbital
rotation around the inertial y-axis for half an orbit with angle φy and a rotation of
the resonator around its body z-axis with angle φz

Fig. 10. OPTIS resonator under the influence of a linear temperature-gradient field
of 10−9 K in z-axis direction. The color bar gives the values of the z displacements
in meter. The deformation is scaled by a factor of 3 · 1017.
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Summary. In 1859, Le Verrier discovered the mercury perihelion advance anomaly.
This is a 10−7-part deviation from Newtonian gravity. This together with new the-
oretical ideas prompted the formulation of general relativity. In a similar way, will a
test of relativistic gravity to 10−7–10−9 prompt a new theory of gravity and probe
significantly into the microscopic origin of gravity? We envisage that the time is ripe
to test relativistic gravity to 10−9 level of accuracy (1 ppb) within the next 25 years.
Deep-space pulse and interferometric ranging holds such a key. This will ensure a
revival of interest both in experimental and theoretical aspects of gravitation, and
may lead to answer some profound questions about the origin of gravity and the
cosmos.

1 Introduction

The discovery that the expansion of our Universe is accelerating and the cos-
mological constant is nonvanishing put general relativity into an empirically
tight position. The correct semiclassical or microscopic gravitation theory is
needed – the cosmological constant needs to be explained and the microscopic
origin of gravity needs to be probed.

As in other fields of Physics, we advocate the interaction approach: exper-
iments ←→ theory. We are now in an unique position in time epoch to discern
a test of relativistic gravity to one part per billion (i.e., 10−9) within the next
25 years. Since Le Verrier [1], the precision of tests of relativistic gravity has
been improved by 3–4 orders of magnitude [2]. Recently, in 2003, Bertotti,
Iess, and Tortora reported a measurement of the relativistic Shapiro time
delay from the Cassini spacecraft to give the relativistic-gravity parameter
γ the value 1.000021 ± 0.000023 of general relativity – a 1.5-order improve-
ment over previous results [3]; in 2004, Ciufolini and Pavlis [4] reported a
measurement of the Lense–Thirring effect on the LAGEOS and LAGEOS2
satellites to be 0.99 ± 0.10 times the value predicted by general relativity.
In April 2004, Gravity Probe B was launched and has recently finished the
experiment; for measuring the Lense–Thirring effect, a preliminary analysis
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Table 1. Aimed accuracy of PPN light deflection/light retardation parameter γ for
various ongoing/proposed experiments.

Mission Ongoing/proposed experiment Aimed accuracy of γ

GP-B [5] Geodetic precession 1 · 10−5

Bepi-Colombo [10] Retardation 2 · 10−6

GAIA [11] Deflection 1 · 10−5 − 2 · 10−7

ASTROD I [7] Retardation 1 · 10−7

LATOR [9] Deflection 1 · 10−8

ASTROD [8] Retardation 1 · 10−9

The types of experiments (deflection, retardation, or geodetic precession) are given
in the second row.

has given an accuracy of about 1% level; for the light deflection/light retar-
dation parameter γ of relativistic-gravity. Gravity Probe B will reach 1 · 10−5

level [5].
Deep-space laser ranging holds the key to test relativistic gravity to one

part per billion (i.e., 10−9) [6]. Pulse laser ranging with drag-free spacecraft
will reach 10−7 in testing relativistic gravity. One such mission under study is
ASTROD I (Astrodynamical Space Test of Relativity using Optical Devices
I) [7]. Interferometric laser ranging with drag-free spacecraft will reach 10−9;
ASTROD is aiming at this level of accuracy [8]. The astrometric mission
LATOR is aiming at an accuracy of 10−8 by using laser light for measuring
angles [9]. Table 1 compiles these aims together with those of Bepi-Colombo
mission [10] to Mercury and GAIA (Global Astrometric Interferometer for
Astrophysics) mission [11] for global astrometry.

2 ASTROD I

ASTROD I with one spacecraft interferometric ranging and pulse ranging
with ground stations is the first step for a full ASTROD mission [7]. Space-
craft orbit can be designed for a 2012/2013/2015 launch (separated by about
a synchronous year (584 days) of Venus), using two encounters with Venus
to swing the spacecraft to the other side of the Sun in 370 days and having
the second opposition around 720 days, to conduct Shapiro time-delay mea-
surements and various tests of relativistic gravity. The spacecraft is three-axis
stabilized, contains a three-axis drag-free proof (test) mass, and is to follow
this proof mass using microthrusters. The drag-free performance requirement
is 10−13 ms−2 Hz−1/2 between 0.1 and 1 mHz (three-axis) and would give an
error comparable to 10 ps timing error in about 1 year. A 50 × 50 × 35 mm3

rectangular parallelepiped proof mass made from Au–Pt alloy of low mag-
netic susceptibility (<5 · 10−5) is planned to be used. Six-degree-of-freedom
capacitive sensing for the proof mass will be implemented. The laser ranging
is between a fiducial point in the spacecraft and a fiducial point in the ground
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laser station. Assuming a 10 ps timing accuracy and 10−13 ms−2 Hz−1/2 (at
f ≈ 0.1 mHz) accelerometer noise, our simulation for 400 days (350–750 days
after launch) of the accuracy for determining the relativistic parameters γ and
β (relativistic nonlinearity parameter), and the solar quadrupole parameter
J2 gives 10−7, 10−7, and 3.8 · 10−9, respectively, for their uncertainties [12].

3 ASTROD

A baseline implementation of the Astrodynamical Space Test of Relativity
using Optical Devices (ASTROD) is to have two spacecraft in separate solar
orbits carrying a payload of one proof mass, two telescopes, two 1–2 W lasers,
a clock, and a drag-free system, together with a similar L1/L2 spacecraft [6,8].
The three spacecraft range coherently with one another using lasers to map the
solar-system gravity, test relativistic gravity, and detect gravitational waves.
In 2.5 years, the inner spacecraft goes three orbits, the outer spacecraft goes
two orbits, and the earth goes 2.5 orbits to the other side of the Sun to con-
duct a Shapiro time-delay experiment efficiently. The spacecraft configuration
after 700 days from launch is shown in Fig. 1. With technological development
and with the implementation of ASTROD I, the drag-free requirement and
the timing accuracy can be improved for ASTROD. ASTROD aims at a ten-
fold improvement with respect to LISA’s accelerometer noise performance,

Sun

Inner Orbit
Earth Orbit

Outer Orbit

Launch
Position

.

Earth L1 point S/C
(700 days after
launch)

S/C 2
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.
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.

Fig. 1. A schematic ASTROD configuration (baseline ASTROD after 700 days of
launch).
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Fig. 2. Acceleration noise spectral density requirements for ASTROD and ASTROD
I. The LISA Technology Package (LTP) and LISA requirements are illustrated in
the figure for comparison.

i.e., about 3 · 10−16 ms−2 Hz−1/2 at 0.1 mHz [13]. The spectral density of the
residual target acceleration noise curve of ASTROD is shown in Fig. 2 together
with those of ASTROD I, the LTP and LISA. At present, the prototype of
the OCA timer is fully operational having a precision less than 3 ps, a lin-
earity error of 1 ps rms, and a time stability less than 0.01 ps over 1,000 s
with dead time less than 10 μs. For a mission within the next 10–20 years, a
timing accuracy better than 1 ps (300 μm in terms of ranging) can be antic-
ipated. In coherent interferometric ranging, timing events need to be gener-
ated by modulation/encoding technique or by superposing timing pulses on
the CW laser light. The interference fringes serve as consecutive time marks.
With timing events aggregated to a normal point using an orbit model, the
precision can reach 30 μm in range. The effective range precision for para-
meter determination could be better, reaching 3–10 μm using orbit models.
Since ASTROD range is typically of the order of 1–2 AU (1.5–3·1011 m), a
range precision of 3 μm would give a fractional precision of distance deter-
mination of 10−17. Therefore, the desired clock accuracy/stability should be
10−17 over 1,000 s travel time. Optical clocks with this accuracy/stability are
under research development. This development would facilitate ASTROD to
use optical clocks [6]. The present range precision for radio tracking is a couple
of meters. The improvement of ASTROD would be five orders of magnitude,
allowing testing relativistic gravity in the solar system to the 1 ppb (part per
billion) realm. Simulation also gave the same results.
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4 Outlook

Owing to Geodesy missions [14] and LISA (Laser Interferometer Space
Antenna) Program [15], improvements in many technologies critical to the
tests of gravity are under development – the highly accurate deep-space
navigation, high-precision frequency standards, precise pointing and attitude
control, and the drag-free technologies. These will provide a technological
platform for performing relativistic gravity experiments. Technology is ripe
for deep-space laser ranging to test relativistic gravity to 1 ppb. As precision
is increased by orders of magnitude, we are in a position to explore deeper
into the origin of gravitation. The current and coming generations are holding
such promises.
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Summary. The analysis of their radiometric tracking data has consistently in-
dicated a small, anomalous, Doppler frequency drift at heliocentric distances of
20–70 AU. The drift is a blueshift, uniformly changing with a rate of ∼ (5.99 ±
0.01) × 10−9 Hz s−1, which can be interpreted as a constant acceleration of each
spacecraft of aPioneer = (8.74 ± 1.33) × 10−10 ms−2 toward the Sun. This signal
has become known as the Pioneer anomaly. The inability to explain the anomalous
behavior of the Pioneer spacecraft with conventional physics and the search for “new
physics” motivated by the search for quantum gravity or local effects of dark mat-
ter and/or dark energy emphasizes the need for a new experiment to explore the
detected signal. Only a dedicated experiment could ultimately determine the nature
of the found signal. We discuss the Pioneer anomaly and present the next steps
toward an understanding of its origin. We specifically focus on the development of
a mission to explore the Pioneer Anomaly in a dedicated experiment conducted in
deep space.

1 Introduction

The exploration of the solar system’s frontiers – the region between 25 and 50
astronomical units (AU) from the Sun – is a most ambitious and exciting tech-
nological challenge. The scientific goals for possible deep-space missions are
well-recognized and include studies of the gas and dust distributions, explo-
ration of the heliopause and the space beyond, measurements of the magnetic
fields and particle fluxes, studies of the Oort Cloud and Kuiper Belt Objects,
encounters with distant bodies, and investigation of the dynamical background
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of the solar system by studying the effects of various forces that influence the
trajectory of the spacecraft. We are most interested in this last goal.

Our interest comes from navigating the Pioneer 10 and 11 spacecraft that
yielded an exceptionally good acceleration sensitivity. Surprisingly, the accura-
cies of their orbit reconstruction were limited by a small, anomalous, Doppler
frequency drift that can be interpreted as a constant acceleration of the space-
craft of aPioneer = (8.74± 1.33) · 10−10 ms−2 toward the Sun (see [1]). This is
called the Pioneer anomaly.

The nature of this anomaly remains a mystery, with possible explanations
ranging from nominal sources of onboard systematics to exotic gravity exten-
sions on solar system scales. Although the most obvious cause would be that
there is a systematic origin to the effect, the limited data analyzed do not
unambiguously support any of the suggested mechanisms [1]. The inability
either to explain the anomaly or to test it with other spacecraft has con-
tributed to a growing discussion about its origin.

Recently there was a significant interest in developing a dedicated mission
to study the detected signal. Previous extensive efforts have included formu-
lating theoretical mechanisms to explain the anomaly and analyzing existing
solar system data, including both planetary and spacecraft data. Analysis
of the capabilities of spacecraft currently in operation or in design demon-
strated their inability to fulfill an independent verification of the anomaly.
These efforts led to the conclusion that only a dedicated experiment could
ultimately determine the nature of the anomalous signal.

In this contribution, we first discuss the Pioneer missions and the detected
anomaly. We also review mechanisms proposed to explain the Pioneer anom-
aly, both with conventional and “new” physics. Then we outline the program
of experimental tests, focusing on a dedicated mission concept to explore the
Pioneer anomaly.

2 The Pioneer Missions and the Anomaly

The Pioneer 10/11 missions, launched on 2 March 1972 (Pioneer 10) and 5
April 1973 (Pioneer 11), respectively, were the first spacecraft to explore the
outer solar system [1]. After Jupiter and (for Pioneer 11) Saturn encounters,
the craft followed escape hyperbolic orbits near the plane of the ecliptic to
opposite sides of the solar system (see Fig. 1). Pioneer 10 eventually became
the first human-made object to leave the solar system. The last telemetry
was obtained from Pioneer 10 on 27 April 2002 when the craft was 80 AU
from the Sun. (The last signal from Pioneer 10 was received on 23 January
2003.)

The Pioneers were excellent craft with which to perform precise celes-
tial mechanics experiments. This was due to a combination of many factors,
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Fig. 1. Ecliptic pole view of Pioneer and Voyager trajectories. Pioneer 11 is traveling
approximately in the direction of the Sun’s orbital motion about the galactic center.
The galactic center is approximately in the direction of the top of the figure.

including their attitude control (spin-stabilized, with a minimum number of
attitude correction maneuvers using thrusters), power design (the Plutonium-
238 powered heat-source RTGs – Radioisotope Thermoelectric Generators –
being on extended booms aided the stability of the craft and also reduced
the effects due to heating), and precise Doppler tracking (with the accuracy
of postfit Doppler residuals at the level of mHz). The result was the most
precise navigation in deep space to date. (See Fig. 2 for a design drawing of
the spacecraft.)

By 1980, when Pioneer 10 passed a distance of ∼20 AU from the Sun, the
acceleration contribution from solar-radiation pressure on the craft (directed
away from the Sun) had decreased to less than 4 × 10−10 ms−2. This meant
that small effects could unambiguously be determined from the data, and the
anomalous acceleration began to be seen. A detailed study of the anomaly
began in 1994, using data starting in 1987. By then the external systematics
(like solar-radiation pressure) were limited and the existence of the anomaly
in the Pioneers’ data became clearly evident [4, 82,84].

In Sect. 2.1, we shall review our current knowledge of the Pioneer anomaly.
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Fig. 2. The Pioneer spacecraft.

2.1 A Summary of the Pioneer Anomaly

As discussed above, the analysis of the Pioneer 10 and 11 data [1] demon-
strated the presence of an anomalous, Doppler frequency blueshift drift, uni-
formly changing with a rate of [84]

dνobs

dt
∼ (5.99 ± 0.01) × 10−9Hz s−1. (1)

To understand the phenomenology of the effect, consider νobs, the fre-
quency of the retransmitted signal observed by a DSN antenna, and νmodel,
the predicted frequency of that signal. The observed, two-way (round-trip)
anomalous effect can be expressed to first order in v/c as

νobs(t) − νmodel(t) = −2ν̇P t, (2)

with νmodel being the modeled frequency change due to conventional forces
accounted for in the spacecraft’s motion (for more details see [1]). This motion
is outward from the Sun and hence it produces a redshift.

After accounting for the gravitational and other large forces included in
standard orbit determination programs this translates to

νobs(t) − νmodel(t) = −ν0
2aP

c
t . (3)
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Here ν0 is the reference frequency [1].
Furthermore, after accounting for all known (not modeled) sources of sys-

tematic error (discussed in [1]), the conclusion remained that there was an
anomalous sunward constant acceleration signal of

aPioneer = (8.74 ± 1.33) · 10−10 ms−2. (4)

We have already included the sign showing that aP is inward using the DSN
convention (see [1] for more information).

Realizing the potential significance of the result, all known sources of a
possible systematic origin for the detected anomaly were specifically addressed.
We emphasize known because one might naturally expect that there is a sys-
tematic origin of the effect, perhaps generated by the spacecraft themselves
from excessive heat or propulsion gas leaks. However, a convincing explana-
tion for the anomalous behavior of the spacecraft is still unavailable (for more
details, see [2, 4]).

For the most detailed analysis of the Pioneer anomaly to date, Anderson
et al. [1] used the following Pioneer 10/11 Doppler data [84]:

1. Pioneer 10 : the data used were obtained between 3 January 1987 and 22
July 1998. This interval covers heliocentric distances ∼40− 70.5 AU. This
data set had 20,055 data points obtained over the 11.5 years.

2. Pioneer 11 : the data used were obtained between 5 January 1987 and 1
October 1990. This interval covers heliocentric distances ∼22.42−31.7 AU.
This data set had 10,616 data points obtained over the 3.75 years.

By now, several studies of the Pioneer Doppler navigational data have
demonstrated that the anomaly is unambiguously present in the Pioneer 10
and 11 data. These studies were performed with three independent and dif-
ferent navigational computer programs [2–4]:

1. Various versions of JPL’s Orbit Determination Program (ODP) code
developed in 1980–2005

2. A version of The Aerospace Corporation’s CHASPM (latest version of
POEAS, see [1]) code extended for deep-space navigation

3. A third code written by C. Markwardt [3], of the Goddard Space Flight
Center (GFSC). He analyzed Pioneer 10 data obtained from the National
Space Science Data Center (NSSDC, with more information at http:
//nssdc.gsfc.nasa.gov/), for the time period 1987–1994

All analyses of the Pioneer 10 and 11 radiometric data [2–4, 82, 84] have
established the following basic properties of the Pioneer anomaly:

1. Direction. Within the 10 dbm bandwidth of the Pioneer high-gain antenna,
the anomaly behaves as a constant acceleration of the spacecraft directed
toward the Sun.

2. Distance. It is unclear how far out the anomaly goes, but the Pioneer 10
data support the presence of the anomaly at distances up to ∼70 AU from
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the Sun. In addition, the Pioneer 11 Doppler data show the presence of
the anomalous constant frequency drift as close in as ∼20 AU.

3. Constancy. Both temporal and spatial variations of the anomaly’s magni-
tude are less then 3.4% for each spacecraft.

All these information have been used as guidance in investigating applicability
of attempts to explain the Pioneer anomaly with both conventional and “new”
physical mechanisms. We will briefly review these attempts later. We will use
the same information later for discussing our proposal to explore the Pioneer
anomaly in a dedicated deep-space experiment.

2.2 Attempts at Explanations

Conventional Physics Mechanisms

There were many attempts to explain the anomaly with a conventional physics
mechanism that are either not strong enough to support the anomaly or else
exhibit significant temporal and/or spatial variations contradicting the known
properties of the anomaly. The observable effect is seen in the Doppler fre-
quency of the Pioneer navigation data. As such it may have one of the follow-
ing two flavors – either it is due to physical forces that are not yet properly
modeled, or it is due to a blueshift/time–acceleration (for instance, due to a
uniform drift of the frequency standards) of the radio signal. Consequently,
attempts of explanation along these standard lines of conventional physics
have addressed both possibilities [4–7].

Unknown Solar System Objects

The most straightforward way to generate a putative real physical force is the
gravitational attraction due to not precisely known mass distribution in the
outer solar system. Such a distribution could be due to the Kuiper belt objects
or dust. The known density distribution for the Kuiper belt has been studied
in [4,21], but these distributions found to be incompatible with the discovered
properties of the anomaly. Even worse, these distributions cannot circumvent
the constraint from the undisturbed orbits of Mars and Jupiter [7]. Hence a
gravitational attraction by the Kuiper belt gravity can to a large extent be
ruled out.

Dust

Interplanetary dust leads to (a) a gravitational acceleration, (b) an additional
drag force (resistance), and (c) to a frequency shift of the radio signals propor-
tional to the distance. The analysis of data from the inner parts of the solar
system taken by the Pioneer 10 and 11 dust detectors strongly favors a spher-
ical distribution of dust over a disk [8]. Ulysses and Galileo measurements
in the inner solar system find very few dust grains in the 10−18 − 10−12 kg
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range [9, 10]. Infrared observations rule out more than 0.3 Earth’s mass from
Kuiper Belt dust in the trans-Neptunian region [11–13]. Furthermore, the
density varies greatly within the Kuiper belt, precluding any constant accel-
eration.

The density of dust is not large enough to produce a gravitational acceler-
ation on the order of the Pioneer anomaly [14–17]. The resistance caused by
the interplanetary dust [18,19] is too small [20,22] to provide support for the
anomaly. Also the dust induced frequency shift is too small to account for the
frequency drift.

Accelerating Sun

Another attempt suggests that our Sun, by some reason, is accelerating in
the direction perpendicular to the plain of ecliptic. In this case, the Pioneer
Anomaly would be just a projection of this acceleration onto the orbits of the
spacecraft [23] that are slightly inclined with respect to the plane. One of the
proposed mechanisms, an asymmetric neutrino emission from the Sun, was
unable to provide enough power to explain the solar acceleration. In addition,
the planetary orbits would show secular perturbations at an already detectable
level.

Spin–Rotation Coupling

The spin–rotation coupling on the circularly polarized radio signal when it
interacts with the rotation of the Pioneer spacecraft and the Earth leads to
a constant acceleration, which, however, is too small to explain the Pioneer
data [24]. Furthermore, the helicity–rotation coupling has already been phe-
nomenologically incorporated in the analysis of Doppler data.

Local Effect of Expansion of the Universe

Motivated by the numerical coincidence aPioneer ≈ H0c where H0 is the Hub-
ble constant and c the speed of light there are many attempts to explain
the anomaly in terms of the expansion of the Universe. The ways in which
the cosmic expansion might be responsible for the Pioneer Anomaly vary
considerably between the approaches. In [1], it has been shown that such a
mechanism would produce an opposite sign for the effect. Furthermore, it is
known [2, 4] that the very presence of the Pioneer anomalous acceleration
when acting on planets contradicts the accurately known motion of the inner
planets of our solar system. This motivated focusing on the effect of cosmic
acceleration on the radiocommunication signal rather than on the spacecraft
themselves. In [25,26], it has been argued that the cosmic expansion influences
the measurement process via a change in the frequency of the traveling elec-
tromagnetic signals. However, in [27], it has been shown that taking all effects
of the cosmic expansion on the frequency as well as on the Pioneer motion
into account, the resulting acceleration is −vH and, thus, has the correct sign
but is too small by a factor v/c. Similar results have been found in [29,61].



584 U. Johann et al.

In general, an expansion of the universe may influence (a) the motion of
the Pioneers, (b) the size of the solar system (i.e., the planetary orbits), and
(c) the propagation of signals. The first step is to calculate the gravitational
field of a central (nonrotating or rotating) body in an expanding universe.
For the nonrotating case, this has been done first by McVittie [30] using an
expansion scheme. The use of matching conditions led to the famous Einstein–
Straus vacuole and variations of it [31–35]. The vacuole is unstable [36] but on
such a huge timescale [35] so that the instability is of no relevance; practically
Einstein–Straus vacuoles can stay for a huge time. No axial symmetric vacuoles
have been found hitherto. The proof that there are no cylindrical symmetric
vacuoles [37, 38] does not apply to axial symmetry. For physical reasons, the
vacuole seems not to be a viable model for the physics in the solar system
embedded into cosmology.

Another approach considers a mass in a cosmology with perfect fluid
[39–42] and pressure [43]. Gautreau also discusses the motion of planets in
that metric and obtains an outspiraling of the orbits. However, the assumption
that the cosmic fluid is also present inside the solar system might go too far.

The Schwarzschild–de Sitter solutions, see, e.g., [44], describe a spherically
symmetric mass in a universe with cosmological constant, which, due to the
cosmological constant, is expanding. This has been generalized to rotating
masses leading to the Kerr–de Sitter solution, e.g., [45]. The trajectories in
these space–times have been discussed in [46] and [47]. Also rotating mass
configurations have been embedded into a cosmological context [48,49]. (The
opposite situation, the rotation of voids, has been considered in [50], for
example.)

General statements regarding the size of the solar system using differ-
ent methods have been obtained by McVittie [30], Dicke and Peebles [51],
Gautreau [42], Anderson [52], Cooperstock et al. [28], Gautreau [41], and
Bonnor [53–55]. Very interesting is the result in [52] where it has been found
that the expansion couples to escape orbits while it does not couple to bound
orbits.

Of some interest are considerations that connect these local physics in the
expanding universe with the presence of a cosmological constant Λ [56] or, in
a dynamical but more speculative context, with quintessence [57].

If the anomaly finds its origin in standard physics, such an explanation
will be important for solar system physics, astrophysics, and also for advanced
high-accuracy navigation. However, there is also a possibility for discovering
new physics.

Possibility for New Physics?

The apparent difficulty to explain the anomaly within standard physics
became a motivation to look for “new physics.” These attempts in general
did not produce a viable mechanism for the anomaly. Some of these proposals
are the following.
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Extensions of General Relativity

An inverse time dependence for the gravitational constant G [58] produces
effects similar to that of an expanding universe. So did a length or momentum
scale-dependent cosmological term in the gravitational action functional [59,
60]. The anomalous acceleration could be explained in the frame of a qua-
simetric theory of relativity [61]. The possible influence of the cosmological
constant on the notion of inertial systems leading to an additional accel-
eration has been discussed in [56]. In addition, there were ideas to invoke a
model for superstrong interaction of photons or massive bodies with the gravi-
ton background [62]. A five-dimensional cosmological model with a variable
extra-dimensional scale factor in a static external space [63] was also pro-
posed. There is also an attempt to explain the anomaly in the framework of
a nonsymmetric gravitational theory [64].

Gravity Modifications

One approach, called MOND (Modified Newtonian Dynamics), induces a long-
range modification of gravity [65–67], which was proposed to “explain” the
rotation curves of galaxies. It has been pointed out that a scalar field with a
suitable potential can account for a constant acceleration as experienced by
the spacecraft [68]. Recently, a modification of the gravitational field equations
for a metric gravitational field by introducing a general linear relation between
the Einstein tensor and the energy–momentum tensor has been claimed to
account for the Pioneer anomaly [69].

Dark Matter

Various distributions of dark matter in the inner and outer solar system
have been proposed to explain the Pioneer anomaly, e.g., dark matter dis-
tributed in a form of a disk in outer solar system of a density of ∼4·
10−16 kg m−3, which yields the wanted effect. However, it would have to be
a special variety of dark matter that was not seen in other nongravitational
processes. Also dark matter in the form of a spherical halo of a degener-
ate gas of heavy neutrinos around the Sun [70] mirror matter [71] has been
discussed.

String Theory and Higher-Dimensional Models

Though in general scalar fields cannot explain the anomalous acceleration, a
nonuniformly coupled scalar field could have the wanted effect [72]. Though
brane-world models with large extra dimensions may offer richer phenomenol-
ogy than the one by the standard scalar–tensor theories, it seems difficult to
find a convincing explanation for the Pioneer Anomaly [73].
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Further Ideas

Some further ideas are Yukawa-like or higher-order corrections to the New-
tonian potential [1]; a scalar–tensor extension to the standard gravitational
model [74]; Newtonian gravity as a long wavelength excitation of a scalar
condensate inducing electroweak symmetry breaking [75]; interaction of the
spacecraft with a long-range scalar field, unrelated to gravity, determined
by an external source term proportional to the Newtonian potential [76]. In
addition, there were suggestions based on the flavor oscillations of neutrinos
in the Brans–Dicke theory of gravity [77]; a theory of conformal gravity with
dynamical mass generation, including the Higgs scalar [78]. Although these
models are quite interesting, they may not be accepted as a viable explanation
at their present development stage.

3 Attempts of an Independent Confirmation

Attempts to verify the anomaly using other existing spacecraft have been not
successful. This is because the Voyager, Galileo, Ulysses, and Cassini space-
craft navigation data all have their own individual difficulties for use in an
independent test of the anomaly. In addition, many of the deep-space missions
that are currently being considered either may not provide the needed navi-
gational accuracy and trajectory stability sensitive to accelerations of under
10−10 mc−2 (e.g., NASA New Horizons mission), or else they will have signif-
icant onboard systematics that mask the anomaly (e.g., JIMO – Jupiter Icy
Moons Orbiter).

To enable a clean test of the anomaly, there is also a requirement to
have an escape hyperbolic trajectory. This makes a number of other mis-
sions (i.e., LISA, the Laser Interferometric Space Antenna; STEP, Satellite
Test of Equivalence Principle; etc.) less able to directly test the anomalous
acceleration. Although these missions all have excellent scientific goals and
technologies, nevertheless, their orbits lend them a less advantageous position
to conduct a precise test of the detected anomaly.

A number of alternative ground-based verifications of the anomaly have
also been considered, for example, using Very Long Baseline Interferometry
(VLBI) astrometric observations. However, the trajectories of spacecraft like
the Pioneers, with small proper motions in the sky, make it presently impos-
sible to use VLBI in accurately isolating an anomalous sunward acceleration
of the size of aPioneer.

To summarize, the origin of this anomaly remains unclear. Therefore, it is
highly recommended to develop a dedicated deep-space experiment to explore
the Pioneer Anomaly with an accuracy for acceleration resolution at the level
of 10−12 ms−2 in the extremely low frequency (or nearly dc) range.
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Advantages of a dedicated concept include demonstration of new tech-
nologies and capabilities, especially in developing technologies for a low
disturbance craft, advanced thermal design, formation-flying, accurate nav-
igation, attitude control, etc., all of which are important for future deep-
space missions. It also enables synergies with other science and technology,
namely solar system studies (including plasma, dust distributions), Kuiper
belt, gravitational waves, heliopause, etc. The goal here would be to explore
the anomaly at the 10−12 ms−2 level in the near dc frequency range and to
develop technologies important for future deep-space navigation and attitude
control.

In the following sections, we discuss the work needed to experimentally
find the origin of the Pioneer anomaly.

4 A Deep-Space Gravity Explorer Mission to Explore
the Pioneer Anomaly

Our experience with studying the Pioneer spacecraft and our current under-
standing of the Pioneer Anomaly lead to the following set of science objectives
and technological goals for a dedicated mission to explore it.

4.1 Scientific Objectives

The main science goals of such a new Deep-Space Gravity Probe are the
following:

1. Confirmation of the anomalous acceleration. This is the minimum aim for
any such mission.

2. Test Newtonian gravity at large distances, or, more general.
3. Explore the gravitational field(s) on the scale of the solar system. This

may give new information on, e.g., a hypothetical Yukawa part of the
gravitational potential or of influences of dark matter and dark energy on
the scale of the solar system.

4. Test the universality of free fall at large distances.
5. Test Newtonian dynamics for small gravitational acceleration. Since the

MOND ansatz can be used to simulate the galactic rotation curves and,
thus, gives an effect which usually is ascribed to dark matter, it is a model
that should be taken seriously and should be confronted with a dedicated
experiment.

6. Improvement of the limits on the extremely low-frequency gravitational
radiation. This is an add-on to the previous goals that can be obtained
just through the precise navigation and by a particular analysis of the
data.

In particular, any new mission should be able to provide the following:
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(a) Confirmation of the Pioneer anomaly with an improvement of the accuracy
by a factor of 103.

(b) Improvement of spatial, temporal, and directional resolution of the anom-
alous acceleration. These points are extremely important. The directional
resolution may help in identifying the origin of the anomaly: if the accel-
eration points toward the Sun, then the origin is gravitational; if it points
toward the Earth, then the anomaly has something to do with the signal
exchange; if the acceleration is along the spin-axis of the spacecraft, then
the anomaly is most likely due to a systematics on the spacecraft; and
if, finally, the acceleration is along the velocity vector, then an external
nongravitational force should be responsible to the acceleration. The spa-
tial and temporal resolution gives important information about when the
anomaly starts and whether it turns on during the last flyby where the
spacecraft is turned into an escape orbit.

(c) Identification and measurement of all possible disturbing and competing
effects.

(d) Monitoring the state of motion of the spacecraft continuously.
(e) Study of the deep-space environment in the outer solar system.

4.2 Mission Design

The main science goal, the measurement of an anomalous acceleration, requires
the information about the motion of a spacecraft unperturbed by nongravita-
tional forces like solar wind or drag by dust. For an unambiguous verification
of the anomalous acceleration and its precise characterization, the influence
of nongravitational, nearly constant (dc) acceleration on a reference mass or
probe has to be determined and carefully discriminated from the well-modeled
gravitational motion in free fall to a bias accuracy of around 10−12 ms−2 in
all three coordinates. Several novel mission and payload concepts for such a
Deep-Space Gravity Probe have been proposed and elaborated by the authors
recently [79–81]. Promising concepts have been identified, which are based on
a two-step measurement process. They involve a standard radio science link of
a nearly classically operated noisy primary spacecraft with respect to an Earth
reference combined with radio or laser ranging between the primary spacecraft
and one or more freely moving reference masses, spheres, covered with corner-
cube retroreflectors. The resulting distance is then combined with the distance
between the Earth and the primary spacecraft, determined with radiometric
methods (see Fig. 3). This combination is insensitive to disturbances acting
on the primary spacecraft and will give the solely gravitationally determined
motion of the reference mass. One main feature is the shielding of the refer-
ence mass from solar influences through the position of the primary spacecraft
being on the line between the reference mass and the Sun.

The (nearly) free-falling reference masses are shielded or well modeled
with respect to spacecraft and space environment interaction. Consequently,
they are either kept in free space in formation flying in the vicinity of the
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Fig. 3. A drawing for the measurement concept chosen of DSGP. The formation-
flying approach relies on actively controlled spacecraft and a set of passive test
masses. The reference mass (probe) is shielded from solar-radiation pressure by
shadowing. The sphere is tracked by a laser radar and a star sensor payload on
the spacecraft and allowed to drift in a range of an environmentally quiet distance
between about 100 and 1,000 m at 1 AU (10,000 m at distances larger than 10 AU).
The trajectory of the spacecraft will be determined based on the standard meth-
ods of radio tracking. The spacecraft is actively chasing the sphere with very low
thrust maneuvers with period of several days, depending on Sun distance and design
parameters. The concept establishes a flexible craft-to-reference mass formation. The
laser radiation pressure and the thermal radiation pressure from the spacecraft are
sufficiently small. The main objective is to accurately determine the heliocentric
motion of the test mass by utilizing the two-step tracking needed for common-mode
noise rejection purposes.

spacecraft at sufficient distance to minimize any spacecraft-to-reference mass
interaction, or, alternatively, they are placed inside the spacecraft and shielded
from space environment, but then subject to disturbing interaction with the
spacecraft itself. In the latter case, the reference mass can be operated also as
a test mass of an accelerometer, which is coupled to the spacecraft, while mea-
suring any nongravitational acceleration of the test mass itself. In any case,
a nearly constant (dc-bias) nongravitational acceleration must be monitored,
removed, or modeled to the quoted level of accuracy. The requirement of op-
eration in the dc regime or at extremely low frequency (days or weeks in terms
of period) is a distinct technical challenge as compared to similar devices to
measure or shield very small accelerations in other space missions (GOCE,
MICROSCOPE, LISA Pathfinder, LISA) operating at a low, but non-dc fre-
quency band (hours in terms of period). This requirement is the main reason
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to consider formation-flying reference masses external to the spacecraft, de-
spite their added operational complexity. The same requirement, however, also
imposes operational and design constraints of similar complexity in concepts,
where the reference mass is placed inside the spacecraft.

Not only will this design allow for the most accurate orbit determination
ever, but it will also lead to the development of optical navigation, communi-
cation, and accurate formation-flying technologies. This mission benefits from
improvements in low-frequency accelerometers, ultra-stable oscillators, preci-
sion star trackers, dust detectors, spectrometers, and real-time autonomous
attitude control.

A realization of the formation flight concept requires the main space-
craft to have a precision star-tracker and an accelerometer capable of precise
navigation to a level less than ∼10−12 ms−2 in the low-frequency accelera-
tion regime. Mounted on the front would be a container holding a probe–a
spherical test mass covered with corner cubes. Once the configuration is on its
solar system escape trajectory and will undergo no further navigation maneu-
vers, and is at a heliocentric distance of ∼5–20 AU, the reference mass would
be released from the primary spacecraft. The reference mass will be passively
laser-ranged from the primary spacecraft with the latter having enough fuel
to maneuver with respect to the probe, if needed. The distance from the
Earth to the primary would be determined either with standard radiomet-
ric methods operating at Ka-band or with optical communication. Note that
any dynamical noise at the primary would be a common-mode contribution to
the Earth–spacecraft and spacecraft–probe distances. This design satisfies the
primary objective, which would be accomplished by the two-staged accurate
navigation of the reference mass with sensitivity down to the 10−12 ms−2 level
in the dc of extremely low frequency bandwidth.

Since the small forces affecting the motion of a craft from four possi-
ble directions, all having entirely different characters (i.e., sunward, Earth-
pointed, and along the velocity vector or spin-axis [83,84]), it is clear that an
antenna with a highly pointed radiation pattern and star sensors will create
even better conditions for resolving the true direction of the anomaly, when
compared to standard navigation techniques. On a craft with these additional
capabilities, all onboard systematics will become a common-mode factor con-
tributing to all the attitude sensors and antennas. The combination of all the
attitude measurements will enable one to clearly separate the effects of the
onboard systematics referenced to the direction toward the Sun.

An additional wish is to have a fast orbital transfer to the outer regions
of the solar system beyond 20 AU to a hyperbolic escape trajectory.

To summarize, the mission design is characterized by the following:

– Range of heliocentric distances of interest 25–45 AU
– Hyperbolic escape trajectory beyond 15 AU
– Fast orbit transfer with a velocity of larger than 5 AU year−1

– Radio-tracked spacecraft
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– An additional reference mass to be shielded from the Sun and laser tracked
by the spacecraft

Most of the technology is readily available and could lead to rapid mission
design and components fabrication.

4.3 Technological Challenges

To meet the above science goals, it is necessary to develop the following:

1. Methods for precise spacecraft navigation and attitude control (needed
for all future interplanetary missions)

2. Drag-free technologies operating at extremely low frequencies (needed also
for, e.g., next generation of gravitational wave missions)

3. Fast orbit transfer for deep-space access, namely propulsion concepts
(including solar sails) and power management at large heliocentric dis-
tances (including the use of RTGs)

4. Advanced onboard environmental sensors may give additional and inde-
pendent information of the dust content in the outer solar system from
which the drag can be calculated and the additional gravitational accel-
eration due to the dust estimated

The experience gained from the Pioneer spacecraft leads to an approach to
spacecraft and mission design that responds directly to the set of objectives
and goals presented above. In particular, this experience translates in the
following design requirements for the new mission, which are characterized by
the following.

Navigation and Attitude Control

– Spin-stabilized spacecraft
– Three-dimensional acceleration sensitivity ∼10−12 ms−2, in very low fre-

quency or dc range
– Propulsion system with precisely calibrated thrusters, propellant lines,

and fuel gauges with real-time control
– X- and Ka-band with significant dual-band tracking
– Data types: Doppler, range, ΔDOR, and VLBI

Drag-Free Technologies

The dc drag-free technology is central to this mission. Such dc drag-free tech-
nologies may be based, e.g., on atomic interferometry or on capacitive methods
(as employed for the MICROSCOPE mission) with time-dependent coupling
constant. Here we suggest a concept using laser ranging of an external freely
flying test mass. This will be outlined in Sect. 4.4.
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Thermal Design

To minimize the number of maneuvers needed to keep the spacecraft in line
between the test mass and the Sun, one should keep thermal effects as small
as possible. What needs to be considered is as follows:

– Entire spacecraft is heat-balanced and heat-symmetric
– Active control of all heat dissipation within and outward
– Knowledge of three-dimensional vector of thermal recoil force
– Optical surfaces with understood ageing properties
– Onboard power – the use of RTGs
– Must provide thermal and inertial balance and stability

Fast Orbit Transfer

To enable fast orbital transfer to distances greater than 20 AU, hyperbolic
escape trajectories enabled by, e.g., solar sail propulsion technology (see the
article of Dachwald et al. on page 379 in this volume) are considered as an
attractive candidate. Among other options are standard chemical rocket and
nuclear electric propulsion, as was successfully demonstrated recently. The
proposed combination of a formation-flying flight system aided by solar sail
propulsion for fast trajectory transfer leads to a technology combination that
will benefit many astronomy and fundamental physics missions in the future.

4.4 Technological Developments for a dc Drag-Free Control

The Scheme

Laser ranging lends itself as a suitable tool to monitor the distance between
a reference mass and fiducial points located in the spacecraft, because it can
be made to be essentially without bias and drift and can provide the neces-
sary resolution with a minimum of equipment based upon proven technology.
The reference mass then would be a passive sphere with well-defined surface
and electromagnetic properties, equipped with equally distributed corner-cube
retroreflectors, similar to the LAGEOS satellites in Earth orbit, but much
smaller (approximately 20 cm diameter). Laser metrology to read out the rel-
ative position of a reference mass inside an inertial sensor/accelerometer is
presently employed for the LISA Pathfinder payload. A nonpolarizing hetero-
dyne interferometer with differential wavefront sensing for attitude measure-
ment is complementing here the capacitive read out system at much improved
accuracy along the sensitive measurement axis and for lateral attitude angles.
It provides a resolution of 10 pm Hz−1/2 and 10 nrad Hz−1/2, respectively,
within the band 10−3–10−1 Hz. Augmented by a molecular frequency refer-
ence and a thermally stable reference arm, sufficient stability may be reached
for much lower or quasi-dc frequencies. A different and much simpler laser
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ranging technique can be employed in the case of external, formation-flying
reference masses. The following discussion will focus on the latter scenario.

The present hypothesis is that the Pioneer Anomaly is a constant or
very smooth effect, featuring a constant anomalous acceleration either in the
direction of the Sun, the Earth line of sight, or opposite to the reference masses
velocity vector in the solar system coordinate frame. Which case applies can-
not be discriminated on the basis of available data. The effect is constant in
the sense that it is independent of time and orbital position or velocity at
least during cruising phases. As such, any deviation in Doppler – interpreted
as a corresponding velocity change – should accumulate linear in time. In
terms of distance ranging, the effect hence should be quadratic in time. It
is obvious that the required range rate or ranging precision for the measure-
ment scales inversely with the measurement intervals (or integration time). In
fact, for cruising intervals of 10 years or more, periodic short measurements
about every month should be perfectly sufficient. Even outliers in form of
sudden accelerations caused, e.g., by micrometeorites can be discriminated
and tolerated. Nevertheless, a certain higher frequency measurement capa-
bility (hours) may be desirable for reliable chasing of the reference mass by
the spacecraft. The ranging budget is required to achieve a 1% accuracy goal
(δaRM = 8 · 10−12 ms−2) of the reference mass acceleration aRM measure-
ment. Hence, the measurements on both legs, the Earth–spacecraft radio link
and the spacecraft–reference mass laser link, respectively, must be accurate
enough to unambiguously discriminate the Pioneer Anomaly effective contri-
bution from all known other effects influencing the trajectory. In addition,
the modeling accuracy for the acceleration of the RM by all known gravi-
tational and nongravitational effects must be within the δaRM budget. As a
consequence, the reference mass should be purely passive with well-defined
surface and electrical properties. The Pioneer Anomaly effect accumulates to
a Doppler shift, velocity deviation, or distance deviation relative to the mod-
eled parameter values over one day or one month, respectively, as shown in
Table 1 together with the accuracy to be provided by the ranging. These
figures of course apply to the complete two-step process, comprising the radio
link to Earth and the local laser ranger and are relative values. It is evident
that – even if factorized – only moderate requirements are imposed for the
laser ranger in terms of measurement precision. This fact has the important
consequence that the tracking can be accomplished with rather simple sensor
equipment on the spacecraft in addition to the anyway existing radio link to
Earth.

Because the spacecraft is on a presumably close to Sun-radial outbound
trajectory, the ranging accuracy along the Earth line of sight by far dominates
the measurement accuracy and the lateral coordinates can be determined with
less precision. Nevertheless, VLBI techniques for the radio link to Earth allow
μ arcsec precision if desired. The orientation of the laser ranging vector relative
to the Earth line of sight can be easily determined to within a sufficient few
arcsec accuracy, e.g., by a simple star tracker. The capabilities of current
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Table 1. Single bin measurement accuracy required to resolve a (smooth) Pioneer
acceleration with sufficient precision of 1% as function of measurement interval.

Measurement Relative Relative Relative Required
period velocity distance Doppler Ka ranging accuracy

1 day 70 μms−1 6 m 7 mHz 6 cm
(25 cmh−1) 0.7 μms−1

0.07 mHz
1 month 2,100 μms−1 5,300 m 200 mHz 50 m

“Relative” refers here to the trajectory without the PA effect. The values are for
the total measurement (Earth–spacecraft–reference mass). A monthly period is con-
sidered to be sufficient, greatly relaxing sensor requirements. A daily period may
however be desirable for active tracking of the free-fall reference mass. Please note
that no absolute ranging accuracy to that precision is required for the Earth, space-
craft link, but a constant bias can be tolerated.

Table 2. Present DSN radio link capabilities for spacecraft tracking Earth–
spacecraft (DSN Handbook [4]).

Parameter Measures Accuracy (1 σ)

Doppler Range rate 0.03 mms−1

Range Range ∼1–2 m
Angle Lateral angular position (right ascension,

declination)
0.01◦ (170 μrad)

DDOR (VLBI) Lateral angular position (right ascension,
declination)

0.14 μ◦ (2.4 nrad)

radio ranging in Deep-Space Network communication links are summarized
in Table 2.

In principle, the following ranging technologies can be combined in the
proposed two-step process, see Table 3.

The ranging requirements between spacecraft and formation-flying refer-
ence mass (or several masses) are constrained further by the necessity to chase
the latter while actively maneuvering the spacecraft. The impact on space-
craft operations shall however be kept at a minimum, in particular in scenarios,
where the experiment is a passenger on a mission with different objectives.
Obviously, the frequency of (very low Δv) correction maneuvers and the al-
lowance of letting the reference mass drifting far away, while stressing the
local ranging requirements, are conjugate. A further requirement indirectly
related is the necessity to shield or model any reference disturbance at suf-
ficient precision. Among the various disturbance sources, here the dominant
effects of solar light pressure and gravity or thermal interaction with the space-
craft itself define constraints. A sphere of 25 cm diameter, 5 kg equipped with
retroreflecting corner-cube experiences at 1 AU a light pressure acceleration of
about 5·10−8 ms−2, a figure about 100 times the Pioneer effect. To achieve the
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Table 3. Principle ranging technologies applicable for the proposed two-step process
and rendering the measurement insensitive to noisy spacecraft effects. This chapter
focuses on the first option.

Earth–spacecraft link Spacecraft–reference mass (RM) link

Classical bidirectional
biwavelength radio science

Laser ranging + star tracker of reference mass
with corner cubes (in shadow)

Classical bidirectional
biwavelength radio science

Radio tracking of passive radar reflector
(in shadow)

Classical bidirectional
biwavelength radio science

Active transponder on reference mass
(in shadow)

Classical bidirectional
biwavelength radio science

Radar reflector tracking in main communication
beam (in light)

Laser ranging to earth
station (ground or orbit)

Everything above

1% measurement accuracy, a modeling of the induced acceleration to within
10−4 accuracy is required, which is a challenging task, considering ageing sur-
face properties, etc. At 10 AU, still an accuracy of 1% is necessary. Hence,
flying the reference mass in the shadow of the spacecraft would be an advan-
tage at least in early parts of the trajectory. Assuming a spacecraft carrying
an opaque 2.5 m antenna, it will cast a core shadow (umbra) about 260 and
2,600 m for 1 and 10 AU, respectively. Equipped with a dedicated Sun shield
of say 10 m diameter, the shielded range could be extended to 1 and 10 km, re-
spectively. On close range, a 500 kg spacecraft would pull the reference mass
equivalent to the desired acceleration accuracy at about 65 m distance. In
case, the gravity interaction can be modeled to 1% accuracy, a lower limit of
only 6.5 m could be allowed, but then thermal and electrostatic interaction
with the spacecraft become important. Figure 4 illustrates the geometry of
the formation-flying mission.

The frequency of maneuvers to keep the reference mass in the range
interval allowed by above constraints, is then set primarily by the differential
light pressure acceleration. For a typical 2.5 m diameter spacecraft, a range
walk of 180 and 1.8 mday−1 would occur by this effect at 1 and 10 AU, respec-
tively. Hence, at 1 AU a daily maneuver imposing a Δv of about 10 mms−1 in
Sun direction would be required or alternatively, a continuous thrust of about
25 μN. At 10 AU that reduces to a monthly maneuver imposing a Δv of about
3 mm s−1. Beyond 10 AU, the spacecraft can be allowed to drift away in sun-
light until the tracking capabilities are exhausted. The reference mass can be
centered in the spacecraft shadow by very low thrust lateral maneuvers of the
spacecraft. It is important to note that these positioning maneuvers are not
comparable with the complex and risky orbit correction maneuvers in classical
missions, as only very low thrust authority is employed. A possible alterna-
tive operation mode would be to let the reference mass and the spacecraft
drift apart independently for long intervals (month), to reacquire the target
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Fig. 4. Geometry of formation-flying reference mass shielded from solar-radiation
pressure by shadowing. The sphere is tracked by a laser radar and a star sensor pay-
load on the spacecraft and allowed to drift in a range between about 100 and 1,000 m
at 1 AU (10,000 m > 10 AU). The spacecraft is actively chasing the sphere with very
low thrust maneuvers with period of several days, depending on Sun distance and
design parameters. The laser radiation pressure and the thermal radiation pressure
from the spacecraft are sufficiently small.

with the star tracker and to actively steer the spacecraft close within few m
followed by a very simple short range calibration. Obviously, the shadowing
would be lost in that mode.

Suitable Technologies for Laser Ranging to Reference Mass

Numerous laser ranging techniques exist for many applications on ground and
in space and for a large range of requirements. For the envisaged application,
the selection depends on the mission scenario, in particular, whether it is based
upon close range continuous tracking or large range drifts. It is further driven
by the least impact on spacecraft operations (mass, power, operation modes,
required actuation, or AOCS maneuvers) and by simplicity, robustness, and
space heritage.

A (nonexhaustive) list of candidate measurement principles is:

– Pulsed time of flight (TOF) laser radar for ranging and star tracker for
relative attitude

– Frequency chirp coherent laser radar (FMCW)
– Continuous tracking with coherent laser heterodyne interferometer
– Calibrated measurement of sphere diameter (interferometric fringe con-

trast)
– Triangulation using three star trackers
– Intensity ranging

Another important requirement is the capability to periodically acquire
the spacecraft following inactive intervals. Obviously, the system robustness
demands that the reference mass may not be lost. The periodic operation
modes are then:
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1. Warm up
2. Calibration (option)
3. Target acquisition
4. Target tracking (option)
5. Range, range rate, and angular measurement
6. Stand-by

In the following, the pulsed laser radar based upon existing technology is
shown to be perfectly suitable even for the large range scenarios. A detailed
trade, however, and final selection have to be incorporated into a complete
system level study for the experiment. It is assumed that the ranging done by
a laser radar is supported by a directional measurement using a state-of-the-
art simple star tracker. The star tracker adds also significant robustness to
the system, because the target can be “seen” in its field of view and in front
of the star field, illuminated either by the laser or by the Sun.

One interesting option for a very simple system is a uniform (white) sphere,
illuminated by a defocused laser beam, which can be broadband, but must
be calibrated in power. The backscattered laser light is detected by the star
tracker, who also receives a power calibration from the transmission (e.g.,
fiber link) and locates the sphere relative to the beam axis. For laser intensity
calibrated to 10−3 relative accuracy and an intensity flat beam lobe within
the angular accuracy of the star tracker (∼50 μrad), a range resolution of
δR = 2.5 · 10−4R can be achieved. That corresponds to 25 mm at R = 100m.
A mode for initial calibration and recalibration, compensating for aging target
surface properties would have to be incorporated however.

A TOF radar would require a target (sphere or disk) packed with corner
cubes to support the link budget. Acquisition strategies typically employ scan-
ning laser beams (spiral or rectangular patterns), defocused beams followed by
reorientation and refocussing or combinations thereof. Also the star tracker
signal can be used to actively point the focused laser beam to an acquired
target, if both boresights are aligned. In that case, a scanning or defocusing
of the beam can be avoided, provided the target is illuminated.

The received power for a defocused (nondiffraction limited) transmitted
beam reflected off a corner-cube carrying sphere can be expressed as

Pr =
D2

t(
Dt + Rλ

dT

)2nρ
d2

T

d2
b

Pt (5)

where, in the example considered here, Dt = 0.1m is the transmit/receive
telescope diameter, R is the range, λ = 1μm is the wavelength, dT = 0.02m is
the diameter of the reflector corner cubes, n = 19 is the number of illuminated
cubes with an average efficiency of ρ = 0.5, db = 10m is the diameter of the
laser illuminated area at the location of the sphere, and Pt is the transmitted
power.

For a defocused beam to 10 m diameter at 10 km distance, the received
power then is
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Pr = 1 · 10−6Pt (6)

A suitable transmitted power of 100 mW hence provides a reception signature
of 100 nW, which is by far sufficient for localization. A focussed beam (about
diffraction limited) provides

Pr = 2.6 · 10−3Pt (7)

And hence 260 μW. This value again is by far sufficient for ranging accuracy
of about 10 mm in a TOF laser radar (see later). The example is in fact
representing an overdesigned system, illustrating the capabilities.

Fig. 5. Space demonstrated laser range finder developed by Jena Optronik, Astrium
GmbH, and Riegel GmbH for Space Shuttle rendezvous and docking.

Table 4. Performance and budgets of the Jena Optronik laser range finder
[87]. Custom-specific modification should lead to significantly reduced mass and
power budgets.

Field of view Up to 40◦ × 40◦

Measurement parameter Azimuth α, elevation β,
roll R, pitch P , yaw Y ,
time, range r

Accuracy (700–3 m)
LOS (noise + bias) <0.1◦

LOS bias <0.1◦

Power 35 W minimum
70 W maximum

Temperature
Operational 35–65◦C
Nonoperational 55–70◦C

Mechanical size
Optical head (w/o fiber connectors) 270 × 287 × 196mm3

Electronic box 315 × 224 × 176mm3

Mass
Optical head 6.1 kg
Electronic box 8.2 kg
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Fig. 6. Ranging performance measured as function of received optical power. A
resolution of 10 mm is obtained for 10 μW (Jena Optronik).

Fig. 7. Autonomous star tracker Astro 10 (Jena Optronik).

Existing Suitable Sensors

A space-qualified TOF laser radar that could be employed with few (descop-
ing) modifications has been developed by Jena Optronik together with EADS
Astrium GmbH and Riegel GmbH. It has flown successfully on several Space
Shuttle missions where it served as a rendezvous and docking sensor. Figure 5
illustrates the device and Table 4 summarizes main parameters [85]. The scan-
ning mechanism would be omitted and replaced by a refocussing mechanism
in the foreseen application, further reducing power and mass budgets.

A suitable star tracker is also available from Jena Optronik, see Fig. 6,
although other devices exist, which may be even more compact, lighter, and
less power consuming (e.g., the ATC of the Technical University of Denmark
[86]). Figure 7 and Table 5 present main design and performance figures for
the Astro 10 autonomous star tracker [87].
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Table 5. Performance and budgets of the Jena Optronik Astro 10 autonomous star
tracker [87].

Dimensions Head: ∅ 185 mm, height 242 mm (including 30◦ baffle)
E-box: 150 × 145 × 75 mm3

Separated box design
Mass <960 g for optical head (without baffle)

<1, 180 g for electronic box
<510 g for 30◦ baffle (380 g for 40◦ baffle)
<350 g for cabling E-box/optical head (1 m length)

Power Star sensor: <10.0 W at 20◦ interface temperature optical
head

Sensor performance LOS accuracy (BOL): ≤5 arcsec (3 μ), pitch/yaw
≤35 arcsec (3 μ), roll, slew rate at 0.6◦ s−1

Operating modes Boot, stand-by, initial acquisition, attitude lock-in, high-
accuracy attitude, simulation

Data interface RS 422, alternatively MIL 1553 B
Input voltage range 22–35 V
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Summary. The Doppler tracking data from two deep-space spacecraft, Pioneer 10
and 11, show an anomalous blueshift, which has been dubbed the “Pioneer anomaly”.
The effect is most commonly interpreted as a real deceleration of the spacecraft –
an interpretation that faces serious challenges from planetary ephemerides. The
Pioneer anomaly could as well indicate an unknown effect on the radio signal itself.
Several authors have made suggestions how such a blueshift could be related to
cosmology. We consider this interpretation of the Pioneer anomaly and study the
impact of an anomalous blueshift on the Laser Interferometer Space Antenna (LISA),
a planned joint ESA–NASA mission aiming at the detection of gravitational waves.
The relative frequency shift (proportional to the light travel time) for the LISA arm
length is estimated to 10−16, which is much bigger than the expected amplitude of
gravitational waves. The anomalous blueshift enters the LISA signal in two ways,
as a small term folded with the gravitational-wave signal, and as larger term at low
frequencies. A detailed analysis shows that both contributions remain undetectable
and do not impair the gravitational-wave detection. This suggests that the Pioneer
anomaly will have to be tested in the outer solar system regardless if the effect is
caused by an anomalous blueshift or by a real force.

1 Introduction

The Laser Interferometer Space Antenna (LISA) is a joint ESA–NASA mission
to be launched after 2012 that will detect gravitational waves (GWs) in a
frequency range between 10−4 and 1 Hz and study their sources [1]. LISA will
consist of three spacecraft forming a roughly equilateral triangle of 5× 109 m
baseline placed on an orbit similar to that of the Earth. The spacecraft will
exchange phase-coherent laser signals with each other to conduct picometer
interferometry to measure passing GWs through the modulation in the light
travel time between the spacecraft that the waves cause.

In this study, we consider the impact of an anomalous blueshift, which is
homogeneous in the light travel time and isotropic, on LISA. The motivation
to consider such an effect comes from the Doppler tracking data of the Pioneer
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10 and 11 deep-space probes. Both spacecraft show a deviation between their
orbit reconstruction and their Doppler tracking signal [2,3]. The discrepancy,
which has become known as the Pioneer anomaly, can correspond either to a
small constant deceleration of the spacecraft of roughly 9×10−10 ms−2, or to
an anomalous blueshift of the radio signal at a rate of 6×10−9 Hz s−1. Since no
unambiguous conventional mechanism, like small onboard forces, to explain
the anomaly has been identified, there is a growing number of studies, which
consider an explanation in terms of a novel physical effect (see [3–5] for an
overview of the theoretical models). It has been realised that it is difficult to
explain the Pioneer anomaly by a real force which satisfies all constraints from
planetary ephemerides [3,5,6]. Hence an explanation in terms of an anomalous
blueshift seems particularly attractive.

In view of the increasing interest in an experimental verification of the
Pioneer anomaly [7], it is a logical step to consider if such a verification might
be possible with a space mission that is already planned. Unfortunately, the
current and upcoming exploration missions are hardly suited for a verifica-
tion of the Pioneer anomaly [5, 8]. LISA is the first upcoming high-precision
fundamental physics mission that might be sensitive to the anomaly. Already
in an early discussion, Scheffer [9] expressed the expectation that the Pioneer
anomaly, if not due to a spacecraft-specific conventional reason, should be det-
ectable in data from LISA. In a proposal to ESA’s “Cosmic Vision 2015–2025
Call for Themes” the question was raised again if LISA could be a suitable
testbed for a verification of the Pioneer anomaly – in particular if the effect
were due to an anomalous blueshift [10]. Even more important might be the
opposite question: if the Pioneer anomaly is indeed a novel physical effect
could it impair the performance of LISA? In this case it would be of crucial
importance to ensure that the LISA science goals can be achieved despite of
the presence of the anomaly. The present study addresses both of these ques-
tions and comes to the conclusion that LISA is neither sufficiently sensitive
to the Pioneer anomaly to detect it nor impeded in its mission goals by the
potential presence of the anomaly.

The layout of our considerations is as follows. Section 2 gives an overview
of the Pioneer anomaly and its possible relevance for LISA. In Sect. 2.1, we
review the observational evidence for the Pioneer anomaly, and briefly review
the models that have been put forward to explain the anomaly. In Sect. 2.2,
we discuss which models of the Pioneer anomaly are relevant for observations
with LISA and derive a first order of magnitude estimate for the maximal
effect to expect on the interferometric signal of LISA. We also find the generic
response function of LISA in the presence of an anomalous blueshift. Section 3
discusses the effect of the blueshift in the frequency domain. The frequency
domain method has been discarded for the actual evaluation of LISA interfer-
ometric data because time-delay interferometry (TDI) achieves a far superior
cancellation of the laser phase noise (cf. [11]). However, the frequency domain
method has the advantage that it gives direct physical insight into the impact
of an anomalous blueshift on the interferometer. Section 3.1 briefly reviews
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the structure of the interferometric signal of LISA and its Fourier transform.
It is followed by the analysis of the impact of the blueshift, which is split into
two parts. First Sect. 3.2 discusses the effect of the anomalous blueshift in the
sensitivity band of LISA. Then the detectability of the blueshift at very low
frequencies outside of the sensitivity band of LISA is considered in Sect. 3.3.
In both cases, no measurable impact of the anomaly is found. Section 4 recon-
siders the effect of the anomaly in the framework of TDI, the current baseline
method for LISA. Section 4.1 discusses the signature of the anomaly on first-
generation TDI observables for the idealised case of fixed arm length. It is
found that the symmetry of TDI observables leads to an exact cancellation of
the effect of the anomalous blueshift in the case of fixed interferometer arms.
Section 4.2 generalises these considerations to the realistic case of moving
spacecraft. Also in this setting, the effect of the anomalous blueshift would
remain below the detection threshold of LISA. Section 5 summarises our re-
sults and discusses their implications for options to verify and characterise
the Pioneer anomaly.

2 The Pioneer Anomaly and LISA

2.1 The Characteristics of the Pioneer Anomaly

The Pioneer 10 and 11 spacecraft, launched on 2 March 1972 and 5 April 1973,
respectively, were the first to explore the outer solar system (see [12] for an
overview of the Pioneer 10 and 11 missions). Since its Jupiter gravity assisted
on 4 December 1973, Pioneer 10 is on a hyperbolic coast. Pioneer 11 used a
Saturn swingby on 1 September 1979 to reach a hyperbola, in approximately
opposite direction to Pioneer 10. Already before the swingby a discrepancy
between the Doppler signal from Pioneer 10 and its orbit integration was
observed, which was originally ascribed to fuel leaks and a mis-modelling in the
solar radiation pressure model (cf. [13]). This interpretation became more and
more untenable after the swingbys due to the decrease of the solar radiation
pressure, inversely proportional to the square of the heliocentric distance, and
the quiet state of the spacecraft, with very little thruster activity. Moreover an
anomaly of the same magnitude became apparent in the Pioneer 11 data [14].

The anomaly on both probes has been subject to three independent
analyses with different orbit determination programs [3, 15]. The result of
the investigations is that an anomalous Doppler blueshift is present in the
data from both spacecraft of approximately 6× 10−9 Hz s−1 corresponding to
an apparent deceleration of the spacecraft of approximately 9 × 10−10 ms−2.
From the Doppler data, it is not possible to distinguish between an anomalous
frequency shift of the radio signal and a real deceleration of the spacecraft (see
later). The principle investigators of the anomaly have conducted a thorough
investigation of possible biases and concluded that no conventional effect is
likely to have caused the anomaly [3]. Meanwhile, there exists an ample body
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of literature discussing various aspects of possible systematic effects, without
definitive conclusion [9,16–20]. For various reasons, all other deep-space probes
have lower navigational accuracy [3, 5, 8]. Hence to date the effect could not
be verified with another spacecraft.

The inability to explain the anomalous acceleration of the Pioneer space-
craft with conventional physics has contributed to the growing discussion
about its origin. The possibility that it could come from a new physical effect
is now being seriously considered. In particular, the coincidence in magnitude
of the Pioneer anomaly and the Hubble acceleration has stirred the suggestion
that the Pioneer anomaly could be related to the cosmological expansion.

One of the obstacles for attempting an explanation of the Pioneer anom-
aly in terms of new physics is that a modification of gravity, large enough to
explain the Pioneer anomaly, is likely to run into contradiction with the plan-
etary ephemerides. This is readily illustrated by adding a term corresponding
to the Pioneer anomaly to the Newtonian potential of the Sun,

V (r) = −μ�
r

− a∗r , (1)

(μ� is the reduced mass of the Sun, r is the heliocentric distance and
a∗ ≈ 9 × 10−10 ms−2 is the anomalous acceleration) and considering the
orbit of Neptune. At 30 AU, the Pioneer anomaly is visible in the Doppler
data of both Pioneer 10 and 11. The influence of an additional radial acc-
eleration of 9 × 10−10ms−2 on Neptune is conveniently parameterised by a
change of the effective reduced solar mass μ�, felt by the planet (cf. [21]).
The value resulting for the anomaly, Δμ� = a∗r2� ≈ 1.4 × 10−4 μ�, is
nearly two orders of magnitude beyond the current observational constraint of
Δμ� = (−1.9± 1.8)× 10−6 μ� [22]. Similarly, the Pioneer 11 data contradict
the Uranus ephemerides by more than one order of magnitude. Thus, the Pio-
neer anomaly can hardly be ascribed to a gravitational force since this would
indicate a considerable violation of the weak equivalence principle. In partic-
ular, planetary constraints rule out an explanation in terms of a long-range
Yukawa force [3, 23]. Hence, more subtle explanations are to be attempted.

One line of reasoning is to consider an effect on the radio signal rather
than a force on the spacecraft. Already the principle investigators have con-
sidered several phenomenological models of accelerating time [3]. The main
purpose of these models was to investigate the possibility of a systematic drift
of atomic clocks. Most of the phenomenological models failed the cross-check
with tracking data from other spacecraft. Only a time acceleration restricted
to the signal propagation itself yielded a good fit to all spacecraft data, al-
though this model is still statistically disfavoured to a real deceleration of the
spacecraft. The time acceleration of this model is indistinguishable from a
runtime/travel distance-dependent blueshift of the radio signal.

To first order in v/c, the anomalous Doppler drift is related to the anom-
alous acceleration as

1
ν

dν

dt
= −a∗

c
, (2)
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where ν is the emitter frequency of the signal, v is the spacecraft velocity and
c is the velocity of light (cf. [3]). Note that a∗ is negative since it indicates
a deceleration. At first sight this coincidence in phenomenology between an
anomalous deceleration and an anomalous blueshift is surprising. It gets exp-
lained if one considers that the anomaly was only thoroughly investigated
for the part of the Pioneer trajectories through the outer solar system: here
the back-reaction of the spacecraft’s orbit to a small perturbing force can
be neglected and an anomalous acceleration can be treated linearly to high
accuracy [5].1

Several theoretical models have been put forward that implement an anom-
alous blueshift by very distinct mechanisms [24–30]. The works [24, 25] con-
sider the anomaly as a kinematical effect of the cosmological expansion. The
anomaly arises from the fact that the coordinate system, in which local mea-
surements are carried out, is not a synchronous one. The studies [26, 27]
consider an adiabatic effect of the cosmic expansion on the phase of light
viewed as the phase of a quantum state. While [26] considers a closed path
Berry phase, [27] drops the closed path requirement and considers an open-
path Berry phase. In [28–30], the anomaly arises from a time dependence of
the local metric which leads to an effective time acceleration.

All of the above models to explain the blueshift of the Radio signals
transponded by the Pioneers have to be considered as incomplete. This is
most obvious for the model of [24,25], where only a Robertson–Walker metric
is considered and the influence of the gravitational field of the Sun is com-
pletely neglected. This seems too much of a simplification considering the
predominant opinion that the local Schwarzschild geometry of the solar sys-
tem remains practically unaffected by the cosmological expansion (see the
contribution of Lämmerzahl in this volume). The problem is ameliorated a
bit for the quantum effect considered in [26,27] because in this case one could
argue that the adiabatic evolution of quantum states is governed by a different
metric than the non-adiabatic dynamics of large bodies. Also the definition
of the open-path Berry phase in [27] does not seem to be compatible with
the general discussion of the open-path Berry phase in [31]. In the models
of Ranada [28–30], the embedding problem does not seem to spoil the model
because both the cosmic and the local metric are treated as perturbations
of a locally flat metric and can (at least formally) be superimposed linearly.
However, the model of Ranada [28, 29] suffers from the introduction of two
ad-hoc coupling parameters between the electromagnetic and the gravitational
field [32]. Furthermore, the models of Ranada [28–30] lack a relativistic deriva-
tion of the background potential from the cosmological parameters. Despite
of the deficiencies of the current models, the idea that the Pioneer anomaly

1 This simple observation illustrates the need for the analysis of the full Doppler
data of Pioneer 10 and 11 because from data further inward in the solar system a
discrimination between a real force and a blueshift might be possible through the
presence or absence of a change of the orbital parameters due to the anomaly.
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is caused by a blueshift of light is attractive because it automatically satisfies
all constraints from planetary ephemerides.

2.2 Relevance for LISA

Among the proposed explanations of the Pioneer anomaly, most would have
no significance for LISA. For example, this is the case for all models based on
systematics generated onboard the Pioneer spacecraft. Generally, if the anom-
aly corresponds to a real acceleration on the Pioneers, the anomaly should
have no influence on LISA. This can be concluded from the fact that the
LISA orbit is practically identical to the Earth’s orbit. For the Earth itself
an anomalous acceleration of the magnitude of the Pioneers would lead to an
orbital perturbation, which is beyond current observational limits (cf. [21]).
Hence only a considerable violation of the weak equivalence principle (e.g.
between bodies of different mass) could result in an anomalous acceleration
on LISA but not on the Earth. On the other hand an anomalous blueshift
of light could be highly relevant for LISA, since the mission is supposed to
detect GWs through small frequency shifts. The blueshift for light travelling
along an arm of LISA is found by integrating (2) in time,

Δν∗

ν0
= −a∗

c
T , (3)

where T is the light travel time and ν0 is the laser frequency. For the LISA
values, ν0 ≈ 3 × 1014 Hz and T ≈ 17 s, one finds Δν∗ � 1.5 × 10−2 Hz.
Although the absolute blueshift is very small compared with the nominal
frequency, it might nevertheless be within the reach of LISA. Indeed, the
corresponding relative change of the frequency is Δν∗/ν � 10−16 and the
expected value for the weakest GWs, that will be detectable by LISA, is about
10−23 [1]. The frequency shift due to the anomaly is therefore seven orders of
magnitude bigger than the lowest signal to be detectable by LISA. The ability
to measure the contribution of the anomalous blueshift will, however, depend
on the sensitivity of LISA at the frequencies where the anomaly is present.

For a comprehensive analysis of the impact of the anomalous blueshift on
LISA, one has to take into consideration the change of the light travel time
by passing GWs. In linear order in the GW strain h the rate of change of the
light travel time caused by a plane wave is proportional to the projection of
the difference of the GW strains at the point of reception and the point of
emission onto the light travel direction [33,34],

d

dt
ΔT =

1
2
(1 + β)

(
h(t) − h[t + (1 − β)T ]

)
. (4)

Here T is the unperturbed one-way light travel time, ΔT is the change of light
travel time and β is the cosine of the angle between the light travel direction
and the normal of the wave front of the GW. The time t is the time measured
by a clock at the point of reception.
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Writing (3) for the modified light travel time T + ΔT and using (4) to
express ΔT by the linear term of a Taylor expansion, one obtains the frequency
shift for the combined effect of the anomalous blueshift and GWs up to linear
order in a∗ and h for a one-way signal

ν1 − ν0

ν0
= −a∗

c
T +

1
2
(1 + β)

[
1 − a∗

c
T

]
(h(t) − h[t + (1 − β)T ]) , (5)

where ν1 is the frequency at reception. Equation (5) is generic for any model of
a homogeneous isotropic blueshift or time-acceleration. In particular it holds
for the models considered in [3–30].

Depending on the model there might arise one subtlety, which has not
been addressed up to now. In the same way as the electromagnetic waves are
blueshifted an analogous blueshift might arise for the GWs. For example, this
is the case in the models of Ranada [28–30], where the anomalous blueshift
originates from a time-dependent term in the g00 component of the metric
caused by a homogeneous cosmological background potential. This additional
term leads to a modified dispersion relation for all types of waves. The anom-
alous blueshift of GWs could be investigated by a parameter estimation of
the dispersion relation via matched filtering of GW signals detected by LISA.
The method would be analogous to the search for a graviton mass in GW
signals (cf. [35–37]). In the present study, we restrict ourselves to the possible
manifestations of the Pioneer anomaly in electromagnetic waves because the
occurrence of a blueshift of GWs is model dependent and hence would hardly
allow a generic statement about the LISA’s capability to verify the Pioneer
anomaly.

Rather than the one-way response function of (5), the two-way response
function of a signal transponded back to its emitter is the relevant observable
for LISA. It is found analogous to (5) as

ν2 − ν0

ν0
= −a∗

c
T +

1
2
(1 + β)

[
1− a∗

2c
T

]
h(t)−β

[
1− a∗

2c
T

]
h
(
t + (1 − β)T/2

)
−1

2
(1 − β)

[
1 − a∗

2c
T

]
h(t + T ), (6)

where T now denotes the unperturbed two-way light time and ν2 is the
frequency at reception [33,34]. The anomalous blueshift contributes to the freq-
uency shift by two types of terms. On the one hand, it arises proportional to
the unperturbed light travel time. If the light travel time is time dependent
T (t), as will be the case for LISA, the influence of the anomalous blueshift
arises at the different frequencies contained in T (t) and at null frequency any-
way. On the other hand, the anomalous frequency shift appears as a cross-term
with the GW strain. This effect is hence suppressed by the smallness of the
GW strain but still several orders of magnitude larger than terms quadratic
in the GW strain. Both manifestations of the anomalous blueshift will be
investigated in the following.
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3 Frequency Domain Analysis

In Sect. 2, we have discussed how the Pioneer anomaly could find its
explanation in a blueshift of light and we found the generic Doppler re-
sponse function to a plane GW in the presence of an anomalous blueshift. This
Doppler response function describes the influence of the anomalous blueshift
on GW detection by an interferometer arm of LISA. In the following, we
analyse this signal both inside and outside the sensitivity band of the LISA.
This is done first through an analysis in the frequency domain [38] and after-
wards in the framework of TDI [11,39].

The noise cancelation algorithm in the frequency domain [38, 40] is now
considered as obsolete for the LISA data analysis and has been superseded by
TDI, which achieves a far superior cancellation of laser phase noise in the sig-
nal than the frequency domain algorithm. For our purposes, the analysis in the
frequency domain has the considerable advantage that it allows an intuitive
understanding of the influence of the anomalous blueshift. In this method, the
magnitude of various contributions to the signal can be easily compared and
have a direct interpretation in terms of phase shifts of an idealised signal.

This convenient interpretation is partially lost in TDI, in which combi-
nations of signals are formed following an algebraic method to cancel the
dominant noise source of the interferometer. A more physical picture can in
some part be regained by interpreting the TDI combinations as synthesised
interferometers. Nevertheless, an investigation of the impact of an anomalous
blueshift purely in terms of TDI might miss important effects of the blueshift,
which might be cancelled by the specific symmetries of the TDI observables.
On the other hand, the possibility exists that TDI combinations become par-
ticularly sensitive to the blueshift on behalf of their symmetries. Hence, it is
important to investigate if TDI remains unimpaired by an anomalous blueshift
and if TDI is capable of detecting a potential anomaly.

Our analysis of the anomalous blueshift in the frequency domain is based
on the method of Giampieri [38]. We amend the original discussion by the
consideration of additional noise sources, such as acceleration noise, which
were not addressed in [38] and we update the values of laser and shot noise
to match the current expectations for LISA (cf. [1, 11]).

3.1 The Two-Way Doppler Signals

For simplicity, we assumed in our analysis that each laser has the same funda-
mental frequency ν, whereas in a realistic LISA configuration the frequency
of the lasers may differ to each other by several hundreds of MHz. As a fur-
ther simplification, we start our discussion by assuming constant and exactly
known (but unequal) lengths of the interferometer arms. This assumption will
be dropped later.

The basic interferometer configuration is displayed in the Fig. 1. The dis-
tances between pairs of spacecraft are L1, L2 and L3, with Li corresponding
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Fig. 1. Geometry of the LISA formation.

to the interferometer arm opposite to spacecraft i. The optical benches of each
spacecraft are labelled by a number, which corresponds to that of the host
spacecraft. An apostrophe allows to distinguish the two optical benches of the
same spacecraft. In addition, a unit vector ûi is assigned to each arm, with i
being the label of the opposite spacecraft. The orientation of the three unit
vectors are such that û1L1 + û2L2 + û3L3 = 0.

The phase of the signal received from a distant spacecraft of the LISA
constellation is the sum of the following contributions:

1. The phase 2πνli(t) due to the runtime of the signal, where li(t) is the one-
way light time for the signal along the ith interferometer arm. It changes
due to the slow relative velocities between the spacecraft and on shorter
timescales due to GWs.

2. The laser phase noise, pi(t), is the phase noise of the ith laser, so that the
phase of the ith laser is Pi = 2πνt + pi(t).

3. The shot noise. Its effect is immediate at the time of reception, so that
the response of the Doppler measurement at the ith laser is simply given
by ni(t).

4. The acceleration noise. The phase variation Δϕ of a signal depends on
the path length x through

Δϕ =
2πν
c

Δx . (7)

Therefore, the residual acceleration ai(t) of the optical bench of the ith
spacecraft appears in the second derivative of the phase of the signal.
Obviously, the residual accelerations at the two spacecraft, both at trans-
mission and reception, have to be taken into account according to the
following expression

Δϕi =
2πν
c

∫ ∫
[ûj · ai(t) − ûj · ak′(t− lj)] dt2 , (8)
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where i and k′ are the end lasers of arm j and Δϕi is the phase variation at
the photodiode i. Note that this equation considers only the acceleration
along the optical axis and does not take into account a possible turning
of the optical bench.

5. The anomalous blueshift. Using (3) and defining α∗ ≡ −a∗/c its contri-
bution to the phase of the signal is given by

Δϕ∗
i (t) = 2πα∗

∫
Δli(t)dt . (9)

By taking into account all of the above contributions, the phase of the
signal sent by the k′th laser and received at the ith reads

ϕi(t) = 2πν (t− lj(t)) + pk′(t− lj) + ni(t)

+ 2
πν

c

∫ ∫
[ûj · ai(t) − ûj · ak′(t− lj)]dt2 + 2πα∗

∫
lj(t)dt . (10)

At the reception, the incoming signal is beaten with the signal Pi of the local
laser to give the beat signal

sin(ϕi(t)) + sin(Pi(t)) = 2 sin
[
ϕi + Pi

2

]
cos
[
ϕi − Pi

2

]
. (11)

The high-frequency sine term is too fast to be read and is not used in the data
analysis. Therefore, on the j th arm, the phase of the beat signal read in the
spacecraft photodiode is given by

si(t) = ϕi(t) − Pi(t)

= − 2πνlj(t) + pk′(t− lj) − pi(t) + 2πα∗
∫

lj(t)dt + nk′(t)

+ 2
πν

c

∫ ∫
[ûj · ai(t) − ûj · ak′(t− lj)] dt2 , (12)

where we have dropped the factor 1/2 from the argument of the cosine in
(11). Furthermore, the two lasers on each spacecraft are tied to each other in
phase by the exchange of a two-way reference signal between them.

The two-way Doppler signal is then formed by the combination of the
phase measurements from two photodiodes on the same arm (cf. [38]),

zi(t) = si(t) + sk′(t− lj)

= pi(t− 2lj) − pi(t) − 4πνlj(t) + 4πα∗
∫

lj(t)dt + nk′(t) + ni(t− lj)

+2
πν

c

∫ ∫
[ûj · ai(t) − 2ûj · ak′(t− lj) + ûj · ai(t− 2lj)] dt2 . (13)

To obtain zi(t), sk′(t) is sent to the ith laser to be beaten with si(t). Here,
the beat signal is filtered to preserve the GW contribution, i.e. by reading the
cosine term in the expression of a beat (analogous to (11)).
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3.2 Inside the Sensitivity Band

In (13), the light travel time as a function of reception time lj(t) includes
both the orbital motion of the spacecraft and the GWs. We write explicitly
the contribution of the GWs by now considering lj(t) in as the nominal arm
length in the undisturbed spacetime and adding the disturbance by the GW as
a separate term. Using the Doppler response function (5), the effect of a GW,
transverse to the LISA plane, i.e. β ≡ 0, and with appropriate polarisation,
on the two-way Doppler signal is given by

Δν

ν
=

1
2
ε(1 + α∗lj) [h(t) − h(t− 2lj)] , (14)

where Δν is the difference between the frequency of the signal sent and recei-
ved at the central spacecraft and h is the GW strain amplitude. The ε can
take any value between −1 and 1, depending on the orientation of the arm
with respect to the polarisation of the GW. Particularly, for an angle of 60◦

between the arms of LISA, one can have ε = 1 for one arm and ε = −1/2
for the other (cf. [1] p. 102 for the general expressions). The GW adds a
contribution to the signal (13),

Δϕgw = ε πν

∫
(1 + α∗)[h(t) − h(t− 2lj)]dt . (15)

To estimate the importance of each term in (13) and (14), it is useful to
compute the power spectral density of zi(t). To begin, we restrict our study
to the sensitivity band of LISA, i.e. from 10−4 to 1Hz. In a first estimate we
can drop the two terms, −4πνlj(t)+4πα∗ ∫ lj(t)dt because the orbital motion
has little impact at the frequencies of the sensitivity band. To compute the
power spectral density, we consider the Fourier transform of zi(t)

zi(f) = pi(f)
(
e4πiflj − 1

)
+ ni(f)

(
1 + e2πiflj

)
+ νai(f)

e4πiflj + 2e2πiflj + 1
2πcf2

+ενh(f)
e4πiflj − 1

2if
+ ενα∗lj h(f)

e4πiflj − 1
2if

, (16)

where we have assumed that the shot noise and acceleration spectra for both
optical benches are the same, ni(f) = nk′(f) and ai(f) = ak′(f). Further-
more, we have assumed the maximum value for the direction cosine between
ai,k′ and ûj . The Fourier transform (16) supposes that the observing time
is infinite. In practice, LISA is expected to operate in data-taking intervals
of T ∼ 10,000 s and thus, (16) only gives an estimate of the true spectrum.
We will return to the effect of finite observation time below.

From (16), it can be read off immediately that the effect of the anomalous
blueshift would be undetectable. The blueshift enters the spectrum folded with
the GW strain h. Hence its effect will be 15 orders of magnitude below the GW
signal. This corresponds to a spectral power at least ten orders of magnitude
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below the secondary noises, shot noise and acceleration noise (cf. [1,11] for the
estimated noise spectra for LISA). Currently, no procedure exists to cancel
the shot noise in the LISA signal. Hence the anomalous blueshift would be
overwhelmed by the secondary noises and remain unnoticed.

This conclusion has, however, to be reconsidered taking into account that
the data-taking periods of LISA are limited in length. This leads to the leakage
of spectral power to other frequencies. In particular, the low-frequency terms
neglected in the two-way signal zi(t) (13) have now to be addressed. For
typical integration times, T ∼ 10,000 s (cf. [11]), the arm length rate of change
is nearly constant. Its magnitude depends on the position of the spacecraft
along its orbit [41]. The relative velocity, v can reach up to 13m s−1.2 In the
approximation of constant relative velocity, the Fourier transform of lj(t) =
lj,0 + (vj/c)t is given by

F̃.T .[lj(t)] =
∫ T

0

(
lj,0 +

vj

c
t
)
e2πiftdt

=
vj

c
eiπTf πTf cos(πTf) − sin(πTf)

2π2if2

+
[
lj,0 +

vj

2c
T
]
eiπTf sin(πTf)

πf
, (17)

where clj,0 ≈ 5×109 m is the initial light time between the spacecraft. In (17),
the constant term due to the arm length, lj,0, is dominant. This term will
remain present even after the application of the laser noise cancellation algo-
rithm in the frequency domain (cf. [38]). Using (17), the Fourier transform of
the two-way Doppler signal becomes

zi(f) = pi(f)
[
e4πiflj − 1

]
+ ni(f)

[
1 + e2πiflj

]
+νai(f)

[
e4πiflj + 2e2πiflj + 1

]
+ 4πνlj(f) − 2α∗

if
lj(f) . (18)

In this expression, we have dropped the contribution of GWs because above it
was found irrelevant for the discussion of the blueshift (see [38] for a discussion
of the GW signal in terms of the frequency domain algorithm). The contri-
butions to the amplitude power spectrum corresponding to (18) are shown
in Fig. 2. The signal of the anomalous blueshift is higher than the secondary
noise sources but below the laser phase noise. The nominal term from lj , i.e.
the orbital motion is much higher than the laser noise. Hence this term would
have to be removed by a preprocessing method before the laser noise can-
cellation algorithm could be applied (see later). The signal of the anomalous
blueshift is below the laser phase noise but above the secondary noise sources.

The further processing of the signal is distinct for the search for GWs and
for the search for an anomalous blueshift. In the search for GWs the spectral
2 See, however, [42] for recent suggestion of a modified orbit, which could reduce

the relative velocity between the spacecraft by a factor of 6.
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Fig. 2. Amplitude power spectra contributing to the two-way Doppler signal in the
sensitivity band.

leakage is unwanted. Hence a suitable approach is pre-multiplying the time-
domain data sets by a window function before taking Fourier transform [11].
With this preprocessing, the laser noise cancellation can be performed and
GWs could be detected. On the other hand, in the search for an anomalous
blueshift the spectral leakage has to be preserved. However, before the can-
cellation of the laser noise could be attempted, one has to generate a signal in
which the laser noise is the dominant disturbance. Hence the nominal orbital
term needs to be removed from the signal. The natural approach to this task
would be to pre-process the data with information on the orbits acquired from
a different source, e.g. ground tracking of the spacecraft.

The crucial question is how accurately we would need to determine the
arm length of LISA to sufficiently remove the nominal orbital motion term.
According to Fig. 2, a cancellation of about 1015 orders of magnitude would
have to be performed. We suppose that the arm length lj is known up to
a factor k, i.e. the real arm length lj differs from the assumed arm length
lj,measured by the length klj , lj,measured = (1+k)lj . Then the Fourier transform
of the one-way Doppler signal becomes

zi(f) = pi(f)
[
e4πiflj− 1

]
+ ni(f)

[
1 + e2πiflj

]
+ ai(f)

[
e4πiflj + 2e2πiflj + 1

]
+4(1 + k)πνlj(f) − (1 + k)

2α∗

if
lj(f). (19)

Therefore, after the removal of the nominal orbital motion term from the
knowledge of lj,measured, the term 4kπνlj(f) remains which has to be suffi-
ciently low to detect the anomaly. However, at 10−4 Hz, this requirement cor-
responds to a knowledge of the arm length of about 10−15 × lj = 5× 10−6 m,
which is far beyond the experimental capabilities of LISA.

In conclusion, an anomalous blueshift of the magnitude of the Pioneer
anomaly would remain undetected in the sensitivity band of LISA. Further-
more, it would not affect LISA’s capability to observe GWs. The blueshift
remains unimportant because it is peaked around zero frequency and thus far
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away from the sensitivity band of LISA. However, it is still worth considering
the potential impact of the anomaly at frequencies below the sensitivity band
of LISA where the effect becomes much larger.

3.3 Outside the Sensitivity Band

For long integration times, the arm length rate of change cannot be treated as
constant anymore. In the following, we use the simplified analytical model of
the LISA orbits described in [43], in which only the Kepler problem for each
spacecraft is considered. Computing the corresponding power spectrum, one
can plot the two-way Doppler signal, outside the sensitivity band of LISA.

Unfortunately, the noise spectra for LISA at frequencies below the mea-
surement band have not yet been fully investigated (cf. [45]). For our purposes,
we use an extrapolation of the noise spectra obtained in [45]. The accelera-
tion noises might become considerably higher if a suspension mode for low
frequencies would be implemented along the optical axes of the interferome-
ter. However, the results of [44] indicate that the best performance of LISA
is obtained if the drag-free mode along the sensitivity axes is maintained also
for low frequencies. Hence an extrapolation of the noise spectra given in [45]
should give a reasonable impression of the actual performance to expect from
LISA at low frequencies.

The result is displayed in Fig. 3. The term due to the anomalous blueshift
is of the same order of magnitude as the secondary noise but remains still
below the laser phase noise. However, for the integration time required to
reach these frequencies, the laser noise cancellation algorithm can no longer be
implemented because the arm length changes from the orbital motion of LISA
are so big that the algorithm becomes ineffective [38, 40]. Thus, the presence
of an anomalous blueshift cannot be revealed at low frequencies either.

To summarise, the anomalous blueshift would have an amplitude several
orders of magnitude higher than the weakest GWs detectable, on the LISA’s
arms. However, this “large” impact of the anomaly comes from the constant

Fig. 3. Amplitude power spectra contributing to the two-way Doppler signal outside
the sensitivity band.
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part of the arm lengths. Hence it is located at null Fourier frequency while
relevant GWs for LISA are expected at Fourier frequencies between 10−4 and
1Hz. In the sensitivity band of LISA, the effect of the anomaly is well below
all the instrumental noises and hence is neither detectable nor does it have
an impact on the GW detection. With a finite observation time, power of
the constant contribution of the anomaly can leak in the sensitivity band.
The analysis of the spectral leakage of the anomalous blueshift would, how-
ever, require a knowledge of the arm length that would have to be far more
precise than it is achievable. Below the sensitivity band, we found that the
contribution of the anomalous blueshift should be just above the secondary
noise sources but still below the laser phase noise. On these timescales, the
arm lengths change much more than it is allowed to remove efficiently the
laser phase noise. Therefore, we can conclude that the Pioneer anomaly has
no impact on the GW detection and cannot be detected with the frequency
domain method.

4 Time-Delay Interferometry

TDI is a noise cancellation method for unequal-arm interferometers that is
performed in the time domain [11,39,46,47] (see also the contribution by Tinto
in this volume). The basic principle of TDI consists in combining appropriate
one-way Doppler signals to remove the laser phase noise (actually, it also can-
cels the acceleration noise of the optical benches). TDI had originally been
developed as a purely algebraic method, whereas its data combinations have a
physical interpretation as virtual measurements of a synthesised interferome-
ter [48]. The major question to be addressed here is how the Pioneer anomaly
affects the TDI combinations. Since the frequency domain study showed that
the effect of the anomalous blueshift is negligible when folded with the GW
strain, we can restrict our attention on the anomalous blueshift occurring at
low frequencies.

4.1 Linear Data Combinations

In principle, there is an unlimited number of TDI observables corresponding
to more and more complicated synthesised interferometers. For applications
to LISA, the number of beams to combine is usually limited to eight in the
limit of a static interferometer. For this maximum number of beams, there are
ten linear combinations, which cancel the laser noises from all the spacecraft.

These TDI combinations cancel the laser phase noise of an interferometer
at rest with unequal but constant arm lengths and are commonly dubbed
first generation TDI. For the nominal operation mode of LISA, the unequal-
arm Michelson interferometer, three independent possible combinations ex-
ist, which are called X, Y and Z. In the following, we only consider the X
combination,
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X = y32,322 − y23,233 + y31,22 − y21,33 + y23,2 − y32,3 + y21 − y31

+
1
2
(−z21,2233 + z21,33 + z21,22 − z21)

+
1
2
(+z31,2233 − z31,33 − z31,22 + z31) . (20)

The Doppler data to be analysed are now called yij = Δν/ν, where Δν is
the frequency deviation from the centre frequency ν. The subscripts label the
transmitting and receiving spacecraft. The convention is that yij is the beam
transmitted from spacecraft i and received at spacecraft j. Internal metrology
signals to correct for optical bench motions are denoted by zij , with the same
labelling convention. These will, however, play no role in our considerations
because their travel times are too short to show an appreciable anomalous
blueshift. They are hence omitted from now on. Delay of laser data streams
is indicated by commas in the subscripts: y31,23 = y31(t − l2 − l3) = y31,32 ,
etc. (li is the light time on the i-arm).

The Y and Z combinations are obtained from the X combination by cyclic
relabelling of the spacecraft. Hence our results hold for all three of the unequal-
arm Michelson combinations. It is easy to verify by direct substitution of the
laser noise contribution that the combination (20) does not contain any laser
noise. In the unequal-arm Michelson combinations, each one-way signal occurs
twice, at two different times; one term is added and the other subtracted. As
a consequence, the Pioneer anomaly component, given by (3),

y∗ij = −a∗

c
li(t) = α∗li(t) , (21)

disappears. Even the spectral leakage of the data has no impact because the
terms, which contain the anomaly are all cancelled exactly. The same property
holds for the other combinations of the data present in the literature (see [39]
for a description of the other combinations).

In the combinations called α, β, γ and ζ, which represent synthetic Sagnac
interferometers, the contribution of the anomaly would not be cancelled if the
frequency shift would depend on the direction of the light beam with respect
to the Sun. To obtain such a direction-dependent anomaly, which does not
decay significantly over tens of AUs, one would, however, have to resort to
exotic ideas like a topological defect located in the Sun. Such a model is hard
to envisage and no such effect has been suggested as an explanation of the
Pioneer anomaly. Hence we do not further consider this possibility.

4.2 Effect of the Orbital Motion on Time-Delay Interferometry

The first-generation TDI observables, as presented above, have been formu-
lated in the limit that LISA is fixed in space. However, each year, LISA will
accomplish a complete rotation around its centre and the symmetries provided
by a fixed interferometer will be broken. Because of this loss of symmetry, the



Pioneer Anomaly: What Can We Learn from LISA? 621

contribution of the anomalous blueshift, arising on each arm, would not be
cancelled completely anymore in the TDI combinations. Moreover, the laser
phase noise does not cancel exactly, either. More complicated TDI combina-
tions have been developed to overcome this problem [49–51]. In addition to
the rotation, there occurs a flexing of the arms of the detector, which is caused
by the orbital motion and the perturbations of the planets. The interaction
of these two effects with the anomaly is considered in the following.

The Effects of Rigid Rotation

For the discussion of rigid rotation, a more subtle notation for the Doppler
signals is required because the light travel times will now depend on the direc-
tion of the signal with respect to the rotation. While in Sect. 3, L3 was the
length of the arm between the first and the second spacecraft, we denote now
by L12 the length travelled by the signal sent from spacecraft 1 and received
at spacecraft 2. The length travelled by the signal sent from spacecraft 2 and
received at spacecraft 1 is called L21. As illustrated in Fig. 4, the interferometer
is rotating in the clockwise direction if viewed from the celestial pole. The
spacecraft move while the signals are travelling along the arms. If we define
the length of the arm between spacecraft 1 and 2 to be L12 in the limit of
no rotation, then the actual distance travelled by the signal from spacecraft
1 to spacecraft 2 will be L12 < L12. In the same manner, the signal from
spacecraft 2 to spacecraft 1 will have to reach spacecraft 1 in its motion
and will therefore travel a distance L21 > L12. Hence also the magnitude of

L12

1

3 2

1

3

2L12

L21

Fig. 4. The rotation of the interferometer breaks the direction symmetry in the
arm lengths.
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an anomalous blueshift on an arm would depend on the direction, in which
the signal has travelled. Then, if the signals, which have travelled on the
same arm but in opposite direction, are subtracted, a residual contribution of
the anomalous blueshift would remain.

The direction dependence of the light travel times has different effects on
the individual TDI combinations. For the unequal-arm length interferometric
combinations X(t), Y (t) and Z(t), the contribution of the anomaly still cancels
exactly. Indeed, if we take the X(t) combination (the reasoning is the same
for Y (t) and Z(t)), we see that the one-way signals appear twice for a given
direction with opposite signs in the combination but that they are delayed by
different times. For a rigid rotation the relation Lij(t + τ) = Lij holds and
the contribution of the anomaly is cancelled. The (P, Q, R), (E, F, G) and
(U, V, W ) have the same property so that one reaches the same conclusion
for these combinations.

For the Sagnac combinations (α, β, γ and ζ), the structure of the signal is
different (cf. [39]). In these observables, two signals from each arm, running
in opposite direction, are combined. For instance, the signal ζ reads,

ζ = y32 − y23,3 + y13,3 − y31,1 + y21,1 − y12,2 . (22)

Hence the effect of the anomaly is not totally removed. The anomalous com-
ponent in (22) reads

ζ∗ = α∗(l12 − l13 + l23 − l21 + l31 − l32) . (23)

The terms of this equation can be grouped into two parts: Δl− ≡ l12+l23+l31,
which is the total time around the interferometer in the counterclockwise
direction and Δl+ ≡ l13 + l21 + l32, which is the total time in the clockwise
direction. Even for a perfectly rigid triangle, the times of flight are not equal.
Since the LISA constellation rotates in clockwise direction, we always have
Δl− < Δl+. The corresponding Sagnac time shift is given by, cf. [49],

Δl− −Δl+ = ΔlSagnac =
4AΩ

c2
≈ 2π

√
3L2

c2T
. (24)

Here Ω is the angular velocity of the rotation, A is the area enclosed by the
light path, T is the period of rotation and L is a typical arm length. For
the LISA orbit (T = 1 year and L = 5 × 109 m), the Sagnac effect has the
magnitude ΔlSagnac = −10−4 s. Therefore, the residual effect of the anomalous
blueshift on the combination ζ would be

ζ∗ = α∗(Δl− −Δl+) � 3 × 10−22 . (25)

The same result is obtained for the other Sagnac combinations α, β, γ. The
effect of the anomalous blueshift is to add a constant frequency shift in the
Sagnac combinations. The amplitude of this additional Doppler shift would
be comparable to the weakest GWs detectable by LISA. However, the optimal
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sensitivity of LISA occurs in a Fourier frequency range far from the zero
Fourier frequency, where the constant residual contribution of the anomaly
has its impact. Hence, again the effect would not be detectable.

As mentioned above the rigid rotation induces a Sagnac effect on the noises
as well. To maintain noise cancellation up to linear order in the rotational
velocity for all observables modified TDI has been introduced, in which each
Doppler signal from a specific arm enters twice travelling in the same direction.
In modified TDI, the anomalous blueshift is cancelled at linear order in the
rotational velocity and the effect of the anomaly would become even smaller.

The Effects of Flexing

As we have seen in Sect. 3.3, the arm lengths of LISA do not remain constant
due to the orbital motion and the perturbations of the orbits by the planets.
Unlike the rigid rotation, the flexing of the arms does not preserve the con-
tinuous symmetry, Lij(t + τ) = Lij(t). For example, the X combination (20)
becomes for time varying runtimes (cf. [49])

X = y12

[
t− l31 − l

(1)
13 − l

(2)
21

]
− y13

[
t− l21 − l

(1)
12 − l

(2)
31

]
+ y21

[
t− l31 − l

(1)
13

]
−y31

[
t− l21 − l

(1)
12

]
+ y13(t− l31) − y12(t− l21) + y31(t) − y21(t) , (26)

where l21 ≡ l21(t), l31 ≡ l31(t), l
(1)
12 ≡ l12(t − l21), l

(1)
13 ≡ l13(t − l31), l

(2)
21 ≡

l21(t− l31 − l
(1)
13 ) and l

(2)
31 ≡ l31(t− l21 − l

(1)
12 ). Using (21), the contribution of

the anomalous blueshift in the X combination is given by

X∗ = α∗
[
l12

(
t − l31 − l

(1)
13 − l

(2)
21

)
− l13

(
t − l21 − l

(1)
12 − l

(2)
31

)
+ l21

(
t − l31 − l

(1)
13

)]
+ α∗

[
−l31

(
t − l21 − l

(1)
12

)
+ l13 (t − l31) − l12(t − l21) + l31(t) − l21(t)

]
= α∗

[
l
(3)
12 − l

(3)
13 + l

(2)
21 − l

(2)
31 + l

(1)
13 − l

(1)
12 + l31 − l21

]
,

where l
(3)
12 ≡ l12(t − l31 − l

(1)
13 − l

(2)
21 ) and l

(3)
13 ≡ l13(t − l21 − l

(1)
12 − l

(2)
31 ). The

arm lengths can be estimated by their first-order changes l
(n)
ij = lij(t)−nVij l,

where Vij is the rate of change of the arm’s light travel time in seconds per
second and l is a typical one-way light time [49]. Then we find from (27)

X∗ = 4α∗(V13 − V12)l = 6 × 10−24 , (28)

where, in accordance with [49], we have used V13 − V12 � 10 (m s−1)/c. This
relation determines the maximum effect of the blueshift due to the flexing
induced by the orbital motion. The Doppler shift stays below the optimal
sensitivity of LISA, which is about 10−23. Results at the same order of mag-
nitude are obtained for all TDI combinations. Hence we conclude that the
effect of the anomalous blueshift due the flexing of the interferometer arms
will not be detectable.

(27)
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The flexing of the arms inhibits laser noise cancellation to first order in
the velocities for first-generation TDI or modified TDI. To achieve the noise
cancellation up to first order, inclusive, another set of observables has been
designed. The so-called second-generation TDI achieves the cancellation by
having not only a signal for each arm entering twice in the same direction, but
also having each term linear in the change rate of the length of an arm entering
twice. Hence second-generation TDI also cancels the anomalous blueshift from
terms linear in the change rate of the arms.

We found that TDI observables, especially those of second-generation TDI,
are particularly insensitive to the anomalous blueshift. This result has a simple
geometric justification. The anomalous blueshift of sizable magnitude arises
proportional to arm length differences. However, TDI is based on combining
signals in a way that yields overall light times of zero (cf. [48]). Hence the
very principle of the TDI algorithm leads to an automatic cancellation of the
anomalous blueshift in the signal.

5 Summary and Conclusions

The Pioneer anomaly is attracting a growing interest in the scientific com-
munity. Hence a verification of the effect beyond the Pioneer data would be
highly desirable. Here we studied in which way the LISA mission could con-
tribute to a test of the Pioneer anomaly. Because of its Earth-like orbit, LISA
would most likely not experience an anomalous force since this would require
a strong violation of the weak equivalence principle. On the other hand, if one
interprets the Pioneer anomaly as an anomalous blueshift of light, this effect
would also affect the LISA interferometer.

Several models in the literature consider the Pioneer anomaly as a homo-
geneous and isotropic blueshift originating from the cosmic expansion through
various mechanisms [24–30]. All of these distinct models lead to a common
Doppler response function for LISA up to linear order in the anomalous
blueshift and in the GW strain. We derived this Doppler response function as
an extension of the well known two-point response to GWs. We found that
the blueshift arises on the one hand as a cross-term with the GW signal and
on the other hand as a low-frequency bias depending on the interferometer
arm length. The cross-term with the GW signal is much larger than a possible
second-order GW term but still too small to be detectable by LISA.

The low-frequency term was found to induce a relative frequency shift of
10−16, which is several orders of magnitude larger than the weakest measur-
able GW strain of 10−23. The implications of this number are, however, not
immediate because the anomalous blueshift arises at zero frequency, whereas
the LISA sensitivity lies between 10−4 and 1 Hz.

Consequently, we investigated the power spectral density of the anomalous
frequency shift, which arises from the orbital motion of the LISA satellites.
We considered both short times and timescales, which comprise a considerable
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fraction of the orbital period of LISA. These results were compared with the
noise spectra of LISA. Unfortunately, due to its low-frequency nature, the
anomalous blueshift is always overwhelmed by some noise source of the LISA
interferometer. Hence an anomalous blueshift would remain undetectable.

This conclusion is then reconsidered in the framework of TDI, the current
baseline method for laser phase noise cancellation in LISA. The dedicated
discussion of TDI is necessary because the complicated signals synthesised
in TDI could produce a by-chance amplification of a homogeneous isotropic
signal. Our results show on the contrary that TDI cancels the blueshift in
all data combinations to a high degree due to the inherent symmetries of the
TDI observables. Only from the rotation and flexion of the interferometer, a
residual contribution of the anomaly would arise. This effect would, however,
be below the detection threshold of LISA. Hence an anomalous blueshift will
not be recognisable in TDI and will not degrade the performance of TDI for
the detection of GWs either.

In the present study, we have focused our attention on models of the anom-
aly that predict a homogeneous and isotropic blueshift. At first glance, this
seems a bit restrictive, since also models, in which the Pioneer anomaly arises
from a central force, can lead to a considerable blueshift of light. An example
is the model of [52], which introduces separate momentum-dependent gravita-
tional couplings for the scalar and the conformal sector of the Einstein equa-
tions. In this model, about half of the Pioneer anomaly is due an anomalous
blueshift. However, the blueshift induced into the LISA signal by a central
force would be proportional to the difference in light travel time between the
way back and forth in a two-way signal, whereas a homogeneous and isotropic
blueshift is proportional to the two-way light travel time. Thus, the blueshift
from a central force, which is supposed to explain the Pioneer anomaly, would
in general have much less effect on the LISA signal than a homogeneous and
isotropic blueshift.

In conclusion, LISA cannot be used to test the Pioneer anomaly and one
will have to look for other options to verify if the Pioneer anomaly could be a
novel physical effect. Considering the blueshift interpretation of the anomaly,
missions for a test of general relativity by interferometry like LATOR [53]
(see also the contribution by Turyshev in this volume) or ASTROD [54] (see
also the contribution by Wei-Tou Ni in this volume) might be sensitive to
this effect. However, also these missions would face the problem that the
anomalous blueshift becomes significant only at low frequencies, i.e. for large
changes of the light travel time in the interferometer.

More promising – and probably mandatory if the Pioneer anomaly repre-
sents a force and not a blueshift – would be a test in the outer solar system by
radio-tracking of a deep-space vehicle with very well know onboard systemat-
ics [7]. Preferably this would be a dedicated mission to explore the anomaly,
although a planetary exploration spacecraft, which has been designed with the
secondary goal to test the Pioneer anomaly could already gain considerable
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insights [5].3 The analysis of the full archive of Pioneer 10 and 11 Doppler
data, which is currently being initiated, might further help to identify mission
scenarios that are especially suited for a test of the anomaly.
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LITE, 287
LITS, see Linear Ion Trap Standard
LLI, see Local Lorentz Invariance
LLR, see Lunar Laser Ranging
Local Lorentz Invariance, 6, 37

spontaneous violation of, 39
Local Position Invariance, 40
local steering law, 387
LOLA, see Lunar Orbiter Laser

Altimeter
Lorentz invariance

violation of, 215
LPI, see Local Position Invariance
LRE, see Laser Ranging Equipment
LRO, see Lunar Reconnaissance Orbiter
Lunar

libration, 234
ephemerides, 233, 234
libration, 233
mass distribution, 233
rotation, 468

Lunar Laser Ranging, 4, 11, 41, 63, 79,
231, 417, 456

Lunar Orbiter Laser Altimeter, 242
Lunar Reconnaissance Orbiter, 242, 470

machine learning, 391
MAGIA, 309
Magneto Optical Trap, 13
Majorana effect, 49
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Mariner 9, 219
Mars Global Surveyor, 231, 237
Mars Orbiter Laser Altimeter, 237
matched filtering, 611
Maxwell equation, 105, 107–110
MCP, see Minimal Coupling Principle
Mercury’s perihelion, 234
MESSENGERc, 83, 236
metric, 162, 193

2PN, 181
cosmological, 609
DSX, 188
Friedmann–Robertson–Walker, 609
local, 609
optical metric, 210
parameterized post–Newtonian, see

parameterized post–Newtonian
metric

Robertson–Walker, 181, 185, 233
MGS, see Mars Global Surveyor
micro–propulsion cold gas thruster, 351
MICRO–Satellite a trainée Compensée

pour l’Observation du Principe
d’Equivalence, 4, 13, 62, 289, 356,
554, 589

microlensing, 415
MICROSCOPE, see MICRO–Satellite

a trainée Compensée pour
l’Observation du Principe
d’Equivalence

microthruster, 16
Minimal Coupling Principle, 45
missions

close to the Sun, 379, 387
far away from the Sun, 379
fast Solar system escape, 389

Modern Physics, 50
MOdified Newtonian Dynamics, 52, 61,

587
MOLA, see Mars Orbiter Laser

Altimeter
momentum–dependent gravitational

coupling, 625
MOND, see MOdified Newtonian

Dynamics
MOT, see Magneto Optical Trap
multipole expansion, 166

NASA, 231, 605

navigation, 591
navigational accuracy, 234, 608
NEAR, 83
near zone, 120
Neptune, 608
New Horizons, 586
new interactions of nature, 46, 48
New Physics, 43
Newton’s Law, test of, 59
Newtonian gravitational constant G, 8,

116, 233, 234, 308
Newtonian gravitational constant G

time variation of, 233, 462
Newtonian potential, 93, 94

1/r dependence, 197
noise

cancelation, 612
laser, 260
secondary, 616, 618, 619
spectrum, 618

non–perfectly reflecting SRP force
model, 382

Nordtvedt
effect, 423
parameter, 423

null cone
gravity, 213
light, 213

null geodesics, 116, 153, 182

observational coordinate, 140
observer field, 146
ocean tide, 86
octuple anomaly, 76, 90
on–board force, 606
optical

axis, 618
bench, 613, 615, 619, 620
coordinate, 139
optical metric, 210
resonator, 555

OPtical Test of the Isotropy of Space,
4, 14, 553, 554

OPTIS, see OPtical Test of the Isotropy
of Space

orbit, 605
determination, 78, 79, 607
hyperbolic, 607
reconstruction, 606
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orbital
energy change, 379
motion, 615, 617, 621, 623
perturbation, 610

orbital–dynamics model, 258

parallax, 413
parameterized post–Newtonian, 193,

476
formalism, 30, 36, 153, 162, 403, 416,

477
metric, 31, 32, 476
parameter, 32, 173

α1, 548
α2, 548
β, 31, 41, 233, 477, 546
γ, 31, 41, 45, 416, 417, 473, 477,

479, 488, 546
PARCS, see Primary Atomic Reference

Clock in Space
perigee advance, 554
perturbation of the planets, 621
perturbing force, 609
PHARAO, see Projet d’Horloge

Atomique par Refroidissement
d’Atomes

phase measurement, 614
photodiode, 614
Pioneer anomaly, 605
Pioneer 10 and 11, 606, 607

Doppler data, 608, 620, 626
Pioneer anomaly, 193, 390, 577, 605–629

anomalous blueshift, 605–629
anomalous deceleration, 609
anomalous force, 624

pioneer anomaly, 76, 77
planetary ephemerides, 234, 606, 608,

610
planetary exploration, 625
Pluto, 626
POEM, see Principle Of Equivalence

Measurement
POINTS, see Precision Optical

INTerferometer in Space
post–Einsteinian extension, 193
postlinear gravitational field, 106, 120
potential

cosmological background, 611
Liénard–Wiechert, 112, 118

retarded, 212
Newtonian, 608
tidal–force, 111
Yukawa, 462, 586, 587

Pound–Drever–Hall locking, 268, 442
power spectral density, 615, 624
power spectrum, 618
power stabilization, 442, 443
PPN, see parameterized post–

Newtonian
Precision Optical INTerferometer in

Space, 263
preferred frame, 210
preferred frame effect, 462
Primary Atomic Reference Clock in

Space, 5, 12, 220, 224, 286
Principle Of Equivalence Measurement,

233, 263
Projet d’Horloge Atomique par Re-

froidissement d’Atomes, 5, 12,
327

proof mass, 572
proper direction, 410
proper time, 411

quadrupole anomaly, 76, 90
quadrupole moment, 176
quadrupole moment of Sun, see Solar

quadrupole
quantum Hall effect, 334
Quantum Interferometer Test of

Equivalence, 286
quintessence, 584
QuITE, see Quantum Interferometer

Test of Equivalence

RACE, see Rubidium Atomic Clock
Experiment

radar, 131
coordinate, 139
distance, 132
neighborhood, 133
time, 132

radiative correction, 194
radio–tracking, 625
Radioisotope Thermoelectric Generator,

579, 591, 592
radiosignal, 79
Raman transition, 289, 300, 305
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ranging, 243, 390
Rees–Sciama effect, 181
reference

frame, 415
mass, 588, 595
system, 404, 415

relativistic gravity, 40, 59
resonator, 17
response function, 611, 612, 615
rigidity, 147
Robertson–Mansouri–Sexl parameter,

416
Robertson–Walker metric, 185
rocket equation, 379
Rosetta, 83, 88
round–trip travel time, 227
RTG, see Radioisotope Thermoelectric

Generator
Rubidium Atomic Clock Experiment, 5,

13
running coupling constant, 193

Sagnac
effect, 303, 622
term, 172
time shift, 622

sail assembly loading, 384
sailcraft loading, 384
Satellite Energy Exchange, 5, 14
Satellite Laser Ranging, 16, 79, 231, 470
Satellite Test of the Equivalence

Principle, 5, 13, 62, 289, 355, 554
scalar

field, 56, 478
sector, 625

scalar–tensor extension of gravity, 475
scalar–tensor theory of gravity, 45, 473,

478
scale dependence, 197
Schwarzschild geometry, 609
Schwarzschild–de Sitter, 92, 584
SEE, see Satellite Energy Exchange
selenocentric coordinate, 461
selenocentric reference frame, 469
sensor, 341, 348

gravitational reference, 15, 439
reference, 555

SEP, see Equivalence Principle

Shapiro time delay, 215, 219, 220, 234,
417, 473

SI system, see international system of
units

signal propagation, 608

SLR, see Satellite Laser Ranging

Solar

photonic assist, 380

quadrupole, 552

radiation pressure, 379, 607

sail, 379–395

equations of motion, 386

film, temperature limit, 379

force model, 381

hardware development, 385

orbital mechanics, 381

performance parameter, 384

simulation model, 386

system, 188, 193, 407, 609

additional masses in the, 80

effect, 92

large–scale gravitational field of the,
379

object, 582

outer, 625

test, 40, 59

Solar quadrupole, 462

solid Earth tide, 86

SOREL, see Space Experiment on
Gravitational Theories

space condition, 4, 9

space experiment, 58

Space Experiment on Gravitational
Theories, 228

space–curvature parameter, 462

SpaceTime Mission, 5, 14, 286

Special Relativity, 5, 462

spectral leakage, 617, 619, 620

spectral power, 615

speed of gravity, 105, 106, 212

spin–rotation coupling, 583

spin–stabilized, 591

SQUID, see Superconducting QUantum
Interference Device

star tracker, 16, 277, 599

Stardust, 83

stationary source, 165

stationary space–time, 157



Index 639

STEP, see Satellite Test of the
Equivalence Principle

STM, see SpaceTime Mission
string theory, see string/M-theory
string/M-theory, 44, 56, 585
Sun, 608, 609, 620

accelerated, 80, 583
Superconducting QUantum Interference

Device, 18, 62, 349
suspension control, 361
swingby

Jupiter, 607
Saturn, 607

synchronization, 143

TAI, see Temps Atomique International
TAMA 300, 434
TCB, see Barycentric Coordinate Time
TDI, see Time–Delay Interferometry
TDIR, see Time–Delay Interferometric

Ranging
Temps Atomique International, 406
tensor–scalar theory of gravity, see

scalar–tensor theory of gravity
terrestrial reference frame, 468
test mass, 342
TFG, see Tracking Frequency laser

distance Gauge
The Barycentric Celestial Reference

System, 405
thermal gradient, 566
Thomas precession, 302
tidal gravitational field, 555
tidal–force potential, 111
time delay, 153, 155

equation, 112, 114
gravitational, 114, 213, 545, 572
higher order, 112
integral, 112, 114
relativistic, 111, 112, 114

time dilation, 554
time transfer, 231

function, 154, 155
time–acceleration, 611
Time–Delay Interferometric Ranging,

243, 255
Time–Delay Interferometry, 243, 246,

449, 606, 607, 612, 619, 621–623,
625

first generation, 619, 620

modified, 623

second generation, 624

time–keeping, 16

topological defect, 620

Tracking Frequency laser distance
Gauge, 263

travel time measurement, 228

two sectors, 199

UFF, see Universality of Free Fall

UGR, see Universality of the Gravita-
tional Redshift

ULE, see Ultra Low Expansion

ultra low disturbance environment, 341

Ultra Low Expansion, 566

umbilic, 149

Universality of Free Fall, 6, 14, 94, 390

Universality of the Gravitational
Redshift, 6, 387, 390, 554

Universe, expansion of the, 92

Uranus, 608

vector–tensor theory, 209

Very Long Baseline Interferometer, 79,
111, 215, 399, 593

observations, 111, 114, 115

Viking, 11

Orbiter, 219

VLBI, see Very Long Baseline
Interferometer

Von Klitzing, 334

watt balance, 334

Weak Equivalence Antimatter eXperi-
ment, 62

weak gravity, 91, 389

WEAX, see Weak Equivalence
Antimatter eXperiment

WEP, see Equivalence Principle

window function, 617

world function, Synge’s, 153

Yukawa

force, 608

potential, 462, 586, 587
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